Sample records for frequency tidal volume

  1. Important influence of respiration on human R-R interval power spectra is largely ignored

    NASA Technical Reports Server (NTRS)

    Brown, T. E.; Beightol, L. A.; Koh, J.; Eckberg, D. L.

    1993-01-01

    Frequency-domain analyses of R-R intervals are used widely to estimate levels of autonomic neural traffic to the human heart. Because respiration modulates autonomic activity, we determined for nine healthy subjects the influence of breathing frequency and tidal volume on R-R interval power spectra (fast-Fourier transform method). We also surveyed published literature to determine current practices in this burgeoning field of scientific inquiry. Supine subjects breathed at rates of 6, 7.5, 10, 15, 17.1, 20, and 24 breaths/min and with nominal tidal volumes of 1,000 and 1,500 ml. R-R interval power at respiratory and low (0.06-0.14 Hz) frequencies declined significantly as breathing frequency increased. R-R interval power at respiratory frequencies was significantly greater at a tidal volume of 1,500 than 1,000 ml. Neither breathing frequency nor tidal volume influenced average R-R intervals significantly. Our review of studies reporting human R-R interval power spectra showed that 51% of the studies controlled respiratory rate, 11% controlled tidal volume, and 11% controlled both respiratory rate and tidal volume. The major implications of our analyses are that breathing parameters strongly influence low-frequency as well as respiratory frequency R-R interval power spectra and that this influence is largely ignored in published research.

  2. One-Lung Ventilation with Additional Ipsilateral Ventilation of Low Tidal Volume and High Frequency in Lung Lobectomy

    PubMed Central

    Feng, Yong; Wang, Jianyue; Zhang, Yang; Wang, Shiduan

    2016-01-01

    Background To investigate the protective effects of additional ipsilateral ventilation of low tidal volume and high frequency on lung functions in the patients receiving lobectomy. Material/Methods Sixty patients receiving lung lobectomy were randomized into the conventional one-lung ventilation (CV) group (n=30) and the ipsilateral low tidal volume high frequency ventilation (LV) group (n=30). In the CV group, patients received only contralateral OLV. In the LV group, patients received contralateral ventilation and additional ipsilateral ventilation of low tidal volume of 1–2 ml/kg and high frequency of 40 times/min. Normal lung tissues were biopsied for the analysis of lung injury. Lung injury was scored by evaluating interstitial edema, alveolar edema, neutrophil infiltration, and alveolar congestion. Results At 30 min and 60 min after the initiation of one-lung ventilation and after surgery, patients in the LV group showed significantly higher ratio of the partial pressure of arterial oxygen to the fraction of inspired oxygen than those in the CV group (P<0.001). Lung injury was significantly less severe (2.7±0.7) in the LV group than in the CV group (3.1±0.7) (P=0.006). Conclusions Additional ipsilateral ventilation of low tidal volume and high frequency can decrease the risk of hypoxemia and alleviate lung injury in patients receiving lobectomy. PMID:27166086

  3. Controlled breathing protocols probe human autonomic cardiovascular rhythms

    NASA Technical Reports Server (NTRS)

    Cooke, W. H.; Cox, J. F.; Diedrich, A. M.; Taylor, J. A.; Beightol, L. A.; Ames, J. E. 4th; Hoag, J. B.; Seidel, H.; Eckberg, D. L.

    1998-01-01

    The purpose of this study was to determine how breathing protocols requiring varying degrees of control affect cardiovascular dynamics. We measured inspiratory volume, end-tidal CO2, R-R interval, and arterial pressure spectral power in 10 volunteers who followed the following 5 breathing protocols: 1) uncontrolled breathing for 5 min; 2) stepwise frequency breathing (at 0.3, 0.25, 0.2, 0.15, 0.1, and 0.05 Hz for 2 min each); 3) stepwise frequency breathing as above, but with prescribed tidal volumes; 4) random-frequency breathing (approximately 0.5-0.05 Hz) for 6 min; and 5) fixed-frequency breathing (0.25 Hz) for 5 min. During stepwise breathing, R-R interval and arterial pressure spectral power increased as breathing frequency decreased. Control of inspired volume reduced R-R interval spectral power during 0.1 Hz breathing (P < 0.05). Stepwise and random-breathing protocols yielded comparable coherence and transfer functions between respiration and R-R intervals and systolic pressure and R-R intervals. Random- and fixed-frequency breathing reduced end-tidal CO2 modestly (P < 0.05). Our data suggest that stringent tidal volume control attenuates low-frequency R-R interval oscillations and that fixed- and random-rate breathing may decrease CO2 chemoreceptor stimulation. We conclude that autonomic rhythms measured during different breathing protocols have much in common but that a stepwise protocol without stringent control of inspired volume may allow for the most efficient assessment of short-term respiratory-mediated autonomic oscillations.

  4. Hypoxemia, hypercapnia, and breathing pattern in patients with chronic obstructive pulmonary disease.

    PubMed

    Parot, S; Miara, B; Milic-Emili, J; Gautier, H

    1982-11-01

    The results of lung function tests (total and functional residual capacities, residual volume/total lung capacity ratio, forced expiratory volume in one second) breathing patterns and arterial PO2 and PCO2 were studied in 651 ambulatory male patients with chronic obstructive pulmonary disease, functionally and clinically stable. Function tests were only loosely correlated with gas tensions: abnormalities in mechanics and in gas exchange are not necessarily related. In patients matched for the degree of obstruction, the breathing pattern depended upon both PaO2 and PaCO2. Isolated hypoxemia was accompanied by increased respiratory frequency without any variation in tidal volume: this suggests that the chemoreceptive systems still responded to changes in PaO2. Isolated hypercapnia was accompanied by a decrease in tidal volume and an increase in respiratory frequency. Consequently, the dead space/tidal volume ratio increased, leading to a drop in alveolar ventilation and to CO2 retention.

  5. Normalization of respiratory sinus arrhythmia by factoring in tidal volume.

    PubMed

    Kobayashi, H

    1998-09-01

    The amplitude of respiratory sinus arrhythmia (RSA) was measured in eight healthy young male students with special reference to the effect of tidal volume (Vt). Under simultaneously controlled respiratory frequency and Vt, the heart rate variability (HRV) of the subjects was measured. While the respiratory frequency was adjusted to either 0.25 or 0.10 Hz, the Vt was controlled at 13 different volumes for each frequency. Linear relationships between RSA amplitude and Vt were observed and close correlations were obtained for 0.25 Hz compared with 0.10 Hz. However, regression equations showed a marked variation among subjects. Furthermore, RSA amplitude was related to vital capacity. Subjects who had lower vital capacity tended to show higher RSA amplitudes at the same Vt. Therefore, the ratio (% Vt) of Vt to vital capacity is a more effective index in normalizing RSA than raw tidal volume. From these results, we have proposed a normalized RSA (RSA amplitude/% Vt) as a new index of autonomic activity that provides a constant value regardless of Vt.

  6. Ventilatory accommodation of oxygen demand and respiratory water loss in kangaroos from mesic and arid environments, the eastern grey kangaroo (Macropus giganteus) and the red kangaroo (Macropus rufus).

    PubMed

    Dawson, T J; Munn, A J; Blaney, C E; Krockenberger, A; Maloney, S K

    2000-01-01

    We studied ventilation in kangaroos from mesic and arid environments, the eastern grey kangaroo (Macropus giganteus) and the red kangaroo (Macropus rufus), respectively, within the range of ambient temperatures (T(a)) from -5 degrees to 45 degrees C. At thermoneutral temperatures (Ta=25 degrees C), there were no differences between the species in respiratory frequency, tidal volume, total ventilation, or oxygen extraction. The ventilatory patterns of the kangaroos were markedly different from those predicted from the allometric equation derived for placentals. The kangaroos had low respiratory frequencies and higher tidal volumes, even when adjustment was made for their lower basal metabolism. At Ta>25 degrees C, ventilation was increased in the kangaroos to facilitate respiratory water loss, with percent oxygen extraction being markedly lowered. Ventilation was via the nares; the mouth was closed. Differences in ventilation between the two species occurred at higher temperatures, and at 45 degrees C were associated with differences in respiratory evaporative heat loss, with that of M. giganteus being higher. Panting in kangaroos occurred as a graded increase in respiratory frequency, during which tidal volume was lowered. When panting, the desert red kangaroo had larger tidal volumes and lower respiratory frequencies at equivalent T(a) than the eastern grey kangaroo, which generally inhabits mesic forests. The inference made from this pattern is that the red kangaroo has the potential to increase respiratory evaporative heat loss to a greater level.

  7. Poor Adherence to Lung-Protective Mechanical Ventilation in Pediatric Acute Respiratory Distress Syndrome.

    PubMed

    Ward, Shan L; Quinn, Carson M; Valentine, Stacey L; Sapru, Anil; Curley, Martha A Q; Willson, Douglas F; Liu, Kathleen D; Matthay, Michael A; Flori, Heidi R

    2016-10-01

    To determine the frequency of low-tidal volume ventilation in pediatric acute respiratory distress syndrome and assess if any demographic or clinical factors improve low-tidal volume ventilation adherence. Descriptive post hoc analysis of four multicenter pediatric acute respiratory distress syndrome studies. Twenty-six academic PICU. Three hundred fifteen pediatric acute respiratory distress syndrome patients. All patients who received conventional mechanical ventilation at hours 0 and 24 of pediatric acute respiratory distress syndrome who had data to calculate ideal body weight were included. Two cutoff points for low-tidal volume ventilation were assessed: less than or equal to 6.5 mL/kg of ideal body weight and less than or equal to 8 mL/kg of ideal body weight. Of 555 patients, we excluded 240 for other respiratory support modes or missing data. The remaining 315 patients had a median PaO2-to-FIO2 ratio of 140 (interquartile range, 90-201), and there were no differences in demographics between those who did and did not receive low-tidal volume ventilation. With tidal volume cutoff of less than or equal to 6.5 mL/kg of ideal body weight, the adherence rate was 32% at hour 0 and 33% at hour 24. A low-tidal volume ventilation cutoff of tidal volume less than or equal to 8 mL/kg of ideal body weight resulted in an adherence rate of 58% at hour 0 and 60% at hour 24. Low-tidal volume ventilation use was no different by severity of pediatric acute respiratory distress syndrome nor did adherence improve over time. At hour 0, overweight children were less likely to receive low-tidal volume ventilation less than or equal to 6.5 mL/kg ideal body weight (11% overweight vs 38% nonoverweight; p = 0.02); no difference was noted by hour 24. Furthermore, in the overweight group, using admission weight instead of ideal body weight resulted in misclassification of up to 14% of patients as receiving low-tidal volume ventilation when they actually were not. Low-tidal volume ventilation is underused in the first 24 hours of pediatric acute respiratory distress syndrome. Age, Pediatric Risk of Mortality-III, and pediatric acute respiratory distress syndrome severity were not associated with improved low-tidal volume ventilation adherence nor did adherence improve over time. Overweight children were less likely to receive low-tidal volume ventilation strategies in the first day of illness.

  8. An open-loop controlled active lung simulator for preterm infants.

    PubMed

    Cecchini, Stefano; Schena, Emiliano; Silvestri, Sergio

    2011-01-01

    We describe the underlying theory, design and experimental evaluation of an electromechanical analogue infant lung to simulate spontaneous breathing patterns of preterm infants. The aim of this work is to test the possibility to obtain breathing patterns of preterm infants by taking into consideration the air compressibility. Respiratory volume function represents the actuation pattern, and pulmonary pressure and flow-rate waveforms are mathematically obtained through the application of the perfect gas and adiabatic laws. The mathematical model reduces the simulation interval into a step shorter than 1 ms, allowing to consider an entire respiratory act as composed of a large number of almost instantaneous adiabatic transformations. The device consists of a spherical chamber where the air is compressed by four cylinder-pistons, moved by stepper motors, and flows through a fluid-dynamic resistance, which also works as flow-rate sensor. Specifically designed software generates the actuators motion, based on the desired ventilation parameters, without controlling the gas pneumatic parameters with a closed-loop. The system is able to simulate tidal volumes from 3 to 8 ml, breathing frequencies from 60 to 120 bpm and functional residual capacities from 25 to 80 ml. The simulated waveforms appear very close to the measured ones. Percentage differences on the tidal volume waveform vary from 7% for the tidal volume of 3 ml, down to 2.2-3.5% for tidal volumes in the range of 4-7 ml, and 1.3% for the tidal volume equal to 8 ml in the whole breathing frequency and functional residual capacity ranges. The open-loop electromechanical simulator shows that gas compressibility can be theoretically assessed in the typical pneumatic variable range of preterm infant respiratory mechanics. Copyright © 2010 IPEM. Published by Elsevier Ltd. All rights reserved.

  9. The Origin of Faint Tidal Features around Galaxies in the RESOLVE Survey

    NASA Astrophysics Data System (ADS)

    Hood, Callie E.; Kannappan, Sheila J.; Stark, David V.; Dell’Antonio, Ian P.; Moffett, Amanda J.; Eckert, Kathleen D.; Norris, Mark A.; Hendel, David

    2018-04-01

    We study tidal features around galaxies in the REsolved Spectroscopy Of a Local VolumE (RESOLVE) survey. Our sample consists of 1048 RESOLVE galaxies that overlap with the DECam Legacy Survey, which reaches an r-band 3σ depth of ∼27.9 mag arcsec‑2 for a 100 arcsec2 feature. Images were masked, smoothed, and inspected for tidal features such as streams, shells, or tails/arms. We find tidal features in 17±2% of our galaxies, setting a lower limit on the true frequency. The frequency of tidal features in the gas-poor (gas-to-stellar mass ratio <0.1) subsample is lower than in the gas-rich subsample (13±3% versus 19±2%). Within the gas-poor subsample, galaxies with tidal features have higher stellar and halo masses, ∼3× closer distances to nearest neighbors (in the same group), and possibly fewer group members at fixed halo mass than galaxies without tidal features, but similar specific star formation rates. These results suggest tidal features in gas-poor galaxies are typically streams/shells from dry mergers or satellite disruption. In contrast, the presence of tidal features around gas-rich galaxies does not correlate with stellar or halo mass, suggesting these tidal features are often tails/arms from resonant interactions. Similar to tidal features in gas-poor galaxies, tidal features in gas-rich galaxies imply 1.7× closer nearest neighbors in the same group; however, they are associated with diskier morphologies, higher star formation rates, and higher gas content. In addition to interactions with known neighbors, we suggest that tidal features in gas-rich galaxies may arise from accretion of cosmic gas and/or gas-rich satellites below the survey limit.

  10. Performance of the Volumetric Diffusive Respirator at Altitude

    DTIC Science & Technology

    2014-08-18

    information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM...increased by 30-40%. Tidal volume remained within 15% of sea level values. Respiratory rate fell, while inspiratory time increased and high frequency...altitude, positive end expiratory pressure and peak inspiratory pressure were increased by 30-40%. Tidal volume remained within 15% of sea level

  11. Respiration in neonate sea turtles.

    PubMed

    Price, Edwin R; Paladino, Frank V; Strohl, Kingman P; Santidrián T, Pilar; Klann, Kenneth; Spotila, James R

    2007-03-01

    The pattern and control of respiration is virtually unknown in hatchling sea turtles. Using incubator-raised turtles, we measured oxygen consumption, frequency, tidal volume, and minute volume for leatherback (Dermochelys coriacea) and olive ridley (Lepidochelys olivacea) turtle hatchlings for the first six days after pipping. In addition, we tested the hatchlings' response to hypercapnic, hyperoxic, and hypoxic challenges over this time period. Hatchling sea turtles generally showed resting ventilation characteristics that are similar to those of adults: a single breath followed by a long respiratory pause, slow frequency, and high metabolic rate. With hypercapnic challenge, both species responded primarily by elevating respiratory frequency via a decrease in the non-ventilatory period. Leatherback resting tidal volume increased with age but otherwise, neither species' resting respiratory pattern nor response to gas challenge changed significantly over the first few days after hatching. At the time of nest emergence, sea turtles have achieved a respiratory pattern that is similar to that of actively diving adults.

  12. Prevalence of tidal expiratory flow limitation in preschool children with and without respiratory symptoms: application of the negative expiratory pressure (NEP) method.

    PubMed

    JIRICKOVA, A; SULC, J; POHUNEK, P; KITTNAR, O; DOHNALOVA, A; KOFRANEK, J

    2009-01-01

    Negative expiratory pressure (NEP) applied at the mouth during tidal expiration provides a non-invasive method for detecting expiratory flow limitation. Forty-two children were studied, i.e. 25 children with different respiratory symptoms (R) and 17 without any respiratory symptoms (NR). Children were examined without any sedation. A preset NEP of -5 cm H(2)O was applied; its duration did not exceed duration of tidal expiration. A significance of FL was judged by determining of a flow-limited range (in % of tidal volume). FL was found in 48 % children of R group. No patient of the NR group elicited FL (P<0.001 R vs. NR). The frequency of upper airway collapses was higher in R group (12 children) than in NR group (5 children). In conclusion, a high frequency of tidal FL in the R group was found, while it was not present in NR group. A relatively high frequency of expiratory upper airway collapses was found in both groups, but it did not differ significantly. NEP method represents a reasonable approach for tidal flow limitation testing in non-sedated preschool children.

  13. Infrared end-tidal CO2 measurement does not accurately predict arterial CO2 values or end-tidal to arterial PCO2 gradients in rabbits with lung injury.

    PubMed

    Hopper, A O; Nystrom, G A; Deming, D D; Brown, W R; Peabody, J L

    1994-03-01

    End-tidal PCO2 (PETCO2) measurements from two commercially available neonatal infrared capnometers with different sampling systems and a mass spectrometer were compared with arterial PCO2 (PaCO2) to determine whether the former could predict the latter in mechanically ventilated rabbits with and without lung injury. The effects of tidal volume, ventilator frequency and type of lung injury on the gradient between PETCO2 and PaCO2 (delta P(a-ET)CO2) were evaluated. Twenty rabbits were studied: 10 without lung injury, 5 with saline lavage and 5 with lung injury by meconium instillation. Paired measurements of PETCO2 by two infrared capnometers and a mass spectrometer were compared to PaCO2. In the rabbits without lung injury, the values from the infrared capnometers and mass spectrometer correlated strongly with PaCO2 (r > or = 0.91) despite differences in the slopes of the linear regression between PETCO2 and PaCO2 and in delta P(a-ET)CO2 (P < 0.05). Values from the mainstream IR-capnometer more closely approximated the line of identity than the regression between the sidestream IR-capnometer values or the mass spectrometer and PaCO2, but tended to overestimate PaCO2. The delta P(a-ET)CO2 was similar at all tidal volumes and ventilator frequencies, regardless of capnometer type. In the rabbits with induced lung injury, while there was a positive correlation between the slopes of the regression between PETCO2 and PaCO2 for both capnometers (r > or = 0.70), none of the regression slopes approximated the line of identity. The delta P(a-ET)CO2 was greater in rabbits with injured than noninjured lungs (P < 0.05). The delta P(a-ET)CO2 was similar among capnometers regardless of tidal volume, ventilator frequency, or type of lung injury. The 95% confidence interval of plots PaCO2 against PETCO2 was large for rabbits with injured and noninjured lungs.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Comparison of lung protective ventilation strategies in a rabbit model of acute lung injury.

    PubMed

    Rotta, A T; Gunnarsson, B; Fuhrman, B P; Hernan, L J; Steinhorn, D M

    2001-11-01

    To determine the impact of different protective and nonprotective mechanical ventilation strategies on the degree of pulmonary inflammation, oxidative damage, and hemodynamic stability in a saline lavage model of acute lung injury. A prospective, randomized, controlled, in vivo animal laboratory study. Animal research facility of a health sciences university. Forty-six New Zealand White rabbits. Mature rabbits were instrumented with a tracheostomy and vascular catheters. Lavage-injured rabbits were randomized to receive conventional ventilation with either a) low peak end-expiratory pressure (PEEP; tidal volume of 10 mL/kg, PEEP of 2 cm H2O); b) high PEEP (tidal volume of 10 mL/kg, PEEP of 10 cm H2O); c) low tidal volume with PEEP above Pflex (open lung strategy, tidal volume of 6 mL/kg, PEEP set 2 cm H2O > Pflex); or d) high-frequency oscillatory ventilation. Animals were ventilated for 4 hrs. Lung lavage fluid and tissue samples were obtained immediately after animals were killed. Lung lavage fluid was assayed for measurements of total protein, elastase activity, tumor necrosis factor-alpha, and malondialdehyde. Lung tissue homogenates were assayed for measurements of myeloperoxidase activity and malondialdehyde. The need for inotropic support was recorded. Animals that received a lung protective strategy (open lung or high-frequency oscillatory ventilation) exhibited more favorable oxygenation and lung mechanics compared with the low PEEP and high PEEP groups. Animals ventilated by a lung protective strategy also showed attenuation of inflammation (reduced tracheal fluid protein, tracheal fluid elastase, tracheal fluid tumor necrosis factor-alpha, and pulmonary leukostasis). Animals treated with high-frequency oscillatory ventilation had attenuated oxidative injury to the lung and greater hemodynamic stability compared with the other experimental groups. Both lung protective strategies were associated with improved oxygenation, attenuated inflammation, and decreased lung damage. However, in this small-animal model of acute lung injury, an open lung strategy with deliberate hypercapnia was associated with significant hemodynamic instability.

  15. High-Frequency Percussive Ventilation: Pneumotachograph Validation and Tidal Volume Analysis

    DTIC Science & Technology

    2010-06-01

    protocol, preliminary experience has shown that the flow sensor is amenable to near-automated “plug-and- play ” adaptability, permitting clinicians the...400. 6. Velmahos GC, Chan LS, Tatevossian R, Cornwell EE 3rd, Dough - erty WR, Escudero J, Demetriades D. High-frequency percussive ventilation

  16. The effect of perfluorocarbon vapour on the measurement of respiratory tidal volume during partial liquid ventilation.

    PubMed

    Davies, M W; Dunster, K R

    2000-08-01

    During partial liquid ventilation perfluorocarbon vapour is present in the exhaled gases. The volumes of these gases are measured by pneumotachometers. Error in measuring tidal volumes will give erroneous measurement of lung compliance during partial liquid ventilation. We aim to compare measured tidal volumes with and without perfluorocarbon vapour using tidal volumes suitable for use in neonates. Tidal volumes were produced with a 100 ml calibration syringe from 20 to 100 ml and with a calibrated Harvard rodent ventilator from 2.5 to 20 ml. Control tidal volumes were drawn from a humidifier chamber containing water vapour and the PFC tidal volumes were drawn from a humidifier chamber containing water and perfluorocarbon (FC-77) vapour. Tidal volumes were measured by a fixed orifice, target, differential pressure flowmeter (VenTrak) or a hot-wire anenometer (Bear Cub) placed between the calibration syringe or ventilator and the humidifier chamber. All tidal volumes measured with perfluorocarbon vapour were increased compared with control (ANOVA p < 0.001 and post t-test p < 0.0001). Measured tidal volume increased from 7 to 16% with the fixed orifice type flow-meter, and from 35 to 41% with the hot-wire type. In conclusion, perfluorocarbon vapour flowing through pneumotachometers gives falsely high tidal volume measurements. Calculation of lung compliance must take into account the effect of perfluorocarbon vapour on the measurement of tidal volume.

  17. High tidal volume ventilation induces NOS2 and impairs cAMP- dependent air space fluid clearance.

    PubMed

    Frank, James A; Pittet, Jean-Francois; Lee, Hyon; Godzich, Micaela; Matthay, Michael A

    2003-05-01

    Tidal volume reduction during mechanical ventilation reduces mortality in patients with acute lung injury and the acute respiratory distress syndrome. To determine the mechanisms underlying the protective effect of low tidal volume ventilation, we studied the time course and reversibility of ventilator-induced changes in permeability and distal air space edema fluid clearance in a rat model of ventilator-induced lung injury. Anesthetized rats were ventilated with a high tidal volume (30 ml/kg) or with a high tidal volume followed by ventilation with a low tidal volume of 6 ml/kg. Endothelial and epithelial protein permeability were significantly increased after high tidal volume ventilation but returned to baseline levels when tidal volume was reduced. The basal distal air space fluid clearance (AFC) rate decreased by 43% (P < 0.05) after 1 h of high tidal volume but returned to the preventilation rate 2 h after tidal volume was reduced. Not all of the effects of high tidal volume ventilation were reversible. The cAMP-dependent AFC rate after 1 h of 30 ml/kg ventilation was significantly reduced and was not restored when tidal volume was reduced. High tidal volume ventilation also increased lung inducible nitric oxide synthase (NOS2) expression and air space total nitrite at 3 h. Inhibition of NOS2 activity preserved cAMP-dependent AFC. Because air space edema fluid inactivates surfactant and reduces ventilated lung volume, the reduction of cAMP-dependent AFC by reactive nitrogen species may be an important mechanism of clinical ventilator-associated lung injury.

  18. Effects of positive end-expiratory pressure and recruitment maneuvers in a ventilator-induced injury mouse model

    PubMed Central

    Franzi, Lisa M.; Linderholm, Angela L.; Last, Jerold A.; Adams, Jason Y.; Harper, Richart W.

    2017-01-01

    Background Positive-pressure mechanical ventilation is an essential therapeutic intervention, yet it causes the clinical syndrome known as ventilator-induced lung injury. Various lung protective mechanical ventilation strategies have attempted to reduce or prevent ventilator-induced lung injury but few modalities have proven effective. A model that isolates the contribution of mechanical ventilation on the development of acute lung injury is needed to better understand biologic mechanisms that lead to ventilator-induced lung injury. Objectives To evaluate the effects of positive end-expiratory pressure and recruitment maneuvers in reducing lung injury in a ventilator-induced lung injury murine model in short- and longer-term ventilation. Methods 5–12 week-old female BALB/c mice (n = 85) were anesthetized, placed on mechanical ventilation for either 2 hrs or 4 hrs with either low tidal volume (8 ml/kg) or high tidal volume (15 ml/kg) with or without positive end-expiratory pressure and recruitment maneuvers. Results Alteration of the alveolar-capillary barrier was noted at 2 hrs of high tidal volume ventilation. Standardized histology scores, influx of bronchoalveolar lavage albumin, proinflammatory cytokines, and absolute neutrophils were significantly higher in the high-tidal volume ventilation group at 4 hours of ventilation. Application of positive end-expiratory pressure resulted in significantly decreased standardized histology scores and bronchoalveolar absolute neutrophil counts at low- and high-tidal volume ventilation, respectively. Recruitment maneuvers were essential to maintain pulmonary compliance at both 2 and 4 hrs of ventilation. Conclusions Signs of ventilator-induced lung injury are evident soon after high tidal volume ventilation (as early as 2 hours) and lung injury worsens with longer-term ventilation (4 hrs). Application of positive end-expiratory pressure and recruitment maneuvers are protective against worsening VILI across all time points. Dynamic compliance can be used guide the frequency of recruitment maneuvers to help ameloriate ventilator-induced lung injury. PMID:29112971

  19. Effect of perfluorocarbon (perfluorooctyl bromide) vapor on tidal volume measurement during partial liquid ventilation.

    PubMed

    Davies, Mark W; Dunster, Kimble R

    2002-05-01

    To compare measured tidal volumes with and without perfluorocarbon (perfluorooctyl bromide) vapor, by using tidal volumes in the range suitable for neonates ventilated with partial liquid ventilation. We also aimed to determine the correction factor needed to calculate tidal volumes measured in the presence of perfluorooctyl bromide vapor. Prospective, experimental study. Neonatal research laboratory. Reproducible tidal volumes from 5 to 30 mL were produced with a rodent ventilator and drawn from humidifier chambers immersed in a water bath at 37 degrees C. Control tidal volumes were drawn from a chamber containing oxygen and water vapor, and the perfluorocarbon tidal volumes were drawn from a chamber containing oxygen, water vapor, and perfluorooctyl bromide vapor. Tidal volumes were measured by a VenTrak respiratory mechanics monitor with a neonatal flow sensor and a Dräger pneumotachometer attached to a Dräger neonatal ventilator. All tidal volumes measured with perfluorooctyl bromide vapor were increased compared with control. The VenTrak-measured tidal volumes increased by 1.8% to 3.5% (an overall increase of 2.2%). The increase was greater with the Dräger hot-wire anemometer: from 2.4% to 6.1% (an overall increase of 5.9%). Regression equations for mean control tidal volumes (response, Y) vs. mean perfluorooctyl bromide tidal volumes (predictor, X) are as follows: for the VenTrak, Y = -0.026 + (0.978 x X), r =.9999, p <.0001; and for the Dräger, Y = 0.251 + (0.944 x X), r =.9996, p <.0001. The presence of perfluorooctyl bromide vapor in the gas flowing through pneumotachometers gives falsely high tidal volume measurements. An estimate of the true tidal volume allowing for the presence of perfluorooctyl bromide vapor can be made from regression equations. Any calculation of lung mechanics must take into account the effect of perfluorooctyl bromide vapor on the measurement of tidal volume.

  20. Slow and deep respiration suppresses steady-state sympathetic nerve activity in patients with chronic heart failure: from modeling to clinical application.

    PubMed

    Harada, Daisuke; Asanoi, Hidetsugu; Takagawa, Junya; Ishise, Hisanari; Ueno, Hiroshi; Oda, Yoshitaka; Goso, Yukiko; Joho, Shuji; Inoue, Hiroshi

    2014-10-15

    Influences of slow and deep respiration on steady-state sympathetic nerve activity remain controversial in humans and could vary depending on disease conditions and basal sympathetic nerve activity. To elucidate the respiratory modulation of steady-state sympathetic nerve activity, we modeled the dynamic nature of the relationship between lung inflation and muscle sympathetic nerve activity (MSNA) in 11 heart failure patients with exaggerated sympathetic outflow at rest. An autoregressive exogenous input model was utilized to simulate entire responses of MSNA to variable respiratory patterns. In another 18 patients, we determined the influence of increasing tidal volume and slowing respiratory frequency on MSNA; 10 patients underwent a 15-min device-guided slow respiration and the remaining 8 had no respiratory modification. The model predicted that a 1-liter, step increase of lung volume decreased MSNA dynamically; its nadir (-33 ± 22%) occurred at 2.4 s; and steady-state decrease (-15 ± 5%), at 6 s. Actually, in patients with the device-guided slow and deep respiration, respiratory frequency effectively fell from 16.4 ± 3.9 to 6.7 ± 2.8/min (P < 0.0001) with a concomitant increase in tidal volume from 499 ± 206 to 1,177 ± 497 ml (P < 0.001). Consequently, steady-state MSNA was decreased by 31% (P < 0.005). In patients without respiratory modulation, there were no significant changes in respiratory frequency, tidal volume, and steady-state MSNA. Thus slow and deep respiration suppresses steady-state sympathetic nerve activity in patients with high levels of resting sympathetic tone as in heart failure. Copyright © 2014 the American Physiological Society.

  1. Evaluating humidity recovery efficiency of currently available heat and moisture exchangers: a respiratory system model study.

    PubMed

    Lucato, Jeanette Janaina Jaber; Adams, Alexander Bernard; Souza, Rogério; Torquato, Jamili Anbar; Carvalho, Carlos Roberto Ribeiro; Marini, John J

    2009-01-01

    To evaluate and compare the efficiency of humidification in available heat and moisture exchanger models under conditions of varying tidal volume, respiratory rate, and flow rate. Inspired gases are routinely preconditioned by heat and moisture exchangers to provide a heat and water content similar to that provided normally by the nose and upper airways. The absolute humidity of air retrieved from and returned to the ventilated patient is an important measurable outcome of the heat and moisture exchangers' humidifying performance. Eight different heat and moisture exchangers were studied using a respiratory system analog. The system included a heated chamber (acrylic glass, maintained at 37 degrees C), a preserved swine lung, a hygrometer, circuitry and a ventilator. Humidity and temperature levels were measured using eight distinct interposed heat and moisture exchangers given different tidal volumes, respiratory frequencies and flow-rate conditions. Recovery of absolute humidity (%RAH) was calculated for each setting. Increasing tidal volumes led to a reduction in %RAH for all heat and moisture exchangers while no significant effect was demonstrated in the context of varying respiratory rate or inspiratory flow. Our data indicate that heat and moisture exchangers are more efficient when used with low tidal volume ventilation. The roles of flow and respiratory rate were of lesser importance, suggesting that their adjustment has a less significant effect on the performance of heat and moisture exchangers.

  2. The relationship between wheezing and lung mechanics during methacholine-induced bronchoconstriction in asthmatic subjects.

    PubMed

    Spence, D P; Graham, D R; Jamieson, G; Cheetham, B M; Calverley, P M; Earis, J E

    1996-08-01

    Wheeze is a classic sign of airflow obstruction but relatively little is known of its mechanism of production or its relationship to the development of airflow obstruction. We studied eight asthmatic subjects age (mean +/- 5D) 42 +/- 5 yr, FEV1 2.46 +/- 0.36 L during an extended, symptom-limited methacholine challenge test. Breath sounds were detected by a microphone over the right upper anterior chest. Spectral analysis was by a fast Fourier transform algorithm. Mean FEV1 fell by 51 +/- 14% to 1.28 +/- 0.61 L during the challenge and airways resistance increased by 119 +/- 50%. There were no consistent changes in breathing pattern or tidal volume during the challenge. Wheeze occurred late in the challenge at the highest concentration of methacholine administered and only after expiratory tidal flow limitation had been reached. Five subjects developed wheeze on tidal breathing, the remaining three only wheezed on deep breathing. Wheezing sounds were reproducible between breaths, coefficient of variation of starting sound frequency was 4.2% and ending frequency 12%. Mean frequency of expiratory wheezes was 669 +/- 100 Hz and inspiratory wheezes 710 +/- 76 Hz. Expiratory wheeze fell in pitch during a breath (mean fall in sound frequency 187 +/- 43 Hz) but inspiratory wheezes were more variable. Expiratory wheezes occurred late in the respiratory cycle at a mean of 58% of the maximal tidal expiratory flow, whereas inspiratory wheezes occurred around maximal tidal inspiratory flows, suggesting that the mechanisms of production of inspiratory and expiratory wheezes may be different. In this model, the presence of wheeze during tidal breathing was a sign of severe airflow limitation.

  3. Spontaneous breathing during lung-protective ventilation in an experimental acute lung injury model: high transpulmonary pressure associated with strong spontaneous breathing effort may worsen lung injury.

    PubMed

    Yoshida, Takeshi; Uchiyama, Akinori; Matsuura, Nariaki; Mashimo, Takashi; Fujino, Yuji

    2012-05-01

    We investigated whether potentially injurious transpulmonary pressure could be generated by strong spontaneous breathing and exacerbate lung injury even when plateau pressure is limited to <30 cm H2O. Prospective, randomized, animal study. University animal research laboratory. Thirty-two New Zealand White rabbits. Lavage-injured rabbits were randomly allocated to four groups to receive low or moderate tidal volume ventilation, each combined with weak or strong spontaneous breathing effort. Inspiratory pressure for low tidal volume ventilation was set at 10 cm H2O and tidal volume at 6 mL/kg. For moderate tidal volume ventilation, the values were 20 cm H2O and 7-9 mL/kg. The groups were: low tidal volume ventilation+spontaneous breathingweak, low tidal volume ventilation+spontaneous breathingstrong, moderate tidal volume ventilation+spontaneous breathingweak, and moderate tidal volume ventilation+spontaneous breathingstrong. Each group had the same settings for positive end-expiratory pressure of 8 cm H2O. Respiratory variables were measured every 60 mins. Distribution of lung aeration and alveolar collapse were histologically evaluated. Low tidal volume ventilation+spontaneous breathingstrong showed the most favorable oxygenation and compliance of respiratory system, and the best lung aeration. By contrast, in moderate tidal volume ventilation+spontaneous breathingstrong, the greatest atelectasis with numerous neutrophils was observed. While we applied settings to maintain plateau pressure at <30 cm H2O in all groups, in moderate tidal volume ventilation+spontaneous breathingstrong, transpulmonary pressure rose >33 cm H2O. Both minute ventilation and respiratory rate were higher in the strong spontaneous breathing groups. Even when plateau pressure is limited to <30 cm H2O, combined with increased respiratory rate and tidal volume, high transpulmonary pressure generated by strong spontaneous breathing effort can worsen lung injury. When spontaneous breathing is preserved during mechanical ventilation, transpulmonary pressure and tidal volume should be strictly controlled to prevent further lung injury.

  4. Lung-Protective Ventilation With Low Tidal Volumes and the Occurrence of Pulmonary Complications in Patients Without Acute Respiratory Distress Syndrome: A Systematic Review and Individual Patient Data Analysis.

    PubMed

    Neto, Ary Serpa; Simonis, Fabienne D; Barbas, Carmen S V; Biehl, Michelle; Determann, Rogier M; Elmer, Jonathan; Friedman, Gilberto; Gajic, Ognjen; Goldstein, Joshua N; Linko, Rita; Pinheiro de Oliveira, Roselaine; Sundar, Sugantha; Talmor, Daniel; Wolthuis, Esther K; Gama de Abreu, Marcelo; Pelosi, Paolo; Schultz, Marcus J

    2015-10-01

    Protective mechanical ventilation with low tidal volumes is standard of care for patients with acute respiratory distress syndrome. The aim of this individual patient data analysis was to determine the association between tidal volume and the occurrence of pulmonary complications in ICU patients without acute respiratory distress syndrome and the association between occurrence of pulmonary complications and outcome in these patients. Individual patient data analysis. ICU patients not fulfilling the consensus criteria for acute respiratory distress syndrome at the onset of ventilation. Mechanical ventilation with low tidal volume. The primary endpoint was development of a composite of acute respiratory distress syndrome and pneumonia during hospital stay. Based on the tertiles of tidal volume size in the first 2 days of ventilation, patients were assigned to a "low tidal volume group" (tidal volumes ≤ 7 mL/kg predicted body weight), an "intermediate tidal volume group" (> 7 and < 10 mL/kg predicted body weight), and a "high tidal volume group" (≥ 10 mL/kg predicted body weight). Seven investigations (2,184 patients) were included. Acute respiratory distress syndrome or pneumonia occurred in 23% of patients in the low tidal volume group, in 28% of patients in the intermediate tidal volume group, and in 31% of the patients in the high tidal volume group (adjusted odds ratio [low vs high tidal volume group], 0.72; 95% CI, 0.52-0.98; p = 0.042). Occurrence of pulmonary complications was associated with a lower number of ICU-free and hospital-free days and alive at day 28 (10.0 ± 10.9 vs 13.8 ± 11.6 d; p < 0.01 and 6.1 ± 8.1 vs 8.9 ± 9.4 d; p < 0.01) and an increased hospital mortality (49.5% vs 35.6%; p < 0.01). Ventilation with low tidal volumes is associated with a lower risk of development of pulmonary complications in patients without acute respiratory distress syndrome.

  5. Extension of Oxygen Tolerance in Man. Predictive Studies 6.

    DTIC Science & Technology

    1991-12-31

    maintained on Ziegler rat and mouse diet were used in these -12- i exposures. Average weights of the different exposure groups ranged from about 300...end of oxygen exposure were associated with reciprocal changes in end-tidal PCO 2 . Average PCO 2 (N=7) decreased significantly from 40.8 mm Hg during... PCO 2 (N=6) increased from 30.8 to 36.2 mm Hg. An increased frequency of breathing with a related reduction in tidal volume was found near the end of

  6. Effects of tidal volume on work of breathing during lung-protective ventilation in patients with acute lung injury and acute respiratory distress syndrome.

    PubMed

    Kallet, Richard H; Campbell, Andre R; Dicker, Rochelle A; Katz, Jeffrey A; Mackersie, Robert C

    2006-01-01

    To assess the effects of step-changes in tidal volume on work of breathing during lung-protective ventilation in patients with acute lung injury (ALI) or the acute respiratory distress syndrome (ARDS). Prospective, nonconsecutive patients with ALI/ARDS. Adult surgical, trauma, and medical intensive care units at a major inner-city, university-affiliated hospital. Ten patients with ALI/ARDS managed clinically with lung-protective ventilation. Five patients were ventilated at a progressively smaller tidal volume in 1 mL/kg steps between 8 and 5 mL/kg; five other patients were ventilated at a progressively larger tidal volume from 5 to 8 mL/kg. The volume mode was used with a flow rate of 75 L/min. Minute ventilation was maintained constant at each tidal volume setting. Afterward, patients were placed on continuous positive airway pressure for 1-2 mins to measure their spontaneous tidal volume. Work of breathing and other variables were measured with a pulmonary mechanics monitor (Bicore CP-100). Work of breathing progressively increased (0.86 +/- 0.32, 1.05 +/- 0.40, 1.22 +/- 0.36, and 1.57 +/- 0.43 J/L) at a tidal volume of 8, 7, 6, and 5 mL/kg, respectively. In nine of ten patients there was a strong negative correlation between work of breathing and the ventilator-to-patient tidal volume difference (R = -.75 to -.998). : The ventilator-delivered tidal volume exerts an independent influence on work of breathing during lung-protective ventilation in patients with ALI/ARDS. Patient work of breathing is inversely related to the difference between the ventilator-delivered tidal volume and patient-generated tidal volume during a brief trial of unassisted breathing.

  7. Relationship between clinical signs and pulmonary function estimated by the single breath diagram for CO(2) (SBD-CO(2)) in horses with chronic obstructive pulmonary disease.

    PubMed

    Herholz, C; Straub, R; Gerber, V; Wampfler, B; Lüthi, S; Imhof, A; Moens, Y; Busato, A

    2002-03-01

    The pulmonary health of 66 horses was assessed by a clinical examination and simple supplementary diagnostic methods. Single breath diagrams for CO(2) (SBD-CO(2)) and derived lung function indices were used to determine pulmonary function. The clinical signs in different groups were related to the results of the lung function indices derived from the SBD-CO(2). In horses with moderate to severe chronic obstructive pulmonary disease (COPD), a significant relationship was found between the respiratory frequency and the ratio of Bohr's dead space to the tidal volume (VD(Bohr)/VT), and between the physiological dead space/tidal volume ratio (VD(phys)/VT) and the ratio of the alveolar dead space to the alveolar tidal volume (VD(alv)/VT(alv)), but no significant associations were found between the arterial oxygen tension (P(a)O(2)) and lung function indices derived from the SBD-CO(2). The occurrence of cough, the viscosity of tracheobronchial mucus and the amount of polynuclear neutrophils in tracheobronchial aspirates were significantly related to the expiratory tidal volume (VT), the total expired volume of CO(2) (VCO(2)), VD(Bohr)/VT, VD(phys)/VT and VD(alv)/VT(alv). We conclude that abnormal findings in these clinical parameters indicate a measurable ventilation and perfusion (V(A)/Q) mismatch which is reflected by increases in dead space, VD(Bohr)/VT and VD(phys)/VT as well as VD(alv)/VT(alv). Copyright 2002 Elsevier Science Ltd. All rights reserved.

  8. A numerical model for the whole Wadden Sea: results on the hydrodynamics

    NASA Astrophysics Data System (ADS)

    Gräwe, Ulf; Duran-Matute, Matias; Gerkema, Theo; Flöser, Götz; Burchard, Hans

    2015-04-01

    A high-resolution baroclinic three-dimensional numerical model for the entire Wadden Sea of the German Bight in the southern North Sea is first validated against field data for surface elevation, current velocity, temperature and salinity at selected stations and then used to calculate fluxes of volume, heat and salt inside the Wadden Sea and the exchange between the Wadden Sea and the adjacent North Sea through the major tidal inlets. The General Estuarine Transport Model (GETM) is simulating the reference years 2009-2011. The numerical grid has a resolution of 200x200m and 30 adaptive vertical layers. It is the final stage of a multi-nested setup, starting from the North Atlantic. The atmospheric forcing is taken from the operational forecast of the German Weather Service. Additionally, the freshwater discharge of 23 local rivers and creeks are included. For validation, we use observations from a ship of opportunity measuring sea surface properties, tidal gauge stations, high frequency of salinity and volume transport estimates for the Mardiep and Spiekeroog inlet. Finally, the estuarine overturning circulation in three tidal gulleys is quantified. Regional differences between the gullies are assessed and drivers of the estuarine circulation are identified. Moreover, we will give a consistent estimate of the tidal prisms for all tidal inlets in the entire Wadden Sea.

  9. Evaluating Humidity Recovery Efficiency of Currently Available Heat and Moisture Exchangers: A Respiratory System Model Study

    PubMed Central

    Lucato, Jeanette Janaina Jaber; Adams, Alexander Bernard; Souza, Rogério; Torquato, Jamili Anbar; Carvalho, Carlos Roberto Ribeiro; Marini, John J

    2009-01-01

    OBJECTIVES: To evaluate and compare the efficiency of humidification in available heat and moisture exchanger models under conditions of varying tidal volume, respiratory rate, and flow rate. INTRODUCTION: Inspired gases are routinely preconditioned by heat and moisture exchangers to provide a heat and water content similar to that provided normally by the nose and upper airways. The absolute humidity of air retrieved from and returned to the ventilated patient is an important measurable outcome of the heat and moisture exchangers’ humidifying performance. METHODS: Eight different heat and moisture exchangers were studied using a respiratory system analog. The system included a heated chamber (acrylic glass, maintained at 37°C), a preserved swine lung, a hygrometer, circuitry and a ventilator. Humidity and temperature levels were measured using eight distinct interposed heat and moisture exchangers given different tidal volumes, respiratory frequencies and flow-rate conditions. Recovery of absolute humidity (%RAH) was calculated for each setting. RESULTS: Increasing tidal volumes led to a reduction in %RAH for all heat and moisture exchangers while no significant effect was demonstrated in the context of varying respiratory rate or inspiratory flow. CONCLUSIONS: Our data indicate that heat and moisture exchangers are more efficient when used with low tidal volume ventilation. The roles of flow and respiratory rate were of lesser importance, suggesting that their adjustment has a less significant effect on the performance of heat and moisture exchangers. PMID:19578664

  10. Upper airway CO2 receptors in tegu lizards: localization and ventilatory sensitivity.

    PubMed

    Coates, E L; Ballam, G O

    1987-01-01

    1. Tidal volume, end-tidal CO2, and ventilatory frequency in Tupinambis nigropunctatus were measured in response to CO2 (1-4%) delivered to either the mouth or nares. Additionally, the sensitivity of the ventilatory response to nasal CO2 was evaluated at CO2 concentrations less than 1%. The ventilatory parameters were also measured in response to CO2 (1-4%) delivered to the nares after the olfactory peduncle was transected. 2. It was found that (0.4-4%) nasal CO2 depressed ventilatory frequency by 9% to 83% respectively, while tidal volume was not significantly altered. CO2 (1-4%) delivered to the mouth produced no apparent changes in any of the ventilatory parameters. Following transection of the olfactory peduncle, nasal CO2 was ineffective in producing any change in ventilatory frequency or depth. 3. These findings indicate that CO2-sensitive receptors are located in either the nasal or vomeronasal membranes of tegu lizards and that the olfactory peduncle must be intact for these receptors to affect ventilatory changes in response to elevated CO2 concentrations. The receptors are capable of mediating a ventilatory response to CO2 concentrations lower than those found in either expired air or in confined spaces such as occupied burrows. 4. The discrepancies in the ventilatory responses of lizards and snakes to inspired CO2 reported in past experiments may be partially explained by the presence of nasal or vomeronasal CO2-sensitive receptors.

  11. Dead space and slope indices from the expiratory carbon dioxide tension-volume curve.

    PubMed

    Kars, A H; Bogaard, J M; Stijnen, T; de Vries, J; Verbraak, A F; Hilvering, C

    1997-08-01

    The slope of phase 3 and three noninvasively determined dead space estimates derived from the expiratory carbon dioxide tension (PCO2) versus volume curve, including the Bohr dead space (VD,Bohr), the Fowler dead space (VD,Fowler) and pre-interface expirate (PIE), were investigated in 28 healthy control subjects, 12 asthma and 29 emphysema patients (20 severely obstructed and nine moderately obstructed) with the aim to establish diagnostic value. Because breath volume and frequency are closely related to CO2 elimination, the recording procedures included varying breath volumes in all subjects during self-chosen/natural breathing frequency, and fixed frequencies of 10, 15 and 20 breaths x min(-1) with varying breath volumes only in the healthy controls. From the relationships of the variables with tidal volume (VT), the values at 1 L were estimated to compare the groups. The slopes of phase 3 and VD,Bohr at 1 L VT showed the most significant difference between controls and patients with asthma or emphysema, compared to the other two dead space estimates, and were related to the degree of airways obstruction. Discrimination between no-emphysema (asthma and controls) and emphysema patients was possible on the basis of a plot of intercept and slope of the relationship between VD,Bohr and VT. A combination of both the slope of phase 3 and VD,Bohr of a breath of 1 L was equally discriminating. The influence of fixed frequencies in the controls did not change the results. The conclusion is that Bohr dead space in relation to tidal volume seems to have diagnostic properties separating patients with asthma from patients with emphysema with the same degree of airways obstruction. Equally discriminating was a combination of both phase 3 and Bohr dead space of a breath of 1 L. The different pathophysiological mechanisms in asthma and emphysema leading to airways obstruction are probably responsible for these results.

  12. Mechanical Ventilation and Bronchopulmonary Dysplasia.

    PubMed

    Keszler, Martin; Sant'Anna, Guilherme

    2015-12-01

    Mechanical ventilation is an important potentially modifiable risk factor for the development of bronchopulmonary dysplasia. Effective use of noninvasive respiratory support reduces the risk of lung injury. Lung volume recruitment and avoidance of excessive tidal volume are key elements of lung-protective ventilation strategies. Avoidance of oxidative stress, less invasive methods of surfactant administration, and high-frequency ventilation are also important factors in lung injury prevention. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. The effects of low tidal ventilation on lung strain correlate with respiratory system compliance.

    PubMed

    Xie, Jianfeng; Jin, Fang; Pan, Chun; Liu, Songqiao; Liu, Ling; Xu, Jingyuan; Yang, Yi; Qiu, Haibo

    2017-02-03

    The effect of alterations in tidal volume on mortality of acute respiratory distress syndrome (ARDS) is determined by respiratory system compliance. We aimed to investigate the effects of different tidal volumes on lung strain in ARDS patients who had various levels of respiratory system compliance. Nineteen patients were divided into high (C high group) and low (C low group) respiratory system compliance groups based on their respiratory system compliance values. We defined compliance ≥0.6 ml/(cmH 2 O/kg) as C high and compliance <0.6 ml/(cmH 2 O/kg) as C low . End-expiratory lung volumes (EELV) at various tidal volumes were measured by nitrogen wash-in/washout. Lung strain was calculated as the ratio between tidal volume and EELV. The primary outcome was that lung strain is a function of tidal volume in patients with various levels of respiratory system compliance. The mean baseline EELV, strain and respiratory system compliance values were 1873 ml, 0.31 and 0.65 ml/(cmH 2 O/kg), respectively; differences in all of these parameters were statistically significant between the two groups. For all participants, a positive correlation was found between the respiratory system compliance and EELV (R = 0.488, p = 0.034). Driving pressure and strain increased together as the tidal volume increased from 6 ml/kg predicted body weight (PBW) to 12 ml/kg PBW. Compared to the C high ARDS patients, the driving pressure was significantly higher in the C low patients at each tidal volume. Similar effects of lung strain were found for tidal volumes of 6 and 8 ml/kg PBW. The "lung injury" limits for driving pressure and lung strain were much easier to exceed with increases in the tidal volume in C low patients. Respiratory system compliance affected the relationships between tidal volume and driving pressure and lung strain in ARDS patients. These results showed that increasing tidal volume induced lung injury more easily in patients with low respiratory system compliance. Clinicaltrials.gov identifier NCT01864668 , Registered 21 May 2013.

  14. High tidal volume ventilation in infant mice.

    PubMed

    Cannizzaro, Vincenzo; Zosky, Graeme R; Hantos, Zoltán; Turner, Debra J; Sly, Peter D

    2008-06-30

    Infant mice were ventilated with either high tidal volume (V(T)) with zero end-expiratory pressure (HVZ), high V(T) with positive end-expiratory pressure (PEEP) (HVP), or low V(T) with PEEP. Thoracic gas volume (TGV) was determined plethysmographically and low-frequency forced oscillations were used to measure the input impedance of the respiratory system. Inflammatory cells, total protein, and cytokines in bronchoalveolar lavage fluid (BALF) and interleukin-6 (IL-6) in serum were measured as markers of pulmonary and systemic inflammatory response, respectively. Coefficients of tissue damping and tissue elastance increased in all ventilated mice, with the largest rise seen in the HVZ group where TGV rapidly decreased. BALF protein levels increased in the HVP group, whereas serum IL-6 rose in the HVZ group. PEEP keeps the lungs open, but provides high volumes to the entire lungs and induces lung injury. Compared to studies in adult and non-neonatal rodents, infant mice demonstrate a different response to similar ventilation strategies underscoring the need for age-specific animal models.

  15. Software for real-time control of a tidal liquid ventilator.

    PubMed

    Heckman, J L; Hoffman, J; Shaffer, T H; Wolfson, M R

    1999-01-01

    The purpose of this project was to develop and test computer software and control algorithms designed to operate a tidal liquid ventilator. The tests were executed on a 90-MHz Pentium PC with 16 MB RAM and a prototype liquid ventilator. The software was designed using Microsoft Visual C++ (Ver. 5.0) and the Microsoft Foundation Classes. It uses a graphic user interface, is multithreaded, runs in real time, and has a built-in simulator that facilitates user education in liquid-ventilation principles. The operator can use the software to specify ventilation parameters such as the frequency of ventilation, the tidal volume, and the inspiratory-expiratory time ratio. Commands are implemented via control of the pump speed and by setting the position of two two-way solenoid-controlled valves. Data for use in monitoring and control are gathered by analog-to-digital conversion. Control strategies are implemented to maintain lung volumes and airway pressures within desired ranges, according to limits set by the operator. Also, the software allows the operator to define the shape of the flow pulse during inspiration and expiration, and to optimize perfluorochemical liquid transfer while minimizing airway pressures and maintaining the desired tidal volume. The operator can stop flow during inspiration and expiration to measure alveolar pressures. At the end of expiration, the software stores all user commands and 30 ventilation parameters into an Excel spreadsheet for later review and analysis. Use of these software and control algorithms affords user-friendly operation of a tidal liquid ventilator while providing precise control of ventilation parameters.

  16. Moderately high frequency ventilation with a conventional ventilator allows reduction of tidal volume without increasing mean airway pressure.

    PubMed

    Cordioli, Ricardo Luiz; Park, Marcelo; Costa, Eduardo Leite Vieira; Gomes, Susimeire; Brochard, Laurent; Amato, Marcelo Britto Passos; Azevedo, Luciano Cesar Pontes

    2014-12-01

    The aim of this study was to explore if positive-pressure ventilation delivered by a conventional ICU ventilator at a moderately high frequency (HFPPV) allows a safe reduction of tidal volume (V T) below 6 mL/kg in a porcine model of severe acute respiratory distress syndrome (ARDS) and at a lower mean airway pressure than high-frequency oscillatory ventilation (HFOV). This is a prospective study. In eight pigs (median weight 34 [29,36] kg), ARDS was induced by pulmonary lavage and injurious ventilation. The animals were ventilated with a randomized sequence of respiratory rates: 30, 60, 90, 120, 150, followed by HFOV at 5 Hz. At each step, V T was adjusted to allow partial pressure of arterial carbon dioxide (PaCO2) to stabilize between 57 and 63 mmHg. Data are shown as median [P25th,P75th]. After lung injury, the PaO2/FiO2 (P/F) ratio was 92 [63,118] mmHg, pulmonary shunt 26 [17,31]%, and static compliance 11 [8,14] mL/cmH2O. Positive end-expiratory pressure (PEEP) was 14 [10,17] cmH2O. At 30 breaths/min, V T was higher than 6 (7.5 [6.8,10.2]) mL/kg, but at all higher frequencies, V T could be reduced and PaCO2 maintained, leading to reductions in plateau pressures and driving pressures. For frequencies of 60 to 150/min, V T progressively fell from 5.2 [5.1,5.9] to 3.8 [3.7,4.2] mL/kg (p < 0.001). There were no detrimental effects in terms of lung mechanics, auto-PEEP generation, hemodynamics, or gas exchange. Mean airway pressure was maintained constant and was increased only during HFOV. During protective mechanical ventilation, HFPPV delivered by a conventional ventilator in a severe ARDS swine model safely allows further tidal volume reductions. This strategy also allowed decreasing airway pressures while maintaining stable PaCO2 levels.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Benjamin M., E-mail: bmwhite@mednet.ucla.edu; Lamb, James M.; Low, Daniel A.

    Purpose: To characterize radiation therapy patient breathing patterns based on measured external surrogate information. Methods: Breathing surrogate data were collected during 4DCT from a cohort of 50 patients including 28 patients with lung cancer and 22 patients without lung cancer. A spirometer and an abdominal pneumatic bellows were used as the surrogates. The relationship between these measurements was assumed to be linear within a small phase difference. The signals were correlated and drift corrected using a previously published method to convert the signal into tidal volume. The airflow was calculated with a first order time derivative of the tidal volumemore » using a window centered on the point of interest and with a window length equal to the CT gantry rotation period. The airflow was compared against the tidal volume to create ellipsoidal patterns that were binned into 25 ml × 25 ml/s bins to determine the relative amount of time spent in each bin. To calculate the variability of the maximum inhalation tidal volume within a free-breathing scan timeframe, a metric based on percentile volume ratios was defined. The free breathing variability metric (κ) was defined as the ratio between extreme inhalation tidal volumes (defined as >93 tidal volume percentile of the measured tidal volume) and normal inhalation tidal volume (defined as >80 tidal volume percentile of the measured tidal volume). Results: There were three observed types of volume-flow curves, labeled Types 1, 2, and 3. Type 1 patients spent a greater duration of time during exhalation withκ = 1.37 ± 0.11. Type 2 patients had equal time duration spent during inhalation and exhalation with κ = 1.28 ± 0.09. The differences between the mean peak exhalation to peak inhalation tidal volume, breathing period, and the 85th tidal volume percentile for Type 1 and Type 2 patients were statistically significant at the 2% significance level. The difference between κ and the 98th tidal volume percentile for Type 1 and Type 2 patients was found to be statistically significant at the 1% significance level. Three patients did not display a breathing stability curve that could be classified as Type 1 or Type 2 due to chaotic breathing patterns. These patients were classified as Type 3 patients. Conclusions: Based on an observed volume-flow curve pattern, the cohort of 50 patients was divided into three categories called Type 1, Type 2, and Type 3. There were statistically significant differences in breathing characteristics between Type 1 and Type 2 patients. The use of volume-flow curves to classify patients has been demonstrated as a physiological characterization metric that has the potential to optimize gating windows in radiation therapy.« less

  18. Synchrotron imaging of the grasshopper tracheal system : morphological and physiological components of tracheal hypermetry.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenlee, K. J.; Henry, J. R.; Kirkton, S. D.

    2009-11-01

    As grasshoppers increase in size during ontogeny, they have mass specifically greater whole body tracheal and tidal volumes and ventilation than predicted by an isometric relationship with body mass and body volume. However, the morphological and physiological bases to this respiratory hypermetry are unknown. In this study, we use synchrotron imaging to demonstrate that tracheal hypermetry in developing grasshoppers (Schistocerca americana) is due to increases in air sacs and tracheae and occurs in all three body segments, providing evidence against the hypothesis that hypermetry is due to gaining flight ability. We also assessed the scaling of air sac structure andmore » function by assessing volume changes of focal abdominal air sacs. Ventilatory frequencies increased in larger animals during hypoxia (5% O{sub 2}) but did not scale in normoxia. For grasshoppers in normoxia, inflated and deflated air sac volumes and ventilation scaled hypermetrically. During hypoxia (5% O{sub 2}), many grasshoppers compressed air sacs nearly completely regardless of body size, and air sac volumes scaled isometrically. Together, these results demonstrate that whole body tracheal hypermetry and enhanced ventilation in larger/older grasshoppers are primarily due to proportionally larger air sacs and higher ventilation frequencies in larger animals during hypoxia. Prior studies showed reduced whole body tracheal volumes and tidal volume in late-stage grasshoppers, suggesting that tissue growth compresses air sacs. In contrast, we found that inflated volumes, percent volume changes, and ventilation were identical in abdominal air sacs of late-stage fifth instar and early-stage animals, suggesting that decreasing volume of the tracheal system later in the instar occurs in other body regions that have harder exoskeleton.« less

  19. Optimization and Dose Estimation of Aerosol Delivery to Non-Human Primates.

    PubMed

    MacLoughlin, Ronan J; van Amerongen, Geert; Fink, James B; Janssens, Hettie M; Duprex, W Paul; de Swart, Rik L

    2016-06-01

    In pre-clinical animal studies, the uniformity of dosing across subjects and routes of administration is a crucial requirement. In preparation for a study in which aerosolized live-attenuated measles virus vaccine was administered to cynomolgus monkeys (Macaca fascicularis) by inhalation, we assessed the percentage of a nebulized dose inhaled under varying conditions. Drug delivery varies with breathing parameters. Therefore we determined macaque breathing patterns (tidal volume, breathing frequency, and inspiratory to expiratory (I:E) ratio) across a range of 3.3-6.5 kg body weight, using a pediatric pneumotachometer interfaced either with an endotracheal tube or a facemask. Subsequently, these breathing patterns were reproduced using a breathing simulator attached to a filter to collect the inhaled dose. Albuterol was nebulized using a vibrating mesh nebulizer and the percentage inhaled dose was determined by extraction of drug from the filter and subsequent quantification. Tidal volumes ranged from 24 to 46 mL, breathing frequencies from 19 to 31 breaths per minute and I:E ratios from 0.7 to 1.6. A small pediatric resuscitation mask was identified as the best fitting interface between animal and pneumotachometer. The average efficiency of inhaled dose delivery was 32.1% (standard deviation 7.5, range 24%-48%), with variation in tidal volumes as the most important determinant. Studies in non-human primates aimed at comparing aerosol delivery with other routes of administration should take both the inter-subject variation and relatively low efficiency of delivery to these low body weight mammals into account.

  20. Dead space and tidal volume of the giraffe compared with some other mammals.

    PubMed

    Hugh-Jones, P; Barter, C E; Hime, J M; Rusbridge, M M

    1978-10-01

    The ventilation, tidal volume and anatomical dead-space were measured in a living giraffe and compared with similar measurements in a camel, red deer, llama and man. The giraffe had a resting tidal volume of about 3.3 litres with a dead-space/tidal-volume ratio of 0.34. The giraffe breathes slowly, apparently because of the unusually small diameter of its trachea relative to its length, compared with known measurement in other mammals.

  1. Detection of main tidal frequencies using least squares harmonic estimation method

    NASA Astrophysics Data System (ADS)

    Mousavian, R.; Hossainali, M. Mashhadi

    2012-11-01

    In this paper the efficiency of the method of Least Squares Harmonic Estimation (LS-HE) for detecting the main tidal frequencies is investigated. Using this method, the tidal spectrum of the sea level data is evaluated at two tidal stations: Bandar Abbas in south of Iran and Workington on the eastern coast of the UK. The amplitudes of the tidal constituents at these two tidal stations are not the same. Moreover, in contrary to the Workington station, the Bandar Abbas tidal record is not an equispaced time series. Therefore, the analysis of the hourly tidal observations in Bandar Abbas and Workington can provide a reasonable insight into the efficiency of this method for analyzing the frequency content of tidal time series. Furthermore, applying the method of Fourier transform to the Workington tidal record provides an independent source of information for evaluating the tidal spectrum proposed by the LS-HE method. According to the obtained results, the spectrums of these two tidal records contain the components with the maximum amplitudes among the expected ones in this time span and some new frequencies in the list of known constituents. In addition, in terms of frequencies with maximum amplitude; the power spectrums derived from two aforementioned methods are the same. These results demonstrate the ability of LS-HE for identifying the frequencies with maximum amplitude in both tidal records.

  2. The effect of lung-size mismatch on mechanical ventilation tidal volumes after bilateral lung transplantation.

    PubMed

    Dezube, Rebecca; Arnaoutakis, George J; Reed, Robert M; Bolukbas, Servet; Shah, Ashish S; Orens, Jonathan B; Brower, Roy G; Eberlein, Michael

    2013-03-01

    Mechanical ventilation tidal volumes are usually set according to an estimate of patient size in millilitres (ml) per kilogram (kg) body weight. We describe the relationship between donor-recipient lung-size mismatch and postoperative mechanical ventilation tidal volumes according to recipient- and donor-predicted body weights in a cohort of bilateral lung transplant patients. A most-undersized (10 patients with lowest predicted total lung capacity [pTLC] ratio = pTLC-donor/pTLC-recipient), a most-oversized (10 patients with highest pTLC ratio) and best-matched subset (10 patients with predicted total lung capacity ratio closest to 1.0) were selected within a cohort of 70 patients. All tidal volumes during mechanical ventilation in the first 96 h after bilateral lung transplantation were recorded. Tidal volumes were expressed in ml and ml/kg-recipient-predicted body weights and ml/kg-donor-predicted body weights. Postoperative absolute tidal volumes (in ml) were comparable between subsets of patients with undersized, matched and oversized allografts (552 ± 103 vs 581 ± 107 vs 582 ± 104 ml), and tidal volumes in ml/kg-recipient-predicted body weights were also similar (8.8 ± 1.4 vs 9.3 ± 1.1 vs 9.8 ± 2.1). However, tidal volumes in ml/kg-donor-predicted body weights revealed significant differences between undersized, matched, and oversized subsets (11.4 ± 3.1 vs 9.4 ± 1.2 vs 8.1 ± 2.1, respectively; P < 0.05). Two patients developed primary graft dysfunction grade 3, both in the undersized subset. Four patients in the undersized group underwent tracheotomy (vs none in matched and one in oversized subset). During mechanical ventilation after bilateral lung transplantation, undersized allografts received relatively higher tidal volumes compared with oversized allografts when the tidal volumes were related to donor-predicted body weights.

  3. [Special artificial respiration procedures and intracranial pressure. Animal experiment studies, development and use of a new pressure measuring technic, clinical aspects].

    PubMed

    Schedl, R

    1985-01-01

    We investigated the influence of Forced Diffusion Ventilation (FDV), a special form of High Frequency Ventilation (HFV), on elevated intracranial pressure (ICP) in 5 dogs. Elevation of ICP was standardized by inflation of an epidural balloon. A typical finding with FDV is a reduced intrapleural pressure and therefore one could expect a better cerebrovenous drainage influencing ICP. Nevertheless, we found no changes in mean ICP under conditions of FDV compared with IPPV. Respirator-synchronous fluctuations of ICP, cisternal cerebrospinal fluid pressure and intrapleural pressure were drastically reduced with FDV. This phenomenon has been already reported by other groups as a typical effect of HFV with rates of 100/min. One can speculate, that this immediate impact of HFV on ICP-curves might be of some advantage in patients with critically reduced intracranial compliance requiring long-term artificial ventilation, because peaks and amplitudes of ICP are reduced. Our clinical experience with High Frequency Pulsation (HFP) includes 11 patients with severe brain trauma. In clinical routine this method of HFV is more facile to applicate than FDV, because there is no need of a special endotracheal tube and sufficient CO2-elimination is not strongly dependent on precise position of the tube. But HFP, as FDV, includes all advantages of respiratory systems, that are open against atmosphere (coughing and simultaneous breathing, without drastically increasing airway pressure, suction during respiration, etc.). However, we could find no special advantages or disadvantages in ICP-course during long-term application of HFP (up to 10 days). Because application of HFV is dependent on special technical equipment, we investigated in 6 patients the influence of respiratory frequency, tidal volume and inspiratory flow on ICP-fluctuations using conventional ventilators. ICP was recorded by a new, self constructed pneumatic epidural pressure sensor. Ventilator-related ICP-fluctuations were found to be markedly reduced at frequencies of 20/min and usually eliminated at 30/min. We found an exponential correlation between ICP-fluctuations and respiratory frequency and there was no correlation between tidal volume and ICP. Central venous pressure amplitudes were found to be in linear correlation with respiratory frequency and tidal volumes as well. The amplitude of respiratory ICP-fluctuations seems to be more dependent on duration of expiratory time. As our findings demonstrate, artificial ventilation without entilator-related fluctuations in ICP ("brain-protective" ventilation) may be performed by conventional volume-constant, time-cycled ventilators.(ABSTRACT TRUNCATED AT 400 WORDS)

  4. Accuracy of near-patient vs. inbuilt spirometry for monitoring tidal volumes in an in-vitro paediatric lung model.

    PubMed

    Morgenroth, S; Thomas, J; Cannizzaro, V; Weiss, M; Schmidt, A R

    2018-03-01

    Spirometric monitoring provides precise measurement and delivery of tidal volumes within a narrow range, which is essential for lung-protective strategies that aim to reduce morbidity and mortality in mechanically-ventilated patients. Conventional anaesthesia ventilators include inbuilt spirometry to monitor inspiratory and expiratory tidal volumes. The GE Aisys CS 2 anaesthesia ventilator allows additional near-patient spirometry via a sensor interposed between the proximal end of the tracheal tube and the respiratory tubing. Near-patient and inbuilt spirometry of two different GE Aisys CS 2 anaesthesia ventilators were compared in an in-vitro study. Assessments were made of accuracy and variability in inspiratory and expiratory tidal volume measurements during ventilation of six simulated paediatric lung models using the ASL 5000 test lung. A total of 9240 breaths were recorded and analysed. Differences between inspiratory tidal volumes measured with near-patient and inbuilt spirometry were most significant in the newborn setting (p < 0.001), and became less significant with increasing age and weight. During expiration, tidal volume measurements with near-patient spirometry were consistently more accurate than with inbuilt spirometry for all lung models (p < 0.001). Overall, the variability in measured tidal volumes decreased with increasing tidal volumes, and was smaller with near-patient than with inbuilt spirometry. The variability in measured tidal volumes was higher during expiration, especially with inbuilt spirometry. In conclusion, the present in-vitro study shows that measurements with near-patient spirometry are more accurate and less variable than with inbuilt spirometry. Differences between measurement methods were most significant in the smallest patients. We therefore recommend near-patient spirometry, especially for neonatal and paediatric patients. © 2018 The Association of Anaesthetists of Great Britain and Ireland.

  5. High tidal volume decreases adult respiratory distress syndrome, atelectasis, and ventilator days compared with low tidal volume in pediatric burned patients with inhalation injury.

    PubMed

    Sousse, Linda E; Herndon, David N; Andersen, Clark R; Ali, Arham; Benjamin, Nicole C; Granchi, Thomas; Suman, Oscar E; Mlcak, Ronald P

    2015-04-01

    Inhalation injury, which is among the causes of acute lung injury and acute respiratory distress syndrome (ARDS), continues to represent a significant source of mortality in burned patients. Inhalation injury often requires mechanical ventilation, but the ideal tidal volume strategy is not clearly defined in burned pediatric patients. The aim of this study was to determine the effects of low and high tidal volume on the number of ventilator days, ventilation pressures, and incidence of atelectasis, pneumonia, and ARDS in pediatric burned patients with inhalation injury within 1 year post burn injury. From 1986 to 2014, inhalation injury was diagnosed by bronchoscopy in pediatric burned patients (n = 932). Patients were divided into 3 groups: unventilated (n = 241), high tidal volume (HTV, 15 ± 3 mL/kg, n = 190), and low tidal volume (LTV, 9 ± 3 mL/kg, n = 501). High tidal volume was associated with significantly decreased ventilator days (p < 0.005) and maximum positive end expiratory pressure (p < 0.0001) and significantly increased maximum peak inspiratory pressure (p < 0.02) and plateau pressure (p < 0.02) compared with those in patients with LTV. The incidence of atelectasis (p < 0.0001) and ARDS (p < 0.02) was significantly decreased with HTV compared with LTV. However, the incidence of pneumothorax was significantly increased in the HTV group compared with the LTV group (p < 0.03). High tidal volume significantly decreases ventilator days and the incidence of both atelectasis and ARDS compared with low tidal volume in pediatric burned patients with inhalation injury. Therefore, the use of HTV may interrupt sequences leading to lung injury in our patient population. Copyright © 2015 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  6. The nucleus reticularis gigantocellularis modulates the cardiopulmonary responses to central and peripheral drives related to exercise.

    PubMed

    Richard, C A; Waldrop, T G; Bauer, R M; Mitchell, J H; Stremel, R W

    1989-03-13

    It is known that muscle afferents and the hypothalamic locomotor region (HLR) both project to the nucleus reticularis gigantocellularis (NGC) and that the NGC is capable of influencing cardiovascular and respiratory variables. Therefore, the role of NGC in the cardiovascular and respiratory response to exercise-related signals was investigated in anesthetized cats. These signals were generated by stimulation of: (1) spinal ventral roots to induce hindlimb muscle contraction (MC) and (2) the HLR. Bilateral electrolytic lesion of the NGC at the pontomedullary border caused tidal volume, respiratory frequency and heart rate responses to HLR stimulation to be greater than the responses recorded prior to lesioning. Lesioning had no effect on the ventilatory or cardiovascular responses to MC but did decrease phrenic responsiveness; lesion had no effect on any resting values. In this preparation, the pontomedullary NGC acts as an inhibitory influence on tidal volume, breathing frequency and heart rate responses to the central command for exercise. In addition, NGC modulation of ventilation would appear to be selective for certain respiratory muscle groups.

  7. Cardiovascular, electrodermal, and respiratory response patterns to fear- and sadness-inducing films.

    PubMed

    Kreibig, Sylvia D; Wilhelm, Frank H; Roth, Walton T; Gross, James J

    2007-09-01

    Responses to fear- and sadness-inducing films were assessed using a broad range of cardiovascular (heart rate, T-wave amplitude, low- and high-frequency heart rate variability, stroke volume, preejection period, left-ventricular ejection time, Heather index, blood pressure, pulse amplitude and transit time, and finger temperature), electrodermal (level, response rate, and response amplitude), and respiratory (rate, tidal volume and its variability, inspiratory flow rate, duty cycle, and end-tidal pCO(2)) measures. Subjective emotional experience and facial behavior (Corrugator Supercilii and Zygomaticus Major EMG) served as control measures. Results indicated robust differential physiological response patterns for fear, sadness, and neutral (mean classification accuracy 85%). Findings are discussed in terms of the fight-flight and conservation-withdrawal responses and possible limitations of a valence-arousal categorization of emotion in affective space.

  8. Design and calibration of a high-frequency oscillatory ventilator.

    PubMed

    Simon, B A; Mitzner, W

    1991-02-01

    High-frequency ventilation (HFV) is a modality of mechanical ventilation which presents difficult technical demands to the clinical or laboratory investigator. The essential features of an ideal HFV system are described, including wide frequency range, control of tidal volume and mean airway pressure, minimal dead space, and high effective internal impedance. The design and performance of a high-frequency oscillatory ventilation system is described which approaches these requirements. The ventilator utilizes a linear motor regulated by a closed loop controller and driving a novel frictionless double-diaphragm piston pump. Finally, the ventilator performance is tested using the impedance model of Venegas [1].

  9. Mechanics of lung ventilation in a post-metamorphic salamander, Ambystoma Tigrinum.

    PubMed

    Simons, R S; Bennett, W O; Brainerd, E L

    2000-03-01

    The mechanics of lung ventilation in frogs and aquatic salamanders has been well characterized, whereas lung ventilation in terrestrial-phase (post-metamorphic) salamanders has received little attention. We used electromyography (EMG), X-ray videography, standard videography and buccal and body cavity pressure measurements to characterize the ventilation mechanics of adult (post-metamorphic) tiger salamanders (Ambystoma tigrinum). Three results emerged: (i) under terrestrial conditions or when floating at the surface of the water, adult A. tigrinum breathed through their nares using a two-stroke buccal pump; (ii) in addition to this narial two-stroke pump, adult tiger salamanders also gulped air in through their mouths using a modified two-stroke buccal pump when in an aquatic environment; and (iii) exhalation in adult tiger salamanders is active during aquatic gulping breaths, whereas exhalation appears to be passive during terrestrial breathing at rest. Active exhalation in aquatic breaths is indicated by an increase in body cavity pressure during exhalation and associated EMG activity in the lateral hypaxial musculature, particularly the M. transversus abdominis. In terrestrial breathing, no EMG activity in the lateral hypaxial muscles is generally present, and body cavity pressure decreases during exhalation. In aquatic breaths, tidal volume is larger than in terrestrial breaths, and breathing frequency is much lower (approximately 1 breath 10 min(-)(1 )versus 4-6 breaths min(-)(1)). The use of hypaxial muscles to power active exhalation in the aquatic environment may result from the need for more complete exhalation and larger tidal volumes when breathing infrequently. This hypothesis is supported by previous findings that terrestrial frogs ventilate their lungs with small tidal volumes and exhale passively, whereas aquatic frogs and salamanders use large tidal volumes and and exhale actively.

  10. Transdiaphragmatic pressure in quadriplegic individuals ventilated by diaphragmatic pacemaker.

    PubMed Central

    Garrido-García, H.; Martín-Escribano, P.; Palomera-Frade, J.; Arroyo, O.; Alonso-Calderón, J. L.; Mazaira-Alvarez, J.

    1996-01-01

    BACKGROUND: Electrophrenic pacing can be used in the management of ventilatory failure in quadriplegic patients. A study was undertaken to determine the pattern of transdiaphragmatic pressure (PDI) during the conditioning phase of electrophrenic pacing to see if it had a possible role in optimising the process of conditioning. METHODS: The tidal volume (TV) and PDI were measured in a group of six quadriplegic patients commencing ventilation by low frequency pulse stimulation (7-10 Hz) and low respiratory rate stimulation (< 10 breaths/min). RESULTS: Tidal volume increased between baseline and month 1 (4.33 ml/kg, p < 0.001) and between months 1 and 2 (3.00 ml/kg, p < 0.05) and then stabilised. PDI was higher during bilateral diaphragmatic pacing (mean (SD) 1.73 (0.30) kPa) than with either left (1.15 (0.34) kPa) or right (0.86 (0.37) kPa) unilateral pacing. PDI varied throughout the observation period, probably by interaction between recovery of the diaphragmatic fibres and the pacing regimen. CONCLUSIONS: Patients with quadriplegia due to high spinal injury can be maintained with ventilation by continuous electrophrenic pacing. The control criteria used in this study for pacing were tidal volume and the patient's tolerance, and the PDI measurement did not contribute any additional information to help with managing the conditioning process. PMID:8733497

  11. New Model for Europa's Tidal Response Based after Laboratory Measurements

    NASA Astrophysics Data System (ADS)

    Castillo, J. C.; McCarthy, C.; Choukroun, M.; Rambaux, N.

    2009-12-01

    We explore the application of the Andrade model to the modeling of Europa’s tidal response at the orbital period and for different librations. Previous models have generally assumed that the satellite behaves as a Maxwell body. However, at the frequencies exciting Europa’s tides and librations, material anelasticity tends to dominate the satellite’s response for a wide range of temperatures, a feature that is not accounted for by the Maxwell model. Many experimental studies on the anelasticity of rocks, ice, and hydrates, suggest that the Andrade model usually provides a good fit to the dissipation spectra obtained for a wide range of frequencies, encompassing the tidal frequencies of most icy satellites. These data indicate that, at Europa’s orbital frequency, the Maxwell model overestimates water ice attenuation at temperature warmer than ~240 K, while it tends to significantly underestimate it at lower temperatures. Based on the available data we suggest an educated extrapolation of available data to Europa’s conditions. We compute the tidal response of a model of Europa differentiated in a rocky core and a water-rich shell. We assume various degrees of stratification of the core involving hydrated and anhydrous silicates, as well as an iron core. The water-rich shell of Europa is assumed to be fully frozen, or to have preserved a deep liquid layer. In both cases we consider a range of thermal structures, based on existing models. These structures take into account the presence of non-ice materials, especially hydrated salts. This new approach yields a greater tidal response (amplitude and phase lag) than previously expected. This is due to the fact that a greater volume of material dissipates tidal energy in comparison to models assuming a Maxwell body. Another feature of interest is that the tidal stress expected in Europa is at about the threshold between a linear and non-linear mechanical response of water ice as a function of stress. Increased stress at a time when Europa’s eccentricity was greater than its current value is likely to have resulted in significant dissipation increase. We will assess how this new approach affects our understanding of Europa, and we will quantify the tidal response of this satellite and the amount of tidal heating available to its evolution. Acknowledgements: Part of this work has been conducted at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. Government sponsorship acknowledged. Part of the experimental work was conducted at Brown University, funded by NASA. MC is supported by a NASA Postdoctoral Fellowship, administered by Oak Ridge Associated Universities.

  12. Effects of different tidal volumes in pulmonary and extrapulmonary lung injury with or without intraabdominal hypertension.

    PubMed

    Santos, Cíntia L; Moraes, Lillian; Santos, Raquel S; Oliveira, Mariana G; Silva, Johnatas D; Maron-Gutierrez, Tatiana; Ornellas, Débora S; Morales, Marcelo M; Capelozzi, Vera L; Jamel, Nelson; Pelosi, Paolo; Rocco, Patricia R M; Garcia, Cristiane S N B

    2012-03-01

    We hypothesized that: (1) intraabdominal hypertension increases pulmonary inflammatory and fibrogenic responses in acute lung injury (ALI); (2) in the presence of intraabdominal hypertension, higher tidal volume reduces lung damage in extrapulmonary ALI, but not in pulmonary ALI. Wistar rats were randomly allocated to receive Escherichia coli lipopolysaccharide intratracheally (pulmonary ALI) or intraperitoneally (extrapulmonary ALI). After 24 h, animals were randomized into subgroups without or with intraabdominal hypertension (15 mmHg) and ventilated with positive end expiratory pressure = 5 cmH(2)O and tidal volume of 6 or 10 ml/kg during 1 h. Lung and chest wall mechanics, arterial blood gases, lung and distal organ histology, and interleukin (IL)-1β, IL-6, caspase-3 and type III procollagen (PCIII) mRNA expressions in lung tissue were analyzed. With intraabdominal hypertension, (1) chest-wall static elastance increased, and PCIII, IL-1β, IL-6, and caspase-3 expressions were more pronounced than in animals with normal intraabdominal pressure in both ALI groups; (2) in extrapulmonary ALI, higher tidal volume was associated with decreased atelectasis, and lower IL-6 and caspase-3 expressions; (3) in pulmonary ALI, higher tidal volume led to higher IL-6 expression; and (4) in pulmonary ALI, liver, kidney, and villi cell apoptosis was increased, but not affected by tidal volume. Intraabdominal hypertension increased inflammation and fibrogenesis in the lung independent of ALI etiology. In extrapulmonary ALI associated with intraabdominal hypertension, higher tidal volume improved lung morphometry with lower inflammation in lung tissue. Conversely, in pulmonary ALI associated with intraabdominal hypertension, higher tidal volume increased IL-6 expression.

  13. Comparison of environmental forcings affecting suspended sediments variability in two macrotidal, highly-turbid estuaries

    NASA Astrophysics Data System (ADS)

    Jalón-Rojas, Isabel; Schmidt, Sabine; Sottolichio, Aldo

    2017-11-01

    The relative contribution of environmental forcing frequencies on turbidity variability is, for the first time, quantified at seasonal and multiannual time scales in tidal estuarine systems. With a decade of high-frequency, multi-site turbidity monitoring, the two nearby, macrotidal and highly-turbid Gironde and Loire estuaries (west France) are excellent natural laboratories for this purpose. Singular Spectrum Analyses, combined with Lomb-Scargle periodograms and Wavelet Transforms, were applied to the continuous multiannual turbidity time series. Frequencies of the main environmental factors affecting turbidity were identified: hydrological regime (high versus low river discharges), river flow variability, tidal range, tidal cycles, and turbulence. Their relative influences show similar patterns in both estuaries and depend on the estuarine region (lower or upper estuary) and the time scale (multiannual or seasonal). On the multiannual time scale, the relative contribution of tidal frequencies (tidal cycles and range) to turbidity variability decreases up-estuary from 68% to 47%, while the influence of river flow frequencies increases from 3% to 42%. On the seasonal time scale, the relative influence of forcings frequencies remains almost constant in the lower estuary, dominated by tidal frequencies (60% and 30% for tidal cycles and tidal range, respectively); in the upper reaches, it is variable depending on hydrological regime, even if tidal frequencies are responsible for up 50% of turbidity variance. These quantifications show the potential of combined spectral analyses to compare the behavior of suspended sediment in tidal estuaries throughout the world and to evaluate long-term changes in environmental forcings, especially in a context of global change. The relevance of this approach to compare nearby and overseas systems and to support management strategies is discussed (e.g., selection of effective operation frequencies/regions, prediction of the most affected regions by the implementation of operational management plans).

  14. Lung protection: an intervention for tidal volume reduction in a teaching intensive care unit.

    PubMed

    Briva, Arturo; Gaiero, Cristina

    2016-01-01

    To determine the effect of feedback and education regarding the use of predicted body weight to adjust tidal volume in a lung-protective mechanical ventilation strategy. The study was performed from October 2014 to November 2015 (12 months) in a single university polyvalent intensive care unit. We developed a combined intervention (education and feedback), placing particular attention on the importance of adjusting tidal volumes to predicted body weight bedside. In parallel, predicted body weight was estimated from knee height and included in clinical charts. One hundred fifty-nine patients were included. Predicted body weight assessed by knee height instead of visual evaluation revealed that the delivered tidal volume was significantly higher than predicted. After the inclusion of predicted body weight, we observed a sustained reduction in delivered tidal volume from a mean (standard error) of 8.97 ± 0.32 to 7.49 ± 0.19mL/kg (p < 0.002). Furthermore, the protocol adherence was subsequently sustained for 12 months (delivered tidal volume 7.49 ± 0.54 versus 7.62 ± 0.20mL/kg; p = 0.103). The lack of a reliable method to estimate the predicted body weight is a significant impairment for the application of a worldwide standard of care during mechanical ventilation. A combined intervention based on education and repeated feedbacks promoted sustained tidal volume education during the study period (12 months).

  15. Lung ventilation strategies for acute respiratory distress syndrome: a systematic review and network meta-analysis

    PubMed Central

    Wang, Changsong; Wang, Xiaoyang; Chi, Chunjie; Guo, Libo; Guo, Lei; Zhao, Nana; Wang, Weiwei; Pi, Xin; Sun, Bo; Lian, Ailing; Shi, Jinghui; Li, Enyou

    2016-01-01

    To identify the best lung ventilation strategy for acute respiratory distress syndrome (ARDS), we performed a network meta-analysis. The Cochrane Central Register of Controlled Trials, EMBASE, MEDLINE, CINAHL, and the Web of Science were searched, and 36 eligible articles were included. Compared with higher tidal volumes with FiO2-guided lower positive end-expiratory pressure [PEEP], the hazard ratios (HRs) for mortality were 0.624 (95% confidence interval (CI) 0.419–0.98) for lower tidal volumes with FiO2-guided lower PEEP and prone positioning and 0.572 (0.34–0.968) for pressure-controlled ventilation with FiO2-guided lower PEEP. Lower tidal volumes with FiO2-guided higher PEEP and prone positioning had the greatest potential to reduce mortality, and the possibility of receiving the first ranking was 61.6%. Permissive hypercapnia, recruitment maneuver, and low airway pressures were most likely to be the worst in terms of all-cause mortality. Compared with higher tidal volumes with FiO2-guided lower PEEP, pressure-controlled ventilation with FiO2-guided lower PEEP and lower tidal volumes with FiO2-guided lower PEEP and prone positioning ventilation are associated with lower mortality in ARDS patients. Lower tidal volumes with FiO2-guided higher PEEP and prone positioning ventilation and lower tidal volumes with pressure-volume (P–V) static curve-guided individual PEEP are potential optimal strategies for ARDS patients. PMID:26955891

  16. Physiological and perceptual responses to incremental exercise testing in healthy men: effect of exercise test modality.

    PubMed

    Muscat, Kristina M; Kotrach, Houssam G; Wilkinson-Maitland, Courtney A; Schaeffer, Michele R; Mendonca, Cassandra T; Jensen, Dennis

    2015-11-01

    In a randomized cross-over study of 15 healthy men aged 20-30 years, we compared physiological and perceptual responses during treadmill and cycle exercise test protocols matched for increments in work rate - the source of increased locomotor muscle metabolic and contractile demands. The rates of O2 consumption and CO2 production were higher at the peak of treadmill versus cycle testing (p ≤ 0.05). Nevertheless, work rate, minute ventilation, tidal volume (VT), breathing frequency (fR), inspiratory capacity (IC), inspiratory reserve volume (IRV), tidal esophageal (Pes,tidal) and transdiaphragmatic pressure swings (Pdi,tidal), peak expiratory gastric pressures (Pga,peak), the root mean square of the diaphragm electromyogram (EMGdi,rms) expressed as a percentage of maximum EMGdi,rms (EMGdi,rms%max), and dyspnea ratings were similar at the peak of treadmill versus cycle testing (p > 0.05). Ratings of leg discomfort were higher at the peak of cycle versus treadmill exercise (p ≤ 0.05), even though peak O2 consumption was lower during cycling. Oxygen consumption, CO2 production, minute ventilation, fR, Pes,tidal, Pdi,tidal and Pga,peak were higher (p ≤ 0.05), while VT, IC, IRV, EMGdi,rms%max, and ratings of dyspnea and leg discomfort were similar (p > 0.05) at all or most submaximal work rates during treadmill versus cycle exercise. Our findings highlight important differences (and similarities) in physiological and perceptual responses at maximal and submaximal work rates during incremental treadmill and cycle exercise testing protocols. The lack of effect of exercise test modality on peak work rate advocates for the use of this readily available parameter to optimize training intensity determination, regardless of exercise training mode.

  17. Mechanical ventilation with lower tidal volumes and positive end-expiratory pressure prevents pulmonary inflammation in patients without preexisting lung injury.

    PubMed

    Wolthuis, Esther K; Choi, Goda; Dessing, Mark C; Bresser, Paul; Lutter, Rene; Dzoljic, Misa; van der Poll, Tom; Vroom, Margreeth B; Hollmann, Markus; Schultz, Marcus J

    2008-01-01

    Mechanical ventilation with high tidal volumes aggravates lung injury in patients with acute lung injury or acute respiratory distress syndrome. The authors sought to determine the effects of short-term mechanical ventilation on local inflammatory responses in patients without preexisting lung injury. Patients scheduled to undergo an elective surgical procedure (lasting > or = 5 h) were randomly assigned to mechanical ventilation with either higher tidal volumes of 12 ml/kg ideal body weight and no positive end-expiratory pressure (PEEP) or lower tidal volumes of 6 ml/kg and 10 cm H2O PEEP. After induction of anesthesia and 5 h thereafter, bronchoalveolar lavage fluid and/or blood was investigated for polymorphonuclear cell influx, changes in levels of inflammatory markers, and nucleosomes. Mechanical ventilation with lower tidal volumes and PEEP (n = 21) attenuated the increase of pulmonary levels of interleukin (IL)-8, myeloperoxidase, and elastase as seen with higher tidal volumes and no PEEP (n = 19). Only for myeloperoxidase, a difference was found between the two ventilation strategies after 5 h of mechanical ventilation (P < 0.01). Levels of tumor necrosis factor alpha, IL-1alpha, IL-1beta, IL-6, macrophage inflammatory protein 1alpha, and macrophage inflammatory protein 1beta in the bronchoalveolar lavage fluid were not affected by mechanical ventilation. Plasma levels of IL-6 and IL-8 increased with mechanical ventilation, but there were no differences between the two ventilation groups. The use of lower tidal volumes and PEEP may limit pulmonary inflammation in mechanically ventilated patients without preexisting lung injury. The specific contribution of both lower tidal volumes and PEEP on the protective effects of the lung should be further investigated.

  18. Prone positioning reduces mortality from acute respiratory distress syndrome in the low tidal volume era: a meta-analysis

    PubMed Central

    Shaefi, Shahzad; Montesi, Sydney B.; Devlin, Amy; Loring, Stephen H.; Talmor, Daniel; Malhotra, Atul

    2014-01-01

    Purpose Prone positioning for ARDS has been performed for decades without definitive evidence of clinical benefit. A recent multicenter trial demonstrated for the first time significantly reduced mortality with prone positioning. This meta-analysis was performed to integrate these findings with existing literature and test whether differences in tidal volume explain conflicting results among randomized trials. Methods Studies were identified using MEDLINE, EMBASE, Cochrane Register of Controlled Trials, LILACS, and citation review. Included were randomized trials evaluating the effect on mortality of prone versus supine positioning during conventional ventilation for ARDS. The primary outcome was risk ratio of death at 60 days meta-analyzed using random effects models. Analysis stratified by high (>8 ml/kg predicted body weight) or low (≤8 ml/kg PBW) mean baseline tidal volume was planned a priori. Results Seven trials were identified including 2,119 patients, of whom 1,088 received prone positioning. Overall, prone positioning was not significantly associated with the risk ratio of death (RR 0.83; 95 % CI 0.68–1.02; p = 0.073; I2 = 64 %). When stratified by high or low tidal volume, prone positioning was associated with a significant decrease in RR of death only among studies with low baseline tidal volume (RR 0.66; 95 % CI 0.50–0.86; p = 0.002; I2 = 25 %). Stratification by tidal volume explained over half the between-study heterogeneity observed in the unstratified analysis. Conclusions Prone positioning is associated with significantly reduced mortality from ARDS in the low tidal volume era. Substantial heterogeneity across studies can be explained by differences in tidal volume. PMID:24435203

  19. Lung reflexes in rabbits during pulmonary stretch receptor block by sulphur dioxide.

    PubMed

    Davies, A; Dixon, M; Callanan, D; Huszczuk, A; Widdicombe, J G; Wise, J C

    1978-07-01

    Anaesthetized rabbits were given 200 ppm sulphur dioxide to breathe for 10 min. This abolished activity in 23 of 26 pulmonary stretch receptors, while leaving that of lung irritant receptors unimpaired. The Breuer-Hering reflex was abolished and breathing became deeper and slower. Inspiratory time (tI) was increased and expiratory time (tE) decreased. Subsequent vagotomy increased tidal volume (VT), tI and tE. In animals with stretch receptors blocked, injections of phenyl diguanide and histamine still increased breathing frequency and decreased VT, indicating that reflexes from lung irritant and J-receptors were intact. Inhalation of 8% CO2 caused a bigger increase in frequency and tidal volume in rabbits with stretch receptor block compared with controls or those after vagotomy. Induction of pneumothorax with stretch receptor block transiently prolonged tI and shortened tE; removal of the pneumothorax also transiently shortened tE and usually also decreased tI. The results suggest that lung irritant receptors reflexly shorten tE in all our experimental conditions, but have various effects on tI which may depend on the timing of the irritant receptor discharge and refractoriness of the inspiratory response.

  20. Contributions of tidal lung inflation to human R-R interval and arterial pressure fluctuations

    NASA Technical Reports Server (NTRS)

    Koh, J.; Brown, T. E.; Beightol, L. A.; Eckberg, D. L.

    1998-01-01

    We studied the effects of mechanical lung inflation on respiratory frequency R-R interval and arterial pressure fluctuations in nine healthy young adults undergoing elective orthopedic surgery. We conducted this research to define the contribution of pulmonary and thoracic stretch receptor input to respiratory sinus arrhythmia. We compared fast Fourier transform spectral power during three modes of ventilation: (1) spontaneous, frequency-controlled (0.25 Hz) breathing, (2) intermittent positive pressure ventilation (0.25 Hz, with a tidal volume of 8 ml/kg) and (3) high frequency jet ventilation (5.0 Hz, 2.5 kg/cm2), after sedation and vecuronium paralysis. Mean R-R intervals, arterial pressures and arterial blood gas levels were comparable during all three breathing conditions. Respiratory frequency systolic pressure spectral power was comparable during spontaneous breathing and conventional mechanical ventilation, but was significantly reduced during high frequency jet ventilation (P < 0.05). Respiratory frequency R-R interval spectral power (used as an index of respiratory sinus arrhythmia) declined dramatically with sedation and muscle paralysis (P < 0.05), but was greater during conventional mechanical, than high frequency jet ventilation (P < 0.05). These results suggest that although phasic inputs from pulmonary and thoracic stretch receptors make a statistically significant contribution to respiratory sinus arrhythmia, that contribution is small.

