Science.gov

Sample records for frequency-dependent stress fiber

  1. Differential frequency-dependent antidromic resonance of the Schaffer collaterals and mossy fibers.

    PubMed

    Franco, Luis M; Beltrán, Jesús Q; Tapia, Jesús A; Ortiz, Franco; Manjarrez, Elías; Gutiérrez, Rafael

    2016-05-01

    To better understand information transfer along the hippocampal pathways and its plasticity, here we studied the antidromic responses of the dentate gyrus (DG) and CA3 to activation of the mossy fibers and Schaffer collaterals, respectively, in hippocampal slices from naïve and epileptic rats. We applied trains of 600 electrical stimuli at functionally meaningful frequencies (θ, β/γ and γ). The responses of the DG to θ frequency trains underwent rapid potentiation that lasted about 400 stimuli, after which they progressively returned to control value. At β/γ and γ frequencies, however, the initial potentiation was followed by a strong frequency-dependent depression within the first 50 stimuli. In kindled animals, the initial potentiation was stronger than in control preparations and the resonant phase at θ frequency lasted longer. In contrast, CA3 responses were exponentially depressed at all frequencies, but depression was significantly less intense at θ frequency in epileptic preparations. Failure of fibers to fire action potentials could account for some of the aforementioned characteristics, but waveforms of the intracellular action potentials also changed as the field responses did, i.e., half-duration and time-to-peak increased in both structures along the stimulation trains. Noteworthy, block of glutamate and GABA ionotropic receptors prevented resonance and reduced the depression of antidromic responses to β/γ and γ stimulation recorded in the DG, but not in CA3. We show that the different behavior in the information transfer along these pathways depends on the frequency at which action potentials are generated, excitability history and anatomical features, including myelination and tortuosity. In addition, the mossy fibers are endowed with ionotropic receptors and terminal active properties conferring them their sui generis non-passive antidromic responses.

  2. Frequency-dependent associative long-term potentiation at the hippocampal mossy fiber-CA3 synapse.

    PubMed

    Derrick, B E; Martinez, J L

    1994-10-25

    The mossy fiber-CA3 synapse displays an N-methyl-D-aspartate-receptor-independent mu-opioid-receptor-dependent form of long-term potentiation (LTP) that is thought not to display cooperativity or associativity with coactive afferents. However, because mossy fiber LTP requires repetitive synaptic activity for its induction, we reevaluated cooperativity and associativity at this synapse by using trains of mossy fiber stimulation. Moderate-, but not low-, intensity trains induced mossy fiber LTP, indicating cooperativity. Low-intensity mossy fiber trains that were normally ineffective in inducing LTP could induce mossy fiber LTP when delivered in conjunction with trains delivered to commissural-CA3 afferents. Associative mossy fiber LTP also could be induced with single mossy fiber pulses when delivered with commissural trains in the presence of a mu-opioid-receptor agonist. Our findings suggest a frequency-dependent variation of Hebbian associative LTP induction that is regulated by the release of endogenous opioid peptides.

  3. Frequency dependence of power and its implications for contractile function of muscle fibers from the digital flexors of horses

    PubMed Central

    Butcher, Michael T.; Bertram, John E.A.; Syme, Douglas A.; Hermanson, John W.; Chase, P. Bryant

    2014-01-01

    Abstract The digital flexors of horses must produce high force to support the body weight during running, and a need for these muscles to generate power is likely limited during locomotion over level ground. Measurements of power output from horse muscle fibers close to physiological temperatures, and when cyclic strain is imposed, will help to better understand the in vivo performance of the muscles as power absorbers and generators. Skinned fibers from the deep (DDF) and superficial (SDF) digital flexors, and the soleus (SOL) underwent sinusoidal oscillations in length over a range of frequencies (0.5–16 Hz) and strain amplitudes (0.01–0.06) under maximum activation (pCa 5) at 30°C. Results were analyzed using both workloop and Nyquist plot analyses to determine the ability of the fibers to absorb or generate power and the frequency dependence of those abilities. Power absorption was dominant at most cycling frequencies and strain amplitudes in fibers from all three muscles. However, small amounts of power were generated (0.002–0.05 Wkg−1) at 0.01 strain by all three muscles at relatively slow cycling frequencies: DDF (4–7 Hz), SDF (4–5 Hz) and SOL (0.5–1 Hz). Nyquist analysis, reflecting the influence of cross‐bridge kinetics on power generation, corroborated these results. The similar capacity for power generation by DDF and SDF versus lower for SOL, and the faster frequency at which this power was realized in DDF and SDF fibers, are largely explained by the fast myosin heavy chain isoform content in each muscle. Contractile function of DDF and SDF as power absorbers and generators, respectively, during locomotion may therefore be more dependent on their fiber architectural arrangement than on the physiological properties of their muscle fibers. PMID:25293602

  4. Extended parametric gain range in photonic crystal fibers with strongly frequency-dependent field distributions.

    PubMed

    Petersen, Sidsel R; Alkeskjold, Thomas T; Olausson, Christina B; Lægsgaard, Jesper

    2014-08-15

    The parametric gain range of a degenerate four-wave mixing process is determined in the undepleted pump regime. The gain range is considered with and without taking the mode field distributions of the four-wave mixing components into account. It is found that the mode field distributions have to be included to evaluate the parametric gain correctly in dispersion-tailored speciality fibers and that mode profile engineering can provide a way to increase the parametric gain range.

  5. Kinetics of stress fibers

    NASA Astrophysics Data System (ADS)

    Stachowiak, Matthew R.; O'Shaughnessy, Ben

    2008-02-01

    Stress fibers are contractile cytoskeletal structures, tensile actomyosin bundles which allow sensing and production of force, provide cells with adjustable rigidity and participate in various processes such as wound healing. The stress fiber is possibly the best characterized and most accessible multiprotein cellular contractile machine. Here we develop a quantitative model of the structure and relaxation kinetics of stress fibers. The principal experimentally known features are incorporated. The fiber has a periodic sarcomeric structure similar to muscle fibers with myosin motor proteins exerting contractile force by pulling on actin filaments. In addition the fiber contains the giant spring-like protein titin. Actin is continuously renewed by exchange with the cytosol leading to a turnover time of several minutes. In order that steady state be possible, turnover must be regulated. Our model invokes simple turnover and regulation mechanisms: actin association and dissociation occur at filament ends, while actin filament overlap above a certain threshold in the myosin-containing regions augments depolymerization rates. We use the model to study stress fiber relaxation kinetics after stimulation, as observed in a recent experimental study where some fiber regions were contractile and others expansive. We find that two distinct episodes ensue after stimulation: the turnover-overlap system relaxes rapidly in seconds, followed by the slow relaxation of sarcomere lengths in minutes. For parameter values as they have been characterized experimentally, we find the long time relaxation of sarcomere length is set by the rate at which actin filaments can grow or shrink in response to the forces exerted by the elastic and contractile elements. Consequently, the stress fiber relaxation time scales inversely with both titin spring constant and the intrinsic actin turnover rate. The model's predicted sarcomere velocities and contraction-expansion kinetics are in good

  6. Fiber networks amplify active stress

    PubMed Central

    Ronceray, Pierre; Broedersz, Chase P.

    2016-01-01

    Large-scale force generation is essential for biological functions such as cell motility, embryonic development, and muscle contraction. In these processes, forces generated at the molecular level by motor proteins are transmitted by disordered fiber networks, resulting in large-scale active stresses. Although these fiber networks are well characterized macroscopically, this stress generation by microscopic active units is not well understood. Here we theoretically study force transmission in these networks. We find that collective fiber buckling in the vicinity of a local active unit results in a rectification of stress towards strongly amplified isotropic contraction. This stress amplification is reinforced by the networks’ disordered nature, but saturates for high densities of active units. Our predictions are quantitatively consistent with experiments on reconstituted tissues and actomyosin networks and shed light on the role of the network microstructure in shaping active stresses in cells and tissue. PMID:26921325

  7. [Frequency dependance of compliance].

    PubMed

    Gayrard, P

    1975-01-01

    Resistance of peripheral or "small" airways is only a small part of the total pulmonary resistance (Raw). Even considerable obstruction in these airways will have little effect on total resistance. Conversely this will lead to inequality in the time constants of units in parallel, and dynamic lung compliance (C dyn) shall fall as respiratory frequence increases. C dyn is measured from simultaneous recordings of transpulmonary pressure (esophageal balloon) and volume obtained from a volume displacement plethysmograph. If Raw and static compliance are found to be normal, the frequency dependance of compliance will result from peripheral airway obstruction only. Early stages of chronic airway obstruction can be established by this method. However this appear not suitable for wide-scale studies.

  8. Fiber networks amplify active stress

    NASA Astrophysics Data System (ADS)

    Lenz, Martin; Ronceray, Pierre; Broedersz, Chase

    Large-scale force generation is essential for biological functions such as cell motility, embryonic development, and muscle contraction. In these processes, forces generated at the molecular level by motor proteins are transmitted by disordered fiber networks, resulting in large-scale active stresses. While fiber networks are well characterized macroscopically, this stress generation by microscopic active units is not well understood. I will present a comprehensive theoretical study of force transmission in these networks. I will show that the linear, small-force response of the networks is remarkably simple, as the macroscopic active stress depends only on the geometry of the force-exerting unit. In contrast, as non-linear buckling occurs around these units, local active forces are rectified towards isotropic contraction and strongly amplified. This stress amplification is reinforced by the networks' disordered nature, but saturates for high densities of active units. I will show that our predictions are quantitatively consistent with experiments on reconstituted tissues and actomyosin networks, and that they shed light on the role of the network microstructure in shaping active stresses in cells and tissue.

  9. Coexistence under positive frequency dependence.

    PubMed Central

    Molofsky, J.; Bever, J. D.; Antonovics, J.

    2001-01-01

    Negative frequency dependence resulting from interspecific interactions is considered a driving force in allowing the coexistence of competitors. While interactions between species and genotypes can also result in positive frequency dependence, positive frequency dependence has usually been credited with hastening the extinction of rare types and is not thought to contribute to coexistence. In the present paper, we develop a stochastic cellular automata model that allows us to vary the scale of frequency dependence and the scale of dispersal. The results of this model indicate that positive frequency dependence will allow the coexistence of two species at a greater rate than would be expected from chance. This coexistence arises from the generation of banding patterns that will be stable over long time-periods. As a result, we found that positive frequency-dependent interactions over local spatial scales promote coexistence over neutral interactions. This result was robust to variation in boundary conditions within the simulation and to variation in levels of disturbance. Under all conditions, coexistence is enhanced as the strength of positive frequency-dependent interactions is increased. PMID:11217898

  10. Isolation and Contraction of the Stress Fiber

    PubMed Central

    Katoh, Kazuo; Kano, Yumiko; Masuda, Michitaka; Onishi, Hirofumi; Fujiwara, Keigi

    1998-01-01

    Stress fibers were isolated from cultured human foreskin fibroblasts and bovine endothelial cells, and their contraction was demonstrated in vitro. Cells in culture dishes were first treated with a low-ionic-strength extraction solution and then further extracted using detergents. With gentle washes by pipetting, the nucleus and the apical part of cells were removed. The material on the culture dish was scraped, and the freed material was forced through a hypodermic needle and fractionated by sucrose gradient centrifugation. Isolated, free-floating stress fibers stained brightly with fluorescently labeled phalloidin. When stained with anti-α-actinin or anti-myosin, isolated stress fibers showed banded staining patterns. By electron microscopy, they consisted of bundles of microfilaments, and electron-dense areas were associated with them in a semiperiodic manner. By negative staining, isolated stress fibers often exhibited gentle twisting of microfilament bundles. Focal adhesion–associated proteins were also detected in the isolated stress fiber by both immunocytochemical and biochemical means. In the presence of Mg-ATP, isolated stress fibers shortened, on the average, to 23% of the initial length. The maximum velocity of shortening was several micrometers per second. Polystyrene beads on shortening isolated stress fibers rotated, indicating spiral contraction of stress fibers. Myosin regulatory light chain phosphorylation was detected in contracting stress fibers, and a myosin light chain kinase inhibitor, KT5926, inhibited isolated stress fiber contraction. Our study demonstrates that stress fibers can be isolated with no apparent loss of morphological features and that they are truly contractile organelle. PMID:9658180

  11. Considerable different frequency dependence of dynamic tensile modulus between self-heating (Joule heat) and external heating for polymer--nickel-coated carbon fiber composites.

    PubMed

    Zhang, Rong; Bin, Yuezhen; Dong, Enyuan; Matsuo, Masaru

    2014-06-26

    Dynamic tensile moduli of polyethylene--nickel-coated carbon fiber (NiCF) composites with 10 and 4 vol % NiCF contents under electrical field were measured by a homemade instrument in the frequency range of 100--0.01 Hz. The drastic descent of the storage modulus of the composite with 10 vol % was verified in lower frequency range with elevating surface temperature (T(s)) by self-heating (Joule heat). The composite was cut when T(s) was beyond 108 °C. On the other hand, the measurement of the composite with 4 vol % beyond 88 °C was impossible, since T(s) did not elevate because of the disruption of current networks. Incidentally, the dynamic tensile moduli by external heating could be measured up to 130 and 115 °C for 10 and 4 vol %, respectively, but the two composites could be elongated beyond the above temperatures. Such different properties were analyzed in terms of crystal dispersions, electrical treeing, and thermal fluctuation-induced tunneling effect.

  12. Axial residual stresses in boron fibers

    NASA Technical Reports Server (NTRS)

    Behrendt, D. R.

    1978-01-01

    The axial residual stress distribution as a function of radius was determined from the fiber surface to the core including the average residual stress in the core. Such measurements on boron on tungsten (B/W) fibers show that the residual stresses for 102, 142, 203, and 366 micron diameter fibers were similar, being compressive at the surface and changing monotonically to a region of tensile within the boron. At approximately 25 percent of the original radius, the stress reaches a maximum tensile stress of about 860 mn/sq.m and then decreases to a compressive stress near the tungsten boride core. Data were presented for 203 micron diameter B/W fibers that show annealing above 900 C reduces the residual stresses. A comparison between 102 micron diameter B/W and boron on carbon (b/C) shows that the residual stresses were similar in the outer regions of the fibers, but that large differences near and in the core were observed. The effects of these residual stresses on the fracture of boron fibers were discussed.

  13. A fiber-bridging model with stress gradient effects

    NASA Astrophysics Data System (ADS)

    Yi, Sun; Tao, Li

    2000-05-01

    A fiber-bridging model with stress gradient effects is proposed for unidirectional fiber-reinforced composites. The stress gradient terms are introduced by solving a micromechanical model under a non-uniform stress loading. It is shown that the stress gradient effect is significant on both the fiber-bridging stress distribution and the value of the critical load of fiber failure.

  14. Triboluminescent Fiber-Optic Sensors Measure Stresses

    NASA Technical Reports Server (NTRS)

    Rogowski, Robert S.

    1994-01-01

    Triboluminescence exploited in fiber-optic sensor system for measuring changes in pressures, strains, vibrations, and acoustic emissions, in structural members. Sensors embedded in members for in situ monitoring of condition of structure. System passive in sense no source of radiation required to interrogate optical fiber. Technique has potential for wide range of applications in which detection and measurement of structural stress required.

  15. Frequency dependence of organic magnetoresistance

    NASA Astrophysics Data System (ADS)

    Wang, Fujian; Rybicki, James; Lin, Ran; Hutchinson, Kent; Hou, Jia; Wohlgenannt, Markus

    2011-03-01

    Organic magnetoresistive (OMAR) devices show a large enough magnetoresistive response (typically 10%) for potential applications as magnetic field sensors. However, applications often require sensing high frequency magnetic fields, and the examination of the frequency-dependent magnetoresistive response is therefore required. Analysis of time constants that limit the frequency response may also shed light on the mechanism behind the OMAR effect, because different OMAR mechanisms occur at different time scales In our experiments, the AC magnetic field is supplied by a coil with a ferrite core which is driven by a function generator The AC magnet shows a frequency response that is almost flat up to 1MHz. We found that the OMAR frequency limit is about 10 kHz for a typical organic semiconductor device and at least 100 kHz for devices made from a doped polymer film. We also performed capacitance and conductance vs. frequency measurements to understand the origin of the observed limit frequencies. This work was supported by Army MURI under GrantNo. W911NF-08-1-0317 and NSF under Grant No. ECS 0725280.

  16. Stress In A Fiber During Curing Of Surrounding Matrix Resin

    NASA Technical Reports Server (NTRS)

    Bowles, Kenneth J.; Madhukar, Madhu S.; Kosuri, Ranga P.

    1995-01-01

    Experiments run to determine variation in tensile stress in single fiber during curing of matrix resin surrounding fiber. Study part of effort to understand physical mechanisms affecting residual stresses in matrix/fiber composites, with view toward optimizing curing cycles (in particular, optimizing temperature-vs.-time schedules of final cooldowns to ambient temperature) to minimize residual stresses. Results signify primary mechanisms affecting residual stress in fibers are thermal expansion and contraction and cure shrinkage of matrix material.

  17. A biomechanical perspective on stress fiber structure and function☆

    PubMed Central

    Kassianidou, Elena; Kumar, Sanjay

    2015-01-01

    Stress fibers are actomyosin-based bundles whose structural and contractile properties underlie numerous cellular processes including adhesion, motility and mechanosensing. Recent advances in high-resolution live-cell imaging and single-cell force measurement have dramatically sharpened our understanding of the assembly, connectivity, and evolution of various specialized stress fiber subpopulations. This in turn has motivated interest in understanding how individual stress fibers generate tension and support cellular structure and force generation. In this review, we discuss approaches for measuring the mechanical properties of single stress fibers. We begin by discussing studies conducted in cell-free settings, including strategies based on isolation of intact stress fibers and reconstitution of stress fiber-like structures from purified components. We then discuss measurements obtained in living cells based both on inference of stress fiber properties from whole-cell mechanical measurements (e.g., atomic force microscopy) and on direct interrogation of single stress fibers (e.g., subcellular laser nanosurgery). We conclude by reviewing various mathematical models of stress fiber function that have been developed based on these experimental measurements. An important future challenge in this area will be the integration of these sophisticated biophysical measurements with the field’s increasingly detailed molecular understanding of stress fiber assembly, dynamics, and signal transduction. This article is part of a Special Issue entitled: Mechanobiology. PMID:25896524

  18. Frequency-Dependent Fracture Specific Stiffness

    NASA Astrophysics Data System (ADS)

    Pyrak-Nolte, L. J.; Folz, M. A.; Acosta-Colon, A.

    2003-12-01

    Monitoring the hydraulic properties of fractures remotely through their seismic signatures is an important goal for field hydrology. Empirical studies have shown that the hydraulic properties of a fracture are implicitly related to the fracture specific stiffness through the amount and distribution of contact area and apertures that arise from two rough surfaces in contact. Complicating this simple picture are seismic measurements that indicate frequency-dependent stiffness, i.e., a scale-dependent fracture stiffness where the scale is set by the wavelength. Thus relating the hydraulic properties of fractures to seismic measurements becomes a scale dependent problem. We have performed laboratory experiments to examine the phenomenon of frequency dependent fracture specific stiffness to aid in the assessment of the hydraulic properties of a fracture using seismic techniques. To this end, we have developed a photolithographic technique with which we can construct synthetic fractures of known fracture geometry with feature sizes controlled over several orders of magnitude. The synthetic fracture (and the control non-fractured samples) are made from acrylic cylinders that measure 15.0 cm in diameter by 7.7 cm in height. The diameter of the samples enables us to sample the acoustic properties of the fracture using acoustic lens over regions that range in scale from 10 mm to 60 mm. A confinement cell controls the normal stress on the fracture. Seismic measurements were made with broadband compressional-mode piezoelectric transducers enabling one-order of magnitude in frequency. We found that when the wavelength is smaller than the asperity size, a linear dependence of fracture specific stiffness on frequency occurs. In this geometric ray regime the asymptotic value of the transmission function provides a direct measure of the contact area of the fracture. On the other hand, when the asperity spacing is less than an eighth of a wavelength, the fracture behaves as a

  19. Frequency Dependence of APATS Antenna Gain

    DTIC Science & Technology

    1982-03-01

    ESD-TR-82-120 HTR-8354 3FREQUENCY DEPENDENCE OF APATS ANTENNA GAIN 0 By G. A. ROBERTSHAW MARCH 1982 Prepared for DEPUTY FOR SURVEILLANCE AND CONTROL...FREQUENCY DEPENDENCE OF APATS ANTENNA GAIN 6. PERFORMING ORG. REPORT NUMBER MTR-8354 7. AUTHOR(*) S. CONTRACT OR GRANT NUMBER(s) G. A. ROBERTSHAW F19628-81-C...employed, each channel will lose 1.76 dB of gain. * E.g., if "a" is aperture length in array azimuth plane, frequency dependence begins for 0 > srFl

  20. Monitoring fiber stress during curing of single fiber glass- and graphite-epoxy composites

    SciTech Connect

    Madhukar, M.S.; Kosuri, R.P.; Bowles, K.J.

    1994-11-01

    The difference in thermal expansion characteristics of epoxy matrices and graphite fibers can produce significant residual stresses in the fibers during curing of composite materials. Tests on single fiber glass-epoxy and graphite-epoxy composite specimens were conducted in which the glass and graphite fibers were preloaded in tension, and the epoxy matrix was cast around the fibers. The fiber tension was monitored while the matrix was placed around the fiber and subjected to the temperature-time curing cycle. Two mechanisms responsible for producing stress in embedded fibers were identified as matrix thermal expansion and contraction and matrix cure shrinkage. A simple analysis based on the change in fiber tension during the curing cycle was conducted to estimate the produced stresses. Experimental results on single fiber glass- and graphite-epoxy composites show that the fiber was subjected to significant tensile stresses when the temperature was raised from the first to the second dwell period. When initial fiber pretension is about 60 percent of the fiber failure load, these curing-induced stresses can cause tensile fracture of the embedded fiber.

  1. Monitoring Fiber Stress During Curing of Single Fiber Glass- and Graphite-Epoxy Composites

    NASA Technical Reports Server (NTRS)

    Madhukar, Madhu S.; Kosuri, Ranga P.; Bowles, Kenneth J.

    1994-01-01

    The difference in thermal expansion characteristics of epoxy matrices and graphite fibers can produce significant residual stresses in the fibers during curing of composite materials. Tests on single fiber glass-epoxy and graphite-epoxy composite specimens were conducted in which the glass and graphite fibers were preloaded in tension, and the epoxy matrix was cast around the fibers. The fiber tension was monitored while the matrix was placed around the fiber and subjected to the temperature-time curing cycle. Two mechanisms responsible for producing stress in embedded fibers were identified as matrix thermal expansion and contraction and matrix cure shrinkage. A simple analysis based on the change in fiber tension during the curing cycle was conducted to estimate the produced stresses. Experimental results on single fiber glass- and graphite-epoxy composites show that the fiber was subjected to significant tensile stresses when the temperature was raised from the first to the second dwell period. When initial fiber pretension is about 60 percent of the fiber failure load, these curing-induced stresses can cause tensile fracture of the embedded fiber.

  2. Reducing stress-induced birefringence in optical fiber ribbons

    NASA Astrophysics Data System (ADS)

    Várallyay, Z.; Arashitani, Y.; Varga, G.

    2011-01-01

    Coated and ribboned optical fibers are liable to external stress of the coating materials which may induce additional birefringence in the fiber glass. This residual stress in the coating may increase the polarization mode dispersion (PMD) of the fibers with a value well above allowed in modern, optical telecommunication systems. We report our numerical efforts on reducing the stress caused birefringence in fiber ribbons optimizing the geometry as well as the material parameters of the coating materials. We found that changing the cross-sectional geometry of the fiber ribbon such as edge shape or the ratio of primary and secondary coatings may lead to significant stress and constitutively PMD reduction in optical fibers. Changing the stiffness or the glass transition temperature (GTT) of the different components may also yield optimal conditions for stress reduction according to our finite element analyzes.

  3. An analysis of fiber-matrix interface failure stresses for a range of ply stress states

    NASA Technical Reports Server (NTRS)

    Crews, J. H.; Naik, R. A.; Lubowinski, S. J.

    1993-01-01

    A graphite/bismaleimide laminate was prepared without the usual fiber treatment and was tested over a wide range of stress states to measure its ply cracking strength. These tests were conducted using off-axis flexure specimens and produced fiber-matrix interface failure data over a correspondingly wide range of interface stress states. The absence of fiber treatment, weakened the fiber-matrix interfaces and allowed these tests to be conducted at load levels that did not yield the matrix. An elastic micromechanics computer code was used to calculate the fiber-matrix interface stresses at failure. Two different fiber-array models (square and diamond) were used in these calculations to analyze the effects of fiber arrangement as well as stress state on the critical interface stresses at failure. This study showed that both fiber-array models were needed to analyze interface stresses over the range of stress states. A linear equation provided a close fit to these critical stress combinations and, thereby, provided a fiber-matrix interface failure criterion. These results suggest that prediction procedures for laminate ply cracking can be based on micromechanics stress analyses and appropriate fiber-matrix interface failure criteria. However, typical structural laminates may require elastoplastic stress analysis procedures that account for matrix yielding, especially for shear-dominated ply stress states.

  4. Actin Filament Stress Fibers in Vascular Endothelial Cells in vivo

    NASA Astrophysics Data System (ADS)

    Wong, Albert J.; Pollard, Thomas D.; Herman, Ira M.

    1983-02-01

    Fluorescence microscopy with 7-nitrobenz-2-oxa-3-diazole phallacidin was used to survey vertebrate tissues for actin filament bundles comparable to the stress fibers of cultured cells. Such bundles were found only in vascular endothelial cells. Like the stress fibers of cultured cells, these actin filament bundles were stained in a punctate pattern by fluorescent antibodies to both alpha-actinin and myosin. The stress fibers were oriented parallel to the direction of blood flow and were prominent in endothelial cells from regions exposed to high-velocity flow, such as the left ventricle, aortic valve, and aorta. Actin bundles may help the endothelial cell to withstand hemodynamic stress.

  5. Dynamics of Mechanical Signal Transmission through Prestressed Stress Fibers

    PubMed Central

    Hwang, Yongyun; Barakat, Abdul I.

    2012-01-01

    Transmission of mechanical stimuli through the actin cytoskeleton has been proposed as a mechanism for rapid long-distance mechanotransduction in cells; however, a quantitative understanding of the dynamics of this transmission and the physical factors governing it remains lacking. Two key features of the actin cytoskeleton are its viscoelastic nature and the presence of prestress due to actomyosin motor activity. We develop a model of mechanical signal transmission through prestressed viscoelastic actin stress fibers that directly connect the cell surface to the nucleus. The analysis considers both temporally stationary and oscillatory mechanical signals and accounts for cytosolic drag on the stress fibers. To elucidate the physical parameters that govern mechanical signal transmission, we initially focus on the highly simplified case of a single stress fiber. The results demonstrate that the dynamics of mechanical signal transmission depend on whether the applied force leads to transverse or axial motion of the stress fiber. For transverse motion, mechanical signal transmission is dominated by prestress while fiber elasticity has a negligible effect. Conversely, signal transmission for axial motion is mediated uniquely by elasticity due to the absence of a prestress restoring force. Mechanical signal transmission is significantly delayed by stress fiber material viscosity, while cytosolic damping becomes important only for longer stress fibers. Only transverse motion yields the rapid and long-distance mechanical signal transmission dynamics observed experimentally. For simple networks of stress fibers, mechanical signals are transmitted rapidly to the nucleus when the fibers are oriented largely orthogonal to the applied force, whereas the presence of fibers parallel to the applied force slows down mechanical signal transmission significantly. The present results suggest that cytoskeletal prestress mediates rapid mechanical signal transmission and allows

  6. Dynamics of mechanical signal transmission through prestressed stress fibers.

    PubMed

    Hwang, Yongyun; Barakat, Abdul I

    2012-01-01

    Transmission of mechanical stimuli through the actin cytoskeleton has been proposed as a mechanism for rapid long-distance mechanotransduction in cells; however, a quantitative understanding of the dynamics of this transmission and the physical factors governing it remains lacking. Two key features of the actin cytoskeleton are its viscoelastic nature and the presence of prestress due to actomyosin motor activity. We develop a model of mechanical signal transmission through prestressed viscoelastic actin stress fibers that directly connect the cell surface to the nucleus. The analysis considers both temporally stationary and oscillatory mechanical signals and accounts for cytosolic drag on the stress fibers. To elucidate the physical parameters that govern mechanical signal transmission, we initially focus on the highly simplified case of a single stress fiber. The results demonstrate that the dynamics of mechanical signal transmission depend on whether the applied force leads to transverse or axial motion of the stress fiber. For transverse motion, mechanical signal transmission is dominated by prestress while fiber elasticity has a negligible effect. Conversely, signal transmission for axial motion is mediated uniquely by elasticity due to the absence of a prestress restoring force. Mechanical signal transmission is significantly delayed by stress fiber material viscosity, while cytosolic damping becomes important only for longer stress fibers. Only transverse motion yields the rapid and long-distance mechanical signal transmission dynamics observed experimentally. For simple networks of stress fibers, mechanical signals are transmitted rapidly to the nucleus when the fibers are oriented largely orthogonal to the applied force, whereas the presence of fibers parallel to the applied force slows down mechanical signal transmission significantly. The present results suggest that cytoskeletal prestress mediates rapid mechanical signal transmission and allows

  7. Kinship as a frequency dependent strategy.

    PubMed

    Ji, Ting; Zheng, Xiu-Deng; He, Qiao-Qiao; Wu, Jia-Jia; Mace, Ruth; Tao, Yi

    2016-02-01

    Humans divide themselves up into separate cultures, which is a unique and ubiquitous characteristic of our species. Kinship norms are one of the defining features of such societies. Here we show how norms of marital residence can evolve as a frequency-dependent strategy, using real-world cases from southwestern China and an evolutionary game model. The process of kinship change has occurred in the past and is also occurring now in southwestern China. Our data and models show how transitions between residence types can occur both as response to changing costs and benefits of co-residence with kin, and also due to the initial frequency of the strategies adopted by others in the population: patrilocal societies can become matrilocal, and neolocal societies can become duolocal. This illustrates how frequency-dependent selection plays a role both in the maintenance of group-level cultural diversity and in cultural extinction.

  8. Analysis of frequency dependent pump light absorption

    NASA Astrophysics Data System (ADS)

    Wohlmuth, Matthias; Pflaum, Christoph

    2011-03-01

    Simulations have to accurately model thermal lensing in order to help improving resonator design of diode pumped solid state lasers. To this end, a precise description of the pump light absorption is an important prerequisite. In this paper, we discuss the frequency dependency of the pump light absorption in the laser crystal and its influence on the simulated laser performance. The results show that the pump light absorption has to include the spectral overlap of the emitting pump source and the absorbing laser material. This information can either be used for a fully frequency dependent absorption model or, at least in the shown examples, to compute an effective value for an exponential Beer-Lambert law of absorption. This is particularly significant at pump wavelengths coinciding with a peak of absorption. Consequences for laser stability and performance are analyzed for different pump wavelengths in a Nd:YAG laser.

  9. Kinship as a frequency dependent strategy

    PubMed Central

    Ji, Ting; Zheng, Xiu-Deng; He, Qiao-Qiao; Wu, Jia-Jia; Tao, Yi

    2016-01-01

    Humans divide themselves up into separate cultures, which is a unique and ubiquitous characteristic of our species. Kinship norms are one of the defining features of such societies. Here we show how norms of marital residence can evolve as a frequency-dependent strategy, using real-world cases from southwestern China and an evolutionary game model. The process of kinship change has occurred in the past and is also occurring now in southwestern China. Our data and models show how transitions between residence types can occur both as response to changing costs and benefits of co-residence with kin, and also due to the initial frequency of the strategies adopted by others in the population: patrilocal societies can become matrilocal, and neolocal societies can become duolocal. This illustrates how frequency-dependent selection plays a role both in the maintenance of group-level cultural diversity and in cultural extinction. PMID:26998333

  10. Creep and stress relaxation modeling of polycrystalline ceramic fibers

    NASA Technical Reports Server (NTRS)

    Dicarlo, James A.; Morscher, Gregory N.

    1994-01-01

    A variety of high performance polycrystalline ceramic fibers are currently being considered as reinforcement for high temperature ceramic matrix composites. However, under mechanical loading about 800 C, these fibers display creep related instabilities which can result in detrimental changes in composite dimensions, strength, and internal stress distributions. As a first step toward understanding these effects, this study examines the validity of a mechanism-based empirical model which describes primary stage tensile creep and stress relaxation of polycrystalline ceramic fibers as independent functions of time, temperature, and applied stress or strain. To verify these functional dependencies, a simple bend test is used to measure stress relaxation for four types of commercial ceramic fibers for which direct tensile creep data are available. These fibers include both nonoxide (SCS-6, Nicalon) and oxide (PRD-166, FP) compositions. The results of the Bend Stress Relaxation (BSR) test not only confirm the stress, time, and temperature dependencies predicted by the model, but also allow measurement of model empirical parameters for the four fiber types. In addition, comparison of model tensile creep predictions based on the BSR test results with the literature data show good agreement, supporting both the predictive capability of the model and the use of the BSR text as a simple method for parameter determination for other fibers.

  11. Time temperature-stress dependence of boron fiber deformation

    NASA Technical Reports Server (NTRS)

    Dicarlo, J. A.

    1976-01-01

    Flexural stress relaxation (FSR) and flexural internal friction (FIF) techniques were employed to measure the time-dependent deformation of boron fibers from -190 to 800 C. The principal specimens were 203 micrometers diameter fibers commercially produced by chemical vapor deposition (CVD) on a 13 micrometer tungsten substrate. The observation of complete creep strain recovery with time and temperature indicated that CVD boron fibers deform flexurally as anelastic solids with no plastic component.

  12. Factors Controlling Stress Rupture of Fiber-Reinforced Ceramic Composites

    NASA Technical Reports Server (NTRS)

    DiCarlo, J. A.; Yun, H. M.

    1999-01-01

    The successful application of fiber-reinforced ceramic matrix composites (CMC) depends strongly on maximizing material rupture life over a wide range of temperatures and applied stresses. The objective of this paper is to examine the various intrinsic and extrinsic factors that control the high-temperature stress rupture of CMC for stresses below and above those required for cracking of the 0 C plies (Regions I and II, respectively). Using creep-rupture results for a variety of ceramic fibers and rupture data for CMC reinforced by these fibers, it is shown that in those cases where the matrix carries little structural load, CMC rupture conditions can be predicted very well from the fiber behavior measured under the appropriate test environment. As such, one can then examine the intrinsic characteristics of the fibers in order to develop design guidelines for selecting fibers and fiber microstructures in order to maximize CMC rupture life. For those cases where the fiber interfacial coatings are unstable in the test environment, CMC lives are generally worse than those predicted by fiber behavior alone. For those cases where the matrix can support structural load, CMC life can even be greater provided matrix creep behavior is properly controlled. Thus the achievement of long CMC rupture life requires understanding and optimizing the behavior of all constituents in the proper manner.

  13. Core stress distribution of phase shifting multimode polymer optical fiber

    SciTech Connect

    Furukawa, Rei Matsuura, Motoharu; Nagata, Morio; Mishima, Kenji; Inoue, Azusa; Tagaya, Akihiro; Koike, Yasuhiro

    2013-11-18

    Poly-(methyl methacrylate-co-benzyl methacrylate) polarization-maintaining optical fibers are known for their high response to normal stress. In this report, responses to higher stress levels up to 0.45 MPa were investigated. The stress amplitude and direction in the fiber cross section were calculated and analyzed with a coincident mode-field obtained from the near-field pattern. The stress amplitude varies significantly in the horizontal direction and is considered to create multiple phases, explaining the measurement results. To investigate possible permanent deformation, the core yield point profile was analyzed. Although it largely exceeds the average applied stress, the calculated stress distribution indicates that the core could partially experience stress that exceeds the yield point.

  14. Time-temperature-stress dependence of boron fiber deformation

    NASA Technical Reports Server (NTRS)

    Dicarlo, J. A.

    1976-01-01

    The time-dependent deformation of boron fibers over the temperature range from -190 to 800 C is studied by flexural stress relaxation and flexural internal friction techniques on 203-micron diam specimen fibers commercially produced by chemical vapor deposition (CVD) on a 13-micron tungsten substrate. It is shown that up to at least 800 C all nonelastic behavior observed during axial deformation of CVD boron fibers can be explained solely by anelastic mechanisms and that although creep strains are small, boron fiber anelasticity can produce significant mechanical effects which would otherwise be neglected under the elastic approximation. Relations are obtained to demonstrate the considerable effects of anelasticity on such fiber/composite properties as modulus, creep, creep recovery, stress relaxation, and damping capacity. For an elastic-core/anelastic-sheath model, boron fibers on tungsten substrates are shown to have predictable fracture stresses for time-temperature conditions ranging from impact to long-time stress rupture. Possible techniques for altering these stresses are discussed.

  15. Frequency dependent thermal expansion in binary viscoelasticcomposites

    SciTech Connect

    Berryman, James G.

    2007-12-01

    The effective thermal expansion coefficient beta* of abinary viscoelastic composite is shown to be frequency dependent even ifthe thermal expansion coefficients beta A and beta B of both constituentsare themselves frequency independent. Exact calculations for binaryviscoelastic systems show that beta* is related to constituent valuesbeta A, beta B, volume fractions, and bulk moduli KA, KB, as well as tothe overall bulk modulus K* of the composite system. Then, beta* isdetermined for isotropic systems by first bounding (or measuring) K* andtherefore beta*. For anisotropic systems with hexagonal symmetry, theprincipal values of the thermal expansion beta*perp and beta*para can bedetermined exactly when the constituents form a layered system. In allthe examples studied, it is shown explicitly that the eigenvectors of thethermoviscoelastic system possess non-negative dissipation -- despite thecomplicated analytical behavior of the frequency dependent thermalexpansivities themselves. Methods presented have a variety ofapplications from fluid-fluid mixtures to fluid-solid suspensions, andfrom fluid-saturated porous media to viscoelastic solid-solidcomposites.

  16. Local frequency dependence in transcranial ultrasound transmission

    NASA Astrophysics Data System (ADS)

    White, P. J.; Clement, G. T.; Hynynen, K.

    2006-05-01

    The development of large-aperture multiple-source transducer arrays for ultrasound transmission through the human skull has demonstrated the possibility of controlled and substantial acoustic energy delivery into the brain parenchyma without the necessitation of a craniotomy. The individual control of acoustic parameters from each ultrasound source allows for the correction of distortions arising from transmission through the skull bone and also opens up the possibility for electronic steering of the acoustic focus within the brain. In addition, the capability to adjust the frequency of insonation at different locations on the skull can have an effect on ultrasound transmission. To determine the efficacy and applicability of a multiple-frequency approach with such a device, this study examined the frequency dependence of ultrasound transmission in the range of 0.6-1.4 MHz through a series of 17 points on four ex vivo human skulls. Effects beyond those that are characteristic of frequency-dependent attenuation were examined. Using broadband pulses, it was shown that the reflected spectra from the skull revealed information regarding ultrasound transmission at specific frequencies. A multiple-frequency insonation with optimized frequencies over the entirety of five skull specimens was found to yield on average a temporally brief 230% increase in the transmitted intensity with an 88% decrease in time-averaged intensity transmission within the focal volume. This finding demonstrates a potential applicability of a multiple-frequency approach in transcranial ultrasound transmission.

  17. Local Frequency Dependence in Transcranial Ultrasound Transmission

    NASA Astrophysics Data System (ADS)

    White, P. J.; Clement, G. T.; Hynynen, K.

    2006-05-01

    The development of large-aperture multiple-source transducer arrays for ultrasound transmission through the human skull has demonstrated the possibility of controlled and substantial acoustic energy delivery into the brain parenchyma without the necessitation of a craniotomy. The individual control of acoustic parameters from each ultrasound source allows for the correction of distortions arising from transmission through the skull bone and also opens up the possibility for electronic steering of the acoustic focus within the brain. In addition, the capability to adjust the frequency of sonication at different locations on the skull can have an effect on ultrasound transmission. To determine the efficacy and applicability of a multiple-frequency approach with such a device, this study examined the frequency dependence of ultrasound transmission in the range of 0.6-1.4 MHz through a series of seventeen points on four ex vivo human skulls. Effects beyond those that are characteristic of frequency-dependent attenuation were examined. Using broadband pulses, it was shown that the reflected spectra from the skull revealed information regarding ultrasound transmission at specific frequencies. This finding demonstrates a potential applicability of a multiple-frequency approach in transcranial ultrasound transmission.

  18. Chemical Stress Cracking of Acrylic Fibers.

    DTIC Science & Technology

    1982-05-01

    nitrile groups (similar to the "prefatory reaction" in pyrolysis of acrylic fibers), followed immediately by N- chlorination and7 chain scission...cyclization of nitrile groups (similar to the "prefatory reaction" in pyrolysis of acrylic fibers), followed immediately by N- chlorination and chain scission...present experiments were conducted at the boil, slightly greater than 100 C. The decomposition products-- chlorine , chlorate, plus oxygen originating

  19. Frequency-Dependent Escherichia coli Chemotaxis Behavior

    NASA Astrophysics Data System (ADS)

    Zhu, Xuejun; Si, Guangwei; Deng, Nianpei; Ouyang, Qi; Wu, Tailin; He, Zhuoran; Jiang, Lili; Luo, Chunxiong; Tu, Yuhai

    2012-03-01

    We study Escherichia coli chemotaxis behavior in environments with spatially and temporally varying attractant sources by developing a unique microfluidic system. Our measurements reveal a frequency-dependent chemotaxis behavior. At low frequency, the E. coli population oscillates in synchrony with the attractant. In contrast, in fast-changing environments, the population response becomes smaller and out of phase with the attractant waveform. These observations are inconsistent with the well-known Keller-Segel chemotaxis equation. A new continuum model is proposed to describe the population level behavior of E. coli chemotaxis based on the underlying pathway dynamics. With the inclusion of a finite adaptation time and an attractant consumption rate, our model successfully explains the microfluidic experiments at different stimulus frequencies.

  20. Effects of Frequency-Dependent Membrane Capacitance on Neural Excitability

    PubMed Central

    Grill, Warren M.

    2015-01-01

    Objective Models of excitable cells consider the membrane specific capacitance as a ubiquitous and constant parameter. However, experimental measurements show that the membrane capacitance declines with increasing frequency, i.e., exhibits dispersion. We quantified the effects of frequency-dependent membrane capacitance, c(f), on the excitability of cells and nerve fibers across the frequency range from dc to hundreds of kilohertz. Approach We implemented a model of c(f) using linear circuit elements, and incorporated it into several models of neurons with different channel kinetics: the Hodgkin-Huxley (HH) model of an unmyelinated axon, the McIntyre-Richardson-Grill (MRG) of a mammalian myelinated axon, and a model of a cortical neuron from prefrontal cortex. We calculated thresholds for excitation and kHz frequency conduction block, the conduction velocity, recovery cycle, strength-distance relationship and firing rate. Main results The impact of c(f) on activation thresholds depended on the stimulation waveform and channel kinetics. We observed no effect using rectangular pulse stimulation, and a reduction for frequencies of 10 kHz and above using sinusoidal signals only for the MRG model. c(f) had minimal impact on the recovery cycle and the strength-distance relationship, whereas the conduction velocity increased by up to 7.9% and 1.7% for myelinated and unmyelinated fibers, respectively. Block thresholds declined moderately when incorporating c(f), the effect was greater at higher frequencies, and the maximum reduction was 11.5%. Finally, c(f) marginally altered the firing pattern of a model of a prefrontal cortex cell, reducing the median interspike interval by less than 2%. Significance This is the first comprehensive analysis of the effects of dispersive capacitance on neural excitability, and as the interest on stimulation with kHz signals gains more attention, it defines the regions over which frequency-dependent membrane capacitance, c(f), should be

  1. Actomyosin stress fiber mechanosensing in 2D and 3D

    PubMed Central

    Lee, Stacey; Kumar, Sanjay

    2016-01-01

    Mechanotransduction is the process through which cells survey the mechanical properties of their environment, convert these mechanical inputs into biochemical signals, and modulate their phenotype in response. These mechanical inputs, which may be encoded in the form of extracellular matrix stiffness, dimensionality, and adhesion, all strongly influence cell morphology, migration, and fate decisions. One mechanism through which cells on planar or pseudo-planar matrices exert tensile forces and interrogate microenvironmental mechanics is through stress fibers, which are bundles composed of actin filaments and, in most cases, non-muscle myosin II filaments. Stress fibers form a continuous structural network that is mechanically coupled to the extracellular matrix through focal adhesions. Furthermore, myosin-driven contractility plays a central role in the ability of stress fibers to sense matrix mechanics and generate tension. Here, we review the distinct roles that non-muscle myosin II plays in driving mechanosensing and focus specifically on motility. In a closely related discussion, we also describe stress fiber classification schemes and the differing roles of various myosin isoforms in each category. Finally, we briefly highlight recent studies exploring mechanosensing in three-dimensional environments, in which matrix content, structure, and mechanics are often tightly interrelated. Stress fibers and the myosin motors therein represent an intriguing and functionally important biological system in which mechanics, biochemistry, and architecture all converge. PMID:27635242

  2. High temperature battery cell comprising stress free hollow fiber bundle

    SciTech Connect

    Anand, J. N.; Revak, T. T.; Rossini, F. J.

    1985-04-16

    Thermal stressing of hollow fibers constituting the electrolyte-separator in a high temperature battery cell, and of certain other elements thereof, is avoided by suspending the assembly comprising the anolyte tank, the tube-sheet, the hollow fibers and a cathodic current collector-distributor within the casing and employing a limp connection between the collector-distributor and the cathode terminal of the cell.

  3. The influence of motion and stress on optical fibers

    NASA Astrophysics Data System (ADS)

    Murphy, Jeremy D.; Hill, Gary J.; MacQueen, Phillip J.; Taylor, Trey; Soukup, Ian; Moreira, Walter; Cornell, Mark E.; Good, John; Anderson, Seth; Fuller, Lindsay; Lee, Hanshin; Kelz, Andreas; Rafal, Marc; Rafferty, Tom; Tuttle, Sarah; Vattiat, Brian

    2012-09-01

    We report on extensive testing carried out on the optical fibers for the VIRUS instrument. The primary result of this work explores how 10+ years of simulated wear on a VIRUS fiber bundle affects both transmission and focal ratio degradation (FRD) of the optical fibers. During the accelerated lifetime tests we continuously monitored the fibers for signs of FRD. We find that transient FRD events were common during the portions of the tests when motion was at telescope slew rates, but dropped to negligible levels during rates of motion typical for science observation. Tests of fiber transmission and FRD conducted both before and after the lifetime tests reveal that while transmission values do not change over the 10+ years of simulated wear, a clear increase in FRD is seen in all 18 fibers tested. This increase in FRD is likely due to microfractures that develop over time from repeated flexure of the fiber bundle, and stands in contrast to the transient FRD events that stem from localized stress and subsequent modal diffusion of light within the fibers. There was no measurable wavelength dependence on the increase in FRD over 350 nm to 600 nm. We also report on bend radius tests conducted on individual fibers and find the 266 μm VIRUS fibers to be immune to bending-induced FRD at bend radii of R 10 cm. Below this bend radius FRD increases slightly with decreasing radius. Lastly, we give details of a degradation seen in the fiber bundle currently deployed on the Mitchell Spectrograph (formally VIRUS-P) at McDonald Observatory. The degradation is shown to be caused by a localized shear in a select number of optical fibers that leads to an explosive form of FRD. In a few fibers, the overall transmission loss through the instrument can exceed 80%. These results are important for the VIRUS instrument, and for both current and proposed instruments that make use of optical fibers, particularly when the fibers are in continual motion during an observation, or experience

  4. Stress-rupture behavior of small diameter polycrystalline alumina fibers

    NASA Technical Reports Server (NTRS)

    Yun, Hee Mann; Goldsby, Jon C.; Dicarlo, James A.

    1993-01-01

    Continuous length polycrystalline alumina fibers are candidates as reinforcement in high temperature composite materials. Interest therefore exists in characterizing the thermomechanical behavior of these materials, obtaining possible insights into underlying mechanisms, and understanding fiber performance under long term use. Results are reported on the time-temperature dependent strength behavior of Nextel 610 and Fiber FP alumina fibers with grain sizes of 100 and 300 nm, respectively. Below 1000 C and 100 hours, Nextel 610 with the smaller grain size had a greater fast fracture and rupture strength than Fiber FP. The time exponents for stress-rupture of these fibers were found to decrease from approximately 13 at 900 C to below 3 near 1050 C, suggesting a transition from slow crack growth to creep rupture as the controlling fracture mechanism. For both fiber types, an effective activation energy of 690 kJ/mol was measured for rupture. This allowed stress-rupture predictions to be made for extended times at use temperatures below 1000 C.

  5. Characterization of Optical Fiber Strength Under Applied Tensile Stress and Bending Stress

    SciTech Connect

    P.E. Klingsporn

    2011-08-01

    Various types of tensile testing and bend radius tests were conducted on silica core/silica cladding optical fiber of different diameters with different protective buffer coatings, fabricated by different fiber manufacturers. The tensile tests were conducted to determine not only the average fiber strengths at failure, but also the distribution in fracture strengths, as well as the influence of buffer coating on fracture strength. The times-to-failure of fiber subjected to constant applied bending stresses of various magnitudes were measured to provide a database from which failure times of 20 years or more, and the corresponding minimum bend radius, could be extrapolated in a statistically meaningful way. The overall study was done to provide an understanding of optical fiber strength in tensile loading and in applied bending stress as related to applications of optical fiber in various potential coizfgurations for weapons and enhanced surveillance campaigns.

  6. Global survey of frequency dependent attenuation

    NASA Astrophysics Data System (ADS)

    McNamara, D. E.; Benz, H.; Gee, L. S.; Frankel, A. D.

    2011-12-01

    We analyze frequency-dependent attenuation of Lg waves, 1/Q(f), for numerous tectonic environments. Tectonic environments studied include: south Pacific oceanic subduction zone near Samoa, the oblique subduction zone off Hispaniola, two continental-oceanic subduction zones in Chile and Alaska, the continental-continental collision zone of the Tibetan Plateau, stable continental interior regions of the central US and Colorado Plateau, the eastern US passive margin and the active margins of the western US. Lg propagates with a group velocity of about 3.5 km/s, the average crustal shear wave velocity. This wave is commonly observed as the dominant phase on high-frequency seismograms at regional distances and is generated by a superposition of higher-mode surface waves or multiply-reflected shear energy in a crustal waveguide. Consequently, Lg provides a good measure of path-averaged crustal properties, such as shear-wave velocity and attenuation. Lg is particularly useful since its amplitude is sensitive to lateral heterogeneity in the crust due to varying tectonic environment. In this global survey we observe that Lg attenuation is generally higher for tectonically active regions than for stable continental interiors. Q(f) is an important physical parameter and is required for a variety of USGS research projects such as the simulation of strong ground motion and seismic network magnitude detection threshold modeling.

  7. AC Magnetic Field Frequency Dependence of Magnetoacoustic Emission

    NASA Technical Reports Server (NTRS)

    Namkung, M.; Wincheski, B.; Fulton, J. P.; DeNale, R.

    1992-01-01

    Our recent study has proved a strong correlation between the low-frequency AC applied magnetic field amplitude dependence of the asymmetry of the magnetoacoustic emission (MAE) burst and the strength of the domain wall-defect interaction in iron-base ferromagnets. For the present study the AC magnetic field frequency dependence of the asymmetry has been investigated in the range of 1 to 200 Hz. When represented by the third moment of the rectified acoustic emission pulses, the asymmetry becomes a bell-shaped function of frequency with its center located around 25 Hz. This experiment has been performed with low carbon, high yield stress steel specimens of three different levels of domain wall-defect interaction strength. The results show that the increase in the interaction strength causes a vertical down shift of the asymmetry in the entire frequency range investigated.

  8. Stress transfer of a Kevlar 49 fiber pullout test studied by micro-Raman spectroscopy.

    PubMed

    Lei, Zhenkun; Wang, Quan; Qiu, Wei

    2013-06-01

    The interfacial stress transfer behavior of a Kevlar 49 aramid fiber-epoxy matrix was studied with fiber pullout tests, the fibers of which were stretched by a homemade microloading device. Raman spectra on the embedded fiber were recorded by micro-Raman spectroscopy, under different strain levels. Then, the fiber axial stress was obtained by the relationship between the stress and Raman shift of the aramid fiber. Experimental results revealed that the fiber axial stress increased significantly with the load. The shear stress concentration occurred at the fiber entry to the epoxy resin. Thus, interfacial friction stages exist in the debonded fiber segment, and the interfacial friction shear stress is constant within one stage. The experimental results are consistent with the theoretical model predictions.

  9. The influence of the fiber drawing process on intrinsic stress and the resulting birefringence optimization of PM fibers

    NASA Astrophysics Data System (ADS)

    Just, Florian; Spittel, Ron; Bierlich, Jörg; Grimm, Stephan; Jäger, Matthias; Bartelt, Hartmut

    2015-04-01

    The propagation properties of optical fibers can be significantly influenced by intrinsic stress. These effects are often undesired but in some cases essential for certain applications, e.g. in polarization maintaining (PM) fibers. In this paper, we present systematic studies on the influence of the fiber drawing process on the generated stress and demonstrate an approach to significantly increase the stress induced birefringence of PM-fibers. It is shown that the thermal stress caused by the material composition is superimposed with the mechanical stress caused by the fiber fabrication process. This intrinsic stress has a strong effect on the optical and mechanical properties of the glass and thus influences the fiber stability and modal behavior. By applying a thermal annealing step, the mechanical stress due to the fiber drawing process can be canceled. It is shown that this annealing step compensates the stress reducing influence of the drawing process on the birefringence of PM-fibers with panda structure. The comparison of the intrinsic stress states after fabrication with the state after the additional high temperature annealing step clearly shows that it is possible to improve the overall birefringence of panda fibers using appropriate preparation steps.

  10. Lamination residual stresses in fiber composites

    NASA Technical Reports Server (NTRS)

    Daniel, I. M.; Liber, T.

    1975-01-01

    An experimental investigation was conducted to determine the magnitude of lamination residual stresses in angle-ply composites and to evaluate their effects on composite structural integrity. The materials investigated were boron/epoxy, boron/polyimide, graphite/low modulus epoxy, graphite/high modulus epoxy, graphite/polyimide and s-glass/epoxy. These materials were fully characterized. Static properties of laminates were also determined. Experimental techniques using embedded strain gages were developed and used to measure residual strains during curing. The extent of relaxation of lamination residual stresses was investigated. It was concluded that the degree of such relaxation is low. The behavior of angle-ply laminates subjected to thermal cycling, tensile load cycling, and combined thermal cycling with tensile load was investigated. In most cases these cycling programs did not have any measurable influence on residual strength and stiffness of the laminates. In the tensile load cycling tests, the graphite/polyimide shows the highest endurance with 10 million cycle runouts at loads up to 90 percent of the static strength.

  11. Increased molecular mobility in humid silk fibers under tensile stress

    NASA Astrophysics Data System (ADS)

    Seydel, Tilo; Knoll, Wiebke; Greving, Imke; Dicko, Cedric; Koza, Michael M.; Krasnov, Igor; Müller, Martin

    2011-01-01

    Silk fibers are semicrystalline nanocomposite protein fibers with an extraordinary mechanical toughness that changes with humidity. Diffusive or overdamped motion on a molecular level is absent in dry silkworm silk, but present in humid silk at ambient temperature. This microscopic diffusion distinctly depends on the externally applied macroscopic tensile force. Quasielastic and inelastic neutron-scattering data as a function of humidity and of tensile strain on humid silk fibers support the model that both the adsorbed water and parts of the amorphous polymers participate in diffusive motion and are affected by the tensile force. It is notable that the quasielastic linewidth of humid silk at 100% relative humidity increases significantly with the applied force. The effect of the tensile force is discussed in terms of an increasing alignment of the polymer chains in the amorphous fraction with increasing tensile stress which changes the geometrical restrictions of the diffusive motions.

  12. Comparison of methods for predicting fiber stresses in a cracked Kevlar/epoxy monolayer

    SciTech Connect

    Reedy, E.D. Jr.

    1984-01-01

    Shear-lag and 3-D finite element predictions for the fiber stresses in a cracked Kevlar 49/epoxy monolayer are compared. Results are given for a 5-fiber wide monolayer containing a single broken fiber. Both methods of analysis are found to predict nearly the same fiber stress distribution along the crack-tip fiber when the monolayer is fully elastic. Results for highly loaded monolayers with extensive matrix yielding are not in quite as good agreement, but even then the predicted stress distributions are within 5%. These calculations show that a shear-lag analysis is accurate even though the Kevlar 49 fiber is highly anisotropic.

  13. Residual stresses in continuous graphite fiber Al metal matrix composites

    NASA Technical Reports Server (NTRS)

    Park, Hun Sub; Zong, Gui Sheng; Marcus, Harris L.

    1988-01-01

    The residual stresses in graphite fiber reinforced aluminum (Gr/Al) composites with various thermal histories are measured using X-ray diffraction (XRD) methods. The XRD stress analysis is based on the determination of lattice strains by precise measurements of the interplanar spacings in different directions of the sample. The sample is a plate consisting of two-ply P 100 Gr/Al 6061 precursor wires and Al 6061 overlayers. Prior to XRD measurement, the 6061 overlayers are electrochemically removed. In order to calibrate the relationship between stress magnitude and lattice spacing shift, samples of Al 6061 are loaded at varying stress levels in a three-point bend fixture, while the stresses are simultaneously determined by XRD and surface-attached strain gages. The stresses determined by XRD closely match those determined by the strain gages. Using these calibrations, the longitudinal residual stresses of P 100 Gr/Al 6061 composites are measured for various heat treatments, and the results are presented.

  14. Accelerated stress rupture lifetime assessment for fiber composites

    SciTech Connect

    Groves, S.E.; DeTeresa, S.J.; Sanchez, R.J.; Zocher, M.A.; Christensen, R.M.

    1997-02-01

    Objective was to develop a theoretical and experimental framework for predicting stress rupture lifetime for fiber polymer composites based on short-term accelerated testing. Originally a 3-year project, it was terminated after the first year, which included stress rupture experiments and viscoelastic material characterization. In principle, higher temperature, stress, and saturated environmental conditions are used to accelerate stress rupture. Two types of specimens were to be subjected to long-term and accelerated static tensile loading at various temperatures, loads in order to quantify both fiber and matrix dominated failures. Also, we were to apply state-of-the-art analytical and experimental characterization techniques developed under a previous DOE/DP CRADA for capturing and tracking incipient degradation mechanisms associated with mechanical performance. Focus was increase our confidence to design, analyze, and build long-term composite structures such as flywheels and hydrogen gas storage vessels; other applications include advanced conventional weapons, infrastructures, marine and offshore systems, and stockpile stewardship and surveillance. Capabilities developed under this project, though not completed or verified, are being applied to NIF, AVLIS, and SSMP programs.

  15. Developing Fiber Specific Promoter-Reporter Transgenic Lines to Study the Effect of Abiotic Stresses on Fiber Development in Cotton

    PubMed Central

    Chen, Junping; Burke, John J.

    2015-01-01

    Cotton is one of the most important cash crops in US agricultural industry. Environmental stresses, such as drought, high temperature and combination of both, not only reduce the overall growth of cotton plants, but also greatly decrease cotton lint yield and fiber quality. The impact of environmental stresses on fiber development is poorly understood due to technical difficulties associated with the study of developing fiber tissues and lack of genetic materials to study fiber development. To address this important question and provide the need for scientific community, we have generated transgenic cotton lines harboring cotton fiber specific promoter (CFSP)-reporter constructs from six cotton fiber specific genes (Expansin, E6, Rac13, CelA1, LTP, and Fb late), representing genes that are expressed at different stages of fiber development. Individual CFSP::GUS or CFSP::GFP construct was introduced into Coker 312 via Agrobacterium mediated transformation. Transgenic cotton lines were evaluated phenotypically and screened for the presence of selectable marker, reporter gene expression, and insertion numbers. Quantitative analysis showed that the patterns of GUS reporter gene activity during fiber development in transgenic cotton lines were similar to those of the native genes. Greenhouse drought and heat stress study showed a correlation between the decrease in promoter activities and decrease in fiber length, increase in micronaire and changes in other fiber quality traits in transgenic lines grown under stressed condition. These newly developed materials provide new molecular tools for studying the effects of abiotic stresses on fiber development and may be used in study of cotton fiber development genes and eventually in the genetic manipulation of fiber quality. PMID:26030401

  16. Fluoropolymer barriers to stress corrosion in optical fibers

    NASA Astrophysics Data System (ADS)

    Klinger, L.; Griffith, J. R.

    1982-06-01

    Organic polymer coatings play a critical role in determining the overall performance of optical fibers. They protect the very fine silica glass core from abrasive damage and environmental effects such as stress induced corrosion. In addition they act as a buffer in reducing the sensitivity of the optical fiber to microbending loss. In designing a coating system for optical fibers it is necessary to strike a balance between two factors: a soft compliant enclosure that acts as a buffer in masking the nonuniform surface of the glass and a hard enclosure to act as a stiffener and make the fiber resistant to the environmental surface. These requirements are best suited by using a photocured polyfluoropolyolacrylate of reduced crosslink density as a primary coating and the high modulus fluoroepoxy resin as a secondary coating. Although it is possible to lower the glass transition and modulus of the fluoroepoxy system, the longer cure times required for heat curing systems, make them less attractive as a primary coating. Also the superior surface properties of the fluoroepoxy suggest themselves for use as an external coating.

  17. Pore Size Determination Using Frequency-Dependent Electro-Osmosis

    NASA Astrophysics Data System (ADS)

    Reppert, P. M.; Morgan, F. D.

    2001-12-01

    Frequency-dependent electro-osmosis has the potential for use as an alternative method for determining the average pore size of porous media. It has been previously shown for the frequency-dependent streaming potential case that the frequency response of the streaming potential coupling coefficient is directly related to the pore size of the rock. However, a drawback to using frequency-dependent streaming potentials is that it is difficult to generate sufficient pressures at intermediate frequencies where both mechanical and piezoelectric devices are not efficient. Frequency-dependent electro-osmosis does not have this problem since the driving electric field can efficiently be applied in the frequency range of interest. Although the underlying physics of both the frequency-dependent electro-osmosis and frequency-dependent streaming potential cases are similar, there are differences in their frequency responses. Similar to the frequency-dependent streaming potential case, it is shown that the electro-osmosis frequency-dependent coupling coefficient is constant with increasing frequency until the critical frequency is reached, at which time the coupling coefficient starts to decrease with increasing frequency. The frequency response of the electro-osmosis coupling coefficient is dependent on the capillary radius. As the capillary radius decreases, the rollover frequency increases. The theory is developed that demonstrates the rollover frequency for the electro-osmosis frequency response is higher than that for the related streaming potential frequency response for the same size capillary. It is shown that this higher rollover frequency is due to the presence of velocity zeros within the bulk fluid of the capillary which serve to reduce the effective radius of the capillary. Data is presented for a 0.127 mm capillary that supports the theoretical findings. Frequency-dependent electro-osmosis can be used for the laboratory determination of average pore sizes of rocks

  18. Noninvasive detection of plant nutrient stress using fiber optic spectrophotometry

    NASA Astrophysics Data System (ADS)

    Chen, Jun-Wei; Asundi, Anand K.; Liew, Oi Wah; Boey, William S. L.

    2001-05-01

    In a previous paper, we described the use of fiber optic spectrophotometry as a non-destructive and sensitive method to detect early symptoms of plant nutrient deficiency. We report further developments of our work on Brassica chinensis var parachinensis (Bailey) showing reproducibility of our data collected at a different seasonal period. Plants at the mid-log growth phase were subjected to nutrient stress by transferring them to nitrate- and calcium- deficient nutrient solution in a standing aerated hydroponic system. After tracking changes in leaf reflectance by FOSpectr for nine days, the plants were returned to complete nutrient solution and their recovery was monitored for a further nine days. The responses of nutrient stressed plants were compared with those grown under complete nutrient solution over the 18-day trial period. We also compared the sensitivity of FOSpectr detection against plant growth measurements vis-a-vis average leaf number and leaf width and show that the former method gave an indication of nutrient stress much earlier than the latter. In addition, this work indicated that while normal and nutrient-stressed plants could not be distinguished within the first 7 days by tracking plant growth indicators, stressed plants did show a clear decline in average leaf number and leaf width in later stages of growth even after the plants were returned to complete nutrient solution. The results further reinforce the need for early detection of nutrient stress, as late remedial action could not reverse the loss in plant growth in later stages of plant development.

  19. The behavior of Kevlar fibers under environmental-stress conditions

    NASA Astrophysics Data System (ADS)

    Perry, Mark Charles

    There are a myriad of mechanisms by which polymers can degrade and fail. It is therefore important to understand the physical mechanics, chemistry, their interactions, and kinetics. This pursuit becomes more than just "academic" because these mechanisms might just change with service conditions (i.e. environment and loading). If one does not understand these processes from the molecular to macroscopic scale it would be exceedingly difficult to gain information from accelerated testing because the mechanisms just might change from one condition to another. The purpose of this study was to probe these processes on scales ranging from molecular to macroscopic in environmental stress conditions. This study reports the results of environmental-stress degradation of Kevlar 49 fibers. The environmental agent of focus was the ubiquitous air pollutant complex NOsb{x}. Other materials and environments were investigated to a lesser extent for purposes of comparison. Mechanical property (i.e., short-term strength, modulus, and creep lifetime) degradation was examined using single fiber, yarn, and epoxy coated yarn (composite) specimens under environmental-stress conditions. Optical and scanning electron microscopes were employed to examine and compare the appearance of fracture features resulting from the various testing conditions. Atomic force microscopy augmented these studies with detailed topographical mappings and measures of the fracture surface frictional and modulus properties. Molecular processes (i.e., chain scission and other mechanical-chemical reactions) were probed by measures of changes in viscosity average molecular weight and the infrared spectra. It was demonstrated that environmental-stress degradation effects do occur in the Kevlar-NOsb{x} gas system. Strength decay in environmentally exposed unloaded fibers was demonstrated and a synergistic response in creep reduced fiber lifetimes by three orders of magnitude at moderate loadings. That is to say, the

  20. Modeling of stress/strain behavior of fiber-reinforced ceramic matrix composites including stress redistribution

    NASA Technical Reports Server (NTRS)

    Mital, Subodh K.; Murthy, Pappu L. N.; Chamis, Christos C.

    1994-01-01

    A computational simulation procedure is presented for nonlinear analyses which incorporates microstress redistribution due to progressive fracture in ceramic matrix composites. This procedure facilitates an accurate simulation of the stress-strain behavior of ceramic matrix composites up to failure. The nonlinearity in the material behavior is accounted for at the constituent (fiber/matrix/interphase) level. This computational procedure is a part of recent upgrades to CEMCAN (Ceramic Matrix Composite Analyzer) computer code. The fiber substructuring technique in CEMCAN is used to monitor the damage initiation and progression as the load increases. The room-temperature tensile stress-strain curves for SiC fiber reinforced reaction-bonded silicon nitride (RBSN) matrix unidirectional and angle-ply laminates are simulated and compared with experimentally observed stress-strain behavior. Comparison between the predicted stress/strain behavior and experimental stress/strain curves is good. Collectively the results demonstrate that CEMCAN computer code provides the user with an effective computational tool to simulate the behavior of ceramic matrix composites.

  1. Frequency-dependent FDTD methods using Z transforms

    NASA Technical Reports Server (NTRS)

    Sullivan, Dennis M.

    1992-01-01

    While the frequency-dependent finite-difference time-domain, or (FD)2TD, method can correctly calculate EM propagation through media whose dielectric properties are frequency-dependent, more elaborate applications lead to greater (FD)2TD complexity. Z-transform theory is presently used to develop the mathematical bases of the (FD)2TD method, simultaneously obtaining a clearer formulation and allowing researchers to draw on the existing literature of systems analysis and signal-processing.

  2. Discrete diffusion Monte Carlo for frequency-dependent radiative transfer

    SciTech Connect

    Densmore, Jeffrey D; Kelly, Thompson G; Urbatish, Todd J

    2010-11-17

    Discrete Diffusion Monte Carlo (DDMC) is a technique for increasing the efficiency of Implicit Monte Carlo radiative-transfer simulations. In this paper, we develop an extension of DDMC for frequency-dependent radiative transfer. We base our new DDMC method on a frequency-integrated diffusion equation for frequencies below a specified threshold. Above this threshold we employ standard Monte Carlo. With a frequency-dependent test problem, we confirm the increased efficiency of our new DDMC technique.

  3. Frequency-Dependent Selection Predicts Patterns of Radiations and Biodiversity

    PubMed Central

    Melián, Carlos J.; Alonso, David; Vázquez, Diego P.; Regetz, James; Allesina, Stefano

    2010-01-01

    Most empirical studies support a decline in speciation rates through time, although evidence for constant speciation rates also exists. Declining rates have been explained by invoking pre-existing niches, whereas constant rates have been attributed to non-adaptive processes such as sexual selection and mutation. Trends in speciation rate and the processes underlying it remain unclear, representing a critical information gap in understanding patterns of global diversity. Here we show that the temporal trend in the speciation rate can also be explained by frequency-dependent selection. We construct a frequency-dependent and DNA sequence-based model of speciation. We compare our model to empirical diversity patterns observed for cichlid fish and Darwin's finches, two classic systems for which speciation rates and richness data exist. Negative frequency-dependent selection predicts well both the declining speciation rate found in cichlid fish and explains their species richness. For groups like the Darwin's finches, in which speciation rates are constant and diversity is lower, speciation rate is better explained by a model without frequency-dependent selection. Our analysis shows that differences in diversity may be driven by incipient species abundance with frequency-dependent selection. Our results demonstrate that genetic-distance-based speciation and frequency-dependent selection are sufficient to explain the high diversity observed in natural systems and, importantly, predict decay through time in speciation rate in the absence of pre-existing niches. PMID:20865126

  4. Stress Corrosion Cracking in Polymer Matrix Glass Fiber Composites

    NASA Astrophysics Data System (ADS)

    Kosak, Jonathan

    With the use of Polymer Matrix Glass Fiber Composites ever expanding, understanding conditions that lead to failure before expected service life is of increasing importance. Stress Corrosion Cracking (SCC) has proven to be one such example of conditions found in use in high voltage transmission line applications that leads to brittle fracture of polymer matrix composites. SCC has been proven to be the result of acid buildup on the lines due to corona discharges and water buildup. This acid leaches minerals from the fibers, leading to fracture at low loads and service life. In order to combat this problem, efforts are being made to determine which composites have greater resistance to SCC. This study was used to create a methodology to monitor for damage during SCC and classify damage by mechanism type (matrix cracking and fiber breaking) by using 4-point SCC bend testing, 3-point bend testing, a forward predictive model, unique post processing techniques, and microscopy. This would allow a classification in composite resistance to SCC as well as create a methodology for future research in this field. Concluding this study, only matrix cracking was able to be fully classified, however, a methodology was developed for future experimentation.

  5. Fatigue and fracture of fiber composites under combined interlaminar stresses

    SciTech Connect

    DeTeresa, S J; Freeman, D C; Groves, S E

    1998-06-25

    As part of efforts to develop a three-dimensional failure model for composites, a study of failure and fatigue due to combined interlaminar stresses was conducted. The combined stresses were generated using a hollow cylindrical specimen, which was subjected to normal compression and torsion. For both glass and carbon fiber composites, normal compression resulted in a significant enhancement in the interlaminar shear stress and strain at failure. Under moderate compression levels, the failure mode transitioned from elastic to plastic. The observed failure envelope could not be adequately captured using common ply- level failure models. Alternate modeling approaches were examined and it was found that a pressure-dependent failure criterion was required to reproduce the experimental results. The magnitude of the pressure-dependent terms of this model was found to be material dependent. The interlaminar shear fatigue behavior of a carbon/epoxy system was also studied using the cylindrical specimen. Preliminary results indicate that a single S/N curve which is normalized for interlaminar shear strength may be able to reproduce the effects of both temperature and out-of-plane compression on fatigue life. The results demonstrate that there are significant gains to be made in improving interlaminar strengths of composite structures by applying out-of-plane compression. This effect could be exploited for improved strength and fatigue life of composite joints and other regions in structures where interlaminar stress states are critical.