  1. Lung protection: an intervention for tidal volume reduction in a teaching intensive care unit

    PubMed Central

    Briva, Arturo; Gaiero, Cristina

    2016-01-01

    Objective To determine the effect of feedback and education regarding the use of predicted body weight to adjust tidal volume in a lung-protective mechanical ventilation strategy. Methods The study was performed from October 2014 to November 2015 (12 months) in a single university polyvalent intensive care unit. We developed a combined intervention (education and feedback), placing particular attention on the importance of adjusting tidal volumes to predicted body weight bedside. In parallel, predicted body weight was estimated from knee height and included in clinical charts. Results One hundred fifty-nine patients were included. Predicted body weight assessed by knee height instead of visual evaluation revealed that the delivered tidal volume was significantly higher than predicted. After the inclusion of predicted body weight, we observed a sustained reduction in delivered tidal volume from a mean (standard error) of 8.97 ± 0.32 to 7.49 ± 0.19mL/kg (p < 0.002). Furthermore, the protocol adherence was subsequently sustained for 12 months (delivered tidal volume 7.49 ± 0.54 versus 7.62 ± 0.20mL/kg; p = 0.103). Conclusion The lack of a reliable method to estimate the predicted body weight is a significant impairment for the application of a worldwide standard of care during mechanical ventilation. A combined intervention based on education and repeated feedbacks promoted sustained tidal volume education during the study period (12 months). PMID:27925055

  2. Tidal frequency estimation for closed basins

    NASA Technical Reports Server (NTRS)

    Eades, J. B., Jr.

    1978-01-01

    A method was developed for determining the fundamental tidal frequencies for closed basins of water, by means of an eigenvalue analysis. The mathematical model employed, was the Laplace tidal equations.

  3. Frequency-Dependent Tidal Triggering of Low Frequency Earthquakes Near Parkfield, California

    NASA Astrophysics Data System (ADS)

    Xue, L.; Burgmann, R.; Shelly, D. R.

    2017-12-01

    The effect of small periodic stress perturbations on earthquake generation is not clear, however, the rate of low-frequency earthquakes (LFEs) near Parkfield, California has been found to be strongly correlated with solid earth tides. Laboratory experiments and theoretical analyses show that the period of imposed forcing and source properties affect the sensitivity to triggering and the phase relation of the peak seismicity rate and the periodic stress, but frequency-dependent triggering has not been quantitatively explored in the field. Tidal forcing acts over a wide range of frequencies, therefore the sensitivity to tidal triggering of LFEs provides a good probe to the physical mechanisms affecting earthquake generation. In this study, we consider the tidal triggering of LFEs near Parkfield, California since 2001. We find the LFEs rate is correlated with tidal shear stress, normal stress rate and shear stress rate. The occurrence of LFEs can also be independently modulated by groups of tidal constituents at semi-diurnal, diurnal and fortnightly frequencies. The strength of the response of LFEs to the different tidal constituents varies between LFE families. Each LFE family has an optimal triggering frequency, which does not appear to be depth dependent or systematically related to other known properties. This suggests the period of the applied forcing plays an important role in the triggering process, and the interaction of periods of loading history and source region properties, such as friction, effective normal stress and pore fluid pressure, produces the observed frequency-dependent tidal triggering of LFEs.

  4. Bench performance of ventilators during simulated paediatric ventilation.

    PubMed

    Park, M A J; Freebairn, R C; Gomersall, C D

    2013-05-01

    This study compares the accuracy and capabilities of various ventilators using a paediatric acute respiratory distress syndrome lung model. Various compliance settings and respiratory rate settings were used. The study was done in three parts: tidal volume and FiO2 accuracy; pressure control accuracy and positive end-expiratory pressure (PEEP) accuracy. The parameters set on the ventilator were compared with either or both of the measured parameters by the test lung and the ventilator. The results revealed that none of the ventilators could consistently deliver tidal volumes within 1 ml/kg of the set tidal volume, and the discrepancy between the delivered volume and the volume measured by the ventilator varied greatly. The target tidal volume was 8 ml/kg, but delivered tidal volumes ranged from 3.6-11.4 ml/kg and the volumes measured by the ventilator ranged from 4.1-20.6 ml/kg. All the ventilators maintained pressure within 20% of the set pressure, except one ventilator which delivered pressures of up to 27% higher than the set pressure. Two ventilators maintained PEEP within 10% of the prescribed PEEP. The majority of the readings were also within 10%. However, three ventilators delivered, at times, PEEPs over 20% higher. In conclusion, as lung compliance decreases, especially in paediatric patients, some ventilators perform better than others. This study highlights situations where ventilators may not be able to deliver, nor adequately measure, set tidal volumes, pressure, PEEP or FiO2.

  5. Effects of inhalational anaesthesia with low tidal volume ventilation on end-tidal sevoflurane and carbon dioxide concentrations: prospective randomized study.

    PubMed

    de la Matta-Martín, M; López-Herrera, D; Luis-Navarro, J C; López-Romero, J L

    2014-02-01

    We investigated how ventilation with low tidal volumes affects the pharmacokinetics of sevoflurane uptake during the first minutes of inhaled anaesthesia. Forty-eight patients scheduled for lung resection were randomly assigned to three groups. Patients in group 1, 2 and 3 received 3% sevoflurane for 3 min via face mask and controlled ventilation with a tidal volume of 2.2, 8 and 12 ml kg(-1), respectively (Phase 1). After tracheal intubation (Phase 2), 3% sevoflurane was supplied for 2 min using a tidal volume of 8 ml kg(-1) (Phase 3). End-tidal sevoflurane concentrations were significantly higher in group 1 at the end of phase 1 and lower at the end of phase 2 than in the other groups as follows: median of 2.5%, 2.2% and 2.3% in phase 1 for groups 1, 2 and 3, respectively (P<0.001); and 1.7%, 2.1% and 2.0% in phase 2, respectively (P<0.001). End-tidal carbon dioxide values in group 1 were significantly lower at the end of phase 1 and higher at the end of phase 2 than in the other groups as follows: median of 16.5, 31 and 29.5 mm Hg in phase 1 for groups 1, 2 and 3, respectively (P<0.001); and 46.2, 36 and 33.5 mm Hg in phase 2, respectively (P<0.001). When sevoflurane is administered with tidal volume approximating the airway dead space volume, end-tidal sevoflurane and end-tidal carbon dioxide may not correctly reflect the concentration of these gases in the alveoli, leading to misinterpretation of expired gas data. Copyright © 2013 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Published by Elsevier España. All rights reserved.

  6. Intraoperative low tidal volume ventilation strategy has no benefits during laparoscopic cholecystectomy

    PubMed Central

    Arora, Vandna; Tyagi, Asha; Kumar, Surendra; Kakkar, Aanchal; Das, Shukla

    2017-01-01

    Background and Aims: Benefits of intraoperative low tidal volume ventilation during laparoscopic surgery are not conclusively proven, even though its advantages were seen in other situations with intraoperative respiratory compromise such as one-lung ventilation. The present study compared the efficacy of intraoperative low tidal volume ventilatory strategy (6 ml/kg along with positive end-expiratory pressure [PEEP] of 10 cmH2O) versus one with higher tidal volume (10 ml/kg with no PEEP) on various clinical parameters and plasma levels of interleukin (IL)-6 in patients undergoing laparoscopic cholecystectomy. Material and Methods: A total of 58 adult patients with American Society of Anesthesiologists physical status I or II, undergoing laparoscopic cholecystectomy were randomized to receive the low or higher tidal volume strategy as above (n = 29 each). The primary outcome measure was postoperative PaO2. Systemic levels of IL-6 along with clinical indices of intraoperative gas exchange, pulmonary mechanics, and hemodynamic consequences were measured as secondary outcome measures. Results: There was no statistically significant difference in oxygenation; intraoperative dynamic compliance, peak airway pressures, or hemodynamic parameters, or the IL-6 levels between the two groups (P > 0.05). Low tidal volume strategy was associated with significantly higher mean airway pressure, lower airway resistance, greater respiratory rates, and albeit clinically similar, higher PaCO2and lower pH (P < 0.05). Conclusion: Strategy using 6 ml/kg tidal volume along with 10 cmH2O of PEEP was not associated with any significant improvement in gas exchange, hemodynamic parameters, or systemic inflammatory response over ventilation with 10 ml/kg volume without PEEP during laparoscopic cholecystectomy. PMID:28413273

  7. Optimal ventilation of the anesthetized pediatric patient.

    PubMed

    Feldman, Jeffrey M

    2015-01-01

    Mechanical ventilation of the pediatric patient is challenging because small changes in delivered volume can be a significant fraction of the intended tidal volume. Anesthesia ventilators have traditionally been poorly suited to delivering small tidal volumes accurately, and pressure-controlled ventilation has become used commonly when caring for pediatric patients. Modern anesthesia ventilators are designed to deliver small volumes accurately to the patient's airway by compensating for the compliance of the breathing system and delivering tidal volume independent of fresh gas flow. These technology advances provide the opportunity to implement a lung-protective ventilation strategy in the operating room based upon control of tidal volume. This review will describe the capabilities of the modern anesthesia ventilator and the current understanding of lung-protective ventilation. An optimal approach to mechanical ventilation for the pediatric patient is described, emphasizing the importance of using bedside monitors to optimize the ventilation strategy for the individual patient.

  8. Recurrent Recruitment Manoeuvres Improve Lung Mechanics and Minimize Lung Injury during Mechanical Ventilation of Healthy Mice

    PubMed Central

    Reiss, Lucy Kathleen; Kowallik, Anke; Uhlig, Stefan

    2011-01-01

    Introduction Mechanical ventilation (MV) of mice is increasingly required in experimental studies, but the conditions that allow stable ventilation of mice over several hours have not yet been fully defined. In addition, most previous studies documented vital parameters and lung mechanics only incompletely. The aim of the present study was to establish experimental conditions that keep these parameters within their physiological range over a period of 6 h. For this purpose, we also examined the effects of frequent short recruitment manoeuvres (RM) in healthy mice. Methods Mice were ventilated at low tidal volume VT = 8 mL/kg or high tidal volume VT = 16 mL/kg and a positive end-expiratory pressure (PEEP) of 2 or 6 cmH2O. RM were performed every 5 min, 60 min or not at all. Lung mechanics were followed by the forced oscillation technique. Blood pressure (BP), electrocardiogram (ECG), heart frequency (HF), oxygen saturation and body temperature were monitored. Blood gases, neutrophil-recruitment, microvascular permeability and pro-inflammatory cytokines in bronchoalveolar lavage (BAL) and blood serum as well as histopathology of the lung were examined. Results MV with repetitive RM every 5 min resulted in stable respiratory mechanics. Ventilation without RM worsened lung mechanics due to alveolar collapse, leading to impaired gas exchange. HF and BP were affected by anaesthesia, but not by ventilation. Microvascular permeability was highest in atelectatic lungs, whereas neutrophil-recruitment and structural changes were strongest in lungs ventilated with high tidal volume. The cytokines IL-6 and KC, but neither TNF nor IP-10, were elevated in the BAL and serum of all ventilated mice and were reduced by recurrent RM. Lung mechanics, oxygenation and pulmonary inflammation were improved by increased PEEP. Conclusions Recurrent RM maintain lung mechanics in their physiological range during low tidal volume ventilation of healthy mice by preventing atelectasis and reduce the development of pulmonary inflammation. PMID:21935418

  9. Tidal volume in acute respiratory distress syndrome: how best to select it.

    PubMed

    Umbrello, Michele; Marino, Antonella; Chiumello, Davide

    2017-07-01

    Mechanical ventilation is the type of organ support most widely provided in the intensive care unit. However, this form of support does not constitute a cure for acute respiratory distress syndrome (ARDS), as it mainly works by buying time for the lungs to heal while contributing to the maintenance of vital gas exchange. Moreover, it can further damage the lung, leading to the development of a particular form of lung injury named ventilator-induced lung injury (VILI). Experimental evidence accumulated over the last 30 years highlighted the factors associated with an injurious form of mechanical ventilation. The present paper illustrates the physiological effects of delivering a tidal volume to the lungs of patients with ARDS, and suggests an approach to tidal volume selection. The relationship between tidal volume and the development of VILI, the so called volotrauma, will be reviewed. The still actual suggestion of a lung-protective ventilatory strategy based on the use of low tidal volumes scaled to the predicted body weight (PBW) will be presented, together with newer strategies such as the use of airway driving pressure as a surrogate for the amount of ventilatable lung tissue or the concept of strain, i.e., the ratio between the tidal volume delivered relative to the resting condition, that is the functional residual capacity (FRC). An ultra-low tidal volume strategy with the use of extracorporeal carbon dioxide removal (ECCO 2 R) will be presented and discussed. Eventually, the role of other ventilator-related parameters in the generation of VILI will be considered (namely, plateau pressure, airway driving pressure, respiratory rate (RR), inspiratory flow), and the promising unifying framework of mechanical power will be presented.

  10. Tidal volume in acute respiratory distress syndrome: how best to select it

    PubMed Central

    Umbrello, Michele; Marino, Antonella

    2017-01-01

    Mechanical ventilation is the type of organ support most widely provided in the intensive care unit. However, this form of support does not constitute a cure for acute respiratory distress syndrome (ARDS), as it mainly works by buying time for the lungs to heal while contributing to the maintenance of vital gas exchange. Moreover, it can further damage the lung, leading to the development of a particular form of lung injury named ventilator-induced lung injury (VILI). Experimental evidence accumulated over the last 30 years highlighted the factors associated with an injurious form of mechanical ventilation. The present paper illustrates the physiological effects of delivering a tidal volume to the lungs of patients with ARDS, and suggests an approach to tidal volume selection. The relationship between tidal volume and the development of VILI, the so called volotrauma, will be reviewed. The still actual suggestion of a lung-protective ventilatory strategy based on the use of low tidal volumes scaled to the predicted body weight (PBW) will be presented, together with newer strategies such as the use of airway driving pressure as a surrogate for the amount of ventilatable lung tissue or the concept of strain, i.e., the ratio between the tidal volume delivered relative to the resting condition, that is the functional residual capacity (FRC). An ultra-low tidal volume strategy with the use of extracorporeal carbon dioxide removal (ECCO2R) will be presented and discussed. Eventually, the role of other ventilator-related parameters in the generation of VILI will be considered (namely, plateau pressure, airway driving pressure, respiratory rate (RR), inspiratory flow), and the promising unifying framework of mechanical power will be presented. PMID:28828362

  11. Effect of lung-protective ventilation with lower tidal volumes on clinical outcomes among patients undergoing surgery: a meta-analysis of randomized controlled trials.

    PubMed

    Gu, Wan-Jie; Wang, Fei; Liu, Jing-Chen

    2015-02-17

    In anesthetized patients undergoing surgery, the role of lung-protective ventilation with lower tidal volumes is unclear. We performed a meta-analysis of randomized controlled trials (RCTs) to evaluate the effect of this ventilation strategy on postoperative outcomes. We searched electronic databases from inception through September 2014. We included RCTs that compared protective ventilation with lower tidal volumes and conventional ventilation with higher tidal volumes in anesthetized adults undergoing surgery. We pooled outcomes using a random-effects model. The primary outcome measures were lung injury and pulmonary infection. We included 19 trials (n=1348). Compared with patients in the control group, those who received lung-protective ventilation had a decreased risk of lung injury (risk ratio [RR] 0.36, 95% confidence interval [CI] 0.17 to 0.78; I2=0%) and pulmonary infection (RR 0.46, 95% CI 0.26 to 0.83; I2=8%), and higher levels of arterial partial pressure of carbon dioxide (standardized mean difference 0.47, 95% CI 0.18 to 0.75; I2=65%). No significant differences were observed between the patient groups in atelectasis, mortality, length of hospital stay, length of stay in the intensive care unit or the ratio of arterial partial pressure of oxygen to fraction of inspired oxygen. Anesthetized patients who received ventilation with lower tidal volumes during surgery had a lower risk of lung injury and pulmonary infection than those given conventional ventilation with higher tidal volumes. Implementation of a lung-protective ventilation strategy with lower tidal volumes may lower the incidence of these outcomes. © 2015 Canadian Medical Association or its licensors.

  12. Measurement of tidal volume using respiratory ultrasonic plethysmography in anaesthetized, mechanically ventilated horses.

    PubMed

    Russold, Elena; Ambrisko, Tamas D; Schramel, Johannes P; Auer, Ulrike; Van Den Hoven, Rene; Moens, Yves P

    2013-01-01

    To compare tidal volume estimations obtained from Respiratory Ultrasonic Plethysmography (RUP) with simultaneous spirometric measurements in anaesthetized, mechanically ventilated horses. Prospective randomized experimental study. Five experimental horses. Five horses were anaesthetized twice (1 week apart) in random order in lateral and in dorsal recumbency. Nine ventilation modes (treatments) were scheduled in random order (each lasting 4 minutes) applying combinations of different tidal volumes (8, 10, 12 mL kg(-1)) and positive end-expiratory pressures (PEEP) (0, 10, 20 cm H(2)O). Baseline ventilation mode (tidal volume=15 mL kg(-1), PEEP=0 cm H(2)O) was applied for 4 minutes between all treatments. Spirometry and RUP data were downloaded to personal computers. Linear regression analyses (RUP versus spirometric tidal volume) were performed using different subsets of data. Additonally RUP was calibrated against spirometry using a regression equation for all RUP signal values (thoracic, abdominal and combined) with all data collectively and also by an individually determined best regression equation (highest R(2)) for each experiment (horse versus recumbency) separately. Agreement between methods was assessed with Bland-Altman analyses. The highest correlation of RUP and spirometric tidal volume (R(2)=0.81) was found with the combined RUP signal in horses in lateral recumbency and ventilated without PEEP. The bias ±2 SD was 0±2.66 L when RUP was calibrated for collective data, but decreased to 0±0.87 L when RUP was calibrated with individual data. A possible use of RUP for tidal volume measurement during IPPV needs individual calibration to obtain limits of agreement within ±20%. © 2012 The Authors. Veterinary Anaesthesia and Analgesia. © 2012 Association of Veterinary Anaesthetists and the American College of Veterinary Anesthesiologists.

  13. Ventilation by high-frequency chest wall compression in dogs with normal lungs.

    PubMed

    Zidulka, A; Gross, D; Minami, H; Vartian, V; Chang, H K

    1983-06-01

    In 6 anesthetized and paralyzed supine dogs, ventilation by high-frequency chest wall compression (HFCWC) was accomplished by a piston pump rapidly oscillating the pressure in a modified double blood pressure cuff wrapped around the lower thorax. Testing applied frequencies at 3, 5, 8, and 11 Hz, applied peak cuff pressures ranged from 30 to 230 cmH2O. This produced swings of esophageal pressure as high as 18 cmH2O and peak oscillatory air flow ranging from 0.7 to 1.6 L/s. Oscillatory tidal volume declined with increasing frequency and ranged from a mean of 61 to 45 ml. After 30 min of applied HFCWC, arterial blood gas determinations revealed a mean PaCO2 of 29.3 mmHg at 5 Hz, 35 mmHg at 3 Hz, 36 mmHg at 8 Hz, and 51 mmHg at 11 Hz. Mean PaO2 improved from ventilator control values at 3 Hz, remained unchanged at 5 and 8 Hz, and declined at 11 Hz. In 2 dogs breathing spontaneously, HFCWC applied at 5 and 11 Hz resulted in a reduction in spontaneous minute ventilation, mainly by a reduction in spontaneous tidal volume, whereas arterial blood gas values changed slightly. One dog ceased to breath spontaneously within 5 min of application of HFCWC as the PaCO2 fell below control values. We conclude that in dogs with normal lungs, HFCWC may assist spontaneous ventilation. In paralyzed dogs, HFCWC may be of sufficient magnitude to cause hyperventilation.

  14. Assessment of Factors Related to Auto-PEEP.

    PubMed

    Natalini, Giuseppe; Tuzzo, Daniele; Rosano, Antonio; Testa, Marco; Grazioli, Michele; Pennestrì, Vincenzo; Amodeo, Guido; Marsilia, Paolo F; Tinnirello, Andrea; Berruto, Francesco; Fiorillo, Marialinda; Filippini, Matteo; Peratoner, Alberto; Minelli, Cosetta; Bernardini, Achille

    2016-02-01

    Previous physiological studies have identified factors that are involved in auto-PEEP generation. In our study, we examined how much auto-PEEP is generated from factors that are involved in its development. One hundred eighty-six subjects undergoing controlled mechanical ventilation with persistent expiratory flow at the beginning of each inspiration were enrolled in the study. Volume-controlled continuous mandatory ventilation with PEEP of 0 cm H2O was applied while maintaining the ventilator setting as chosen by the attending physician. End-expiratory and end-inspiratory airway occlusion maneuvers were performed to calculate respiratory mechanics, and tidal flow limitation was assessed by a maneuver of manual compression of the abdomen. The variable with the strongest effect on auto-PEEP was flow limitation, which was associated with an increase of 2.4 cm H2O in auto-PEEP values. Moreover, auto-PEEP values were directly related to resistance of the respiratory system and body mass index and inversely related to expiratory time/time constant. Variables that were associated with the breathing pattern (tidal volume, frequency minute ventilation, and expiratory time) did not show any relationship with auto-PEEP values. The risk of auto-PEEP ≥5 cm H2O was increased by flow limitation (adjusted odds ratio 17; 95% CI: 6-56.2), expiratory time/time constant ratio <1.85 (12.6; 4.7-39.6), respiratory system resistance >15 cm H2O/L s (3; 1.3-6.9), age >65 y (2.8; 1.2-6.5), and body mass index >26 kg/m(2) (2.6; 1.1-6.1). Flow limitation, expiratory time/time constant, resistance of the respiratory system, and obesity are the most important variables that affect auto-PEEP values. Frequency expiratory time, tidal volume, and minute ventilation were not independently associated with auto-PEEP. Therapeutic strategies aimed at reducing auto-PEEP and its adverse effects should be primarily oriented to the variables that mainly affect auto-PEEP values. Copyright © 2016 by Daedalus Enterprises.

  15. Low Tidal Volume Ventilation in Patients without Acute Respiratory Distress Syndrome: A Paradigm Shift in Mechanical Ventilation

    PubMed Central

    Lipes, Jed; Bojmehrani, Azadeh; Lellouche, Francois

    2012-01-01

    Protective ventilation with low tidal volume has been shown to reduce morbidity and mortality in patients suffering from acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Low tidal volume ventilation is associated with particular clinical challenges and is therefore often underutilized as a therapeutic option in clinical practice. Despite some potential difficulties, data have been published examining the application of protective ventilation in patients without lung injury. We will briefly review the physiologic rationale for low tidal volume ventilation and explore the current evidence for protective ventilation in patients without lung injury. In addition, we will explore some of the potential reasons for its underuse and provide strategies to overcome some of the associated clinical challenges. PMID:22536499

  16. Tidal bending of ice shelves as a mechanism for large-scale temporal variations in ice flow

    NASA Astrophysics Data System (ADS)

    Rosier, Sebastian H. R.; Hilmar Gudmundsson, G.

    2018-05-01

    GPS measurements reveal strong modulation of horizontal ice shelf and ice stream flow at a variety of tidal frequencies, most notably a fortnightly (Msf) frequency not present in the vertical tides themselves. Current theories largely fail to explain the strength and prevalence of this signal over floating ice shelves. We show how well-known non-linear aspects of ice rheology can give rise to widespread, long-periodic tidal modulation in ice shelf flow, generated within ice shelves themselves through tidal flexure acting at diurnal and semidiurnal frequencies. Using full-Stokes viscoelastic modelling, we show that inclusion of tidal bending within the model accounts for much of the observed tidal modulation of ice shelf flow. Furthermore, our model shows that, in the absence of vertical tidal forcing, the mean flow of the ice shelf is reduced by almost 30 % for the geometry that we consider.

  17. Tides in a body librating about a spin-orbit resonance: generalisation of the Darwin-Kaula theory

    NASA Astrophysics Data System (ADS)

    Frouard, Julien; Efroimsky, Michael

    2017-09-01

    The Darwin-Kaula theory of bodily tides is intended for celestial bodies rotating without libration. We demonstrate that this theory, in its customary form, is inapplicable to a librating body. Specifically, in the presence of libration in longitude, the actual spectrum of Fourier tidal modes differs from the conventional spectrum rendered by the Darwin-Kaula theory for a nonlibrating celestial object. This necessitates derivation of formulae for the tidal torque and the tidal heating rate, that are applicable under libration. We derive the tidal spectrum for longitudinal forced libration with one and two main frequencies, generalisation to more main frequencies being straightforward. (By main frequencies we understand those emerging due to the triaxiality of the librating body.) Separately, we consider a case of free libration at one frequency (once again, generalisation to more frequencies being straightforward). We also calculate the tidal torque. This torque provides correction to the triaxiality-caused physical libration. Our theory is not self-consistent: we assume that the tidal torque is much smaller than the permanent-triaxiality-caused torque, so the additional libration due to tides is much weaker than the main libration due to the permanent triaxiality. Finally, we calculate the tidal dissipation rate in a body experiencing forced libration at the main mode, or free libration at one frequency, or superimposed forced and free librations.

  18. Effect of PEEP and Tidal Volume on Ventilation Distribution and End-Expiratory Lung Volume: A Prospective Experimental Animal and Pilot Clinical Study

    PubMed Central

    Becher, Tobias; Schädler, Dirk; Pulletz, Sven; Freitag-Wolf, Sandra; Weiler, Norbert; Frerichs, Inéz

    2013-01-01

    Introduction Lung-protective ventilation aims at using low tidal volumes (VT) at optimum positive end-expiratory pressures (PEEP). Optimum PEEP should recruit atelectatic lung regions and avoid tidal recruitment and end-inspiratory overinflation. We examined the effect of VT and PEEP on ventilation distribution, regional respiratory system compliance (CRS), and end-expiratory lung volume (EELV) in an animal model of acute lung injury (ALI) and patients with ARDS by using electrical impedance tomography (EIT) with the aim to assess tidal recruitment and overinflation. Methods EIT examinations were performed in 10 anaesthetized pigs with normal lungs ventilated at 5 and 10 ml/kg body weight VT and 5 cmH2O PEEP. After ALI induction, 10 ml/kg VT and 10 cmH2O PEEP were applied. Afterwards, PEEP was set according to the pressure-volume curve. Animals were randomized to either low or high VT ventilation changed after 30 minutes in a crossover design. Ventilation distribution, regional CRS and changes in EELV were analyzed. The same measures were determined in five ARDS patients examined during low and high VT ventilation (6 and 10 (8) ml/kg) at three PEEP levels. Results In healthy animals, high compared to low VT increased CRS and ventilation in dependent lung regions implying tidal recruitment. ALI reduced CRS and EELV in all regions without changing ventilation distribution. Pressure-volume curve-derived PEEP of 21±4 cmH2O (mean±SD) resulted in comparable increase in CRS in dependent and decrease in non-dependent regions at both VT. This implied that tidal recruitment was avoided but end-inspiratory overinflation was present irrespective of VT. In patients, regional CRS differences between low and high VT revealed high degree of tidal recruitment and low overinflation at 3±1 cmH2O PEEP. Tidal recruitment decreased at 10±1 cmH2O and was further reduced at 15±2 cmH2O PEEP. Conclusions Tidal recruitment and end-inspiratory overinflation can be assessed by EIT-based analysis of regional CRS. PMID:23991138

  19. Lung and chest wall impedances in the dog: effects of frequency and tidal volume.

    PubMed

    Barnas, G M; Stamenović, D; Lutchen, K R; Mackenzie, C F

    1992-01-01

    Dependences of the mechanical properties of the respiratory system on frequency (f) and tidal volume (VT) in the normal ranges of breathing are not clear. We measured, simultaneously and in vivo, resistance and elastance of the total respiratory system (Rrs and Ers), lungs (RL and EL), and chest wall (Rcw and Ecw) of five healthy anesthetized paralyzed dogs during sinusoidal volume oscillations at the trachea (50-300 ml, 0.2-2 Hz) delivered at a constant mean lung volume. Each dog showed the same f and VT dependences. The Ers and Ecw increased with increasing f to 1 Hz and decreased with increasing VT up to 200 ml. Although EL increased slightly with increasing f, it was independent of VT. The Rcw decreased from 0.2 to 2 Hz at all VT and decreased with increasing VT. Although the RL decreased from 0.2 to 0.6 Hz and was independent of VT, at higher f RL tended to increase with increasing f and VT (i.e., as peak flow increased). Finally, the f and VT dependences of Rrs were similar to those of Rcw below 0.6 Hz but mirrored RL at higher f. These data capture the competing influences of airflow nonlinearities vs. tissue nonlinearities on f and VT dependence of the lung, chest wall, and total respiratory system. More specifically, we conclude that 1) VT dependences in Ers and Rrs below 0.6 Hz are due to nonlinearities in chest wall properties, 2) above 0.6 Hz, the flow dependence of airways resistance dominates RL and Rrs, and 3) lung tissue behavior is linear in the normal range of breathing.

  20. Passive continuous positive airway pressure ventilation during cardiopulmonary resuscitation: a randomized cross-over manikin simulation study.

    PubMed

    Winkler, Bernd E; Muellenbach, Ralf M; Wurmb, Thomas; Struck, Manuel F; Roewer, Norbert; Kranke, Peter

    2017-02-01

    While controlled ventilation is most frequently used during cardiopulmonary resuscitation (CPR), the application of continuous positive airway pressure (CPAP) and passive ventilation of the lung synchronously with chest compressions and decompressions might represent a promising alternative approach. One benefit of CPAP during CPR is the reduction of peak airway pressures and therefore a potential enhancement in haemodynamics. We therefore evaluated the tidal volumes and airway pressures achieved during CPAP-CPR. During CPR with the LUCAS™ 2 compression device, a manikin model was passively ventilated at CPAP levels of 5, 10, 20 and 30 hPa with the Boussignac tracheal tube and the ventilators Evita ® V500, Medumat ® Transport, Oxylator ® EMX, Oxylog ® 2000, Oxylog ® 3000, Primus ® and Servo ® -i as well as the Wenoll ® diver rescue system. Tidal volumes and airway pressures during CPAP-CPR were recorded and analyzed. Tidal volumes during CPAP-CPR were higher than during compression-only CPR without positive airway pressure. The passively generated tidal volumes increased with increasing CPAP levels and were significantly influenced by the ventilators used. During ventilation at 20 hPa CPAP via a tracheal tube, the mean tidal volumes ranged from 125 ml (Medumat ® ) to 309 ml (Wenoll ® ) and the peak airway pressures from 23 hPa (Primus ® ) to 49 hPa (Oxylog ® 3000). Transport ventilators generated lower tidal volumes than intensive care ventilators or closed-circuit systems. Peak airway pressures during CPAP-CPR were lower than those during controlled ventilation CPR reported in literature. High peak airway pressures are known to limit the applicability of ventilation via facemask or via supraglottic airway devices and may adversely affect haemodynamics. Hence, the application of ventilators generating high tidal volumes with low peak airway pressures appears desirable during CPAP-CPR. The limited CPAP-CPR capabilities of transport ventilators in our study might be prerequisite for future developments of transport ventilators.

  1. Circuit compliance compensation in lung protective ventilation.

    PubMed

    Masselli, Grazia Maria Pia; Silvestri, Sergio; Sciuto, Salvatore Andrea; Cappa, Paolo

    2006-01-01

    Lung protective ventilation utilizes low tidal volumes to ventilate patients with severe lung pathologies. The compensation of breathing circuit effects, i.e. those induced by compressible volume of the circuit, results particularly critical in the calculation of the actual tidal volume delivered to patient's respiratory system which in turns is responsible of the level of permissive hypercapnia. The present work analyzes the applicability of the equation for circuit compressible volume compensation in the case of pressure and volume controlled lung protective ventilation. Experimental tests conducted in-vitro show that the actual tidal volume can be reliably estimated if the compliance of the breathing circuit is measured with the same parameters and ventilation technique that will be utilized in lung protective ventilation. Differences between volume and pressure controlled ventilation are also quantitatively assessed showing that pressure controlled ventilation allows a more reliable compensation of breathing circuit compressible volume.

  2. Multi-frequency time-difference complex conductivity imaging of canine and human lungs using the KHU Mark1 EIT system.

    PubMed

    Kuen, Jihyeon; Woo, Eung Je; Seo, Jin Keun

    2009-06-01

    We evaluated the performance of the lately developed electrical impedance tomography (EIT) system KHU Mark1 through time-difference imaging experiments of canine and human lungs. We derived a multi-frequency time-difference EIT (mftdEIT) image reconstruction algorithm based on the concept of the equivalent homogeneous complex conductivity. Imaging experiments were carried out at three different frequencies of 10, 50 and 100 kHz with three different postures of right lateral, sitting (or prone) and left lateral positions. For three normal canine subjects, we controlled the ventilation using a ventilator at three tidal volumes of 100, 150 and 200 ml. Three human subjects were asked to breath spontaneously at a normal tidal volume. Real- and imaginary-part images of the canine and human lungs were reconstructed at three frequencies and three postures. Images showed different stages of breathing cycles and we could interpret them based on the understanding of the proposed mftdEIT image reconstruction algorithm. Time series of images were further analyzed by using the functional EIT (fEIT) method. Images of human subjects showed the gravity effect on air distribution in two lungs. In the canine subjects, the morphological change seems to dominate the gravity effect. We could also observe that two different types of ventilation should have affected the results. The KHU Mark1 EIT system is expected to provide reliable mftdEIT images of the human lungs. In terms of the image reconstruction algorithm, it would be worthwhile including the effects of three-dimensional current flows inside the human thorax. We suggest clinical trials of the KHU Mark1 for pulmonary applications.

  3. Inspiratory capacity at inflation hold in ventilated newborns: a surrogate measure for static compliance of the respiratory system.

    PubMed

    Hentschel, Roland; Semar, Nicole; Guttmann, Josef

    2012-09-01

    To study appropriateness of respiratory system compliance calculation using an inflation hold and compare it with ventilator readouts of pressure and tidal volume as well as with measurement of compliance of the respiratory system with the single-breath-single-occlusion technique gained with a standard lung function measurement. Prospective clinical trial. Level III neonatal unit of a university hospital. Sixty-seven newborns, born prematurely or at term, ventilated for a variety of pathologic conditions. A standardized sigh maneuver with a predefined peak inspiratory pressure of 30 cm H2O, termed inspiratory capacity at inflation hold, was applied. Using tidal volume, exhaled from inspiratory pause down to ambient pressure, as displayed by the ventilator, and predefined peak inspiratory pressure, compliance at inspiratory capacity at inflation hold conditions could be calculated as well as ratio of tidal volume and ventilator pressure using tidal volume and differential pressure at baseline ventilator settings: peak inspiratory pressure minus positive end-expiratory pressure. For the whole cohort, the equation for the regression between tidal volume at inspiratory capacity at inflation hold and compliance of the respiratory system was: compliance of the respiratory system = 0.052 * tidal volume at inspiratory capacity at inflation hold - 0.113, and compliance at inspiratory capacity at inflation hold conditions was closely related to the standard lung function measurement method of compliance of the respiratory system (R = 0.958). In contrast, ratio of tidal volume and ventilator pressure per kilogram calculated from the ventilator readouts and displayed against compliance of the respiratory system per kilogram yielded a broad scatter throughout the whole range of compliance; both were only weakly correlated (R = 0.309) and also the regression line was significantly different from the line of identity (p < .05). Peak inspiratory pressure at study entry did not affect the correlation between compliance at inspiratory capacity at inflation hold conditions and compliance of the respiratory system. After a standard sigh maneuver, inspiratory capacity at inflation hold and the derived quantity compliance at inspiratory capacity at inflation hold conditions can be regarded as a valid, accurate, and reliable surrogate measure for standard compliance of the respiratory system in contrast to ratio of tidal volume and ventilator pressure calculated from the ventilator readouts during ongoing mechanical ventilation at respective ventilator settings.

  4. TIDAL DISSIPATION COMPARED TO SEISMIC DISSIPATION: IN SMALL BODIES, EARTHS, AND SUPER-EARTHS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Efroimsky, Michael, E-mail: michael.efroimsky@usno.navy.mil

    2012-02-20

    While the seismic quality factor and phase lag are defined solely by the bulk properties of the mantle, their tidal counterparts are determined by both the bulk properties and the size effect (self-gravitation of a body as a whole). For a qualitative estimate, we model the body with a homogeneous sphere, and express the tidal phase lag through the lag in a sample of material. Although simplistic, our model is sufficient to understand that the lags are not identical. The difference emerges because self-gravitation pulls the tidal bulge down. At low frequencies, this reduces strain and the damping rate, makingmore » tidal damping less efficient in larger objects. At higher frequencies, competition between self-gravitation and rheology becomes more complex, though for sufficiently large super-Earths the same rule applies: the larger the planet, the weaker the tidal dissipation in it. Being negligible for small terrestrial planets and moons, the difference between the seismic and tidal lagging (and likewise between the seismic and tidal damping) becomes very considerable for large exoplanets (super-Earths). In those, it is much lower than what one might expect from using a seismic quality factor. The tidal damping rate deviates from the seismic damping rate, especially in the zero-frequency limit, and this difference takes place for bodies of any size. So the equal in magnitude but opposite in sign tidal torques, exerted on one another by the primary and the secondary, have their orbital averages going smoothly through zero as the secondary crosses the synchronous orbit. We describe the mantle rheology with the Andrade model, allowing it to lean toward the Maxwell model at the lowest frequencies. To implement this additional flexibility, we reformulate the Andrade model by endowing it with a free parameter {zeta} which is the ratio of the anelastic timescale to the viscoelastic Maxwell time of the mantle. Some uncertainty in this parameter's frequency dependence does not influence our principal conclusions.« less

  5. NO PSEUDOSYNCHRONOUS ROTATION FOR TERRESTRIAL PLANETS AND MOONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makarov, Valeri V.; Efroimsky, Michael, E-mail: vvm@usno.navy.mil, E-mail: michael.efroimsky@usno.navy.mil

    2013-02-10

    We re-examine the popular belief that a telluric planet or a satellite on an eccentric orbit can, outside a spin-orbit resonance, be captured in a quasi-static tidal equilibrium called pseudosynchronous rotation. The existence of such configurations was deduced from oversimplified tidal models assuming either a constant tidal torque or a torque linear in the tidal frequency. A more accurate treatment requires that the torque be decomposed into the Darwin-Kaula series over the tidal modes, and that this decomposition be combined with a realistic choice of rheological properties of the mantle, which we choose to be a combination of the Andrademore » model at ordinary frequencies and the Maxwell model at low frequencies. This development demonstrates that there exist no stable equilibrium states for solid planets and moons, other than spin-orbit resonances.« less

  6. Effects of a preemptive alveolar recruitment strategy on arterial oxygenation during one-lung ventilation with different tidal volumes in patients with normal pulmonary function test.

    PubMed

    Jung, Jong Dal; Kim, Sang Hun; Yu, Byung Sik; Kim, Hye Ji

    2014-08-01

    Hypoxemia during one-lung ventilation (OLV) remains a major concern. The present study compared the effect of alveolar recruitment strategy (ARS) on arterial oxygenation during OLV at varying tidal volumes (Vt) with or without positive end-expiratory pressure (PEEP). In total, 120 patients undergoing wedge resection by video assisted thoracostomy were randomized into four groups comprising 30 patients each: those administered a 10 ml/kg tidal volume with or without preemptive ARS (Group H and Group H-ARS, respectively) and those administered a 6 ml/kg tidal volume and a 8 cmH2O PEEP with or without preemptive ARS (Group L and Group L-ARS, respectively). ARS was performed using pressure-controlled ventilation with a 40 cmH2O plateau airway pressure and a 15 cmH2O PEEP for at least 10 breaths until OLV began. Preemptive ARS significantly improved the PaO2/FiO2 ratio compared to the groups that did not receive ARS (P < 0.05). The H-ARS group showed a highest PaO2/FiO2 ratio during OLV, the L-ARS and H groups showed similarly improved arterial oxygenation, which was significantly higher than in group L (P < 0.05). The plateau airway pressure in group H-ARS was significantly higher than in group L-ARS (P < 0.05). Preemptive ARS can improve arterial oxygenation during OLV. Furthermore, a 6 ml/kg tidal volume combined with 8 cmH2O PEEP after preemptive ARS may reduce the risk of pulmonary injury caused by high tidal volume during one-lung ventilation in patients with normal pulmonary function.

  7. Lung-protective ventilation in abdominal surgery.

    PubMed

    Futier, Emmanuel; Jaber, Samir

    2014-08-01

    To provide the most recent and relevant clinical evidence regarding the use of prophylactic lung-protective mechanical ventilation in abdominal surgery. Evidence is accumulating, suggesting an association between intraoperative mechanical ventilation strategy and postoperative pulmonary complications in patients undergoing abdominal surgery. Nonprotective ventilator settings, especially high tidal volume (>10-12 ml/kg), very low level of positive end-expiratory pressure (PEEP, <5 cm H2O), or no PEEP, may cause alveolar overdistension and repetitive tidal recruitment leading to ventilator-associated lung injury in patients with healthy lungs. Stimulated by the previous findings in patients with acute respiratory distress syndrome, the use of lower tidal volume ventilation is becoming increasingly more common in the operating room. However, lowering tidal volume, though important, is only part of the overall multifaceted approach of lung-protective mechanical ventilation. Recent data provide compelling evidence that prophylactic lung-protective mechanical ventilation using lower tidal volume (6-8 ml/kg of predicted body weight), moderate PEEP (6-8 cm H2O), and recruitment maneuvers is associated with improved functional or physiological and clinical postoperative outcome in patients undergoing abdominal surgery. The use of prophylactic lung-protective ventilation can help in improving the postoperative outcome.

  8. Factors associated with elevated plateau pressure in patients with acute lung injury receiving lower tidal volume ventilation.

    PubMed

    Prescott, Hallie C; Brower, Roy G; Cooke, Colin R; Phillips, Gary; O'Brien, James M

    2013-03-01

    Lung-protective ventilation with lower tidal volume and lower plateau pressure improves mortality in patients with acute lung injury and acute respiratory distress syndrome. We sought to determine the incidence of elevated plateau pressure in acute lung injury /acute respiratory distress syndrome patients receiving lower tidal volume ventilation and to determine the factors that predict elevated plateau pressure in these patients. We used data from 1398 participants in Acute Respiratory Distress Syndrome Network trials, who received lower tidal volume ventilation (≤ 6.5mL/kg predicted body weight). We considered patients with a plateau pressure greater than 30cm H2O and/or a tidal volume less than 5.5mL/kg predicted body weight on study day 1 to have "elevated plateau pressure." We used logistic regression to identify baseline clinical variables associated with elevated plateau pressure and to develop a model to predict elevated plateau pressure using a subset of 1,188 patients. We validated the model in the 210 patients not used for model development. Medical centers participating in Acute Respiratory Distress Syndrome Network clinical trials. None. Of the 1,398 patients in our study, 288 (20.6%) had elevated plateau pressure on day 1. Severity of illness indices and demographic factors (younger age, greater body mass index, and non-white race) were independently associated with elevated plateau pressure. The multivariable logistic regression model for predicting elevated plateau pressure had an area under the receiving operator characteristic curve of 0.71 for both the developmental and the validation subsets. acute lung injury patients receiving lower tidal volume ventilation often have a plateau pressure that exceeds Acute Respiratory Distress Syndrome Network goals. Race, body mass index, and severity of lung injury are each independently associated with elevated plateau pressure. Selecting a smaller initial tidal volume for non-white patients and patients with higher severity of illness may decrease the incidence of elevated plateau pressure. Prospective studies are needed to evaluate this approach.

  9. Effects of tidal volume and methacholine on low-frequency total respiratory impedance in dogs.

    PubMed

    Lutchen, K R; Jackson, A C

    1990-05-01

    The frequency dependence of respiratory impedance (Zrs) from 0.125 to 4 Hz (Hantos et al., J. Appl. Physiol. 60: 123-132, 1986) may reflect inhomogeneous parallel time constants or the inherent viscoelastic properties of the respiratory tissues. However, studies on the lung alone or chest wall alone indicate that their impedance features are also dependent on the tidal volumes (VT) of the forced oscillations. The goals of this study were 1) to identify how total Zrs at lower frequencies measured with random noise (RN) compared with that measure with larger VT, 2) to identify how Zrs measured with RN is affected by bronchoconstriction, and 3) to identify the impact of using linear models for analyzing such data. We measured Zrs in six healthy dogs by use of a RN technique from 0.125 to 4 Hz or with a ventilator from 0.125 to 0.75 Hz with VT from 50 to 250 ml. Then methacholine was administered and the RN was repeated. Two linear models were fit to each separate set of data. Both models assume uniform airways leading to viscoelastic tissues. For healthy dogs, the respiratory resistance (Rrs) decreased with frequency, with most of the decrease occurring from 0.125 to 0.375 Hz. Significant VT dependence of Rrs was seen only at these lower frequencies, with Rrs higher as VT decreased. The respiratory compliance (Crs) was dependent on VT in a similar fashion at all frequencies, with Crs decreasing as VT decreased. Both linear models fit the data well at all VT, but the viscoelastic parameters of each model were very sensitive to VT. After methacholine, the minimum Rrs increased as did the total drop with frequency. Nevertheless the same models fit the data well, and both the airways and tissue parameters were altered after methacholine. We conclude that inferences based only on low-frequency Zrs data are problematic because of the effects of VT on such data (and subsequent linear modeling of it) and the apparent inability of such data to differentiate parallel inhomogeneities from normal viscoelastic properties of the respiratory tissues.

  10. Convexity, Jensen's inequality, and benefits of noisy or biologically variable life support (Keynote Address)

    NASA Astrophysics Data System (ADS)

    Mutch, W. Alan C.

    2005-05-01

    Life support with a mechanical ventilator is used to manage patients with a variety of lung diseases including acute respiratory distress syndrome (ARDS). Recently, management of ARDS has concentrated on ventilating at lower airway pressure using lower tidal volume. A large international study demonstrated a 22% reduction in mortality with the low tidal volume approach. The potential advantages of adding physiologic noise with fractal characteristics to the respiratory rate and tidal volume as delivered by a mechanical ventilator are discussed. A so-called biologically variable ventilator (BVV), incorporating such noise, has been developed. Here we show that the benefits of noisy ventilation - at lower tidal volumes - can be deduced from a simple probabilistic result known as Jensen"s Inequality. Using the local convexity of the pressure-volume relationship in the lung we demonstrate that the addition of noise results in higher mean tidal volume or lower mean airway pressure. The consequence is enhanced gas exchange or less stress on the lungs, both clinically desirable. Jensen"s Inequality has important considerations in engineering, information theory and thermodynamics. Here is an example of the concept applied to medicine that may have important considerations for the clinical management of critically ill patients. Life support devices, such as mechanical ventilators, are of vital use in critical care units and operating rooms. These devices usually have monotonous output. Improving mechanical ventilators and other life support devices may be as simple as adding noise to their output signals.

  11. Loss of CDKL5 disrupts respiratory function in mice.

    PubMed

    Lee, Kun-Ze; Liao, Wenlin

    2018-01-01

    Cyclin-dependent kinase-like 5 (CDKL5) is an X-linked gene encoding a serine-threonine kinase that is highly expressed in the central nervous system. Mutations in CDKL5 cause neurological and psychiatric symptoms, including early-onset seizures, motor dysfunction, autistic features and sleep breathing abnormalities in patients. It remains to be addressed whether loss of CDKL5 causes respiratory dysfunction in mice. Here, we examined the respiratory pattern of male Cdkl5 -/y mice at 1-3 months of age during resting breathing and respiratory challenge (i.e., hypoxia and hypercapnia) via whole body plethysmography. The results demonstrated that the resting respiratory frequency and tidal volume of Cdkl5 -/y mice was unaltered compared to that of WT mice at 1 month of age. However, these mutant mice exhibit transient reduction in tidal volume during respiratory challenge even the reduction was restored at 2 months of age. Notably, the sigh-breathing pattern was changed in Cdkl5 -/y mice, showing a transient reduction in sigh volume at 1-2 month of age and long-term attenuation of peak expiratory airflow from 1 to 3 month of age. Therefore, loss of CDKL5 causes breathing deficiency, supporting a CDKL5-mediated regulation of respiratory function in mice. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Semidiurnal thermal tides in asynchronously rotating hot Jupiters

    NASA Astrophysics Data System (ADS)

    Auclair-Desrotour, P.; Leconte, J.

    2018-05-01

    Context. Thermal tides can torque the atmosphere of hot Jupiters into asynchronous rotation, while these planets are usually assumed to be locked into spin-orbit synchronization with their host star. Aims: In this work, our goal is to characterize the tidal response of a rotating hot Jupiter to the tidal semidiurnal thermal forcing of its host star by identifying the structure of tidal waves responsible for variation of mass distribution, their dependence on the tidal frequency, and their ability to generate strong zonal flows. Methods: We develop an ab initio global modelling that generalizes the early approach of Arras & Socrates (2010, ApJ, 714, 1) to rotating and non-adiabatic planets. We analytically derive the torque exerted on the body and the associated timescales of evolution, as well as the equilibrium tidal response of the atmosphere in the zero-frequency limit. Finally, we numerically integrate the equations of thermal tides for three cases, including dissipation and rotation step by step. Results: The resonances associated with tidally generated gravito-inertial waves significantly amplify the resulting tidal torque in the range 1-30 days. This torque can globally drive the atmosphere into asynchronous rotation, as its sign depends on the tidal frequency. The resonant behaviour of the tidal response is enhanced by rotation, which couples the forcing to several Hough modes in the general case, while the radiative cooling tends to regularize it and diminish its amplitude.

  13. Extracorporeal membrane oxygenation (ECMO) as a treatment strategy for severe acute respiratory distress syndrome (ARDS) in the low tidal volume era: A systematic review.

    PubMed

    Tillmann, Bourke W; Klingel, Michelle L; Iansavichene, Alla E; Ball, Ian M; Nagpal, A Dave

    2017-10-01

    To evaluate the hospital survival in patients with severe ARDS managed with ECMO and low tidal volume ventilation as compared to patients managed with low tidal volume ventilation alone. Electronic databases were searched for studies of at least 10 adult patients with severe ARDS comparing the use of ECMO with low tidal volume ventilation to mechanical ventilation with a low tidal volume alone. Only studies reporting hospital or ICU survival were included. All identified studies were assessed independently by two reviewers. Of 1782 citations, 27 studies (n=1674) met inclusion criteria. Hospital survival for ECMO patients ranged from 33.3 to 86%, while survival with conventional therapy ranged from 36.3 to 71.2%. Five studies were identified with appropriate control groups allowing comparison, but due to the high degree of variability between studies (I 2 =63%), their results could not be pooled. Two of these studies demonstrated a significant difference, both favouring ECMO over conventional therapy. Given the lack of studies with appropriate control groups, our confidence in a difference in outcome between the two therapies remains weak. Future studies on the use of ECMO for severe ARDS are needed to clarify the role of ECMO in this disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Modulation of human sinus node function by systemic hypoxia

    NASA Technical Reports Server (NTRS)

    Eckberg, D. L.; Bastow, H., III; Scruby, A. E.

    1982-01-01

    The present study was conducted to determine whether bradycardia develops during systemic hypoxia in supine conscious human volunteers when respiratory frequency and tidal volume are maintained at constant levels. The obtained results suggest that mild hypoxia provokes cardioacceleration in humans, independent of changes of ventilation or baroreflex responsiveness. The earliest cardioacceleration is more prominent in the inspiratory than in the expiratory phase of respiration, and occurs with very small reductions of arterial oxygen saturation. Moderate systemic hypoxia dampens fluctuations of heart rate during the respiratory cycle.

  15. Tidal dissipation in rotating fluid bodies: the presence of a magnetic field

    NASA Astrophysics Data System (ADS)

    Lin, Yufeng; Ogilvie, Gordon I.

    2018-02-01

    We investigate effects of the presence of a magnetic field on tidal dissipation in rotating fluid bodies. We consider a simplified model consisting of a rigid core and a fluid envelope, permeated by a background magnetic field (either a dipolar field or a uniform axial field). The wave-like tidal responses in the fluid layer are in the form of magnetic Coriolis waves, which are restored by both the Coriolis force and the Lorentz force. Energy dissipation occurs through viscous damping and Ohmic damping of these waves. Our numerical results show that the tidal dissipation can be dominated by Ohmic damping even with a weak magnetic field. The presence of a magnetic field smooths out the complicated frequency dependence of the dissipation rate, and broadens the frequency spectrum of the dissipation rate, depending on the strength of the background magnetic field. However, the frequency-averaged dissipation is independent of the strength and structure of the magnetic field, and of the dissipative parameters in the approximation that the wave-like response is driven only by the Coriolis force acting on the non-wavelike tidal flow. Indeed, the frequency-averaged dissipation quantity is in good agreement with previous analytical results in the absence of magnetic fields. Our results suggest that the frequency-averaged tidal dissipation of the wave-like perturbations is insensitive to detailed damping mechanisms and dissipative properties.

  16. Respiratory effort correction strategies to improve the reproducibility of lung expansion measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Kaifang; Reinhardt, Joseph M.; Christensen, Gary E.

    2013-12-15

    Purpose: Four-dimensional computed tomography (4DCT) can be used to make measurements of pulmonary function longitudinally. The sensitivity of such measurements to identify change depends on measurement uncertainty. Previously, intrasubject reproducibility of Jacobian-based measures of lung tissue expansion was studied in two repeat prior-RT 4DCT human acquisitions. Difference in respiratory effort such as breathing amplitude and frequency may affect longitudinal function assessment. In this study, the authors present normalization schemes that correct ventilation images for variations in respiratory effort and assess the reproducibility improvement after effort correction.Methods: Repeat 4DCT image data acquired within a short time interval from 24 patients priormore » to radiation therapy (RT) were used for this analysis. Using a tissue volume preserving deformable image registration algorithm, Jacobian ventilation maps in two scanning sessions were computed and compared on the same coordinate for reproducibility analysis. In addition to computing the ventilation maps from end expiration to end inspiration, the authors investigated the effort normalization strategies using other intermediated inspiration phases upon the principles of equivalent tidal volume (ETV) and equivalent lung volume (ELV). Scatter plots and mean square error of the repeat ventilation maps and the Jacobian ratio map were generated for four conditions: no effort correction, global normalization, ETV, and ELV. In addition, gamma pass rate was calculated from a modified gamma index evaluation between two ventilation maps, using acceptance criterions of 2 mm distance-to-agreement and 5% ventilation difference.Results: The pattern of regional pulmonary ventilation changes as lung volume changes. All effort correction strategies improved reproducibility when changes in respiratory effort were greater than 150 cc (p < 0.005 with regard to the gamma pass rate). Improvement of reproducibility was correlated with respiratory effort difference (R = 0.744 for ELV in the cohort with tidal volume difference greater than 100 cc). In general for all subjects, global normalization, ETV and ELV significantly improved reproducibility compared to no effort correction (p = 0.009, 0.002, 0.005 respectively). When tidal volume difference was small (less than 100 cc), none of the three effort correction strategies improved reproducibility significantly (p = 0.52, 0.46, 0.46 respectively). For the cohort (N = 13) with tidal volume difference greater than 100 cc, the average gamma pass rate improves from 57.3% before correction to 66.3% after global normalization, and 76.3% after ELV. ELV was found to be significantly better than global normalization (p = 0.04 for all subjects, and p = 0.003 for the cohort with tidal volume difference greater than 100 cc).Conclusions: All effort correction strategies improve the reproducibility of the authors' pulmonary ventilation measures, and the improvement of reproducibility is highly correlated with the changes in respiratory effort. ELV gives better results as effort difference increase, followed by ETV, then global. However, based on the spatial and temporal heterogeneity in the lung expansion rate, a single scaling factor (e.g., global normalization) appears to be less accurate to correct the ventilation map when changes in respiratory effort are large.« less

  17. Effects of Interventions on Survival in Acute Respiratory Distress Syndrome: an Umbrella Review of 159 Published Randomized Trials and 29 Meta-analyses

    PubMed Central

    Tonelli, Adriano R.; Zein, Joe; Adams, Jacob; Ioannidis, John P.A.

    2014-01-01

    Purpose Multiple interventions have been tested in acute respiratory distress syndrome (ARDS). We examined the entire agenda of published randomized controlled trials (RCTs) in ARDS that reported on mortality and of respective meta-analyses. Methods We searched PubMed, the Cochrane Library and Web of Knowledge until July 2013. We included RCTs in ARDS published in English. We excluded trials of newborns and children; and those on short-term interventions, ARDS prevention or post-traumatic lung injury. We also reviewed all meta-analyses of RCTs in this field that addressed mortality. Treatment modalities were grouped in five categories: mechanical ventilation strategies and respiratory care, enteral or parenteral therapies, inhaled / intratracheal medications, nutritional support and hemodynamic monitoring. Results We identified 159 published RCTs of which 93 had overall mortality reported (n= 20,671 patients) - 44 trials (14,426 patients) reported mortality as a primary outcome. A statistically significant survival benefit was observed in 8 trials (7 interventions) and two trials reported an adverse effect on survival. Among RTCs with >50 deaths in at least 1 treatment arm (n=21), 2 showed a statistically significant mortality benefit of the intervention (lower tidal volumes and prone positioning), 1 showed a statistically significant mortality benefit only in adjusted analyses (cisatracurium) and 1 (high-frequency oscillatory ventilation) showed a significant detrimental effect. Across 29 meta-analyses, the most consistent evidence was seen for low tidal volumes and prone positioning in severe ARDS. Conclusions There is limited supportive evidence that specific interventions can decrease mortality in ARDS. While low tidal volumes and prone positioning in severe ARDS seem effective, most sporadic findings of interventions suggesting reduced mortality are not corroborated consistently in large-scale evidence including meta-analyses. PMID:24667919

  18. Non-linear tides in a homogeneous rotating planet or star: global modes and elliptical instability

    NASA Astrophysics Data System (ADS)

    Barker, Adrian J.; Braviner, Harry J.; Ogilvie, Gordon I.

    2016-06-01

    We revisit the global modes and instabilities of homogeneous rotating ellipsoidal fluid masses, which are the simplest global models of rotationally and tidally deformed gaseous planets or stars. The tidal flow in a short-period planet may be unstable to the elliptical instability, a hydrodynamic instability that can drive tidal evolution. We perform a global (and local WKB) analysis to study this instability using the elegant formalism of Lebovitz & Lifschitz. We survey the parameter space of global instabilities with harmonic orders ℓ ≤ 5, for planets with spins that are purely aligned (prograde) or anti-aligned (retrograde) with their orbits. In general, the instability has a much larger growth rate if the planetary spin and orbit are anti-aligned rather than aligned. We have identified a violent instability for anti-aligned spins outside of the usual frequency range for the elliptical instability (when n/Ω ≲ -1, where n and Ω are the orbital and spin angular frequencies, respectively) if the tidal amplitude is sufficiently large. We also explore the instability in a rigid ellipsoidal container, which is found to be quantitatively similar to that with a realistic free surface. Finally, we study the effect of rotation and tidal deformation on mode frequencies. We find that larger rotation rates and larger tidal deformations both decrease the frequencies of the prograde sectoral surface gravity modes. This increases the prospect of their tidal excitation, potentially enhancing the tidal response over expectations from linear theory. In a companion paper, we use our results to interpret global simulations of the elliptical instability.

  19. A metabolic simulator for unmanned testing of breathing apparatuses in hyperbaric conditions.

    PubMed

    Frånberg, Oskar; Loncar, Mario; Larsson, Åke; Ornhagen, Hans; Gennser, Mikael

    2014-11-01

    A major part of testing of rebreather apparatuses for underwater diving focuses on the oxygen dosage system. A metabolic simulator for testing breathing apparatuses was built and evaluated. Oxygen consumption was achieved through catalytic combustion of propene. With an admixture of carbon dioxide in the propene fuel, the system allowed the respiratory exchange ratio to be set freely within human variability and also made it possible to increase test pressures above the condensation pressure of propene. The system was tested by breathing ambient air in a pressure chamber with oxygen uptake (Vo₂) ranging from 1-4 L · min(-1), tidal volume (VT) from 1-3 L, breathing frequency (f) of 20 and 25 breaths/min, and chamber pressures from 100 to 670 kPa. The measured end-tidal oxygen concentration (Fo₂) was compared to calculated end-tidal Fo₂. The largest average difference in end-tidal Fo₂during atmospheric pressure conditions was 0.63%-points with a 0.28%-point average difference during the whole test. During hyperbaric conditions with pressures ranging from 100 to 670 kPa, the largest average difference in Fo₂was 1.68%-points seen during compression from 100 kPa to 400 kPa and the average difference in Fo₂during the whole test was 0.29%-points. In combination with a breathing simulator simulating tidal breathing, the system can be used for dynamic continuous testing of breathing equipment with changes in VT, f, Vo2, and pressure.

  20. End-expiratory lung volume and ventilation distribution with different continuous positive airway pressure systems in volunteers.

    PubMed

    Andersson, B; Lundin, S; Lindgren, S; Stenqvist, O; Odenstedt Hergès, H

    2011-02-01

    Continuous positive airway pressure (CPAP) has been shown to improve oxygenation and a number of different CPAP systems are available. The aim of this study was to assess lung volume and ventilation distribution using three different CPAP techniques. A high-flow CPAP system (HF-CPAP), an ejector-driven system (E-CPAP) and CPAP using a Servo 300 ventilator (V-CPAP) were randomly applied at 0, 5 and 10 cmH₂O in 14 volunteers. End-expiratory lung volume (EELV) was measured by N₂ dilution at baseline; changes in EELV and tidal volume distribution were assessed by electric impedance tomography. Higher end-expiratory and mean airway pressures were found using the E-CPAP vs. the HF-CPAP and the V-CPAP system (P<0.01). EELV increased markedly from baseline, 0 cmH₂O, with increased CPAP levels: 1110±380, 1620±520 and 1130±350 ml for HF-, E- and V-CPAP, respectively, at 10 cmH₂O. A larger fraction of the increase in EELV occurred for all systems in ventral compared with dorsal regions (P<0.01). In contrast, tidal ventilation was increasingly directed toward dorsal regions with increasing CPAP levels (P<0.01). The increase in EELV as well as the tidal volume redistribution were more pronounced with the E-CPAP system as compared with both the HF-CPAP and the V-CPAP systems (P<0.05) at 10 cmH₂O. EELV increased more in ventral regions with increasing CPAP levels, independent of systems, leading to a redistribution of tidal ventilation toward dorsal regions. Different CPAP systems resulted in different airway pressure profiles, which may result in different lung volume expansion and tidal volume distribution. © 2010 The Authors. Journal compilation © 2010 The Acta Anaesthesiologica Scandinavica Foundation.

  1. Role of the superior pharyngeal constrictor muscle in forced breathing in dogs.

    PubMed

    Yaman, Z; Kogo, M; Senoo, H; Iida, S; Ishii, S; Matsuya, T

    2000-03-01

    Respiratory-related electromyographic (EMG) activity of the superior pharyngeal constrictor (SPC) muscle was analyzed during the early stage of forced breathing. Four adult dogs anesthetized with sodium pentobarbital were used. In the first part of the study, oral and nasal breathing tubes were placed into the respective cavities, and a tracheotomy tube was placed in the second part of the study. Two conditions, the presence (oral-nasal tube breathing) and absence (tracheotomy breathing) of airflow in the upper airway, were achieved in each dog. Following quiet breathing, animals were connected to a closed breathing system, first by an oral-nasal tube and then by a tracheotomy tube. We proposed to induce a forced breathing condition mechanically by using this system for 1 minute. We increased resistance to airflow during forced breathing by means of connecting tubes and a bag. Our aim was not to produce chemical drive but to produce a forced respiration by increasing the resistance to airflow. Tidal volume, breathing frequency, minute volume, chest wall movement, and EMG activity of the SPC muscle were measured and analyzed. During quiet breathing through an oral-nasal or tracheotomy tube, low-amplitude EMG activity of the SPC muscle corresponding to the expiratory cycle of the respiration was observed. In both study conditions, phasic expiratory EMG activity increased immediately after the advent of the breathing from the closed system. Tidal volumes and frequencies also increased rapidly during forced breathing. An increase in the resistance to airflow increased the activity of the SPC muscle. This augmented respiratory activity probably assists the patency of the upper airway. The augmented respiratory activity was independent of the local reflex pathways. Respiratory-related activity of the SPC muscle may help dilate and stiffen the pharyngeal airway, promoting airway patency.

  2. Accuracy of tidal breathing measurement of FloRight compared to an ultrasonic flowmeter in infants.

    PubMed

    Petrus, Nicole C M; Thamrin, Cindy; Fuchs, Oliver; Frey, Urs

    2015-04-01

    Monitoring breathing pattern is especially relevant in infants with lung disease. Recently, a vest-based inductive plethysmograph system (FloRight®) has been developed for tidal breathing measurement in infants. We investigated the accuracy of tidal breathing flow volume loop (TBFVL) measurements in healthy term-born infants and infants with lung disease by the vest-based system in comparison to an ultrasonic flowmeter (USFM) with a face mask. We also investigated whether the system discriminates between healthy infants and those with lung disease. Floright® measures changes in thoracoabdominal volume during tidal breathing through magnetic field changes generated by current-carrying conductor coils in an elastic vest. Simultaneous TBFVL measurements by the vest-based system and the USFM were performed at 44 weeks corrected postmenstrual age during quiet unsedated sleep. TBFVL parameters derived by both techniques and within both groups were compared. We included 19 healthy infants and 18 infants with lung disease. Tidal volume per body weight derived by the vest-based system was significantly lower with a mean difference (95% CI) of -1.33 ml/kg (-1.73; -0.92), P < 0.001. Respiratory rate and ratio of time to peak tidal expiratory flow over total expiratory time (tPTEF/tE) did not differ between the two techniques. Both systems were able to discriminate between healthy infants and those with lung disease using tPTEF/tE. FloRight® accurately measures time indices and may discriminate between healthy infants and those with lung disease, but demonstrates differences in tidal volume measurements. It may be better suited to monitor breathing pattern than for TBFVL measurements. © 2014 Wiley Periodicals, Inc.

  3. Atmospheric thermal tides and planetary spin. I. The complex interplay between stratification and rotation

    NASA Astrophysics Data System (ADS)

    Auclair-Desrotour, P.; Mathis, S.; Laskar, J.

    2018-02-01

    Context. Thermal atmospheric tides can torque telluric planets away from spin-orbit synchronous rotation, as observed in the case of Venus. They thus participate in determining the possible climates and general circulations of the atmospheres of these planets. Aims: The thermal tidal torque exerted on an atmosphere depends on its internal structure and rotation and on the tidal frequency. Particularly, it strongly varies with the convective stability of the entropy stratification. This dependence has to be characterized to constrain and predict the rotational properties of observed telluric exoplanets. Moreover, it is necessary to validate the approximations used in global modelings such as the traditional approximation, which is used to obtain separable solutions for tidal waves. Methods: We wrote the equations governing the dynamics of thermal tides in a local vertically stratified section of a rotating planetary atmosphere by taking into account the effects of the complete Coriolis acceleration on tidal waves. This allowed us to analytically derive the tidal torque and the tidally dissipated energy, which we used to discuss the possible regimes of tidal dissipation and to examine the key role played by stratification. Results: In agreement with early studies, we find that the frequency dependence of the thermal atmospheric tidal torque in the vicinity of synchronization can be approximated by a Maxwell model. This behavior corresponds to weakly stably stratified or convective fluid layers, as observed previously. A strong stable stratification allows gravity waves to propagate, and makes the tidal torque negligible. The transition is continuous between these two regimes. The traditional approximation appears to be valid in thin atmospheres and in regimes where the rotation frequency is dominated by the forcing or the buoyancy frequencies. Conclusions: Depending on the stability of their atmospheres with respect to convection, observed exoplanets can be tidally driven toward synchronous or asynchronous final rotation rates. The domain of applicability of the traditional approximation is rigorously constrained by calculations.

  4. Nasal mask ventilation is better than face mask ventilation in edentulous patients.

    PubMed

    Kapoor, Mukul Chandra; Rana, Sandeep; Singh, Arvind Kumar; Vishal, Vindhya; Sikdar, Indranil

    2016-01-01

    Face mask ventilation of the edentulous patient is often difficult as ineffective seating of the standard mask to the face prevents attainment of an adequate air seal. The efficacy of nasal ventilation in edentulous patients has been cited in case reports but has never been investigated. Consecutive edentulous adult patients scheduled for surgery under general anesthesia with endotracheal intubation, during a 17-month period, were prospectively evaluated. After induction of anesthesia and administration of neuromuscular blocker, lungs were ventilated with a standard anatomical face mask of appropriate size, using a volume controlled anesthesia ventilator with tidal volume set at 10 ml/kg. In case of inadequate ventilation, the mask position was adjusted to achieve best-fit. Inspired and expired tidal volumes were measured. Thereafter, the face mask was replaced by a nasal mask and after achieving best-fit, the inspired and expired tidal volumes were recorded. The difference in expired tidal volumes and airway pressures at best-fit with the use of the two masks and number of patients with inadequate ventilation with use of the masks were statistically analyzed. A total of 79 edentulous patients were recruited for the study. The difference in expiratory tidal volumes with the use of the two masks at best-fit was statistically significant (P = 0.0017). Despite the best-fit mask placement, adequacy of ventilation could not be achieved in 24.1% patients during face mask ventilation, and 12.7% patients during nasal mask ventilation and the difference was statistically significant. Nasal mask ventilation is more efficient than standard face mask ventilation in edentulous patients.

  5. An in vitro evaluation of the influence of neonatal endotracheal tube diameter and length on the work of breathing.

    PubMed

    Miyake, Fuyu; Suga, Rika; Akiyama, Takahiro; Namba, Fumihiko

    2018-04-06

    Neonates, particularly premature babies, are often managed with endotracheal intubation and subsequent mechanical ventilation to maintain adequate pulmonary gas exchange. There is no consensus on the standard length of endotracheal tube. Although a short tube reduces resistance and respiratory dead space, it is believed to increase the risk of accidental extubation. There are not entirely coherent data regarding the effect of endotracheal tube length on work of breathing in infants. The aim of this study was to evaluate the impact of neonatal endotracheal tube diameter and length on the work of breathing using an infant in vitro lung model. We assessed the work of breathing index and mechanical ventilation settings with various endotracheal tube diameters and lengths using the JTR100 in vitro infant lung model. The basic parameters of the model were breathing frequency of 20 per minutes, inspiratory-expiratory ratio of 1:3, and positive end-expiratory pressure of 5 cmH 2 O. In addition, the diaphragm driving pressure to maintain the set tidal volume was measured as the work of breathing index. The JTR100 was connected to the Babylog 8000plus through the endotracheal tube. Finally, we monitored the peak inspiratory pressure generated during assist-control volume guarantee mode with a targeted tidal volume of 10-30 mL. The diaphragm driving pressure using a 2.0-mm inner diameter tube was twice as high as that using a 4.0-mm inner diameter tube. To maintain the targeted tidal volume, a shorter tube reduced both the diaphragm driving pressure and ventilator-generated peak inspiratory pressure. The difference in the generated peak inspiratory pressure between the shortest and longest tubes was 5 cmH 2 O. In our infant lung model, a shorter tube resulted in a lower work of breathing and lower ventilator-generated peak inspiratory pressure. © 2018 John Wiley & Sons Ltd.

  6. Numerical analysis of tidal dynamics in the region around Gulf of Mannar and Palk Strait

    NASA Astrophysics Data System (ADS)

    Scaria, Sajumon; Murali, K.; Shanmugam, P.

    2015-04-01

    A 3D hydrodynamic model is presented to study tidal dynamics along the Indian coast and adjoining marginal seas as well as to investigate the volume transport of water across a tidal channel between the Gulf of Mannar and Palk Strait areas. The numerical model is validated in three stages, and its performance is further assessed by comparing the derived amplitudes of the semidiurnal and diurnal constituents with those of FES 2004 model. The accuracy of the model is ensured by comparing the tidal elevations at selected locations with the observed data. As a next level of validation, the elevations are subjected to the harmonic analysis in order to derive the harmonic constants. The numerical analysis of tidal energetics in the Palk Strait and Gulf of Mannar leads to conclude that M2 constituent undergoes more dissipation and the area-integrated mean dissipation rate of M2 and K1 is 3.22 and 0.25 GW. The temporal and spatial distributions of the sectional daily water volume transport are also analysed for the channel connecting the Palk Strait and the Gulf of Mannar. The localized geographical factors near the Adam's bridge area strongly influence the tidal flow, and the water volume transport shows seasonal variations.

  7. Hydrographic characterization of two tidal creeks with implications for watershed land use, flushing times, and benthic production

    USGS Publications Warehouse

    Buzzelli, C.; Holland, Austin F.; Sanger, D.M.; Conrads, P.C.

    2007-01-01

    Many coastal ecosystems are undergoing anthropogenic stress from large increases in population and urbanization. In many regions changes in freshwater and material inputs to the coastal zone are altering the biogeochemical and biological capacities of ecosystems. Despite increased watershed inputs, large tidal volumes and flushing indicative of macrotidal estuaries can modulate the fate of introduced materials masking some of the symptoms of eutrophication. The Land Use Coastal Ecosystem Study (LU-CES) examined linkages between land use and environmental properties of Malind and Okatee Creeks in South Carolina from 2001 to 2004. The objectives of this particular study were to assess the hydrography of the two macrotidal creek ecosystems, explore differences in dissolved oxygen (DO), and develop a better understanding of the variations in primary and benthic secondary production in southeastern creek ecosystems. Depth, pH, salinity, and DO were reduced and more variable in Malind Creek than in Okatee Creek, although both creeks had strong semidiurnal frequencies in salinity time signatures. While time series analyses of DO saturation in Malind Creek revealed a dominant semidiurnal pattern, Okatee Creek had a distinctly diel DO pattern. The strongly semidiurnal fluctuations in DO and reduced flushing time indicated that biological processes were not fast enough to influence DO in Malind Creek. The Okatee Creek system had a much greater storage volume, a wider marsh, and a dominant 25-h DO frequency. These attributes contributed to an estimated 8-10 times more phytoplankton-based carbon in Okatee Creek and twice the annual benthic production. As expected from their proximity to the upland, low surface area, and high organic content, both ecosystems were net heterotrophic. This fundamental understanding of tidal creek hydrography is being used to help define linkages among differential watershed land uses, flushing characteristics, and levels of biological production in coastal ecosystems of the southeastern United States. ?? 2007 Estuarine Research Federation.

  8. Neonatal air leak syndrome and the role of high-frequency ventilation in its prevention.

    PubMed

    Jeng, Mei-Jy; Lee, Yu-Sheng; Tsao, Pei-Chen; Soong, Wen-Jue

    2012-11-01

    Air leak syndrome includes pulmonary interstitial emphysema, pneumothorax, pneumomediastinum, pneumopericardium, pneumoperitoneum, subcutaneous emphysema, and systemic air embolism. The most common cause of air leak syndrome in neonates is inadequate mechanical ventilation of the fragile and immature lungs. The incidence of air leaks in newborns is inversely related to the birth weight of the infants, especially in very-low-birth-weight and meconium-aspirated infants. When the air leak is asymptomatic and the infant is not mechanically ventilated, there is usually no specific treatment. Emergent needle aspiration and/or tube drainage are necessary in managing tension pneumothorax or pneumopericardium with cardiac tamponade. To prevent air leak syndrome, gentle ventilation with low pressure, low tidal volume, low inspiratory time, high rate, and judicious use of positive end expiratory pressure are the keys to caring for mechanically ventilated infants. Both high-frequency oscillatory ventilation (HFOV) and high-frequency jet ventilation (HFJV) can provide adequate gas exchange using extremely low tidal volume and supraphysiologic rate in neonates with acute pulmonary dysfunction, and they are considered to have the potential to reduce the risks of air leak syndrome in neonates. However, there is still no conclusive evidence that HFOV or HFJV can help to reduce new air leaks in published neonatal clinical trials. In conclusion, neonatal air leaks may present as a thoracic emergency requiring emergent intervention. To prevent air leak syndrome, gentle ventilations are key to caring for ventilated infants. There is insufficient evidence showing the role of HFOV and HFJV in the prevention or reduction of new air leaks in newborn infants, so further investigation will be necessary for future applications. Copyright © 2012. Published by Elsevier B.V.

  9. Weight-correction of carbon dioxide diffusion coefficient (DCO2 ) reduces its inter-individual variability and improves its correlation with blood carbon dioxide levels in neonates receiving high-frequency oscillatory ventilation.

    PubMed

    Belteki, Gusztav; Lin, Benjamin; Morley, Colin J

    2017-10-01

    Carbon-dioxide elimination during high-frequency oscillatory ventilation (HFOV) is thought to be proportional to the carbon dioxide diffusion coefficient (DCO 2 ) which is calculated as frequency x (tidal volume) 2 . DCO 2 can be used to as an indicator of CO 2 elimination but values obtained in different patients cannot be directly compared. To analyze the relationship between DCO 2 , the weight-corrected DCO 2 (DCO 2 corr) and blood gas PCO 2 values obtained from infants receiving HFOV. DCO 2 data were obtained from 14 infants at 1/s sampling rate and the mean DCO 2 was determined over 10 min periods preceding the time of the blood gas. DCO 2 corr was calculated by dividing the DCO 2 by the square of the body weight in kg. Weight-correction significantly reduced the inter-individual variability of DCO 2 . When data from all the babies were combined, standard DCO 2 showed no correlation with PCO 2 but DCO 2 corr showed a weak but statistically significant inverse correlation. The correlation was better when the endotracheal leak was <10%. There was significant inverse but weaker correlation between the HFOV tidal volume (VThf) and the PCO 2 . In any baby, DCO 2 corr >50 mL 2 /sec/kg 2 or VThf > 2.5 mL/kg was rarely needed to avoid hypercapnia. Weight-correction of DCO 2 values improved its comparability between patients. Weight-corrected DCO 2 correlated better with PCO 2 than uncorrected DCO 2 but the correlation was weak. © 2017 Wiley Periodicals, Inc.

  10. Determination of regional lung air volume distribution at mid-tidal breathing from computed tomography: a retrospective study of normal variability and reproducibility

    PubMed Central

    2014-01-01

    Background Determination of regional lung air volume has several clinical applications. This study investigates the use of mid-tidal breathing CT scans to provide regional lung volume data. Methods Low resolution CT scans of the thorax were obtained during tidal breathing in 11 healthy control male subjects, each on two separate occasions. A 3D map of air volume was derived, and total lung volume calculated. The regional distribution of air volume from centre to periphery of the lung was analysed using a radial transform and also using one dimensional profiles in three orthogonal directions. Results The total air volumes for the right and left lungs were 1035 +/− 280 ml and 864 +/− 315 ml, respectively (mean and SD). The corresponding fractional air volume concentrations (FAVC) were 0.680 +/− 0.044 and 0.658 +/− 0.062. All differences between the right and left lung were highly significant (p < 0.0001). The coefficients of variation of repeated measurement of right and left lung air volumes and FAVC were 6.5% and 6.9% and 2.5% and 3.6%, respectively. FAVC correlated significantly with lung space volume (r = 0.78) (p < 0.005). FAVC increased from the centre towards the periphery of the lung. Central to peripheral ratios were significantly higher for the right (0.100 +/− 0.007 SD) than the left (0.089 +/− 0.013 SD) (p < 0.0001). Conclusion A technique for measuring the distribution of air volume in the lung at mid-tidal breathing is described. Mean values and reproducibility are described for healthy male control subjects. Fractional air volume concentration is shown to increase with lung size. PMID:25063729

  11. A flow-simulation model of the tidal Potomac River

    USGS Publications Warehouse

    Schaffranek, Raymond W.

    1987-01-01

    A one-dimensional model capable of simulating flow in a network of interconnected channels has been applied to the tidal Potomac River including its major tributaries and embayments between Washington, D.C., and Indian Head, Md. The model can be used to compute water-surface elevations and flow discharges at any of 66 predetermined locations or at any alternative river cross sections definable within the network of channels. In addition, the model can be used to provide tidal-interchange flow volumes and to evaluate tidal excursions and the flushing properties of the riverine system. Comparisons of model-computed results with measured watersurface elevations and discharges demonstrate the validity and accuracy of the model. Tidal-cycle flow volumes computed by the calibrated model have been verified to be within an accuracy of ? 10 percent. Quantitative characteristics of the hydrodynamics of the tidal river are identified and discussed. The comprehensive flow data provided by the model can be used to better understand the geochemical, biological, and other processes affecting the river's water quality.

  12. Numerical investigation of flow motion and performance of a horizontal axis tidal turbine subjected to a steady current

    NASA Astrophysics Data System (ADS)

    Li, Lin-juan; Zheng, Jin-hai; Peng, Yu-xuan; Zhang, Ji-sheng; Wu, Xiu-guang

    2015-04-01

    Horizontal axis tidal turbines have attracted more and more attentions nowadays, because of their convenience and low expense in construction and high efficiency in extracting tidal energy. The present study numerically investigates the flow motion and performance of a horizontal axis tidal turbine with a supporting vertical cylinder under steady current. In the numerical model, the continuous equation and incompressible Reynolds-averaged Navier-Stokes equations are solved, and the volume of fluid method is employed to track free surface motion. The RNG k- ɛ model is adopted to calculate turbulence transport while the fractional area/volume obstacle representation method is used to describe turbine characteristics and movement. The effects of installation elevation of tidal turbine and inlet velocity on the water elevation, and current velocity, rotating speed and resultant force on turbine are discussed. Based on the comparison of the numerical results, a better understanding of flow structure around horizontal axis tidal turbine and turbine performance is achieved.

  13. Ventilatory protective strategies during thoracic surgery: effects of alveolar recruitment maneuver and low-tidal volume ventilation on lung density distribution.

    PubMed

    Kozian, Alf; Schilling, Thomas; Schütze, Hartmut; Senturk, Mert; Hachenberg, Thomas; Hedenstierna, Göran

    2011-05-01

    The increased tidal volume (V(T)) applied to the ventilated lung during one-lung ventilation (OLV) enhances cyclic alveolar recruitment and mechanical stress. It is unknown whether alveolar recruitment maneuvers (ARMs) and reduced V(T) may influence tidal recruitment and lung density. Therefore, the effects of ARM and OLV with different V(T) on pulmonary gas/tissue distribution are examined. Eight anesthetized piglets were mechanically ventilated (V(T) = 10 ml/kg). A defined ARM was applied to the whole lung (40 cm H(2)O for 10 s). Spiral computed tomographic lung scans were acquired before and after ARM. Thereafter, the lungs were separated with an endobronchial blocker. The pigs were randomized to receive OLV in the dependent lung with a V(T) of either 5 or 10 ml/kg. Computed tomography was repeated during and after OLV. The voxels were categorized by density intervals (i.e., atelectasis, poorly aerated, normally aerated, or overaerated). Tidal recruitment was defined as the addition of gas to collapsed lung regions. The dependent lung contained atelectatic (56 ± 10 ml), poorly aerated (183 ± 10 ml), and normally aerated (187 ± 29 ml) regions before ARM. After ARM, lung volume and aeration increased (426 ± 35 vs. 526 ± 69 ml). Respiratory compliance enhanced, and tidal recruitment decreased (95% vs. 79% of the whole end-expiratory lung volume). OLV with 10 ml/kg further increased aeration (atelectasis, 15 ± 2 ml; poorly aerated, 94 ± 24 ml; normally aerated, 580 ± 98 ml) and tidal recruitment (81% of the dependent lung). OLV with 5 ml/kg did not affect tidal recruitment or lung density distribution. (Data are given as mean ± SD.) The ARM improves aeration and respiratory mechanics. In contrast to OLV with high V(T), OLV with reduced V(T) does not reinforce tidal recruitment, indicating decreased mechanical stress.

  14. Ventilatory, metabolic, and thermal responses to hypercapnia in female rats: effects of estrous cycle, ovariectomy, and hormonal replacement.

    PubMed

    Marques, Danuzia A; de Carvalho, Débora; da Silva, Glauber S F; Szawka, Raphael E; Anselmo-Franci, Janete A; Bícego, Kênia C; Gargaglioni, Luciane H

    2015-07-01

    The aim of this study was to examine how estrous cycle, ovariectomy, and hormonal replacement affect the respiratory [ventilation (V̇e), tidal volume, and respiratory frequency], metabolic (V̇o2), and thermoregulatory (body temperature) responses to hypercapnia (7% CO2) in female Wistar rats. The parameters were measured in rats during different phases of the estrous cycle, and also in ovariectomized (OVX) rats supplemented with 17β-estradiol (OVX+E2), with a combination of E2 and progesterone (OVX+E2P), or with corn oil (OVX+O, vehicle). All experiments were conducted on day 8 after ovariectomy. The intact animals did not present alterations during normocapnia or under hypercapnia in V̇e, tidal volume, respiratory frequency, V̇o2, and V̇e/V̇o2 in the different phases of the estrous cycle. However, body temperature was higher in female rats on estrus. Hormonal replacement did not change the ventilatory, thermoregulatory, or metabolic parameters during hypercapnia, compared with the OVX animals. Nevertheless, OVX+E2, OVX+E2P, and OVX+O presented lower hypercapnic ventilatory responses compared with intact females on the day of estrus. Also, rats in estrus showed higher V̇e and V̇e/V̇o2 during hypercapnia than OVX animals. The data suggest that other gonadal factors, besides E2 and P, are possibly involved in these responses. Copyright © 2015 the American Physiological Society.

  15. Effects of tidal action on pollination and reproductive allocation in an estuarine emergent wetland plant-Sagittaria graminea (Alismataceae).

    PubMed

    Zhang, Yanwen; Zhang, Lihui; Zhao, Xingnan; Huang, Shengjun; Zhao, Jimin

    2013-01-01

    In estuarine wetlands, the daily periodic tidal activity has a profound effect on plant growth and reproduction. We studied the effects of tidal action on pollination and reproductive allocation of Sagittaria graminea. Results showed that the species had very different reproductive allocation in tidal and non-tidal habitats. In the tidal area, seed production was only 9.7% of that in non-tidal habitat, however, plants produced more male flowers and nearly twice the corms compared to those in non-tidal habitat. An experiment showed that the time available for effective pollination determined the pollination rate and pollen deposition in the tidal area. A control experiment suggested that low pollen deposition from low visitation frequency is not the main cause of very low seed sets or seed production in this plant in tidal habitat. The negative effects of tides (water) on pollen germination may surpass the influence of low pollen deposition from low visitation frequency. The length of time from pollen deposition to flower being submerged by water affected pollen germination rate on stigmas; more than three hours is necessary to allow pollen germination and complete fertilization to eliminate the risk of pollen grains being washed away by tidal water.

  16. Effects of Tidal Action on Pollination and Reproductive Allocation in an Estuarine Emergent Wetland Plant–Sagittaria graminea (Alismataceae)

    PubMed Central

    Zhang, Yanwen; Zhang, Lihui; Zhao, Xingnan; Huang, Shengjun; Zhao, Jimin

    2013-01-01

    In estuarine wetlands, the daily periodic tidal activity has a profound effect on plant growth and reproduction. We studied the effects of tidal action on pollination and reproductive allocation of Sagittaria graminea. Results showed that the species had very different reproductive allocation in tidal and non-tidal habitats. In the tidal area, seed production was only 9.7% of that in non-tidal habitat, however, plants produced more male flowers and nearly twice the corms compared to those in non-tidal habitat. An experiment showed that the time available for effective pollination determined the pollination rate and pollen deposition in the tidal area. A control experiment suggested that low pollen deposition from low visitation frequency is not the main cause of very low seed sets or seed production in this plant in tidal habitat. The negative effects of tides (water) on pollen germination may surpass the influence of low pollen deposition from low visitation frequency. The length of time from pollen deposition to flower being submerged by water affected pollen germination rate on stigmas; more than three hours is necessary to allow pollen germination and complete fertilization to eliminate the risk of pollen grains being washed away by tidal water. PMID:24244393

  17. Mask Ventilation during Induction of General Anesthesia: Influences of Obstructive Sleep Apnea.

    PubMed

    Sato, Shin; Hasegawa, Makoto; Okuyama, Megumi; Okazaki, Junko; Kitamura, Yuji; Sato, Yumi; Ishikawa, Teruhiko; Sato, Yasunori; Isono, Shiroh

    2017-01-01

    Depending on upper airway patency during anesthesia induction, tidal volume achieved by mask ventilation may vary. In 80 adult patients undergoing general anesthesia, the authors tested a hypothesis that tidal volume during mask ventilation is smaller in patients with sleep-disordered breathing priorly defined as apnea hypopnea index greater than 5 per hour. One-hand mask ventilation with a constant ventilator setting (pressure-controlled ventilation) was started 20 s after injection of rocuronium and maintained for 1 min during anesthesia induction. Mask ventilation efficiency was assessed by the breath number needed to initially exceed 5 ml/kg ideal body weight of expiratory tidal volume (primary outcome) and tidal volumes (secondary outcomes) during initial 15 breaths (UMIN000012494). Tidal volume progressively increased by more than 70% in 1 min and did not differ between sleep-disordered breathing (n = 42) and non-sleep-disordered breathing (n = 38) patients. In post hoc subgroup analyses, the primary outcome breath number (mean [95% CI], 5.7 [4.1 to 7.3] vs. 1.7 [0.2 to 3.2] breath; P = 0.001) and mean tidal volume (6.5 [4.6 to 8.3] vs. 9.6 [7.7 to 11.4] ml/kg ideal body weight; P = 0.032) were significantly smaller in 20 sleep-disordered breathing patients with higher apnea hypopnea index (median [25th to 75th percentile]: 21.7 [17.6 to 31] per hour) than in 20 non-sleep disordered breathing subjects with lower apnea hypopnea index (1.0 [0.3 to 1.5] per hour). Obesity and occurrence of expiratory flow limitation during one-hand mask ventilation independently explained the reduction of efficiency of mask ventilation, while the use of two hands effectively normalized inefficient mask ventilation during one-hand mask ventilation. One-hand mask ventilation is difficult in patients with obesity and severe sleep-disordered breathing particularly when expiratory flow limitation occurs during mask ventilation.

  18. Exploring for the safer ventilation method in laparoscopic urologic patients? Conventional or low tidal?

    PubMed

    Ela, Yüksel; Bakı, Elif Doğan; Ateş, Mutlu; Kokulu, Serdar; Keleş, İbrahim; Karalar, Mustafa; Şenay, Hasan; Sıvacı, Remziye Gül

    2014-11-01

    To study the effects of low tidal volume with positive end-expiratory pressure (PEEP) on arterial blood gases of patients undergoing laparoscopic urologic surgeries. Eighty-six laparoscopic urologic patients were enrolled in this study. Patients were randomized into two groups according to the ventilatory settings. In the conventional group (Group C) (n=43), the tidal volume was 10 mL/kg, and the PEEP was set at 0 cm of H2O. In the low tidal volume with PEEP group (Group LP), the tidal volume was 6 mL/kg, with PEEP of 5 cm of H2O. In both groups total minute volume was 6 L/kg. Peak and plateau airway pressure (PPEAK and PPLAT, respectively) and arterial blood gases were recorded before pneumoperitoneum (PNP) (T1) and the first and third hour (T3) after PNP induction and also after extubation in the intensive care unit. Additionally, heart rate, mean arterial pressure, and peripheral O2 saturation of hemoglobin were recorded. Heart rate, PPEAK, and PPLAT values were similar in both groups. Partial arterial O2 pressure values measured postoperatively were significantly higher in Group LP, whereas those measured before PNP induction were similar (P=.014 and P=.056, respectively). Compared with the baseline, partial arterial CO2 pressure values measured at T1 and at T3 after PNP induction were significantly higher in Group C than in Group LP (P<.001). The pH values of Group C at T1 and at T3 postoperatively were significantly lower than the values of Group LP (P<.001). Extubation times were significantly lower in Group LP. The results of the present study suggest that low tidal volume with PEEP application may be a good alternative for preventing high CO2 levels and yielding better oxygenation and lower extubation times in patients undergoing prolonged laparoscopic urology.

  19. Cross-sectional changes in lung volume measured by electrical impedance tomography are representative for the whole lung in ventilated preterm infants.

    PubMed

    van der Burg, Pauline S; Miedema, Martijn; de Jongh, Frans H; Frerichs, Inez; van Kaam, Anton H

    2014-06-01

    Electrical impedance tomography measures lung volume in a cross-sectional slice of the lung. Whether these cross-sectional volume changes are representative of the whole lung has only been investigated in adults, showing conflicting results. This study aimed to compare cross-sectional and whole lung volume changes using electrical impedance tomography and respiratory inductive plethysmography. A prospective, single-center, observational, nonrandomized study. The study was conducted in a neonatal ICU in the Netherlands. High-frequency ventilated preterm infants with respiratory distress syndrome. Cross-sectional and whole lung volume changes were continuously and simultaneously measured by, respectively, electrical impedance tomography and respiratory inductive plethysmography during a stepwise recruitment procedure. End-expiratory lung volume changes were assessed by mapping the inflation and deflation limbs using both the pressure/impedance and pressure/inductance pairs and characterized by calculating the inflection points. In addition, oscillatory tidal volume changes were assessed at each pressure step. Twenty-three infants were included in the study. Of these, eight infants had to be excluded because the quality of the registration was insufficient for analysis (two electrical impedance tomography and six respiratory inductive plethysmography). In the remaining 15 infants (gestational age 28.0 ± 2.6 wk; birth weight 1,027 ± 514 g), end-expiratory lung volume changes measured by electrical impedance tomography were significantly correlated to respiratory inductive plethysmography measurements in 12 patients (mean r = 0.93 ± 0.05). This was also true for the upper inflection point on the inflation (r = 0.91, p < 0.01) and deflation limb (r = 0.83, p < 0.01). In 13 patients, impedance and inductance data also correlated significantly on oscillatory tidal volume/pressure relationships (mean r = 0.81 ± 0.18). This study shows that cross-sectional lung volume changes measured by electrical impedance tomography are representative for the whole lung and that this concept also applies to newborn infants.

  20. Novel analysis of 4DCT imaging quantifies progressive increases in anatomic dead space during mechanical ventilation in mice.

    PubMed

    Kim, Elizabeth H; Preissner, Melissa; Carnibella, Richard P; Samarage, Chaminda R; Bennett, Ellen; Diniz, Marcio A; Fouras, Andreas; Zosky, Graeme R; Jones, Heather D

    2017-09-01

    Increased dead space is an important prognostic marker in early acute respiratory distress syndrome (ARDS) that correlates with mortality. The cause of increased dead space in ARDS has largely been attributed to increased alveolar dead space due to ventilation/perfusion mismatching and shunt. We sought to determine whether anatomic dead space also increases in response to mechanical ventilation. Mice received intratracheal lipopolysaccharide (LPS) or saline and mechanical ventilation (MV). Four-dimensional computed tomography (4DCT) scans were performed at onset of MV and after 5 h of MV. Detailed measurements of airway volumes and lung tidal volumes were performed using image analysis software. The forced oscillation technique was used to obtain measures of airway resistance, tissue damping, and tissue elastance. The ratio of airway volumes to total tidal volume increased significantly in response to 5 h of mechanical ventilation, regardless of LPS exposure, and airways demonstrated significant variation in volumes over the respiratory cycle. These findings were associated with an increase in tissue elastance (decreased lung compliance) but without changes in tidal volumes. Airway volumes increased over time with exposure to mechanical ventilation without a concomitant increase in tidal volumes. These findings suggest that anatomic dead space fraction increases progressively with exposure to positive pressure ventilation and may represent a pathological process. NEW & NOTEWORTHY We demonstrate that anatomic dead space ventilation increases significantly over time in mice in response to mechanical ventilation. The novel functional lung-imaging techniques applied here yield sensitive measures of airway volumes that may have wide applications. Copyright © 2017 the American Physiological Society.

  1. Evidence for Excitation of Polar Motion by Fortnightly Ocean Tides

    NASA Technical Reports Server (NTRS)

    Gross, Richard S.; Hamdan, Kamal H.; Boggs, Dale H.

    1996-01-01

    The second-degree zonal tide raising potential, which is responsible for tidal changes in the Earth's rotation rate and length-of-day, is symmetric about the polar axis and hence can excite the Earth's polar motion only through its action upon nonaxisymmetric features of the Earth such as the oceans. Ocean tidal excitation of polar motion in the diurnal and semidiurnal tidal bands has been previously detected and examined. Here, the detection of ocean tidal excitation of polar motion in the long-period tidal band, specifically at the Mf' (13.63-day) and Mf (13.66-day) tidal frequencies, is reported. Spectra of the SPACE94 polar motion excitation series exhibit peaks at the prograde and retrograde fortnightly tidal periods. After removing effects of atmospheric wind and pressure changes, an empirical model for the effect of the fortnightly ocean tides upon polar motion excitation is obtained by least-squares fitting periodic terms at the Mf and Mf' tidal frequencies to the residual polar motion excitation series. The resulting empirical model is then compared with the predictions of two hydrodynamic ocean tide models.

  2. First-time imaging of effects of inspired oxygen concentration on regional lung volumes and breathing pattern during hypergravity.

    PubMed

    Borges, João Batista; Hedenstierna, Göran; Bergman, Jakob S; Amato, Marcelo B P; Avenel, Jacques; Montmerle-Borgdorff, Stéphanie

    2015-02-01

    Aeroatelectasis can develop in aircrew flying the latest generation high-performance aircraft. Causes alleged are relative hyperoxia, increased gravity in the head-to-foot direction (+Gz), and compression of legs and stomach by anti-G trousers (AGT). We aimed to assess, in real time, the effects of hyperoxia, +Gz accelerations and AGT inflation on changes in regional lung volumes and breathing pattern evaluated in an axial plane by electrical impedance tomography (EIT). The protocol mimicked a routine peacetime flight in combat aircraft. Eight subjects wearing AGT were studied in a human centrifuge during 1 h 15 min exposure of +1 to +3.5Gz. They performed this sequence three times, breathing AIR, 44.5 % O2 or 100 % O2. Continuous recording of functional EIT enabled uninterrupted assessment of regional lung volumes at the 5th intercostal level. Breathing pattern was also monitored. EIT data showed that +3.5Gz, compared with any moment without hypergravity, caused an abrupt decrease in regional tidal volume (VT) and regional end-expiratory lung volume (EELV) measured in the EIT slice, independently of inspired oxygen concentration. Breathing AIR or 44.5 % O2, sub-regional EELV measured in the EIT slice decreased similarly in dorsal and ventral regions, but sub-regional VT measured in the EIT slice decreased significantly more dorsally than ventrally. Breathing 100 % O2, EELV and VT decreased similarly in both regions. Inspired tidal volume increased in hyperoxia, whereas breathing frequency increased in hypergravity and hyperoxia. Our findings suggest that hypergravity and AGT inflation cause airway closure and air trapping in gravity-dependent lung regions, facilitating absorption atelectasis formation, in particular during hyperoxia.

  3. Effect of the tidal-seismic resonance

    NASA Astrophysics Data System (ADS)

    Tian, Y.; Zheng, Y.

    2017-12-01

    For a moon spiraling inward to its planet, the tidal force frequency of a moon is increasing. When the distance of the moon to the planet is close enough, the tidal force frequency can intrude into the frequency range of planet normal modes. Usually the football mode, also known as 0S2, has the lowest frequency. This mode is most likely to be excited and coupled first. When the tidal force has the same frequency with the normal modes, the resonance can happen. The existence of the topography or internal heterogeneities of the planet can have mode coupling. So the energy of gravity force with higher spatial frequencies can be transferred to the low spatial 0S2 mode. The resonant mode 0S2 can exert a negative torque to the rotating moon so its orbit decays. With our 3D numerical boundary element method which takes into account planet surface topography (i.e., Mars as example), we found that the closer the moon is to the planet, the greater falling rate of the moon would be. We applied our method to a planet with equal size of Mars and elastic constants in possible range. The vibration amplitude on the planet surface can reach to the scale of meters when as the moon drop down to about 1.04 radius of the planet to achieve resonance with the 0S2 mode. Our modeling showed that the influence of tidal force caused resonance could not be neglected in the process of moon falling. On the other hand, the resonance may also be able to speed up the accretion of the early forming planet by absorbing the dust of small asteroid nearby by the tidal-seismic resonance.

  4. Nasal mask ventilation is better than face mask ventilation in edentulous patients

    PubMed Central

    Kapoor, Mukul Chandra; Rana, Sandeep; Singh, Arvind Kumar; Vishal, Vindhya; Sikdar, Indranil

    2016-01-01

    Background and Aims: Face mask ventilation of the edentulous patient is often difficult as ineffective seating of the standard mask to the face prevents attainment of an adequate air seal. The efficacy of nasal ventilation in edentulous patients has been cited in case reports but has never been investigated. Material and Methods: Consecutive edentulous adult patients scheduled for surgery under general anesthesia with endotracheal intubation, during a 17-month period, were prospectively evaluated. After induction of anesthesia and administration of neuromuscular blocker, lungs were ventilated with a standard anatomical face mask of appropriate size, using a volume controlled anesthesia ventilator with tidal volume set at 10 ml/kg. In case of inadequate ventilation, the mask position was adjusted to achieve best-fit. Inspired and expired tidal volumes were measured. Thereafter, the face mask was replaced by a nasal mask and after achieving best-fit, the inspired and expired tidal volumes were recorded. The difference in expired tidal volumes and airway pressures at best-fit with the use of the two masks and number of patients with inadequate ventilation with use of the masks were statistically analyzed. Results: A total of 79 edentulous patients were recruited for the study. The difference in expiratory tidal volumes with the use of the two masks at best-fit was statistically significant (P = 0.0017). Despite the best-fit mask placement, adequacy of ventilation could not be achieved in 24.1% patients during face mask ventilation, and 12.7% patients during nasal mask ventilation and the difference was statistically significant. Conclusion: Nasal mask ventilation is more efficient than standard face mask ventilation in edentulous patients. PMID:27625477

  5. Effect of different ventilatory strategies on local and systemic cytokine production in intact swine lungs in vivo.

    PubMed

    Myrianthefs, P; Boutzouka, E; Venetsanou, K; Papalois, A; Kouloukousa, M; Kittas, C; Baltopoulos, G

    2006-05-01

    The purpose of the study was to investigate the effect of different ventilatory strategies on local and systemic cytokine production in swine with intact lungs in vivo after 4 h of mechanical ventilation. Twenty-five swine were anesthetized and then randomized into five groups (n = 5): (1) low tidal volume zero PEEP (LVZP); (2) medium tidal volume zero PEEP (MVZP); (3) high tidal volume zero PEEP (HVZP); (4) low tidal volume PEEP (LVP); (4) high tidal volume PEEP (HVP). Respiratory rate was adjusted to maintain normocapnia and fraction of inspired oxygen (FiO2) was 1.0. TNF-alpha and IL-10 were measured in BALF and serum at baseline, 2 h, and 4 h of MV. One animal in LVZP (2 h) and two in HVP (3 h) group died before the end of the experiment. TNF-alpha level in BALF was significantly higher in LVZP and LVP at 4 h compared to baseline and the other groups. IL-10 level in BALF was significantly higher in LVP at 4h compared to baseline and the other groups. There was a statistically significant increase in serum TNF-alpha levels at 4 h in LVP group compared to baseline and the other groups at 4 h. There was statistically significant increase in serum IL-10 levels in HVZP and LVP groups at 2 and 4 h which was significantly higher compared to the other groups at 4 h. Our results show that a) low volume MV may induce local and systemic pro- and anti-inflammatory cytokine increase b) in the presence of pro-inflammatory cytokine response there is also an anti-inflammatory response in the same compartment (lungs, circulation). c) There maybe loss of alveolar-to-systemic cytokine compartmentalization.

  6. SU-E-J-136: Evaluation of a Non-Invasive Method on Lung Tumor Tracking.

    PubMed

    Zhao, T; White, B; Low, D

    2012-06-01

    to develop a non-invasive method to track lung motion in free-breathing patients. A free-breathing breathing model has been developed to use tidal volume and air flow rate as surrogates for lung trajectories. In this study, 4D CT data sets were acquired during simulation and were reconstructed into 10 phases. Total lung capacities were calculated from the reconstructed images. Continuous signals from the abdominal pneumatic belt were correlated to the volumes and were therefore converted into a curve of tidal volumes. Air flow rate were calculated as the first order derivative of the tidal volume curve. Lung trajectories in the 10 reconstructed images were obtained using B-Spline registration. Parameters of the free-breathing lung motion model were fit from the tidal volumes, airflow rates and lung trajectories using the simulation data. Patients were rescanned every week during the treatment. Prediction of lung trajectories from the model were given and compared to the actual positions in BEV. Trajectories of lung were predicted with residual error of 1.49mm at 95th percentile of all tracked points. Tracking was stable and reproducible over two weeks. Non-invasive tumor tracking based on a free-breathing lung motion model is feasible and stable over weeks. © 2012 American Association of Physicists in Medicine.

  7. Tidal Evolution of Asteroidal Binaries. Ruled by Viscosity. Ignorant of Rigidity.

    NASA Astrophysics Data System (ADS)

    Efroimsky, Michael

    2015-10-01

    This is a pilot paper serving as a launching pad for study of orbital and spin evolution of binary asteroids. The rate of tidal evolution of asteroidal binaries is defined by the dynamical Love numbers kl divided by quality factors Q. Common in the literature is the (oftentimes illegitimate) approximation of the dynamical Love numbers with their static counterparts. Since the static Love numbers are, approximately, proportional to the inverse rigidity, this renders a popular fallacy that the tidal evolution rate is determined by the product of the rigidity by the quality factor: {k}l/Q\\propto 1/(μ Q). In reality, the dynamical Love numbers depend on the tidal frequency and all rheological parameters of the tidally perturbed body (not just rigidity). We demonstrate that in asteroidal binaries the rigidity of their components plays virtually no role in tidal friction and tidal lagging, and thereby has almost no influence on the intensity of tidal interactions (tidal torques, tidal dissipation, tidally induced changes of the orbit). A key quantity that overwhelmingly determines the tidal evolution is a product of the effective viscosity η by the tidal frequency χ . The functional form of the torque’s dependence on this product depends on who wins in the competition between viscosity and self-gravitation. Hence a quantitative criterion, to distinguish between two regimes. For higher values of η χ , we get {k}l/Q\\propto 1/(η χ ), {while} for lower values we obtain {k}l/Q\\propto η χ . Our study rests on an assumption that asteroids can be treated as Maxwell bodies. Applicable to rigid rocks at low frequencies, this approximation is used here also for rubble piles, due to the lack of a better model. In the future, as we learn more about mechanics of granular mixtures in a weak gravity field, we may have to amend the tidal theory with other rheological parameters, ones that do not show up in the description of viscoelastic bodies. This line of study provides a tool to exploring the orbital history of asteroidal pairs, as well as of their final spin states.

  8. Tidal inlet response to sediment infilling of the associated bay and possible implications of human activities: the Marennes-Oléron Bay and the Maumusson Inlet, France

    NASA Astrophysics Data System (ADS)

    Bertin, Xavier; Chaumillon, Eric; Sottolichio, Aldo; Pedreros, Rodrigo

    2005-06-01

    Tidal inlet characteristics are controlled by wave energy, tidal range, tidal prism, sediment supply and direction and rates of sand delivered to the inlet. This paper deals with the relations between inlet and lagoon evolutions, linked by the tidal prism. Our study is focused on the Maumusson Inlet and the Marennes-Oléron Bay (first oyster farming area in Europe), located on the western coast of France. The tidal range (2-6 m) and wave climate (mean height: 1.5 m) place this tidal inlet system in the mixed energy (tide, waves), tide-dominated category. The availability of high-resolution bathymetric data since 1824 permits to characterise and quantify accurately morphological changes of both the inlet and the tidal bay. Since 1824, sediment filling of the tidal bay has led to a 20% decrease in its water volume, and a 35% reduction of the inlet throat section. Furthermore, the bay is subjected to a very high anthropic pressure, mainly related to oyster farming. Thus, both natural and human-related processes seem relevant to explain high sedimentation rates. Current measurements, hydrodynamic modelling and cross-sectional area of the inlet throat are used in order to quantify tidal prism changes since 1824. Both flood and ebb tidal prism decreased by 35%. Decrease in the Marennes-Oléron Bay water volume is inferred to be responsible for a part of tidal prism decrease at the inlet. Tidal prisms decrease may also be explained by an increase in frictional resistance to tidal wave propagation, due to a general shoaling and oyster farms in the bay. A conceptual model is proposed, taking into account natural and human-related sedimentation processes, and explaining tidal inlet response to tidal bay evolutions.

  9. High-Frequency Percussive Ventilation and Low Tidal Volume Ventilation in Burns: A Randomized Controlled Trial

    DTIC Science & Technology

    2010-01-01

    incidence of ventilator-associated pneumonia ( VAP ) in patients with inha- lation injury when supported with HFPV compared with conventional modes of...mean ratio of PaO2 to FIO2 was 58 6 with a mean positive end- expiratory pressure of 22 2 cm H2O before rescue. Two of these patients were...a sample size of 110 patients in each arm would have been required to detect a difference in VAP with 80% power. A multicentered study would be

  10. Spirometry and volumetric capnography in lung function assessment of obese and normal-weight individuals without asthma.

    PubMed

    Ferreira, Mariana S; Mendes, Roberto T; Marson, Fernando A L; Zambon, Mariana P; Antonio, Maria A R G M; Paschoal, Ilma A; Toro, Adyléia A D C; Severino, Silvana D; Ribeiro, Maria A G O; Ribeiro, José D

    To analyze and compare lung function of obese and healthy, normal-weight children and adolescents, without asthma, through spirometry and volumetric capnography. Cross-sectional study including 77 subjects (38 obese) aged 5-17 years. All subjects underwent spirometry and volumetric capnography. The evaluations were repeated in obese subjects after the use of a bronchodilator. At the spirometry assessment, obese individuals, when compared with the control group, showed lower values of forced expiratory volume in the first second by forced vital capacity (FEV 1 /FVC) and expiratory flows at 75% and between 25 and 75% of the FVC (p<0.05). Volumetric capnography showed that obese individuals had a higher volume of produced carbon dioxide and alveolar tidal volume (p<0.05). Additionally, the associations between dead space volume and tidal volume, as well as phase-3 slope normalized by tidal volume, were lower in healthy subjects (p<0.05). These data suggest that obesity does not alter ventilation homogeneity, but flow homogeneity. After subdividing the groups by age, a greater difference in lung function was observed in obese and healthy individuals aged >11 years (p<0.05). Even without the diagnosis of asthma by clinical criteria and without response to bronchodilator use, obese individuals showed lower FEV 1 /FVC values and forced expiratory flow, indicating the presence of an obstructive process. Volumetric capnography showed that obese individuals had higher alveolar tidal volume, with no alterations in ventilation homogeneity, suggesting flow alterations, without affecting lung volumes. Copyright © 2017 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  11. pRotective vEntilation with veno-venouS lung assisT in respiratory failure: A protocol for a multicentre randomised controlled trial of extracorporeal carbon dioxide removal in patients with acute hypoxaemic respiratory failure.

    PubMed

    McNamee, J J; Gillies, M A; Barrett, N A; Agus, A M; Beale, R; Bentley, A; Bodenham, A; Brett, S J; Brodie, D; Finney, S J; Gordon, A J; Griffiths, M; Harrison, D; Jackson, C; McDowell, C; McNally, C; Perkins, G D; Tunnicliffe, W; Vuylsteke, A; Walsh, T S; Wise, M P; Young, D; McAuley, D F

    2017-05-01

    One of the few interventions to demonstrate improved outcomes for acute hypoxaemic respiratory failure is reducing tidal volumes when using mechanical ventilation, often termed lung protective ventilation. Veno-venous extracorporeal carbon dioxide removal (vv-ECCO 2 R) can facilitate reducing tidal volumes. pRotective vEntilation with veno-venouS lung assisT (REST) is a randomised, allocation concealed, controlled, open, multicentre pragmatic trial to determine the clinical and cost-effectiveness of lower tidal volume mechanical ventilation facilitated by vv-ECCO 2 R in patients with acute hypoxaemic respiratory failure. Patients requiring intubation and mechanical ventilation for acute hypoxaemic respiratory failure will be randomly allocated to receive either vv-ECCO 2 R and lower tidal volume mechanical ventilation or standard care with stratification by recruitment centre. There is a need for a large randomised controlled trial to establish whether vv-ECCO 2 R in acute hypoxaemic respiratory failure can allow the use of a more protective lung ventilation strategy and is associated with improved patient outcomes.

  12. Tidal Heating in Multilayered Terrestrial Exoplanets

    NASA Technical Reports Server (NTRS)

    Henning, Wade G.; Hurford, Terry

    2014-01-01

    The internal pattern and overall magnitude of tidal heating for spin-synchronous terrestrial exoplanets from 1 to 2.5 R(sub E) is investigated using a propagator matrix method for a variety of layer structures. Particular attention is paid to ice-silicate hybrid super-Earths, where a significant ice mantle is modeled to rest atop an iron-silicate core, and may or may not contain a liquid water ocean. We find multilayer modeling often increases tidal dissipation relative to a homogeneous model, across multiple orbital periods, due to the ability to include smaller volume low viscosity regions, and the added flexure allowed by liquid layers. Gradations in parameters with depth are explored, such as allowed by the Preliminary Earth Reference Model. For ice-silicate hybrid worlds, dramatically greater dissipation is possible beyond the case of a silicate mantle only, allowing non-negligible tidal activity to extend to greater orbital periods than previously predicted. Surface patterns of tidal heating are found to potentially be useful for distinguishing internal structure. The influence of ice mantle depth and water ocean size and position are shown for a range of forcing frequencies. Rates of orbital circularization are found to be 10-100 times faster than standard predictions for Earth-analog planets when interiors are moderately warmer than the modern Earth, as well as for a diverse range of ice-silicate hybrid super-Earths. Circularization rates are shown to be significantly longer for planets with layers equivalent to an ocean-free modern Earth, as well as for planets with high fractions of either ice or silicate melting.

  13. Association between use of lung-protective ventilation with lower tidal volumes and clinical outcomes among patients without acute respiratory distress syndrome: a meta-analysis.

    PubMed

    Serpa Neto, Ary; Cardoso, Sérgio Oliveira; Manetta, José Antônio; Pereira, Victor Galvão Moura; Espósito, Daniel Crepaldi; Pasqualucci, Manoela de Oliveira Prado; Damasceno, Maria Cecília Toledo; Schultz, Marcus J

    2012-10-24

    Lung-protective mechanical ventilation with the use of lower tidal volumes has been found to improve outcomes of patients with acute respiratory distress syndrome (ARDS). It has been suggested that use of lower tidal volumes also benefits patients who do not have ARDS. To determine whether use of lower tidal volumes is associated with improved outcomes of patients receiving ventilation who do not have ARDS. MEDLINE, CINAHL, Web of Science, and Cochrane Central Register of Controlled Trials up to August 2012. Eligible studies evaluated use of lower vs higher tidal volumes in patients without ARDS at onset of mechanical ventilation and reported lung injury development, overall mortality, pulmonary infection, atelectasis, and biochemical alterations. Three reviewers extracted data on study characteristics, methods, and outcomes. Disagreement was resolved by consensus. Twenty articles (2822 participants) were included. Meta-analysis using a fixed-effects model showed a decrease in lung injury development (risk ratio [RR], 0.33; 95% CI, 0.23 to 0.47; I2, 0%; number needed to treat [NNT], 11), and mortality (RR, 0.64; 95% CI, 0.46 to 0.89; I2, 0%; NNT, 23) in patients receiving ventilation with lower tidal volumes. The results of lung injury development were similar when stratified by the type of study (randomized vs nonrandomized) and were significant only in randomized trials for pulmonary infection and only in nonrandomized trials for mortality. Meta-analysis using a random-effects model showed, in protective ventilation groups, a lower incidence of pulmonary infection (RR, 0.45; 95% CI, 0.22 to 0.92; I2, 32%; NNT, 26), lower mean (SD) hospital length of stay (6.91 [2.36] vs 8.87 [2.93] days, respectively; standardized mean difference [SMD], 0.51; 95% CI, 0.20 to 0.82; I2, 75%), higher mean (SD) PaCO2 levels (41.05 [3.79] vs 37.90 [4.19] mm Hg, respectively; SMD, -0.51; 95% CI, -0.70 to -0.32; I2, 54%), and lower mean (SD) pH values (7.37 [0.03] vs 7.40 [0.04], respectively; SMD, 1.16; 95% CI, 0.31 to 2.02; I2, 96%) but similar mean (SD) ratios of PaO2 to fraction of inspired oxygen (304.40 [65.7] vs 312.97 [68.13], respectively; SMD, 0.11; 95% CI, -0.06 to 0.27; I2, 60%). Tidal volume gradients between the 2 groups did not influence significantly the final results. Among patients without ARDS, protective ventilation with lower tidal volumes was associated with better clinical outcomes. Some of the limitations of the meta-analysis were the mixed setting of mechanical ventilation (intensive care unit or operating room) and the duration of mechanical ventilation.

  14. Sea level rise drives increased tidal flooding frequency at tide gauges along the U.S. East and Gulf Coasts: Projections for 2030 and 2045.

    PubMed

    Dahl, Kristina A; Fitzpatrick, Melanie F; Spanger-Siegfried, Erika

    2017-01-01

    Tidal flooding is among the most tangible present-day effects of global sea level rise. Here, we utilize a set of NOAA tide gauges along the U.S. East and Gulf Coasts to evaluate the potential impact of future sea level rise on the frequency and severity of tidal flooding. Using the 2001-2015 time period as a baseline, we first determine how often tidal flooding currently occurs. Using localized sea level rise projections based on the Intermediate-Low, Intermediate-High, and Highest projections from the U.S. National Climate Assessment, we then determine the frequency and extent of such flooding at these locations for two near-term time horizons: 2030 and 2045. We show that increases in tidal flooding will be substantial and nearly universal at the 52 locations included in our analysis. Long before areas are permanently inundated, the steady creep of sea level rise will force many communities to grapple with chronic high tide flooding in the next 15 to 30 years.

  15. Sea level rise drives increased tidal flooding frequency at tide gauges along the U.S. East and Gulf Coasts: Projections for 2030 and 2045

    PubMed Central

    Fitzpatrick, Melanie F.; Spanger-Siegfried, Erika

    2017-01-01

    Tidal flooding is among the most tangible present-day effects of global sea level rise. Here, we utilize a set of NOAA tide gauges along the U.S. East and Gulf Coasts to evaluate the potential impact of future sea level rise on the frequency and severity of tidal flooding. Using the 2001–2015 time period as a baseline, we first determine how often tidal flooding currently occurs. Using localized sea level rise projections based on the Intermediate-Low, Intermediate-High, and Highest projections from the U.S. National Climate Assessment, we then determine the frequency and extent of such flooding at these locations for two near-term time horizons: 2030 and 2045. We show that increases in tidal flooding will be substantial and nearly universal at the 52 locations included in our analysis. Long before areas are permanently inundated, the steady creep of sea level rise will force many communities to grapple with chronic high tide flooding in the next 15 to 30 years. PMID:28158209

  16. Are tidal volume measurements in neonatal pressure-controlled ventilation accurate?

    PubMed

    Chow, Lily C; Vanderhal, Andre; Raber, Jorge; Sola, Augusto

    2002-09-01

    Bedside pulmonary mechanics monitors (PMM) have become useful in ventilatory management in neonates. These monitors are used more frequently due to recent improvements in data-processing capabilities. PMM devices are often part of the ventilator or are separate units. The accuracy and reliability of these systems have not been carefully evaluated. We compared a single ventilatory parameter, tidal volume (V(t)), as measured by several systems. We looked at two freestanding PMMs: the Ventrak Respiratory Monitoring System (Novametrix, Wallingford, CT) and the Bicore CP-100 Neonatal Pulmonary Monitor (Allied Health Care Products, Riverside, CA), and three ventilators with built-in PMM: the VIP Bird Ventilator (Bird Products Corp., Palm Springs, CA), Siemens Servo 300A (Siemens-Elema AB, Solna, Sweden), and Drager Babylog 8000 (Drager, Inc., Chantilly, VA). A calibrated syringe (Hans Rudolph, Inc., Kansas City, MO) was used to deliver tidal volumes of 4, 10, and 20 mL to each ventilator system coupled with a freestanding PMM. After achieving steady state, six consecutive V(t) readings were taken simultaneously from the freestanding PMM and each ventilator. In a second portion of the bench study, we used pressure-control ventilation and measured exhaled tidal volume (V(te)) while ventilating a Bear Test Lung with the same three ventilators. We adjusted peak inspiratory pressure (PIP) under controlled conditions to achieve the three different targeted tidal volumes on the paired freestanding PMM. Again, six V(te) measurements were recorded for each tidal volume. Means and standard deviations were calculated.The percentage difference in measurement of V(t) delivered by calibrated syringe varied greatly, with the greatest discrepancy seen in the smallest tidal volumes, by up to 28%. In pressure control mode, V(te) as measured by the Siemens was significantly overestimated by 20-95%, with the biggest discrepancy at the smallest V(te), particularly when paired with the Bicore PMM. V(te), as measured by the VIP Bird and Drager paired with the Ventrak PMM, had a tendency to underestimate V(t) by up to 25% at the smallest V(te). However, when paired with the Bicore PMM, these same two ventilators read over target by up to 18%. Under controlled laboratory conditions, we demonstrated that true delivered V(te), as measured by the three ventilators and two freestanding PMM, differed markedly. In general, decreasing dynamic compliance of the tubing was not associated with greater inaccuracy in V(te) measurements. Copyright 2002 Wiley-Liss, Inc.

  17. Time-Resolved Quantitative Analysis of the Diaphragms During Tidal Breathing in a Standing Position Using Dynamic Chest Radiography with a Flat Panel Detector System ("Dynamic X-Ray Phrenicography"): Initial Experience in 172 Volunteers.

    PubMed

    Yamada, Yoshitake; Ueyama, Masako; Abe, Takehiko; Araki, Tetsuro; Abe, Takayuki; Nishino, Mizuki; Jinzaki, Masahiro; Hatabu, Hiroto; Kudoh, Shoji

    2017-04-01

    Diaphragmatic motion in a standing position during tidal breathing remains unclear. The purpose of this observational study was to evaluate diaphragmatic motion during tidal breathing in a standing position in a health screening center cohort using dynamic chest radiography in association with participants' demographic characteristics. One hundred seventy-two subjects (103 men; aged 56.3 ± 9.8 years) underwent sequential chest radiographs during tidal breathing using dynamic chest radiography with a flat panel detector system. We evaluated the excursions of and peak motion speeds of the diaphragms. Associations between the excursions and participants' demographics (gender, height, weight, body mass index [BMI], smoking history, tidal volume, vital capacity, and forced expiratory volume) were investigated. The average excursion of the left diaphragm (14.9 ± 4.6 mm, 95% CI 14.2-15.5 mm) was significantly larger than that of the right (11.0 ± 4.0 mm, 95% CI 10.4-11.6 mm) (P <0.001). The peak motion speed of the left diaphragm (inspiratory, 16.6 ± 4.2 mm/s; expiratory, 13.7 ± 4.2 mm/s) was significantly faster than that of the right (inspiratory, 12.4 ± 4.4 mm/s; expiratory, 9.4 ± 3.8 mm/s) (both P <0.001). Both simple and multiple regression models demonstrated that higher BMI and higher tidal volume were associated with increased excursions of the bilateral diaphragm (all P <0.05). The average excursions of the diaphragms are 11.0 mm (right) and 14.9 mm (left) during tidal breathing in a standing position. The diaphragmatic motion of the left is significantly larger and faster than that of the right. Higher BMI and tidal volume are associated with increased excursions of the bilateral diaphragm. Copyright © 2017 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  18. Performance of Portable Ventilators at Altitude

    DTIC Science & Technology

    2015-03-30

    collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT...Deploying ventilators that can maintain a consistent tidal volume (VT) delivery at various altitudes is imperative for lung protection when...performance of mechanical ventilators calibrated for operation at sea level. Deploying ventilators that can maintain a consistent tidal volume (VT) delivery

  19. Interaction between peri-operative blood transfusion, tidal volume, airway pressure and postoperative ARDS: an individual patient data meta-analysis

    PubMed Central

    Juffermans, Nicole P.; Hemmes, Sabrine N. T.; Barbas, Carmen S. V.; Beiderlinden, Martin; Biehl, Michelle; Fernandez-Bustamante, Ana; Futier, Emmanuel; Gajic, Ognjen; Jaber, Samir; Kozian, Alf; Licker, Marc; Lin, Wen-Qian; Memtsoudis, Stavros G.; Miranda, Dinis Reis; Moine, Pierre; Paparella, Domenico; Ranieri, Marco; Scavonetto, Federica; Schilling, Thomas; Selmo, Gabriele; Severgnini, Paolo; Sprung, Juraj; Sundar, Sugantha; Talmor, Daniel; Treschan, Tanja; Unzueta, Carmen; Weingarten, Toby N.; Wolthuis, Esther K.; Wrigge, Hermann; de Abreu, Marcelo Gama; Pelosi, Paolo; Schultz, Marcus J.

    2018-01-01

    Background Transfusion of blood products and mechanical ventilation with injurious settings are considered risk factors for postoperative lung injury in surgical Patients. Methods A systematic review and individual patient data meta-analysis was done to determine the independent effects of peri-operative transfusion of blood products, intra-operative tidal volume and airway pressure in adult patients undergoing mechanical ventilation for general surgery, as well as their interactions on the occurrence of postoperative acute respiratory distress syndrome (ARDS). Observational studies and randomized trials were identified by a systematic search of MEDLINE, CINAHL, Web of Science, and CENTRAL and screened for inclusion into a meta-analysis. Individual patient data were obtained from the corresponding authors. Patients were stratified according to whether they received transfusion in the peri-operative period [red blood cell concentrates (RBC) and/or fresh frozen plasma (FFP)], tidal volume size [≤7 mL/kg predicted body weight (PBW), 7–10 and >10 mL/kg PBW] and airway pressure level used during surgery (≤15, 15–20 and >20 cmH2O). The primary outcome was development of postoperative ARDS. Results Seventeen investigations were included (3,659 patients). Postoperative ARDS occurred in 40 (7.2%) patients who received at least one blood product compared to 40 patients (2.5%) who did not [adjusted hazard ratio (HR), 2.32; 95% confidence interval (CI), 1.25–4.33; P=0.008]. Incidence of postoperative ARDS was highest in patients ventilated with tidal volumes of >10 mL/kg PBW and having airway pressures of >20 cmH2O receiving both RBC and FFP, and lowest in patients ventilated with tidal volume of ≤7 mL/kg PBW and having airway pressures of ≤15 cmH2O with no transfusion. There was a significant interaction between transfusion and airway pressure level (P=0.002) on the risk of postoperative ARDS. Conclusions Peri-operative transfusion of blood products is associated with an increased risk of postoperative ARDS, which seems more dependent on airway pressure than tidal volume size. PMID:29430440

  20. Interaction between peri-operative blood transfusion, tidal volume, airway pressure and postoperative ARDS: an individual patient data meta-analysis.

    PubMed

    Serpa Neto, Ary; Juffermans, Nicole P; Hemmes, Sabrine N T; Barbas, Carmen S V; Beiderlinden, Martin; Biehl, Michelle; Fernandez-Bustamante, Ana; Futier, Emmanuel; Gajic, Ognjen; Jaber, Samir; Kozian, Alf; Licker, Marc; Lin, Wen-Qian; Memtsoudis, Stavros G; Miranda, Dinis Reis; Moine, Pierre; Paparella, Domenico; Ranieri, Marco; Scavonetto, Federica; Schilling, Thomas; Selmo, Gabriele; Severgnini, Paolo; Sprung, Juraj; Sundar, Sugantha; Talmor, Daniel; Treschan, Tanja; Unzueta, Carmen; Weingarten, Toby N; Wolthuis, Esther K; Wrigge, Hermann; de Abreu, Marcelo Gama; Pelosi, Paolo; Schultz, Marcus J

    2018-01-01

    Transfusion of blood products and mechanical ventilation with injurious settings are considered risk factors for postoperative lung injury in surgical Patients. A systematic review and individual patient data meta-analysis was done to determine the independent effects of peri-operative transfusion of blood products, intra-operative tidal volume and airway pressure in adult patients undergoing mechanical ventilation for general surgery, as well as their interactions on the occurrence of postoperative acute respiratory distress syndrome (ARDS). Observational studies and randomized trials were identified by a systematic search of MEDLINE, CINAHL, Web of Science, and CENTRAL and screened for inclusion into a meta-analysis. Individual patient data were obtained from the corresponding authors. Patients were stratified according to whether they received transfusion in the peri-operative period [red blood cell concentrates (RBC) and/or fresh frozen plasma (FFP)], tidal volume size [≤7 mL/kg predicted body weight (PBW), 7-10 and >10 mL/kg PBW] and airway pressure level used during surgery (≤15, 15-20 and >20 cmH 2 O). The primary outcome was development of postoperative ARDS. Seventeen investigations were included (3,659 patients). Postoperative ARDS occurred in 40 (7.2%) patients who received at least one blood product compared to 40 patients (2.5%) who did not [adjusted hazard ratio (HR), 2.32; 95% confidence interval (CI), 1.25-4.33; P=0.008]. Incidence of postoperative ARDS was highest in patients ventilated with tidal volumes of >10 mL/kg PBW and having airway pressures of >20 cmH 2 O receiving both RBC and FFP, and lowest in patients ventilated with tidal volume of ≤7 mL/kg PBW and having airway pressures of ≤15 cmH 2 O with no transfusion. There was a significant interaction between transfusion and airway pressure level (P=0.002) on the risk of postoperative ARDS. Peri-operative transfusion of blood products is associated with an increased risk of postoperative ARDS, which seems more dependent on airway pressure than tidal volume size.

  1. a Study of a High Frequency Miniature Reservoir-Less Pulse Tube

    NASA Astrophysics Data System (ADS)

    Garaway, I.; Grossman, G.

    2008-03-01

    A miniature high frequency reservoir-less pulse tube cryocooler has been designed and tested in our laboratory. The cryocooler having a regenerator length of 12.0 mm and an overall volume of 2.3cc (excluding the compressor) reached a low temperature of 146K and provided 100mW of cooling at 160K. This experimental study shows that it is possible to miniaturize a pulse tube cryocooler to very short regenerator lengths by implementing a few basic principles: Most importantly, high operating frequencies at small tidal displacements, a regenerator matrix with small hydraulic diameters, and increased helium fill pressures. This study also shows that as the operating frequency of a miniature cryocooler increases, the reservoir becomes less necessary as a phase shifting device. At higher frequencies and appropriate inertance tube geometries, the impedance and capacitance of the inertance tube itself takes over the phase shifting task. An outline of the design and modeling principles is presented along with some details of the experimental apparatus and testing procedures.

  2. Ventilatory changes during the use of heat and moisture exchangers in patients submitted to mechanical ventilation with support pressure and adjustments in ventilation parameters to compensate for these possible changes: a self-controlled intervention study in humans.

    PubMed

    Lucato, Jeanette Janaina Jaber; Cunha, Thiago Marraccini Nogueira da; Reis, Aline Mela Dos; Picanço, Patricia Salerno de Almeida; Barbosa, Renata Cléia Claudino; Liberali, Joyce; Righetti, Renato Fraga

    2017-01-01

    To evaluate the possible changes in tidal volume, minute volume and respiratory rate caused by the use of a heat and moisture exchanger in patients receiving pressure support mechanical ventilation and to quantify the variation in pressure support required to compensate for the effect caused by the heat and moisture exchanger. Patients under invasive mechanical ventilation in pressure support mode were evaluated using heated humidifiers and heat and moisture exchangers. If the volume found using the heat and moisture exchangers was lower than that found with the heated humidifier, an increase in pressure support was initiated during the use of the heat and moisture exchanger until a pressure support value was obtained that enabled the patient to generate a value close to the initial tidal volume obtained with the heated humidifier. The analysis was performed by means of the paired t test, and incremental values were expressed as percentages of increase required. A total of 26 patients were evaluated. The use of heat and moisture exchangers increased the respiratory rate and reduced the tidal and minute volumes compared with the use of the heated humidifier. Patients required a 38.13% increase in pressure support to maintain previous volumes when using the heat and moisture exchanger. The heat and moisture exchanger changed the tidal and minute volumes and respiratory rate parameters. Pressure support was increased to compensate for these changes.

  3. Ventilatory changes during the use of heat and moisture exchangers in patients submitted to mechanical ventilation with support pressure and adjustments in ventilation parameters to compensate for these possible changes: a self-controlled intervention study in humans

    PubMed Central

    Lucato, Jeanette Janaina Jaber; da Cunha, Thiago Marraccini Nogueira; dos Reis, Aline Mela; Picanço, Patricia Salerno de Almeida; Barbosa, Renata Cléia Claudino; Liberali, Joyce; Righetti, Renato Fraga

    2017-01-01

    Objective To evaluate the possible changes in tidal volume, minute volume and respiratory rate caused by the use of a heat and moisture exchanger in patients receiving pressure support mechanical ventilation and to quantify the variation in pressure support required to compensate for the effect caused by the heat and moisture exchanger. Methods Patients under invasive mechanical ventilation in pressure support mode were evaluated using heated humidifiers and heat and moisture exchangers. If the volume found using the heat and moisture exchangers was lower than that found with the heated humidifier, an increase in pressure support was initiated during the use of the heat and moisture exchanger until a pressure support value was obtained that enabled the patient to generate a value close to the initial tidal volume obtained with the heated humidifier. The analysis was performed by means of the paired t test, and incremental values were expressed as percentages of increase required. Results A total of 26 patients were evaluated. The use of heat and moisture exchangers increased the respiratory rate and reduced the tidal and minute volumes compared with the use of the heated humidifier. Patients required a 38.13% increase in pressure support to maintain previous volumes when using the heat and moisture exchanger. Conclusion The heat and moisture exchanger changed the tidal and minute volumes and respiratory rate parameters. Pressure support was increased to compensate for these changes. PMID:28977257

  4. Tidal dissipation in the Moon. Learning from the "incorrect" frequency dependence measured by the LLR

    NASA Astrophysics Data System (ADS)

    Efroimsky, M.

    2012-09-01

    It was demonstrated back in 2001 that fitting of the LLR data results in the quality factor Q of the Moon scaling as the frequency ξ to a negative power [8]: Q ˜ ξp , where p = -0.19 . (1) At the same time, numerous measurements by various seismological teams agree on the exponent being positive, not negative [4]. The positive sign of the exponent stems also from geodetic measurements [1], and it finds its explanation within the theory of friction in minerals [5]. On all these grounds, the aforementioned finding by the LLR team appears to be implausible and to disagree with the conventional wisdom of solid state mechanics and seismology. A later reexamination in [9] rendered a less upsetting value, p = -0.09 , which was still negative and still seemed to contradict our knowledge of microphysical processes in solids. The authors later wrote [10]: "There is a weak dependence of tidal specific dissipation Q on period. The Q increases from ˜ 30 at a month to ˜ 35 at one year. Q for rock is expected to have a weak dependence on tidal period, but it is expected to decrease with period rather than increase. The frequency dependence of Q deserves further attention and should be improved." A possible explanation of this paradox comes from the observation that the LLR measurements provided information on the tidal and not seismic dissipation. The difference between these two processes comes from self-gravitation of the celestial body. To address the problem accurately, one has to calculate the tidal factors kl sin ɛl showing up in the Darwin-Kaula expansion for the tidal torque or force. Here kl is the degree-l Love number, while ɛl is the appropriate tidal lag. Sometimes sin ɛl is denoted with 1/Q , which is not recommended, because this notation does not distinguish between the tidal reaction appropriate to harmonics of different degree. This notation also puts one at risk of confusing the tidal damping with the seismic damping, two process that have much in common but are nevertheless different [2, 3]. The factors kl sin ɛl are functions of the tidal modes ωlmpq , where lmpq are integers used to number the modes. (The tidal modes can be either positive or negative, while the appropriate tidal forcing frequencies in the mantle, ξlmpq = | ωlmpq | , are positively defined.) So the lmpq term in the expansion of tide is proportional to kl(ωlmpq) sin ɛl(ωlmpq) . An accurate calculation demonstrates that for realistic rheologies the tidal factors kl sin ɛl have a maximum at a frequency, which is (for not too large bodies) about the inverse Maxwell time [2, 3]. In the zerofrequency limit, the factors go smoothly through nil and change their sign, a natural behaviour saving the theory from an infinite torque or force at a resonance crossing. As the small negative exponent was derived from LLR observations over periods of a month to a year, we see that the appropriate frequencies were close to or slightly below the frequency at which the factor k2 sin ɛ2 has its peak. Taken that the said frequency is not very different from the inverse Maxwell time, we estimate the typical viscosity η of the Lunar mantle as2 Such a low viscosity may indicate that the lower lunar mantle contains a high percentage of partial melt. This interpretation goes along with the model developed in [6] and advocated later in [8] and [10]. It also agrees with the recent model offered in [7].

  5. Tidal controls on earthquake size-frequency statistics

    NASA Astrophysics Data System (ADS)

    Ide, S.; Yabe, S.; Tanaka, Y.

    2016-12-01

    The possibility that tidal stresses can trigger earthquakes is a long-standing issue in seismology. Except in some special cases, a causal relationship between seismicity and the phase of tidal stress has been rejected on the basis of studies using many small events. However, recently discovered deep tectonic tremors are highly sensitive to tidal stress levels, with the relationship being governed by a nonlinear law according to which the tremor rate increases exponentially with increasing stress; thus, slow deformation (and the probability of earthquakes) may be enhanced during periods of large tidal stress. Here, we show the influence of tidal stress on seismicity by calculating histories of tidal shear stress during the 2-week period before earthquakes. Very large earthquakes tend to occur near the time of maximum tidal stress, but this tendency is not obvious for small earthquakes. Rather, we found that tidal stress controls the earthquake size-frequency statistics; i.e., the fraction of large events increases (i.e. the b-value of the Gutenberg-Richter relation decreases) as the tidal shear stress increases. This correlation is apparent in data from the global catalog and in relatively homogeneous regional catalogues of earthquakes in Japan. The relationship is also reasonable, considering the well-known relationship between stress and the b-value. Our findings indicate that the probability of a tiny rock failure expanding to a gigantic rupture increases with increasing tidal stress levels. This finding has clear implications for probabilistic earthquake forecasting.

  6. Tidal currents and Kuroshio transport variations in the Tokara Strait estimated from ferryboat ADCP data

    NASA Astrophysics Data System (ADS)

    Zhu, Xiao-Hua; Nakamura, Hirohiko; Dong, Menghong; Nishina, Ayako; Yamashiro, Toru

    2017-03-01

    From 2003 to 2011, current surveys, using an acoustic Doppler current profiler (ADCP) mounted on the Ferry Naminoue, were conducted across the Tokara Strait (TkS). Resulting velocity sections (1234) were used to estimate major tidal current constituents in the TkS. The semidiurnal M2 tidal current (maximum amplitude 27 cm s-1) was dominant among all the tidal constituents, and the diurnal K1 tidal current (maximum amplitude 21 cm s-1) was the largest among all the diurnal tidal constituents. Over the section, the ratios, relative to M2, of averaged amplitudes of M2, S2, N2, K2, K1, O1, P1, and Q1 tidal currents were 1.00:0.44:0.21:0.12:0.56:0.33:0.14:0.10. Tidal currents estimated from the ship-mounted ADCP data were in good agreement with those from the mooring ADCP data. Their root-mean-square difference for the M2 tidal current amplitude was 2.0 cm s-1. After removing the tidal currents, the annual-mean of the net volume transport (NVT) through the TkS ± its standard derivation was 23.03 ± 3.31 Sv (Sv = 106 m3 s-1). The maximum (minimum) monthly mean NVT occurred in July (November) with 24.60 (21.47) Sv. NVT values from the ship-mounted ADCP were in good agreement with previous geostrophic volume transports calculated from conductivity temperature depth data, but the former showed much finer temporal structure than those from the geostrophic calculation.

  7. Breathing strategy of the adult horse (Equus caballus) at rest.

    PubMed

    Koterba, A M; Kosch, P C; Beech, J; Whitlock, T

    1988-01-01

    To investigate the mechanism underlying the polyphasic airflow pattern of the equine species, we recorded airflow, tidal volum, rib cage and abdominal motion, and the sequence of activation of the diaphragm, intercostal, and abdominal muscles during quiet breathing in nine adult horses standing at rest. In addition, esophageal, abdominal, and transdiaphragmatic pressures were simultaneously recorded using balloon-tipped catheters. Analysis of tidal flow-volume loops showed that, unlike humans, the horse at rest breathes around, rather than from, the relaxed volume of the respiratory system (Vrx). Analysis of the pattern of electromyographic activities and changes in generated pressures during the breathing cycle indicate that the first part of expiration is passive, as in humans, with deflation toward Vrx, but subsequent abdominal activity is responsible for a second phase of expiration: active deflation to below Vrx. From this end-expiratory volume, passive inflation occurs toward Vrx, followed by a second phase of inspiration: active inflation to above Vrx, brought about by inspiratory muscle contraction. Under these conditions the abdominal muscles appear to share the principal pumping duties with the diaphragm. Adoption of this breathing strategy by the horse may relate to its peculiar thoracoabdominal anatomic arrangement and to its very low passive chest wall compliance. We conclude that there is a passive and active phase to both inspiration and expiration due to the coordinated action of the respiratory pump muscles responsible for the resting adult horse's biphasic inspiratory and expiratory airflow pattern. This unique breathing pattern perhaps represents a strategy of minimizing the high elastic work of breathing in this species, at least at resting breathing frequencies.

  8. Predictive capabilities of preoperative and postoperative pulmonary function tests in delayed repair of congenital diaphragmatic hernia.

    PubMed

    Tracy, T F; Bailey, P V; Sadiq, F; Noguchi, A; Silen, M L; Weber, T R

    1994-02-01

    To improve the survival of newborns with congenital diaphragmatic hernia (CHD), preoperative stabilization with conventional ventilatory therapy and extracorporeal membrane oxygenation (ECMO) have been used. Measurements that quantify pulmonary function may allow an accurate assessment of lethal pulmonary hypoplasia and predict outcome. Pulmonary function tests (PFTs) were obtained in 20 infants preoperatively and postoperatively; these included measurements of compliance, dynamic compliance, and tidal volume. Overall survival was 75%. Six surviving infants were initially managed with ventilator therapy alone, followed by repair (group 1). The remaining 14 patients, who were moribund at presentation or whose initial ventilator therapy failed, were placed on ECMO and received repair during bypass; nine survived (group 2), and five died (group 3). Compliance, dynamic compliance, and tidal volume obtained at initial presentation and immediately preoperatively were significantly higher for group 1 as compared with groups 2 and 3. Infants whose initial compliance was greater than 0.25 mL/cm H2O/kg and initial tidal volume was greater than 3.5 mL/kg did not require ECMO. Ultimate improvement in compliance was noted in 5 of 6 patients in group 1, 8 of 8 patients in group 2, and 5 of 5 in group 3. This improvement followed an initial decline in compliance in 9 of 14 survivors, from 15% to 76%. All six patients in group 1 had tidal volumes of more than 4 mL/kg, as did 7 of 9 patients in group 2. Only one patient among the ECMO nonsurvivors (group 3) had a postoperative tidal volume of this magnitude. These data suggest that initial PFTs may predict which infants will require ECMO.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Noninvasive measurement of mean alveolar carbon dioxide tension and Bohr's dead space during tidal breathing.

    PubMed

    Koulouris, N G; Latsi, P; Dimitroulis, J; Jordanoglou, B; Gaga, M; Jordanoglou, J

    2001-06-01

    The lack of methodology for measuring the alveolar carbon dioxide tension (PA,CO2) has forced investigators to make several assumptions, such as that PA,CO2 is equal to end-tidal (PET,CO2) and arterial CO2 tension (Pa,CO2). The present study measured the mean PA,CO2 and Bohr's dead space ratio (Bohr's dead space/tidal volume (VD,Bohr/VT)) during tidal breathing. The method used is a new, simple and noninvasive technique, based on the analysis of the expired CO2 volume per breath (VCO2) versus the exhaled VT. This curve was analysed in 21 normal, healthy subjects and 35 chronic obstructive pulmonary disease (COPD) patients breathing tidally through a mouthpiece apparatus in the sitting position. It is shown that: 1) PA,CO2 is similar to Pa,CO2 in normal subjects, whilst it is significantly lower than Pa,CO2 in COPD patients; 2) PA,CO2 is significantly higher than PET,CO2 in all subjects, especially in COPD patients; 3) VD,Bohr/VT is increased in COPD patients as compared to normal subjects; and 4) VD,Bohr/VT is lower than the "physiological" dead space ratio (VD,phys/VT) in COPD patients. It is concluded that the expired carbon dioxide versus tidal volume curve is a useful tool for research and clinical work, because it permits the noninvasive and accurate measurement of Bohr's dead space and mean alveolar carbon dioxide tension accurately during spontaneous breathing.

  10. Emergent Tidal Resilience for Exomoons and Extrasolar Planets via the Increased Tidal Dissipation of the Andrade and Sundberg-Cooper Rheological Models

    NASA Astrophysics Data System (ADS)

    Renaud, J. P.; Henning, W. G.

    2017-11-01

    We find that an exomoon or exoplanet in an eccentric orbit will produce increased tidal dissipation compared to prior models, in certain temperature and frequency domains, when its interior is modeled with realistic rheologies.

  11. Non-Contact Detection of Breathing Using a Microwave Sensor

    PubMed Central

    Dei, Devis; Grazzini, Gilberto; Luzi, Guido; Pieraccini, Massimiliano; Atzeni, Carlo; Boncinelli, Sergio; Camiciottoli, Gianna; Castellani, Walter; Marsili, Massimo; Dico, Juri Lo

    2009-01-01

    In this paper the use of a continuous-wave microwave sensor as a non-contact tool for quantitative measurement of respiratory tidal volume has been evaluated by experimentation in seventeen healthy volunteers. The sensor working principle is reported and several causes that can affect its response are analyzed. A suitable data processing has been devised able to reject the majority of breath measurements taken under non suitable conditions. Furthermore, a relationship between microwave sensor measurements and volume inspired and expired at quiet breathing (tidal volume) has been found. PMID:22574033

  12. Water Stage Forecasting in Tidal streams during High Water Using EEMD

    NASA Astrophysics Data System (ADS)

    Chen, Yen-Chang; Kao, Su-Pai; Su, Pei-Yi

    2017-04-01

    There are so many factors may affect the water stages in tidal streams. Not only the ocean wave but also the stream flow affects the water stage in a tidal stream. During high water, two of the most important factors affecting water stages in tidal streams are flood and tide. However the hydrological processes in tidal streams during high water are nonlinear and nonstationary. Generally the conventional methods used for forecasting water stages in tidal streams are very complicated. It explains the accurately forecasting water stages, especially during high water, in tidal streams is always a difficult task. The study makes used of Ensemble Empirical Model Decomposition (EEMD) to analyze the water stages in tidal streams. One of the advantages of the EEMD is it can be used to analyze the nonlinear and nonstationary data. The EEMD divides the water stage into several intrinsic mode functions (IMFs) and a residual; meanwhile, the physical meaning still remains during the process. By comparing the IMF frequency with tidal frequency, it is possible to identify if the IMF is affected by tides. Then the IMFs is separated into two groups, affected by tide or not by tide. The IMFs in each group are assembled to become a factor. Therefore the water stages in tidal streams are only affected by two factors, tidal factor and flood factor. Finally the regression analysis is used to establish the relationship between the factors of the gaging stations in the tidal stream. The available data during 15 typhoon periods of the Tanshui River whose downstream reach is in estuary area is used to illustrate the accuracy and reliability of the proposed method. The results show that the simple but reliable method is capable of forecasting water stages in tidal streams.

  13. Tidal Wave Reflectance, Evolution and Distortion in Elkhorn Slough, CA

    DTIC Science & Technology

    2013-03-01

    School O1 Lunisolar diurnal Tidal Constituent ONR Office of Naval Research p Pressure Rhfm High-Frequency Motion Tidal Reflection Coefficient RIVET ...2012 an experiment at the New River Inlet, known as the River and Inlet Dynamics experiment ( RIVET ) was conducted. RIVET 2 is currently scheduled for

  14. Continental-Margin Processes Recorded in Shelf and Canyon Sediments. Sediment Deposition, Erosion and Accumulation on a Tidal Flat Adjacent to a River Mouth

    DTIC Science & Technology

    2007-01-01

    to the formation and preservation of sedimentary strata in the seabed. The goal of the tidal-flats project during the first year was to help plan ...publish the STRATAFORM Master Volume (results are summarized under Work Completed); and 3) help with planning the Tidal Flats DRI (results are... Plan (White Paper), negotiating with Korean scientists about a modified study in Korea, and helping to identify and explore US tidal flats for

  15. Development of a new model for short period ocean tidal variations of Earth rotation

    NASA Astrophysics Data System (ADS)

    Schuh, Harald

    2015-08-01

    Within project SPOT (Short Period Ocean Tidal variations in Earth rotation) we develop a new high frequency Earth rotation model based on empirical ocean tide models. The main purpose of the SPOT model is its application to space geodetic observations such as GNSS and VLBI.We consider an empirical ocean tide model, which does not require hydrodynamic ocean modeling to determine ocean tidal angular momentum. We use here the EOT11a model of Savcenko & Bosch (2012), which is extended for some additional minor tides (e.g. M1, J1, T2). As empirical tidal models do not provide ocean tidal currents, which are re- quired for the computation of oceanic relative angular momentum, we implement an approach first published by Ray (2001) to estimate ocean tidal current veloci- ties for all tides considered in the extended EOT11a model. The approach itself is tested by application to tidal heights from hydrodynamic ocean tide models, which also provide tidal current velocities. Based on the tidal heights and the associated current velocities the oceanic tidal angular momentum (OTAM) is calculated.For the computation of the related short period variation of Earth rotation, we have re-examined the Euler-Liouville equation for an elastic Earth model with a liquid core. The focus here is on the consistent calculation of the elastic Love num- bers and associated Earth model parameters, which are considered in the Euler- Liouville equation for diurnal and sub-diurnal periods in the frequency domain.

  16. Clinical Practice Guideline of Acute Respiratory Distress Syndrome

    PubMed Central

    Cho, Young-Jae; Moon, Jae Young; Shin, Ein-Soon; Kim, Je Hyeong; Jung, Hoon; Park, So Young; Kim, Ho Cheol; Sim, Yun Su; Rhee, Chin Kook; Lim, Jaemin; Lee, Seok Jeong; Lee, Won-Yeon; Lee, Hyun Jeong; Kwak, Sang Hyun; Kang, Eun Kyeong; Chung, Kyung Soo

    2016-01-01

    There is no well-stated practical guideline for mechanically ventilated patients with or without acute respiratory distress syndrome (ARDS). We generate strong (1) and weak (2) grade of recommendations based on high (A), moderate (B) and low (C) grade in the quality of evidence. In patients with ARDS, we recommend low tidal volume ventilation (1A) and prone position if it is not contraindicated (1B) to reduce their mortality. However, we did not support high-frequency oscillatory ventilation (1B) and inhaled nitric oxide (1A) as a standard treatment. We also suggest high positive end-expiratory pressure (2B), extracorporeal membrane oxygenation as a rescue therapy (2C), and neuromuscular blockage for 48 hours after starting mechanical ventilation (2B). The application of recruitment maneuver may reduce mortality (2B), however, the use of systemic steroids cannot reduce mortality (2B). In mechanically ventilated patients, we recommend light sedation (1B) and low tidal volume even without ARDS (1B) and suggest lung protective ventilation strategy during the operation to lower the incidence of lung complications including ARDS (2B). Early tracheostomy in mechanically ventilated patients can be performed only in limited patients (2A). In conclusion, of 12 recommendations, nine were in the management of ARDS, and three for mechanically ventilated patients. PMID:27790273

  17. Lung gas volumes and expiratory time constant in immature newborn rabbits treated with natural or synthetic surfactant or detergents.

    PubMed

    Bongrani, S; Fornasier, M; Papotti, M; Razzetti, R; Robertson, B

    1994-01-01

    Immature newborn rabbits delivered at a gestational age of 27 days were tracheotomized and treated, via the tracheal cannula, with clinically recommended doses of natural or synthetic surfactant (Curosurf and Exosurf, respectively). Littermates received 0.1% tyloxapol, 5% Tween 20, or saline. The dose volume of Curosurf was 2.5 ml/kg, that of the other materials 5 ml/kg. Animals were kept in a multiplethysmograph system and ventilated for 30 min with a standardized sequence of insufflation pressures. End-expiratory lung gas volume was calculated at the end of the experiment from measurements of lung weight and total lung volume. Tidal volumes were significantly improved in all groups of animals receiving surfactant or detergents. However, expiratory time constant (determined from the tidal volume tracing) was significantly longer, and end-expiratory gas volume significantly larger, in animals treated with Curosurf than in those receiving Exosurf or detergents. These differences were confirmed by semiquantitative evaluation of alveolar air expansion in histological sections. In addition, airway epithelial necrosis was reduced in animals receiving Curosurf, Exosurf, or Tween 20, but not in animals treated with tyloxapol. The discrepancy between improvements in tidal volume, expiratory time constant, and end-expiratory gas volume reflects failure of lung stabilization in animals treated with Exosurf or detergents, probably due to absence of specific hydrophobic proteins in the synthetic products.

  18. Diaphragm electrical activity during negative lower torso pressure in quadriplegic men.

    PubMed

    Banzett, R B; Inbar, G F; Brown, R; Goldman, M; Rossier, A; Mead, J

    1981-09-01

    We recorded the diaphragm electromyogram (EMG) of quadriplegic men before and during exposure of the lower torso to continuous negative pressure, which caused shortening of the inspiratory muscles by expanding the respiratory system by one tidal volume. The moving-time-averaged diaphragm EMG was larger during expansion of the respiratory system. When we repeated the experiment with subjects who breathed through a mouthpiece, we found qualitatively similar EMG changes and little or no change in tidal volume or end-tidal CO2 partial pressure. When the pressure was applied or removed rapidly, changes in EMG occurred within one or two breaths. Because end-tidal CO2 partial pressure did not increase, and because the response was rapid, we suggest that the response results from proprioceptive, rather than chemoreceptive, reflexes. As most of these men had complete spinal lesions at C6 or C7 the afferent pathways are likely to be vagal or phrenic.

  19. The performances of standard and ResMed masks during bag-valve-mask ventilation.

    PubMed

    Lee, Hyoung Youn; Jeung, Kyung Woon; Lee, Byung Kook; Lee, Seung Joon; Jung, Yong Hun; Lee, Geo Sung; Min, Yong Il; Heo, Tag

    2013-01-01

    A tight mask seal is frequently difficult to obtain and maintain during single-rescuer bag-valve-mask (BVM) ventilation. The ResMed mask (Bella Vista, NSW, Australia) is a continuous-positive-airway-pressure mask (CM) designed for noninvasive ventilation. In this study, we compared the ventilation performances of a standard mask (SM) and a ResMed CM using a simulation manikin in an out-of-hospital single-rescuer BVM ventilation scenario. Thirty emergency medical technicians (EMTs) performed two 2-minute attempts to ventilate a simulation manikin using BVM ventilation, alternatively, with the SM or the ResMed CM in a randomized order. Ventilation parameters including tidal volume and peak airway pressure were measured using computer analysis software connected to the simulation manikin. Successful volume delivery was defined as delivery of 440-540 mL of tidal volume in accord with present cardiopulmonary resuscitation guidelines. BVM ventilation using the ResMed CM produced higher mean (± standard deviation) tidal volumes (452 ± 50 mL vs. 394 ± 113 mL, p = 0.014) and had a higher proportion of successful volume deliveries (65.3% vs. 26.7%, p < 0.001) than that using the SM. Peak airway pressure was higher in BVM ventilation using the ResMed CM (p = 0.035). Stomach insufflation did not occur during either method. Twenty-nine of the participants (96.7%) preferred BVM ventilation using the ResMed CM. BVM ventilations using ResMed CM resulted in a significantly higher proportion of successful volume deliveries meeting the currently recommended range of tidal volume. Clinical studies are needed to determine the value of the ResMed CM for BVM ventilation.

  20. Modeling the tides of Massachusetts and Cape Cod Bays

    USGS Publications Warehouse

    Jenter, H.L.; Signell, R.P.; Blumberg, A.F.; ,

    1993-01-01

    A time-dependent, three-dimensional numerical modeling study of the tides of Massachusetts and Cape Code Bays, motivated by construction of a new sewage treatment plant and ocean outfall for the city of Boston, has been undertaken by the authors. The numerical model being used is a hybrid version of the Blumberg and Mellor ECOM3D model, modified to include a semi-implicit time-stepping scheme and transport of a non-reactive dissolved constituent. Tides in the bays are dominated by the semi-diurnal frequencies, in particular by the M2 tide, due to the resonance of these frequencies in the Gulf of Maine. The numerical model reproduces, well, measured tidal ellipses in unstratified wintertime conditions. Stratified conditions present more of a problem because tidal-frequency internal wave generation and propagation significantly complicates the structure of the resulting tidal field. Nonetheless, the numerical model reproduces qualitative aspects of the stratified tidal flow that are consistent with observations in the bays.

  1. On the natural frequency of tidal current power systems—A discussion of sea testing

    NASA Astrophysics Data System (ADS)

    Li, Ye; Yi, Jin-Hak; Song, Huimin; Wang, Qi; Yang, Zhaoqing; Kelley, Neil D.; Lee, Kwang-Soo

    2014-07-01

    To study the wet natural frequency (in water) and dry natural frequency (in air) of a tidal current turbine, we conducted a two-year measurement campaign by deploying a full-scale prototype of the system. In this article, a theoretical model is developed and validated with the frequency measurements. It reveals the measured wet natural frequency of the system could approach half that of the dry one. The measurements also show that inflow turbulence is very important in the excitation of system resonances that can lead to system failure. We also briefly discuss how the wet frequency varies over a long period.

  2. Lunar and Solar Torques on the Oceanic Tides

    NASA Technical Reports Server (NTRS)

    Ray, Richard D.; Bills, Bruce G.; Chao, Benjamin F.

    1998-01-01

    Brosche and Seiler recently suggested that direct lunar and solar tidal torques on the oceanic tides play a significant role in the earth's short-period angular momentum balance ("short-period" here meaning daily and sub-daily). We reexamine that suggestion here, concentrating on axial torques and hence on variations in rotation rate. Only those spherical harmonic components of the ocean tide having the same degree and order as the tidal potential induce nonzero torques. Prograde components (those moving in the same direction as the tide-generating body) produce the familiar secular braking of the earth's rotation. Retrograde components, however, produce rapid variations in UTI at twice the tidal frequency. There also exist interaction torques between tidal constituents, e.g. solar torques on lunar tides. They generate UTI variations at frequencies equal to the sums and differences of the original tidal frequencies. We give estimates of the torques and angular momentum variations for each of the important regimes, secular to quarter-diurnal. For the M(sub 2) potential acting on the M(sub 2) ocean tide, we find an associated angular momentum variation of amplitude 3 x 10(exp 19) N m. This is 5 to 6 orders of magnitude smaller than the angular momentum variations associated with tidal currents. We conclude that these torques do not play a significant role in the short-period angular momentum balance.

  3. Continuous distributions of specific ventilation recovered from inert gas washout

    NASA Technical Reports Server (NTRS)

    Lewis, S. M.; Evans, J. W.; Jalowayski, A. A.

    1978-01-01

    A new technique is described for recovering continuous distributions of ventilation as a function of tidal ventilation/volume ratio from the nitrogen washout. The analysis yields a continuous distribution of ventilation as a function of tidal ventilation/volume ratio represented as fractional ventilations of 50 compartments plus dead space. The procedure was verified by recovering known distributions from data to which noise had been added. Using an apparatus to control the subject's tidal volume and FRC, mixed expired N2 data gave the following results: (a) the distributions of young, normal subjects were narrow and unimodal; (b) those of subjects over age 40 were broader with more poorly ventilated units; (c) patients with pulmonary disease of all descriptions showed enlarged dead space; (d) patients with cystic fibrosis showed multimodal distributions with the bulk of the ventilation going to overventilated units; and (e) patients with obstructive lung disease fell into several classes, three of which are illustrated.

  4. Assessment of regional ventilation and deformation using 4D-CT imaging for healthy human lungs during tidal breathing

    PubMed Central

    Jahani, Nariman; Choi, Jiwoong; Iyer, Krishna; Hoffman, Eric A.

    2015-01-01

    This study aims to assess regional ventilation, nonlinearity, and hysteresis of human lungs during dynamic breathing via image registration of four-dimensional computed tomography (4D-CT) scans. Six healthy adult humans were studied by spiral multidetector-row CT during controlled tidal breathing as well as during total lung capacity and functional residual capacity breath holds. Static images were utilized to contrast static vs. dynamic (deep vs. tidal) breathing. A rolling-seal piston system was employed to maintain consistent tidal breathing during 4D-CT spiral image acquisition, providing required between-breath consistency for physiologically meaningful reconstructed respiratory motion. Registration-derived variables including local air volume and anisotropic deformation index (ADI, an indicator of preferential deformation in response to local force) were employed to assess regional ventilation and lung deformation. Lobar distributions of air volume change during tidal breathing were correlated with those of deep breathing (R2 ≈ 0.84). Small discrepancies between tidal and deep breathing were shown to be likely due to different distributions of air volume change in the left and the right lungs. We also demonstrated an asymmetric characteristic of flow rate between inhalation and exhalation. With ADI, we were able to quantify nonlinearity and hysteresis of lung deformation that can only be captured in dynamic images. Nonlinearity quantified by ADI is greater during inhalation, and it is stronger in the lower lobes (P < 0.05). Lung hysteresis estimated by the difference of ADI between inhalation and exhalation is more significant in the right lungs than that in the left lungs. PMID:26316512

  5. Risk factors of bronchial hyperresponsiveness in children with wheezing-associated respiratory infection.

    PubMed

    Futrakul, Sitthivuddhi; Deerojanawong, Jitladda; Prapphal, Nuanchan

    2005-07-01

    The objectives of this study were to identify possible risk factors of bronchial hyperesponsiveness (BHR) in children up to 5 years of age with wheezing-associated respiratory infection (WARI), and to study the prevalence of BHR. Children up to 5 years of age with WARI were enrolled in the study. The parents or caregivers of children were asked about their demographic data and clinical histories. Physical examination and clinical score assessment were performed. Pulmonary function tests, i.e., tidal breathing flow volume (TBFV), were performed to measure tidal breathing parameters before and after salbutamol nebulization. If volume at peak tidal expiratory flow/expiratory tidal volume and time to peak expiratory flow/total expiratory time increased > or = 20%, or tidal expiratory flow at 25% of tidal volume/peak tidal expiratory flow increased > or = 20% after nebulization therapy, BHR was diagnosed. The number in the positive BHR group was used to calculate the prevalence of BHR, and clinical features were compared with those of the negative BHR group. Categorical data were analyzed for statistical significance (P < 0.05) by chi-square test or Fisher's exact test, or Student's t-test, as appropriate. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated for those with statistical significance. One hundred and six wheezing children underwent pulmonary function tests before and after salbutamol nebulization. With the aforementioned criteria, 41 cases (38.7%) were diagnosed with BHR. History of reactive airway disease, (OR, 6.31; 95% CI, 1.68-25), maternal history of asthma (OR, 3.45; 95% CI, 1.34-9), breastfeeding less than 3 months (OR, 3.18; 95% CI, 1.26-8.12), and passive smoking (OR, 3; 95% CI, 1.15-7.62) were significant risk factors of BHR. The eosinophil count was significantly higher in the BHR (+) group particularly, in children 1-5 years of age (P < or = 0.01). Patchy infiltrates were more commonly found in patients with negative BHR but not statistically significant. In conclusion, a history of reactive airway disease, maternal history, breastfeeding less than 3 months, and passive smoking were significant risk factors for BHR. Copyright 2005 Wiley-Liss, Inc.

  6. Effects of increasing seawater circulation by tidal power plant operation on the water quality in the Shihwa coastal reservoir, Republic of Korea

    NASA Astrophysics Data System (ADS)

    Lee, B. Y.; Lee, C. H.; KIm, K. T.

    2016-02-01

    Since 2012 to present, the Tidal Power Plant (TPP) has been operated in Shihwa Coastal Reservoir (SCR) to improve the water quality. The tidal mixing volume increased about 5 times from 0.03 to 0.16 billion ton/day which represents about 50% of the SCR water volume. Water quality monitoring data showed that it break a strong stratification and hypoxia (≤3 mg/L Dissolved Oxygen) during summer season in main tidal channel. In addition, Total Phosphorus (TP), Total Nitrogen (TN) and Chemical Oxygen Demand concentrations in the main tidal channel reached to similar level with outside SCR concentrations. However, inner area with limited tidal mixing has not experienced improvement in TN and TP concentrations after the TPP operation. Trophic State Index (TSI) which was composite index of trophic condition also kept high score (>50) and remained in eutrophic state especially in summer season. Overall, an increase of seawater circulation has a positive effect on water quality in main tidal channel but not in inner area because of limited seawater mixing and effects of stormwater runoff. The stormwater runoff should be properly managed in this case because most point source pollution load is discharged outside of SCR. Acknowledgement : This research was a part of the project titled 'Development of integrated estuarine management system', funded by the Ministry of Oceans and Fisheries, Korea

  7. Alveolar edema dispersion and alveolar protein permeability during high volume ventilation: effect of positive end-expiratory pressure.

    PubMed

    de Prost, Nicolas; Roux, Damien; Dreyfuss, Didier; Ricard, Jean-Damien; Le Guludec, Dominique; Saumon, Georges

    2007-04-01

    To evaluate whether PEEP affects intrapulmonary alveolar edema liquid movement and alveolar permeability to proteins during high volume ventilation. Experimental study in an animal research laboratory. 46 male Wistar rats. A (99m)Tc-labeled albumin solution was instilled in a distal airway to produce a zone of alveolar flooding. Conventional ventilation (CV) was applied for 30 min followed by various ventilation strategies for 3 h: CV, spontaneous breathing, and high volume ventilation with different PEEP levels (0, 6, and 8 cmH(2)O) and different tidal volumes. Dispersion of the instilled liquid and systemic leakage of (99m)Tc-albumin from the lungs were studied by scintigraphy. The instillation protocol produced a zone of alveolar flooding that stayed localized during CV or spontaneous breathing. High volume ventilation dispersed alveolar liquid in the lungs. This dispersion was prevented by PEEP even when tidal volume was the same and thus end-inspiratory pressure higher. High volume ventilation resulted in the leakage of instilled (99m)Tc-albumin from the lungs. This increase in alveolar albumin permeability was reduced by PEEP. Albumin permeability was more affected by the amplitude of tidal excursions than by overall lung distension. PEEP prevents the dispersion of alveolar edema liquid in the lungs and lessens the increase in alveolar albumin permeability due to high volume ventilation.

  8. (abstract) Effect of Long Period Ocean Tides on the Earth's Rotation

    NASA Technical Reports Server (NTRS)

    Gross, R. S.; Chao, B. F.; Desai, S.

    1996-01-01

    The second-degree zonal tide raising potential, which is responsible for tidal changes in the Earth's rotation rate and length-of-day, is symmetric about the polar axis and hence can excite the Earth's polar motion only through its action upon nonaxisymmetric features of the Earth such as the oceans. Ocean tidal excitation of polar motion in the diurnal and semidiurnal tidal bands has been previously detected and extensively examined. Here, the detection of ocean tidal excitation of polar motion in the long-period tidal band, specifically at the Mf' (13.63-day) and Mf (13.66-day) tidal frequencies, is reported.

  9. Postoperative Pulmonary Atelectasis and Collapse, and its Prophylaxis with Intravenous Bicarbonate

    PubMed Central

    O'Driscoll, M.

    1970-01-01

    Of 181 patients undergoing major abdominal surgery 116 developed chest complications associated with a metabolic acidosis, low Pco2, depressed tidal volume, increased respiratory rate, but no increase in minute volume. In a matched group of 116 patients given intravenous bicarbonate postoperatively only 15 developed chest complications. This suggests that respiratory physiological dead space decreases in patients with pulmonary collapse and atelectasis following surgery. Acidotic respiration proved inefficient in the postoperative period, and intravenous bicarbonate had a very pronounced effect on the tidal and minute volumes of acidotic patients with pulmonary collapse and atelectasis. PMID:5470431

  10. Non-invasive measurement of the mean alveolar O(2) tension from the oxygen uptake versus tidal volume curve.

    PubMed

    Jordanoglou, J; Latsi, P; Chroneou, A; Koulouris, N G

    2007-10-01

    The classical equations for measuring the mean and the ideal alveolar O(2) tension are based on assumptions, which are shown to be invalid. So we thought to develop a new, non-invasive method for measuring the mean alveolar P,O(2) within the volume domain (PA,O(2(Bohr))). This method is based on the oxygen uptake vs. tidal volume curve (VO(2) vs. VT) obtained during tidal breathing of room air and/or air enriched with oxygen. PA,O(2(Bohr)) and the ideal alveolar PO(2) (PA,O(2(ideal))) were simultaneously measured in 10 healthy subjects and 34 patients suffering from chronic obstructive pulmonary disease (COPD) breathing tidally room air at rest. Additionally, 10 subjects (three healthy subjects and seven COPD patients) were studied while breathing initially room air and subsequently air enriched with oxygen. According to the results, PA,O(2(Bohr)) considerably differed from PA,O(2(ideal)) (P = 0.004). The cause of the difference, at the individual's R, is: (1) the difference between the arterial and Bohr's alveolar CO(2) tension, mainly in COPD patients, and (2) the inequality between Bohr's alveolar part of the tidal volume for CO(2) and O(2). Furthermore, end-tidal gas tension (PET,CO(2) and PET,O(2)) differed from Pa,CO(2) and PA,O(2(Bohr)) respectively. The deviation of PA,O(2(Bohr)) from PA,O(2(ideal)) has a definite impact on Bohr's dead space ratio for O(2) and CO(2), and on the alveolar-arterial O(2) difference. The difference (PA,O(2(Bohr)) - PA,O(2(ideal))) is not related to the pathology of the disease. So, gas exchange within the lungs should be assessed at the subject's R from PA,O(2(Bohr)) and PA,CO(2(Bohr)) but not from PA,O(2(ideal)) nor Pa,CO(2).

  11. Alveolar Tidal recruitment/derecruitment and Overdistension During Four Levels of End-Expiratory Pressure with Protective Tidal Volume During Anesthesia in a Murine Lung-Healthy Model.

    PubMed

    Soares, Joao Henrique Neves; Carvalho, Alysson Roncally; Bergamini, Bruno Curty; Gress, Maria Alice Kuster; Jandre, Frederico Caetano; Zin, Walter Araujo; Giannella-Neto, Antonio

    2018-06-01

    We compared respiratory mechanics between the positive end-expiratory pressure of minimal respiratory system elastance (PEEP minErs ) and three levels of PEEP during low-tidal-volume (6 mL/kg) ventilation in rats. Twenty-four rats were anesthetized, paralyzed, and mechanically ventilated. Airway pressure (P aw ), flow (F), and volume (V) were fitted by a linear single compartment model (LSCM) P aw (t) = E rs  × V(t) + R rs  × F(t) + PEEP or a volume- and flow-dependent SCM (VFDSCM) P aw (t) = (E 1  + E 2  × V(t)) × V(t) + (K 1  + K 2  × |F(t)|) × F(t) + PEEP, where E rs and R rs are respiratory system elastance and resistance, respectively; E 1 and E 2 × V are volume-independent and volume-dependent E rs , respectively; and K 1 and K 2  × F are flow-independent and flow-dependent R rs , respectively. Animals were ventilated for 1 h at PEEP 0 cmH 2 O (ZEEP); PEEP minErs ; 2 cmH 2 O above PEEP minErs (PEEP minErs+2 ); or 4 cmH 2 O above PEEP minErs (PEEP minErs+4 ). Alveolar tidal recruitment/derecruitment and overdistension were assessed by the index %E 2  = 100 × [(E 2  × V T )/(E 1  + |E 2 | × V T )], and alveolar stability by the slope of E rs (t). %E 2 varied between 0 and 30% at PEEP minErs in most respiratory cycles. Alveolar Tidal recruitment/derecruitment (%E 2  < 0) and overdistension (%E 2  > 30) were predominant in the absence of PEEP and in PEEP levels higher than PEEP minErs , respectively. The slope of E rs (t) was different from zero in all groups besides PEEP minErs+4 . PEEP minErs presented the best compromise between alveolar tidal recruitment/derecruitment and overdistension, during 1 h of low-V T mechanical ventilation.

  12. Water Resources Data, New Jersey, Water Year 2003; Volume 1. Surface-Water Data

    USGS Publications Warehouse

    Reed, T.J.; White, B.T.; Centinaro, G.L.; Dudek, J.F.; Protz, A.R.; Shvanda, J.C.; Watson, A.F.

    2004-01-01

    Water-resources data for the 2003 Water Year for New Jersey are presented in three volumes, and consists of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality of ground water. Volume 1 contains discharge records for 100 gaging stations; tide summaries at 29 tidal gaging stations; and stage and contents at 39 lakes and reservoirs. Also included are stage and discharge for 106 crest-stage partial-record stations, stage-only at 33 tidal crest-stage gages, and discharge for 142 low-flow partial- record stations. Locations of these sites are shown in figures 8-11. Additional discharge measurements were made at 143 miscellaneous sites that are not part of the systematic data-collection program. Discontinued station tables for gaging stations, crest-stage gages, tidal crest-stage and tidal gaging stations show historical coverage. The data in this report represent that part of the National Water Information System (NWIS) data collected by the United States Geological Survey (USGS). Hydrologic conditions are also described for this water year, including streamflow, precipitation, reservoir conditions, and air temperatures.

  13. Water resources data, New Jersey, water year 2005. Volume 1 - surface-water data

    USGS Publications Warehouse

    White, B.T.; Hoppe, H.L.; Centinaro, G.L.; Dudek, J.F.; Painter, B.S.; Protz, A.R.; Reed, T.J.; Shvanda, J.C.; Watson, A.F.

    2006-01-01

    Water-resources data for the 2005 water year for New Jersey are presented in three volumes, and consists of records of stage, discharge, and water-quality of streams; stage and contents of lakes and reservoirs; and water levels and water-quality of ground water. Volume 1 contains discharge records for 103 gaging stations; tide summaries at 28 tidal gaging stations; stage and contents at 34 lakes and reservoirs; and diversions from 50 surface-water sources. Also included are stage and discharge for 116 crest-stage partial-record stations, stage-only at 33 tidal crest-stage gages, and discharge for 155 low-flow partial-record stations. Locations of these sites are shown in figures 8-11. Additional discharge measurements were made at 222 miscellaneous sites that are not part of the systematic data-collection program. Discontinued station tables for gaging stations, crest-stage gages, tidal crest-stage and tidal gaging stations show historical coverage. The data in this report represent that part of the National Water Information System (NWIS) data collected by the United States Geological Survey (USGS). Hydrologic conditions are also described for this water year, including stream-flow, precipitation, reservoir conditions, and air temperatures.

  14. Water resources data, New Jersey, water year 2004-volume 1. surface-water data

    USGS Publications Warehouse

    Centinaro, G.L.; White, B.T.; Hoppe, H.L.; Dudek, J.F.; Protz, A.R.; Reed, T.J.; Shvanda, J.C.; Watson, A.F.

    2005-01-01

    Water-resources data for the 2004 water year for New Jersey are presented in three volumes, and consists of records of stage, discharge, and water-quality of streams; stage and contents of lakes and reservoirs; and water levels and water-quality of ground water. Volume 1 contains discharge records for 105 gaging stations; tide summaries at 27 tidal gaging stations; stage and contents at 39 lakes and reservoirs; and diversions from 51 surface-water sources. Also included are stage and discharge for 108 crest-stage partial-record stations, stage-only at 34 tidal crest-stage gages, and discharge for 124 low-flow partial-record stations. Locations of these sites are shown in figures 8-11. Additional discharge measurements were made at 131 miscellaneous sites that are not part of the systematic data-collection program. Discontinued station tables for gaging stations, crest-stage gages, tidal crest-stage and tidal gaging stations show historical coverage. The data in this report represent that part of the National Water Information System (NWIS) data collected by the United States Geological Survey (USGS). Hydrologic conditions are also described for this water year, including stream-flow, precipitation, reservoir conditions, and air temperatures.

  15. The dynamic tidal response of a subsurface ocean on Titan and the associated dissipative heat generated

    NASA Astrophysics Data System (ADS)

    Tyler, Robert

    2012-04-01

    The tidal flow response and associated dissipative heat generated in a satellite ocean depends strongly on the ocean configuration parameters as these parameters control the form and frequencies of the ocean's natural modes of oscillation; if there is a near match between the form and frequency of one of these natural modes and that of one of the available tidal forcing constituents, the ocean can be resonantly excited, producing strong tidal flow and appreciable dissipative heat. Of primary interest in this study are the ocean parameters that can be expected to evolve (notably, the ocean depth in an ocean attempting to freeze, and the stratification in an ocean attempting to cool) because this evolution can cause an ocean to be pushed into a resonant configuration where the increased dissipative heat of the resonant response halts further evolution and a liquid ocean can be maintained by ocean tidal heat. In this case the resonant ocean tidal response is not only allowed but may be inevitable. Previous work on this topic is extended to describe the resonant configurations in both unstratified and stratified cases for an assumed global ocean on Titan subject to both obliquity and eccentricity tidal forces. Results indicate first that the assumption of an equilibrium tidal response is not justified and the correct dynamical response must be considered. Second, the ocean tidal dissipation will be appreciable if the ocean configuration is near that producing a resonant state. The parameters values required for this resonance are provided in this study, and examples/movies of calculated ocean tidal flow are also presented.

  16. Intradaily variability of water quality in a shallow tidal lagoon: Mechanisms and implications

    USGS Publications Warehouse

    Lucas, L.V.; Sereno, D.M.; Burau, J.R.; Schraga, T.S.; Lopez, C.B.; Stacey, M.T.; Parchevsky, K.V.; Parchevsky, V.P.

    2006-01-01

    Although surface water quality and its underlying processes vary over time scales ranging from seconds to decades, they have historically been studied at the lower (weekly to interannual) frequencies. The aim of this study was to investigate intradaily variability of three water quality parameters in a small freshwater tidal lagoon (Mildred Island, California). High frequency time series of specific conductivity, water temperature, and chlorophyll a at two locations within the habitat were analyzed in conjunction with supporting hydrodynamic, meteorological, biological, and spatial mapping data. All three constituents exhibited large amplitude intradaily (e.g., semidiurnal tidal and diurnal) oscillations, and periodicity varied across constituents, space, and time. Like other tidal embayments, this habitat is influenced by several processes with distinct periodicities including physical controls, such as tides, solar radiation, and wind, and biological controls, such as photosynthesis, growth, and grazing. A scaling approach was developed to estimate individual process contributions to the observed variability. Scaling results were generally consistent with observations and together with detailed examination of time series and time derivatives, revealed specific mechanisms underlying the observed periodicities, including interactions between the tidal variability, heating, wind, and biology. The implications for monitoring were illustrated through subsampling of the data set. This exercise demonstrated how quantities needed by scientists and managers (e.g., mean or extreme concentrations) may be misrepresented by low frequency data and how short-duration high frequency measurements can aid in the design and interpretation of temporally coarser sampling programs. The dispersive export of chlorophyll a from the habitat exhibited a fortnightly variability corresponding to the modulation of semidiurnal tidal currents with the diurnal cycle of phytoplankton variability, demonstrating how high frequency interactions can govern long-term trends. Process identification, as through the scaling analysis here, can help us anticipate changes in system behavior and adapt our own interactions with the system. ?? 2006 Estuarine Research Federation.

  17. Lung-protective mechanical ventilation does not protect against acute kidney injury in patients without lung injury at onset of mechanical ventilation.

    PubMed

    Cortjens, Bart; Royakkers, Annick A N M; Determann, Rogier M; van Suijlen, Jeroen D E; Kamphuis, Stephan S; Foppen, Jannetje; de Boer, Anita; Wieland, Cathrien W; Spronk, Peter E; Schultz, Marcus J; Bouman, Catherine S C

    2012-06-01

    Preclinical and clinical studies suggest that mechanical ventilation contributes to the development of acute kidney injury (AKI), particularly in the setting of lung-injurious ventilator strategies. To determine whether ventilator settings in critically ill patients without acute lung injury (ALI) at onset of mechanical ventilation affect the development of AKI. Secondary analysis of a randomized controlled trial (N = 150), comparing conventional tidal volume (V(T), 10 mL/kg) with low tidal volume (V(T), 6 mL/kg) mechanical ventilation in critically ill patients without ALI at randomization. During the first 5 days of mechanical ventilation, the RIFLE class was determined daily, whereas neutrophil gelatinase-associated lipocalin and cystatin C levels were measured in plasma collected on days 0, 2, and 4. Eighty-six patients had no AKI at inclusion, and 18 patients (21%) subsequently developed AKI, but without significant difference between ventilation strategies. (Cumulative hazard, 0.26 vs 0.23; P = .88.) The courses of neutrophil gelatinase-associated lipocalin and cystatin C plasma levels did not differ significantly between randomization groups. In the present study in critically patients without ALI at onset of mechanical ventilation, lower tidal volume ventilation did not reduce the development or worsening of AKI compared with conventional tidal volume ventilation. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Brain stem serotonin protects blood pressure in neonatal rats exposed to episodic anoxia.

    PubMed

    Yang, Hsiao T; Cummings, Kevin J

    2013-12-01

    In neonatal rodents, a loss of brain stem serotonin [5-hydroxytryptamine (5-HT)] in utero or at birth compromises anoxia-induced gasping and the recovery of heart rate (HR) and breathing with reoxygenation (i.e., autoresuscitation). How mean arterial pressure (MAP) is influenced after an acute loss of brain stem 5-HT content is unknown. We hypothesized that a loss of 5-HT for ∼1 day would compromise MAP during episodic anoxia. We injected 6-fluorotryptophan (20 mg/kg ip) into rat pups (postnatal days 9-10 or 11-13, n = 22 treated, 24 control), causing a ∼70% loss of brain stem 5-HT. Pups were exposed to a maximum of 15 anoxic episodes, separated by 5 min of room air to allow autoresuscitation. In younger pups, we measured breathing frequency and tidal volume using "head-out" plethysmography and HR from the electrocardiogram. In older pups, we used whole body plethysmography to detect gasping, while monitoring MAP. Gasp latency and the time required for respiratory, HR, and MAP recovery following each episode were determined. Despite normal gasp latency, breathing frequency and a larger tidal volume (P < 0.001), 5-HT-deficient pups survived one-half the number of episodes as controls (P < 0.001). The anoxia-induced decrease in MAP experienced by 5-HT-deficient pups was double that of controls (P = 0.017), despite the same drop in HR (P = 0.48). MAP recovery was delayed ∼10 s by 5-HT deficiency (P = 0.001). Our data suggest a loss of brain stem 5-HT leads to a pronounced, premature loss of MAP in response to episodic anoxia. These data may help explain why some sudden infant death syndrome cases die from what appears to be cardiovascular collapse during apparent severe hypoxia.

  19. Ventilatory Responses During Submaximal Exercise in Children With Prader-Willi Syndrome.

    PubMed

    Hyde, Adam M; McMurray, Robert G; Chavoya, Frank A; Rubin, Daniela A

    2018-02-27

    Prader-Willi syndrome (PWS) is a genetic neurobehavioral disorder presenting hypothalamic dysfunction and adiposity. At rest, PWS exhibits hypoventilation with hypercapnia. We characterized ventilatory responses in children with PWS during exercise. Participants were children aged 7-12 years with PWS (n = 8) and without PWS with normal weight (NW; n = 9, body mass index ≤ 85th percentile) or obesity (n = 9, body mass index ≥ 95th percentile). Participants completed three 5-minute ambulatory bouts at 3.2, 4.0, and 4.8 km/h. Oxygen uptake, carbon dioxide output, ventilation, breathing frequency, and tidal volume were recorded. PWS had slightly higher oxygen uptake (L/min) at 3.2 km/h [0.65 (0.46-1.01) vs 0.49 (0.34-0.83)] and at 4.8 km/h [0.89 (0.62-1.20) vs 0.63 (0.45-0.97)] than NW. PWS had higher ventilation (L/min) at 3.2 km/h [16.2 (13.0-26.5) vs 11.5 (8.4-17.5)], at 4.0 km/h [16.4 (13.9-27.9) vs 12.7 (10.3-19.5)], and at 4.8 km/h [19.7 (17.4-31.8) vs 15.2 (9.5-21.6)] than NW. PWS had greater breathing frequency (breaths/min) at 3.2 km/h [38 (29-53) vs 29 (22-35)], at 4.0 km/h [39 (29-58) vs 29 (23-39)], and at 4.8 km/h [39 (33-58) vs 32 (23-42)], but similar tidal volume and ventilation/carbon dioxide output to NW. PWS did not show impaired ventilatory responses to exercise. Hyperventilation in PWS may relate to excessive neural stimulation and metabolic cost.

  20. Topography-coupled resonance between Mars normal-modes and the tidal force of the Phobos

    NASA Astrophysics Data System (ADS)

    Tian, Y.; Zheng, Y.

    2016-12-01

    Phobos is the largest moon of Mars. The gravity attraction of Phobos to Mars is a periodic force, which may excite seismic waves inside Mars. Since Phobos is below the synchronous orbit, its orbit is continuously decreasing due to the tidal effect. This will result in a monotonic increase in its orbital frequency, which may eventually intrude into the seismic normal-mode frequency range to cause resonance. The objective of this research is to investigate whether such a resonance phenomenon can occur and what the consequence is. As we know, resonance happens when the periodic tidal force has a similar frequency as that of martian normal modes. It can be shown that such a resonance will not occur if Mars is perfectly spherical because the tidal force can only excite modes of the same angular order. For the same angular order, the tidal force frequencies are always smaller than those of the normal modes. However, when we consider the effect of topography of Mars, the resonance can occur because of coupling of normal modes. We use numerical method to calculate when the resonance will occur. We firstly solve for the normal modes of Mars by idealizing it as a solid elastic sphere. At the second step, we calculate the excitation effect of gravitational force from Phobos on each individual normal mode. For example, the gravity tidal force F at L=5, m=5 F55 can excite a normal mode 0S5 which can be coupled to 0T2. The third step is to calculate the frequency that the resonance will happen. For example, when the rotation frequency of Phobos increase to 0.8 mRad/s, the tidal force at L=5, m=5 can reach 4mRad/s which is the eigen-frequency of 0T2. Since we have calculated the coupling factors between each individual mode, the amplitude coefficients can be solved by a linear equation. We can observe a 100 times of amplitude increase of mode 0T2, which convince us the resonance will happen. The resonance may cause large amplitude of ground vibration of Mars. From our calculation, when the resonance happen, the energy dissipation rate will be greatly increased, which will make Phobos falling much faster. Eventually, Phobos will hit Mars in a very short time. Our research may give us a new prospective on early formation of planets.

  1. Saline as a vehicle control does not alter ventilation in male CD-1 mice.

    PubMed

    Receno, Candace N; Glausen, Taylor G; DeRuisseau, Lara R

    2018-05-01

    Saline (0.9% NaCl) is used in clinical and research settings as a vehicle for intravenous drug administration. While saline is a standard control in mouse studies, there are reports of hyperchloremic metabolic acidosis in high doses. It remains unknown if metabolic acidosis occurs in mice and/or if compensatory increases in breathing frequency and tidal volume accompany saline administration. It was hypothesized that saline administration alters blood pH and the pattern of breathing in conscious CD-1 male mice exposed to air or hypoxia (10% O 2 , balanced N 2 ). Unrestrained barometric plethysmography was used to quantify breathing frequency (breaths/min; bpm), tidal volume (VT; mL/breath/10 g body weight (BW)), and minute ventilation (VE; mL/min/10 g BW) in two designs: (1) 11-week-old mice with no saline exposure (n = 11) compared to mice with 7 days of 0.9% saline administration (intraperitoneal, i.p.; 10 mL/kg body mass; n = 6). and (2) 17-week-old mice tested before (PRE) and after 1 day (POST1, n = 6) or 7 days (POST7, n = 5) of saline (i.p.; 10 mL/kg body mass). There were no differences when comparing frequency, VT, or VE between groups for either design with room air or hypoxia exposures. Hypoxia increased frequency, VT, and VE compared to room air. Moreover, conscious blood sampling showed no differences in pH, p a CO 2 , p aO2 , or HCO3- in mice without or with 7 days of saline. These findings reveal no differences in ventilation following 1 and/or 7 days of saline administration in mice. Therefore, the use of 0.9% saline as a control is supported for studies evaluating the control of breathing in mice. © 2018 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  2. Respiratory modulation of human autonomic function on Earth.

    PubMed

    Eckberg, Dwain L; Cooke, William H; Diedrich, André; Biaggioni, Italo; Buckey, Jay C; Pawelczyk, James A; Ertl, Andrew C; Cox, James F; Kuusela, Tom A; Tahvanainen, Kari U O; Mano, Tadaaki; Iwase, Satoshi; Baisch, Friedhelm J; Levine, Benjamin D; Adams-Huet, Beverley; Robertson, David; Blomqvist, C Gunnar

    2016-10-01

    We studied healthy supine astronauts on Earth with electrocardiogram, non-invasive arterial pressure, respiratory carbon dioxide concentrations, breathing depth and sympathetic nerve recordings. The null hypotheses were that heart beat interval fluctuations at usual breathing frequencies are baroreflex mediated, that they persist during apnoea, and that autonomic responses to apnoea result from changes of chemoreceptor, baroreceptor or lung stretch receptor inputs. R-R interval fluctuations at usual breathing frequencies are unlikely to be baroreflex mediated, and disappear during apnoea. The subjects' responses to apnoea could not be attributed to changes of central chemoreceptor activity (hypocapnia prevailed); altered arterial baroreceptor input (vagal baroreflex gain declined and muscle sympathetic nerve burst areas, frequencies and probabilities increased, even as arterial pressure climbed to new levels); or altered pulmonary stretch receptor activity (major breathing frequency and tidal volume changes did not alter vagal tone or sympathetic activity). Apnoea responses of healthy subjects may result from changes of central respiratory motoneurone activity. We studied eight healthy, supine astronauts on Earth, who followed a simple protocol: they breathed at fixed or random frequencies, hyperventilated and then stopped breathing, as a means to modulate and expose to view important, but obscure central neurophysiological mechanisms. Our recordings included the electrocardiogram, finger photoplethysmographic arterial pressure, tidal volume, respiratory carbon dioxide concentrations and peroneal nerve muscle sympathetic activity. Arterial pressure, vagal tone and muscle sympathetic outflow were comparable during spontaneous and controlled-frequency breathing. Compared with spontaneous, 0.1 and 0.05 Hz breathing, however, breathing at usual frequencies (∼0.25 Hz) lowered arterial baroreflex gain, and provoked smaller arterial pressure and R-R interval fluctuations, which were separated by intervals that were likely to be too short and variable to be attributed to baroreflex physiology. R-R interval fluctuations at usual breathing frequencies disappear during apnoea, and thus cannot provide evidence for the existence of a central respiratory oscillation. Apnoea sets in motion a continuous and ever changing reorganization of the relations among stimulatory and inhibitory inputs and autonomic outputs, which, in our study, could not be attributed to altered chemoreceptor, baroreceptor, or pulmonary stretch receptor activity. We suggest that responses of healthy subjects to apnoea are driven importantly, and possibly prepotently, by changes of central respiratory motoneurone activity. The companion article extends these observations and asks the question, Might terrestrial responses to our 20 min breathing protocol find expression as long-term neuroplasticity in serial measurements made over 20 days during and following space travel? Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  3. Respiratory modulation of human autonomic function on Earth

    PubMed Central

    Cooke, William H.; Diedrich, André; Biaggioni, Italo; Buckey, Jay C.; Pawelczyk, James A.; Ertl, Andrew C.; Cox, James F.; Kuusela, Tom A.; Tahvanainen, Kari U. O.; Mano, Tadaaki; Iwase, Satoshi; Baisch, Friedhelm J.; Levine, Benjamin D.; Adams‐Huet, Beverley; Robertson, David; Blomqvist, C. Gunnar

    2016-01-01

    Key points We studied healthy supine astronauts on Earth with electrocardiogram, non‐invasive arterial pressure, respiratory carbon dioxide concentrations, breathing depth and sympathetic nerve recordings.The null hypotheses were that heart beat interval fluctuations at usual breathing frequencies are baroreflex mediated, that they persist during apnoea, and that autonomic responses to apnoea result from changes of chemoreceptor, baroreceptor or lung stretch receptor inputs.R‐R interval fluctuations at usual breathing frequencies are unlikely to be baroreflex mediated, and disappear during apnoea.The subjects’ responses to apnoea could not be attributed to changes of central chemoreceptor activity (hypocapnia prevailed); altered arterial baroreceptor input (vagal baroreflex gain declined and muscle sympathetic nerve burst areas, frequencies and probabilities increased, even as arterial pressure climbed to new levels); or altered pulmonary stretch receptor activity (major breathing frequency and tidal volume changes did not alter vagal tone or sympathetic activity). Apnoea responses of healthy subjects may result from changes of central respiratory motoneurone activity. Abstract We studied eight healthy, supine astronauts on Earth, who followed a simple protocol: they breathed at fixed or random frequencies, hyperventilated and then stopped breathing, as a means to modulate and expose to view important, but obscure central neurophysiological mechanisms. Our recordings included the electrocardiogram, finger photoplethysmographic arterial pressure, tidal volume, respiratory carbon dioxide concentrations and peroneal nerve muscle sympathetic activity. Arterial pressure, vagal tone and muscle sympathetic outflow were comparable during spontaneous and controlled‐frequency breathing. Compared with spontaneous, 0.1 and 0.05 Hz breathing, however, breathing at usual frequencies (∼0.25 Hz) lowered arterial baroreflex gain, and provoked smaller arterial pressure and R‐R interval fluctuations, which were separated by intervals that were likely to be too short and variable to be attributed to baroreflex physiology. R‐R interval fluctuations at usual breathing frequencies disappear during apnoea, and thus cannot provide evidence for the existence of a central respiratory oscillation. Apnoea sets in motion a continuous and ever changing reorganization of the relations among stimulatory and inhibitory inputs and autonomic outputs, which, in our study, could not be attributed to altered chemoreceptor, baroreceptor, or pulmonary stretch receptor activity. We suggest that responses of healthy subjects to apnoea are driven importantly, and possibly prepotently, by changes of central respiratory motoneurone activity. The companion article extends these observations and asks the question, Might terrestrial responses to our 20 min breathing protocol find expression as long‐term neuroplasticity in serial measurements made over 20 days during and following space travel? PMID:27028958

  4. Protective mechanical ventilation in United Kingdom critical care units: A multicentre audit

    PubMed Central

    Martin, Matthew J; Richardson, Neil; Bourdeaux, Christopher P

    2016-01-01

    Lung protective ventilation is becoming increasingly used for all critically ill patients being mechanically ventilated on a mandatory ventilator mode. Compliance with the universal application of this ventilation strategy in intensive care units in the United Kingdom is unknown. This 24-h audit of ventilation practice took place in 16 intensive care units in two regions of the United Kingdom. The mean tidal volume for all patients being ventilated on a mandatory ventilator mode was 7.2(±1.4) ml kg−1 predicted body weight and overall compliance with low tidal volume ventilation (≤6.5 ml kg−1 predicted body weight) was 34%. The mean tidal volume for patients ventilated with volume-controlled ventilation was 7.0(±1.2) ml kg−1 predicted body weight and 7.9(±1.8) ml kg−1 predicted body weight for pressure-controlled ventilation (P < 0.0001). Overall compliance with recommended levels of positive end-expiratory pressure was 72%. Significant variation in practice existed both at a regional and individual unit level. PMID:28979556

  5. Protective mechanical ventilation in United Kingdom critical care units: A multicentre audit.

    PubMed

    Newell, Christopher P; Martin, Matthew J; Richardson, Neil; Bourdeaux, Christopher P

    2017-05-01

    Lung protective ventilation is becoming increasingly used for all critically ill patients being mechanically ventilated on a mandatory ventilator mode. Compliance with the universal application of this ventilation strategy in intensive care units in the United Kingdom is unknown. This 24-h audit of ventilation practice took place in 16 intensive care units in two regions of the United Kingdom. The mean tidal volume for all patients being ventilated on a mandatory ventilator mode was 7.2(±1.4) ml kg -1 predicted body weight and overall compliance with low tidal volume ventilation (≤6.5 ml kg -1 predicted body weight) was 34%. The mean tidal volume for patients ventilated with volume-controlled ventilation was 7.0(±1.2) ml kg -1 predicted body weight and 7.9(±1.8) ml kg -1 predicted body weight for pressure-controlled ventilation ( P  < 0.0001). Overall compliance with recommended levels of positive end-expiratory pressure was 72%. Significant variation in practice existed both at a regional and individual unit level.