  6. Frequency dependence of the acoustic field generated from a spherical cavity transducer with open ends

    SciTech Connect

    Li, Faqi; Zeng, Deping; He, Min; Wang, Zhibiao E-mail: wangzhibiao@haifu.com.cn; Song, Dan; Lei, Guangrong; Lin, Zhou; Zhang, Dong E-mail: wangzhibiao@haifu.com.cn; Wu, Junru

    2015-12-15

    Resolution of high intensity focused ultrasound (HIFU) focusing is limited by the wave diffraction. We have developed a spherical cavity transducer with two open ends to improve the focusing precision without sacrificing the acoustic intensity (App Phys Lett 2013; 102: 204102). This work aims to theoretically and experimentally investigate the frequency dependence of the acoustic field generated from the spherical cavity transducer with two open ends. The device emits high intensity ultrasound at the frequency ranging from 420 to 470 kHz, and the acoustic field is measured by a fiber optic probe hydrophone. The measured results shows that the spherical cavity transducer provides high acoustic intensity for HIFU treatment only in its resonant modes, and a series of resonant frequencies can be choosen. Furthermore, a finite element model is developed to discuss the frequency dependence of the acoustic field. The numerical simulations coincide well with the measured results.

  7. Residual stress effects on the impact resistance and strength of fiber composites

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.

    1973-01-01

    Equations have been derived to predict degradation effects of microresidual stresses on impact resistance of unidirectional fiber composites. Equations also predict lamination residual stresses in multilayered angle ply composites.

  8. Frequency dependence of ionic conductivity of electrolyte solutions

    NASA Astrophysics Data System (ADS)

    Chandra, Amalendu; Bagchi, Biman

    2000-01-01

    A theory for the frequency dependence of ionic conductivity of an electrolyte solution is presented. In this theory contributions to the conductivity from both the ion atmosphere relaxation and the electrophoretic effects are included in a self-consistent fashion. Mode coupling theory, combined with time-dependent density functional theory of ion atmosphere fluctuations, leads to expressions for these two contributions at finite frequencies. These expressions need to be solved self-consistently for the frequency dependence of the electrolyte friction and the ion conductivity at varying ion concentrations. In the limit of low concentration, the present theory reduces exactly to the well-known Debye-Falkenhagen (DF) expression of the frequency-dependent electrolyte friction when the non-Markovian effects in the ion atmosphere relaxation are ignored and in addition the ions are considered to be pointlike. The present theory also reproduces the expressions of the frequency-dependent conductivity derived by Chandra, Wei, and Patey when appropriate limiting situations are considered. We have carried out detailed numerical solutions of the self-consistent equations for concentrated solutions of a 1:1 electrolyte by using the expressions of pair correlation functions given by Attard. Numerical results reveal that the frequency dependence of the electrolyte friction at finite concentration can be quite different from that given by the DF expression. With the increase of ion concentration, the dispersion of the friction is found to occur at a higher frequency because of faster relaxation of the ion atmosphere. At low frequency, the real part of the conductivity shows a small increase with frequency which can be attributed to the well-known Debye-Falkenhagen effect. At high frequency, the conductivity decreases as expected. The extensions of the present theory to treat frequency-dependent diffusivities of charged colloid suspensions and conductivity of a dilute

  9. The frequency dependent impedance of an HVdc converter

    SciTech Connect

    Wood, A.R.; Arrillaga, J.

    1995-07-01

    A linear and direct method of determining the frequency dependent impedance of a 12 pulse HVdc converter is presented. Terms are developed for both the dc and ac side impedances of the converter, including the effect of the firing angle control system, the commutation period, and the variability of the commutation period. The impedance predictions are verified by dynamic simulation.

  10. A comparative study of the stress-rupture lifetimes of high-strength carbon fibers

    NASA Astrophysics Data System (ADS)

    Grimes-Ledesma, Lorie

    Stress-rupture life is the time a composite can survive under load at an assigned risk level. The stress-rupture lifetimes of high-strength PAN-based carbon fibers are important to the development and use of lightweight composite structures such as composite overwrapped pressure vessels (COPVs). To quantify appropriate stress-rupture risk levels based on available models, quantification of single fiber variability and lifetime is necessary to understand the variability observed in larger composite structures. In the present work, three PAN-based carbon fibers commonly used in COPV technology were examined, Hexcel IM9, Toray T700, and Toray T1000. The diameter of each fiber type was quantified by measuring samples in the scanning electron microscope and failure loads were determined by performing tensile tests on single fibers. Weibull statistics were used to describe the results. Fractography was performed on IM9 and T1000 fibers after tensile failure. The fracture surfaces are consistent with crack growth from a volume or surface defect. Stress-rupture testing was completed at two stress levels at each fiber type, 97% and 93% of the mean fiber strength for each of the fiber types. The results indicate that differences in stress-rupture life performance exist between the three fiber types. Differences in stress ratio of between 5 and 10% were observed, which may translate to significant difference in stress-rupture life behavior for larger composite structures. The results indicate that a relationship may exist between strength and stress-rupture life. However, if this relationship exists, it is not a simple one, and the relationship is likely complicated by manufacturing.

  11. Multi-Stress Monitoring System with Fiber-Optic Mandrels and Fiber Bragg Grating Sensors in a Sagnac Loop.

    PubMed

    Kim, Hyunjin; Sampath, Umesh; Song, Minho

    2015-07-29

    Fiber Bragg grating sensors are placed in a fiber-optic Sagnac loop to combine the grating temperature sensors and the fiber-optic mandrel acoustic emission sensors in single optical circuit. A wavelength-scanning fiber-optic laser is used as a common light source for both sensors. A fiber-optic attenuator is placed at a specific position in the Sagnac loop in order to separate buried Bragg wavelengths from the Sagnac interferometer output. The Bragg wavelength shifts are measured with scanning band-pass filter demodulation and the mandrel output is analyzed by applying a fast Fourier transform to the interference signal. This hybrid-scheme could greatly reduce the size and the complexity of optical circuitry and signal processing unit, making it suitable for low cost multi-stress monitoring of large scale power systems.

  12. Multi-Stress Monitoring System with Fiber-Optic Mandrels and Fiber Bragg Grating Sensors in a Sagnac Loop

    PubMed Central

    Kim, Hyunjin; Sampath, Umesh; Song, Minho

    2015-01-01

    Fiber Bragg grating sensors are placed in a fiber-optic Sagnac loop to combine the grating temperature sensors and the fiber-optic mandrel acoustic emission sensors in single optical circuit. A wavelength-scanning fiber-optic laser is used as a common light source for both sensors. A fiber-optic attenuator is placed at a specific position in the Sagnac loop in order to separate buried Bragg wavelengths from the Sagnac interferometer output. The Bragg wavelength shifts are measured with scanning band-pass filter demodulation and the mandrel output is analyzed by applying a fast Fourier transform to the interference signal. This hybrid-scheme could greatly reduce the size and the complexity of optical circuitry and signal processing unit, making it suitable for low cost multi-stress monitoring of large scale power systems. PMID:26230700

  13. Nondestructive evaluation of residual stress in short-fiber reinforced plastics by x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Tanaka, Keisuke; Tokoro, Syouhei; Akiniwa, Yoshiaki; Egami, Noboru

    2014-06-01

    The X-ray diffraction method is used to measure the residual stress in injection-molded plates of short-fiber reinforced plastics (SFRP) made of crystalline thermoplastics, polyphenylene sulphide (PPS), reinforced by carbon fibers with 30 mass%. Based on the orientation of carbon fibers, injection molded plates can be modeled as three-layered lamella where the core layer is sandwiched by skin layers. The stress in the matrix in the skin layer was measured using Cr-Kα radiation with the sin2Ψ method. Since the X-ray penetration depth is shallow, the state of stresses measured by X-rays in FRP can be assumed to be plane stress. The X-ray measurement of stress in carbon fibers was not possible because of high texture. A new method was proposed to evaluate the macrostress in SFRP from the measurement of the matrix stress. According to micromechanics analysis of SFRP, the matrix stresses in the fiber direction, σ1m, and perpendicular to the fiber direction, σ2m, and shear stress τ12m can be expressed as the functions of the applied (macro-) stresses, σ1A, σ2A , τ12A as follows: σ1m = α11σ1A +α12σ2A, σ2m = α21σ1A + α22σ2A, τ12m = α66τ12A, where α11 ,α12, α21, α22, α66 are stress-partitioning coefficients. Using skin-layer strips cut parallel, perpendicular and 45° to the molding direction, the stress in the matrix was measured under the uniaxial applied stress and the stress-partitioning coefficients of the above equations were determined. Once these relations are established, the macrostress in SFRP can be determined from the measurements of the matrix stresses by X-rays.

  14. Frequency-dependent effective hydraulic conductivity of strongly heterogeneous media.

    PubMed

    Caspari, E; Gurevich, B; Müller, T M

    2013-10-01

    The determination of the transport properties of heterogeneous porous rocks, such as an effective hydraulic conductivity, arises in a range of geoscience problems, from groundwater flow analysis to hydrocarbon reservoir modeling. In the presence of formation-scale heterogeneities, nonstationary flows, induced by pumping tests or propagating elastic waves, entail localized pressure diffusion processes with a characteristic frequency depending on the pressure diffusivity and size of the heterogeneity. Then, on a macroscale, a homogeneous equivalent medium exists, which has a frequency-dependent effective conductivity. The frequency dependence of the conductivity can be analyzed with Biot's equations of poroelasticity. In the quasistatic frequency regime of this framework, the slow compressional wave is a proxy for pressure diffusion processes. This slow compressional wave is associated with the out-of-phase motion of the fluid and solid phase, thereby creating a relative fluid-solid displacement vector field. Decoupling of the poroelasticity equations gives a diffusion equation for the fluid-solid displacement field valid in a poroelastic medium with spatial fluctuations in hydraulic conductivity. Then, an effective conductivity is found by a Green's function approach followed by a strong-contrast perturbation theory suggested earlier in the context of random dielectrics. This theory leads to closed-form expressions for the frequency-dependent effective conductivity as a function of the one- and two-point probability functions of the conductivity fluctuations. In one dimension, these expressions are consistent with exact solutions in both low- and high-frequency limits for arbitrary conductivity contrast. In 3D, the low-frequency limit depends on the details of the microstructure. However, the derived approximation for the effective conductivity is consistent with the Hashin-Shtrikman bounds.

  15. Frequency dependent Lg attenuation in south-central Alaska

    USGS Publications Warehouse

    McNamara, D.E.

    2000-01-01

    The characteristics of seismic energy attenuation are determined using high frequency Lg waves from 27 crustal earthquakes, in south-central Alaska. Lg time-domain amplitudes are measured in five pass-bands and inverted to determine a frequency-dependent quality factor, Q(f), model for south-central Alaska. The inversion in this study yields the frequency-dependent quality factor, in the form of a power law: Q(f) = Q0fη = 220(±30) f0.66(±0.09) (0.75≤f≤12Hz). The results from this study are remarkably consistent with frequency dependent quality factor estimates, using local S-wave coda, in south-central Alaska. The consistency between S-coda Q(f) and Lg Q(f) enables constraints to be placed on the mechanism of crustal attenuation in south-central Alaska. For the range of frequencies considered in this study both scattering and intrinsic attenuation mechanisms likely play an equal role.

  16. Frequency-Dependent Attenuation of Blasting Vibration Waves

    NASA Astrophysics Data System (ADS)

    Zhou, Junru; Lu, Wenbo; Yan, Peng; Chen, Ming; Wang, Gaohui

    2016-10-01

    The dominant frequency, in addition to the peak particle velocity, is a critical factor for assessing adverse effects of the blasting vibration on surrounding structures; however, it has not been fully considered in blasting design. Therefore, the dominant frequency-dependent attenuation mechanism of blast-induced vibration is investigated in the present research. Starting with blasting vibration induced by a spherical charge propagating in an infinite viscoelastic medium, a modified expression of the vibration amplitude spectrum was derived to reveal the frequency dependency of attenuation. Then, ground vibration induced by more complex and more commonly used cylindrical charge that propagates in a semi-infinite viscoelastic medium was analyzed by numerical simulation. Results demonstrate that the absorptive property of the medium results in the frequency attenuation versus distance, whereas a rapid drop or fluctuation occurs during the attenuation of ground vibration. Fluctuation usually appears at moderate to far field, and the dominant frequency generally decreases to half the original value when rapid drop occurs. The decay rate discrepancy between different frequency components and the multimodal structure of vibration spectrum lead to the unsmooth frequency-dependent attenuation. The above research is verified by two field experiments. Furthermore, according to frequency-based vibration standards, frequency drop and fluctuation should be considered when evaluating blast safety. An optimized piecewise assessment is proposed for more accurate evaluation: With the frequency drop point as the breakpoint, the assessment is divided into two independent sections along the propagating path.

  17. Residual stresses in boron/tungsten and boron/carbon fibers

    NASA Technical Reports Server (NTRS)

    Behrendt, D. R.

    1977-01-01

    By measuring the change in fracture stress of 203 micrometer diameter fibers of boron on tungsten (B/W) as a function of fiber diameter as reduced by chemical etching, it is shown that the flaws which limit B/W fiber strength are located at the surface and in the tungsten boride core. After etching to a diameter of 188 micrometers m virtually all fiber fractures were caused by core flaws, the average strength being 4.50 GN/sq m. If both the surface and core flaws are removed, the fracture strength, limited by flaws in the boron itself, is approximately 6.89 GN/sq m. This was measured on B/W fibers which were split longitudinally and had their cores removed by chemical etching. The longitudinal residual stress distribution was determined for 102 micrometer diameter B/W and B/C fibers.

  18. Frequency-dependent Lg Q within the continental United States

    USGS Publications Warehouse

    Erickson, D.; McNamara, D.E.; Benz, H.M.

    2004-01-01

    Frequency-dependent crustal attenuation (1/Q) is determined for seven distinct physiographic/tectonic regions of the continental United States using high-quality Lg waveforms recorded on broadband stations in the frequency band 0.5 to 16 Hz. Lg attenuation is determined from time-domain amplitude measurements in one-octave frequency bands centered on the frequencies 0.75, 1.0, 3.0, 6.0, and 12.0 Hz. Modeling errors are determined using a delete-j jackknife resampling technique. The frequency-dependent quality factor is modeled in the form of Q = Q0 fη. Regions were initially selected based on tectonic provinces but were eventually limited and adjusted to maximize ray path coverage in each area. Earthquake data was recorded on several different networks and constrained to events occurring within the crust (<40 km depth) and at least mb 3.5 in size. A singular value decomposition inversion technique was applied to the data to simultaneously solve for source and receiver terms along with Q for each region at specific frequencies. The lowest crustal Q was observed in northern and southern California where Q is described by the functions Q = 152(±37)f0.72(±0.16) and Q = 105(±26)f0.67(±0.16), respectively. The Basin and Range Province, Pacific Northwest, and Rocky Mountain states also display lower Q and a strong frequency dependence characterized by the functions Q = 200(±40)f0.68(±0.12), Q = 152(±49)f0.76(±0.18), and Q = 166(±37)f0.61(±0.14), respectively. In contrast, in the central and northeast United States Q functions are Q = 640(±225)f0.344(±0.22) and Q = 650(±143)f0.36(±0.14), respectively, show a high crustal Q and a weaker frequency dependence. These results improve upon previous Lg modeling by subdividing the United States into smaller, distinct tectonic regions and using significantly more data that provide improved constraints on frequency-dependent attenuation and errors. A detailed attenuation map of the continental United States can

  19. Mechanical Stability Determines Stress Fiber and Focal Adhesion Orientation.

    PubMed

    Stamenović, Dimitrije; Lazopoulos, Konstantinos A; Pirentis, Athanassios; Suki, Béla

    2009-12-01

    It is well documented in a variety of adherent cell types that in response to anisotropic signals from the microenvironment cells alter their cytoskeletal organization. Previous theoretical studies of these phenomena were focused primarily on the elasticity of cytoskeletal actin stress fibers (SFs) and of the substrate while the contribution of focal adhesions (FAs) through which the cytoskeleton is linked to the external environment has not been considered. Here we propose a mathematical model comprised of a single linearly elastic SF and two identical linearly elastic FAs of a finite size at the endpoints of the SF to investigate cytoskeletal realignment in response to uniaxial stretching of the substrate. The model also includes the contribution of the chemical potential energies of the SF and the FAs to the total potential energy of the SF-FA assembly. Using the global (Maxwell's) stability criterion, we predict stable configurations of the SF-FA assembly in response to substrate stretching. Model predictions obtained for physiologically feasible values of model parameters are consistent with experimental data from the literature. The model shows that elasticity of SFs alone can not predict their realignment during substrate stretching and that geometrical and elastic properties of SFs and FAs need to be included.

  20. High temperature battery cell comprising stress-free hollow fiber bundle

    SciTech Connect

    Anand, J.N.; Revak, T.T.; Rossini, F.J.

    1982-06-01

    Thermal stressing of hollow fibers constituting the electrolyteseparator in a high temperature battery cell, and of certain other elements thereof, is avoided by suspending the assembly comprising the anolyte tank, the tubesheet, the hollow fibers and a cathodic current collector-distributing means, within the casing and employing a limp connection between the latter means and the cathode terminal of the cell.

  1. Two-dimensional refractive index and stresses profiles of a homogenous bent optical fiber.

    PubMed

    Ramadan, W A; Wahba, H H; Shams El-Din, M A

    2014-11-01

    We present a significant contribution to the theory of determining the refractive index profile of a bent homogenous optical fiber. In this theory we consider two different processes controlling the index profile variations. The first is the linear index variation due to stress along the bent radius, and the second is the release of this stress on the fiber surface. This release process is considered to have radial dependence on the fiber radius. These considerations enable us to construct the index profile in two dimensions normal to the optical axis, considering the refraction of light rays traversing the fiber. This theory is applied to optical homogenous bent fiber with two bending radii when they are located orthogonal to the light path of the object arm in the holographic setup (like the Mach-Zehnder interferometer). Digital holographic phase shifting interferometry is employed in this study. The recorded phase shifted holograms have been combined, reconstructed, and processed to extract the phase map of the bent optical fiber. A comparison between the extracted optical phase differences and the calculated one indicates that the refractive index profile variation should include the above mentioned two processes, which are considered as a response for stress distribution across the fiber's cross section. The experimentally obtained refractive index profiles provide the stress induced birefringence profile. Thus we are able to present a realistic induced stress profile due to bending.

  2. In-situ Frequency Dependent Dielectric Sensing of Cure

    NASA Technical Reports Server (NTRS)

    Kranbuehl, David E.

    1996-01-01

    With the expanding use of polymeric materials as composite matrices, adhesives, coatings and films, the need to develop low cost, automated fabrication processes to produce consistently high quality parts is critical. Essential to the development of reliable, automated, intelligent processing is the ability to continuously monitor the changing state of the polymeric resin in-situ in the fabrication tool. This final report discusses work done on developing dielectric sensing to monitor polymeric material cure and which provides a fundamental understanding of the underlying science for the use of frequency dependent dielectri sensors to monitor the cure process.

  3. Frequency-dependent Lg-wave attenuation in northern Morocco

    NASA Astrophysics Data System (ADS)

    Noriega, Raquel; Ugalde, Arantza; Villaseñor, Antonio; Harnafi, Mimoun

    2015-11-01

    Frequency-dependent attenuation (Q- 1) in the crust of northern Morocco is estimated from Lg-wave spectral amplitude measurements every quarter octave in the frequency band 0.8 to 8 Hz. This study takes advantage of the improved broadband data coverage in the region provided by the deployment of the IberArray seismic network. Earthquake data consist of 71 crustal events with magnitudes 4 ≤ mb ≤ 5.5 recorded on 110 permanent and temporary seismic stations between January 2008 and December 2013 with hypocentral distances between 100 and 900 km. 1274 high-quality Lg waveforms provide dense path coverage of northern Morocco, crossing a region with a complex structure and heterogeneous tectonic setting as a result of continuous interactions between the African and Eurasian plates. We use two different methods: the coda normalization (CN) analysis, that allows removal of the source and site effects from the Lg spectra, and the spectral amplitude decay (SAD) method, that simultaneously inverts for source, site, and path attenuation terms. The CN and SAD methods return similar results, indicating that the Lg Q models are robust to differences in the methodologies. Larger errors and no significant frequency dependence are observed for frequencies lower than 1.5 Hz. For distances up to 400 km and the frequency band 1.5 ≤ ƒ (Hz) ≤ 4.5, the model functions Q(f) = (529- 22+ 23)(f/1.5)0.23 ± 0.06 and Q(f) = (457- 7+ 7)(f/1.5)0.44 ± 0.02 are obtained using the CN and SAD methods, respectively. A change in the frequency dependence is observed above 4.5 Hz for both methods which may be related to the influence of the Sn energy on the Lg window. The frequency-dependent Q- 1 estimates represent an average attenuation beneath a broad region including the Rif and Tell mountains, the Moroccan and Algerian mesetas, the Atlas Mountains and the Sahara Platform structural domains, and correlate well with areas of moderate seismicity where intermediate Q values have been obtained.

  4. Frequency-Dependent Properties of Magnetic Nanoparticle Crystals

    SciTech Connect

    Majetich, Sara

    2016-05-17

    In the proposed research program we will investigate the time- and frequency-dependent behavior of ordered nanoparticle assemblies, or nanoparticle crystals. Magnetostatic interactions are long-range and anisotropic, and this leads to complex behavior in nanoparticle assemblies, particularly in the time- and frequency-dependent properties. We hypothesize that the high frequency performance of composite materials has been limited because of the range of relaxation times; if a composite is a dipolar ferromagnet at a particular frequency, it should have the advantages of a single phase material, but without significant eddy current power losses. Arrays of surfactant-coated monodomain magnetic nanoparticles can exhibit long-range magnetic order that is stable over time. The magnetic domain size and location of domain walls is governed not by structural grain boundaries but by the shape of the array, due to the local interaction field. Pores or gaps within an assembly pin domain walls and limit the domain size. Measurements of the magnetic order parameter as a function of temperature showed that domains can exist at high temoerature, and that there is a collective phase transition, just as in an exchange-coupled ferromagnet. Dipolar ferromagnets are not merely of fundamental interest; they provide an interesting alternative to exchange-based ferromagnets. Dipolar ferromagnets made with high moment metallic particles in an insulating matrix could have high permeability without large eddy current losses. Such nanocomposites could someday replace the ferrites now used in phase shifters, isolators, circulators, and filters in microwave communications and radar applications. We will investigate the time- and frequency-dependent behavior of nanoparticle crystals with different magnetic core sizes and different interparticle barrier resistances, and will measure the magnetic and electrical properties in the DC, low frequency (0.1 Hz - 1 kHz), moderate frequency (10 Hz - 500

  5. Stress-Transfer Micromechanics For Fiber Length with a Photocure Vinyl Ester Composite

    PubMed Central

    Petersen, Richard C.; Lemons, Jack E.; McCracken, Michael S.

    2014-01-01

    The objective was to test how increasing fiber length above the critical length would influence mechanical properties and fracture crack propagation. Micromechanics considering fiber/matrix stress-transfer was used to evaluate the results in addition to a shear debonding volume percent correction term necessary for the final analysis. Fiber lengths of 0.5, 1.0, 2.0, 3.0, and 6.0 mm with 9 μm diameters were added into a photocure vinyl ester particulate-filled composite at a uniform 28.2 vol%. Mechanical flexural testing was performed using four-point fully articulated fixtures for samples measuring 2 × 2 × 50 mm3 across a 40 mm span. Fiber length correlated with improved mechanical properties for flexural strength, modulus, yield strength, strain, work of fracture, and strain energy release, p < 0.001. In addition, sample fracture depth significantly decreased with increasing fiber lengths, p < 0.00001. All mechanical properties correlated significantly as predictors for fracture failure, p < 0.000001, and as estimators for each other, p < 0.0001. The stress-transfer micromechanics for fiber length were improved upon for strength by including a simple correction factor to account for loss of fiber volume percent related to cracks deflecting around debonded fiber ends. In turn, the elastic property of modulus was shown to exhibit a tendency to follow stress-transfer micromechanics. PMID:25382894

  6. Effects of EB irradiation on stress-strain curves for carbon fiber reinforced composite materials

    NASA Astrophysics Data System (ADS)

    Kobayashi, H.; Yamada, K.; Mizutani, A.; Uchida, N.; Tanaka, K.; Nishi, Yoshitake

    2004-02-01

    In order to evaluate influence of electron beam (EB) irradiation on elasticity and stress- strain curve of composite materials reinforced by carbon fiber (CF), carbon fiber reinforced polymer (CFRP) and carbon fiber reinforced graphite (C/C) were treated by EB irradiation of 0.3 MGy. Since the EB strengthening was mainly dominated by the ductility enhancements of carbon fiber and matrix of epoxy resin, EB irradiation enlarged fracture stress and enhanced fracture strain of CFRP. Furthermore, EB irradiation slightly enhanced bending elasticity of CFRP and largely enhanced the initial spring constant related to elasticity of C/C coil. Although the elasticity enhancement of carbon fibers did not largely contribute that of CFRP, that of treated graphite matrix in C/C mainly caused the C/C coil elasticity enhancement by EB irradiation. Such a new treatment is a dream-worthy technology for structural materials to be applied in the fields of future engineering.

  7. Frequency dependent and transient characteristics of substation grounding systems

    SciTech Connect

    Grcev, L.D. Heimbach, M.

    1997-01-01

    In spite of the existence of a number of analytical models aimed for transient analysis of large grounding systems, more detailed analysis of the influence of different parameters on the transient performance of large ground grids subjected to lightning current impulse is not available. This paper presents analysis of the influence of soil conductivity, location of feed point, grid size, depth, conductor separation, ground rods, and shape of the lightning current impulse, on the transient performance of ground grids with sizes ranging from 10 x 10 m{sup 2} to 120 x 120 m{sup 2} and with 4 to 124 meshes. Maximal transient ground potential rise and frequency dependent impedance are analyzed in time and frequency domain, respectively. Computations are made with computer model based on the electromagnetic field theory approach, taking accurately into account frequency dependent characteristics of large ground grids. Instead of usual simple approximations of the lightning current impulse, recorded channel base currents from triggered lightning are used for the time domain analysis.

  8. Frequency-dependent conductivity in bismuth-vanadate glassy semiconductors

    NASA Astrophysics Data System (ADS)

    Ghosh, Aswini

    1990-01-01

    The first measurements are reported for the frequency-dependent (ac) conductivity (real as well as imaginary parts) for various compositions of the bismuth-vanadate glassy semiconductors in the frequency range 102-105 Hz and in the temperature range 77-420 K. The behavior of the ac conductivity is broadly similar to what has been observed previously in many other types of amorphous semiconductors, namely, nearly linear frequency dependence and weak temperature dependence. The experimental results are analyzed with reference to various theoretical models based on quantum-mechanical tunneling and classical hopping over barriers. The analysis shows that the temperature dependence of the ac conductivity is consistent with the simple quantum-mechanical tunneling model at low temperatures; however, this model completely fails to predict the observed temperature dependence of the frequency exponent. The overlapping-large-polaron tunneling model can explain the temperature dependence of the frequency exponent at low temperatures. Fitting of this model to the low-temperature data yields a reasonable value of the wave-function decay constant. However, this model predicts the temperature dependence of the ac conductivity much higher than what actual data showed. The correlated barrier hopping model is consistent with the temperature dependence of both the ac conductivity and its frequency exponent. This model provides reasonable values of the maximum barrier heights but higher values of characteristic relaxation times.

  9. Removal of interference from fetal MEG by frequency dependent subtraction

    PubMed Central

    Vrba, J.; McCubbin, J.; Govindan, R.B.; Vairavan, S.; Murphy, P.; Preissl, H.; Lowery, C.L.; Eswaran, H.

    2011-01-01

    Fetal magnetoencephalography (fMEG) recordings are contaminated by maternal and fetal magnetocardiography (MCG) signals and by other biological and environmental interference. Currently, all methods for the attenuation of these signals are based on a time-domain approach. We have developed and tested a frequency dependent procedure for removal of MCG and other interference from the fMEG recordings. The method uses a set of reference channels and performs subtraction of interference in the frequency domain (SUBTR). The interference-free frequency domain signals are converted back to the time domain. We compare the performance of the frequency dependent approach with our present approach for MCG attenuation based on orthogonal projection (OP). SUBTR has an advantage over OP and similar template approaches because it removes not only the MCG but also other small amplitude biological interference, avoids the difficulties with inaccurate determination of the OP operator, provides more consistent and stable fMEG results, does not cause signal redistribution, and if references are selected judiciously, it does not reduce fMEG signal amplitude. SUBTR was found to perform well in simulations and on real fMEG recordings, and has a potential to improve the detection of fetal brain signals. The SUBTR removes interference without the need for a model of the individual interference sources. The method may be of interest for any sensor array noise reduction application where signal-free reference channels are available. PMID:21930216

  10. A Magnus Expansion Analysis of Frequency-Dependent Mueller Matrices

    NASA Astrophysics Data System (ADS)

    Reimer, Michael; Yevick, David

    2006-03-01

    We have recently demonstrated that, for any physical system characterized by a non-singular, frequency dependent Jones matrix, the frequency evolution of the corresponding Mueller matrix is described by a differential equation whose general solution can be compactly formulated through the Magnus expansion [M. Reimer, D. Yevick, and D. Dumas, submitted to J. Opt. Soc. Am. A, Photon. Technol. Lett.]. [D. Yevick, T. Lu, W. Huang and W. Bardyszewski to be published in J. Opt. Soc. Am. A]. We subsequently applied our analytic results to optical compensators for communications networks and to the estimation of a system's frequency dependent Mueller matrix based on repeated measurements of the output state of polarization for randomly generated input polarization states [M. Reimer, D. Yevick and D. Dumas, submitted to Photon. Technol. Lett.]. We have also incorporated the Magnus expansion into a Clifford algebra description of polarization evolution. This procedure reformulates numerous physical transformations in a simple and transparent manner [M. Reimer and D. Yevick, submitted to Photon. Technol. Lett.].

  11. Correlation of Fiber Composite Tensile Strength with the Ultrasonic Stress Wave Factor

    NASA Technical Reports Server (NTRS)

    Vary, A.; Lark, R. F.

    1978-01-01

    An ultrasonic-acoustic technique was used to indicate the strength variations of tensile specimens of a graphite-epoxy composite. A stress wave factor was determined and its value was found to depend on variations of the fiber-resin bonding as well as fiber orientation. The fiber orientations studied were 0 deg (longitudinal), 10 deg (off-axis), 90 deg (transverse), 0 deg + or - 45 deg/0 deg symmetrical, and + or - 45 deg] symmetrical. The stress wave factor can indicate variations of the tensile and shear strengths of composite materials. The stress wave factor was also found to be sensitive to strength variations associated with microporosity and differences in fiber-resin ratio.

  12. Correlation of fiber composite tensile strength with the ultrasonic stress wave factor

    NASA Technical Reports Server (NTRS)

    Vary, A.; Lark, R. F.

    1978-01-01

    An ultrasonic-acoustic technique was used to indicate the strength variations of tensile specimens of a graphite-epoxy composite. A 'stress wave factor' was determined and its value was found to depend on variations of the fiber-resin bonding as well as fiber orientation. The fiber orientations studied were 0 deg (longitudinal), 10 deg (off-axis), 90 deg (transverse), (0 deg/+ or - 45 deg/0) symmetrical, and (+ or - 45 deg) symmetrical. The stress wave factor can indicate variations of the tensile and shear strengths of composite materials. The stress wave factor was also found to be sensitive to strength variations associated with microporosity and differences in fiber-resin ratio.

  13. Nucleation and Crystallization as Induced by Bending Stress in Lithium Silicate Glass Fibers

    NASA Technical Reports Server (NTRS)

    Reis, Signo T.; Kim, Cheol W.; Brow, Richard K.; Ray, Chandra S.

    2003-01-01

    Glass Fibers of Li2O.2SiO2 (LS2) and Li2O.1.6SiO2 (LS1.6) compositions were heated near, but below, the glass transition temperature for different times while subjected to a constant bending stress of about 1.2 GPa. The nucleation density and the crystallization tendency estimated by differential thermal analysis (DTA) of a glass sample in the vicinity of the maximum of the bending stress increased relative to that of stress-free glass fibers. LS2 glass fibers were found more resistant to nucleation and crystallization than the Ls1.6 glass fibers. These results are discussed in regards to shear thinning effects on glass stability.

  14. Deformation, Stress Relaxation, and Crystallization of Lithium Silicate Glass Fibers Below the Glass Transition Temperature

    NASA Technical Reports Server (NTRS)

    Ray, Chandra S.; Brow, Richard K.; Kim, Cheol W.; Reis, Signo T.

    2004-01-01

    The deformation and crystallization of Li(sub 2)O (center dot) 2SiO2 and Li(sub 2)O (center dot) 1.6SiO2 glass fibers subjected to a bending stress were measured as a function of time over the temperature range -50 to -150 C below the glass transition temperature (Tg). The glass fibers can be permanently deformed at temperatures about 100 C below T (sub)g, and they crystallize significantly at temperatures close to, but below T,, about 150 C lower than the onset temperature for crystallization for these glasses in the no-stress condition. The crystallization was found to occur only on the surface of the glass fibers with no detectable difference in the extent of crystallization in tensile and compressive stress regions. The relaxation mechanism for fiber deformation can be best described by a stretched exponential (Kohlrausch-Williams-Watt (KWW) approximation), rather than a single exponential model.The activation energy for stress relaxation, Es, for the glass fibers ranges between 175 and 195 kJ/mol, which is considerably smaller than the activation energy for viscous flow, E, (about 400 kJ/mol) near T, for these glasses at normal, stress-free condition. It is suspected that a viscosity relaxation mechanism could be responsible for permanent deformation and crystallization of the glass fibers below T,

  15. Effect of short glass fibers on the polymerization shrinkage stress of dental composite.

    PubMed

    Shouha, Paul S R; Ellakwa, Ayman E

    2016-06-13

    This study examines contraction stresses of seven short fiber reinforced composites (sFRC) exhibiting different volume loads and aspect ratios (AR)* of fibres. The shift towards a greater utilization of posterior resin composites in dentistry has seen increased interest in the use of randomly oriented short glass fibers in these restorative materials. While the effect of these fibers on modulus, strength, and toughness has been studied, very little information exists on their effect on polymerization shrinkage and even less on shrinkage stress. S2-glass fibers with an average AR of 68 were used to form three experimental groups with 5%, 10%, and 20% volume loads. Commercial sFRC with ARs of 20 and 100 were also tested. A tensilometer set up was used with moderate compliance, 5.4 J/cm(2) irradiance, and a C-factor of 2.75. Data was statistically analyzed using ANOVA followed by post hoc Tukey's test. The addition of 5% of the experimental fiber did not significantly increase stress while the 10% and 20% groups resulted in 36.3% and 39.1% higher stress values, respectively, compared to the non-fiber control group (p < 0.05). Of all the sFRC groups, the very low AR material exhibited the lowest stress [0.682 MPa (p = 0.001)] while another commercial material with higher AR fibers exhibited the highest overall value [1.822 MPa (p < 0.001)] when compared to the control group. The results indicate that both short fiber volume and AR are important variables to consider with regards to setting stresses of sFRC. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2016.

  16. Stress-Rupture of New Tyranno Si-C-O-Zr Fiber Reinforced Minicomposites

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.

    1999-01-01

    Minicomposites consisting of two varieties of Zr containing SiC-based fibers from Ube (Tyranno) with BN interphases and CVI SiC matrices were studied. The two fiber-types were the ZMI and ZE fiber-types that contain approximately 8 and 2% oxygen, respectively. The minicomposites were precracked and tested under constant load testing at temperatures ranging from 700 to 1200 C. The data were then compared to the rupture behavior of Hi- Nicalon (TM) fiber reinforced minicomposites tested under identical conditions. It was found that the Ube fiber-types had stress rupture life equivalent to Hi- Nicalon (TM) over the entire temperature range. A potential benefit of the ZMI fiber-type is that it offers rupture properties almost as good as Hi-Nicalon (TM) at the cost of ceramic grade Nicalon (TM).

  17. High extensibility of stress fibers revealed by in vitro micromanipulation with fluorescence imaging

    SciTech Connect

    Matsui, Tsubasa S.; Sato, Masaaki; Deguchi, Shinji

    2013-05-10

    Highlights: •We isolate contractile stress fibers from vascular smooth muscle cells. •We measure the extensibility of individual stress fibers. •We present the first direct evidence that individual stress fibers are highly extensible. •We quantitatively determine the local strain along the length of stress fibers. •The high extensibility we found is beyond that explained by a conventional model. -- Abstract: Stress fibers (SFs), subcellular bundles of actin and myosin filaments, are physically connected at their ends to cell adhesions. The intracellular force transmitted via SFs plays an essential role in cell adhesion regulation and downstream signaling. However, biophysical properties intrinsic to individual SFs remain poorly understood partly because SFs are surrounded by other cytoplasmic components that restrict the deformation of the embedded materials. To characterize their inherent properties independent of other structural components, we isolated SFs from vascular smooth muscle cells and mechanically stretched them by in vitro manipulation while visualizing strain with fluorescent quantum dots attached along their length. SFs were elongated along their entire length, with the length being approximately 4-fold of the stress-free length. This surprisingly high extensibility was beyond that explained by the tandem connection of actin filaments and myosin II bipolar filaments present in SFs, thus suggesting the involvement of other structural components in their passive biophysical properties.

  18. Bend stress relaxation and tensile primary creep of a polycrystalline alpha-SiC fiber

    NASA Technical Reports Server (NTRS)

    Hee Man, Yun; Goldsby, Jon C.; Morscher, Gregory N.

    1995-01-01

    Understanding the thermomechanical behavior (creep and stress relaxation) of ceramic fibers is of both practical and basic interest. On the practical level, ceramic fibers are the reinforcement for ceramic matrix composites which are being developed for use in high temperature applications. It is important to understand and model the total creep of fibers at low strain levels where creep is predominantly in the primary stage. In addition, there are many applications where the component will only be subjected to thermal strains. Therefore, the stress relaxation of composite consituents in such circumstances will be an important factor in composite design and performance. The objective of this paper is to compare and analyze bend stress relaxation and tensile creep data for alpha-SiC fibers produced by the Carborundum Co. (Niagara Falls, NY). This fiber is of current technical interest and is similar in composition to bulk alpha-SiC which has been studied under compressive creep conditions. The temperature, time, and stress dependences will be discussed for the stress relaxation and creep results. In addition, some creep and relaxation recovery experiments were performed in order to understand the complete viscoelastic behavior, i.e. both recoverable and nonrecoverable creep components of these materials. The data will be presented in order to model the deformation behavior and compare relaxation and/or creep behavior for relatively low deformation strain conditions of practical concern. Where applicable, the tensile creep results will be compared to bend stress relaxation data.

  19. Research on the fiber Bragg grating sensor for the shock stress measurement

    PubMed Central

    Deng, Xiangyang; Chen, Guanghua; Peng, Qixian; Li, Zeren; Meng, Jianhua; Liu, Jun

    2011-01-01

    A fiber Bragg grating (FBG) sensor with an unbalanced Mach-Zehnder fiber interferometer for the shock stress measurement is proposed and demonstrated. An analysis relationship between the shock stress and the central reflection wavelength shift of the FBG is firstly derived. In this sensor, the optical path difference of the unbalanced Mach-Zehnder fiber interferometer is ∼3.1 mm and the length of the FBG is 2 mm. An arctangent function reduction method, which can avoid sine function's insensitive zone where the shock stress measurement has a reduced accuracy, is presented. A shock stress measurement of water driven by one stage gun (up to 1.4 GPa), with good theoretical accuracy (∼10%), is launched. PMID:22047282

  20. Micromechanics analysis of space simulated thermal deformations and stresses in continuous fiber reinforced composites

    NASA Technical Reports Server (NTRS)

    Bowles, David E.

    1990-01-01

    Space simulated thermally induced deformations and stresses in continuous fiber reinforced composites were investigated with a micromechanics analysis. The investigation focused on two primary areas. First, available explicit expressions for predicting the effective coefficients of thermal expansion (CTEs) for a composite were compared with each other, and with a finite element (FE) analysis, developed specifically for this study. Analytical comparisons were made for a wide range of fiber/matrix systems, and predicted values were compared with experimental data. The second area of investigation focused on the determination of thermally induced stress fields in the individual constituents. Stresses predicted from the FE analysis were compared to those predicted from a closed-form solution to the composite cylinder (CC) model, for two carbon fiber/epoxy composites. A global-local formulation, combining laminated plate theory and FE analysis, was used to determine the stresses in multidirectional laminates. Thermally induced damage initiation predictions were also made.

  1. Fiber optic stress-independent helical torsion sensor.

    PubMed

    Fernandes, Luís A; Grenier, Jason R; Aitchison, J Stewart; Herman, Peter R

    2015-02-15

    Femtosecond laser-fabricated waveguides have been formed into helical paths throughout the cladding of single-mode optical fibers to demonstrate a strain-independent fiber torsion sensor. A comparison between a Bragg grating sensor and a Mach-Zehnder based on helical waveguides (HWs) showed a much weaker twist sensitivity of 1.5 pm/(rad/m) for the grating in contrast with a value of 261 pm/(rad/m) for the interferometer. The HW geometry provided an unambiguous determination of the rotational direction of the twist while facilitating a convenient and efficient means for optical coupling into the single-mode core of the fiber. The flexible three-dimensional writing by the femtosecond laser fabrication method enabled the direct inscription of compact and robust optical cladding devices without the need for combining or splicing multiple-fiber segments.

  2. Improving Planck calibration by including frequency-dependent relativistic corrections

    SciTech Connect

    Quartin, Miguel; Notari, Alessio E-mail: notari@ffn.ub.es

    2015-09-01

    The Planck satellite detectors are calibrated in the 2015 release using the 'orbital dipole', which is the time-dependent dipole generated by the Doppler effect due to the motion of the satellite around the Sun. Such an effect has also relativistic time-dependent corrections of relative magnitude 10{sup −3}, due to coupling with the 'solar dipole' (the motion of the Sun compared to the CMB rest frame), which are included in the data calibration by the Planck collaboration. We point out that such corrections are subject to a frequency-dependent multiplicative factor. This factor differs from unity especially at the highest frequencies, relevant for the HFI instrument. Since currently Planck calibration errors are dominated by systematics, to the point that polarization data is currently unreliable at large scales, such a correction can in principle be highly relevant for future data releases.

  3. Improving Planck calibration by including frequency-dependent relativistic corrections

    NASA Astrophysics Data System (ADS)

    Quartin, Miguel; Notari, Alessio

    2015-09-01

    The Planck satellite detectors are calibrated in the 2015 release using the "orbital dipole", which is the time-dependent dipole generated by the Doppler effect due to the motion of the satellite around the Sun. Such an effect has also relativistic time-dependent corrections of relative magnitude 10-3, due to coupling with the "solar dipole" (the motion of the Sun compared to the CMB rest frame), which are included in the data calibration by the Planck collaboration. We point out that such corrections are subject to a frequency-dependent multiplicative factor. This factor differs from unity especially at the highest frequencies, relevant for the HFI instrument. Since currently Planck calibration errors are dominated by systematics, to the point that polarization data is currently unreliable at large scales, such a correction can in principle be highly relevant for future data releases.

  4. Universal frequency-dependent conduction of electron glasses

    NASA Astrophysics Data System (ADS)

    Amir, Ariel

    2014-03-01

    Characterizing the frequency-dependent response of amorphous systems and glasses can provide important insights into their physics. Here, we study the response of an electronic glass, where Coulomb interactions are important and have previously been shown to significantly modify the conductance and lead to memory effects and aging. We propose a model which allows us to take the interactions into account in a self-consistent way, and explore the transport properties at all frequencies. Within the model, the response maps exactly to a (linear) network of resistors, self-capacitances and mutual capacitances. The response of this equivalent electric circuit is found numerically, and is shown to obey the universal scaling which is experimentally observed for a large class of amorphous solids.

  5. A frequency dependent preconditioned wavelet method for atmospheric tomography

    NASA Astrophysics Data System (ADS)

    Yudytskiy, Mykhaylo; Helin, Tapio; Ramlau, Ronny

    2013-12-01

    Atmospheric tomography, i.e. the reconstruction of the turbulence in the atmosphere, is a main task for the adaptive optics systems of the next generation telescopes. For extremely large telescopes, such as the European Extremely Large Telescope, this problem becomes overly complex and an efficient algorithm is needed to reduce numerical costs. Recently, a conjugate gradient method based on wavelet parametrization of turbulence layers was introduced [5]. An iterative algorithm can only be numerically efficient when the number of iterations required for a sufficient reconstruction is low. A way to achieve this is to design an efficient preconditioner. In this paper we propose a new frequency-dependent preconditioner for the wavelet method. In the context of a multi conjugate adaptive optics (MCAO) system simulated on the official end-to-end simulation tool OCTOPUS of the European Southern Observatory we demonstrate robustness and speed of the preconditioned algorithm. We show that three iterations are sufficient for a good reconstruction.

  6. Frequency-dependent complex modulus of the uterus: preliminary results

    NASA Astrophysics Data System (ADS)

    Kiss, Miklos Z.; Hobson, Maritza A.; Varghese, Tomy; Harter, Josephine; Kliewer, Mark A.; Hartenbach, Ellen M.; Zagzebski, James A.

    2006-08-01

    The frequency-dependent complex moduli of human uterine tissue have been characterized. Quantification of the modulus is required for developing uterine ultrasound elastography as a viable imaging modality for diagnosing and monitoring causes for abnormal uterine bleeding and enlargement, as well assessing the integrity of uterine and cervical tissue. The complex modulus was measured in samples from hysterectomies of 24 patients ranging in age from 31 to 79 years. Measurements were done under small compressions of either 1 or 2%, at low pre-compression values (either 1 or 2%), and over a frequency range of 0.1-100 Hz. Modulus values of cervical tissue monotonically increased from approximately 30-90 kPa over the frequency range. Normal uterine tissue possessed modulus values over the same range, while leiomyomas, or uterine fibroids, exhibited values ranging from approximately 60-220 kPa.

  7. Dissecting Regional Variations in Stress Fiber Mechanics in Living Cells with Laser Nanosurgery

    SciTech Connect

    Tanner, Kandice; Boudreau, Aaron; Bissell, Mina J; Kumar, Sanjay

    2010-03-02

    The ability of a cell to distribute contractile stresses across the extracellular matrix in a spatially heterogeneous fashion underlies many cellular behaviors, including motility and tissue assembly. Here we investigate the biophysical basis of this phenomenon by using femtosecond laser nanosurgery to measure the viscoelastic recoil and cell-shape contributions of contractile stress fibers (SFs) located in specific compartments of living cells. Upon photodisruption and recoil, myosin light chain kinase-dependent SFs located along the cell periphery display much lower effective elasticities and higher plateau retraction distances than Rho-associated kinase-dependent SFs located in the cell center, with severing of peripheral fibers uniquely triggering a dramatic contraction of the entire cell within minutes of fiber irradiation. Image correlation spectroscopy reveals that when one population of SFs is pharmacologically dissipated, actin density flows toward the other population. Furthermore, dissipation of peripheral fibers reduces the elasticity and increases the plateau retraction distance of central fibers, and severing central fibers under these conditions triggers cellular contraction. Together, these findings show that SFs regulated by different myosin activators exhibit different mechanical properties and cell shape contributions. They also suggest that some fibers can absorb components and assume mechanical roles of other fibers to stabilize cell shape.

  8. A Study on Stress-Corrosion Cracking Using Single Fiber Model Specimen

    NASA Astrophysics Data System (ADS)

    Kawada, Hiroyuki; Kobiki, Akira

    Recently the crack propagation properties of GFRP on the stress corrosion cracking (S. C.C) are investigated, and the threshold stress intensity factor KICC is verified in some environmental solution. From the investigation, it was found that GFRP reinforced by C-glass fiber has a superior acid resistance. However the microscopic crack propagation mechanisms caused by the material corrosion are not verified, and the microscopic mechanisms are necessary to assure the durability. Therefore the degradation mechanisms of the inner fiber and the matrix and the fiber/matrix interface should be quantified. In this study, the degradation of the fiber strength and the fiber/matrix interfacial shear strength are investigated using a single fiber composite previously immersed into environmental solutions, distilled water and acid solution. The effects of solution diffusion into the matrix resin on the fiber strength and the interfacial shear strength have been evaluated as a function of immersion time by fragmentation test in the room air. It is found that the diffusion of distilled water influences the degradation earlier than the acid solution. And the diffusion behavior is confirmed by Fickian diffusion analysis. The calculated concentration distribution showed that the water concentration around the fiber is saturated much earlier than the saturation of the acid ion due to the lower diffusion coefficient. Furthermore the crack propagation mechanisms are discussed based on the degradation estimated by the fragmentation test.

  9. FREQUENCY DEPENDENCE OF PULSE WIDTH FOR 150 RADIO NORMAL PULSARS

    SciTech Connect

    Chen, J. L.; Wang, H. G.

    2014-11-01

    The frequency dependence of the pulse width is studied for 150 normal pulsars, mostly selected from the European Pulsar Network, for which the 10% multifrequency pulse widths can be well fit with the Thorsett relationship W {sub 10} = Aν{sup μ} + W {sub 10,} {sub min}. The relative fraction of pulse width change between 0.4 GHz and 4.85 GHz, η = (W {sub 4.85} – W {sub 0.4})/W {sub 0.4}, is calculated in terms of the best-fit relationship for each pulsar. It is found that 81 pulsars (54%) have η < –10% (group A), showing considerable profile narrowing at high frequencies, 40 pulsars (27%) have –10% ≤η ≤ 10% (group B), meaning a marginal change in pulse width, and 29 pulsars (19%) have η > 10% (group C), showing a remarkable profile broadening at high frequencies. The fractions of the group-A and group-C pulsars suggest that the profile narrowing phenomenon at high frequencies is more common than the profile broadening phenomenon, but a large fraction of the group-B and group-C pulsars (a total of 46%) is also revealed. The group-C pulsars, together with a portion of group-B pulsars with slight pulse broadening, can hardly be explained using the conventional radius-to-frequency mapping, which only applies to the profile narrowing phenomenon. Based on a recent version of the fan beam model, a type of broadband emission model, we propose that the diverse frequency dependence of pulse width is a consequence of different types of distribution of emission spectra across the emission region. The geometrical effect predicting a link between the emission beam shrinkage and spectrum steepening is tested but disfavored.

  10. Reduction of thermal stresses in continuous fiber reinforced metal matrix composites with interface layers

    NASA Technical Reports Server (NTRS)

    Jansson, S.; Leckie, F. A.

    1990-01-01

    The potential of using an interface layer to reduce thermal stresses in the matrix of composites with a mismatch in coefficients of thermal expansion of fiber and matrix was investigated. It was found that compliant layers, with properties of readily available materials, do not have the potential to reduce thermal stresses significantly. However, interface layers with high coefficient of thermal expansion can compensate for the mismatch and reduce thermal stresses in the matrix significantly.

  11. Effects of extracellular fiber architecture on cell membrane shear stress in a 3D fibrous matrix.

    PubMed

    Pedersen, John A; Boschetti, Federica; Swartz, Melody A

    2007-01-01

    Interstitial fluid flow has been shown to affect the organization and behavior of cells in 3D environments in vivo and in vitro, yet the forces driving such responses are not clear. Due to the complex architecture of the extracellular matrix (ECM) and the difficulty of measuring fluid flow near cells embedded in it, the levels of shear stress experienced by cells in this environment are typically estimated using bulk-averaged matrix parameters such as hydraulic permeability. While this is useful for estimating average stresses, it cannot yield insight into how local matrix fiber architecture-which is cell-controlled in the immediate pericellular environment-affects the local stresses imposed on the cell surface. To address this, we used computational fluid dynamics to study flow through an idealized mesh constructed of a cubic lattice of fibers simulating a typical in vitro collagen gel. We found that, in such high porosity matrices, the fibers strongly affect the flow fields near the cell, with peak shear stresses up to five times higher than those predicted by the Brinkman equation. We also found that minor remodeling of the fibers near the cell surface had major effects on the shear stress profile on the cell. These findings demonstrate the importance of fiber architecture to the fluid forces on a cell embedded in a 3D matrix, and also show how small modifications in the local ECM can lead to large changes in the mechanical environment of the cell.

  12. Model of the Stress State of a Unidirectional Composite with Cylindrical Fibers Forming a Tetragonal Structure

    NASA Astrophysics Data System (ADS)

    Nikolaev, A. G.; Tanchik, E. A.

    2016-05-01

    A model of the stress-strain state of a unidirectional fiber composite is proposed. A cylindrical sample of an elastic material whose fibers are cylindrical inclusions is considered. The generatrix of inclusions is parallel to the axis of the sample. The distribution of fibers in the sample is modeled with sixteen inclusions forming a tetragonal structure. It is assumed that the sample is subjected to a piecewise constant normal load and the fibers are in a perfect contact with the matrix. The boundary conditions of the problem are satisfied exactly with the help of the generalized Fourier method. The problem is reduced to an infinite system of linear algebraic equations, which is solved numerically by the method of reduction. An analysis of stress distribution in the areas of their highest concentration is given.

  13. A Fiber Optic Sensor Sensitive To Normal Pressure And Shear Stress

    NASA Astrophysics Data System (ADS)

    Cuomo, Frank W.; Kidwell, Robert S.; Hu, Andong

    1986-11-01

    A fiber optic lever sensing technique that can be used to measure normal pressure as well as shear stresses is discussed. This method uses three unequal fibers combining small size and good sensitivity. Static measurements appear to confirm the theoretical models predicted by geometrical optics and dynamic tests performed at frequencies up to 10 kHz indicate a flat response within this frequency range. These sensors are intended for use in a low speed wind tunnel environment.

  14. Thermal Stress-Induced Depolarization Loss in Conventional and Panda-Shaped Photonic Crystal Fiber Lasers

    NASA Astrophysics Data System (ADS)

    Mousavi, Seyedeh Laleh; Sabaeian, Mohammad

    2016-10-01

    We report on the modeling of the depolarization loss in the conventional and panda-shaped photonic crystal fiber lasers (PCFLs) due to the self-heating of the fiber, which we call it thermal stress-induced depolarization loss (TSIDL). We first calculated the temperature distribution over the fiber cross sections and then calculated the thermal stresses/strains as a function of heat load per meter. Thermal stress-induced birefringence (TSIB), which is defined as | n x - n y |, in the core and cladding regions was calculated. Finally, TSIDL was calculated for the conventional and panda-shaped PCFLs as a function of fiber length and, respectively, saturated values of 22 and 25 % were obtained which were independent of heat load per meter. For panda-shaped PCFLs, prior to being saturated, an oscillating and damping behavior against the fiber length was seen where in some lengths reached 35 %. The results are close to an experimental value of 30 % reported for a pulsed PCFL (Limpert et al., Opt Express 12:1313-1319, 2004) where the authors reported a degree of polarization of 70 % (i.e., a depolarization of 30 %). The most important result of this work is a saturation behavior of TSIDL at long-enough lengths of the fiber laser which is independent of heat load per meter. To our knowledge, this the first report of TSIBL for PCFLs.

  15. Frequency-dependent energy harvesting via magnetic shape memory alloys

    NASA Astrophysics Data System (ADS)

    Sayyaadi, Hassan; Askari Farsangi, Mohammad Amin

    2015-11-01

    This paper is focused on presenting an accurate framework to describe frequency-dependent energy harvesting via magnetic shape memory alloys (MSMAs). Modeling strategy incorporates the phenomenological constitutive model developed formerly together with the magnetic diffusion equation. A hyperbolic hardening function is employed to define reorientation-induced strain hardening in the material, and the diffusion equation is used to add dynamic effects to the model. The MSMA prismatic specimen is surrounded by a pickup coil, and the induced voltage during martensite-variant reorientation is investigated with the help of Faraday’s law of magnetic field induction. It has been shown that, in order to harvest the maximum RMS voltage in the MSMA-based energy harvester, an optimum value of bias magnetic field exists, which is the corresponding magnetic field for the start of pseudoelasticity behavior. In addition, to achieve a more compact energy harvester with higher energy density, a specimen with a lower aspect ratio can be chosen. As the main novelty of the paper, it is found that the dynamic effects play a major role in determining the harvested voltage and power, especially for high excitation frequency or specimen thickness.

  16. Frequency-dependent selection at rough expanding fronts

    NASA Astrophysics Data System (ADS)

    Kuhr, Jan-Timm; Stark, Holger

    2015-10-01

    Microbial colonies are experimental model systems for studying the colonization of new territory by biological species through range expansion. We study a generalization of the two-species Eden model, which incorporates local frequency-dependent selection, in order to analyze how social interactions between two species influence surface roughness of growing microbial colonies. The model includes several classical scenarios from game theory. We then concentrate on an expanding public goods game, where either cooperators or defectors take over the front depending on the system parameters. We analyze in detail the critical behavior of the nonequilibrium phase transition between global cooperation and defection and thereby identify a new universality class of phase transitions dealing with absorbing states. At the transition, the number of boundaries separating sectors decays with a novel power law in time and their superdiffusive motion crosses over from Eden scaling to a nearly ballistic regime. In parallel, the width of the front initially obeys Eden roughening and, at later times, passes over to selective roughening.

  17. DFT + U (ω) : Frequency-dependent Hubbard U correction

    NASA Astrophysics Data System (ADS)

    O'Regan, David D.; Marzari, Nicola

    In contemporary first-principles atomistic simulation based on DFT, the augmentation of approximate exchange-correlation functionals with spatially or energetically localized corrections, such as DFT + U , is a successful approach for improving its applicability to strongly interacting systems. Electronic screening is a dynamical process, and since the Hubbard U parameter, in particular, is a measure of the screened Coulomb interaction, its frequency-dependent generalisation for the dynamical regime is possible. We introduce a conceptually pragmatic and computationally straightforward method, named DFT + U (ω) , for calculating and incorporating strong dynamical screening effects in spectroscopic calculations based on Kohn-Sham DFT. Our method is designed to be a minimal dynamical extension of DFT + U , one in which computing approximate dynamical Hubbard U functions only requires functionality that is widely available. We demonstrate our effective plasmon fitting and self-energy approximation scheme for DFT + U (ω) , which enables the resulting low-energy dynamical model to be solved at the G0W0 level, and beyond, efficiently and effectively.

  18. Time and frequency dependent rheology of reactive silica gels.

    PubMed

    Wang, Miao; Winter, H Henning; Auernhammer, Günter K

    2014-01-01

    In a mixture of sodium silicate and low concentrated sulfuric acid, nano-sized silica particles grow and may aggregate to a system spanning gel network. We studied the influence of the finite solubility of silica at high pH on the mechanical properties of the gel with classical and piezo-rheometers. Direct preparation of the gel sample in the rheometer cell avoided any pre-shear of the gel structure during the filling of the rheometer. The storage modulus of the gel grew logarithmically with time with two distinct growth laws. The system passes the gel point very quickly but still shows relaxation at low frequency, typically below 6 rad/s. We attribute this as a sign of structural rearrangements due to the finite solubility of silica at high pH. The reaction equilibrium between bond formation and dissolution maintains a relatively large bond dissolution rate, which leads to a finite life time of the bonds and behavior similar to physical gels. This interpretation is also compatible with the logarithmic time dependence of the storage modulus. The frequency dependence was more pronounced for lower water concentrations, higher temperatures and shorter reaction times. With two relaxation models (the modified Cole-Cole model and the empirical Baumgaertel-Schausberger-Winter model) we deduced characteristic times from the experimental data. Both models approximately described the data and resulted in similar relaxation times.

  19. Frequency-dependent acoustic properties of gassy marine sediments

    NASA Astrophysics Data System (ADS)

    Best, Angus I.; Tuffin, Michael D. J.; Dix, Justin K.; Bull, Jonathan M.

    2003-10-01

    Acoustic velocity and attenuation were measured during two in-situ experiments in gassy intertidal muds in Southampton Water, United Kingdom. The horizontal transmission results gave frequency-independent velocity (1431 m/s) and attenuation (4 dB/m) over the frequency range 600 to 3000 Hz, representative of the soft (non-gassy) muds shallower than about 1 m. The results from a vertical transmission experiment straddling the top of the gassy zone (about 1 m depth) showed strong frequency-dependent velocity and attenuation over 600 to 3000 Hz. They showed velocity and attenuation maxima predicted by the Anderson and Hampton model, associated with gas bubble resonance. Moreover, attenuation maxima shifted in frequency with water depth over a tidal cycle that was monitored, suggesting variations in gas bubble size with hydrostatic pressure. X-ray CT images on a sealed core from the site revealed vertically-aligned, centimeter-scale, gas-filled cracks in the muddy sediments. Ultrasonic (300 to 700 kHz) velocities and attenuations were higher in the gassy zone than in the nongassy parts of the core. Overall, the results give a fascinating insight into the acoustical behavior of gassy sediments that could be used to extract sediment physical properties information from seabed acoustic reflection data. [Work supported by NERC].

  20. Inverse characterisation of frequency-dependent properties of adhesives

    NASA Astrophysics Data System (ADS)

    Rouleau, Lucie; Deü, Jean-François; Legay, Antoine

    2016-09-01

    Traditional damping treatments are usually applied to the vibrating structure by means of adhesive layers. Environmental parameters, such as frequencies of excitation, may influence the behaviour of the bonding layer and modify the damping efficiency of the treatment. Therefore it is desired to take into account the viscoelastic behaviour of the adhesive layer in the finite element model. The goal of this work is to present a procedure to characterise and model the adhesive layer. To that purpose, an experimental-numerical method for inverse characterisation of the frequency dependent properties of the adhesive layer is applied. The proposed inverse approach is based on a four-parameter fractional derivative model whose parameters are identified by minimising the difference between the simulated and the measured dynamic response of a multi-layered structure assembled by bonding. In the finite element model used for the optimisation, the adhesive layer is modelled by interface finite elements. The influence of the adhesive layer on the efficiency of a damping treatment is evidenced by performing dynamic testing on a sandwich structure with a viscoelastic core, assembled by bonding. The proposed approach is applied to the characterisation of a pressure-sensitive adhesive.

  1. Matrix cracking initiation stress in fiber-reinforced ceramic matrix composites

    NASA Astrophysics Data System (ADS)

    Kangutkar, Pramod Balkrishna

    1991-05-01

    One of the important design parameters in CMC's in the Matrix Cracking Initiation Stress (MCIS) which corresponds to the stress at which first matrix cracks are observed. Above the MCIS, the fibers will be exposed to the oxidizing environment which may degrade the mechanical property of the fibers and thus of the composite. In this thesis a systematic study to explore the effects of matrix toughness and inherent strength, fiber diameter, stiffness and volume fraction, temperature and interfacial bonding on the MCIS was carried out. Composites were fabricated using three different matrices--borosilicate glass, aluminosilicate glass and polycrystalline zirconium silicate (or zircon), and two different reinforcing fibers--an SiC monofilament (140 micron diameter) and an SiC yarn (16 micron diameter). In-situ observations during 3-point bend test inside the SEM indicate that matrix cracking is a local phenomenon and occurs first in the matrix between widest spaced fibers. In all composites the MCIS was found to increase with fiber additions and scaled with the monolithic strength. The relative increase in MCIS over the monolithic strength with fiber volume fraction, however, was found to depend strongly on the a(sub 0)/S ratio, where a(sub 0) is the inherent unreinforced matrix flaw size and S is the inter-fiber spacing. For small ratios, the effect of fiber additions on enhancing MCIS are minimal. As the ratio approaches unity, the role of the fibers in constraining the inherent flaw increases, thereby increasing the MCIS. Thermal residual stresses were also seen to play an important role in determining the MCIS; systems with compressive residual stresses in the matrix show higher MCIS at room temperature than at a higher temperature. In systems such as the 7740/Nicalon, which had negligible thermal stresses, MCIS showed minimal changes on testing at 520 C. Several theoretical models were reviewed and the predictions were compared to the experimental results. It was

  2. Unmyelinated visceral afferents exhibit frequency dependent action potential broadening while myelinated visceral afferents do not.

    PubMed

    Li, Bai-Yan; Feng, Bin; Tsu, Hwa Y; Schild, John H

    2007-06-21

    Sensory information arising from visceral organ systems is encoded into action potential trains that propagate along afferent fibers to target nuclei in the central nervous system. These information streams range from tight patterns of action potentials that are well synchronized with the sensory transduction event to irregular, patternless discharge with no clear correlation to the sensory input. In general terms these afferent pathways can be divided into unmyelinated and myelinated fiber types. Our laboratory has a long standing interest in the functional differences between these two types of afferents in terms of the preprocessing of sensory information into action potential trains (synchrony, frequency, duration, etc.), the reflexogenic consequences of this sensory input to the central nervous system and the ionic channels that give rise to the electrophysiological properties of these unique cell types. The aim of this study was to determine whether there were any functional differences in the somatic action potential characteristics of unmyelinated and myelinated vagal afferents in response to different rates of sensory nerve stimulation. Our results showed that activity and frequency-dependent widening of the somatic action potential was quite prominent in unmyelinated but not myelinated vagal afferents. Spike broadening often leads to increased influx of Ca(2+) ions that has been associated with a diverse range of modulatory mechanisms both at the cell body and central synaptic terminations (e.g. increased neurotransmitter release.) We conclude that our observations are indicative of fundamentally different mechanisms for neural integration of sensory information arising from unmyelinated and myelinated vagal afferents.

  3. Embedded Optical Fiber Ice Stress Gauge. Phase 1

    DTIC Science & Technology

    1991-10-01

    20 nm. This resolution level could be improved using an optical interferometer , however, the complexity and cost of such a system would be much higher...the distance changes. the collection fiber transmits more or less light depending on the angle of entenng rays of light with respect to the numerical...decays exponentially with distance . The rays drop below the critical angle and transfer into the cladding. This is caused by the action of an external

  4. Yeh-Stratton Criterion for Stress Concentrations on Fiber-Reinforced Composite Materials

    NASA Technical Reports Server (NTRS)

    Yeh, Hsien-Yang; Richards, W. Lance

    1996-01-01

    This study investigated the Yeh-Stratton Failure Criterion with the stress concentrations on fiber-reinforced composites materials under tensile stresses. The Yeh-Stratton Failure Criterion was developed from the initial yielding of materials based on macromechanics. To investigate this criterion, the influence of the materials anisotropic properties and far field loading on the composite materials with central hole and normal crack were studied. Special emphasis was placed on defining the crack tip stress fields and their applications. The study of Yeh-Stratton criterion for damage zone stress fields on fiber-reinforced composites under tensile loading was compared with several fracture criteria; Tsai-Wu Theory, Hoffman Theory, Fischer Theory, and Cowin Theory. Theoretical predictions from these criteria are examined using experimental results.

  5. Microsurgery-aided in-situ force probing reveals extensibility and viscoelastic properties of individual stress fibers

    PubMed Central

    Labouesse, Céline; Gabella, Chiara; Meister, Jean-Jacques; Vianay, Benoît; Verkhovsky, Alexander B.

    2016-01-01

    Actin-myosin filament bundles (stress fibers) are critical for tension generation and cell shape, but their mechanical properties are difficult to access. Here we propose a novel approach to probe individual peripheral stress fibers in living cells through a microsurgically generated opening in the cytoplasm. By applying large deformations with a soft cantilever we were able to fully characterize the mechanical response of the fibers and evaluate their tension, extensibility, elastic and viscous properties. PMID:27025817

  6. Protein expression changes during cotton fiber elongation in response to drought stress and recovery.

    PubMed

    Zheng, Mi; Meng, Yali; Yang, Changqin; Zhou, Zhiguo; Wang, Youhua; Chen, Binglin

    2014-08-01

    An investigation to better understand the molecular mechanism of cotton (Gossypium hirsutum L.) fiber elongation in response to drought stress and recovery was conducted using a comparative proteomics analysis. Cotton plants (cv. NuCOTN 33B) were subjected to water deprivation for 10 days followed by a recovery period (with watering) of 5 days. The temporal changes in total proteins in cotton fibers were examined using 2DE. The results revealed that 163 proteins are significantly drought responsive. MS analysis led to the identification of 132 differentially expressed proteins that include some known as well as some novel drought-responsive proteins. These drought responsive fiber proteins in NuCOTN 33B are associated with a variety of cellular functions, i.e. signal transduction, protein processing, redox homeostasis, cell wall modification, metabolisms of carbon, energy, lipid, lignin, and flavonoid. The results suggest that the enhancement of the perception of drought stress, a new balance of the metabolism of the biosynthesis of cell wall components and cytoskeleton homeostasis plays an important role in the response of cotton fibers to drought stress. Overall, the current study provides an overview of the molecular mechanism of drought response in cotton fiber cells.

  7. Frequency-dependent selection and the evolution of assortative mating.

    PubMed

    Otto, Sarah P; Servedio, Maria R; Nuismer, Scott L

    2008-08-01

    A long-standing goal in evolutionary biology is to identify the conditions that promote the evolution of reproductive isolation and speciation. The factors promoting sympatric speciation have been of particular interest, both because it is notoriously difficult to prove empirically and because theoretical models have generated conflicting results, depending on the assumptions made. Here, we analyze the conditions under which selection favors the evolution of assortative mating, thereby reducing gene flow between sympatric groups, using a general model of selection, which allows fitness to be frequency dependent. Our analytical results are based on a two-locus diploid model, with one locus altering the trait under selection and the other locus controlling the strength of assortment (a "one-allele" model). Examining both equilibrium and nonequilibrium scenarios, we demonstrate that whenever heterozygotes are less fit, on average, than homozygotes at the trait locus, indirect selection for assortative mating is generated. While costs of assortative mating hinder the evolution of reproductive isolation, they do not prevent it unless they are sufficiently great. Assortative mating that arises because individuals mate within groups (formed in time or space) is most conducive to the evolution of complete assortative mating from random mating. Assortative mating based on female preferences is more restrictive, because the resulting sexual selection can lead to loss of the trait polymorphism and cause the relative fitness of heterozygotes to rise above homozygotes, eliminating the force favoring assortment. When assortative mating is already prevalent, however, sexual selection can itself cause low heterozygous fitness, promoting the evolution of complete reproductive isolation (akin to "reinforcement") regardless of the form of natural selection.

  8. FREQUENCY-DEPENDENT DISPERSION MEASURES AND IMPLICATIONS FOR PULSAR TIMING

    SciTech Connect

    Cordes, J. M.; Shannon, R. M.; Stinebring, D. R. E-mail: ryan.shannon@csiro.au

    2016-01-20

    The dispersion measure (DM), the column density of free electrons to a pulsar, is shown to be frequency dependent because of multipath scattering from small-scale electron-density fluctuations. DMs vary between propagation paths whose transverse extent varies strongly with frequency, yielding arrival times that deviate from the high-frequency scaling expected for a cold, uniform, unmagnetized plasma (1/frequency{sup 2}). Scaling laws for thin phase screens are verified with simulations; extended media are also analyzed. The rms DM difference across an octave band near 1.5 GHz is ∼ 4 × 10{sup −5} pc cm{sup −3} for pulsars at ∼1 kpc distance. The corresponding arrival-time variations are a few to hundreds of nanoseconds for DM ≲ 30 pc cm{sup −3} but increase rapidly to microseconds or more for larger DMs and wider frequency ranges. Chromatic DMs introduce correlated noise into timing residuals with a power spectrum of “low pass” form. The correlation time is roughly the geometric mean of the refraction times for the highest and lowest radio frequencies used, ranging from days to years, depending on the pulsar. We discuss implications for methodologies that use large frequency separations or wide bandwidth receivers for timing measurements. Chromatic DMs are partially mitigable by including an additional chromatic term in arrival time models. Without mitigation, an additional term in the noise model for pulsar timing is implied. In combination with measurement errors from radiometer noise, an arbitrarily large increase in total frequency range (or bandwidth) will yield diminishing benefits and may be detrimental to overall timing precision.

  9. Frequency-dependent Dispersion Measures and Implications for Pulsar Timing

    NASA Astrophysics Data System (ADS)

    Cordes, J. M.; Shannon, R. M.; Stinebring, D. R.