  6. Respiratory system loop gain in normal men and women measured with proportional-assist ventilation.

    PubMed

    Wellman, Andrew; Malhotra, Atul; Fogel, Robert B; Edwards, Jill K; Schory, Karen; White, David P

    2003-01-01

    We hypothesized that increased chemical control instability (CCI) in men could partially explain the male predominance in obstructive sleep apnea (OSA). CCI was assessed by sequentially increasing respiratory control system loop gain (LG) with proportional-assist ventilation (PAV) in 10 men (age 24-48 yr) and 9 women (age 22-36 yr) until periodic breathing or awakening occurred. Women were studied in both the follicular and luteal phases of the menstrual cycle. The amount by which PAV amplified LG was quantified from the tidal volume amplification factor [(VtAF) assisted tidal volume/unassisted tidal volume]. LG was calculated as the inverse of the VtAF occurring at the assist level immediately preceding the emergence of periodic breathing (when LG x VtAF = 1). Only 1 of 10 men and 2 of 9 women developed periodic breathing with PAV. The rest were resistant to periodic breathing despite moderately high levels of PAV amplification. We conclude that LG is low in the majority of normal men and women and that higher volume amplification factors are needed to determine whether gender differences exist in this low range.

  7. Influence of gestational age on dead space and alveolar ventilation in preterm infants ventilated with volume guarantee.

    PubMed

    Neumann, Roland P; Pillow, Jane J; Thamrin, Cindy; Larcombe, Alexander N; Hall, Graham L; Schulzke, Sven M

    2015-01-01

    Ventilated preterm infant lungs are vulnerable to overdistension and underinflation. The optimal ventilator-delivered tidal volume (VT) in these infants is unknown and may depend on the extent of alveolarisation at birth. We aimed to calculate respiratory dead space (VD) from the molar mass (MM) signal of an ultrasonic flowmeter (VD,MM) in very preterm infants on volume-targeted ventilation (VT target, 4-5 ml/kg) and to study the association between gestational age (GA) and VD,MM-to-VT ratio (VD,MM/VT), alveolar tidal volume (VA) and alveolar minute volume (AMV). This was a single-centre, prospective, observational, cohort study in a neonatal intensive care unit. Tidal breathing analysis was performed in ventilated very preterm infants (GA range 23-32 weeks) on day 1 of life. Valid measurements were obtained in 43/51 (87%) infants. Tidal breathing variables were analysed using multivariable linear regression. VD,MM/VT was negatively associated with GA after adjusting for birth weight Z score (p < 0.001, R(2) = 0.26). This association was primarily influenced by the appliance dead space. Despite similar VT/kg and VA/kg across all studied infants, respiratory rate and AMV/kg increased with GA. VD,app rather than anatomical VD is the major factor influencing increased VD,MM/VT at a younger GA. A volume guarantee setting of 4-5 ml/kg in the Dräger Babylog® 8000 plus ventilator may be inappropriate as a universal target across the GA range of 23-32 weeks. Differences between measured and set VT and the dependence of this difference on GA require further investigation. © 2014 S. Karger AG, Basel.

  8. Respiratory Pattern and Tidal Volumes Differ for Pressure Support and Volume-assured Pressure Support in Amyotrophic Lateral Sclerosis.

    PubMed

    Nicholson, Trevor T; Smith, Sean B; Siddique, Teepu; Sufit, Robert; Ajroud-Driss, Senda; Coleman, John M; Wolfe, Lisa F

    2017-07-01

    Amyotrophic lateral sclerosis (ALS) is a progressive neuromuscular disease resulting in respiratory failure and death. Use of noninvasive ventilation (NIV) improves survival. However, use of volume-assured pressure support (VAPS) has not been extensively studied in ALS. To explore the clinical usefulness of a detailed evaluation of device-recorded NIV data in the management of chronic respiratory failure in ALS, and to determine whether there are differences in efficacy between patients using VAPS or PS. We performed a retrospective chart review of 271 patients with ALS using either PS or VAPS, along with an evaluation of device-recorded data to explore differences in attainment of goal tidal volumes (Vt) and ratio of respiratory rate to tidal volume (f/Vt), in addition to triggering and cycling ability. Two hundred and fifteen patients were using PS, while 56 were using VAPS. There were no significant differences in demographic data, symptoms, pulmonary function, or patient compliance. Compared with VAPS, achieved Vt was significantly lower for PS while f/Vt was significantly higher. Percent spontaneous triggering was relatively preserved in both cohorts, whereas percent spontaneous cycling was considerably decreased in both. Furthermore, there was no association found between spontaneous triggering or cycling, and pulmonary function, indicating the presence of low spontaneous breath cycling or triggering ability is difficult to predict. Examination of device data for exhaled tidal volumes and f/Vt may be of use in evaluating efficacy of NIV in ALS. VAPS provides more reliable goal Vt than does PS, and is associated with decreased f/Vt. Spontaneous cycling is decreased in ALS despite preservation of triggering ability. Although a set backup rate may address decreased triggering, perhaps more importantly, setting a sufficient fixed inspiratory time would address the issue of decreased cycling.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiely, J Blanco; Olszanski, A; Both, S

    Purpose: To develop a quantitative decision making metric for automatically detecting irregular breathing using a large patient population that received phase-sorted 4DCT. Methods: This study employed two patient cohorts. Cohort#1 contained 256 patients who received a phasesorted 4DCT. Cohort#2 contained 86 patients who received three weekly phase-sorted 4DCT scans. A previously published technique used a single abdominal surrogate to calculate the ratio of extreme inhalation tidal volume to normal inhalation tidal volume, referred to as the κ metric. Since a single surrogate is standard for phase-sorted 4DCT in radiation oncology clinical practice, tidal volume was not quantified. Without tidal volume,more » the absolute κ metric could not be determined, so a relative κ (κrel) metric was defined based on the measured surrogate amplitude instead of tidal volume. Receiver operator characteristic (ROC) curves were used to quantitatively determine the optimal cutoff value (jk) and efficiency cutoff value (τk) of κrel to automatically identify irregular breathing that would reduce the image quality of phase-sorted 4DCT. Discriminatory accuracy (area under the ROC curve) of κrel was calculated by a trapezoidal numeric integration technique. Results: The discriminatory accuracy of ?rel was found to be 0.746. The key values of jk and tk were calculated to be 1.45 and 1.72 respectively. For values of ?rel such that jk≤κrel≤τk, the decision to reacquire the 4DCT would be at the discretion of the physician. This accounted for only 11.9% of the patients in this study. The magnitude of κrel held consistent over 3 weeks for 73% of the patients in cohort#3. Conclusion: The decision making metric, ?rel, was shown to be an accurate classifier of irregular breathing patients in a large patient population. This work provided an automatic quantitative decision making metric to quickly and accurately assess the extent to which irregular breathing is occurring during phase-sorted 4DCT.« less

  10. Smart textile for respiratory monitoring and thoraco-abdominal motion pattern evaluation.

    PubMed

    Massaroni, Carlo; Venanzi, Cecilia; Silvatti, Amanda P; Lo Presti, Daniela; Saccomandi, Paola; Formica, Domenico; Giurazza, Francesco; Caponero, Michele A; Schena, Emiliano

    2018-05-01

    The use of wearable systems for monitoring vital parameters has gained wide popularity in several medical fields. The focus of the present study is the experimental assessment of a smart textile based on 12 fiber Bragg grating sensors for breathing monitoring and thoraco-abdominal motion pattern analysis. The feasibility of the smart textile for monitoring several temporal respiratory parameters (ie, breath-by-breath respiratory period, breathing frequency, duration of inspiratory and expiratory phases), volume variations of the whole chest wall and of its compartments is performed on 8 healthy male volunteers. Values gathered by the textile are compared to the data obtained by a motion analysis system, used as the reference instrument. Good agreement between the 2 systems on both respiratory period (bias of 0.01 seconds), breathing frequency (bias of -0.02 breaths/min) and tidal volume (bias of 0.09 L) values is demonstrated. Smart textile shows good performance in the monitoring of thoraco-abdominal pattern and its variation, as well. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Assessment of the effect of three-dimensional mantle density heterogeneity on earth rotation in tidal frequencies.

    PubMed

    Liu, Lanbo; Chao, Benjamin F; Sun, Wenke; Kuang, Weijia

    2016-11-01

    In this paper we report the assessment of the effect of the three-dimensional (3D) density heterogeneity in the mantle on Earth Orientation Parameters (EOP) (i.e., the polar motion, or PM, and the length of day, or LOD) in the tidal frequencies. The 3D mantle density model is estimated based upon a global S-wave velocity tomography model (S16U6L8) and the mineralogical knowledge derived from laboratory experiment. The lateral density variation is referenced against the Preliminary Reference Earth Model (PREM). Using this approach the effects of the heterogeneous mantle density variation in all three tidal frequencies (zonal long periods, tesseral diurnal, and sectorial semidiurnal) are estimated in both PM and LOD. When compared with mass or density perturbations originated on the earth's surface such as the oceanic and barometric changes, the heterogeneous mantle only contributes less than 10% of the total variation in PM and LOD in tidal frequencies. Nevertheless, including the 3D variation of the density in the mantle into account explained a substantial portion of the discrepancy between the observed signals in PM and LOD extracted from the lump-sum values based on continuous space geodetic measurement campaigns (e.g., CONT94) and the computed contribution from ocean tides as predicted by tide models derived from satellite altimetry observations (e.g., TOPEX/Poseidon). In other word, the difference of the two, at all tidal frequencies (long-periods, diurnals, and semi-diurnals) contains contributions of the lateral density heterogeneity of the mantle. Study of the effect of mantle density heterogeneity effect on torque-free earth rotation may provide useful constraints to construct the Reference Earth Model (REM), which is the next major objective in global geophysics research beyond PREM.

  12. Propagation of Tidal and Subtidal Free Surface Oscillations into River Channels from the South Atlantic Bight

    NASA Astrophysics Data System (ADS)

    Iyer, S. K.; Cloarec, M.; Yankovsky, A. E.

    2014-12-01

    Tidal sea level oscillations propagate from continental shelves into river channels in the form of long gravity waves well beyond the limits of salt intrusion. These dynamics were a focus of numerous recent studies, which led to the development of the "tidal river" concept. Subtidal oscillations in the "weather" frequency band (periods from a few days to a few weeks) can exhibit similar propagation upstream the river channel, but have so far attracted less attention from researchers. In this work, we analyze data obtained from USGS stream gauge stations at several rivers flowing into the South Atlantic Bight along with NOAA tide gauge stations located on the adjacent coastline. Subtidal free surface oscillations in river channels decay at a slower rate than tidal oscillations (referenced to their amplitude on the coast), while their propagation speed is lower than at tidal frequencies. Potential to kinetic energy ratio sufficiently far upstream in the river channel becomes comparable for tidal and subtidal oscillations, as effects of earth's rotation become negligible. The results suggest that a coastal storm surge can cause more severe flooding inland along the river channel than tides with comparable coastal amplitude.

  13. Airway driving pressure and lung stress in ARDS patients.

    PubMed

    Chiumello, Davide; Carlesso, Eleonora; Brioni, Matteo; Cressoni, Massimo

    2016-08-22

    Lung-protective ventilation strategy suggests the use of low tidal volume, depending on ideal body weight, and adequate levels of PEEP. However, reducing tidal volume according to ideal body weight does not always prevent overstress and overstrain. On the contrary, titrating mechanical ventilation on airway driving pressure, computed as airway pressure changes from PEEP to end-inspiratory plateau pressure, equivalent to the ratio between the tidal volume and compliance of respiratory system, should better reflect lung injury. However, possible changes in chest wall elastance could affect the reliability of airway driving pressure. The aim of this study was to evaluate if airway driving pressure could accurately predict lung stress (the pressure generated into the lung due to PEEP and tidal volume). One hundred and fifty ARDS patients were enrolled. At 5 and 15 cmH2O of PEEP, lung stress, driving pressure, lung and chest wall elastance were measured. The applied tidal volume (mL/kg of ideal body weight) was not related to lung gas volume (r (2) = 0.0005 p = 0.772). Patients were divided according to an airway driving pressure lower and equal/higher than 15 cmH2O (the lower and higher airway driving pressure groups). At both PEEP levels, the higher airway driving pressure group had a significantly higher lung stress, respiratory system and lung elastance compared to the lower airway driving pressure group. Airway driving pressure was significantly related to lung stress (r (2) = 0.581 p < 0.0001 and r (2) = 0.353 p < 0.0001 at 5 and 15 cmH2O of PEEP). For a lung stress of 24 and 26 cmH2O, the optimal cutoff value for the airway driving pressure were 15.0 cmH2O (ROC AUC 0.85, 95 % CI = 0.782-0.922); and 16.7 (ROC AUC 0.84, 95 % CI = 0.742-0.936). Airway driving pressure can detect lung overstress with an acceptable accuracy. However, further studies are needed to establish if these limits could be used for ventilator settings.

  14. Effect of nitric oxide, perfluorocarbon, and heliox on minute volume measurement and ventilator volumes delivered.

    PubMed

    Devabhaktuni, V G; Torres, A; Wilson, S; Yeh, M P

    1999-08-01

    To determine the effect of heliox, nitric oxide (NO), and perfluorocarbon on differential pressure pneumotachometer characteristics and to determine the effect of heliox on volumes delivered by the Siemens S900C (S900C), and Servo Ventilator 300 (SV300) ventilators. Prospective, laboratory study. Pulmonary laboratory of a tertiary care, nonprofit children's hospital. SV300, S900C ventilator, differential pressure pneumotachometer. Dual pneumotachometers were connected in series to a 0.5-L calibration syringe and a 1-L anesthesia bag creating a closed system. Calibration of the pneumotachometers was done in room air at ambient temperature with 100 strokes. Accepted accuracy of measured volumes is within 0.5%. Flow-conductance curves were constructed using 100 strokes each for heliox (70:30 mixture), NO, and perfluorocarbon. Expired gases of room air and a 70:30 mixture of heliox from the above ventilators were collected into a nondiffusing gas collection bag, and the volume was measured in a chain-compensated gasometer. Ten sets of 500-mL breaths (20 breaths each set) and 100-mL breaths (40 breaths each set) were collected. The paired Student's t-test was used to detect significant differences in measured volumes, with significance defined as p < .01. Volumes measured with the pneumotachometer using 25 ppm of NO, 50 ppm of NO, and perfluorocarbon were within +0.25%, -0.7%, and +0.4%, respectively (p = .155, p = .001, p = .06). Heliox decreased the conductance of the pneumotachometer, thereby increasing the measured volume by 15% (p < .001). However, heliox did not affect its linearity. Heliox had no affect on volumes delivered by the S900C. However, the SV300 delivered 7.9% less volume of heliox at a set tidal volume of 500 mL and 10.8% less at a set tidal volume of 100 mL. A 70:30 mixture of heliox caused a significantly overestimated gas volume measured and, therefore, an underestimated gas volume delivered by SV300. NO at 25 ppm and perfluorocarbon did not interfere with the accuracy of a differential pressure pneumotachometer. However, at 50 ppm, NO caused a difference in measured gas volume that was statistically, but not clinically, significant. Application of pneumotachometers in critically ill children receiving heliox requires recalibration. Heliox did not affect volumes delivered with the S900C ventilator. Although volumes delivered with the SV300 were significantly reduced by heliox, the difference can be corrected easily by increasing minute ventilation until expired tidal volume equals desired tidal volume.

  15. Novel spirometry based on optical surface imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Guang, E-mail: lig2@mskcc.org; Huang, Hailiang; Li, Diana G.

    2015-04-15

    Purpose: To evaluate the feasibility of using optical surface imaging (OSI) to measure the dynamic tidal volume (TV) of the human torso during free breathing. Methods: We performed experiments to measure volume or volume change in geometric and deformable phantoms as well as human subjects using OSI. To assess the accuracy of OSI in volume determination, we performed experiments using five geometric phantoms and two deformable body phantoms and compared the values with those derived from geometric calculations and computed tomography (CT) measurements, respectively. To apply this technique to human subjects, an institutional review board protocol was established and threemore » healthy volunteers were studied. In the human experiment, a high-speed image capture mode of OSI was applied to acquire torso images at 4–5 frames per second, which was synchronized with conventional spirometric measurements at 5 Hz. An in-house MATLAB program was developed to interactively define the volume of interest (VOI), separate the thorax and abdomen, and automatically calculate the thoracic and abdominal volumes within the VOIs. The torso volume change (TV C = ΔV{sub torso} = ΔV{sub thorax} + ΔV{sub abdomen}) was automatically calculated using full-exhalation phase as the reference. The volumetric breathing pattern (BP{sub v} = ΔV{sub thorax}/ΔV{sub torso}) quantifying thoracic and abdominal volume variations was also calculated. Under quiet breathing, TVC should equal the tidal volume measured concurrently by a spirometer with a conversion factor (1.08) accounting for internal and external differences of temperature and moisture. Another MATLAB program was implemented to control the conventional spirometer that was used as the standard. Results: The volumes measured from the OSI imaging of geometric phantoms agreed with the calculated volumes with a discrepancy of 0.0% ± 1.6% (range −1.9% to 2.5%). In measurements from the deformable torso/thorax phantoms, the volume differences measured using OSI imaging and CT imaging were 1.2% ± 2.1% (range −0.5% to 3.6%), with a linear regression fitting (slope = 1.02 and R{sup 2} = 0.999). In volunteers, the relative error in OSI tidal volume measurement was −2.2% ± 4.9% (range −9.2% to 4.8%) and a correlation of r = 0.98 was found with spirometric measurement. The breathing pattern values of the three volunteers were substantially different from each other (BP{sub v} = 0.15, 0.45, and 0.32). Conclusions: This study demonstrates the feasibility of using OSI to measure breathing tidal volumes and breathing patterns with adequate accuracy. This is the first time that dynamic breathing tidal volume as well as breathing patterns is measured using optical surface imaging. The OSI-observed movement of the entire torso could serve as a new respiratory surrogate in the treatment room during radiation therapy.« less

  16. Quiet breathing in hindlimb casted mice.

    PubMed

    Receno, Candace N; Roffo, Katelynn E; Mickey, Marisa C; DeRuisseau, Keith C; DeRuisseau, Lara R

    2018-06-07

    The hindlimb casting model was developed to study skeletal muscle reloading following a period of unloading. It is unknown if ventilation parameters of mice are affected by the casting model. We tested the hypothesis that hindlimb casted mice have similar ventilatory patterns compared to mice with the casts removed. Male CD-1 mice underwent 14 days of hindlimb immobilization via plaster casting. Breathing parameters were obtained utilizing unrestrained barometric plethysmography (UBP). Breathing traces were analyzed with Ponemah software for breathing frequency, tidal volume (TV), and minute ventilation (MV). Frequency, TV and MV did not show any differences in quiet breathing patterns during or post-casting in mice. Thus, the hindlimb casting model does not complicate breathing during and after casting and should not interfere with the unloading and reloading of skeletal muscle. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Temporal stability and coherence of anxiety, dyspnea, and physiological variables in panic disorder

    PubMed Central

    Burkhardt, Susan C. A.; Wilhelm, Frank H.; Meuret, Alicia E.; Blechert, Jens; Roth, Walton T.

    2010-01-01

    Twenty-five panic disorder (PD) patients, 19 social phobics (SP), and 20 healthy controls (HC) sat quietly for 15 minutes, rating their anxiety and dyspnea every 30 seconds while respiratory, cardiovascular, and electrodermal responses were recorded. No panic attacks were reported. For self-reported anxiety and dyspnea, within-subject variability over time was higher in PD than in SP or HC. In PD within-subject correlations across 30-second epochs were significant for (a) self-reported anxiety versus dyspnea, end-tidal pCO2, minute volume, duty cycle, skin conductance level, and interbeat interval, and for (b) dyspnea versus end-tidal pCO2, minute volume, tidal volume, and inspiratory flow rate. Several positive or negative correlations were greater in PD than in other groups. Thus in PD, experienced anxiety and dyspnea are temporally unstable but are correlated with each other and with fluctuations in respiratory and autonomic variables, even in the absence of panic attacks. PMID:20637257

  18. Lung protective mechanical ventilation strategies in cardiothoracic critical care: a retrospective study.

    PubMed

    Zochios, Vasileios; Hague, Matthew; Giraud, Kimberly; Jones, Nicola

    2016-01-01

    A body of evidence supports the use of low tidal volumes in ventilated patients without lung pathology to slow progress to acute respiratory distress syndrome (ARDS) due to ventilator associated lung injury. We undertook a retrospective chart review and tested the hypothesis that tidal volume is a predictor of mortality in cardiothoracic (medical and surgical) critical care patients receiving invasive mechanical ventilation. Independent predictors of mortality in our study included: type of surgery, albumin, H + , bilirubin, and fluid balance. In particular, it is important to note that cardiac, thoracic, and transplant surgical patients were associated with lower mortality. However, our study did not sample equally from The Berlin Definition of ARDS severity categories (mild, moderate, and severe hypoxemia). Although our study was not adequately powered to detect a difference in mortality between these groups, it will inform the development of a large prospective cohort study exploring the role of low tidal volume ventilation in cardiothoracic critically ill patients.

  19. Low-Tidal-Volume Ventilation in the Acute Respiratory Distress Syndrome

    PubMed Central

    Malhotra, Atul

    2008-01-01

    A 55-year-old man who is 178 cm tall and weighs 95 kg is hospitalized with community-acquired pneumonia and progressively severe dyspnea. His arterial oxygen saturation while breathing 100% oxygen through a face mask is 76%; a chest radiograph shows diffuse alveolar infiltrates with air bronchograms. He is intubated and receives mechanical ventilation; ventilator settings include a tidal volume of 1000 ml, a positive end-expiratory pressure (PEEP) of 5 cm of water, and a fraction of inspired oxygen (FiO2) of 0.8. With these settings, peak airway pressure is 50 to 60 cm of water, plateau airway pressure is 38 cm of water, partial pressure of arterial oxygen is 120 mm Hg, partial pressure of carbon dioxide is 37 mm Hg, and arterial blood pH is 7.47. The diagnosis of the acute respiratory distress syndrome (ARDS) is made. An intensive care specialist evaluates the patient and recommends changing the current ventilator settings and implementing a low-tidal-volume ventilation strategy. PMID:17855672

  20. Design and nonlinear modeling of a sensitive sensor for the measurement of flow in mice.

    PubMed

    Bou Jawde, Samer; Smith, Bradford J; Sonnenberg, Adam; Bates, Jason H T; Suki, Bela

    2018-06-07

    While many studies rely on flow and pressure measurements in small animal models of respiratory disease, such measurements can however be inaccurate and difficult to obtain. Thus, the goal of this study was to design and implement an easy to manufacture and accurate sensor capable of monitoring flow. We designed and 3-D printed a flowmeter and utilized parametric (resistance and inertance) and nonparametric (polynomial and Volterra series) system identification to characterize the device. The sensor was tested in a closed system for apparent flow using the common mode rejection ratio (CMRR). The sensor properly measured tidal volumes and respiratory rates in spontaneously breathing mice. The device was used to evaluate a ventilator's ability to deliver a prescribed volume before and after lung injury. The parametric and polynomial models provided a reasonable prediction of the independently measured flow (Coefficient of determination (Cv)=0.9591 and 0.9147 respectively), but the Volterra series of the 1st, 2nd, and 3rd order with a memory of six time points provided better fits (Cv=0.9775, 0.9787, and 0.9954, respectively). At and below the mouse breathing frequency (1-5 Hz), CMRR was higher than 40 dB. Following lung injury, the sensor revealed a significant drop in delivered tidal volume. We demonstrate that the application of nonparametric nonlinear Volterra series modeling in combination with 3-D printing technology allows the inexpensive and rapid fabrication of an accurate flow sensor for continuously measuring small flows in various physiological conditions. © 2018 Institute of Physics and Engineering in Medicine.

  1. Magnetic fields driven by tidal mixing in radiative stars

    NASA Astrophysics Data System (ADS)

    Vidal, Jérémie; Cébron, David; Schaeffer, Nathanaël; Hollerbach, Rainer

    2018-04-01

    Stellar magnetism plays an important role in stellar evolution theory. Approximatively 10 per cent of observed main sequence (MS) and pre-main-sequence (PMS) radiative stars exhibit surface magnetic fields above the detection limit, raising the question of their origin. These stars host outer radiative envelopes, which are stably stratified. Therefore, they are assumed to be motionless in standard models of stellar structure and evolution. We focus on rapidly rotating, radiative stars which may be prone to the tidal instability, due to an orbital companion. Using direct numerical simulations in a sphere, we study the interplay between a stable stratification and the tidal instability, and assess its dynamo capability. We show that the tidal instability is triggered regardless of the strength of the stratification (Brunt-Väisälä frequency). Furthermore, the tidal instability can lead to both mixing and self-induced magnetic fields in stably stratified layers (provided that the Brunt-Väisälä frequency does not exceed the stellar spin rate in the simulations too much). The application to stars suggests that the resulting magnetic fields could be observable at the stellar surfaces. Indeed, we expect magnetic field strengths up to several Gauss. Consequently, tidally driven dynamos should be considered as a (complementary) dynamo mechanism, possibly operating in radiative MS and PMS stars hosting orbital companions. In particular, tidally driven dynamos may explain the observed magnetism of tidally deformed and rapidly rotating Vega-like stars.

  2. Resource Assessment of Tidal Current Energy in Hangzhou Bay Based on Long Term Measurement

    NASA Astrophysics Data System (ADS)

    Zhang, Feng; Dai, Chun-Ni; Xu, Xue-Feng; Wang, Chuan-Kun; Ye, Qin

    2017-05-01

    Compared with other marine renewable energy, tidal current energy benefits a lot in high energy density and good predictability. Based on the measured tidal current data in Hangzhou Bay from Nov 2012 to Oct 2012, this paper analysed temporal and spatial changes of tidal current energy in the site. It is the first time measured data of such long time been taken in tidal current energy analysis. Occurrence frequency and duration of the current of different speed are given out in the paper. According to the analysis results, monthly average power density changed a lot in different month, and installation orientation of tidal current turbine significantly affected energy acquisition. Finally, the annual average power density of tidal current energy with coefficient Cp in the site was calculated, and final output of a tidal current plant was also estimated.

  3. Bending the law: tidal bending and its effects on ice viscosity and flow

    NASA Astrophysics Data System (ADS)

    Rosier, S.; Gudmundsson, G. H.

    2017-12-01

    Many ice shelves are subject to strong ocean tides and, in order to accommodate this vertical motion, the ice must bend within the grounding zone. This tidal bending generates large stresses within the ice, changing its effective viscosity. For a confined ice shelf, this is particularly relevant because the tidal bending stresses occur along the sidewalls, which play an important role in the overall flow regime of the ice shelf. Hence, tidal bending stresses will affect both the mean and time-varying components of ice shelf flow. GPS measurements reveal strong variations in horizontal ice shelf velocities at a variety of tidal frequencies. We show, using full-Stokes viscoelastic modelling, that inclusion of tidal bending within the model accounts for much of the observed tidal modulation of horizontal ice shelf flow. Furthermore, our model shows that in the absence of a vertical tidal forcing, the mean flow of the ice shelf is reduced considerably.

  4. Quantification of the thorax-to-abdomen breathing ratio for breathing motion modeling.

    PubMed

    White, Benjamin M; Zhao, Tianyu; Lamb, James; Bradley, Jeffrey D; Low, Daniel A

    2013-06-01

    The purpose of this study was to develop a methodology to quantitatively measure the thorax-to-abdomen breathing ratio from a 4DCT dataset for breathing motion modeling and breathing motion studies. The thorax-to-abdomen breathing ratio was quantified by measuring the rate of cross-sectional volume increase throughout the thorax and abdomen as a function of tidal volume. Twenty-six 16-slice 4DCT patient datasets were acquired during quiet respiration using a protocol that acquired 25 ciné scans at each couch position. Fifteen datasets included data from the neck through the pelvis. Tidal volume, measured using a spirometer and abdominal pneumatic bellows, was used as breathing-cycle surrogates. The cross-sectional volume encompassed by the skin contour when compared for each CT slice against the tidal volume exhibited a nearly linear relationship. A robust iteratively reweighted least squares regression analysis was used to determine η(i), defined as the amount of cross-sectional volume expansion at each slice i per unit tidal volume. The sum Ση(i) throughout all slices was predicted to be the ratio of the geometric expansion of the lung and the tidal volume; 1.11. The Xiphoid process was selected as the boundary between the thorax and abdomen. The Xiphoid process slice was identified in a scan acquired at mid-inhalation. The imaging protocol had not originally been designed for purposes of measuring the thorax-to-abdomen breathing ratio so the scans did not extend to the anatomy with η(i) = 0. Extrapolation of η(i)-η(i) = 0 was used to include the entire breathing volume. The thorax and abdomen regions were individually analyzed to determine the thorax-to-abdomen breathing ratios. There were 11 image datasets that had been scanned only through the thorax. For these cases, the abdomen breathing component was equal to 1.11 - Ση(i) where the sum was taken throughout the thorax. The average Ση(i) for thorax and abdomen image datasets was found to be 1.20 ± 0.17, close to the expected value of 1.11. The thorax-to-abdomen breathing ratio was 0.32 ± 0.24. The average Ση(i) was 0.26 ± 0.14 in the thorax and 0.93 ± 0.22 in the abdomen. In the scan datasets that encompassed only the thorax, the average Ση(i) was 0.21 ± 0.11. A method to quantify the relationship between abdomen and thoracic breathing was developed and characterized.

  5. Respiratory modulation of human autonomic function: long‐term neuroplasticity in space

    PubMed Central

    Diedrich, André; Cooke, William H.; Biaggioni, Italo; Buckey, Jay C.; Pawelczyk, James A.; Ertl, Andrew C.; Cox, James F.; Kuusela, Tom A.; Tahvanainen, Kari U.O.; Mano, Tadaaki; Iwase, Satoshi; Baisch, Friedhelm J.; Levine, Benjamin D.; Adams‐Huet, Beverley; Robertson, David; Blomqvist, C. Gunnar

    2016-01-01

    Key points We studied healthy astronauts before, during and after the Neurolab Space Shuttle mission with controlled breathing and apnoea, to identify autonomic changes that might contribute to postflight orthostatic intolerance.Measurements included the electrocardiogram, finger photoplethysmographic arterial pressure, respiratory carbon dioxide levels, tidal volume and peroneal nerve muscle sympathetic activity.Arterial pressure fell and then rose in space, and drifted back to preflight levels after return to Earth.Vagal metrics changed in opposite directions: vagal baroreflex gain and two indices of vagal fluctuations rose and then fell in space, and descended to preflight levels upon return to Earth.Sympathetic burst frequencies (but not areas) were greater than preflight in space and on landing day, and astronauts’ abilities to modulate both burst areas and frequencies during apnoea were sharply diminished.Spaceflight triggers long‐term neuroplastic changes reflected by reciptocal sympathetic and vagal motoneurone responsiveness to breathing changes. Abstract We studied six healthy astronauts five times, on Earth, in space on the first and 12th or 13th day of the 16 day Neurolab Space Shuttle mission, on landing day, and 5–6 days later. Astronauts followed a fixed protocol comprising controlled and random frequency breathing and apnoea, conceived to perturb their autonomic function and identify changes, if any, provoked by microgravity exposure. We recorded the electrocardiogram, finger photoplethysmographic arterial pressure, tidal carbon dioxide concentrations and volumes, and peroneal nerve muscle sympathetic activity on Earth (in the supine position) and in space. (Sympathetic nerve recordings were made during three sessions: preflight, late mission and landing day.) Arterial pressure changed systematically from preflight levels: pressure fell during early microgravity exposure, rose as microgravity exposure continued, and drifted back to preflight levels after return to Earth. Vagal metrics changed in opposite directions: vagal baroreflex gain and two indices of vagal fluctuations (root mean square of successive normal R‐R intervals; and proportion of successive normal R‐R intervals greater than 50 ms, divided by the total number of normal R‐R intervals) rose significantly during early microgravity exposure, fell as microgravity exposure continued, and descended to preflight levels upon return to Earth. Sympathetic mechanisms also changed. Burst frequencies (but not areas) during fixed frequency breathing were greater than preflight in space and on landing day, but their control during apnoea was sharply altered: astronauts increased their burst frequencies from already high levels, but they could not modulate either burst areas or frequencies appropriately. Space travel provokes long‐lasting sympathetic and vagal neuroplastic changes in healthy humans. PMID:27029027

  6. [Evolution of breathing pattern and ventilation at maximal exercise during growth. Definition of reference values].

    PubMed

    Prioux, J; Mercier, J; Ramonatxo, M; Granier, P; Mercier, B; Prefaut, C

    1995-01-01

    The aim of the study was to define the changes of parameters of breathing pattern and ventilation (VE) as a function of age during maximal exercise in children. A multi-longitudinal survey was conducted in forty four untrained schoolboys, divided in three groups with initial age of 11.2 years for group I, 12.9 years for group II, and 14.9 for group III. These children were subsequently followed three years ago at the same period. The range age was thus 11.2 to 16.9 years. This study showed that, during growth, ventilation (VE max), tidal volume (VT max) and mean inspiratory flow (VT/TI max) increased significantly with age, that inspiratory frequency (f max) decreased, that inspiratory, expiratory and total time of the respiratory cycle (TI max, TE max, TTOT max) increased slightly and that the inspiration fraction (TI/TTOT max) was identical at 11 and 17 years. Furthermore we observed that the peak height velocity and peak tidal volume velocity took place at the same age, i.e., 14 years and that those of weight and VT/TI at the same age of 15 years. In conclusion, this study allowed us to define reference values for breathing pattern at maximal exercise in sedentary boys and to specify the relation between growth and parameters of breathing pattern in these children.

  7. The effect of respiratory motion on pulmonary nodule location during electromagnetic navigation bronchoscopy.

    PubMed

    Chen, Alexander; Pastis, Nicholas; Furukawa, Brian; Silvestri, Gerard A

    2015-05-01

    Electromagnetic navigation has improved the diagnostic yield of peripheral bronchoscopy for pulmonary nodules. For these procedures, a thin-slice chest CT scan is performed prior to bronchoscopy at full inspiration and is used to create virtual airway reconstructions that are used as a map during bronchoscopy. Movement of the lung occurs with respiratory variation during bronchoscopy, and the location of pulmonary nodules during procedures may differ significantly from their location on the initial planning full-inspiratory chest CT scan. This study was performed to quantify pulmonary nodule movement from full inspiration to end-exhalation during tidal volume breathing in patients undergoing electromagnetic navigation procedures. A retrospective review of electromagnetic navigation procedures was performed for which two preprocedure CT scans were performed prior to bronchoscopy. One CT scan was performed at full inspiration, and a second CT scan was performed at end-exhalation during tidal volume breathing. Pulmonary lesions were identified on both CT scans, and distances between positions were recorded. Eighty-five pulmonary lesions were identified in 46 patients. Average motion of all pulmonary lesions was 17.6 mm. Pulmonary lesions located in the lower lobes moved significantly more than upper lobe nodules. Size and distance from the pleura did not significantly impact movement. Significant movement of pulmonary lesions occurs between full inspiration and end-exhalation during tidal volume breathing. This movement from full inspiration on planning chest CT scan to tidal volume breathing during bronchoscopy may significantly affect the diagnostic yield of electromagnetic navigation bronchoscopy procedures.

  8. Design and Evaluation of an Intelligent Remote Tidal Volume Variability Monitoring System in E-Health Applications.

    PubMed

    Fekr, Atena Roshan; Radecka, Katarzyna; Zilic, Zeljko

    2015-09-01

    A reliable long-term monitoring and diagnosis of breath disorders at an early stage provides an improvement of medical act, life expectancy, and quality of life while decreasing the costs of treatment and medical services. Therefore, a real-time unobtrusive monitoring of respiration patterns, as well as breath parameters, is a critical need in medical applications. In this paper, we propose an intelligent system for patient home care, capable of measuring respiration rate and tidal volume variability via a wearable sensing technology. The proposed system is designed particularly for the goal of diagnosis and treatment in patients with pathological breathing, e.g., respiratory complications after surgery or sleep disorders. The complete system was comprised of wearable calibrated accelerometer sensor, Bluetooth low energy, and cloud database. The experiments are conducted with eight subjects and the overall error in respiration rate calculation is obtained 0.29%±0.33% considering SPR-BTA spirometer as the reference. We also introduce a method for tidal volume variability estimation while validated using Pearson correlation. Furthermore, since it is essential to detect the critical events resulted from sudden rise or fall in per breath tidal volume of the patients, we provide a technique to automatically find the accurate threshold values based on each individual breath characteristics. Therefore, the system is able to detect the major changes, precisely by more than 98%, and provide immediate feedback such as sound alarm for round-the-clock respiration monitoring.

  9. Broadband Acoustic Environment at a Tidal Energy Site in Puget Sound

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Jinshan; Deng, Zhiqun; Martinez, Jayson J.

    2012-04-04

    Admiralty Inlet has been selected as a potential tidal energy site. It is located near shipping lanes, is a highly variable acoustic environment, and is frequented by the endangered southern resident killer whale (SRKW). Resolving environmental impacts is the first step to receiving approval to deploy tidal turbines. Several monitoring technologies are being considered to determine the presence of SRKW near the turbines. Broadband noise level measurements are critical for determining design and operational specifications of these technologies. Acoustic environment data at the proposed site was acquired at different depths using a cabled vertical line array from three different cruisesmore » during high tidal period in February, May, and June 2011. The ambient noise level decreases approximately 25 dB re 1 μPa per octave from frequency ranges of 1 kHz to 70 kHz, and increases approximately 20 dB re 1 μPa per octave for the frequency from 70 kHz to 200 kHz. The difference of noise pressure levels in different months varies from 10 to 30 dB re 1 μPa for the frequency range below 70 kHz. Commercial shipping and ferry vessel traffic were found to be the most significant contributors to sound pressure levels for the frequency range from 100 Hz to 70 kHz, and the variation could be as high as 30 dB re 1 μPa. These noise level measurements provide the basic information for designing and evaluating both active and passive monitoring systems proposed for deploying and operating for tidal power generation alert system.« less

  10. Modeling In-stream Tidal Energy Extraction and Its Potential Environmental Impacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Zhaoqing; Wang, Taiping; Copping, Andrea

    In recent years, there has been growing interest in harnessing in-stream tidal energy in response to concerns of increasing energy demand and to mitigate climate change impacts. While many studies have been conducted to assess and map tidal energy resources, efforts for quantifying the associated potential environmental impacts have been limited. This paper presents the development of a tidal turbine module within a three-dimensional unstructured-grid coastal ocean model and its application for assessing the potential environmental impacts associated with tidal energy extraction. The model is used to investigate in-stream tidal energy extraction and associated impacts on estuarine hydrodynamic and biologicalmore » processes in a tidally dominant estuary. A series of numerical experiments with varying numbers and configurations of turbines installed in an idealized estuary were carried out to assess the changes in the hydrodynamics and biological processes due to tidal energy extraction. Model results indicated that a large number of turbines are required to extract the maximum tidal energy and cause significant reduction of the volume flux. Preliminary model results also indicate that extraction of tidal energy increases vertical mixing and decreases flushing rate in a stratified estuary. The tidal turbine model was applied to simulate tidal energy extraction in Puget Sound, a large fjord-like estuary in the Pacific Northwest coast.« less

  11. Evidence for tidal triggering on the earthquakes of the Hellenic Arc, Greece

    NASA Astrophysics Data System (ADS)

    Vergos, G.; Arabelos, D. N.; Contadakis, M. E.

    2015-12-01

    In this paper we investigate the tidal triggering evidence on the earthquakes of the seismic area of the Hellenic Arc using the Hist(ogram)Cum(mulation) method. We analyze the series of the earthquakes occurred in the area which is confined by the longitudes 22° and 28°E and latitudes 34° and 36°N in the time period from 1964 to 2012. In this time period 16,137 shallow and of intermediate depth earthquakes with ML up to 6.0 and 1,482 deep earthquakes with ML up to 6.2 occurred. The result of the this analysis indicate that the monthly variation of the frequencies of earthquake occurrence is in accordance with the period of the tidal lunar monthly variations, and the same happens with the corresponding daily variations of the frequencies of earthquake occurrence with the diurnal luni-solar (K1) and semidiurnal solar (S2) tidal variations. These results are in favor of a tidal triggering process on earthquakes when the stress in the focal area is near the critical level.

  12. Parametric instability and wave turbulence driven by tidal excitation of internal waves

    NASA Astrophysics Data System (ADS)

    Le Reun, Thomas; Favier, Benjamin; Le Bars, Michael

    2018-04-01

    We investigate the stability of stratified fluid layers undergoing homogeneous and periodic tidal deformation. We first introduce a local model which allows to study velocity and buoyancy fluctuations in a Lagrangian domain periodically stretched and sheared by the tidal base flow. While keeping the key physical ingredients only, such a model is efficient to simulate planetary regimes where tidal amplitudes and dissipation are small. With this model, we prove that tidal flows are able to drive parametric subharmonic resonances of internal waves, in a way reminiscent of the elliptical instability in rotating fluids. The growth rates computed via Direct Numerical Simulations (DNS) are in very good agreement with WKB analysis and Floquet theory. We also investigate the turbulence driven by this instability mechanism. With spatio-temporal analysis, we show that it is a weak internal wave turbulence occurring at small Froude and buoyancy Reynolds numbers. When the gap between the excitation and the Brunt-V\\"ais\\"al\\"a frequencies is increased, the frequency spectrum of this wave turbulence displays a -2 power law reminiscent of the high-frequency branch of the Garett and Munk spectrum (Garrett & Munk 1979) which has been measured in the oceans. In addition, we find that the mixing efficiency is altered compared to what is computed in the context of DNS of stratified turbulence excited at small Froude and large buoyancy Reynolds numbers and is consistent with a superposition of waves.

  13. The equilibrium tide in stars and giant planets. I. The coplanar case

    NASA Astrophysics Data System (ADS)

    Remus, F.; Mathis, S.; Zahn, J.-P.

    2012-08-01

    Context. Since 1995, more than 500 extrasolar planets have been discovered orbiting very close to their parent star, where they experience strong tidal interactions. Their orbital evolution depends on the physical mechanisms that cause tidal dissipation, which remain poorly understood. Aims: We refine the theory of the equilibrium tide in fluid bodies that are partly or entirely convective, to predict the dynamical evolution of the systems. In particular, we examine the validity of modeling the tidal dissipation using the quality factor Q, which is commonly done. We consider here the simplest case where the considered star or planet rotates uniformly, all spins are aligned, and the companion is reduced to a point mass. Methods: We expand the tidal potential as a Fourier series, and express the hydrodynamical equations in the reference frame, which rotates with the corresponding Fourier component. The results are cast in the form of a complex disturbing function, which may be implemented directly in the equations governing the dynamical evolution of the system. Results: The first manifestation of the tide is to distort the shape of the star or planet adiabatically along the line of centers. This generates the divergence-free velocity field of the adiabatic equilibrium tide, which is stationary in the frame rotating with the considered Fourier component of the tidal potential; this large-scale velocity field is decoupled from the dynamical tide. The tidal kinetic energy is dissipated into heat by means of turbulent friction, which is modeled here as an eddy-viscosity acting on the adiabatic tidal flow. This dissipation induces a second velocity field, the dissipative equilibrium tide, which is in quadrature with the exciting potential; this field is responsible for the imaginary part of the disturbing function, which is implemented in the dynamical evolution equations, from which one derives the characteristic evolutionary times. Conclusions: The rate at which the system evolves depends on the physical properties of the tidal dissipation, and specifically on both how the eddy viscosity varies with tidal frequency and the thickness of the convective envelope for the fluid equilibrium tide. At low frequency, this tide is retarded by a constant time delay, whereas it lags behind by a constant angle when the tidal frequency exceeds the convective turnover rate.

  14. Function of the Dräger Oxylog ventilator at high altitude.

    PubMed

    Thomas, G; Brimacombe, J

    1994-06-01

    We have assessed the performance of the Dräger Oxylog ventilator at high altitude using a decompression chamber and a lung simulator set to mimic the normal and non-compliant lung. In the normal lung, tidal volume increased by 28% at 2040 metres and by 106% at 9120 metres. A lesser change, but in the opposite direction, occurred in respiratory rate. The net effect was a linear increase in minute volume with altitude. At 2040 and 9144 metres minute volume increased by 13% and by 45%, and rate decreased by 10% and 30% respectively. In the abnormal lung stimulation, similar, but slightly less marked, changes occurred in all variables. These changes are of sufficient magnitude to require frequent observation of tidal volume and respiratory rate during aircraft ascent and descent.

  15. Variability of Tidal Volume in Patient-Triggered Mechanical Ventilation in ARDS.

    PubMed

    Perinel-Ragey, Sophie; Baboi, Loredana; Guérin, Claude

    2017-11-01

    Limiting tidal volume (V T ) in patients with ARDS may not be achieved once patient-triggered breaths occur. Furthermore, ICU ventilators offer numerous patient-triggered modes that work differently across brands. We systematically investigated, using a bench model, the effect of patient-triggered modes on the size and variability of V T at different breathing frequencies (f), patient effort, and ARDS severity. We used a V500 Infinity ICU ventilator connected to an ASL 5000 lung model whose compliance was mimicking mild, moderate, and severe ARDS. Thirteen patient-triggered modes were tested, falling into 3 categories, namely volume control ventilation with mandatory minute ventilation; pressure control ventilation, including airway pressure release ventilation (APRV); and pressure support ventilation. Two levels of f and effort were tested for each ARDS severity in each mode. Median (first-third quartiles) V T was compared across modes using non-parametric tests. The probability of V T > 6 mL/kg ideal body weight was assessed by binomial regression and expressed as the odds ratio (OR) with 95% CI. V T variability was measured from the coefficient of variation. V T distribution over all f, effort, and ARDS categories significantly differed across modes ( P < .001, Kruskal-Wallis test). V T was significantly greater with pressure support (OR 420 mL, 95% CI 332-527 mL) than with any other mode except for variable pressure support level. Risk for V T to be > 6 mL/kg was significantly increased with spontaneous breaths patient-triggered by pressure support (OR 19.36, 95% CI 12.37-30.65) and significantly reduced in APRV (OR 0.44, 95% CI 0.26-0.72) and pressure support with guaranteed volume mode. The risk increased with increasing effort and decreasing f. Coefficient of variation of V T was greater for low f and volume control-mandatory minute ventilation and pressure control modes. APRV had the greatest within-mode variability. Risk of V T > 6 mL/kg was significantly reduced in APRV and pressure support with guaranteed volume mode. APRV had the highest variability. Pressure support with guaranteed volume could be tested in patients with ARDS. Copyright © 2017 by Daedalus Enterprises.

  16. Assessment of volume and leak measurements during CPAP using a neonatal lung model.

    PubMed

    Fischer, H S; Roehr, C C; Proquitté, H; Wauer, R R; Schmalisch, G

    2008-01-01

    Although several commercial devices are available which allow tidal volume and air leak monitoring during continuous positive airway pressure (CPAP) in neonates, little is known about their measurement accuracy and about the influence of air leaks on volume measurement. The aim of this in vitro study was the validation of volume and leak measurement under CPAP using a commercial ventilatory device, taking into consideration the clinical conditions in neonatology. The measurement accuracy of the Leoni ventilator (Heinen & Löwenstein, Germany) was investigated both in a leak-free system and with leaks simulated using calibration syringes (2-10 ml, 20-100 ml) and a mechanical lung model. Open tubes of variable lengths were connected for leak simulation. Leak flow was measured with the flow-through technique. In a leak-free system the mean relative volume error +/-SD was 3.5 +/- 2.6% (2-10 ml) and 5.9 +/- 0.7% (20-60 ml), respectively. The influence of CPAP level, driving flow, respiratory rate and humidification of the breathing gas on the volume error was negligible. However, an increasing F(i)O(2) caused the measured tidal volume to increase by up to 25% (F(i)O(2) = 1.0). The relative error +/- SD of the leak measurements was -0.2 +/- 11.9%. For leaks > 19%, measured tidal volume was underestimated by more than 10%. In conclusion, the present in vitro study showed that the Leoni allowed accurate volume monitoring under CPAP conditions similar to neonates. Air leaks of up to 90% of patient flow were reliably detected. For an F(i)O(2) > 0.4 and for leaks > 19%, a numerical correction of the displayed volume should be performed.

  17. Filtering methods in tidal-affected groundwater head measurements: Application of harmonic analysis and continuous wavelet transform

    NASA Astrophysics Data System (ADS)

    Sánchez-Úbeda, Juan Pedro; Calvache, María Luisa; Duque, Carlos; López-Chicano, Manuel

    2016-11-01

    A new methodology has been developed to obtain tidal-filtered time series of groundwater levels in coastal aquifers. Two methods used for oceanography processing and forecasting of sea level data were adapted for this purpose and compared: HA (Harmonic Analysis) and CWT (Continuous Wavelet Transform). The filtering process is generally comprised of two main steps: the detection and fitting of the major tide constituents through the decomposition of the original signal and the subsequent extraction of the complete tidal oscillations. The abilities of the optional HA and CWT methods to decompose and extract the tidal oscillations were assessed by applying them to the data from two piezometers at different depths close to the shoreline of a Mediterranean coastal aquifer (Motril-Salobreña, SE Spain). These methods were applied to three time series of different lengths (one month, one year, and 3.7 years of hourly data) to determine the range of detected frequencies. The different lengths of time series were also used to determine the fit accuracies of the tidal constituents for both the sea level and groundwater heads measurements. The detected tidal constituents were better resolved with increasing depth in the aquifer. The application of these methods yielded a detailed resolution of the tidal components, which enabled the extraction of the major tidal constituents of the sea level measurements from the groundwater heads (e.g., semi-diurnal, diurnal, fortnightly, monthly, semi-annual and annual). In the two wells studied, the CWT method was shown to be a more effective method than HA for extracting the tidal constituents of highest and lowest frequencies from groundwater head measurements.

  18. Variability in Usual Care Mechanical Ventilation for Pediatric Acute Respiratory Distress Syndrome: Time for a Decision Support Protocol?

    PubMed

    Newth, Christopher J L; Sward, Katherine A; Khemani, Robinder G; Page, Kent; Meert, Kathleen L; Carcillo, Joseph A; Shanley, Thomas P; Moler, Frank W; Pollack, Murray M; Dalton, Heidi J; Wessel, David L; Berger, John T; Berg, Robert A; Harrison, Rick E; Holubkov, Richard; Doctor, Allan; Dean, J Michael; Jenkins, Tammara L; Nicholson, Carol E

    2017-11-01

    Although pediatric intensivists philosophically embrace lung protective ventilation for acute lung injury and acute respiratory distress syndrome, we hypothesized that ventilator management varies. We assessed ventilator management by evaluating changes to ventilator settings in response to blood gases, pulse oximetry, or end-tidal CO2. We also assessed the potential impact that a pediatric mechanical ventilation protocol adapted from National Heart Lung and Blood Institute acute respiratory distress syndrome network protocols could have on reducing variability by comparing actual changes in ventilator settings to those recommended by the protocol. Prospective observational study. Eight tertiary care U.S. PICUs, October 2011 to April 2012. One hundred twenty patients (age range 17 d to 18 yr) with acute lung injury/acute respiratory distress syndrome. Two thousand hundred arterial and capillary blood gases, 3,964 oxygen saturation by pulse oximetry, and 2,757 end-tidal CO2 values were associated with 3,983 ventilator settings. Ventilation mode at study onset was pressure control 60%, volume control 19%, pressure-regulated volume control 18%, and high-frequency oscillatory ventilation 3%. Clinicians changed FIO2 by ±5 or ±10% increments every 8 hours. Positive end-expiratory pressure was limited at ~10 cm H2O as oxygenation worsened, lower than would have been recommended by the protocol. In the first 72 hours of mechanical ventilation, maximum tidal volume/kg using predicted versus actual body weight was 10.3 (8.5-12.9) (median [interquartile range]) versus 9.2 mL/kg (7.6-12.0) (p < 0.001). Intensivists made changes similar to protocol recommendations 29% of the time, opposite to the protocol's recommendation 12% of the time and no changes 56% of the time. Ventilator management varies substantially in children with acute respiratory distress syndrome. Opportunities exist to minimize variability and potentially injurious ventilator settings by using a pediatric mechanical ventilation protocol offering adequately explicit instructions for given clinical situations. An accepted protocol could also reduce confounding by mechanical ventilation management in a clinical trial.

  19. Tidal residual current and its role in the mean flow on the Changjiang Bank

    NASA Astrophysics Data System (ADS)

    Xuan, Jiliang; Yang, Zhaoqing; Huang, Daji; Wang, Taiping; Zhou, Feng

    2016-02-01

    The tidal residual current may play an important role in the mean flow in the Changjiang Bank region, in addition to other residual currents, such as the Taiwan Warm Current, the Yellow Sea Coastal Current, and the Yellow Sea Warm Current. In this paper, a detailed structure of the tidal residual current, in particular the meso-scale eddies, in the Changjiang Bank region is observed from model simulations, and its role in the mean flow is quantified using the well-validated Finite Volume Coastal Ocean Model. The tidal residual current in the Changjiang Bank region consists of two components: an anticyclonic regional-scale tidal residual circulation around the edge of the Changjiang Bank and some cyclonic meso-scale tidal residual eddies across the Changjiang Bank. The meso-scale tidal residual eddies occur across the Changjiang Bank and contribute to the regional-scale tidal residual circulation offshore at the northwest boundary and on the northeast edge of the Changjiang Bank, southeastward along the 50 m isobath. Tidal rectification is the major mechanism causing the tidal residual current to flow along the isobaths. Both components of the tidal residual current have significant effects on the mean flow. A comparison between the tidal residual current and the mean flow indicates that the contribution of the tidal residual current to the mean flow is greater than 50%.

  20. Advanced Techniques in Pulmonary Function Test Analysis Interpretation and Diagnosis

    PubMed Central

    Gildea, T.J.; Bell, C. William

    1980-01-01

    The Pulmonary Functions Analysis and Diagnostic System is an advanced clinical processing system developed for use at the Pulmonary Division, Department of Medicine at the University of Nebraska Medical Center. The system generates comparative results and diagnostic impressions for a variety of routine and specialized pulmonary functions test data. Routine evaluation deals with static lung volumes, breathing mechanics, diffusing capacity, and blood gases while specialized tests include lung compliance studies, small airways dysfunction studies and dead space to tidal volume ratios. Output includes tabular results of normal vs. observed values, clinical impressions and commentary and, where indicated, a diagnostic impression. A number of pulmonary physiological and state variables are entered or sampled (A to D) with periodic status reports generated for the test supervisor. Among the various physiological variables sampled are respiratory frequency, minute ventilation, oxygen consumption, carbon dioxide production, and arterial oxygen saturation.

  1. Spectral analysis of one-way and two-way downscaling applications for a tidally driven coastal ocean forecasting system

    NASA Astrophysics Data System (ADS)

    Solano, Miguel; Gonzalez, Juan; Canals, Miguel; Capella, Jorge; Morell, Julio; Leonardi, Stefano

    2017-04-01

    A prevailing problem for a tidally driven coastal ocean has been the adequate imposition of open boundary conditions. This study aims at assessing the role of open boundary conditions and tidal forcing for one and two way downscaling applications at high resolution. The operational system is based on the Caribbean Coastal Ocean Forecasting System (COFS) that uses the Regional Ocean Modeling System (ROMS), a split-explicit ocean model in which the barotropic (2D) and baroclinic (3D) modes advance separately. This COFS uses a uniform horizontal grid with 1km resolution, but a grid sensitivity analysis is performed for both one and two way downscaling methodologies with horizontal resolutions up to 700m. Initial and lateral boundary conditions are derived from the U.S Naval Oceanographic Office (NAVOCEANO) operational AmSeas model forecast, a 3-km resolution of the regional Navy Coastal Ocean Model (NCOM) that encompasses the Gulf of Mexico and Caribbean Sea. Meteorological conditions are interpolated from the Navy's COAMPS model with the exception of surface stresses, which are computed from a 2-km application of the WRF model used by NCEP's National Digital Forecast Database. Tidal forcing is performed in two different ways: 1) tidal and sub-tidal variability is imposed to the barotropic and baroclinic modes by downscaling from the AmSeas NCOM regional model and 2) tidal variability is imposed using ROMS harmonic tidal forcing from OTPS and sub-tidal conditions are imposed by filtering high frequencies out the NCOM regional solution. Special focus is given to the latter approach, where the nudging time scales and the boundary update frequency play an important role in the evolution of the ocean state for short 3-day forecasts. A spectral analysis of the sea surface height and barotropic velocity is performed via Fourier's transform, continuous 1-D wavelet transforms, and classic harmonic analysis. Tide signals are then reconstructed and removed from the OBC's in 3 ways: 1) using Rich Pawlowicz's t_tide package (classic harmonic analysis), 2) with traditional band-pass filters (e.g. Lanczos) and 3) using Proper Orthogonal Decomposition. The tide filtering approach shows great improvement in the high frequency response of tidal motions at the open boundaries. Results are validated with NOAA tide gauges, Acoustic Doppler Current Profilers, High Frequency Radars (6km and 2km resolution). A floating drifter experiment is performed in coastal zones, in which 12 drifters were deployed at different coastal zones and tracked for several days. The results show an improvement of the forecast skill with the proper implementation of the tide filtering approach by adjusting the nudging time scales and adequately removing the tidal signals. Significant improvement is found in the tracking skill of the floating drifters for the one-way grid and the two-way nested application also shows some improvement over the offline downscaling approach at higher resolutions.

  2. A numerical study of the barotropic tides and tidal energy distribution in the Indonesian seas with the assimilated finite volume coastal ocean model

    NASA Astrophysics Data System (ADS)

    Ding, Yang; Bao, Xianwen; Yu, Huaming; Kuang, Liang

    2012-04-01

    The tides and tidal energetics in the Indonesian seas are simulated using a three-dimensional finite volume coastal ocean model. The high-resolution coastline-fitted model is configured to better resolve the hydrodynamic processes around the numerous barrier islands. A large model domain is adopted to minimize the uncertainty adjacent to open boundaries. The model results with elevation assimilation based on a simple nudge scheme faithfully reproduced the general features of the barotropic tides in the Indonesian Seas. The mean root-mean-square errors between the observed and simulated tidal constants are 2.3, 1.1, 2.4, and 1.5 cm for M2, S2, K1, and O1, respectively. Analysis of the model solutions indicates that the semidiurnal tides in the Indonesian Seas are primarily dominated by the Indian Ocean, whereas the diurnal tides in this region are mainly influenced by the Pacific Ocean, which is consistent with previous studies. Examinations of tidal energy transport reveal that the tidal energy for both of the simulated tidal constituents are transported from the Indian Ocean into the IS mainly through the Lombok Strait and the Timor Sea, whereas only M2 energy enters the Banda Sea and continues northward. The tidal energy dissipates the most in the passages on both sides of Timor Island, with the maximum M2 and K1 tidal energy transport reaching about 750 and 650 kW m-1, respectively. The total energy losses of the four dominant constituents in the IS are nearly 338 GW, with the M2 constituent dissipating 240.8 GW. It is also shown that the bottom dissipation rate for the M2 tide is about 1-2 order of magnitudes larger than that of the other three tidal components in the Indonesian seas.

  3. Towards a better understanding of tidal dissipation at corotation layers in differentially rotating stars and planets

    NASA Astrophysics Data System (ADS)

    Astoul, A.; Mathis, S.; Baruteau, C.; André, Q.

    2017-12-01

    Star-planet tidal interactions play a significant role in the dynamical evolution of close-in planetary systems. We investigate the propagation and dissipation of tidal inertial waves in a stellar/planetary convective region. We take into account a latitudinal differential rotation for the background flow, similar to what is observed in the envelope of low-mass stars like the Sun. Previous works have shown that differential rotation significantly alters the propagation and dissipation properties of inertial waves. In particular, when the Doppler-shifted tidal frequency vanishes in the fluid, a critical layer forms where tidal dissipation can be greatly enhanced. Our present work develops a local analytic model to better understand the propagation and dissipation properties of tidally forced inertial waves at critical layers.

  4. Large-scale tidal effect on redshift-space power spectrum in a finite-volume survey

    NASA Astrophysics Data System (ADS)

    Akitsu, Kazuyuki; Takada, Masahiro; Li, Yin

    2017-04-01

    Long-wavelength matter inhomogeneities contain cleaner information on the nature of primordial perturbations as well as the physics of the early Universe. The large-scale coherent overdensity and tidal force, not directly observable for a finite-volume galaxy survey, are both related to the Hessian of large-scale gravitational potential and therefore are of equal importance. We show that the coherent tidal force causes a homogeneous anisotropic distortion of the observed distribution of galaxies in all three directions, perpendicular and parallel to the line-of-sight direction. This effect mimics the redshift-space distortion signal of galaxy peculiar velocities, as well as a distortion by the Alcock-Paczynski effect. We quantify its impact on the redshift-space power spectrum to the leading order, and discuss its importance for ongoing and upcoming galaxy surveys.

  5. A dual closed-loop control system for mechanical ventilation.

    PubMed

    Tehrani, Fleur; Rogers, Mark; Lo, Takkin; Malinowski, Thomas; Afuwape, Samuel; Lum, Michael; Grundl, Brett; Terry, Michael

    2004-04-01

    Closed-loop mechanical ventilation has the potential to provide more effective ventilatory support to patients with less complexity than conventional ventilation. The purpose of this study was to investigate the effectiveness of an automatic technique for mechanical ventilation. Two closed-loop control systems for mechanical ventilation are combined in this study. In one of the control systems several physiological data are used to automatically adjust the frequency and tidal volume of breaths of a patient. This method, which is patented under US Patent number 4986268, uses the criterion of minimal respiratory work rate to provide the patient with a natural pattern of breathing. The inputs to the system include data representing CO2 and O2 levels of the patient as well as respiratory compliance and airway resistance. The I:E ratio is adjusted on the basis of the respiratory time constant to allow for effective emptying of the lungs in expiration and to avoid intrinsic positive end expiratory pressure (PEEP). This system is combined with another closed-loop control system for automatic adjustment of the inspired fraction of oxygen of the patient. This controller uses the feedback of arterial oxygen saturation of the patient and combines a rapid stepwise control procedure with a proportional-integral-derivative (PID) control algorithm to automatically adjust the oxygen concentration in the patient's inspired gas. The dual closed-loop control system has been examined by using mechanical lung studies, computer simulations and animal experiments. In the mechanical lung studies, the ventilation controller adjusted the breathing frequency and tidal volume in a clinically appropriate manner in response to changes in respiratory mechanics. The results of computer simulations and animal studies under induced disturbances showed that blood gases were returned to the normal physiologic range in less than 25 s by the control system. In the animal experiments understeady-state conditions, the maximum standard deviations of arterial oxygen saturation and the end-tidal partial pressure of CO2 were +/- 1.76% and +/- 1.78 mmHg, respectively. The controller maintained the arterial blood gases within normal limits under steady-state conditions and the transient response of the system was robust under various disturbances. The results of the study have showed that the proposed dual closed-loop technique has effectively controlled mechanical ventilation under different test conditions.

  6. Tidal residual current and its role in the mean flow on the Changjiang Bank

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xuan, Jiliang; Yang, Zhaoqing; Huang, Daji

    Tidal residual current may play an important role in the mean flow in the Changjiang Bank region, in addition to other residual currents, such as the Taiwan Warm Current, the Yellow Sea Coastal Current, and the Yellow Sea Warm Current. In this paper, a detailed structure of the tidal residual current, in particular the meso-scale eddies, in the Changjiang Bank region is observed from model simulations, and its role in the mean flow is quantified using the well-validated Finite Volume Coastal Ocean Model). The tidal residual current in the Changjiang Bank region consists of two components: an anticyclonic regional-scale tidalmore » residual circulation around the edge of the Changjiang Bank and some cyclonic meso-scale tidal residual eddies across the Changjiang Bank. The meso-scale tidal residual eddies occur across the Changjiang Bank and contribute to the regional-scale tidal residual circulation offshore at the northwest boundary and at the northeast edge of the Changjiang Bank, southeastward along the 50 m isobath. Tidal rectification is the major mechanism causing the tidal residual current to flow along the isobaths. Both components of the tidal residual current have significant effects on the mean flow. A comparison between the tidal residual current and the mean flow indicates that the contribution of the tidal residual current to the mean flow is greater than 50%.« less

  7. Predictors of outcome of prematurely born infants with pulmonary interstitial emphysema.

    PubMed

    Williams, Emma; Dassios, Theodore; Clarke, Paul; Chowdhury, Olie; Greenough, Anne

    2018-05-13

    To determine how oxygenation, ventilation efficiency and tidal volume requirements changed with the development of pulmonary interstitial emphysema (PIE) and whether in affected patients a composite gas exchange index predicted death or bronchopulmonary dysplasia (BPD). Infants who developed PIE from 2010 to 2016 were identified. The oxygenation index, ventilation efficiency index, ventilation to perfusion ratio and inspiratory tidal volume were calculated before radiological evidence of PIE (pre-PIE) and at the worst PIE radiographic appearance (PIE-worst). Thirty infants, median (IQR) gestational age of 24.6 (24.3-26.7) weeks were assessed. Their age at pre-PIE was 11(6-19) days and 23 (13-42) days at PIE-worst. Compared to pre-PIE, at PIE-worst, the oxygenation index was higher [14.5 (10.7-19.2) versus 4.8 (3.1-6.1) respectively, p<0.001], ventilation efficiency index was lower [0.01 (0.01-0.11) versus 0.16 (0.13-0.19) respectively, p<0.001], ventilation to perfusion ratio was lower [0.15 (0.11-0.40) versus 0.26 (0.20-0.37), p=0.033] and tidal volume was higher [9.9 (7.2-13.1) versus 6.4 (5.5-6.8) ml/kg, p=0.007]. An oxygenation index >11.4 at PIE-worst predicted death or BPD with 80% sensitivity and 100% specificity. Development of PIE was associated with poorer oxygenation and ventilation efficiency despite increased tidal volumes. The oxygenation index at PIE-worst predicted death or BPD. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  8. 21 CFR 868.1850 - Monitoring spirometer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... of gas inhaled by the patient during each respiration cycle) or minute volume (the tidal volume multiplied by the rate of respiration for 1 minute) for the evaluation of the patient's ventilatory status...

  9. 21 CFR 868.1850 - Monitoring spirometer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... of gas inhaled by the patient during each respiration cycle) or minute volume (the tidal volume multiplied by the rate of respiration for 1 minute) for the evaluation of the patient's ventilatory status...

  10. Statistical Analysis of Acoustic Signal Propagating Through the South China Sea Basin

    DTIC Science & Technology

    2016-03-01

    internal tidal constituents are observed in both spectra, and the diurnal (D) and semidiurnal (SD) internal waves ’ energy are strong. The spectrum is...bandwidths were utilized during the frequency smoothing process to ensure the reliability of the spectra in the meso-, tidal and internal wave scale...mooring temperature sensors capture the internal waves ’ energy, and six high amplitude peaks are observed in the spectra in the internal tidal band

  11. Tidal and near-inertial peak variations around the diurnal critical latitude

    NASA Astrophysics Data System (ADS)

    van Haren, Hans

    2005-12-01

    Spectra from historic long-term open-ocean moored current meter data between latitudes 0° < |$\\varphi$| < 45° reveal a significant drop in semidiurnal tidal band (D2) energy by ~50% at |$\\varphi$| ~ 25-27°, whilst the peak near the local inertial frequency f is increased by a factor of ~10 up to the level of D2-energy at |$\\varphi$| ~ 28-30°, where f coincides with diurnal frequencies. The increase in f-energy is accompanied by a red-shift of the peak frequency to 0.97 +/- 0.01f, or a poleward spreading of enhanced energy. This contrasts with more common blue-shift. The enhancement may be the result of sub-harmonic instability, as supported by sparse significant bicoherence at half-D2, although i) systematic enhancement of diurnal tidal frequencies, notably M1, was not observed, ii) the latitudes of low D2-energy and high f-energy do not coincide. This may be due to a mix of coupled and independent waves, whilst the poleward trapping of sub-f energy suggests non-traditional effects.

  12. Influence of breathing resistance of heat and moisture exchangers on tracheal climate and breathing pattern in laryngectomized individuals.

    PubMed

    Scheenstra, Renske J; Muller, Sara H; Vincent, Andrew; Sinaasappel, Michiel; Hilgers, Frans J M

    2010-08-01

    The aim of this study was to determine the influence of breathing resistance of heat and moisture exchangers (HMEs) on endotracheal climate and breathing pattern. Endotracheal temperature and humidity and tidal volumes were measured in 11 laryngectomized patients with a regularly used HME with "standard" breathing resistance (Provox Normal HME; R-HME), a low breathing-resistance HME (Provox HiFlow HME; L-HME), and without HME. Both R-HME and L-HME increased end-inspiratory humidity (+5.8 and 4.7 mgH(2)O/L, respectively), decreased end-inspiratory temperature (-1.6 and -1.0 degrees C, respectively), and prolonged the exhalation breath length to approximately 0.5 seconds. The R-HME significantly enlarged tidal volumes (0.07 L; p < .05). Both HMEs significantly improve tracheal climate. The R-HME has better moistening properties and a small but significant positive effect on tidal volume. Therefore, if the higher resistance is tolerated, the R-HME is the preferred pulmonary rehabilitation device. The L-HME is indicated if lower breathing resistance is required. 2009 Wiley Periodicals, Inc. Head Neck, 2010.

  13. Investigating parameters participating in the infant respiratory control system attractor.

    PubMed

    Terrill, Philip I; Wilson, Stephen J; Suresh, Sadasivam; Cooper, David M; Dakin, Carolyn

    2008-01-01

    Theoretically, any participating parameter in a non-linear system represents the dynamics of the whole system. Taken's time delay embedding theory provides the fundamental basis for allowing non-linear analysis to be performed on physiological, time-series data. In practice, only one measurable parameter is required to be measured to convey an accurate representation of the system dynamics. In this paper, the infant respiratory control system is represented using three variables-a digitally sampled respiratory inductive plethysmography waveform, and the derived parameters tidal volume and inter-breath interval time series data. For 14 healthy infants, these data streams were analysed using recurrence plot analysis across one night of sleep. The measured attractor size of these variables followed the same qualitative trends across the nights study. Results suggest that the attractor size measures of the derived IBI and tidal volume are representative surrogates for the raw respiratory waveform. The extent to which the relative attractor sizes of IBI and tidal volume remain constant through changing sleep state could potentially be used to quantify pathology, or maturation of breathing control.

  14. Periodicity in stem growth and litterfall in tidal freshwater forested wetlands: influence of salinity and drought on nitrogen recycling

    USGS Publications Warehouse

    Cormier, Nicole; Krauss, Ken W.; Conner, William H.

    2013-01-01

    Many tidally influenced freshwater forested wetlands (tidal swamps) along the south Atlantic coast of the USA are currently undergoing dieback and decline. Salinity often drives conversion of tidal swamps to marsh, especially under conditions of regional drought. During this change, alterations in nitrogen (N) uptake from dominant vegetation or timing of N recycling from the canopy during annual litter senescence may help to facilitate marsh encroachment by providing for greater bioavailable N with small increases in salinity. To monitor these changes along with shifts in stand productivity, we established sites along two tidal swamp landscape transects on the lower reaches of the Waccamaw River (South Carolina) and Savannah River (Georgia) representing freshwater (≤0.1 psu), low oligohaline (1.1–1.6 psu), and high oligohaline (2.6–4.1 psu) stands; the latter stands have active marsh encroachment. Aboveground tree productivity was monitored on all sites through monthly litterfall collection and dendrometer band measurements from 2005 to 2009. Litterfall samples were pooled by season and analyzed for total N and carbon (C). On average between the two rivers, freshwater, low oligohaline, and high oligohaline tidal swamps returned 8,126, 3,831, and 1,471 mg N m−2 year−1, respectively, to the forest floor through litterfall, with differences related to total litterfall volume rather than foliar N concentrations. High oligohaline sites were most inconsistent in patterns of foliar N concentrations and N loading from the canopy. Leaf N content generally decreased and foliar C/N generally increased with salinization (excepting one site), with all sites being fairly inefficient in resorbing N from leaves prior to senescence. Stands with higher salinity also had greater flood frequency and duration, lower basal area increments, lower tree densities, higher numbers of dead or dying trees, and much reduced leaf litter fall (103 vs. 624 g m−2 year−1) over the five study years. Our data suggest that alternative processes, such as the rate of decomposition and potential for N mineralization, on tidal swamp sites undergoing salinity-induced state change may be more important for controlling N biogeochemical cycling in soils than differences among sites in N loading via litterfall.

  15. Reference database of lung volumes and capacities in wistar rats from 2 to 24 months.

    PubMed

    Filho, Wilson Jacob; Fontinele, Renata Gabriel; de Souza, Romeu Rodrigues

    2014-01-01

    This study determines the effects of growing and aging on lung physiological volumes and capacities and the incidence of inflammation in the small airways with age in rats. A reference database comprising of body weight gain, lung physiological volumes and capacities and an anatomopathological study of lung lesions over 240 Wistar rats from two to 24 -mo, is described. Tidal volume (TV), minute respiratory volume (MRV), and forced vital capacity (FVC) decreased during the first six months of life and then remain constant until 24 -mo of age. The respiratory frequency (Rf) and dynamical compliance (Cdyn) maintain at constant values from 2 to 24- mo of age; the functional residual capacity (FRC) increases in the first 6 -mo and then remains constant up to 24 -mo. It was verified a less intensive inflammation in the small airways with age, when compared with the median and large airways. This study showed the normal parameters for lung volumes and capacities and the incidence of infections for growing and aging male and female rats. The age-related data on these main respiratory parameters in rats would be useful in studies of aging-related disorders using this model and for safety pharmacology studies necessary for the development of drugs.

  16. A system shift in tidal choking due to the construction of Yangshan Harbour, Shanghai, China

    NASA Astrophysics Data System (ADS)

    Guo, Wenyun; Wang, Xiao Hua; Ding, Pingxing; Ge, Jianzhong; Song, Dehai

    2018-06-01

    Tidal choking is a geometric feature caused by a narrowed channel. Construction of the Yangshan Harbour, Shanghai, China obstructed three key channels and intensively changed the local geometry and topography. In this study nine numerical experiments based on the Finite-Volume Community Ocean Model are conducted to study the project's influence on tidal characteristics. Results show that stronger tidal choking happened at the East Entrance after project, mainly due to the jet induced water-level drop forced by Bernoulli law and the longer and narrower geometry. The stronger tidal choking forces a faster flow and larger tidal energy flux at the choked channel while reducing the tidal amplitude in the Inner Harbour Area (IHA). The scouring on this channel reduces the choking effect but further enlarges tidal energy flux. Moreover, damming the channels decrease the tidal amplitude at the lee side of tidal propagating direction while increasing the amplitude on the stoss side. The dams also decrease the tidal current on both sides, and meanwhile develop two patches with stronger current aside the dam. The project induced changes in tidal characteristics are complex in space, and perturbations in bathymetry increase this complexity. Yangshan Harbour's construction induces little changes in the total tidal energy density in the IHA, but induces obvious changes in the spatial distribution of tidal energy. Although this study is site-specific, the findings may be applicable to tidal dynamics in land reclamation close to open seas, such as the dramatic reclamation of islands in the South China Sea.

  17. Tidal volume single-breath washin of SF6 and CH4 in transient microgravity

    NASA Technical Reports Server (NTRS)

    Dutrieue, Brigitte; Paiva, Manuel; Verbanck, Sylvia; Le Gouic, Marine; Darquenne, Chantal; Prisk, G. Kim

    2003-01-01

    We performed tidal volume single-breath washins (SBW) by using tracers of different diffusivity and varied the time spent in microgravity (microG) before the start of the tests to look for time-dependent effects. SF(6) and CH(4) phase III slopes decreased by 35 and 26%, respectively, in microG compared with 1 G (P < 0.05), and the slope difference between gases disappeared. There was no effect of time in microG, suggesting that neither the hypergravity period preceding microG nor the time spent in microG affected gas mixing at volumes near functional residual capacity. In previous studies using SF(6) and He (Lauzon A-M, Prisk GK, Elliott AR, Verbanck S, Paiva M, and West JB. J Appl Physiol 82: 859-865, 1997), the vital capacity SBW showed an increase in slope difference between gases in transient microG, the opposite of the decrease in sustained microG. In contrast, tidal volume SBW showed a decrease in slope difference in both microG conditions. Because it is only the behavior of the more diffusive gas that differed between maneuvers and microG conditions, we speculate that, in the previous vital capacity SBW, the hypergravity period preceding the test in transient microG provoked conformational changes at low lung volumes near the acinar entrance.

  18. Continuous on-line measurements of respiratory system, lung and chest wall mechanics during mechanic ventilation.

    PubMed

    Kárason, S; Søndergaard, S; Lundin, S; Stenqvist, O

    2001-08-01

    We present a concept of on-line, manoeuvre-free monitoring of respiratory mechanics during dynamic conditions, displaying calculated alveolar pressure/volume curves continuously and separating lung and chest wall mechanics. Prospective observational study. Intensive care unit of a university hospital. Ten ventilator-treated patients with acute lung injury. Different positive end-expiratory pressure (PEEP) and tidal volumes, low flow inflation. Previously validated methods were used to present a single-value dynostatic compliance for the whole breath and a dynostatic volume-dependent initial, middle and final compliance within the breath. A high individual variation of respiratory mechanics was observed. Reproducibility of repeated measurements was satisfactory (coefficients of variations for dynostatic volume-dependent compliance: < or =9.2% for total respiratory system, < or =18% for lung). Volume-dependent compliance showed a statistically significant pattern of successively decreasing compliance from the initial segment through the middle and final parts within each breath at all respiratory settings. This pattern became more prominent with increasing PEEP and tidal volume, indicating a greater distension of alveoli. No lower inflection point (LIP) was seen in patients with respiratory rate 20/min and PEEP at 4 cmH2O. A trial with low flow inflation in four of the patients showed formation of a LIP in three of them and an upper inflection in one. The monitoring concept revealed a constant pattern of successively decreasing compliance within each breath, which became more prominent with increasing PEEP and tidal volume. The monitoring concept offers a simple and reliable method of monitoring respiratory mechanics during ongoing ventilator treatment.

  19. Removing respiratory artefacts from transthoracic bioimpedance spectroscopy measurements

    NASA Astrophysics Data System (ADS)

    Cuba-Gyllensten, I.; Abtahi, F.; Bonomi, A. G.; Lindecrantz, K.; Seoane, F.; Amft, O.

    2013-04-01

    Transthoracic impedance spectroscopy (TIS) measurements from wearable textile electrodes provide a tool to remotely and non-invasively monitor patient health. However, breathing and cardiac processes inevitably affect TIS measurements, since they are sensitive to changes in geometry and air or fluid volumes in the thorax. This study aimed at investigating the effect of respiration on Cole parameters extracted from TIS measurements and developing a method to suppress artifacts. TIS data were collected from 10 participants at 16 frequencies (range: 10 kHz - 1 MHz) using a textile electrode system (Philips Technologie Gmbh). Simultaneously, breathing volumes and frequency were logged using an electronic spirometer augmented with data from a breathing belt. The effect of respiration on TIS measurements was studied at paced (10 and 16 bpm) deep and shallow breathing. These measurements were repeated for each subject in three different postures (lying down, reclining and sitting). Cole parameter estimation was improved by assessing the tidal expiration point thus removing breathing artifacts. This leads to lower intra-subject variability between sessions and a need for less measurements points to accurately assess the spectra. Future work should explore algorithmic artifacts compensation models using breathing and posture or patient contextual information to improve ambulatory transthoracic impedance measurements.

  20. The frequency and properties of young tidal dwarf galaxies in nearby groups

    NASA Astrophysics Data System (ADS)

    Lee-Waddell, K.; Spekkens, K.; Chandra, P.; Patra, N.; Cuillandre, J.-C.; Wang, J.; Haynes, M. P.; Cannon, J.; Stierwalt, S.; Sick, J.; Giovanelli, R.

    2017-03-01

    We present the results of a multi-wavelength investigation of the dwarf galaxy populations in three interacting galaxy groups: NGC 871/6/7, NGC 3166/9, NGC 4725/47. Using degree-scale Giant Metrewave Radio Telescope Hi mosaics and deep optical photometry from the Canada-France-Hawaii Telescope, we measured the Hi and stellar properties of the gas-rich low-mass group members to classify each one as a classical dwarf galaxy, a short-lived tidal knot or a tidal dwarf galaxy (TDG). Our observations detect several dwarf irregulars and various tidal knots. We identify four potentially long-lived tidal objects in the three groups, implying that TDGs are not readily produced. The tidal objects examined in this small survey also appear to have a wider variety of properties than TDGs formed in current simulations.

  1. Effects of temperature on metabolism, ventilation, and oxygen extraction in the southern brown bandicoot Isoodon obesulus (Marsupialia: Peramelidae).

    PubMed

    Larcombe, Alexander

    2002-01-01

    The effects of ambient temperatures (T(a)) from 10 degrees to 35 degrees C on metabolism, ventilation, and oxygen extraction were examined for the southern brown bandicoot (Isoodon obesulus). Oxygen consumption (VO2) followed the pattern typical for endotherms, decreasing with increasing T(a) from 10 degrees to 25 degrees C. It did not significantly change between Ta=25 degrees and 35 degrees C (the thermoneutral zone). VO2 was approximately 2.4 times higher at Ta=10 degrees C (0.967 mL O(2) g(-1) h(-1)) compared with basal (0.410 mL O(2) g(-1) h(-1)) at Ta=30 degrees C. While the metabolic rates of the bandicoots were basal at Ta=30 degrees C, respiratory frequency (f(R)) was 24.6 breaths min(-1), tidal volume (V(T)) was 7.79 mL, minute volume (V(I)) was 191.3 mL min(-1), and oxygen extraction efficiency (EO2) was 26.8%. Increased VO2 at Ta< or =25 degrees C was associated with a large increase in V(I) due to increases in V(T) and f(R). A greater proportion of the change was due to the increase in tidal volume. EO2 was constant at approximately 26% for all T(a) up to and including 30 degrees C. At Ta=35 degrees C, EO2 decreased to 17.7%, f(R) increased to 35.6 breaths min(-1), and V(T) decreased to 7.22 mL. The metabolic and ventilatory physiology of the southern brown bandicoot are typical of an unspecialized medium-sized marsupial.

  2. Ventilation-perfusion relationships in the lung during head-out water immersion

    NASA Technical Reports Server (NTRS)

    Derion, Toniann; Guy, Harold J. B.; Tsukimoto, Koichi; Schaffartzik, Walter; Prediletto, Renato; Poole, David C.; Knight, Douglas R.; Wagner, Peter D.

    1992-01-01

    Mechanisms of altered pulmonary gas exchange during water immersion were studied in 12 normal males: 6 young (aged 20-29) and 6 older (aged 40-45). It is concluded that, in young subjects with closing volume (CV) less than expiratory reserve volume (ERV), gas exchange was enhanced during immersion, because normal ventilation-perfusion relations were preserved, and by mass balance, the ventilation/O2 uptake changes elevated arterial P(O2). In older males with CV greater than ERV and 52 percent of tidal volume below CV, immersion-induced airways closure during tidal breathing was associated with minimally increased shunt that did not significantly impair gas exchange. It is suggested that airways closure of this degree is of little importance to gas exchange.

  3. A life-cycle model for wave-dominated tidal inlets along passive margin coasts of North America

    NASA Astrophysics Data System (ADS)

    Seminack, Christopher T.; McBride, Randolph A.

    2018-03-01

    A regional overview of 107 wave-dominated tidal inlets along the U.S. Atlantic coast, U.S. Gulf of Mexico coast, and Canadian Gulf of St. Lawrence coast yielded a generalized wave-dominated tidal inlet life-cycle model that recognized the rotational nature of tidal inlets. Tidal inlets are influenced by concurrently acting processes transpiring over two timescales: short-term, event-driven processes and long-term, evolutionary processes. Wave-dominated tidal inlets are classified into three rotational categories based on net longshore sediment transport direction and rotation direction along the landward (back-barrier) portion of the inlet channel: downdrift channel rotation, updrift channel rotation, or little-to-no channel rotation. Lateral shifting of the flood-tidal delta depocenter in response to available estuarine accommodation space appears to control inlet channel rotation. Flood-tidal delta deposits fill accommodation space locally within the estuary (i.e., creating bathymetric highs), causing the tidal-inlet channel to rotate. External influences, such as fluvial discharge, pre-existing back-barrier channels, and impeding salt marsh will also influence inlet-channel rotation. Storm events may rejuvenate the tidal inlet by scouring sediment within the flood-tidal delta, increasing local accommodation space. Wave-dominated tidal inlets are generally unstable and tend to open, concurrently migrate laterally and rotate, infill, and close. Channel rotation is a primary reason for wave-dominated tidal inlet closure. During rotation, the inlet channel lengthens and hydraulic efficiency decreases, thus causing tidal prism to decrease. Tidal prism, estuarine accommodation space, and sediment supply to the flood-tidal delta are the primary variables responsible for tidal inlet rotation. Stability of wave-dominated tidal inlets is further explained by: stability (S) = tidal prism (Ω) + estuarine accommodation space (V) - volume of annual sediment supply (Mt). Rotating wave-dominated tidal inlets follow a six-stage evolutionary model; whereas wave-dominated tidal inlets that exhibit little-to-no rotation follow a five-stage evolutionary model.

  4. Determination of mass balance and entrainment in the stratified Duwamish River Estuary, King County, Washington

    USGS Publications Warehouse

    Stoner, J.D.

    1972-01-01

    During a study of the effects of waste-water input on the stratified Duwamish River estuary, intensive water-velocity and salinity measurements were made in both the lower salt wedge and the upper fresher water layer for tidal-cycle periods. The net movement of water and salt mass past a cross section during a tidal cycle was determined from integration of the measured rates of movement of water and salt past the section. The net volume of water that moved downstream past the section during the cycle agreed with the volume of fresh-water inflow at the head of the estuary within (1) 3.8 and 7.2 percent, respectively, for two studies made during periods of maximum and minimum tidal-prism thickness and identical inflow rates .of 312 cfs (cubic feet per second), and (2) 15 percent for one study made during a period of average tidal-prism thickness and an inflow rate of 1,280 cfs. For the three studies, the difference between salt mass transported upstream and downstream during the cycles ranged from 0.8 to 19 percent of the respective mean salt-mass transport. Water was entrained from the .salt-water wedge into the overlying layer of mixed fresh and salt water at tidal-cycle-average rates of 30 and 69 cfs per million square feet of interface for the inflow rates of 312 cfs, and 99 cfs per million square feet of interface for an inflow rate of 1,280 cfs. At a constant inflow rate, the rate of entrainment of salt-wedge water in the Duwamish River estuary more than doubled for a doubling of tidal-prism thickness. It also doubled for a quadrupling of inflow rate at about constant tidal-prism thickness.

  5. Wavelet filter analysis of local atmospheric pressure effects in the long-period tidal bands

    NASA Astrophysics Data System (ADS)

    Hu, X.-G.; Liu, L. T.; Ducarme, B.; Hsu, H. T.; Sun, H.-P.

    2006-11-01

    It is well known that local atmospheric pressure variations obviously affect the observation of short-period Earth tides, such as diurnal tides, semi-diurnal tides and ter-diurnal tides, but local atmospheric pressure effects on the long-period Earth tides have not been studied in detail. This is because the local atmospheric pressure is believed not to be sufficient for an effective pressure correction in long-period tidal bands, and there are no efficient methods to investigate local atmospheric effects in these bands. The usual tidal analysis software package, such as ETERNA, Baytap-G and VAV, cannot provide detailed pressure admittances for long-period tidal bands. We propose a wavelet method to investigate local atmospheric effects on gravity variations in long-period tidal bands. This method constructs efficient orthogonal filter bank with Daubechies wavelets of high vanishing moments. The main advantage of the wavelet filter bank is that it has excellent low frequency response and efficiently suppresses instrumental drift of superconducting gravimeters (SGs) without using any mathematical model. Applying the wavelet method to the 13-year continuous gravity observations from SG T003 in Brussels, Belgium, we filtered 12 long-period tidal groups into eight narrow frequency bands. Wavelet method demonstrates that local atmospheric pressure fluctuations are highly correlated with the noise of SG measurements in the period band 4-40 days with correlation coefficients higher than 0.95 and local atmospheric pressure variations are the main error source for the determination of the tidal parameters in these bands. We show the significant improvement of long-period tidal parameters provided by wavelet method in term of precision.

  6. Role of bronchodilation and pattern of breathing in increasing tidal expiratory flow with progressive induced hypercapnia in chronic obstructive pulmonary disease.

    PubMed

    Finucane, Kevin E; Singh, Bhajan

    2018-01-01

    Hypercapnia (HC) in vitro relaxes airway smooth muscle; in vivo, it increases respiratory effort, tidal expiratory flows (V̇ exp ), and, by decreasing inspiratory duration (Ti), increases elastic recoil pressure (Pel) via lung viscoelasticity; however, its effect on airway resistance is uncertain. We examined the contributions of bronchodilation, Ti, and expiratory effort to increasing V̇ exp with progressive HC in 10 subjects with chronic obstructive pulmonary disease (COPD): mean forced expiratory volume in 1 s (FEV 1 ) 53% predicted. Lung volumes (Vl), V̇ exp , esophageal pressure (Pes), Ti, and end-tidal Pco 2 ([Formula: see text]) were measured during six tidal breaths followed by an inspiratory capacity (IC), breathing air, and at three levels of HC. V̇ exp and V̇ with submaximal forced vital capacities breathing air (V̇ sFVC ) were compared. Pulmonary resistance ( Rl) was measured from the Pes-V̇ relationship. V̇ exp and Pes at end-expiratory lung volume (EELV) + 0.3 tidal volume [V̇ (0.3Vt) and Pes (0.3Vt) , respectively], Ti, and Rl correlated with [Formula: see text] ( P < 0.001 for all) and were independent of tiotropium. [Formula: see text], Ti, and Pes (0.3Vt) predicted the increasing V̇ (0.3Vt) /V̇ sFVC(0.3Vt) [multiple regression analysis (MRA): P = 0.001, 0.004, and 0.025, respectively]. At [Formula: see text] ≥ 50 Torr, V̇ (0.3Vt) /V̇ sFVC(0.3Vt) exceeded unity in 30 of 36 measurements and was predicted by [Formula: see text] and Pes (0.3Vt) (MRA: P = 0.02 and 0.025, respectively). Rl decreased at [Formula: see text] 45 Torr ( P < 0.05) and did not change with further HC. IC and Vl (0.3Vt) did not change with HC. We conclude that in COPD HC increases V̇ exp due to bronchodilation, increased Pel secondary to decreasing Ti, and increased expiratory effort, all promoting lung emptying and a stable EELV. NEW & NOTEWORTHY The response of airways to intrapulmonary hypercapnia (HC) is uncertain. In chronic obstructive pulmonary disease (COPD), progressive HC increases tidal expiratory flows by inducing bronchodilation and via an increased rate of inspiration and lung viscoelasticity, a probable increase in lung elastic recoil pressure, both changes increasing expiratory flows, promoting lung emptying and a stable end-expiratory volume. Bronchodilation with HC occurred despite optimal standard bronchodilator therapy, suggesting that in COPD further bronchodilation is possible.

  7. Tidal Volume Estimation Using the Blanket Fractal Dimension of the Tracheal Sounds Acquired by Smartphone

    PubMed Central

    Reljin, Natasa; Reyes, Bersain A.; Chon, Ki H.

    2015-01-01

    In this paper, we propose the use of blanket fractal dimension (BFD) to estimate the tidal volume from smartphone-acquired tracheal sounds. We collected tracheal sounds with a Samsung Galaxy S4 smartphone, from five (N = 5) healthy volunteers. Each volunteer performed the experiment six times; first to obtain linear and exponential fitting models, and then to fit new data onto the existing models. Thus, the total number of recordings was 30. The estimated volumes were compared to the true values, obtained with a Respitrace system, which was considered as a reference. Since Shannon entropy (SE) is frequently used as a feature in tracheal sound analyses, we estimated the tidal volume from the same sounds by using SE as well. The evaluation of the performed estimation, using BFD and SE methods, was quantified by the normalized root-mean-squared error (NRMSE). The results show that the BFD outperformed the SE (at least twice smaller NRMSE was obtained). The smallest NRMSE error of 15.877% ± 9.246% (mean ± standard deviation) was obtained with the BFD and exponential model. In addition, it was shown that the fitting curves calculated during the first day of experiments could be successfully used for at least the five following days. PMID:25923929

  8. Tidal volume estimation using the blanket fractal dimension of the tracheal sounds acquired by smartphone.

    PubMed

    Reljin, Natasa; Reyes, Bersain A; Chon, Ki H

    2015-04-27

    In this paper, we propose the use of blanket fractal dimension (BFD) to estimate the tidal volume from smartphone-acquired tracheal sounds. We collected tracheal sounds with a Samsung Galaxy S4 smartphone, from five (N = 5) healthy volunteers. Each volunteer performed the experiment six times; first to obtain linear and exponential fitting models, and then to fit new data onto the existing models. Thus, the total number of recordings was 30. The estimated volumes were compared to the true values, obtained with a Respitrace system, which was considered as a reference. Since Shannon entropy (SE) is frequently used as a feature in tracheal sound analyses, we estimated the tidal volume from the same sounds by using SE as well. The evaluation of the performed estimation, using BFD and SE methods, was quantified by the normalized root-mean-squared error (NRMSE). The results show that the BFD outperformed the SE (at least twice smaller NRMSE was obtained). The smallest NRMSE error of 15.877% ± 9.246% (mean ± standard deviation) was obtained with the BFD and exponential model. In addition, it was shown that the fitting curves calculated during the first day of experiments could be successfully used for at least the five following days.