    2016-01-01

    The dispersion measure (DM), the column density of free electrons to a pulsar, is shown to be frequency dependent because of multipath scattering from small-scale electron-density fluctuations. DMs vary between propagation paths whose transverse extent varies strongly with frequency, yielding arrival times that deviate from the high-frequency scaling expected for a cold, uniform, unmagnetized plasma (1/frequency2). Scaling laws for thin phase screens are verified with simulations; extended media are also analyzed. The rms DM difference across an octave band near 1.5 GHz is ˜ 4 × 10-5 pc cm-3 for pulsars at ˜1 kpc distance. The corresponding arrival-time variations are a few to hundreds of nanoseconds for DM ≲ 30 pc cm-3 but increase rapidly to microseconds or more for larger DMs and wider frequency ranges. Chromatic DMs introduce correlated noise into timing residuals with a power spectrum of “low pass” form. The correlation time is roughly the geometric mean of the refraction times for the highest and lowest radio frequencies used, ranging from days to years, depending on the pulsar. We discuss implications for methodologies that use large frequency separations or wide bandwidth receivers for timing measurements. Chromatic DMs are partially mitigable by including an additional chromatic term in arrival time models. Without mitigation, an additional term in the noise model for pulsar timing is implied. In combination with measurement errors from radiometer noise, an arbitrarily large increase in total frequency range (or bandwidth) will yield diminishing benefits and may be detrimental to overall timing precision.

  10. Seismic noise frequency dependent P and S wave sources

    NASA Astrophysics Data System (ADS)

    Stutzmann, E.; Schimmel, M.; Gualtieri, L.; Farra, V.; Ardhuin, F.

    2013-12-01

    Seismic noise in the period band 3-10 sec is generated in the oceans by the interaction of ocean waves. Noise signal is dominated by Rayleigh waves but body waves can be extracted using a beamforming approach. We select the TAPAS array deployed in South Spain between June 2008 and September 2009 and we use the vertical and horizontal components to extract noise P and S waves, respectively. Data are filtered in narrow frequency bands and we select beam azimuths and slownesses that correspond to the largest continuous sources per day. Our procedure automatically discard earthquakes which are localized during short time durations. Using this approach, we detect many more noise P-waves than S-waves. Source locations are determined by back-projecting the detected slowness/azimuth. P and S waves are generated in nearby areas and both source locations are frequency dependent. Long period sources are dominantly in the South Atlantic and Indian Ocean whereas shorter period sources are rather in the North Atlantic Ocean. We further show that the detected S-waves are dominantly Sv-waves. We model the observed body waves using an ocean wave model that takes into account all possible wave interactions including coastal reflection. We use the wave model to separate direct and multiply reflected phases for P and S waves respectively. We show that in the South Atlantic the complex source pattern can be explained by the existence of both coastal and pelagic sources whereas in the North Atlantic most body wave sources are pelagic. For each detected source, we determine the equivalent source magnitude which is compared to the model.

  11. Fiber

    MedlinePlus

    ... it can help with weight control. Fiber aids digestion and helps prevent constipation . It is sometimes used ... fiber attracts water and turns to gel during digestion. This slows digestion. Soluble fiber is found in ...

  12. Stress-Corrosion Cracking of Silicon Carbide Fiber/Silicon Carbide Composites

    SciTech Connect

    Jones, Russell H.; Henager, Charles H.; Lewinsohn, Charles A.; Windisch, Charles F.

    2000-08-01

    Ceramic matrix composites are being developed to operate at elevated temperatures and in oxidizing environments. Considerable improvements are being made in the creep resistance of SiC fibers and hence in the high-temperature properties of SiCf/SiC composites; however, more needs to be known about the stability of these materials in oxidizing environments before they will be widely accepted. Experimental weight change (1,2) and crack growth data (3,4) supports the conclusion that O2 enhanced crack growth of SiCf/SiC occurs by more than one mechanism depending on the experimental conditions. This data suggests an oxidation embrittlement mechanism (OEM) at temperatures below 1373?K and high O2 pressures and an interphase removal mechanism (IRM) at temperatures of about 700?K and above and low O2 pressures. The OEM, as proposed by Evans et al. (3), results from the reaction of O2 with SiC to form a glass layer on the fiber or within the fiber-matrix interphase region. The fracture stress of the fiber is reduced if this layer is thicker than a critical value (d>dc) and the temperature is below a critical value (Tstress that is carried by the bridging fibers. Interphase removal contributes to subcritical crack growth by decreasing the fiber bridging stresses and, hence, increasing the crack tip stress. IRM occurs over a wide range of temperatures for dTg for d>dc. This paper summarizes the evidence for the existence of these two mechanisms and attempts to define the conditions for their operation.

  13. Smart carbon nanotube/fiber and PVA fiber-reinforced composites for stress sensing and chloride ion detection

    NASA Astrophysics Data System (ADS)

    Hoheneder, Joshua

    Fiber reinforced composites (FRC) with polyvinyl alcohol (PVA) fibers and carbon nanofibers (CNF) had an excellent flexural strength in excess of 18.5 MPa compared to reference samples of 15.8 MPa. It was found that the developed, depending on applied stress and exposure to chloride solutions, composites exhibit some electrical conductivity, from 4.20×10 -4 (Ω-1m-1 to 4.13×10 -4 Ω-1m-1. These dependences can be characterized by piezioresistive and chemoresistive coefficients demonstrating that the material possesses self-sensing capabilities. The sensitivity to stain and chloride solutions can be enhanced by incorporating small amounts of carbon nanofibers (CNF) or carbon nanotube (CNT) into composite structure. Conducted research has demonstrated a strong dependency of electrical properties of composite on crack formation in moist environments. The developed procedure is scalable for industrial application in concrete structures that require nondestructive stress monitoring, integrity under high service loads and stability in harsh environments.

  14. Intermediate Temperature Stress Rupture of Woven SiC Fiber, BN Interphase, SiC Matrix Composites in Air

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.; Levine, Stanley (Technical Monitor)

    2000-01-01

    Tensile stress-rupture experiments were performed on woven Hi-Nicalon reinforced SiC matrix composites with BN interphases in air. Modal acoustic emission (AE) was used to monitor the damage accumulation in the composites during the tests and microstructural analysis was performed to determine the amount of matrix cracking that occurred for each sample. Fiber fractograph), was also performed for individual fiber failures at the specimen fracture surface to determine the strengths at which fibers failed. The rupture strengths were significantly worse than what would have been expected front the inherent degradation of the fibers themselves when subjected to similar rupture conditions. At higher applied stresses the rate of rupture "?as larger than at lower applied stresses. It was observed that the change in rupture rate corresponded to the onset of through-thickness cracking in the composites themselves. The primary cause of the sen,ere degradation was the ease with which fibers would bond to one another at their closest separation distances, less than 100 nanometers, when exposed to the environment. The near fiber-to-fiber contact in the woven tows enabled premature fiber failure over large areas of matrix cracks due to the stress-concentrations created b), fibers bonded to one another after one or a few fibers fail. i.e. the loss of global load sharing. An@, improvement in fiber-to-fiber separation of this composite system should result in improved stress- rupture properties. A model was den,eloped in order to predict the rupture life-time for these composites based on the probabilistic nature of indin,idual fiber failure at temperature. the matrix cracking state during the rupture test, and the rate of oxidation into a matrix crack. Also incorporated into the model were estimates of the stress-concentration that would occur between the outer rim of fibers in a load-bearing bundle and the unbridged region of a matrix crack after Xia et al. For the lower stresses

  15. Neural tuning matches frequency-dependent time differences between the ears

    PubMed Central

    Benichoux, Victor; Fontaine, Bertrand; Franken, Tom P; Karino, Shotaro; Joris, Philip X; Brette, Romain

    2015-01-01

    The time it takes a sound to travel from source to ear differs between the ears and creates an interaural delay. It varies systematically with spatial direction and is generally modeled as a pure time delay, independent of frequency. In acoustical recordings, we found that interaural delay varies with frequency at a fine scale. In physiological recordings of midbrain neurons sensitive to interaural delay, we found that preferred delay also varies with sound frequency. Similar observations reported earlier were not incorporated in a functional framework. We find that the frequency dependence of acoustical and physiological interaural delays are matched in key respects. This suggests that binaural neurons are tuned to acoustical features of ecological environments, rather than to fixed interaural delays. Using recordings from the nerve and brainstem we show that this tuning may emerge from neurons detecting coincidences between input fibers that are mistuned in frequency. DOI: http://dx.doi.org/10.7554/eLife.06072.001 PMID:25915620

  16. Intensity and frequency dependence of laryngeal afferent inputs to respiratory hypoglossal motoneurons.

    PubMed

    Mifflin, S W

    1997-12-01

    Inspiratory hypoglossal motoneurons (IHMs) mediate contraction of the genioglossus muscle and contribute to the regulation of upper airway patency. Intracellular recordings were obtained from antidromically identified IHMs in anesthetized, vagotomized cats, and IHM responses to electrical activation of superior laryngeal nerve (SLN) afferent fibers at various frequencies and intensities were examined. SLN stimulus frequencies <2 Hz evoked an excitatory-inhibitory postsynaptic potential (EPSP-IPSP) sequence or only an IPSP in most IHMs that did not change in amplitude as the stimulus was maintained. During sustained stimulus frequencies of 5-10 Hz, there was a reduction in the amplitude of SLN-evoked IPSPs with time with variable changes in the EPSP. At stimulus frequencies >25 Hz, the amplitude of EPSPs and IPSPs was reduced over time. At a given stimulus frequency, increasing stimulus intensity enhanced the decay of the SLN-evoked postsynaptic potentials (PSPs). Frequency-dependent attenuation of SLN inputs to IHMs also occurred in newborn kittens. These results suggest that activation of SLN afferents evokes different PSP responses in IHMs depending on the stimulus frequency. At intermediate frequencies, inhibitory inputs are selectively filtered so that excitatory inputs predominate. At higher frequencies there was no discernible SLN-evoked PSP temporally locked to the SLN stimuli. Alterations in SLN-evoked PSPs could play a role in the coordination of genioglossal contraction during respiration, swallowing, and other complex motor acts where laryngeal afferents are activated.

  17. Failure of a fiber composite lamina under three-dimensional stresses

    SciTech Connect

    DeTeresa, S J

    1999-08-31

    The efficient use of thick-section fiber composites requires a proven three-dimensional failure model. Numerous failure criteria have been proposed, but the lack of critical experimental results makes it difficult to assess the accuracy of these models. It is shown that the various predictions for failure of a lamina due to the simple state of uniaxial stress plus superposed hydrostatic pressure are disparate. These differences are sufficient to allow evaluation of failure criteria using data that has the normal scatter found for composite materials. A high-pressure test system for fiber composites is described and results for the effects of pressure on the transverse and longitudinal compression strengths of a carbon fiber/epoxy lamina are discussed. Results are compared with a few representative failure models.

  18. Residual stresses in shape memory alloy fiber reinforced aluminium matrix composite

    NASA Astrophysics Data System (ADS)

    Tsz Loong, Tang; Jamian, Saifulnizan; Ismail, Al Emran; Nur, Nik Hisyammudin Muhd; Watanabe, Yoshimi

    2017-01-01

    Process-induced residual stress in shape memory alloy (SMA) fiber reinforced aluminum (Al) matrix composite was simulated by ANSYS APDL. The manufacturing process of the composite named as NiTi/Al is start with loading and unloading process of nickel titanium (NiTi) wire as SMA to generate a residual plastic strain. Then, this plastic deformed NiTi wire would be embedded into Al to become a composite. Lastly, the composite is heated form 289 K to 363 K and then cooled back to 300 K. Residual stress is generated in composite because of shape memory effect of NiTi and mismatch of thermal coefficient between NiTi wire and Al matrix of composite. ANSYS APDL has been used to simulate the distribution of residual stress and strain in this process. A sensitivity test has been done to determine the optimum number of nodes and elements used. Hence, the number of nodes and elements used are 15680 and 13680, respectively. Furthermore, the distribution of residual stress and strain of nickel fiber reinforced aluminium matrix composite (Ni/Al) and titanium fiber reinforced aluminium matrix composite (Ti/Al) under same simulation process also has been simulated by ANSYS APDL as comparison to NiTi/Al. The simulation results show that compressive residual stress is generated on Al matrix of Ni/Al, Ti/Al and NiTi/Al during heating and cooling process. Besides that, they also have similar trend of residual stress distribution but difference in term of value. For Ni/Al and Ti/Al, they are 0.4% difference on their maximum compressive residual stress at 363K. At same circumstance, NiTi/Al has higher residual stress value which is about 425% higher than Ni/Al and Ti/Al composite. This implies that shape memory effect of NiTi fiber reinforced in composite able to generated higher compressive residual stress in Al matrix, hence able to enhance tensile property of the composite.

  19. Fiber bundle models for stress release and energy bursts during granular shearing

    NASA Astrophysics Data System (ADS)

    Michlmayr, Gernot; Or, Dani; Cohen, Denis

    2012-12-01

    Fiber bundle models (FBMs) offer a versatile framework for representing transitions from progressive to abrupt failure in disordered material. We report a FBM-based description of mechanical interactions and associated energy bursts during shear deformation of granular materials. For strain-controlled shearing, where elements fail in a sequential order, we present analytical expressions for strain energy release and failure statistics. Results suggest that frequency-magnitude characteristics of fiber failure vary considerably throughout progressive shearing. Predicted failure distributions were in good agreement with experimentally observed shear stress fluctuations and associated bursts of acoustic emissions. Experiments also confirm a delayed release of acoustic emission energy relative to shear stress buildup, as anticipated by the model. Combined with data-rich acoustic emission measurements, the modified FBM offers highly resolved contact-scale insights into granular media dynamics of shearing processes.

  20. Power scaling of a picosecond vortex laser based on a stressed Yb-doped fiber amplifier.

    PubMed

    Koyama, Mio; Hirose, Tetsuya; Okida, Masahito; Miyamoto, Katsuhiko; Omatsu, Takashige

    2011-01-17

    Power scaling of a picosecond vortex laser based on a stressed Yb-doped fiber amplifier is analyzed. An output power of 25 W was obtained for 53 W of pumping, with a peak power of 37 kW. Frequency doubling of the vortex output was demonstrated using a nonlinear PPSLT crystal. A second-harmonic output power of up to 1.5 W was measured at a fundamental power of 11.2 W.

  1. Nonlinear frequency-dependent synchronization in the developing hippocampus.

    PubMed

    Prida, L M; Sanchez-Andres, J V

    1999-07-01

    Synchronous population activity is present both in normal and pathological conditions such as epilepsy. In the immature hippocampus, synchronous bursting is an electrophysiological conspicuous event. These bursts, known as giant depolarizing potentials (GDPs), are generated by the synchronized activation of interneurons and pyramidal cells via GABAA, N-methyl-D-aspartate, and AMPA receptors. Nevertheless the mechanism leading to this synchronization is still controversial. We have investigated the conditions under which synchronization arises in developing hippocampal networks. By means of simultaneous intracellular recordings, we show that GDPs result from local cooperation of active cells within an integration period prior to their onset. During this time interval, an increase in the number of excitatory postsynaptic potentials (EPSPs) takes place building up full synchronization between cells. These EPSPs are correlated with individual action potentials simultaneously occurring in neighboring cells. We have used EPSP frequency as an indicator of the neuronal activity underlying GDP generation. By comparing EPSP frequency with the occurrence of synchronized GDPs between CA3 and the fascia dentata (FD), we found that GDPs are fired in an all-or-none manner, which is characterized by a specific threshold of EPSP frequency from which synchronous GDPs emerge. In FD, the EPSP frequency-threshold for GDP onset is 17 Hz. GDPs are triggered similarly in CA3 by appropriate periodic stimulation of mossy fibers. The frequency threshold for CA3 GDP onset is 12 Hz. These findings clarify the local mechanism of synchronization underlying bursting in the developing hippocampus, indicating that GDPs are fired when background levels of EPSPs or action potentials have built up full synchronization by firing at specific frequencies (>12 Hz). Our results also demonstrate that spontaneous EPSPs and action potentials are important for the initiation of synchronous bursts in the

  2. The Yeh-Stratton Criterion for Stress Concentrations on Fiber -Reinforced Composite Materials

    NASA Technical Reports Server (NTRS)

    Yeh, Hsieng-Yang

    1996-01-01

    The Yeh-Stratton criterion developed from a yielding criterion is modified to a generalized failure criterion and applied to fiber-reinforced composites with a central crack or a circular cutout under tensile loadings. The purpose of a material failure criterion is to establish a theoretical margin of safety and to be validated by experiments. It is necessary to obtain the crack tip stress field before a failure criterion of composite materials is applied. However, the crack tip stress field is complicated since there are numerous factors that influence the crack tip stress distribution. The understanding of the factors that contribute to crack tip stress field is of critical importance in analyzing composite laminates.

  3. Residual internal stress optimization for EPON 828/DEA thermoset resin using fiber Bragg grating sensors

    NASA Astrophysics Data System (ADS)

    Rohr, Garth D.; Rasberry, Roger D.; Kaczmarowski, Amy K.; Stavig, Mark E.; Gibson, Cory S.; Udd, Eric; Roach, Allen R.; Nation, Brendan

    2015-05-01

    Internal residual stresses and overall mechanical properties of thermoset resins are largely dictated by the curing process. It is well understood that fiber Bragg grating (FBG) sensors can be used to evaluate temperature and cure induced strain while embedded during curing. Herein, is an extension of this work whereby we use FBGs as a probe for minimizing the internal residual stress of an unfilled and filled Epon 828/DEA resin. Variables affecting stress including cure cycle, mold (release), and adhesion promoting additives will be discussed and stress measurements from a strain gauge pop-off test will be used as comparison. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  4. Calculation of Stress Intensity Factors for Interfacial Cracks in Fiber Metal Laminates

    NASA Technical Reports Server (NTRS)

    Wang, John T.

    2009-01-01

    Stress intensity factors for interfacial cracks in Fiber Metal Laminates (FML) are computed by using the displacement ratio method recently developed by Sun and Qian (1997, Int. J. Solids. Struct. 34, 2595-2609). Various FML configurations with single and multiple delaminations subjected to different loading conditions are investigated. The displacement ratio method requires the total energy release rate, bimaterial parameters, and relative crack surface displacements as input. Details of generating the energy release rates, defining bimaterial parameters with anisotropic elasticity, and selecting proper crack surface locations for obtaining relative crack surface displacements are discussed in the paper. Even though the individual energy release rates are nonconvergent, mesh-size-independent stress intensity factors can be obtained. This study also finds that the selection of reference length can affect the magnitudes and the mode mixity angles of the stress intensity factors; thus, it is important to report the reference length used with the calculated stress intensity factors.

  5. Stress generated by customized glass fiber posts and other types by photoelastic analysis.

    PubMed

    Bosso, Kátia; Gonini Júnior, Alcides; Guiraldo, Ricardo Danil; Berger, Sandrine Bittencourt; Lopes, Murilo Baena

    2015-01-01

    Endodontic posts are necessary to provide adequate retention and support when no sufficient remaining structure is available to retain the core. There are different materials and techniques to construct post-and-core, but there is no consensus about which one promotes better stress distribution on the remaining tooth structure. This study aimed to quantify and evaluate the distribution of stress in the root produced by customized glass fiber posts compared to different endodontic posts. Twenty-five simulated roots from photoelastic resin were made and divided into 5 groups: CPC, cast post-and-core; SP, screw post; CF, carbon fiber post; GF, glass fiber post; and CGF, customized glass fiber post. After cementing CPC and SP posts with zinc phosphate cement, and CF, GF and CGF posts with resin cement, resin cores were made for groups 2-5. Specimens were evaluated with vertical or 45° oblique loading. To analyze the fringes, the root was divided into 6 parts: palatal cervical, palatal middle, palatal apical, vestibular cervical, vestibular middle, and vestibular apical. The formed fringes were photographed and quantified. Data were recorded and subjected to two-way ANOVA and Tukey's test (5%). SP (1.95±0.60) showed higher stress (p<0.05) compared to the others (CPC-0.52±0.74; CF-0.50±0.75, GF-0.23±0.48 and CGF-0.45±0.83). All posts showed high stress in apical third (CPC-1.40±0.65; SP-2.30±0.44, CF-1.80±0.45, GF-1.20±0.45, CGF-1.70±1.03) Low stress was found in cervical third (CPC-0.20±0.45; CF-0.00±0.00, GF-0.00±0.00, CGF-0.00±0.00), except by SP (1.90±0.65), which showed statistical difference (p<0.05). Customized post showed high stress concentration at the root and conventional glass fiber posts showed more favorable biomechanical behavior.

  6. A Critique of a Phenomenological Fiber Breakage Model for Stress Rupture of Composite Materials

    NASA Technical Reports Server (NTRS)

    Reeder, James R.

    2010-01-01

    Stress rupture is not a critical failure mode for most composite structures, but there are a few applications where it can be critical. One application where stress rupture can be a critical design issue is in Composite Overwrapped Pressure Vessels (COPV's), where the composite material is highly and uniformly loaded for long periods of time and where very high reliability is required. COPV's are normally required to be proof loaded before being put into service to insure strength, but it is feared that the proof load may cause damage that reduces the stress rupture reliability. Recently, a fiber breakage model was proposed specifically to estimate a reduced reliability due to proof loading. The fiber breakage model attempts to model physics believed to occur at the microscopic scale, but validation of the model has not occurred. In this paper, the fiber breakage model is re-derived while highlighting assumptions that were made during the derivation. Some of the assumptions are examined to assess their effect on the final predicted reliability.

  7. Demonstration of actin filament stress fibers in microvascular endothelial cells in situ.

    PubMed

    Nehls, V; Drenckhahn, D

    1991-07-01

    We have developed a method for immunostaining the microvascular tree of rat mesenteric windows in situ. The procedure consists of three steps, i.e., mild fixation with formaldehyde, controlled proteolytic digestion of the mesothelial layer, and permeabilization with acetone. Discrimination between different microvascular segments was possible by double-fluorescent staining with antibodies to the smooth muscle isoform of alpha-actin and to nonmuscle myosin from platelets. Antibodies to nonmuscle myosin labeled numerous longitudinally oriented cables in endothelial cells of all microvascular segments (arterioles, metarterioles, pre-, mid-, and postcapillaries, small venules). Occasionally, the myosin-containing cables displayed the interrupted sarcomere-like staining pattern that is diagnostic for stress fibers. In contrast, staining of actin filaments with phalloidin-rhodamin resulted in a noninterrupted, continuous fluorescence of the stress fibers. A possible functional role of microvascular endothelial stress fibers is to serve as a tensile cytoskeletal scaffold that stabilizes the tubular, three-dimensional geometry of microvessels and, in addition, to help the endothelium resist the shear forces created by blood flow and by collision with red and white blood cells.

  8. Development of In-Fiber Reflective Bragg Gratings as Shear Stress Monitors in Aerodynamic Facilities

    NASA Technical Reports Server (NTRS)

    Parmar, Devendra S.; Sprinkle, Danny R.; Singh, Jag J.

    1998-01-01

    Bragg gratings centered at nominal wavelengths of 1290 nm and 1300 run were inscribed in a 9/125 microns germano-silicate optical fiber, using continuous wave frequency doubled Ar+ laser radiation at 244 nm. Such gratings have been used extensively as temperature and strain monitors in smart structures. They have, however, never been used for measuring aerodynamic shear stresses. As a test of their sensitivity as shear stress monitors, a Bragg fiber attached to a metal plate was subjected to laminar flows in a glass pipe. An easily measurable large flow-induced wavelength shift (Delta Lambda(sub B)) was observed in the Bragg reflected wavelength. Thereafter, the grating was calibrated by making one time, simultaneous measurements of Delta Lambda(sub B) and the coefficient of skin friction (C(sub f)) with a skin friction balance, as a function of flow rates in a subsonic wind tunnel. Onset of fan-induced transition in the tunnel flow provided a unique flow rate for correlating Delta Lambda(sub B) and (C(sub f) values needed for computing effective modulus of rigidity (N(sub eff)) of the fiber attached to the metal plate. This value Of N(sub eff) is expected to remain constant throughout the elastic stress range expected during the Bragg grating aerodynamic tests. It has been used for calculating the value of Cf at various tunnel speeds, on the basis of measured values of Bragg wavelength shifts at those speeds.

  9. Spatial resolution improvement for Lamb wave-based damage detection using frequency dependency compensation

    NASA Astrophysics Data System (ADS)

    Zeng, Liang; Lin, Jing; Bao, Jingjing; Joseph, Roshan Prakash; Huang, Liping

    2017-04-01

    In Lamb wave inspection systems, the transfer functions of the transmitter and receiver, and the attenuation as Lamb wave propagates through the structure, result in frequency dependency in the amplitude of Lamb modes. This frequency dependency in amplitude also influences the testing resolution and complicates the damage evaluation. With the goal of spatial resolution improving, a frequency dependency compensation method is proposed. In this method, an accurate estimation of the frequency-dependent amplitude is firstly obtained, then a refined inverse filter is designed and applied to the raw Lamb mode signals to compensate the frequency dependency. An experimental example is introduced to illustrate the process of the proposed method. Besides, its sensitivity to the propagation distance and Taylor expansion order is thoroughly investigated. Finally, the proposed method is employed for damage detection. Its effectiveness in testing resolution improvement and damage identification could be obviously demonstrated by the imaging result of the damage.

  10. Clostridium perfringens TpeL Induces Formation of Stress Fibers via Activation of RhoA-ROCK Signaling Pathway.

    PubMed

    Nagahama, Masahiro; Ohkubo, Akiko; Kinouchi, Yoshihito; Kobayashi, Keiko; Miyamoto, Kazuaki; Takehara, Masaya; Sakurai, Jun

    2015-01-01

    Clostridium perfringens TpeL belongs to a family of large clostridial glucosylating cytotoxins. TpeL modifies Rac1 and Ras subfamily proteins. Herein we report TpeL-induced formation of stress fibers via RhoA-Rho kinase (ROCK) signaling. A recombinant protein (TpeL1-525) derived from the TpeL N-terminal catalytic domain in the presence of streptolysin O (SLO) induced the formation of actin stress fibers in Madin-Darby canine kidney (MDCK) cells in a dose-dependent manner. The RhoA/ROCK pathway is known to control the formation of stress fibers. We examined the role of the RhoA/ROCK pathway in TpeL-induced formation of stress fibers. TpeL1-525-induced formation of stress fibers was inhibited by the ROCK inhibitor, Y27632 and Rho protein inhibitor, C3 transferase. TpeL1-525 activated RhoA and ROCK in a dose-dependent manner. C3 transferase blocked TpeL1-525-induced activation of RhoA and ROCK whereas Y27632 inhibited TpeL-induced activation of ROCK. These results demonstrate for the first time that TpeL induces the formation of stress fibers by activating the RhoA/ROCK signaling pathway.

  11. α-actinin1 and 4 tyrosine phosphorylation is critical for stress fiber establishment, maintenance and focal adhesion maturation.

    PubMed

    Feng, Yunfeng; Ngu, Hai; Alford, Shannon K; Ward, Michael; Yin, Frank; Longmore, Gregory D

    2013-05-01

    In polarized, migrating cells, stress fibers are a highly dynamic network of contractile acto-myosin structures composed of bundles of actin filaments held together by actin cross-linking proteins such as α-actinins. As such, α-actinins influence actin cytoskeleton organization and dynamics and focal adhesion maturation. In response to environmental signals, α-actinins are tyrosine phosphorylated and this affects their binding to actin stress fibers; however, the cellular role of α-actinin tyrosine phosphorylation remains largely unknown. We found that non-muscle α-actinin1/4 are critical for the establishment of dorsal stress fibers and maintenance of transverse arc stress fibers. Analysis of cells genetically depleted of α-actinin1 and 4 reveals two distinct modes for focal adhesion maturation. An α-actinin1 or 4 dependent mode that uses dorsal stress fiber precursors as a template for establishing focal adhesions and their maturation, and an α-actinin-independent manner that uses transverse arc precursors to establish focal adhesions at both ends. Focal adhesions formed in the absence of α-actinins are delayed in their maturation, exhibit altered morphology, have decreased amounts of Zyxin and VASP, and reduced adhesiveness to extracellular matrix. Further rescue experiments demonstrate that the tyrosine phosphorylation of α-actinin1 at Y12 and α-actinin4 at Y265 is critical for dorsal stress fiber establishment, transverse arc maintenance and focal adhesion maturation.

  12. Stress-temperature-lifetime response of nicalon fiber-reinforced SiC composites in air

    SciTech Connect

    Lin, Hua-Tay; Becher, P.F.

    1996-02-01

    Time-to-failure tests were conducted in four-point flexure and in air as a function of stress levels and temperatures to study the lifetime response of various Nicalon fiber-reinforced SiC (designated as Nic/SiC) composites with a graphitic interfacial coating. The results indicated that all of the Nic/SiC composites exhibit a similar stress-dependent failure at applied stress greater than a threshold value. In this case, the lifetimes of the composites increased with decrease in both stress level and test temperature. The lifetime of the composites appeared to be relatively insensitive to the thickness of graphitic interface layer and was enhanced somewhat by the addition of oxidation inhibitors. Electron microscopy and oxidation studies indicated that the life of the Nic/SiC composites was governed by the oxidation of the graphitic interfaces and the on of glass(es) in composites due to the oxidation of the fiber and matrix, inhibitor phases.

  13. Modeling for Fatigue Hysteresis Loops of Carbon Fiber-Reinforced Ceramic-Matrix Composites under Multiple Loading Stress Levels

    NASA Astrophysics Data System (ADS)

    Longbiao, Li

    2015-12-01

    In this paper, the fatigue hysteresis loops of fiber-reinforced ceramic-matrix composites (CMCs) under multiple loading stress levels considering interface wear has been investigated using micromechanical approach. Under fatigue loading, the fiber/matrix interface shear stress decreases with the increase of cycle number due to interface wear. Upon increasing of fatigue peak stress, the interface debonded length would propagate along the fiber/matrix interface. The difference of interface shear stress existed in the new and original debonded region would affect the interface debonding and interface frictional slipping between the fiber and the matrix. Based on the fatigue damage mechanism of fiber slipping relative to matrix in the interface debonded region upon unloading and subsequent reloading, the interface slip lengths, i.e., the interface debonded length, interface counter-slip length and interface new-slip length, are determined by fracture mechanics approach. The fatigue hysteresis loops models under multiple loading stress levels have been developed. The effects of single/multiple loading stress levels and different loading sequences on fatigue hysteresis loops have been investigated. The fatigue hysteresis loops of unidirectional C/SiC composite under multiple loading stress levels have been predicted.

  14. Action potential broadening and frequency-dependent facilitation of calcium signals in pituitary nerve terminals.

    PubMed

    Jackson, M B; Konnerth, A; Augustine, G J

    1991-01-15

    Hormone release from nerve terminals in the neurohypophysis is a sensitive function of action potential frequency. We have investigated the cellular mechanisms responsible for this frequency-dependent facilitation by combining patch clamp and fluorimetric Ca2+ measurements in single neurosecretory terminals in thin slices of the rat posterior pituitary. In these terminals both action potential-induced changes in the intracellular Ca2+ concentration ([Ca2+]i) and action potential duration were enhanced by high-frequency stimuli, all with a frequency dependence similar to that of hormone release. Furthermore, brief voltage clamp pulses inactivated a K+ current with a very similar frequency dependence. These results support a model for frequency-dependent facilitation in which the inactivation of a K+ current broadens action potentials, leading to an enhancement of [Ca2+]i signals. Further experiments tested for a causal relationship between action potential broadening and facilitation of [Ca2+]i changes. First, increasing the duration of depolarization, either by broadening action potentials with the K(+)-channel blocker tetraethylammonium or by applying longer depolarizing voltage clamp steps, increased [Ca2+]i changes. Second, eliminating frequency-dependent changes in duration, by voltage clamping the terminal with constant duration pulses, substantially reduced the frequency-dependent enhancement of [Ca2+]i changes. These results indicate that action potential broadening contributes to frequency-dependent facilitation of [Ca2+]i changes. However, the small residual frequency dependence of [Ca2+]i changes seen with constant duration stimulation suggests that a second process, distinct from action potential broadening, also contributes to facilitation. These two frequency-dependent mechanisms may also contribute to activity-dependent plasticity in synaptic terminals.

  15. Prediction of the Elastic-Plastic Stress/Strain Response for Injection-Molded Long-Fiber Thermoplastics

    SciTech Connect

    Nguyen, Ba Nghiep; Bapanapalli, Satish K.; Kunc, Vlastimil; Phelps, Jay; Tucker III, Charles L.

    2009-01-26

    This paper proposes a model to predict the elastic-plastic response of injection-molded long-fiber thermoplastics (LFTs). The model accounts for elastic fibers embedded in a thermoplastic resin that exhibits the elastic-plastic behavior obeying the Ramberg-Osgood relation and J-2 deformation theory of plasticity. It also accounts for fiber length and orientation distributions in the composite formed by the injection-molding process. Fiber orientation was predicted using the anisotropic rotary diffusion model recently developed by Phelps and Tucker for LFTs. An incremental procedure using the Eshelby’s equivalent inclusion method and the Mori-Tanaka model is proposed to compute the overall stress increment resulting from an overall strain increment for an aligned fiber composite that contains the same fiber volume fraction and length distribution as the actual composite. The incremental response of the later is then obtained from the solution for the aligned fiber composite that is averaged over all possible fiber orientations using the orientation averaging method. Failure during incremental loading is predicted using the Van Hattum-Bernado model. The elastic-plastic and strength prediction model for LFTs was validated against the experimental stress-strain results obtained for long glass fiber/polypropylene specimens.

  16. Frequency dependence and intensity fluctuations due to shallow water internal waves.

    PubMed

    Badiey, Mohsen; Katsnelson, Boris G; Lynch, James F; Pereselkov, Serguey

    2007-08-01

    A theory and experimental results for sound propagation through an anisotropic shallow water environment are presented to examine the frequency dependence of the scintillation index in the presence of internal waves. The theory of horizontal rays and vertical modes is used to establish the azimutal and frequency behavior of the sound intensity fluctuations, specifically for shallow water broadband acoustic signals propagating through internal waves. This theory is then used to examine the frequency dependent, anisotropic acoustic field measured during the SWARM'95 experiment. The frequency dependent modal scintillation index is described for the frequency range of 30-200 Hz on the New Jersey continental shelf.

  17. [Frequency dependence of heating of human skin exposed to millimeter waves].

    PubMed

    Alekseev, S I; Ziskin, M S; Fesenko, E E

    2012-01-01

    In this paper we studied experimentally the frequency dependence of heating of human skin exposed to millimeter waves. Theoretical modeling of obtained data was performed using the hybrid bio-heat equation. It was found that the skin heating and SAR increased with increasing the exposure frequency. The frequency dependence of heating was entirely resulted from that of reflection from the skin. Unlike temperature, the frequency dependence of the SAR was due to the increased absorption of millimeter wave energy within the thin surface layer of the skin.

  18. Nitric Oxide Donors Enhance the Frequency Dependence of Dopamine Release in Nucleus Accumbens

    PubMed Central

    Hartung, Henrike; Threlfell, Sarah; Cragg, Stephanie J

    2011-01-01

    Dopamine (DA) neurotransmission in the nucleus accumbens (NAc) is critically involved in normal as well as maladaptive motivated behaviors including drug addiction. Whether the striatal neuromodulator nitric oxide (NO) influences DA release in NAc is unknown. We investigated whether exogenous NO modulates DA transmission in NAc core and how this interaction varies depending on the frequency of presynaptic activation. We detected DA with cyclic voltammetry at carbon-fiber microelectrodes in mouse NAc in slices following stimuli spanning a full range of DA neuron firing frequencies (1–100 Hz). NO donors 3-morpholinosydnonimine hydrochloride (SIN-1) or z-1-[N-(3-ammoniopropyl)-N-(n-propyl)amino]diazen-1-ium-1,2-diolate (PAPA/NONOate) enhanced DA release with increasing stimulus frequency. This NO-mediated enhancement of frequency sensitivity of DA release was not prevented by inhibition of soluble guanylyl cyclase (sGC), DA transporters, or large conductance Ca2+-activated K+ channels, and did not require glutamatergic or GABAergic input. However, experiments to identify whether frequency-dependent NO effects were mediated via changes in powerful acetylcholine–DA interactions revealed multiple components to NO modulation of DA release. In the presence of a nicotinic receptor antagonist (dihydro-β-erythroidine), NO donors increased DA release in a frequency-independent manner. These data suggest that NO in the NAc can modulate DA release through multiple GC-independent neuronal mechanisms whose net outcome varies depending on the activity in DA neurons and accumbal cholinergic interneurons. In the presence of accumbal acetylcholine, NO promotes the sensitivity of DA release to presynaptic activation, but with reduced acetylcholine input, NO will promote DA release in an activity-independent manner through a direct action on dopaminergic terminals. PMID:21508928

  19. The mechanics of delamination in fiber-reinforced composite materials. I - Stress singularities and solution structure

    NASA Technical Reports Server (NTRS)

    Wang, S. S.; Choi, I.

    1983-01-01

    The fundamental mechanics of delamination in fiber composite laminates is studied. Mathematical formulation of the problem is based on laminate anisotropic elasticity theory and interlaminar fracture mechanics concepts. Stress singularities and complete solution structures associated with general composite delaminations are determined. For a fully open delamination with traction-free surfaces, oscillatory stress singularities always appear, leading to physically inadmissible field solutions. A refined model is introduced by considering a partially closed delamination with crack surfaces in finite-length contact. Stress singularities associated with a partially closed delamination having frictional crack-surface contact are determined, and are found to be different from the inverse square-root one of the frictionless-contact case. In the case of a delamination with very small area of crack closure, a simplified model having a square-root stress singularity is employed by taking the limit of the partially closed delamination. The possible presence of logarithmic-type stress singularity is examined; no logarithmic singularity of any kind is found in the composite delamination problem. Numerical examples of dominant stress singularities are shown for delaminations having crack-tip closure with different frictional coefficients between general (1) and (2) graphite-epoxy composites. Previously announced in STAR as N84-13221

  20. The effect of stress on ultrasonic pulses in fiber reinforced composites

    NASA Technical Reports Server (NTRS)

    Hemann, J. H.; Baaklini, G. Y.

    1983-01-01

    An acoustical-ultrasonic technique was used to demonstrate relationships existing between changes in attenuation of stress waves and tensile stress for an eight ply 0 degree graphite-epoxy fiber reinforced composite. All tests were conducted in the linear range of the material for which no mechanical or macroscopic damage was evident. Changes in attenuation were measured as a function of tensile stress in the frequency domain and in the time domain. Stress wave propagation in these specimens was dispersive, i.e., the wave speed depends on frequency. Wave speeds varied from 267 400 cm/sec to 680 000 cm/sec as the frequency of the signal was varied from 150 kHz to 1.9 MHz which strongly suggests that flexural/lamb wave modes of propagation exist. The magnitude of the attenuation changes depended strongly on tensile stress. It was further observed that the wave speeds increased slightly for all tested frequencies as the stress was increased.

  1. A Model for Stress Fiber Realignment Caused by Cytoskeletal Fluidization During Cyclic Stretching.

    PubMed

    Pirentis, Athanassios P; Peruski, Elizabeth; Iordan, Andreea L; Stamenović, Dimitrije

    2011-03-01

    Uniaxial cyclic substrate stretching results in a concerted change of cytoskeletal organization such that stress fibers (SFs) realign away from the direction of stretching. Recent experiments revealed that brief transient stretch promptly ablates cellular contractile stress by means of cytoskeletal fluidization, followed by a slow stress recovery by means of resolidification. This, in turn, suggests that fluidization, resolidification and SF realignment may be linked together during stretching. We propose a mathematical model that simulates the effects of fluidization and resolidification on cytoskeletal contractile stress in order to investigate how these phenomena affect cytoskeletal realignment in response to pure uniaxial stretching of the substrate. The model comprises of individual elastic SFs anchored at the endpoints to an elastic substrate. Employing the global stability convention, the model predicts that in response to repeated stretch-unstretch cycles, SFs tend to realign in the direction perpendicular to stretching, consistent with data from the literature. The model is used to develop a computational scheme for predicting changes in cell orientation and polarity during stretching and how they relate to the underlying alterations in the cytoskeletal organization. We conclude that depletion of cytoskeletal contractile stress by means of fluidization and subsequent stress recovery by means of resolidification may play a key role in reorganization of cytoskeletal SFs in response to uniaxial stretching of the substrate.

  2. A fiber optics sensor for strain and stress management in superconducting accelerator magnets

    SciTech Connect

    van Oort, J.M.; ten Kate, H.H.J.

    1993-09-20

    A novel cryogenic interferometric fiber optics sensor for the measurement of strain and stress in the coil windings of superconducting accelerator magnets is described. The sensor can operate with two different readout sources, monochromatic laser light and white light respectively. The sensor head is built up as an extrinsic Fabry-Perot interferometer formed with two cleaved fiber surfaces, and can be mounted in several configurations. When read with laser light, the sensor is an extremely sensitive relative strain or temperature detector. When read with white light the absolute strain and pressure can be measured. Results are presented of tests in several configurations at 77 K and 4.2 K, both for the relative and absolute readout method. Finally, the possible use for quench localization using the temperature sensitivity is described.

  3. Frequency-dependent selection for rare genotypes promotes genetic diversity of a tropical palm.

    PubMed

    Browne, Luke; Karubian, Jordan

    2016-12-01

    Negative frequency-dependent selection among species is a key driver of community diversity in natural systems, but the degree to which negative frequency-dependent selection shapes patterns of survival and genetic diversity within species is poorly understood. In a 5-year field experiment, we show that seedlings of a tropical palm with rare genotypes had a pronounced survival advantage over seedlings with common genotypes, with effect sizes comparable to that of light availability. This 'rare genotype advantage' led to an increase in population-wide genetic diversity among seedlings compared to null expectations, as predicted by negative frequency-dependent selection, and increased reproductive success in adult trees with rare genotypes. These results suggest that within-species negative frequency-dependent selection of genotypes can shape genetic variation on ecologically relevant timescales in natural systems and may be a key, overlooked source of non-random mortality for tropical plants.

  4. Combined nonmetallic electronegativity equalisation and point-dipole interaction model for the frequency-dependent polarisability

    NASA Astrophysics Data System (ADS)

    Smalø, Hans S.; Åstrand, Per-Olof; Mayer, Alexandre

    2013-07-01

    A molecular mechanics model for the frequency-dependent polarisability is presented. It is a combination of a recent model for the frequency dependence in a charge-dipole model [Nanotechnology 19, 025203, 2008] and a nonmetallic modification of the electronegativity equalisation model rephrased as atom-atom charge-transfer terms [J. Chem. Phys. 131, 044101, 2009]. An accurate model for the frequency-dependent polarisability requires a more accurate partitioning into charge and dipole contributions than the static polarisability, which has resulted in several modifications of the charge-transfer model. Results are presented for hydrocarbons, including among others, alkanes, polyenes and aromatic systems. Although their responses to an electric field are quite different in terms of the importance of charge-transfer contributions, it is demonstrated that their frequency-dependent polarisabilities can be described with the same model and the same set of atom-type parameters.

  5. Unmasking frequency-dependent selection in tri-cultures of Drosophila melanogaster.

    PubMed

    Adell, J C; Molina, V; Castro, J A; Mensua, J L

    1989-01-01

    Larval-to-adult viability was measured for three strains of Drosophila melanogaster: a wild strain and two eye colour mutant strains (cardinal and sepia) starting from seventy different genotypic compositions. Analyses of a sub-set of the data (not considering all genotypic frequencies) demonstrate frequency-dependence in the three strains. These results suggest that in this experiment, frequency-dependent selection may be masked by other selective forces, only being apparent when specific analyses are carried out.

  6. Seismic dynamic monitoring in CO2 flooding based on characterization of frequency-dependent velocity factor

    NASA Astrophysics Data System (ADS)

    Zhang, Jun-Hua; Li, Jun; Xiao, Wen; Tan, Ming-You; Zhang, Yun-Ying; Cui, Shi-Ling; Qu, Zhi-Peng

    2016-06-01

    The phase velocity of seismic waves varies with the propagation frequency, and thus frequency-dependent phenomena appear when CO2 gas is injected into a reservoir. By dynamically considering these phenomena with reservoir conditions it is thus feasible to extract the frequency-dependent velocity factor with the aim of monitoring changes in the reservoir both before and after CO2 injection. In the paper, we derive a quantitative expression for the frequency-dependent factor based on the Robinson seismic convolution model. In addition, an inversion equation with a frequency-dependent velocity factor is constructed, and a procedure is implemented using the following four processing steps: decomposition of the spectrum by generalized S transform, wavelet extraction of cross-well seismic traces, spectrum equalization processing, and an extraction method for frequency-dependent velocity factor based on the damped least-square algorithm. An attenuation layered model is then established based on changes in the Q value of the viscoelastic medium, and spectra of migration profiles from forward modeling are obtained and analyzed. Frequency-dependent factors are extracted and compared, and the effectiveness of the method is then verified using a synthetic data. The frequency-dependent velocity factor is finally applied to target processing and oil displacement monitoring based on real seismic data obtained before and after CO2 injection in the G89 well block within Shengli oilfield. Profiles and slices of the frequency-dependent factor determine its ability to indicate differences in CO2 flooding, and the predicting results are highly consistent with those of practical investigations within the well block.

  7. Theoretical and experimental on the Shupe-like bias caused by thermal stress of fiber optic gyros

    NASA Astrophysics Data System (ADS)

    Wang, Yueze; Ma, Lin; Zhao, Jingjing; Wu, Wei; Qiao, Liwei

    2016-10-01

    The fiber optic gyroscope has became to one of the most important sensors in developing due to light in quality, high accuracy, compact in dimension and long life and has played a very important role in both military and civil use. The fiber coil, as one of the most critical components in FOG, is extremely sensitive to changes in temperature. In this paper, at first, by studying the thermal stress of fiber optic gyros, the element model of the fiber coil was built based on the discrete mathematics formulae of Shupe error in FOG. Then based on the temperature distribution model mentioned above, the effects of the Shupe-like bias caused by thermal stress and the Shupe bias caused by temperature gradient are simulated. A turn-by-turn quantization bias error model is established. Theoretical analysis and experimental results show the Shupe-like bias caused by thermal stress and the Shupe bias caused by temperature gradient had seriously affected the temperature performance of FOG. By optimizing the winding method of fiber coil, the Shupe error of fiber coils can be reduced. At the same time, Shupe-like bias caused by thermal stress can be reduced too.

  8. Investigation on Stress-Rupture Behavior of a Chopped-Glass-Fiber Composite for Automotive Durability Design Criteria

    SciTech Connect

    Ren, W

    2001-08-24

    Practical and inexpensive testing methods were developed to investigate stress-rupture properties of a polymeric composite with chopped glass fiber reinforcement for automotive applications. The material was tested in representative automotive environments to generate experimental data. The results indicate that environments have substantial effects on the stress-rupture behavior. The data were analyzed and developed into stress-rupture design criteria to address one of the durability aspects of the material for automotive structural applications.

  9. Sensing substrate rigidity by mechanosensitive ion channels with stress fibers and focal adhesions.

    PubMed

    Kobayashi, Takeshi; Sokabe, Masahiro

    2010-10-01

    Cell motility, spreading, proliferation and differentiation are critically influenced by substrate rigidity. To sense substrate rigidity, cells apply traction forces to cell-substrate adhesions via actin stress fibers (SFs) and measure mechanical responses of the substrate. Besides mechanosensitive adaptor proteins, mechanosensitive (MS) channels are involved in the substrate rigidity sensing. MS channels located at or near focal adhesions (FAs) convert the rigidity-dependent stress generated in SF/FA system into the level of cytoplasmic Ca(2+) concentration ([Ca(2+)]cyt) by locally altering their Ca(2+) permeability. Besides by external forces, cells spontaneously generate rigidity-dependent localized [Ca(2+)]cyt increases, implicating MS channels as intrinsic force measurement system. This mechanism may contribute to not only substrate rigidity sensing but also regulation of cell migration.

  10. Fatigue surviving, fracture resistance, shear stress and finite element analysis of glass fiber posts with different diameters.

    PubMed

    Wandscher, Vinícius Felipe; Bergoli, César Dalmolin; de Oliveira, Ariele Freitas; Kaizer, Osvaldo Bazzan; Souto Borges, Alexandre Luiz; Limberguer, Inácio da Fontoura; Valandro, Luiz Felipe

    2015-03-01

    This study evaluated the shear stress presented in glass fiber posts with parallel fiber (0°) and different coronal diameters under fatigue, fracture resistance and FEA. 160 glass-fiber posts (N=160) with eight different coronal diameters were used (DT=double tapered, number of the post=coronal diameter and W=Wider - fiber post with coronal diameter wider than the conventional): DT1.4; DT1.8W; DT1.6; DT2W; DT1.8; DT2.2W; DT2; DT2.2. Eighty posts were submitted to mechanical cycling (3×10(6) cycles; inclination: 45°; load: 50N; frequency: 4Hz; temperature: 37°C) to assess the surviving under intermittent loading and other eighty posts were submitted to fracture resistance testing (resistance [N] and shear-stress [MPa] values were obtained). The eight posts types were 3D modeled (Rhinoceros 4.0) and the shear-stress (MPa) evaluated using FEA (Ansys 13.0). One-way ANOVA showed statistically differences to fracture resistance (DT2.2W and DT2.2 showed higher values) and shear stress values (DT1.4 showed lower values). Only the DT1.4 fiber posts failed after mechanical cycling. FEA showed similar values of shear stress between the groups and these values were similar to those obtained by shear stress testing. The failure analysis showed that 95% of specimens failed by shear. Posts with parallel fiber (0°) may suffer fractures when an oblique shear load is applied on the structure; except the thinner group, greater coronal diameters promoted the same shear stresses.

  11. Effect of asperity-scale tensile stresses on the wear behavior of normally oriented fiber-reinforced polymer composites

    SciTech Connect

    Wu, J.P.; Ovaert, T.C.

    1994-01-01

    Wear of unidirectional continuous fiber-reinforced polymer composites with fiber orientation normal to the contact plane, sliding over scribed stainless steel disks having a controlled surface topography, is investigated in relation to the tensile stresses developed near the contact region. The composite is modeled as a transversely isotropic half-space whose effective elastic moduli are estimated from composite micro-mechanical considerations. The scribed disk is treated as a rough surface whose controlled topographical features serve as model hemispherical indenters against the composite. With friction coefficients obtained from the wear experiments, the tensile stress field at an below the composite surface is estimated. From this, an estimated of the theoretical depth of fiber-matrix separation (fiber debonding) is calculated based on the composite transverse tensile strength. A correlation between the wear rate and theoretical depth of debonding was shown for several composites.

  12. Method for Forming Fiber Reinforced Composite Bodies with Graded Composition and Stress Zones

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay (Inventor); Levine, Stanley R. (Inventor); Smialek, James A. (Inventor)

    1999-01-01

    A near-net, complex shaped ceramic fiber reinforced silicon carbide based composite bodies with graded compositions and stress zones is disclosed. To provide the composite a fiber preform is first fabricated and an interphase is applied by chemical vapor infiltration, sol-gel or polymer processes. This first body is further infiltrated with a polymer mixture containing carbon, and/or silicon carbide, and additional oxide, carbide, or nitride phases forming a second body. One side of the second body is spray coated or infiltrated with slurries containing high thermal expansion and oxidation resistant. crack sealant phases and the other side of this second body is coated with low expansion phase materials to form a third body. This third body consisting of porous carbonaceous matrix surrounding the previously applied interphase materials, is then infiltrated with molten silicon or molten silicon-refractory metal alloys to form a fourth body. The resulting fourth body comprises dense composites consisting of fibers with the desired interphase which are surrounded by silicon carbide and other second phases materials at the outer and inner surfaces comprising material of silicon, germanium, refractory metal suicides, borides, carbides, oxides, and combinations thereof The resulting composite fourth body has different compositional patterns from one side to the other.

  13. Finite element analysis of stress transfer mechanism from matrix to the fiber in SWCN reinforced nanocomposites

    NASA Astrophysics Data System (ADS)

    Günay, E.

    2017-02-01

    This study defined as micromechanical finite element (FE) approach examining the stress transfer mechanism in single-walled carbon nanotube (SWCN) reinforced composites. In the modeling, 3D unit-cell method was evaluated. Carbon nanotube reinforced composites were modeled as three layers which comprises CNT, interface and matrix material. Firstly; matrix, fiber and interfacial materials all together considered as three layered cylindrical nanocomposite. Secondly, the cylindrical matrix material was assumed to be isotropic and also considered as a continuous medium. Then, fiber material was represented with zigzag type SWCNs. Finally, SWCN was combined with the elastic medium by using springs with different constants. In the FE modeling of SWCN reinforced composite model springs were modeled by using ANSYS spring damper element COMBIN14. The developed interfacial van der Waals interaction effects between the continuous matrix layer and the carbon nanotube fiber layer were simulated by applying these various spring stiffness values. In this study, the layered composite cylindrical FE model was presented as the equivalent mechanical properties of SWCN structures in terms of Young's modulus. The obtained results and literature values were presented and discussed. Figures, 16, 17, and 18 of the original article PDF file, as supplied to AIP Publishing, were affected by a PDF-processing error. Consequently, a solid diamond symbol appeared instead of a Greek tau on the y axis labels for these three figures. This article was updated on 17 March 2017 to correct the PDF-processing error, with the scientific content remaining unchanged.

  14. Strain Measurement during Stress Rupture of Composite Over-Wrapped Pressure Vessel with Fiber Bragg Gratings Sensors

    NASA Technical Reports Server (NTRS)

    Banks, Curtis E.; Grant, Joseph; Russell, Sam; Arnett, Shawn

    2008-01-01

    Fiber optic Bragg gratings were used to measure strain fields during Stress Rupture (SSM) test of Kevlar Composite Over-Wrapped Pressure Vessels (COPV). The sensors were embedded under the over-wrapped attached to the liner released from the Kevlar and attached to the Kevlar released from the liner. Additional sensors (foil gages and fiber bragg gratings) were surface mounted on the COPY liner.

  15. Strain measurement during stress rupture of composite over-wrapped pressure vessel with fiber Bragg gratings sensors

    NASA Astrophysics Data System (ADS)

    Banks, Curtis E.; Grant, Joseph; Russell, Sam; Arnett, Shawn

    2008-03-01

    Fiber optic Bragg gratings were used to measure strain fields during Stress Rupture (SSM) test of Kevlar Composite Over-Wrapped Pressure Vessels (COPVs). The sensors were embedded under the over-wrapped attached to the liner released from the Kevlar and attached to the Kevlar released from the liner. Additional sensors (foil gages and fiber bragg gratings) were surface mounted on the COPV liner.

  16. Time-Dependent Stress Rupture Strength Degradation of Hi-Nicalon Fiber-Reinforced Silicon Carbide Composites at Intermediate Temperatures

    NASA Technical Reports Server (NTRS)

    Sullivan, Roy M.

    2016-01-01

    The stress rupture strength of silicon carbide fiber-reinforced silicon carbide composites with a boron nitride fiber coating decreases with time within the intermediate temperature range of 700 to 950 degree Celsius. Various theories have been proposed to explain the cause of the time-dependent stress rupture strength. The objective of this paper is to investigate the relative significance of the various theories for the time-dependent strength of silicon carbide fiber-reinforced silicon carbide composites. This is achieved through the development of a numerically based progressive failure analysis routine and through the application of the routine to simulate the composite stress rupture tests. The progressive failure routine is a time-marching routine with an iterative loop between a probability of fiber survival equation and a force equilibrium equation within each time step. Failure of the composite is assumed to initiate near a matrix crack and the progression of fiber failures occurs by global load sharing. The probability of survival equation is derived from consideration of the strength of ceramic fibers with randomly occurring and slow growing flaws as well as the mechanical interaction between the fibers and matrix near a matrix crack. The force equilibrium equation follows from the global load sharing presumption. The results of progressive failure analyses of the composite tests suggest that the relationship between time and stress-rupture strength is attributed almost entirely to the slow flaw growth within the fibers. Although other mechanisms may be present, they appear to have only a minor influence on the observed time-dependent behavior.

  17. Frequency-dependent environmental fatigue crack propagation in the 7XXX alloy/aqueous chloride system

    NASA Astrophysics Data System (ADS)

    Gasem, Zuhair Mattoug

    The need to predict the fatigue performance of aging aerospace structures has focused interest on environmentally assisted cracking in thick-section damage-tolerant aluminum alloys (AA). The objective of this research is to characterize and understand the time-dependent processes that govern environmental fatigue crack propagation (EFCP) in 7XXX series aluminum alloys exposed to an aggressive environment. Results are utilized to identify the rate-controlling step in growth enhancement in order to develop a mechanistic model describing the time dependency of EFCP. Aluminum alloy 7075, tested in the sensitive (SL) orientation and exposed to aqueous chloride solution, is studied. Da/dNcrit for different D K levels depends on 1/√fcrit, as predicted by process zone hydrogen-diffusion-limited crack growth modeling. A model based on hydrogen diffusion controlled growth is modified to include a stress-dependent critical hydrogen concentration normalized with the crack tip hydrogen concentration (Ccrit/CS). It is proposed that da/dNcrit for a given D K and R corresponds to the distance ahead of the crack tip where the local tensile stress associated with Kmax is maximum. The reversed plasticity estimate of this location equals da/dNcrit for two aging conditions of 7075 (SL)/NaCl at R = 0.1. The EFCP dependencies on alloy microstructure (T6 vs. T7), crack orientation (SL vs. LT), and stress ratio are measured and interpreted based on their effect on da/dN crit and fcrit as well as environmental closure. Chromate addition to the chloride solution eliminates the environmental acceleration of crack growth and reduces corrosion-product induced closure. In chromate-inhibited solution, the frequency dependence of EFCP in 7075 (SL) is unique. Da/dN is reduced at moderate and low frequencies to a value similar to crack growth rate in moist air, probably due to formation of a passive film which inhibits hydrogen uptake. Inhibition is mitigated by increasing frequency or increasing

  18. Reorganization of stress fiber-like structures in spreading platelets during surface activation.

    PubMed

    Tanaka, K; Itoh, K

    1998-12-01

    Alpha-Actinin and myosin were associated into reorganized actin cable networks and partly formed stress fiber-like structures in platelets during surface activation. Double-label immunofluorescence staining using antibodies against alpha-actinin and platelet myosin heavy chain (MHC) showed that alpha-actinin and myosin were colocalized in the cell center at the early stage of activation and dynamically redistributed with shape change. In the later stage, two proteins were colocalized around the granulomeres. alpha-Actinin was also seen beneath the surface membrane while myosin was not. Occasionally, both proteins were segregated, revealed granular staining in the cell body of flattened platelets and often aligned irregular alternate arrangement in the actin cables. Immunoelectron microscopy (immunogold) employing antibodies against MHC and myosin light chain (MLC) demonstrated that myosin, associated with actin cytoskeleton was precisely filamentous (328 nm in average length, 15 nm in width) and bipolar with a central bare zone, since MLCs were located at both ends. Myosin formed a cluster composed of several filaments with repeating alignment, suggesting each cluster corresponded to the granular staining pattern of immunofluorescence. These observations indicated that the organization of alpha-actinin and myosin in actin cables in activated platelets resembled that in stress fibers in various cultured cells.

  19. Lateral communication between stress fiber sarcomeres facilitates a local remodeling response.

    PubMed

    Chapin, Laura M; Blankman, Elizabeth; Smith, Mark A; Shiu, Yan-Ting; Beckerle, Mary C

    2012-11-21

    Actin stress fibers (SFs) are load-bearing and mechanosensitive structures. To our knowledge, the mechanisms that enable SFs to sense and respond to strain have not been fully defined. Acute local strain events can involve a twofold extension of a single SF sarcomere, but how these dramatic local events affect the overall SF architecture is not believed to be understood. Here we have investigated how SF architecture adjusts to episodes of local strain that occur in the cell center. Using fluorescently tagged zyxin to track the borders of sarcomeres, we characterize the dynamics of resting sarcomeres and strain-site sarcomeres. We find that sarcomeres flanking a strain site undergo rapid shortening that directly compensates for the strain-site extension, illustrating lateral communication of mechanical information along the length of a stress fiber. When a strain-site sarcomere extends asymmetrically, its adjacent sarcomeres exhibit a parallel asymmetric shortening response, illustrating that flanking sarcomeres respond to strain magnitude. After extension, strain-site sarcomeres become locations of new sarcomere addition, highlighting mechanical strain as a trigger of sarcomere addition and revealing a, to our knowledge, novel type of SF remodeling. Our findings provide evidence to suggest SF sarcomeres act as strain sensors and are interconnected to support communication of mechanical information.

  20. A mechanical model of actin stress fiber formation and substrate elasticity sensing in adherent cells.

    PubMed

    Walcott, Sam; Sun, Sean X

    2010-04-27

    Tissue cells sense and respond to the stiffness of the surface on which they adhere. Precisely how cells sense surface stiffness remains an open question, though various biochemical pathways are critical for a proper stiffness response. Here, based on a simple mechanochemical model of biological friction, we propose a model for cell mechanosensation as opposed to previous more biochemically based models. Our model of adhesion complexes predicts that these cell-surface interactions provide a viscous drag that increases with the elastic modulus of the surface. The force-velocity relation of myosin II implies that myosin generates greater force when the adhesion complexes slide slowly. Then, using a simple cytoskeleton model, we show that an external force applied to the cytoskeleton causes actin filaments to aggregate and orient parallel to the direction of force application. The greater the external force, the faster this aggregation occurs. As the steady-state probability of forming these bundles reflects a balance between the time scale of bundle formation and destruction (because of actin turnover), more bundles are formed when the cytoskeleton time-scale is small (i.e., on stiff surfaces), in agreement with experiment. As these large bundles of actin, called stress fibers, appear preferentially on stiff surfaces, our mechanical model provides a mechanism for stress fiber formation and stiffness sensing in cells adhered to a compliant surface.

  1. Molecular identification and localization of cellular titin, a novel titin isoform in the fibroblast stress fiber.

    PubMed

    Cavnar, Peter J; Olenych, Scott G; Keller, Thomas C S

    2007-06-01

    We previously discovered a large titin-like protein-c-titin-in chicken epithelial brush border and human blood platelet extracts that binds alpha-actinin and organizes arrays of myosin II bipolar filaments in vitro. RT-PCR analysis of total RNA from human megakaryoblastic (CHRF-288-11) and mouse fibroblast (3T3) nonmuscle cells reveal sequences identical to known titin gene exon sequences that encode parts of the Z-line, I-band, PEVK domain, A-band, and M-line regions of striated muscle titins. In the nonmuscle cells, these sequences are differentially spliced in patterns not reported for any striated muscle titin isoform. Rabbit polyclonal antibodies raised against expressed protein fragments encoded by the Z-repeat and kinase domain regions react with the c-titin band in Western blot analysis of platelet extracts and immunoprecipitate c-titin in whole platelet extracts. Immunofluorescent localization demonstrates that the majority of the c-titin colocalizes with alpha-actinin and actin in 3T3 and Indian Muntjac deer skin fibroblast stress fibers. Our results suggest that differential expression of titin gene exons in nonmuscle cells yields multiple novel isoforms of the protein c-titin that are associated with the actin stress fiber structures.

  2. Carbon fiber based composites stress analysis. Experimental and computer comparative studies

    NASA Astrophysics Data System (ADS)

    Sobek, M.; Baier, A.; Buchacz, A.; Grabowski, Ł.; Majzner, M.

    2015-11-01

    Composite materials used nowadays for the production of composites are the result of advanced research. This allows assuming that they are among the most elaborate tech products of our century. That fact is evidenced by the widespread use of them in the most demanding industries like aerospace and space industry. But the heterogeneous materials and their advantages have been known to mankind in ancient times and they have been used by nature for millions of years. Among the fibers used in the industry most commonly used are nylon, polyester, polypropylene, boron, metal, glass, carbon and aramid. Thanks to their physical properties last three fiber types deserve special attention. High strength to weight ratio allow the use of many industrial solutions. Composites based on carbon and glass fibers are widely used in the automotive. Aramid fibers ideal for the fashion industry where the fabric made from the fibers used to produce the protective clothing. In the paper presented issues of stress analysis of composite materials have been presented. The components of composite materials and principles of composition have been discussed. Particular attention was paid to the epoxy resins and the fabrics made from carbon fibers. The article also includes basic information about strain measurements performed on with a resistance strain gauge method. For the purpose of the laboratory tests a series of carbon - epoxy composite samples were made. For this purpose plain carbon textile was used with a weight of 200 g/mm2 and epoxy resin LG730. During laboratory strain tests described in the paper Tenmex's delta type strain gauge rosettes were used. They were arranged in specific locations on the surface of the samples. Data acquisition preceded using HBM measurement equipment, which included measuring amplifier and measuring head. Data acquisition was performed using the Easy Catman. In order to verify the results of laboratory tests numerical studies were carried out in a

  3. Differential effects of K(+) channel blockers on frequency-dependent action potential broadening in supraoptic neurons.

    PubMed

    Hlubek, M D; Cobbett, P

    2000-09-15

    Recordings were made from magnocellular neuroendocrine cells dissociated from the supraoptic nucleus of the adult guinea pig to determine the role of voltage gated K(+) channels in controlling the duration of action potentials and in mediating frequency-dependent action potential broadening exhibited by these neurons. The K(+) channel blockers charybdotoxin (ChTx), tetraethylammonium (TEA), and 4-aminopyridine (4-AP) increased the duration of individual action potentials indicating that multiple types of K(+) channel are important in controlling action potential duration. The effect of these K(+) channel blockers was almost completely reversed by simultaneous blockade of voltage gated Ca(2+) channels with Cd(2+). Frequency-dependent action potential broadening was exhibited by these neurons during trains of action potentials elicited by membrane depolarizing current pulses presented at 10 Hz but not at 1 Hz. 4-AP but not ChTx or TEA inhibited frequency-dependent action potential broadening indicating that frequency-dependent action potential broadening is dependent on increasing steady-state inactivation of A-type K(+) channels (which are blocked by 4-AP). A model of differential contributions of voltage gated K(+) channels and voltage gated Ca(2+) channels to frequency-dependent action potential broadening, in which an increase of Ca(2+) current during each successive action potential is permitted as a result of the increasing steady-state inactivation of A-type K(+) channels, is presented.

  4. Effect of fabric structure and polymer matrix on flexural strength, interlaminar shear stress, and energy dissipation of glass fiber-reinforced polymer composites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We report the effect of glass fiber structure and the epoxy polymer system on the flexural strength, interlaminar shear stress (ILSS), and energy absorption properties of glass fiber-reinforced polymer (GFRP) composites. Four different GFRP composites were fabricated from two glass fiber textiles of...

  5. Effects of Thermal Treatment on Tensile Creep and Stress-Rupture Behavior of Hi-Nicalon SiC Fibers

    NASA Technical Reports Server (NTRS)

    Yun, H. M.; Goldsby, J. C.; Dicarlo, J. A.

    1995-01-01

    Tensile creep and stress-rupture studies were conducted on Hi-Nicalon SiC fibers at 1200 and 1400 C in argon and air. Examined were as-received fibers as well as fibers annealed from 1400 to 1800 C for 1 hour in argon before testing. The creep and rupture results for these annealed fibers were compared to those of the as-received fibers to determine the effects of annealing temperature, test temperature, and test environment. Argon anneals up to 1500 C degrade room temperature strength of Hi-Nicalon fibers, but improve fiber creep resistance in argon or air by as much as 100% with no significant degradation in rupture strength. Argon anneals above 1500 C continue to improve fiber creep resistance when tested in argon, but significantly degrade creep resistance and rupture strength when tested in air. Decrease in creep resistance in air is greater at 1200 C than at 1400 C. Mechanisms are suggested for the observed behavior.

  6. Computationally efficient bioelectric field modeling and effects of frequency-dependent tissue capacitance

    NASA Astrophysics Data System (ADS)

    Tracey, Brian; Williams, Michael

    2011-06-01

    Standard bioelectric field models assume that the tissue is purely resistive and frequency independent, and that capacitance, induction, and propagation effects can be neglected. However, real tissue properties are frequency dependent, and tissue capacitance can be important for problems involving short stimulation pulses. A straightforward interpolation scheme is introduced here that can account for frequency-dependent effects, while reducing runtime over a direct computation by several orders of magnitude. The exact Helmholtz solution is compared to several approximate field solutions and is used to study neural stimulation. Results show that frequency-independent tissue capacitance always acts to attenuate the stimulation pulse, thereby increasing firing thresholds, while the dispersion effects introduced by frequency-dependent capacitance may decrease firing thresholds.

  7. Frequency-dependent selection on female morphs driven by premating interactions with males.

    PubMed

    Bots, Jessica; Iserbyt, Arne; Van Gossum, Hans; Hammers, Martijn; Sherratt, Thomas N

    2015-07-01

    Species showing color polymorphisms-the presence of two or more genetically determined color morphs within a single population-are excellent systems for studying the selective forces driving the maintenance of genetic diversity. Despite a shortage of empirical evidence, it is often suggested that negative frequency-dependent mate preference by males (or diet choice by predators) results in fitness benefits for the rare female morph (or prey type). Moreover, most studies have focused on the male (or predator) behavior in these systems and largely overlooked the importance of female (or prey) resistance behavior. Here, we provide the first explicit test of the role of frequency-dependent and frequency-independent intersexual interactions in female polymorphic damselflies. We identify the stage of the mating sequence when frequency-dependent selection is likely to act by comparing indexes of male mate preference when the female has little (females presented on sticks), moderate (females in cages), and high (females free to fly in the field) ability to avoid male mating attempts. Frequency-dependent male preferences were found only in those experiments where females had little ability to resist male harassment, indicating that premating interactions most likely drive negative frequency-dependent selection in this system. In addition, by separating frequency-dependent male mating preference from the baseline frequency-independent component, we reconcile the seemingly contradictory results of previous studies and highlight the roles of both forms of selection in maintaining the polymorphism at a given equilibrium. We conclude that considering interactions among all players-here, males and females-is crucial to fully understanding the mechanisms underlying the maintenance of genetic polymorphisms in the wild.

  8. Dynamical gap generation in graphene with frequency-dependent renormalization effects

    NASA Astrophysics Data System (ADS)

    Carrington, M. E.; Fischer, C. S.; von Smekal, L.; Thoma, M. H.

    2016-09-01

    We study the frequency dependencies in the renormalization of the fermion Green's function for the π -band electrons in graphene and their influence on the dynamical gap generation at sufficiently strong interaction. Adopting the effective QED-like description for the low-energy excitations within the Dirac-cone region, we self-consistently solve the fermion Dyson-Schwinger equation in various approximations for the photon propagator and the vertex function with special emphasis on frequency-dependent Lindhard screening and retardation effects.

  9. Frequency-dependent quantum capacitance and plasma wave in monolayer transition metal dichalcogenides

    SciTech Connect

    Lam, Kai-Tak; Guo, Jing

    2014-03-10

    Frequency-dependent quantum capacitance C{sub Q} of monolayer transition metal dichalcogenides (TMDs) is computed and compared to that of graphene. It is found that the frequency dependence of C{sub Q} in TMDs differs drastically from that of graphene which has a divergent point. The plasma resonance forms when the quantum capacitance is negative and has the same magnitude as the electrostatic capacitance. The calculation shows that the plasma in TMDs depends on the band-structure-limited velocity, band gap, and doping density, which can be controlled via gate biases. The plasma frequencies of TMDs are in the rage of terahertz useful for various applications.

  10. Portable polarimetric fiber stress sensor system for visco-elastic and biomimetic material analysis

    NASA Astrophysics Data System (ADS)

    Harrison, Mark C.; Armani, Andrea M.

    2015-05-01

    Non-destructive materials characterization methods have significantly changed our fundamental understanding of material behavior and have enabled predictive models to be developed. However, the majority of these efforts have focused on crystalline and metallic materials, and transitioning to biomaterials, such as tissue samples, is non-trivial, as there are strict sample handling requirements and environmental controls which prevent the use of conventional equipment. Additionally, the samples are smaller and more complex in composition. Therefore, more advanced sample analysis methods capable of operating in these environments are needed. In the present work, we demonstrate an all-fiber-based material analysis system based on optical polarimetry. Unlike previous polarimetric systems which relied on free-space components, our method combines an in-line polarizer, polarization-maintaining fiber, and a polarimeter to measure the arbitrary polarization state of the output, eliminating all free-space elements. Additionally, we develop a more generalized theoretical analysis which allows more information about the polarization state to be obtained via the polarimeter. We experimentally verify our system using a series of elastomer samples made from polydimethylsiloxane (PDMS), a commonly used biomimetic material. By adjusting the base:curing agent ratio of the PDMS, we controllably tune the Young's modulus of the samples to span over an order of magnitude. The measured results are in good agreement with those obtained using a conventional load-frame system. Our fiber-based polarimetric stress sensor shows promise for use as a simple research tool that is portable and suitable for a wide variety of applications.