  9. Experiments on topographies lacking tidal conversion

    NASA Astrophysics Data System (ADS)

    Maas, Leo; Paci, Alexandre; Yuan, Bing

    2015-11-01

    In a stratified sea, internal tides are supposedly generated when the tide passes over irregular topography. It has been shown that for any given frequency in the internal wave band there are an infinite number of exceptions to this rule of thumb. This ``stealth-like'' property of the topography is due to a subtle annihilation of the internal waves generated during the surface tide's passage over the irregular bottom. We here demonstrate this in a lab-experiment. However, for any such topography, subsequently changing the surface tide's frequency does lead to tidal conversion. The upshot of this is that a tidal wave passing over an irregular bottom is for a substantial part trapped to this irregularity, and only partly converted into freely propagating internal tides. Financially supported by the European Community's 7th Framework Programme HYDRALAB IV.

  10. Determination of tidal h Love number parameters in the diurnal band using an extensive VLBI data set

    NASA Technical Reports Server (NTRS)

    Mitrovica, J. X.; Davis, J. L.; Mathews, P. M.; Shapiro, I. I.

    1994-01-01

    We use over a decade of geodetic Very Long Baseline Interferometry (VLBI) data to estimate parameters in a resonance expansion of the frequency dependence of the tidal h(sub 2) Love number within the diurnal band. The resonance is associated with the retrograde free core nutation (RFCN). We obtain a value for the real part of the resonance strength of (-0.27 +/- 0.03) x 10(exp -3); a value of -0.19 x 10(exp -3) is predicted theoretically. Uncertainties in the VLBI estimates of the body tide radial displacement amplitudes are approximately 0.5 mm (1.1 mm for the K1 frequency), but they do not yield sufficiently small Love number uncertainties for placing useful constraints on the frequency of the RFCN, given the much smaller uncertainties obtained from independent analyses using nutation or gravimetric data. We also consider the imaginary part of the tidal h(sub 2) Love number. The estimated imaginary part of the resonance strength is (0.00 +/- 0.02) x 10(exp -3). The estimated imaginary part of the nonresonant component of the Love number implies a phase angle in the diurnal tidal response of the Earth of 0.7 deg +/- 0.5 deg (lag).

  11. Treatment response of airway clearance assessed by single-breath washout in children with cystic fibrosis.

    PubMed

    Abbas, Chiara; Singer, Florian; Yammine, Sophie; Casaulta, Carmen; Latzin, Philipp

    2013-12-01

    We studied the ability of 4 single-breath gas washout (SBW) tests to measure immediate effects of airway clearance in children with CF. 25 children aged 4-16 years with CF performed pulmonary function tests to assess short-term variability at baseline and response to routine airway clearance. Tidal helium and sulfur hexafluoride (double-tracer gas: DTG) SBW, tidal capnography, tidal and vital capacity nitrogen (N2) SBW and spirometry were applied. We analyzed the gasses' phase III slope (SnIII--normalized for tidal volume) and FEV1 from spirometry. SnIII from tidal DTG-SBW, SnIII from vital capacity N2-SBW, and FEV1 improved significantly after airway clearance. From these tests, individual change of SnIII from tidal DTG-SBW and FEV1 exceeded short-term variability in 10 and 6 children. With the tidal DTG-SBW, an easy and promising test for peripheral gas mixing efficiency, immediate pulmonary function response to airway clearance can be assessed in CF children. Copyright © 2013 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.

  12. Differential effects of airway anesthesia on ozone-induced pulmonary responses in human subjects.

    PubMed

    Schelegle, E S; Eldridge, M W; Cross, C E; Walby, W F; Adams, W C

    2001-04-01

    We examined the effect of tetracaine aerosol inhalation, a local anesthetic, on lung volume decrements, rapid shallow breathing, and subjective symptoms of breathing discomfort induced by the acute inhalation of 0.30 ppm ozone for 65 min in 22 ozone-sensitive healthy human subjects. After 50 min of ozone inhalation FEV(1) was reduced 24%, breathing frequency was increased 40%, tidal volume was decreased 31%, and total subjective symptom score was increased (71.2, compared with 3.8 for filtered air exposure). Inhalation of tetracaine aerosol resulted in marked reductions in ozone-induced subjective symptoms of throat tickle and/or irritation (92.1%), cough (78.5%), shortness of breath (72.5%), and pain on deep inspiration (69.4%). In contrast, inhalation of tetracaine aerosol (mass median aerodynamic diameter of 3.52 microm with a geometric standard deviation of 1.92) resulted in only minor and inconsistent rectification of FEV(1) decrements (5.0%) and breathing frequency (-3.8%) that was not significantly different from that produced by saline aerosol alone (FEV(1), 5.1% and breathing frequency, -2.7%). Our data are consistent with afferent endings located within the large conducting airways of the tracheobronchial tree being primarily responsible for ozone-induced subjective symptoms and provides strong evidence that ozone-induced inhibition of maximal inspiratory effort is not dependent on conscious sensations of inspiratory discomfort.

  13. Analytical models for the groundwater tidal prism and associated benthic water flux

    USGS Publications Warehouse

    King, Jeffrey N.; Mehta, Ashish J.; Dean, Robert G.

    2010-01-01

    The groundwater tidal prism is defined as the volume of water that inundates a porous medium, forced by one tidal oscillation in surface water. The pressure gradient that generates the prism acts on the subterranean estuary. Analytical models for the groundwater tidal prism and associated benthic flux are presented. The prism and flux are shown to be directly proportional to porosity, tidal amplitude, and the length of the groundwater wave; flux is inversely proportional to tidal period. The duration of discharge flux exceeds the duration of recharge flux over one tidal period; and discharge flux continues for some time following low tide. Models compare favorably with laboratory observations and are applied to a South Atlantic Bight study area, where tide generates an 11-m3 groundwater tidal prism per m of shoreline, and drives 81 m3 s −1 to the study area, which describes 23% of an observational estimate. In a marine water body, the discharge component of any oscillatory benthic water flux is submarine groundwater discharge. Benthic flux transports constituents between groundwater and surface water, and is a process by which pollutant loading and saltwater intrusion may occur in coastal areas.

  14. Constraints on Friction, Dilatancy, Diffusivity, and Effective Stress From Low-Frequency Earthquake Rates on the Deep San Andreas Fault

    NASA Astrophysics Data System (ADS)

    Beeler, N. M.; Thomas, Amanda; Bürgmann, Roland; Shelly, David

    2018-01-01

    Families of recurring low-frequency earthquakes (LFEs) within nonvolcanic tremor on the San Andreas Fault in central California are sensitive to tidal stresses. LFEs occur at all levels of the tides, are strongly correlated and in phase with the 200 Pa shear stresses, and weakly and not systematically correlated with the 2 kPa tidal normal stresses. We assume that LFEs are small sources that repeatedly fail during shear within a much larger scale, aseismically slipping fault zone and consider two different models of the fault slip: (1) modulation of the fault slip rate by the tidal stresses or (2) episodic slip, triggered by the tides. LFEs are strongly clustered with duration much shorter than the semidiurnal tide; they cannot be significantly modulated on that time scale. The recurrence times of clusters, however, are many times longer than the semidiurnal, leading to an appearance of tidal triggering. In this context we examine the predictions of laboratory-observed triggered frictional (dilatant) fault slip. The undrained end-member model produces no sensitivity to the tidal normal stress, and slip onsets are in phase with the tidal shear stress. The tidal correlation constrains the diffusivity to be less than 1 × 10-6/s and the product of the friction and dilatancy coefficients to be at most 5 × 10-7, orders of magnitude smaller than observed at room temperature. In the absence of dilatancy the effective normal stress at failure would be about 55 kPa. For this model the observations require intrinsic weakness, low dilatancy, and lithostatic pore fluid.

  15. TIDAL FRICTION AND TIDAL LAGGING. APPLICABILITY LIMITATIONS OF A POPULAR FORMULA FOR THE TIDAL TORQUE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Efroimsky, Michael; Makarov, Valeri V., E-mail: michael.efroimsky@usno.navy.mil, E-mail: vvm@usno.navy.mil

    Tidal torques play a key role in rotational dynamics of celestial bodies. They govern these bodies' tidal despinning and also participate in the subtle process of entrapment of these bodies into spin-orbit resonances. This makes tidal torques directly relevant to the studies of habitability of planets and their moons. Our work begins with an explanation of how friction and lagging should be built into the theory of bodily tides. Although much of this material can be found in various publications, a short but self-consistent summary on the topic has been lacking in the hitherto literature, and we are filling themore » gap. After these preparations, we address a popular concise formula for the tidal torque, which is often used in the literature, for planets or stars. We explain why the derivation of this expression, offered in the paper by Goldreich and in the books by Kaula (Equation (4.5.29)) and Murray and Dermott (Equation (4.159)), implicitly sets the time lag to be frequency independent. Accordingly, the ensuing expression for the torque can be applied only to bodies having a very special (and very hypothetical) rheology which makes the time lag frequency independent, i.e., the same for all Fourier modes in the spectrum of tide. This expression for the torque should not be used for bodies of other rheologies. Specifically, the expression cannot be combined with an extra assertion of the geometric lag being constant, because at finite eccentricities the said assumption is incompatible with the constant-time-lag condition.« less

  16. Quantification of Saturn and Enceladus tidal dissipation by astrometry after Cassini

    NASA Astrophysics Data System (ADS)

    Lainey, V.

    2017-12-01

    Enceladus is the smallest moon known today harboring a global ocean under its crust. While the existence of liquid water in high quantity for such a small object is exciting from an exobiological perspective, the existence and maintenance of such an ocean over time has been very debated. The discovery of strong, largely unexpected, tidal dissipation inside Saturn has turned out to be a major actor for sustaining Enceladus ocean and geysers activity. In particular, interior evolution of Enceladus and Saturn appear closely related. In this talk we will present the way tidal mechanisms occurring inside Saturn are currently tested using astrometry. Since tidal friction may occur both inside the core and the atmosphere, looking at the frequency dependence of tidal parameters is required to assess the magnitude of both processes. Expected results using the whole Cassini data, including the possible global quantification of Enceladus tidal dissipation, will be discussed.

  17. Protective ventilation reduces Pseudomonas aeruginosa growth in lung tissue in a porcine pneumonia model.

    PubMed

    Sperber, Jesper; Nyberg, Axel; Lipcsey, Miklos; Melhus, Åsa; Larsson, Anders; Sjölin, Jan; Castegren, Markus

    2017-08-31

    Mechanical ventilation with positive end expiratory pressure and low tidal volume, i.e. protective ventilation, is recommended in patients with acute respiratory distress syndrome. However, the effect of protective ventilation on bacterial growth during early pneumonia in non-injured lungs is not extensively studied. The main objectives were to compare two different ventilator settings on Pseudomonas aeruginosa growth in lung tissue and the development of lung injury. A porcine model of severe pneumonia was used. The protective group (n = 10) had an end expiratory pressure of 10 cm H 2 O and a tidal volume of 6 ml x kg -1 . The control group (n = 10) had an end expiratory pressure of 5 cm H 2 O and a tidal volume of 10 ml x kg -1 . 10 11 colony forming units of Pseudomonas aeruginosa were inoculated intra-tracheally at baseline, after which the experiment continued for 6 h. Two animals from each group received only saline, and served as sham animals. Lung tissue samples from each animal were used for bacterial cultures and wet-to-dry weight ratio measurements. The protective group displayed lower numbers of Pseudomonas aeruginosa (p < 0.05) in the lung tissue, and a lower wet-to-dry ratio (p < 0.01) than the control group. The control group deteriorated in arterial oxygen tension/inspired oxygen fraction, whereas the protective group was unchanged (p < 0.01). In early phase pneumonia, protective ventilation with lower tidal volume and higher end expiratory pressure has the potential to reduce the pulmonary bacterial burden and the development of lung injury.

  18. Spatiotemporal Aeration and Lung Injury Patterns Are Influenced by the First Inflation Strategy at Birth.

    PubMed

    Tingay, David G; Rajapaksa, Anushi; Zonneveld, C Elroy; Black, Don; Perkins, Elizabeth J; Adler, Andy; Grychtol, Bartłomiej; Lavizzari, Anna; Frerichs, Inéz; Zahra, Valerie A; Davis, Peter G

    2016-02-01

    Ineffective aeration during the first inflations at birth creates regional aeration and ventilation defects, initiating injurious pathways. This study aimed to compare a sustained first inflation at birth or dynamic end-expiratory supported recruitment during tidal inflations against ventilation without intentional recruitment on gas exchange, lung mechanics, spatiotemporal regional aeration and tidal ventilation, and regional lung injury in preterm lambs. Lambs (127 ± 2 d gestation), instrumented at birth, were ventilated for 60 minutes from birth with either lung-protective positive pressure ventilation (control) or as per control after either an initial 30 seconds of 40 cm H2O sustained inflation (SI) or an initial stepwise end-expiratory pressure recruitment maneuver during tidal inflations (duration 180 s; open lung ventilation [OLV]). At study completion, molecular markers of lung injury were analyzed. The initial use of an OLV maneuver, but not SI, at birth resulted in improved lung compliance, oxygenation, end-expiratory lung volume, and reduced ventilatory needs compared with control, persisting throughout the study. These changes were due to more uniform inter- and intrasubject gravity-dependent spatiotemporal patterns of aeration (measured using electrical impedance tomography). Spatial distribution of tidal ventilation was more stable after either recruitment maneuver. All strategies caused regional lung injury patterns that mirrored associated regional volume states. Irrespective of strategy, spatiotemporal volume loss was consistently associated with up-regulation of early growth response-1 expression. Our results show that mechanical and molecular consequences of lung aeration at birth are not simply related to rapidity of fluid clearance; they are also related to spatiotemporal pressure-volume interactions within the lung during inflation and deflation.

  19. Sniffing position combined with mouth opening improves facemask ventilation in children with adenotonsillar hypertrophy.

    PubMed

    Cuvas, O; Dikmen, B; Yucel, F

    2011-05-01

    This study evaluates the influence of sniffing position combined with mouth opening on the effectiveness of facemask ventilation in paralyzed pediatric patients undergoing adenotonsillectomy during sevoflurane-N(2)O anesthesia. After Institutional Ethics Committee approval, 40 children 5-11 years of age who were scheduled for an elective adenotonsillectomy operation were enrolled in this prospective randomized study. After routine monitoring and pre-oxygenation, anesthesia was induced with sevoflurane 8% in a mixture of 50% N(2)O-O(2). Three minutes after the administration of vecuronium, the sequence of the positions was randomized. Three positions were applied during facemask ventilation: Position CN (closed mouth - neutral head and neck position), position CS (closed mouth-sniffing position) and position OS (opened mouth-sniffing position). Volume-controlled ventilation was started. Peak inspiratory pressure (PIP), tidal volume (V(T)), expired tidal volume (V(Texp)) and end-tidal CO(2) pressure were recorded. The percent of leakage was calculated. The primary endpoint of this study was the expired tidal volume (V(Texp)). There was a statistically significant difference among the three positions for V(Texp) and PIP values. The OS resulted in higher V(Texp) values when compared with CN (P=0.022). The OS was significantly better than the other two positions, resulting in lower PIP values (P<0.001 and P=0.004, for CN and CS, respectively). The OS also resulted in less leakage during facemask ventilation when compared with CN and CS. Sniffing position combined with mouth opening improves V(Texp) and PIP values during facemask ventilation during sevoflurane-N(2)O anesthesia in paralyzed pediatric patients with adenotonsillar hypertrophy.

  20. Respiratory modulation of human autonomic function: long-term neuroplasticity in space.

    PubMed

    Eckberg, Dwain L; Diedrich, André; Cooke, William H; Biaggioni, Italo; Buckey, Jay C; Pawelczyk, James A; Ertl, Andrew C; Cox, James F; Kuusela, Tom A; Tahvanainen, Kari U O; Mano, Tadaaki; Iwase, Satoshi; Baisch, Friedhelm J; Levine, Benjamin D; Adams-Huet, Beverley; Robertson, David; Blomqvist, C Gunnar

    2016-10-01

    We studied healthy astronauts before, during and after the Neurolab Space Shuttle mission with controlled breathing and apnoea, to identify autonomic changes that might contribute to postflight orthostatic intolerance. Measurements included the electrocardiogram, finger photoplethysmographic arterial pressure, respiratory carbon dioxide levels, tidal volume and peroneal nerve muscle sympathetic activity. Arterial pressure fell and then rose in space, and drifted back to preflight levels after return to Earth. Vagal metrics changed in opposite directions: vagal baroreflex gain and two indices of vagal fluctuations rose and then fell in space, and descended to preflight levels upon return to Earth. Sympathetic burst frequencies (but not areas) were greater than preflight in space and on landing day, and astronauts' abilities to modulate both burst areas and frequencies during apnoea were sharply diminished. Spaceflight triggers long-term neuroplastic changes reflected by reciptocal sympathetic and vagal motoneurone responsiveness to breathing changes. We studied six healthy astronauts five times, on Earth, in space on the first and 12th or 13th day of the 16 day Neurolab Space Shuttle mission, on landing day, and 5-6 days later. Astronauts followed a fixed protocol comprising controlled and random frequency breathing and apnoea, conceived to perturb their autonomic function and identify changes, if any, provoked by microgravity exposure. We recorded the electrocardiogram, finger photoplethysmographic arterial pressure, tidal carbon dioxide concentrations and volumes, and peroneal nerve muscle sympathetic activity on Earth (in the supine position) and in space. (Sympathetic nerve recordings were made during three sessions: preflight, late mission and landing day.) Arterial pressure changed systematically from preflight levels: pressure fell during early microgravity exposure, rose as microgravity exposure continued, and drifted back to preflight levels after return to Earth. Vagal metrics changed in opposite directions: vagal baroreflex gain and two indices of vagal fluctuations (root mean square of successive normal R-R intervals; and proportion of successive normal R-R intervals greater than 50 ms, divided by the total number of normal R-R intervals) rose significantly during early microgravity exposure, fell as microgravity exposure continued, and descended to preflight levels upon return to Earth. Sympathetic mechanisms also changed. Burst frequencies (but not areas) during fixed frequency breathing were greater than preflight in space and on landing day, but their control during apnoea was sharply altered: astronauts increased their burst frequencies from already high levels, but they could not modulate either burst areas or frequencies appropriately. Space travel provokes long-lasting sympathetic and vagal neuroplastic changes in healthy humans. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  1. Earthquake potential revealed by tidal influence on earthquake size-frequency statistics

    NASA Astrophysics Data System (ADS)

    Ide, Satoshi; Yabe, Suguru; Tanaka, Yoshiyuki

    2016-11-01

    The possibility that tidal stress can trigger earthquakes is long debated. In particular, a clear causal relationship between small earthquakes and the phase of tidal stress is elusive. However, tectonic tremors deep within subduction zones are highly sensitive to tidal stress levels, with tremor rate increasing at an exponential rate with rising tidal stress. Thus, slow deformation and the possibility of earthquakes at subduction plate boundaries may be enhanced during periods of large tidal stress. Here we calculate the tidal stress history, and specifically the amplitude of tidal stress, on a fault plane in the two weeks before large earthquakes globally, based on data from the global, Japanese, and Californian earthquake catalogues. We find that very large earthquakes, including the 2004 Sumatran, 2010 Maule earthquake in Chile and the 2011 Tohoku-Oki earthquake in Japan, tend to occur near the time of maximum tidal stress amplitude. This tendency is not obvious for small earthquakes. However, we also find that the fraction of large earthquakes increases (the b-value of the Gutenberg-Richter relation decreases) as the amplitude of tidal shear stress increases. The relationship is also reasonable, considering the well-known relationship between stress and the b-value. This suggests that the probability of a tiny rock failure expanding to a gigantic rupture increases with increasing tidal stress levels. We conclude that large earthquakes are more probable during periods of high tidal stress.

  2. On the tidal prism-channel area relations

    NASA Astrophysics Data System (ADS)

    D'Alpaos, Andrea; Lanzoni, Stefano; Marani, Marco; Rinaldo, Andrea

    2010-03-01

    We verify the broad applicability of tidal prism cross-sectional area relationships, originally proposed to relate the total water volume entering a lagoon during a characteristic tidal cycle (the tidal prism) to the size of its inlet, to arbitrary sheltered cross sections within a tidal network. We suggest, with reasonable approximation defining a statistical tendency rather than a pointwise equivalence, that the regime of tidal channels may be anywhere related to local landscape-forming prisms embedded in a characteristic spring tide oscillation. The importance of the proposed extension stems from its potential for quantitative predictions of the long-term morphological evolution of whole tidal landforms, in response to forcings affecting tidal prisms. This is the case, in particular, for alterations of relative mean sea levels possibly driven by climate change. Various 1-D and 2-D morphodynamic and hydrodynamic models are employed to evaluate peak flow rates, bottom shear stresses, and the ensuing local tidal prisms. One-dimensional morphodynamic models describing both the longitudinal and cross-sectional evolution of tidal channels are used to verify the validity of the relationship for sheltered sections. Relevant hydrodynamic features determined through accurate 2-D numerical models are compared with those obtained through time-invariant equivalents, defining a mean watershed by an energy landscape from averaged free surface gradients. Empirical evidence gathered within the lagoon of Venice (Italy) supports the proposed extension. We conclude that the geomorphic law relating tidal prisms to channel cross-sectional areas anywhere within a tidal landscape is a valuable tool for studies on long-term tidal geomorphology.

  3. Driving pressure and mechanical power: new targets for VILI prevention.

    PubMed

    Tonetti, Tommaso; Vasques, Francesco; Rapetti, Francesca; Maiolo, Giorgia; Collino, Francesca; Romitti, Federica; Camporota, Luigi; Cressoni, Massimo; Cadringher, Paolo; Quintel, Michael; Gattinoni, Luciano

    2017-07-01

    Several factors have been recognized as possible triggers of ventilator-induced lung injury (VILI). The first is pressure (thus the 'barotrauma'), then the volume (hence the 'volutrauma'), finally the cyclic opening-closing of the lung units ('atelectrauma'). Less attention has been paid to the respiratory rate and the flow, although both theoretical considerations and experimental evidence attribute them a significant role in the generation of VILI. The initial injury to the lung parenchyma is necessarily mechanical and it could manifest as an unphysiological distortion of the extracellular matrix and/or as micro-fractures in the hyaluronan, likely the most fragile polymer embedded in the matrix. The order of magnitude of the energy required to break a molecular bond between the hyaluronan and the associated protein is 1.12×10 -16 Joules (J), 70-90% higher than the average energy delivered by a single breath of 1L assuming a lung elastance of 10 cmH 2 O/L (0.5 J). With a normal statistical distribution of the bond strength some polymers will be exposed each cycle to an energy large enough to rupture. Both the extracellular matrix distortion and the polymer fractures lead to inflammatory increase of capillary permeability with edema if a pulmonary blood flow is sufficient. The mediation analysis of higher vs. lower tidal volume and PEEP studies suggests that the driving pressure, more than tidal volume, is the best predictor of VILI, as inferred by increased mortality. This is not surprising, as both tidal volume and respiratory system elastance (resulting in driving pressure) may independently contribute to the mortality. For the same elastance driving pressure is a predictor similar to plateau pressure or tidal volume. Driving pressure is one of the components of the mechanical power, which also includes respiratory rate, flow and PEEP. Finding the threshold for mechanical power would greatly simplify assessment and prevention of VILI.

  4. The effects of tidal range on saltmarsh morphology

    NASA Astrophysics Data System (ADS)

    Goodwin, Guillaume; Mudd, Simon

    2017-04-01

    Saltmarshes are highly productive coastal ecosystems that act simultaneously as flood barriers, carbon storage, pollutant filters and nurseries. As halophytic plants trap suspended sediment and decay in the settled strata, innervated platforms emerge from the neighbouring tidal flats, forming sub-vertical scarps on their eroding borders and sub-horizontal pioneer zones in areas of seasonal expansion. These evolutions are subject to two contrasting influences: stochastically generated waves erode scarps and scour tidal flats, whereas tidally-generated currents transport sediment to and from the marsh through the channel network. Hence, the relative power of waves and tidal currents strongly influences saltmarsh evolution, and regional variations in tidal range yield marshes of differing morphologies. We analyse several sheltered saltmarshes to determine how their morphology reflects variations in tidal forcing. Using tidal, topographic and spectral data, we implement an algorithm based on the open-source software LSDTopoTools to automatically identify features such as marsh platforms, tidal flats, erosion scarps, pioneer zones and tidal channels on local Digital Elevation Models. Normalised geometric properties are then computed and compared throughout the spectrum of tidal range, highlighting a notable effect on channel networks, platform geometry and wave exposure. We observe that micro-tidal marshes typically display jagged outlines and multiple islands along with wide, shallow channels. As tidal range increases, we note the progressive disappearance of marsh islands and linearization of scarps, both indicative of higher hydrodynamic stress, along with a structuration of channel networks and the increase of levee volume, suggesting higher sediment input on the platform. Future research will lead to observing and modelling the evolution of saltmarshes under various tidal forcing in order to assess their resilience to environmental change.

  5. Tidal atmospheric and ocean loading in VLBI analysis

    NASA Astrophysics Data System (ADS)

    Girdiuk, Anastasiia; Schindelegger, Michael; Böhm, Johannes

    2016-04-01

    In VLBI (Very Long Baseline Interferometry) analysis, reductions for tidal atmospheric and ocean loading are commonly used according to the IERS Conventions. In this presentation we examine such loading corrections from contemporary geophysical models within routine VLBI processing and discuss the internal consistency of the applied corrections for various effects. In detail, two gravitational ocean tide models, FES2004 and the recent FES2012 atlas with a much finer horizontal resolution and an improved description of hydrodynamic processes, are employed. Moreover, the contribution of atmospheric tidal loading is also re-considered based on data taken from two providers of station displacements, Goddard Space Flight Center and the TU Wien group. Those two models differ in terms of the underlying meteorological data, which can be a reason for inconsistency of VLBI reductions and may lead to systematics in the VLBI products at tidal frequencies. We validate this assumption in terms of Earth rotation parameters, by a tidal analysis of diurnal and semi-diurnal universal time and semi-diurnal polar motion variations as determined with the Vienna VLBI Software. Applying the loading models in a consistent way still leads to unexplained residuals at about 4-5 μas in the diurnal polar motion band, thus limiting the possibility of assessing geophysical models at this particular frequency.

  6. Equatorial Plasma Bubbles: Effect of Thermospheric Winds Modulated by DE3 Tidal Waves

    NASA Astrophysics Data System (ADS)

    Sidorova, L. N.; Filippov, S. V.

    2018-03-01

    A hypothesis about the effect of the tropospheric source on the longitudinal distributions of the equatorial plasma bubbles observed in the topside ionosphere was proposed earlier. It was supposed that this influence is transferred mainly by the thermospheric winds modulated by the DE3 tropospheric tidal waves. This conclusion was based on the discovered high degree correlation ( R ≅ 0.79) between the variations of the longitudinal distribution of the plasma bubbles and the neutral atmospheric density. In this work, the hypothesis of the effect of the thermospheric tidal waves on the plasma bubbles at the stage of their generation is subjected to further verification. With this purpose, the longitudinal distributions of the frequency of the plasma bubble observations at the different ionospheric altitudes ( 600 km, ROCSAT-1; 1100 km, ISS-b) are analyzed; their principal similarity is revealed. Comparative analysis of these distributions with the longitudinal profile of the deviations of the zonal thermospheric wind ( 400 km, CHAMP) modulated by the DE3 tidal wave is carried out; their considerable correlation ( R ≅ 0.69) is revealed. We conclude that the longitudinal variations of the zonal wind associated with DE3 tidal waves can effect the longitudinal variations in the appearance frequency of the initial "seeding" perturbations, which further evolve into the plasma bubbles.

  7. Respiratory Sinus Arrhythmia as an Index of Vagal Activity during Stress in Infants: Respiratory Influences and Their Control

    PubMed Central

    Ritz, Thomas; Bosquet Enlow, Michelle; Schulz, Stefan M.; Kitts, Robert; Staudenmayer, John; Wright, Rosalind J.

    2012-01-01

    Respiratory sinus arrhythmia (RSA) is related to cardiac vagal outflow and the respiratory pattern. Prior infant studies have not systematically examined respiration rate and tidal volume influences on infant RSA or the extent to which infants' breathing is too fast to extract a valid RSA. We therefore monitored cardiac activity, respiration, and physical activity in 23 six-month old infants during a standardized laboratory stressor protocol. On average, 12.6% (range 0–58.2%) of analyzed breaths were too short for RSA extraction. Higher respiration rate was associated with lower RSA amplitude in most infants, and lower tidal volume was associated with lower RSA amplitude in some infants. RSA amplitude corrected for respiration rate and tidal volume influences showed theoretically expected strong reductions during stress, whereas performance of uncorrected RSA was less consistent. We conclude that stress-induced changes of peak-valley RSA and effects of variations in breathing patterns on RSA can be determined for a representative percentage of infant breaths. As expected, breathing substantially affects infant RSA and needs to be considered in studies of infant psychophysiology. PMID:23300753

  8. Efficacy of a new device to optimize positive pressure ventilation via face mask in edentulous patients: a randomized trial.

    PubMed

    Niño, Maria C; Pauwels, Andres; Raffan, Fernando; Arango, Enrique; Romero, David J; Benitez, Daniel

    2017-04-01

    Mask ventilation is routinely performed during anesthesia. Under some circumstances, it might be difficult to perform, such as in edentulous patients, due to inadequate mask seal. We developed a new device called NIPARA and studied its use For ventilation optimization in edentulous patients. This randomized controlled trial included edentulous adults who had no other predictors of difficult airway, scheduled to undergo general anesthesia. Patients were assigned either to the NIPARA device group or to the control group (oral airway only). The primary outcomes were peak inspiratory pressure and tidal volume values of the first 14 breaths. The secondary outcome was the incidence of complications. Data from 37 patients were collected during a one-year period (twenty in the NIPARA device group and 17 in the control group). The difference in mean PIP was not statistically significant. The tidal volume was 1.5 times greater in the NIPARA group than in the control group. One patient from the intervention group had minimal oral trauma. In the administration of face mask ventilation, NIPARA is an effective device that significantly improves the tidal volume administered in edentulous patients.

  9. Role of central and peripheral opiate receptors in the effects of fentanyl on analgesia, ventilation and arterial blood-gas chemistry in conscious rats

    PubMed Central

    Henderson, Fraser; May, Walter J.; Gruber, Ryan B.; Discala, Joseph F.; Puscovic, Veljko; Young, Alex P.; Baby, Santhosh M.; Lewis, Stephen J.

    2015-01-01

    This study determined the effects of the peripherally restricted µ-opiate receptor (µ-OR) antagonist, naloxone methiodide (NLXmi) on fentanyl (25 µg/kg, i.v.)-induced changes in (1) analgesia, (2) arterial blood gas chemistry (ABG) and alveolar-arterial gradient (A-a gradient), and (3) ventilatory parameters, in conscious rats. The fentanyl-induced increase in analgesia was minimally affected by a 1.5 mg/kg of NLXmi but was attenuated by a 5.0 mg/kg dose. Fentanyl decreased arterial blood pH, pO2 and sO2 and increased pCO2 and A-a gradient. These responses were markedly diminished in NLXmi (1.5 mg/kg)-pretreated rats. Fentanyl caused ventilatory depression (e.g., decreases in tidal volume and peak inspiratory flow). Pretreatment with NLXmi (1.5 mg/kg, i.v.) antagonized the fentanyl decrease in tidal volume but minimally affected the other responses. These findings suggest that (1) the analgesia and ventilatory depression caused by fentanyl involve peripheral µ-ORs and (2) NLXmi prevents the fentanyl effects on ABG by blocking the negative actions of the opioid on tidal volume and A-a gradient. PMID:24284037

  10. Respiratory responses to intermittent hypoxia in unsedated piglets: relation to substance P binding in brainstem.

    PubMed

    Laferrière, André; Moss, Immanuela Ravé

    2004-10-12

    Respiratory responses to single intermittent hypoxia (5 min 21% O(2), 5 min 8% O(2) X6) in 5-6, 10-11, 21-22 and 26-27 day-old piglets, and to recurrent six daily intermittent hypoxia in 10-11 and 26-27 day-old piglets were assessed. Substance P binding in the piglets' brainstem immediately after the last hypoxic episode was measured. All piglets hyperventilated during hypoxia. Weight adjusted inspired ventilation, tidal volume and instantaneous flow decreased with age. The oldest piglets uniquely displayed attenuated ventilation and tidal volume during the sixth versus first hypoxic episode with single intermittent hypoxia, and reduced inspired ventilation and tidal volume during the first hypoxic episode on the sixth daily hypoxia compared to single hypoxia. By contrast, substance P binding was greatly reduced in the solitary, hypoglossal, paraambigual and lateral reticular brainstem nuclei of both younger and older piglets following either single or recurrent intermittent hypoxia. Thus, the reduction in membrane-bound neurokinin receptors by intermittent hypoxia, presumably consequent to endogenously released substance P, does not exclusively determine whether the ventilatory response to that hypoxia will be attenuated or not.

  11. Determining volume sensitive waters in Beaufort County, SC tidal creeks

    Treesearch

    Andrew Tweel; Denise Sanger; Anne Blair; John Leffler

    2016-01-01

    Non-point source pollution from stormwater runoff associated with large-scale land use changes threatens the integrity of ecologically and economically valuable estuarine ecosystems. Beaufort County, SC implemented volume-based stormwater regulations on the rationale that if volume discharge is controlled, contaminant loading will also be controlled.

  12. Interactions between CO2 chemoreflexes and arterial baroreflexes

    NASA Technical Reports Server (NTRS)

    Henry, R. A.; Lu, I. L.; Beightol, L. A.; Eckberg, D. L.

    1998-01-01

    We studied interactions between CO2 chemoreflexes and arterial baroreflexes in 10 supine healthy young men and women. We measured vagal carotid baroreceptor-cardiac reflexes and steady-state fast Fourier transform R-R interval and photoplethysmographic arterial pressure power spectra at three arterial pressure levels (nitroprusside, saline, and phenylephrine infusions) and three end-tidal CO2 levels (3, 4, and 5%, fixed-frequency, large-tidal-volume breathing, CO2 plus O2). Our study supports three principal conclusions. First, although low levels of CO2 chemoreceptor stimulation reduce R-R intervals and R-R interval variability, statistical modeling suggests that this effect is indirect rather than direct and is mediated by reductions of arterial pressure. Second, reductions of R-R intervals during hypocapnia reflect simple shifting of vagally mediated carotid baroreflex responses on the R-R interval axis rather than changes of baroreflex gain, range, or operational point. Third, the influence of CO2 chemoreceptor stimulation on arterial pressure (and, derivatively, on R-R intervals and R-R interval variability) depends critically on baseline arterial pressure levels: chemoreceptor effects are smaller when pressure is low and larger when arterial pressure is high.

  13. Lung volumes in giraffes, Giraffa camelopardalis.

    PubMed

    Mitchell, G; Skinner, J D

    2011-01-01

    We have measured lung mass and trachea dimensions in 46 giraffes of both genders ranging in body mass from 147 kg to 1441 kg, calculated static and dynamic lung volumes, and developed allometric equations that relate changes in them to growth. We found that relative lung mass is 0.6±0.2% of body mass which is significantly less than it is in other mammals (1.1±0.1%). Total lung volume is significantly smaller (46.2±5.9 mL kg⁻¹) than in similar sized mammals (75.0±2.1 mL kg⁻¹). The lung volume:body mass ratio decreases during growth rather than increase as it does in other mammals. Tracheal diameter is significantly narrower than in similar sized mammals but dead space volume (2.9±0.5 mL kg⁻¹) is larger than in similar sized mammals (2.4±0.1 mL kg⁻¹). Our calculations suggest that tidal volume (10.5±0.2 mL kg⁻¹) is increased compared to that in other mammals(10.0±0.2 mL kg⁻¹) so that the dead space:tidal volume ratio is the same as in other mammals. Calculated Functional Residual Capacity is smaller than predicted (53.4±3.5 vs 33.7±0.6 mL kg⁻¹) as is Expiratory Reserve Volume (47.4±2.6 vs 27.2±1.0 mL kg⁻¹, but Residual Volume (6.0±0.4 mL kg⁻¹) is the same as in other similar sized mammals (6.0±0.9 mL kg⁻¹. Our calculations suggest that Inspiratory Reserve Volume is significantly reduced in size (11.6±1.6 vs 3.8±2.4 mL kg⁻¹), and, if so, the capacity to increase tidal volume is limited. Calculated dynamic lung volumes were the same as in similar sized mammals. We have concluded that giraffe morphology has resulted in lung volumes that are significantly different to that of similar sized mammals, but these changes do not compromise ventilatory capacity. Copyright © 2010 Elsevier Inc. All rights reserved.

  14. Resolving high-frequency internal waves generated at an isolated coral atoll using an unstructured grid ocean model

    NASA Astrophysics Data System (ADS)

    Rayson, Matthew D.; Ivey, Gregory N.; Jones, Nicole L.; Fringer, Oliver B.

    2018-02-01

    We apply the unstructured grid hydrodynamic model SUNTANS to investigate the internal wave dynamics around Scott Reef, Western Australia, an isolated coral reef atoll located on the edge of the continental shelf in water depths of 500,m and more. The atoll is subject to strong semi-diurnal tidal forcing and consists of two relatively shallow lagoons separated by a 500 m deep, 2 km wide and 15 km long channel. We focus on the dynamics in this channel as the internal tide-driven flow and resulting mixing is thought to be a key mechanism controlling heat and nutrient fluxes into the reef lagoons. We use an unstructured grid to discretise the domain and capture both the complex topography and the range of internal wave length scales in the channel flow. The model internal wave field shows super-tidal frequency lee waves generated by the combination of the steep channel topography and strong tidal flow. We evaluate the model performance using observations of velocity and temperature from two through water-column moorings in the channel separating the two reefs. Three different global ocean state estimate datasets (global HYCOM, CSIRO Bluelink, CSIRO climatology atlas) were used to provide the model initial and boundary conditions, and the model outputs from each were evaluated against the field observations. The scenario incorporating the CSIRO Bluelink data performed best in terms of through-water column Murphy skill scores of water temperature and eastward velocity variability in the channel. The model captures the observed vertical structure of the tidal (M2) and super-tidal (M4) frequency temperature and velocity oscillations. The model also predicts the direction and magnitude of the M2 internal tide energy flux. An energy analysis reveals a net convergence of the M2 energy flux and a divergence of the M4 energy flux in the channel, indicating the channel is a region of either energy transfer to higher frequencies or energy loss to dissipation. This conclusion is supported by the mooring observations that reveal high frequency lee waves breaking on the turning phase of the tide.

  15. Radiocarbon dating of plant macrofossils from tidal-marsh sediment

    USGS Publications Warehouse

    Kemp, A.C.; Nelson, Alan R.; Horton, B.P.

    2013-01-01

    Tidal-marsh sediment is an archive of Holocene environmental changes, including movements of sea and land levels, and extreme events such as hurricanes, earthquakes, and tsunamis. Accurate and precise radiocarbon dating of environmental changes is necessary to estimate rates of change and the recurrence interval (frequency) of events. Plant macrofossils preserved in growth position (or deposited soon after death) in tidal-marsh sediment are ideal samples for dating such changes. In this chapter, we focus on the selection of plant macrofossils for radiocarbon dating and the application of ages from different types of macrofossils to varied research projects, and make recommendations for selection and preparation of tidal-marsh samples for dating.

  16. Assessment and monitoring of flow limitation and other parameters from flow/volume loops.

    PubMed

    Dueck, R

    2000-01-01

    Flow/volume (F/V) spirometry is routinely used for assessing the type and severity of lung disease. Forced vital capacity (FVC) and timed vital capacity (FEV1) provide the best estimates of airflow obstruction in patients with asthma, chronic obstructive pulmonary disease (COPD) and emphysema. Computerized spirometers are now available for early home recognition of asthma exacerbation in high risk patients with severe persistent disease, and for recognition of either infection or rejection in lung transplant patients. Patients with severe COPD may exhibit expiratory flow limitation (EFL) on tidal volume (VT) expiratory F/V (VTF/V) curves, either with or without applying negative expiratory pressure (NEP). EFL results in dynamic hyperinflation and persistently raised alveolar pressure or intrinsic PEEP (PEEPi). Hyperinflation and raised PEEPi greatly enhance dyspnea with exertion through the added work of the threshold load needed to overcome raised pleural pressure. Esophageal (pleural) pressure monitoring may be added to VTF/V loops for assessing the severity of PEEPi: 1) to optimize assisted ventilation by mask or via endotracheal tube with high inspiratory flow rates to lower I:E ratio, and 2) to assess the efficacy of either pressure support ventilation (PSV) or low level extrinsic PEEP in reducing the threshold load of PEEPi. Intraoperative tidal volume F/V loops can also be used to document the efficacy of emphysema lung volume reduction surgery (LVRS) via disappearance of EFL. Finally, the mechanism of ventilatory constraint can be identified with the use of exercise tidal volume F/V loops referenced to maximum F/V loops and static lung volumes. Patients with severe COPD show inspiratory F/V loops approaching 95% of total lung capacity, and flow limitation over the entire expiratory F/V curve during light levels of exercise. Surprisingly, patients with a history of congestive heart failure may lower lung volume towards residual volume during exercise, thereby reducing airway diameter and inducing expiratory flow limitation.

  17. The effect of body mass and sex on the accuracy of respiratory magnetometers for measurement of end-expiratory lung volumes.

    PubMed

    Avraam, Joanne; Bourke, Rosie; Trinder, John; Nicholas, Christian L; Brazzale, Danny; O'Donoghue, Fergal J; Rochford, Peter D; Jordan, Amy S

    2016-11-01

    Respiratory magnetometers are increasingly being used in sleep studies to measure changes in end-expiratory lung volume (EELV), including in obese obstructive sleep apnea patients. Despite this, the accuracy of magnetometers has not been confirmed in obese patients nor compared between sexes. Thus we compared spirometer-measured and magnetometer-estimated lung volume and tidal volume changes during voluntary end-expiratory lung volume changes of 1.5, 1, and 0.5 l above and 0.5 l below functional respiratory capacity in supine normal-weight [body mass index (BMI) < 25 kg/m] and healthy obese (BMI > 30 kg/m) men and women. Two different magnetometer calibration techniques proposed by Banzett et al. [Banzett RB, Mahan ST, Garner DM, Brughera A, Loring SH. J Appl Physiol (1985) 79: 2169-2176, 1995] and Sackner et al. [Sackner MA, Watson H, Belsito AS, Feinerman D, Suarez M, Gonzalez G, Bizousky F, Krieger B. J Appl Physiol (1985) 66: 410-420, 1989] were assessed. Across all groups and target volumes, magnetometers overestimated spirometer-measured EELV by ~65 ml (<0.001) with no difference between techniques (0.07). The Banzett method overestimated the spirometer EELV change in normal-weight women for all target volumes except +0.5 l, whereas no differences between mass or sex groups were observed for the Sackner technique. The variability of breath-to-breath measures of EELV was significantly higher for obese compared with nonobese subjects and was higher for the Sackner than Banzett technique. On the other hand, for tidal volume, both calibration techniques underestimated spirometer measurements (<0.001), with the underestimation being more marked for the Banzett than Sackner technique (0.03), in obese than normal weight (<0.001) and in men than in women (0.003). These results indicate that both body mass and sex affect the accuracy of respiratory magnetometers in measuring EELV and tidal volume. Copyright © 2016 the American Physiological Society.

  18. Hindcast and forecast of grand solar minina and maxima using a three-frequency dynamo model based on Jupiter-Saturn tidal frequencies modulating the 11-year sunspot cycle

    NASA Astrophysics Data System (ADS)

    Scafetta, Nicola

    2016-04-01

    The Schwabe frequency band of the Zurich sunspot record since 1749 is found to be made of three major cycles with periods of about 9.98, 10.9 and 11.86 years. The two side frequencies appear to be closely related to the spring tidal period of Jupiter and Saturn (range between 9.5 and 10.5 years, and median 9.93 years) and to the tidal sidereal period of Jupiter (about 11.86 years). The central cycle can be associated to a quasi-11-year sunspot solar dynamo cycle that appears to be approximately synchronized to the average of the two planetary frequencies. A simplified harmonic constituent model based on the above two planetary tidal frequencies and on the exact dates of Jupiter and Saturn planetary tidal phases, plus a theoretically deduced 10.87-year central cycle reveals complex quasi-periodic interference/beat patterns. The major beat periods occur at about 115, 61 and 130 years, plus a quasi-millennial large beat cycle around 983 years. These frequencies and other oscillations appear once the model is non-linearly processed. We show that equivalent synchronized cycles are found in cosmogenic records used to reconstruct solar activity and in proxy climate records throughout the Holocene (last 12,000 years) up to now. The quasi-secular beat oscillations hindcast reasonably well the known prolonged periods of low solar activity during the last millennium such as the Oort, Wolf, Sporer, Maunder and Dalton minima, as well as the 17 115-year long oscillations found in a detailed temperature reconstruction of the Northern Hemisphere covering the last 2000 years. The millennial cycle hindcasts equivalent solar and climate cycles for 12,000 years. Finally, the harmonic model herein proposed reconstructs the prolonged solar minima that occurred during 1900- 1920 and 1960-1980 and the secular solar maxima around 1870-1890, 1940-1950 and 1995-2005 and a secular upward trending during the 20th century: this modulated trending agrees well with some solar proxy model, with the ACRIM TSI satellite composite and with the global surface temperature modulation since 1850. The model forecasts a new prolonged solar minimum during 2020-2045, which would be produced mostly by the minima of both the 61 and 115-year reconstructed cycles. Finally, the model predicts that during low solar activity periods, the solar cycle length tends to be longer, as some researchers have claimed. These results clearly indicate that both solar and climate oscillations are linked to planetary motion and, furthermore, their timing can be reasonably hindcast and forecast for decades, centuries and millennia. Scafetta, N.: Multi-scale harmonic model for solar and climate cyclical variation throughout the Holocene based on Jupiter-Saturn tidal frequencies plus the 11-year solar dynamo cycle. J. Atmos. Sol.- Terr. Phys. 80, 296-311 (2012). Scafetta, N.: Does the Sun work as a nuclear fusion amplifier of planetary tidal forcing? A proposal for a physical mechanism based on the mass-luminosity relation. J. Atmos. Sol.-Terr. Phys. 81-82, 27-40 (2012). Scafetta, N.: Discussion on the spectral coherence between planetary, solar and climate oscillations: a reply to some critiques. Astrophys. Space Sci. 354, 275-299 (2014).

  19. Tidal dissipation in a homogeneous spherical body. II. Three examples: Mercury, Io, and Kepler-10 b

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makarov, Valeri V.; Efroimsky, Michael, E-mail: vvm@usno.navy.mil, E-mail: michael.efroimsky@usno.navy.mil

    In Efroimsky and Makarov (Paper I), we derived from the first principles a formula for the tidal heating rate in a homogeneous sphere, compared it with the previously used formulae, and noted the differences. Now we present case studies: Mercury, Kepler-10 b, and a triaxial Io. A sharp frequency dependence of k {sub 2}/Q near spin-orbit resonances yields a sharp dependence of k {sub 2}/Q (and, therefore, of tidal heating) upon the spin rate. Thereby physical libration plays a major role in tidal heating of synchronously rotating planets. The magnitude of libration in the spin rate being defined by themore » planet's triaxiality, the latter becomes a factor determining the dissipation rate. Other parameters equal, a strongly triaxial synchronized body generates more heat than a similar body of a more symmetrical shape. After an initially triaxial object melts and loses its triaxiality, dissipation becomes less intensive; the body can solidify, with the tidal bulge becoming a new figure with triaxiality lower than the original. We derive approximate expressions for the dissipation rate in a Maxwell planet with the Maxwell time longer than the inverse tidal frequency. The expressions derived pertain to the 1:1 and 3:2 resonances and a nonresonant case; so they are applicable to most close-in super-Earths detected. In these planets, the heating outside synchronism is weakly dependent on the eccentricity and obliquity, provided both these parameters's values are moderate. According to our calculation, Kepler-10 b could hardly survive the intensive tidal heating without being synchronized, circularized, and reshaped through a complete or partial melt-down.« less

  20. Temporal variation of velocity and turbulence characteristics at a tidal energy site

    NASA Astrophysics Data System (ADS)

    Gunawan, B.; Neary, V. S.; Colby, J.

    2013-12-01

    This study examines the temporal variability, frequency, direction and magnitude of the mean current, turbulence, hydrodynamic force and tidal power availability at a proposed tidal energy site in a tidal channel located in East River, NY, USA. The channel has a width of 190 m, a mean water level of 9.8 m and a mean tidal range of 1.3 m. A two-month velocity measurement was conducted at the design hub-height of a tidal turbine using an acoustic Doppler velocimeter (ADV). The site has semi-diurnal tidal characteristics with tidal current pattern resembles that of sinusoidal function. The five-minute mean currents at the site varied between 0 and 2.4 m s-1. Flood current magnitudes were typically higher that the ebb current magnitudes, which skewed the tidal energy production towards the flood period. The effect of small-scale turbulence on the computed velocity, hydrodynamic load and power densities timeseries were investigated. Excluding the small-scale turbulence may lead to a significant underestimation of the mean and the maximum values of the analyzed variable. Comparison of hydrodynamic conditions with other tidal energy sites indicates that the key parameters for tidal energy site development are likely to be site-specific, which highlight the need to develop a classification system for tidal energy sites. Such a classification system would enable a direct comparison of key parameters between potential project locations and ultimately help investors in the decision making process. Turbulence intensity vs. mean current magnitude

  1. Influence of neonatally administered capsaicin on baroreceptor and chemoreceptor reflexes in the adult rat.

    PubMed Central

    Bond, S. M.; Cervero, F.; McQueen, D. S.

    1982-01-01

    1 Baroreceptor and chemoreceptor reflex activity was studied in anaesthetized adult rats which had been treated neonatally with a single injection of capsaicin (50 mg/kg s.c.). 2 Pressor responses to bilateral carotid artery occlusion were significantly lower in capsaicin-treated rats compared with vehicle-treated controls. Pressor responses to intravenously injected noradrenaline were similar in the two groups of rats. 3 Resting respiratory minute volume and tidal volume were lower in anaesthetized capsaicin-treated animals than in vehicle-treated controls, but there was no significant difference in respiratory frequency. 4 The increases in respiration evoked by intravenous administration of the peripheral arterial chemoreceptor stimulant, sodium cyanide, or by breathing a hypoxic gas mixture, were significantly lower in capsaicin-treated rats compared with the controls. 5 It is concluded that baroreceptor and chemoreceptor reflex activity are significantly reduced in anaesthetized adult rats which had been treated neonatally with capsaicin, and that this is likely to result from the destruction of unmyelinated baro- and chemoreceptor afferent fibres. PMID:6182938

  2. High-resolution modeling assessment of tidal stream resource in Western Passage of Maine, USA

    NASA Astrophysics Data System (ADS)

    Yang, Zhaoqing; Wang, Taiping; Feng, Xi; Xue, Huijie; Kilcher, Levi

    2017-04-01

    Although significant efforts have been taken to assess the maximum potential of tidal stream energy at system-wide scale, accurate assessment of tidal stream energy resource at project design scale requires detailed hydrodynamic simulations using high-resolution three-dimensional (3-D) numerical models. Extended model validation against high quality measured data is essential to minimize the uncertainties of the resource assessment. Western Passage in the State of Maine in U.S. has been identified as one of the top ranking sites for tidal stream energy development in U.S. coastal waters, based on a number of criteria including tidal power density, market value and transmission distance. This study presents an on-going modeling effort for simulating the tidal hydrodynamics in Western Passage using the 3-D unstructured-grid Finite Volume Community Ocean Model (FVCOM). The model domain covers a large region including the entire the Bay of Fundy with grid resolution varies from 20 m in the Western Passage to approximately 1000 m along the open boundary near the mouth of Bay of Fundy. Preliminary model validation was conducted using existing NOAA measurements within the model domain. Spatial distributions of tidal power density were calculated and extractable tidal energy was estimated using a tidal turbine module embedded in FVCOM under different tidal farm scenarios. Additional field measurements to characterize resource and support model validation were discussed. This study provides an example of high resolution resource assessment based on the guidance recommended by the International Electrotechnical Commission Technical Specification.

  3. Broad timescale forcing and geomorphic mediation of tidal marsh flow and temperature dynamics

    USGS Publications Warehouse

    Enwright, Christopher; Culberson, Steven; Burau, Jon R.

    2013-01-01

    Tidal marsh functions are driven by interactions between tides, landscape morphology, and emergent vegetation. Less often considered are the diurnal pattern of tide extremes and seasonal variation of solar insolation in the mix of tidal marsh driver interactions. This work demonstrates how high-frequency hydroperiod and water temperature variability emerges from disparate timescale interactions between tidal marsh morphology, tidal harmonics, and meteorology in the San Francisco Estuary. We compare the tidal and residual flow and temperature response of neighboring tidal sloughs, one possessing natural tidal marsh morphology, and one that is modified for water control. We show that the natural tidal marsh is tuned to lunar phase and produces tidal and fortnight water temperature variability through interacting tide, meteorology, and geomorphic linkages. In contrast, temperature variability is dampened in the modified slough where overbank marsh plain connection is severed by levees. Despite geomorphic differences, a key finding is that both sloughs are heat sinks in summer by latent heat flux-driven residual upstream water advection and sensible and long-wave heat transfer. The precession of a 335-year tidal harmonic assures that these dynamics will shift in the future. Water temperature regulation appears to be a key function of natural tidal sloughs that depends critically on geomorphic mediation. We investigate approaches to untangling the relative influence of sun versus tide on residual water and temperature transport as a function of system morphology. The findings of this study likely have ecological consequences and suggest physical process metrics for tidal marsh restoration performance.

  4. Rapid evolution of a marsh tidal creek network in response to sea level rise.

    NASA Astrophysics Data System (ADS)

    Hughes, Z. J.; Fitzgerald, D. M.; Mahadevan, A.; Wilson, C. A.; Pennings, S. C.

    2008-12-01

    In the Santee River Delta (SRD), South Carolina, tidal creeks are extending rapidly onto the marsh platform. A time-series of aerial photographs establishes that these channels were initiated in the 1950's and are headward eroding at a rate of 1.9 m /yr. Short-term trends in sea level show an average relative sea level rise (RSLR) of 4.6 mm/yr over a 20-year tide gauge record from nearby Winyah Bay and Charleston Harbor (1975-1995). Longer-term (85-year) records in Charleston suggest a rate of 3.2 mm/yr. RSLR in the SRD is likely even higher as sediment cores reveal that the marsh is predominantly composed of fine-grained sediment, making it highly susceptible to compaction and subsidence. Furthermore, loss in elevation will have been exacerbated by the decrease in sediment supply due to the damming of the Santee River in 1939. The rapid rate of headward erosion indicates that the marsh platform is in disequilibrium; unable to keep pace with RSLR through accretionary processes and responding to an increased volume and frequency of inundation through the extension of the drainage network. The observed tidal creeks show no sinuosity and a distinctive morphology associated with their young age and biological mediation during their evolution. Feedbacks between tidal flow, vegetation and infauna play a strong role in the morphological development of the creeks. The creek heads are characterized by a region denuded of vegetation, the edges of which are densely populated and burrowed by Uca Pugnax (fiddler crab). Crab burrowing destabilizes sediment, destroys rooting and impacts drainage. Measured infiltration rates are three orders of magnitude higher in the burrowed regions than in a control area (1000 ml/min and 0.6 ml/min respectively). Infiltration of oxygenated water enhances decomposition of organic matter and root biomass is reduced within the creek head (marsh=4.3 kg/m3, head=0.6 kg/m3). These processes lead to the removal and collapse of the soils, producing topographically depressed regions at the creek heads. The depression focuses the ebb tidal flow into the creeks leading to strong ebb dominance in the creek heads and a net loss of suspended sediment through them. Thus the headward incision of tidal creeks is initiated by biologically driven subsidence at the creek heads. The results of this study provide an alternative scenario to marsh submergence as a response to increasing SLR and clear evidence of the importance of biological feedback in the evolving morphology of marsh tidal creeks.

  5. Fully Packaged Blue Energy Harvester by Hybridizing a Rolling Triboelectric Nanogenerator and an Electromagnetic Generator.

    PubMed

    Wang, Xin; Wen, Zhen; Guo, Hengyu; Wu, Changsheng; He, Xu; Lin, Long; Cao, Xia; Wang, Zhong Lin

    2016-12-27

    Ocean energy, in theory, is an enormous clean and renewable energy resource that can generate electric power much more than that required to power the entire globe without adding any pollution to the atmosphere. However, owing to a lack of effective technology, such blue energy is almost unexplored to meet the energy requirement of human society. In this work, a fully packaged hybrid nanogenerator consisting of a rolling triboelectric nanogenerator (R-TENG) and an electromagnetic generator (EMG) is developed to harvest water motion energy. The outstanding output performance of the R-TENG (45 cm 3 in volume and 28.3 g in weight) in the low-frequency range (<1.8 Hz) complements the ineffective output of EMG (337 cm 3 in volume and 311.8 g in weight) in the same range and thus enables the hybrid nanogenerator to deliver valuable outputs in a broad range of operation frequencies. Therefore, the hybrid nanogenerator can maximize the energy conversion efficiency and broaden the operating frequency simultaneously. In terms of charging capacitors, this hybrid nanogenerator provides not only high voltage and consistent charging from the TENG component but also fast charging speed from the EMG component. The practical application of the hybrid nanogenerator is also demonstrated to power light-emitting diodes by harvesting energy from stimulated tidal flow. The high robustness of the R-TENG is also validated based on the stable electrical output after continuous rolling motion. Therefore, the hybrid R-TENG and EMG device renders an effective and sustainable approach toward large-scale blue energy harvesting in a broad frequency range.

  6. Why Do Some Estuaries Close: A Model of Estuary Entrance Morphodynamics.

    NASA Astrophysics Data System (ADS)

    McSweeney, S. L.; Kennedy, D. M.; Rutherfurd, I.

    2014-12-01

    Intermittently Closed/Open Coastal Lakes/Lagoons (ICOLLs) are a form of wave-dominated, microtidal estuary that experience periodic closure in times of low river flow. ICOLL entrance morphodynamics are complex due to the interaction between wave, tidal and fluvial processes. Managers invest substantial funds to artificially open ICOLLs as they flood surrounding property and infrastructure, and have poor water quality. Existing studies examine broad scale processes but do not identify the main drivers of entrance condition. In this research, the changes in entrance geomorphology were surveyed before and after artificial entrance openings in three ICOLLs in Victoria, Australia. Changes in morphology were related to continuous measures of sediment volume, water level, tide and wave energy. A six-stage quantitative phase model of entrance geomorphology and hydrodynamics is presented to illustrate the spatio-temporal variability in ICOLL entrance morphodynamics. Phases include: breakout; channel expansion with rapid outflow; open with tidal exchange; initial berm rebuilding with tidal attenuation; partial berm recovery with rising water levels; closed with perched water levels. Entrance breakout initiates incision of a pilot channel to the ocean, whereby basin water levels then decline and channel expansion as the headcut migrates landwards. Peak outflow velocities of 5 m/s-3 were recorded and channel dimensions increased over 6 hrs to 3.5 m deep and 140 m wide. When tidal, a clear semi-diurnal signal is superimposed upon an otherwise stable water level. Deep-water wave energy was transferred 1.8 km upstream of the rivermouth with bores present in the basin. Berm rebuilding occurred by littoral drift and cross-shore transport once outflow ceased and microscale bedform features, particularly antidunes, contributed to sediment progradation. Phase duration is dependant on how high the estuary was perched above mean sea level, tidal prism extent, and onshore sediment supply. High offshore wave height and frequency, in addition to littoral drift magnitude, were main drivers of closure. This study presents a predictive model of entrance morphodynamics whereby managers can determine proximity to natural closure or opening, and as a result identify whether implementing an artificial opening is worthwhile.

  7. Contributions of organic and inorganic matter to sediment volume and accretion in tidal wetlands at steady state

    EPA Science Inventory

    A mixing model derived from first principles describes the bulk density (BD) of intertidal wetland sediments as a function of loss on ignition (LOI). The model assumes the bulk volume of sediment equates to the sum of self-packing volumes of organic and mineral components or BD =...

  8. Empirical Tidal Dissipation in Exoplanet Hosts From Tidal Spin-up

    NASA Astrophysics Data System (ADS)

    Penev, Kaloyan; Bouma, L. G.; Winn, Joshua N.; Hartman, Joel D.

    2018-04-01

    Stars with hot Jupiters (HJs) tend to rotate faster than other stars of the same age and mass. This trend has been attributed to tidal interactions between the star and planet. A constraint on the dissipation parameter {Q}\\star {\\prime } follows from the assumption that tides have managed to spin up the star to the observed rate within the age of the system. This technique was applied previously to HATS-18 and WASP-19. Here, we analyze the sample of all 188 known HJs with an orbital period <3.5 days and a “cool” host star (T eff < 6100 K). We find evidence that the tidal dissipation parameter ({Q}\\star {\\prime }) increases sharply with forcing frequency, from 105 at 0.5 day‑1 to 107 at 2 day‑1. This helps to resolve a number of apparent discrepancies between studies of tidal dissipation in binary stars, HJs, and warm Jupiters. It may also allow for a HJ to damp the obliquity of its host star prior to being destroyed by tidal decay.

  9. High Frequency Radar Observations of Tidal Current Variability in the Lower Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    Updyke, T. G.; Dusek, G.; Atkinson, L. P.

    2016-02-01

    Analysis of eight years of high frequency radar surface current observations in the lower Chesapeake Bay is presented with a focus on the variability of the tidal component of the surface circulation which accounts for a majority of the variance of the surface flow (typically 70-80% for the middle of the radar footprint). Variations in amplitude and phase of the major tidal constituents are examined in the context of water level, wind and river discharge data. Comparisons are made with harmonic analysis results from long-term records of current data measured by three current profilers operated by NOAA as part of the Chesapeake Bay Physical Oceanographic Real-Time System (PORTS). Preliminary results indicate that there is significant spatial variability in the M2 amplitude over the HF radar grid as well as temporal variability when harmonic analysis is performed using bi-monthly time segments over the course of the record.

  10. Dynamic ocean-tide effects on Earth's rotation

    NASA Technical Reports Server (NTRS)

    Dickman, S. R.

    1993-01-01

    This article develops 'broad-band' Liouville equations which are capable of determining the effects on the rotation of the Earth of a periodic excitation even at frequencies as high as semi-diurnal; these equations are then used to predict the rotational effects of altimetric, numerical and 32-constituent spherical harmonic ocean-tide models. The rotational model includes a frequency-dependent decoupled core, the effects of which are especially marked near retrograde diurnal frequencies; and a fully dynamic oceanic response, whose effects appear to be minor despite significant frequency dependence. The model also includes solid-earth effects which are frequency dependent as the result of both anelasticity at long periods and the fluid-core resonance at nearly diurnal periods. The effects of both tidal inertia and relative angular momentum on Earth rotation (polar motion, length of day, 'nutation' and Universal Time) are presented for 32 long- and short-period ocean tides determined as solutions to the author's spherical harmonic tide theory. The lengthening of the Chandler wobble period by the pole tide is also re-computed using the author's full theory. Additionally, using the spherical harmonic theory, tidal currents and their effects on rotation are determined for available numerical and altimetric tide height models. For all models, we find that the effects of tidal currents are at least as important as those of tide height for diurnal and semi-diurnal constituents.

  11. Mechanical ventilation in abdominal surgery.

    PubMed

    Futier, E; Godet, T; Millot, A; Constantin, J-M; Jaber, S

    2014-01-01

    One of the key challenges in perioperative care is to reduce postoperative morbidity and mortality. Patients who develop postoperative morbidity but survive to leave hospital have often reduced functional independence and long-term survival. Mechanical ventilation provides a specific example that may help us to shift thinking from treatment to prevention of postoperative complications. Mechanical ventilation in patients undergoing surgery has long been considered only as a modality to ensure gas exchange while allowing maintenance of anesthesia with delivery of inhaled anesthetics. Evidence is accumulating, however, suggesting an association between intraoperative mechanical ventilation strategy and postoperative pulmonary function and clinical outcome in patients undergoing abdominal surgery. Non-protective ventilator settings, especially high tidal volume (VT) (>10-12mL/kg) and the use of very low level of positive end-expiratory pressure (PEEP) (PEEP<5cmH2O) or no PEEP, may cause alveolar overdistension and repetitive tidal recruitment leading to ventilator-associated lung injury in patients with healthy lungs. Stimulated by previous findings in patients with acute respiratory distress syndrome, the use of lower tidal volume ventilation is becoming increasingly more common in the operating room. However, lowering tidal volume, though important, is only part of the overall multifaceted approach of lung protective mechanical ventilation. In this review, we aimed at providing the most recent and relevant clinical evidence regarding the use of mechanical ventilation in patients undergoing abdominal surgery. Copyright © 2014 Société française d’anesthésie et de réanimation (Sfar). Published by Elsevier SAS. All rights reserved.

  12. A computer system for timing and acoustical analysis of crackles: a study in cryptogenic fibrosing alveolitis.

    PubMed

    Dalmasso, F; Guarene, M M; Spagnolo, R; Benedetto, G; Righini, G

    1984-01-01

    A system for recording and processing lung crackles is described. These are detected by a microphone on the chest wall and recorded simultaneously with flow rate, tidal volume and oesophageal pressure on a four-channel tape recorder. The sound signal is subsequently digitized by an analog-to-digital converter and processed by a minicomputer, using the Time Series Language and the fast Fourier transform algorithm. A preliminary study on seven patients with cryptogenic fibrosing alveolitis (CFA) confirms that crackles typically occur at the end of inspiration; timing seems to be well related to inspired volume and esophageal pressure. Inspiratory crackles of CFA have a well-defined waveform: it consists of a starting component and a damped oscillation, which probably depends on the resonant frequency of the lung. The crackle energy content is mainly concentrated in the frequency range between 100 and 2 000 Hz, the spectrum shape being determined by the energy distribution between the two components of the waveform. This recording and processing system gives more complete information about crackles than auscultation does, allowing their quantification and reproducibility. It may be used to compare crackles in different diseases, and may be simplified and standardized for routine clinical use as an additional noninvasive diagnostic technique.

  13. Kepler eclipsing binaries with δ Scuti components and tidally induced heartbeat stars

    NASA Astrophysics Data System (ADS)

    Guo, Zhao; Gies, Douglas R.; Matson, Rachel A.

    δ Scuti stars are generally fast rotators and their pulsations are not in the asymptotic regime, so the interpretation of their pulsation spectra is a very difficult task. Binary stars, especially eclipsing systems, offer us the opportunity to constrain the space of fundamental stellar parameters. Firstly, we show the results of KIC9851944 and KIC4851217 as two case studies. We found the signature of the large frequency separation in the pulsational spectrum of both stars. The observed mean stellar density and the large frequency separation obey the linear relation in the log-log space as found by Suarez et al. (2014) and García Hernández et al. (2015). Second, we apply the simple `one-layer model' of Moreno & Koenigsberger (1999) to the prototype heartbeat star KOI-54. The model naturally reproduces the tidally induced high frequency oscillations and their frequencies are very close to the observed frequency at 90 and 91 times the orbital frequency.

  14. Saltwater-freshwater mixing fluctuation in shallow beach aquifers

    NASA Astrophysics Data System (ADS)

    Han, Qiang; Chen, Daoyi; Guo, Yakun; Hu, Wulong

    2018-07-01

    Field measurements and numerical simulations demonstrate the existence of an upper saline plume in tidally dominated beaches. The effect of tides on the saltwater-freshwater mixing occurring at both the upper saline plume and lower salt wedge is well understood. However, it is poorly understood whether the tidal driven force acts equally on the mixing behaviours of above two regions and what factors control the mixing fluctuation features. In this study, variable-density, saturated-unsaturated, transient groundwater flow and solute transport numerical models are proposed and performed for saltwater-freshwater mixing subject to tidal forcing on a sloping beach. A range of tidal amplitude, fresh groundwater flux, hydraulic conductivity, beach slope and dispersivity anisotropy are simulated. Based on the time sequential salinity data, the gross mixing features are quantified by computing the spatial moments in three different aspects, namely, the centre point, length and width, and the volume (or area in a two-dimensional case). Simulated salinity distribution varies significantly at saltwater-freshwater interfaces. Mixing characteristics of the upper saline plume greatly differ from those in the salt wedge for both the transient and quasi-steady state. The mixing of the upper saline plume largely inherits the fluctuation characteristics of the sea tide in both the transverse and longitudinal directions when the quasi-steady state is reached. On the other hand, the mixing in the salt wedge is relatively steady and shows little fluctuation. The normalized mixing width and length, mixing volume and the fluctuation amplitude of the mass centre in the upper saline plume are, in general, one-magnitude-order larger than those in the salt wedge region. In the longitudinal direction, tidal amplitude, fresh groundwater flux, hydraulic conductivity and beach slope are significant control factors of fluctuation amplitude. In the transverse direction, tidal amplitude and beach slope are the main control parameters. Very small dispersivity anisotropy (e.g., αL /αT < 5) could greatly suppress mixing fluctuation in the longitudinal direction. This work underlines the close connection between the sea tides and the upper saline plume in the aspect of mixing, thereby enhancing understanding of the interplay between tidal oscillations and mixing mechanisms in tidally dominated sloping beach systems.

  15. Intraoperative protective mechanical ventilation for prevention of postoperative pulmonary complications: a comprehensive review of the role of tidal volume, positive end-expiratory pressure, and lung recruitment maneuvers.

    PubMed

    Güldner, Andreas; Kiss, Thomas; Serpa Neto, Ary; Hemmes, Sabrine N T; Canet, Jaume; Spieth, Peter M; Rocco, Patricia R M; Schultz, Marcus J; Pelosi, Paolo; Gama de Abreu, Marcelo

    2015-09-01

    Postoperative pulmonary complications are associated with increased morbidity, length of hospital stay, and mortality after major surgery. Intraoperative lung-protective mechanical ventilation has the potential to reduce the incidence of postoperative pulmonary complications. This review discusses the relevant literature on definition and methods to predict the occurrence of postoperative pulmonary complication, the pathophysiology of ventilator-induced lung injury with emphasis on the noninjured lung, and protective ventilation strategies, including the respective roles of tidal volumes, positive end-expiratory pressure, and recruitment maneuvers. The authors propose an algorithm for protective intraoperative mechanical ventilation based on evidence from recent randomized controlled trials.

  16. Respiratory response to microinjections of GABA and penicillin into various parts of the ventral respiratory group.

    PubMed

    Vedyasova, O A; Kovalyov, A M

    2012-06-01

    Experiments on rats showed that local injection of GABA (10(-4) M) into the rostral and caudal compartments of the ventral respiratory groups decreased the respiratory rhythm, but increased lung ventilation (especially injection into the rostral part). Penicillin (10(-7) M) injected into the rostral division increased the tidal volume and practically did not change the respiratory rate, but its injection into the caudal part reduced the tidal volume and increased respiratory rate. These results indicate that GABAergic mechanisms including GABA(A) sites play an ambiguous role in the regulation of respiration at the level of the rostral and caudal parts of the ventral respiratory group.

  17. Dynamic Determination of Oxygenation and Lung Compliance in Murine Pneumonectomy

    PubMed Central

    Gibney, Barry; Lee, Grace S.; Houdek, Jan; Lin, Miao; Miele, Lino; Chamoto, Kenji; Konerding, Moritz A.; Tsuda, Akira; Mentzer, Steven J.

    2012-01-01

    Thoracic surgical procedures in mice have been applied to a wide range of investigations, but little is known about the murine physiologic response to pulmonary surgery. Using continuous arterial oximetry monitoring and the FlexiVent murine ventilator, we investigated the effect of anesthesia and pneumonectomy on mouse oxygen saturation and lung mechanics. Sedation resulted in a dose-dependent decline of oxygen saturation that ranged from 55–82%. Oxygen saturation was restored by mechanical ventilation with increased rate and tidal volumes. In the mouse strain studied, optimal ventilatory rates were a rate of 200/minute and a tidal volume of 10ml/kg. Sustained inflation pressures, referred to as a "recruitment maneuver," improved lung volumes, lung compliance and arterial oxygenation. In contrast, positive end expiratory pressure (PEEP) had a detrimental effect on oxygenation; an effect that was ameliorated after pneumonectomy. Our results confirm that lung volumes in the mouse are dynamically determined and suggest a threshold level of mechanical ventilation to maintain perioperative oxygen saturation. PMID:21574875

  18. Tidal Sensitivity of Declustered Low Frequency Earthquake Families and Inferred Creep Episodes on the San Andreas Fault

    NASA Astrophysics Data System (ADS)

    Babb, A.; Thomas, A.; Bletery, Q.

    2017-12-01

    Low frequency earthquakes (LFEs) are detected at depths of 16-30 km on a 150 km section of the San Andreas Fault centered at Parkfield, CA. The LFEs are divided into 88 families based on waveform similarity. Each family is thought to represent a brittle asperity on the fault surface that repeatedly slips during aseismic slip of the surrounding fault. LFE occurrence is irregular which allows families to be divided into continuous and episodic. In continuous families a burst of a few LFE events recurs every few days while episodic families experience essentially quiescent periods often lasting months followed by bursts of hundreds of events over a few days. The occurrence of LFEs has also been shown to be sensitive to extremely small ( 1kPa) tidal stress perturbations. However, the clustered nature of LFE occurrence could potentially bias estimates of tidal sensitivity. Here we re-evaluate the tidal sensitivity of LFE families on the deep San Andreas using a declustered catalog. In this catalog LFE bursts are isolated based on the recurrence intervals between individual LFE events for each family. Preliminary analysis suggests that declustered LFE families are still highly sensitive to tidal stress perturbations, primarily right-lateral shear stress (RLSS) and to a lesser extent fault normal stress (FNS). We also find inferred creep episodes initiate preferentially during times of positive RLSS.

  19. Effect of Tide Elevation on Extratropical Storm Surge in Northwest Europe

    NASA Astrophysics Data System (ADS)

    Keshtpoor, M.; Carnacina, I.; Yablonsky, R. M.

    2016-12-01

    Extratropical cyclones (ETCs) are the major storm surge-generating meteorological events in northwest Europe. The total water level increase induced by these ETCs is significantly influenced by the local tidal range, which exceeds 8 meters along the southwestern UK coastline. In particular, a surge-generating ETC during high tide may put coastal assets and infrastructure in risk. Also, during low tide, the risk of surge induced by extreme ETC events is diminished. Here, the effect of tidal elevation on storm surge is investigated at 196 tide gauges in northwest Europe. A numerical, hydrodynamic model was developed using Delft3D-FM framework to simulate the coastal hydrodynamics during ETCs. Then, 1750 historical events were simulated to investigate the pattern of coastal inundation. Results suggest that in areas with a large tidal range ( 8 meters) and during the time period surrounding high or low tide, the pattern of coastal hydrodynamics is governed by tide and not storm surge. This result is most evident near the English Channel and Bristol Channel, where low frequency maximum water levels are observed when storm surge is combined with high tide. In contrast, near the tidal phase reversal, coastal hydrodynamics responds primarily to the storm surge, and low frequency maximum water elevation largely depends on the surge. In the areas with a small tidal range, ETC strength determines the pattern of coastal inundation.

  20. Characteristics of the turbulence in the flow at a tidal stream power site.

    PubMed

    Milne, I A; Sharma, R N; Flay, R G J; Bickerton, S

    2013-02-28

    This paper analyses a set of velocity time histories which were obtained at a fixed point in the bottom boundary layer of a tidal stream, 5 m from the seabed, and where the mean flow reached 2.5 m s(-1). Considering two complete tidal cycles near spring tide, the streamwise turbulence intensity during non-slack flow was found to be approximately 12-13%, varying slightly between flood and ebb tides. The ratio of the streamwise turbulence intensity to that of the transverse and vertical intensities is typically 1 : 0.75 : 0.56, respectively. Velocity autospectra computed near maximum flood tidal flow conditions exhibit an f(-2/3) inertial subrange and conform reasonably well to atmospheric turbulence spectral models. Local isotropy is observed between the streamwise and transverse spectra at reduced frequencies of f>0.5. The streamwise integral time scales and length scales of turbulence at maximum flow are approximately 6 s and 11-14 m, respectively, and exhibit a relatively large degree of scatter. They are also typically much greater in magnitude than the transverse and vertical components. The findings are intended to increase the levels of confidence within the tidal energy industry of the characteristics of the higher frequency components of the onset flow, and subsequently lead to more realistic performance and loading predictions.

  1. Spatial variability of sediment transport processes over intra‐ and subtidal timescales within a fringing coral reef system

    USGS Publications Warehouse

    Pomeroy, Andrew; Lowe, Ryan J.; Ghisalberti, Marco; Winter, Gundula; Storlazzi, Curt D.; Cuttler, Michael V. W.

    2018-01-01

    Sediment produced on fringing coral reefs that is transported along the bed or in suspension affects ecological reef communities as well as the morphological development of the reef, lagoon, and adjacent shoreline. This study quantified the physical process contribution and relative importance of incident waves, infragravity waves, and mean currents to the spatial and temporal variability of sediment in suspension. Estimates of bed shear stresses demonstrate that incident waves are the key driver of the SSC variability spatially (reef flat, lagoon, and channels) but cannot not fully describe the SSC variability alone. The comparatively small but statistically significant contribution to the bed shear stress by infragravity waves and currents, along with the spatial availability of sediment of a suitable size and volume, is also important. Although intra‐tidal variability in SSC occurs in the different reef zones, the majority of the variability occurs over longer slowly varying (subtidal) time scales, which is related to the arrival of large incident waves at a reef location. The predominant flow pathway, which can transport suspended sediment, consists of cross‐reef flow across the reef flat that diverges in the lagoon and returns offshore through channels. This pathway is primarily due to subtidal variations in wave‐driven flows, but can also be driven alongshore by wind stresses when the incident waves are small. Higher frequency (intra‐tidal) current variability also occur due to both tidal flows, as well as variations in the water depth that influence wave transmission across the reef and wave‐driven currents.

  2. Wavelet analysis of lunar semidiurnal tidal influence on selected inland rivers across the globe.

    PubMed

    Briciu, Andrei-Emil

    2014-02-26

    The lunar semidiurnal influence is already known for tidal rivers. The moon also influences inland rivers at a monthly scale through precipitation. We show that, for some non-tidal rivers, with special geological conditions, the lunar semidiurnal tidal oscillation can be detected. The moon has semidiurnal tidal influence on groundwater, which will then export it to streamflow. Long time series with high frequency measurements were analysed by using standard wavelet analysis techniques. The lunar semidiurnal signal explains the daily double-peaked river level evolution of inland gauges. It is stronger where springs with high discharge occur, especially in the area of Edwards-Trinity and Great Artesian Basin aquifers and in areas with dolomite/limestone strata. The average maximum semidiurnal peaks range between 0.002 and 0.1 m. This secondary effect of the earth tides has important implications in predicting high resolution hydrographs, in the water cycle of wetlands and in water management.

  3. Metabolic molecular markers of the tidal clock in the marine crustacean Eurydice pulchra

    PubMed Central

    O’Neill, John Stuart; Lee, Kate D.; Zhang, Lin; Feeney, Kevin; Webster, Simon George; Blades, Matthew James; Kyriacou, Charalambos Panayiotis; Hastings, Michael Harvey; Wilcockson, David Charles

    2015-01-01

    Summary In contrast to the well mapped molecular orchestration of circadian timekeeping in terrestrial organisms, the mechanisms that direct tidal and lunar rhythms in marine species are entirely unknown. Using a combination of biochemical and molecular approaches we have identified a series of metabolic markers of the tidal clock of the intertidal isopod Eurydice pulchra. Specifically, we show that the overoxidation of peroxiredoxin (PRX), a conserved marker of circadian timekeeping in terrestrial eukaryotes [1], follows a circatidal (approximately 12.4 hours) pattern in E. pulchra, in register with the tidal pattern of swimming. In parallel, we show that mitochondrially encoded genes are expressed with a circatidal rhythm. Together, these findings demonstrate that PRX overoxidation rhythms are not intrinsically circadian; rather they appear to resonate with the dominant metabolic cycle of an organism, regardless of its frequency. Moreover, they provide the first molecular leads for dissecting the tidal clockwork. PMID:25898100

  4. Limited Influence of Urban Stormwater Runoff on Salt Marsh Platform and Marsh Creek Oxygen Dynamics in Coastal Georgia.

    PubMed

    Savidge, William B; Brink, Jonathan; Blanton, Jackson O

    2016-12-01

    Oxygen concentrations and oxygen utilization rates were monitored continuously for 23 months on marsh platforms and in small tidal creeks at two sites in coastal Georgia, USA, that receive urban stormwater runoff via an extensive network of drainage canals. These data were compared to nearby control sites that receive no significant surface runoff. Overall, rainfall and runoff per se were not associated with differences in the oxygen dynamics among the different locations. Because of the large tidal range and long tidal excursions in coastal Georgia, localized inputs of stormwater runoff are rapidly mixed with large volumes of ambient water. Oxygen concentrations in tidal creeks and on flooded marsh platforms were driven primarily by balances of respiration and photosynthesis in the surrounding regional network of marshes and open estuarine waters. Local respiration, while measurable, was of relatively minor importance in determining oxygen concentrations in tidal floodwaters. Water residence time on the marshes could explain differences in oxygen concentration between the runoff-influenced and control sites.

  5. Limited Influence of Urban Stormwater Runoff on Salt Marsh Platform and Marsh Creek Oxygen Dynamics in Coastal Georgia

    NASA Astrophysics Data System (ADS)

    Savidge, William B.; Brink, Jonathan; Blanton, Jackson O.

    2016-12-01

    Oxygen concentrations and oxygen utilization rates were monitored continuously for 23 months on marsh platforms and in small tidal creeks at two sites in coastal Georgia, USA, that receive urban stormwater runoff via an extensive network of drainage canals. These data were compared to nearby control sites that receive no significant surface runoff. Overall, rainfall and runoff per se were not associated with differences in the oxygen dynamics among the different locations. Because of the large tidal range and long tidal excursions in coastal Georgia, localized inputs of stormwater runoff are rapidly mixed with large volumes of ambient water. Oxygen concentrations in tidal creeks and on flooded marsh platforms were driven primarily by balances of respiration and photosynthesis in the surrounding regional network of marshes and open estuarine waters. Local respiration, while measurable, was of relatively minor importance in determining oxygen concentrations in tidal floodwaters. Water residence time on the marshes could explain differences in oxygen concentration between the runoff-influenced and control sites.

  6. Role of central and peripheral opiate receptors in the effects of fentanyl on analgesia, ventilation and arterial blood-gas chemistry in conscious rats.

    PubMed

    Henderson, Fraser; May, Walter J; Gruber, Ryan B; Discala, Joseph F; Puskovic, Veljko; Young, Alex P; Baby, Santhosh M; Lewis, Stephen J

    2014-01-15

    This study determined the effects of the peripherally restricted μ-opiate receptor (μ-OR) antagonist, naloxone methiodide (NLXmi) on fentanyl (25μg/kg, i.v.)-induced changes in (1) analgesia, (2) arterial blood gas chemistry (ABG) and alveolar-arterial gradient (A-a gradient), and (3) ventilatory parameters, in conscious rats. The fentanyl-induced increase in analgesia was minimally affected by a 1.5mg/kg of NLXmi but was attenuated by a 5.0mg/kg dose. Fentanyl decreased arterial blood pH, pO2 and sO2 and increased pCO2 and A-a gradient. These responses were markedly diminished in NLXmi (1.5mg/kg)-pretreated rats. Fentanyl caused ventilatory depression (e.g., decreases in tidal volume and peak inspiratory flow). Pretreatment with NLXmi (1.5mg/kg, i.v.) antagonized the fentanyl decrease in tidal volume but minimally affected the other responses. These findings suggest that (1) the analgesia and ventilatory depression caused by fentanyl involve peripheral μ-ORs and (2) NLXmi prevents the fentanyl effects on ABG by blocking the negative actions of the opioid on tidal volume and A-a gradient. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Closed-loop mechanical ventilation for lung injury: a novel physiological-feedback mode following the principles of the open lung concept.

    PubMed

    Schwaiberger, David; Pickerodt, Philipp A; Pomprapa, Anake; Tjarks, Onno; Kork, Felix; Boemke, Willehad; Francis, Roland C E; Leonhardt, Steffen; Lachmann, Burkhard

    2018-06-01

    Adherence to low tidal volume (V T ) ventilation and selected positive end-expiratory pressures are low during mechanical ventilation for treatment of the acute respiratory distress syndrome. Using a pig model of severe lung injury, we tested the feasibility and physiological responses to a novel fully closed-loop mechanical ventilation algorithm based on the "open lung" concept. Lung injury was induced by surfactant washout in pigs (n = 8). Animals were ventilated following the principles of the "open lung approach" (OLA) using a fully closed-loop physiological feedback algorithm for mechanical ventilation. Standard gas exchange, respiratory- and hemodynamic parameters were measured. Electrical impedance tomography was used to quantify regional ventilation distribution during mechanical ventilation. Automatized mechanical ventilation provided strict adherence to low V T -ventilation for 6 h in severely lung injured pigs. Using the "open lung" approach, tidal volume delivery required low lung distending pressures, increased recruitment and ventilation of dorsal lung regions and improved arterial blood oxygenation. Physiological feedback closed-loop mechanical ventilation according to the principles of the open lung concept is feasible and provides low tidal volume ventilation without human intervention. Of importance, the "open lung approach"-ventilation improved gas exchange and reduced lung driving pressures by opening atelectasis and shifting of ventilation to dorsal lung regions.

  8. Inhalation of substance P and thiorphan: acute toxicity and effects on respiration in conscious guinea pigs.

    PubMed

    Koch, B L; Edvinsson, A A; Koskinen, L O

    1999-01-01

    Substance P is a tachykinin and a biologically active neuropeptide. The peptide produces salivation, neuronal excitation, vasodilatation, increased vascular permeability and contraction of smooth muscles in the respiratory tract. The study was designed to evaluate the acute effects in guinea pigs of inhaled aerosolized Substance P (SP). Apart from the acute toxic effect of the peptide, the distribution in different organs was also investigated. The acute inhalation toxicity of SP (LC50, 15 min) when co-administrated with the neutral endopeptidase inhibitor thiorphan was 368 microg m(-3). The peptide caused an increase in respiratory rate proceeding a decrease in tidal volume. As the exposure proceeded, a decrease in both respiratory rate and further decreases in tidal volume were observed until either the animal died or the exposure was terminated. The decreases in respiratory rate and tidal volume were probably due to bronchoconstriction caused by SP. Eighteen per cent of the inhaled amount of radioactive SP was retained in the body, and the highest concentrations of radioactivity were found in the kidney, lung and liver. Substance P in combination with thiorphan administered as an aerosol is extremely toxic and highly potent. Exposure to the substance at extremely low air concentrations may result in incapacitation in humans.

  9. Application of mid-frequency ventilation in an animal model of lung injury: a pilot study.

    PubMed

    Mireles-Cabodevila, Eduardo; Chatburn, Robert L; Thurman, Tracy L; Zabala, Luis M; Holt, Shirley J; Swearingen, Christopher J; Heulitt, Mark J

    2014-11-01

    Mid-frequency ventilation (MFV) is a mode of pressure control ventilation based on an optimal targeting scheme that maximizes alveolar ventilation and minimizes tidal volume (VT). This study was designed to compare the effects of conventional mechanical ventilation using a lung-protective strategy with MFV in a porcine model of lung injury. Our hypothesis was that MFV can maximize ventilation at higher frequencies without adverse consequences. We compared ventilation and hemodynamic outcomes between conventional ventilation and MFV. This was a prospective study of 6 live Yorkshire pigs (10 ± 0.5 kg). The animals were subjected to lung injury induced by saline lavage and injurious conventional mechanical ventilation. Baseline conventional pressure control continuous mandatory ventilation was applied with V(T) = 6 mL/kg and PEEP determined using a decremental PEEP trial. A manual decision support algorithm was used to implement MFV using the same conventional ventilator. We measured P(aCO2), P(aO2), end-tidal carbon dioxide, cardiac output, arterial and venous blood oxygen saturation, pulmonary and systemic vascular pressures, and lactic acid. The MFV algorithm produced the same minute ventilation as conventional ventilation but with lower V(T) (-1 ± 0.7 mL/kg) and higher frequency (32.1 ± 6.8 vs 55.7 ± 15.8 breaths/min, P < .002). There were no differences between conventional ventilation and MFV for mean airway pressures (16.1 ± 1.3 vs 16.4 ± 2 cm H2O, P = .75) even when auto-PEEP was higher (0.6 ± 0.9 vs 2.4 ± 1.1 cm H2O, P = .02). There were no significant differences in any hemodynamic measurements, although heart rate was higher during MFV. In this pilot study, we demonstrate that MFV allows the use of higher breathing frequencies and lower V(T) than conventional ventilation to maximize alveolar ventilation. We describe the ventilatory or hemodynamic effects of MFV. We also demonstrate that the application of a decision support algorithm to manage MFV is feasible. Copyright © 2014 by Daedalus Enterprises.

  10. Spectral responses of gravel beaches to tidal signals

    NASA Astrophysics Data System (ADS)

    Geng, Xiaolong; Boufadel, Michel C.

    2017-01-01

    Tides have been recognized as a major driving forcing affecting coastal aquifer system, and deterministic modeling has been very effective in elucidating mechanisms caused by tides. However, such modeling does not lend itself to capture embedded information in the signal, and rather focuses on the primary processes. Here, using yearlong data sets measured at beaches in Alaska Prince William Sound, we performed spectral and correlation analyses to identify temporal behavior of pore-water pressure, temperature and salinity. We found that the response of the beach system was characterized by fluctuations of embedded diurnal, semidiurnal, terdiurnal and quarterdiurnal tidal components. Hydrodynamic dispersion of salinity and temperature, and the thermal conductivity greatly affected pore water signals. Spectral analyses revealed a faster dissipation of the semi-diurnal component with respect to the diurnal components. Correlation functions showed that salinity had a relatively short memory of the tidal signal when inland freshwater recharge was large. In contrast, the signature of the tidal signal on pore-water temperature persisted for longer times, up to a week. We also found that heterogeneity greatly affected beach response. The response varied from a simple linear mapping in the frequency domain to complete modulation and masking of the input frequencies.

  11. Electrical impedance tomography

    PubMed Central

    Lobo, Beatriz; Hermosa, Cecilia; Abella, Ana

    2018-01-01

    Continuous assessment of respiratory status is one of the cornerstones of modern intensive care unit (ICU) monitoring systems. Electrical impedance tomography (EIT), although with some constraints, may play the lead as a new diagnostic and guiding tool for an adequate optimization of mechanical ventilation in critically ill patients. EIT may assist in defining mechanical ventilation settings, assess distribution of tidal volume and of end-expiratory lung volume (EELV) and contribute to titrate positive end-expiratory pressure (PEEP)/tidal volume combinations. It may also quantify gains (recruitment) and losses (overdistention or derecruitment), granting a more realistic evaluation of different ventilator modes or recruitment maneuvers, and helping in the identification of responders and non-responders to such maneuvers. Moreover, EIT also contributes to the management of life-threatening lung diseases such as pneumothorax, and aids in guiding fluid management in the critical care setting. Lastly, assessment of cardiac function and lung perfusion through electrical impedance is on the way. PMID:29430443

  12. Physiological responses of mules on prolonged exposure to high altitude (3 650 m)

    NASA Astrophysics Data System (ADS)

    Riar, S. S.; Shankar Bhat, K.; Sen Gupta, J.

    1982-06-01

    Eight healthy male animals were inducted and kept for 2 1/2 years at 3 650 m altitude and subjected to normal work schedules. Physiological measurements viz. heart rate, blood pressure, minute ventilation, oxygen consumption, respiration rate, hemoglobin, packed cell haematocrit volume and eosinophil count were made on these animals at periodic intervals. On acute induction to an altitude of 3 650 m these animals demonstrated a sudden increase in tidal volume, a decrease in Rf and no change in VE, suggesting a decreased dead space/tidal volume ratio at altitude. However, all these changes stabilised within 3 weeks but on prolongation of stay, the physical state of these animals was adversely affected. The respiratory adjustments occurring on return to sea level appear to be a response to thermal stress. The initial increase in heart rate and blood pressure stabilised by the 2nd week.

  13. The effect of lagoons on Adriatic Sea tidal dynamics

    NASA Astrophysics Data System (ADS)

    Ferrarin, Christian; Maicu, Francesco; Umgiesser, Georg

    2017-11-01

    In this study the effects that lagoons exert on the barotropic tidal dynamics of a regional sea, the Adriatic Sea, were numerically explored. This semi-enclosed basin is one of the places with the highest tidal range in the Mediterranean Sea and is characterised by the presence of several lagoons in its northern part. The tidal dynamics of a system comprising the whole Adriatic Sea and the lagoons of Venice, Marano-Grado and Po Delta were investigated using an unstructured hydrodynamic model. Numerical experiments with and without lagoons reveal that even if the considered shallow water bodies represent only the 0.5 and 0.002% of the Adriatic Sea surface and volume, respectively, they significantly affect the entire Northern Adriatic Sea tidal dynamics by enhancing tidal range (by 5%) and currents (by 10%). The inclusion of lagoons in the computation improved the model performance by 25% in reproducing tidal constituents in the Adriatic Sea. The back-effect of the lagoons on the open-sea tide is due to the waves radiating from the co-oscillating lagoons into the adjacent sea. This is the first time these processes are shown to be relevant for the Adriatic Sea, thus enhancing the understanding of the tidal dynamics in this regional sea. These findings may also apply to other coastal seas with connections to lagoons, bays and estuaries.

  14. Estimates of the dissipative heat and axial torque generated by ocean tides on icy satellites in the outer solar system.

    NASA Astrophysics Data System (ADS)

    Tyler, R.

    2012-09-01

    The tidal flow response generated in a satellite ocean depends strongly on the ocean configuration parameters as these parameters control the form and frequencies of the ocean's natural modes of oscillation; if there is a near match between the form and frequency of one of these natural modes and that of one of the available tidal forcing constituents, the ocean can be resonantly excited, producing a strong tidal response. The fundamental elements of the response are described by the tidal flow and surface fluctuations. Derivative elements of the response include the associated dissipative heat, stress, and forces/torques. The dissipative heat has received much previous attention as it may be important in explaining the heat budget on several of the satellites in the Outer Solar System. While these estimates will be reviewed and compared with the tidal dissipation estimates compiled in Hussman et al. (2010), the primary goal in this presentation is to extend the analysis to consider the tidally generated axial torque on the satellites and the potential consquences for rotation. Interestingly, even a synchronously rotating satellite will, if a global fluid layer is included, experience a complex set of opportunities for torques in both the prograde and retrograde sense. The amplitude and sense of the torque sensitively depends on the ocean parameters controlling the tidal response. This sensitivity, combined with expected feedbacks whereby the tides affect the orbital parameters, suggests that the evolution of the satellite system will experience phases of both prograde and retrograde tidal torques during its evolution. A related point is that parameters of the ocean might be inferred from inferences or observations of torque or rotational deviations. In the panels to the right we show the nondimensional tidal torques associated with obliquity (top) and eccentricity (bottom). The parameters described in the labeling are the fluid density ρ, surface gravity g, ocean surface area A, tidal equilibrium height ηF, dissipation quality factor Q,and c=(gh)1/2, cr=Ωa, with ocean thickness h, rotation rate Ω, and radius a. Torque due to tides forced by obliquity as a function of the parameters c/cr and Q. Retrograde ("Westward") and prograde ("Eastward") components shown in left and right panels, respectively. Log10 scale shown in colorbar.

  15. The respiratory system during resuscitation: a review of the history, risk of infection during assisted ventilation, respiratory mechanics, and ventilation strategies for patients with an unprotected airway.

    PubMed

    Wenzel, V; Idris, A H; Dörges, V; Nolan, J P; Parr, M J; Gabrielli, A; Stallinger, A; Lindner, K H; Baskett, P J

    2001-05-01

    The fear of acquiring infectious diseases has resulted in reluctance among healthcare professionals and the lay public to perform mouth-to-mouth ventilation. However, the benefit of basic life support for a patient in cardiopulmonary or respiratory arrest greatly outweighs the risk for secondary infection in the rescuer or the patient. The distribution of ventilation volume between lungs and stomach in the unprotected airway depends on patient variables such as lower oesophageal sphincter pressure, airway resistance and respiratory system compliance, and the technique applied while performing basic or advanced airway support, such as head position, inflation flow rate and time, which determine upper airway pressure. The combination of these variables determines gas distribution between the lungs and the oesophagus and subsequently, the stomach. During bag-valve-mask ventilation of patients in respiratory or cardiac arrest with oxygen supplementation (> or = 40% oxygen), a tidal volume of 6-7 ml kg(-1) ( approximately 500 ml) given over 1-2 s until the chest rises is recommended. For bag-valve-mask ventilation with room-air, a tidal volume of 10 ml kg(-1) (700-1000 ml) in an adult given over 2 s until the chest rises clearly is recommended. During mouth-to-mouth ventilation, a breath over 2 s sufficient to make the chest rise clearly (a tidal volume of approximately 10 ml kg(-1) approximately 700-1000 ml in an adult) is recommended.