  11. Implementation of thermal residual stresses in the analysis of fiber bridged matrix crack growth in titanium matrix composites

    NASA Technical Reports Server (NTRS)

    Bakuckas, John G., Jr.; Johnson, W. Steven

    1994-01-01

    In this research, thermal residual stresses were incorporated in an analysis of fiber-bridged matrix cracks in unidirectional and cross-ply titanium matrix composites (TMC) containing center holes or center notches. Two TMC were investigated, namely, SCS-6/Timelal-21S laminates. Experimentally, matrix crack initiation and growth were monitored during tension-tension fatigue tests conducted at room temperature and at an elevated temperature of 200 C. Analytically, thermal residual stresses were included in a fiber bridging (FB) model. The local R-ratio and stress-intensity factor in the matrix due to thermal and mechanical loadings were calculated and used to evaluate the matrix crack growth behavior in the two materials studied. The frictional shear stress term, tau, assumed in this model was used as a curve-fitting parameter to matrix crack growth data. The scatter band in the values of tau used to fit the matrix crack growth data was significantly reduced when thermal residual stresses were included in the fiber bridging analysis. For a given material system, lay-up and temperature, a single value of tau was sufficient to analyze the crack growth data. It was revealed in this study that thermal residual stresses are an important factor overlooked in the original FB models.

  12. Myosin phosphorylation on stress fibers predicts contact guidance behavior across diverse breast cancer cells.

    PubMed

    Wang, Juan; Schneider, Ian C

    2017-03-01

    During cancer progression the extracellular matrix is remodeled, forming aligned collagen fibers that proceed radially from the tumor, resulting in invasion. We have recently shown that different invasive breast cancer cells respond to epitaxially grown, aligned collagen fibrils differently. This article develops insight into why these cells differ in their contact guidance fidelity. Small changes in contractility or adhesion dramatically alter directional persistence on aligned collagen fibrils, while migration speed remains constant. The directionality of highly contractile and adhesive MDA-MB-231 cells can be diminished by inhibiting Rho kinase or β1 integrin binding. Inversely, the directionality of less contractile and adhesive MTLn3 cells can be enhanced by activating contractility or integrins. Subtle, but quantifiable alterations in myosin II regulatory light chain phosphorylation on stress fibers explain the tuning of contact guidance fidelity, separate from migration per se indicating that the contractile and adhesive state of the cell in combination with collagen organization in the tumor microenvironment determine the efficiency of migration. Understanding how distinct cells respond to contact guidance cues will not only illuminate mechanisms for cancer invasion, but will also allow for the design of environments to separate specific subpopulations of cells from patient-derived tissues by leveraging differences in responses to directional migration cues.

  13. The effect of fiber microstructure on evolution of residual stresses in silicon carbide/titanium aluminide composites

    NASA Technical Reports Server (NTRS)

    Pindera, Marek-Jerzy; Freed, Alan D.

    1992-01-01

    This paper examines the effect of the morphology of the SCS6 silicon carbide fiber on the evolution of residual stresses in SiC/Ti composites. A micromechanics model based on the concentric cylinder concept is presented which is used to calculate residual stresses in a SiC/Ti composite during axisymmetric cooling by a spatially uniform temperature change. The silicon carbide fiber is modeled as a layered material with five distinct transversely isotropic and orthotropic, elastic layers, whereas the titanium matrix is taken to be isotropic, with temperature-dependent elastoplastic properties. The results arc compared with those obtained based on the assumption that the silicon carbide fiber is isotropic and homogeneous.

  14. Fiber-based polarimetric stress sensor for measuring the Young's modulus of biomaterials

    NASA Astrophysics Data System (ADS)

    Harrison, Mark C.; Armani, Andrea M.

    2015-03-01

    Polarimetric optical fiber-based stress and pressure sensors have proven to be a robust tool for measuring and detecting changes in the Young's modulus (E) of materials in response to external stimuli, including the real-time monitoring of the structural integrity of bridges and buildings. These sensors typically work by using a pair of polarizers before and after the sensing region of the fiber, and often require precise alignment to achieve high sensitivity. The ability to perform similar measurements in natural and in engineered biomaterials could provide significant insights and enable research advancement and preventative healthcare. However, in order for this approach to be successful, it is necessary to reduce the complexity of the system by removing free-space components and the need for alignment. As the first step in this path, we have developed a new route for performing these measurements. By generalizing and expanding established theoretical analyses for these types of sensors, we have developed a predictive theoretical model. Additionally, by replacing the conventional free space components and polarization filters with a polarimeter, we have constructed a sensor system with higher sensitivity and which is semi-portable. In initial experiments, a series of polydimethylsiloxane (PDMS) samples with several base:curing agent ratios ranging from 5:1 up to 30:1 were prepared to simulate tissues with different stiffnesses. By simultaneously producing stress-strain curves using a load frame and monitoring the polarization change of light traveling through the samples, we verified the accuracy of our theoretical model.

  15. Calculation of Growth Stress in SiO2 Scales Formed by Oxidation of SiC Fibers (PREPRINT)

    DTIC Science & Technology

    2012-07-01

    until the oxidation product for 12 µm diameter fibers is several microns thick.1,15,28 SiO2 thickness (w) (Fig. 1) therefore obeys Deal-Grove...Oxides Grown on Polysilicon Gate. J. Electrochem. Soc. 129, 1084-1089 (1982). 24 Navi, M. & Dunham, S. T. A Viscous Compressible Model for Stress

  16. Computation of the modified magnetostriction coefficient b' corresponding to different depth ranges in ferromagnetic specimens by using a frequency dependent model for magnetic Barkhausen emissions

    NASA Astrophysics Data System (ADS)

    Kypris, Orfeas; Nlebedim, Ikenna; Jiles, David

    2013-03-01

    We have recently shown that a linear relationship exists between the reciprocal peak voltage envelope amplitude 1 /Vpeak of the magnetic Barkhausen signal and elastic stress σ. By applying a frequency-dependent model to determine the depth of origin of the Barkhausen emissions in a uniformly stressed steel specimen, this relationship was found to be valid for different depth ranges. The linear relationship depends on a coefficient of proportionality b'. This was found to decrease with depth, indicating that the higher part of the frequency spectrum is less sensitive to changes in stress. In this study, the model equations have been applied at various depth ranges. It was found that the variation of b' with depth can be utilized in an inversion procedure to assess the stress state in ferromagnetic specimens to give stress-depth profiles. This study is useful for non-destructive characterization of stress with depth.

  17. Cytotoxicity, oxidative stress and genotoxicity induced by glass fibers on human alveolar epithelial cell line A549.

    PubMed

    Rapisarda, Venerando; Loreto, Carla; Ledda, Caterina; Musumeci, Giuseppe; Bracci, Massimo; Santarelli, Lory; Renis, Marcella; Ferrante, Margherita; Cardile, Venera

    2015-04-01

    Man-made vitreous fibers have been widely used as insulation material as asbestos substitutes; however their morphology and composition raises concerns. In 1988 the International Agency for Research on Cancer classified fiberglass, rock wool, slag wool, and ceramic fibers as Group 2B, i.e. possibly carcinogenic to humans. In 2002 it reassigned fiberglass, rock and slag wool, and continuous glass filaments to Group 3, not classifiable as carcinogenic to humans. The aim of this study was to verify the cytotoxic and genotoxic effects and oxidative stress production induced by in vitro exposure of human alveolar epithelial cells A549 to glass fibers with a predominant diameter <3 μm (97%) and length >5 μm (93%). A549 cells were incubated with 5, 50, or 100 μg/ml (2.1, 21, and 42 μg/cm(2), respectively) of glass fibers for 72 h. Cytotoxicity and DNA damage were tested by the MTT and the Comet assay, respectively. Oxidative stress was determined by measuring inducible nitric oxide synthase (iNOS) expression by Western blotting, production of nitric oxide (NO) with Griess reagent, and concentration of reactive oxygen species by fluorescent quantitative analysis with 2',7'-dichlorofluorescein-diacetate (DCFH-DA). The results showed that glass fiber exposure significantly reduced cell viability and increased DNA damage and oxidative stress production in a concentration-dependent manner, demonstrating that glass fibers exert cytotoxic and genotoxic effects related to increased oxidative stress on the human alveolar cell line A549.

  18. Frequency dependence of CO2 elimination and respiratory resistance in monkeys.

    PubMed

    Watson, J W; Jackson, A C

    1985-02-01

    In dogs, respiratory system resistance (Rrs) is frequency independent, and during high-frequency oscillatory ventilation (HFO) the relationship between CO2 elimination (VCO2) and frequency is linear. In contrast, we found in rabbits a large frequency-dependent decrease in Rrs with increasing frequency along with a nonlinear relationship between frequency and VCO2 (J. Appl. Physiol. 57: 354-359, 1984). We proposed that frequency dependent mechanical properties of the lung account for inter-species differences in the frequency dependence of gas exchange during HFO. In the current study we tested this hypothesis further by measuring VCO2 and Rrs as a function of frequency in a species of monkey (Macaca radiata). In these monkeys, Rrs decreased minimally between 4 and 8 Hz and in general increased at higher frequencies, whereas VCO2 was linearly related to frequency. This is further evidence supporting the hypothesis that nonlinear frequency-VCO2 behavior during HFO is related to frequency-dependent behavior in Rrs.

  19. Negative frequency-dependent selection between Pasteuria penetrans and its host Meloidogyne arenaria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In negative frequency-dependant selection (NFDS), parasite genotypes capable of infecting the numerically dominant host genotype are favored, while host genotypes resistant to the dominant parasite genotype are favored, creating a cyclical pattern of resistant genotypes in the host population and, a...

  20. Colour polymorphism torn apart by opposing positive frequency-dependent selection, yet maintained in space.

    PubMed

    Gordon, Swanne P; Kokko, Hanna; Rojas, Bibiana; Nokelainen, Ossi; Mappes, Johanna

    2015-11-01

    Polymorphic warning signals in aposematic species are enigmatic because predator learning and discrimination should select for the most common coloration, resulting in positive frequency-dependent survival selection. Here, we investigated whether differential mating success could create sufficiently strong negative frequency-dependent selection for rare morphs to explain polymorphic (white and yellow) warning coloration in male wood tiger moths (Parasemia plantaginis). We conducted an experiment in semi-natural conditions where we estimated mating success for both white and yellow male moths under three different morph frequencies. Contrary to expectations, mating success was positively frequency-dependent: white morph males had high relative fitness when common, likewise yellow morph males had high relative fitness when instead they were common. We hence built a model parameterized with our data to examine whether polymorphism can be maintained despite two sources of positive frequency dependence. The model includes known spatial variation in the survival advantage enjoyed by the yellow morph and assumes that relative mating success follows our experimentally derived values. It predicts that polymorphism is possible under migration for up to approximately 20% exchange of individuals between subpopulations in each generation. Our results suggest that differential mating success combined with spatial variation in predator communities may operate as a selection mosaic that prevents complete fixation of either morph.

  1. Frequency dependent magneto-transport in charge transfer Co(II) complex

    NASA Astrophysics Data System (ADS)

    Shaw, Bikash Kumar; Saha, Shyamal K.

    2014-09-01

    A charge transfer chelated system containing ferromagnetic metal centers is the ideal system to investigate the magneto-transport and magneto-dielectric effects due to the presence of both electronic as well as magnetic properties and their coupling. Magneto-transport properties in materials are usually studied through dc charge transport under magnetic field. As frequency dependent conductivity is an essential tool to understand the nature of carrier wave, its spatial extension and their mutual interaction, in the present work, we have investigated frequency dependent magneto-transport along with magnetization behavior in [Co2(II)-(5-(4-PhMe)-1,3,4-oxadiazole-H+-2-thiolate)5](OAc)4 metal complex to elucidate the nature of above quantities and their response under magnetic field in the transport property. We have used the existing model for ac conduction incorporating the field dependence to explain the frequency dependent magneto-transport. It is seen that the frequency dependent magneto-transport could be well explained using the existing model for ac conduction.

  2. FREQUENCY-DEPENDENT CHANGES IN GAP JUNCTION FUNCTION IN PRIMARY HEPATOCYTES

    EPA Science Inventory

    FREQUENCY-DEPENDENT CHANGES IN GAP JUNCTION FUNCTION IN PRIMARY HEPATOCYTES. X. Wang1 *, D.E. Housel *, J. Page2, C.F. Blackmanl. 1 National Health and Environmental Effects Research Laboratory, USEPA, Research Triangle Park, North Carolina 27711 USA, 2Oakland, California USA
    ...

  3. An exponential ESS model and its application to frequency-dependent selection.

    PubMed

    Li, J; Liu, L

    1989-10-01

    A nonlinear ESS model is put forward, that is, a nonnegative exponential ESS model. For a simple case, we discuss the existence, uniqueness, and stability of an ESS. As an application of the model, we give a quantitative analysis of frequency-dependent selection in population genetics when the rare type has an advantage.

  4. Creep and Stress-strain Behavior After Creep from Sic Fiber Reinforced, Melt-infiltrated Sic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.; Pujar, Vijay

    2004-01-01

    Silicon carbide fiber (Hi-Nicalon Type S, Nippon Carbon) reinforced silicon carbide matrix composites containing melt-infiltrated Si were subjected to creep at 1315 C for a number of different stress conditions, This study is aimed at understanding the time-dependent creep behavior of CMCs for desired use-conditions, and also more importantly, how the stress-strain response changes as a result of the time-temperature-stress history of the crept material. For the specimens that did not rupture, fast fracture experiments were performed at 1315 C or at room temperature immediately following tensile creep. In many cases, the stress-strain response and the resulting matrix cracking stress of the composite change due to stress-redistribution between composite constituents during tensile creep. The paper will discuss these results and its implications on applications of these materials for turbine engine components.

  5. Phase-Shifted Based Numerical Method for Modeling Frequency-Dependent Effects on Seismic Reflections

    NASA Astrophysics Data System (ADS)

    Chen, Xuehua; Qi, Yingkai; He, Xilei; He, Zhenhua; Chen, Hui

    2016-08-01

    The significant velocity dispersion and attenuation has often been observed when seismic waves propagate in fluid-saturated porous rocks. Both the magnitude and variation features of the velocity dispersion and attenuation are frequency-dependent and related closely to the physical properties of the fluid-saturated porous rocks. To explore the effects of frequency-dependent dispersion and attenuation on the seismic responses, in this work, we present a numerical method for seismic data modeling based on the diffusive and viscous wave equation (DVWE), which introduces the poroelastic theory and takes into account diffusive and viscous attenuation in diffusive-viscous-theory. We derive a phase-shift wave extrapolation algorithm in frequencywavenumber domain for implementing the DVWE-based simulation method that can handle the simultaneous lateral variations in velocity, diffusive coefficient and viscosity. Then, we design a distributary channels model in which a hydrocarbon-saturated sand reservoir is embedded in one of the channels. Next, we calculated the synthetic seismic data to analytically and comparatively illustrate the seismic frequency-dependent behaviors related to the hydrocarbon-saturated reservoir, by employing DVWE-based and conventional acoustic wave equation (AWE) based method, respectively. The results of the synthetic seismic data delineate the intrinsic energy loss, phase delay, lower instantaneous dominant frequency and narrower bandwidth due to the frequency-dependent dispersion and attenuation when seismic wave travels through the hydrocarbon-saturated reservoir. The numerical modeling method is expected to contribute to improve the understanding of the features and mechanism of the seismic frequency-dependent effects resulted from the hydrocarbon-saturated porous rocks.

  6. Hydrothermal and mechanical stresses degrade fiber-matrix interfacial bond strength in dental fiber-reinforced composites.

    PubMed

    Bouillaguet, Serge; Schütt, Andrea; Alander, Pasi; Schwaller, Patrick; Buerki, Gerhard; Michler, Johann; Cattani-Lorente, Maria; Vallittu, Pekka K; Krejci, Ivo

    2006-01-01

    Fiber-reinforced composites (FRCs) show great promise as long-term restorative materials in dentistry and medicine. Recent evidence indicates that these materials degrade in vivo, but the mechanisms are unclear. The objective of this study was to investigate mechanisms of deterioration of glass fiber-polymer matrix bond strengths in dental fiber-reinforced composites during hydrothermal and mechanical aging. Conventional three-point bending tests on dental FRCs were used to assess flexural strengths and moduli. Micro push-out tests were used to measure glass fiber-polymer matrix bond strengths, and nanoindentation tests were used to determine the modulus of elasticity of fiber and polymer matrix phases separately. Bar-shaped specimens of FRCs (EverStick, StickTech, and Vectris Pontic, Ivoclar-Vivadent) were either stored at room temperature, in water (37 and 100 degrees C) or subjected to ageing (10(6) cycles, load: 49 N), then tested by three-point bending. Thin slices were prepared for micro push-out and nanoindentation tests. The ultimate flexural strengths of both FRCs were significantly reduced after aging (p < 0.05). Both water storage and mechanical loading reduced the interfacial bond strengths of glass fibers to polymer matrices. Nanoindentation tests revealed a slight reduction in the elastic modulus of the EverStick and Vectris Pontic polymer matrix after water storage. Mechanical properties of FRC materials degrade primarily by a loss of interfacial bond strength between the glass and resin phases. This degradation is detectable by micro push-out and nanoindentation methods.

  7. An asymptotic preserving unified gas kinetic scheme for frequency-dependent radiative transfer equations

    SciTech Connect

    Sun, Wenjun; Jiang, Song; Xu, Kun; Li, Shu

    2015-12-01

    This paper presents an extension of previous work (Sun et al., 2015 [22]) of the unified gas kinetic scheme (UGKS) for the gray radiative transfer equations to the frequency-dependent (multi-group) radiative transfer system. Different from the gray radiative transfer equations, where the optical opacity is only a function of local material temperature, the simulation of frequency-dependent radiative transfer is associated with additional difficulties from the frequency-dependent opacity. For the multiple frequency radiation, the opacity depends on both the spatial location and the frequency. For example, the opacity is typically a decreasing function of frequency. At the same spatial region the transport physics can be optically thick for the low frequency photons, and optically thin for high frequency ones. Therefore, the optical thickness is not a simple function of space location. In this paper, the UGKS for frequency-dependent radiative system is developed. The UGKS is a finite volume method and the transport physics is modeled according to the ratio of the cell size to the photon's frequency-dependent mean free path. When the cell size is much larger than the photon's mean free path, a diffusion solution for such a frequency radiation will be obtained. On the other hand, when the cell size is much smaller than the photon's mean free path, a free transport mechanism will be recovered. In the regime between the above two limits, with the variation of the ratio between the local cell size and photon's mean free path, the UGKS provides a smooth transition in the physical and frequency space to capture the corresponding transport physics accurately. The seemingly straightforward extension of the UGKS from the gray to multiple frequency radiation system is due to its intrinsic consistent multiple scale transport modeling, but it still involves lots of work to properly discretize the multiple groups in order to design an asymptotic preserving (AP) scheme in all

  8. The Evolution of Interfacial Sliding Stresses During Cyclic Push-in Testing of C- and BN-Coated Hi-Nicalon Fiber-Reinforced CMCs

    NASA Technical Reports Server (NTRS)

    Eldridge, J. I.; Bansal, N. P.; Bhatt, R. T.

    1998-01-01

    Interfacial debond cracks and fiber/matrix sliding stresses in ceramic matrix composites (CMCs) can evolve under cyclic fatigue conditions as well as with changes in the environment, strongly affecting the crack growth behavior, and therefore, the useful service lifetime of the composite. In this study, room temperature cyclic fiber push-in testing was applied to monitor the evolution of frictional sliding stresses and fiber sliding distances with continued cycling in both C- and BN-coated Hi-Nicalon SiC fiber-reinforced CMCs. A SiC matrix composite reinforced with C-coated Hi-Nical on fibers as well as barium strontium aluminosilicate (BSAS) matrix composites reinforced with BN-coated (four different deposition processes compared) Hi-Nicalon fibers were examined. For failure at a C interface, test results indicated progressive increases in fiber sliding distances during cycling in room air but not in nitrogen. These results suggest the presence of moisture will promote crack growth when interfacial failure occurs at a C interface. While short-term testing environmental effects were not apparent for failure at the BN interfaces, long-term exposure of partially debonded BN-coated fibers to humid air resulted in large increases in fiber sliding distances and decreases in interfacial sliding stresses for all the BN coatings, presumably due to moisture attack. A wide variation was observed in debond and frictional sliding stresses among the different BN coatings.

  9. Impact of the frequency dependence of tidal Q on the evolution of planetary systems

    NASA Astrophysics Data System (ADS)

    Auclair-Desrotour, P.; Le Poncin-Lafitte, C.; Mathis, S.

    2014-01-01

    Context. Tidal dissipation in planets and in stars is one of the key physical mechanisms that drive the evolution of planetary systems. Aims: Tidal dissipation properties are intrinsically linked to the internal structure and the rheology of the studied celestial bodies. The resulting dependence of the dissipation upon the tidal frequency is strongly different in the cases of solids and fluids. Methods: We computed the tidal evolution of a two-body coplanar system, using the tidal-quality factor frequency-dependencies appropriate to rocks and to convective fluids. Results: The ensuing orbital dynamics is smooth or strongly erratic, depending on the way the tidal dissipation depends upon frequency. Conclusions: We demonstrate the strong impact of the internal structure and of the rheology of the central body on the orbital evolution of the tidal perturber. A smooth frequency-dependence of the tidal dissipation causes a smooth orbital evolution, while a peaked dissipation can produce erratic orbital behaviour.

  10. Influence of damping on the frequency-dependent polarizabilities of doped quantum dot

    NASA Astrophysics Data System (ADS)

    Pal, Suvajit; Ghosh, Manas

    2014-09-01

    We investigate the profiles of diagonal components of frequency-dependent linear (αxx and αyy), and first nonlinear (βxxx and βyyy) optical response of repulsive impurity doped quantum dots. The dopant impurity potential chosen assumes Gaussian form. The study principally focuses on investigating the role of damping on the polarizability components. In view of this the dopant is considered to be propagating under damped condition which is otherwise linear inherently. The frequency-dependent polarizabilities are then analyzed by placing the doped dot to a periodically oscillating external electric field of given intensity. The damping strength, in conjunction with external oscillation frequency and confinement potentials, fabricate the polarizability components in a fascinating manner which is adorned with emergence of maximization, minimization, and saturation. The discrimination in the values of the polarizability components in x and y-directions has also been addressed in the present context.

  11. Audio-Band Frequency-Dependent Squeezing for Gravitational-Wave Detectors.

    PubMed

    Oelker, Eric; Isogai, Tomoki; Miller, John; Tse, Maggie; Barsotti, Lisa; Mavalvala, Nergis; Evans, Matthew

    2016-01-29

    Quantum vacuum fluctuations impose strict limits on precision displacement measurements, those of interferometric gravitational-wave detectors among them. Introducing squeezed states into an interferometer's readout port can improve the sensitivity of the instrument, leading to richer astrophysical observations. However, optomechanical interactions dictate that the vacuum's squeezed quadrature must rotate by 90° around 50 Hz. Here we use a 2-m-long, high-finesse optical resonator to produce frequency-dependent rotation around 1.2 kHz. This demonstration of audio-band frequency-dependent squeezing uses technology and methods that are scalable to the required rotation frequency and validates previously developed theoretical models, heralding application of the technique in future gravitational-wave detectors.

  12. Time-domain representation of frequency-dependent foundation impedance functions

    USGS Publications Warehouse

    Safak, E.

    2006-01-01

    Foundation impedance functions provide a simple means to account for soil-structure interaction (SSI) when studying seismic response of structures. Impedance functions represent the dynamic stiffness of the soil media surrounding the foundation. The fact that impedance functions are frequency dependent makes it difficult to incorporate SSI in standard time-history analysis software. This paper introduces a simple method to convert frequency-dependent impedance functions into time-domain filters. The method is based on the least-squares approximation of impedance functions by ratios of two complex polynomials. Such ratios are equivalent, in the time-domain, to discrete-time recursive filters, which are simple finite-difference equations giving the relationship between foundation forces and displacements. These filters can easily be incorporated into standard time-history analysis programs. Three examples are presented to show the applications of the method.

  13. Analytical calculations of frequency-dependent hypermagnetizabilities and Cotton-Mouton constants using London atomic orbitals

    NASA Astrophysics Data System (ADS)

    Thorvaldsen, Andreas J.; Ruud, Kenneth; Rizzo, Antonio; Coriani, Sonia

    2008-10-01

    We present the first gauge-origin-independent, frequency-dependent calculations of the hypermagnetizability anisotropy, which determines the temperature-independent contribution to magnetic-field-induced linear birefringence, the so-called Cotton-Mouton effect. A density-matrix-based scheme for analytical calculations of frequency-dependent molecular properties for self-consistent field models has recently been developed, which is also valid with frequency- and field-dependent basis sets. Applying this scheme to Hartree-Fock wave functions and using London atomic orbitals in order to obtain gauge-origin-independent results, we have calculated the hypermagnetizability anisotropy. Our results show that the use of London orbitals leads to somewhat better basis-set convergence for the hypermagnetizability compared to conventional basis sets and that London orbitals are mandatory in order to obtain reliable magnetizability anisotropies.

  14. Negative frequency-dependent preferences and variation in male facial hair.

    PubMed

    Janif, Zinnia J; Brooks, Robert C; Dixson, Barnaby J

    2014-01-01

    Negative frequency-dependent sexual selection maintains striking polymorphisms in secondary sexual traits in several animal species. Here, we test whether frequency of beardedness modulates perceived attractiveness of men's facial hair, a secondary sexual trait subject to considerable cultural variation. We first showed participants a suite of faces, within which we manipulated the frequency of beard thicknesses and then measured preferences for four standard levels of beardedness. Women and men judged heavy stubble and full beards more attractive when presented in treatments where beards were rare than when they were common, with intermediate preferences when intermediate frequencies of beardedness were presented. Likewise, clean-shaven faces were least attractive when clean-shaven faces were most common and more attractive when rare. This pattern in preferences is consistent with negative frequency-dependent selection.

  15. Characterization of the anamorphic and frequency dependent phenomenon in Liquid Crystal on Silicon displays

    NASA Astrophysics Data System (ADS)

    Lobato, L.; Lizana, A.; Márquez, A.; Moreno, I.; Iemmi, C.; Campos, J.; Yzuel, M. J.

    2011-04-01

    The diffractive efficiency of Liquid Crystal on Silicon (LCoS) displays can be greatly diminished by the appearance of temporal phase fluctuations in the reflected beam, depolarization effects and also because of phase modulation depths smaller than 2π. In order to maximize the efficiency of the Diffractive Optical Elements (DOEs) implemented in the LCoS device, the Minimum Euclidean Distance principle can be applied. However, not all the diffractive elements can be corrected in the same way due to the anamorphic and frequency dependent phenomenon, which is related to the LCoS response, largely dependending on the period and the spatial orientation of the generated DOE. Experimental evidence for the anamorphic and frequency dependent phenomenon is provided in this paper, as well as a comparative study between the efficiency obtained for binary gratings of different periods

  16. Frequency-Dependent Spherical-Wave Reflection in Acoustic Media: Analysis and Inversion

    NASA Astrophysics Data System (ADS)

    Li, Jingnan; Wang, Shangxu; Wang, Jingbo; Dong, Chunhui; Yuan, Sanyi

    2017-02-01

    Spherical-wave reflectivity (SWR), which describes the seismic wave reflection in real subsurface media more accurately than plane-wave reflectivity (PWR), recently, again attracts geophysicists' attention. The recent studies mainly focus on the amplitude variation with offset/angle (AVO/AVA) attributes of SWR. For a full understanding of the reflection mechanism of spherical wave, this paper systematically investigates the frequency-dependent characteristics of SWR in a two-layer acoustic medium model with a planar interface. Two methods are used to obtain SWR. The first method is through the calculation of classical Sommerfeld integral. The other is by 3D wave equation numerical modeling. To enhance computation efficiency, we propose to perform wave equation simulation in cylindrical coordinates, wherein we for the first time implement unsplit convolutional perfectly matched layer as the absorbing boundary. Both methods yield the same results, which demonstrate the validity and accuracy of the computation. From both the numerical tests and the theoretical demonstration, we find that the necessary condition when frequency dependence of SWR occurs is that the upper and lower media have different velocities. At the precritical small angle, the SWR exhibits complicated frequency-dependent characteristics for varying medium parameters. Especially when the impedance of upper medium equals that of lower one, the PWR is zero according to geometric seismics. Whereas the SWR is nonzero: the magnitude of SWR decreases with growing frequency, and approaches that of the corresponding PWR at high frequency; the phase of SWR increases with growing frequency, but approaches 90° or -90° at high frequency. At near- and post-critical angles, large difference exists between SWR and PWR, and the difference is particularly great at low frequencies. Finally, we propose a nonlinear inversion method to estimate physical parameters and interface depth of media by utilizing the frequency-dependent

  17. Frequency Dependence of Single-Event Upset in Highly Advanced PowerPC Microprocessors

    NASA Technical Reports Server (NTRS)

    Irom, Farokh; Farmanesh, Farhad; White, Mark; Kouba, Coy K.

    2006-01-01

    Single-event upset effects from heavy ions were measured for Motorola silicon-on-insulator (SOI) microprocessor with 90 nm feature sizes at three frequencies of 500, 1066 and 1600 MHz. Frequency dependence of single-event upsets is discussed. The results of our studies suggest the single-event upset in registers and D-Cache tend to increase with frequency. This might have important implications for the overall single-event upset trend as technology moves toward higher frequencies.

  18. Frequency dependent optical conductivity of strained graphene at T=0 from an effective quantum field theory

    NASA Astrophysics Data System (ADS)

    Zhang, Shi-Jiang; Pan, Hui; Wang, Hai-Long

    2017-04-01

    An effective quantum field theory (EQFT) graphene sheet with arbitrary one dimensional strain field is derived from a microscopic effective low energy Hamiltonian. The geometric meaning of the strain-induced complex gauge field is clarified. The optical conductivity is also investigated, and a frequency dependent optical conductivity is obtained. The actual value of interband optical conductivity along the deformed direction is C0 + C1/ω2 in spite of the particular strain fields at T=0.

  19. Accurate determination of frequency dependent three element equivalent circuit for symmetric step microstrip discontinuity

    NASA Astrophysics Data System (ADS)

    Webster, M. J.; Easter, B.; Hornsby, J. S.

    1990-02-01

    A three element frequency dependent equivalent circuit which characterizes a symmetric step microstrip discontinuity is determined using the method of lines. This method was applied so as to exploit to the full the processing capabilities of the available Cyber 205 computer, and to obtain results with the highest possible accuracy at frequencies in the range 4-16 GHz. Numerical values of scattering parameters are given for three geometries.

  20. Nonlinear and frequency-dependent transport phenomena in low-dimensional conductors

    NASA Astrophysics Data System (ADS)

    Grüner, G.

    1983-07-01

    Nonlinear and frequency-dependent electrical conductivity is more a rule than an exception in materials with highly anisotropic electronic structure. Disorder leads to localization of the electronic wave functions, and the temperature-( T), electric field-( E), and frequency (ω)-dependent transport are due to random transfer rates between localized single particle states, a process fundamentally different from band transport. Interactions lead to collective modes, represented by a periodic modulation of the charge or spin density. The charge density wave (CDW) mode is pinned by impurities, but for small pinning forces, it can be depinned by moderate electric fields, leading to nonlinear conductivity due to a sliding CDW. Both classical and quantum models account for the field and frequency dependent response; they also describe current oscillation phenomena and effects which arise when both dc and ac excitations are applied. For strong pinning the collective mode cannot be depinned at small electric field strengths, but nonlinear (soliton) excitations of the collective modes may be responsible for the nonlinear conductivity observed. In all these cases field-and frequency-dependent transport is strongly related. This feature is reproduced by various models, and therefore a detailed study of σ( T, E,ω) is called for to distinguish between the various sources of novel transport phenomena in these new types of solids.

  1. Frequency dependence of electron spin-lattice relaxation for semiquinones in alcohol solutions.

    PubMed

    Elajaili, Hanan B; Biller, Joshua R; Eaton, Sandra S; Eaton, Gareth R

    2014-10-01

    The spin-lattice relaxation rates at 293 K for three anionic semiquinones (2,5-di-t-butyl-1,4-benzosemiquinone, 2,6-di-t-butyl-1,4-benzosemiquinone, and 2,3,5,6-tetramethoxy-1,4-benzosemiquinone) were studied at up to 8 frequencies between 250 MHz and 34 GHz in ethanol or methanol solution containing high concentrations of OH(-). The relaxation rates are about a factor of 2 faster at lower frequencies than at 9 or 34 GHz. However, in perdeuterated alcohols the relaxation rates exhibit little frequency dependence, which demonstrates that the dominant frequency-dependent contribution to relaxation is modulation of dipolar interactions with solvent nuclei. The relaxation rates were modeled as the sum of two frequency-independent contributions (spin rotation and a local mode) and two frequency-dependent contributions (modulation of dipolar interaction with solvent nuclei and a much smaller contribution from modulation of g anisotropy). The correlation time for modulation of the interaction with solvent nuclei is longer than the tumbling correlation time of the semiquinone and is consistent with hydrogen bonding of the alcohol to the oxygen atoms of the semiquinones.

  2. Frequency-Dependent Amplitude Versus Offset Variations in Porous Rocks with Aligned Fractures

    NASA Astrophysics Data System (ADS)

    Yang, Xiaohui; Cao, Siyuan; Guo, Quanshi; Kang, Yonggan; Yu, Pengfei; Hu, Wei

    2017-03-01

    The theory of frequency-dependent amplitude versus offset (AVO) was developed for patchy-saturated model. In this work, we consider this theory in the case of an anisotropic medium based on a fractured-sandstone model. Thus, building on viscoelastic theory, we introduce a method for the computation of frequency-dependent AVO that is suitable for use in the case of an anisotropic medium. We use both analytical methods and numerical simulations to study P-P and P-S reflection coefficients, and results suggest that dispersion and anisotropy should not be neglected in AVO analysis. Indeed, for class I AVO reservoirs, the reflection magnitude of P-wave increases with frequency, while the responses of class II AVO reservoirs suggest that phase reversal occurs as frequency increases positively. In the case of class III AVO reservoirs, reflection magnitude decreases as frequency increases positively, while in the offset domain, the presence of anisotropy can distort or even reverse AVO responses. Thus, when compared to reflection coefficients for P-wave, reflection magnitude features of S-wave are more complex. The frequency-dependent AVO responses reported in this study provide insights for the interpretation of seismic anomalies in vertical transverse isotropy (VTI) dispersive reservoirs.

  3. The analysis of frequency-dependent characteristics for fluid detection: a physical model experiment

    NASA Astrophysics Data System (ADS)

    Chen, Shuang-Quan; Li, Xiang-Yang; Wang, Shang-Xu

    2012-06-01

    According to the Chapman multi-scale rock physical model, the seismic response characteristics vary for different fluid-saturated reservoirs. For class I AVO reservoirs and gas-saturation, the seismic response is a high-frequency bright spot as the amplitude energy shifts. However, it is a low-frequency shadow for the Class III AVO reservoirs saturated with hydrocarbons. In this paper, we verified the high-frequency bright spot results of Chapman for the Class I AVO response using the frequency-dependent analysis of a physical model dataset. The physical model is designed as inter-bedded thin sand and shale based on real field geology parameters. We observed two datasets using fixed offset and 2D geometry with different fluidsaturated conditions. Spectral and time-frequency analyses methods are applied to the seismic datasets to describe the response characteristics for gas-, water-, and oil-saturation. The results of physical model dataset processing and analysis indicate that reflection wave tuning and fluid-related dispersion are the main seismic response characteristic mechanisms. Additionally, the gas saturation model can be distinguished from water and oil saturation for Class I AVO utilizing the frequency-dependent abnormal characteristic. The frequency-dependent characteristic analysis of the physical model dataset verified the different spectral response characteristics corresponding to the different fluid-saturated models. Therefore, by careful analysis of real field seismic data, we can obtain the abnormal spectral characteristics induced by the fluid variation and implement fluid detection using seismic data directly.

  4. Frequency-Dependent Amplitude Versus Offset Variations in Porous Rocks with Aligned Fractures

    NASA Astrophysics Data System (ADS)

    Yang, Xiaohui; Cao, Siyuan; Guo, Quanshi; Kang, Yonggan; Yu, Pengfei; Hu, Wei

    2016-11-01

    The theory of frequency-dependent amplitude versus offset (AVO) was developed for patchy-saturated model. In this work, we consider this theory in the case of an anisotropic medium based on a fractured-sandstone model. Thus, building on viscoelastic theory, we introduce a method for the computation of frequency-dependent AVO that is suitable for use in the case of an anisotropic medium. We use both analytical methods and numerical simulations to study P-P and P-S reflection coefficients, and results suggest that dispersion and anisotropy should not be neglected in AVO analysis. Indeed, for class I AVO reservoirs, the reflection magnitude of P-wave increases with frequency, while the responses of class II AVO reservoirs suggest that phase reversal occurs as frequency increases positively. In the case of class III AVO reservoirs, reflection magnitude decreases as frequency increases positively, while in the offset domain, the presence of anisotropy can distort or even reverse AVO responses. Thus, when compared to reflection coefficients for P-wave, reflection magnitude features of S-wave are more complex. The frequency-dependent AVO responses reported in this study provide insights for the interpretation of seismic anomalies in vertical transverse isotropy (VTI) dispersive reservoirs.

  5. Reflectometric frequency-modulation continuous-wave distributed fiber-optic stress sensor with forward coupled beams.

    PubMed

    Zheng, G; Campbell, M; Wallace, P

    1996-10-01

    A distributed optical-fiber stress sensor whose principle of operation is based on the frequency-modulation continuous-wave technique is reported. The sensor consists of a length of birefringent fiber with a mirror attached to one end, a diode laser, and a p-i-n photodiode detector. The intensity and the location of an applied stress are determined simultaneously by detecting the amplitude and the frequency of the beat signal, which is produced by two forward-coupled mode beams. The system was found to have a reasonable spatial resolution of 0.85 m (rms error) in a sensing range of 100 m. The advantages and limitations of the sensor are also discussed.

  6. High temperature fiber optic microphone having a pressure-sensing reflective membrane under tensile stress

    NASA Technical Reports Server (NTRS)

    Zuckerwar, Allan J. (Inventor); Cuomo, Frank W. (Inventor); Robbins, William E. (Inventor); Hopson, Purnell, Jr. (Inventor)

    1992-01-01

    A fiber optic microphone is provided for measuring fluctuating pressures. An optical fiber probe having at least one transmitting fiber for transmitting light to a pressure-sensing membrane and at least one receiving fiber for receiving light reflected from a stretched membrane is provided. The pressure-sensing membrane may be stretched for high frequency response. Further, a reflecting surface of the pressure-sensing membrane may have dimensions which substantially correspond to dimensions of a cross section of the optical fiber probe. Further, the fiber optic microphone can be made of materials for use in high temperature environments, for example greater than 1000 F. A fiber optic probe is also provided with a backplate for damping membrane motion. The backplate further provides a means for on-line calibration of the microphone.

  7. Anisotropy of human muscle via non invasive impedance measurements. Frequency dependence of the impedance changes during isometric contractions

    NASA Astrophysics Data System (ADS)

    Kashuri, Hektor

    In this thesis we present non invasive muscle impedance measurements using rotatable probes extending the work done by Aaron et al. (1997) by measuring not only the real part of the impedance but the imaginary part as well. The results reveal orientations of underlying muscle fibers via minima in resistance and reactance versus angle curves, suggesting this method as potentially useful for studying muscle properties in clinical and physiological research. Calculations of the current distribution for a slab of material with anisotropic conductivity show that the current distribution depends strongly on the separation of two current electrodes and as well as on its conducting anisotropy. Forearm muscle impedance measurements at 50 kHz done by Shiffman et al. (2003) had shown that both resistance (R) and reactance (X) increase during isometric contraction. We have extended these measurements in the 3 to 100 kHz range and we found that resistance (R) and reactance (X) both increase and their changes increased or decreased at frequency dependent rates. Analysis based on circuit models of changes in R and X during the short contraction pulses showed that the extra cellular fluid resistance increased by 3.9 +/- 1.4 %, while the capacitance increased by 5.6 +/- 2 %. For long contraction pulses at very low frequencies: (1) there was practically no change in R during contraction, which implies that these changes are due to cellular membrane or intracellular effects with the extra cellular water component not participating, and (2) in post contraction stage there were no morphological changes which means that drifts in R can only be due to physiological changes. Following Shiffman et al. (2003) we measured impedance changes of R and X during a triangular shaped pulse of force generated via isometric forearm muscle contraction at 50 kHz. We measured these changes in 3-100 kHz frequency range for a stair case pulse of forces and the results showed that they are frequency

  8. Elastic-plastic stress concentrations around crack-like notches in continuous fiber reinforced metal matrix composites

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.; Bigelow, C. A.

    1987-01-01

    Continuous fiber silicon-carbide/aluminum composite laminates with slits were tested statically to failure. Five different layups were examined: (0) sub 8, (0 sub 2/ + or - 45) sub s, (0/90) sub 2s), (0/ + or - 45/90 sub s), and (+ or - 45) sub 2s. Either a 9.5 or a 19 mm slit was machined in the center of each specimen. The strain distribution ahead of the slit tip was found experimentally with a series of strain gages bonded ahead of the slit tip. A three-dimensional finite element program (PAFAC) was used to predict the strain distribution ahead of the slit tip for several layups. For all layups, except the (0) sub 8, the yielding of the metal matrix caused the fiber stress concentration factor to increase with increasing load. This is contrary to the behavior seen in homogeneous materials where yielding causes the stress concentration to drop. For the (0) sub 8 laminate, yielding of the matrix caused a decrease in the fiber stress concentration. The finite element analysis predicted these trends correctly.

  9. Elastic-plastic stress concentrations around crack-like notches in continuous fiber reinforced metal matrix composites

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.; Bigelow, C. A.

    1989-01-01

    Continuous fiber silicon-carbide/aluminum composite laminates with slits were tested statically to failure. Five different layups were examined: (0) sub 8, (0 sub 2/ + or - 45) sub s, (0/90) sub 2s), (0/ + or - 45/90 sub s), and (+ or - 45) sub 2s. Either a 9.5 or a 19 mm slit was machined in the center of each specimen. The strain distribution ahead of the slit tip was found experimentally with a series of strain gages bonded ahead of the slit tip. A three-dimensional finite element program (PAFAC) was used to predict the strain distribution ahead of the slit tip for several layups. For all layups, except the (0) sub 8, the yielding of the metal matrix caused the fiber stress concentration factor to increase with increasing load. This is contrary to the behavior seen in homogeneous materials where yielding causes the stress concentration to drop. For the (0) sub 8 laminate, yielding of the matrix caused a decrease in the fiber stress concentration. The finite element analysis predicted these trends correctly.

  10. A mutant form of the rho protein can restore stress fibers and adhesion plaques in v-src transformed fibroblasts.

    PubMed

    Mayer, T; Meyer, M; Janning, A; Schiedel, A C; Barnekow, A

    1999-03-25

    The organization of polymerized actin in the mammalian cell is regulated by several members of the rho family. Three rho proteins, cdc42, rac and rho act in a cascade to organize the intracellular actin cytoskeleton. Rho proteins are involved in the formation of actin stress fibers and adhesion plaques in fibroblasts. During transformation of mammalian cells by oncogenes the cytoskeleton is rearranged and stress fibers and adhesion plaques are disintegrated. In this paper we investigate the function of the rho protein in RR1022 rat fibroblasts transformed by the Rous sarcoma virus. Two activated mutants of the rho protein, rho G14V and rho Q63L, and a dominant negative mutant, rho N1171, were stably transfected into RR1022 cells. The resulting cell lines were analysed for the organization of polymerized actin and adhesion plaques. Cells expressing rho Q63L, but not rho wt, rho G14V or rho N1171, showed an altered morphology. These cells displayed a flat, fibroblast like shape when compared with the RR1022 ancestor cells. Immunofluorescence analyses revealed that actin stress fibers and adhesion plaques were rearranged in these cells. We conclude from these data that an active rho protein can restore elements of the actin cytoskeleton in transformed cells by overriding the tyrosine kinase phosphorylation induced by the pp60(v-src).

  11. Actin stress fiber disruption and tropomysin isoform switching in normal thyroid epithelial cells stimulated by thyrotropin and phorbol esters

    SciTech Connect

    Roger, P.P.; Rickaert, F.; Lamy, F.; Authelet, M.; Dumont, J.E. )

    1989-05-01

    Thyrotropin (TSH), through cyclic AMP, promotes both proliferation and differentiation expression in dog thyroid epithelial cells in primary culture, whereas the tumor promoter 12-O-tetradecanoylphorbol 13-acetate (TPA) also stimulates proliferation but antagonizes differentiating effects of TSH. In this study, within 20 min both factors triggered the disruption of actin-containing stress fibers. This process preceded distinct morphological changes: cytoplasmic retraction and arborization in response to TSH and cyclic AMP, cell shape distortion, and increased motility in response to TPA and diacylglycerol. TSH and TPA also induced a marked decrease in the synthesis of three high M{sub r} tropomyosin isoforms, which were not present in dog thyroid tissue but appeared in culture during cell spreading and stress fiber formation. The tropomyosin isoform switching observed here closely resembled similar processes in various cells transformed by oncogenic viruses. However, it did not correlate with differentiation or mitogenic activation. Contrasting with current hypothesis on this process in transformed cells, tropomyosin isoform switching in normal thyroid cells was preceded and thus might be caused by early disruption of stress fibers.

  12. Salinomycin inhibits growth of pancreatic cancer and cancer cell migration by disruption of actin stress fiber integrity.

    PubMed

    Schenk, Miriam; Aykut, Berk; Teske, Christian; Giese, Nathalia A; Weitz, Juergen; Welsch, Thilo

    2015-03-28

    Pancreatic ductal adenocarcinoma (PDAC) is characterized by aggressive growth, early metastasis and high resistance to chemotherapy. Salinomycin is a promising compound eliminating cancer stem cells and retarding cancer cell migration. The present study investigated the effectiveness of salinomycin against PDAC in vivo and elucidated the mechanism of PDAC growth inhibition. Salinomycin treatment was well tolerated by the mice and significantly reduced tumor growth after 19 days compared to the control group (each n = 16). There was a trend that salinomycin also impeded metastatic spread to the liver and peritoneum. Whereas salinomycin moderately induced apoptosis and retarded proliferation at 5-10 µM, it strongly inhibited cancer cell migration that was accompanied by a marked loss of actin stress fibers after 6-9 h. Salinomycin silenced RhoA activity, and loss of stress fibers could be reversed by Rho activation. Moreover, salinomycin dislocated fascin from filopodia and stimulated Rac-associated circular dorsal ruffle formation. In conclusion, salinomycin is an effective and promising compound against PDAC. Besides its known stem cell-specific cytotoxic effects, salinomycin blocks cancer cell migration by disrupting stress fiber integrity and affecting the mutual Rho-GTPase balance.

  13. Vimentin intermediate filaments control actin stress fiber assembly through GEF-H1 and RhoA

    PubMed Central

    Peränen, Johan; Schaible, Niccole; Cheng, Fang; Eriksson, John E.; Krishnan, Ramaswamy

    2017-01-01

    ABSTRACT The actin and intermediate filament cytoskeletons contribute to numerous cellular processes, including morphogenesis, cytokinesis and migration. These two cytoskeletal systems associate with each other, but the underlying mechanisms of this interaction are incompletely understood. Here, we show that inactivation of vimentin leads to increased actin stress fiber assembly and contractility, and consequent elevation of myosin light chain phosphorylation and stabilization of tropomyosin-4.2 (see Geeves et al., 2015). The vimentin-knockout phenotypes can be rescued by re-expression of wild-type vimentin, but not by the non-filamentous ‘unit length form’ vimentin, demonstrating that intact vimentin intermediate filaments are required to facilitate the effects on the actin cytoskeleton. Finally, we provide evidence that the effects of vimentin on stress fibers are mediated by activation of RhoA through its guanine nucleotide exchange factor GEF-H1 (also known as ARHGEF2). Vimentin depletion induces phosphorylation of the microtubule-associated GEF-H1 on Ser886, and thereby promotes RhoA activity and actin stress fiber assembly. Taken together, these data reveal a new mechanism by which intermediate filaments regulate contractile actomyosin bundles, and may explain why elevated vimentin expression levels correlate with increased migration and invasion of cancer cells. PMID:28096473

  14. Molecular Basis of Passive Stress Relaxation in Human Soleus Fibers: Assessment of the Role of Immunoglobulin-Like Domain Unfolding

    PubMed Central

    Trombitás, K.; Wu, Y.; McNabb, M.; Greaser, M.; Kellermayer, M. S. Z.; Labeit, S.; Granzier, H.

    2003-01-01

    Titin (also known as connectin) is the main determinant of physiological levels of passive muscle force. This force is generated by the extensible I-band region of the molecule, which is constructed of the PEVK domain and tandem-immunoglobulin segments comprising serially linked immunoglobulin (Ig)-like domains. It is unresolved whether under physiological conditions Ig domains remain folded and act as “spacers” that set the sarcomere length at which the PEVK extends or whether they contribute to titin's extensibility by unfolding. Here we focused on whether Ig unfolding plays a prominent role in stress relaxation (decay of force at constant length after stretch) using mechanical and immunolabeling studies on relaxed human soleus muscle fibers and Monte Carlo simulations. Simulation experiments using Ig-domain unfolding parameters obtained in earlier single-molecule atomic force microscopy experiments recover the phenomenology of stress relaxation and predict large-scale unfolding in titin during an extended period (>∼20 min) of relaxation. By contrast, immunolabeling experiments failed to demonstrate large-scale unfolding. Thus, under physiological conditions in relaxed human soleus fibers, Ig domains are more stable than predicted by atomic force microscopy experiments. Ig-domain unfolding did not become more pronounced after gelsolin treatment, suggesting that the thin filament is unlikely to significantly contribute to the mechanical stability of the domains. We conclude that in human soleus fibers, Ig unfolding cannot solely explain stress relaxation. PMID:14581214

  15. Molecular basis of passive stress relaxation in human soleus fibers: assessment of the role of immunoglobulin-like domain unfolding.

    PubMed

    Trombitás, K; Wu, Y; McNabb, M; Greaser, M; Kellermayer, M S Z; Labeit, S; Granzier, H

    2003-11-01

    Titin (also known as connectin) is the main determinant of physiological levels of passive muscle force. This force is generated by the extensible I-band region of the molecule, which is constructed of the PEVK domain and tandem-immunoglobulin segments comprising serially linked immunoglobulin (Ig)-like domains. It is unresolved whether under physiological conditions Ig domains remain folded and act as "spacers" that set the sarcomere length at which the PEVK extends or whether they contribute to titin's extensibility by unfolding. Here we focused on whether Ig unfolding plays a prominent role in stress relaxation (decay of force at constant length after stretch) using mechanical and immunolabeling studies on relaxed human soleus muscle fibers and Monte Carlo simulations. Simulation experiments using Ig-domain unfolding parameters obtained in earlier single-molecule atomic force microscopy experiments recover the phenomenology of stress relaxation and predict large-scale unfolding in titin during an extended period (> approximately 20 min) of relaxation. By contrast, immunolabeling experiments failed to demonstrate large-scale unfolding. Thus, under physiological conditions in relaxed human soleus fibers, Ig domains are more stable than predicted by atomic force microscopy experiments. Ig-domain unfolding did not become more pronounced after gelsolin treatment, suggesting that the thin filament is unlikely to significantly contribute to the mechanical stability of the domains. We conclude that in human soleus fibers, Ig unfolding cannot solely explain stress relaxation.

  16. Raman Study of Uncoated and P-bn/sic-coated Hi-nicalon Reinforced Celsian Matrix Composites. Part 2; Residual Stress in the Fibers

    NASA Technical Reports Server (NTRS)

    Gouadec, Gwenael; Colomban, Philippe; Bansal, Narottam P.

    2000-01-01

    Band shifts on Raman spectra were used to assess, at a microscopic scale, the residual strain existing in Hi-Nicalon fibers reinforcing celsian matrix composites. Uncoated as well as p-BN/SiC- and p-B(Si)N/SiC-coated Hi-Nicalon fibers were used as the reinforcements. We unambiguously conclude that the fibers are in a state of compressive residual stress. Quantitative determination of the residual stress was made possible by taking into account the heating induced by laser probing and by using a reference line, of fixed wavenumber. We found fiber compressive residual stress values between 110 and 960 MPa depending on the fiber/matrix coating in the composite. A stress relaxation-like phenomenon was observed at the surface of p-BN/SiC-coated Hi-Nicalon fibers whereas the uncoated or p-B(Si)N/SiC-coated Hi-Nicalon fibers did not show any stress relaxation in the Celsian matrix composites.

  17. Frequency-dependent dielectric function of semiconductors with application to physisorption

    NASA Astrophysics Data System (ADS)

    Zheng, Fan; Tao, Jianmin; Rappe, Andrew M.

    2017-01-01

    The dielectric function is one of the most important quantities that describes the electrical and optical properties of solids. Accurate modeling of the frequency-dependent dielectric function has great significance in the study of the long-range van der Waals (vdW) interaction for solids and adsorption. In this work we calculate the frequency-dependent dielectric functions of semiconductors and insulators using the G W method with and without exciton effects, as well as efficient semilocal density functional theory (DFT), and compare these calculations with a model frequency-dependent dielectric function. We find that for semiconductors with moderate band gaps, the model dielectric functions, G W values, and DFT calculations all agree well with each other. However, for insulators with strong exciton effects, the model dielectric functions have a better agreement with accurate G W values than the DFT calculations, particularly in high-frequency region. To understand this, we repeat the DFT calculations with scissors correction, by shifting the DFT Kohn-Sham energy levels to match the experimental band gap. We find that scissors correction only moderately improves the DFT dielectric function in the low-frequency region. Based on the dielectric functions calculated with different methods, we make a comparative study by applying these dielectric functions to calculate the vdW coefficients (C3 and C5) for adsorption of rare-gas atoms on a variety of surfaces. We find that the vdW coefficients obtained with the nearly free electron gas-based model dielectric function agree quite well with those obtained from the G W dielectric function, in particular for adsorption on semiconductors, leading to an overall error of less than 7% for C3 and 5% for C5. This demonstrates the reliability of the model dielectric function for the study of physisorption.

  18. Sensitivity of seismic measurements to frequency-dependent attenuation and upper mantle structure: An initial approach

    NASA Astrophysics Data System (ADS)

    Bellis, C.; Holtzman, B.

    2014-07-01

    This study addresses the sensitivity of seismic attenuation measurements to dissipative mechanisms and structure in the Earth's upper mantle. The Andrade anelastic model fits experimental attenuation data with a mild power law frequency dependence and can be scaled from laboratory to Earth conditions. We incorporate this anelastic model into 400km 1-D thermal profiles of the upper mantle. These continuous-spectrum models are approximated by multiple relaxation mechanisms that are implemented within a finite-difference scheme to perform wave propagation simulations in 1-D domains. In two sets of numerical experiments, we evaluate the measurable signature of the intrinsic attenuation structure. The two sets are defined by thermal profiles with added step functions of temperature, varying in (i) amplitude and depth or (ii) amplitude and sharpness. The corresponding synthetic data are processed using both the conventional t* approach, i.e., a linear regression of the displacement frequency spectrum, and an alternative nonlinear fit to identify the integrated value of attenuation and its frequency dependence. The measured sensitivity patterns are analyzed to assess the effects of the anelastic model and its spatial distribution on seismic data (in the absence of scattering effects). We have two straightforward results: (1) the frequency dependence power law is recoverable from the measurements; (2) t* is sensitive to both the depth and the amplitude of the step, and it is insensitive to the sharpness of the step, in the 0.25 to 2 Hz band. There is much potential for gaining information about the upper mantle thermodynamic state from careful interpretation of attenuation.

  19. Frequency-dependence of psychophysical and physiological responses to hand-transmitted vibration.

    PubMed

    Griffin, Michael J

    2012-01-01

    This invited paper reviews experimental studies of the frequency-dependence of absolute thresholds for the perception of vibration, equivalent comfort contours, temporary changes in sensation caused by vibration, and reductions in finger blood flow caused by hand-transmitted vibration. Absolute thresholds depend on the contact conditions but for a typical hand grip the thresholds show greatest sensitivity to acceleration around 125 Hz. The frequency-dependence of discomfort caused by hand-transmitted vibration depends on vibration magnitude: similar to absolute thresholds at low magnitudes, but the discomfort at higher magnitudes is similar when the vibration velocity is similar (at frequencies between about 16 and 400 Hz). Hand-transmitted vibration induces temporary elevations in vibrotactile thresholds that reflect the sensory mechanisms excited by the vibration and are therefore highly dependent on the frequency of vibration. Hand-transmitted vibration reduces finger blood flow during and after exposure; when the vibration velocity is similar at all frequencies there is more vasoconstriction at frequencies greater than 63 Hz than at lower frequencies. A single frequency weighting cannot provide a good indication of how all effects of hand-transmitted vibration depend on vibration frequency. Furthermore, a single frequency weighting provides only an approximate indication of any single response, because many factors influence the frequency-dependence of responses to hand-transmitted vibration, including the magnitude of vibration, contact conditions, and individual differences. Although the frequency weighting in current standards extends from 8 to 1,000 Hz, frequencies greater than 400 Hz rarely increase the weighted value on tools and there is currently little psychophysical or physiological evidence of their effects.

  20. Feeding and lying behavior of heat-stressed early lactation cows fed low fiber diets containing roughage and nonforage fiber sources.

    PubMed

    Kanjanapruthipong, J; Junlapho, W; Karnjanasirm, K

    2015-02-01

    In addition to reduced nutrient intake, an environmental thermal load may directly affect milk yield in heat-stressed dairy cows. Feeding and lying behaviors of early lactation cows fed low fiber diets containing neutral detergent fiber (NDF) from roughage and nonforage fiber sources (NFFS) were investigated under summer conditions in Thailand. Immediately after calving, 30 multiparous cows (87.5% Holstein × 12.5% Sahiwal) were randomly allocated to dietary treatments for 63 d in a completely randomized design. The dietary treatments contained 25% of dry matter (DM) as dietary NDF. The control diet consisted of 13.9% roughage NDF from rice straw (RS). Two additional treatments were created by replacing 3.9% of DM with NDF from either soy hulls (SH) or cassava (Manihot esculenta Grantz) residues (CR), so that the roughage NDF content was reduced to 10%. During the experimental period, the minimum and maximum temperature-humidity indices (THI) were 86.4±2.5 and 91.5±2.7 during the day and 74.2±2.1 and 81.0±2.5 during the night, respectively, indicating conditions appropriate for induction of extreme heat stress. The duration of feeding and lying bouts decreased linearly with increasing THI. The DM intake during the day was greater for cows fed diets containing SH and CR than for those fed the diet containing NDF from RS. The number of meals during the day and night was lower, whereas meal size and meal length during the day and night were greater for cows fed diets containing SH and CR. Cows fed diets containing SH and CR lay down less frequently and longer during the day. These results suggest that under the severe heat stress during the day, early lactation cows fed the diet containing NFFS increased DM intake by increasing meal length and meal size rather than by increasing meal frequency and they spent more time lying. Cows fed diets containing NDF from SH and CR produced more 4% fat-corrected milk, lost less body weight, and had lower rectal temperatures

  1. Meteorological Excitations of Polar Motion for an Earth Model with Frequency-dependent Responses

    NASA Astrophysics Data System (ADS)

    Chen, W.; Ray, J.; Li, J.; Huang, C.; Shen, W.

    2013-12-01

    Polar motion excitation involves the mass redistributions and motions of the Earth system relative to the mantle, as well as the frequency-dependent rheology of the Earth, where the latter has recently been modeled in the form of complex and frequency-dependent Love numbers and polar motion excitation transfer functions. At seasonal and intra-seasonal time scales, polar motions are dominated by angular momentum fluctuations due to mass redistributions and relative motions in the atmosphere, oceans, and continental water, snow and ice. In this study, we compare the geophysical excitations derived from various global atmospheric, oceanic and hydrological models (NCEP, ECCO, ERA40, ERAinterim and ECMWF operational products), and construct two model sets LDC1 and LDC2 by combining the above models with a least difference method, which selects FFT coefficients of the above data series closest to those of the geodetic excitation at each frequency to build a new series. Comparisons between the geodetic excitation (derived from the polar motion series IERS EOP 08 C04) and the geophysical excitations (based on those meteorological models) imply that the atmospheric models are the most reliable while the hydrological ones suffer from significant uncertainties; that the ERAinterim is, in general, the best model set among the original ones, but the combined models LDC1 and LDC2 are much better than ERAinterim; and that applying the frequency-dependent transfer functions to LDC1 and LDC2 improves their agreements with the geodetic excitation. Thus, we conclude that the combined models LDC1 and LDC2 are reliable, and the complex and frequency-dependent Love numbers and polar motion excitation transfer functions are well modeled. This study is supported in parts by the National 973 Project of China (No. 2013CB733305), the National Natural Science Foundation of China (No. 41174011, 41128003 and 11073044), and the Open Fund of the State Key Laboratory of Geodesy and Earth

  2. Meteorological excitations of polar motion for an Earth model with frequency-dependent responses

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Ray, Jim; Li, JianCheng; Shen, WenBin; Huang, ChengLi

    2014-05-01

    Polar motion excitation involves the mass redistributions and motions of the Earth system relative to the mantle, as well as the frequency-dependent rheology of the Earth, where the latter has recently been modeled in the form of complex and frequency-dependent Love numbers and polar motion excitation transfer functions. At seasonal and intra-seasonal time scales, polar motions are dominated by angular momentum fluctuations due to mass redistributions and relative motions in the atmosphere, oceans, and continental water, snow and ice. In this study, we compare the geophysical excitations derived from various global atmospheric, oceanic and hydrological models (NCEP, ECCO, ERA40, ERAinterim and ECMWF operational products), and construct two model sets LDC1 and LDC2 by combining the above models with a least difference method, which selects FFT coefficients of the above data series closest to those of the geodetic excitation at each frequency to build a new series. Comparisons between the geodetic excitation (derived from the polar motion series IERS EOP 08 C04) and the geophysical excitations (based on those meteorological models) imply that the atmospheric models are the most reliable while the hydrological ones suffer from significant uncertainties; that the ERAinterim is, in general, the best model set among the original ones, but the combined models LDC1 and LDC2 are much better than ERAinterim; and that applying the frequency-dependent transfer functions to LDC1 and LDC2 improves their agreements with the geodetic excitation. Thus, we conclude that the combined models LDC1 and LDC2 are reliable, and the complex and frequency-dependent Love numbers and polar motion excitation transfer functions are well modeled. This study is supported in parts by the National 973 Project of China (No. 2013CB733301 and 2013CB733305), the National Natural Science Foundation of China (No. 41174011, 41128003 and 11073044), and the Open Fund of the State Key Laboratory of Geodesy

  3. Determination of ferroelectric contributions to electromechanical response by frequency dependent piezoresponse force microscopy

    DOE PAGES

    Seol, Daehee; Park, Seongjae; Varenyk, Olexandr V.; ...

    2016-07-28

    Hysteresis loop analysis via piezoresponse force microscopy (PFM) is typically performed to probe the existence of ferroelectricity at the nanoscale. But, such an approach is rather complex in accurately determining the pure contribution of ferroelectricity to the PFM. We suggest a facile method to discriminate the ferroelectric effect from the electromechanical (EM) response through the use of frequency dependent ac amplitude sweep with combination of hysteresis loops in PFM. This combined study through experimental and theoretical approaches verifies that this method can be used as a new tool to differentiate the ferroelectric effect from the other factors that contribute tomore » the EM response.« less

  4. Determination of ferroelectric contributions to electromechanical response by frequency dependent piezoresponse force microscopy

    SciTech Connect

    Seol, Daehee; Park, Seongjae; Varenyk, Olexandr V.; Lee, Shinbuhm; Lee, Ho Nyung; Morozovska, Anna N.; Kim, Yunseok

    2016-07-28

    Hysteresis loop analysis via piezoresponse force microscopy (PFM) is typically performed to probe the existence of ferroelectricity at the nanoscale. But, such an approach is rather complex in accurately determining the pure contribution of ferroelectricity to the PFM. We suggest a facile method to discriminate the ferroelectric effect from the electromechanical (EM) response through the use of frequency dependent ac amplitude sweep with combination of hysteresis loops in PFM. This combined study through experimental and theoretical approaches verifies that this method can be used as a new tool to differentiate the ferroelectric effect from the other factors that contribute to the EM response.

  5. Finite element modeling of truss structures with frequency-dependent material damping

    NASA Technical Reports Server (NTRS)

    Lesieutre, George A.

    1991-01-01

    A physically motivated modelling technique for structural dynamic analysis that accommodates frequency dependent material damping was developed. Key features of the technique are the introduction of augmenting thermodynamic fields (AFT) to interact with the usual mechanical displacement field, and the treatment of the resulting coupled governing equations using finite element analysis methods. The AFT method is fully compatible with current structural finite element analysis techniques. The method is demonstrated in the dynamic analysis of a 10-bay planar truss structure, a structure representative of those contemplated for use in future space systems.

  6. Determination of ferroelectric contributions to electromechanical response by frequency dependent piezoresponse force microscopy

    PubMed Central

    Seol, Daehee; Park, Seongjae; Varenyk, Olexandr V.; Lee, Shinbuhm; Lee, Ho Nyung; Morozovska, Anna N.; Kim, Yunseok

    2016-01-01

    Hysteresis loop analysis via piezoresponse force microscopy (PFM) is typically performed to probe the existence of ferroelectricity at the nanoscale. However, such an approach is rather complex in accurately determining the pure contribution of ferroelectricity to the PFM. Here, we suggest a facile method to discriminate the ferroelectric effect from the electromechanical (EM) response through the use of frequency dependent ac amplitude sweep with combination of hysteresis loops in PFM. Our combined study through experimental and theoretical approaches verifies that this method can be used as a new tool to differentiate the ferroelectric effect from the other factors that contribute to the EM response. PMID:27466086

  7. Frequency dependence of optical third-harmonic generation from doped graphene

    NASA Astrophysics Data System (ADS)

    Margulis, Vl. A.; Muryumin, E. E.; Gaiduk, E. A.

    2016-01-01

    In connection with the controversial question about the frequency dependence of the optical third-harmonic generation (THG) from doped graphene, which has recently been discussed in the literature, we develop an analytical theory for the THG susceptibility of doped graphene by using the original Genkin-Mednis nonlinear-conductivity-theory formalism including mixed intra- and interband terms. The theory is free of any nonphysical divergences at zero frequency, and it predicts the main resonant peak in the THG spectrum to be located at the photon energy ħω equal to two thirds of the Fermi energy EF of charge carriers in doped graphene.

  8. Endoplasmic reticulum stress induces myostatin precursor protein and NF-kappaB in cultured human muscle fibers: relevance to inclusion body myositis.

    PubMed

    Nogalska, Anna; Wojcik, Slawomir; Engel, W King; McFerrin, Janis; Askanas, Valerie

    2007-04-01

    Sporadic-inclusion body myositis (s-IBM) is the most common progressive muscle disease of older persons. It leads to pronounced muscle fiber atrophy and weakness, and there is no successful treatment. We have previously shown that myostatin precursor protein (MstnPP) and myostatin (Mstn) dimer are increased in biopsied s-IBM muscle fibers, and proposed that MstnPP/Mstn increase may contribute to muscle fiber atrophy and weakness in s-IBM patients. Mstn is known to be a negative regulator of muscle fiber mass. It is synthesized as MstnPP, which undergoes posttranslational processing in the muscle fiber to produce mature, active Mstn. To explore possible mechanisms involved in Mstn abnormalities in s-IBM, in the present study we utilized primary cultures of normal human muscle fibers and experimentally modified the intracellular micro-environment to induce endoplasmic-reticulum (ER)-stress, thereby mimicking an important aspect of the s-IBM muscle fiber milieu. ER stress was induced by treating well-differentiated cultured muscle fibers with either tunicamycin or thapsigargin, both well-established ER stress inducers. Our results indicate for the first time that the ER stress significantly increased MstnPP mRNA and protein. The results also suggest that in our system ER stress activates NF-kappaB, and we suggest that MstnPP increase occurred through the ER-stress-activated NF-kappaB. We therefore propose a novel mechanism leading to the Mstn increase in s-IBM. Accordingly, interfering with pathways inducing ER stress, NF-kappaB activation or its action on the MstnPP gene promoter might prevent Mstn increase and provide a new therapeutic approach for s-IBM and, possibly, for muscle atrophy in other neuromuscular diseases.

  9. Fiber Bragg Grating Sensor to Monitor Stress Kinetics in Drying Process of Commercial Latex Paints

    PubMed Central

    de Lourenço, Ivo; Possetti, Gustavo R. C.; Muller, Marcia; Fabris, José L.

    2010-01-01

    In this paper, we report a study about the application of packaged fiber Bragg gratings used as strain sensors to monitor the stress kinetics during the drying process of commercial latex paints. Three stages of drying with distinct mechanical deformation and temporal behaviors were identified for the samples, with mechanical deformation from 15 μm to 21 μm in the longitudinal film dimension on time intervals from 370 to 600 minutes. Drying time tests based on human sense technique described by the Brazilian Technical Standards NBR 9558 were also done. The results obtained shows that human sense technique has a limited perception of the drying process and that the optical measurement system proposed can be used to characterize correctly the dry-through stage of paint. The influence of solvent (water) addition in the drying process was also investigated. The paint was diluted with four parts paint and one part water (80% paint), and one part paint and one part water (50% paint). It was observed that the increase of the water ratio mixed into the paint decreases both the mechanical deformation magnitude and the paint dry-through time. Contraction of 5.2 μm and 10.4 μm were measured for concentrations of 50% and 80% of paint in the mixture, respectively. For both diluted paints the dry-through time was approximately 170 minutes less than undiluted paint. The optical technique proposed in this work can contribute to the development of new standards to specify the drying time of paint coatings. PMID:22399906

  10. Fiber Bragg grating sensor to monitor stress kinetics in drying process of commercial latex paints.

    PubMed

    de Lourenço, Ivo; Possetti, Gustavo R C; Muller, Marcia; Fabris, José L

    2010-01-01

    In this paper, we report a study about the application of packaged fiber Bragg gratings used as strain sensors to monitor the stress kinetics during the drying process of commercial latex paints. Three stages of drying with distinct mechanical deformation and temporal behaviors were identified for the samples, with mechanical deformation from 15 μm to 21 μm in the longitudinal film dimension on time intervals from 370 to 600 minutes. Drying time tests based on human sense technique described by the Brazilian Technical Standards NBR 9558 were also done. The results obtained shows that human sense technique has a limited perception of the drying process and that the optical measurement system proposed can be used to characterize correctly the dry-through stage of paint. The influence of solvent (water) addition in the drying process was also investigated. The paint was diluted with four parts paint and one part water (80% paint), and one part paint and one part water (50% paint). It was observed that the increase of the water ratio mixed into the paint decreases both the mechanical deformation magnitude and the paint dry-through time. Contraction of 5.2 μm and 10.4 μm were measured for concentrations of 50% and 80% of paint in the mixture, respectively. For both diluted paints the dry-through time was approximately 170 minutes less than undiluted paint. The optical technique proposed in this work can contribute to the development of new standards to specify the drying time of paint coatings.

  11. Frequency dependent directivity of guided waves excited by circular transducers in anisotropic composite plates.

    PubMed

    Glushkov, Evgeny; Glushkova, Natalia; Eremin, Artem; Lammering, Rolf; Neumann, Mirko

    2012-08-01

    Lamb wave propagation in fiber-reinforced composite plates is featured by a pronounced directivity of wave energy transfer along the fibers from a point surface source. In the case of non-point (sized) source, the main lobe of radiation diagram may turn with frequency up to the orthogonal to the fibers direction. This effect has been theoretically studied and physically explained in the context of semi-analytical integral-equation based mathematical model. The present paper gives its experimental verification.

  12. Influences of temperature, oxidative stress, and phosphorylation on binding of heat shock proteins in skeletal muscle fibers.

    PubMed

    Larkins, Noni T; Murphy, Robyn M; Lamb, Graham D

    2012-09-15

    Heat shock proteins (HSPs) help maintain cellular function in stressful situations, but the processes controlling their interactions with target proteins are not well defined. This study examined the binding of HSP72, HSP25, and αB-crystallin in skeletal muscle fibers following various stresses. Rat soleus (SOL) and extensor digitorum longus (EDL) muscles were subjected in vitro to heat stress or strongly fatiguing stimulation. Superficial fibers were "skinned" by microdissection and HSP diffusibility assessed from the extent of washout following 10- to 30 min exposure to a physiological intracellular solution. In fibers from nonstressed (control) SOL muscle, >80% of each HSP is readily diffusible. However, after heating a muscle to 40°C for 30 min ∼95% of HSP25 and αB-crystallin becomes tightly bound at nonmembranous myofibrillar sites, whereas HSP72 bound at membranous sites only after heat treatment to ≥44°C. The ratio of reduced to oxidized cytoplasmic glutathione (GSH:GSSG) decreased approximately two- and fourfold after heating muscles to 40° and 45°C, respectively. The reducing agent dithiothreitol reversed HSP72 binding in heated muscles but had no effect on the other HSPs. Intense in vitro stimulation of SOL muscles, sufficient to elicit substantial oxidation-related loss of maximum force and approximately fourfold decrease in the GSH:GSSG ratio, had no effect on diffusibility of any of the HSPs. When skinned fibers from heat-treated muscles were bathed with additional exogenous HSP72, total binding increased approximately two- and 10-fold, respectively, in SOL and EDL fibers, possibly reflective of the relative sarco(endo)plasmic reticulum Ca(2+)-ATPase pump densities in the two fiber types. Phosphorylation at Ser59 on αB-crystallin and Ser85 on HSP25 increased with heat treatment but did not appear to determine HSP binding. The findings highlight major differences in the processes controlling binding of HSP72 and the two small HSPs. Binding

  13. Maxwell-Wagner polarization and frequency-dependent injection at aqueous electrical interfaces.

    PubMed

    Desmond, Mitchell; Mavrogiannis, Nicholas; Gagnon, Zachary

    2012-11-02

    We demonstrate a new type of alternating current (ac) interfacial polarization and frequency-dependent fluid displacement phenomenon at a liquid-liquid electrical interface. Two fluid streams--one with a greater electrical conductivity and the other a greater dielectric constant--are made to flow side by side in a microfluidic channel. An ac electric field is applied perpendicular to the interface formed between the liquid lamellae, and fluid is observed to displace across the liquid-liquid interface. The direction and magnitude of this displacement is frequency dependent. At low ac frequency, below the interfacial inverse charge relaxation time, the high-conductivity fluid displaces into the high-dielectric stream. At high frequency the direction of liquid displacement reverses, and the high-dielectric stream injects into the high-conductivity stream. The interfacial crossover frequency where the liquid displacement direction reverses is dependent on differences in electrical properties between the two fluid streams, and is well explained by Maxwell-Wagner polarization mechanics.

  14. Pulsed arrays: A new method of flaw detection by generating a frequency dependent angle of propagation

    NASA Astrophysics Data System (ADS)

    Hill, S. J.; Dixon, S. M.

    2012-05-01

    A new method of using an array of generation sources, pulsed simultaneously to generate a wavefront with a frequency dependant angle of propagation, has been developed. If pulsed arrays are used to generate a wave with a frequency dependent angle of propagation, the angle at which the wave was launched can be identified by measuring the frequency of the detected wave. In an isotropic material this means that it is possible use a second transducer to locate the position of the scatterer, whereas with a conventional single element generator method, it can only be located onto an ellipse. In addition to an increased scan speed, the resolution of detection should also be improved. A theoretical framework is put forward to explain how the wavefront is created from the superposition of the waves from the individual elements, and how the frequency varies along the wavefront. Finite element models and experimental measurements were also carried out, and both agreed with the analytic model. This method will have applications within NDE, but could also extend to sonar and radar techniques.

  15. Finite Element Prediction of Loss Factors for Structures with Frequency-dependent Damping Treatments

    NASA Technical Reports Server (NTRS)

    Everstine, G. C.; Marcus, M. S.

    1985-01-01

    A finite element procedure is described for calculating the loss factors for elastic structures to which frequency-dependent viscoelastic damping treatments were applied. The frequency dependence of the viscoelastic damping material is treated by approximating its shear modulus with a second-order polynomial so that the stiffnesses associated with the constant, linear, and quadratic terms can be combined, respectively, with the stiffness, damping, and mass matrices assembled for the rest of the structure. A single complex eigenvalue analysis is then performed in which the eigenvalues are purely imaginary. The loss factor is computed by the modal strain energy (MSE) approach. In the the MSE approach, the loss factor of a composite structure vibrating in one of its natural modes may be visualized as a weighted average of the loss factors of the component parts, with the relative stored energies as weighting constants. The finite element procedure, which can treat very general geometries, is illustrated for the case of a vibrating constrained-layer damped plate.

  16. Frequency-dependent social dominance in a color polymorphic cichlid fish.

    PubMed

    Dijkstra, Peter D; Lindström, Jan; Metcalfe, Neil B; Hemelrijk, Charlotte K; Brendel, Mischa; Seehausen, Ole; Groothuis, Ton G G

    2010-10-01

    A mechanism commonly suggested to explain the persistence of color polymorphisms in animals is negative frequency-dependent selection. It could result from a social dominance advantage to rare morphs. We tested for this in males of red and blue color morphs of the Lake Victoria cichlid, Pundamilia. Earlier work has shown that males preferentially attack the males of their own morph, while red males are more likely to win dyadic contests with blue males. In order to study the potential contribution of both factors to the morph co-existence, we manipulated the proportion of red and blue males in experimental assemblages and studied its effect on social dominance. We then tried to disentangle the effects of the own-morph attack bias and social dominance of red using simulations. In the experiment, we found that red males were indeed socially dominant to the blue ones, but only when rare. However, blue males were not socially dominant when rare. The simulation results suggest that an own-morph attack bias reduces the social dominance of red males when they are more abundant. Thus, there is no evidence of symmetric negative frequency-dependent selection acting on social dominance, suggesting that additional fitness costs to the red morph must explain their co-existence.

  17. Estimate error of frequency-dependent Q introduced by linear regression and its nonlinear implementation

    NASA Astrophysics Data System (ADS)

    Li, Guofa; Huang, Wei; Zheng, Hao; Zhang, Baoqing

    2016-02-01

    The spectral ratio method (SRM) is widely used to estimate quality factor Q via the linear regression of seismic attenuation under the assumption of a constant Q. However, the estimate error will be introduced when this assumption is violated. For the frequency-dependent Q described by a power-law function, we derived the analytical expression of estimate error as a function of the power-law exponent γ and the ratio of the bandwidth to the central frequency σ . Based on the theoretical analysis, we found that the estimate errors are mainly dominated by the exponent γ , and less affected by the ratio σ . This phenomenon implies that the accuracy of the Q estimate can hardly be improved by adjusting the width and range of the frequency band. Hence, we proposed a two-parameter regression method to estimate the frequency-dependent Q from the nonlinear seismic attenuation. The proposed method was tested using the direct waves acquired by a near-surface cross-hole survey, and its reliability was evaluated in comparison with the result of SRM.

  18. Microdomain organization and frequency-dependence of CREB-dependent transcriptional signaling in heart cells

    PubMed Central

    Kobrinsky, Evgeny; Duong, Son Q.; Sheydina, Anna; Soldatov, Nikolai M.

    2011-01-01

    Voltage-gated Cav1.2 calcium channels couple membrane depolarization to cAMP response-element-binding protein (CREB)-dependent transcriptional activation. To investigate the spatial and temporal organization of CREB-dependent transcriptional nuclear microdomains, we combined perforated patch-clamp technique and FRET microscopy for monitoring CREB and CREB-binding protein interaction in the nuclei of live cells. The experimental approach to the quantitative assessment of CREB-dependent transcriptional signaling evoked by cAMP- and Cav1.2-dependent mechanisms was devised in COS1 cells expressing recombinant Cav1.2 calcium channels. Using continuous 2-dimensional wavelet transform and time series analyses, we found that nuclear CREB-dependent transcriptional signaling is organized differentially in spatially and temporally separated microdomains of 4 distinct types. In rat neonatal cardiomyocytes, CREB-dependent transcription is mediated by the cAMP-initiated CaMKII-sensitive and Cav1.2-initiated CaMKII-insensitive mechanisms. The latter microdomains show a tendency to exhibit periodic behavior correlated with spontaneous contraction of myocytes suggestive of frequency-dependent CREB-dependent transcriptional regulation in the heart.—Kobrinsky, E., Duong, S.Q., Sheydina, A., Soldatov, N. M. Microdomain organization and frequency-dependence of CREB-dependent transcriptional signaling in heart cells. PMID:21248242

  19. Mechanism of frequency-dependent broadening of molluscan neurone soma spikes.

    PubMed

    Aldrich, R W; Getting, P A; Thompson, S H

    1979-06-01

    1. Action potentials recorded from isolated dorid neurone somata increase in duration, i.e. broaden, during low frequency repetitive firing. Spike broadening is substantially reduced by external Co ions and implicates an inward Ca current. 2. During repetitive voltage clamp steps at frequencies slower than 1 Hz, in 100 mM-tetraethyl ammonium ions (TEA) inward Ca currents do not increase in amplitude. 3. Repetitive action potentials result in inactivation of delayed outward current. Likewise, repetitive voltage clamp steps which cause inactivation of delayed outward current also result in longer duration action potentials. 4. The frequency dependence of spike broadening and inactivation of the voltage dependent component (IK) of delayed outward current are similar. 5. Inactivation of IK is observed in all cells, however, only cells with relative large inward Ca currents show significant spike broadening. Spike broadening apparently results from the frequency dependent inactivation of IK which increases the expression of inward Ca current as a prominent shoulder on the repolarizing phase of the action potential. In addition, the presence of a prolonged Ca current increases the duration of the first action potential thereby allowing sufficient time for inactivation of IK.

  20. Frequency-dependent attenuation of the Hispaniola Island region of the Caribbean Sea

    USGS Publications Warehouse

    McNamara, D.; Meremonte, M.; Maharrey, J.Z.; Mildor, S-L.; Altidore, J.R.; Anglade, D.; Hough, S.E.; Given, D.; Benz, H.; Gee, L.; Frankel, A.

    2012-01-01

    We determine frequency-dependent attenuation 1/Q(f) for the Hispaniola region using direct S and Lg waves over five distinct passbands from 0.5 to 16 Hz. Data consist of 832 high-quality vertical and horizontal component waveforms recorded on short-period and broadband seismometers from the devastating 12 January 2010 M 7.0 Haiti earthquake and the rich sequence of aftershocks. For the distance range 250–700 km, we estimate an average frequency-dependent Q(f)=224(±27)f0.64(±0.073) using horizontal components of motion and note that Q(f) estimated with Lg at regional distances is very consistent across vertical and horizontal components. We also determine a Q(f)=142(±21)f0.71(±0.11) for direct S waves at local distances, ≤100 km. The strong attenuation observed on both vertical and horizontal components of motion is consistent with expectations for a tectonically active region.

  1. Human Commercial Models' Eye Colour Shows Negative Frequency-Dependent Selection.

    PubMed

    Forti, Isabela Rodrigues Nogueira; Young, Robert John

    2016-01-01

    In this study we investigated the eye colour of human commercial models registered in the UK (400 female and 400 male) and Brazil (400 female and 400 male) to test the hypothesis that model eye colour frequency was the result of negative frequency-dependent selection. The eye colours of the models were classified as: blue, brown or intermediate. Chi-square analyses of data for countries separated by sex showed that in the United Kingdom brown eyes and intermediate colours were significantly more frequent than expected in comparison to the general United Kingdom population (P<0.001). In Brazil, the most frequent eye colour brown was significantly less frequent than expected in comparison to the general Brazilian population. These results support the hypothesis that model eye colour is the result of negative frequency-dependent selection. This could be the result of people using eye colour as a marker of genetic diversity and finding rarer eye colours more attractive because of the potential advantage more genetically diverse offspring that could result from such a choice. Eye colour may be important because in comparison to many other physical traits (e.g., hair colour) it is hard to modify, hide or disguise, and it is highly polymorphic.

  2. MODELING THE FREQUENCY DEPENDENCE OF RADIO BEAMS FOR CONE-DOMINANT PULSARS

    SciTech Connect

    Wang, P. F.; Han, J. L.; Wang, C. E-mail: hjl@nao.cas.cn

    2013-05-10

    Beam radii for cone-dominant pulsars follow a power-law relation with frequency, thetav = ({nu}/{nu}{sub 0}) {sup k} + thetav{sub 0}, which has not been well explained in previous works. We study this frequency dependence of beam radius (FDB) for cone-dominant pulsars by using the curvature radiation mechanism. Considering various density and energy distributions of particles in the pulsar open field-line region, we numerically simulate the emission intensity distribution across emission height and rotation phase, get integrated profiles at different frequencies, and obtain the FDB curves. For the density model of a conal-like distribution, the simulated profiles always shrink to one component at high frequencies. In the density model with two separated density patches, the profiles generally have two distinct components, and the power-law indices k are found to be in the range from -0.1 to -2.5, consistent with observational results. Energy distributions of streaming particles have significant influence on the frequency-dependence behavior. Radial energy decay of particles is desired to get proper thetav{sub 0} in models. We conclude that by using the curvature radiation mechanism, the observed FDB for the cone-dominant pulsars can only be explained by the emission model of particles in two density patches with a Gaussian energy distribution and a radial energy loss.

  3. Frequency-dependent damping in propagating slow magneto-acoustic waves

    SciTech Connect

    Prasad, S. Krishna; Banerjee, D.; Van Doorsselaere, T.

    2014-07-10

    Propagating slow magneto-acoustic waves are often observed in polar plumes and active region fan loops. The observed periodicities of these waves range from a few minutes to a few tens of minutes and their amplitudes were found to decay rapidly as they travel along the supporting structure. Previously, thermal conduction, compressive viscosity, radiation, density stratification, and area divergence were identified to be some of the causes for change in the slow wave amplitude. Our recent studies indicate that the observed damping in these waves is frequency-dependent. We used imaging data from the Solar Dynamics Observatory/Atmospheric Imaging Assembly to study this dependence in detail and for the first time via observations we attempted to deduce a quantitative relation between the damping length and frequency of these oscillations. We developed a new analysis method to obtain this relation. The observed frequency dependence does not seem to agree with the current linear wave theory and it was found that the waves observed in the polar regions show a different dependence from those observed in the on-disk loop structures despite the similarity in their properties.

  4. Experimental methods for the characterization of the frequency-dependent viscoelastic properties of soft materials

    PubMed Central

    Kazemirad, Siavash; K. Heris, Hossein; Mongeau, Luc

    2013-01-01

    A characterization method based on Rayleigh wave propagation was developed for the quantification of the frequency-dependent viscoelastic properties of soft materials at high frequencies; i.e., up to 4 kHz. Planar harmonic surface waves were produced on the surface of silicone rubber samples. The phase and amplitude of the propagating waves were measured at different locations along the propagation direction, which allowed the calculation of the complex Rayleigh wavenumbers at each excitation frequency using a transfer function method. An inverse wave propagation problem was then solved to obtain the complex shear/elastic moduli from the measured wavenumbers. In a separate, related investigation, dynamic indentation tests using atomic force microscopy (AFM) were performed at frequencies up to 300 Hz. No systematic verification study is available for the AFM-based method, which can be used when the dimensions of the test samples are too small for other existing testing methods. The results obtained from the Rayleigh wave propagation and AFM-based indentation methods were compared with those from a well-established method, which involves the generation of standing longitudinal compression waves in rod-shaped test specimens. The results were cross validated and qualitatively confirmed theoretical expectations presented in the literature for the frequency-dependence of polymers. PMID:23654420

  5. Human Commercial Models’ Eye Colour Shows Negative Frequency-Dependent Selection

    PubMed Central

    2016-01-01

    In this study we investigated the eye colour of human commercial models registered in the UK (400 female and 400 male) and Brazil (400 female and 400 male) to test the hypothesis that model eye colour frequency was the result of negative frequency-dependent selection. The eye colours of the models were classified as: blue, brown or intermediate. Chi-square analyses of data for countries separated by sex showed that in the United Kingdom brown eyes and intermediate colours were significantly more frequent than expected in comparison to the general United Kingdom population (P<0.001). In Brazil, the most frequent eye colour brown was significantly less frequent than expected in comparison to the general Brazilian population. These results support the hypothesis that model eye colour is the result of negative frequency-dependent selection. This could be the result of people using eye colour as a marker of genetic diversity and finding rarer eye colours more attractive because of the potential advantage more genetically diverse offspring that could result from such a choice. Eye colour may be important because in comparison to many other physical traits (e.g., hair colour) it is hard to modify, hide or disguise, and it is highly polymorphic. PMID:28005995

  6. On the frequency dependence and spatial coherence of PKP precursor amplitudes

    NASA Astrophysics Data System (ADS)

    Mancinelli, Nicholas; Shearer, Peter; Thomas, Christine

    2016-03-01

    Studies now agree that small-scale (˜10 km) weak (˜0.1%) velocity perturbations throughout the lowermost mantle generate the globally averaged amplitudes of 1 Hz precursors to the core phase, . The possible frequency dependence and spatial coherence of this scattered phase, however, has been given less attention. Using a large global data set of ˜150,000 PKP precursor recordings, we characterize the frequency dependence of PKP precursors at central frequencies ranging from 0.5 to 4 Hz. At greater frequencies, we observe more scattered energy (relative to the reference phase PKPdf), particularly at shorter ranges. We model this observation by invoking heterogeneity at length scales from 2 to 30 km. Amplitudes at 0.5 Hz, in particular, suggest the presence of more heterogeneity at scales >8 km than present in previously published models. Using a regional bootstrap approach, we identify large (>20°), spatially coherent regions of anomalously strong scattering beneath the West Pacific, Central/North America, and—to a lesser extent—East Africa. Finally, as proof of concept, we use array processing techniques to locate the origin of scattered energy observed in Southern California by the Anza and Southern California Seismic Networks. The energy appears to come primarily from out-of-plane scattering on the receiver side. We suggest that such improvised arrays can increase global coverage and may reveal whether a majority of precursor energy comes from localized heterogeneity in the lowermost mantle.

  7. Tissue characterization by imaging the local frequency dependent relative backscatter coefficient

    NASA Astrophysics Data System (ADS)

    Jenderka, Klaus V.; Gaertner, Tilio; Cobet, Ulrich; Zacharias, Mario; Heynemann, Hans

    2000-04-01

    Conventional B-scan systems only use the amplitude information of the backscattered signals for imaging. By imaging the local frequency dependent relative backscatter coefficient it is possible to improve the image contrast and to reduce system effects. Based on spectral analysis of rf echo signals, a procedure was developed to correct for system specific effects and to determine the relative backscatter coefficient. A new image with improved contrast results from grayscale or color coding of the frequency components of the relative backscatter coefficient. The method was applied to in vivo measurements of human prostate and transplanted kidney. For cancerous prostate tissue the relative backscatter coefficient is about 8 dB lower than for normal tissue regions. The results of the investigations on kidneys show no correlation to the current function of the organ. Certainly the different course of the frequency dependence of the relative backscatter coefficient of renal cortex and calices regions allows a contrast improvement. The method provides a system independent imaging procedure with improved image contrast for tissues with different scattering behavior and slightly reduced spatial resolution. Imaging the relative backscatter coefficient will not substitute the conventional B-mode image, but it is a useful tool providing additional information about the tissue state.

  8. The mechanics of delamination in fiber-reinforced composite materials. Part 1: Stress singularities and solution structure

    NASA Technical Reports Server (NTRS)

    Wang, S. S.; Choi, I.

    1983-01-01

    The fundamental mechanics of delamination in fiber composite laminates is studied. Mathematical formulation of the problem is based on laminate anisotropic elasticity theory and interlaminar fracture mechanics concepts. Stress singularities and complete solution structures associated with general composite delaminations are determined. For a fully open delamination with traction-free surfaces, oscillatory stress singularities always appear, leading to physically inadmissible field solutions. A refined model is introduced by considering a partially closed delamination with crack surfaces in finite-length contact. Stress singularities associated with a partially closed delamination having frictional crack-surface contact are determined, and are found to be diferent from the inverse square-root one of the frictionless-contact case. In the case of a delamination with very small area of crack closure, a simplified model having a square-root stress singularity is employed by taking the limit of the partially closed delamination. The possible presence of logarithmic-type stress singularity is examined; no logarithmic singularity of any kind is found in the composite delamination problem. Numerical examples of dominant stress singularities are shown for delaminations having crack-tip closure with different frictional coefficients between general (1) and (2) graphite-epoxy composites.

  9. Hygrothermomechanical fracture stress criteria for fiber composites with sense-parity

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Ginty, C. A.

    1983-01-01

    Hygrothermomechanical fracture stress criteria are developed and evaluated for unidirectional composites (plies) with sense-parity. These criteria explicity quantify the individual contributions of applied, hygral and thermal stresses as well as couplings among these stresses. The criteria are for maximum stress, maximum strain, internal friction, work-to-fracture and combined-stress fracture. Predicted results obtained indicate that first ply failure will occur at stress levels lower than those predicted using criteria currently available in the literature. Also, the contribution of the various stress couplings (predictable only by fracture criteria with sense-parity) is significant to first ply failure and attendant fracture modes.

  10. Frequency-dependent Effects of Rupture for the 2004 Parkfield, California, Mainshock at UPSAR

    NASA Astrophysics Data System (ADS)

    Fletcher, J. B.

    2014-12-01

    We processed the accelerograms for the Sept. 28, 2004 Parkfield mainshock (M6) from the Parkfield Dense Seismograph Array (UPSAR) using beam forming techniques to determine coherence and slowness of incoming arrivals and we found that the frequency-dependent effects of rupture propagation of can be seen in the acceleration records in at least two ways. The first is the effect of directivity. During the 4-6s interval after nucleation, UPSAR lies in the forward azimuth of the rupture front and coherence and amplitudes are relatively high. In this interval, the records are rich in frequencies as high as 40 Hz. As the rupture front progresses, UPSAR becomes perpendicular to the location of the rupture front on the fault and then passes into the back azimuth. During this 5-7s interval, the coherence drops off, amplitudes are typically smaller and the traces are depleted in high frequencies compared to when UPSAR was in the forward azimuth. We model the rupture process of the Parkfield mainshock using realistic distributions of slip and show that they also have significant changes in frequency as the rupture passes from the forward to the back azimuth. The second effect is the frequency dependence of the rupture front. That is observations at UPSAR were used to address the question of whether low frequency energy emerges from the same parts of the fault as high frequency energy. Acceleration records of the Parkfield mainshock from UPSAR were filtered in 5 different narrow frequency bands (0.25-0.5 Hz, 0.5-1 Hz, 1-2 Hz, 2-4 Hz, and 4-8 Hz) and beam forming was repeated. Above 1 Hz the estimates of back azimuth and apparent velocity are about the same and are independent of frequency. Below 1 Hz, however, the estimates appear to be significantly different with a change of about of 0.34 km/s in apparent velocity and 22 degrees in back azimuth at 2s after the S wave arrival, for example, between the middle and lowest band. From previous work on mapping values of apparent

  11. Frequency dependent attenuation characteristics of coda waves in the Northwestern Himalayan (India) region

    NASA Astrophysics Data System (ADS)

    Kumar, Sushil; Singh, Priyamvada; Singh, Pitam; Biswal, Shubhasmita; Parija, Mahesh Prasad

    2016-03-01

    Digital seismogram data of 82 earthquakes from the Northwestern Himalayan (India) region recorded at different stations during 2004-2006 were analyzed to study the seismic coda wave attenuation characteristics in this region. We used 132 seismic observations from local earthquakes with a hypocentral distance <240 km and a magnitude range of 1.2-4.9 to study the coda QC using the single isotropic scattering model. These earthquakes were recorded at 20 temporary seismic stations installed in the Northwestern Himalayas (India) by the Wadia institute of Himalayan Geology, Dehradun. The QC values were estimated at 10 central frequencies: 1.5, 3, 5, 7, 9, 12, 16, 20, 24, and 28 Hz using starting lapse-times of 10, 20, 30, 40, 50, and 60 s and coda window-lengths of 10, 20, 30, 40, and 50 s. The QC fits the frequency dependent power-law, QC =Q0fn . For a 10 s lapse time with a 10-s coda window length QC = 47.42f1.012 and for a 50 s lapse time with a 50 s coda window length, QC = 204.1f0.934 . Q0 (QC at 1 Hz) varied from ∼47 for a 10 s lapse time and a 10 s window length, to ∼204 for a 50 s lapse time and a 50 s window length. An average frequency dependent power law fit for the study region may be given as QC = 116.716f0.9943 . The exponent of the frequency dependence law n ranged from 1.08 to 0.9, which correlates well with values obtained in other seismically and tectonically active and heterogeneous regions of the world. In our study region, QC increases both with respect to lapse time and frequency, i.e., the attenuation decreases as the quality factor is inversely proportional to attenuation. The low QC values or high attenuation at lower frequencies and high QC values or low attenuation at higher frequencies suggest that the heterogeneity decreases with increasing depth in our study region.

  12. Frequency-dependent action potential prolongation in Aplysia pleural sensory neurones.

    PubMed

    Edstrom, J P; Lukowiak, K D

    1985-10-01

    The effects of repetitive activity on action-potential shape in Aplysia californica pleural sensory cells are described. Action potentials were evoked by intracellular current injection at frequencies between 7.41 and 0.2 Hz. In contrast to other molluscan neurons having brief action potentials, it was found that at these firing rates the normally brief action potential develops a prominent shoulder or plateau during the repolarization phase. Higher stimulus rates broaden the action potential more rapidly and to a greater extent than lower stimulus rates. Inactivation is slow relative to activation; effects of 3-s 6-Hz trains are detectable after 1 min rest. The amplitude of the plateau voltage reaches a maximum of 50-70 mV at the highest stimulus rates tested. Frequency-dependent increases in action-potential duration measured at half-amplitude normally range between 6 and 15 ms. Cadmium, at concentrations between 0.05 and 0.5 mM, antagonizes frequency-dependent broadening. The increases in duration induced by repetitive activity are more sensitive to cadmium than are the increases in plateau amplitude. Tetraethylammonium, at concentrations between 0.5 and 10 mM, slightly increases the duration and amplitude of single action potentials. During repetitive activity at high stimulus rates the maximum duration and rate of broadening are both increased but the amplitude of the plateau potential is not affected by these tetraethylammonium concentrations. Above 10 mM, tetraethylammonium greatly increases the duration and amplitude of single action potentials as well as the rates of action-potential duration and amplitude increase during repetitive activity. These high tetraethylammonium concentrations also cause the normally smoothly increasing duration and amplitude to reach a maximum value early in a train and then decline slowly during the remainder of the train. The consequences of frequency-dependent spike broadening in these neurons have not yet been investigated

  13. Frequency dependent piecewise fractional-order modelling of ultracapacitors using hybrid optimization and fuzzy clustering

    NASA Astrophysics Data System (ADS)

    Kumar, Mano Ranjan; Ghosh, Subhojit; Das, Shantanu

    2016-12-01

    The usage of ultracapacitors for development of energy storage devices and alternative power sources is increasing at a very rapid rate. However accuracy in selection of ultracapacitor model parameter plays key role in the design of such devices, especially in applications involving wide operating frequency. Ultracapacitors are known to exhibit fractional dynamics and the model parameters vary significantly with frequency. This paper proposes a piecewise modelling and parameter estimation approach for ultracapacitors using a hybrid optimization and fuzzy clustering approach. The proposed modelling technique has been applied over impedance frequency response data acquired from a commercially available ultracapacitor. The model is able to represent the experimental data over different operating points with reduced number of model parameters. Comparative numerical simulations have been carried out to validate the benefits of the proposed approach. The estimated parameters revealed the disparity in the frequency dependent behavior of ultracapacitors and standard electrolytic capacitors.

  14. Frequency-dependent dielectric analysis - Monitoring the chemistry and rheology of thermosets during cure

    NASA Technical Reports Server (NTRS)

    Kranbuehl, D.; Delos, S.; Hoff, M.; Weller, L.; Haverty, P.

    1988-01-01

    Frequency-dependent dielectric measurements in a curing resin sample were performed using an impedance analyzer and a permittivity sensor, to separate and measure the ionic (sigma) and dipolar (tau) mobilities, used as molecular probes of the cure reaction in the resin. The resin samples were tetraglycidyl 4,4-prime-diaminodiphenylmethane epoxy resins which included catalyzed (Hercules 3501-6) and uncatalyzed l3502 resin samples. The values of sigma and tau were used to quantitatively determine the viscosity, the degree of cure, and the T(g) of the resin. It is shown that the values of the Arrhenius and WLF constants during the cure process reflect the buildup of the crosslink network.

  15. Frequency-dependent polarizabilities and shielding factors for confined one-electron systems

    NASA Astrophysics Data System (ADS)

    Montgomery, H. E., Jr.; Pupyshev, Vladimir I.

    2017-01-01

    Frequency-dependent dipole polarizabilities and shielding factors are calculated for the ground state of spherically symmetric screened one-electron systems embedded in an impenetrable spherical cavity. Coulomb, Yukawa, Hulthén and exponential cosine-screened Coulomb potentials are considered. In contrast to free systems, Dirichlet boundary conditions introduce a contribution to the shielding factor that results from an integral over the surface of the confining boundary. This is a fundamental difference between free and confined systems and results in unexpected modifications to some of the classic relations for free systems. The methods derived also give a simple expression for the polarizability of the confined harmonic oscillator as an example of extending the methods of this work to potentials beyond the four studied.

  16. Picosecond laser-induced breakdown at 5321 and 5347 A - Observation of frequency-dependent behavior

    NASA Technical Reports Server (NTRS)

    Smith, W. L.; Bechtel, J. H.; Bloembergen, N.

    1977-01-01

    A study is presented of picosecond laser-induced breakdown at 3547 and 5321 A of several materials. The thresholds obtained for breakdown at 5321 A are compared to previous results obtained at 1.064 microns using the same laser system. This comparison illustrates the transition of bulk laser-induced breakdown as it becomes increasingly frequency dependent. UV picosecond pulses are obtained by mixing 5321 A and 1.064 micron pulses in a KH2PO4 crystal. Upper and lower bounds on the 3547 A breakdown threshold are defined, although some effects of walk-off distortion and self-focusing are observed. The results are discussed with reference to models for the intrinsic processes involved in the breakdown, i.e., avalanche and multiphoton ionization.

  17. Sibling genes as environment: Sibling dopamine genotypes and adolescent health support frequency dependent selection.

    PubMed

    Rauscher, Emily; Conley, Dalton; Siegal, Mark L

    2015-11-01

    While research consistently suggests siblings matter for individual outcomes, it remains unclear why. At the same time, studies of genetic effects on health typically correlate variants of a gene with the average level of behavioral or health measures, ignoring more complicated genetic dynamics. Using National Longitudinal Study of Adolescent Health data, we investigate whether sibling genes moderate individual genetic expression. We compare twin variation in health-related absences and self-rated health by genetic differences at three locations related to dopamine regulation and transport to test sibship-level cross-person gene-gene interactions. Results suggest effects of variation at these genetic locations are moderated by sibling genes. Although the mechanism remains unclear, this evidence is consistent with frequency dependent selection and suggests much genetic research may violate the stable unit treatment value assumption.

  18. Frequency-dependent dielectric permittivity of salt-free charged lamellar systems

    NASA Astrophysics Data System (ADS)

    Rotenberg, B.; Dufrêche, J.-F.; Turq, P.

    2005-10-01

    We present a new model to analyze dielectric spectroscopy measurements on charged lamellar systems, with the following improvements with respect to the hitherto available models: (i) it does not rely on the hypothesis of local electro-neutrality, and allows to treat the salt-free case; (ii) the chemical exchange governing the partition between free and bound ions is properly taken into account; (iii) a fully analytical solution is provided. The variation of the frequency-dependent dielectric permittivity with both thermodynamic and kinetic characteristics of the free-bound ion equilibrium is presented. In particular, the relative weights of both relaxation modes (exchange and transport), and their characteristic frequencies are discussed. This study opens the way to the analysis of systems for which the usual models are irrelevant, such as salt-free clay gels or membranes.

  19. Effect of diffusion and surface recombination on the frequency-dependent characteristics of an OPFET

    NASA Astrophysics Data System (ADS)

    Singh, Vinaya K.

    1993-02-01

    Analytical studies have been made on the effect of diffusion and surface recombination on the frequency dependent characteristics of an ion-implanted GaAs optical field effect transistor. Modulated optical generation and voltage dependent depletion layer width in the active region have been considered whereas photovoltaic effect is ignored in this analysis. Result shows that drain-source current decreases with the increases of modulated signal frequency but diffusion effect increases the modulating frequency range from c.m. to m.m. wavelength. Moreover, I- V changes significantly with the trap center density only when Nr >= 1023/m2 with diffusion effect and >= 1020/m2 without diffusion effect at a particular dimension of the device. This model may be very much useful to measure the sensitivity of the device in terms of trap center density and modulating frequency.

  20. Single-lobed frequency-dependent beam shape in an echolocating false killer whale (Pseudorca crassidens).

    PubMed

    Kloepper, Laura N; Nachtigall, Paul E; Quintos, Christopher; Vlachos, Stephanie A

    2012-01-01

    Recent studies indicate some odontocetes may produce echolocation beams with a dual-lobed vertical structure. The shape of the odontocete echolocation beam was further investigated in a false killer whale performing an echolocation discrimination task. Clicks were recorded with an array of 16 hydrophones and frequency-dependent amplitude plots were constructed to assess beam shape. The majority of the echolocation clicks were single-lobed in structure with most energy located between 20 and 80 kHz. These data indicate the false killer whale does not produce a dual-lobed structure, as has been shown in bottlenose dolphins, which may be a function of lowered frequencies in the emitted signal due to hearing loss.

  1. A study of frequency dependent electrical and dielectric properties of NiO nanoparticles

    NASA Astrophysics Data System (ADS)

    Usha, V.; Kalyanaraman, S.; Vettumperumal, R.; Thangavel, R.

    2017-01-01

    Nickel oxide nanoparticles were synthesized using low cost sol-gel method. The structure of as prepared NiO nanoparticles has been confirmed from X-ray diffraction (XRD), scanning electron microscope with energy dispersive X-ray (SEM and EDX) spectroscopic analysis. The electrical and dielectric properties were characterized by complex impedance spectroscopy as a function of frequency at different temperatures. To study the dielectric behavior of the nanoparticles different plots like Nyquist plot, modulus plot and Bode plot were used. Also the frequency dependent ac conductivity is analyzed and the activation energy is calculated. The dielectric constant and dielectric loss as a function of frequency at various temperatures are also studied.

  2. Frequency-dependent Effects of Vibration on Physiological Systems: Experiments with Animals and other Human Surrogates

    PubMed Central

    KRAJNAK, Kristine; RILEY, Danny A.; WU, John; MCDOWELL, Thomas; WELCOME, Daniel E.; XU, Xueyan S.; DONG, Ren G.

    2015-01-01

    Occupational exposure to vibration through the use of power- and pneumatic hand-tools results in cold-induced vasospasms, finger blanching, and alterations in sensorineural function. Collectively, these symptoms are referred to as hand-arm vibration syndrome (HAVS). Currently the International Standards Organization (ISO) standard ISO 5349-1 contains a frequency-weighting curve to help workers and employers predict the risk of developing HAVS with exposure to vibration of different frequencies. However, recent epidemiological and experimental evidence suggests that this curve under-represents the risk of injuries to the hands and fingers induced by exposure to vibration at higher frequencies (>100 Hz). To improve the curve, better exposure-response data need to be collected. The goal of this review is to summarize the results of animal and computational modeling studies that have examined the frequency-dependent effects of vibration, and discuss where additional research would be beneficial to fill these research gaps. PMID:23060248

  3. Bards, poets, and cliques: frequency-dependent selection and the evolution of language genes.

    PubMed

    Cartwright, Reed A

    2011-09-01

    The ability of humans to communicate via language is a complex, adapted phenotype, which undoubtedly has a recently evolved genetic component. However, the evolutionary dynamics of language-associated alleles are poorly understood. To improve our knowledge of such systems, a population-genetics model for language-associated genes is developed. (The model is general and applicable to social interactions other than communication.) When an allele arises that potentially improves the ability of individuals to communicate, it will experience positive frequency-dependent selection because its fitness will depend on how many other individuals communicate the same way. Consequently, new and rare alleles are selected against, posing a problem for the evolutionary origin of language. However, the model shows that if individuals form language-based cliques, then novel language-associated alleles can sweep through a population. Thus, the origin of language ability can be sufficiently explained by Darwinian processes operating on genetic diversity in a finite population of human ancestors.

  4. Frequency dependent optical and dielectric properties of zinc sulfide in Terahertz regime

    NASA Astrophysics Data System (ADS)

    Ganti, Satya R.; Sundaram, S. K.; McCloy, John S.

    2014-07-01

    Frequency dependent optical and dielectric properties for several grades of chemical vapor deposited (CVD) zinc sulfide (standard, elemental, and multi-spectral) was performed using a terahertz time-domain spectroscopy (THz-TDS) system in the frequency range from 0.15 THz to 2.5 THz. Zinc sulfide exhibits low frequency vibrational modes characterized by the THz-TDS. Two low-frequency phonon resonance lines were revealed at 0.78 THz and 2.20 THz. These samples were also characterized in the GHz range using a backward wave oscillator (BWO) source quasi-optical spectrometer, and the data obtained by both approaches were compared. Experimental data were also compared with an undamped harmonic oscillator model. These results compare well with the literature values obtained using other methods.

  5. Frequency dependent power and energy flux density equations of the electromagnetic wave

    NASA Astrophysics Data System (ADS)

    Muhibbullah, M.; Haleem, Ashraf M. Abdel; Ikuma, Yasuro

    The calculation of the power and energy of the electromagnetic wave is important for numerous applications. There are some equations to compute the power and energy density of the electromagnetic wave radiation. For instance, the Poynting vector is frequently used to calculate the power density. However those including the Poynting vector are not perfect to represent the actual values because the equations are frequency independent. In the present study we have derived the frequency-dependent equations to calculate the power and energy flux density of the electromagnetic wave by help of the classical electromagnetic theories. It is seems that the Poynting vector with a certain electric and magnetic fields is correct only for a specific frequency. However our equations are perfect to calculate the values of the power and energy flux density for all frequencies of the electromagnetic radiation. The equations may help to develop the applications of the electromagnetic wave radiation.

  6. Is it possible to infer the frequency-dependent seismic attenuation of fractured materials from high-strain creep tests?

    NASA Astrophysics Data System (ADS)

    mallet, celine; quintal, beatriz; caspari, eva; holliger, klaus

    2016-04-01

    The seismic and hydraulic characterization of fractured rocks is an important objective for reservoir development in general and the production of geothermal energy in particular. The attenuation of seismic waves in saturated fractured media is governed by local displacements of the fluid relative to the solid induced by the compressions and extensions associated with the passing wavefield. This phenomenon is generally referred to as wave-induced fluid flow (WIFF). Recent evidence suggests that this energy dissipation mechanism is sensitive to the interconnectivity of the fractures, which offers the perspective of linking seismic observations to the hydraulic properties of fractured rocks. Here, we consider the results of laboratory experiments, which are referred to as creep tests. Such tests consist of applying a constant stress to a water-saturated thermally cracked glass sample and recording the resulting strain response as a function of time. The primary advantages of the considered material are (i) that the fracture network is well documented and (ii) that the homogeneous and non-porous glass matrix limits WIFF to the fracture network. Due to the high stress levels as well as other technical issues, creep tests are not commonly used for laboratory-based measurements of energy dissipation. Therefore, an objective of this study is to explore whether and to what extent such data can be interpreted in terms of the seismic attenuation characteristics of the probed samples, as this might open access to a vast reservoir of corresponding data, notably for cracked materials. Transforming the observed time-dependent stress-strain relation into the Fourier domain, allows us to infer the corresponding frequency-dependent attenuation characteristics, which we then seek to interpret through numerical simulations based on Biot's quasi-static poroelastic equations. The 2D geometry of the fracture network considered in these simulations is derived from a scanning electron

  7. The Frequency-Dependent Neuronal Length Constant in Transcranial Magnetic Stimulation

    PubMed Central

    Ilmoniemi, Risto J.; Mäki, Hanna; Saari, Jukka; Salvador, Ricardo; Miranda, Pedro C.

    2016-01-01

    Background: The behavior of the dendritic or axonal membrane voltage due to transcranial magnetic stimulation (TMS) is often modeled with the one-dimensional cable equation. For the cable equation, a length constant λ0 is defined; λ0 describes the axial decay of the membrane voltage in the case of constant applied electric field. In TMS, however, the induced electric field waveform is typically a segment of a sinusoidal wave, with characteristic frequencies of the order of several kHz. Objective: To show that the high frequency content of the stimulation pulse causes deviations in the spatial profile of the membrane voltage as compared to the steady state. Methods: We derive the cable equation in complex form utilizing the complex frequency-dependent representation of the membrane conductivity. In addition, we define an effective length constant λeff, which governs the spatial decay of the membrane voltage. We model the behavior of a dendrite in an applied electric field oscillating at 3.9 kHz with the complex cable equation and by solving the traditional cable equation numerically. Results: The effective length constant decreases as a function of frequency. For a model dendrite or axon, for which λ0 = 1.5 mm, the effective length constant at 3.9 kHz is decreased by a factor 10 to 0.13 mm. Conclusion: The frequency dependency of the neuronal length constant has to be taken into account when predicting the spatial behavior of the membrane voltage as a response to TMS. PMID:27555808

  8. Frequency dependence of loss tangent of thermally annealed undoped lead iodide crystals in the dark

    NASA Astrophysics Data System (ADS)

    Hassan, Mahmoud A.; Abdul-Gader Jafar, Mousa M.

    2006-10-01

    The effect of isothermal annealing ( T⩽120 °C) on the frequency dependence of the loss tangent, tan δ, of undoped lead iodide (PbI 2) crystals in the dark has been investigated in the range 0.1-15 kHz at different ambient temperatures ( T=15-120 °C) without and with DC biasing ( V⩽2 V). Thermal annealing of as-grown PbI 2 crystals modified both the magnitude and frequency dependence of their tan δ. The tan δ-ƒ data ( T=17 °C) of unbiased as-grown crystals were found to fit a tan δ∝ƒ - m dependence, with m˜0.94 in the range 100 Hz <ƒ<10 kHz. After annealing these crystals at T=70 °C for 1 h, the tan δ∝ƒ - m relation was obeyed for unbiased samples at any T over most of the frequency range studied, with the exponent m being reduced to around 0.55; a behavior that was also found for isothermally annealed PbI 2 crystals when were DC biased, but at high ambient temperatures. The tan δ- T data (ƒ=1 kHz) of the unbiased prolonged annealed ( T=120 °C) PbI 2 crystals exhibited two different thermally activated regimes, with activation energies Ea˜0.23 and 0.087 eV in the ranges 75-120 °C and 15-75 °C, respectively, which were related to trapping cationic Pb +2-vacancies/hole-impurity levels in the crystal band gap. An interpolytypic phase transformation of the 2H-PbI 2 upon isothermal annealing may not, however, be entirely excluded.

  9. Hubbard interactions in iron-based pnictides and chalcogenides: Slater parametrization, screening channels, and frequency dependence

    NASA Astrophysics Data System (ADS)

    van Roekeghem, Ambroise; Vaugier, Loïg; Jiang, Hong; Biermann, Silke

    2016-09-01

    We calculate the strength of the frequency-dependent on-site electronic interactions in the iron pnictides LaFeAsO, BaFe2As2 , BaRu2As2 , and LiFeAs and the chalcogenide FeSe from first principles within the constrained random phase approximation. We discuss the accuracy of an atomiclike parametrization of the two-index density-density interaction matrices based on the calculation of an optimal set of three independent Slater integrals, assuming that the angular part of the Fe d localized orbitals can be described within spherical harmonics as for isolated Fe atoms. We show that its quality depends on the ligand-metal bonding character rather than on the dimensionality of the lattice: it is excellent for ionic-like Fe-Se (FeSe) chalcogenides and a more severe approximation for more covalent Fe-As (LaFeAsO, BaFe2As2 ) pnictides. We furthermore analyze the relative importance of different screening channels, with similar conclusions for the different pnictides but a somewhat different picture for the benchmark oxide SrVO3: the ligand channel does not appear to be dominant in the pnictides, while oxygen screening is the most important process in the oxide. Finally, we analyze the frequency dependence of the interaction. In contrast to simple oxides, in iron pnictides its functional form cannot be simply modeled by a single plasmon, and the actual density of modes enters the construction of an effective Hamiltonian determining the low-energy properties.

  10. Development of a fiber Bragg grating sensor for in-shoe shear stress measurement: design and preliminary results

    NASA Astrophysics Data System (ADS)

    Koulaxouzidis, Andreas V.; Roberts, V. C.; Holmes, Melanie J.; Handerek, Vincent A.

    2000-08-01

    In-shoe shear stress sensors are a required tool for the investigation of plantar ulcer development after the onset of diabetes. Recently, several transducers have been developed for measuring in-shoe shear stress using magneto- resistive technology, light intensity modulation, and copolymer piezoelectric materials. Common drawbacks in the previous methods are the relatively large size of the sensors and the difficulty in interrogating many sensors simultaneously in order to achieve distributed sensing. In this paper we demonstrate for the first time a shear stress sensor using Fiber Bragg gratings (FBGs). The small size and the multiplexing capability of FBGs enables quasi- distributed sensing of shear stress on the plantar surface by interrogating a large number of identical sensors. The sensor design is based on the theory of elastic bending of columns. The sensor consists of two FBGs fitted inside a metallic structure which is able to deform elastically under shear stress. This elastic deformation produces strain on the FBGs, which can be detected by measuring the Bragg wavelength shift of the reflected light of each FBG using a CCD spectrometer. Preliminary results on an enlarged version of the sensor have shown the applicability of FBGs for the implementation of the in-shoe sensor.

  11. Stress distribution of endodontically treated teeth with titanium alloy post and carbon fiber post with different alveolar bone height: A three-dimensional finite element analysis

    PubMed Central

    Singh, S. Vijay; Bhat, Manohar; Gupta, Saurabh; Sharma, Deepak; Satija, Harsha; Sharma, Sumeet

    2015-01-01

    Objective: A three-dimensional (3D) finite element analysis (FEA) on the stress distribution of endodontically treated teeth with titanium alloy post and carbon fiber post with different alveolar bone height. Materials and Methods: The 3D model was fabricated using software to represent an endodontically treated mandibular second premolar with post and restored with a full ceramic crown restoration, which was then analyzed using FEA using FEA ANSYS Workbench V13.0 (ANSYS Inc., Canonsburg, Pennsylvania, U.S.A) software. Results: The FEA showed the maximum stresses of 137.43 Mpa in dentin with alveolar bone height of 4 mm when the titanium post was used, 138.48 Mpa when carbon fiber post was used as compared to 105.91 Mpa in the model with alveolar bone height of 2 mm from the cement enamel junction (CEJ) when the titanium post was used and 107.37 Mpa when the carbon fiber post was used. Conclusions: Stress was observed more in alveolar bone height level of 4 mm from CEJ than 2 mm from CEJ. Stresses in the dentin were almost similar when the carbon fiber post was compared to titanium post. However, stresses in the post and the cement were much higher when titanium post was used as compared to carbon fiber post. PMID:26430375

  12. Three-dimensional finite element analysis of stress distribution in a tooth restored with metal and fiber posts of varying diameters: An in-vitro study

    PubMed Central

    Kumar, Pradeep; Rao, R. Nageswar

    2015-01-01

    Objective: To compare stress distribution in a tooth restored with metal and fiber posts of varying diameters (1.2 and 1.4 mm) by means of three-dimensional finite element analysis (3D-FEA). Materials and Methods: Four 3D-FEA models were constructed: (1) fiber post (1.2 and 1.4 mm) and (2) metal post (1.2 and 1.4 mm). The material properties were assigned and a force of 100 N was applied at 45° angle to the longitudinal axis of the tooth onto the palatal surface incisal to the cingulum. Analysis was run and stress distribution pattern was studied. Results: Maximum stresses in the radicular tooth structure for fiber post were higher than that for metal post. In the former models, stresses in the tooth structure were slightly reduced with increase in fiber post diameter. Conclusions: To reduce stress in the remaining radicular tooth structure, it is better to use a fiber post of a large diameter. PMID:25829685

  13. Mild heat stress enhances differentiation and proliferation of Japanese quail myoblasts and enhances slow muscle fiber characteristics.

    PubMed

    Choi, Y M; Chen, P R; Shin, S; Zhang, J; Hwang, S; Lee, K

    2016-08-01

    The objective of this study was to investigate the effect of mild heat stress on muscle fiber hyperplastic and hypertrophic growth in quail primary myogenic cells to better understand the mechanisms leading to increased skeletal muscle development in avian embryos incubated at a higher temperature. Compared to control cultures maintained at 37°C, incubation at 39°C enhanced myotube length (P < 0.01) and diameter (P < 0.001) at 3 days after differentiation (D3). This enlargement of the myotubes incubated at 39°C can be explained by differences in the fusion index (56.7 vs. 46.2%, P < 0.05) and nuclei number per myotube (18.1 vs. 10.8, P < 0.001) compared to the control cells at D3. Additionally, a higher density of myotubes at D3 in cultures exposed to a higher temperature were related to higher levels of Pax-7 (P < 0.05) compared to the control cells incubated continuously at 37°C. These results indicated a higher proliferative capacity in cells exposed to mild heat stress compared to the control cells. On the other hand, mild heat stress enhanced protein levels of slow myosin heavy chain isoform (P < 0.01) and cytochrome c oxidase subunit IV (P < 0.01) compared to the control cells at D3. These discrepancies in protein expression indicated maintenance of slow muscle fiber type characteristics in myotubes incubated at 39°C. Our results suggest that mild heat stress plays a significant role in myogenic mechanisms related to muscle mass and development.

  14. Residual surface stresses in laminated cross-ply fiber-epoxy composite materials

    NASA Astrophysics Data System (ADS)

    Gascoigne, Harold E.

    Residual (curing) stresses in cross-ply laminated panels are related to the strains released when individual plies are separated. Released strains are determined using high-sensitivity moire interferometry. Elastic orthotropic stress-strain relations are used to calculate residual stresses. Residual strains and stresses are determined on the lateral surface and at the free-edge of a cross-ply panel. The circumferential and radial residual stresses near the outer surface of a thick-walled cross-ply cylinder are determined.

  15. ON INTRINSIC STRESS FIBER CONTRACTILE FORCES IN SEMILUNAR HEART VALVE INTERSTITIAL CELLS USING A CONTINUUM MIXTURE MODEL

    PubMed Central

    Sakamoto, Yusuke; Buchanan, Rachel M.; Sacks, Michael S.

    2015-01-01

    Heart valve interstitial cells (VICs) play a critical role in the maintenance and pathophysiology of heart valve tissues. Normally quiescent in the adult, VICs can become activated in periods of growth and disease. When activated, VICs exhibit increased levels of cytokines and extracellular matrix (ECM) synthesis, and upregulated expression and strong contraction of α-smooth muscle actin (α-SMA) fibers. However, it remains unknown how expression and contraction of the α-SMA fibers, which vary among different VIC types, contribute to the overall VIC mechanical responses, including the nucleus and cytoskeleton contributions. In the present study, we developed a novel solid-mixture model for VIC biomechanical behavior that incorporated 1) the underlying cytoskeletal network, 2) the oriented α-SMA stress fibers with passive elastic and active contractile responses, 3) a finite deformable elastic nucleus. We implemented the model in a full 3D finite element simulation of a VIC based on known geometry. Moreover, we examined the respective mechanical responses of aortic and pulmonary VICs (AVICs and PVICs, respectively), which are known to have different levels of α-SMA expression levels and contractile behaviors. To calibrate the model, we simulated the combined mechanical responses of VICs in both micropipette aspiration (MA) and atomic force microscopy (AFM) experiments. These two states were chosen as the VICs were under significantly different mechanical loading conditions and activation states, with the α-SMA fibers inactivated in the MA studies while fully activated in the AFM studies. We also used the AFM to study the mechanical property of the nucleus. Our model predicted that the substantial differences found in stiffening of the AVIC compared to the PVICs was due to a 9 to 16 times stronger intrinsic AVIC α-SMA stress fiber contractile force. Model validation was done by simulating a traction force microscopy experiment to estimate the forces the VICs

  16. Numerical analysis of stress distribution in embedded highly birefringent PANDA fibers

    NASA Astrophysics Data System (ADS)

    Lesiak, Piotr; Woliński, Tomasz

    2015-09-01

    The paper presents numerical analysis compared with experimental data of influence of polymerization shrinkage on highly birefringent (HB) PANDA optical fibers embedded in a composite material. Since polymerization is a chemical process consisting in combining single molecules in a macromolecular compound [1], principal directions of the polymerization shrinkage depend on a number of the composite layers associated with this process. In this paper a detailed analysis of the piezo-optic effects occurring in HB optical fibers before and after the lamination process answers the question to what extent a degree of the material degradation can be properly estimated.

  17. Fracture Mechanisms For SiC Fibers And SiC/SiC Composites Under Stress-Rupture Conditions at High Temperatures

    NASA Technical Reports Server (NTRS)

    DiCarlo, James A.; Yun, Hee Mann; Hurst, Janet B.; Viterna, L. (Technical Monitor)

    2002-01-01

    The successful application of SiC/SiC ceramic matrix composites as high-temperature structural materials depends strongly on maximizing the fracture or rupture life of the load-bearing fiber and matrix constituents. Using high-temperature data measured under stress-rupture test conditions, this study examines in a mechanistic manner the effects of various intrinsic and extrinsic factors on the creep and fracture behavior of a variety of SiC fiber types. It is shown that although some fiber types fracture during a large primary creep stage, the fiber creep rate just prior to fracture plays a key role in determining fiber rupture time (Monkman-Grant theory). If it is assumed that SiC matrices rupture in a similar manner as fibers with the same microstructures, one can develop simple mechanistic models to analyze and optimize the stress-rupture behavior of SiC/SiC composites for applied stresses that are initially below matrix cracking.

  18. Cav1.1 controls frequency-dependent events regulating adult skeletal muscle plasticity.

    PubMed

    Jorquera, Gonzalo; Altamirano, Francisco; Contreras-Ferrat, Ariel; Almarza, Gonzalo; Buvinic, Sonja; Jacquemond, Vincent; Jaimovich, Enrique; Casas, Mariana

    2013-03-01

    An important pending question in neuromuscular biology is how skeletal muscle cells decipher the stimulation pattern coming from motoneurons to define their phenotype as slow or fast twitch muscle fibers. We have previously shown that voltage-gated L-type calcium channel (Cav1.1) acts as a voltage sensor for activation of inositol (1,4,5)-trisphosphate [Ins(1,4,5)P₃]-dependent Ca(2+) signals that regulates gene expression. ATP released by muscle cells after electrical stimulation through pannexin-1 channels plays a key role in this process. We show now that stimulation frequency determines both ATP release and Ins(1,4,5)P₃ production in adult skeletal muscle and that Cav1.1 and pannexin-1 colocalize in the transverse tubules. Both ATP release and increased Ins(1,4,5)P₃ was seen in flexor digitorum brevis fibers stimulated with 270 pulses at 20 Hz, but not at 90 Hz. 20 Hz stimulation induced transcriptional changes related to fast-to-slow muscle fiber phenotype transition that required ATP release. Addition of 30 µM ATP to fibers induced the same transcriptional changes observed after 20 Hz stimulation. Myotubes lacking the Cav1.1-α1 subunit released almost no ATP after electrical stimulation, showing that Cav1.1 has a central role in this process. In adult muscle fibers, ATP release and the transcriptional changes produced by 20 Hz stimulation were blocked by both the Cav1.1 antagonist nifedipine (25 µM) and by the Cav1.1 agonist (-)S-BayK 8644 (10 µM). We propose a new role for Cav1.1, independent of its calcium channel activity, in the activation of signaling pathways allowing muscle fibers to decipher the frequency of electrical stimulation and to activate specific transcriptional programs that define their phenotype.

  19. Hemispheric asymmetry of frequency-dependent suppression in the ipsilateral primary motor cortex during finger movement: a functional magnetic resonance imaging study.

    PubMed

    Hayashi, Masamichi J; Saito, Daisuke N; Aramaki, Yu; Asai, Tatsuya; Fujibayashi, Yasuhisa; Sadato, Norihiro

    2008-12-01

    Electrophysiological studies have suggested that the activity of the primary motor cortex (M1) during ipsilateral hand movement reflects both the ipsilateral innervation and the transcallosal inhibitory control from its counterpart in the opposite hemisphere, and that their asymmetry might cause hand dominancy. To examine the asymmetry of the involvement of the ipsilateral motor cortex during a unimanual motor task under frequency stress, we conducted block-design functional magnetic resonance imaging with 22 normal right-handed subjects. The task involved visually cued unimanual opponent finger movement at various rates. The contralateral M1 showed symmetric frequency-dependent activation. The ipsilateral M1 showed task-related deactivation at low frequencies without laterality. As the frequency of the left-hand movement increased, the left M1 showed a gradual decrease in the deactivation. This data suggests a frequency-dependent increased involvement of the left M1 in ipsilateral hand control. By contrast, the right M1 showed more prominent deactivation as the frequency of the right-hand movement increased. This suggests that there is an increased transcallosal inhibition from the left M1 to the right M1, which overwhelms the right M1 activation during ipsilateral hand movement. These results demonstrate the dominance of the left M1 in both ipsilateral innervation and transcallosal inhibition in right-handed individuals.

  20. Frequency-dependent streaming potential of porous media: Experimental approaches and apparatus design

    NASA Astrophysics Data System (ADS)

    Glover, Paul W. J.; Ruel, Jean; Tardif, Eric

    2013-04-01

    Electro-kinetic phenomena link fluid flow and electrical flow in porous and fractured media such that a hydraulic flow will generate an electrical current and vice versa. Although such a link is likely to be extremely useful, especially in the development of the electro-seismic method, surprisingly few experimental measurements have been carried out, particularly as a function of frequency because of their difficulty. We have carried out a study that considers six different approaches to making laboratory determinations of the frequency-dependent streaming potential coefficient of geomaterials. These are (i) motor and scotch yoke, (ii) motor and cam, (iii) pneumatic drive, (iv) hydraulic drive, (v) electro-magnetic drive, and (vi) piezo-electric drive. In each case, we have analysed the mechanical, electrical, and other technical difficulties involved. We conclude that the electro-magnetic drive is currently the only approach that is practicable, while the piezo-electric drive may be useful for low permeability samples and at specified high frequencies. We have used the electro-magnetic drive approach to design, build, and test an apparatus for measuring the streaming potential coefficient of unconsolidated and disaggregated samples such as sands, gravels, and soils with a diameter of 25.4 mm and lengths between 50 mm and 300 mm.

  1. Frequency-dependent scaling from mesoscale to macroscale in viscoelastic random composites

    PubMed Central

    Zhang, Jun

    2016-01-01

    This paper investigates the scaling from a statistical volume element (SVE; i.e. mesoscale level) to representative volume element (RVE; i.e. macroscale level) of spatially random linear viscoelastic materials, focusing on the quasi-static properties in the frequency domain. Requiring the material statistics to be spatially homogeneous and ergodic, the mesoscale bounds on the RVE response are developed from the Hill–Mandel homogenization condition adapted to viscoelastic materials. The bounds are obtained from two stochastic initial-boundary value problems set up, respectively, under uniform kinematic and traction boundary conditions. The frequency and scale dependencies of mesoscale bounds are obtained through computational mechanics for composites with planar random chessboard microstructures. In general, the frequency-dependent scaling to RVE can be described through a complex-valued scaling function, which generalizes the concept originally developed for linear elastic random composites. This scaling function is shown to apply for all different phase combinations on random chessboards and, essentially, is only a function of the microstructure and mesoscale. PMID:27274689

  2. Temperature and frequency dependent conductivity of lithium doped bismuth zinc vanadate semiconducting glassy system

    NASA Astrophysics Data System (ADS)

    Dahiya, S.; Punia, R.; Murugavel, S.; Maan, A. S.

    2014-11-01

    The ac conductivity of bismuth zinc vanadate glasses of compositions x Li2O (100 - x) (50V2O5·20 Bi2O3·30 ZnO); x = 0, 2, 4, 6, and 8 has been studied in the frequency range 10-1 Hzb-2 MHz and in temperature range 313-533 K. The temperature and frequency dependent conductivity is found to obey Almond-West universal power law for all the studied lithium doped bismuth zinc vanadate glassy systems. Various parameters such as dc conductivity ( σ dc ), crossover frequency ( ω H ) and frequency exponent ( s) have been estimated by fitting the experimental data of ac conductivity to Almond-West universal power law. It has been observed that the ac conductivity of bismuth zinc vanadate glass system decreases with the increase in Li2O content. The ac conductivity and its frequency exponent have been analyzed in the frame work of various theoretical models. The ac conduction seems to take place via tunneling of overlapping large polarons in all the compositions.

  3. Warning signals are under positive frequency-dependent selection in nature

    PubMed Central

    Chouteau, Mathieu; Arias, Mónica; Joron, Mathieu

    2016-01-01

    Positive frequency-dependent selection (FDS) is a selection regime where the fitness of a phenotype increases with its frequency, and it is thought to underlie important adaptive strategies resting on signaling and communication. However, whether and how positive FDS truly operates in nature remains unknown, which hampers our understanding of signal diversity. Here, we test for positive FDS operating on the warning color patterns of chemically defended butterflies forming multiple coexisting mimicry assemblages in the Amazon. Using malleable prey models placed in localities showing differences in the relative frequencies of warningly colored prey, we demonstrate that the efficiency of a warning signal increases steadily with its local frequency in the natural community, up to a threshold where protection stabilizes. The shape of this relationship is consistent with the direct effect of the local abundance of each warning signal on the corresponding avoidance knowledge of the local predator community. This relationship, which differs from purifying selection acting on each mimetic pattern, indicates that predator knowledge, integrated over the entire community, is saturated only for the most common warning signals. In contrast, among the well-established warning signals present in local prey assemblages, most are incompletely known to local predators and enjoy incomplete protection. This incomplete predator knowledge should generate strong benefits to life history traits that enhance warning efficiency by increasing the effective frequency of prey visible to predators. Strategies such as gregariousness or niche convergence between comimics may therefore readily evolve through their effects on predator knowledge and warning efficiency. PMID:26858416

  4. Complete FDTD analysis of microwave heating processes in frequency-dependent and temperature dependent media

    SciTech Connect

    Torres, F.; Jecko, B.

    1997-01-01

    It is well known that the temperature rise in a material modifies its physical properties and, particularly, its dielectric permittivity. The dissipated electromagnetic power involved in microwave heating processes depending on {var_epsilon}({omega}), the electrical characteristics of the heated media must vary with the temperature to achieve realistic simulations. In this paper, the authors present a fast and accurate algorithm allowing, through a combined electromagnetic and thermal procedure, to take into account the influence of the temperature on the electrical properties of materials. First, the temperature dependence of the complex permittivity ruled by a Debye relaxation equation is investigated, and a realistic model is proposed and validated. Then, a frequency-dependent finite-differences time-domain ((FD){sup 2}TD) method is used to assess the instantaneous electromagnetic power lost by dielectric hysteresis. Within the same iteration, a time-scaled form of the heat transfer equation allows one to calculate the temperature distribution in the heated medium and then to correct the dielectric properties of the material using the proposed model. These new characteristics will be taken into account by the EM solver at the next iteration. This combined algorithm allows a significant reduction of computation time. An application to a microwave oven is proposed.

  5. Frequency-Dependent Scattering Observed in P- and Surface-Wave Arrivals From South India

    NASA Astrophysics Data System (ADS)

    Rai, A. K.

    2016-12-01

    Anomalies in polarization angles of teleseismic waves have been used to understand effect of scattered arrivals from subsurface heterogeneities. Seismological data recorded in southern India show polarization anomalies up to 5° for several stations. These anomalies are most pronounced for earthquakes from western and southern azimuths. Furthermore, stations located near the boundary of Dharwar craton and southern Granulites are more affected by scattered waves. Considering that many of the nearby stations show similar patterns of polarization anomalies, it is likely that the source of scattered energy is located at shallower depths. The non-stationary nature of seismic arrivals warrants determination of frequency-dependent polarization. Result obtained using multi-taper spectral analysis method indicates that data are contaminated at frequencies greater than 2 Hz for most of the stations. Furthermore, surface-wave records also indicate off-azimuth arrivals, and quasi-Love waves indicating heterogeneities or anisotropy in the subsurface. These small-scale heterogeneities that may be located in crust may be important for studies using converted phases and ground motion prediction studies.

  6. Frequency dependent electrical properties of nano-CdS/Ag junctions

    NASA Astrophysics Data System (ADS)

    Mohanta, D.; Choudhury, A.

    2005-05-01

    Polymer embedded cadmium sulfide nanoparticles/quantum dots were synthesized by a chemical route using polyvinyl alcohol (lmw) as the desired matrix. In an attempt to measure the electrical properties of nano-CdS/Ag samples, we propose that contribution from surface traps are mainly responsible in determining the I˜ V and C˜ V characteristics in high frequency ranges. To be specific, beyond 1.2 MHz, the carrier injection from the trap centers of the embedded quantum dots is ensured by large current establishment even at negative biasing condition of the junction. The unexpected nonlinear signature of C˜ V response is believed to be due to the fact that while trying to follow very high signal frequency (at least 10-3 of recombination frequency), there is complete abruptness in carrier trapping (charging) or/and detrapping (decay) in a given CdS nanoparticle assembly. The frequency dependent unique role of the trap carriers certainly find application in nanoelectronic devices at a desirable frequency of operation.

  7. Positive frequency-dependent selection on warning color in Alpine leaf beetles.

    PubMed

    Borer, Matthias; Van Noort, Tom; Rahier, Martine; Naisbit, Russell E

    2010-12-01

    Müller's theory of warning color and mimicry, despite forming a textbook example of frequency-dependent selection, has rarely been demonstrated in the wild. This may be largely due to the practical and statistical difficulties of measuring natural selection on mobile prey species. Here we demonstrate that this selection acts in alpine beetle communities by using tethered beetles exposed to natural predators. Oreina gloriosa leaf beetles (Coleoptera: Chrysomelidae) possess chemical defense in the form of cardenolides, accompanied by what appears to be warning color in bright metallic blues and greens. Individuals that match the locally predominant color morph have increased survival, with odds of week-long survival increased by a factor of 1.67 over those that do not match. This corresponds to selection of 13% against foreign morphs. Such selection, acting in concert with variation in community composition, could be responsible for geographic variation in warning color. However, in the face of this purifying selection, the within-population polymorphism seen in many Oreina species remains paradoxical.

  8. Self-consistent modeling of terahertz waveguide and cavity with frequency-dependent conductivity

    NASA Astrophysics Data System (ADS)

    Huang, Y. J.; Chu, K. R.; Thumm, M.

    2015-01-01

    The surface resistance of metals, and hence the Ohmic dissipation per unit area, scales with the square root of the frequency of an incident electromagnetic wave. As is well recognized, this can lead to excessive wall losses at terahertz (THz) frequencies. On the other hand, high-frequency oscillatory motion of conduction electrons tends to mitigate the collisional damping. As a result, the classical theory predicts that metals behave more like a transparent medium at frequencies above the ultraviolet. Such a behavior difference is inherent in the AC conductivity, a frequency-dependent complex quantity commonly used to treat electromagnetics of metals at optical frequencies. The THz region falls in the gap between microwave and optical frequencies. However, metals are still commonly modeled by the DC conductivity in currently active vacuum electronics research aimed at the development of high-power THz sources (notably the gyrotron), although a small reduction of the DC conductivity due to surface roughness is sometimes included. In this study, we present a self-consistent modeling of the gyrotron interaction structures (a metallic waveguide or cavity) with the AC conductivity. The resulting waveguide attenuation constants and cavity quality factors are compared with those of the DC-conductivity model. The reduction in Ohmic losses under the AC-conductivity model is shown to be increasingly significant as the frequency reaches deeper into the THz region. Such effects are of considerable importance to THz gyrotrons for which the minimization of Ohmic losses constitutes a major design consideration.

  9. Frequency-Dependent Scattering Observed in P- and Surface-Wave Arrivals From South India

    NASA Astrophysics Data System (ADS)

    Rai, A. K.

    2017-03-01

    Anomalies in polarization angles of teleseismic waves have been used to understand effect of scattered arrivals from subsurface heterogeneities. Seismological data recorded in southern India show polarization anomalies up to 5° for several stations. These anomalies are most pronounced for earthquakes from western and southern azimuths. Furthermore, stations located near the boundary of Dharwar craton and southern Granulites are more affected by scattered waves. Considering that many of the nearby stations show similar patterns of polarization anomalies, it is likely that the source of scattered energy is located at shallower depths. The non-stationary nature of seismic arrivals warrants determination of frequency-dependent polarization. Result obtained using multi-taper spectral analysis method indicates that data are contaminated at frequencies greater than 2 Hz for most of the stations. Furthermore, surface-wave records also indicate off-azimuth arrivals, and quasi-Love waves indicating heterogeneities or anisotropy in the subsurface. These small-scale heterogeneities that may be located in crust may be important for studies using converted phases and ground motion prediction studies.

  10. Frequency dependence of electrical and magnetic properties of Li-Ni-Mn-Co ferrites

    NASA Astrophysics Data System (ADS)

    Maisnam, Mamata; Phanjoubam, Sumitra

    2012-02-01

    Substituted Li-ferrites with compositional formula Li 0.45- x/2 Ni 0.1Mn 0.1Co xFe 2.35- x/2 O 4 with x ranging from 0 to 0.1 in steps of 0.02 were prepared by the conventional ceramic technique. The single-phase spinel structure of the samples was confirmed by XRD analysis. The lattice constant was observed to increase with the increase of the Co 2+ substitution. The dielectric constant, ɛ' and dielectric loss tangent, tan δ was studied as a function of frequency in the range 100 Hz to 1 MHz. A decrease is observed in the value of ɛ' with substitution at lower frequencies. ɛ' showed a dispersive behavior with frequency for all the samples. The frequency dependence of tan δ showed a resonance peak. The magnetic properties viz initial permeability and magnetic loss were also studied as a function of frequency. The possible mechanisms contributing to the results have been discussed.

  11. Role of acoustic phonons in frequency dependent electronic thermal conductivity of graphene

    NASA Astrophysics Data System (ADS)

    Bhalla, Pankaj

    2017-03-01

    We study the effect of the electron-phonon interaction on the finite frequency dependent electronic thermal conductivity of two dimensional graphene. We calculate it for various acoustic phonons present in graphene and characterized by different dispersion relations using the memory function approach. It is found that the electronic thermal conductivity κe (T) in the zero frequency limit follows different power law for the longitudinal/transverse and the flexural acoustic phonons. For the longitudinal/transverse phonons, κe (T) ∼T-1 at the low temperature and saturates at the high temperature. These signatures qualitatively agree with the results calculated by solving the Boltzmann equation analytically and numerically. Similarly, for the flexural phonons, we find that κe (T) shows T 1 / 2 law at the low temperature and then saturates at the high temperature. In the finite frequency regime, we observe that the real part of the electronic thermal conductivity, Re [κe (ω , T) ] follows ω-2 behavior at the low frequency and becomes frequency independent at the high frequency.

  12. FREQUENCY DEPENDENCE OF POLARIZATION OF ZEBRA PATTERN IN TYPE-IV SOLAR RADIO BURSTS

    SciTech Connect

    Kaneda, Kazutaka; Misawa, H.; Tsuchiya, F.; Obara, T.; Iwai, K.