  16. Mask versus Nasal Tube for Stabilization of Preterm Infants at Birth: Respiratory Function Measurements.

    PubMed

    van Vonderen, Jeroen J; Kamlin, C Omar; Dawson, Jennifer A; Walther, Frans J; Davis, Peter G; te Pas, Arjan B

    2015-07-01

    To compare the nasal tube with face mask as interfaces for stabilization of very preterm infants at birth by using physiological measurements of leak, obstruction, and expired tidal volumes during positive pressure ventilation (PPV). In the delivery room, 43 infants <30 weeks gestation were allocated to receive respiratory support by nasal tube or face mask. Respiratory function, heart rate, and oxygen saturation were measured. Occurrence of obstruction, amount of leak, and tidal volumes were compared using a Mann-Whitney U test or a Fisher exact test. The first 5 minutes after initiation of PPV were analyzed (1566 inflations in the nasal tube group and 1896 inflations in the face mask group). Spontaneous breathing coincided with PPV in 32% of nasal tube and 34% of face mask inflations. During inflations, higher leak was observed using nasal tube compared with face mask (98% [33%-100%] vs 14 [0%-39%]; P < .0001). Obstruction occurred more often (8.2% vs 1.1%; P < .0001). Expired tidal volumes were significantly lower during inflations when using nasal tube compared with face mask (0.0 [0.0-3.1] vs 9.9 [5.5-12.8] mL/kg; P < .0001) and when spontaneous breathing coincided with PPV (4.4 [2.1-8.4] vs 9.6 [5.4-15.2] mL/kg; P < .0001) but were similar during breathing on continuous positive airway pressure (4.7 [2.8-6.9] vs 4.8 [2.7-7.9] mL/kg; P > 0.05). Heart rate was not significantly different between groups, but oxygen saturation was significantly lower in the nasal tube group the first 2 minutes after start of respiratory support. The use of a nasal tube led to large leak, more obstruction, and inadequate tidal volumes compared with face mask. Trial registration Registered with the Dutch Trial Registry (NTR 2061) and the Australia and New Zealand Clinical Trials Register (ACTRN 12610000230055). Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Pulse pressure variation and prediction of fluid responsiveness in patients ventilated with low tidal volumes.

    PubMed

    Oliveira-Costa, Clarice Daniele Alves de; Friedman, Gilberto; Vieira, Sílvia Regina Rios; Fialkow, Léa

    2012-07-01

    To determine the utility of pulse pressure variation (ΔRESP PP) in predicting fluid responsiveness in patients ventilated with low tidal volumes (V T) and to investigate whether a lower ΔRESP PP cut-off value should be used when patients are ventilated with low tidal volumes. This cross-sectional observational study included 37 critically ill patients with acute circulatory failure who required fluid challenge. The patients were sedated and mechanically ventilated with a V T of 6-7 ml/kg ideal body weight, which was monitored with a pulmonary artery catheter and an arterial line. The mechanical ventilation and hemodynamic parameters, including ΔRESP PP, were measured before and after fluid challenge with 1,000 ml crystalloids or 500 ml colloids. Fluid responsiveness was defined as an increase in the cardiac index of at least 15%. ClinicalTrial.gov: NCT01569308. A total of 17 patients were classified as responders. Analysis of the area under the ROC curve (AUC) showed that the optimal cut-off point for ΔRESP PP to predict fluid responsiveness was 10% (AUC = 0.74). Adjustment of the ΔRESP PP to account for driving pressure did not improve the accuracy (AUC = 0.76). A ΔRESP PP ≥ 10% was a better predictor of fluid responsiveness than central venous pressure (AUC = 0.57) or pulmonary wedge pressure (AUC = 051). Of the 37 patients, 25 were in septic shock. The AUC for ΔRESP PP ≥ 10% to predict responsiveness in patients with septic shock was 0.484 (sensitivity, 78%; specificity, 93%). The parameter D RESP PP has limited value in predicting fluid responsiveness in patients who are ventilated with low tidal volumes, but a ΔRESP PP>10% is a significant improvement over static parameters. A ΔRESP PP ≥ 10% may be particularly useful for identifying responders in patients with septic shock.

  18. Mechanical ventilation with high tidal volume induces inflammation in patients without lung disease.

    PubMed

    Pinheiro de Oliveira, Roselaine; Hetzel, Marcio Pereira; dos Anjos Silva, Mauro; Dallegrave, Daniele; Friedman, Gilberto

    2010-01-01

    Mechanical ventilation (MV) with high tidal volumes may induce or aggravate lung injury in critical ill patients. We compared the effects of a protective versus a conventional ventilatory strategy, on systemic and lung production of tumor necrosis factor-alpha (TNF-alpha) and interleukin-8 (IL-8) in patients without lung disease. Patients without lung disease and submitted to mechanical ventilation admitted to one trauma and one general adult intensive care unit of two different university hospitals were enrolled in a prospective randomized-control study. Patients were randomized to receive MV either with tidal volume (VT) of 10 to 12 ml/kg predicted body weight (high VT group) (n = 10) or with VT of 5 to 7 ml/kg predicted body weight (low VT group) (n = 10) with an oxygen inspiratory fraction (FIO2) enough to keep arterial oxygen saturation >90% with positive end-expiratory pressure (PEEP) of 5 cmH2O during 12 hours after admission to the study. TNF-alpha and IL-8 concentrations were measured in the serum and in the bronchoalveolar lavage fluid (BALF) at admission and after 12 hours of study observation time. Twenty patients were enrolled and analyzed. At admission or after 12 hours there were no differences in serum TNF-alpha and IL-8 between the two groups. While initial analysis did not reveal significant differences, standardization against urea of logarithmic transformed data revealed that TNF-alpha and IL-8 levels in bronchoalveolar lavage (BAL) fluid were stable in the low VT group but increased in the high VT group (P = 0.04 and P = 0.03). After 12 hours, BALF TNF-alpha (P = 0.03) and BALF IL-8 concentrations (P = 0.03) were higher in the high VT group than in the low VT group. The use of lower tidal volumes may limit pulmonary inflammation in mechanically ventilated patients even without lung injury. NCT00935896.

  19. Tidal Residual Eddies and their Effect on Water Exchange in Puget Sound

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Zhaoqing; Wang, Taiping

    Tidal residual eddies are one of the important hydrodynamic features in tidally dominant estuaries and coastal bays, and they could have significant effects on water exchange in a tidal system. This paper presents a modeling study of tides and tidal residual eddies in Puget Sound, a tidally dominant fjord-like estuary in the Pacific Northwest coast, using a three-dimensional finite-volume coastal ocean model. Mechanisms of vorticity generation and asymmetric distribution patterns around an island/headland were analyzed using the dynamic vorticity transfer approach and numerical experiments. Model results of Puget Sound show that a number of large twin tidal residual eddies existmore » in the Admiralty Inlet because of the presence of major headlands in the inlet. Simulated residual vorticities near the major headlands indicate that the clockwise tidal residual eddy (negative vorticity) is generally stronger than the anticlockwise eddy (positive vorticity) because of the effect of Coriolis force. The effect of tidal residual eddies on water exchange in Puget Sound and its sub-basins were evaluated by simulations of dye transport. It was found that the strong transverse variability of residual currents in the Admiralty Inlet results in a dominant seaward transport along the eastern shore and a dominant landward transport along the western shore of the Inlet. A similar transport pattern in Hood Canal is caused by the presence of tidal residual eddies near the entrance of the canal. Model results show that tidal residual currents in Whidbey Basin are small in comparison to other sub-basins. A large clockwise residual circulation is formed around Vashon Island near entrance of South Sound, which can potentially constrain the water exchange between the Central Basin and South Sound.« less

  20. Regional physiology of ARDS.

    PubMed

    Gattinoni, Luciano; Tonetti, Tommaso; Quintel, Michael

    2017-12-28

    The acute respiratory distress (ARDS) lung is usually characterized by a high degree of inhomogeneity. Indeed, the same lung may show a wide spectrum of aeration alterations, ranging from completely gasless regions, up to hyperinflated areas. This inhomogeneity is normally caused by the presence of lung edema and/or anatomical variations, and is deeply influenced by the gravitational forces.For any given airway pressure generated by the ventilator, the pressure acting directly on the lung (i.e., the transpulmonary pressure or lung stress) is determined by two main factors: 1) the ratio between lung elastance and the total elastance of the respiratory system (which has been shown to vary widely in ARDS patients, between 0.2 and 0.8); and 2) the lung size. In severe ARDS, the ventilatable parenchyma is strongly reduced in size ('baby lung'); its resting volume could be as low as 300 mL, and the total inspiratory capacity could be reached with a tidal volume of 750-900 mL, thus generating lethal stress and strain in the lung. Although this is possible in theory, it does not explain the occurrence of ventilator-induced lung injury (VILI) in lungs ventilated with much lower tidal volumes. In fact, the ARDS lung contains areas acting as local stress multipliers and they could multiply the stress by a factor ~ 2, meaning that in those regions the transpulmonary pressure could be double that present in other parts of the same lung. These 'stress raisers' widely correspond to the inhomogenous areas of the ARDS lung and can be present in up to 40% of the lung.Although most of the literature on VILI concentrates on the possible dangers of tidal volume, mechanical ventilation in fact delivers mechanical power (i.e., energy per unit of time) to the lung parenchyma, which reacts to it according to its anatomical structure and pathophysiological status. The determinants of mechanical power are not only the tidal volume, but also respiratory rate, inspiratory flow, and positive end-expiratory pressure (PEEP). In the end, decreasing mechanical power, increasing lung homogeneity, and avoiding reaching the anatomical limits of the 'baby lung' should be the goals for safe ventilation in ARDS.

  1. Dependence of phrenic motoneurone output on the oscillatory component of arterial blood gas composition.

    PubMed Central

    Cross, B A; Grant, B J; Guz, A; Jones, P W; Semple, S J; Stidwill, R P

    1979-01-01

    1. The hypothesis that respiratory oscillations of arterial blood gas composition influence ventilation has been examined. 2. Phrenic motoneurone output recorded in the C5 root of the left phrenic nerve and the respiratory oscillations of arterial pH in the right common carotid artery were measured in vagotomized anaesthetized dogs which had been paralysed and artificially ventilated. 3. The effect of a change in tidal volume for one or two breaths on phrenic motoneurone output was measured with the inspiratory pump set at a constant frequency similar to, and in phase with, the animal's own respiratory frequency. A reduction of tidal volume to zero or an increase by 30% led to a corresponding change of mean carotid artery pH level. The changes of carotid artery pH resulted in a change of phrenic motoneurone output, predominantly of expiratory time (Te) but to a lesser extent of inspiratory time (T1) and also peak amplitude of 'integrated' phrenic motoneurone output (Phr). Denervation of the carotid bifurcation blocked this response. 4. The onset of movement of the inspiratory pump was triggered by the onset of phrenic motoneurone output. When a time delay was interposed between them, the phase relationship between respiratory oscillations of arterial pH and phrenic motoneurone output altered. The dominant effect was to alter Te; smaller and less consistent changes of Phr and T1 were observed. 5. When the inspiratory pump was maintained at a constant frequency but independent of and slightly different from the animal's own respiratory frequency (as judged by phrenic motoneurone output), the phase relationship between phrenic motoneurone output and the respiratory oscillations of pH changed breath by breath over a sequence of 100-200 breaths, without change of the mean level of arterial blood gas composition. Te varied by up to 30% about its mean value depending on the phase relationship. Ti and Phr were also dependent on the phase relationship but varied to a lesser extent. The changes were comparable to the results obtained in paragraph 4. 6. It was concluded that phrenic motoneurone output is dependent in part on its relationship to the respiratory oscillations of arterial blood gas composition. 7. Information concerning a transient ventilatory disturbance is stored in the arterial blood in the form of an altered pattern of the respiratory oscillations of blood gas composition; this in turn can change breathing by an effect on the carotid bodies. Images Fig. 3 PMID:38333

  2. Ventilation practices in subarachnoid hemorrhage: a cohort study exploring the use of lung protective ventilation.

    PubMed

    Marhong, Jonathan D; Ferguson, Niall D; Singh, Jeffrey M

    2014-10-01

    Acute respiratory distress syndrome (ARDS) is common following aneurysmal subarachnoid hemorrhage (SAH), but the influence of mechanical ventilator settings on its development is unclear. We sought to determine adherence to lung protective thresholds in ventilated patients with SAH and describe the association between ventilator settings and subsequent development of ARDS. We conducted a retrospective cohort study of consecutive patients receiving mechanical ventilation within 72 h of SAH at a single academic center. Ventilator settings and blood gas data were collected twice daily for the first 7 days of ventilation along with ICU and hospital outcomes. Lung protective ventilation was defined as follows: tidal volume ≤8 mL/kg of predicted body weight, positive end-expiratory pressure (PEEP) ≥5 cm H(2)O, and peak or plateau pressure ≤30 cm H(2)O. The development of ARDS was ascertained retrospectively by PaO(2)/FiO(2) ≤300 with new bilateral lung opacities on chest X-ray within one day of hypoxemia. We identified 62 patients who underwent early mechanical ventilation following SAH. PS and Continuous Positive Airway Pressure were common ventilator modes with a median tidal volume of 7.8 mL/kg [interquartile range 6.8-8.8], median peak pressure of 14 cm H(2)O [IQR 12-17], and median PEEP of 5 cm H(2)O [IQR 5-6]. Adherence to tidal volumes ≤8 mL/kg was seen in 64 % of all observations and peak pressures <30 cm H(2)O were 94 % of all observations. All three lung protective criteria were seen in 58 % of all observations. Thirty-one patients (50 %) were determined to have ARDS. ARDS patients were more frequently ventilated with a peak pressure >30 cm H(2)O (11.3 % of ARDS ventilation days vs. 0 % of non-ARDS ventilation days; p < 0.01). Initial tidal volume was not associated with subsequent development of ARDS in univariate (p = 0.6) or multivariate analysis (p = 0.49). Only the number of ARDS risk factors was independently associated with the development of ARDS (Adjusted Odds Ratio 2.8 per additional risk factor [95 % CI 1.2-6.5]). Patients with SAH requiring mechanical ventilation frequently breathe spontaneously, generating tidal volumes above usual protective thresholds regardless of meeting ARDS criteria. In patients with SAH, the presence of an additional ARDS risk factor should prompt close screening for the development of ARDS and consideration of adjustment of ventilator settings to meet lung protective thresholds.

  3. The effect of tides on self-driven stellar pulsations

    NASA Astrophysics Data System (ADS)

    Balona, L. A.

    2018-06-01

    In addition to rotation, a tidal force in a binary introduces another axis of symmetry joining the two centres of mass. If the stars are in circular orbit and synchronous rotation, a pulsation with spherical harmonic degree l is split into l + 1 frequencies. In the observer's frame of reference, these in turn are further split into equidistant frequencies spaced by multiples of the orbital frequency. In the periodogram of a pulsating star, tidal action can be seen as low-amplitude equidistant splitting of each oscillation mode which are not harmonics of the orbital frequency. This effect is illustrated using Kepler observations of the heartbeat variable, KIC 4142768, which is also a δ Scuti star. Even though the theory is only applicable to circular orbits, the expected equidistant splitting is clearly seen in all four of the highest amplitude modes. This results in amplitude variability of each pulsation mode with a period equal to the orbital period.

  4. Variability of suspended-sediment concentration at tidal to annual time scales in San Francisco Bay, USA

    USGS Publications Warehouse

    Schoellhamer, D.H.

    2002-01-01

    Singular spectrum analysis for time series with missing data (SSAM) was used to reconstruct components of a 6-yr time series of suspended-sediment concentration (SSC) from San Francisco Bay. Data were collected every 15 min and the time series contained missing values that primarily were due to sensor fouling. SSAM was applied in a sequential manner to calculate reconstructed components with time scales of variability that ranged from tidal to annual. Physical processes that controlled SSC and their contribution to the total variance of SSC were (1) diurnal, semidiurnal, and other higher frequency tidal constituents (24%), (2) semimonthly tidal cycles (21%), (3) monthly tidal cycles (19%), (4) semiannual tidal cycles (12%), and (5) annual pulses of sediment caused by freshwater inflow, deposition, and subsequent wind-wave resuspension (13%). Of the total variance 89% was explained and subtidal variability (65%) was greater than tidal variability (24%). Processes at subtidal time scales accounted for more variance of SSC than processes at tidal time scales because sediment accumulated in the water column and the supply of easily erodible bed sediment increased during periods of increased subtidal energy. This large range of time scales that each contained significant variability of SSC and associated contaminants can confound design of sampling programs and interpretation of resulting data.

  5. Bibliography on Cold Regions Science and Technology. Volume 40, Part 1, 1986

    DTIC Science & Technology

    1986-12-01

    witer migration in an unaaturated frozen soil, morin clay, waa determined in horizontally cloaed »oil columns under linear temperature gradients...Peninsula At both ice fronts there is signiPcant tidal height energy in the first seven tidal species, indicating strong non- linear interaction, not all...dry soil weight, and increases with the increase in the molality linearly because of the linear freezing point depression. The curves of the

  6. Tidal Flooding and Vegetation Patterns in a Salt Marsh Tidal Creek Imaged by Low-altitude Balloon Aerial Photography

    NASA Astrophysics Data System (ADS)

    White, S. M.; Madsen, E.

    2013-12-01

    Inundation of marsh surfaces by tidal creek flooding has implications for the headward erosion of salt marsh creeks, effect of rising sea levels, biological zonation, and marsh ecosystem services. The hydroperiod; as the frequency, duration, depth and flux of water across the marsh surface; is a key factor in salt marsh ecology, but remains poorly understood due to lack of data at spatial scales relevant to tracking the spatial movement of water across the marsh. This study examines how hydroperiod, drainage networks, and tidal creek geomorphology on the vegetation at Crab Haul Creek. Crab Haul Creek is the farthest landward tidal basin in North Inlet, a bar-built estuary in South Carolina. This study measures the hydroperiod in the headwaters Crab Haul Creek with normal and near-IR photos from a helium balloon Helikite at 75-100 m altitude. Photos provide detail necessary to resolve the waterline and delineate the hydroperiod during half tidal cycles by capturing the waterline hourly from the headwaters to a piezometer transect 260 meters north. The Helikite is an ideal instrument for local investigations of surface hydrology due to its maneuverability, low cost, ability to remain aloft for extended time over a fixed point, and ability to capture high-resolution images. Photographs taken from aircraft do not provide the detail necessary to determine the waterline on the marsh surface. The near-IR images make the waterline more distinct by increasing the difference between wet and dry ground. In the headwaters of Crab Haul Creek, individual crab burrows are detected by automated image classification and the number of crab burrows and their spatial density is tracked from January-August. Crab burrows are associated with the unvegetated region at the creek head, and we relate their change over time to the propagation of the creek farther into the tidal basin. Plant zonation is influenced by the hydroperiod, but also may be affected by salinity, water table depth, and soil water content. These other factors are all directly affected by the hydroperiod, creating a complex system of feedbacks. Inundation frequencies show a pronounced relationship to zonation. Creek bank height and the hydroperiod have a curvilinear relationship at low bank heights such that small decreases in creek bank height can result in large increases in inundation frequency. Biological zonation is not simply a result of bank height and inundation frequency, other contributing factors include species competition, adaptability, and groundwater flow. Vegetation patterns delineated by a ground-based GPS survey and image classification from the aerial photos show that not all changes in eco-zonation are a direct function of elevation. Some asymmetry across the creek is observed in plant habitat, and eliminating topography (and thereby tidal inundation) as a factor, we attribute the remaining variability to groundwater flow.

  7. Resource Evaluation and Energy Production Estimate for a Tidal Energy Conversion Installation using Acoustic Flow Measurements

    NASA Astrophysics Data System (ADS)

    Gagnon, Ian; Baldwin, Ken; Wosnik, Martin

    2015-11-01

    The ``Living Bridge'' project plans to install a tidal turbine at Memorial Bridge in the Piscataqua River at Portsmouth, NH. A spatio-temporal tidal energy resource assessment was performed using long term bottom-deployed Acoustic Doppler Current Profilers ADCP. Two locations were evaluated: at the planned deployment location and mid-channel. The goal was to determine the amount of available kinetic energy that can be converted into usable electrical energy on the bridge. Changes in available kinetic energy with ebb/flood and spring/neap tidal cycles and electrical energy demand were analyzed. A system model is used to calculate the net energy savings using various tidal generator and battery bank configurations. Differences in the tidal characteristics between the two measurement locations are highlighted. Different resource evaluation methodologies were also analyzed, e.g., using a representative ADCP ``bin'' vs. a more refined, turbine-geometry-specific methodology, and using static bin height vs. bin height that move w.r.t. the free surface throughout a tidal cycle (representative of a bottom-fixed or floating turbine deployment, respectively). ADCP operating frequencies and bin sizes affect the standard deviation of measurements, and measurement uncertainties are evaluated. Supported by NSF-IIP grant 1430260.

  8. Resonant Tidal Forcing in Close Binaries: Implications for CVs

    NASA Astrophysics Data System (ADS)

    Ford, K. E. Saavik; McKernan, Barry; Schwab, Elliana

    2018-01-01

    Resonant tidal forcing occurs when the tidal forcing frequency of a binary matches a quadrupolar oscillation mode of one of the binary members and energy is transferred from the orbit of the binary to the mode. Tidal locking permits ongoing resonant driving of modes even as binary orbital parameters change. At small binary separations during tidal lock, a significant fraction of binary orbital energy can be deposited quickly into a resonant mode and the binary decays faster than via the emission of gravitational radiation alone. Here we discuss some of the implications of resonant tidal forcing for the class of binaries known as Cataclysmic Variable (CV) stars. We show that resonant tidal forcing of the donor’s Roche lobe could explain the observed 2‑3hr period gap in CVs, assuming modest orbital eccentricities are allowed (eb ∼ 0.03), and can be complementary or an alternative to, existing models. Sudden collapse of the companion orbit, yielding a Type Ia supernova is disfavoured, since Hydrogen is not observed in Type Ia supernova spectra. Therefore, resonance must generally be truncated, probably via mass loss from the Roche lobe or orbital perturbation, ultimately producing a short period CV containing an ’overheated’ white dwarf.

  9. Increased Tidal Dissipation Using Advanced Rheological Models: Implications for Io and Tidally Active Exoplanets

    NASA Astrophysics Data System (ADS)

    Renaud, Joe P.; Henning, Wade G.

    2018-04-01

    The advanced rheological models of Andrade and Sundberg & Cooper are compared to the traditional Maxwell model to understand how each affects the tidal dissipation of heat within rocky bodies. We find both Andrade and Sundberg–Cooper rheologies can produce at least 10× the tidal heating compared to a traditional Maxwell model for a warm (1400–1600 K) Io-like satellite. Sundberg–Cooper can cause even larger dissipation around a critical temperature and frequency. These models allow cooler planets to stay tidally active in the face of orbital perturbations—a condition we term “tidal resilience.” This has implications for the time evolution of tidally active worlds and the long-term equilibria they fall into. For instance, if Io’s interior is better modeled by the Andrade or Sundberg–Cooper rheologies, the number of possible resonance-forming scenarios that still produce a hot, modern Io is expanded, and these scenarios do not require an early formation of the Laplace resonance. The two primary empirical parameters that define the Andrade anelasticity are examined in several phase spaces to provide guidance on how their uncertainties impact tidal outcomes, as laboratory studies continue to constrain their real values. We provide detailed reference tables on the fully general equations required for others to insert the models of Andrade and Sundberg–Cooper into standard tidal formulae. Lastly, we show that advanced rheologies can greatly impact the heating of short-period exoplanets and exomoons, while the properties of tidal resilience could mean a greater number of tidally active worlds among all extrasolar systems.

  10. Hydrodynamic influences on acoustical and optical backscatter in a fringing reef environment

    NASA Astrophysics Data System (ADS)

    Pawlak, Geno; Moline, Mark A.; Terrill, Eric J.; Colin, Patrick L.

    2017-01-01

    Observations of hydrodynamics along with optical and acoustical water characteristics in a tropical fringing reef environment reveal a distinct signature associated with flow characteristics and tidal conditions. Flow conditions are dominated by tidal forcing with an offshore component from the reef flat during ebb. Measurements span variable wave conditions enabling identification of wave effects on optical and acoustical water properties. High-frequency acoustic backscatter (6 MHz) is strongly correlated with tidal forcing increasing with offshore directed flow and modulated by wave height, indicating dominant hydrodynamic influence. Backscatter at 300 and 1200 kHz is predominantly diurnal suggesting a biological component. Optical backscatter is closely correlated with high-frequency acoustic backscatter across the range of study conditions. Acoustic backscatter frequency dependence is used along with changes in optical properties to interpret particle-size variations. Changes across wave heights suggest shifts in particle-size distributions with increases in relative concentrations of smaller particles for larger wave conditions. Establishing a connection between the physical processes of a fringing tropical reef and the resulting acoustical and optical signals allows for interpretation and forecasting of the remote sensing response of these phenomena over larger scales.

  11. Practice of mechanical ventilation in cardiac arrest patients and effects of targeted temperature management: A substudy of the targeted temperature management trial.

    PubMed

    Harmon, Matthew B A; van Meenen, David M P; van der Veen, Annelou L I P; Binnekade, Jan M; Dankiewicz, Josef; Ebner, Florian; Nielsen, Niklas; Pelosi, Paolo; Schultz, Marcus J; Horn, Janneke; Friberg, Hans; Juffermans, Nicole P

    2018-05-12

    Mechanical ventilation practices in patients with cardiac arrest are not well described. Also, the effect of temperature on mechanical ventilation settings is not known. The aims of this study were 1) to describe practice of mechanical ventilation and its relation with outcome 2) to determine effects of different target temperatures strategies (33 °C versus 36 °C) on mechanical ventilation settings. This is a substudy of the TTM-trial in which unconscious survivors of a cardiac arrest due to a cardiac cause were randomized to two TTM strategies, 33 °C (TTM33) and 36 °C (TTM36). Mechanical ventilation data were obtained at three time points: 1) before TTM; 2) at the end of TTM (before rewarming) and 3) after rewarming. Logistic regression was used to determine an association between mechanical ventilation variables and outcome. Repeated-measures mixed modelling was performed to determine the effect of TTM on ventilation settings. Mechanical ventilation data was available for 567 of the 950 TTM patients. Of these, 81% was male with a mean (SD) age of 64 (12) years. At the end of TTM median tidal volume was 7.7 ml/kg predicted body weight (PBW)(6.4-8.7) and 60% of patients were ventilated with a tidal volume ≤ 8 ml/kg PBW. Median PEEP was 7.7cmH 2 O (6.4-8.7) and mean driving pressure was 14.6 cmH 2 O (±4.3). The median FiO 2 fraction was 0.35 (0.30-0.45). Multivariate analysis showed an independent relationship between increased respiratory rate and 28-day mortality. TTM33 resulted in lower end-tidal CO 2 (Pgroup = 0.0003) and higher alveolar dead space fraction (Pgroup = 0.003) compared to TTM36, while PCO 2 levels and respiratory minute volume were similar between groups. In the majority of the cardiac arrest patients, protective ventilation settings are applied, including low tidal volumes and driving pressures. High respiratory rate was associated with mortality. TTM33 results in lower end-tidal CO 2 levels and a higher alveolar dead space fraction compared to TTTM36. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  12. Sedimentation and response to sea-level rise of a restored marsh with reduced tidal exchange: Comparison with a natural tidal marsh

    USGS Publications Warehouse

    Vandenbruwaene, W.; Maris, T.; Cahoon, D.R.; Meire, P.; Temmerman, S.

    2011-01-01

    Along coasts and estuaries, formerly embanked land is increasingly restored into tidal marshes in order to re-establish valuable ecosystem services, such as buffering against flooding. Along the Scheldt estuary (Belgium), tidal marshes are restored on embanked land by allowing a controlled reduced tide (CRT) into a constructed basin, through a culvert in the embankment. In this way tidal water levels are significantly lowered (ca. 3 m) so that a CRT marsh can develop on formerly embanked land with a ca. 3 m lower elevation than the natural tidal marshes. In this study we compared the long-term change in elevation (ΔE) within a CRT marsh and adjacent natural tidal marsh. Over a period of 4 years, the observed spatio-temporal variations in ΔE rate were related to variations in inundation depth, and this relationship was not significantly different for the CRT marsh and natural tidal marsh. A model was developed to simulate the ΔE over the next century. (1) Under a scenario without mean high water level (MHWL) rise in the estuary, the model shows that the marsh elevation-ΔE feedback that is typical for a natural tidal marsh (i.e. rising marsh elevation results in decreasing inundation depth and therefore a decreasing increase in elevation) is absent in the basin of the CRT marsh. This is because tidal exchange of water volumes between the estuary and CRT marsh are independent from the CRT marsh elevation but dependent on the culvert dimensions. Thus the volume of water entering the CRT remains constant regardless of the marsh elevation. Consequently the CRT MHWL follows the increase in CRT surface elevation, resulting after 75 years in a 2–2.5 times larger elevation gain in the CRT marsh, and a faster reduction of spatial elevation differences. (2) Under a scenario of constant MHWL rise (historical rate of 1.5 cm a-1), the equilibrium elevation (relative to MHWL) is 0.13 m lower in the CRT marsh and is reached almost 2 times faster. (3) Under a scenario of accelerated MHWL rise (acceleration of 0.02 cm a-1), the CRT marsh is much less able to keep up with the MHWL rise; after 75 years the CRT elevation is already 0.21 m lower than for the natural marsh. In conclusion, this study demonstrates that although short-term (4 years) ΔE rates are similar in a restored CRT marsh and natural tidal marsh, these ecosystems may evolve differently in response to sea-level rise in the longer term (10–100 years).

  13. Pressure-limited sustained inflation vs. gradual tidal inflations for resuscitation in preterm lambs.

    PubMed

    Tingay, David G; Polglase, Graeme R; Bhatia, Risha; Berry, Clare A; Kopotic, Robert J; Kopotic, Clinton P; Song, Yong; Szyld, Edgardo; Jobe, Alan H; Pillow, J Jane

    2015-04-01

    Support of the mechanically complex preterm lung needs to facilitate aeration while avoiding ventilation heterogeneities: whether to achieve this gradually or quickly remains unclear. We compared the effect of gradual vs. constant tidal inflations and a pressure-limited sustained inflation (SI) at birth on gas exchange, lung mechanics, gravity-dependent lung volume distribution, and lung injury in 131-day gestation preterm lambs. Lambs were resuscitated with either 1) a 20-s, 40-cmH2O pressure-limited SI (PressSI), 2) a gradual increase in tidal volume (Vt) over 5-min from 3 ml/kg to 7 ml/kg (IncrVt), or 3) 7 ml/kg Vt from birth. All lambs were subsequently ventilated for 15 min with 7 ml/kg Vt with the same end-expiratory pressure. Lung mechanics, gas exchange and spatial distribution of end-expiratory volume (EEV), and tidal ventilation (electrical impedance tomography) were recorded regularly. At 15 min, early mRNA tissue markers of lung injury were assessed. The IncrVt group resulted in greater tissue hysteresivity at 5 min (P = 0.017; two-way ANOVA), higher alveolar-arterial oxygen difference from 10 min (P < 0.01), and least uniform gravity-dependent distribution of EEV. There were no other differences in lung mechanics between groups, and the PressSI and 7 ml/kg Vt groups behaved similarly throughout. EEV was more uniformly distributed, but Vt least so, in the PressSI group. There were no differences in mRNA markers of lung injury. A gradual increase in Vt from birth resulted in less recruitment of the gravity-dependent lung with worse oxygenation. There was no benefit of a SI at birth over mechanical ventilation with 7 ml/kg Vt. Copyright © 2015 the American Physiological Society.

  14. Evaluation of the effects of dorsal versus lateral recumbency on the cardiopulmonary system during anesthesia with isoflurane in red-tailed hawks (Buteo jamaicensis).

    PubMed

    Hawkins, Michelle G; Malka, Shachar; Pascoe, Peter J; Solano, Adrian M; Kass, Philip H; Ohmura, Hajime; Jones, James H

    2013-01-01

    To evaluate the effects of dorsal versus lateral recumbency on the cardiopulmonary system during isoflurane anesthesia in red-tailed hawks (Buteo jamaicensis). 6 adult 1.1- to 1.6-kg red-tailed hawks. A randomized, crossover study was used to evaluate changes in respiratory rate, tidal volume, minute ventilation, heart rate, mean arterial and indirect blood pressures, and end-tidal Pco(2) measured every 5 minutes plus Paco(2) and Pao(2) and arterial pH measured every 15 minutes throughout a 75-minute study period. Respiratory rate was higher, tidal volume lower, and minute ventilation not different in lateral versus dorsal recumbency. Position did not affect heart rate, mean arterial blood pressure, or indirect blood pressure, although heart rate decreased during the anesthetic period. Birds hypoventilated in both positions and Paco(2) differed with time and position × time interaction. The Petco(2) position × time interaction was significant and Petco(2) was a mean of 7 Torr higher than Paco(2). The Paco(2) in dorsal recumbency was a mean of 32 Torr higher than in lateral recumbency. Birds in both positions developed respiratory acidosis. Differences in tidal volume with similar minute ventilation suggested red-tailed hawks in dorsal recumbency might have lower dead space ventilation. Despite similar minute ventilation in both positions, birds in dorsal recumbency hypoventilated more yet maintained higher Pao(2), suggesting parabronchial ventilatory or pulmonary blood flow distribution changes with position. The results refute the hypothesis that dorsal recumbency compromises ventilation and O(2) transport more than lateral recumbency in red-tailed hawks.

  15. Effects of manual percussion during postural drainage on lung volumes and metabolic status in healthy subjects.

    PubMed

    Leelarungrayub, Jirakrit; Eungpinichpong, Wichai; Klaphajone, Jakkrit; Prasannarong, Mujalin; Boontha, Kritsana

    2016-04-01

    The aim of this study was to evaluate the influence of manual percussion during three different positions of postural drainage (PD) on lung volumes and metabolic status. Twenty six healthy volunteers (13 women and 13 men), with a mean age of 20.15 ± 1.17 years, participated. They were randomized into three standard positions of PD (upper, middle, or lower lobes) and given manual percussion at a frequency of 240 times per minute for 5 min. Lung volumes, including tidal volume (TV), inspiratory reserve volume (IRV), expiratory reserve volume (ERV) and vital capacity (VC); and metabolic status, such as oxygen consumption (VO2), carbon dioxide (VCO2), respiratory rate (RR), and minute ventilation (VE) were evaluated. The lung volumes showed no statistical difference in VC or IRV from percussion during PD in all positions, except for the lower lobe, where increased TV and decreased ERV were found when compared to PD alone. Furthermore, percussion during PD of the upper and middle lobes did not affect RR or VE, when compared to PD alone. In addition, percussion during PD of the middle and lower lobes increased VO2 and VCO2 significantly, when compared to PD alone, but it did not influence PD of the upper lobe. This study indicated that up to 5 min of manual percussion on PD of the upper and middle lobes is safe mostly for lung volumes, RR, and VE, but it should be given with care in PD conditions of the lower lobe. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. General relativistic dynamics of an extreme mass-ratio binary interacting with an external body

    NASA Astrophysics Data System (ADS)

    Yang, Huan; Casals, Marc

    2017-10-01

    We study the dynamics of a hierarchical three-body system in the general relativistic regime: an extreme mass-ratio inner binary under the tidal influence of an external body. The inner binary consists of a central Schwarzschild black hole and a test body moving around it. We discuss three types of tidal effects on the orbit of the test body. First, the angular momentum of the inner binary precesses around the angular momentum of the outer binary. Second, the tidal field drives a "transient resonance" when the radial and azimuthal frequencies are commensurable. In contrast with resonances driven by the gravitational self-force, this tidal-driven resonance may boost the orbital angular momentum and eccentricity (a relativistic version of the Kozai-Lidov effect). Finally, for an orbit-dynamical effect during the nonresonant phase, we calculate the correction to the innermost stable circular (mean) orbit due to the tidal interaction. Hierarchical three-body systems are potential sources for future space-based gravitational wave missions, and the tidal effects that we find could contribute significantly to their waveform.

  17. Impact of intertidal area characteristics on estuarine tidal hydrodynamics: A modelling study for the Scheldt Estuary

    NASA Astrophysics Data System (ADS)

    Stark, J.; Smolders, S.; Meire, P.; Temmerman, S.

    2017-11-01

    Marsh restoration projects are nowadays being implemented as ecosystem-based strategies to reduce flood risks and to restore intertidal habitat along estuaries. Changes in estuarine tidal hydrodynamics are expected along with such intertidal area changes. A validated hydrodynamic model of the Scheldt Estuary is used to gain fundamental insights in the role of intertidal area characteristics on tidal hydrodynamics and tidal asymmetry in particular through several geomorphological scenarios in which intertidal area elevation and location along the estuary is varied. Model results indicate that the location of intertidal areas and their storage volume relative to the local tidal prism determine the intensity and reach along the estuary over which tidal hydrodynamics are affected. Our model results also suggest that intertidal storage areas that are located within the main estuarine channel system, and hence are part of the flow-carrying part of the estuary, may affect tidal hydrodynamics differently than intertidal areas that are side-basins of the main estuarine channel, and hence only contribute little to the flow-carrying cross-section of the estuary. If tidal flats contribute to the channel cross-section and exert frictional effects on the tidal propagation, the elevation of intertidal flats influences the magnitude and direction of tidal asymmetry along estuarine channels. Ebb-dominance is most strongly enhanced if tidal flats are around mean sea level or slightly above. Conversely, flood-dominance is enhanced if the tidal flats are situated low in the tidal frame. For intertidal storage areas at specific locations besides the main channel, flood-dominance in the estuary channel peaks in the vicinity of those areas and generally reduces upstream and downstream compared to a reference scenario. Finally, the model results indicate an along-estuary varying impact on the tidal prism as a result of adding intertidal storage at a specific location. In addition to known effects of tidal prism decrease upstream and tidal prism increase downstream of additional storage areas, our model results indicate a reduction in tidal prism far downstream of intertidal storage areas as a result of a decreasing tidal range. This study may assist estuarine managers in assessing the impact of marsh restoration and managed shoreline realignment projects, as well as with the morphological management of estuaries through dredging and disposal of sediment on intertidal areas.

  18. [Anesthesia for thoracoscopic laser ablation of bullae in a patient with severe bullous emphysema].

    PubMed

    Saito, Y; Hayashida, M; Arita, H; Hanaoka, K

    1995-05-01

    A 46-year-old male underwent laser-ablation of emphysematous bullae of the right lung via thoracoscope. For almost a year he had been bedridden because of severe dyspnea on exertion, in spite of medication and oxygen therapy. He also complained of orthopnea at rest and had suffered from body weight loss of 10 kg during the preceding year. Radiologic examination revealed emphysemotous lung with bilateral giant bullae. In spirogram, forced vital capacity in 1 second was markedly low (0.45 l, corresponding to 19% in %FVC1.0), vital capacity moderately depressed (2.41 l, 64%) and residual volume markedly elevated (5.85 l, 387%). Anesthesia was induced and maintained using the combination of thoracic-epidural anesthesia and intravenous anesthesia (midazolam and fentanyl). One lung ventilation (OLV) was used to facilitate thoracoscopic procedure. Mechanical ventilation was conducted at first with an anesthesia ventilator. As the duration of OLV was prolonged, however, the peak airway pressure increased, the tidal volume decreased and the value of percutaneous arterial hemoglobin saturation (SpO2) declined. In order to keep adequate oxygenation, brief periods of two lung ventilation (TLV) became necessary, in addition to the application of continuous positive airway pressure to the non-dependent lung. When ventilation was changed from volume-cycled ventilation to pressure-cycled and from using an anesthesia ventilator to a critical care type ventilator (Servo 900C), sufficient tidal volume was achieved with lower peak airway pressure, producing reasonable Spo2 value with much less frequent TLV. At the end of the surgery bronchopleural fistulae still persisted, with resultant air leak of about 50% of inspired tidal volume.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Homogeneous wave turbulence driven by tidal flows

    NASA Astrophysics Data System (ADS)

    Favier, B.; Le Reun, T.; Barker, A.; Le Bars, M.

    2017-12-01

    When a moon orbits around a planet, the rotation of the induced tidal bulge drives a homogeneous, periodic, large-scale flow. The combination of such an excitation with the rotating motion of the planet has been shown to drive parametric resonance of a pair of inertial waves in a mechanism called the elliptical instability. Geophysical fluid layers can also be stratified: this is the case for instance of the Earth's oceans and, as suggested by several studies, of the upper part of the Earth's liquid Outer Core. We thus investigate the stability of a rotating and stratified layer undergoing tidal distortion in the limit where either rotation or stratification is dominant. We show that the periodic tidal flow drives a parametric subharmonic resonance of inertial (resp. internal) waves in the rotating (resp. stratified) case. The instability saturates into a wave turbulence pervading the whole fluid layer. In such a state, the instability mechanism conveys the tidal energy from the large scale tidal flow to the resonant modes, which then feed a succession of triadic resonances also generating small spatial scales. In the rotating case, we observe a kinetic energy spectrum with a k-2 slope for which the Coriolis force is dominant at all spatial scales. In the stratified case, where the timescale separation is increased between the tidal excitation and the Brunt-Väisälä frequencies, the temporal spectrum decays with a ω-2 power law up to the cut-off frequency beyond which waves do not exist. This result is reminiscent of the Garrett and Munk spectrum measured in the oceans and theoretically described as a manifestation of internal wave turbulence. In addition to revealing an instability driving homogeneous turbulence in geophysical fluid layers, our approach is also an efficient numerical tool to investigate the possibly universal properties of wave turbulence in a geophysical context.

  20. Performance of portable ventilators at altitude

    DTIC Science & Technology

    2015-04-20

    currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 20 Apr 2015 2. REPORT TYPE Journal...consistent tidal volume (VT) delivery at various altitudes is imperative for lung protection when transporting wounded war fighters to each echelon...of care. Three ventilators (Impact 731, Hamilton T1, and CareFusion Revel) were tested at pediatric (50 and 100 mL) and adult (250Y750 mL) tidal VTs

  1. Predicting tidal marsh survival or submergence to sea-level rise using Holocene data

    NASA Astrophysics Data System (ADS)

    Horton, B.; Shennan, I.; Bradley, S.; Cahill, N.; Kirwan, M. L.; Kopp, R. E.; Shaw, T.

    2017-12-01

    Rising sea level threatens to permanently submerge tidal marsh environments if they cannot accrete faster than the rate of relative sea-level rise (RSLR). But regional and global model simulations of the future ability of marshes to maintain their elevation with respect to the tidal frame are uncertain. The compilation of empirical data for tidal marsh vulnerability is, therefore, essential to address disparities across these simulations. A hitherto unexplored source of empirical data are Holocene records of tidal marsh evolution. In particular, the marshes of Great Britain have survived and submerged while RSLR varied between -7.7 and 15.2 mm/yr, primarily because of the interplay between global ice-volume changes and regional isostatic processes. Here, we reveal the limits to marsh vulnerability are revealed through the analysis of over 400 reconstructions of tidal marsh submergence and conversion to tidal mud flat or open water from 54 regions in Great Britain during the Holocene. Holocene records indicate a 90% probability of tidal marsh submergence at sites with RSLR exceeding 7.3 mm/yr (95% CI: 6.6-8.6 mm/yr). Although most modern tidal marshes in Great Britain have not yet reached these sea-level rise limits, our empirical data suggest widespread concern over their ability to survive rates of sea-level rise in the 21st century under high emission scenarios. Integrating over the uncertainties in both sea-level rise predictions and the response of tidal marshes to sea-level rise, all of Great Britain has a >80% probability of marsh submergence under RCP 8.5 by 2100, with areas of south and eastern England, where the rate of RSLR is increased by glacio-isostatic subsidence, achieving this probability by 2040.

  2. Tidally Induced Pulsations in Kepler Eclipsing Binary KIC 3230227

    NASA Astrophysics Data System (ADS)

    Guo, Zhao; Gies, Douglas R.; Fuller, Jim

    2017-01-01

    KIC 3230227 is a short period (P ≈ 7.0 days) eclipsing binary with a very eccentric orbit (e = 0.6). From combined analysis of radial velocities and Kepler light curves, this system is found to be composed of two A-type stars, with masses of M1 = 1.84 ± 0.18 M⊙, M2 = 1.73 ± 0.17 M⊙ and radii of R1 = 2.01 ± 0.09 R⊙, R2 = 1.68 ± 0.08 R⊙ for the primary and secondary, respectively. In addition to an eclipse, the binary light curve shows a brightening and dimming near periastron, making this a somewhat rare eclipsing heartbeat star system. After removing the binary light curve model, more than 10 pulsational frequencies are present in the Fourier spectrum of the residuals, and most of them are integer multiples of the orbital frequency. These pulsations are tidally driven, and both the amplitudes and phases are in agreement with predictions from linear tidal theory for l = 2, m = -2 prograde modes.

  3. [Dynamic changes of lung function in infant of different gestational ages].

    PubMed

    Qi, Li-feng; Yu, Jia-lin; Liu, Xiao-hong; Wei, Min-chao

    2013-06-25

    To explore the dynamic changes of lung function in infants born at different gestational ages without respiratory complications. A total of 110 cases of hospitalized neonatal patients were retrospectively recruited and analyzed at Shenzhen Children's Hospital from July 2010 to August 2012. By gestational age they were divided into 3 groups of full term (37-40 weeks, n = 55, 29 males and 26 females) with an average birth weight (3.1 ± 0.3) kg, late preterm group (34- < 37 weeks, n = 30, 18 males and 12 females) with an average birth weight (2.1 ± 0.3) kg and early preterm (<34 weeks, n = 25, 16 males and 9 females )with an average birth weight (1.4 ± 0.3) kg. At Days 1, 14 and 28, lung function parameters of functional residual capacity (FRC) and lung clear index (LCI) were measured by multiple breath washouts with an ultrasonic flow meter and tidal breathing. One-way ANOVA was used for each index. Tidal expiratory flow 75% remaining tidal volume (TEF75), tidal expiratory flow 50% remaining tidal volume (TEF50) and tidal expiratory flow 25% remaining tidal volume (TEF25) gradually increased at Days 1, 14 and 28 in 3 groups. However respiratory rate (RR) gradually decreased. Compared with full term and late preterm, the early preterm infants had lower TEF75, TEF50 and TEF25, lower the ratios of time to peak expiratory flow and expiratory time (TPTEF/TE), lower ratios of volume to peak expiratory flow and expiratory volume (VPEF/VE) ((71 ± 21) and (66 ± 16) vs (55 ± 19)ml/s, (70 ± 20) and (62 ± 17) vs (51 ± 16)ml/s, (54 ± 17) and (51 ± 13) vs (38 ± 10)ml/s, 37% ± 8% and 34% ± 9% vs 29% ± 6%, 38% ± 6% and 33% ± 8% vs 28% ± 7%, F = 5.82, 8.74, 11.30, 7.72, 16.40, all P < 0.01), higher RR and LCI at Day 28((49 ± 6) and (51 ± 8) vs (56 ± 7)/min, 8.6 ± 2.7 and 8.9 ± 2.2 vs 10.8 ± 2.0,F = 10.09, 7.15, both P < 0.05). At a matched post-menstrual age of 40 weeks, compared with full term and late preterm, the early preterm group had lower TEF50, TEF25, TPTEF/TE, VPEF/VE ((65 ± 21) and (62 ± 12) vs (50 ± 17)ml/s,(51 ± 13) and (47 ± 10) vs (39 ± 10)ml/s, 36% ± 8% and 31% ± 7% vs 30% ± 6%, 37% ± 10% and 32% ± 8% vs 29% ± 6%,F = 4.41, 8.23, 9.08, 7.35, all P < 0.05). Lung function improves with the elongation of days. The parameters of lung function in early infants are worse than those in full and late-preterm counterparts. At a corrected gestational age of 40 weeks, early preterm infants fail to achieve catch-up growth in lung function. Dynamic monitoring of lung function in preterm infants of different gestational ages is of vital importance for gauging respiratory maturity and assessing lung development especially for preterm infants.

  4. Changing tidal hydrodynamics during different stages of eco-geomorphological development of a tidal marsh: A numerical modeling study

    NASA Astrophysics Data System (ADS)

    Stark, J.; Meire, P.; Temmerman, S.

    2017-03-01

    The eco-geomorphological development of tidal marshes, from initially low-elevated bare tidal flats up to a high-elevated marsh and its typical network of channels and creeks, induces long-term changes in tidal hydrodynamics in a marsh, which will have feedback effects on the marsh development. We use a two-dimensional hydrodynamic model of the Saeftinghe marsh (Netherlands) to study tidal hydrodynamics, and tidal asymmetry in particular, for model scenarios with different input bathymetries and vegetation coverages that represent different stages of eco-geomorphological marsh development, from a low elevation stage with low vegetation coverage to a high and fully vegetated marsh platform. Tidal asymmetry is quantified along a 4 km marsh channel by (1) the difference in peak flood and peak ebb velocities, (2) the ratio between duration of the rising tide and the falling tide and (3) the time-integrated dimensionless bed shear stress during flood and ebb. Although spatial variations in tidal asymmetry are large and the different indicators for tidal asymmetry do not always respond similarly to eco-geomorphological changes, some general trends can be obtained. Flood-dominance prevails during the initial bare stage of a low-lying tidal flat. Vegetation establishment and platform expansion lead to marsh-scale flow concentration to the bare channels, causing an increase in tidal prism in the channels along with a less flood-dominant asymmetry of the horizontal tide. The decrease in flood-dominance continues as the platform grows vertically and the sediment-demand of the platform decreases. However, when the platform elevation gets sufficiently high in the tidal frame and part of the spring-neap cycle is confined to the channels, the discharge in the channels decreases and tidal asymmetry becomes more flood-dominant again, indicating an infilling of the marsh channels. Furthermore, model results suggest that hydro-morphodynamic feedbacks based on tidal prism to channel cross-sectional area relationships keep the marsh channels from filling in completely by enhancing ebb-dominance as long as the tidal volume and flow velocities remain sufficiently high. Overall, this study increases insight into the hydro-morphodynamic interactions between tidal flow and marsh geomorphology during various stages of eco-geomorphological development of marshes and marsh channels in particular.

  5. Wavelet analysis of lunar semidiurnal tidal influence on selected inland rivers across the globe

    PubMed Central

    Briciu, Andrei-Emil

    2014-01-01

    The lunar semidiurnal influence is already known for tidal rivers. The moon also influences inland rivers at a monthly scale through precipitation. We show that, for some non-tidal rivers, with special geological conditions, the lunar semidiurnal tidal oscillation can be detected. The moon has semidiurnal tidal influence on groundwater, which will then export it to streamflow. Long time series with high frequency measurements were analysed by using standard wavelet analysis techniques. The lunar semidiurnal signal explains the daily double-peaked river level evolution of inland gauges. It is stronger where springs with high discharge occur, especially in the area of Edwards-Trinity and Great Artesian Basin aquifers and in areas with dolomite/limestone strata. The average maximum semidiurnal peaks range between 0.002 and 0.1 m. This secondary effect of the earth tides has important implications in predicting high resolution hydrographs, in the water cycle of wetlands and in water management. PMID:24569793

  6. Tidal effects in differentiated viscoelastic bodies: a numerical approach

    NASA Astrophysics Data System (ADS)

    Walterová, M.; Běhounková, M.

    2017-09-01

    The majority of confirmed terrestrial exoplanets orbits close to their host stars and their evolution was likely altered by tidal interaction. Nevertheless, due to their viscoelastic properties on the tidal frequencies, their response cannot be described exactly by standardly employed constant-lag models. We therefore introduce a tidal model based on the numerical evaluation of a continuum mechanics problem describing the deformation of viscoelastic (Maxwell or Andrade) planetary mantles subjected to external force. We apply the method on a model Earth-size planet orbiting a low-mass star and study the effect of the orbital eccentricity, the mantle viscosity and the chosen rheology on the tidal dissipation, the complex Love numbers and the tidal torque. The number of stable spin states (i.e., zero tidal torque) grows with increasing mantle viscosity, similarly to the analytical model of Correia et al. (Astron Astrophys 571:A50, 2014) for homogeneous bodies. This behavior is only slightly influenced by the rheology used. Similarly, the Love numbers do not distinctly depend on the considered rheological model. The increase in viscosity affects the amplitude of their variations. The tidal heating described by the Maxwell rheology attains local minima associated with low spin-orbit resonances, with depth and shape depending on both the eccentricity and the viscosity. For the Andrade rheology, the minima at low resonances are very shallow and the tidal heating for all viscosities resembles a "fluid limit." The tidal heating is the quantity influenced the most by the rheology, having thus possible impact on the internal thermal evolution.

  7. A prototype of volume-controlled tidal liquid ventilator using independent piston pumps.

    PubMed

    Robert, Raymond; Micheau, Philippe; Cyr, Stéphane; Lesur, Olivier; Praud, Jean-Paul; Walti, Hervé

    2006-01-01

    Liquid ventilation using perfluorochemicals (PFC) offers clear theoretical advantages over gas ventilation, such as decreased lung damage, recruitment of collapsed lung regions, and lavage of inflammatory debris. We present a total liquid ventilator designed to ventilate patients with completely filled lungs with a tidal volume of PFC liquid. The two independent piston pumps are volume controlled and pressure limited. Measurable pumping errors are corrected by a programmed supervisor module, which modifies the inserted or withdrawn volume. Pump independence also allows easy functional residual capacity modifications during ventilation. The bubble gas exchanger is divided into two sections such that the PFC exiting the lungs is not in contact with the PFC entering the lungs. The heating system is incorporated into the metallic base of the gas exchanger, and a heat-sink-type condenser is placed on top of the exchanger to retrieve PFC vapors. The prototype was tested on 5 healthy term newborn lambs (<5 days old). The results demonstrate the efficiency and safety of the prototype in maintaining adequate gas exchange, normal acido-basis equilibrium, and cardiovascular stability during a short, 2-hour total liquid ventilator. Airway pressure, lung volume, and ventilation scheme were maintained in the targeted range.

  8. Effect of tubing deposition, breathing pattern, and temperature on aerosol mass distribution measured by cascade impactor.

    PubMed

    Gurses, Burak K; Smaldone, Gerald C

    2003-01-01

    Aerosols produced by nebulizers are often characterized on the bench using cascade impactors. We studied the effects of connecting tubing, breathing pattern, and temperature on mass-weighted aerodynamic particle size aerosol distributions (APSD) measured by cascade impaction. Our experimental setup consisted of a piston ventilator, low-flow (1.0 L/min) cascade impactor, two commercially available nebulizers that produced large and small particles, and two "T"-shaped tubes called "Tconnector(cascade)" and "Tconnector(nebulizer)" placed above the impactor and the nebulizer, respectively. Radiolabeled normal saline was nebulized using an airtank at 50 PSIG; APSD, mass balance, and Tconnector(cascade) deposition were measured with a gamma camera and radioisotope calibrator. Flow through the circuit was defined by the air tank (standing cloud, 10 L/min) with or without a piston pump, which superimposed a sinusoidal flow on the flow from the air tank (tidal volume and frequency of breathing). Experiments were performed at room temperature and in a cooled environment. With increasing tidal volume and frequency, smaller particles entered the cascade impactor (decreasing MMAD; e.g., Misty-Neb, 4.2 +/- 0.9 microm at lowest ventilation and 2.7 +/- 0.1 microm at highest, p = 0.042). These effects were reduced in magnitude for the nebulizer that produced smaller particles (AeroTech II, MMAD 1.8 +/- 0.1 to 1.3 +/- 0.1 microm; p = 0.0044). Deposition on Tconnector(cascade) increased with ventilation but was independent of cascade impactor flow. Imaging of the Tconnector(cascade) revealed a pattern of deposition unaffected by cascade impactor flow. These measurements suggest that changes in MMAD with ventilation were not artifacts of tubing deposition in the Tconnector(cascade). At lower temperatures, APSD distributions were more polydisperse. Our data suggest that, during patient inhalation, changes in particle distribution occur that are related to conditions in the tubing and may reduce the diameters of particles entering the patient. This effect is more significant for nebulizers producing large particles. Changes in ambient temperature did not affect these observations.

  9. Neonatal hygroscopic condenser humidifier.

    PubMed

    Gedeon, A; Mebius, C; Palmer, K

    1987-01-01

    A hygroscopic condenser humidifier was developed for neonates on mechanical ventilation and was evaluated by laboratory tests and clinically. Humidification provided by the unit was measured in the 10- to 50-ml tidal-volume range at ambient temperatures of 24 degrees C and 38 degrees C. The effect of a leaking patient connection on device performance was investigated. Leakage rates were measured routinely in a neonatal ICU and surgery to determine the clinical significance. In the entire tidal volume and temperature range, the unit provided an inspiratory water content in excess of 30 g/m3 when the leak fraction (volume leaked/volume delivered at Y-piece) was less than 15%. This was found in three out of four cases. In about one out of ten cases, the leak exceeded 30%, which invariably led to corrective action, such as repositioning or changing the endotracheal tube. However, even at a 30% leak, a water content of about 26 g/m3 was still available for humidifying the inspired gas, which corresponds to normal physiologic conditions found in the trachea for nasal breathing of room air.

  10. Focal mechanisms and tidal modulation for tectonic tremors in Taiwan

    NASA Astrophysics Data System (ADS)

    Ide, S.; Yabe, S.; Tai, H. J.; Chen, K. H.

    2015-12-01

    Tectonic tremors in Taiwan have been discovered beneath the southern Central Range, but their hosting structure has been unknown. Here we constrain the focal mechanism of underground deformation related to tremors, using moment tensor inversion in the very low frequency band and tidal stress analysis. Three types of seismic data are used for two analysis steps: detection of tremors and the moment tensor inversion. Short-period seismograms from CWBSN are used for tremor detection. Broadband seismograms from BATS and the TAIGER project are used for both steps. About 1000 tremors were detected using an envelope correlation method in the high frequency band (2-8 Hz). Broadband seismograms are stacked relative to the tremor timing, and inverted for a moment tensor in the low frequency band (0.02-0.05 Hz). The best solution was obtained at 32 km depth, as a double-couple consistent with a low-angle thrust fault dipping to the east-southeast, or a high-angle thrust with a south-southwest strike. Almost all tremors occur when tidal shear stress is positive and normal stress is negative (clamping). Since the clamping stress is high for a high-angle thrust fault, the low-angle thrust fault is more likely to be the fault plane. Tremor rate increases non-linearly with increasing shear stress, suggesting a velocity strengthening friction law. The high tidal sensitivity is inconsistent with horizontal slip motion suggested by previous studies, and normal faults that dominates regional shallow earthquakes. Our results favor thrust slip on a low-angle fault dipping to the east-southeast, consistent with the subduction of the Eurasian plate. The tremor region is characterized by a deep thermal anomaly with decrease normal stress. This region has also experienced enough subduction to produce metamorphic fluids. A large amount of fluid and low vertical stress may explain the high tidal sensitivity.

  11. Ocean tides

    NASA Technical Reports Server (NTRS)

    Hendershott, M. C.

    1975-01-01

    A review of recent developments in the study of ocean tides and related phenomena is presented. Topics briefly discussed include: the mechanism by which tidal dissipation occurs; continental shelf, marginal sea, and baroclinic tides; estimation of the amount of energy stored in the tide; the distribution of energy over the ocean; the resonant frequencies and Q factors of oceanic normal modes; the relationship of earth tides and ocean tides; and numerical global tidal models.

  12. Acupressure Improves the Weaning Indices of Tidal Volumes and Rapid Shallow Breathing Index in Stable Coma Patients Receiving Mechanical Ventilation: Randomized Controlled Trial

    PubMed Central

    Maa, Suh-Hwa; Wang, Chiu-Hua; Hsu, Kuang-Hung; Lin, Horng-Chyuan; Yee, Brian; MacDonald, Karen

    2013-01-01

    Background. Acupressure has been shown to improve respiratory parameters. We investigated the effects of acupressure on weaning indices in stable coma patients receiving mechanical ventilation. Methods. Patients were randomly allocated to one of three treatments: standard care with adjunctive acupressure on one (n = 32) or two days (n = 31) and standard care (n = 31). Acupressure in the form of 10 minutes of bilateral stimulation at five acupoints was administered per treatment session. Weaning indices were collected on two days before, right after, and at 0.5 hrs, 1 hr, 1.5 hrs, 2 hrs, 2.5 hrs, 3 hrs, 3.5 hrs, and 4 hrs after the start of treatment. Results. There were statistically significant improvements in tidal volumes and index of rapid shallow breathing in the one-day and two-day adjunctive acupressure study arms compared to the standard care arm immediately after acupressure and persisting until 0.5, 1 hr, and 2 hrs after adjustment for covariates. Conclusions. In the stable ventilated coma patient, adjunctive acupressure contributes to improvements in tidal volumes and the index of rapid shallow breathing, the two indices most critical for weaning patients from mechanical ventilation. These effects tend to be immediate and likely to be sustained for 1 to 2 hours. PMID:23710234

  13. A randomised crossover comparison of mouth-to-face-shield ventilation and mouth-to-pocket-mask ventilation by surf lifeguards in a manikin.

    PubMed

    Adelborg, K; Bjørnshave, K; Mortensen, M B; Espeseth, E; Wolff, A; Løfgren, B

    2014-07-01

    Thirty surf lifeguards (mean (SD) age: 25.1 (4.8) years; 21 male, 9 female) were randomly assigned to perform 2 × 3 min of cardiopulmonary resuscitation on a manikin using mouth-to-face-shield ventilation (AMBU LifeKey) and mouth-to-pocket-mask ventilation (Laerdal Pocket Mask). Interruptions in chest compressions, effective ventilation (visible chest rise) ratio, tidal volume and inspiratory time were recorded. Interruptions in chest compressions per cycle were increased with mouth-to-face-shield ventilation (mean (SD) 8.6 (1.7) s) compared with mouth-to-pocket-mask ventilation (6.9 (1.2) s, p < 0.0001). The proportion of effective ventilations was less using mouth-to-face-shield ventilation (199/242 (82%)) compared with mouth-to-pocket-mask ventilation (239/240 (100%), p = 0.0002). Tidal volume was lower using mouth-to-face-shield ventilation (mean (SD) 0.36 (0.20) l) compared with mouth-to-pocket-mask ventilation (0.45 (0.20) l, p = 0.006). No differences in inspiratory times were observed between mouth-to-face-shield ventilation and mouth-to-pocket-mask ventilation. In conclusion, mouth-to-face-shield ventilation increases interruptions in chest compressions, reduces the proportion of effective ventilations and decreases delivered tidal volumes compared with mouth-to-pocket-mask ventilation. © 2014 The Association of Anaesthetists of Great Britain and Ireland.

  14. Added-mass effects on a horizontal-axis tidal turbine using FAST v8

    DOE PAGES

    Murray, Robynne E.; Thresher, Robert; Jonkman, Jason

    2018-04-09

    Added mass on tidal turbine blades has the potential to alter the blade dynamic response, such as natural frequencies and vibration amplitudes, as a response to blade acceleration. Currently, most aeroelastic design tools do not consider such effects as they are complex and expensive to model, and they are not an intrinsic part of most blade-element momentum theory codes, which are commonly used in the tidal energy industry. This article outlines the addition of added-mass effects to the National Renewable Energy Laboratory's design tool FAST v8. A verification is presented for a spring-mass system with an initial displacement, and amore » case study is performed for the Reference Model 1 20-m-diameter tidal turbine. For the 20-m-diameter turbine, it was shown that the natural frequency of vibration is reduced by 65% when added mass is considered. Further, the thrust loads are increased by 2.5% when the blades are excited by a 5% step increase in inflow velocity when added mass is considered. This decrease can have a significant impact on the overall turbine design, as it is important to design the blades with a natural frequency so that they are not excited by the rotor speed and its harmonics, wherein aerodynamic excitation can lead to fatigue damage. However, it was shown that when turbulent inflow with an intensity of 20% was modeled, there was almost no impact on the loads and blade displacement with added-mass effects except for a small difference in the fatigue response of the blade to turbulent load fluctuations.« less

  15. Added-mass effects on a horizontal-axis tidal turbine using FAST v8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murray, Robynne E.; Thresher, Robert; Jonkman, Jason

    Added mass on tidal turbine blades has the potential to alter the blade dynamic response, such as natural frequencies and vibration amplitudes, as a response to blade acceleration. Currently, most aeroelastic design tools do not consider such effects as they are complex and expensive to model, and they are not an intrinsic part of most blade-element momentum theory codes, which are commonly used in the tidal energy industry. This article outlines the addition of added-mass effects to the National Renewable Energy Laboratory's design tool FAST v8. A verification is presented for a spring-mass system with an initial displacement, and amore » case study is performed for the Reference Model 1 20-m-diameter tidal turbine. For the 20-m-diameter turbine, it was shown that the natural frequency of vibration is reduced by 65% when added mass is considered. Further, the thrust loads are increased by 2.5% when the blades are excited by a 5% step increase in inflow velocity when added mass is considered. This decrease can have a significant impact on the overall turbine design, as it is important to design the blades with a natural frequency so that they are not excited by the rotor speed and its harmonics, wherein aerodynamic excitation can lead to fatigue damage. However, it was shown that when turbulent inflow with an intensity of 20% was modeled, there was almost no impact on the loads and blade displacement with added-mass effects except for a small difference in the fatigue response of the blade to turbulent load fluctuations.« less

  16. A stacking method and its applications to Lanzarote tide gauge records

    NASA Astrophysics Data System (ADS)

    Zhu, Ping; van Ruymbeke, Michel; Cadicheanu, Nicoleta

    2009-12-01

    A time-period analysis tool based on stacking is introduced in this paper. The original idea comes from the classical tidal analysis method. It is assumed that the period of each major tidal component is precisely determined based on the astronomical constants and it is unchangeable with time at a given point in the Earth. We sum the tidal records at a fixed tidal component center period T then take the mean of it. The stacking could significantly increase the signal-to-noise ratio (SNR) if a certain number of stacking circles is reached. The stacking results were fitted using a sinusoidal function, the amplitude and phase of the fitting curve is computed by the least squares methods. The advantage of the method is that: (1) an individual periodical signal could be isolated by stacking; (2) one can construct a linear Stacking-Spectrum (SSP) by changing the stacking period Ts; (3) the time-period distribution of the singularity component could be approximated by a Sliding-Stacking approach. The shortcoming of the method is that in order to isolate a low energy frequency or separate the nearby frequencies, we need a long enough series with high sampling rate. The method was tested with a numeric series and then it was applied to 1788 days Lanzarote tide gauge records as an example.

  17. On the Obliquities of Planets in Close-in, Compact Systems

    NASA Astrophysics Data System (ADS)

    Millholland, Sarah; Laughlin, Gregory

    2018-04-01

    Secular spin-orbit resonances can be encountered when planets sweep through commensurabilities between nodal and spin-axis precession frequencies, for example, during disk-driven migration. These encounters can induce significant planetary spin-axis misalignment and capture into a “Cassini state”, a configuration involving synchronous precession of the planetary spin and orbital angular momentum vectors. We show that typical extrasolar systems – exemplified by the Kepler close-in, coplanar multiple-planet systems – frequently have nodal and spin-axis precession frequencies that are near-commensurable. This implies that obliquity-pumping should be common if the planets undergo any migration. We present analytic and numerical models of the spin evolution of typical Kepler-multi-type systems subject to the influences of disk migration, the quadrupole potential of an oblate young star, and tidal dissipation. Among other consequences of large obliquities, we find that the several orders of magnitude enhancement in tidal dissipation strength at non-zero obliquity may be able to generate the observed excess of planet pairs with period ratios just wide of 2:1 and 3:2. Though tidal origins of these excesses have previously been discussed, tidal dissipation is insufficient to reproduce the observations unless planets have non-negligible obliquities at some time in their history.

  18. Binary Model for the Heartbeat Star System KIC 4142768

    NASA Astrophysics Data System (ADS)

    Manuel, Joseph; Hambleton, Kelly

    2018-01-01

    Heartbeat stars are a class of eccentric (e > 0.2) binary systems that undergo strong tidal forces. These tidal forces cause the shape of each star and the temperature across the stellar surfaces to change. This effect also generates variations in the light curve in the form of tidally-induced pulsations, which are theorized to have a significant effect on the circularization of eccentric orbits (Zahn, 1975). Using the binary modeling software PHOEBE (Prša & Zwitter 2005) on the Kepler photometric data and Keck radial velocity data for the eclipsing, heartbeat star KIC 4142768, we have determined the fundamental parameters including masses and radii. The frequency analysis of the residual data has surprisingly revealed approximately 29 pulsations with 8 being Delta Scuti pulsations, 10 being Gamma Doradus pulsations, and 11 being tidally-induced pulsations. After subtracting an initial binary model from the original, detrended photometric data, we analyzed the pulsation frequencies in the residual data. We then were able to disentangle the identified pulsations from the original data in order to conduct subsequent binary modeling. We plan to continue this study by applying asteroseismology to KIC 4142768. Through our continued investigation, we hope to extract information about the star’s internal structure and expect this will yield additional, interesting results.

  19. Rapid response of tidal channel networks to sea-level variations (Venice Lagoon, Italy)

    NASA Astrophysics Data System (ADS)

    Rizzetto, Federica; Tosi, Luigi

    2012-07-01

    The aim of the present paper is to examine the effects of long- and short-term sea-level fluctuations (i.e. relative sea-level rise and tides) on the geomorphologic evolution of modern tidal channels through the joint interpretation of channel modifications, the 1938-2010 yearly time series of relative sea-level rise, and the variations of strength and frequency of high tides which occurred in the same period. We analyzed a salt marsh area not particularly modified by human interventions, located in the northern Venice Lagoon, Italy. The availability of a long historical record of high-resolution aerial photographs provided us the opportunity to reconstruct in detail the evolution of the drainage patterns from 1938 to the present. Results from our analyses gave us information about the degree of control of long- and short-term sea-level fluctuations on planimetric development of tidal channels and provided demonstration of the rapid response of the drainage network to these oscillations. We found that both relative sea-level rise and high tide frequency greatly influenced salt marsh margin shift and meander evolution of tidal channels in the long term, but short-term sinuosity changes of creeks were often also closely related to tide variations. Channels nearer the marsh margin were more exposed to the action of the increasing tides.

  20. Effects of aerial hypoxia and temperature on pulmonary breathing pattern and gas exchange in the South American lungfish, Lepidosiren paradoxa.

    PubMed

    da Silva, Glauber S F; Ventura, Daniela A D N; Zena, Lucas A; Giusti, Humberto; Glass, Mogens L; Klein, Wilfried

    2017-05-01

    The South American lungfish Lepidosiren paradoxa is an obligatory air-breathing fish possessing well-developed bilateral lungs, and undergoing seasonal changes in its habitat, including temperature changes. In the present study we aimed to evaluate gas exchange and pulmonary breathing pattern in L. paradoxa at different temperatures (25 and 30°C) and different inspired O 2 levels (21, 12, 10, and 7%). Normoxic breathing pattern consisted of isolated ventilatory cycles composed of an expiration followed by 2.4±0.2 buccal inspirations. Both expiratory and inspiratory tidal volumes reached a maximum of about 35mlkg -1 , indicating that L. paradoxa is able to exchange nearly all of its lung air in a single ventilatory cycle. At both temperatures, hypoxia caused a significant increase in pulmonary ventilation (V̇ E ), mainly due to an increase in respiratory frequency. Durations of the ventilatory cycle and expiratory and inspiratory tidal volumes were not significantly affected by hypoxia. Expiratory time (but not inspiratory) was significantly shorter at 30°C and at all O 2 levels. While a small change in oxygen consumption (V̇O 2 ) could be noticed, the carbon dioxide release (V̇CO 2 , P=0.0003) and air convection requirement (V̇ E /V̇O 2 , P=0.0001) were significantly affected by hypoxia (7% O 2 ) at both temperatures, when compared to normoxia, and pulmonary diffusion capacity increased about four-fold due to hypoxic exposure. These data highlight important features of the respiratory system of L. paradoxa, capable of matching O 2 demand and supply under different environmental change, as well as help to understand the evolution of air breathing in lungfish. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Humidification performance of humidifying devices for tracheostomized patients with spontaneous breathing: a bench study.

    PubMed

    Chikata, Yusuke; Oto, Jun; Onodera, Mutsuo; Nishimura, Masaji

    2013-09-01

    Heat and moisture exchangers (HMEs) are commonly used for humidifying respiratory gases administered to mechanically ventilated patients. While they are also applied to tracheostomized patients with spontaneous breathing, their performance in this role has not yet been clarified. We carried out a bench study to investigate the effects of spontaneous breathing parameters and oxygen flow on the humidification performance of 11 HMEs. We evaluated the humidification provided by 11 HMEs for tracheostomized patients, and also by a system delivering high-flow CPAP, and an oxygen mask with nebulizer heater. Spontaneous breathing was simulated with a mechanical ventilator, lung model, and servo-controlled heated humidifier at tidal volumes of 300, 500, and 700 mL, and breathing frequencies of 10 and 20 breaths/min. Expired gas was warmed to 37°C. The high-flow CPAP system was set to deliver 15, 30, and 45 L/min. With the 8 HMEs that were equipped with ports to deliver oxygen, and with the high-flow CPAP system, measurements were taken when delivering 0 and 3 L/min of dry oxygen. After stabilization we measured the absolute humidity (AH) of inspired gas with a hygrometer. AH differed among HMEs applied to tracheostomized patients with spontaneous breathing. For all the HMEs, as tidal volume increased, AH decreased. At 20 breaths/min, AH was higher than at 10 breaths/min. For all the HMEs, when oxygen was delivered, AH decreased to below 30 mg/L. With an oxygen mask and high-flow CPAP, at all settings, AH exceeded 30 mg/L. None of the HMEs provided adequate humidification when supplemental oxygen was added. In the ICU, caution is required when applying HME to tracheostomized patients with spontaneous breathing, especially when supplemental oxygen is required.

  2. A perfluorochemical loss/restoration (L/R) system for tidal liquid ventilation.

    PubMed

    Libros, R; Philips, C M; Wolfson, M R; Shaffer, T H

    2000-01-01

    Tidal liquid ventilation is the transport of dissolved respiratory gases via volume exchange of perfluorochemical (PFC) liquid to and from the PFC-filled lung. All gas-liquid surface tension is eliminated, increasing compliance and providing lung protection due to lower inflation pressures. Tidal liquid ventilation is achieved by cycling fluid from a reservoir to and from the lung by a ventilator. Current approaches are microprocessor-based with feedback control. During inspiration, warmed oxygenated PFC liquid is pumped from a fluid reservoir/gas exchanger into the lung. PFC fluid is conserved by condensing (60-80% efficiency) vapor in the expired gas. A feedback-control system was developed to automatically replace PFC lost due to condenser inefficiency. This loss/restoration (L/R) system consists of a PFC-vapor thermal detector (+/- 2.5%), pneumatics, amplifiers, a gas flow detector (+/- 1%), a PFC pump (+/- 5%), and a controller. Gravimetric studies of perflubron loss from a flask due to evaporation were compared with experimental L/R results and found to be within +/- 1.4%. In addition, when L/R studies were conducted with a previously reported liquid ventilation system over a four-hour period, the L/R system maintained system perflubron volume to within +/- 1% of prime volume and 11.5% of replacement volume, and the difference between experimental PFC loss and that of the L/R system was 1.8 mL/hr. These studies suggest that the PFC L/R system may have significant economic (appropriate dosing for PFC loss) as well as physiologic (maintenance of PFC inventory in the lungs and liquid ventilator) impact on liquid ventilation procedures.

  3. Determinants of early-life lung function in African infants

    PubMed Central

    Willemse, Lauren; Visagie, Ane; Czövek, Dorottya; Nduru, Polite; Vanker, Aneesa; Stein, Dan J; Koen, Nastassja; Sly, Peter D; Hantos, Zoltán; Hall, Graham L; Zar, Heather J

    2017-01-01

    Background Low lung function in early life is associated with later respiratory illness. There is limited data on lung function in African infants despite a high prevalence of respiratory disease. Aim To assess the determinants of early lung function in African infants. Method Infants enrolled in a South African birth cohort, the Drakenstein child health study, had lung function measured at 6–10 weeks of age. Measurements, made with the infant breathing via a facemask during natural sleep, included tidal breathing, sulfur hexafluoride multiple breath washout and the forced oscillation technique. Information on antenatal and early postnatal exposures was collected using questionnaires and urine cotinine. Household benzene exposure was measured antenatally. Results Successful tests were obtained in 645/675 (95%) infants, median (IQR) age of 51 (46–58) days. Infant size, age and male gender were associated with larger tidal volume. Infants whose mothers smoked had lower tidal volumes (−1.6 mL (95% CI −3.0 to −0.1), p=0.04) and higher lung clearance index (0.1 turnovers (95% CI 0.01 to 0.3), p=0.03) compared with infants unexposed to tobacco smoke. Infants exposed to alcohol in utero or household benzene had lower time to peak tidal expiratory flow over total expiratory time ratios, 10% (95% CI −15.4% to −3.7%), p=0.002) and 3.0% (95% CI −5.2% to −0.7%, p=0.01) lower respectively compared with unexposed infants. HIV-exposed infants had higher tidal volumes (1.7 mL (95% CI 0.06 to 3.3) p=0.04) compared with infants whose mothers were HIV negative. Conclusion We identified several factors including infant size, sex, maternal smoking, maternal alcohol, maternal HIV and household benzene associated with altered early lung function, many of which are factors amenable to public health interventions. Long-term study of lung function and respiratory disease in these children is a priority to develop strategies to strengthen child health. PMID:27856821

  4. Sulzberger Ice Shelf Tidal Signal Reconstruction Using InSAR

    NASA Astrophysics Data System (ADS)

    Baek, S.; Shum, C.; Yi, Y.; Kwoun, O.; Lu, Z.; Braun, A.

    2005-12-01

    Synthetic Aperture Radar Interferometry (InSAR) and Differential InSAR (DInSAR) have been demonstrated as useful techniques to detect surface deformation over ice sheet and ice shelves over Antarctica. In this study, we use multiple-pass InSAR from the ERS-1 and ERS-2 data to detect ocean tidal deformation with an attempt towards modeling of tides underneath an ice shelf. High resolution Digital Elevation Model (DEM) from repeat-pass interferometry and ICESat profiles as ground control points is used for topographic correction over the study region in Sulzberger Ice Shelf, West Antarctica. Tidal differences measured by InSAR are obtained by the phase difference between a point on the grounded ice and a point on ice shelf. Comparison with global or regional tide models (including NAO, TPXO, GOT, and CATS) of a selected point shows that the tidal amplitude is consistent with the values predicted from tide models to within 4 cm RMS. Even though the lack of data hinders the effort to readily develop a tide model using longer term data (time series span over years), we suggest a method to reconstruction selected tidal constituents using both vertical deformation from InSAR and the knowledge on aliased tidal frequencies from ERS satellites. Finally, we report the comparison results of tidal deformation observed by InSAR and ICESat altimetry.

  5. Evaluation of Fractional Regional Ventilation Using 4D-CT and Effects of Breathing Maneuvers on Ventilation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mistry, Nilesh N., E-mail: nmistry@som.umaryland.edu; Diwanji, Tejan; Shi, Xiutao

    2013-11-15

    Purpose: Current implementations of methods based on Hounsfield units to evaluate regional lung ventilation do not directly incorporate tissue-based mass changes that occur over the respiratory cycle. To overcome this, we developed a 4-dimensional computed tomography (4D-CT)-based technique to evaluate fractional regional ventilation (FRV) that uses an individualized ratio of tidal volume to end-expiratory lung volume for each voxel. We further evaluated the effect of different breathing maneuvers on regional ventilation. The results from this work will help elucidate the relationship between global and regional lung function. Methods and Materials: Eight patients underwent 3 sets of 4D-CT scans during 1more » session using free-breathing, audiovisual guidance, and active breathing control. FRV was estimated using a density-based algorithm with mass correction. Internal validation between global and regional ventilation was performed by use of the imaging data collected during the use of active breathing control. The impact of breathing maneuvers on FRV was evaluated comparing the tidal volume from 3 breathing methods. Results: Internal validation through comparison between the global and regional changes in ventilation revealed a strong linear correlation (slope of 1.01, R{sup 2} of 0.97) between the measured global lung volume and the regional lung volume calculated by use of the “mass corrected” FRV. A linear relationship was established between the tidal volume measured with the automated breathing control system and FRV based on 4D-CT imaging. Consistently larger breathing volumes were observed when coached breathing techniques were used. Conclusions: The technique presented improves density-based evaluation of lung ventilation and establishes a link between global and regional lung ventilation volumes. Furthermore, the results obtained are comparable with those of other techniques of functional evaluation such as spirometry and hyperpolarized-gas magnetic resonance imaging. These results were demonstrated on retrospective analysis of patient data, and further research using prospective data is under way to validate this technique against established clinical tests.« less

  6. Lung and chest wall impedances in the dog in normal range of breathing: effects of pulmonary edema.

    PubMed

    Barnas, G M; Stamenović, D; Lutchen, K R

    1992-09-01

    We evaluated the effect of pulmonary edema on the frequency (f) and tidal volume (VT) dependences of respiratory system mechanical properties in the normal ranges of breathing. We measured resistance and elastance of the lungs (RL and EL) and chest wall of four anesthetized-paralyzed dogs during sinusoidal volume oscillations at the trachea (50-300 ml, 0.2-2 Hz), delivered at a constant mean airway pressure. Measurements were made before and after severe pulmonary edema was produced by injection of 0.06 ml/kg oleic acid into the right atrium. Chest wall properties were not changed by the injection. Before oleic acid, EL increased slightly with increasing f in each dog but was independent of VT. RL decreased slightly and was independent of VT from 0.2 to 0.4 Hz, but above 0.4 Hz it tended to increase with increasing flow, presumably due to the airway contribution. After oleic acid injection, EL and RL increased greatly. Large negative dependences of EL on VT and of RL on f were also evident, so that EL and RL after oleic acid changed two- and fivefold, respectively, within the ranges of f and VT studied. We conclude that severe pulmonary edema changes lung properties so as to make behavior VT dependent (i.e., nonlinear) and very frequency dependent in the normal range of breathing.

  7. Effects of Breathing Resistance on Resting Ventilatory Sensitivity to CO2

    DTIC Science & Technology

    2014-08-12

    be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE...elements were designed to generate work of breathing per tidal volume of 1 kPa when minute ventilation was 100 L/min. Resistance caused no systematic...the laboratory is considerably lower and that end- tidal PCO2 is higher with resistance in the breathing circuit than without it.2, 3 Work has

  8. [Successful airway management using i-gel in 7 patients undergoing awake craniotomy].

    PubMed

    Matsunami, Katsuaki; Sanuki, Michiyoshi; Yasuuji, Masakazu; Nakanuno, Ryuichi; Kato, Takahiro; Kawamoto, Masashi

    2014-07-01

    In order to secure airway during awake craniotomy, we used i-gel to perform positive-pressure ventilation in 7 patients for their anesthetic management. During removal of a tumor around the motor speech center, anesthetic management including asleep-awake-asleep technique was applied for speech testing. The technique, insertion and re-insertion of i-gel, was needed and it was easy in all the patients. During positive-pressure ventilation, peak pressure, tidal volume both for inspiration and expiration, and endtidal-CO2 were not markedly altered. Leakage around i-gel, and its differences between inspiration and expiration were negligible, while the tidal volume was adequate. We conclude that i-gel is useful for anesthetic management for awake craniotomy procedure for both securing airway and ventilation.

  9. Thermal Pollution Mathematical Model. Volume 6; Verification of Three-Dimensional Free-Surface Model at Anclote Anchorage; [environment impact of thermal discharges from power plants

    NASA Technical Reports Server (NTRS)

    Lee, S. S.; Sengupta, S.; Tuann, S. Y.; Lee, C. R.

    1980-01-01

    The free-surface model presented is for tidal estuaries and coastal regions where ambient tidal forces play an important role in the dispersal of heated water. The model is time dependent, three dimensional, and can handle irregular bottom topography. The vertical stretching coordinate is adopted for better treatment of kinematic condition at the water surface. The results include surface elevation, velocity, and temperature. The model was verified at the Anclote Anchorage site of Florida Power Company. Two data bases at four tidal stages for winter and summer conditions were used to verify the model. Differences between measured and predicted temperatures are on an average of less than 1 C.

  10. Spectral analysis of highly aliased sea-level signals

    NASA Astrophysics Data System (ADS)

    Ray, Richard D.

    1998-10-01

    Observing high-wavenumber ocean phenomena with a satellite altimeter generally calls for "along-track" analyses of the data: measurements along a repeating satellite ground track are analyzed in a point-by-point fashion, as opposed to spatially averaging data over multiple tracks. The sea-level aliasing problems encountered in such analyses can be especially challenging. For TOPEX/POSEIDON, all signals with frequency greater than 18 cycles per year (cpy), including both tidal and subdiurnal signals, are folded into the 0-18 cpy band. Because the tidal bands are wider than 18 cpy, residual tidal cusp energy, plus any subdiurnal energy, is capable of corrupting any low-frequency signal of interest. The practical consequences of this are explored here by using real sea-level measurements from conventional tide gauges, for which the true oceanographic spectrum is known and to which a simulated "satellite-measured" spectrum, based on coarsely subsampled data, may be compared. At many locations the spectrum is sufficently red that interannual frequencies remain unaffected. Intra-annual frequencies, however, must be interpreted with greater caution, and even interannual frequencies can be corrupted if the spectrum is flat. The results also suggest that whenever tides must be estimated directly from the altimetry, response methods of analysis are preferable to harmonic methods, even in nonlinear regimes; this will remain so for the foreseeable future. We concentrate on three example tide gauges: two coastal stations on the Malay Peninsula where the closely aliased K1 and Ssa tides are strong and at Canton Island where trapped equatorial waves are aliased.

  11. Nonlinearity in rock - Evidence from earth tides

    NASA Technical Reports Server (NTRS)

    Agnew, D. C.

    1981-01-01

    The earth is sinusoidally stressed by tidal forces; if the stress-strain relation for rock is nonlinear, energy should appear in an earth tide record at frequencies which are multiples of those of the larger tidal lines. An examination of the signals to be expected for different nonlinear deformation laws shows that for a nonlinear response without dissipation, the largest anomalous signal should occur at twice the forcing frequency, whereas for nonlinear laws involving dissipation (cusped hysteresis loops) the anomalous signal will be greatest at three times this frequency. The size of the signal in the dissipative case depends on the amount by which dissipation affects the particular response being measured. For measurements of strain tides this depends on whether dissipation is assumed to be present throughout the earth or localized around the point of measurement. An analysis of 5.7 years of strain tide records from Pinon Flat, California, shows a small signal at twice the frequency of the largest (M2) tide.

  12. Constraining neutron-star tidal Love numbers with gravitational-wave detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flanagan, Eanna E.; Hinderer, Tanja

    Ground-based gravitational wave detectors may be able to constrain the nuclear equation of state using the early, low frequency portion of the signal of detected neutron star-neutron star inspirals. In this early adiabatic regime, the influence of a neutron star's internal structure on the phase of the waveform depends only on a single parameter {lambda} of the star related to its tidal Love number, namely, the ratio of the induced quadrupole moment to the perturbing tidal gravitational field. We analyze the information obtainable from gravitational wave frequencies smaller than a cutoff frequency of 400 Hz, where corrections to the internal-structuremore » signal are less than 10%. For an inspiral of two nonspinning 1.4M{sub {center_dot}} neutron stars at a distance of 50 Megaparsecs, LIGO II detectors will be able to constrain {lambda} to {lambda}{<=}2.0x10{sup 37} g cm{sup 2} s{sup 2} with 90% confidence. Fully relativistic stellar models show that the corresponding constraint on radius R for 1.4M{sub {center_dot}} neutron stars would be R{<=}13.6 km (15.3 km) for a n=0.5 (n=1.0) polytrope with equation of state p{proportional_to}{rho}{sup 1+1/n}.« less

  13. [Lung protective ventilation - pathophysiology and diagnostics].

    PubMed

    Uhlig, Stefan; Frerichs, Inéz

    2008-06-01

    Mechanical ventilation may lead to lung injury depending on the ventilatory settings (e.g. pressure amplitudes, endexpiratory pressures, frequency) and the length of mechanical ventilation. Particularly in the inhomogeneously injured lungs of ARDS patients, alveolar overextension results in volutrauma, cyclic opening and closure of alveolar units in atelectrauma. Particularly important appears to be the fact that these processes may also cause biotrauma, i.e. the ventilator-induced hyperactivation of inflammatory responses in the lung. These side effects are reduced, but not eliminated with the currently recommended ventilation strategy with a tidal volume of 6 ml/kg idealized body weight. It is our hope that in the future optimization of ventilator settings will be facilated by bedside monitoring of novel indices of respiratory mechanics such as the stress index or the Slice technique, and by innovative real-time imaging technologies such as electrical impedance tomography.

  14. Complex demodulation in VLBI estimation of high frequency Earth rotation components

    NASA Astrophysics Data System (ADS)

    Böhm, S.; Brzeziński, A.; Schuh, H.

    2012-12-01

    The spectrum of high frequency Earth rotation variations contains strong harmonic signal components mainly excited by ocean tides along with much weaker non-harmonic fluctuations driven by irregular processes like the diurnal thermal tides in the atmosphere and oceans. In order to properly investigate non-harmonic phenomena a representation in time domain is inevitable. We present a method, operating in time domain, which is easily applicable within Earth rotation estimation from Very Long Baseline Interferometry (VLBI). It enables the determination of diurnal and subdiurnal variations, and is still effective with merely diurnal parameter sampling. The features of complex demodulation are used in an extended parameterization of polar motion and universal time which was implemented into a dedicated version of the Vienna VLBI Software VieVS. The functionality of the approach was evaluated by comparing amplitudes and phases of harmonic variations at tidal periods (diurnal/semidiurnal), derived from demodulated Earth rotation parameters (ERP), estimated from hourly resolved VLBI ERP time series and taken from a recently published VLBI ERP model to the terms of the conventional model for ocean tidal effects in Earth rotation recommended by the International Earth Rotation and Reference System Service (IERS). The three sets of tidal terms derived from VLBI observations extensively agree among each other within the three-sigma level of the demodulation approach, which is below 6 μas for polar motion and universal time. They also coincide in terms of differences to the IERS model, where significant deviations primarily for several major tidal terms are apparent. An additional spectral analysis of the as well estimated demodulated ERP series of the ter- and quarterdiurnal frequency bands did not reveal any significant signal structure. The complex demodulation applied in VLBI parameter estimation could be demonstrated a suitable procedure for the reliable reproduction of high frequency Earth rotation components and thus represents a qualified tool for future studies of irregular geophysical signals in ERP measured by space geodetic techniques.

  15. Mechanical ventilatory constraints during incremental cycle exercise in human pregnancy: implications for respiratory sensation

    PubMed Central

    Jensen, Dennis; Webb, Katherine A; Davies, Gregory A L; O'Donnell, Denis E

    2008-01-01

    The aim of this study was to identify the physiological mechanisms of exertional respiratory discomfort (breathlessness) in pregnancy by comparing ventilatory (breathing pattern, airway function, operating lung volumes, oesophageal pressure (Poes)-derived indices of respiratory mechanics) and perceptual (breathlessness intensity) responses to incremental cycle exercise in 15 young, healthy women in the third trimester (TM3; between 34 and 38 weeks gestation) and again 4–5 months postpartum (PP). During pregnancy, resting inspiratory capacity (IC) increased (P < 0.01) and end-expiratory lung volume decreased (P < 0.001), with no associated change in total lung capacity (TLC) or static respiratory muscle strength. This permitted greater tidal volume (VT) expansion throughout exercise in TM3, while preserving the relationship between contractile respiratory muscle effort (tidal Poes swing expressed as a percentage of maximum inspiratory pressure (PImax)) and thoracic volume displacement (VT expressed as a percentage of vital capacity) and between breathlessness and ventilation (V̇E). At the highest equivalent work rate (HEWR = 128 ± 5 W) in TM3 compared with PP: V̇E, tidal Poes/PImax and breathlessness intensity ratings increased by 10.2 l min−1 (P < 0.001), 8.8%PImax (P < 0.05) and 0.9 Borg units (P < 0.05), respectively. Pulmonary resistance was not increased at rest or during exercise at the HEWR in TM3, despite marked increases in mean tidal inspiratory and expiratory flow rates, suggesting increased bronchodilatation. Dynamic mechanical constraints on VT expansion (P < 0.05) with associated increased breathlessness intensity ratings (P < 0.05) were observed near peak exercise in TM3 compared with PP. In conclusion: (1) pregnancy-induced increases in exertional breathlessness reflected the normal awareness of increased V̇E and contractile respiratory muscle effort; (2) mechanical adaptations of the respiratory system, including recruitment of resting IC and increased bronchodilatation, accommodated the increased VT while preserving effort–displacement and breathlessness–V̇E relationships; and (3) dynamic mechanical ventilatory constraints contributed to respiratory discomfort near the limits of tolerance in late gestation. PMID:18687714

  16. Association between driving pressure and development of postoperative pulmonary complications in patients undergoing mechanical ventilation for general anaesthesia: a meta-analysis of individual patient data.

    PubMed

    Neto, Ary Serpa; Hemmes, Sabrine N T; Barbas, Carmen S V; Beiderlinden, Martin; Fernandez-Bustamante, Ana; Futier, Emmanuel; Gajic, Ognjen; El-Tahan, Mohamed R; Ghamdi, Abdulmohsin A Al; Günay, Ersin; Jaber, Samir; Kokulu, Serdar; Kozian, Alf; Licker, Marc; Lin, Wen-Qian; Maslow, Andrew D; Memtsoudis, Stavros G; Reis Miranda, Dinis; Moine, Pierre; Ng, Thomas; Paparella, Domenico; Ranieri, V Marco; Scavonetto, Federica; Schilling, Thomas; Selmo, Gabriele; Severgnini, Paolo; Sprung, Juraj; Sundar, Sugantha; Talmor, Daniel; Treschan, Tanja; Unzueta, Carmen; Weingarten, Toby N; Wolthuis, Esther K; Wrigge, Hermann; Amato, Marcelo B P; Costa, Eduardo L V; de Abreu, Marcelo Gama; Pelosi, Paolo; Schultz, Marcus J

    2016-04-01

    Protective mechanical ventilation strategies using low tidal volume or high levels of positive end-expiratory pressure (PEEP) improve outcomes for patients who have had surgery. The role of the driving pressure, which is the difference between the plateau pressure and the level of positive end-expiratory pressure is not known. We investigated the association of tidal volume, the level of PEEP, and driving pressure during intraoperative ventilation with the development of postoperative pulmonary complications. We did a meta-analysis of individual patient data from randomised controlled trials of protective ventilation during general anesthaesia for surgery published up to July 30, 2015. The main outcome was development of postoperative pulmonary complications (postoperative lung injury, pulmonary infection, or barotrauma). We included data from 17 randomised controlled trials, including 2250 patients. Multivariate analysis suggested that driving pressure was associated with the development of postoperative pulmonary complications (odds ratio [OR] for one unit increase of driving pressure 1·16, 95% CI 1·13-1·19; p<0·0001), whereas we detected no association for tidal volume (1·05, 0·98-1·13; p=0·179). PEEP did not have a large enough effect in univariate analysis to warrant inclusion in the multivariate analysis. In a mediator analysis, driving pressure was the only significant mediator of the effects of protective ventilation on development of pulmonary complications (p=0·027). In two studies that compared low with high PEEP during low tidal volume ventilation, an increase in the level of PEEP that resulted in an increase in driving pressure was associated with more postoperative pulmonary complications (OR 3·11, 95% CI 1·39-6·96; p=0·006). In patients having surgery, intraoperative high driving pressure and changes in the level of PEEP that result in an increase of driving pressure are associated with more postoperative pulmonary complications. However, a randomised controlled trial comparing ventilation based on driving pressure with usual care is needed to confirm these findings. None. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Recovery from welding-fume-exposure-induced lung fibrosis and pulmonary function changes in sprague dawley rats.