    2015-08-01

    We investigated the polarization characteristics of a zebra pattern (ZP) in a type-IV solar radio burst observed with AMATERAS on 2011 June 21 for the purpose of evaluating the generation processes of ZPs. Analyzing highly resolved spectral and polarization data revealed the frequency dependence of the degree of circular polarization and the delay between two polarized components for the first time. The degree of circular polarization was 50%–70% right-handed and it varied little as a function of frequency. Cross-correlation analysis determined that the left-handed circularly polarized component was delayed by 50–70 ms relative to the right-handed component over the entire frequency range of the ZP and this delay increased with the frequency. We examined the obtained polarization characteristics by using pre-existing ZP models and concluded that the ZP was generated by the double-plasma-resonance process. Our results suggest that the ZP emission was originally generated in a completely polarized state in the O-mode and was partly converted into the X-mode near the source. Subsequently, the difference between the group velocities of the O-mode and X-mode caused the temporal delay.

  13. Sensitivity to a frequency-dependent circular polarization in an isotropic stochastic gravitational wave background

    NASA Astrophysics Data System (ADS)

    Smith, Tristan L.; Caldwell, Robert

    2017-02-01

    We calculate the sensitivity to a circular polarization of an isotropic stochastic gravitational wave background (ISGWB) as a function of frequency for ground- and space-based interferometers and observations of the cosmic microwave background. The origin of a circularly polarized ISGWB may be due to exotic primordial physics (i.e., parity violation in the early universe) and may be strongly frequency dependent. We present calculations within a coherent framework which clarifies the basic requirements for sensitivity to circular polarization, in distinction from previous work which focused on each of these techniques separately. We find that the addition of an interferometer with the sensitivity of the Einstein Telescope in the southern hemisphere improves the sensitivity of the ground-based network to circular polarization by about a factor of two. The sensitivity curves presented in this paper make clear that the wide range in frequencies of current and planned observations (10-18 Hz ≲f ≲100 Hz ) will be critical to determining the physics that underlies any positive detection of circular polarization in the ISGWB. We also identify a desert in circular polarization sensitivity for frequencies between 10-15 Hz ≲f ≲10-3 Hz , given the inability for pulsar timing arrays and indirect-detection methods to distinguish the gravitational wave polarization.

  14. Warning signals are under positive frequency-dependent selection in nature.

    PubMed

    Chouteau, Mathieu; Arias, Mónica; Joron, Mathieu

    2016-02-23

    Positive frequency-dependent selection (FDS) is a selection regime where the fitness of a phenotype increases with its frequency, and it is thought to underlie important adaptive strategies resting on signaling and communication. However, whether and how positive FDS truly operates in nature remains unknown, which hampers our understanding of signal diversity. Here, we test for positive FDS operating on the warning color patterns of chemically defended butterflies forming multiple coexisting mimicry assemblages in the Amazon. Using malleable prey models placed in localities showing differences in the relative frequencies of warningly colored prey, we demonstrate that the efficiency of a warning signal increases steadily with its local frequency in the natural community, up to a threshold where protection stabilizes. The shape of this relationship is consistent with the direct effect of the local abundance of each warning signal on the corresponding avoidance knowledge of the local predator community. This relationship, which differs from purifying selection acting on each mimetic pattern, indicates that predator knowledge, integrated over the entire community, is saturated only for the most common warning signals. In contrast, among the well-established warning signals present in local prey assemblages, most are incompletely known to local predators and enjoy incomplete protection. This incomplete predator knowledge should generate strong benefits to life history traits that enhance warning efficiency by increasing the effective frequency of prey visible to predators. Strategies such as gregariousness or niche convergence between comimics may therefore readily evolve through their effects on predator knowledge and warning efficiency.

  15. Plant-soil feedbacks promote negative frequency dependence in the coexistence of two aridland grasses.

    PubMed

    Chung, Y Anny; Rudgers, Jennifer A

    2016-07-27

    Understanding the mechanisms of species coexistence is key to predicting patterns of species diversity. Historically, the ecological paradigm has been that species coexist by partitioning resources: as a species increases in abundance, self-limitation kicks in, because species-specific resources decline. However, determining coexistence mechanisms has been a particular puzzle for sedentary organisms with high overlap in their resource requirements, such as plants. Recent evidence suggests that plant-associated microbes could generate the stabilizing self-limitation (negative frequency dependence) that is required for species coexistence. Here, we test the key assumption that plant-microbe feedbacks cause such self-limitation. We used competition experiments and modelling to evaluate how two common groups of soil microbes (rhizospheric microbes and biological soil crusts) influenced the self-limitation of two competing desert grass species. Negative feedbacks between the dominant plant competitor and its rhizospheric microbes magnified self-limitation, whereas beneficial interactions between both plant species and biological soil crusts partly counteracted this stabilizing effect. Plant-microbe interactions have received relatively little attention as drivers of vegetation dynamics in dry land ecosystems. Our results suggest that microbial mechanisms can contribute to patterns of plant coexistence in arid grasslands.

  16. Frequency-dependent photothermal measurement of transverse thermal diffusivity of organic semiconductors

    SciTech Connect

    Brill, J. W.; Shahi, Maryam; Yao, Y.; Payne, Marcia M.; Anthony, J. E.; Edberg, Jesper; Crispin, Xavier

    2015-12-21

    We have used a photothermal technique, in which chopped light heats the front surface of a small (∼1 mm{sup 2}) sample and the chopping frequency dependence of thermal radiation from the back surface is measured with a liquid-nitrogen-cooled infrared detector. In our system, the sample is placed directly in front of the detector within its dewar. Because the detector is also sensitive to some of the incident light, which leaks around or through the sample, measurements are made for the detector signal that is in quadrature with the chopped light. Results are presented for layered crystals of semiconducting 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-pn) and for papers of cellulose nanofibrils coated with semiconducting poly(3,4-ethylene-dioxythiophene):poly(styrene-sulfonate) (NFC-PEDOT). For NFC-PEDOT, we have found that the transverse diffusivity, smaller than the in-plane value, varies inversely with thickness, suggesting that texturing of the papers varies with thickness. For TIPS-pn, we have found that the interlayer diffusivity is an order of magnitude larger than the in-plane value, consistent with previous estimates, suggesting that low-frequency optical phonons, presumably associated with librations in the TIPS side groups, carry most of the heat.

  17. Direction of information flow in large-scale resting-state networks is frequency-dependent.

    PubMed

    Hillebrand, Arjan; Tewarie, Prejaas; van Dellen, Edwin; Yu, Meichen; Carbo, Ellen W S; Douw, Linda; Gouw, Alida A; van Straaten, Elisabeth C W; Stam, Cornelis J

    2016-04-05

    Normal brain function requires interactions between spatially separated, and functionally specialized, macroscopic regions, yet the directionality of these interactions in large-scale functional networks is unknown. Magnetoencephalography was used to determine the directionality of these interactions, where directionality was inferred from time series of beamformer-reconstructed estimates of neuronal activation, using a recently proposed measure of phase transfer entropy. We observed well-organized posterior-to-anterior patterns of information flow in the higher-frequency bands (alpha1, alpha2, and beta band), dominated by regions in the visual cortex and posterior default mode network. Opposite patterns of anterior-to-posterior flow were found in the theta band, involving mainly regions in the frontal lobe that were sending information to a more distributed network. Many strong information senders in the theta band were also frequent receivers in the alpha2 band, and vice versa. Our results provide evidence that large-scale resting-state patterns of information flow in the human brain form frequency-dependent reentry loops that are dominated by flow from parieto-occipital cortex to integrative frontal areas in the higher-frequency bands, which is mirrored by a theta band anterior-to-posterior flow.

  18. Frequency dependent changes in mechanosensitivity of rat knee joint afferents after antidromic saphenous nerve stimulation.

    PubMed

    Just, S; Heppelmann, B

    2002-01-01

    The aim of the present study was to examine the effect of electrical saphenous nerve stimulation (14 V, 1-10 Hz) on the mechanosensitivity of rat knee joint afferents. The responses to passive joint rotations at defined torque were recorded from slowly conducting knee joint afferent nerve fibres (0.6-20.0 m/s). After repeated nerve stimulation with 1 Hz, the mechanosensitivity of about 79% of the units was significantly affected. The effects were most prominent at a torque close to the mechanical threshold. In about 46% of the examined nerve fibres a significant increase was obtained, whereas about 33% reduced their mechanosensitivity. The sensitisation was prevented by an application of 5 microM phentolamine, an alpha-adrenergic receptor blocker, together with a neuropeptide Y receptor blocker. An inhibition of N-type Ca(2+) channels by an application of 1 microM omega-conotoxin GVIA caused comparable changes of the mechanosensitivity during the electrical stimulation. Electrical nerve stimulation with higher frequencies resulted in a further reduction of the mean response to joint rotations. After stimulation with 10 Hz, there was a nearly complete loss of mechanosensitivity.In conclusion, antidromic electrical nerve stimulation leads to a frequency dependent transient decrease of the mechanosensitivity. A sensitisation was only obtained at 1 Hz, but this effect may be based on the influence of sympathetic nerve fibres.

  19. Frequency-dependent inhibition of antidromic hippocampal compound action potentials by anti-convulsants.

    PubMed

    Teriakidis, Adrianna; Brown, Jon T; Randall, Andrew

    2006-01-01

    Using rat hippocampal slices, extracellularly recorded antidromic compound action potentials (cAP) were produced in CA1 pyramidal cell populations by electrical stimulation of the alveus at 0.5 Hz. These responses were additionally examined across a range of stimulus frequencies between 0.5 and 100 Hz. Anticonvulsant drugs in clinical use were applied via perfusion of the recording chamber. Three anticonvulsants produced a concentration-dependent inhibition of the cAP evoked at low frequency (0.5 Hz). The following IC(50) values were observed: lamotrigine, 210 microM (interpolated); carbamazepine, 210 microM (interpolated); phenytoin, 400 microM (extrapolated). The extent of inhibition produced was increased when trains of 30 cAPs were evoked at frequencies > or 30 Hz. This frequency dependence was quantified by measuring a response integral for a range of compound concentrations. Three other compounds valproate (5 mM), topiramate (500 microM) and levetiracetam (500 microM) produced no clear effect at any stimulus frequency tested. Using this simple neurophysiological assay it has been possible to compare the use-dependent inhibition of hippocampal action potentials by a range of anticonvulsants, providing a useful adjunct to patch clamp studies of such molecules at Na(+) channels. There is no clear correlation between the activity in this model and the clinical efficacy of these drugs in different forms of epilepsy.

  20. Frequency-dependent fitness of hybrids between oilseed rape (Brassica napus) and weedy B. rapa (Brassicaceae).

    PubMed

    Hauser, Thure P; Damgaard, Christian; Jørgensen, Rikke B

    2003-04-01

    Fitness of interspecific hybrids is sometimes high relative to their parents, despite the conventional belief that they are mostly unfit. F(1) hybrids between oilseed rape (Brassica napus) and weedy B. rapa can be significantly more fit than their weedy parents under some conditions; however, under other conditions they are less fit. To understand the reasons, we measured the seed production of B. napus, B. rapa, and different generations of hybrid plants at three different densities and in mixtures of different frequencies (including pure stands). Brassica napus, B. rapa, and backcross plants (F(1) ♀ × B. rapa) produced many more seeds per plant in pure plots than in mixtures and more seeds in plots when each was present at high frequency. The opposite was true for F(1) plants that produced many more seeds than B. rapa in mixtures, but fewer in pure stands. Both vegetative and reproductive interactions may be responsible for these effects. Our results show that the fitness of both parents and hybrids is strongly frequency-dependent and that the likelihood of introgression of genes between the species thus may depend on the numbers and densities of parents and their various hybrid offspring in the population.

  1. Viscoelastic characterization of compacted pharmaceutical excipient materials by analysis of frequency-dependent mechanical relaxation processes

    NASA Astrophysics Data System (ADS)

    Welch, K.; Mousavi, S.; Lundberg, B.; Strømme, M.

    2005-09-01

    A newly developed method for determining the frequency-dependent complex Young's modulus was employed to analyze the mechanical response of compacted microcrystalline cellulose, sorbitol, ethyl cellulose and starch for frequencies up to 20 kHz. A Debye-like relaxation was observed in all the studied pharmaceutical excipient materials and a comparison with corresponding dielectric spectroscopy data was made. The location in frequency of the relaxation peak was shown to correlate to the measured tensile strength of the tablets, and the relaxation was interpreted as the vibrational response of the interparticle hydrogen and van der Waals bindings in the tablets. Further, the measured relaxation strength, holding information about the energy loss involved in the relaxation processes, showed that the weakest material in terms of tensile strength, starch, is the material among the four tested ones that is able to absorb the most energy within its structure when exposed to external perturbations inducing vibrations in the studied frequency range. The results indicate that mechanical relaxation analysis performed over relatively broad frequency ranges should be useful for predicting material properties of importance for the functionality of a material in applications such as, e.g., drug delivery, drug storage and handling, and also for clarifying the origin of hitherto unexplained molecular processes.

  2. Frequency-dependent scaling from mesoscale to macroscale in viscoelastic random composites

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Ostoja-Starzewski, Martin

    2016-04-01

    This paper investigates the scaling from a statistical volume element (SVE; i.e. mesoscale level) to representative volume element (RVE; i.e. macroscale level) of spatially random linear viscoelastic materials, focusing on the quasi-static properties in the frequency domain. Requiring the material statistics to be spatially homogeneous and ergodic, the mesoscale bounds on the RVE response are developed from the Hill-Mandel homogenization condition adapted to viscoelastic materials. The bounds are obtained from two stochastic initial-boundary value problems set up, respectively, under uniform kinematic and traction boundary conditions. The frequency and scale dependencies of mesoscale bounds are obtained through computational mechanics for composites with planar random chessboard microstructures. In general, the frequency-dependent scaling to RVE can be described through a complex-valued scaling function, which generalizes the concept originally developed for linear elastic random composites. This scaling function is shown to apply for all different phase combinations on random chessboards and, essentially, is only a function of the microstructure and mesoscale.

  3. A General Model of Negative Frequency Dependent Selection Explains Global Patterns of Human ABO Polymorphism.

    PubMed

    Villanea, Fernando A; Safi, Kristin N; Busch, Jeremiah W

    2015-01-01

    The ABO locus in humans is characterized by elevated heterozygosity and very similar allele frequencies among populations scattered across the globe. Using knowledge of ABO protein function, we generated a simple model of asymmetric negative frequency dependent selection and genetic drift to explain the maintenance of ABO polymorphism and its loss in human populations. In our models, regardless of the strength of selection, models with large effective population sizes result in ABO allele frequencies that closely match those observed in most continental populations. Populations must be moderately small to fall out of equilibrium and lose either the A or B allele (N(e) ≤ 50) and much smaller (N(e) ≤ 25) for the complete loss of diversity, which nearly always involved the fixation of the O allele. A pattern of low heterozygosity at the ABO locus where loss of polymorphism occurs in our model is consistent with small populations, such as Native American populations. This study provides a general evolutionary model to explain the observed global patterns of polymorphism at the ABO locus and the pattern of allele loss in small populations. Moreover, these results inform the range of population sizes associated with the recent human colonization of the Americas.

  4. Alkali-silica reaction (ASR) detection in concrete from frequency dependent ultrasonic attenuation

    NASA Astrophysics Data System (ADS)

    Gong, Peng; Patton, Mark E.; Greve, David W.; Harley, Joel B.; Liu, Chang; Oppenheim, Irving J.

    2014-02-01

    The alkali-silica reaction (ASR) occurs between the reactive aggregates and the alkaline cement paste in concrete, eventually producing damage such as swelling and cracking. This research uses mechanical tests and ultrasonic tests to detect ASR onset in concrete specimens. The test specimens are fabricated in pairs, one specimen typically subjected to an accelerated ASR environment (immersion in 1 N NaOH solution at 80°C) and the second specimen comparable but not exposed to the accelerated ASR environment. In mechanical tests, the transverse and longitudinal resonant frequencies are measured. Results show that ASR damage would lower the resonant frequencies. In the ultrasonic test, broadband excitations are used and pitch-catch records are obtained. The presence of ASR damage in concrete is shown to cause frequency dependent ultrasonic attenuation. Signals from ASR damaged specimens show strong attenuation at high frequencies and weak attenuation at low frequencies. In contrast, signals frompaired non-ASR specimens show comparable energy over the entire range of measured frequencies. The cumulative distribution function of frequency components (CDF) is used to characterize the ultrasonic passband changes caused by ASR damage and detect the existence of ASR damage in frequency domain.

  5. Direction of information flow in large-scale resting-state networks is frequency-dependent

    PubMed Central

    Hillebrand, Arjan; Tewarie, Prejaas; van Dellen, Edwin; Yu, Meichen; Carbo, Ellen W. S.; Douw, Linda; Gouw, Alida A.; van Straaten, Elisabeth C. W.; Stam, Cornelis J.

    2016-01-01

    Normal brain function requires interactions between spatially separated, and functionally specialized, macroscopic regions, yet the directionality of these interactions in large-scale functional networks is unknown. Magnetoencephalography was used to determine the directionality of these interactions, where directionality was inferred from time series of beamformer-reconstructed estimates of neuronal activation, using a recently proposed measure of phase transfer entropy. We observed well-organized posterior-to-anterior patterns of information flow in the higher-frequency bands (alpha1, alpha2, and beta band), dominated by regions in the visual cortex and posterior default mode network. Opposite patterns of anterior-to-posterior flow were found in the theta band, involving mainly regions in the frontal lobe that were sending information to a more distributed network. Many strong information senders in the theta band were also frequent receivers in the alpha2 band, and vice versa. Our results provide evidence that large-scale resting-state patterns of information flow in the human brain form frequency-dependent reentry loops that are dominated by flow from parieto-occipital cortex to integrative frontal areas in the higher-frequency bands, which is mirrored by a theta band anterior-to-posterior flow. PMID:27001844

  6. FORWARD MODELING OF PROPAGATING SLOW WAVES IN CORONAL LOOPS AND THEIR FREQUENCY-DEPENDENT DAMPING

    SciTech Connect

    Mandal, Sudip; Banerjee, Dipankar; Magyar, Norbert; Yuan, Ding; Doorsselaere, Tom Van

    2016-03-20

    Propagating slow waves in coronal loops exhibit a damping that depends upon the frequency of the waves. In this study we aim to investigate the relationship of the damping length (L{sub d}) with the frequency of the propagating wave. We present a 3D coronal loop model with uniform density and temperature and investigate the frequency-dependent damping mechanism for the four chosen wave periods. We include the thermal conduction to damp the waves as they propagate through the loop. The numerical model output has been forward modeled to generate synthetic images of SDO/AIA 171 and 193 Å channels. The use of forward modeling, which incorporates the atomic emission properties into the intensity images, allows us to directly compare our results with the real observations. The results show that the damping lengths vary linearly with the periods. We also measure the contributions of the emission properties on the damping lengths by using density values from the simulation. In addition to that we have also calculated the theoretical dependence of L{sub d} with wave periods and showed that it is consistent with the results we obtained from the numerical modeling and earlier observations.

  7. Electromagnetic millimeter wave induced hypoalgesia: frequency dependence and involvement of endogenous opioids.

    PubMed

    Radzievsky, A A; Gordiienko, O V; Alekseev, S; Szabo, I; Cowan, A; Ziskin, M C

    2008-05-01

    Millimeter wave treatment (MMWT) is based on the systemic biological effects that develop following local skin exposure to low power electromagnetic waves in the millimeter range. In the present set of experiments, the hypoalgesic effect of this treatment was analyzed in mice. The murine nose area was exposed to MMW of "therapeutic" frequencies: 42.25, 53.57, and 61.22 GHz. MMWT-induced hypoalgesia was shown to be frequency dependent in two experimental models: (1) the cold water tail-flick test (chronic non-neuropathic pain), and (2) the wire surface test (chronic neuropathic pain following unilateral constriction injury to the sciatic nerve). Maximum hypoalgesic effect was obtained when the frequency was 61.22 GHz. Other exposure parameters were: incident power density = 13.3 mW/cm(2), duration of each exposure = 15 min. Involvement of delta and kappa endogenous opioids in the MMWT-induced hypoalgesia was demonstrated using selective blockers of delta- and kappa-opioid receptors and the direct ELISA measurement of endogenous opioids in CNS tissue. Possible mechanisms of the effect and the perspectives of the clinical application of MMWT are discussed.

  8. Frequency-dependent photothermal measurement of transverse thermal diffusivity of organic semiconductors

    NASA Astrophysics Data System (ADS)

    Brill, J. W.; Shahi, Maryam; Payne, Marcia M.; Edberg, Jesper; Yao, Y.; Crispin, Xavier; Anthony, J. E.

    2015-12-01

    We have used a photothermal technique, in which chopped light heats the front surface of a small (˜1 mm2) sample and the chopping frequency dependence of thermal radiation from the back surface is measured with a liquid-nitrogen-cooled infrared detector. In our system, the sample is placed directly in front of the detector within its dewar. Because the detector is also sensitive to some of the incident light, which leaks around or through the sample, measurements are made for the detector signal that is in quadrature with the chopped light. Results are presented for layered crystals of semiconducting 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-pn) and for papers of cellulose nanofibrils coated with semiconducting poly(3,4-ethylene-dioxythiophene):poly(styrene-sulfonate) (NFC-PEDOT). For NFC-PEDOT, we have found that the transverse diffusivity, smaller than the in-plane value, varies inversely with thickness, suggesting that texturing of the papers varies with thickness. For TIPS-pn, we have found that the interlayer diffusivity is an order of magnitude larger than the in-plane value, consistent with previous estimates, suggesting that low-frequency optical phonons, presumably associated with librations in the TIPS side groups, carry most of the heat.

  9. Contact stresses modeling at the Panda-type fiber single-layer winding and evaluation of their impact on the fiber optic properties

    NASA Astrophysics Data System (ADS)

    Lesnikova, Yu I.; Smetannikov, O. Yu; Trufanov, A. N.; Trufanov, N. A.

    2017-02-01

    The impact of contact transverse forces on the birefringence of the single-mode polarization-maintaining Panda-type fiber is numerically modeled. It has been established that with a single-row power winding on a cylindrical mandrel, the fiber tension at winding is the principal factor that influences birefringence. When coiling the fiber based on the local defect microbending, the birefringence at the microbending point differs from that of the free fiber by 1.3%.

  10. Functional analyses of cotton (Gossypium hirsutum L.) immature fiber (im) mutant reveal that fiber cell wall development is associated with sensitivity to stress.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Cotton fiber maturity refers the degree of fiber cell wall development and is an important factor for determining commercial value of cotton. The molecular mechanism regulating the fiber cell wall development has not been well characterized. Microscopic image analysis of the cross-sect...

  11. Effect of Environment on Stress-Rupture Behavior of a Carbon Fiber-Reinforced Silicon Carbide (C/SiC) Ceramic Matrix Composite

    NASA Technical Reports Server (NTRS)

    Verrilli, Michael J.; Opila, Elizabeth J.; Calomino, Anthony; Kiser, J. Douglas

    2002-01-01

    Stress-rupture tests were conducted in air, vacuum, and steam-containing environments to identify the failure modes and degradation mechanisms of a carbon fiber-reinforced silicon carbide (C/SiC) composite at two temperatures, 600 and 1200 C. Stress-rupture lives in air and steam containing environments (50 - 80% steam with argon) are similar for a composite stress of 69 MPa at 1200 C. Lives of specimens tested in a 20% steam/argon environment were about twice as long. For tests conducted at 600 C, composite life in 20% steam/argon was 20 times longer than life in air. Thermogravimetric analysis of the carbon fibers was conducted under similar conditions to the stress-rupture tests. The oxidation rate of the fibers in the various environments correlated with the composite stress-rupture lives. Examination of the failed specimens indicated that oxidation of the carbon fibers was the primary damage mode for specimens tested in air and steam environments at both temperatures.

  12. Frequency Dependence of the Exact Exchange-Correlation Kernel of Time-Dependent Density-Functional Theory

    NASA Astrophysics Data System (ADS)

    Thiele, M.; Kümmel, S.

    2014-02-01

    We present a scheme for numerically reconstructing the exact and the Kohn-Sham time-dependent density-density response functions, and from their inverse the numerical representation of the exact frequency-dependent exchange-correlation kernel fxc of time-dependent Kohn-Sham density-functional theory. We investigate the exact fxc in detail for a system that is known to show strong memory effects. The reconstructed kernel fulfills the appropriate sum rule. Using it in linear response calculations, we show how the exact fxc, due to its frequency dependence, yields the exact excitation energies, including the ones of double excitation character.

  13. Development of a self-stressing NiTiNb shape memory alloy (SMA)/fiber reinforced polymer (FRP) patch

    NASA Astrophysics Data System (ADS)

    El-Tahan, M.; Dawood, M.; Song, G.

    2015-06-01

    The objective of this research is to develop a self-stressing patch using a combination of shape memory alloys (SMAs) and fiber reinforced polymer (FRP) composites. Prestressed carbon FRP patches are emerging as a promising alternative to traditional methods to repair cracked steel structures and civil infrastructure. However, prestressing these patches typically requires heavy and complex fixtures, which is impractical in many applications. This paper presents a new approach in which the prestressing force is applied by restraining the shape memory effect of NiTiNb SMA wires. The wires are subsequently embedded in an FRP overlay patch. This method overcomes the practical challenges associated with conventional prestressing. This paper presents the conceptual development of the self-stressing patch with the support of experimental observations. The bond between the SMA wires and the FRP is evaluated using pull-out tests. The paper concludes with an experimental study that evaluates the patch response during activation subsequent monotonic tensile loading. The results demonstrate that the self-stressing patch with NiTiNb SMA is capable of generating a significant prestressing force with minimal tool and labor requirements.

  14. Frequency-dependent effects of rupture for the 2004 Parkfield mainshock, results from UPSAR

    USGS Publications Warehouse

    Fletcher, Jon B.

    2014-01-01

    The frequency-dependent effects of rupture propagation of the Parkfield, California earthquake (Sept. 28, 2004, M6) to the northwest along the San Andreas fault can be seen in acceleration records at UPSAR (USGS Parkfield Seismic Array) in at least two ways. First, we can see the effects of directivity in the acceleration traces at UPSAR, which is about 11.5 km from the epicenter. Directivity or the seismic equivalent of a Doppler shift has been documented in many cases by comparing short duration, high-amplitude pulses (P or S) in the forward direction with longer duration body waves in the backward direction. In this case we detect a change from a relatively large amplitude, coherent, high-frequency signal at the start of rupture to a low-amplitude, low-coherent, low-frequency signal at about the time the rupture front transfers from the forward azimuth to the back azimuth at about 34-36 s (time is UTC and are the seconds after day 272 and 17 hours and 15 minutes. S arrival is just after 30s) for rays leaving the fault and propagating to UPSAR. The frequency change is obvious in the band about 5 to 30 Hz, which is significantly above the corner frequency of the earthquake (about 0.11Hz). From kinematic source models, the duration of faulting is about 9.2 s and the change in frequency is during faulting as the rupture extends to the northwest. Understanding the systematic change in frequency and amplitude of seismic waves in relation to the propagation of the rupture front is important for predicting strong ground motion. Second, we can filter the acceleration records from the array to determine if the low frequency energy emerges from the same part of the fault as the high frequency signal (e.g. has the same back azimuth and apparent velocity at UPSAR) an important clue to the dynamics of rupture. Analysis of sources of strong motion (characterized by relatively high frequencies) compared to kinematic slip models (relatively low frequency) for the

  15. Frequency-dependent amplification of stretch-evoked excitatory input in spinal motoneurons.

    PubMed

    Powers, Randall K; Nardelli, Paul; Cope, T C

    2012-08-01

    Voltage-dependent calcium and sodium channels mediating persistent inward currents (PICs) amplify the effects of synaptic inputs on the membrane potential and firing rate of motoneurons. CaPIC channels are thought to be relatively slow, whereas the NaPIC channels have fast kinetics. These different characteristics influence how synaptic inputs with different frequency content are amplified; the slow kinetics of Ca channels suggest that they can only contribute to amplification of low frequency inputs (<5 Hz). To characterize frequency-dependent amplification of excitatory postsynaptic potentials (EPSPs), we measured the averaged stretch-evoked EPSPs in cat medial gastrocnemius motoneurons in decerebrate cats at different subthreshold levels of membrane potential. EPSPs were produced by muscle spindle afferents activated by stretching the homonymous and synergist muscles at frequencies of 5-50 Hz. We adjusted the stretch amplitudes at different frequencies to produce approximately the same peak-to-peak EPSP amplitude and quantified the amount of amplification by expressing the EPSP integral at different levels of depolarization as a percentage of that measured with the membrane hyperpolarized. Amplification was observed at all stretch frequencies but generally decreased with increasing stretch frequency. However, in many cells the amount of amplification was greater at 10 Hz than at 5 Hz. Fast amplification was generally reduced or absent when the lidocaine derivative QX-314 was included in the electrode solution, supporting a strong contribution from Na channels. These results suggest that NaPICs can combine with CaPICs to enhance motoneuron responses to modulations of synaptic drive over a physiologically significant range of frequencies.

  16. Temperature and frequency dependent conductivity of bismuth zinc vanadate semiconducting glassy system

    NASA Astrophysics Data System (ADS)

    Punia, R.; Kundu, R. S.; Dult, Meenakshi; Murugavel, S.; Kishore, N.

    2012-10-01

    The ac conductivity of bismuth zinc vanadate glasses with compositions 50V2O5. xBi2O3. (50-x) ZnO has been studied in the frequency range 10-1 Hz to 2 MHz and in temperature range 333.16 K to 533.16 K. The temperature and frequency dependent conductivity is found to obey Jonscher's universal power law for all the compositions of bismuth zinc vanadate glass system. The dc conductivity (σdc), crossover frequency (ωH), and frequency exponent (s) have been estimated from the fitting of experimental data of ac conductivity with Jonscher's universal power law. Enthalpy to dissociate the cation from its original site next to a charge compensating center (Hf) and enthalpy of migration (Hm) have also been estimated. It has been observed that mobility of charge carriers and ac conductivity in case of zinc vanadate glass system increases with increase in Bi2O3 content. In order to determine the conduction mechanism, the ac conductivity and its frequency exponent have been analyzed in the frame work of various theoretical models based on classical hopping over barriers and quantum mechanical tunneling. The ac conduction takes place via tunneling of overlapping large polarons in all the compositions of presently studied vanadate glasses. The fitting of experimental data of ac conductivity with overlapping large polarons tunneling model has also been done. The parameters; density of states at Fermi level (N(EF)), activation energy associated with charge transfer between the overlapping sites (WHO), inverse localization length (α) and polaron radius (rp) obtained from fitting of this model with experimental data are reasonable.

  17. Frequency-dependent effects of background noise on subcortical response timing.

    PubMed

    Tierney, A; Parbery-Clark, A; Skoe, E; Kraus, N

    2011-12-01

    The addition of background noise to an auditory signal delays brainstem response timing. This effect has been extensively documented using manual peak selection. Peak picking, however, is impractical for large-scale studies of spectrotemporally complex stimuli, and leaves open the question of whether noise-induced delays are frequency-dependent or occur across the frequency spectrum. Here we use an automated, objective method to examine phase shifts between auditory brainstem responses to a speech sound (/da/) presented with and without background noise. We predicted that shifts in neural response timing would also be reflected in frequency-specific phase shifts. Our results indicate that the addition of background noise causes phase shifts across the subcortical response spectrum (70-1000 Hz). However, this noise-induced delay is not uniform such that some frequency bands show greater shifts than others: low-frequency phase shifts (300-500 Hz) are largest during the response to the consonant-vowel formant transition (/d/), while high-frequency shifts (720-1000 Hz) predominate during the response to the steady-state vowel (/a/). Most importantly, phase shifts occurring in specific frequency bands correlate strongly with shifts in the latencies of the predominant peaks in the auditory brainstem response, while phase shifts in other frequency bands do not. This finding confirms the validity of phase shift detection as an objective measure of timing differences and reveals that this method detects noise-induced shifts in timing that may not be captured by traditional peak latency measurements.

  18. Structure, frequency dependent dielectric properties and domain configuration of PMN-PFN-PT single crystal

    NASA Astrophysics Data System (ADS)

    Luo, Nengneng; Li, Qiang; Yan, Qingfeng; Zhang, Yiling; Xia, Zhiguo; Chu, Xiangcheng

    2014-09-01

    Pb(Mg1/3Nb2/3)O3-Pb(Fe1/2Nb1/2)O3-PbTiO3 (PMN-PFN-PT) single crystal was grown successfully from high temperature solution by slow cooling method. Structure, frequency dependent dielectric properties and domain configuration of [0 0 1]-oriented single crystal have been investigated. X-ray diffraction analysis showed that the as-grown single crystal had a pure perovskite structure with tetragonal symmetry at room temperature. The temperature dependent dielectric permittivity showed only one dielectric anomaly, indicating the ferroelectric-paraelectric phase transition. According to the modified Curie-Weiss relationship, as-grown PMN-PFN-PT single crystal was in an intermediate state between normal and relaxor ferroelectrics. Dielectric permittivity and loss of [0 0 1]-oriented PMN-PFN-PT single crystal at room temperature decreased sharply with increasing frequency, which were different from those of PMN-PT65/35 single crystal. Domain configuration of [0 0 1]-oriented PMN-PFN-PT single crystal was observed for the first time by using a polarized light microscopy (PLM). The extinction of 90° domains at P/A:0° revealed a tetragonal structure. Domains along (0 0 1) face exhibited a straight stripe-like morphology with domain size on the scale of 10 μm in average, combining with some much smaller domains about 3-5 μm in width at the intersection of domain blocks which helps to minimize its total energy.

  19. Frequency-dependent shear wave splitting and heterogeneous anisotropic structure beneath the Gulf of California region

    NASA Astrophysics Data System (ADS)

    Long, Maureen D.

    2010-09-01

    The Gulf of California region has undergone a major evolution over the past ˜15 Ma, since subduction of the now-extinct Farallon plate ceased and transform motion began, leading to the initiation of rifting and the opening of the Gulf of California ˜5 Ma ago. The character of dynamic processes in the upper mantle beneath the region remains poorly understood, but constraints on seismic anisotropy in the upper mantle can shed light on contemporary mantle flow processes. In order to characterize more fully the anisotropic structure of the upper mantle beneath the region, I present measurements of SKS splitting at 14 broadband stations of the NARS-Baja array at periods between ˜8 and 50 s. The measured splitting parameters ( ϕ, δt) at NARS-Baja stations exhibit a high degree of complexity, with dramatic lateral variations, significant backazimuthal variations at individual stations, and a large number of well-constrained null measurements over a range of backazimuths. The dependence of splitting parameters on frequency is evaluated by applying a series of bandpass filters to high signal-to-noise SKS arrivals. I find that while fast directions are generally insensitive to the SKS frequency content, delay times are frequency dependent at several stations. The measurements presented in this study indicate that the anisotropic structure of the upper mantle beneath the Gulf of California region is complex and exhibits a high degree of both lateral and vertical heterogeneity. The observed splitting is consistent with a scenario in which a large-scale reorganization of the mantle flow field has been inhibited by the presence of a stalled fragment of oceanic lithosphere associated with Farallon subduction. The pattern of mantle flow appears to be controlled by more localized processes, likely including small-scale buoyant upwelling associated with partial melting beneath the central part of the Gulf of California rift.

  20. Frequency-dependent pollinator discrimination acts against female plants in the gynodioecious Geranium maculatum

    PubMed Central

    Van Etten, Megan L.; Chang, Shu-Mei

    2014-01-01

    Background and Aims Gynodioecy, the co-occurrence of female and hermaphroditic individuals, is thought to be an intermediate step between hermaphroditism and separate sexes, a major transition in flowering plants. Because retaining females in a population requires that they have increased seed fitness (to compensate for the lack of pollen fitness), factors that affect seed fitness are of great importance to the evolution of this mating system and have often been studied. However, factors negatively affecting female fitness are equally important and have been largely neglected. One such factor stems from female flowers being less attractive to insects than hermaphrodite flowers, thereby decreasing their relative fitness. Methods To test the severity and consequences of this type of pollinator discrimination in Geranium maculatum, experimental populations with the range of sex ratios observed in nature were created, ranging from 13 % to 42 % females. Pollinators were observed in order to measure the strength of discrimination, and pollen deposition and seed production of both sexes were measured to determine the fitness consequences of this discrimination. Additionally a comparison was made across the sex ratios to determine whether discrimination was frequency-dependent. Key Results It was found that female flowers, on average, were visited at half of the rate of hermaphrodite flowers, which decreased their pollen receipt and seed production. Additionally, females were most discriminated against when rare, due to both changes in the pollinators' behaviour and a shift in pollinator composition. Conclusions The results suggest that pollinator discrimination negatively affects females' relative fitness when they are rare. Thus, the initial spread of females in a population, the first step in the evolution of gynodioecy, may be made more difficult due to pollinator discrimination. PMID:25326647

  1. In vitro characterization of HCN channel kinetics and frequency dependence in myocytes predicts biological pacemaker functionality

    PubMed Central

    Zhao, Xin; Bucchi, Annalisa; Oren, Ronit V; Kryukova, Yelena; Dun, Wen; Clancy, Colleen E; Robinson, Richard B

    2009-01-01

    The pacemaker current, mediated by hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, contributes to the initiation and regulation of cardiac rhythm. Previous experiments creating HCN-based biological pacemakers in vivo found that an engineered HCN2/HCN1 chimeric channel (HCN212) resulted in significantly faster rates than HCN2, interrupted by 1–5 s pauses. To elucidate the mechanisms underlying the differences in HCN212 and HCN2 in vivo functionality as biological pacemakers, we studied newborn rat ventricular myocytes over-expressing either HCN2 or HCN212 channels. The HCN2- and HCN212-over-expressing myocytes manifest similar voltage dependence, current density and sensitivity to saturating cAMP concentrations, but HCN212 has faster activation/deactivation kinetics. Compared with HCN2, myocytes expressing HCN212 exhibit a faster spontaneous rate and greater incidence of irregular rhythms (i.e. periods of rapid spontaneous rate followed by pauses). To explore these rhythm differences further, we imposed consecutive pacing and found that activation kinetics of the two channels are slower at faster pacing frequencies. As a result, time-dependent HCN current flowing during diastole decreases for both constructs during a train of stimuli at a rapid frequency, with the effect more pronounced for HCN2. In addition, the slower deactivation kinetics of HCN2 contributes to more pronounced instantaneous current at a slower frequency. As a result of the frequency dependence of both instantaneous and time-dependent current, HCN2 exhibits more robust negative feedback than HCN212, contributing to the maintenance of a stable pacing rhythm. These results illustrate the benefit of screening HCN constructs in spontaneously active myocyte cultures and may provide the basis for future optimization of HCN-based biological pacemakers. PMID:19171659

  2. The evolution of social learning rules: payoff-biased and frequency-dependent biased transmission.

    PubMed

    Kendal, Jeremy; Giraldeau, Luc-Alain; Laland, Kevin

    2009-09-21

    Humans and other animals do not use social learning indiscriminately, rather, natural selection has favoured the evolution of social learning rules that make selective use of social learning to acquire relevant information in a changing environment. We present a gene-culture coevolutionary analysis of a small selection of such rules (unbiased social learning, payoff-biased social learning and frequency-dependent biased social learning, including conformism and anti-conformism) in a population of asocial learners where the environment is subject to a constant probability of change to a novel state. We define conditions under which each rule evolves to a genetically polymorphic equilibrium. We find that payoff-biased social learning may evolve under high levels of environmental variation if the fitness benefit associated with the acquired behaviour is either high or low but not of intermediate value. In contrast, both conformist and anti-conformist biases can become fixed when environment variation is low, whereupon the mean fitness in the population is higher than for a population of asocial learners. Our examination of the population dynamics reveals stable limit cycles under conformist and anti-conformist biases and some highly complex dynamics including chaos. Anti-conformists can out-compete conformists when conditions favour a low equilibrium frequency of the learned behaviour. We conclude that evolution, punctuated by the repeated successful invasion of different social learning rules, should continuously favour a reduction in the equilibrium frequency of asocial learning, and propose that, among competing social learning rules, the dominant rule will be the one that can persist with the lowest frequency of asocial learning.

  3. Frequency dependence of sound propagation in superfluid-filled porous media

    NASA Astrophysics Data System (ADS)

    Warner, Kevin; Beamish, J. R.

    1994-12-01

    We have studied the acoustics of fluid-filled porous media by measuring the velocity and attenuation of ultrasonic (4 to 31 MHz) shear waves in several different ceramic materials. We used liquid helium as the pore fluid and made measurements down to low temperatures where the helium was superfluid. This allowed us to completely eliminate the effects of viscosity and thus to unambiguously determine the velocity changes and attenuation due to the Biot mechanism (fluid ``sloshing'' in the pores). By using ceramics with different pore sizes and a corresponding wide range of permeabilities (from 2.6×10-14 to 3.5×10-11 cm2) we were able to make measurements in both the low-frequency regime (where the fluid is viscously locked to the porous frame) and in the high-frequency regime (where most of the fluid is decoupled from the frame). One of the samples had an extremely high porosity (92%), allowing us to study the fluid motion in a very open geometry. In all cases, we found that the Biot model could quantitatively describe the temperature and frequency dependence of our results. This allowed us to determine the structural parameters of the porous media (pore tortuosity c, permeability κa and effective pore size Λ), something which has previously required measurements of the Biot slow wave (fourth sound and second sound in superfluid helium). The acoustically determined parameters were compared to the independently measured static permeability, κ0, and to previous experimental and theoretical work on model porous media. Our results indicate that, even in materials with irregular pores and a range of length scales, acoustic measurements made in either the low- or high-frequency regime can be used to estimate the permeability.

  4. Geometrical attenuation, frequency dependence of Q, and the absorption band problem

    NASA Astrophysics Data System (ADS)

    Morozov, Igor B.

    2008-10-01

    A geometrical attenuation model is proposed as an alternative to the conventional frequency-dependent attenuation law Q(f) = Q0(f/f0)η. The new model provides a straightforward differentiation between the geometrical and effective attenuation (Qe) which incorporates the intrinsic attenuation and small-scale scattering. Unlike the (Q0, η) description, the inversion procedure uses only the spectral amplitude data and does not rely on elaborate theoretical models or restrictive assumptions. Data from over 40 reported studies were transformed to the new parametrization. The levels of geometrical attenuation strongly correlate with crustal tectonic types and decrease with tectonic age. The corrected values of Qe are frequency-independent and generally significantly higher than Q0 and show no significant correlation with tectonic age. Several case studies were revisited in detail, with significant changes in the interpretations. The absorption-band and the `10-Hz transition' are not found in the corrected Qe data, and therefore, these phenomena are interpreted as related to geometrical attenuation. The absorption band could correspond to changes in the dominant mode content of the wavefield as the frequency changes from about 0.1 to 100 Hz. Alternatively, it could also be a pure artefact related to the power-law Q(f) paradigm above. The explicit separation of the geometrical and intrinsic attenuation achieves three goals: (1) it provides an unambiguous, assumption- and model-free description of attenuation, (2) it allows relating the observations to the basic physics and geology and (3) it simplifies the interpretation because of reduced emphasis on the apparent Q(f) dependence. The model also agrees remarkably well with the initial attempts for finite-difference short-period coda waveform modelling. Because of its consistency and direct link to the observations, the approach should also help in building robust and transportable coda magnitudes and in seismic

  5. Phase and Frequency-Dependent Effects of Transcranial Alternating Current Stimulation on Motor Cortical Excitability

    PubMed Central

    Kuroda, Tsuyoshi; Tobimatsu, Shozo

    2016-01-01

    Transcranial alternating current stimulation (tACS) can entrain ongoing brain oscillations and modulate the motor system in a frequency-dependent manner. Recent animal studies have demonstrated that the phase of a sinusoidal current also has an important role in modulation of neuronal activity. However, the phase effects of tACS on the human motor system are largely unknown. Here, we systematically investigated the effects of tACS phase and frequency on the primary motor cortex (M1) by using motor evoked potentials (MEPs) with transcranial magnetic stimulation (TMS). First, we compared the phase effects (90°, 180°, 270° or 360°) of 10 and 20 Hz tACS on MEPs. The 20 Hz tACS significantly increased M1 excitability compared with the 10 Hz tACS at 90° phase only. Second, we studied the 90° phase effect on MEPs at different tACS frequencies (5, 10, 20 or 40 Hz). The 20 vs. 10 Hz difference was again observed, but the 90° phase in 5 and 40 Hz tACS did not influence M1 excitability. Third, the 90° phase effects of 10 and 20 Hz tACS were compared with sham stimulation. The 90° phase of 20 Hz tACS enhanced MEP amplitudes compared with sham stimulation, but there was no significant effect of 10 Hz tACS. Taken together, we assume that the differential 90° phase effects on 20 Hz and 10 Hz tACS can be attributed to the neural synchronization modulated by tACS. Our results further underline that phase and frequency are the important factors in the effects of tACS on M1 excitability. PMID:27607431

  6. Method of frequency dependent correlations: investigating the variability of total solar irradiance

    NASA Astrophysics Data System (ADS)

    Pelt, J.; Käpylä, M. J.; Olspert, N.

    2017-03-01

    Context. This paper contributes to the field of modeling and hindcasting of the total solar irradiance (TSI) based on different proxy data that extend further back in time than the TSI that is measured from satellites. Aims: We introduce a simple method to analyze persistent frequency-dependent correlations (FDCs) between the time series and use these correlations to hindcast missing historical TSI values. We try to avoid arbitrary choices of the free parameters of the model by computing them using an optimization procedure. The method can be regarded as a general tool for pairs of data sets, where correlating and anticorrelating components can be separated into non-overlapping regions in frequency domain. Methods: Our method is based on low-pass and band-pass filtering with a Gaussian transfer function combined with de-trending and computation of envelope curves. Results: We find a major controversy between the historical proxies and satellite-measured targets: a large variance is detected between the low-frequency parts of targets, while the low-frequency proxy behavior of different measurement series is consistent with high precision. We also show that even though the rotational signal is not strongly manifested in the targets and proxies, it becomes clearly visible in FDC spectrum. A significant part of the variability can be explained by a very simple model consisting of two components: the original proxy describing blanketing by sunspots, and the low-pass-filtered curve describing the overall activity level. The models with the full library of the different building blocks can be applied to hindcasting with a high level of confidence, Rc ≈ 0.90. The usefulness of these models is limited by the major target controversy. Conclusions: The application of the new method to solar data allows us to obtain important insights into the different TSI modeling procedures and their capabilities for hindcasting based on the directly observed time intervals.

  7. Acoustic characterization of echogenic liposomes: Frequency-dependent attenuation and backscatter

    PubMed Central

    Kopechek, Jonathan A.; Haworth, Kevin J.; Raymond, Jason L.; Douglas Mast, T.; Perrin, Stephen R.; Klegerman, Melvin E.; Huang, Shaoling; Porter, Tyrone M.; McPherson, David D.; Holland, Christy K.

    2011-01-01

    Ultrasound contrast agents (UCAs) are used clinically to aid detection and diagnosis of abnormal blood flow or perfusion. Characterization of UCAs can aid in the optimization of ultrasound parameters for enhanced image contrast. In this study echogenic liposomes (ELIPs) were characterized acoustically by measuring the frequency-dependent attenuation and backscatter coefficients at frequencies between 3 and 30 MHz using a broadband pulse-echo technique. The experimental methods were initially validated by comparing the attenuation and backscatter coefficients measured from 50-μm and 100-μm polystyrene microspheres with theoretical values. The size distribution of the ELIPs was measured and found to be polydisperse, ranging in size from 40 nm to 6 μm in diameter, with the highest number observed at 65 nm. The ELIP attenuation coefficients ranged from 3.7 ± 1.0 to 8.0 ± 3.3 dB/cm between 3 and 25 MHz. The backscatter coefficients were 0.011 ± 0.006 (cm str)−1 between 6 and 9 MHz and 0.023 ± 0.006 (cm str)−1 between 13 and 30 MHz. The measured scattering-to-attenuation ratio ranged from 8% to 22% between 6 and 25 MHz. Thus ELIPs can provide enhanced contrast over a broad range of frequencies and the scattering properties are suitable for various ultrasound imaging applications including diagnostic and intravascular ultrasound. PMID:22088022

  8. Three-dimensional finite element analysis of the stress distribution in the endodontically treated maxillary central incisor by glass fiber post and dentin post

    PubMed Central

    Memon, Sarfaraz; Mehta, Sonal; Malik, Salim; Nirmal, Narendra; Sharma, Deeksha; Arora, Himanshu

    2016-01-01

    Introduction: From the point of dental practice, the restoration of endodontically treated teeth has become an important aspect as it involves a range of treatment options of variable complexity. Restoring teeth with insufficient coronal tooth structure, it is always indicated to use the post to retain a core for definitive restoration. Fiber post has a modulus of elasticity in analogs to dentin structure, thus reducing the stress areas at the dowel dentin interface. However, the only material that can substantiate all these properties can be none other than dentin itself. Materials and Methodology: Three-dimensional (3D) models of the maxillary central incisor were developed incorporating all the nonlinearities. Continuum 3D elements were used in three dimensions. Maxillary central incisor was laser scanned, duplicated with the help of reverse engineering into STL format, and it was converted into 3D model for finite element analysis (FEA). For the model, fixed boundary conditions were applied at the outer bone, while 100 N static vertical occlusal loads were prescribed at 135° on the loading component of the simulated tooth. The stress distribution was evaluated using dentin and fiber post with prescribed materials, loading and boundary conditions in endontically treated teeth by 3D FEA. Results: The analysis for von Misses stress for dentin post showed that the stress in the dentin post at the cervical area was 127 MPa. The displacement in the dentin post was <0.025 mm. Von Misses stress for the fiber post at the cervical area was approximately 182 MPa and the displacement was <0.035 mm. Conclusion: The FEA results showed that the stress in the cervical area of the dentin was more for fiber post when compared to dentin post, and maximum displacement values were less for dentin post in comparison to fiber post. PMID:27134431

  9. Testing of Carbon Fiber Composite Overwrapped Pressure Vessel Stress-Rupture Lifetime

    NASA Technical Reports Server (NTRS)

    Grimes-Ledesma, Lorie; Phoenix, S. Leigh; Beeson, Harold; Yoder, Tommy; Greene, Nathaniel

    2006-01-01

    This paper contains summaries of testing procedures and analysis of stress rupture life testing for two stress rupture test programs, one for Kevlar COPVs performed at Lawrence Livermore National Laboratory, and the other a joint study between NASA JSC White Sands Test Facility and the Jet Propulsion Laboratory. These will be discussed in detail including test setup and issues encountered during testing. Lessons learned from testing in these two programs will be discussed.

  10. AKAP-Lbc anchors protein kinase A and nucleates Galpha 12-selective Rho-mediated stress fiber formation.

    PubMed

    Diviani, D; Soderling, J; Scott, J D

    2001-11-23

    Guanine nucleotide exchange factors of the Dbl family relay signals from membrane receptors to Rho family GTPases. We now demonstrate that a longer transcript of the Lbc gene encodes a chimeric molecule, which we have called AKAP-Lbc, that functions as an A-kinase-anchoring protein (AKAP) and a Rho-selective guanine nucleotide exchange factor. Expression of AKAP-Lbc in fibroblasts favors the formation of stress fibers in a Rho-dependent manner. Application of lysophosphatidic acid or selective expression of Galpha(12) enhances cellular AKAP-Lbc activation. Furthermore, biochemical studies indicate that AKAP-Lbc functions as an adaptor protein to selectively couple Galpha(12) to Rho. Thus, AKAP-Lbc anchors PKA and nucleates the assembly of a Rho-mediated signaling pathway.

  11. Ephrin-Bs Drive Junctional Downregulation and Actin Stress Fiber Disassembly to Enable Wound Re-epithelialization.

    PubMed

    Nunan, Robert; Campbell, Jessica; Mori, Ryoichi; Pitulescu, Mara E; Jiang, Wen G; Harding, Keith G; Adams, Ralf H; Nobes, Catherine D; Martin, Paul

    2015-11-17

    For a skin wound to successfully heal, the cut epidermal-edge cells have to migrate forward at the interface between scab and healthy granulation tissue. Much is known about how lead-edge cells migrate, but very little is known about the mechanisms that enable active participation by cells further back. Here we show that ephrin-B1 and its receptor EphB2 are both upregulated in vivo, just for the duration of repair, in the first 70 or so rows of epidermal cells, and this signal leads to downregulation of the molecular components of adherens and tight (but not desmosomal) junctions, leading to loosening between neighbors and enabling shuffle room among epidermal cells. Additionally, this signaling leads to the shutdown of actomyosin stress fibers in these same epidermal cells, which may act to release tension within the wound monolayer. If this signaling axis is perturbed, then disrupted healing is a consequence in mouse and man.

  12. RhoA-mediated Phospholipase D1 signaling is not required for the formation of stress fibers and focal adhesions.

    PubMed

    Su, Wenjuan; Chardin, Pierre; Yamazaki, Masakazu; Kanaho, Yasunori; Du, Guangwei

    2006-04-01

    The small GTPase RhoA regulates a wide spectrum of cellular functions including transformation and cytoskeletal reorganization. A large number of proteins have been identified as targets of RhoA, but their specific roles in these processes are not clear. Phospholipase D (PLD) was shown to be one such target several years ago; more recent work from our laboratory and others has demonstrated that of the two mammalian PLD isozymes, PLD1 but not PLD2 is activated by RhoA and this activation proceeds through direct binding both in vitro and in vivo. In this study, using a series of RhoA mutants, we have defined a PLD1-specific interacting site on RhoA composed of the residues Asn41, Trp58 and Asp76, using the yeast two-hybrid system, co-immunoprecipitation, and a PLD in vivo assay. The results further substantiate our previous finding that RhoA activates PLD1 through direct interaction. These mutants were then used to investigate the role of PLD1 in the cytoskeletal reorganization stimulated by RhoA signaling. Our results show that PLD1 is not required for the RhoA-mediated stress fiber and focal adhesion formation. The lack of importance of PLD1 signaling in RhoA-mediated cytoskeletal reorganization is further supported by the observation that PLD1 depletion using an shRNA approach and tetracycline-induced overexpression of the wild-type and the catalytically inactive mutant of PLD1 in stable cell lines do not alter stress fiber and focal adhesion formation.

  13. An experimental and modeling investigation of the external strain, internal stress and fiber phase transformation behavior of a NiTi actuated aluminum metal matrix composite

    SciTech Connect

    Armstrong, W.D.; Lorentzen, T.; Broendsted, P.; Larsen, P.H.

    1998-06-12

    The present work reports macroscopic thermal mechanical and in-situ neutron diffraction measurements from 22.9 vol. %, 50.7 at. % Ni-Ti fiber actuated 6082-T6 aluminum matrix composite and 6082-T6 homogeneous aluminum control materials subjected to a room temperature 4% tensile elongation, a subsequent room temperature to 120 C unconstrained heating process, and a final 120 C tensile process. During the unconstrained room temperature to 120 C heating process, the composite exhibited a pronounced, non linear thermal contraction, while the homogeneous control exhibited the expected linear thermal expansion. The composite thermal contraction was clearly the result of a powerful shape memory response in the actuating NiTi fibers. The paper further presents a one-dimensional thermal strain, internal stress and fiber phase transformation composite model. Model parameters were identified from tests on extracted single fibers, calculations using these parameters quantitatively agree with experimental thermal mechanical and neutron diffraction measurements.

  14. Polar motion excitations for an Earth model with frequency-dependent responses: 2. Numerical tests of the meteorological excitations

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Ray, Jim; Shen, WenBin; Huang, ChengLi

    2013-09-01

    motion excitation involves mass redistributions and motions of the Earth system relative to the mantle, as well as the frequency-dependent rheology of the Earth, where the latter has recently been modeled in the form of frequency-dependent Love numbers and polar motion transfer functions. At seasonal and intraseasonal time scales, polar motions are dominated by angular momentum fluctuations due to mass redistributions and relative motions in the atmosphere, oceans, and continental water, snow, and ice. In this study, we compare the geophysical excitations derived from various global atmospheric, oceanic, and hydrological models (NCEP, ECCO, ERA40, ERAinterim, and ECMWF operational products), and construct two model sets LDC1 and LDC2 by combining the above models with a least difference method. Comparisons between the geodetic excitation (derived from the polar motion series IERS EOP 08 C04) and the geophysical excitations (based on those meteorological models) imply that the atmospheric models are the most reliable while the hydrological ones are the most inaccurate; that the ERAinterim is, in general, the best model set among the original ones, but the combined models LDC1 and LDC2 are much better than ERAinterim; and that applying the frequency-dependent transfer functions to LDC1 and LDC2 improves their agreements with the geodetic excitation. Thus, we conclude that the combined models LDC1 and LDC2 are reliable, and the frequency-dependent Love numbers and polar motion transfer functions are well modeled.

  15. Searching for narrow-band oscillations in solar flares in the presence of frequency-dependent noise

    NASA Astrophysics Data System (ADS)

    Inglis, Andrew; Ireland, Jack

    2014-06-01

    A common feature of solar flare emission is the appearance of short timescale fluctuations, often interpreted in terms of oscillatory signatures, and often referred to as quasi-periodic pulsations (QPPs) or quasi-periodic oscilations (QPOs). These fluctuations are an important diagnostic of solar plasma, as they are linked to the flare reconnection and particle acceleration sites. However, it has recently become clear that solar flare time series, like many astrophysical objects, are often dominated by frequency-dependent 'red' noise, rather than white noise. This frequency-dependent red-noise is commonly not taken into account when analyzing flare time-series for narrow-band oscillations. We demonstrate the application of a Bayesian method of searching for narrow-band oscillations in flares (based on Vaughan 2010) that fully accounts for frequency-dependent noise. We apply this method to the recent flares of 2011 February 15 and 2011 June 7, utilizing high-cadence EUV and X-ray data from the Proba-2/LYRA and Fermi/GBM instruments. While emphasizing that the observed fluctuations are a very real effect, we show that the emission from the selected events can be well described by a frequency-dependent noise model, without the need to invoke an explicit oscillatory mechanism. This presents a challenge to our current understanding of flare fluctuations, and suggests that narrow-band oscillations in flare emission may be much less prevalent than previously believed.

  16. Stress-Induced Effects upon the Structure and Properties of Carbon Fibers.

    DTIC Science & Technology

    1980-07-31

    JUL B0 D B FISCHBACH, KOMAKI OAAG29-76-6-0169 UNCLASSIFIED ARO- 13485 6-MS NL EIEE!EEEEEEE0 ~IEl 11111111.0 mm’~i149l Ilk 12. IIIJIL2 -.6 ....111 1...microstructural types and to make the investigation more complete with regard to commercially important materials. Vapor-grown fibers were not studied. Iso ...The dashed "crystalline hexagonal graphite" boundary at XT=22 is one of an infinite family of parallel isO -XT lines. Axial orientation texture (Rz

  17. Investigating the frequency dependence of mantle Q by stacking P and PP spectra

    NASA Astrophysics Data System (ADS)

    Warren, Linda M.; Shearer, Peter M.

    2000-11-01

    Using seismograms from globally distributed, shallow earthquakes between 1988 and 1998, we compute spectra for P arrivals from epicentral distances of 40° to 80° and PP arrivals from 80° to 160°. Selecting records with estimated signal-to-noise ratios greater than 2, we find 17,836 P and 14,721 PP spectra. We correct each spectrum for the known instrument response and for an ω-2 source model that accounts for varying event sizes. Next, we stack the logarithms of the P and PP spectra in bins of similar source-receiver range. The stacked log spectra, denoted as log(DP') and log(DPP'), appear stable between about 0.16 and 0.86 Hz, with noise and/or bias affecting the results at higher frequencies. Assuming that source spectral differences are randomly distributed, then for shallow events, when the PP range is twice the P range, the average residual source spectrum may be estimated as 2 log(DP')-log(DPP'), and the average P wave attenuation spectrum may be estimated as log(DPP') - log(DP'). The residual source spectral estimates exhibit a smooth additional falloff as ω-0.15±0.05 between 0.16 and 0.86 Hz, indicating that ω-2.15±0.05 is an appropriate average source model for shallow events. The attenuation spectra show little distance dependence over this band and have a P wave t¯* value of ˜0.5 s. We use t¯* measurements from individual P and PP spectra to invert for a frequency-independent Q model and find that the upper mantle is nearly 5 times as attenuating as the lower mantle. Frequency dependence in Qα is difficult to resolve directly in these data but, as previous researchers have noted, is required to reconcile these values with long-period Q estimates. Using Q model QL6 [Durek and Ekström, 1996] as a long-period constraint, we experiment with fitting our stacked log spectra with an absorption band model. We find that the upper corner frequency f2 in the absorption band must be depth-dependent to account for the lack of a strong distance

  18. Fundamental x-ray interaction limits in diagnostic imaging detectors: Frequency-dependent Swank noise

    SciTech Connect

    Hajdok, G.; Battista, J. J.; Cunningham, I. A.

    2008-07-15

    A frequency-dependent x-ray Swank factor based on the ''x-ray interaction'' modulation transfer function and normalized noise power spectrum is determined from a Monte Carlo analysis. This factor was calculated in four converter materials: amorphous silicon (a-Si), amorphous selenium (a-Se), cesium iodide (CsI), and lead iodide (PbI{sub 2}) for incident photon energies between 10 and 150 keV and various converter thicknesses. When scaled by the quantum efficiency, the x-ray Swank factor describes the best possible detective quantum efficiency (DQE) a detector can have. As such, this x-ray interaction DQE provides a target performance benchmark. It is expressed as a function of (Fourier-based) spatial frequency and takes into consideration signal and noise correlations introduced by reabsorption of Compton scatter and photoelectric characteristic emissions. It is shown that the x-ray Swank factor is largely insensitive to converter thickness for quantum efficiency values greater than 0.5. Thus, while most of the tabulated values correspond to thick converters with a quantum efficiency of 0.99, they are appropriate to use for many detectors in current use. A simple expression for the x-ray interaction DQE of digital detectors (including noise aliasing) is derived in terms of the quantum efficiency, x-ray Swank factor, detector element size, and fill factor. Good agreement is shown with DQE curves published by other investigators for each converter material, and the conditions required to achieve this ideal performance are discussed. For high-resolution imaging applications, the x-ray Swank factor indicates: (i) a-Si should only be used at low-energy (e.g., mammography); (ii) a-Se has the most promise for any application below 100 keV; and (iii) while quantum efficiency may be increased at energies just above the K edge in CsI and PbI{sub 2}, this benefit is offset by a substantial drop in the x-ray Swank factor, particularly at high spatial frequencies.

  19. Fundamental x-ray interaction limits in diagnostic imaging detectors: frequency-dependent Swank noise.

    PubMed

    Hajdok, G; Battista, J J; Cunningham, I A

    2008-07-01

    A frequency-dependent x-ray Swank factor based on the "x-ray interaction" modulation transfer function and normalized noise power spectrum is determined from a Monte Carlo analysis. This factor was calculated in four converter materials: amorphous silicon (a-Si), amorphous selenium (a-Se), cesium iodide (CsI), and lead iodide (PbI2) for incident photon energies between 10 and 150 keV and various converter thicknesses. When scaled by the quantum efficiency, the x-ray Swank factor describes the best possible detective quantum efficiency (DQE) a detector can have. As such, this x-ray interaction DQE provides a target performance benchmark. It is expressed as a function of (Fourier-based) spatial frequency and takes into consideration signal and noise correlations introduced by reabsorption of Compton scatter and photoelectric characteristic emissions. It is shown that the x-ray Swank factor is largely insensitive to converter thickness for quantum efficiency values greater than 0.5. Thus, while most of the tabulated values correspond to thick converters with a quantum efficiency of 0.99, they are appropriate to use for many detectors in current use. A simple expression for the x-ray interaction DQE of digital detectors (including noise aliasing) is derived in terms of the quantum efficiency, x-ray Swank factor, detector element size, and fill factor. Good agreement is shown with DQE curves published by other investigators for each converter material, and the conditions required to achieve this ideal performance are discussed. For high-resolution imaging applications, the x-ray Swank factor indicates: (i) a-Si should only be used at low-energy (e.g., mammography); (ii) a-Se has the most promise for any application below 100 keV; and (iii) while quantum efficiency may be increased at energies just above the K edge in CsI and PbI2, this benefit is offset by a substantial drop in the x-ray Swank factor, particularly at high spatial frequencies.

  20. Planck intermediate results. XXII. Frequency dependence of thermal emission from Galactic dust in intensity and polarization

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Alves, M. I. R.; Aniano, G.; Armitage-Caplan, C.; Arnaud, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Battaner, E.; Benabed, K.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Burigana, C.; Cardoso, J.-F.; Catalano, A.; Chamballu, A.; Chiang, H. C.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Zotti, G.; Delabrouille, J.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Donzelli, S.; Doré, O.; Douspis, M.; Dunkley, J.; Dupac, X.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Galeotta, S.; Ganga, K.; Ghosh, T.; Giard, M.; González-Nuevo, J.; Górski, K. M.; Gregorio, A.; Gruppuso, A.; Guillet, V.; Hansen, F. K.; Harrison, D. L.; Helou, G.; Hernández-Monteagudo, C.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Magalhães, A. M.; Maino, D.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Mazzotta, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Noviello, F.; Novikov, D.; Novikov, I.; Oppermann, N.; Oxborrow, C. A.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Popa, L.; Pratt, G. W.; Rachen, J. P.; Reach, W. T.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Salerno, E.; Sandri, M.; Savini, G.; Scott, D.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wandelt, B. D.; Zacchei, A.; Zonca, A.

    2015-04-01

    Planck has mapped the intensity and polarization of the sky at microwave frequencies with unprecedented sensitivity. We use these data to characterize the frequency dependence of dust emission. We make use of the Planck 353 GHz I, Q, and U Stokes maps as dust templates, and cross-correlate them with the Planck and WMAP data at 12 frequencies from 23 to 353 GHz, over circular patches with 10° radius. The cross-correlation analysis is performed for both intensity and polarization data in a consistent manner. The results are corrected for the chance correlation between the templates and the anisotropies of the cosmic microwave background. We use a mask that focuses our analysis on the diffuse interstellar medium at intermediate Galactic latitudes. We determine the spectral indices of dust emission in intensity and polarization between 100 and 353 GHz, for each sky patch. Both indices are found to be remarkably constant over the sky. The mean values, 1.59 ± 0.02 for polarization and 1.51 ± 0.01 for intensity, for a mean dust temperature of 19.6 K, are close, but significantly different (3.6σ). We determine the mean spectral energy distribution (SED) of the microwave emission, correlated with the 353 GHz dust templates, by averaging the results of the correlation over all sky patches. We find that the mean SED increases for decreasing frequencies at ν< 60 GHz for both intensity and polarization. The rise of the polarization SED towards low frequencies may be accounted for by a synchrotron component correlated with dust, with no need for any polarization of the anomalous microwave emission. We use a spectral model to separate the synchrotron and dust polarization and to characterize the spectral dependence of the dust polarization fraction. The polarization fraction (p) of the dust emission decreases by (21 ± 6)% from 353 to 70 GHz. We discuss this result within the context of existing dust models. The decrease in p could indicate differences in polarization

  1. Spatial heterogeneity, frequency-dependent selection and polymorphism in host-parasite interactions

    PubMed Central

    2011-01-01

    Background Genomic and pathology analysis has revealed enormous diversity in genes involved in disease, including those encoding host resistance and parasite effectors (also known in plant pathology as avirulence genes). It has been proposed that such variation may persist when an organism exists in a spatially structured metapopulation, following the geographic mosaic of coevolution. Here, we study gene-for-gene relationships governing the outcome of plant-parasite interactions in a spatially structured system and, in particular, investigate the population genetic processes which maintain balanced polymorphism in both species. Results Following previous theory on the effect of heterogeneous environments on maintenance of polymorphism, we analysed a model with two demes in which the demes have different environments and are coupled by gene flow. Environmental variation is manifested by different coefficients of natural selection, the costs to the host of resistance and to the parasite of virulence, the cost to the host of being diseased and the cost to an avirulent parasite of unsuccessfully attacking a resistant host. We show that migration generates negative direct frequency-dependent selection, a condition for maintenance of stable polymorphism in each deme. Balanced polymorphism occurs preferentially if there is heterogeneity for costs of resistance and virulence alleles among populations and to a lesser extent if there is variation in the cost to the host of being diseased. We show that the four fitness costs control the natural frequency of oscillation of host resistance and parasite avirulence alleles. If demes have different costs, their frequencies of oscillation differ and when coupled by gene flow, there is amplitude death of the oscillations in each deme. Numerical simulations show that for a multiple deme island model, costs of resistance and virulence need not to be present in each deme for stable polymorphism to occur. Conclusions Our theoretical

  2. N terminus is essential for tropomyosin functions: N-terminal modification disrupts stress fiber organization and abolishes anti-oncogenic effects of tropomyosin-1.

    PubMed

    Bharadwaj, Shantaram; Hitchcock-DeGregori, Sarah; Thorburn, Andrew; Prasad, G L

    2004-04-02

    Down-regulation of several key actin-binding proteins, such as alpha-actinin, vinculin, gelsolin, and tropomyosins (TMs), is considered to contribute to the disorganized cytoskeleton present in many neoplastic cells. TMs stabilize actin filaments against the gel severing actions of proteins such as cofilin. Among multiple TMs expressed in non-muscle cells, tropomyosin-1 (TM1) isoform induces stress fibers and functions as a suppressor of malignant transformation. However, the molecular mechanisms of TM1-mediated cytoskeletal effects and tumor suppression remain poorly understood. We have hypothesized that the ability of TM1 to stabilize microfilaments is crucial for tumor suppression. In this study, by employing a variant TM1, which contains an N-terminal hemagglutinin epitope tag, we demonstrate that the N terminus is a key determinant of tropomyosin-1 function. Unlike the wild type TM1, the modified protein fails to restore stress fibers and inhibit anchorage-independent growth in transformed cells. Furthermore, the N-terminal modification of TM1 disorganizes the cytoskeleton and delays cytokinesis in normal cells, abolishes binding to F-actin, and disrupts the dimeric associations in vivo. The functionally defective TM1 allows the association of cofilin to stress fibers and disorganizes the microfilaments, whereas wild type TM1 appears to restrict the binding of cofilin to stress fibers. TM1-induced cytoskeletal reorganization appears to be mediated through preventing cofilin interaction with microfilaments. Our studies provide in vivo functional evidence that the N terminus is a critical determinant of TM1 functions, which in turn determines the organization of stress fibers.

  3. Quasi-interferometric scheme improved by fiber Bragg grating for detection of outer mechanical stress influence on distributed sensor being silica multimode optical fiber operating in a few-mode regime

    NASA Astrophysics Data System (ADS)

    Kafarova, Anastasia M.; Faskhutdinov, Lenar M.; Kuznetzov, Artem A.; Minaeva, Alina Y.; Sevruk, Nikita L.; Nureev, Ilnur I.; Vasilets, Alexander A.; Bourdine, Anton V.; Morozov, Oleg G.; Burdin, Vladimir A.

    2016-03-01

    This work presents results of experimental approbation of modified fiber optic stress sensor based on a few-mode effects occurring during laser-excited optical signal propagation over silica multimode optical fiber (MMF). Modification is concerned with adding of quasi-interferometric scheme realized by two multimode Y-couplers with equalized arm lengths improved by fiber Bragg grating (FBG) and special offset launching conditions providing laser-based excitation of higher-order modes. We tested FBGs written on graded-index MMFs 50/125 with Bragg wavelength 1550 nm connected to different parts of proposed scheme. Researches are focused on comparing analysis of both spectral and pulse responses under changing of selected mode mixing and power diffusion processes due to stress local and distributed action to sensor fiber depending on scheme configuration. Here we considered FBGs not only as particular wavelength reflector during spectral response measurement but also as local periodic microstructure defect strongly effecting few-mode signal components mixing process that provides pulse response variation. Some results of spectral and pulse response measurements produced for different scheme configuration and their comparison analysis are represented.