    PubMed

    Sung, Jae Hyuck; Choi, Byung-Gil; Maeng, Seung-Hee; Kim, Soo-Jin; Chung, Yong Hyun; Han, Jeong Hee; Song, Kyung Seuk; Lee, Yong Hwan; Cho, Yong Bong; Cho, Myung-Haing; Kim, Kwang Jong; Hyun, Jin Suk; Yu, Il Je

    2004-12-01

    Welder's pneumoconiosis has generally been determined as benign based on the absence of pulmonary function abnormalities in welders with marked radiographic abnormalities. Yet, there have also been several reports on welders with respiratory symptoms, indicating lung function impairment, X-ray abnormalities, and extensive fibrosis. Accordingly, this study attempted to investigate the inflammatory responses and pulmonary function changes in rats during a 60-day welding-fume-inhalation exposure period to elucidate the process of fibrosis. The rats were exposed to manual metal-arc stainless-steel welding fumes (MMA-SS) with total suspended particulate concentrations of 64.8 +/- 0.9 (low dose) and 107.8 +/- 2.6 mg/m3 (high dose) for 2 h per day in an inhalation chamber for 60 days. Animals were sacrificed after the initial 2-h exposure and after 15, 30, and 60 days, and the pulmonary function was also measured every week after the daily exposure. Elevated cellular differential counts were also measured in the acellular bronchoalveolar lavage fluid of the rats exposed to the MMA-SS fumes for 60 days. Among the pulmonary function test parameters, only the tidal volume showed a statistically significant and dose-dependent decrease after 35 to 60 days of MMA-SS welding-fume exposure. When the rats exposed to the welding fumes were left for 60 days to recover their lung function and cellular differentiation, recovery was observed in both the high and low-dose rats exposed up to 30 days, resulting in the disappearance of inflammatory cells and restoration of the tidal volume. The rats exposed for 60 days at the low dose also recovered from the inflammation and tidal volume loss, yet the rats exposed for 60 days at the high dose did not fully recover even after a 60-day recovery period. Therefore, when taken together, the results of the current study suggest that a decrease in the tidal volume could be used as an early indicator of pulmonary fibrosis induced by welding-fume exposure in Sprague Dawley rats, and fibrosis would seem to be preventable if the exposure is short-term and moderate.

  18. Breathing regulation and blood gas homeostasis after near complete lesions of the retrotrapezoid nucleus in adult rats.

    PubMed

    Souza, George M P R; Kanbar, Roy; Stornetta, Daniel S; Abbott, Stephen B G; Stornetta, Ruth L; Guyenet, Patrice G

    2018-04-18

    The retrotrapezoid nucleus (RTN) is one of several CNS nuclei that contribute, in various capacities (e.g. CO 2 detection, neuronal modulation) to the central respiratory chemoreflex (CRC). Here we test how important the RTN is to PCO 2 homeostasis and breathing during sleep or wake. RTN Nmb positive neurons were killed with targeted microinjections of substance-P-saporin conjugate in adult rats. Under normoxia, rats with large RTN lesions (92 ± 4 % cell loss) had normal blood pressure (BP) and arterial pH but were hypoxic (-8 mmHg PaO 2 ) and hypercapnic (+10 mmHg PaCO 2 ). In resting conditions, minute-volume (V E ) was normal but breathing frequency (f R ) was elevated and tidal volume (V T ) reduced. Resting O 2 consumption and CO 2 production were normal. The hypercapnic ventilatory reflex in 65% FiO 2 had an inverse exponential relationship with the number of surviving RTN neurons and was decreased by up to 92%. The hypoxic ventilatory reflex (HVR; FiO 2 21-10%) persisted after RTN lesions, hypoxia-induced sighing was normal and hypoxia-induced hypotension reduced. In rats with RTN lesions, breathing was lowest during slow-wave sleep (SWS), especially under hyperoxia, but apneas and sleep-disordered breathing were not observed. In conclusion, near complete RTN destruction in rats virtually eliminates the CRC but HVR persists and sighing and the state-dependence of breathing are unchanged. Under normoxia, RTN lesions cause no change in V E but alveolar ventilation is reduced by at least 21%, probably because of increased physiological dead volume. RTN lesions do not cause sleep apnea during SWS, even under hyperoxia. Background: the retrotrapezoid nucleus (RTN) drives breathing proportionally to brain PCO 2 but its role during various states of vigilance needed clarification. New result: Under normoxia, RTN lesions increase the arterial PCO 2 set-point, lower the PO 2 set-point and reduce alveolar ventilation relative to CO 2 production. Tidal volume is reduced and breathing frequency increased to a comparable degree during wake, slow-wave sleep and REM sleep. RTN lesions do not produce apneas or disordered breathing during sleep. New result: RTN lesions in rats virtually eliminate the central respiratory chemoreflex (CRC) while preserving the cardiorespiratory responses to hypoxia; the relationship between CRC and number of surviving RTN Nmb neurons is an inverse exponential. the CRC does not function without the RTN. In the quasi-complete absence of the RTN and CRC, alveolar ventilation is reduced despite an increased drive to breathe from the carotid bodies. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  19. The Tulip GT® airway versus the facemask and Guedel airway: a randomised, controlled, cross-over study by Basic Life Support-trained airway providers in anaesthetised patients.

    PubMed

    Shaikh, A; Robinson, P N; Hasan, M

    2016-03-01

    We performed a randomised, controlled, cross-over study of lung ventilation by Basic Life Support-trained providers using either the Tulip GT® airway or a facemask with a Guedel airway in 60 anaesthetised patients. Successful ventilation was achieved if the provider produced an end-tidal CO2 > 3.5 kPa and a tidal volume > 250 ml in two of the first three breaths, within 60 sec and within two attempts. Fifty-seven (95%) providers achieved successful ventilation using the Tulip GT compared with 35 (58%) using the facemask (p < 0.0001). Comparing the Tulip GT and facemask, the mean (SD) end-tidal CO2 was 5.0 (0.7) kPa vs 2.5 (1.5) kPa, tidal volume was 494 (175) ml vs 286 (186) ml and peak inspiratory pressure was 18.3 (3.4) cmH2 O vs 13.6 (7) cmH2 O respectively (all p < 0.0001). Forty-seven (78%) users favoured the Tulip GT airway. These results are similar to a previous manikin study using the same protocol, suggesting a close correlation between human and manikin studies for this airway device. We conclude that the Tulip GT should be considered as an adjunct to airway management both within and outside hospitals when ventilation is being undertaken by Basic Life Support-trained airway providers. © 2015 The Association of Anaesthetists of Great Britain and Ireland.

  20. Resonant tidal excitation of oscillation modes in merging binary neutron stars: Inertial-gravity modes

    NASA Astrophysics Data System (ADS)

    Xu, Wenrui; Lai, Dong

    2017-10-01

    In coalescing neutron star (NS) binaries, tidal force can resonantly excite low-frequency (≲500 Hz ) oscillation modes in the NS, transferring energy between the orbit and the NS. This resonant tide can induce phase shift in the gravitational waveforms, and potentially provide a new window of studying NS interior using gravitational waves. Previous works have considered tidal excitations of pure g-modes (due to stable stratification of the star) and pure inertial modes (due to Coriolis force), with the rotational effect treated in an approximate manner. However, for realistic NSs, the buoyancy and rotational effects can be comparable, giving rise to mixed inertial-gravity modes. We develop a nonperturbative numerical spectral code to compute the frequencies and tidal coupling coefficients of these modes. We then calculate the phase shift in the gravitational waveform due to each resonance during binary inspiral. Given the uncertainties in the NS equation of state and stratification property, we adopt polytropic NS models with a parametrized stratification. We derive relevant scaling relations and survey how the phase shift depends on various properties of the NS. We find that for canonical NSs (with mass M =1.4 M⊙ and radius R =10 km ) and modest rotation rates (≲300 Hz ), the gravitational wave phase shift due to a resonance is generally less than 0.01 radian. But the phase shift is a strong function of R and M , and can reach a radian or more for low-mass NSs with larger radii (R ≳15 km ). Significant phase shift can also be produced when the combination of stratification and rotation gives rise to a very low frequency (≲20 Hz in the inertial frame) modified g-mode. As a by-product of our precise calculation of oscillation modes in rotating NSs, we find that some inertial modes can be strongly affected by stratification; we also find that the m =1 r -mode, previously identified to have a small but finite inertial-frame frequency based on the Cowling approximation, in fact has essentially zero frequency, and therefore cannot be excited during the inspiral phase of NS binaries.

  1. Iron plaque formation and heavy metal uptake in Spartina alterniflora at different tidal levels and waterlogging conditions.

    PubMed

    Xu, Yan; Sun, Xiangli; Zhang, Qiqiong; Li, Xiuzhen; Yan, Zhongzheng

    2018-05-30

    Tidal flat elevation in the estuarine wetland determines the tidal flooding time and flooding frequency, which will inevitably affect the formation of iron plaque and accumulations of heavy metals (HMs) in wetland plants. The present study investigated the formation of iron plaque and HM's (copper, zinc, lead, and chromium) accumulation in S. alterniflora, a typical estuarine wetland species, at different tidal flat elevations (low, middle and high) in filed and at different time (3, 6, 9, 12 h per day) of waterlogging treatment in greenhouse conditions. Results showed that the accumulation of copper, zinc, lead, and chromium in S. alterniflora was proportional to the exchangeable fraction of these metals in the sediments, which generally increased with the increase of waterlogging time, whereas the formations of iron plaque in roots decreased with the increase of waterlogging time. Under field conditions, the uptake of copper and zinc in the different parts of the plants generally increased with the tidal levels despite the decrease in the metals' exchangeable fraction with increasing tidal levels. The formation of iron plaque was found to be highest in the middle tidal positions and significantly lower in low and high tidal positions. Longer waterlogging time increased the metals' accumulation but decreased the formation of iron plaque in S. alterniflora. The binding of metal ions on iron plaque helped impede the uptake and accumulation of copper and chromium in S. alterniflora. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Storm surges and climate change implications for tidal marshes: Insight from the San Francisco Bay Estuary, California, USA

    USGS Publications Warehouse

    Thorne, Karen M.; Buffington, Kevin J.; Swanson, Kathleen; Takekawa, John Y.

    2013-01-01

    Tidal marshes are dynamic ecosystems, which are influenced by oceanic and freshwater processes and daily changes in sea level. Projected sea-level rise and changes in storm frequency and intensity will affect tidal marshes by altering suspended sediment supply, plant communities, and the inundation duration and depth of the marsh platform. The objective of this research was to evaluate if regional weather conditions resulting in low-pressure storms changed tidal conditions locally within three tidal marshes. We hypothesized that regional storms will increase sea level heights locally, resulting in increased inundation of the tidal marsh platform and plant communities. Using site-level measurements of elevation, plant communities, and water levels, we present results from two storm events in 2010 and 2011 from the San Francisco Bay Estuary (SFBE), California, USA. The January 2010 storm had the lowest recorded sea level pressure in the last 30 years for this region. During the storm episodes, the duration of tidal marsh inundation was 1.8 and 3.1 times greater than average for that time of year, respectively. At peak storm surges, over 65% in 2010 and 93% in 2011 of the plant community was under water. We also discuss the implications of these types of storms and projected sea-level rise on the structure and function of the tidal marshes and how that will impact the hydro-geomorphic processes and marsh biotic communities.

  3. How does a tidal embayment morphodynamically react on sea level rise?

    NASA Astrophysics Data System (ADS)

    van der Wegen, Mick

    2010-05-01

    Conditions for (assumed) equilibrium in tidal embayments have been studied extensively in the past years with morphodynamic 1D models (Van Dongeren and De Vriend, 1994; Schuttelaars and de Swart, 1996, 2000; Lanzoni and Seminara, 2002) and 2D models (Hibma et al. [2003], Van der Wegen and Roelvink [2008]) Van der Wegen et al 2008). The current research addresses the impact of sea level rise on tidal embayments. Although effects of sea level rise may only become apparent after decades, the character of the embayment can change considerably. Examples are the (dis)appearance or re-allocation of intertidal flats, increased tidal resonance, shift from sediment export to import, deepening of channel area and other related (ecological) parameters. The research applies a 2D morphodynamic model (Delft3D) in an idealized environment. The model is based on the 2 D shallow water equations, the Engelund -Hansen transport formula and includes bed slope effects, drying and flooding procedures and an advanced morphodynamic update scheme (Roelvink 2006). The initial condition of the bathymetry is generated by 3000 years of morphodynamic calculations in a 80 km long and 2.5 km wide rectangular tidal embayment under constant M2 tidal forcing conditions (Van der Wegen and Roelvink [2008]). After this period sea level rise gradually developing towards a rate of 0.4 m/century is added to the boundary conditions. Model results describe development towards less intertidal area and a transition from an exporting system to a importing system. Model results are evaluated in terms of M2, M4 and M6 tidal constituents as well as against Vs/Vc (shoal volume over channel volume) versus a/h (amplitude over water depth) relationship as proposed by Friedrichs and Aubrey (1988). Although the model describes morphodynamic development in a strongly idealized environment the results can provide an excellent tool to systematically study the impact of sea level rise in tidal embayments as well as the time scales of dominant underlying resulting transport mechanisms and processes. DISSANAYAKE, D.M.P.K; RANASINGHE, R. and ROELVINK, J.A., 2009. Effect of Sea Level Rise in tidal inlet evolution: a numerical modelling approach. Journal of Coastal Research, SI 56 (Proceedings of the 10th International Coastal Symposium), pg - pg. Lisbon, Portugal. Friedrichs, C. T., and D. G. Aubrey (1988), Non-linear tidal distortion in shallow well mixed estuaries: A synthesis, Estuarine Coastal Shelf Sci.,27, 521- 545, doi:10.1016/0272-7714(88)90082-0. Hibma, A., H.M. Schuttelaars, and H. J. de Vriend (2003b), Initial formation and long-term evolution of channel-shoal patterns in estuaries, in Proc. 3rd RCEM conf.edited by A. Sánchez -Acrilla and A. Bateman, pp. 740-760, IAHR., Barcelona, Spain. Lanzoni, S., and G. Seminara (2002), Long-term evolution and morphodynamic equilibrium of tidal channels, J. Geophys. Res., 107(C1), 3001, doi:10.1029/2000JC000468. Roelvink, J. A. (2006), Coastal morphodynamic evolution techniques, J. Coastal Eng., 53, 177-187. Schuttelaars, H. M., and H. E. De Swart (1996), An idealized long termmorphodynamic model of a tidal embayment, Eur. J. Mech. B Fluids, 15(1), 55-80. Schuttelaars, H. M., and H. E. De Swart (2000), Multiple morphodynamic equilibria in tidal embayments, J. Geophys. Res., 105(C10), 24,105 - 24,118. Van Dongeren, A. D., and H. J. De Vriend (1994), A model of morphological behaviour of tidal basins, Coastal Eng., 22, 287- 310. van der Wegen, M., and J. A. Roelvink (2008), Long-term morphodynamic evolution of a tidal embayment using a twodimensional, process-based model, J. Geophys. Res., 113, C03016, doi:10.1029/2006JC003983 van der Wegen, M., Z. B. Wang, H. H. G. Savenije, and J. A. Roelvink (2008), Long-term morphodynamic evolution and energy dissipation in a coastal plain, tidal embayment, J. Geophys. Res., 113, F03001, doi:10.1029/2007JF000898

  4. VISCOELASTIC MODELS OF TIDALLY HEATED EXOMOONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dobos, Vera; Turner, Edwin L., E-mail: dobos@konkoly.hu

    2015-05-01

    Tidal heating of exomoons may play a key role in their habitability, since the elevated temperature can melt the ice on the body even without significant solar radiation. The possibility of life has been intensely studied on solar system moons such as Europa or Enceladus where the surface ice layer covers a tidally heated water ocean. Tidal forces may be even stronger in extrasolar systems, depending on the properties of the moon and its orbit. To study the tidally heated surface temperature of exomoons, we used a viscoelastic model for the first time. This model is more realistic than themore » widely used, so-called fixed Q models because it takes into account the temperature dependence of the tidal heat flux and the melting of the inner material. Using this model, we introduced the circumplanetary Tidal Temperate Zone (TTZ), which strongly depends on the orbital period of the moon and less on its radius. We compared the results with the fixed Q model and investigated the statistical volume of the TTZ using both models. We have found that the viscoelastic model predicts 2.8 times more exomoons in the TTZ with orbital periods between 0.1 and 3.5 days than the fixed Q model for plausible distributions of physical and orbital parameters. The viscoelastic model provides more promising results in terms of habitability because the inner melting of the body moderates the surface temperature, acting like a thermostat.« less

  5. Actual performance of mechanical ventilators in ICU: a multicentric quality control study.

    PubMed

    Govoni, Leonardo; Dellaca', Raffaele L; Peñuelas, Oscar; Bellani, Giacomo; Artigas, Antonio; Ferrer, Miquel; Navajas, Daniel; Pedotti, Antonio; Farré, Ramon

    2012-01-01

    Even if the performance of a given ventilator has been evaluated in the laboratory under very well controlled conditions, inappropriate maintenance and lack of long-term stability and accuracy of the ventilator sensors may lead to ventilation errors in actual clinical practice. The aim of this study was to evaluate the actual performances of ventilators during clinical routines. A resistance (7.69 cmH(2)O/L/s) - elastance (100 mL/cmH(2)O) test lung equipped with pressure, flow, and oxygen concentration sensors was connected to the Y-piece of all the mechanical ventilators available for patients in four intensive care units (ICUs; n = 66). Ventilators were set to volume-controlled ventilation with tidal volume = 600 mL, respiratory rate = 20 breaths/minute, positive end-expiratory pressure (PEEP) = 8 cmH(2)O, and oxygen fraction = 0.5. The signals from the sensors were recorded to compute the ventilation parameters. The average ± standard deviation and range (min-max) of the ventilatory parameters were the following: inspired tidal volume = 607 ± 36 (530-723) mL, expired tidal volume = 608 ± 36 (530-728) mL, peak pressure = 20.8 ± 2.3 (17.2-25.9) cmH(2)O, respiratory rate = 20.09 ± 0.35 (19.5-21.6) breaths/minute, PEEP = 8.43 ± 0.57 (7.26-10.8) cmH(2)O, oxygen fraction = 0.49 ± 0.014 (0.41-0.53). The more error-prone parameters were the ones related to the measure of flow. In several cases, the actual delivered mechanical ventilation was considerably different from the set one, suggesting the need for improving quality control procedures for these machines.

  6. Tidal Friction in the Earth and Ocean

    NASA Astrophysics Data System (ADS)

    Ray, R. D.

    2006-12-01

    "Tidal Friction" is a classic subject in geophysics, with ties to some of the great scientists of the Victorian era. The subject has been reinvigorated over the past decade by space geodesy, and particularly by the Topex/Poseidon satellite altimeter mission. In fact, the topic has now taken on some significance in oceanography, with potential implications for problems of mixing, thermocline maintenance, and the thermohaline circulation. Likewise, tidal measurements have become sufficiently precise to reveal new information about the solid earth. In this respect, the tidal force is an invaluable "probe" of the earth, at frequencies well outside the seismic band. This talk will "follow the energy" of tides while noting some important geophysical implications at each stage. In the present earth-moon-sun configuration, energy for tides is extracted from the earth's rotation. Ancient eclipses bear witness to this, and the discrepancy between Babylonian (and other) observations and tidal predictions yields unique information about the mantle and the overlying fluid envelope. Complementary information comes from tidal anelasticity estimates, which are now available at frequencies ranging from semidiurnal to fortnightly, monthly, and 18.6 years. These data, when combined with various kinds of gravity measurements, are relevant to the present-day sea-level problem. Solid-earth tidal dissipation represents less than 5% of the system total. As has long been realized, the largest energy sink is the ocean. About 70% of the oceanic dissipation occurs in shallow seas (the traditional sink) and 30% in the deep ocean, generally near rugged bottom topography. The latter represents a substantial amount of power, roughly 1 gigawatt, available for generation of internal tides and other baroclinic motions. Experiments like HOME are helping unravel the links between barotropic tides, internal tides, turbulence, and mixing. The latter opens possible linkages to climate, and recent work involving 18.6-year oscillations adds intriguing (although not completely convincing) evidence of climate connections from the nodal modulations of diurnal-band tides. Connections at longer periods are quite conceivable, since tides are critically sensitive to sea level, but most ideas along these lines are still speculative and in need of further development.

  7. Cyclically modulated dissipation and friction in ice and ice mixtures: how tidal forcing influences the mechanical properties in an icy shell

    NASA Astrophysics Data System (ADS)

    McCarthy, C.; Savage, H. M.; Cooper, R. F.; Kaczynski, T.; Nielson, M.; Domingos, A.

    2017-12-01

    Measuring the response of ice to dynamic, time-varying stress at appropriate planetary conditions is important to improving estimates of long-term heat flux and satellite evolution. The viscoelastic and frictional responses of ice may play important roles in tidal heating and convection, but at different time and lengthscales. We will share results from two different types of laboratory experiments on polycrystalline ice samples that reproduce tidally modulated behavior: (1) forced oscillation compression experiments that measure attenuation; and (2) periodic velocity biaxial experiments that measure friction. The former inform us about the influences of frequency, temperature, grain size, and strain history on mechanical dissipation of tidal energy in the deep interiors of icy crusts. In particular, we examine the combination of low amplitude tidal forcing with a relentless (steady-state) background stress, such as that from convection. The beauty of attenuation is that it can potentially be used as mechanical spectroscopy to identify structure and mechanisms that are otherwise shrouded by steady-state behavior. Friction experiments were conducted in a biaxial apparatus in which a central ice piece is forced between two stationary pieces at constant velocity with a sinusoidal oscillation super-imposed. The rig is fitted with a new, low-temperature cryostat ( 100 - 200 K) that also employs a vacuum. These experiments explore the dependence of frictional stability on the amplitude and frequency of the oscillating load. Additionally, small quantities of impurities that are thought to be important in icy satellites: sulfuric acid and ammonia (systems with deep eutectics with ice) are added to polycrystalline ice samples and tested at subsolidus conditions to discern when/if frictional heating can cause melting at icy satellite surface temperatures. The combination of the two types of experiments will provide valuable parameters for modeling of tidal response of planetary objects. Tidal response can potentially be measured during future missions, in which case characterization of its amplitude and phase could provide direct constraints on the internal and thermal structures of these bodies.

  8. Tidal-Fluvial and Estuarine Processes in the Lower Columbia River: I. Along-channel Water Level Variations, Pacific Ocean to Bonneville Dam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jay, D. A.; Leffler, K.; Diefenderfer, Heida L.

    This two-part paper provides comprehensive time and frequency domain analyses and models of along-channel water level variations in the 234km-long Lower Columbia River and Estuary (LCRE) and documents the response of floodplain wetlands thereto. In Part I, power spectra, continuous wavelet transforms, and harmonic analyses are used to understand the influences of tides, river flow, upwelling and downwelling, and hydropower operations ("power-peaking") on the water level regime. Estuarine water levels are influenced primarily by astronomical tides and coastal processes, and secondarily by river flow. The importance of coastal and tidal influences decreases in the landward direction, and water levels aremore » increasingly controlled by river flow variations at periods from ≤1 day to years. Water level records are only slightly non-stationary near the ocean, but become increasingly irregular upriver. Although astronomically forced tidal constituents decrease above the estuary, tidal fortnightly and overtide variations increase for 80-200km landward, both relative to major tidal constituents and in absolute terms.« less

  9. Internal gravity wave contributions to global sea surface variability

    NASA Astrophysics Data System (ADS)

    Savage, A.; Arbic, B. K.; Richman, J. G.; Shriver, J. F.; Buijsman, M. C.; Zamudio, L.; Wallcraft, A. J.; Sharma, H.

    2016-02-01

    High-resolution (1/12th and 1/25th degree) 41-layer simulations of the HYbrid Coordinate Ocean Model (HYCOM), forced by both atmospheric fields and the astronomical tidal potential, are used to construct global maps of sea-surface height (SSH). The HYCOM output has been separated into steric, non-steric, and total sea-surface height and the maps display variance in subtidal, tidal, and supertidal bands. Two of the global maps are of particular interest in planning for the upcoming Surface Water and Ocean Topography (SWOT) wide-swath satellite altimeter mission; (1) a map of the nonstationary tidal signal (estimated after removing the stationary tidal signal via harmonic analysis), and (2) a map of the steric supertidal contributions, which are dominated by the internal gravity wave continuum. Both of these maps display signals of order 1 cm2, the target accuracy for the SWOT mission. Therefore, both non-stationary internal tides and non-tidal internal gravity waves are likely to be important sources of "noise" that must be accurately removed before examination of lower-frequency phenomena can take place.

  10. The Moon's orbit history and inferences on its origin

    NASA Technical Reports Server (NTRS)

    Conway, B. A.

    1984-01-01

    A frequency dependent model of tidal friction was used to determine the evolution of the Earth-Moon system. The analysis considers the lunar orbit eccentricity and inclination, the solar tide on the Earth, Earth oblateness, and higher order terms in the tidal potential. A solution of the equations governing the precession of the Earth's rotational angular momentum and the lunar ascending node is found. The history is consistent with a capture origin for the Moon. It rules out the origin of the Moon by fission. Results are shown for a range of assumed values for the lunar tidal dissipation. Tidal dissipation within the Moon, during what would be the immediate postcapture period, is shown to be capable of significantly heating the Moon. The immediate postcapture orbit has a periapsis within the Earth's Roche limit. Capture into resonance with the Earth's gravitational field as this orbit tidally evolves is suggested to be a mechanism to prevent so close, an approach. It is shown that the probability of such capture is negligibly small and alternative hypotheses for the survival of the Roche limit passage is offered.

  11. Complete tidal evolution of Pluto-Charon

    NASA Astrophysics Data System (ADS)

    Cheng, W. H.; Lee, Man Hoi; Peale, S. J.

    2014-05-01

    Both Pluto and its satellite Charon have rotation rates synchronous with their orbital mean motion. This is the theoretical end point of tidal evolution where transfer of angular momentum has ceased. Here we follow Pluto’s tidal evolution from an initial state having the current total angular momentum of the system but with Charon in an eccentric orbit with semimajor axis a≈4RP (where RP is the radius of Pluto), consistent with its impact origin. Two tidal models are used, where the tidal dissipation function Q∝1/frequency and Q = constant, where details of the evolution are strongly model dependent. The inclusion of the gravitational harmonic coefficient C22 of both bodies in the analysis allows smooth, self consistent evolution to the dual synchronous state, whereas its omission frustrates successful evolution in some cases. The zonal harmonic J2 can also be included, but does not cause a significant effect on the overall evolution. The ratio of dissipation in Charon to that in Pluto controls the behavior of the orbital eccentricity, where a judicious choice leads to a nearly constant eccentricity until the final approach to dual synchronous rotation. The tidal models are complete in the sense that every nuance of tidal evolution is realized while conserving total angular momentum-including temporary capture into spin-orbit resonances as Charon’s spin decreases and damped librations about the same.

  12. Airway Strain during Mechanical Ventilation in an Intact Animal Model

    PubMed Central

    Sinclair, Scott E.; Molthen, Robert C.; Haworth, Steve T.; Dawson, Christopher A.; Waters, Christopher M.

    2007-01-01

    Rationale: Mechanical ventilation with large tidal volumes causes ventilator-induced lung injury in animal models. Little direct evidence exists regarding the deformation of airways in vivo during mechanical ventilation, or in the presence of positive end-expiratory pressure (PEEP). Objectives: To measure airway strain and to estimate airway wall tension during mechanical ventilation in an intact animal model. Methods: Sprague-Dawley rats were anesthetized and mechanically ventilated with tidal volumes of 6, 12, and 25 cm3/kg with and without 10–cm H2O PEEP. Real-time tantalum bronchograms were obtained for each condition, using microfocal X-ray imaging. Images were used to calculate circumferential and longitudinal airway strains, and on the basis of a simplified mathematical model we estimated airway wall tensions. Measurements and Main Results: Circumferential and longitudinal airway strains increased with increasing tidal volume. Levels of mechanical strain were heterogeneous throughout the bronchial tree. Circumferential strains were higher in smaller airways (less than 800 μm). Airway size did not influence longitudinal strain. When PEEP was applied, wall tensions increased more rapidly than did strain levels, suggesting that a “strain limit” had been reached. Airway collapse was not observed under any experimental condition. Conclusions: Mechanical ventilation results in significant airway mechanical strain that is heterogeneously distributed in the uninjured lung. The magnitude of circumferential but not axial strain varies with airway diameter. Airways exhibit a “strain limit” above which an abrupt dramatic rise in wall tension is observed. PMID:17626911

  13. Placement of Intubating Laryngeal Mask Airway Is Easier than Placement of Laryngeal Tube during Manual In-Line Stabilisation of The Neck

    PubMed Central

    Komatsu, R.; Nagata, O.; Kamata, K.; Yamagata, K.; Sessler, D.I.; Ozaki, M.

    2005-01-01

    Summary We compared the usefulness of the laryngeal tube (LT) with the intubating laryngeal mask airway (ILMA) in 51 patients whose necks were stabilised by manual in-line traction. After induction of anaesthesia and neuromuscular block, the LT and ILMA were inserted consecutively in a randomised, crossover design. During pressure-controlled ventilation (20 cmH2O inspiratory pressure), we measured insertion attempts, time to establish positive-pressure ventilation, tidal volume, gastric insufflation, and minimum airway pressure at which gas leaked around the cuff. Data were compared using Wilcoxon signed-rank tests; P<0.05 was considered significant. Insertion was more difficult with the LT (successful at first attempt in 16 patients) than with the ILMA (successful at first attempt in 42 patients, P<0.0001). Time required for insertion was longer for the LT (28 [23–35] sec, median [interquartile range]) than the ILMA (20 [15–25] sec, P=0.0009). Tidal volume was less for the LT (440 [290–670] ml) than the ILMA. (630 [440–750] ml, P=0.013). Minimum airway pressure at which gas leak occurred and incidence of gastric insufflation were similar with two devices. In patients whose necks were stabilised with manual in-line traction, insertion of the ILMA was easier and quicker than insertion of the LT and tidal volume was greater with the ILMA than the LT. PMID:15644005

  14. Nested high resolution models for the coastal areas of the North Indian Ocean

    NASA Astrophysics Data System (ADS)

    Wobus, Fred; Shapiro, Georgy

    2017-04-01

    Oceanographic processes at coastal scales require much higher horizontal resolution from both ocean models and observations as compared to deep water oceanography. Aside from a few exceptions such as land-locked seas, the hydrodynamics of coastal shallow waters is strongly influenced by the tides, which in turn control the mixing, formation of temperature fronts and other phenomena. The numerical modelling of the coastal domains requires good knowledge of the lateral boundary conditions. The application of lateral boundary conditions to ocean models is a notoriously tricky task, but can only be avoided with global ocean models. Smaller scale regional ocean models are typically nested within global models, and even smaller-scale coastal models may be nested within regional models, creating a nesting chain. However a direct nesting of a very high resolution coastal model into a coarse resolution global model results in degrading of the accuracy of the outputs due to the large difference between the model resolutions. This is why a nesting chain has to be applied, so that every increase in resolution is kept within a reasonable minimum (typically by a factor of 3 to 5 at each step). Global models are traditionally non-tidal, so at some stage of the nesting chain the tides need to be introduced. This is typically done by calculating the tidal constituents from a dedicated tidal model (e.g. TPXO) for all boundary points of a nested model. The tidal elevation at each boundary location can then be calculated from the harmonics at every model time step and the added to the parent model non-tidal SSH. This combination of harmonics-derived tidal SSH and non-tidal parent model SSH is typically applied to the nested domain using the Flather condition, together with the baroclinic velocities from the parent model. The harmonics-derived SSH cannot be added to an SSH signal that is already tidal, so the parent model SSH has to be either detided or taken from a non-tidal model. Due to the lack of effective detiding methods and the prevailing view that harmonics-derived SSH provide a cleaner tidal signal over the SSH taken from a tidal parent model it has traditionally only been the last model in a nesting chain that is tidal. But to our knowledge these assumptions haven't been sufficiently tested and need to be re-visited. Furthermore, the lack of tides in the larger-scale regional models limits their capability and we would like to push for a nesting chain where all regional models (including the intermediate ones) are tidal. In this study we have conducted a number of numerical experiments where we have tested whether a tidal regional model can effectively force a tidal nested model without resorting to detiding techniques and the use of a dedicated tidal model such as TPXO. We have tested whether it's possible to use a tidal parent model and use the total SSH (combined geostrophic SSH and tidal component) to force the child model at the boundary. We call this strategy "tidal nesting" as opposed to TPXO tidal forcing which is used in "traditional nesting". For our experiments we have developed 2 models based on the same NEMO 3.6 codebase. The medium resolution AS20 model covers the Arabian Sea at 1/20 ̊ with 50 layers using a hybrid s-on-top-of-z vertical discretisation scheme (Shapiro et al., 2013); and the high resolution AG60 model covers the Arabian/Persian Gulf at 1/60 ̊ with 50 layers. The AS20 model is "traditionally" nested within the UK Met Office non-tidal large-scale Indian Ocean model at 1/12 ̊ resolution and tidal constituents at the boundary are taken from the TPXO7.2 Global Tidal Solution. Our "tidal nesting" experiments use different forcing frequencies at which the tidal SSH is fed from the larger-scale AS20 into the smaller-scale AG60 model. These strategies are compared with "traditional nesting" where the inner AG60 uses boundary conditions from a non-tidal AS20 parent model and tides are computed from TPXO harmonics. The results reveal an optimal tidal nesting strategy which forces tidal SSH from the parent model at 1-hourly intervals whilst non-tidal parameters are forced at 24-hourly intervals. The analysis includes comparisons with tidal gauges in the Gulf of Oman and inside the Arabian Gulf. The accuracy of tides inside the Gulf is inhibited by the narrow Straits of Hormuz, and tidal nesting doesn't achieve the same level of agreement with observation as traditional nesting. We also found that a further increase in the SSH forcing frequency to 30 minutes does not further improve the results. The forcing at intervals of 1h/24h for tidal/non-tidal parameters shows that a 2-step tidal nesting chain is viable and thus tides can be represented in more than just the last model of a nesting chain. References: Shapiro, G., Luneva, M., Pickering, J., and Storkey, D.: The effect of various vertical discretization schemes and horizontal diffusion parameterization on the performance of a 3-D ocean model: the Black Sea case study, Ocean Sci., 9, 377-390, doi:10.5194/os-9-377-2013, 2013.

  15. Pulmonary function in obese vs non-obese cats.

    PubMed

    García-Guasch, Laín; Caro-Vadillo, Alicia; Manubens-Grau, Jordi; Carretón, Elena; Camacho, Aparecido A; Montoya-Alonso, José Alberto

    2015-06-01

    Obesity is a risk factor in the development of several respiratory diseases. Lung volumes tend to be decreased, especially expiratory reserve volume, increasing expiratory flow limitation during tidal breathing. Barometric whole-body plethysmography is a non-invasive pulmonary function test that allows a dynamic study of breathing patterns. The objective of this study was to compare pulmonary function variables between obese and non-obese cats through the use of barometric whole-body plethysmography. Nine normal-weight and six obese cats were placed in the plethysmograph chamber, and different respiratory variables were measured. There was a significant decrease in tidal volume per kilogram (P = 0.003), minute volume per kilogram (P = 0.001) and peak inspiratory and expiratory flows per kilogram (P = 0.001) in obese cats compared with non-obese cats. Obesity failed to demonstrate a significant increase in bronchoconstriction index variable enhanced pause (Penh), as previously reported in humans and dogs. The results show that feline obesity impairs pulmonary function in cats, although a significant increase in bronchoconstriction indexes was not observed. Non-invasive barometric whole-body plethysmography can help characterise mechanical dysfunction of the airways in obese cats. © ISFM and AAFP 2014.

  16. Role of neurotensin and opioid receptors in the cardiorespiratory effects of [Ile⁹]PK20, a novel antinociceptive chimeric peptide.

    PubMed

    Kaczyńska, Katarzyna; Szereda-Przestaszewska, Małgorzata; Kleczkowska, Patrycja; Lipkowski, Andrzej W

    2014-10-15

    Ile(9)PK20 is a novel hybrid of opioid-neurotensin peptides synthesized from the C-terminal hexapeptide of neurotensin and endomorphin-2 pharmacophore. This chimeric compound shows potent central and peripheral antinociceptive activity in experimental animals, however nothing is known about its influence on the respiratory and cardiovascular parameters. The present study was designed to determine the cardiorespiratory effects exerted by an intravenous injection (i.v.) of [Ile(9)]PK20. Share of the vagal afferentation and the contribution of NTS1 neurotensin and opioid receptors were tested. Intravenous injection of the hybrid at a dose of 100 μg/kg in the intact, anaesthetized rats provoked an increase in tidal volume preceded by a prompt short-lived decrease. Immediately after the end of injection brief acceleration of the respiratory rhythm appeared, and was ensued by the slowing down of breathing. Changes in respiration were concomitant with a bi-phasic response of the blood pressure: an immediate increase was followed by a sustained hypotension. Midcervical vagotomy eliminated the increase in tidal volume and respiratory rate responses. Antagonist of opioid receptors - naloxone hydrochloride eliminated only [Ile(9)]PK20-evoked decline in tidal volume response. Blockade of NTS1 receptors with an intravenous dose of SR 142,948, lessened the remaining cardiorespiratory effects. This study depicts that [Ile(9)]PK20 acting through neurotensin NTS1 receptors augments the tidal component of the breathing pattern and activates respiratory timing response through the vagal pathway. Blood pressure effects occur outside vagal afferentation and might result from activation of the central and peripheral vascular NTS1 receptors. In summary the respiratory effects of the hybrid appeared not to be profound, but they were accompanied with unfavourable prolonged hypotension. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Oral mask ventilation is more effective than face mask ventilation after nasal surgery.

    PubMed

    Yazicioğlu, Dilek; Baran, Ilkay; Uzumcugil, Filiz; Ozturk, Ibrahim; Utebey, Gulten; Sayın, M Murat

    2016-06-01

    To evaluate and compare the face mask (FM) and oral mask (OM) ventilation techniques during anesthesia emergence regarding tidal volume, leak volume, and difficult mask ventilation (DMV) incidence. Prospective, randomized, crossover study. Operating room, training and research hospital. American Society of Anesthesiologists physical status I and II adult patients scheduled for nasal surgery. Patients in group FM-OM received FM ventilation first, followed by OM ventilation, and patients in group OM-FM received OM ventilation first, followed by FM ventilation, with spontaneous ventilation after deep extubation. The FM ventilation was applied with the 1-handed EC-clamp technique. The OM was placed only over the mouth, and the 1-handed EC-clamp technique was used again. A child's size FM was used for the OM ventilation technique, the mask was rotated, and the inferior part of the mask was placed toward the nose. The leak volume (MVleak), mean airway pressure (Pmean), and expired tidal volume (TVe) were assessed with each mask technique for 3 consecutive breaths. A mask ventilation grade ≥3 was considered DMV. DMV occurred more frequently during FM ventilation (75% with FM vs 8% with OM). In the FM-first sequence, the mean TVe was 249±61mL with the FM and 455±35mL with the OM (P=.0001), whereas in the OM-first sequence, it was 276±81mL with the FM and 409±37mL with the OM (P=.0001). Regardless of the order used, the OM technique significantly decreased the MVleak and increased the TVe when compared to the FM technique. During anesthesia emergence after nasal surgery the OM may offer an effective ventilation method as it decreases the incidence of DMV and the gas leak around the mask and provides higher tidal volume delivery compared with FM ventilation. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Tidal Love numbers of neutron and self-bound quark stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Postnikov, Sergey; Prakash, Madappa; Lattimer, James M.

    Gravitational waves from the final stages of inspiraling binary neutron stars are expected to be one of the most important sources for ground-based gravitational wave detectors. The masses of the components are determinable from the orbital and chirp frequencies during the early part of the evolution, and large finite-size (tidal) effects are measurable toward the end of inspiral, but the gravitational wave signal is expected to be very complex at this time. Tidal effects during the early part of the evolution will form a very small correction, but during this phase the signal is relatively clean. The accumulated phase shiftmore » due to tidal corrections is characterized by a single quantity related to a star's tidal Love number. The Love number is sensitive, in particular, to the compactness parameter M/R and the star's internal structure, and its determination could provide an important constraint to the neutron star radius. We show that Love numbers of self-bound strange quark matter stars are qualitatively different from those of normal neutron stars. Observations of the tidal signature from coalescing compact binaries could therefore provide an important, and possibly unique, way to distinguish self-bound strange quark stars from normal neutron stars. Tidal signatures from self-bound strange quark stars with masses smaller than 1M{sub {center_dot}}are substantially smaller than those of normal stars owing to their smaller radii. Thus tidal signatures of stars less massive than 1M{sub {center_dot}}are probably not detectable with Advanced LIGO. For stars with masses in the range 1-2M{sub {center_dot},} the anticipated efficiency of the proposed Einstein telescope would be required for the detection of tidal signatures.« less

  19. Space-Time Variations in Tidal Stress and Cascadia Tremor Amplitude

    NASA Astrophysics Data System (ADS)

    Klaus, A. J.; Creager, K. C.; Sweet, J.; Wech, A.

    2011-12-01

    We present a new analysis of the influence of tidal stresses on the amplitude of non-volcanic tremor in Washington State. Tremor counts (Thomas et al., 2009), tremor amplitude (Rubinstein et al., 2008), and strain (Hawthorne and Rubin, 2010) are modulated by tidal stresses in Cascadia as well as in California. However, tremor amplitudes have not yet been extensively studied in Cascadia. Furthermore, Hawthorne and Rubin's Cascadia-wide tidal stress model (2010) allows us to look at the tremor-tide relationship in more detail than ever before. The ability to look at the tidal modulation of tremor amplitude in space as well as time will increase our understanding of this phenomenon and may provide information about the frictional properties of the plate interface. We focus on the August 2010 episodic tremor and slip (ETS) event recorded by the Array of Arrays, a seismic experiment on the Olympic Peninsula. The instrument response is deconvolved, seismograms band-pass filtered at 1.5-5.5 Hz and envelopes are made in 5-minute windows. An inverse problem compensates for site corrections and source-receiver distances to produce, for any given time, a single amplitude measurement at the source. Source locations are determined using an envelope waveform cross-correlation method. Then, we compare the amplitudes, catalog of tremor locations, and the tidal stress at the desired location and time. Amplitudes during the August 2010 ETS event are clearly modulated by tidal stresses. Viewed in the frequency domain, there are clear peaks in the tremor amplitude spectrum at several tidal periods, most prominently the 12.4 and 24 hour periods. Comparison with Hawthorne and Rubin's tidal stress model shows that higher amplitudes are associated with positive shear stress in the downdip direction and, less strongly, with more compressional normal stress.

  20. Observations of Near-Bed Deposition and Resuspension Processes at the Fluvial-Tidal Transition Using High Resolution Adcp, Adv, and Lisst

    NASA Astrophysics Data System (ADS)

    Haught, D. R.; Stumpner, P.

    2012-12-01

    Processes that determine deposition and resuspension of sediment in fluvial and tidal systems are complicated and difficult to predict because of turbulence-sediment interaction. In fluvial systems net sediment deposition rates near the bed are determined by shear stresses that occur when turbulence interacts with the bed and the entrained sediment above. In tidal systems, processes are driven primarily by the confounding factors of slack water and reversing flow. In this study we investigate near-bed sediment fluxes, settling velocities and sediment size distributions during a change from a fluvial signal to a tidal signal. In order to examine these processes a high resolution, high frequency ADCP, ADV, water quality sonde and LISST data were collocated at the fluvial-tidal transition in the Sacramento River at Freeport, CA. Data were collected at 15-30 minute increments for a month`. Data were dissevered into fluvial and tidal components. Acoustic backscatterence was used as a surrogate to sediment concentration and sediment flux () was calculated from the turbulence properties. Settling velocities were computed from the diffusion-advection equation assuming equilibrium of settling and re-suspension fluxes. Particle density was back-calculated from median particle diameter and calculated settling velocities (Reynolds number<0.5) using Stokes' law. Preliminary results suggest that during peak fluvial discharge that the diffusion-advection gives poor estimates of settling velocities as inferred from particle densities above 3500 kg/m3. During the transition from fluvial to tidal signal and throughout the tidal signal particle densities range from 2650 kg/m3 to 1000 kg/m3, suggesting that settling velocities were accurately estimated. Thus the equilibrium assumption appears poor during high fluvial discharge and reasonable during low fluvial discharge when tidal signal is dominant.

  1. Interactions of Estuarine Shoreline Infrastructure With Multiscale Sea Level Variability

    NASA Astrophysics Data System (ADS)

    Wang, Ruo-Qian; Herdman, Liv M.; Erikson, Li; Barnard, Patrick; Hummel, Michelle; Stacey, Mark T.

    2017-12-01

    Sea level rise increases the risk of storms and other short-term water-rise events, because it sets a higher water level such that coastal surges become more likely to overtop protections and cause floods. To protect coastal communities, it is necessary to understand the interaction among multiday and tidal sea level variabilities, coastal infrastructure, and sea level rise. We performed a series of numerical simulations for San Francisco Bay to examine two shoreline scenarios and a series of short-term and long-term sea level variations. The two shoreline configurations include the existing topography and a coherent full-bay containment that follows the existing land boundary with an impermeable wall. The sea level variability consists of a half-meter perturbation, with duration ranging from 2 days to permanent (i.e., sea level rise). The extent of coastal flooding was found to increase with the duration of the high-water-level event. The nonlinear interaction between these intermediate scale events and astronomical tidal forcing only contributes ˜1% of the tidal heights; at the same time, the tides are found to be a dominant factor in establishing the evolution and diffusion of multiday high water events. Establishing containment at existing shorelines can change the tidal height spectrum up to 5%, and the impact of this shoreline structure appears stronger in the low-frequency range. To interpret the spatial and temporal variability at a wide range of frequencies, Optimal Dynamic Mode Decomposition is introduced to analyze the coastal processes and an inverse method is applied to determine the coefficients of a 1-D diffusion wave model that quantify the impact of bottom roughness, tidal basin geometry, and shoreline configuration on the high water events.

  2. POET: A Model for Planetary Orbital Evolution Due to Tides on Evolving Stars

    NASA Astrophysics Data System (ADS)

    Penev, Kaloyan; Zhang, Michael; Jackson, Brian

    2014-06-01

    We make publicly available an efficient, versatile, easy to use and extend tool for calculating the evolution of circular aligned planetary orbits due to the tidal dissipation in the host star. This is the first model to fully account for the evolution of the angular momentum of the stellar convective envelope by the tidal coupling, the transfer of angular momentum between the stellar convective and radiative zones, the effects of the stellar evolution on the tidal dissipation efficiency and stellar core and envelope spins, the loss of stellar convective zone angular momentum to a magnetically launched wind and frequency dependent tidal dissipation. This is only a first release and further development is under way to allow calculating the evolution of inclined and eccentric orbits, with the latter including the tidal dissipation in the planet and its feedback on planetary structure. Considerable effort has been devoted to providing extensive documentation detailing both the usage and the complete implementation details, in order to make it as easy as possible for independent groups to use and/or extend the code for their purposes. POET represents a significant improvement over some previous models for planetary tidal evolution and so has many astrophysical applications. In this article, we describe and illustrate several key examples.

  3. Modulation of Gravity Waves by Tides as Seen in CRISTA Temperatures

    NASA Technical Reports Server (NTRS)

    Preusse, P.; Eckermann, S. D.; Oberheide, J.; Hagan, M. E.; Offermann, D.

    2001-01-01

    During shuttle missions STS-66 (November, 1994) and STS-85 (August, 1997) the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere (CRISTA) acquired temperature data with very high spatial resolution. These are analyzed for gravity waves (GW). The altitude range spans the whole middle atmosphere from the tropopause up to the mesopause. In the upper mesosphere tidal amplitudes exceed values of 10 K. Modulation of GW activity by the tides is observed and analyzed using CRISTA temperatures and tidal predictions of the Global Scale Wave Model (GSWM). The modulation process is identified as a tidally-induced change of the background buoyancy frequency. The findings agree well with the expectations for saturated GW and are the first global scale observations of this process.

  4. Core rotational dynamics and geological events

    PubMed

    Greff-Lefftz; Legros

    1999-11-26

    A study of Earth's fluid core oscillations induced by lunar-solar tidal forces, together with tidal secular deceleration of Earth's axial rotation, shows that the rotational eigenfrequency of the fluid core and some solar tidal waves were in resonance around 3.0 x 10(9), 1.8 x 10(9), and 3 x 10(8) years ago. The associated viscomagnetic frictional power at the core boundaries may be converted into heat and would destabilize the D" thermal layer, leading to the generation of deep-mantle plumes, and would also increase the temperature at the fluid core boundaries, perturbing the core dynamo process. Such phenomena could account for large-scale episodes of continental crust formation, the generation of flood basalts, and abrupt changes in geomagnetic reversal frequency.

  5. Physics of Bodily Tides in Terrestrial Planets and the Appropriate Scales of Dynamical Evolution

    DTIC Science & Technology

    2007-12-29

    ORGANIZATION NAME(S) AND ADDRESS(ES) U.S. Naval Observatory ,3450 Massachusetts Ave,Washington,DC,20392-5420 8. PERFORMING ORGANIZATION REPORT NUMBER 9...circumstances only the principal tidal frequency (4) will matter . 2. Quality Factor Q and the Geometric Lag Angle d [7] During tidal flexure, the...correct. The inaccuracy in notations has not prevented Bills et al. [2005] from arriving at a reasonable value of the Martian quality factor, 85.58 ± 0.37

  6. Frequency content of sea surface height variability from internal gravity waves to mesoscale eddies

    NASA Astrophysics Data System (ADS)

    Savage, Anna C.; Arbic, Brian K.; Richman, James G.; Shriver, Jay F.; Alford, Matthew H.; Buijsman, Maarten C.; Thomas Farrar, J.; Sharma, Hari; Voet, Gunnar; Wallcraft, Alan J.; Zamudio, Luis

    2017-03-01

    High horizontal-resolution (1/12.5° and 1/25°) 41-layer global simulations of the HYbrid Coordinate Ocean Model (HYCOM), forced by both atmospheric fields and the astronomical tidal potential, are used to construct global maps of sea surface height (SSH) variability. The HYCOM output is separated into steric and nonsteric and into subtidal, diurnal, semidiurnal, and supertidal frequency bands. The model SSH output is compared to two data sets that offer some geographical coverage and that also cover a wide range of frequencies—a set of 351 tide gauges that measure full SSH and a set of 14 in situ vertical profilers from which steric SSH can be calculated. Three of the global maps are of interest in planning for the upcoming Surface Water and Ocean Topography (SWOT) two-dimensional swath altimeter mission: (1) maps of the total and (2) nonstationary internal tidal signal (the latter calculated after removing the stationary internal tidal signal via harmonic analysis), with an average variance of 1.05 and 0.43 cm2, respectively, for the semidiurnal band, and (3) a map of the steric supertidal contributions, which are dominated by the internal gravity wave continuum, with an average variance of 0.15 cm2. Stationary internal tides (which are predictable), nonstationary internal tides (which will be harder to predict), and nontidal internal gravity waves (which will be very difficult to predict) may all be important sources of high-frequency "noise" that could mask lower frequency phenomena in SSH measurements made by the SWOT mission.

  7. Parasympathetic activation by pyridostigmine on chemoreflex sensitivity in heart-failure rats.

    PubMed

    Sabino, João Paulo J; da Silva, Carlos Alberto Aguiar; Giusti, Humberto; Glass, Mogens Lesner; Salgado, Helio C; Fazan, Rubens

    2013-12-01

    We evaluated the effects of parasympathetic activation by pyridostigmine (PYR) on chemoreflex sensitivity in a rat model of heart failure (HF rats). HF rats demonstrated higher pulmonary ventilation (PV), which was not affected by PYR. When HF and control rats treated or untreated with PYR were exposed to 15% O2, all groups exhibited prompt increases in respiratory frequency (RF), tidal volume (TV) and PV. When HF rats were exposed to 10% O2 they showed greater PV response which was prevented by PYR. The hypercapnia triggered by either 5% CO2 or 10% CO2 promoted greater RF and PV responses in HF rats. PYR blunted the RF response in HF rats but did not affect the PV response. In conclusion, PYR prevented increased peripheral chemoreflex sensitivity, partially blunted central chemoreflex sensitivity and did not affect basal PV in HF rats. © 2013.

  8. Cardiorespiratory responses to stimulation of the nucleus reticularis gigantocellularis.

    PubMed

    Stremel, R W; Waldrop, T G; Richard, C A; Iwamoto, G A

    1990-01-01

    The nucleus reticularis gigantocellularis (NGC) has been shown to be involved in somatosensory and somatomotor functions. The purpose of the present study was to determine, in anesthetized cats, the modulatory influence of the portion of the NGC at the ponto-medullary border on respiratory and cardiovascular control. Electrical stimulation (25-100 microA 70 Hz, and 1.0-msec pulse duration) significantly depressed mean arterial pressure, heart rate, breathing frequency, tidal volume and phrenic amplitude. Chemical stimulation of NGC cell bodies (1.0 M L-glutamate or 10(-3) M kainic acid) elicited similar decreases in ventilation, arterial pressure and heart rate. These results show that selective activation of cell bodies in the ponto-medullary NGC can depress, in parallel, respiratory and cardiovascular activity and suggests that the influence of diverse sensory information within this region of the reticular formation must be inhibitory to respiratory and cardiovascular output.

  9. [Comparative study of respiratory exchanging surfaces in birds and mammals].

    PubMed

    Jammes, Y

    1975-01-01

    Anatomical studies of the respiratory apparatus of birds show evidences for a gas exchanging tubular system (parabronchi and air capillaries); these exchanging structures are entirely dissociated from the ventilatory drive acting on the air sacs. A "cross-current" gas exchanging system (perpendicular disposition of air and blood capillaries) allow a good wash-out of carbon dioxide (PaCO2 lower than PECO2). The great efficiency of this lung is allowed by its very large diffusive surface (ASa) and by the high values of lung specific oxygen diffusing capacity (DO2/ASa) and of O2 extraction coefficient in inspired air. The ventilatory pattern of birds is characterized by a greater tidal volume and a smaller respiratory frequency than in mammals of same weight. Respiratory centers of birds receive afferences from lung stretch receptors, CO2-sensitive lung receptors and arterial chemoreceptors.

  10. Redistribution of energy available for ocean mixing by long-range propagation of internal waves.

    PubMed

    Alford, Matthew H

    2003-05-08

    Ocean mixing, which affects pollutant dispersal, marine productivity and global climate, largely results from the breaking of internal gravity waves--disturbances propagating along the ocean's internal stratification. A global map of internal-wave dissipation would be useful in improving climate models, but would require knowledge of the sources of internal gravity waves and their propagation. Towards this goal, I present here computations of horizontal internal-wave propagation from 60 historical moorings and relate them to the source terms of internal waves as computed previously. Analysis of the two most energetic frequency ranges--near-inertial frequencies and semidiurnal tidal frequencies--reveals that the fluxes in both frequency bands are of the order of 1 kW x m(-1) (that is, 15-50% of the energy input) and are directed away from their respective source regions. However, the energy flux due to near-inertial waves is stronger in winter, whereas the tidal fluxes are uniform throughout the year. Both varieties of internal waves can thus significantly affect the space-time distribution of energy available for global mixing.

  11. Rotational-oscillational motions of the nonrigid Earth about the center of mass

    NASA Astrophysics Data System (ADS)

    Bondarenko, V. V.; Perepelkin, V. V.

    2009-10-01

    We use the model of a nearly axisymmetric viscoelastic rigid body to study perturbed rotational-oscillational motions of the Earth's pole. We point out that the Chandler component of oscillations is of celestial-mechanics nature and is caused by the gravitational-tidal actions of the Sun and the Moon. We analyze the pole oscillation excitation mechanism at a frequency close to the Chandler frequency and show that the undamped pole oscillations are caused by the resonance harmonic of the external perturbation at a frequency close to the free nutation frequency. We discuss whether it is possible to solve the problem of constructing a short-term forecast of the pole motion on the basis of a polynomial filter obtained by the least-squares method without taking into account small-scale oscillations caused by wide-band random factors of arbitrary physical nature. In the present paper, we perform numerical simulation of tidal inhomogeneities in the Earth's axial rotation. Attention is mainly paid to the analysis of day length variations on short time intervals with periods less than or equal to one year (interannual oscillations) and to their forecast.

  12. Ventilatory inhomogeneity determined from multiple-breath washouts during sustained microgravity on Spacelab SLS-1.

    PubMed

    Prisk, G K; Guy, H J; Elliott, A R; Paiva, M; West, J B

    1995-02-01

    We used multiple-breath N2 washouts (MBNW) to study the inhomogeneity of ventilation in four normal humans (mean age 42.5 yr) before, during, and after 9 days of exposure to microgravity on Spacelab Life Sciences-1. Subjects performed 20-breath MBNW at tidal volumes of approximately 700 ml and 12-breath MBNW at tidal volumes of approximately 1,250 ml. Six indexes of ventilatory inhomogeneity were derived from data from 1) distribution of specific ventilation (SV) from mixed-expired and 2) end-tidal N2, 3) change of slope of N2 washout (semilog plot) with time, 4) change of slope of normalized phase III of successive breaths, 5) anatomic dead space, and 6) Bohr dead space. Significant ventilatory inhomogeneity was seen in the standing position at normal gravity (1 G). When we compared standing 1 G with microgravity, the distributions of SV became slightly narrower, but the difference was not significant. Also, there were no significant changes in the change of slope of the N2 washout, change of normalized phase III slopes, or the anatomic and Bohr dead spaces. By contrast, transition from the standing to supine position in 1 G resulted in significantly broader distributions of SV (P < 0.05) and significantly greater changes in the changes in slope of the N2 washouts (P < 0.001), indicating more ventilatory inhomogeneity in that posture. Thus these techniques can detect relatively small changes in ventilatory inhomogeneity. We conclude that the primary determinants of ventilatory inhomogeneity during tidal breathing in the upright posture are not gravitational in origin.

  13. Ventilatory inhomogeneity determined from multiple-breath washouts during sustained microgravity on Spacelab SLS-1

    NASA Technical Reports Server (NTRS)

    Prisk, G. Kim; Guy, Harold J. B.; Elliott, Ann R.; Paiva, Manuel; West, John B.

    1995-01-01

    We used multiple-breath N2 washouts (MBNW) to study the homogeneity of ventilation in four normal humans (mean age 42.5 yr) before, during, and after 9 days of exposure to microgravity on Spacelab Life Sciences-1. Subjects performed 20-breath MBNW at tidal volumes of approximately 700 ml and 12-breath MBNW at tidal volumes of approximately 1,250 ml. Six indexes of ventilatory inhomogeneity were derived from data from (1) distribution of specific ventilation (SV) from mixed-expired and (2) end-tidal N2, (3) change of slope of N2 washout (semilog plot) with time, (4) change of slope of normalized phase III of successive breaths, (5) anatomic lead dead space, and (6) Bohr dead space. Significant ventilatory inhomogeneity was seen in the standing position at normal gravity (1 G). When we compared standing 1 G with microgravity, the distributions of SV became slightly narrower, but the difference was not significant. Also, there were no significant changes in the change of slope of the N2 washout, change of normalized phase III slopes, or the anatomic and Bohr dead spaces. By contrast, transition from the standing to supine position in 1 G resulted in significantly broader distributions of SV and significantly greater changes in the changes in slope of the N2 washouts, indicating more ventilatory inhomogeneity in that posture. Thus these techniques can detect relatively small changes in ventilatory inhomogeneity. We conclude that the primary determinants of ventilatory inhomogeneity during tidal breathing in the upright posture are not gravitational in origin.

  14. Variability of tidal signals in the Brent Delta Front: New observations on the Rannoch Formation, northern North Sea

    NASA Astrophysics Data System (ADS)

    Wei, Xiaojie; Steel, Ronald J.; Ravnås, Rodmar; Jiang, Zaixing; Olariu, Cornel; Li, Zhiyang

    2016-04-01

    Detailed observations on the Rannoch Formation in several deep Viking Graben wells indicate that the 'classical' wave-dominated Brent delta-front shows coupled storm-tide processes. The tidal signals are of three types: I): alternations of thick cross-laminated sandstone and thin mud-draped sandstone, whereby double mud drapes are prominent but discretely distributed, II): a few tidal bundles within bottomsets and foresets of up to 10 cm-thick sets cross-strata, and III): dm-thick heterolithic lamination showing multiple, well-organized sand-mud couplets. During progradation of the Brent Delta, the Rannoch shoreline system passed upward from 1) a succession dominated by clean-water, storm-event sets and cosets frequently and preferentially interbedded with type I tidal beds, and occasional types II and III tidal deposits, toward 2) very clean storm-event beds less frequently separated by types II and III tidal beds, and then into 3) a thin interval showing muddier storm-event beds mainly alternating with type II tidal beds. It is likely that those variations in preservation bias of storm and tidal beds in each facies succession result from combined effects of 1) the frequency and duration of storms; 2) river discharge; and 3) the absolute and relative strength of tides. Tidal deposits are interpreted as inter-storm, fair-weather deposits, occurred preferentially in longer intermittent fair-weather condition and periods of lower river discharge, and well-pronounced in the distal-reach of delta-front. The formation and preservation of tidal signals between storm beds, indicate that the studied Rannoch Formation was most likely a storm-dominated, tide-influenced delta front 1) near the mouth of a large Brent river, where a significant tidal prism and high tidal range might be expected, and 2) in a setting where there were relatively high sedimentation rates associated with high local subsidence rates, so that the storm waves did not completely rework the inter-storm deposits. The documentation of the unconventional Rannoch Formation contributes to our understanding of mixed-energy coastal systems.

  15. Mapping the Tidal Destruction of the Hercules Dwarf: A Wide-field DECam Imaging Search for RR Lyrae Stars

    NASA Astrophysics Data System (ADS)

    Garling, Christopher; Willman, Beth; Sand, David J.; Hargis, Jonathan; Crnojević, Denija; Bechtol, Keith; Carlin, Jeffrey L.; Strader, Jay; Zou, Hu; Zhou, Xu; Nie, Jundan; Zhang, Tianmeng; Zhou, Zhimin; Peng, Xiyan

    2018-01-01

    We investigate the hypothesized tidal disruption of the Hercules ultra-faint dwarf galaxy (UFD). Previous tidal disruption studies of the Hercules UFD have been hindered by the high degree of foreground contamination in the direction of the dwarf. We bypass this issue by using RR Lyrae stars, which are standard candles with a very low field-volume density at the distance of Hercules. We use wide-field imaging from the Dark Energy Camera on CTIO to identify candidate RR Lyrae stars, supplemented with observations taken in coordination with the Beijing–Arizona Sky Survey on the Bok Telescope. Combining color, magnitude, and light-curve information, we identify three new RR Lyrae stars associated with Hercules. All three of these new RR Lyrae stars lie outside its published tidal radius. When considered with the nine RR Lyrae stars already known within the tidal radius, these results suggest that a substantial fraction of Hercules’ stellar content has been stripped. With this degree of tidal disruption, Hercules is an interesting case between a visibly disrupted dwarf (such as the Sagittarius dwarf spheroidal galaxy) and one in dynamic equilibrium. The degree of disruption also shows that we must be more careful with the ways we determine object membership when estimating dwarf masses in the future. One of the three discovered RR Lyrae stars sits along the minor axis of Hercules, but over two tidal radii away. This type of debris is consistent with recent models that suggest Hercules’ orbit is aligned with its minor axis.

  16. 43 CFR Appendix II to Part 11 - Format for Data Inputs and Modifications to the NRDAM/CME

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ....g., coral reef) and is classified as “landward” in Table 6.2, Volume I of the NRDAM/CME technical... kelp) or invertebrate reef (e.g., coral reef) and is classified as “seaward” in Table 6.2, Volume I of..., seagrass, or kelp) or invertebrate reef (e.g., coral reef). Tidal current—currents caused by alternating...

  17. 43 CFR Appendix II to Part 11 - Format for Data Inputs and Modifications to the NRDAM/CME

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ....g., coral reef) and is classified as “landward” in Table 6.2, Volume I of the NRDAM/CME technical... kelp) or invertebrate reef (e.g., coral reef) and is classified as “seaward” in Table 6.2, Volume I of..., seagrass, or kelp) or invertebrate reef (e.g., coral reef). Tidal current—currents caused by alternating...

  18. 43 CFR Appendix II to Part 11 - Format for Data Inputs and Modifications to the NRDAM/CME

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ....g., coral reef) and is classified as “landward” in Table 6.2, Volume I of the NRDAM/CME technical... kelp) or invertebrate reef (e.g., coral reef) and is classified as “seaward” in Table 6.2, Volume I of..., seagrass, or kelp) or invertebrate reef (e.g., coral reef). Tidal current—currents caused by alternating...

  19. Physiologic and anti-G suit performance data from YF-16 flight tests

    NASA Technical Reports Server (NTRS)

    Gillingham, K. K.; Winter, W. R.

    1976-01-01

    Biomedical data were collected during high-G portions of 11 YF-16 test flights. Test pilots monitored revealed increased respiratory rate and volume, decreased tidal volume, and increased heart rate at higher G levels, with one pilot exhibiting various cardiac arrhythmias. Anti-G suit inflation and pressurization lags varied inversely with G-onset rate, and suit pressurization slope was near the design value.

  20. Fortnightly modulation of San Andreas tremor and low-frequency earthquakes

    USGS Publications Warehouse

    Van Der Elst, Nicholas; Delorey, Andrew; Shelly, David R.; Johnson, Paul

    2016-01-01

    Earth tides modulate tremor and low-frequency earthquakes (LFEs) on faults in the vicinity of the brittle−ductile (seismic−aseismic) transition. The response to the tidal stress carries otherwise inaccessible information about fault strength and rheology. Here, we analyze the LFE response to the fortnightly tide, which modulates the amplitude of the daily tidal stress over a 14-d cycle. LFE rate is highest during the waxing fortnightly tide, with LFEs most strongly promoted when the daily stress exceeds the previous peak stress by the widest margin. This pattern implies a threshold failure process, with slip initiated when stress exceeds the local fault strength. Variations in sensitivity to the fortnightly modulation may reflect the degree of stress concentration on LFE-producing brittle asperities embedded within an otherwise aseismic fault.

  1. Rescue therapeutic strategy combining ultra-protective mechanical ventilation with extracorporeal CO2 removal membrane in near-fatal asthma with severe pulmonary barotraumas: A case report.

    PubMed

    Pavot, Arthur; Mallat, Jihad; Vangrunderbeeck, Nicolas; Thevenin, Didier; Lemyze, Malcolm

    2017-10-01

    Mechanical ventilation of severe acute asthma is still considered a challenging issue, mainly because of the gas trapping phenomenon with the potential for life-threatening barotraumatic pulmonary complications. Herein, we describe 2 consecutive cases of near-fatal asthma for whom the recommended protective mechanical ventilation approach using low tidal volume of 6 mL/kg and small levels of PEEP was rapidly compromised by giant pneumomediastinum with extensive subcutaneousemphysema. Near fatal asthma. A rescue therapeutic strategy combining extracorporeal CO2 removal membrane with ultra-protective extremely low tidal volume (3 mL/kg) ventilation was applied. Both patients survived hospital discharge. These 2 cases indicate that ECCO2R associated with ultra-protective ventilation could be an alternative to surgery in case of life-threatening barotrauma occurring under mechanical ventilation.

  2. A normal mode treatment of semi-diurnal body tides on an aspherical, rotating and anelastic Earth

    NASA Astrophysics Data System (ADS)

    Lau, Harriet C. P.; Yang, Hsin-Ying; Tromp, Jeroen; Mitrovica, Jerry X.; Latychev, Konstantin; Al-Attar, David

    2015-08-01

    Normal mode treatments of the Earth's body tide response were developed in the 1980s to account for the effects of Earth rotation, ellipticity, anelasticity and resonant excitation within the diurnal band. Recent space-geodetic measurements of the Earth's crustal displacement in response to luni-solar tidal forcings have revealed geographical variations that are indicative of aspherical deep mantle structure, thus providing a novel data set for constraining deep mantle elastic and density structure. In light of this, we make use of advances in seismic free oscillation literature to develop a new, generalized normal mode theory for the tidal response within the semi-diurnal and long-period tidal band. Our theory involves a perturbation method that permits an efficient calculation of the impact of aspherical structure on the tidal response. In addition, we introduce a normal mode treatment of anelasticity that is distinct from both earlier work in body tides and the approach adopted in free oscillation seismology. We present several simple numerical applications of the new theory. First, we compute the tidal response of a spherically symmetric, non-rotating, elastic and isotropic Earth model and demonstrate that our predictions match those based on standard Love number theory. Second, we compute perturbations to this response associated with mantle anelasticity and demonstrate that the usual set of seismic modes adopted for this purpose must be augmented by a family of relaxation modes to accurately capture the full effect of anelasticity on the body tide response. Finally, we explore aspherical effects including rotation and we benchmark results from several illustrative case studies of aspherical Earth structure against independent finite-volume numerical calculations of the semi-diurnal body tide response. These tests confirm the accuracy of the normal mode methodology to at least the level of numerical error in the finite-volume predictions. They also demonstrate that full coupling of normal modes, rather than group coupling, is necessary for accurate predictions of the body tide response.

  3. Modeling pesticide fate in a small tidal estuary

    USGS Publications Warehouse

    McCarthy, A.M.; Bales, J.D.; Cope, W.G.; Shea, D.

    2007-01-01

    The exposure analysis modeling system (EXAMS), a pesticide fate model developed by the U.S. Environmental Protection Agency, was modified to model the fate of the herbicides atrazine and metolachlor in a small tidally dominated estuary (Bath Creek) in North Carolina, USA where freshwater inflow accounts for only 3% of the total flow. The modifications simulated the changes that occur during the tidal cycle in the estuary, scenarios that are not possible with the original EXAMS model. Two models were created within EXAMS, a steady-state model and a time-variant tidally driven model. The steady-state model accounted for tidal flushing by simply altering freshwater input to yield an estuary residence time equal to that measured in Bath Creek. The tidal EXAMS model explicitly incorporated tidal flushing by modifying the EXAMS code to allow for temporal changes in estuary physical attributes (e.g., volume). The models were validated with empirical measurements of atrazine and metolachlor concentrations in the estuary shortly after herbicide application in nearby fields and immediately following a rain event. Both models provided excellent agreement with measured concentrations. The steady-state EXAMS model accurately predicted atrazine concentrations in the middle of the estuary over the first 3 days and under-predicted metolachlor by a factor of 2-3. The time-variant, tidally driven EXAMS model accurately predicted the rise and plateau of both herbicides over the 6-day measurement period. We have demonstrated the ability of these modified EXAMS models to be useful in predicting pesticide fate and exposure in small tidal estuaries. This is a significant improvement and expansion of the application of EXAMS, and given the wide use of EXAMS for surface water quality modeling by both researchers and regulators and the ability of EXAMS to interface with terrestrial models (e.g., pesticide root zone model) and bioaccumulation models, we now have an easily-accessible and widely accepted means of modeling chemical fate in estuaries. ?? 2006 Elsevier B.V. All rights reserved.

  4. Effect of immersion on lung capacities and volumes: implications for the densitometric estimation of relative body fat.

    PubMed

    Withers, R T; Hamdorf, P A

    1989-01-01

    Immersion of 18 male subjects in water caused a 20.4% (787 ml) increase (P less than 0.05) in the mean inspiratory capacity (IC) whereas there were no changes (P greater than 0.05) in tidal volume (VT) and the frequency of respiration. All the means for the other pulmonary variables decreased (P less than 0.05) by varying amounts: total lung capacity (TLC) = 8.4% (599 ml), vital capacity (VC) = 5.5% (308 ml), functional residual capacity (FRC) = 42.6% (1386 ml), expiratory reserve volume (ERV) = 61.9% (1095 ml) and residual volume (RV) = 19.7% (292 ml). Variation of only the RV in the body density (BD) formula from which the percentage body fat (%BF) is estimated resulted in a significantly (P less than 0.05) lower mean of 15.2% BF for the RV in air (means = 1482 ml) compared with that of 17.1% BF for the RV in water (means = 1190 ml). All but one of the subjects exhibited a smaller RV in water than in air; the six largest differences were equivalent to 2.4-5.1% BF. These results indicate that the net effect of the hydrostatic pressure (decreases RV), pulmonary vascular engorgement (decreases RV) and diminished compliance (increases RV) is to reduce the ventilated RV. It is therefore advisable to measure the RV when the subject is immersed in order to minimize error in the determination of BD and hence the estimation of % BF.

  5. Optical Estimation of Depth and Current in a Ebb Tidal Delta Environment

    NASA Astrophysics Data System (ADS)

    Holman, R. A.; Stanley, J.

    2012-12-01

    A key limitation to our ability to make nearshore environmental predictions is the difficulty of obtaining up-to-date bathymetry measurements at a reasonable cost and frequency. Due to the high cost and complex logistics of in-situ methods, research into remote sensing approaches has been steady and has finally yielded fairly robust methods like the cBathy algorithm for optical Argus data that show good performance on simple barred beach profiles and near immunity to noise and signal problems. In May, 2012, data were collected in a more complex ebb tidal delta environment during the RIVET field experiment at New River Inlet, NC. The presence of strong reversing tidal currents led to significant errors in cBathy depths that were phase-locked to the tide. In this paper we will test methods for the robust estimation of both depths and vector currents in a tidal delta domain. In contrast to previous Fourier methods, wavenumber estimation in cBathy can be done on small enough scales to resolve interesting nearshore features.

  6. Influence of drive and timing mechanisms on breathing pattern and ventilation during mental task performance.

    PubMed

    Wientjes, C J; Grossman, P; Gaillard, A W

    1998-09-01

    Assessment of multiple respiratory measures may provide insight into how behavioral demands affect the breathing pattern. This is illustrated by data from a study among 44 subjects, in which tidal volume, respiration rate, minute ventilation and indices of central drive and timing mechanisms were assessed via inductive plethysmography, in addition to end-tidal PCO2. After a baseline, three conditions of a memory comparison task were presented. The first two conditions differed only with regard to the presence or absence of feedback of performance (NFB and FB). In the third 'all-or-nothing' (AON) condition, subjects only received a monetary bonus, if their performance exceeded that of the previous two conditions. Minute ventilation increased from baseline to all task conditions, and from NFB and FB to AON. Respiration rate increased in all task conditions, but there were no differences between task conditions. Tidal volume decreased during NFB, but was equal to baseline during FB and AON. Of the respiratory control indices, inspiratory flow rate covaried much more closely with minute ventilation than duty cycle. The task performance induced a minor degree of hyperventilation. The discussion focusses on how behavioral demands affect respiratory control processes to produce alterations in breathing pattern and ventilation.

  7. Assessing and managing the risks of hypoxia in transitional waters: a case study in the tidal Garonne River (South-West France).

    PubMed

    Schmidt, Sabine; Bernard, Clément; Escalier, Jean-Michel; Etcheber, Henri; Lamouroux, Mélina

    2017-02-01

    The Gironde estuary (S-W France) is one of the largest European macrotidal estuaries. In the tidal Garonne River, its main tributary, episodes of low (<5 mg L -1 ) to hypoxic (<2 mg L -1 ) dissolved oxygen (DO) concentrations have been occasionally recorded close to Bordeaux, about 100 km from the mouth. Projected long-term environmental changes (increase in temperature and population, decrease in river discharge) suggest the establishment of summer chronic oxygen deficiency in the tidal Garonne River in the next decades. Assessing and managing the risk of hypoxia on such a large, hyper-turbid fluvio-estuarine system is complex, due to the different forcing factors (temperature, river discharge, turbidity, urban wastes) acting over a wide range of temporal and spatial scales. In this context, we show the interest of a real-time, high-frequency monitoring of the water quality, the MAGEST network, which continuously records since 2005 temperature, salinity, turbidity, and dissolved oxygen in surface waters in Bordeaux. Through the analysis of the 10-year DO records, we demonstrate the interest of a high-frequency, long-term database to better document DO variability and to define the controlling factors of DO concentrations. This real-time monitoring is also of great interest for the development of manager's oriented tools and the follow-up of DO objectives in the tidal Garonne River.

  8. ON THE TIDAL ORIGIN OF HOT JUPITER STELLAR OBLIQUITY TRENDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dawson, Rebekah I., E-mail: rdawson@berkeley.edu

    It is debated whether the two hot Jupiter populations—those on orbits misaligned from their host star's spin axis and those well-aligned—result from two migration channels or from two tidal realignment regimes. Here I demonstrate that equilibrium tides raised by a planet on its star can account for three observed spin-orbit alignment trends: the aligned orbits of hot Jupiters orbiting cool stars, the planetary mass cut-off for retrograde planets, and the stratification by planet mass of cool host stars' rotation frequencies. The first trend can be caused by strong versus weak magnetic braking (the Kraft break), rather than realignment of themore » star's convective envelope versus the entire star. The second trend can result from a small effective stellar moment of inertia participating in the tidal realignment in hot stars, enabling massive retrograde planets to partially realign to become prograde. The third trend is attributable to higher-mass planets more effectively counteracting braking to spin up their stars. Both hot and cool stars require a small effective stellar moment of inertia participating in the tidal realignment, e.g., an outer layer weakly coupled to the interior. I demonstrate via Monte Carlo that this model can match the observed trends and distributions of sky-projected misalignments and stellar rotation frequencies. I discuss implications for inferring hot Jupiter migration mechanisms from obliquities, emphasizing that even hot stars do not constitute a pristine sample.« less

  9. High Frequency and Multi-parameter Observation of Land-Sea Connection at the Aransas Pass Tidal Inlet, South Texas in Summer 2008

    NASA Astrophysics Data System (ADS)

    Min, D.

    2008-12-01

    Understanding the nature of water exchange and material transport processes at tidal inlets is critical in improving our knowledge of land-sea connection and exchange processes. High-frequency multi-parameter water property measurement was conducted over a month period during mid-June to mid-July in 2008 at the UT Marine Science Institute pier at Port Aransas, Texas throughout 12-m water column. The pier is at the Aransas Pass tidal inlet, which is a major water and property exchange pathway in South Texas between several local bays and the Gulf of Mexico. Unlike the summer 2007 when a large-scale freshwater discharge event occurred, the summer 2008 during the observation period was relatively dry in general. Offshore influence was more pronounced this year than 2007 with multiple days of higher salinity water (higher than 36 psu) dominating over tidal cycles. The offshore influence was also marked by lower oxygen and chlorophyll concentrations. The lower oxygen content water with higher salinity seems to be connected to low-oxygen bottom water on near shore shelf area. Additional instrument mooring data during hurricane Dolly will also be presented along with the current meter and tide gauge information. Comparison of the data with that observed from nearby Mission-Aransas National Estuarine Research Reserve SWMP stations will be presented as well. Continuous water column measurements at a local inlet show a potential to quantify water property flux and to detect episodic events in the coastal environment.

  10. KIC 8164262: a heartbeat star showing tidally induced pulsations with resonant locking

    NASA Astrophysics Data System (ADS)

    Hambleton, K.; Fuller, J.; Thompson, S.; Prša, A.; Kurtz, D. W.; Shporer, A.; Isaacson, H.; Howard, A. W.; Endl, M.; Cochran, W.; Murphy, S. J.

    2018-02-01

    We present the analysis of KIC 8164262, a heartbeat star with a high-amplitude (∼1 mmag), tidally resonant pulsation (a mode in resonance with the orbit) at 229 times the orbital frequency and a plethora of tidally induced g-mode pulsations (modes excited by the orbit). The analysis combines Kepler light curves with follow-up spectroscopic data from the Keck telescope, KPNO (Kitt Peak National Observatory) 4-m Mayall telescope and the 2.7-m telescope at the McDonald observatory. We apply the binary modelling software, PHOEBE, to the Kepler light curve and radial velocity data to determine a detailed binary star model that includes the prominent pulsation and Doppler boosting, alongside the usual attributes of a binary star model (including tidal distortion and reflection). The results show that the system contains a slightly evolved F star with an M secondary companion in a highly eccentric orbit (e = 0.886). We use the results of the binary star model in a companion paper (Fuller) where we show that the prominent pulsation can be explained by a tidally excited oscillation mode held near resonance by a resonance locking mechanism.

  11. Slow Breathing and Hypoxic Challenge: Cardiorespiratory Consequences and Their Central Neural Substrates

    PubMed Central

    Critchley, Hugo D.; Nicotra, Alessia; Chiesa, Patrizia A.; Nagai, Yoko; Gray, Marcus A.; Minati, Ludovico; Bernardi, Luciano

    2015-01-01

    Controlled slow breathing (at 6/min, a rate frequently adopted during yoga practice) can benefit cardiovascular function, including responses to hypoxia. We tested the neural substrates of cardiorespiratory control in humans during volitional controlled breathing and hypoxic challenge using functional magnetic resonance imaging (fMRI). Twenty healthy volunteers were scanned during paced (slow and normal rate) breathing and during spontaneous breathing of normoxic and hypoxic (13% inspired O2) air. Cardiovascular and respiratory measures were acquired concurrently, including beat-to-beat blood pressure from a subset of participants (N = 7). Slow breathing was associated with increased tidal ventilatory volume. Induced hypoxia raised heart rate and suppressed heart rate variability. Within the brain, slow breathing activated dorsal pons, periaqueductal grey matter, cerebellum, hypothalamus, thalamus and lateral and anterior insular cortices. Blocks of hypoxia activated mid pons, bilateral amygdalae, anterior insular and occipitotemporal cortices. Interaction between slow breathing and hypoxia was expressed in ventral striatal and frontal polar activity. Across conditions, within brainstem, dorsal medullary and pontine activity correlated with tidal volume and inversely with heart rate. Activity in rostroventral medulla correlated with beat-to-beat blood pressure and heart rate variability. Widespread insula and striatal activity tracked decreases in heart rate, while subregions of insular cortex correlated with momentary increases in tidal volume. Our findings define slow breathing effects on central and cardiovascular responses to hypoxic challenge. They highlight the recruitment of discrete brainstem nuclei to cardiorespiratory control, and the engagement of corticostriatal circuitry in support of physiological responses that accompany breathing regulation during hypoxic challenge. PMID:25973923

  12. No change in the regional distribution of tidal volume during lateral posture in mechanically ventilated patients assessed by electrical impedance tomography.

    PubMed

    Bein, Thomas; Ploner, Franz; Ritzka, Markus; Pfeifer, Michael; Schlitt, Hans J; Graf, Bernhard M

    2010-07-01

    We assessed the distribution of regional lung ventilation during moderate and steep lateral posture using electrical impedance tomography (EIT) in mechanically ventilated patients. Seven patients were placed on a kinetic treatment table. An elastic belt containing 16 electrodes was placed around the chest and was connected to the EIT device. Patients were moved to left and right lateral positions in a stepwise (10 degrees ) mode up to 60 degrees. EIT images [arbitrary units (AU)] were generated and scanned for assessment of relative ventilation distribution changes [tidal volume (V(T))]. A calibration procedure of arbitrary units (AUs) versus ventilator-derived V(T) performed in all patients during three predefined positions (supine, 60 degrees-left dependent and 60 degrees-right-dependent) showed a significant correlation between V(T) in supine, left and right lateral positions with the corresponding AUs (r(2) = 0.356, P<0.05). Changes in V(T) were calculated and compared to supine position, and specific regions of interest (ROIs) were analysed. In our study, in contrast to recent findings, a change in lateral positions did not induce a significant change in regional tidal volume distribution. In right lateral positions, a broader variation of V(T) with a trend towards an increase in the dependently positioned lung was observed in comparison with supine. Lateral positioning promotes the redistribution of ventilation to the ventral regions of the lung. The use of EIT technology might become a helpful tool for understanding and guiding posture therapy in mechanically ventilated patients.

  13. No change in the regional distribution of tidal volume during lateral posture in mechanically ventilated patients assessed by electrical impedance tomography

    PubMed Central

    Bein, Thomas; Ploner, Franz; Ritzka, Markus; Pfeifer, Michael; Schlitt, Hans J; Graf, Bernhard M

    2010-01-01

    We assessed the distribution of regional lung ventilation during moderate and steep lateral posture using electrical impedance tomography (EIT) in mechanically ventilated patients. Seven patients were placed on a kinetic treatment table. An elastic belt containing 16 electrodes was placed around the chest and was connected to the EIT device. Patients were moved to left and right lateral positions in a stepwise (10°) mode up to 60°. EIT images [arbitrary units (AU)] were generated and scanned for assessment of relative ventilation distribution changes [tidal volume (VT)]. A calibration procedure of arbitrary units (AUs) versus ventilator-derived VT performed in all patients during three predefined positions (supine, 60°-left dependent and 60°-right-dependent) showed a significant correlation between VT in supine, left and right lateral positions with the corresponding AUs (r2 = 0·356, P<0·05). Changes in VT were calculated and compared to supine position, and specific regions of interest (ROIs) were analysed. In our study, in contrast to recent findings, a change in lateral positions did not induce a significant change in regional tidal volume distribution. In right lateral positions, a broader variation of VT with a trend towards an increase in the dependently positioned lung was observed in comparison with supine. Lateral positioning promotes the redistribution of ventilation to the ventral regions of the lung. The use of EIT technology might become a helpful tool for understanding and guiding posture therapy in mechanically ventilated patients. PMID:20491842

  14. Mechanical Ventilation in Acute Hypoxemic Respiratory Failure: A Review of New Strategies for the Practicing Hospitalist

    PubMed Central

    Wilson, Jennifer G.; Matthay, Michael A.

    2014-01-01

    BACKGROUND The goal of mechanical ventilation in acute hypoxemic respiratory failure is to support adequate gas exchange without harming the lungs. How patients are mechanically ventilated can significantly impact their ultimate outcomes. METHODS This review focuses on emerging evidence regarding strategies for mechanical ventilation in patients with acute hypoxemic respiratory failure including: low tidal volume ventilation in the acute respiratory distress syndrome (ARDS), novel ventilator modes as alternatives to low tidal volume ventilation, adjunctive strategies that may enhance recovery in ARDS, the use of lung-protective strategies in patients without ARDS, rescue therapies in refractory hypoxemia, and an evidence-based approach to weaning from mechanical ventilation. RESULTS Once a patient is intubated and mechanically ventilated, low tidal volume ventilation remains the best strategy in ARDS. Adjunctive therapies in ARDS include a conservative fluid management strategy, as well as neuromuscular blockade and prone positioning in moderate-to-severe disease. There is also emerging evidence that a lung-protective strategy may benefit non-ARDS patients. For patients with refractory hypoxemia, extracorporeal membrane oxygenation should be considered. Once the patient demonstrates signs of recovery, the best approach to liberation from mechanical ventilation involves daily spontaneous breathing trials and protocolized assessment of readiness for extubation. CONCLUSIONS Prompt recognition of ARDS and use of lung-protective ventilation, as well as evidence-based adjunctive therapies, remain the cornerstones of caring for patients with acute hypoxemic respiratory failure. In the absence of contraindications, it is reasonable to consider lung-protective ventilation in non-ARDS patients as well, though the evidence supporting this practice is less conclusive. PMID:24733692

  15. Accuracy and consistency of respiratory inductive plethysmography for overnight tidal volume measurement.

    PubMed

    Zhang, J; Ruch, E W; Bloch, K E

    2001-01-01

    To validate the accuracy and consistency of respiratory inductive plethysmography (RIP) in measuring tidal volume after an overnight sleep, tidal volumes of 18 patients with suspected sleep-disordered breathing and 8 normal volunteers were measured simultaneously with RIP (VTRIP) and with an ultrasonic airflow meter (VTUFM) before and after an unstrained overnight sleep on supine and lateral decubitus. The bias of the VTRIP was expressed as (VTRIP-VTUFM)/ VTUFM.100%, limits of agreement between VTRIP and VTUFM was measured by averaged bias +/- 2 s. Results showed that in normal subjects, the bias of RIP before and after overnight sleep was precise and consistent in both supine (0.7% and -1.6%) and lateral decubitus (3.7% and -0.56%). In these patients, the bias of RIP before and after sleep in supine also remained small (1.9% and 1.7%), but it became larger in lateral decubitus (24.5% and 20.4%) and 11.5% exceeded the limits of agreement observed in the evening. The patients' body mass indices (BMI) were higher than those of normal subjects (median 34.2 vs. 27.8 kg/m2). Pooled data showed that the bias of VTRIP in the morning on lateral decubitus but not on supine was correlated to BMI (Spearman R = 0.32, n = 52, P = 0.02). Thus, we were led to conclude that the accuracy of VTRIP overnight was precise and consistent in normal subjects, but the deviation of VTRIP measured on lateral decubitus in patients especially in those with excessive obesity was greater, thus, the method should not be used for quantitative determination.

  16. Mechanisms underlying very-low-frequency RR-interval oscillations in humans

    NASA Technical Reports Server (NTRS)

    Taylor, J. A.; Carr, D. L.; Myers, C. W.; Eckberg, D. L.

    1998-01-01

    BACKGROUND: Survival of post-myocardial infarction patients is related inversely to their levels of very-low-frequency (0.003 to 0.03 Hz) RR-interval variability. The physiological basis for such oscillations is unclear. In our study, we used blocking drugs to evaluate potential contributions of sympathetic and vagal mechanisms and the renin-angiotensin-aldosterone system to very-low-frequency RR-interval variability in 10 young healthy subjects. METHODS AND RESULTS: We recorded RR intervals and arterial pressures during three separate sessions, with the patient in supine and 40 degree upright tilt positions, during 20-minute frequency (0.25 Hz) and tidal volume-controlled breathing after intravenous injections: saline (control), atenolol (0.2 mg/kg, beta-adrenergic blockade), atropine sulfate (0.04 mg/kg, parasympathetic blockade), atenolol and atropine (complete autonomic blockade), and enalaprilat (0.02 mg/kg, ACE blockade). We integrated fast Fourier transform RR-interval spectral power at very low (0.003 to 0.03 Hz), low (0.05 to 0. 15 Hz), and respiratory (0.2 to 0.3 Hz) frequencies. Beta-adrenergic blockade had no significant effect on very-low- or low-frequency RR-interval power but increased respiratory frequency power 2-fold. ACE blockade had no significant effect on low or respiratory frequency RR-interval power but modestly (approximately 21%) increased very-low-frequency power in the supine (but not upright tilt) position (P<0.05). The most profound effects were exerted by parasympathetic blockade: Atropine, given alone or with atenolol, abolished nearly all RR-interval variability and decreased very-low-frequency variability by 92%. CONCLUSIONS: Although very-low-frequency heart period rhythms are influenced by the renin-angiotensin-aldosterone system, as low and respiratory frequency RR-interval rhythms, they depend primarily on the presence of parasympathetic outflow. Therefore the prognostic value of very-low-frequency heart period oscillations may derive from the fundamental importance of parasympathetic mechanisms in cardiovascular health.

  17. Field testing of a convergent array of acoustic Doppler profilers for high-resolution velocimetry in energetic tidal currents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harding, Samuel F.; Sellar, Brian; Richmond, Marshall C.

    An array of single-beam acoustic Doppler profilers has been developed for the high resolution measurement of three-dimensional tidal flow velocities and subsequently tested in an energetic tidal site. This configuration has been developed to increase spatial resolution of velocity measurements in comparison to conventional acoustic Doppler profilers (ADPs) which characteristically use divergent acoustic beams emanating from a single instrument. This is achieved using geometrically convergent acoustic beams creating a sample volume at the focal point of 0.03 m3. Away from the focal point, the array is also able to simultaneously reconstruct three-dimensional velocity components in a profile throughout the watermore » column, and is referred to herein as a convergent-beam acoustic Doppler profiler (C-ADP). Mid-depth profiling is achieved through integration of the sensor platform with the operational commercial-scale Alstom 1MW DeepGen-IV Tidal Turbine deployed at the European Marine Energy Center, Orkney Isles, UK. This proof-of-concept paper outlines the C-ADP system configuration and comparison to measurements provided by co-installed reference instrumentation.« less

  18. A radar map of Titan Seas: Tidal dissipation and ocean mixing through the throat of Kraken

    NASA Astrophysics Data System (ADS)

    Lorenz, Ralph D.; Kirk, Randolph L.; Hayes, Alexander G.; Anderson, Yanhua Z.; Lunine, Jonathan I.; Tokano, Tetsuya; Turtle, Elizabeth P.; Malaska, Michael J.; Soderblom, Jason M.; Lucas, Antoine; Karatekin, Özgür; Wall, Stephen D.

    2014-07-01

    We present a radar map of the Titan’s seas, with bathymetry estimated as proportional to distance from the nearest shore. This naïve analytic bathymetry, scaled to a recent radar sounding of Ligeia Mare, suggests a total liquid volume of ∼32,000 km3, at the low end of estimates made in 2008 when mapping coverage was incomplete. We note that Kraken Mare has two principal basins, separated by a narrow (∼17 km wide, ∼40 km long) strait we refer to as the ‘throat’. Tidal currents in this strait may be dramatic (∼0.5 m/s), generating observable effects such as dynamic topography, whirlpools, and acoustic noise, much like tidal races on Earth such as the Corryvreckan off Scotland. If tidal flow through this strait is the dominant mixing process, the two basins take ∼20 Earth years to exchange their liquid inventory. Thus compositional differences over seasonal timescales may exist, but the composition of solutes (and thus evaporites) over Croll-Milankovich timescales should be homogenized.

  19. Delivery of tidal volume from four anaesthesia ventilators during volume-controlled ventilation: a bench study.

    PubMed

    Wallon, G; Bonnet, A; Guérin, C

    2013-06-01

    Tidal volume (V(T)) must be accurately delivered by anaesthesia ventilators in the volume-controlled ventilation mode in order for lung protective ventilation to be effective. However, the impact of fresh gas flow (FGF) and lung mechanics on delivery of V(T) by the newest anaesthesia ventilators has not been reported. We measured delivered V(T) (V(TI)) from four anaesthesia ventilators (Aisys™, Flow-i™, Primus™, and Zeus™) on a pneumatic test lung set with three combinations of lung compliance (C, ml cm H2O(-1)) and resistance (R, cm H2O litre(-1) s(-2)): C60R5, C30R5, C60R20. For each CR, three FGF rates (0.5, 3, 10 litre min(-1)) were investigated at three set V(T)s (300, 500, 800 ml) and two values of PEEP (0 and 10 cm H2O). The volume error = [(V(TI) - V(Tset))/V(Tset)] ×100 was computed in body temperature and pressure-saturated conditions and compared using analysis of variance. For each CR and each set V(T), the absolute value of the volume error significantly declined from Aisys™ to Flow-i™, Zeus™, and Primus™. For C60R5, these values were 12.5% for Aisys™, 5% for Flow-i™ and Zeus™, and 0% for Primus™. With an increase in FGF, absolute values of the volume error increased only for Aisys™ and Zeus™. However, in C30R5, the volume error was minimal at mid-FGF for Aisys™. The results were similar at PEEP 10 cm H2O. Under experimental conditions, the volume error differed significantly between the four new anaesthesia ventilators tested and was influenced by FGF, although this effect may not be clinically relevant.

  20. Functional differences in bi-level pressure preset ventilators.

    PubMed

    Highcock, M P; Shneerson, J M; Smith, I E

    2001-02-01

    The performance of four bilevel positive pressure preset ventilators was compared. The ventilators tested were; BiPAP ST30 (Respironics); Nippy2 (B + D Electrical); Quantum PSV (Healthdyne); and Sullivan VPAP H ST (Resmed). A patient simulator was used to determine the sensitivity of the triggering mechanisms and the responses to a leak within the patient circuit, and to changes in patient effort. Significant differences (p <0.05) between the devices were seen in the trigger delay time and inspiratory trigger pressure. When a leak was introduced into the patient circuit, the fall in tidal volume (VT) was less than ten per cent for each ventilator. The addition of patient effort produced a number of changes in the ventilation delivered. Patient efforts of 0.25 s induced a variable fall in VT. An increase in VT was seen with some ventilators with patient efforts of 1 s but the effect was variable. Trigger failures and subsequent falls in minute volume were seen with the BiPAP and the Nippy2 at the highest respiratory frequency. Differences in the responses of the ventilators are demonstrated that may influence the selection of a ventilator, particularly in the treatment of breathless patients with ventilatory failure.

  1. Ventilatory Patterning in a Mouse Model of Stroke

    PubMed Central

    Koo, Brian B; Strohl, Kingman P; Gillombardo, Carl B; Jacono, Frank J

    2010-01-01

    Cheyne-Stokes respiration (CSR) is a breathing pattern characterized by waxing and waning of breath volume and frequency, and is often recognized following stroke, when causal pathways are often obscure. We used an animal model to address the hypothesis that cerebral infarction is a mechanism for producing breathing instability. Fourteen male A/J mice underwent either stroke (n=7) or sham (n=7) procedure. Ventilation was measured using whole body plethysmography. Respiratory rate (RR), tidal volume (VT) and minute ventilation (Ve) mean values and coefficient of variation were computed for ventilation and oscillatory behavior. In addition, the ventilatory data were computationally fit to models to quantify autocorrelation, mutual information, sample entropy and a nonlinear complexity index. At the same time post procedure, stroke when compared to sham animal breathing consisted of a lower RR and autocorrelation, higher coefficient of variation for VT and higher coefficient of variation for Ve. Mutual information and the nonlinear complexity index were higher in breathing following stroke which also demonstrated a waxing/waning pattern. The absence of stroke in the sham animals was verified anatomically. We conclude that ventilatory pattern following cerebral infarction demonstrated increased variability with increased nonlinear patterning and a waxing/waning pattern, consistent with CSR. PMID:20472101

  2. Mild hypothermia attenuates changes in respiratory system mechanics and modifies cytokine concentration in bronchoalveolar lavage fluid during low lung volume ventilation.