  4. The Behavior of Ceramic Matrix, Fiber Composites under Combined Impact and Tensile Stresses

    DTIC Science & Technology

    1988-05-01

    45 7. Specimen configuration in the tensometer grips. 46 8. Cut-away drawing of the furnace and dual purpose specimen 47 jig used in the various...combined with a modified Hounsfield Tensometer to enable the specimens to be stressed in tension. The equipment is illustrated schematically in Figure 5...and shown in Figure 6. Specimens, typically 100 mm long x 25 mm wide x 2 mm thick, were mounted horizontally in the Hounsfield Tensometer : this is a

  5. Growth Stress in SiO2 during Oxidation of SiC Fibers (Preprint)

    DTIC Science & Technology

    2011-11-01

    for crystalline scales using the very limited data available for cristobalite viscosity.36-38 These calculations are compared with microstructural...Unfortunately, SiC oxidation kinetics for crystalline scales ( cristobalite and tridymite) are not well characterized, and there is even less data on creep rates... cristobalite refractories suggests that at 1550° - 1650°C creep is negligible at very low stress (0.2 to 0.6 MPa), but further quantification was not

  6. Fiber Breakage Model for Carbon Composite Stress Rupture Phenomenon: Theoretical Development and Applications

    NASA Technical Reports Server (NTRS)

    Murthy, Pappu L. N.; Phoenix, S. Leigh; Grimes-Ledesma, Lorie

    2010-01-01

    Stress rupture failure of Carbon Composite Overwrapped Pressure Vessels (COPVs) is of serious concern to Science Mission and Constellation programs since there are a number of COPVs on board space vehicles with stored gases under high pressure for long durations of time. It has become customary to establish the reliability of these vessels using the so called classic models. The classical models are based on Weibull statistics fitted to observed stress rupture data. These stochastic models cannot account for any additional damage due to the complex pressure-time histories characteristic of COPVs being supplied for NASA missions. In particular, it is suspected that the effects of proof test could significantly reduce the stress rupture lifetime of COPVs. The focus of this paper is to present an analytical appraisal of a model that incorporates damage due to proof test. The model examined in the current paper is based on physical mechanisms such as micromechanics based load sharing concepts coupled with creep rupture and Weibull statistics. For example, the classic model cannot accommodate for damage due to proof testing which every flight vessel undergoes. The paper compares current model to the classic model with a number of examples. In addition, several applications of the model to current ISS and Constellation program issues are also examined.

  7. Stress and strain analysis of the bone-implant interface: a comparison of fiber-reinforced composite and titanium implants utilizing 3-dimensional finite element study.

    PubMed

    Shinya, Akikazu; Ballo, Ahmed M; Lassila, Lippo V J; Shinya, Akiyoshi; Närhi, Timo O; Vallittu, Pekka K

    2011-03-01

    This study analyzed stress and strain mediated by 2 different implant materials, titanium (Ti) and experimental fiber-reinforced composite (FRC), on the implant and on the bone tissue surrounding the implant. Three-dimensional finite element models constructed from a mandibular bone and an implant were subjected to a load of 50 N in vertical and horizontal directions. Postprocessing files allowed the calculation of stress and strain within the implant materials and stresses at the bone-to-implant interface (stress path). Maximum stress concentrations were located around the implant on the rim of the cortical bone in both implant materials; Ti and overall stresses decreased toward the Ti implant apex. In the FRC implant, a stress value of 0.6 to 2.0 MPa was detected not only on the screw threads but also on the implant surface between the threads. Clear differences were observed in the strain distribution between the materials. Based on the results, the vertical load stress range of the FRC implant was close to the stress level for optimal bone growth. Furthermore, the stress at the bone around the FRC implant was more evenly distributed than that with Ti implant.

  8. Frequency-Dependent Material Damping Using Augmenting Thermodynamic Fields (ATF) with Fractional Time Derivatives

    DTIC Science & Technology

    1990-09-01

    field, z - (q + r)7T/2 a,, a2 - material parameter, relation of affinity to the augmenting thermodynamic field a 3 - coupling between two ATFs 0T...frequency range, coupled material constitutive ix relations are developed using the concept of augmenting thermodynamic fields, with non-integer...material, for which the relation of stress to strain is defined by Hooke’s law a = EE , where E is called the modulus of elasticity. For this

  9. Evolutionary suicide through a non-catastrophic bifurcation: adaptive dynamics of pathogens with frequency-dependent transmission.

    PubMed

    Boldin, Barbara; Kisdi, Éva

    2016-03-01

    Evolutionary suicide is a riveting phenomenon in which adaptive evolution drives a viable population to extinction. Gyllenberg and Parvinen (Bull Math Biol 63(5):981-993, 2001) showed that, in a wide class of deterministic population models, a discontinuous transition to extinction is a necessary condition for evolutionary suicide. An implicit assumption of their proof is that the invasion fitness of a rare strategy is well-defined also in the extinction state of the population. Epidemic models with frequency-dependent incidence, which are often used to model the spread of sexually transmitted infections or the dynamics of infectious diseases within herds, violate this assumption. In these models, evolutionary suicide can occur through a non-catastrophic bifurcation whereby pathogen adaptation leads to a continuous decline of host (and consequently pathogen) population size to zero. Evolutionary suicide of pathogens with frequency-dependent transmission can occur in two ways, with pathogen strains evolving either higher or lower virulence.

  10. Influence of Gaussian white noise on the frequency-dependent first nonlinear polarizability of doped quantum dot

    NASA Astrophysics Data System (ADS)

    Ganguly, Jayanta; Ghosh, Manas

    2014-05-01

    We investigate the profiles of diagonal components of frequency-dependent first nonlinear (βxxx and βyyy) optical response of repulsive impurity doped quantum dots. We have assumed a Gaussian function to represent the dopant impurity potential. This study primarily addresses the role of noise on the polarizability components. We have invoked Gaussian white noise consisting of additive and multiplicative characteristics (in Stratonovich sense). The doped system has been subjected to an oscillating electric field of given intensity, and the frequency-dependent first nonlinear polarizabilities are computed. The noise characteristics are manifested in an interesting way in the nonlinear polarizability components. In case of additive noise, the noise strength remains practically ineffective in influencing the optical responses. The situation completely changes with the replacement of additive noise by its multiplicative analog. The replacement enhances the nonlinear optical response dramatically and also causes their maximization at some typical value of noise strength that depends on oscillation frequency.

  11. Influence of Gaussian white noise on the frequency-dependent first nonlinear polarizability of doped quantum dot

    SciTech Connect

    Ganguly, Jayanta; Ghosh, Manas

    2014-05-07

    We investigate the profiles of diagonal components of frequency-dependent first nonlinear (β{sub xxx} and β{sub yyy}) optical response of repulsive impurity doped quantum dots. We have assumed a Gaussian function to represent the dopant impurity potential. This study primarily addresses the role of noise on the polarizability components. We have invoked Gaussian white noise consisting of additive and multiplicative characteristics (in Stratonovich sense). The doped system has been subjected to an oscillating electric field of given intensity, and the frequency-dependent first nonlinear polarizabilities are computed. The noise characteristics are manifested in an interesting way in the nonlinear polarizability components. In case of additive noise, the noise strength remains practically ineffective in influencing the optical responses. The situation completely changes with the replacement of additive noise by its multiplicative analog. The replacement enhances the nonlinear optical response dramatically and also causes their maximization at some typical value of noise strength that depends on oscillation frequency.

  12. Dynamic blocked transfer stiffness method of characterizing the magnetic field and frequency dependent dynamic viscoelastic properties of MRE

    NASA Astrophysics Data System (ADS)

    Poojary, Umanath R.; Hegde, Sriharsha; Gangadharan, K. V.

    2016-11-01

    Magneto rheological elastomer (MRE) is a potential resilient element for the semi active vibration isolator. MRE based isolators adapt to different frequency of vibrations arising from the source to isolate the structure over wider frequency range. The performance of MRE isolator depends on the magnetic field and frequency dependent characteristics of MRE. Present study is focused on experimentally evaluating the dynamic stiffness and loss factor of MRE through dynamic blocked transfer stiffness method. The dynamic stiffness variations of MRE exhibit strong magnetic field and mild frequency dependency. Enhancements in dynamic stiffness saturate with the increase in magnetic field and the frequency. The inconsistent variations of loss factor with the magnetic field substantiate the inability of MRE to have independent control over its damping characteristics.

  13. Temperature and frequency dependence of AC conductivity of new quaternary Se-Te-Bi-Pb chalcogenide glasses

    NASA Astrophysics Data System (ADS)

    Yadav, Preeti; Sharma, Ambika

    2016-05-01

    The aim of the present work is to study the temperature and frequency dependence of ac conductivity of new quaternary Se84-xTe15Bi1.0Pbx chalcogenide glasses. The Se84-xTe15Bi1.0Pbx (x = 2, 6) glassy alloys are prepared by using melt quenching technique. The temperature and frequency dependent behavior of ac conductivity σac(ω) has been carried out in the frequency range 42 Hz to 5 MHz and in the temperature range of 298-323 K below glass transition temperature. The behavior of ac conductivity is described in terms of the power law ωs. The obtained temperature dependence behavior of ac conductivity and frequency component (s) are explained by means of correlated barrier hopping model recommended by Elliot.

  14. Frequency dependent capacitance studies of the CdS/Cu2S thin-film solar cell

    NASA Astrophysics Data System (ADS)

    Hmurcik, L. V.; Serway, R. A.

    1982-05-01

    The dark capacitance of CdS cells has been measured as a function of both bias voltage and operating signal frequency. Results indicate a frequency dependence of the dark current capacitance which can be attributed to deep trapping states in the bulk CdS and at the interface; these states can be characterized by a time constant in the simple relaxation model. Photocapacitance measurements indicate that hole trapping takes place in a narrow region of the i layer near the Cu2S/CdS junction. The results are interpreted in terms of a frequency-dependent model proposed by Schibli and Milnes (1968). It is shown that the simple planar junction model commonly used to describe the CdS cell is accurate at high frequencies.

  15. Frequency-Dependent Activation of Glucose Utilization in the Superior Cervical Ganglion by Electrical Stimulation of Cervical Sympathetic Trunk

    NASA Astrophysics Data System (ADS)

    Yarowsky, Paul; Kadekaro, Massako; Sokoloff, Louis

    1983-07-01

    Electrical stimulation of the distal stump of the transected cervical sympathetic trunk produces a frequency-dependent activation of glucose utilization, measured by the deoxy[14C]glucose method, in the superior cervical ganglion of the urethane-anesthetized rat. The frequency dependence falls between 0-15 Hz; at 20 Hz the activation of glucose utilization is no greater than at 15 Hz. Deafferentation of the superior cervical ganglion by transection of the cervical sympathetic trunk does not diminish the rate of glucose utilization in the ganglion in the urethane-anesthetized rat. These results indicate that the rate of energy metabolism in an innervated neural structure is, at least in part, regulated by the impulse frequency of the electrical input to the structure, and this regulation may be an essential component of the mechanism of the coupling of metabolic activity to functional activity in the nervous system.

  16. Rupture and frequency-dependent seismic radiation of the 2012 Mw 8.6 Sumatra strike-slip earthquake

    NASA Astrophysics Data System (ADS)

    Yin, Jiuxun; Yao, Huajian

    2016-06-01

    On 2012 April 11, a great strike-slip earthquake (moment magnitude of Mw 8.6) occurred off the west coast of northern Sumatra area followed by an Mw 8.2 aftershock 2 hr later. Different geophysical data and methods have been used to investigate the mechanism, faulting, seismic radiation and slip propagation of this event, but frequency-dependent features of its rupture process have not been discussed much. In this study, we use a compressive sensing method based on sparsity inversion in the frequency domain to study the frequency-dependent seismic radiation and rupture process of this event. Our results indicate a very complex rupture process concerning at least three different rupture stages on multiple subfaults with nearly conjugate geometries. The main shock has triggered seismicity on a series of ridge-perpendicular or ridge-parallel conjugate strike-slip faults around the Nighty East Ridge. Obvious frequency-dependent rupture process has been presented and discussed. Combining results from slip inversion based on the finite-fault model, we observe that in the beginning stage of the rupture lower frequency radiation appears to originate from the areas with large slip, while the high-frequency radiation is located at the boundary of large-slip region or rupture front. Some radiation probably originates from the repeating slip on the main faults or triggered events on some nearby faults in the rupture area. The complex frequency-dependent seismic radiation patterns observed in this study provide important information for future investigation of rupture physics of this complex strike-slip event.

  17. Calculation of Frequency-Dependent Polarizabilities and Hyperpolarizabilities Based on the Quasienergy Derivative Method (Is the Numerical Approach Impossible?)

    SciTech Connect

    Sasagane, Kotoku

    2008-09-17

    The essence of the quasienergy derivative (QED) method and calculations of the frequency-dependent hyperpolarizabilities based on the QED method will be presented in the first half. Our recent and up-to-date development and some possibilities concerning the QED method will be explained later. At the end of the lecture whether the extension of the QED method to the numerical approach is possible or not will be investigated.

  18. Algebraic processing technique for extracting frequency-dependent shear-wave splitting parameters in an anisotropic medium

    NASA Astrophysics Data System (ADS)

    Han, Kai-Feng; Zeng, Xin-Wu

    2011-06-01

    Based on the dual source cumulative rotation technique in the time-domain proposed by Zeng and MacBeth (1993), a new algebraic processing technique for extracting shear-wave splitting parameters from multi-component VSP data in frequency-dependent medium has been developed. By using this dual source cumulative rotation technique in the frequency-domain (DCTF), anisotropic parameters, including polarization direction of the shear-waves and timedelay between the fast and slow shear-waves, can be estimated for each frequency component in the frequency domain. It avoids the possible error which comes from using a narrow-band filter in the current commonly used method. By using synthetic seismograms, the feasibility and validity of the technique was tested and a comparison with the currently used method was also given. The results demonstrate that the shear-wave splitting parameters frequency dependence can be extracted directly from four-component seismic data using the DCTF. In the presence of larger scale fractures, substantial frequency dependence would be found in the seismic frequency range, which implies that dispersion would occur at seismic frequencies. Our study shows that shear-wave anisotropy decreases as frequency increases.

  19. The effects of frequency-dependent amplitude on the time-reversed Lamb wave based baseline-free damage detection

    NASA Astrophysics Data System (ADS)

    Zeng, Liang; Lin, Jing; Luo, Zhi; Gao, Fei

    2017-02-01

    Time reversal is the process that a response signal recorded at a receiver location is reversed in time and emitted back to the original source transducer. In the absence of any damage, theoretically the main wave packet of the reconstructed signal could exactly resemble the original input wave form. However, since the amplitude response of Lamb wave mode is generally frequency dependent, the reconstruction is not perfect. In this study, the influences of the frequency-dependent amplitude to the spectrum of the reconstructed signal is investigated. The results show that the peak frequency shifts and the bandwidth varies due to the frequency dependency of amplitude. This spectrum distortion affects the wave form of the main wave packet of the reconstructed signal significantly. Since the baseline-free damage detection is accomplished by comparing the wave form of the TR reconstructed signal with that of the original input signal, these effects would be captured by the damage index and be attributed to the presence of damage. Thus a false alarm may arise. To mitigate these effects, an amplitude modification strategy is established. With the application of this strategy, the modified baseline-free damage detection method is then employed for monitoring the growth of damage.

  20. Mathematical modelling of frequency-dependent hysteresis and energy loss of FeBSiC amorphous alloy

    NASA Astrophysics Data System (ADS)

    Koprivica, Branko; Milovanovic, Alenka; Mitrovic, Nebojsa

    2017-01-01

    The aim of this paper is to present a novel mathematical model of frequency-dependent magnetic hysteresis. The major hysteresis loop in this model is represented by the ascending and descending curve over an arctangent function. The parameters of the hysteresis model have been calculated from a measured hysteresis loop of the FeBSiC amorphous alloy sample. A number of measurements have been performed with this sample at different frequencies of the sinusoidal excitation magnetic field. A variation of the coercive magnetic field with the frequency has been observed and used in the modelling of frequency-dependent hysteresis with the proposed model. A comparison between measured and modelled hysteresis loops has been presented. Additionally, the areas of the obtained hysteresis loops, representing the energy loss per unit volume, have been calculated and the dependence of the energy loss on the frequency is shown. Furthermore, two models of the frequency dependence of the coercivity and two models of the energy loss separation have been used for fitting the experimental and simulation results. The relations between these models and their parameters have been observed and analysed. Also, the relations between parameters of the hysteresis model and the parameters of the energy loss separation models have been analysed and discussed.

  1. Similar patterns of frequency-dependent selection on animal personalities emerge in three species of social spiders.

    PubMed

    Lichtenstein, J L L; Pruitt, J N

    2015-06-01

    Frequency-dependent selection is thought to be a major contributor to the maintenance of phenotypic variation. We tested for frequency-dependent selection on contrasting behavioural strategies, termed here 'personalities', in three species of social spiders, each thought to represent an independent evolutionary origin of sociality. The evolution of sociality in the spider genus Anelosimus is consistently met with the emergence of two temporally stable discrete personality types: an 'aggressive' or 'docile' form. We assessed how the foraging success of each phenotype changes as a function of its representation within a colony. We did this by creating experimental colonies of various compositions (six aggressives, three aggressives and three dociles, one aggressive and five dociles, six dociles), maintaining them in a common garden for 3 weeks, and tracking the mass gained by individuals of either phenotype. We found that both the docile and aggressive phenotypes experienced their greatest mass gain in mixed colonies of mostly docile individuals. However, the performance of both phenotypes decreased as the frequency of the aggressive phenotype increased. Nearly identical patterns of phenotype-specific frequency dependence were recovered in all three species. Naturally occurring colonies of these spiders exhibit mixtures dominated by the docile phenotype, suggesting that these spiders may have evolved mechanisms to maintain the compositions that maximize the success of the colony without compromising the expected reproductive output of either phenotype.

  2. Numerical analysis of residual stresses in preforms of stress applying part for PANDA-type polarization maintaining optical fibers in view of technological imperfections of the doped zone geometry

    NASA Astrophysics Data System (ADS)

    Trufanov, Aleksandr N.; Trufanov, Nikolay A.; Semenov, Nikita V.

    2016-09-01

    The experimental data analysis of the stress applying rod section geometry for the PANDA-type polarization maintaining optical fiber has been performed. The dependencies of the change in the radial dimensions of the preform and the doping boundary on the angular coordinate have been obtained. The original algorithm of experimental data statistic analysis, which enables determination of the specimens' characteristic form of section, has been described. The influence of actual doped zone geometry on the residual stress fields formed during the stress rod preform fabrication has been investigated. It has been established that the deviation of the boundary between pure silica and the doped zone from the circular shape results in dissymmetry and local concentrations of the residual stress fields along the section, which can cause preforms destruction at high degrees of doping. The observed geometry deviations of up to 10% lead to the increase of the maximum stress intensity value by over 20%.

  3. Sub-frequency range stress wave factor NDE technique for assessing damage in fiber-epoxy composites

    NASA Astrophysics Data System (ADS)

    Hong, Gang

    This research aims at modifying, improving and calibrating the Stress Wave Factor Nondestructive Evaluation (SWF NDE) technique and applying it to a fiber epoxy composite material and other composite structures. In order to access the composite's integrity the Energy of SWF within a selected Sub Frequency Range (SFR) instead of the whole measured frequency range as of conventional SWF is used. This technique, introduced and examined herein and is termed the Sub Frequency Range Stress Wave Factors (SFR-SWF) and is tailored to improve the conventional SWF technique with respect to sensibility and accuracy. A series of controlled damage tests were performed, and relevant acousto-ultrasonic observations were conducted. The overall property of the composites subjected to hygrothermal degradation, the localized defects such as the surface crack and the historical damage were assessed with conventional SWF and SFR-SWF. The two methods are compared in detail. The hygrothermal degradation and surface crack experiments were also simulated using the finite element method. Dynamic numerical analysis was conducted to simulate the wave propagation process, both in time domain and frequency domain using the commercial finite element code ABAQUS. The numerical results were also evaluated via both SWF and SFR-SWF, and were compared with the results of experiments. Thus, the potential of SFR-SWF was evaluated. A general conclusion from this research is that the SFR-SWF has the better capability than that of the conventional SWF in assessing the composite's overall condition, localized defects and historical damage. Since there are still open questions regarding the physical understanding of the SWF and SFR-SWF, the finite element analysis provides confirmation for certain observed behaviors of the Acousto-Ultrasonic and SFR-SWF technique.

  4. Measurements of blood flow and blood concentration change using laser speckle in fiber illumination and its application to estimation of stress condition

    NASA Astrophysics Data System (ADS)

    Yokoi, Naomichi; Shinohara, Tomomi; Funamizu, Hideki; Kyoso, Masaki; Shimatani, Yuichi; Yuasa, Tomonori; Aizu, Yoshihisa

    2016-11-01

    Speckle imaging method is useful for monitoring of blood flow in living bodies. We have proposed so far the method for simultaneous imaging of blood flow and blood concentration change using laser speckle patterns at two wavelengths. However, our conventional measurement system has difficulty in adjusting the illuminating optical axis of two laser sources. Therefore, we introduce a novel arrangement using a coaxial fiber illumination in the detection of speckle patterns in two wavelengths. By this arrangement, the blood flow can be stably analyzed with a frame rate using an estimation parameter proposed by the authors based on the spatial contrast of speckle patterns. This parameter is useful for estimating an autonomic nervous function which reflects stress conditions caused by tension and excitement. In this study, we present measurements of the blood flow and blood concentration change in the fiber illumination, and its application to estimation of stress condition.

  5. Temperature Dependence on the Strength and Stress Rupture Behavior of a Carbon-Fiber Reinforced Silicon Carbide (C/SiC) Composite

    NASA Technical Reports Server (NTRS)

    Verrilli, Michael J.; Calomino, Anthony

    2002-01-01

    Tensile strengths and stress rupture lives of carbon-fiber reinforced silicon carbide (C/SiC) specimens were measured at 800 C and are compared to previously reported 1200 C data. All tests were conducted in an environmental chamber containing 1000 ppm of oxygen in argon. The average 800 C tensile strength of 610 MPa is 10% greater than at 1200 C. Average stress rupture lives at 800 C were 2.5 times longer than those obtained at 1200 C. The difference in the 800 and 1200 C lives is related to the oxidation rate of the reinforcing carbon fibers, which is the primary damage mode of C/SiC composites in oxygen-containing environments.

  6. Role of stress fiber-like structures in assembling nascent myofibrils in myosheets recovering from exposure to ethyl methanesulfonate

    PubMed Central

    1986-01-01

    When day 1 cultures of chick myogenic cells were exposed to the mutagenic alkylating agent ethyl methanesulfonate (EMS) for 3 d, 80% of the replicating cells were killed, but postmitotic myoblasts survived. The myoblasts fused to form unusual multinucleated "myosheets": extraordinarily wide, flattened structures that were devoid of myofibrils but displayed extensive, submembranous stress fiber-like structures (SFLS). Immunoblots of the myosheets indicated that the carcinogen blocked the synthesis and accumulation of the myofibrillar myosin isoforms but not that of the cytoplasmic myosin isoform. When removed from EMS, widely spaced nascent myofibrils gradually emerged in the myosheets after 3 d. Striking co-localization of fluorescent reagents that stained SFLS and those that specifically stained myofibrils was observed for the next 2 d. By both immunofluorescence and electron microscopy, individual nascent myofibrils appeared to be part of, or juxtaposed to, preexisting individual SFLS. By day 6, all SFLS had disappeared, and the definitive myofibrils were displaced from their submembranous site into the interior of the myosheet. Immunoblots from recovering myosheets demonstrated a temporal correlation between the appearance of the myofibrillar myosin isoforms and the assembly of thick filaments. The assembly of definitive myofibrils did not appear to involve desmin intermediate filaments, but a striking aggregation of sarcoplasmic reticulum elements was seen at the level of each I-Z-band. Our findings suggest that SFLS in the EMS myosheets function as early, transitory assembly sites for nascent myofibrils. PMID:3958057

  7. Ephrin-Bs Drive Junctional Downregulation and Actin Stress Fiber Disassembly to Enable Wound Re-epithelialization

    PubMed Central

    Nunan, Robert; Campbell, Jessica; Mori, Ryoichi; Pitulescu, Mara E.; Jiang, Wen G.; Harding, Keith G.; Adams, Ralf H.; Nobes, Catherine D.; Martin, Paul

    2015-01-01

    Summary For a skin wound to successfully heal, the cut epidermal-edge cells have to migrate forward at the interface between scab and healthy granulation tissue. Much is known about how lead-edge cells migrate, but very little is known about the mechanisms that enable active participation by cells further back. Here we show that ephrin-B1 and its receptor EphB2 are both upregulated in vivo, just for the duration of repair, in the first 70 or so rows of epidermal cells, and this signal leads to downregulation of the molecular components of adherens and tight (but not desmosomal) junctions, leading to loosening between neighbors and enabling shuffle room among epidermal cells. Additionally, this signaling leads to the shutdown of actomyosin stress fibers in these same epidermal cells, which may act to release tension within the wound monolayer. If this signaling axis is perturbed, then disrupted healing is a consequence in mouse and man. PMID:26549443

  8. Expression of the proteoglycan syndecan-4 and the mechanism by which it mediates stress fiber formation in folliculostellate cells in the rat anterior pituitary gland.

    PubMed

    Horiguchi, Kotaro; Kouki, Tom; Fujiwara, Ken; Tsukada, Takehiro; Ly, Floren; Kikuchi, Motoshi; Yashiro, Takashi

    2012-08-01

    Folliculostellate (FS) cells in the anterior pituitary gland appear to have multifunctional properties. FS cells connect to each other at gap junctions and thereby form a histological and functional network. We have performed a series of studies on network formation in FS cells and recently reported that FS cells markedly prolong their cytoplasmic processes and form numerous interconnections with neighboring FS cells in the presence of laminin, an extracellular matrix (ECM) component of the basement membrane. In this study, we investigated the mechanism of this extension of FS cell cytoplasmic processes under the influence of laminin and found that laminin promoted stress fiber formation within FS cells. Next, we noted that formation of stress fibers in FS cells was mediated by syndecan-4, a transmembrane proteoglycan that binds ECM and soluble factors via their extracellular glycosaminoglycan chain. We then observed that expressions of syndecan-4 and α-actinin (a microfilament bundling protein that cross-links actin stress fibers in FS cells) were upregulated by laminin. Using specific siRNA of syndecan-4, actin polymerization of FS cells was inhibited. Our findings suggest that FS cells received a signal from laminin-syndecan-4 interaction, which resulted in morphological changes, and that the formation of a morphological and functional network in FS cells was transduced by a syndecan-4-dependent mechanism in the presence of ECM.

  9. GABAergic Activities Control Spike Timing- and Frequency-Dependent Long-Term Depression at Hippocampal Excitatory Synapses

    PubMed Central

    Nishiyama, Makoto; Togashi, Kazunobu; Aihara, Takeshi; Hong, Kyonsoo

    2010-01-01

    GABAergic interneuronal network activities in the hippocampus control a variety of neural functions, including learning and memory, by regulating θ and γ oscillations. How these GABAergic activities at pre- and postsynaptic sites of hippocampal CA1 pyramidal cells differentially contribute to synaptic function and plasticity during their repetitive pre- and postsynaptic spiking at θ and γ oscillations is largely unknown. We show here that activities mediated by postsynaptic GABAARs and presynaptic GABABRs determine, respectively, the spike timing- and frequency-dependence of activity-induced synaptic modifications at Schaffer collateral-CA1 excitatory synapses. We demonstrate that both feedforward and feedback GABAAR-mediated inhibition in the postsynaptic cell controls the spike timing-dependent long-term depression of excitatory inputs (“e-LTD”) at the θ frequency. We also show that feedback postsynaptic inhibition specifically causes e-LTD of inputs that induce small postsynaptic currents (<70 pA) with LTP-timing, thus enforcing the requirement of cooperativity for induction of long-term potentiation at excitatory inputs (“e-LTP”). Furthermore, under spike-timing protocols that induce e-LTP and e-LTD at excitatory synapses, we observed parallel induction of LTP and LTD at inhibitory inputs (“i-LTP” and “i-LTD”) to the same postsynaptic cells. Finally, we show that presynaptic GABABR-mediated inhibition plays a major role in the induction of frequency-dependent e-LTD at α and β frequencies. These observations demonstrate the critical influence of GABAergic interneuronal network activities in regulating the spike timing- and frequency-dependences of long-term synaptic modifications in the hippocampus. PMID:21423508

  10. Increased excitability of spinal pain reflexes and altered frequency-dependent modulation in the dopamine D3-receptor knockout mouse.

    PubMed

    Keeler, Benjamin E; Baran, Christine A; Brewer, Kori L; Clemens, Stefan

    2012-12-01

    Frequency-dependent modulation and dopamine (DA) receptors strongly modulate neural circuits in the spinal cord. Of the five known DA receptor subtypes, the D3 receptor has the highest affinity to DA, and D3-mediated actions are mainly inhibitory. Using an animal model of spinal sensorimotor dysfunction, the D3 receptor knockout mouse (D3KO), we investigated the physiological consequences of D3 receptor dysfunction on pain-associated signaling pathways in the spinal cord, the initial integration site for the processing of pain signaling. In the D3KO spinal cord, inhibitory actions of DA on the proprioceptive monosynaptic stretch reflex are converted from depression to facilitation, but its effects on longer-latency and pain-associated reflex responses and the effects of FM have not been studied. Using behavioral approaches in vivo, we found that D3KO animals exhibit reduced paw withdrawal latencies to thermal pain stimulation (Hargreaves' test) over wild type (WT) controls. Electrophysiological and pharmacological approaches in the isolated spinal cord in vitro showed that constant current stimulation of dorsal roots at a pain-associated frequency was associated with a significant reduction in the frequency-dependent modulation of longer-latency reflex (LLRs) responses but not monosynaptic stretch reflexes (MSRs) in D3KO. Application of the D1 and D2 receptor agonists and the voltage-gated calcium-channel ligand, pregabalin, but not DA, was able to restore the frequency-dependent modulation of the LLR in D3KO to WT levels. Thus we demonstrate that nociception-associated LLRs and proprioceptive MSRs are differentially modulated by frequency, dopaminergics and the Ca(2+) channel ligand, pregabalin. Our data suggest a role for the DA D3 receptor in pain modulation and identify the D3KO as a possible model for increased nociception.

  11. Frequency-dependent local field factors in dielectric liquids by a polarizable force field and molecular dynamics simulations

    SciTech Connect

    Davari, Nazanin; Haghdani, Shokouh; Åstrand, Per-Olof

    2015-12-31

    A force field model for calculating local field factors, i.e. the linear response of the local electric field for example at a nucleus in a molecule with respect to an applied electric field, is discussed. It is based on a combined charge-transfer and point-dipole interaction model for the polarizability, and thereby it includes two physically distinct terms for describing electronic polarization: changes in atomic charges arising from transfer of charge between the atoms and atomic induced dipole moments. A time dependence is included both for the atomic charges and the atomic dipole moments and if they are assumed to oscillate with the same frequency as the applied electric field, a model for frequency-dependent properties are obtained. Furthermore, if a life-time of excited states are included, a model for the complex frequency-dependent polariability is obtained including also information about excited states and the absorption spectrum. We thus present a model for the frequency-dependent local field factors through the first molecular excitation energy. It is combined with molecular dynamics simulations of liquids where a large set of configurations are sampled and for which local field factors are calculated. We are normally not interested in the average of the local field factor but rather in configurations where it is as high as possible. In electrical insulation, we would like to avoid high local field factors to reduce the risk for electrical breakdown, whereas for example in surface-enhanced Raman spectroscopy, high local field factors are desired to give dramatically increased intensities.

  12. Frequency dependence of two-photon absorption in InSb and Hg1-xCdxTe

    NASA Astrophysics Data System (ADS)

    Johnston, A. M.; Pidgeon, C. R.; Dempsey, J.

    1980-07-01

    The frequency dependence of two-photon absorption is measured over a wide range in InSb and Hg0.78Cd0.22Te, showing good agreement with a nonparabolic-band perturbation calculation and wide divergence from "tunneling" theory. Associated photoconductivity measurements, required in the analysis, confirm that Auger scattering is the dominant process at room temperature in n-InSb, but at low temperatures have yielded a direct value of the lifetime of τ(77 K)=143 ns for radiative recombination.

  13. Spectroscopic studies of the solute—solvent interaction in dye-doped polymers: frequency-dependent pressure shifts

    NASA Astrophysics Data System (ADS)

    Reul, S.; Richter, W.; Haarer, D.

    1991-05-01

    The method of hole burning spectroscopy is an excellent means to investigate small shifts and broadenings of quasi-homogeneous optical lines of dye molecules embedded in an amorphous matrix, caused by slight changes in the microscopic matrix environment after applying hydrostatic pressure. We have investigated the pressure-induced line shifts of free-base phthalocyanine in the polymer matrices polyethylene and polystyrene. The experimental data confirm the theoretical prediction of Laird and Skinner pertaining to the frequency dependence of the pressure-induced shifts and the corresponding broadening effects of spectral holes.

  14. Temperature and frequency dependencies of the switching field in glass-coated FeNbSiB microwires

    NASA Astrophysics Data System (ADS)

    Sabol, R.; Varga, R.; Hudak, J.; Blazek, J.; Praslicka, D.; Vojtanik, P.; Badini, G.; Vazquez, M.

    2012-03-01

    We are dealing with the temperature and frequency dependencies of the switching field in the glass-coated FeNbSiB microwire. Both dependencies can be described in terms of two contributions to the switching mechanism: magnetoelastic and structural relaxation. We show that by properly setting the frequency of the measurement, it is possible to vary the relative strength of both contributions. Hence, the temperature dependence of the switching field can be tailored according to desired conditions being temperature independent for low (<100 Hz) and high (>500 Hz) frequencies or almost linearly dependent for medium frequency ˜350 Hz.

  15. Dynamics of electronic transitions and frequency dependence of negative capacitance in semiconductor diodes under high forward bias

    SciTech Connect

    Bansal, Kanika; Datta, Shouvik; Henini, Mohamed; Alshammari, Marzook S.

    2014-09-22

    We observed qualitatively dissimilar frequency dependence of negative capacitance under high charge injection in two sets of functionally different junction diodes: III-V based light emitting and Si-based non-light emitting diodes. Using an advanced approach based on bias activated differential capacitance, we developed a generalized understanding of negative capacitance phenomenon which can be extended to any diode based device structure. We explained the observations as the mutual competition of fast and slow electronic transition rates which are different in different devices. This study can be useful in understanding the interfacial effects in semiconductor heterostructures and may lead to superior device functionality.

  16. Evolutionary time-series analysis reveals the signature of frequency-dependent selection on a female mating polymorphism.

    PubMed

    Le Rouzic, Arnaud; Hansen, Thomas F; Gosden, Thomas P; Svensson, Erik I

    2015-06-01

    A major challenge in evolutionary biology is understanding how stochastic and deterministic factors interact and influence macroevolutionary dynamics in natural populations. One classical approach is to record frequency changes of heritable and visible genetic polymorphisms over multiple generations. Here, we combined this approach with a maximum likelihood-based population-genetic model with the aim of understanding and quantifying the evolutionary processes operating on a female mating polymorphism in the blue-tailed damselfly Ischnura elegans. Previous studies on this color-polymorphic species have suggested that males form a search image for females, which leads to excessive mating harassment of common female morphs. We analyzed a large temporally and spatially replicated data set of between-generation morph frequency changes in I. elegans. Morph frequencies were more stable than expected from genetic drift alone, suggesting the presence of selection toward a stable equilibrium that prevents local loss or fixation of morphs. This can be interpreted as the signature of negative frequency-dependent selection maintaining the phenotypic stasis and genetic diversity in these populations. Our novel analytical approach allows the estimation of the strength of frequency-dependent selection from the morph frequency fluctuations around their inferred long-term equilibria. This approach can be extended and applied to other polymorphic organisms for which time-series data across multiple generations are available.

  17. Feedforward and feedback frequency-dependent interactions in a large-scale laminar network of the primate cortex

    PubMed Central

    Mejias, Jorge F.; Murray, John D.; Kennedy, Henry; Wang, Xiao-Jing

    2016-01-01

    Interactions between top-down and bottom-up processes in the cerebral cortex hold the key to understanding attentional processes, predictive coding, executive control, and a gamut of other brain functions. However, the underlying circuit mechanism remains poorly understood and represents a major challenge in neuroscience. We approached this problem using a large-scale computational model of the primate cortex constrained by new directed and weighted connectivity data. In our model, the interplay between feedforward and feedback signaling depends on the cortical laminar structure and involves complex dynamics across multiple (intralaminar, interlaminar, interareal, and whole cortex) scales. The model was tested by reproducing, as well as providing insights into, a wide range of neurophysiological findings about frequency-dependent interactions between visual cortical areas, including the observation that feedforward pathways are associated with enhanced gamma (30 to 70 Hz) oscillations, whereas feedback projections selectively modulate alpha/low-beta (8 to 15 Hz) oscillations. Furthermore, the model reproduces a functional hierarchy based on frequency-dependent Granger causality analysis of interareal signaling, as reported in recent monkey and human experiments, and suggests a mechanism for the observed context-dependent hierarchy dynamics. Together, this work highlights the necessity of multiscale approaches and provides a modeling platform for studies of large-scale brain circuit dynamics and functions. PMID:28138530

  18. Stress-Dependent Matrix Cracking in 2D Woven SiC-Fiber Reinforced Melt-Infiltrated SiC Matrix Composites

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.

    2003-01-01

    The matrix cracking of a variety of SiC/SiC composites has been characterized for a wide range of constituent variation. These composites were fabricated by the 2-dimensional lay-up of 0/90 five-harness satin fabric consisting of Sylramic fiber tows that were then chemical vapor infiltrated (CVI) with BN, CVI with SiC, slurry infiltrated with SiC particles followed by molten infiltration of Si. The composites varied in number of plies, the number of tows per length, thickness, and the size of the tows. This resulted in composites with a fiber volume fraction in the loading direction that ranged from 0.12 to 0.20. Matrix cracking was monitored with modal acoustic emission in order to estimate the stress-dependent distribution of matrix cracks. It was found that the general matrix crack properties of this system could be fairly well characterized by assuming that no matrix cracks originated in the load-bearing fiber, interphase, chemical vapor infiltrated Sic tow-minicomposites, i.e., all matrix cracks originate in the 90 degree tow-minicomposites or the large unreinforced Sic-Si matrix regions. Also, it was determined that the larger tow size composites had a much narrower stress range for matrix cracking compared to the standard tow size composites.

  19. Interneuron Transcriptional Dysregulation Causes Frequency-Dependent Alterations in the Balance of Inhibition and Excitation in Hippocampus

    PubMed Central

    Bartley, Aundrea F.; Lucas, Elizabeth K.; Brady, Lillian J.; Li, Qin; Hablitz, John J.; Cowell, Rita M.

    2015-01-01

    Circuit dysfunction in complex brain disorders such as schizophrenia and autism is caused by imbalances between inhibitory and excitatory synaptic transmission (I/E). Short-term plasticity differentially alters responses from excitatory and inhibitory synapses, causing the I/E ratio to change as a function of frequency. However, little is known about I/E ratio dynamics in complex brain disorders. Transcriptional dysregulation in interneurons, particularly parvalbumin interneurons, is a consistent pathophysiological feature of schizophrenia. Peroxisome proliferator activated receptor γ coactivator 1α (PGC-1α) is a transcriptional coactivator that in hippocampus is highly concentrated in inhibitory interneurons and regulates parvalbumin transcription. Here, we used PGC-1α−/− mice to investigate effects of interneuron transcriptional dysregulation on the dynamics of the I/E ratio at the synaptic and circuit level in hippocampus. We find that loss of PGC-1α increases the I/E ratio onto CA1 pyramidal cells in response to Schaffer collateral stimulation in slices from young adult mice. The underlying mechanism is enhanced basal inhibition, including increased inhibition from parvalbumin interneurons. This decreases the spread of activation in CA1 and dramatically limits pyramidal cell spiking, reducing hippocampal output. The I/E ratio and CA1 output are partially restored by paired-pulse stimulation at short intervals, indicating frequency-dependent effects. However, circuit dysfunction persists, indicated by alterations in kainate-induced gamma oscillations and impaired nest building. Together, these results show that transcriptional dysregulation in hippocampal interneurons causes frequency-dependent alterations in I/E ratio and circuit function, suggesting that PGC-1α deficiency in psychiatric and neurological disorders contributes to disease by causing functionally relevant alterations in I/E balance. SIGNIFICANCE STATEMENT Alteration in the inhibitory and

  20. Coda Q and its Frequency Dependence in the Eastern Himalayan and Indo-Burman Plate Boundary Systems

    NASA Astrophysics Data System (ADS)

    Mitra, S.; Kumar, A.

    2015-12-01

    We use broadband waveform data for 305 local earthquakes from the Eastern Himalayan and Indo-Burman plate boundary systems, to model the seismic attenuation in NE India. We measure the decay in amplitude of coda waves at discreet frequencies (between 1 and 12Hz) to evaluate the quality factor (Qc) as a function of frequency. We combine these measurements to evaluate the frequency dependence of Qc of the form Qc(f)=Qof η, where Qo is the quality factor at 1Hz and η is the frequency dependence. Computed Qo values range from 80-360 and η ranges from 0.85-1.45. To study the lateral variation in Qo and η, we regionalise the Qc by combining all source-receiver measurements using a back-projection algorithm. For a single back scatter model, the coda waves sample an elliptical area with the epicenter and receiver at the two foci. We parameterize the region using square grids. The algorithm calculates the overlap in area and distributes Qc in the sampled grids using the average Qc as the boundary value. This is done in an iterative manner, by minimising the misfit between the observed and computed Qc within each grid. This process is repeated for all frequencies and η is computed for each grid by combining Qc for all frequencies. Our results reveal strong variation in Qo and η across NE India. The highest Qo are in the Bengal Basin (210-280) and the Indo-Burman subduction zone (300-360). The Shillong Plateau and Mikir Hills have intermediate Qo (~160) and the lowest Qo (~80) is observed in the Naga fold thrust belt. This variation in Qo demarcates the boundary between the continental crust beneath the Shillong Plateau and Mikir Hills and the transitional to oceanic crust beneath the Bengal Basin and Indo-Burman subduction zone. Thick pile of sedimentary strata in the Naga fold thrust belt results in the low Qo. Frequency dependence (η) of Qc across NE India is observed to be very high, with regions of high Qo being associated with relatively higher η.

  1. Asymmetric and frequency-dependent pollinator-mediated interactions may influence competitive displacement in two vernal pool plants.

    PubMed

    Runquist, Ryan Briscoe; Stanton, Maureen L

    2013-02-01

    A plant species immigrating into a community may experience a rarity disadvantage due to competition for the services of pollinators. These negative reproductive interactions have the potential to lead to competitive displacement or exclusion of a species from a site. In this study, we used one- and two-species arrays of potted plants to test for density and frequency dependence in pollinator-mediated and above-ground intraspecific and interspecific competition between two species of Limnanthes that have overlapping ranges, but rarely occur in close sympatry. There were asymmetric competitive effects; the species responded differently to their frequency within 16-plant replacement series arrays. Limnanthes douglasii rosea experienced stronger reductions in lifetime and per-flower fertility, likely due to pollinator-mediated competition with Limnanthes alba. This effect may be linked to asymmetrical competition through heterospecific pollen transfer. This study demonstrates that pollinator-mediated competition may discourage establishment of L. d. rosea in sites already occupied by its congener.

  2. Frequency-dependent study of solid 4He contained in a rigid double-torus torsional oscillator

    NASA Astrophysics Data System (ADS)

    Choi, Jaewon; Shin, Jaeho; Kim, Eunseong

    2015-10-01

    The rigid double-torus torsional oscillator (TO) is constructed to reduce any elastic effects inherent to complicated TO structures, allowing explicit probing for a genuine supersolid signature. We investigated the frequency- and temperature-dependent response of the rigid double-torus TO containing solid 4He with 0.6-ppb 3He and 300-ppb 3He . We did not find evidence to support the frequency-independent contribution proposed to be a property of supersolid helium. The frequency-dependent contribution which comes from the simple elastic effect of solid helium coupled to the TO is essentially responsible for the entire response. The magnitude of the period drop is linearly proportional to f2, indicating that the responses observed in this TO are mostly caused by the overshoot of "soft" solid helium against the wall of the torus. Dissipation of the rigid TO is vastly suppressed compared to that of nonrigid TOs.

  3. Temperature and frequency dependent dielectric properties of electrically conducting oxidatively synthesized polyazomethines and their structural, optical, and thermal characterizations

    NASA Astrophysics Data System (ADS)

    Dineshkumar, Sengottuvelu; Muthusamy, Athianna; Chandrasekaran, J.

    2017-01-01

    Three azomethine diol monomers were synthesized by condensing with methanolic solution of aromatic aldehydes with ethylenediamine. These monomers were oxidatively polymerized using NaOCl as an oxidant. The structures of the monomers and polymers were confirmed by various spectroscopic techniques. Spectral results showed that the repeating units are linked by Csbnd C and Csbnd Osbnd C couplings. The polyazomethines have fluorescent property with high stokes shift. Solid state electrical conductivity of polymers both in I2 doped and undoped states, temperature and frequency dependent dielectric measurements were made by two probe method. The electrical conductivities of polyazomethines were compared based on the charge densities on imine nitrogens obtained from Huckel calculation. The conductivity of polymers increases with increase in iodine vapour contact time. Among the synthesized polymers PHNAE has shown high dielectric constant at low applied frequency of 50 Hz at 393 K due the presence of bulky naphthalene unit in polymer chain.

  4. Anomalies in Giant Quantum Attenuation of Sound Waves in Bismuth at High Magnetic Fields. I. Temperature and Frequency Dependences

    NASA Astrophysics Data System (ADS)

    Mase, Shoichi; Fukami, Takeshi; Mori, Masatoshi; Akinaga, Masahiro; Yamaguchi, Toshinobu; Shiraishi, Naotaka

    1980-04-01

    A reinvestigation has been made of an anomaly in the temperature dependence of the ultrasonic attenuation in bismuth, which is observed when an electron Landau level and a hole Landau level approach simultaneously to the Fermi level at high magnetic fields and at low temperatures. It has been found that in the most anomalous case the anomaly in the temperature dependence accompanies an anomalous frequency dependence and these are quite sensitive to physical imperfections in bismuth. On the basis if Kuramoto’s theory of sound attenuation which is taking account of the short-range electron-hole correlation, the experimental results are analyzed, and it is suggested that one more additional term is required to explain the present anomalous data.

  5. Frequency-dependent hydrodynamic inductance and the determination of the thermal and quantum noise of a superfluid gyroscope

    SciTech Connect

    Chui, Talso; Penanen, Konstantin

    2005-04-01

    We reexamine mass flow in a superfluid gyroscope containing a superfluid Josephson weak link. We introduce a frequency-dependent hydrodynamic inductance to account for an oscillatory flow of the normal fluid component in the sensing loop. With this hydrodynamic inductance, we derive the thermal phase noise, and hence the thermal rotational noise of the gyroscope. We examine the thermodynamic stability of the system based on an analysis of the free energy. We derive a quantum phase noise, which is analogous to the zero-point motion of a simple harmonic oscillator. The configuration of the studied gyroscope is analogous to a conventional superconducting RF SQUID. We show that the gyroscope has very low intrinsic noise (1.9x10{sup -13} rad s{sup -1}/{radical}(Hz)), and it can potentially be applied to study general relativity, Earth science, and to improve global positioning systems (GPS)

  6. In Vivo and In Silico Investigation Into Mechanisms of Frequency Dependence of Repolarization Alternans in Human Ventricular Cardiomyocytes

    PubMed Central

    Zhou, Xin; Bueno-Orovio, Alfonso; Orini, Michele; Hanson, Ben; Hayward, Martin; Taggart, Peter; Lambiase, Pier D.; Burrage, Kevin

    2016-01-01

    Rationale: Repolarization alternans (RA) are associated with arrhythmogenesis. Animal studies have revealed potential mechanisms, but human-focused studies are needed. RA generation and frequency dependence may be determined by cell-to-cell variability in protein expression, which is regulated by genetic and external factors. Objective: To characterize in vivo RA in human and to investigate in silico using human models, the ionic mechanisms underlying the frequency-dependent differences in RA behavior identified in vivo. Methods and Results: In vivo electrograms were acquired at 240 sites covering the epicardium of 41 patients at 6 cycle lengths (600–350 ms). In silico investigations were conducted using a population of biophysically detailed human models incorporating variability in protein expression and calibrated using in vivo recordings. Both in silico and in vivo, 2 types of RA were identified, with Fork- and Eye-type restitution curves, based on RA persistence or disappearance, respectively, at fast pacing rates. In silico simulations show that RA are strongly correlated with fluctuations in sarcoplasmic reticulum calcium, because of strong release and weak reuptake. Large L-type calcium current conductance is responsible for RA disappearance at fast frequencies in Eye-type (30% larger in Eye-type versus Fork-type; P<0.01), because of sarcoplasmic reticulum Ca2+ ATPase pump potentiation caused by frequency-induced increase in intracellular calcium. Large Na+/Ca2+ exchanger current is the main driver in translating Ca2+ fluctuations into RA. Conclusions: In human in vivo and in silico, 2 types of RA are identified, with RA persistence/disappearance as frequency increases. In silico, L-type calcium current and Na+/Ca2+ exchanger current determine RA human cell-to-cell differences through intracellular and sarcoplasmic reticulum calcium regulation. PMID:26602864

  7. Frequency-dependent conductivity contrast for tissue characterization using a dual-frequency range conductivity mapping magnetic resonance method.

    PubMed

    Kim, Dong-Hyun; Chauhan, Munish; Kim, Min-Oh; Jeong, Woo Chul; Kim, Hyung Joong; Sersa, Igor; Kwon, Oh In; Woo, Eung Je

    2015-02-01

    Electrical conductivities of biological tissues show frequency-dependent behaviors, and these values at different frequencies may provide clinically useful diagnostic information. MR-based tissue property mapping techniques such as magnetic resonance electrical impedance tomography (MREIT) and magnetic resonance electrical property tomography (MREPT) are widely used and provide unique conductivity contrast information over different frequency ranges. Recently, a new method for data acquisition and reconstruction for low- and high-frequency conductivity images from a single MR scan was proposed. In this study, we applied this simultaneous dual-frequency range conductivity mapping MR method to evaluate its utility in a designed phantom and two in vivo animal disease models. Magnetic flux density and B(1)(+) phase map for dual-frequency conductivity images were acquired using a modified spin-echo pulse sequence. Low-frequency conductivity was reconstructed from MREIT data by the projected current density method, while high-frequency conductivity was reconstructed from MREPT data by B(1)(+) mapping. Two different conductivity phantoms comprising varying ion concentrations separated by insulating films with or without holes were used to study the contrast mechanism of the frequency-dependent conductivities related to ion concentration and mobility. Canine brain abscess and ischemia were used as in vivo models to evaluate the capability of the proposed method to identify new electrical properties-based contrast at two different frequencies. The simultaneous dual-frequency range conductivity mapping MR method provides unique contrast information related to the concentration and mobility of ions inside tissues. This method has potential to monitor dynamic changes of the state of disease.

  8. Modulation of epileptic activity by deep brain stimulation: a model-based study of frequency-dependent effects

    PubMed Central

    Mina, Faten; Benquet, Pascal; Pasnicu, Anca; Biraben, Arnaud; Wendling, Fabrice

    2013-01-01

    A number of studies showed that deep brain stimulation (DBS) can modulate the activity in the epileptic brain and that a decrease of seizures can be achieved in “responding” patients. In most of these studies, the choice of stimulation parameters is critical to obtain desired clinical effects. In particular, the stimulation frequency is a key parameter that is difficult to tune. A reason is that our knowledge about the frequency-dependant mechanisms according to which DBS indirectly impacts the dynamics of pathological neuronal systems located in the neocortex is still limited. We address this issue using both computational modeling and intracerebral EEG (iEEG) data. We developed a macroscopic (neural mass) model of the thalamocortical network. In line with already-existing models, it includes interconnected neocortical pyramidal cells and interneurons, thalamocortical cells and reticular neurons. The novelty was to introduce, in the thalamic compartment, the biophysical effects of direct stimulation. Regarding clinical data, we used a quite unique data set recorded in a patient (drug-resistant epilepsy) with a focal cortical dysplasia (FCD). In this patient, DBS strongly reduced the sustained epileptic activity of the FCD for low-frequency (LFS, < 2 Hz) and high-frequency stimulation (HFS, > 70 Hz) while intermediate-frequency stimulation (IFS, around 50 Hz) had no effect. Signal processing, clustering, and optimization techniques allowed us to identify the necessary conditions for reproducing, in the model, the observed frequency-dependent stimulation effects. Key elements which explain the suppression of epileptic activity in the FCD include: (a) feed-forward inhibition and synaptic short-term depression of thalamocortical connections at LFS, and (b) inhibition of the thalamic output at HFS. Conversely, modeling results indicate that IFS favors thalamic oscillations and entrains epileptic dynamics. PMID:23882212

  9. Forskolin suppresses delayed-rectifier K+ currents and enhances spike frequency-dependent adaptation of sympathetic neurons.

    PubMed

    Angel-Chavez, Luis I; Acosta-Gómez, Eduardo I; Morales-Avalos, Mario; Castro, Elena; Cruzblanca, Humberto

    2015-01-01

    In signal transduction research natural or synthetic molecules are commonly used to target a great variety of signaling proteins. For instance, forskolin, a diterpene activator of adenylate cyclase, has been widely used in cellular preparations to increase the intracellular cAMP level. However, it has been shown that forskolin directly inhibits some cloned K+ channels, which in excitable cells set up the resting membrane potential, the shape of action potential and regulate repetitive firing. Despite the growing evidence indicating that K+ channels are blocked by forskolin, there are no studies yet assessing the impact of this mechanism of action on neuron excitability and firing patterns. In sympathetic neurons, we find that forskolin and its derivative 1,9-Dideoxyforskolin, reversibly suppress the delayed rectifier K+ current (IKV). Besides, forskolin reduced the spike afterhyperpolarization and enhanced the spike frequency-dependent adaptation. Given that IKV is mostly generated by Kv2.1 channels, HEK-293 cells were transfected with cDNA encoding for the Kv2.1 α subunit, to characterize the mechanism of forskolin action. Both drugs reversible suppressed the Kv2.1-mediated K+ currents. Forskolin inhibited Kv2.1 currents and IKV with an IC50 of ~32 μM and ~24 µM, respectively. Besides, the drug induced an apparent current inactivation and slowed-down current deactivation. We suggest that forskolin reduces the excitability of sympathetic neurons by enhancing the spike frequency-dependent adaptation, partially through a direct block of their native Kv2.1 channels.

  10. Black Beans, Fiber, and Antioxidant Capacity Pilot Study: Examination of Whole Foods vs. Functional Components on Postprandial Metabolic, Oxidative Stress, and Inflammation in Adults with Metabolic Syndrome.

    PubMed

    Reverri, Elizabeth J; Randolph, Jody M; Steinberg, Francene M; Kappagoda, C Tissa; Edirisinghe, Indika; Burton-Freeman, Britt M

    2015-07-27

    Beans (Phaseolus vulgaris) contain bioactive components with functional properties that may modify cardiovascular risk. The aims of this pilot study were to evaluate the ability of black beans to attenuate postprandial metabolic, oxidative stress, and inflammatory responses and determine relative contribution of dietary fiber and antioxidant capacity of beans to the overall effect. In this randomized, controlled, crossover trial, 12 adults with metabolic syndrome (MetS) consumed one of three meals (black bean (BB), fiber matched (FM), and antioxidant capacity matched (AM)) on three occasions that included blood collection before (fasting) and five hours postprandially. Insulin was lower after the BB meal, compared to the FM or AM meals (p < 0.0001). A significant meal × time interaction was observed for plasma antioxidant capacity (p = 0.002) revealing differences over time: AM > BB > FM. Oxidized LDL (oxLDL) was not different by meal, although a trend for declining oxLDL was observed after the BB and AM meals at five hours compared to the FM meal. Triglycerides and interleukin-6 (IL-6) increased in response to meals (p < 0.0001). Inclusion of black beans with a typical Western-style meal attenuates postprandial insulin and moderately enhances postprandial antioxidant endpoints in adults with MetS, which could only be partly explained by fiber content and properties of antioxidant capacity.

  11. Black Beans, Fiber, and Antioxidant Capacity Pilot Study: Examination of Whole Foods vs. Functional Components on Postprandial Metabolic, Oxidative Stress, and Inflammation in Adults with Metabolic Syndrome

    PubMed Central

    Reverri, Elizabeth J.; Randolph, Jody M.; Steinberg, Francene M.; Kappagoda, C. Tissa; Edirisinghe, Indika; Burton-Freeman, Britt M.

    2015-01-01

    Beans (Phaseolus vulgaris) contain bioactive components with functional properties that may modify cardiovascular risk. The aims of this pilot study were to evaluate the ability of black beans to attenuate postprandial metabolic, oxidative stress, and inflammatory responses and determine relative contribution of dietary fiber and antioxidant capacity of beans to the overall effect. In this randomized, controlled, crossover trial, 12 adults with metabolic syndrome (MetS) consumed one of three meals (black bean (BB), fiber matched (FM), and antioxidant capacity matched (AM)) on three occasions that included blood collection before (fasting) and five hours postprandially. Insulin was lower after the BB meal, compared to the FM or AM meals (p < 0.0001). A significant meal × time interaction was observed for plasma antioxidant capacity (p = 0.002) revealing differences over time: AM > BB > FM. Oxidized LDL (oxLDL) was not different by meal, although a trend for declining oxLDL was observed after the BB and AM meals at five hours compared to the FM meal. Triglycerides and interleukin-6 (IL-6) increased in response to meals (p < 0.0001). Inclusion of black beans with a typical Western-style meal attenuates postprandial insulin and moderately enhances postprandial antioxidant endpoints in adults with MetS, which could only be partly explained by fiber content and properties of antioxidant capacity. PMID:26225995

  12. Frequency-dependent tidal dissipation in a viscoelastic Saturnian core and expansion of Mimas' semi-major axis

    NASA Astrophysics Data System (ADS)

    Shoji, D.; Hussmann, H.

    2017-03-01

    Context. Regarding tidal dissipation in Saturn, usually parameterized by Saturn's quality factor Q, there remains a discrepancy between conventional estimates and the latest determination that has been derived from astrometric observations of Saturn's inner satellites. If dissipation in Saturn is as large as the astrometric observations suggest, and is independent of time and tidal frequency, conventional models predict that Mimas' initial orbit should be located inside Saturn's synchronous orbit or even inside its Roche limit, in contradiction to formation models. Aims: Using simple structure models and assuming Saturn's core to be viscoelastic, we look for dissipation models which are consistent with both the latest astrometric observations and with Mimas' orbital migration. Methods: Firstly, using a two-layer model of Saturn's interior structure, we constrain the ranges of rigidity and viscosity of Saturn's core which are consistent with Saturn's dissipation derived from astrometric observations at the tidal frequencies of Enceladus, Tethys, and Dione. Next, within the constrained viscosity and rigidity ranges, we calculate Mimas' semi-major axis considering the frequency dependence of viscoelastic dissipation in Saturn's core. By the two calculations, we evaluate (1) Saturnian models which can explain the astrometrically determined Saturnian dissipation, and (2) whether Mimas' initial semi-major axis is larger than the synchronous orbit. Results: We show that if the core is assumed to be solid with a viscosity of 1013-1014 Pa s (depending on its size), the lower boundary of the observed Saturnian dissipation at tidal frequencies of Enceladus, Tethys, and Dione (k2s/Qs 4 × 10-5 where k2s is Saturn's second degree Love number and Qs its quality factor) can be explained by our model. In this viscosity range, Mimas can stay outside the synchronous orbit and the Roche limit for 4.5 billion years of evolution. Conclusions: In the case of a frequency dependent

  13. Stress

    MedlinePlus

    ... flu shot, are less effective for them. Some people cope with stress more effectively than others. It's important to know your limits when it comes to stress, so you can avoid more serious health effects. NIH: National Institute of Mental Health

  14. Splicing of aged fibers

    NASA Astrophysics Data System (ADS)

    Volotinen, Tarja T.; Yuce, Hakan H.; Bonanno, Nicholas; Frantz, Rolf A.; Duffy, Sean

    1993-11-01

    The deployment of fiber in the subscriber loop will require that an optical fiber network maintain the highest possible level of reliability over time, despite being subjected to extremes of temperature, humidity, and other environmental and mechanical stresses imposed on the outside plant. At the same time, both the initial cost and the ongoing maintenance expenses for loop equipment must be kept low. Fiber in the Loop (FITL) applications will entail increased fiber handling. Cable lengths will be shorter, and fiber counts higher, than has been the case so far in long-distance applications. There will also be more cable sheath openings per unit length of cable and/or fiber, as well as more splicing and connectorization. It may become a common practice that a customer is connected to a cable installed many years earlier. In subscriber loops, cables and fibers will be installed in harsher and more varying environments. Fibers will be exposed to higher humidity and temperature, particularly in splice boxes mounted on building walls, in pedestal cabinets, and in other similar enclosures. Corrosive gases and/or liquids may also be present at some locations and will adversely affect the fibers. The combination of increased handling, greater exposure, and more stressful environments may give rise to a need for new, more stringent requirements for fiber mechanical reliability. These can include increaSed fiber strength, increased aging resistance, and increased fatigue resistance.

  15. Frequency dependencies of the complex conductivity of type I and II superconductors are not what they seem

    NASA Astrophysics Data System (ADS)

    Beeli, Pieder

    2002-03-01

    We analyze two illustrative papers: Palmer and Tinkham on Pb [Phys. Rev. 165, 588 (1968)] and Wu, Ong and Li on YBCO [Phys. Rev. Lett. 71, 2642 (1993)]. Palmer and Tinkham claim that the excessive peak height in the transmissivity of Pb in the neighborhood of the gap frequency is “the clearest indication … that there is an anomaly [signifying non-BCS behavior] in lead.” The errors resulting from the standing waves in the quartz substrate--estimated to be less than 0.5% [Phys. Rev. 118, 990 (1960)]--are actually largely systematic and greater than 10%. Further, the failure to independently measure the normal state resistivity at frequencies above the gap may be an even larger source of error which could reconcile the peak height measurement with BCS. Next we show that Wu, Ong and Li confuse the circuit impedance (Z_c≡ V/I) with the surface wave impedance (Z_sw≡ E/H) and thereby incur significant errors when attempting to determine exponents which provide the frequency dependence of the resistivity’s real and imaginary parts.

  16. Broadband measurements of the frequency dependence of attenuation coefficient and velocity in amniotic fluid, urine and human serum albumin solutions.

    PubMed

    Verma, Prashant K; Humphrey, Victor F; Duck, Francis A

    2005-10-01

    The frequency dependence of attenuation coefficient in amniotic fluid, urine and 4.5% and 20% human serum albumin solutions over the frequency range 5 MHz to 25 MHz was measured at both room temperature and physiological temperature using a variable path length technique. A 15 MHz (13 mm diameter) transducer was used to produce a broadband single-cycle pulse and a 4 mm diameter bilaminar polyvinylidene difluoride membrane hydrophone was used to detect the attenuated pulse. Standard time-of-flight measurement techniques were used to measure the acoustic velocity in the same fluid samples. At physiological temperature, the attenuation coefficients in amniotic fluid, urine and 4.5% and 20% human albumin solution were found to be 0.0053 f(1.65), 0.0047 f(1.67), 0.019 f(1.57) and 0.167 f(1.27) dB cm(-1), respectively, where f is in MHz. The velocities in amniotic fluid, urine and 4.5% human albumin solution at physiological temperature were found to be 1541.1 m s(-1) +/- 1.3 m s(-1), 1551.3 m s(-1) +/- 1.3 ms(-1) and 1547.3 m s(-1) +/- 1.0 m s(-1), respectively. The results provide unique data over the diagnostic and therapeutic ultrasonic frequency range that can be used as input data for theoretical models that attempt to simulate nonlinear pressure fields and temperature rises from medical ultrasonic transducers.

  17. Exploring time- and frequency- dependent functional connectivity and brain networks during deception with single-trial event-related potentials

    PubMed Central

    Gao, Jun-feng; Yang, Yong; Huang, Wen-tao; Lin, Pan; Ge, Sheng; Zheng, Hong-mei; Gu, Ling-yun; Zhou, Hui; Li, Chen-hong; Rao, Ni-ni

    2016-01-01

    To better characterize the cognitive processes and mechanisms that are associated with deception, wavelet coherence was employed to evaluate functional connectivity between different brain regions. Two groups of subjects were evaluated for this purpose: 32 participants were required to either tell the truth or to lie when facing certain stimuli, and their electroencephalogram signals on 12 electrodes were recorded. The experimental results revealed that deceptive responses elicited greater connectivity strength than truthful responses, particularly in the θ band on specific electrode pairs primarily involving connections between the prefrontal/frontal and central regions and between the prefrontal/frontal and left parietal regions. These results indicate that these brain regions play an important role in executing lying responses. Additionally, three time- and frequency-dependent functional connectivity networks were proposed to thoroughly reflect the functional coupling of brain regions that occurs during lying. Furthermore, the wavelet coherence values for the connections shown in the networks were extracted as features for support vector machine training. High classification accuracy suggested that the proposed network effectively characterized differences in functional connectivity between the two groups of subjects over a specific time-frequency area and hence could be a sensitive measurement for identifying deception. PMID:27833159

  18. Digging for answers: contributions of density- and frequency-dependent factors on ectoparasite burden in a social mammal.

    PubMed

    Archer, Elizabeth K; Bennett, Nigel C; Faulkes, Chris G; Lutermann, Heike

    2016-02-01

    Due to the density-dependent nature of parasite transmission parasites are generally assumed to constrain the evolution of sociality. However, evidence for a correlation between group size and parasite burden is equivocal, particularly for mammals. Host contact rates may be modified by mobility of the host and parasite as well as social barriers. In the current study, we used the common mole-rat (Cryptomys hottentotus hottentotus), a social subterranean rodent, as a model system to investigate the effect of host density and frequency of contact rates on ectoparasite burdens. To address these factors we used a study species that naturally varies in population densities and intergroup contact rates across its geographic range. We found that ectoparasite prevalence, abundance and species richness decreased with increasing host density at a regional scale. At the same time, measures of parasite burden increased with intergroup contact rates. Ectoparasite burdens decreased with colony size at the group level possibly as a result of increased grooming rates. Equating group size with population density might be too simplistic an approach when assessing parasite distributions in social mammals. Our data suggest that frequency-dependent mechanisms may play a much greater role at a population level than density-dependent mechanisms in determining parasite distributions in social species. We suggest that future studies should explicitly consider behavioural mechanisms that may affect parasite distribution.

  19. Frequency-dependent assistance as a way out of competitive exclusion between two strains of an emerging virus

    PubMed Central

    Péréfarres, Frédéric; Thébaud, Gaël; Lefeuvre, Pierre; Chiroleu, Frédéric; Rimbaud, Loup; Hoareau, Murielle; Reynaud, Bernard; Lett, Jean-Michel

    2014-01-01

    Biological invasions are the main causes of emerging viral diseases and they favour the co-occurrence of multiple species or strains in the same environment. Depending on the nature of the interaction, co-occurrence can lead to competitive exclusion or coexistence. The successive fortuitous introductions of two strains of Tomato yellow leaf curl virus (TYLCV-Mld and TYLCV-IL) in Réunion Island provided an ideal opportunity to study the invasion of, and competition between, these worldwide emerging pathogens. During a 7-year field survey, we observed a displacement of the resident TYLCV-Mld by the newcomer TYLCV-IL, with TYLCV-Mld remaining mostly in co-infected plants. To understand the factors associated with this partial displacement, biological traits related to fitness were measured. The better ecological aptitude of TYLCV-IL in single infections was demonstrated, which explains its rapid spread. However, we demonstrate that the relative fitness of virus strains can drastically change between single infections and co-infections. An epidemiological model parametrized with our experimental data predicts that the two strains will coexist in the long run through assistance by the fitter strain. This rare case of unilateral facilitation between two pathogens leads to frequency-dependent selection and maintenance of the less fit strain. PMID:24598426

  20. Frequency-dependent assistance as a way out of competitive exclusion between two strains of an emerging virus.

    PubMed

    Péréfarres, Frédéric; Thébaud, Gaël; Lefeuvre, Pierre; Chiroleu, Frédéric; Rimbaud, Loup; Hoareau, Murielle; Reynaud, Bernard; Lett, Jean-Michel

    2014-04-22

    Biological invasions are the main causes of emerging viral diseases and they favour the co-occurrence of multiple species or strains in the same environment. Depending on the nature of the interaction, co-occurrence can lead to competitive exclusion or coexistence. The successive fortuitous introductions of two strains of Tomato yellow leaf curl virus (TYLCV-Mld and TYLCV-IL) in Réunion Island provided an ideal opportunity to study the invasion of, and competition between, these worldwide emerging pathogens. During a 7-year field survey, we observed a displacement of the resident TYLCV-Mld by the newcomer TYLCV-IL, with TYLCV-Mld remaining mostly in co-infected plants. To understand the factors associated with this partial displacement, biological traits related to fitness were measured. The better ecological aptitude of TYLCV-IL in single infections was demonstrated, which explains its rapid spread. However, we demonstrate that the relative fitness of virus strains can drastically change between single infections and co-infections. An epidemiological model parametrized with our experimental data predicts that the two strains will coexist in the long run through assistance by the fitter strain. This rare case of unilateral facilitation between two pathogens leads to frequency-dependent selection and maintenance of the less fit strain.

  1. High-order harmonic generation from silver clusters: Laser-frequency dependence and the screening effect of d electrons

    SciTech Connect

    Nobusada, Katsuyuki; Yabana, Kazuhiro

    2004-10-01

    We present time-dependent density functional studies of harmonic generation from Ag{sub 2} and Ag{sub 8} in pulsed laser fields. The harmonic generation is strongly dependent on the laser frequency. The harmonics are emitted from the clusters much more efficiently when the applied laser field is in tune with the dipole resonance frequency of the system. Such resonance frequency dependence is substantially equal to a resonance phenomenon in a forced oscillator in a sense that the valence s-electrons are shaken effectively at the tuned laser frequency and the induced dipole moment continues to oscillate even though the laser field is switched off. Furthermore, we have found that the polarizable core d-electrons significantly screen the valence s-electrons such that the electron density of the s electrons induced in the laser field is canceled out. The screening effect of the d electrons becomes more important in the system of Ag{sub 8} than Ag{sub 2}.

  2. Frequency-dependent recruitment of V2a interneurons during fictive locomotion in the mouse spinal cord.

    PubMed

    Zhong, Guisheng; Sharma, Kamal; Harris-Warrick, Ronald M

    2011-01-01

    The principles governing the recruitment of interneurons during acceleration in vertebrate locomotion are unknown. In the mouse, the V2a spinal interneurons are dispensable for left-right coordination at low locomotor frequencies, but their function is essential for maintaining left-right coordination at high frequencies. Here we explore the mechanisms driving this frequency-dependent role using four methods to determine how V2a interneurons are recruited at different locomotor frequencies. We show that half of the V2a interneurons receive rhythmic locomotor synaptic drive, which increases with cycle frequency, recruiting more of the neurons to fire at higher frequencies. The other V2a interneurons do not receive locomotion-related synaptic drive and are not recruited into the locomotor network at any frequency. The increased role of V2a interneurons at higher locomotor frequencies arises from increased synaptic drive to recruit subthreshold oscillating V2a neurons, and not from recruitment of a second set of silent V2a interneurons.

  3. Frequency-dependent ferroelectric behavior of BaMn3Ti4O14.25 at room temperature

    NASA Astrophysics Data System (ADS)

    Hossain, Muhammad E.; Liu, Shuangyi; O'Brien, Stephen; Li, Jackie

    2015-07-01

    We report the activation field and selective frequency-dependent ferroelectric behavior of BaMn3Ti4O14.25 (BMT-134) at room temperature. BMT-134, a recently discovered multiferroic complex oxide, exhibits antiferromagnetic and ferroelectric behavior and belongs to the hollandite crystal class. The microstructure can be manipulated through processing conditions to prepare a nanocrystalline textured tablet. We measured polarization-electric field (P-E) hysteresis loops and strain-electric field butterfly loops as a function of frequency in order to investigate the AC dynamics of domain switching and strain behavior. Under an electric field loading condition, a clear hysteresis loop of the electric field-displacement curve is obtained at 50 Hz, indicating that room temperature ferroelectricity is attainable under the right processing conditions. When the frequency is increased to 500 Hz, the coercive field also increases, until the frequency reaches 5 kHz, at which point the electric field versus electric displacement becomes linear indicating the limit of domain switching at high frequency.