    PubMed

    Dostál, P; Senkeřík, M; Pařízková, R; Bareš, D; Zivný, P; Zivná, H; Cerný, V

    2010-01-01

    Hypothermia was shown to attenuate ventilator-induced lung injury due to large tidal volumes. It is unclear if the protective effect of hypothermia is maintained under less injurious mechanical ventilation in animals without previous lung injury. Tracheostomized rats were randomly allocated to non-ventilated group (group C) or ventilated groups of normothermia (group N) and mild hypothermia (group H). After two hours of mechanical ventilation with inspiratory fraction of oxygen 1.0, respiratory rate 60 min(-1), tidal volume 10 ml x kg(-1), positive end-expiratory pressure (PEEP) 2 cm H2O or immediately after tracheostomy in non-ventilated animals inspiratory pressures were recorded, rats were sacrificed, pressure-volume (PV) curve of respiratory system constructed, bronchoalveolar lavage (BAL) fluid and aortic blood samples obtained. Group N animals exhibited a higher rise in peak inspiratory pressures in comparison to group H animals. Shift of the PV curve to right, higher total protein and interleukin-6 levels in BAL fluid were observed in normothermia animals in comparison with hypothermia animals and non-ventilated controls. Tumor necrosis factor-alpha was lower in the hypothermia group in comparison with normothermia and non-ventilated groups. Mild hypothermia attenuated changes in respiratory system mechanics and modified cytokine concentration in bronchoalveolar lavage fluid during low lung volume ventilation in animals without previous lung injury.

  3. Effects of tiotropium on lung hyperinflation, dyspnoea and exercise tolerance in COPD.

    PubMed

    O'Donnell, D E; Flüge, T; Gerken, F; Hamilton, A; Webb, K; Aguilaniu, B; Make, B; Magnussen, H

    2004-06-01

    The aim of this study was to test the hypothesis that use of tiotropium, a new long-acting anticholinergic bronchodilator, would be associated with sustained reduction in lung hyperinflation and, thereby, would improve exertional dyspnoea and exercise performance in patients with chronic obstructive pulmonary disease. A randomised, double-blind, placebo-controlled, parallel-group study was conducted in 187 patients (forced expiratory volume in one second 44 +/- 13% pred): 96 patients received 18 microg tiotropium and 91 patients received placebo once daily for 42 days. Spirometry, plethysmographic lung volumes, cycle exercise endurance and exertional dyspnoea intensity at 75% of each patient's maximal work capacity were compared. On day 42, the use of tiotropium was associated with the following effects at pre-dose and post-dose measurements as compared to placebo: vital capacity and inspiratory capacity (IC) increased, with inverse decreases in residual volume and functional residual capacity. Tiotropium increased post-dose exercise endurance time by 105 +/- 40 s (21%) as compared to placebo on day 42. At a standardised time near end-exercise (isotime), IC, tidal volume and minute ventilation all increased, whilst dyspnoea decreased by 0.9 +/- 0.3 Borg scale units. In conclusion, the use of tiotropium was associated with sustained reductions of lung hyperinflation at rest and during exercise. Resultant increases in inspiratory capacity permitted greater expansion of tidal volume and contributed to improvements in both exertional dyspnoea and exercise endurance.

  4. Low tidal volume mechanical ventilation against no ventilation during cardiopulmonary bypass heart surgery (MECANO): study protocol for a randomized controlled trial.

    PubMed

    Nguyen, Lee S; Merzoug, Messaouda; Estagnasie, Philippe; Brusset, Alain; Law Koune, Jean-Dominique; Aubert, Stephane; Waldmann, Thierry; Grinda, Jean-Michel; Gibert, Hadrien; Squara, Pierre

    2017-12-02

    Postoperative pulmonary complications are a leading cause of morbidity and mortality after cardiac surgery. There are no recommendations on mechanical ventilation associated with cardiopulmonary bypass (CPB) during surgery and anesthesiologists perform either no ventilation (noV) at all during CPB or maintain low tidal volume (LTV) ventilation. Indirect evidence points towards better pulmonary outcomes when LTV is performed but no large-scale prospective trial has yet been published in cardiac surgery. The MECANO trial is a single-center, double-blind, randomized, controlled trial comparing two mechanical ventilation strategies, noV and LTV, during cardiac surgery with CPB. In total, 1500 patients are expected to be included, without any restrictions. They will be randomized between noV and LTV on a 1:1 ratio. The noV group will receive no ventilation during CPB. The LTV group will receive 5 breaths/minute with a tidal volume of 3 mL/kg and positive end-expiratory pressure of 5 cmH2O. The primary endpoint will be a composite of all-cause mortality, early respiratory failure defined as a ratio of partial pressure of oxygen/fraction of inspired oxygen <200 mmHg at 1 hour after arrival in the ICU, heavy oxygenation support (defined as a patient requiring either non-invasive ventilation, mechanical ventilation or high-flow oxygen) at 2 days after arrival in the ICU or ventilator-acquired pneumonia defined by the Center of Disease Control. Lung recruitment maneuvers will be performed in the noV and LTV groups at the end of surgery and at arrival in ICU with an insufflation at +30 cmH20 for 5 seconds. Secondary endpoints are those composing the primary endpoint with the addition of pneumothorax, CPB duration, quantity of postoperative bleeding, red blood cell transfusions, revision surgery requirements, length of stay in the ICU and in the hospital and total hospitalization costs. Patients will be followed until hospital discharge. The MECANO trial is the first of its kind to compare in a double-blind design, a no-ventilation to a low-tidal volume strategy for mechanical ventilation during cardiac surgery with CPB, with a primary composite outcome including death, respiratory failure and postoperative pneumonia. ClinicalTrials.gov, NCT03098524 . Registered on 27 February 2017.

  5. Application of intraoperative lung-protective ventilation varies in accordance with the knowledge of anaesthesiologists: a single-Centre questionnaire study and a retrospective observational study.

    PubMed

    Kim, Seung Hyun; Na, Sungwon; Lee, Woo Kyung; Choi, Hyunwoo; Kim, Jeongmin

    2018-04-02

    The benefits of lung-protective ventilation (LPV) with a low tidal volume (6 mL/kg of ideal body weight [IBW]), limited plateau pressure (< 28-30 cm H 2 O), and appropriate positive end-expiratory pressure (PEEP) in patients with acute respiratory distress syndrome have become apparent and it is now widely adopted in intensive care units. Recently evidence for LPV in general anaesthesia has been accumulated, but it is not yet generally applied by anaesthesiologists in the operating room. This study investigated the perception about intraoperative LPV among 82 anaesthesiologists through a questionnaire survey and identified the differences in ventilator settings according to recognition of lung-protective ventilation. Furthermore, we investigated the changes in the trend for using this form of ventilation during general anaesthesia in the past 10 years. Anaesthesiologists who had received training in LPV were more knowledgeable about this approach. Anaesthesiologists with knowledge of the concept behind LPV strategies applied a lower tidal volume (median (IQR [range]), 8.2 (8.0-9.2 [7.1-10.3]) vs. 9.2 (9.1-10.1 [7.6-10.1]) mL/kg; p = 0.033) and used PEEP more frequently (69/72 [95.8%] vs. 5/8 [62.5%]; p = 0.012; odds ratio, 13.8 [2.19-86.9]) for laparoscopic surgery than did those without such knowledge. Anaesthesiologists who were able to answer a question related to LPV correctly (respondents who chose 'height' to a multiple choice question asking what variables should be considered most important in the initial setting of tidal volume) applied a lower tidal volume in cases of laparoscopic surgery and obese patients. There was an increase in the number of patients receiving LPV (V T  < 10 mL/kgIBW and PEEP ≥5 cm H 2 O) between 2004 and 2014 (0/818 [0.0%] vs. 280/818 [34.2%]; p <  0.001). Our study suggests that the knowledge of LPV is directly related to its implementation, and can explain the increase in LPV use in general anaesthesia. Further studies should assess the impact of using intraoperative LPV on clinical outcomes and should determine the efficacy of education on intraoperative LPV implementation.

  6. Increasing the inspiratory time and I:E ratio during mechanical ventilation aggravates ventilator-induced lung injury in mice.

    PubMed

    Müller-Redetzky, Holger C; Felten, Matthias; Hellwig, Katharina; Wienhold, Sandra-Maria; Naujoks, Jan; Opitz, Bastian; Kershaw, Olivia; Gruber, Achim D; Suttorp, Norbert; Witzenrath, Martin

    2015-01-28

    Lung-protective ventilation reduced acute respiratory distress syndrome (ARDS) mortality. To minimize ventilator-induced lung injury (VILI), tidal volume is limited, high plateau pressures are avoided, and positive end-expiratory pressure (PEEP) is applied. However, the impact of specific ventilatory patterns on VILI is not well defined. Increasing inspiratory time and thereby the inspiratory/expiratory ratio (I:E ratio) may improve oxygenation, but may also be harmful as the absolute stress and strain over time increase. We thus hypothesized that increasing inspiratory time and I:E ratio aggravates VILI. VILI was induced in mice by high tidal-volume ventilation (HVT 34 ml/kg). Low tidal-volume ventilation (LVT 9 ml/kg) was used in control groups. PEEP was set to 2 cm H2O, FiO2 was 0.5 in all groups. HVT and LVT mice were ventilated with either I:E of 1:2 (LVT 1:2, HVT 1:2) or 1:1 (LVT 1:1, HVT 1:1) for 4 hours or until an alternative end point, defined as mean arterial blood pressure below 40 mm Hg. Dynamic hyperinflation due to the increased I:E ratio was excluded in a separate group of animals. Survival, lung compliance, oxygenation, pulmonary permeability, markers of pulmonary and systemic inflammation (leukocyte differentiation in lung and blood, analyses of pulmonary interleukin-6, interleukin-1β, keratinocyte-derived chemokine, monocyte chemoattractant protein-1), and histopathologic pulmonary changes were analyzed. LVT 1:2 or LVT 1:1 did not result in VILI, and all individuals survived the ventilation period. HVT 1:2 decreased lung compliance, increased pulmonary neutrophils and cytokine expression, and evoked marked histologic signs of lung injury. All animals survived. HVT 1:1 caused further significant worsening of oxygenation, compliance and increased pulmonary proinflammatory cytokine expression, and pulmonary and blood neutrophils. In the HVT 1:1 group, significant mortality during mechanical ventilation was observed. According to the "baby lung" concept, mechanical ventilation-associated stress and strain in overinflated regions of ARDS lungs was simulated by using high tidal-volume ventilation. Increase of inspiratory time and I:E ratio significantly aggravated VILI in mice, suggesting an impact of a "stress/strain × time product" for the pathogenesis of VILI. Thus increasing the inspiratory time and I:E ratio should be critically considered.

  7. Perfluorocarbon-associated gas exchange in normal and acid-injured large sheep.

    PubMed

    Hernan, L J; Fuhrman, B P; Kaiser, R E; Penfil, S; Foley, C; Papo, M C; Leach, C L

    1996-03-01

    We hypothesized that a) perfluorocarbon-associated gas exchange could be accomplished in normal large sheep; b) the determinants of gas exchange would be similar during perfluorocarbon-associated gas exchange and conventional gas ventilation; c)in large animals with lung injury, perfluorocarbon-associated gas exchange could be used to enhance gas exchange without adverse effects on hemodynamics; and d) the large animal with lung injury could be supported with an FIO2 of <1.0 during perfluorocarbon-associated gas exchange. Prospective, observational animal study and prospective randomized, controlled animal study. An animal laboratory in a university setting. Thirty adult ewes. Five normal ewes (61.0 +/- 4.0 kg) underwent perfluorocarbon-associated gas exchange to ascertain the effects of tidal volume, end-inspiratory pressure, and positive end-expiratory pressure (PEEP) on oxygenation. Respiratory rate, tidal volume, and minute ventilation were studied to determine their effects on CO2 clearance. Sheep, weighing 58.9 +/- 8.3 kg, had lung injury induced by instilling 2 mL/kg of 0.05 Normal hydrochloric acid into the trachea. Five minutes after injury, PEEP was increased to 10 cm H2O. Ten minutes after injury, sheep with Pao2 values of <100 torr (<13.3 kPa) were randomized to continue gas ventilation (control, n=9) or to institute perfluorocarbon-associated gas exchange (n=9) by instilling 1.6 L of unoxygenated perflubron into the trachea and resuming gas ventilation. Blood gas and hemodynamic measurements were obtained throughout the 4-hr study. Both tidal volume and end-inspiratory pressure influenced oxygenation in normal sheep during perfluorocarbon-associated gas exchange. Minute ventilation determined CO2 clearance during perfluorocarbon-associated gas exchange in normal sheep. After acid aspiration lung injury, perfluorocarbon-associated gas exchange increased PaO2 and reduced intrapulmonary shunt fraction. Hypoxia and intrapulmonary shunting were unabated after injury in control animals. Hemodynamics were not influenced by the institution of perfluorocarbon-associated gas exchange. Tidal volume and end-inspiratory pressure directly influence oxygenation during perfluorocarbon-associated gas exchange in large animals. Minute ventilation influences clearance of CO2. In adult sheep with acid aspiration lung injury, perfluorocarbon-associated gas exchange at an FIO2 of <1.0 supports oxygenation and improves intrapulmonary shunting, without adverse hemodynamic effects, when compared with conventional gas ventilation.

  8. Non-thermal X-ray emission from tidal disruption flares

    NASA Astrophysics Data System (ADS)

    Stone, Nicholas

    2016-09-01

    A star that passes too close to a supermassive black hole will be disrupted by the black hole's tidal gravity. The result is a flare of thermal emission at optical and X-ray frequencies. The return rate of stellar debris decreases from highly super-Eddington to sub-Eddington in a few years, making stellar tidal disruptions flares (TDFs) a unique laboratory to study accretion physics. In one class of models, the optical emission is due to reprocessing of the X-ray photons, thus explaining the lack of X-ray detections from optically selected TDFs. After a few years, the outer reprocessing regions will dilute, allowing us to observe any non-thermal emission from the inner disk. Here we propose Chandra observations to measure the luminosity of newly formed accretion disks in two known TDFs.

  9. Connections Among the Spatial and Temporal Structures in Tidal Currents, Internal Bores, and Surficial Sediment Distributions Over the Shelf off Palos Verdes, California

    USGS Publications Warehouse

    Noble, Marlene A.; Rosenberger, Kurt J.; Xu, Jingping; Signell, Richard P.; Steele, Alex

    2009-01-01

    The topography of the Continental Shelf in the central portion of the Southern California Bight has rapid variations over relatively small spatial scales. The width of the shelf off the Palos Verdes peninsula, just northwest of Los Angeles, California, is only 1 to 3 km. About 7 km southeast of the peninsula, the shelf within San Pedro Bay widens to about 20 km. In 2000, the Los Angeles County Sanitation District began deploying a dense array of moorings in this complex region of the central Southern California Bight to monitor local circulation patterns. Moorings were deployed at 13 sites on the Palos Verdes shelf and within the northwestern portion of San Pedro Bay. At each site, a mooring supported a string of thermistors and an adjacent bottom platform housed an Acoustic Doppler Current Profiler. These instruments collected vertical profiles of current and temperature data continuously for one to two years. The variable bathymetry in the region causes rapid changes in the amplitudes and spatial structures of barotropic tidal currents, internal tidal currents, and in the associated nonlinear baroclinic currents that occur at approximate tidal frequencies. The largest barotropic tidal constituent is M2, the principal semidiurnal tide. The amplitude of this tidal current changes over fairly short along-shelf length scales. Tidal-current amplitudes are largest in the transition region between the two shelves; they increase from about 5 cm/s over the northern San Pedro shelf to nearly 10 cm/s on the southern portion of the Palos Verdes Shelf. Tidal-current amplitudes are then reduced to less than 2 cm/s over the very narrow section of the northern Palos Verdes shelf that lies just 6 km upcoast of the southern sites. Models suggest that the amplitude of the barotropic M2 tidal currents, which propagate toward the northwest primarily as a Kelvin wave, is adjusting to the short topographic length scales in the region. Semidiurnal sea-level oscillations are, as expected, independent of these topographic variations; they have a uniform amplitude and phase structure over the entire region. Because the cross-shelf angle of the seabed over most of the Palos Verdes shelf is 1 to 3 degrees, which is critical for the local generation and/or enhancement of nonlinear characteristics in semidiurnal internal tides, some internal tidal-current events have strong asymmetric current oscillations that are enhanced near the seabed. Near-bottom currents in these events are directed primarily offshore with amplitudes that exceed 30 cm/s. The spatial patterns in these energetic near-bottom currents have fairly short-length scales. They are largest over the inner shelf and in the transition region between the Palos Verdes and San Pedro shelves. This spatial pattern is similar to that found in the barotropic tidal currents. Because these baroclinic currents have an approximate tidal frequency, an asymmetric vertical structure, and a somewhat stable phase, they can produce a non-zero depth-mean flow for periods of a few months. These baroclinic currents can interact with the barotropic tidal current and cause an apparent increase (or decrease) in the estimated barotropic tidal-current amplitude. The apparent amplitude of the barotropic tidal current may change by 30 to 80 percent or more in a current record that is less than three months long. The currents and surficial sediments in this region are in dynamic equilibrium in that the spatial patterns in bottom stresses generated by near-bed currents from surface tides, internal tides, and internal bores partly control the spatial patterns in the local sediments. Coarser sediments are found in the regions with enhanced bottom stresses (that is, over the inner shelf and in the region between the Palos Verdes and San Pedro shelves). Finer sediments are found over the northwestern portion of the Palos Verdes shelf, where near-bottom currents are relatively weak. The nonlinear asymmetries in the i

  10. The frequency and properties of young tidal dwarf galaxies in nearby gas-rich groups

    NASA Astrophysics Data System (ADS)

    Lee-Waddell, K.; Spekkens, K.; Chandra, P.; Patra, N.; Cuillandre, J.-C.; Wang, J.; Haynes, M. P.; Cannon, J.; Stierwalt, S.; Sick, J.; Giovanelli, R.

    2016-08-01

    We present high-resolution Giant Metrewave Radio Telescope (GMRT) H I observations and deep Canada-France-Hawaii Telescope (CFHT) optical imaging of two galaxy groups: NGC 4725/47 and NGC 3166/9. These data are part of a multi-wavelength unbiased survey of the gas-rich dwarf galaxy populations in three nearby interacting galaxy groups. The NGC 4725/47 group hosts two tidal knots and one dwarf irregular galaxy (dIrr). Both tidal knots are located within a prominent H I tidal tail, appear to have sufficient mass (Mgas ≈ 108 M⊙) to evolve into long-lived tidal dwarf galaxies (TDGs) and are fairly young in age. The NGC 3166/9 group contains a TDG candidate, AGC 208457, at least three dIrrs and four H I knots. Deep CFHT imaging confirms that the optical component of AGC 208457 is bluer - with a 0.28 mag g - r colour - and a few Gyr younger than its purported parent galaxies. Combining the results for these groups with those from the NGC 871/6/7 group reported earlier, we find that the H I properties, estimated stellar ages and baryonic content of the gas-rich dwarfs clearly distinguish tidal features from their classical counterparts. We optimistically identify four potentially long-lived tidal objects associated with three separate pairs of interacting galaxies, implying that TDGs are not readily produced during interaction events as suggested by some recent simulations. The tidal objects examined in this survey also appear to have a wider variety of properties than TDGs of similar mass formed in current simulations of interacting galaxies, which could be the result of pre- or post-formation environmental influences.

  11. The osmoregulatory effects of rearing Mozambique tilapia in a tidally changing salinity.

    PubMed

    Moorman, Benjamin P; Inokuchi, Mayu; Yamaguchi, Yoko; Lerner, Darren T; Grau, E Gordon; Seale, Andre P

    2014-10-01

    The native distribution of Mozambique tilapia, Oreochromis mossambicus, is characterized by estuarine areas subject to salinity variations between fresh water (FW) and seawater (SW) with tidal frequency. Osmoregulation in the face of changing environmental salinity is largely mediated through the neuroendocrine system and involves the activation of ion uptake and extrusion mechanisms in osmoregulatory tissues. We compared plasma osmolality, plasma prolactin (PRL), pituitary PRL mRNA, and mRNA of branchial ion pumps, transporters, channels, and PRL receptors in tilapia reared in FW, SW, brackish water (BW) and in tidally-changing salinity, which varied between FW (TF) and SW (TS) every 6h. Plasma PRL was higher in FW tilapia than in SW, BW, TF, and TS tilapia. Unlike tilapia reared in FW or SW, fish in salinities that varied tidally showed no correlation between plasma osmolality and PRL. In FW fish, gene expression of PRL receptor 1 (PRLR1), Na(+)/Cl(-) cotransporter (NCC), aquaporin 3 (AQP3) and two isoforms of Na(+)/K(+)-ATPase (NKA α1a and NKA α1b) was higher than that of SW, BW or tidally-changing salinity fish. Gene expression of the Na(+)/K(+)/2Cl(-) cotransporter (NKCC1a), and the cystic fibrosis transmembrane conductance regulator (CFTR) were higher in fish in SW, BW or a tidally-changing salinity than in FW fish. Immunocytochemistry revealed that ionocytes of fish in tidally-changing salinities resemble ionocytes of SW fish. This study indicated that tilapia reared in a tidally-changing salinity can compensate for large changes in external osmolality while maintaining osmoregulatory parameters within a narrow range closer to that observed in SW-acclimated fish. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. SEMI-DIURNAL SEICHING IN A SHALLOW, MICRO-TIDAL LAGOONAL ESTUARY. (R826938,R828677C001)

    EPA Science Inventory

    Abstract

    Analysis of current meter data in the Neuse River Estuary (NRE) associates over half of the along channel velocity variance with roughly the semi-diurnal frequency band. Velocity in this frequency range is episodic, has a typical magnitude of 10 cm s...

  13. Strong-field tidal distortions of rotating black holes. III. Embeddings in hyperbolic three-space

    NASA Astrophysics Data System (ADS)

    Penna, Robert F.; Hughes, Scott A.; O'Sullivan, Stephen

    2017-09-01

    In previous work, we developed tools for quantifying the tidal distortion of a black hole's event horizon due to an orbiting companion. These tools use techniques which require large mass ratios (companion mass μ much smaller than black hole mass M ), but can be used for arbitrary bound orbits and for any black hole spin. We also showed how to visualize these distorted black holes by embedding their horizons in a global Euclidean three-space, E3. Such visualizations illustrate interesting and important information about horizon dynamics. Unfortunately, we could not visualize black holes with spin parameter a*>√{3 }/2 ≈0.866 : such holes cannot be globally embedded into E3. In this paper, we overcome this difficulty by showing how to embed the horizons of tidally distorted Kerr black holes in a hyperbolic three-space, H3. We use black hole perturbation theory to compute the Gaussian curvatures of tidally distorted event horizons, from which we build a two-dimensional metric of their distorted horizons. We develop a numerical method for embedding the tidally distorted horizons in H3. As an application, we give a sequence of embeddings into H3 of a tidally interacting black hole with spin a*=0.9999 . A small-amplitude, high-frequency oscillation seen in previous work shows up particularly clearly in these embeddings.

  14. Comparison of different functional EIT approaches to quantify tidal ventilation distribution.

    PubMed

    Zhao, Zhanqi; Yun, Po-Jen; Kuo, Yen-Liang; Fu, Feng; Dai, Meng; Frerichs, Inez; Möller, Knut

    2018-01-30

    The aim of the study was to examine the pros and cons of different types of functional EIT (fEIT) to quantify tidal ventilation distribution in a clinical setting. fEIT images were calculated with (1) standard deviation of pixel time curve, (2) regression coefficients of global and local impedance time curves, or (3) mean tidal variations. To characterize temporal heterogeneity of tidal ventilation distribution, another fEIT image of pixel inspiration times is also proposed. fEIT-regression is very robust to signals with different phase information. When the respiratory signal should be distinguished from the heart-beat related signal, or during high-frequency oscillatory ventilation, fEIT-regression is superior to other types. fEIT-tidal variation is the most stable image type regarding the baseline shift. We recommend using this type of fEIT image for preliminary evaluation of the acquired EIT data. However, all these fEITs would be misleading in their assessment of ventilation distribution in the presence of temporal heterogeneity. The analysis software provided by the currently available commercial EIT equipment only offers either fEIT of standard deviation or tidal variation. Considering the pros and cons of each fEIT type, we recommend embedding more types into the analysis software to allow the physicians dealing with more complex clinical applications with on-line EIT measurements.

  15. Accuracy of tidal volume delivered by home mechanical ventilation during mouthpiece ventilation

    PubMed Central

    Prigent, Helene; Falaize, Line; Leroux, Karl; Santos, Dante; Vaugier, Isabelle; Orlikowski, David; Lofaso, Frederic

    2016-01-01

    The aim of our study was to evaluate efficacy and reliability of currently available ventilators for mouthpiece ventilation (MPV). Five life-support home ventilators were assessed in a bench test using different settings simulating the specificities of MPV, such as intermittent circuit disconnection and presence of continuous leaks. The intermittent disconnection of the circuit caused relevant swings in the delivered tidal volume (VT), showing a VT overshoot during the disconnection periods and a VT decrease when the interface was reconnected to the test lung. The five ventilators showed substantial differences in the number of respiratory cycles necessary to reach a stable VT in the volume-controlled setting, ranging from 1.3 ± 0.6 to 7.3 ± 1.2 cycles. These differences were less accentuated in the volume-assisted setting (MPV-dedicated mode, when available). Our data show large differences in the capacity of the different ventilators to deal with the rapidly changing respiratory load features that characterize MPV, which can be further accentuated according to the used ventilator setting. The dedicated MPV modes allow improvement in the performance of ventilators only in some defined situations. This has practical consequences for the choice of the ventilator to be used for MPV in a specific patient. PMID:27146811

  16. Earth Rotation Parameters from DSN VLBI: 1993

    NASA Technical Reports Server (NTRS)

    Steppe, J.; Oliveau, S.; Sovers, O.

    1993-01-01

    This year we have introduced several modeling improvements, including estimating a parametric model for the mearly-diurnal and nearly-semidiurnal tidal frequency variations of UTI and polar motion, and estimating site velocities.

  17. Novel approach to the exploitation of the tidal energy. Volume 1: Summary and discussion

    NASA Astrophysics Data System (ADS)

    Gorlov, A. M.

    1981-12-01

    The hydropneumatic concept in the approach to harnessing low tidal hydropower is discussed. The energy of water flow is converted into the energy of an air jet by a specialized air chamber which is placed on the ocean floor across a flowing watercourse. Water passes through the chamber where it works as a natural piston compressing air in the upper part of the closure. Compressed air is used as a new working plenum to drive air turbines. The kinetic energy of an air jet provided by the air chamber is sufficient for stable operation of industrial air turbines. It is possible to use light plastic barriers instead of conventional rigid dams (the water sail concept). It is confirmed that the concept can result in a less expensive and more effective tidal power plant project than the conventional hydroturbine approach.

  18. Blind Compressed Sensing Enables 3-Dimensional Dynamic Free Breathing Magnetic Resonance Imaging of Lung Volumes and Diaphragm Motion.

    PubMed

    Bhave, Sampada; Lingala, Sajan Goud; Newell, John D; Nagle, Scott K; Jacob, Mathews

    2016-06-01

    The objective of this study was to increase the spatial and temporal resolution of dynamic 3-dimensional (3D) magnetic resonance imaging (MRI) of lung volumes and diaphragm motion. To achieve this goal, we evaluate the utility of the proposed blind compressed sensing (BCS) algorithm to recover data from highly undersampled measurements. We evaluated the performance of the BCS scheme to recover dynamic data sets from retrospectively and prospectively undersampled measurements. We also compared its performance against that of view-sharing, the nuclear norm minimization scheme, and the l1 Fourier sparsity regularization scheme. Quantitative experiments were performed on a healthy subject using a fully sampled 2D data set with uniform radial sampling, which was retrospectively undersampled with 16 radial spokes per frame to correspond to an undersampling factor of 8. The images obtained from the 4 reconstruction schemes were compared with the fully sampled data using mean square error and normalized high-frequency error metrics. The schemes were also compared using prospective 3D data acquired on a Siemens 3 T TIM TRIO MRI scanner on 8 healthy subjects during free breathing. Two expert cardiothoracic radiologists (R1 and R2) qualitatively evaluated the reconstructed 3D data sets using a 5-point scale (0-4) on the basis of spatial resolution, temporal resolution, and presence of aliasing artifacts. The BCS scheme gives better reconstructions (mean square error = 0.0232 and normalized high frequency = 0.133) than the other schemes in the 2D retrospective undersampling experiments, producing minimally distorted reconstructions up to an acceleration factor of 8 (16 radial spokes per frame). The prospective 3D experiments show that the BCS scheme provides visually improved reconstructions than the other schemes do. The BCS scheme provides improved qualitative scores over nuclear norm and l1 Fourier sparsity regularization schemes in the temporal blurring and spatial blurring categories. The qualitative scores for aliasing artifacts in the images reconstructed by nuclear norm scheme and BCS scheme are comparable.The comparisons of the tidal volume changes also show that the BCS scheme has less temporal blurring as compared with the nuclear norm minimization scheme and the l1 Fourier sparsity regularization scheme. The minute ventilation estimated by BCS for tidal breathing in supine position (4 L/min) and the measured supine inspiratory capacity (1.5 L) is in good correlation with the literature. The improved performance of BCS can be explained by its ability to efficiently adapt to the data, thus providing a richer representation of the signal. The feasibility of the BCS scheme was demonstrated for dynamic 3D free breathing MRI of lung volumes and diaphragm motion. A temporal resolution of ∼500 milliseconds, spatial resolution of 2.7 × 2.7 × 10 mm, with whole lung coverage (16 slices) was achieved using the BCS scheme.

  19. Ocean tides for satellite geodesy

    NASA Technical Reports Server (NTRS)

    Dickman, S. R.

    1990-01-01

    Spherical harmonic tidal solutions have been obtained at the frequencies of the 32 largest luni-solar tides using prior theory of the author. That theory was developed for turbulent, nonglobal, self-gravitating, and loading oceans possessing realistic bathymetry and linearized bottom friction; the oceans satisfy no-flow boundary conditions at coastlines. In this theory the eddy viscosity and bottom drag coefficients are treated as spatially uniform. Comparison of the predicted degree-2 components of the Mf, P1, and M2 tides with those from numerical and satellite-based tide models allows the ocean friction parameters to be estimated at long and short periods. Using the 32 tide solutions, the frequency dependence of tidal admittance is investigated, and the validity of sideband tide models used in satellite orbit analysis is examined. The implications of admittance variability for oceanic resonances are also explored.

  20. Fortnightly modulation of San Andreas tremor and low-frequency earthquakes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van der Elst, Nicholas J.; Delorey, Andrew A.; Shelly, David R.

    Earth tides modulate tremor and low-frequency earthquakes (LFEs) on faults in the vicinity of the brittle-ductile (seismic-aseismic) transition. Our response to the tidal stress carries otherwise inaccessible information about fault strength and rheology. We analyze the LFE response to the fortnightly tide, which modulates the amplitude of the daily tidal stress over a 14-d cycle. LFE rate is highest during the waxing fortnightly tide, with LFEs most strongly promoted when the daily stress exceeds the previous peak stress by the widest margin. This pattern implies a threshold failure process, with slip initiated when stress exceeds the local fault strength. Furthermore,more » variations in sensitivity to the fortnightly modulation may reflect the degree of stress concentration on LFE-producing brittle asperities embedded within an otherwise aseismic fault.« less

  1. Fortnightly modulation of San Andreas tremor and low-frequency earthquakes

    DOE PAGES

    van der Elst, Nicholas J.; Delorey, Andrew A.; Shelly, David R.; ...

    2016-07-18

    Earth tides modulate tremor and low-frequency earthquakes (LFEs) on faults in the vicinity of the brittle-ductile (seismic-aseismic) transition. Our response to the tidal stress carries otherwise inaccessible information about fault strength and rheology. We analyze the LFE response to the fortnightly tide, which modulates the amplitude of the daily tidal stress over a 14-d cycle. LFE rate is highest during the waxing fortnightly tide, with LFEs most strongly promoted when the daily stress exceeds the previous peak stress by the widest margin. This pattern implies a threshold failure process, with slip initiated when stress exceeds the local fault strength. Furthermore,more » variations in sensitivity to the fortnightly modulation may reflect the degree of stress concentration on LFE-producing brittle asperities embedded within an otherwise aseismic fault.« less

  2. Inferring fault rheology from low-frequency earthquakes on the San Andreas

    USGS Publications Warehouse

    Beeler, Nicholas M.; Thomas, Amanda; Bürgmann, Roland; Shelly, David R.

    2013-01-01

    Families of recurring low-frequency earthquakes (LFEs) within nonvolcanic tremor (NVT) on the San Andreas fault in central California show strong sensitivity to shear stress induced by the daily tidal cycle. LFEs occur at all levels of the tidal shear stress and are in phase with the very small, ~400 Pa, stress amplitude. To quantitatively explain the correlation, we use a model from the existing literature that assumes the LFE sources are small, persistent regions that repeatedly fail during shear of a much larger scale, otherwise aseismically creeping fault zone. The LFE source patches see tectonic loading, creep of the surrounding fault which may be modulated by the tidal stress, and direct tidal loading. If the patches are small relative to the surrounding creeping fault then the stressing is dominated by fault creep, and if patch failure occurs at a threshold stress, then the resulting seismicity rate is proportional to the fault creep rate or fault zone strain rate. Using the seismicity rate as a proxy for strain rate and the tidal shear stress, we fit the data with possible fault rheologies that produce creep in laboratory experiments at temperatures of 400 to 600°C appropriate for the LFE source depth. The rheological properties of rock-forming minerals for dislocation creep and dislocation glide are not consistent with the observed fault creep because strong correlation between small stress perturbations and strain rate requires perturbation on the order of the ambient stress. The observed tidal modulation restricts ambient stress to be at most a few kilopascal, much lower than rock strength. A purely rate dependent friction is consistent with the observations only if the product of the friction rate dependence and effective normal stress is ~ 0.5 kPa. Extrapolating the friction rate strengthening dependence of phyllosilicates (talc) to depth would require the effective normal stress to be ~50 kPa, implying pore pressure is lithostatic. If the LFE source is on the order of tens of meters, as required by the model, rate-weakening friction rate dependence (e.g., olivine) at 400 to 600°C requires that the minimum effective pressure at the LFE source is ~ 2.5 MPa.

  3. Shore erosion as a sediment source to the tidal Potomac River, Maryland and Virginia

    USGS Publications Warehouse

    Miller, Andrew J.

    1987-01-01

    The shoreline of the tidal Potomac River attained its present form as a result of the Holocene episode of sea-level rise; the drowned margins of the system are modified by wave activity in the shore zone and by slope processes on banks steepened by basal-wave erosion. Shore erosion leaves residual sand and gravel in shallow water and transports silt and clay offshore to form a measurable component of the suspended-sediment load of the tidal Potomac River. Erosion rates were measured by comparing digitized historical shoreline maps and modern maps, and by comparing stereopairs of aerial photographs taken at different points in time, with the aid of an interactive computer-graphics system and a digitizing stereoplotter. Cartographic comparisons encompassed 90 percent of the study reach and spanned periods of 38 to 109 years, with most measurements spanning at least 84 years. Photogrammetric comparisons encompassed 49 percent of the study reach and spanned 16 to 40 years. Field monitoring of erosion rates and processes at two sites, Swan Point Neck, Maryland, and Mason Neck, Virginia, spanned periods of 10 to 18 months. Estimated average recession rates of shoreline in the estuary, based on cartographic and photogrammetric measurements, were 0.42 to 0.52 meter per annum (Virginia shore) and 0.31 to 0.41 meter per annum (Maryland shore). Average recession rates of shoreline in the tidal river and transition zone were close to 0.15 meter per annum. Estimated average volume-erosion rates along the estuary were 1.20 to 1.87 cubic meters per meter of shoreline per annum (Virginia shore) and 0.56 to 0.73 cubic meter per meter of shoreline per annum (Maryland shore); estimated average volume-erosion rates along the shores of the tidal river and transition zone were 0.55 to 0.74 cubic meter per meter of shoreline per annum. Estimated total sediment contributed to the tidal Potomac River by shore erosion was 0.375 x 10 6 to 0.565 x 10 6 metric tons per annum; of this, the estimated amount of silt and clay ranged from 0.153x10 6 to 0.226x10 6 metric tons per annum. Between 49 and 60 percent of the sediment was derived from the Virginia shore of the estuary; 14 to 18 percent was derived from the Maryland shore of the estuary; and 23 to 36 percent was derived from the shores of the tidal river and transition zone. The adjusted modern estimate of sediment eroded from the shoreline of the estuary is about 55 percent of the historical estimate. Sediment eroded from the shoreline accounted for about 6 to 9 percent of the estimated total suspended load for the tidal Potomac River during water years 1979 through 1981 and for about 11 to 18 percent of the suspended load delivered to the estuary during the same period. Annual suspended-sediment loads derived from upland source areas fluctuated by about an order of magnitude during the 3 years of record (1979-81); shore erosion may have been a more important component of the sediment budget during periods of low flow than during periods of higher discharges. Prior to massive land clearance during the historical period of intensive agriculture in the 18th and 19th centuries, annual sediment loads from upland sources probably were smaller than they are at present; under these circumstances shore erosion would have been an important component of the sediment budget. At current rates of sediment supply, relative sea-level rise, and shoreline recession, the landward parts of the tidal Potomac River are rapidly being filled by sediment. If these rates were to remain constant over time, and no sediment were to escape into Chesapeake Bay, the tidal river and transition zone would be filled within 600 years, and the total system would be filled in less than 4,000 years. Given a slower rate of sediment supply, comparable to the measured rate during the low-flow 1981 water year, the volume of the tidal Potomac River might remain relatively stable or even increase over time. Changes in rates

  4. Time stability of spring and superconducting gravimeters through the analysis of very long gravity records

    NASA Astrophysics Data System (ADS)

    Calvo, Marta; Hinderer, Jacques; Rosat, Severine; Legros, Hilaire; Boy, Jean-Paul; Ducarme, Bernard; Zürn, Walter

    2014-10-01

    Long gravity records are of great interest when performing tidal analyses. Indeed, long series enable to separate contributions of near-frequency waves and also to detect low frequency signals (e.g. long period tides and polar motion). In addition to the length of the series, the quality of the data and the temporal stability of the noise are also very important. We study in detail some of the longest gravity records available in Europe: 3 data sets recorded with spring gravimeters in Black Forest Observatory (Germany, 1980-2012), Walferdange (Luxemburg, 1980-1995) and Potsdam (Germany, 1974-1998) and several superconducting gravimeters (SGs) data sets, with at least 9 years of continuous records, at different European GGP (Global Geodynamics Project) sites (Bad Homburg, Brussels, Medicina, Membach, Moxa, Vienna, Wettzell and Strasbourg). The stability of each instrument is investigated using the temporal variations of tidal parameters (amplitude factor and phase difference) for the main tidal waves (O1, K1, M2 and S2) as well as the M2/O1 factor ratio, the later being insensitive to the instrumental calibration. The long term stability of the tidal observations is also dependent on the stability of the scale factor of the relative gravimeters. Therefore we also check the time stability of the scale factor for the superconducting gravimeter C026 installed at the J9 Gravimetric Observatory of Strasbourg (France), using numerous calibration experiments carried out by co-located absolute gravimeter (AG) measurements during the last 15 years. The reproducibility of the scale factor and the achievable precision are investigated by comparing the results of different calibration campaigns. Finally we present a spectrum of the 25 years of SG records at J9 Observatory, with special attention to small amplitude tides in the semi-diurnal and diurnal bands, as well as to the low frequency part.

  5. An Organochronology and Deep History of a North Carolina Tidal Marsh

    NASA Astrophysics Data System (ADS)

    Morris, J. T.; Kemp, A.; Horton, B.

    2016-12-01

    Tidal marshes have survived for millennia in a dynamic equilibrium with sea level. A record of their history can be found in the sediments underlying modern marshes. Since the industrial revolution the rate of relative sea-level rise has been increasing and the equilibrium is changing. To reconstruct the history of these marshes we analyzed a 1000 year record of soil organic matter content (SOM) from Tump Point, Cedar Island, North Carolina. SOM concentration is a function of the standing biomass at the time of its creation, its subsequent preservation, and annual input of inorganic matter. SOM and inorganic concentration determine the soil bulk density and volume. The standing biomass, sediment organic matter input, and consequent carbon sequestration are functions of hydroperiod or, by proxy, the paleo-marsh elevation (PME) below mean high water. The annual input of inorganic matter is determined by the depth, duration, and frequency of flooding, concentration of total suspended solids (TSS), and settling velocity. Using an inverse modeling technique we were able to solve the Marsh Equilibrium Model (MEM) for PME and relative sea level that would have resulted in the observed SOM chronologies. The TSS was inferred from the accretion rates derived from dated core sections. Consistent with foraminifera-derived relative sea-level reconstructions, the MEM-derived rate of SLR doubled after 1700 CE compared with the previous 900 years, and the PME has declined and is approaching the lower limit of the vegetation. We estimate that C-sequestration prior to 1260 varied between 15 and 40 (average 30) g C m-2 y-1, but has since declined to a range of 5 to 33 (average 16) g C m-2 y-1. The decline in carbon sequestration can be attributed to the acceleration in rate of sea-level rise and is a trend that probably will characterize most tidal wetlands in the future.

  6. The Ultrasonic Directional Tidal Breathing Pattern Sensor: Equitable Design Realization Based on Phase Information

    PubMed Central

    Sinharay, Arijit; Rakshit, Raj; Chakravarty, Tapas; Ghosh, Deb; Pal, Arpan

    2017-01-01

    Pulmonary ailments are conventionally diagnosed by spirometry. The complex forceful breathing maneuver as well as the extreme cost of spirometry renders it unsuitable in many situations. This work is aimed to facilitate an emerging direction of tidal breathing-based pulmonary evaluation by designing a novel, equitable, precise and portable device for acquisition and analysis of directional tidal breathing patterns, in real time. The proposed system primarily uses an in-house designed blow pipe, 40-kHz air-coupled ultrasound transreceivers, and a radio frequency (RF) phase-gain integrated circuit (IC). Moreover, in order to achieve high sensitivity in a cost-effective design philosophy, we have exploited the phase measurement technique, instead of selecting the contemporary time-of-flight (TOF) measurement; since application of the TOF principle in tidal breathing assessments requires sub-micro to nanosecond time resolution. This approach, which depends on accurate phase measurement, contributed to enhanced sensitivity using a simple electronics design. The developed system has been calibrated using a standard 3-L calibration syringe. The parameters of this system are validated against a standard spirometer, with maximum percentage error below 16%. Further, the extracted respiratory parameters related to tidal breathing have been found to be comparable with relevant prior works. The error in detecting respiration rate only is 3.9% compared to manual evaluation. These encouraging insights reveal the definite potential of our tidal breathing pattern (TBP) prototype for measuring tidal breathing parameters in order to extend the reach of affordable healthcare in rural regions and developing areas. PMID:28800103

  7. Modeling tides and their influence on the circulation in Prince William Sound, Alaska

    NASA Astrophysics Data System (ADS)

    Wang, Xiaochun; Chao, Yi; Zhang, Hongchun; Farrara, John; Li, Zhijin; Jin, Xin; Park, Kyungeen; Colas, Francois; McWilliams, James C.; Paternostro, Chris; Shum, C. K.; Yi, Yuchan; Schoch, Carl; Olsson, Peter

    2013-07-01

    In the process of developing a real-time data-assimilating coastal ocean forecasting system for Prince William Sound, Alaska, tidal signal was added to a three-domain nested model for the region. The model, which is configured from the Regional Ocean Modeling System (ROMS), has 40 levels in the vertical direction and horizontal resolutions of 10.6km, 3.6km and 1.2km for its three nested domains, respectively. In the present research, the ROMS tidal solution was validated using data from coastal tide gauges, satellite altimeters, high-frequency coastal radars, and Acoustic Doppler Current Profiler (ADCP) current surveys. The error of barotropic tides, as measured by the total root mean square discrepancy of eight major tidal constituents is 5.3cm, or 5.6% of the tidal sea surface height variability in the open ocean. Along the coastal region, the total discrepancy is 9.6cm, or 8.2% of the tidal sea surface height variability. Model tidal currents agree reasonably well with the observations. The influence of tides on the circulation was also investigated using numerical experiments. Besides tides, other types of forcing fields (heat flux, wind stress, evaporation minus precipitation, and freshwater discharge) were also included in the model. Our results indicate that tides play a significant role in shaping the mean circulation of the region. For the summer months, the tidal residual circulation tends to generate a cyclonic gyre in the central Sound. The net transport into the Sound through Hinchinbrook Entrance is reduced. Tides also increase the mixed layer depth in the Sound, especially during the winter months.

  8. Early pictures of global climate change impact to the coastal area (North West of Demak Central Java Indonesia)

    NASA Astrophysics Data System (ADS)

    Andreas, Heri; Pradipta, Dhota; Abidin, Hasanuddin Z.; Sarsito, Dina A.

    2017-07-01

    In the last several decades we have been realized for the Global Climate Change situation. Some indicators are worldwide increasing temperature, decreasing volume of ice in Antarctica, and the sea level rise. Relating to the decreased of ice volume and the sea level rise, this situation has been predicted to endanger the living at the coastal area in the future. Prediction models have shown some coastal cities area would suffer flood by tidal inundation and even permanent flooding. Coincidently, today in the North West of Demak District Central Java Indonesia we literally can see the early picture of Global Climate Change impact to the coastal areas as mention. The occurrence of tidal inundation in this area was recognized at least in the early 2000 and even earlier, and in the recent years the tidal inundation comes not only at a high tide but even at the regular tide, and in fact some of this area are obviously sinking to the sea through times. This early picture is truly showing a disaster. Adaptation has been made in facing the disaster such as increasing the house and infrastructures, and built dyke. We have been done some investigations to this area by field observations (mapping the flooded area, interviewing people and seeing the adaptations, conduct GPS measurement to see deformation, etc.), gather information from digital media and also using remotely time series of high resolution satellite image data to mapping the tidal inundation in this area. We noted people increased their house and the local goverment elevated the road and the bridge, etc. regulary over less decade periode. Our conclusions said that the adaptation only made temporaly since the sea level keep rising worsening by the land subsidence significantly.

  9. Tidal volume single breath washout of two tracer gases--a practical and promising lung function test.

    PubMed

    Singer, Florian; Stern, Georgette; Thamrin, Cindy; Fuchs, Oliver; Riedel, Thomas; Gustafsson, Per; Frey, Urs; Latzin, Philipp

    2011-03-10

    Small airway disease frequently occurs in chronic lung diseases and may cause ventilation inhomogeneity (VI), which can be assessed by washout tests of inert tracer gas. Using two tracer gases with unequal molar mass (MM) and diffusivity increases specificity for VI in different lung zones. Currently washout tests are underutilised due to the time and effort required for measurements. The aim of this study was to develop and validate a simple technique for a new tidal single breath washout test (SBW) of sulfur hexafluoride (SF(6)) and helium (He) using an ultrasonic flowmeter (USFM). The tracer gas mixture contained 5% SF(6) and 26.3% He, had similar total MM as air, and was applied for a single tidal breath in 13 healthy adults. The USFM measured MM, which was then plotted against expired volume. USFM and mass spectrometer signals were compared in six subjects performing three SBW. Repeatability and reproducibility of SBW, i.e., area under the MM curve (AUC), were determined in seven subjects performing three SBW 24 hours apart. USFM reliably measured MM during all SBW tests (n = 60). MM from USFM reflected SF(6) and He washout patterns measured by mass spectrometer. USFM signals were highly associated with mass spectrometer signals, e.g., for MM, linear regression r-squared was 0.98. Intra-subject coefficient of variation of AUC was 6.8%, and coefficient of repeatability was 11.8%. The USFM accurately measured relative changes in SF(6) and He washout. SBW tests were repeatable and reproducible in healthy adults. We have developed a fast, reliable, and straightforward USFM based SBW method, which provides valid information on SF(6) and He washout patterns during tidal breathing.

  10. Tidal Volume Single Breath Washout of Two Tracer Gases - A Practical and Promising Lung Function Test

    PubMed Central

    Singer, Florian; Stern, Georgette; Thamrin, Cindy; Fuchs, Oliver; Riedel, Thomas; Gustafsson, Per; Frey, Urs; Latzin, Philipp

    2011-01-01

    Background Small airway disease frequently occurs in chronic lung diseases and may cause ventilation inhomogeneity (VI), which can be assessed by washout tests of inert tracer gas. Using two tracer gases with unequal molar mass (MM) and diffusivity increases specificity for VI in different lung zones. Currently washout tests are underutilised due to the time and effort required for measurements. The aim of this study was to develop and validate a simple technique for a new tidal single breath washout test (SBW) of sulfur hexafluoride (SF6) and helium (He) using an ultrasonic flowmeter (USFM). Methods The tracer gas mixture contained 5% SF6 and 26.3% He, had similar total MM as air, and was applied for a single tidal breath in 13 healthy adults. The USFM measured MM, which was then plotted against expired volume. USFM and mass spectrometer signals were compared in six subjects performing three SBW. Repeatability and reproducibility of SBW, i.e., area under the MM curve (AUC), were determined in seven subjects performing three SBW 24 hours apart. Results USFM reliably measured MM during all SBW tests (n = 60). MM from USFM reflected SF6 and He washout patterns measured by mass spectrometer. USFM signals were highly associated with mass spectrometer signals, e.g., for MM, linear regression r-squared was 0.98. Intra-subject coefficient of variation of AUC was 6.8%, and coefficient of repeatability was 11.8%. Conclusion The USFM accurately measured relative changes in SF6 and He washout. SBW tests were repeatable and reproducible in healthy adults. We have developed a fast, reliable, and straightforward USFM based SBW method, which provides valid information on SF6 and He washout patterns during tidal breathing. PMID:21423739

  11. The physiological basis and clinical significance of lung volume measurements.

    PubMed

    Lutfi, Mohamed Faisal

    2017-01-01

    From a physiological standpoint, the lung volumes are either dynamic or static. Both subclasses are measured at different degrees of inspiration or expiration; however, dynamic lung volumes are characteristically dependent on the rate of air flow. The static lung volumes/capacities are further subdivided into four standard volumes (tidal, inspiratory reserve, expiratory reserve, and residual volumes) and four standard capacities (inspiratory, functional residual, vital and total lung capacities). The dynamic lung volumes are mostly derived from vital capacity. While dynamic lung volumes are essential for diagnosis and follow up of obstructive lung diseases, static lung volumes are equally important for evaluation of obstructive as well as restrictive ventilatory defects. This review intends to update the reader with the physiological basis, clinical significance and interpretative approaches of the standard static lung volumes and capacities.

  12. The ocean response at multiple space and time scales to tidal stream energy extraction by a large-scale turbine array.

    NASA Astrophysics Data System (ADS)

    De Dominicis, Michela; O'Hara Murray, Rory; Wolf, Judith

    2017-04-01

    A comprehensive assessment of the tidal energy resource realistically available for electricity generation and the study of the potential environmental impacts associated with its extraction in the Pentland Firth (Scottish Waters, UK) are presented. In order to examine both local (< 100 km) and region-wide (>100 km) spatial scales, the Scottish Shelf Model (SSM), an unstructured grid three-dimensional FVCOM (Finite Volume Community Ocean Model) model implementation has been used, since it covers the entire NW European Shelf, with a high resolution where the tidal stream energy is extracted. A large theoretical array of tidal stream turbines has been designed and implemented in the model using the momentum sink approach, in which a momentum sink term represents the loss of momentum due to tidal energy extraction. The estimate of the maximum available power for electricity generation from the Pentland Firth is 1.64 GW, which requires thousands of turbines to be deployed. This estimate takes into account the tidal stream energy extraction feedbacks on the flow and considers, for the first time, the realistic operation of a generic tidal stream turbine, which is limited to operate in a range of flow velocities due to technological constraints. The ocean response to the extraction of 1.64 GW of energy has been examined by comparing a typical annual cycle of the NW European Shelf hydrodynamics reproduced by the SSM with the same period perturbed by tidal stream energy extraction. The changes were analysed at the temporal scale of a spring-neap tidal cycle and, for the first time, on longer term seasonal timescales. Tidal elevation mainly increases in the vicinity of the tidal farm, while far-field effects show a decrease in the mean spring tidal range of the order of 2 cm along the whole east coast of the UK, possibly counteracting some part of the predicted sea level rise due to climate change. Marine currents, both tidal and residual flows, are also affected. They can slow down due to the turbines action or speed up due to flow diversion processes, on both a local and regional scale. The strongest signal in tidal velocities is an overall reduction, which can in turn decrease the energy of tidal mixing and perturb the seasonal stratification on the NW European Shelf. Although the strength of summer water stratification has been found to slightly increase, the extent of the stratified region does not greatly change, thus suggesting the enhanced biological and pelagic biodiversity hotspots, e.g. tidal mixing front locations, are not displaced. Such large scale tidal stream energy extraction is unlikely to occur in the near future, but such potential changes should be considered when planning future tidal energy exploitation. It is likely that large scale developments around the NW European shelf will interact and could, for example, intensify or weaken the changes predicted here, or even be used as mitigation measures (e.g. coastal defence) for other changes (e.g. climate change).

  13. Tidal, Residual, Intertidal Mudflat (TRIM) Model and its Applications to San Francisco Bay, California

    USGS Publications Warehouse

    Cheng, R.T.; Casulli, V.; Gartner, J.W.

    1993-01-01

    A numerical model using a semi-implicit finite-difference method for solving the two-dimensional shallow-water equations is presented. The gradient of the water surface elevation in the momentum equations and the velocity divergence in the continuity equation are finite-differenced implicitly, the remaining terms are finite-differenced explicitly. The convective terms are treated using an Eulerian-Lagrangian method. The combination of the semi-implicit finite-difference solution for the gravity wave propagation, and the Eulerian-Lagrangian treatment of the convective terms renders the numerical model unconditionally stable. When the baroclinic forcing is included, a salt transport equation is coupled to the momentum equations, and the numerical method is subject to a weak stability condition. The method of solution and the properties of the numerical model are given. This numerical model is particularly suitable for applications to coastal plain estuaries and tidal embayments in which tidal currents are dominant, and tidally generated residual currents are important. The model is applied to San Francisco Bay, California where extensive historical tides and current-meter data are available. The model calibration is considered by comparing time-series of the field data and of the model results. Alternatively, and perhaps more meaningfully, the model is calibrated by comparing the harmonic constants of tides and tidal currents derived from field data with those derived from the model. The model is further verified by comparing the model results with an independent data set representing the wet season. The strengths and the weaknesses of the model are assessed based on the results of model calibration and verification. Using the model results, the properties of tides and tidal currents in San Francisco Bay are characterized and discussed. Furthermore, using the numerical model, estimates of San Francisco Bay's volume, surface area, mean water depth, tidal prisms, and tidal excursions at spring and neap tides are computed. Additional applications of the model reveal, qualitatively the spatial distribution of residual variables. ?? 1993 Academic Press. All rights reserved.

  14. REDUCTION IN INSPIRATORY FLOW ATTENUATES IL-8 RELEASE AND MAPK ACTIVATION OF LUNG OVERSTRETCH

    EPA Science Inventory

    Lung overstretch involves mechanical factors, including large tidal volumes (VT), which induce inflammatory responses. The current authors hypothesised that inspiratory flow contributes to ventilator-induced inflammation. Buffer-perfused rabbit lungs were ventilated for 2 h with ...

  15. Tidal waves within the thermosphere. [emphasizing wave dissipation and diffusion

    NASA Technical Reports Server (NTRS)

    Volland, H.; Mayr, H. G.

    1974-01-01

    The eigenfunctions of the atmosphere (the Hough functions within the lower atmosphere below about 100 km) change their structure and their propagation characteristics within the thermosphere due to dissipation effects such as heat conduction, viscosity, and ion drag. Wave dissipation can be parameterized to a first-order approximation by a complex frequency, the imaginary term of which simulates an effective ion drag force. It is shown how the equivalent depth, the attenuation, and the vertical wavelength of the predominant symmetric diurnal tidal modes change with height as functions of effective ion drag. The boundary conditions of tidal waves are discussed, and asymptotic solutions for the wave parameters like pressure, density, temperature, and wind generated by a heat input proportional to the mean pressure are given. Finally, diffusion effects upon the minor constituents within the thermosphere are described.

  16. FINITE ELEMENT MODEL FOR TIDES AND CURRENTS WITH FIELD APPLICATIONS.

    USGS Publications Warehouse

    Walters, Roy A.

    1988-01-01

    A finite element model, based upon the shallow water equations, is used to calculate tidal amplitudes and currents for two field-scale test problems. Because tides are characterized by line spectra, the governing equations are subjected to harmonic decomposition. Thus the solution variables are the real and imaginary parts of the amplitude of sea level and velocity rather than a time series of these variables. The time series is recovered through synthesis. This scheme, coupled with a modified form of the governing equations, leads to high computational efficiency and freedom from excessive numerical noise. Two test-cases are presented. The first is a solution for eleven tidal constituents in the English Channel and southern North Sea, and three constituents are discussed. The second is an analysis of the frequency response and tidal harmonics for south San Francisco Bay.

  17. A Spatially Based Area–Time Inundation Index Model Developed to Assess Habitat Opportunity in Tidal–Fluvial Wetlands and Restoration Sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coleman, Andre M.; Diefenderfer, Heida L.; Ward, Duane L.

    The hydrodynamics of tidal wetland areas in the lower Columbia River floodplain and estuary directly affect habitat opportunity for endangered salmonid fishes. Physical and biological structures and functions in the system are directly affected by inundation patterns influenced by tidal cycles, hydropower operations, river discharge, upriver water withdrawals, climate, and physical barriers such as dikes, culverts, and tide gates. Ongoing ecosystem restoration efforts are intended to increase the opportunity for salmon to access beneficial habitats by hydrologically reconnecting main-stem river channels and diked areas within the historical floodplain. To address the need to evaluate habitat opportunity, a geographic information system-basedmore » Area-Time Inundation Index Model (ATIIM) was developed. The ATIIM integrates in situ or modeled hourly water-surface elevation (WSE) data and advanced terrain processing of high-resolution elevation data. The ATIIM uses a spatially based wetted-area algorithm to determine site average bankfull elevation, two- and three-dimensional inundation extent, and other site metrics. Hydrological process metrics such as inundation frequency, duration, maximum area, and maximum frequency area can inform evaluation of proposed restoration sites; e.g., determine trade-offs between WSE and habitat opportunity, contrast alternative restoration designs, predict impacts of altered flow regimes, and estimate nutrient and biomass fluxes. In an adaptive management framework, this model can be used to provide standardized site comparisons and effectiveness monitoring of changes in the developmental trajectories of restoration sites. Results are presented for 11 wetlands representative of tidal marshes, tidal forested wetlands, and restoration sites.« less

  18. Tidal Forcing of Low Frequency Earthquakes in Northern Cascadia and Implications for Plate Boundary Properties

    NASA Astrophysics Data System (ADS)

    Royer, A. A.; Thomas, A.; Bostock, M. G.

    2013-12-01

    In this work, we analyze the influence of ocean and body tides on the triggering of low frequency earthquakes on southern Vancouver Island. We cull the original data set of Bostock et al (2012) to 69 LFE families representing 84000 independent detections made between 2003 and 2012. The sensitivities of these LFE families to the tidally induced fault-normal stress (FNS), up-dip shear stress (UDSS) and the corresponding time derivatives dFNS and dUDSS are computed and their geographic variability is mapped. LFE families in a region of high slab curvature centered near 48.43 N, 123.83 W show strongest correlation to tidal forcing during periods of positive and increasing UDSS. These families also occur preferentially on the up-dip portion of the tremor distribution, as has been reported for Shikoku. Due to the particular geometry of the region, UDSS and FNS are strongly anticorrelated leading to strong correlation of LFE occurrence with negative and decreasing FNS. By analyzing the phase of LFE failure times relative to tidal load, we observe a general preferential failure at times of moderate, positive UDSS and moderate, positive dUDSS for LFE families in the region of highest slab curvature. LFEs appear to be triggered by shear stress modulation that would imply a low effective stress in the region due such as high pore fluid pressure as already documented in the study area. Ongoing work will incorporate the analysis of data to the south of Vancouver Island in Washington state.

  19. A classification of U.S. estuaries based on physical and hydrologic attributes

    USGS Publications Warehouse

    Engle, V.D.; Kurtz, J.C.; Smith, L.M.; Chancy, C.; Bourgeois, P.

    2007-01-01

    A classification of U.S. estuaries is presented based on estuarine characteristics that have been identified as important for quantifying stressor-response relationships in coastal systems. Estuaries within a class have similar physical and hydrologic characteristics and would be expected to demonstrate similar biological responses to stressor loads from the adjacent watersheds. Nine classes of estuaries were identified by applying cluster analysis to a database for 138 U.S. estuarine drainage areas. The database included physical measures of estuarine areas, depth and volume, as well as hydrologic parameters (i.e., tide height, tidal prism volume, freshwater inflow rates, salinity, and temperature). The ability of an estuary to dilute or flush pollutants can be estimated using physical and hydrologic properties such as volume, bathymetry, freshwater inflow and tidal exchange rates which influence residence time and affect pollutant loading rates. Thus, physical and hydrologic characteristics can be used to estimate the susceptibility of estuaries to pollutant effects. This classification of estuaries can be used by natural resource managers to describe and inventory coastal systems, understand stressor impacts, predict which systems are most sensitive to stressors, and manage and protect coastal resources. ?? Springer Science+Business Media B.V. 2007.

  20. Ventilation practices in the neonatal intensive care unit: a cross-sectional study.

    PubMed

    van Kaam, Anton H; Rimensberger, Peter C; Borensztajn, Dorine; De Jaegere, Anne P

    2010-11-01

    To assess current ventilation practices in newborn infants. We conducted a 2-point cross-sectional study in 173 European neonatal intensive care units, including 535 infants (mean gestational age 28 weeks and birth weight 1024 g). Patient characteristics, ventilator settings, and measurements were collected bedside from endotracheally ventilated infants. A total of 457 (85%) patients were conventionally ventilated. Time cycled pressure-limited ventilation was used in 59% of these patients, most often combined with synchronized intermittent mandatory ventilation (51%). Newer conventional ventilation modes like volume targeted and pressure support ventilation were used in, respectively, 9% and 7% of the patients. The mean tidal volume, measured in 84% of the conventionally ventilated patients, was 5.7 ± 2.3 ml/kg. The mean positive end-expiratory pressure was 4.5 ± 1.1 cmH(2)O and rarely exceeded 7 cmH(2)O. Time cycled pressure-limited ventilation is the most commonly used mode in neonatal ventilation. Tidal volumes are usually targeted between 4 to 7 mL/kg and positive end-expiratory pressure between 4 to 6 cmH(2)O. Newer ventilation modes are only used in a minority of patients. Copyright © 2010 Mosby, Inc. All rights reserved.

  1. Strong ocean tidal flow and heating on moons of the outer planets.

    PubMed

    Tyler, Robert H

    2008-12-11

    Data from recent space missions have added strong support for the idea that there are liquid oceans on several moons of the outer planets, with Jupiter's moon Europa having received the most attention. But given the extremely cold surface temperatures and meagre radiogenic heat sources of these moons, it is still unclear how these oceans remain liquid. The prevailing conjecture is that these oceans are heated by tidal forces that flex the solid moon (rock plus ice) during its eccentric orbit, and that this heat entering the ocean does not rapidly escape because of the insulating layer of ice over the ocean surface. Here, however, I describe strong tidal dissipation (and heating) in the liquid oceans; I show that a subdominant and previously unconsidered tidal force due to obliquity (axial tilt of the moon with respect to its orbital plane) has the right form and frequency to resonantly excite large-amplitude Rossby waves in these oceans. In the specific case of Europa, the minimum kinetic energy of the flow associated with this resonance (7.3 x 10(18) J) is two thousand times larger than that of the flow excited by the dominant tidal forces, and dissipation of this energy seems large enough to be a primary ocean heat source.

  2. A quasi-experimental, before-after trial examining the impact of an emergency department mechanical ventilator protocol on clinical outcomes and lung-protective ventilation in acute respiratory distress syndrome

    PubMed Central

    Fuller, Brian M.; Ferguson, Ian T.; Mohr, Nicholas M.; Drewry, Anne M.; Palmer, Christopher; Wessman, Brian T.; Ablordeppey, Enyo; Keeperman, Jacob; Stephens, Robert J.; Briscoe, Cristopher C.; Kolomiets, Angelina A.; Hotchkiss, Richard S.; Kollef, Marin H.

    2017-01-01

    Objective To evaluate the impact of an emergency department (ED) mechanical ventilation protocol on clinical outcomes and adherence to lung-protective ventilation in patients with acute respiratory distress syndrome (ARDS). Design Quasi-experimental, before-after trial. Setting ED and intensive care units (ICU) of an academic center. Patients Mechanically ventilated ED patients experiencing ARDS while in the ED or after admission to the ICU. Interventions An ED ventilator protocol which targeted parameters in need of quality improvement, as identified by prior work: 1) lung-protective tidal volume; 2) appropriate setting of positive end-expiratory pressure (PEEP); 3) oxygen weaning; and 4) head-of-bed elevation. Measurements and Main Results A total of 229 patients (186 pre-intervention group, 43 intervention group) were studied. In the ED, the intervention was associated with significant changes (P < 0.01 for all) in tidal volume, PEEP, respiratory rate, oxygen administration, and head-of-bed elevation. There was a reduction in ED tidal volume from 8.1 mL/kg PBW (7.0 – 9.1) to 6.4 mL/kg PBW (6.1 – 6.7), and an increase in lung-protective ventilation from 11.1% to 61.5%, P < 0.01. The intervention was associated with a reduction in mortality from 54.8% to 39.5% (OR 0.38, 95% CI 0.17 – 0.83, P = 0.02), and a 3.9 day increase in ventilator-free days, P = 0.01. Conclusions This before-after study of mechanically ventilated patients with ARDS demonstrates that implementing a mechanical ventilator protocol in the ED is feasible, and associated with improved clinical outcomes. PMID:28157140

  3. Ventilatory baroreflex sensitivity in humans is not modulated by chemoreflex activation

    PubMed Central

    Rivera, Eileen; Clarke, Debbie A.; Baugham, Ila L.; Ocon, Anthony J.; Taneja, Indu; Terilli, Courtney; Medow, Marvin S.

    2011-01-01

    Increasing arterial blood pressure (AP) decreases ventilation, whereas decreasing AP increases ventilation in experimental animals. To determine whether a “ventilatory baroreflex” exists in humans, we studied 12 healthy subjects aged 18–26 yr. Subjects underwent baroreflex unloading and reloading using intravenous bolus sodium nitroprusside (SNP) followed by phenylephrine (“Oxford maneuver”) during the following “gas conditions:” room air, hypoxia (10% oxygen)-eucapnia, and 30% oxygen-hypercapnia to 55–60 Torr. Mean AP (MAP), heart rate (HR), cardiac output (CO), total peripheral resistance (TPR), expiratory minute ventilation (VE), respiratory rate (RR), and tidal volume were measured. After achieving a stable baseline for gas conditions, we performed the Oxford maneuver. VE increased from 8.8 ± 1.3 l/min in room air to 14.6 ± 0.8 l/min during hypoxia and to 20.1 ± 2.4 l/min during hypercapnia, primarily by increasing tidal volume. VE doubled during SNP. CO increased from 4.9 ± .3 l/min in room air to 6.1 ± .6 l/min during hypoxia and 6.4 ± .4 l/min during hypercapnia with decreased TPR. HR increased for hypoxia and hypercapnia. Sigmoidal ventilatory baroreflex curves of VE versus MAP were prepared for each subject and each gas condition. Averaged curves for a given gas condition were obtained by averaging fits over all subjects. There were no significant differences in the average fitted slopes for different gas conditions, although the operating point varied with gas conditions. We conclude that rapid baroreflex unloading during the Oxford maneuver is a potent ventilatory stimulus in healthy volunteers. Tidal volume is primarily increased. Ventilatory baroreflex sensitivity is unaffected by chemoreflex activation, although the operating point is shifted with hypoxia and hypercapnia. PMID:21317304

  4. Face mask ventilation in edentulous patients: a comparison of mandibular groove and lower lip placement.

    PubMed

    Racine, Stéphane X; Solis, Audrey; Hamou, Nora Ait; Letoumelin, Philippe; Hepner, David L; Beloucif, Sadek; Baillard, Christophe

    2010-05-01

    In edentulous patients, it may be difficult to perform face mask ventilation because of inadequate seal with air leaks. Our aim was to ascertain whether the "lower lip" face mask placement, as a new face mask ventilation method, is more effective at reducing air leaks than the standard face mask placement. Forty-nine edentulous patients with inadequate seal and air leak during two-hand positive-pressure ventilation using the ventilator circle system were prospectively evaluated. In the presence of air leaks, defined as a difference of at least 33% between inspired and expired tidal volumes, the mask was placed in a lower lip position by repositioning the caudal end of the mask above the lower lip while maintaining the head in extension. The results are expressed as mean +/- SD or median (25th-75th percentiles). Patient characteristics included age (71 +/- 11 yr) and body mass index (24 +/- 4 kg/m2). By using the standard method, the median inspired and expired tidal volumes were 450 ml (400-500 ml) and 0 ml (0-50 ml), respectively, and the median air leak was 400 ml (365-485 ml). After placing the mask in the lower lip position, the median expired tidal volume increased to 400 ml (380-490), and the median air leak decreased to 10 ml (0-20 ml) (P < 0.001 vs. standard method). The lower lip face mask placement with two hands reduced the air leak by 95% (80-100%). In edentulous patients with inadequate face mask ventilation, the lower lip face mask placement with two hands markedly reduced the air leak and improved ventilation.

  5. Visual attention on a respiratory function monitor during simulated neonatal resuscitation: an eye-tracking study.

    PubMed

    Katz, Trixie A; Weinberg, Danielle D; Fishman, Claire E; Nadkarni, Vinay; Tremoulet, Patrice; Te Pas, Arjan B; Sarcevic, Aleksandra; Foglia, Elizabeth E

    2018-06-14

    A respiratory function monitor (RFM) may improve positive pressure ventilation (PPV) technique, but many providers do not use RFM data appropriately during delivery room resuscitation. We sought to use eye-tracking technology to identify RFM parameters that neonatal providers view most commonly during simulated PPV. Mixed methods study. Neonatal providers performed RFM-guided PPV on a neonatal manikin while wearing eye-tracking glasses to quantify visual attention on displayed RFM parameters (ie, exhaled tidal volume, flow, leak). Participants subsequently provided qualitative feedback on the eye-tracking glasses. Level 3 academic neonatal intensive care unit. Twenty neonatal resuscitation providers. Visual attention: overall gaze sample percentage; total gaze duration, visit count and average visit duration for each displayed RFM parameter. Qualitative feedback: willingness to wear eye-tracking glasses during clinical resuscitation. Twenty providers participated in this study. The mean gaze sample captured wa s 93% (SD 4%). Exhaled tidal volume waveform was the RFM parameter with the highest total gaze duration (median 23%, IQR 13-51%), highest visit count (median 5.17 per 10 s, IQR 2.82-6.16) and longest visit duration (median 0.48 s, IQR 0.38-0.81 s). All participants were willing to wear the glasses during clinical resuscitation. Wearable eye-tracking technology is feasible to identify gaze fixation on the RFM display and is well accepted by providers. Neonatal providers look at exhaled tidal volume more than any other RFM parameter. Future applications of eye-tracking technology include use during clinical resuscitation. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  6. Sonographic assessment of changes in diaphragmatic kinetics induced by inspiratory resistive loading.

    PubMed

    Soilemezi, Eleni; Tsagourias, Matthew; Talias, Michael A; Soteriades, Elpidoforos S; Makrakis, Vasilios; Zakynthinos, Epaminondas; Matamis, Dimitrios

    2013-04-01

    Diaphragmatic breathing patterns under resistive loading remain poorly documented. To our knowledge, this is the first study assessing diaphragmatic motion under conditions of inspiratory resistive loading with the use of sonography. We assessed diaphragmatic motion during inspiratory resistive loading in 40 healthy volunteers using M-mode sonography. In phase I of the study, sonography was performed during normal quiet breathing without respiratory loading. In phase II, sonography was performed after application of a nose clip and connection of the subjects to a pneumotachograph through a mouth piece. In phase III, the participants were assessed while subjected to inspiratory resistive loading of 50 cm H(2)O/L/s. Compared with baseline, the application of a mouth piece and nose clip induced a significant increase in diaphragmatic excursion (from 1.7 to 2.3 cm, P < 0.001) and a decrease in respiratory rate (from 13.4 to 12.2, P < 0.01). Inspiratory resistive loading induced a further decrease in respiratory rate (from 12.2 to 8.0, P < 0.01) and a decrease in diaphragmatic velocity contraction (from 1.2 to 0.8 cm/s, P < 0.01), and also an increase in tidal volume (from 795 to 904 mL, P < 0.01); diaphragmatic excursion, however, did not change significantly. Inspiratory resistive loading induced significant changes in diaphragmatic contraction pattern, which mainly consisted of decreased velocity of diaphragmatic displacement with no change in diaphragmatic excursion. Tidal volume, increased significantly; the increase in tidal volume, along with the unchanged diaphragmatic excursion, provides sonographic evidence of increased recruitment of extradiaphragmatic muscles under inspiratory resistive loading. © 2013 The Authors. Respirology © 2013 Asian Pacific Society of Respirology.

  7. A Quasi-Experimental, Before-After Trial Examining the Impact of an Emergency Department Mechanical Ventilator Protocol on Clinical Outcomes and Lung-Protective Ventilation in Acute Respiratory Distress Syndrome.

    PubMed

    Fuller, Brian M; Ferguson, Ian T; Mohr, Nicholas M; Drewry, Anne M; Palmer, Christopher; Wessman, Brian T; Ablordeppey, Enyo; Keeperman, Jacob; Stephens, Robert J; Briscoe, Cristopher C; Kolomiets, Angelina A; Hotchkiss, Richard S; Kollef, Marin H

    2017-04-01

    To evaluate the impact of an emergency department mechanical ventilation protocol on clinical outcomes and adherence to lung-protective ventilation in patients with acute respiratory distress syndrome. Quasi-experimental, before-after trial. Emergency department and ICUs of an academic center. Mechanically ventilated emergency department patients experiencing acute respiratory distress syndrome while in the emergency department or after admission to the ICU. An emergency department ventilator protocol which targeted variables in need of quality improvement, as identified by prior work: 1) lung-protective tidal volume, 2) appropriate setting of positive end-expiratory pressure, 3) oxygen weaning, and 4) head-of-bed elevation. A total of 229 patients (186 preintervention group, 43 intervention group) were studied. In the emergency department, the intervention was associated with significant changes (p < 0.01 for all) in tidal volume, positive end-expiratory pressure, respiratory rate, oxygen administration, and head-of-bed elevation. There was a reduction in emergency department tidal volume from 8.1 mL/kg predicted body weight (7.0-9.1) to 6.4 mL/kg predicted body weight (6.1-6.7) and an increase in lung-protective ventilation from 11.1% to 61.5%, p value of less than 0.01. The intervention was associated with a reduction in mortality from 54.8% to 39.5% (odds ratio, 0.38; 95% CI, 0.17-0.83; p = 0.02) and a 3.9 day increase in ventilator-free days, p value equals to 0.01. This before-after study of mechanically ventilated patients with acute respiratory distress syndrome demonstrates that implementing a mechanical ventilator protocol in the emergency department is feasible and associated with improved clinical outcomes.

  8. A description of intraoperative ventilator management in patients with acute lung injury and the use of lung protective ventilation strategies.

    PubMed

    Blum, James M; Maile, Michael; Park, Pauline K; Morris, Michelle; Jewell, Elizabeth; Dechert, Ronald; Rosenberg, Andrew L

    2011-07-01

    The incidence of acute lung injury (ALI) in hypoxic patients undergoing surgery is currently unknown. Previous studies have identified lung protective ventilation strategies that are beneficial in the treatment of ALI. The authors sought to determine the incidence and examine the use of lung protective ventilation strategies in patients receiving anesthetics with a known history of ALI. The ventilation parameters that were used in all patients were reviewed, with an average preoperative PaO₂/Fio₂ [corrected] ratio of ≤ 300 between January 1, 2005 and July 1, 2009. This dataset was then merged with a dataset of patients screened for ALI. The median tidal volume, positive end-expiratory pressure, peak inspiratory pressures, fraction inhaled oxygen, oxygen saturation, and tidal volumes were compared between groups. A total of 1,286 patients met criteria for inclusion; 242 had a diagnosis of ALI preoperatively. Comparison of patients with ALI versus those without ALI found statistically yet clinically insignificant differences between the ventilation strategies between the groups in peak inspiratory pressures and positive end-expiratory pressure but no other category. The tidal volumes in cc/kg predicted body weight were approximately 8.7 in both groups. Peak inspiratory pressures were found to be 27.87 cm H₂O on average in the non-ALI group and 29.2 in the ALI group. Similar ventilation strategies are used between patients with ALI and those without ALI. These findings suggest that anesthesiologists are not using lung protective ventilation strategies when ventilating patients with low PaO₂/Fio₂ [corrected] ratios and ALI, and instead are treating hypoxia and ALI with higher concentrations of oxygen and peak pressures.

  9. Noninvasive estimation of pharyngeal airway resistance and compliance in children based on volume-gated dynamic MRI and computational fluid dynamics.

    PubMed

    Persak, Steven C; Sin, Sanghun; McDonough, Joseph M; Arens, Raanan; Wootton, David M

    2011-12-01

    Computational fluid dynamics (CFD) analysis was used to model the effect of collapsing airway geometry on internal pressure and velocity in the pharyngeal airway of three sedated children with obstructive sleep apnea syndrome (OSAS) and three control subjects. Model geometry was reconstructed from volume-gated magnetic resonance images during normal tidal breathing at 10 increments of tidal volume through the respiratory cycle. Each geometry was meshed with an unstructured grid and solved using a low-Reynolds number k-ω turbulence model driven by flow data averaged over 12 consecutive breathing cycles. Combining gated imaging with CFD modeling created a dynamic three-dimensional view of airway anatomy and mechanics, including the evolution of airway collapse and flow resistance and estimates of the local effective compliance. The upper airways of subjects with OSAS were generally much more compliant during tidal breathing. Compliance curves (pressure vs. cross-section area), derived for different locations along the airway, quantified local differences along the pharynx and between OSAS subjects. In one subject, the distal oropharynx was more compliant than the nasopharynx (1.028 vs. 0.450 mm(2)/Pa) and had a lower theoretical limiting flow rate, confirming the distal oropharynx as the flow-limiting segment of the airway in this subject. Another subject had a more compliant nasopharynx (0.053 mm(2)/Pa) during inspiration and apparent stiffening of the distal oropharynx (C = 0.0058 mm(2)/Pa), and the theoretical limiting flow rate indicated the nasopharynx as the flow-limiting segment. This new method may help to differentiate anatomical and functional factors in airway collapse.

  10. Pumpless extracorporeal interventional lung assist in patients with acute respiratory distress syndrome: a prospective pilot study.

    PubMed

    Zimmermann, Markus; Bein, Thomas; Arlt, Matthias; Philipp, Alois; Rupprecht, Leopold; Mueller, Thomas; Lubnow, Matthias; Graf, Bernhard M; Schlitt, Hans J

    2009-01-01

    Pumpless interventional lung assist (iLA) is used in patients with acute respiratory distress syndrome (ARDS) aimed at improving extracorporeal gas exchange with a membrane integrated in a passive arteriovenous shunt. In previous studies, feasibility and safety of the iLA system was demonstrated, but no survival benefit was observed. In the present pilot study we tested the hypothesis that timely initiation of iLA using clear algorithms and an improved cannulation technique will positively influence complication rates and management of lung protective ventilation. iLA was implemented in 51 patients from multiple aetiologies meeting ARDS-criteria (American-European Consensus) for more than 12 hours. Initiation of iLA followed an algorithm for screening, careful evaluation and insertion technique. Patients with cardiac insufficiency or severe peripheral vascular disease were not considered suitable for iLA. Arterial and venous cannulae were inserted using a new strategy (ultrasound evaluation of vessels by an experienced team, using cannulae of reduced diameter). The incidence of complications and the effects on tidal volumes and inspiratory plateau pressures were primary outcome parameters, while oxygenation improvement and carbon dioxide removal capabilities were secondary study parameters. Initiation of iLA resulted in a marked removal in arterial carbon dioxide allowing a rapid reduction in tidal volume (

  11. Analysis and Assessment of Tidal Flood Potential at Different Locations in the East Coast of India

    NASA Astrophysics Data System (ADS)

    Bhagawati, Chirantan; Shaileshbhai Patel, Ramkrushnbhai; Pandey, Suchita; Chakraborty, Arun; Jayanarayanan, Kuttippurath

    2016-04-01

    Sea water inundation has always remained a major problem for human civilization in coastal regions. Increase in the frequency of severe to very severe cyclones in Bay of Bengal has made the Eastern Coast of India highly vulnerable for sea water inundation. Tidal effect has a significant contribution to coastal inundation. Wood (1976) proposed a Combined Astronomical Meteorological Index (CAMI) to quantify the risk of tidal flooding due to astronomical tides as well as meteorological parameters. This study deals with the analysis of major tidal components and the changes in sea level as observed from the tidal gauge records of Visakhapatnam, Chennai and Ennore situated in the East Coast of India. The study envisages to analyse (1) tidal characteristics observed at different stations by using Harmonic analysis, (2) to synthesise the missing tidal information using Artificial Neural Network (ANN) and wavelet analyses, (3) to quantify the diurnal as well as seasonal trends in sea level, and (4) to assess the tidal flooding potential at the sites by using the CAMI under different meteorological conditions. The harmonic analysis of Visakhapatnam, Chennai and Ennore shows that Principal Lunar Semidiurnal (M2) is dominant tidal constituent in all three stations. The Form Number (FN) obtained for Visakhapatnam (17.69N 83.27E), Chennai (13.08N 80.29E) and Ennore (13.25N 80.33E) are 0.14, 0.29 and 0.33 respectively. FN of these stations indicates semidiurnal nature of tide in Visakhapatnam and mixed tide in Chennai and Ennore. The monthly fluctuations of sea level in Visakhapatnam from January to July 2014 show that the sea level tends to decrease at a rate of 0.2 m from January to March and then it starts to rise upto May with a similar rate. The network prediction finds high correlation (R=0.9684) between the observed and the target values of ANN. Finally, we also assess the coastal vulnaberility by tidal flooding at the time of perigean spring tide based on the sea level trend and the astronomical parameters combined with various meteorological parameters and conditions during extreme weather events.

  12. Tidal Energy Conversion Installation at an Estuarine Bridge Site: Resource Evaluation and Energy Production Estimate

    NASA Astrophysics Data System (ADS)

    Wosnik, M.; Gagnon, I.; Baldwin, K.; Bell, E.

    2015-12-01

    The "Living Bridge" project aims to create a self-diagnosing, self-reporting "smart bridge" powered by a local renewable energy source, tidal energy - transforming Memorial Bridge, a vertical lift bridge over the tidal Piscataqua River connecting Portsmouth, NH and Kittery, ME, into a living laboratory for researchers, engineers, scientists, and the community. The Living Bridge project includes the installation of a tidal turbine at the Memorial Bridge. The energy converted by the turbine will power structural health monitoring, environmental and underwater instrumentation. Utilizing locally available tidal energy can make bridge operation more sustainable, can "harden" transportation infrastructure against prolonged grid outages and can demonstrate a prototype of an "estuarine bridge of the future". A spatio-temporal tidal energy resource assessment was performed using long term bottom-deployed Acoustic Doppler Current Profilers (ADCP) at two locations: near the planned deployment location in 2013-14 for 123 days and mid-channel in 2007 for 35 days. Data were evaluated to determine the amount of available kinetic energy that can be converted into usable electrical energy on the bridge. Changes in available kinetic energy with ebb/flood and spring/neap tidal cycles and electrical energy demand were analyzed. The target deployment site exhibited significantly more energetic ebb tides than flood tides, which can be explained by the local bathymetry of the tidal estuary. A system model is used to calculate the net energy savings using various tidal generator and battery bank configurations. Different resource evaluation methodologies were also analyzed, e.g., using a representative ADCP "bin" vs. a more refined, turbine-geometry-specific methodology, and using static bin height vs. bin height that move w.r.t. the free surface throughout a tidal cycle (representative of a bottom-fixed or floating turbine deployment, respectively). ADCP operating frequencies and bin sizes affect the standard deviation of measurements, and measurement uncertainties are evaluated. The planned installation, consisting of a vertical axis turbine with the generator above water, mounted to a floating platform, and underwater instrumentation will be outlined. Supported by NSF-IIP 1430260

  13. Tidal Impacts on Oceanographic and Sea-ice Processes in the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Padman, L.; Muench, R. D.; Howard, S.; Mueller, R.

    2008-12-01

    We review recent field and modeling results that demonstrate the importance of tides in establishing the oceanographic and sea-ice conditions in the boundary regions of the Southern Ocean. The tidal component dominates the total oceanic kinetic energy throughout much of the circum-Antarctic seas. This domination is especially pronounced over the continental slope and shelf including the sub-ice-shelf cavities. Tides provide most of the energy that forces diapycnal mixing under ice shelves and thereby contributes to basal melting. The resulting Ice Shelf Water is a significant component of the Antarctic Bottom Water (AABW) filling much of the deep global ocean. Tides exert significant divergent forcing on sea ice along glacial ice fronts and coastal regions, contributing to creation and maintenance of the coastal polynyas where much of the High Salinity Shelf Water component of AABW is formed. Additional tidally forced ice divergence along the shelf break and upper slope significantly impacts area-averaged ice growth and upper-ocean salinity. Tidally forced cross- slope advection, and mixing by the benthic stress associated with tidal currents along the shelf break and upper slope, strongly influence the paths, volume fluxes and hydrographic properties of benthic outflows of dense water leaving the continental shelf. These outflows provide primary source waters for the AABW. These results confirm that general ocean circulation and coupled ocean/ice/atmosphere climate models must incorporate the impacts of tides.

  14. Effect of menstrual cycle phase on the ventilatory response to rising body temperature during exercise.

    PubMed

    Hayashi, Keiji; Kawashima, Takayo; Suzuki, Yuichi

    2012-07-01

    To examine the effect of menstrual cycle on the ventilatory sensitivity to rising body temperature, ten healthy women exercised for ~60 min on a cycle ergometer at 50% of peak oxygen uptake during the follicular and luteal phases of their cycle. Esophageal temperature, mean skin temperature, mean body temperature, minute ventilation, and tidal volume were all significantly higher at baseline and during exercise in the luteal phase than the follicular phase. On the other hand, end-tidal partial pressure of carbon dioxide was significantly lower during exercise in the luteal phase than the follicular phase. Plotting ventilatory parameters against esophageal temperature revealed there to be no significant menstrual cycle-related differences in the slopes or intercepts of the regression lines, although minute ventilation and tidal volume did significantly differ during exercise with mild hyperthermia. To evaluate the cutaneous vasodilatory response, relative laser-Doppler flowmetry values were plotted against mean body temperature, which revealed that the mean body temperature threshold for cutaneous vasodilation was significantly higher in the luteal phase than the follicular phase, but there were no significant differences in the sensitivity or peak values. These results suggest that the menstrual cycle phase influences the cutaneous vasodilatory response during exercise and the ventilatory response at rest and during exercise with mild hyperthermia, but it does not influence ventilatory responses during exercise with moderate hyperthermia.

  15. Morphodynamics of a tidal ridge system in the southwestern Yellow Sea: HF radar study

    NASA Astrophysics Data System (ADS)

    Zhong, Yao-Zhao; Li, Yan; Wu, Xiong-Bin; Gao, Shu; Zhou, Tao; Wang, Ya Ping; Gao, Jian-Hua

    2018-06-01

    A radial tidal ridge system is present throughout the coastal waters of the southwestern Yellow Sea (China) with varied and complicated ridges and channels between them. A newly designed ground-wave high-frequency (HF radar), with full-coverage and high spatial-temporal resolution, was employed in this study to measure the surface currents and bathymetric features correlated wave celerity in the study area from July 17 to August 6, 2011. We found that the spatial distribution pattern of the tidal channels is generally stable with periodic adjustments during a spring-neap tidal cycle and with higher degree of spatial orderliness from neap to spring tides than from spring to neap tides; the nearshore part of the channels is most stable in lateral, the middle part is relatively lateral unstable, and the offshore part changes complicatedly; flood-dominated channels and ebb-dominated ridges are identified using HF radar signals. The horizontal Kelvin number (Keh) is workable in lateral stability evaluation. This study reveals the potential of HF radar in morphodynamic studies on shallow coastal waters.

  16. Tidal Love and Shida numbers estimated by geodetic VLBI.

    PubMed

    Krásná, Hana; Böhm, Johannes; Schuh, Harald

    2013-10-01

    Frequency-dependent Love and Shida numbers, which characterize the Earth response to the tidal forces, were estimated in a global adjustment of all suitable geodetic Very Long Baseline Interferometry (VLBI) sessions from 1984.0 to 2011.0. Several solutions were carried out to determine the Love and Shida numbers for the tidal constituents at periods in the diurnal band and in the long-period band in addition to values of the Love and Shida numbers common for all tides of degree two. Adding up all twelve diurnal tidal waves that were estimated, the total differences in displacement with respect to the theoretical conventional values of the Love and Shida numbers calculated from an Earth model reach 1.73 ± 0.29 mm in radial direction and 1.15 ± 0.15 mm in the transverse plane. The difference in the radial deformation following from the estimates of the zonal Love numbers is largest for the semi-annual tide S sa with 1.07 ± 0.19 mm.

  17. Tidal Love and Shida numbers estimated by geodetic VLBI☆

    PubMed Central

    Krásná, Hana; Böhm, Johannes; Schuh, Harald

    2013-01-01

    Frequency-dependent Love and Shida numbers, which characterize the Earth response to the tidal forces, were estimated in a global adjustment of all suitable geodetic Very Long Baseline Interferometry (VLBI) sessions from 1984.0 to 2011.0. Several solutions were carried out to determine the Love and Shida numbers for the tidal constituents at periods in the diurnal band and in the long-period band in addition to values of the Love and Shida numbers common for all tides of degree two. Adding up all twelve diurnal tidal waves that were estimated, the total differences in displacement with respect to the theoretical conventional values of the Love and Shida numbers calculated from an Earth model reach 1.73 ± 0.29 mm in radial direction and 1.15 ± 0.15 mm in the transverse plane. The difference in the radial deformation following from the estimates of the zonal Love numbers is largest for the semi-annual tide Ssa with 1.07 ± 0.19 mm. PMID:26523082

  18. Methodology for classification of geographical features with remote sensing images: Application to tidal flats

    NASA Astrophysics Data System (ADS)

    Revollo Sarmiento, G. N.; Cipolletti, M. P.; Perillo, M. M.; Delrieux, C. A.; Perillo, Gerardo M. E.

    2016-03-01

    Tidal flats generally exhibit ponds of diverse size, shape, orientation and origin. Studying the genesis, evolution, stability and erosive mechanisms of these geographic features is critical to understand the dynamics of coastal wetlands. However, monitoring these locations through direct access is hard and expensive, not always feasible, and environmentally damaging. Processing remote sensing images is a natural alternative for the extraction of qualitative and quantitative data due to their non-invasive nature. In this work, a robust methodology for automatic classification of ponds and tidal creeks in tidal flats using Google Earth images is proposed. The applicability of our method is tested in nine zones with different morphological settings. Each zone is processed by a segmentation stage, where ponds and tidal creeks are identified. Next, each geographical feature is measured and a set of shape descriptors is calculated. This dataset, together with a-priori classification of each geographical feature, is used to define a regression model, which allows an extensive automatic classification of large volumes of data discriminating ponds and tidal creeks against other various geographical features. In all cases, we identified and automatically classified different geographic features with an average accuracy over 90% (89.7% in the worst case, and 99.4% in the best case). These results show the feasibility of using freely available Google Earth imagery for the automatic identification and classification of complex geographical features. Also, the presented methodology may be easily applied in other wetlands of the world and perhaps employing other remote sensing imagery.

  19. Stratification and loading of fecal indicator bacteria (FIB) in a tidally muted urban salt marsh.

    PubMed

    Johnston, Karina K; Dorsey, John H; Saez, Jose A

    2015-03-01

    Stratification and loading of fecal indicator bacteria (FIB) were assessed in the main tidal channel of the Ballona Wetlands, an urban salt marsh receiving muted tidal flows, to (1) determine FIB concentration versus loading within the water column at differing tidal flows, (2) identify associations of FIB with other water quality parameters, and (3) compare wetland FIB concentrations to the adjacent estuary. Sampling was conducted four times during spring-tide events; samples were analyzed for FIB and turbidity (NTU) four times over a tidal cycle at pre-allocated depths, depending on the water level. Additional water quality parameters measured included temperature, salinity, oxygen, and pH. Loadings were calculated by integrating the stratified FIB concentrations with water column cross-sectional volumes corresponding to each depth. Enterococci and Escherichia coli were stratified both by concentration and loading, although these variables portrayed different patterns over a tidal cycle. Greatest concentrations occurred in surface to mid-strata levels, during flood tides when contaminated water flowed in from the estuary, and during ebb flows when sediments were suspended. Loading was greatest during flood flows and diminished during low tide periods. FIB concentrations within the estuary often were significantly greater than those within the wetland tide channel, supporting previous studies that the wetlands act as a sink for FIB. For public health water quality monitoring, these results indicate that more accurate estimates of FIB concentrations would be obtained by sampling a number of points within a water column rather than relying only on single surface samples.

  20. Spontaneous Effort During Mechanical Ventilation: Maximal Injury With Less Positive End-Expiratory Pressure.

    PubMed

    Yoshida, Takeshi; Roldan, Rollin; Beraldo, Marcelo A; Torsani, Vinicius; Gomes, Susimeire; De Santis, Roberta R; Costa, Eduardo L V; Tucci, Mauro R; Lima, Raul G; Kavanagh, Brian P; Amato, Marcelo B P

    2016-08-01

    We recently described how spontaneous effort during mechanical ventilation can cause "pendelluft," that is, displacement of gas from nondependent (more recruited) lung to dependent (less recruited) lung during early inspiration. Such transfer depends on the coexistence of more recruited (source) liquid-like lung regions together with less recruited (target) solid-like lung regions. Pendelluft may improve gas exchange, but because of tidal recruitment, it may also contribute to injury. We hypothesize that higher positive end-expiratory pressure levels decrease the propensity to pendelluft and that with lower positive end-expiratory pressure levels, pendelluft is associated with improved gas exchange but increased tidal recruitment. Crossover design. University animal research laboratory. Anesthetized landrace pigs. Surfactant depletion was achieved by saline lavage in anesthetized pigs, and ventilator-induced lung injury was produced by ventilation with high tidal volume and low positive end-expiratory pressure. Ventilation was continued in each of four conditions: positive end-expiratory pressure (low or optimized positive end-expiratory pressure after recruitment) and spontaneous breathing (present or absent). Tidal recruitment was assessed using dynamic CT and regional ventilation/perfusion using electric impedance tomography. Esophageal pressure was measured using an esophageal balloon manometer. Among the four conditions, spontaneous breathing at low positive end-expiratory pressure not only caused the largest degree of pendelluft, which was associated with improved ventilation/perfusion matching and oxygenation, but also generated the greatest tidal recruitment. At low positive end-expiratory pressure, paralysis worsened oxygenation but reduced tidal recruitment. Optimized positive end-expiratory pressure decreased the magnitude of spontaneous efforts (measured by esophageal pressure) despite using less sedation, from -5.6 ± 1.3 to -2.0 ± 0.7 cm H2O, while concomitantly reducing pendelluft and tidal recruitment. No pendelluft was observed in the absence of spontaneous effort. Spontaneous effort at low positive end-expiratory pressure improved oxygenation but promoted tidal recruitment associated with pendelluft. Optimized positive end-expiratory pressure (set after lung recruitment) may reverse the harmful effects of spontaneous breathing by reducing inspiratory effort, pendelluft, and tidal recruitment.

Top