  4. Functional MRI reveals frequency-dependent responses during deep brain stimulation at the subthalamic nucleus or internal globus pallidus.

    PubMed

    Lai, Hsin-Yi; Younce, John R; Albaugh, Daniel L; Kao, Yu-Chieh Jill; Shih, Yen-Yu Ian

    2014-01-01

    Deep brain stimulation (DBS) represents a widely used therapeutic tool for the symptomatic treatment of movement disorders, most commonly Parkinson's disease (PD). High frequency stimulation at both the subthalamic nucleus (STN) and internal globus pallidus (GPi) has been used with great success for the symptomatic treatment of PD, although the therapeutic mechanisms of action remain elusive. To better understand how DBS at these target sites modulates neural circuitry, the present study used functional blood-oxygenation-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) to map global brain responses to DBS at the STN and GPi of the rat. Robust activation centered in the ipsilateral motor cortex was observed during high frequency stimulation at either target site, with peak responses observed at a stimulation frequency of 100Hz. Of note, frequency tuning curves were generated, demonstrating that cortical activation was maximal at clinically-relevant stimulation frequencies. Divergent responses to stimulation were noted in the contralateral hemisphere, with strong cortical and striatal negative BOLD signal during stimulation of the GPi, but not STN. The frequency-dependence of the observed motor cortex activation at both targets suggests a relationship with the therapeutic effects of STN and GPi DBS, with both DBS targets being functionally connected with motor cortex at therapeutic stimulation frequencies.

  5. Strong frequency dependence of vibrational relaxation in bulk and surface water reveals sub-picosecond structural heterogeneity

    PubMed Central

    van der Post, Sietse T.; Hsieh, Cho-Shuen; Okuno, Masanari; Nagata, Yuki; Bakker, Huib J.; Bonn, Mischa; Hunger, Johannes

    2015-01-01

    Because of strong hydrogen bonding in liquid water, intermolecular interactions between water molecules are highly delocalized. Previous two-dimensional infrared spectroscopy experiments have indicated that this delocalization smears out the structural heterogeneity of neat H2O. Here we report on a systematic investigation of the ultrafast vibrational relaxation of bulk and interfacial water using time-resolved infrared and sum-frequency generation spectroscopies. These experiments reveal a remarkably strong dependence of the vibrational relaxation time on the frequency of the OH stretching vibration of liquid water in the bulk and at the air/water interface. For bulk water, the vibrational relaxation time increases continuously from 250 to 550 fs when the frequency is increased from 3,100 to 3,700 cm−1. For hydrogen-bonded water at the air/water interface, the frequency dependence is even stronger. These results directly demonstrate that liquid water possesses substantial structural heterogeneity, both in the bulk and at the surface. PMID:26382651

  6. Host-pathogen time series data in wildlife support a transmission function between density and frequency dependence.

    PubMed

    Smith, Matthew J; Telfer, Sandra; Kallio, Eva R; Burthe, Sarah; Cook, Alex R; Lambin, Xavier; Begon, Michael

    2009-05-12

    A key aim in epidemiology is to understand how pathogens spread within their host populations. Central to this is an elucidation of a pathogen's transmission dynamics. Mathematical models have generally assumed that either contact rate between hosts is linearly related to host density (density-dependent) or that contact rate is independent of density (frequency-dependent), but attempts to confirm either these or alternative transmission functions have been rare. Here, we fit infection equations to 6 years of data on cowpox virus infection (a zoonotic pathogen) for 4 natural populations to investigate which of these transmission functions is best supported by the data. We utilize a simple reformulation of the traditional transmission equations that greatly aids the estimation of the relationship between density and host contact rate. Our results provide support for an infection rate that is a saturating function of host density. Moreover, we find strong support for seasonality in both the transmission coefficient and the relationship between host contact rate and host density, probably reflecting seasonal variations in social behavior and/or host susceptibility to infection. We find, too, that the identification of an appropriate loss term is a key component in inferring the transmission mechanism. Our study illustrates how time series data of the host-pathogen dynamics, especially of the number of susceptible individuals, can greatly facilitate the fitting of mechanistic disease models.

  7. Host–pathogen time series data in wildlife support a transmission function between density and frequency dependence

    PubMed Central

    Smith, Matthew J.; Telfer, Sandra; Kallio, Eva R.; Burthe, Sarah; Cook, Alex R.; Lambin, Xavier; Begon, Michael

    2009-01-01

    A key aim in epidemiology is to understand how pathogens spread within their host populations. Central to this is an elucidation of a pathogen's transmission dynamics. Mathematical models have generally assumed that either contact rate between hosts is linearly related to host density (density-dependent) or that contact rate is independent of density (frequency-dependent), but attempts to confirm either these or alternative transmission functions have been rare. Here, we fit infection equations to 6 years of data on cowpox virus infection (a zoonotic pathogen) for 4 natural populations to investigate which of these transmission functions is best supported by the data. We utilize a simple reformulation of the traditional transmission equations that greatly aids the estimation of the relationship between density and host contact rate. Our results provide support for an infection rate that is a saturating function of host density. Moreover, we find strong support for seasonality in both the transmission coefficient and the relationship between host contact rate and host density, probably reflecting seasonal variations in social behavior and/or host susceptibility to infection. We find, too, that the identification of an appropriate loss term is a key component in inferring the transmission mechanism. Our study illustrates how time series data of the host–pathogen dynamics, especially of the number of susceptible individuals, can greatly facilitate the fitting of mechanistic disease models. PMID:19416827

  8. The sound insulation of single leaf finite size rectangular plywood panels with orthotropic frequency dependent bending stiffness.

    PubMed

    Wareing, Robin R; Davy, John L; Pearse, John R

    2016-01-01

    Current theories for predicting the sound insulation of orthotropic materials are limited to a small range of infinite panels. This paper presents a method that allows for the prediction of the sound insulation of a finite size orthotropic panel. This method uses an equation for the forced radiation impedance of a finite size rectangular panel. This approach produces an equation that has three nested integrals. The long numerical calculation times were reduced by using approximate formulas for the azimuthally averaged forced radiation impedance. This reduced the number of nested integrals from three to two. The resulting predictions are compared to results measured using two sample sizes of four different thicknesses of plywood and one sample size of another three different thicknesses of plywood. Plywood was used for all the tests because it is somewhat orthotropic. It was found during testing that the Young's moduli of the plywood were dependent on the frequency of excitation. The influence of the frequency dependent Young's moduli was then included in the prediction method. The experimental results were also compared with a simple isotropic prediction method.

  9. Exploring time- and frequency- dependent functional connectivity and brain networks during deception with single-trial event-related potentials

    NASA Astrophysics Data System (ADS)

    Gao, Jun-Feng; Yang, Yong; Huang, Wen-Tao; Lin, Pan; Ge, Sheng; Zheng, Hong-Mei; Gu, Ling-Yun; Zhou, Hui; Li, Chen-Hong; Rao, Ni-Ni

    2016-11-01

    To better characterize the cognitive processes and mechanisms that are associated with deception, wavelet coherence was employed to evaluate functional connectivity between different brain regions. Two groups of subjects were evaluated for this purpose: 32 participants were required to either tell the truth or to lie when facing certain stimuli, and their electroencephalogram signals on 12 electrodes were recorded. The experimental results revealed that deceptive responses elicited greater connectivity strength than truthful responses, particularly in the θ band on specific electrode pairs primarily involving connections between the prefrontal/frontal and central regions and between the prefrontal/frontal and left parietal regions. These results indicate that these brain regions play an important role in executing lying responses. Additionally, three time- and frequency-dependent functional connectivity networks were proposed to thoroughly reflect the functional coupling of brain regions that occurs during lying. Furthermore, the wavelet coherence values for the connections shown in the networks were extracted as features for support vector machine training. High classification accuracy suggested that the proposed network effectively characterized differences in functional connectivity between the two groups of subjects over a specific time-frequency area and hence could be a sensitive measurement for identifying deception.

  10. A frequency-dependent log-quadratic Pn spreading model in the Northeast China and Korean peninsula

    NASA Astrophysics Data System (ADS)

    Hao, J.; Zhao, L.; Xie, X. B.; Yao, Z.

    2015-12-01

    In 9 October 2006, 25 May 2009, and 12 February 2013, North Korea conducted three successive nuclear tests near the China-Korea border. Based on 297 broadband stations distributed in East China, South Korea, and Japan, the digital seismograms from these nuclear tests are collected to investigate the geometric spreading and attenuation of seismic Pn waves in Northeast China and Korean Peninsula. A highly accurate broadband Pn-wave data set generated by North Korean nuclear tests is used to constrain parameters of a frequency-dependent log-quadratic geometric spreading function and a power-law Pn Q model. The geometric spreading function and apparent Pn wave Q is obtained for the studied area between 2.0 and 10.0 Hz. By taking the two-station amplitude ratios of the Pn spectra, followed by correcting it for the known spreading function, we can strip the effects of source and crust legs from the apparent Pn Q, and retrieve the P-wave attenuation information along the pure upper mantle path. We then use a tomographic approach to obtain the upper mantle P-wave attenuation in Northeast China and Korean Peninsula. The Pn wave spectra observed in China are compared with those recorded in Japan, and the result reveals that the high-frequency Pn signal across the oceanic path attenuated faster than those through the continental path. This work was supported by the National Natural Science Foundation of China (grants 41174048 and 41374065).

  11. Pilot Signal Generation Scheme Using Frequency-Dependent Cyclic Shift ZC Sequence for Inter-Cell Interference Mitigation

    NASA Astrophysics Data System (ADS)

    Imamura, Daichi; Ogawa, Yoshihiko; Iwai, Takashi; Takata, Tomohumi; Hiramatsu, Katsuhiko; Miya, Kazuyuki; Homma, Koichi

    In this paper, we study and propose an inter-cell co-channel interference (CCI) mitigation method for pilot signals using cyclic shift Zadoff-Chu (CS-ZC) sequences for SC-FDMA-based uplink without tight scheduler coordination among cells. Firstly, we investigate the issue of severe detection performance degradation created by the lack of orthogonality among the pilot signals without alignment of the allocated frequency resource positions among cells when using the conventional CS-ZC sequences generation scheme. Secondly, we identify the primary factor causing the issue. Thirdly, we propose a frequency-dependent CS-ZC sequence generation scheme by allocating the same spectrum elements of the ZC sequence to the overlapped subcarriers among cells to mitigate the inter-cell CCI of the pilot signals without alignment of the frequency resource positions among cells. Finally, we confirm the validity of the proposal using uplink data BLER evaluation under a multipath fading condition by computer simulation compared to the conventional method, and show that the proposal achieves around 0.9dB and 0.6dB better performance at 10% BLER than the conventional method for 1 RB and 2 RBs frequency offsets in 3 RBs transmission bandwidth, respectively.

  12. Frequency-dependent reliability of spike propagation is function of axonal voltage-gated sodium channels in cerebellar Purkinje cells.

    PubMed

    Yang, Zhilai; Wang, Jin-Hui

    2013-12-01

    The spike propagation on nerve axons, like synaptic transmission, is essential to ensure neuronal communication. The secure propagation of sequential spikes toward axonal terminals has been challenged in the neurons with a high firing rate, such as cerebellar Purkinje cells. The shortfall of spike propagation makes some digital spikes disappearing at axonal terminals, such that the elucidation of the mechanisms underlying spike propagation reliability is crucial to find the strategy of preventing loss of neuronal codes. As the spike propagation failure is influenced by the membrane potentials, this process is likely caused by altering the functional status of voltage-gated sodium channels (VGSC). We examined this hypothesis in Purkinje cells by using pair-recordings at their somata and axonal blebs in cerebellar slices. The reliability of spike propagation was deteriorated by elevating spike frequency. The frequency-dependent reliability of spike propagation was attenuated by inactivating VGSCs and improved by removing their inactivation. Thus, the functional status of axonal VGSCs influences the reliability of spike propagation.

  13. Distinct frequency dependent effects of whole-body vibration on non-fractured bone and fracture healing in mice.

    PubMed

    Wehrle, Esther; Wehner, Tim; Heilmann, Aline; Bindl, Ronny; Claes, Lutz; Jakob, Franz; Amling, Michael; Ignatius, Anita

    2014-08-01

    Low-magnitude high-frequency vibration (LMHFV) provokes anabolic effects in non-fractured bone; however, in fracture healing, inconsistent results were reported and optimum vibration conditions remain unidentified. Here, we investigated frequency dependent effects of LMHFV on fracture healing. Twelve-week-old, female C57BL/6 mice received a femur osteotomy stabilized using an external fixator. The mice received whole-body vibrations (20 min/day) with 0.3g peak-to-peak acceleration and a frequency of either 35 or 45 Hz. After 10 and 21 days, the osteotomized femurs and intact bones (contra-lateral femurs, lumbar spine) were evaluated using bending-testing, µ-computed tomography, and histomorphometry. In non-fractured trabecular bone, vibration with 35 Hz significantly increased the relative amount of bone (+28%) and the trabecular number (+29%), whereas cortical bone was not influenced. LMHFV with 45 Hz failed to provoke anabolic effects in trabecular or cortical bone. Fracture healing was not significantly influenced by whole-body vibration with 35 Hz, whereas 45 Hz significantly reduced bone formation (-64%) and flexural rigidity (-34%) of the callus. Although the exact mechanisms remain open, our results suggest that small vibration setting changes could considerably influence LMHFV effects on bone formation in remodeling and repair, and even disrupt fracture healing, implicating caution when treating patients with impaired fracture healing.

  14. The spatially dispersive eigenvalues of permittivity operator and frequency-dependent surface impedance for conductors without the dc dissipation

    NASA Astrophysics Data System (ADS)

    Dresvyannikov, M. A.; Chernyaev, A. P.; Karuzskii, A. L.; Mityagin, Yu. A.; Perestoronin, A. V.; Volchkov, N. A.

    2016-12-01

    An operator of the permittivity can completely describe alone a microwave response of conductors with the spatial dispersion. An eigenvalue problem for the nonself-adjoint permittivity operator Ễa was considered generally to search the wave solutions for conductors and superconductors. An appearance of additional solutions (additional waves) due to the spatial dispersion can strongly influence the properties of nanoelectronic devices or novel superconducting materials in the form of anomalous losses for example, and should be accounted in simulation and modeling of micro- and nanoelectronic devices. It was concluded that the modulus |Ž| of the surface impedance is proportional to the degree of frequency ω2/3 for all normal conductor solutions except that for the superconductor. There was some criticism related to the idea that the electrodynamics of superconductors should be in principle reduced to those for conductors as the temperature approaches and beyond the critical temperature. We demonstrate that appropriately taken into account effects of the spatial dispersion can give the general frequency dependence of the surface impedance for the obtained solutions including that for the superconductor. It is shown that an incorporation of the spatial dispersion leads to an appearance of the Meissner effect in perfect conductors in the same manner as in superconductors.

  15. Frequency-dependent damping model for the hydroacoustic finite element analysis of fluid-filled pipes with diameter changes

    NASA Astrophysics Data System (ADS)

    Herrmann, Jan; Koreck, Jürgen; Maess, Matthias; Gaul, Lothar; von Estorff, Otto

    2011-04-01

    The integration of a model for longitudinal hydroacoustic fluid damping in thin hydraulic pipes in 3D finite element models is presented in this paper. In order to perform quantitative prediction of the vibroacoustic behavior and resulting noise levels of such fluid-structure coupled system due to hydraulic excitation, an accurate frequency-dependent fluid damping model including friction effects near the pipe wall is required. This step is achieved by matching complex wave numbers from analytical derivation into a parameterized damped wave equation and consecutive translation into finite element modeling. Since the friction effect close to the pipe wall changes locally with the inner pipe radius, the fluid damping model is applied segment-wise in order to model the influence of cross-sectional discontinuity, such as orifices, on the oscillating pressure pulsations. A component synthesis approach, which uses pipe segments as substructures, allows a simple model generation and fast computation times. The numerical harmonic results are compared to experimental frequency response functions, which are performed on a hydraulic test bench driven by a dynamic pressure source in the kHz-range.

  16. Ultrasonic estimate of the modulus of rupture and quantification of the frequency dependent dynamic modulus in Norway Spruce

    NASA Astrophysics Data System (ADS)

    Salmi, Ari; Karppinen, Timo; Montonen, Risto; Saranpää, Pekka; Hæggström, Edward

    2013-01-01

    Ultrasonic measurements allow non-destructive evaluation of mechanical properties of wood. However, it is unclear how these ultrasonically determined properties relate to comparable values obtained by traditional mechanical experiments, e.g., three point bending performed at different probing frequencies. In addition, although a link between the modulus of rupture (MOR) and the modulus of elasticity (MOE) obtained with static methods is established, little research exists on the correlation between the ultrasonically determined dynamic elastic modulus and MOR. Therefore, we set out to link the modulus values obtained by three-point bending to those obtained by ultrasonic measurements at different frequencies. We compared the modalities using a fractional derivative model that theoretically predicts a frequency dependency of the dynamic elastic modulus. We determined MOE and MOR in 102 Norway Spruce samples (340 to 510 kg/m3 density) by three-point bending followed by ultrasonic through-transmission measurements that quantified the dynamic modulus at 500 kHz, 4 MHz, and 8 MHz. This is the first report on such a frequency series for Norway Spruce. Our results provide a conversion factor that permits comparing ultrasonically and statically measured MOE values. Depending on the ultrasonic frequency, correlations ranging from 0.3 to 0.53 between the ultrasonic dynamic modulus and MOR were found.

  17. Time-domain response of a metal detector to a target buried in soil with frequency-dependent magnetic susceptibility

    NASA Astrophysics Data System (ADS)

    Das, Y.

    2006-05-01

    The work reported in this paper is a part of on-going studies to clarify how and to what extent soil electromagnetic properties affect the performance of induction metal detectors widely used in humanitarian demining. This paper studies the specific case of the time-domain response of a small metallic sphere buried in a non-conducting soil half-space with frequency-dependent complex magnetic susceptibility. The sphere is chosen as a simple prototype for the small metal parts in low-metal landmines, while soil with dispersive magnetic susceptibility is a good model for some soils that are known to adversely affect the performance of metal detectors. The included analysis and computations extend previous work which has been done mostly in the frequency domain. Approximate theoretical expressions for weakly magnetic soils are found to fit the experimental data very well, which allowed the estimation of soil model parameters, albeit in an ad hoc manner. Soil signal is found to exceed target signal (due to an aluminum sphere of radius 0.0127 m) in many cases, even for the weakly magnetic Cambodian laterite used in the experiments. How deep a buried target is detected depends on many other factors in addition to the relative strength of soil and target signals. A general statement cannot thus be made regarding detectability of a target in soil based on the presented results. However, computational results complemented with experimental data extend the understanding of the effect that soil has on metal detectors.

  18. On the thermally-induced residual stresses in thick fiber-thermoplastic matrix (PEEK) cross-ply laminated plates

    NASA Technical Reports Server (NTRS)

    Hu, Shoufeng; Nairn, John A.

    1992-01-01

    An analytical method for calculating thermally-induced residual stresses in laminated plates is applied to cross-ply PEEK laminates. We considered three cooling procedures: slow cooling (uniform temperature distribution); convective and radiative cooling; and rapid cooling by quenching (constant surface temperature). Some of the calculated stresses are of sufficient magnitude to effect failure properties such as matrix microcracking.

  19. Experimental study on the relationship between the frequency-dependent shear viscosity and the intermediate scattering function of representative viscous liquids

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Tsuyoshi

    2016-11-01

    The frequency-dependent shear viscosity of two representative viscous liquids, o-terphenyl and glycerin, was experimentally determined at several temperatures and compared with the intermediate scattering functions reported in the literature. A comparison based on mode-coupling theory succeeded in relating the frequency-dependent shear viscosity with the intermediate scattering function at the main peak of the static structure factor. It suggests that the slow relaxation mode of the shear viscosity of both liquids is governed by the density fluctuation at the main peak of the static structure factor, in spite of the differences in the details of their intermolecular interactions.

  20. Use of frequency-dependent multi-offset phase analysis of surface waves for a riparian zone characterization

    NASA Astrophysics Data System (ADS)

    Vignoli, Giulio; Gervasio, Isabella; Brancatelli, Giuseppe; Boaga, Jacopo; Della Vedova, Bruno; Cassiani, Giorgio

    2015-04-01

    Multi-offset phase analysis (MOPA) of seismic surface waves has been developed as an alternative technique for the lateral variation sensitive extraction of dispersion curves. One of the goals of MOPA is to increase the lateral resolution with respect of the more traditional surface wave methods, and, consequently, to allow a more detailed investigation of the subsurface in terms of 2D shear wave velocity distribution. However, in the published literature, there are still few examples of field applications of this promising technique. The standard MOPA makes possible to calculate, frequency-by-frequency, the derivative of the phase (retrieved by the seismogram) with respect to offset and, by doing that, to extract the information concerning the Rayleigh wave velocity as a function of frequency (i.e., the dispersion curve) with a lateral resolution that depends on the length of the window used to calculate the derivative. Here, we describe a novel MOPA implementation characterized by a moving window with a frequency-dependent width. The window's length is in fact chosen to be smaller for higher frequencies (investigating the shallower layers) and increasingly larger at lower frequencies (where the longer wavelengths supply information about the deeper formations). This approach is clearly in accordance with the physics of the method (the smaller footprint of the shorter wavelengths provides spatially detailed information, while larger wavelengths inevitably average, to some degree, the soil spatial variations). Hence, this frequency-dependent MOPA maximizes the lateral resolution at high frequencies, while assuring stability at the lower frequencies. In this way, we can retrieve the shallow lateral variability with high accuracy and, and the same time, obtain a robust surface wave velocity measurement at depth. The extracted dispersion curves (one for each receiver location) can be then inverted providing an S-wave velocity section. Here we discuss the application

  1. Learning to be different: Acquired skills, social learning, frequency dependence, and environmental variation can cause behaviourally mediated foraging specializations

    USGS Publications Warehouse

    Tinker, M.T.; Mangel, M.; Estes, J.A.

    2009-01-01

    ) Offspring can learn foraging skills from their mothers (matrilineal social learning). (6) Food abundance is limited, such that average individual energy reserves are low Additionally, the following factors increase the likelihood of alternative specializations co-occurring in a predator population: (1) The predator exerts effective top-down control of prey abundance, resulting in frequency-dependent dynamics. (2) There is stochastic Variation in prey population dynamics, but this Variation is neither too extreme in magnitude nor too 'slow' with respect to the time required for an individual forager to learn new foraging skills. For a given predator population, we deduce that the degree of specialization will be highest for those prey types requiring complex capture or handling skills, while prey species that are both profitable and easy to capture and handle will be included in the diet of all individuals. Frequency-dependent benefits of selecting alternative prey types, combined with the ability of foragers to improve their foraging skills by learning, and transmit learned skills to offspring, can result in behaviourally mediated foraging specialization, and also lead to the co-existence of alternative specializations. The extent of such specialization is predicted to be a variable trait, increasing in locations or years when intra-specific competition is high relative to inter-specific competition. ?? 2009 M. Tim Tinker.

  2. Frequency-dependent streaming potential of porous media: Experimental measurement of Ottawa sand, Lochaline sand and quartz glass beads

    NASA Astrophysics Data System (ADS)

    Glover, Paul; Walker, Emilie; Ruel, Jean; Yagout, Fuad

    2013-04-01

    High quality frequency-dependent streaming potential coefficient measurements have been made upon Ottawa sand, Lochaline sand and glass bead packs using a new apparatus that is based on an electro-magnetic drive. The apparatus operates in the range 1 Hz to 1 kHz with samples of 25.4mm diameter up to 150 mm long. The results have been analysed using theoretical models that are either (i) based upon vibrational mechanics, (ii) treat the geological material as a bundle of capillary tubes, or (iii) treat the material as a porous medium. In each case we have considered the real and imaginary parts of the complex streaming potential coefficient as well as its magnitude. It is clear from the results that the complex streaming potential coefficient does not follow a Debye-type behaviour, differing from the Debye-type behaviour most markedly for frequencies above the transition frequency. The best fit to all the data was provided by the Pride (1994) model and its simplification by Walker and Glover (2010), which is satisfying as this model was conceived for porous media rather than capillary tube bundles. Theory predicts that the transition frequency is related to the inverse square of the effective pore radius. Values for the transition frequency were derived from each of the models for each sample and were found to be in good agreement with those expected from the independently measured effective pore radius of each material. The fit to the Pride model for all four samples was also found to be consistent with the independently measured steady-state permeability, while the value of the streaming potential coefficient in the low-frequency limit was found to be in good agreement with steady-state streaming potential coefficient data measured using a steady-state streaming potential rig as well as the corpus of steady-state determinations for quartz-based samples existing in the literature.

  3. Numerical calculations for effects of structure of skeletal muscle on frequency-dependence of its electrical admittance and impedance

    NASA Astrophysics Data System (ADS)

    Sekine, Katsuhisa; Yamada, Ayumi; Kageyama, Hitomi; Igarashi, Takahiro; Yamamoto, Nana; Asami, Koji

    2015-06-01

    Numerical calculations were carried out by the finite difference method using three-dimensional models to examine effects of the structure of skeletal muscle on the frequency-dependence of its electrical admittance Y and impedance Z in transversal and longitudinal directions. In the models, the muscle cell was represented by a rectangular solid surrounded by a smooth surface membrane, and the cells were assumed to be distributed periodically. The width of the cross section of the cell, thickness of the intercellular medium, and the relative permittivities and the conductivities of the cell interior, the intercellular medium and the surface membrane were changed. Based on the results of the calculations, reported changes in Y and Z of the muscles from 1 kHz to 1 MHz were analyzed. The analyses revealed that a decreased cell radius was reasonable to explain the Y and Z of the muscles of immature rats, rats subjected to sciatic nerve crush at chronic stage and the amyotrophic lateral sclerosis (ALS) mice. Changes in Y and Z due to the sciatic nerve crush at acute stage were attributable to the decreased cell radius, the increased space between the cells, the increased permittivity of the surface membrane and the increased conductivity of the cell interior. The changes in Z due to contraction were explained by the changes in the cell radius, and the conductivities of the cell interior and the intercellular medium. The changes in Z of meat due to aging were compared with the effects of the increase in the conductivity of the surface membrane.

  4. Frequency-dependence of the Love Numbers due to the Earth's Quasi-Rheology, Mantle Anelasticity and Ocean Tides

    NASA Astrophysics Data System (ADS)

    Chen, W.; Shen, W.; Huang, C.

    2012-12-01

    Love numbers are defined as dimensionless coefficients to characterize the deformations caused by an applied volume potential. For the complex Earth system, Love numbers are not constants but vary with frequency due to the following three factors: 1. the resonance behavior of the wobble motions near its eigen-frequencies, such as the well-known free core nutation resonance in the diurnal tides; 2. the mantle anelasticity of which the role becomes more significant as the frequency gets lower; and 3. the quasi-fluid rheology describing the Earth's fluid-like deformations at geological time scales. In this study, we present a power law for mantle anelasticity constrained by Chandler wobble parameters (the period TC and the quality factor QC) and an empirical quasi-fluid rheology model with a linear dependence on frequency for a period as long as 18.6 years. The models of mantle anelasticity and quasi-fluid rheology can provide good estimates of oceanless Love numbers at arbitrary frequencies with periods ranging from ~1 day to ~18.6 years, when comparing to the observed values for some frequencies. To account for the effects of dynamic oceans on the Love numbers, the diurnal ocean tides from the IERS Conventions (2010), the long-period ocean model of Dickman & Gross (2010) and the equilibrium ocean pole tide model of Desai (2002) are adopted to calculate the oceanic corrections to the Love numbers. We find due to the mantle anelasticity, the equilibrium ocean pole tides will cause imaginary parts to the Love numbers and have notable influence on the geophysical estimate of the QC value, which was disregarded before. In addition, we show that the Chandler wobble parameters derived from our Love number model are consistent with the observations. Thus, we conclude that our model of frequency-dependent Love numbers should be reliable. This study is supported partly by the National Natural Science Foundation China (Grant Numbers 41174011, 41128003, 41021061 and 40974015).

  5. The Effects of Frequency-Dependent Dynamic Muscle Stimulation on Inhibition of Trabecular Bone Loss in a Disuse Model

    PubMed Central

    Lam, Hoyan; Qin, Yi-Xian

    2008-01-01

    Clinical electrical muscle stimulation has been shown to alleviate muscle atrophy resulting from functional disuse, yet little is known about its effect on the skeleton. The objective of this study is to evaluate the potential of dynamic muscle stimulation on disused trabecular bone, and to investigate the importance of optimized stimulation frequency in the loading regimen. Fifty-six skeletally mature Sprague-Dawley rats were divided into seven groups for the 4-week experiment: baseline control, age-matched control, hindlimb suspended (HLS), and HLS with muscle stimulation at 1 Hz, 20 Hz, 50 Hz, and 100 Hz. Muscle stimulation was carried out for 10 minutes per day for 5 days per week, total of 4 weeks. The metaphyseal and epiphyseal trabecular regions of the distal femurs were analyzed with microcomputed tomography and histomorphometry methods. HLS alone for 4-week resulted in a significant amount of trabecular bone loss and structural deterioration. Muscle contraction at 1 Hz was not sufficient to inhibit trabecular bone loss and resulted in similar amount of loss to that of HLS alone. Bone quantity and structure were significantly improved by applying muscle stimulation at mid-frequency (20 Hz & 50 Hz). Dynamic stimulation at 50 Hz demonstrated the greatest preventive effect on the skeleton against functional disused alone animals (up to +147% in bone volume fraction, +38% in trabecular number and -36% in trabecular separation). Histomorphometric analysis showed that the stimulation, regardless of its frequency, did not have an effect on the bone formation indices, such as mineral apposition rate and bone formation rate. Overall, the data demonstrated the potentials of frequency-dependent dynamic muscle contraction in regulating skeletal adaptive responses under disuse conditions. Dynamic muscle stimulation, with a specific regimen, may be beneficial to future orthopedic research in developing a countermeasure for disuse osteopenia and osteoporosis. PMID

  6. The frequency dependence and locations of short-period microseisms generated in the Southern Ocean and West Pacific

    NASA Astrophysics Data System (ADS)

    Gal, M.; Reading, A. M.; Ellingsen, S. P.; Gualtieri, L.; Koper, K. D.; Burlacu, R.; Tkalčić, H.; Hemer, M. A.

    2015-08-01

    The origin of the microseismic wavefield is associated with deep ocean and coastal regions where, under certain conditions, ocean waves can excite seismic waves that propagate as surface and body waves. Given that the characteristics of seismic signals generally vary with frequency, here we explore the frequency- and azimuth-dependent properties of microseisms recorded at a medium aperture (25 km) array in Australia. We examine the frequency-dependent properties of the wavefield, and its temporal variation, over two decades (1991-2012), with a focus on relatively high-frequency microseisms (0.325-0.725 Hz) recorded at the Warramunga Array, which has good slowness resolution capabilities in this frequency range. The analysis is carried out using the incoherently averaged signal Capon beamforming, which gives robust estimates of slowness and back azimuth and is able to resolve multiple wave arrivals within a single time window. For surface waves, we find that fundamental mode Rayleigh waves (Rg) dominate for lower frequencies (<0.55 Hz) while higher frequencies (>0.55 Hz) show a transition to higher mode surface waves (Lg). For body waves, source locations are identified in deep ocean regions for lower frequencies and in shallow waters for higher frequencies. We further examine the association between surface wave arrivals and a WAVEWATCH III ocean wave hindcast. Correlations with the ocean wave hindcast show that secondary microseisms in the lower-frequency band are generated mainly by ocean swell, while higher-frequency bands are generated by the wind sea, i.e., local wind conditions.

  7. Frequency-Dependent Modulation of Regional Synchrony in the Human Brain by Eyes Open and Eyes Closed Resting-States

    PubMed Central

    Song, Xiaopeng; Zhou, Shuqin; Zhang, Yi; Liu, Yijun; Zhu, Huaiqiu; Gao, Jia-Hong

    2015-01-01

    The eyes-open (EO) and eyes-closed (EC) states have differential effects on BOLD-fMRI signal dynamics, affecting both the BOLD oscillation frequency of a single voxel and the regional homogeneity (ReHo) of several neighboring voxels. To explore how the two resting-states modulate the local synchrony through different frequency bands, we decomposed the time series of each voxel into several components that fell into distinct frequency bands. The ReHo in each of the bands was calculated and compared between the EO and EC conditions. The cross-voxel correlations between the mean frequency and the overall ReHo of each voxel’s original BOLD series in different brain areas were also calculated and compared between the two states. Compared with the EC state, ReHo decreased with EO in a wide frequency band of 0.01–0.25 Hz in the bilateral thalamus, sensorimotor network, and superior temporal gyrus, while ReHo increased significantly in the band of 0–0.01 Hz in the primary visual cortex, and in a higher frequency band of 0.02–0.1 Hz in the higher order visual areas. The cross-voxel correlations between the frequency and overall ReHo were negative in all the brain areas but varied from region to region. These correlations were stronger with EO in the visual network and the default mode network. Our results suggested that different frequency bands of ReHo showed different sensitivity to the modulation of EO-EC states. The better spatial consistency between the frequency and overall ReHo maps indicated that the brain might adopt a stricter frequency-dependent configuration with EO than with EC. PMID:26545233

  8. An RGD spacing of 440 nm is sufficient for integrin alpha V beta 3- mediated fibroblast spreading and 140 nm for focal contact and stress fiber formation

    PubMed Central

    1991-01-01

    The synthetic peptide Gly-Arg-Gly-Asp-Tyr (GRGDY), which contains the RGD sequence of several adhesion molecules, was covalently grafted to the surface of otherwise poorly adhesive glass substrates and was used to determine the minimal number of ligand-receptor interactions required for complete spreading of human foreskin fibroblasts. Well- defined adhesion substrates were prepared with GRGDY between 10(-3) fmol/cm2 and 10(4) fmol/cm2. As the adhesion ligand surface concentration was varied, several distinct morphologies of adherent cells were observed and categorized. The population of fully spread cells at 4 h reached a maximum at 1 fmol/cm2, with no further increases up to 10(4) fmol/cm2. Although maximal cell spreading was obtained at 1 fmol/cm2, focal contacts and stress fibers failed to form at RGD surface concentrations below 10 fmol/cm2. The minimal peptide spacings obtained in this work correspond to 440 nm for spreading and 140 nm for focal contact formation, and are much larger than those reported in previous studies with adsorbed adhesion proteins, adsorbed RGD-albumin conjugates, or peptide-grafted polyacrylamide gels. Vitronectin receptor antiserum specific for integrin alpha V beta 3 blocked cell adhesion and spreading on substrates containing 100 fmol/cm2 of surface- bound GRGDY, while fibronectin receptor antiserum specific for alpha 5 beta 1 did not. Furthermore, alpha V beta 3 was observed to cluster into focal contacts in spread cells, but alpha 5 beta 1 did not. It was thus concluded that a peptide-to-peptide spacing of 440 nm was required for alpha V beta 3-mediated cellular spreading, while 140 nm was required for alpha V beta 3-mediated focal contact formation and normal stress fiber organization in human foreskin fibroblasts; these spacings represent much fewer ligands than were previously thought to be required. PMID:1714913

  9. Impact resistance of fiber composites

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Sinclair, J. H.

    1982-01-01

    Stress-strain curves are obtained for a variety of glass fiber and carbon fiber reinforced plastics in dynamic tension, over the stress-strain range of 0.00087-2070/sec. The test method is of the one-bar block-to-bar type, using a rotating disk or a pendulum as the loading apparatus and yielding accurate stress-strain curves up to the breaking strain. In the case of glass fiber reinforced plastic, the tensile strength, strain to peak impact stress, total strain and total absorbed energy all increase significantly as the strain rate increases. By contrast, carbon fiber reinforced plastics show lower rates of increase with strain rate. It is recommended that hybrid composites incorporating the high strength and rigidity of carbon fiber reinforced plastic with the high impact absorption of glass fiber reinforced plastics be developed for use in structures subjected to impact loading.

  10. Frequency-dependent regulation of rat hippocampal somato-dendritic excitability by the K+ channel subunit Kv2.1

    PubMed Central

    Du, Jing; Haak, Laurel L; Phillips-Tansey, Emily; Russell, James T; McBain, Chris J

    2000-01-01

    The voltage-dependent potassium channel subunit Kv2.1 is widely expressed throughout the mammalian CNS and is clustered primarily on the somata and proximal dendrites, but not axons, of both principal neurones and inhibitory interneurones of the cortex and hippocampus. This expression pattern suggests that Kv2.1-containing channels may play a role in the regulation of pyramidal neurone excitability. To test this hypothesis and to determine the functional role of Kv2.1-containing channels, cultured hippocampal slices were incubated with antisense oligonucleotides directed against Kv2.1 mRNA.Western blot analysis demonstrated that Kv2.1 protein content of cultured slices decreased > 90 % following 2 weeks of treatment with antisense oligonucleotides, when compared with either control missense-treated or untreated cultures. Similarly, Kv2.1 immunostaining was selectively decreased in antisense-treated cultures.Sustained outward potassium currents, recorded in both whole-cell and outside-out patch configurations, demonstrated a selective reduction of amplitude only in antisense-treated CA1 pyramidal neurones.Under current-clamp conditions, action potential durations were identical in antisense-treated, control missense-treated and untreated slices when initiated by low frequency stimulation (0.2 Hz). In contrast, spike repolarization was progressively prolonged during higher frequencies of stimulation (1 Hz) only in cells from antisense-treated slices. Similarly, action potentials recorded during electrographic interictal activity in the ‘high [K+]o’ model of epilepsy demonstrated pronounced broadening of their late phase only in cells from antisense-treated slices.Consistent with the frequency-dependent spike broadening, calcium imaging experiments from single CA1 pyramidal neurones revealed that high frequency Schaffer collateral stimulation resulted in a prolonged elevation of dendritic [Ca2+]i transients only in antisense-treated neurones.These studies

  11. Optical fiber grating tuning device and application

    NASA Astrophysics Data System (ADS)

    Luo, Fei; Yeh, T.

    2008-12-01

    A new design for tuning optical fiber grating is proposed. The fiber grating is placed in the grooves between a pair of slides, in which one end of the fiber is bonded on the bottom slide, and the other end of the fiber is bonded on the top slide, the grating section of the fiber is confined in grooves, so that the fiber grating is remaining straight without buckling during axial compressive force applied to the fiber. An actuator is used for driving slide to apply force on fiber to axially compress or stretch the fiber grating. The wavelength of the fiber grating is tuned according to applied stress on the fiber. The applications of the device include tunable fiber laser, tunable fiber filter etc.

  12. An oral absorbent, surface-deacetylated chitin nano-fiber ameliorates renal injury and oxidative stress in 5/6 nephrectomized rats.

    PubMed

    Anraku, Makoto; Tabuchi, Ryo; Ifuku, Shinsuke; Nagae, Tomone; Iohara, Daisuke; Tomida, Hisao; Uekama, Kaneto; Maruyama, Toru; Miyamura, Shigeyuki; Hirayama, Fumitoshi; Otagiri, Masaki

    2017-04-01

    In this study, we report that surface-deacetylated chitin nano-fibers (SDACNFs) are more effective in decreasing renal injury and oxidative stress than deacetylated chitin powder (DAC) in 5/6 nephrectomized rats. An oral administration of low doses of SDACNFs (40mg/kg/day) over a 4 week period resulted in a significant decrease in serum indoxyl sulfate, creatinine and urea nitrogen levels, compared with a similar treatment with DAC or AST-120. The SDACNFs treatment also resulted in an increase in antioxidant potential, compared with that for DAC or AST-120. Immunohistochemical analyses also demonstrated that SDACNFs treated CRF rats showed a decrease in the amount of accumulated 8-OHdG compared with the CRF group. These results suggest that the ingestion of SDCH-NF results in a significant reduction in the levels of pro-oxidants, such as uremic toxins, in the gastrointestinal tract, thereby inhibiting the subsequent development of oxidative stress in the systemic circulation.

  13. Stress distribution on dentin-cement-post interface varying root canal and glass fiber post diameters. A three-dimensional finite element analysis based on micro-CT data

    PubMed Central

    LAZARI, Priscilla Cardoso; de OLIVEIRA, Rodrigo Caldeira Nunes; ANCHIETA, Rodolfo Bruniera; de ALMEIDA, Erika Oliveira; FREITAS JUNIOR, Amilcar Chagas; KINA, Sidney; ROCHA, Eduardo Passos

    2013-01-01

    Objective The aim of the present study was to analyze the influence of root canal and glass fiber post diameters on the biomechanical behavior of the dentin/cement/post interface of a root-filled tooth using 3D finite element analysis. Material and Methods Six models were built using micro-CT imaging data and SolidWorks 2007 software, varying the root canal (C) and the glass fiber post (P) diameters: C1P1-C=1 mm and P=1 mm; C2P1-C=2 mm and P=1 mm; C2P2-C=2 mm and P=2 mm; C3P1-C=3 mm and P=1 mm; C3P2-C=3 mm and P=2 mm; and C3P3-C=3 mm and P=3 mm. The numerical analysis was conducted with ANSYS Workbench 10.0. An oblique force (180 N at 45º) was applied to the palatal surface of the central incisor. The periodontal ligament surface was constrained on the three axes (x=y=z=0). Maximum principal stress (σmax) values were evaluated for the root dentin, cement layer, and glass fiber post. Results: The most evident stress was observed in the glass fiber post at C3P1 (323 MPa), and the maximum stress in the cement layer occurred at C1P1 (43.2 MPa). The stress on the root dentin was almost constant in all models with a peak in tension at C2P1 (64.5 MPa). Conclusion The greatest discrepancy between root canal and post diameters is favorable for stress concentration at the post surface. The dentin remaining after the various root canal preparations did not increase the stress levels on the root. PMID:24473716

  14. In vivo monitoring of oxidative burst on aloe under salinity stress using hemoglobin and single-walled carbon nanotubes modified carbon fiber ultramicroelectrode.

    PubMed

    Ren, Qiong-Qiong; Yuan, Xiao-Jun; Huang, Xiao-Rong; Wen, Wei; Zhao, Yuan-Di; Chen, Wei

    2013-12-15

    Single-walled carbon nanotubes (SWCNTs) and hemoglobin (Hb) modified carbon fiber ultramicroelectrode (CFUME) were employed to construct a direct electron transfer based in vivo H2O2 sensor. At the low working potential of -0.1 V, Hb/SWCNTs/CFUME showed a dynamic range up to 0.405 mM with a low detection limit of 4 μM (S/N=3) and a high sensitivity of 1.07 log(A) log(M)(-1) cm(-2). The apparent Michaelis-Menten constant (Km, app) was estimated to be as low as 1.35 mM. Due to the extremely small dimension and low working potential, Hb/SWCNTs/CFUME could give directly amperometric in vivo monitoring of H2O2 in aloe leaves with salt stress for 19.5h without the requirement of complex data processing and extra surface coatings to avoid interferences. The sharp increase of H2O2 level in aloe leaves with salt stress was clearly observed using Hb/SWCNTs/CFUME from 12.5 h, while in the aloe without salt stress, H2O2 level remained stable in the whole measurement. For further confirming the in vivo response of Hb/SWCNTs/CFUME, catalase (CAT) was injected into the spot adjacent to the sensor and caused rapid current decrease, which suggests the scavenging of H2O2. These results indicate that Hb/SWCNTs/CFUME can be a powerful tool for in vivo investigation of ROS.

  15. Heterogeneous populations of cells mediate spontaneous synchronous bursting in the developing hippocampus through a frequency-dependent mechanism.

    PubMed

    Menendez de la Prida, L; Sanchez-Andres, J V

    2000-01-01

    Under normal conditions, hippocampal slices from newborn rats and rabbits (postnatal days 0-8) show spontaneous synchronous bursts known as giant depolarizing potentials. These bursts are recorded from CA3, CA1 and the fascia dentata in both intact slices and isolated hipocampal regions. Giant depolarizing potentials are network-driven events resulting from the synergistic activation of N-methyl-D-aspartate, alpha-amino-3-hydroxy-5-methyl-4-isoxadepropionate and GABA(A) receptors, the latter playing an excitatory role. Recently, we showed that they spontaneously emerge in an all-or-none manner after the increase of synaptic and cellular activity beyond a threshold frequency [Menendez de la Prida L. and Sanchez-Andres J. V. (1999) J. Neurophysiol. 82, 202-208]. Under this framework, background levels of spontaneous activity at individual neurons build up network synchronization 100-300ms prior to the onset of giant depolarizing potentials. However, the role of distinct cellular populations and connectivity in determining the threshold frequency has not been examined. By performing simultaneous intracellular recordings from pyramidal cells, non-pyramidal cells and interneurons, we investigated their participation in the generation of giant depolarizing potentials. Electrodes containing Neurobiotin were used to examine the cellular morphology. We found that giant depolarizing potentials were not initiated from a single pacemaker cellular group; instead, they involved recurrent cooperation among these groups, which contributed differently according to their intrinsic firing capability. In all the neurons examined, the onset of these bursts took place in an all-or-none frequency-dependent manner, both spontaneously (depending on the frequency of the excitatory postsynaptic potentials) or when triggered by extracellular stimulation. The CA3 threshold of frequency was at 12Hz in both pyramidal cells and interneurons, while in the fascia dentata it was 17Hz. The

  16. The optimal fiber volume fraction and fiber-matrix property compatibility in fiber reinforced composites

    NASA Technical Reports Server (NTRS)

    Pan, Ning

    1992-01-01

    Although the question of minimum or critical fiber volume fraction beyond which a composite can then be strengthened due to addition of fibers has been dealt with by several investigators for both continuous and short fiber composites, a study of maximum or optimal fiber volume fraction at which the composite reaches its highest strength has not been reported yet. The present analysis has investigated this issue for short fiber case based on the well-known shear lag (the elastic stress transfer) theory as the first step. Using the relationships obtained, the minimum spacing between fibers is determined upon which the maximum fiber volume fraction can be calculated, depending on the fiber packing forms within the composites. The effects on the value of this maximum fiber volume fraction due to such factors as fiber and matrix properties, fiber aspect ratio and fiber packing forms are discussed. Furthermore, combined with the previous analysis on the minimum fiber volume fraction, this maximum fiber volume fraction can be used to examine the property compatibility of fiber and matrix in forming a composite. This is deemed to be useful for composite design. Finally some examples are provided to illustrate the results.

  17. Biomechanical analysis of a new carbon fiber/flax/epoxy bone fracture plate shows less stress shielding compared to a standard clinical metal plate.

    PubMed

    Bagheri, Zahra S; Tavakkoli Avval, Pouria; Bougherara, Habiba; Aziz, Mina S R; Schemitsch, Emil H; Zdero, Radovan

    2014-09-01

    Femur fracture at the tip of a total hip replacement (THR), commonly known as Vancouver B1 fracture, is mainly treated using rigid metallic bone plates which may result in "stress shielding" leading to bone resorption and implant loosening. To minimize stress shielding, a new carbon fiber (CF)/Flax/Epoxy composite plate has been developed and biomechanically compared to a standard clinical metal plate. For fatigue tests, experiments were done using six artificial femurs cyclically loaded through the femoral head in axial compression for four stages: Stage 1 (intact), stage 2 (after THR insertion), stage 3 (after plate fixation of a simulated Vancouver B1 femoral midshaft fracture gap), and stage 4 (after fracture gap healing). For fracture fixation, one group was fitted with the new CF/Flax/Epoxy plate (n = 3), whereas another group was repaired with a standard clinical metal plate (Zimmer, Warsaw, IN) (n = 3). In addition to axial stiffness measurements, infrared thermography technique was used to capture the femur and plate surface stresses during the testing. Moreover, finite element analysis (FEA) was performed to evaluate the composite plate's axial stiffness and surface stress field. Experimental results showed that the CF/Flax/Epoxy plated femur had comparable axial stiffness (fractured = 645 ± 67 N/mm; healed = 1731 ± 109 N/mm) to the metal-plated femur (fractured = 658 ± 69 N/mm; healed = 1751 ± 39 N/mm) (p = 1.00). However, the bone beneath the CF/Flax/Epoxy plate was the only area that had a significantly higher average surface stress (fractured = 2.10 ± 0.66 MPa; healed = 1.89 ± 0.39 MPa) compared to bone beneath the metal plate (fractured = 1.18 ± 0.93 MPa; healed = 0.71 ± 0.24 MPa) (p < 0.05). FEA bone surface stresses yielded peak of 13 MPa at distal epiphysis (stage 1), 16 MPa at distal epiphysis (stage 2), 85 MPa for composite and 129

  18. Semi-analytical solution to the frequency-dependent Boltzmann transport equation for cross-plane heat conduction in thin films

    SciTech Connect

    Hua, Chengyun; Minnich, Austin J.

    2015-05-07

    Cross-plane heat transport in thin films with thicknesses comparable to the phonon mean free paths is of both fundamental and practical interest for applications such as light-emitting diodes and quantum well lasers. However, physical insight is difficult to obtain for the cross-plane geometry due to the challenge of solving the Boltzmann equation in a finite domain. Here, we present a semi-analytical series expansion method to solve the transient, frequency-dependent Boltzmann transport equation that is valid from the diffusive to ballistic transport regimes and rigorously includes the frequency-dependence of phonon properties. Further, our method is more than three orders of magnitude faster than prior numerical methods and provides a simple analytical expression for the thermal conductivity as a function of film thickness. Our result enables a straightforward physical understanding of cross-plane heat conduction in thin films.

  19. Eigenfunctions at a Singular Point for Transversely Isotropic Composites with Applications to Stress Analysis of a Broken Fiber.

    DTIC Science & Technology

    1987-01-01

    85-K-0007 with the University of Illinois at Chicago, Chicago, Illinois. Mr. J. F. Dignam of the AMTL was the project manager and Dr. S. C. Chou was...XA7BEHA7ICAL FOPJLATION Let (r,e,z) be a cylindrical coordinate system with the z-axis as the axis of material symmetry and let (ur,uo,uz) be the...q "(k) The satisfaction of the stress-free boundary conditions leads to the following system of equations which can also be obtained by applying the

  20. Time-varying spectral power of resting-state fMRI networks reveal cross-frequency dependence in dynamic connectivity

    PubMed Central

    Yaesoubi, Maziar; Miller, Robyn L.; Calhoun, Vince D.

    2017-01-01

    Brain oscillations and synchronicity among brain regions (brain connectivity) have been studied in resting-state (RS) and task-induced settings. RS-connectivity which captures brain functional integration during an unconstrained state is shown to vary with the frequency of oscillations. Indeed, high temporal resolution modalities have demonstrated both between and cross-frequency connectivity spanning across frequency bands such as theta and gamma. Despite high spatial resolution, functional magnetic resonance imaging (fMRI) suffers from low temporal resolution due to modulation with slow-varying hemodynamic response function (HRF) and also relatively low sampling rate. This limits the range of detectable frequency bands in fMRI and consequently there has been no evidence of cross-frequency dependence in fMRI data. In the present work we uncover recurring patterns of spectral power in network timecourses which provides new insight on the actual nature of frequency variation in fMRI network activations. Moreover, we introduce a new measure of dependence between pairs of rs-fMRI networks which reveals significant cross-frequency dependence between functional brain networks specifically default-mode, cerebellar and visual networks. This is the first strong evidence of cross-frequency dependence between functional networks in fMRI and our subject group analysis based on age and gender supports usefulness of this observation for future clinical applications. PMID:28192457

  1. Frequency-dependent and correlational selection pressures have conflicting consequences for assortative mating in a color-polymorphic lizard, Uta stansburiana.

    PubMed

    Lancaster, Lesley T; McAdam, Andrew G; Hipsley, Christy A; Sinervo, Barry R

    2014-08-01

    Genetically determined polymorphisms incorporating multiple traits can persist in nature under chronic, fluctuating, and sometimes conflicting selection pressures. Balancing selection among morphs preserves equilibrium frequencies, while correlational selection maintains favorable trait combinations within each morph. Under negative frequency-dependent selection, females should mate (often disassortatively) with rare male morphotypes to produce conditionally fit offspring. Conversely, under correlational selection, females should mate assortatively to preserve coadapted gene complexes and avoid ontogenetic conflict. Using controlled breeding designs, we evaluated consequences of assortative mating patterns in color-polymorphic side-blotched lizards (Uta stansburiana), to identify conflict between these sources of selection. Females who mated disassortatively, and to conditionally high-quality males in the context of frequency-dependent selection, experienced highest fertility rates. In contrast, assortatively mated females experienced higher fetal viability rates. The trade-off between fertility and egg viability resulted in no overall fitness benefit to either assortative or disassortative mating patterns. These results suggest that ongoing conflict between correlational and frequency dependent selection in polymorphic populations may generate a trade-off between rare-morph advantage and phenotypic integration and between assortative and disassortative mating decisions. More generally, interactions among multiple sources of diversity-promoting selection can alter adaptations and dynamics predicted to arise under any of these regimes alone.

  2. Simultaneous measurement of thermal conductivity and heat capacity of bulk and thin film materials using frequency-dependent transient thermoreflectance method.

    PubMed

    Liu, Jun; Zhu, Jie; Tian, Miao; Gu, Xiaokun; Schmidt, Aaron; Yang, Ronggui

    2013-03-01

    The increasing interest in the extraordinary thermal properties of nanostructures has led to the development of various measurement techniques. Transient thermoreflectance method has emerged as a reliable measurement technique for thermal conductivity of thin films. In this method, the determination of thermal conductivity usually relies much on the accuracy of heat capacity input. For new nanoscale materials with unknown or less-understood thermal properties, it is either questionable to assume bulk heat capacity for nanostructures or difficult to obtain the bulk form of those materials for a conventional heat capacity measurement. In this paper, we describe a technique for simultaneous measurement of thermal conductivity κ and volumetric heat capacity C of both bulk and thin film materials using frequency-dependent time-domain thermoreflectance (TDTR) signals. The heat transfer model is analyzed first to find how different combinations of κ and C determine the frequency-dependent TDTR signals. Simultaneous measurement of thermal conductivity and volumetric heat capacity is then demonstrated with bulk Si and thin film SiO2 samples using frequency-dependent TDTR measurement. This method is further testified by measuring both thermal conductivity and volumetric heat capacity of novel hybrid organic-inorganic thin films fabricated using the atomic∕molecular layer deposition. Simultaneous measurement of thermal conductivity and heat capacity can significantly shorten the development∕discovery cycle of novel materials.

  3. Fiber-matrix interface failures

    NASA Technical Reports Server (NTRS)

    Rabenberg, Lew; Marcus, Harris L.; Park, Hun Sub; Zong, Gui Sheng; Brown, Lloyd D.

    1989-01-01

    Interface fractures of aluminum-graphite composites under transverse loading are expected to occur within the graphite fibers, but very near the interface. Residual stresses in aluminum, reinforced with the new high modulus pitch-based fibers, are much lower than would be expected based on simple elasticity calculations. The excess stress may be relaxed by shearing internal to the fibers or at the interface rather than by plastic flow of the matrix. The internal shearing also occurs during repeated thermal cycling of these composites; the fibers are repeatedly intruded, then extruded, during repeated temperature excursions.

  4. Dynamics of Actin Stress Fibers and Focal Adhesions during Slow Migration in Swiss 3T3 Fibroblasts: Intracellular Mechanism of Cell Turning

    PubMed Central

    Miyoshi, Hiromi; Miura, Takuya; Tanaka, Hiroto; Tsubota, Ken-ichi; Liu, Hao

    2016-01-01

    To understand the mechanism regulating the spontaneous change in polarity that leads to cell turning, we quantitatively analyzed the dynamics of focal adhesions (FAs) coupling with the self-assembling actin cytoskeletal structure in Swiss 3T3 fibroblasts. Fluorescent images were acquired from cells expressing GFP-actin and RFP-zyxin by laser confocal microscopy. On the basis of the maximum area, duration, and relocation distance of FAs extracted from the RFP-zyxin images, the cells could be divided into 3 regions: the front region, intermediate lateral region, and rear region. In the intermediate lateral region, FAs appeared close to the leading edge and were stabilized gradually as its area increased. Simultaneously, bundled actin stress fibers (SFs) were observed vertically from the positions of these FAs, and they connected to the other SFs parallel to the leading edge. Finally, these connecting SFs fused to form a single SF with matured FAs at both ends. This change in SF organization with cell retraction in the first cycle of migration followed by a newly formed protrusion in the next cycle is assumed to lead to cell turning in migrating Swiss 3T3 fibroblasts. PMID:28119928

  5. Targeting the metastasis suppressor, NDRG1, using novel iron chelators: regulation of stress fiber-mediated tumor cell migration via modulation of the ROCK1/pMLC2 signaling pathway.

    PubMed

    Sun, Jing; Zhang, Daohai; Zheng, Ying; Zhao, Qian; Zheng, Minhua; Kovacevic, Zaklina; Richardson, Des R

    2013-02-01

    The iron-regulated metastasis suppressor, N-myc downstream-regulated gene 1 (NDRG1), is up-regulated by cellular iron depletion mediated by iron chelators and can inhibit cancer cell migration. However, the mechanism of how NDRG1 achieves this effect remains unclear. In this study, we implemented established and newly constructed NDRG1 overexpression and knockdown models using the DU145, HT29, and HCT116 cancer cell lines to investigate the molecular basis by which NDRG1 exerts its inhibitory effect on cell migration. Using these models, we demonstrated that NDRG1 overexpression inhibits cell migration by preventing actin-filament polymerization, stress fiber assembly and formation. In contrast, NDRG1 knockdown had the opposite effect. Moreover, we identified that NDRG1 inhibited an important regulatory pathway mediated by the Rho-associated, coiled-coil containing protein kinase 1 (ROCK1)/phosphorylated myosin light chain 2 (pMLC2) pathway that modulates stress fiber assembly. The phosphorylation of MLC2 is a key process in inducing stress fiber contraction, and this was shown to be markedly decreased or increased by NDRG1 overexpression or knockdown, respectively. The mechanism involved in the inhibition of MLC2 phosphorylation by NDRG1 was mediated by a significant (P < 0.001) decrease in ROCK1 expression that is a key kinase involved in MLC2 phosphorylation. Considering that NDRG1 is up-regulated after cellular iron depletion, novel thiosemicarbazone iron chelators (e.g., di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone) were demonstrated to inhibit ROCK1/pMLC2-modulated actin-filament polymerization, stress fiber assembly, and formation via a mechanism involving NDRG1. These results highlight the role of the ROCK1/pMLC2 pathway in the NDRG1-mediated antimetastatic signaling network and the therapeutic potential of iron chelators at inhibiting metastasis.

  6. Dynamic Modulus and Damping of Boron, Silicon Carbide, and Alumina Fibers

    NASA Technical Reports Server (NTRS)

    Dicarlo, J. A.; Williams, W.

    1980-01-01

    The dynamic modulus and damping capacity for boron, silicon carbide, and silicon carbide coated boron fibers were measured from-190 to 800 C. The single fiber vibration test also allowed measurement of transverse thermal conductivity for the silicon carbide fibers. Temperature dependent damping capacity data for alumina fibers were calculated from axial damping results for alumina-aluminum composites. The dynamics fiber data indicate essentially elastic behavior for both the silicon carbide and alumina fibers. In contrast, the boron based fibers are strongly anelastic, displaying frequency dependent moduli and very high microstructural damping. Ths single fiber damping results were compared with composite damping data in order to investigate the practical and basic effects of employing the four fiber types as reinforcement for aluminum and titanium matrices.

  7. Polar motion excitations for an Earth model with frequency-dependent responses: 1. A refined theory with insight into the Earth's rheology and core-mantle coupling

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Ray, Jim; Li, JianCheng; Huang, ChengLi; Shen, WenBin

    2013-09-01

    study aims to improve the polar motion theory by developing refined frequency-dependent transfer functions with the most current models for ocean tides, the Earth's rheology, and core-mantle coupling. First, we present a power law for mantle anelasticity constrained by the Chandler period TCW and quality factor QCW and an empirical quasi-fluid rheology model with a linear dependence on frequency, which is suitable for a period as long as ~18.6 years. Then we adopt the diurnal ocean tides from the International Earth Rotation and Reference Systems Service Conventions (2010), the long-period ocean model of Dickman and Gross (2010), and the equilibrium ocean pole tide model of Desai (2002) to calculate the oceanic corrections to the Love numbers. Further, we present discussions on the geophysical and observational aspects of the Chandler period TCW and quality factor QCW, and provide preferred values and intervals for TCW and QCW, which allow us to place some constraints on the mantle anelasticity and core-mantle coupling ratio ηCW. Although ηCW is affected by uncertainties in TCW and QCW, we find its real part should be around 2%-3% while its imaginary part might be only a few thousandths. Finally, the frequency-dependent polar motion transfer functions T L and T NL are determined based on the models of frequency-dependent Love numbers and core-mantle coupling discussed above. Our transfer functions are related to the values of TCW and QCW, however, our analyses demonstrate that our transfer functions are rather stable and not sensitive to perturbations in TCW and QCW.

  8. Kv4 potassium channel subunits control action potential repolarization and frequency-dependent broadening in rat hippocampal CA1 pyramidal neurones.

    PubMed

    Kim, Jinhyun; Wei, Dong-Sheng; Hoffman, Dax A

    2005-11-15

    A-type potassium channels regulate neuronal firing frequency and the back-propagation of action potentials (APs) into dendrites of hippocampal CA1 pyramidal neurones. Recent molecular cloning studies have found several families of voltage-gated K(+) channel genes expressed in the mammalian brain. At present, information regarding the relationship between the protein products of these genes and the various neuronal functions performed by voltage-gated K(+) channels is lacking. Here we used a combination of molecular, electrophysiological and imaging techniques to show that one such gene, Kv4.2, controls AP half-width, frequency-dependent AP broadening and dendritic action potential propagation. Using a modified Sindbis virus, we expressed either the enhanced green fluorescence protein (EGFP)-tagged Kv4.2 or an EGFP-tagged dominant negative mutant of Kv4.2 (Kv4.2g(W362F)) in CA1 pyramidal neurones of organotypic slice cultures. Neurones expressing Kv4.2g(W362F) displayed broader action potentials with an increase in frequency-dependent AP broadening during a train compared with control neurones. In addition, Ca(2)(+) imaging of Kv4.2g(W362F) expressing dendrites revealed enhanced AP back-propagation compared to control neurones. Conversely, neurones expressing an increased A-type current through overexpression of Kv4.2 displayed narrower APs with less frequency dependent broadening and decreased dendritic propagation. These results point to Kv4.2 as the major contributor to the A-current in hippocampal CA1 neurones and suggest a prominent role for Kv4.2 in regulating AP shape and dendritic signalling. As Ca(2)(+) influx occurs primarily during AP repolarization, Kv4.2 activity can regulate cellular processes involving Ca(2)(+)-dependent second messenger cascades such as gene expression and synaptic plasticity.

  9. Capacitively Coupled Resistivity measurements to determine frequency-dependent electrical parameters in periglacial environment—theoretical considerations and first field tests

    NASA Astrophysics Data System (ADS)

    Przyklenk, A.; Hördt, A.; Radić, T.

    2016-08-01

    Capacitively Coupled Resistivity (CCR) is conventionally used to emulate DC resistivity measurements and may provide important information about the ice content of material in periglacial areas. The application of CCR theoretically enables the determination of both electrical parameters, that is, the resistivity and the electrical permittivity, by analysing magnitude and phase shift spectra. The electrical permittivity may dominate the impedance, especially in periglacial areas or regions of hydrogeological interest. However, previous theoretical work suggested that the phase shift may strongly depend on electrode height above ground, implying that electrode height must be known with great accuracy to determine electrical permittivity. Here, we demonstrate with laboratory test measurements, theoretical modelling and by analysing the Jacobian matrix of the inversion that the sensitivity towards electrode height is drastically reduced if the electrical permittivity is frequency dependent in a way that is typical for ice. For the first time, we used a novel broad-band CCR device `Chameleon' for a field test located in one of the ridge galleries beneath the crest of Mount Zugspitze. A permanently ice covered bottom of a tunnel was examined. For the inversion of the measured spectra, the frequency dependence of the electrical parameters was parametrized in three different ways: A Debye Model for pure ices, a Cole-Cole Model for pure ices and a dual Cole-Cole Model including interfacial water additionally. The frequency-dependent resistivity and permittivity spectra obtained from the inversion, including low- and high-frequency limits, agree reasonably well with laboratory and field measurements reported in the literature.

  10. Admittance–voltage profiling of Al{sub x}Ga{sub 1−x}N/GaN heterostructures: Frequency dependence of capacitance and conductance

    SciTech Connect

    Köhler, K.; Pletschen, W.; Godejohann, B.; Müller, S.; Menner, H. P.; Ambacher, O.

    2015-11-28

    Admittance–voltage profiling of Al{sub x}Ga{sub 1−x}N/GaN heterostructures was used to determine the frequency dependent capacitance and conductance of FET devices in the frequency range from 50 Hz to 1 MHz. The nominally undoped low pressure metal-organic vapor-phase epitaxy structures were grown with an Al-content of 30%. An additional 1 nm thick AlN interlayer was placed in one structure before the Al{sub 0.3}Ga{sub 0.7}N layer growth. For frequencies below 10{sup 8} Hz it is convenient to use equivalent circuits to represent electric or dielectric properties of a material, a method widely used, for example, in impedance spectroscopy. We want to emphasize the relation between frequency dependent admittance–voltage profiling and the corresponding equivalent circuits to the complex dielectric function. Debye and Drude models are used for the description of the frequency dependent admittance profiles in a range of depletion onset of the two-dimensional electron gas. Capacitance- and conductance-frequency profiles are fitted in the entire measured range by combining both models. Based on our results, we see contributions to the two-dimensional electron gas for our samples from surface states (80%) as well as from background doping in the Al{sub 0.3}Ga{sub 0.7}N barriers (20%). The specific resistance of the layers below the gate is above 10{sup 5} Ω cm for both samples and increases with increasing negative bias, i.e., the layers below the gate are essentially depleted. We propose that the resistance due to free charge carriers, determined by the Drude model, is located between gate and drain and, because of the AlN interlayer, the resistance is lowered by a factor of about 30 if compared to the sample without an AlN layer.

  11. Fiber biology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton fiber cells arising from seed epidermis is the most important agricultural textile commodity in the world. To produce fully mature fibers, approximately two months of fiber developmental process are required. The timing of four distinctive fiber development stages consisting of initiation, ...

  12. Cytoskeletal dynamics in rabbit synovial fibroblasts: II. Reformation of stress fibers in cells rounded by treatment with collagenase-inducing agents.

    PubMed

    Aggeler, J

    1990-01-01

    Modulation of the synthesis and secretion of extracellular matrix proteins and matrix-degrading metalloproteases by rabbit synovial fibroblasts is an important model system for studying the control of tissue-specific gene expression. Induction of collagenase expression is correlated with changes in cell shape and actin filament distribution, but the role of the cellular cytoskeleton in the sustained synthesis and secretion of metalloproteases has not been closely examined. When cells were allowed to respread after rounding by trypsin or cytochalasin, two known metalloprotease inducers, reformation of stress fibers was observed within 2 h in the presence of serum. In the absence of serum, trypsin-treated cells did not respread substantially, even after 24 h in culture. In contrast, cytochalasin-treated cells recovered almost as rapidly in the absence as in the presence of serum, showing reformation of well-formed microfilament bundles within 30 min of drug removal, especially at the spreading cell edges. High resolution electron-microscopic views of detergent-extracted cytoskeletons confirmed the rapid rebundling of peripheral microfilaments. Acrylamide-treated cells fell between these two extremes, spreading slowly in the absence of serum, but almost as rapidly as cytochalasin-treated cells in its presence. Reestablishment of normal intermediate filament distribution generally lagged slightly behind actin for all treatments, and intermediate filaments always appeared to spread back into the cellular cytoplasm within the confines of the reforming peripheral microfilament bundles. No obvious interaction between these two cytoskeletal elements was observed after any treatment, and no specific role for intermediate filaments in modulating gene expression in these cells is suggested by these results. The serum dependence displayed after trypsin or acrylamide treatment may be due to the disturbances in fibronectin synthesis observed in these cells and is consistent with

  13. Beyond orchids and dandelions: Testing the 5HTT “risky” allele for evidence of phenotypic capacitance and frequency dependent selection

    PubMed Central

    Conley, Dalton; Rauscher, Emily; Siegal, Mark L.

    2013-01-01

    The persistence of behaviorally deleterious genes in the human population poses an interesting question for population genetics: If certain alleles at these loci are deleterious, why have they survived in the population? We consider evidence for phenotypic capacitance and/or frequency dependent selection for an allele that has been putatively shown to have negative associations with human behaviors (the “short” 5-HTT promoter region allele) yet which has persisted in human and non-human primate populations. Using National Longitudinal Study of Adolescent Health data, we compare sibling and twin variation in depression by 5-HTT genotype (specified in several ways) and investigate sibship-level cross-person gene-gene interactions. In support of the “orchid / dandelion” hypothesis, we find evidence that the short allele increases variation in phenotypes in response to environmental (or genetic) differences (i.e. acts as a perturbation of a phenotypic capacitor). Further, we also find some evidence that the effects of allelic variation at this locus are moderated by the genetic environment of the sibship unit (i.e. may be susceptible to frequency dependent selection). We discuss implications of these findings for genetic models in general, specifically with respect to stable unit treatment value assumption violations (i.e. non-independence of units of analysis). PMID:23701535

  14. In situ measurement of cure, latex coalescence and end-use properties in thin film coatings using frequency dependent impedance sensing

    SciTech Connect

    Kranbuehl, D.E.

    1993-12-31

    As in situ frequency dependent impedance sensor (FDIMS) has been successfully used to monitor cure and buildup in end use properties of coatings. The planar microsensor is able to make continuous uninterrupted measurements of the resin while it cures as a coating with only one side exposed. It is able to monitor reaction onset, reaction rate, viscosity, buildup in hardness, reaction completion and related processes such as latex coalescence and evolution of volatiles. Effects of storage, temperature, humidity, thickness and variations in composition on the cure process can also be detected. The sensor monitors the changes in the rate of translational motion of ions and rotational motion of dipoles through frequency dependent complex impedance measurements. In this report the ability of the sensor to monitor the effects of the environmental conditions such as temperature and humidity, as well as coating formulation differences due to pigments, on the cure process is reported. The ability of the FDIMS sensor to monitor the extent to which a second coating can soften the initial coating will be discussed. The ability of the FDIMS sensors to monitor the extent to which water can diffuse into the coating will also be described.

  15. Frequency-dependent changes in the amplitude of low-frequency fluctuations in patients with Wilson's disease: a resting-state fMRI study.

    PubMed

    Hu, Xiaopeng; Chen, Siyi; Huang, Chang-Bing; Qian, Yinfeng; Yu, Yongqiang

    2017-01-24

    To investigate the frequency-dependent changes in the amplitude of low-frequency fluctuations (ALFF) in patients with Wilson's disease (WD). Resting-state function magnetic resonance imaging (R-fMRI) were employed to measure the amplitude of ALFF in 28 patients with WD and 27 matched normal controls. Slow-5 (0.01-0.027 Hz) and slow-4 (0.027-0.073 Hz) frequency bands were analyzed. Apart from the observation of atrophy in the cerebellum, basal ganglia, occipital gyrus, frontal gyrus, precentral gyrus, and paracentral lobule, we also found widespread differences in ALFF of the two bands in the medial frontal gyrus, inferior temporal gyrus, insula, basal ganglia, hippocampus/parahippocampal gyrus, and thalamus bilaterally. Compared to normal controls, WD patients had increased ALFF in the posterior lobe of the cerebellum, inferior temporal gyrus, brain stem, basal ganglia, and decreased ALFF in the anterior lobe of the cerebellum and medial frontal gyrus. Specifically, we observed that the ALFF abnormalities in the cerebellum and middle frontal gyrus were greater in the slow-5 than in the slow-4 band. Correlation analysis showed consistently positive correlations between urinary copper excretion (Cu), serum ceruloplasmin (CP) and ALFFs in the cerebellum. Our study suggests the accumulation of copper profoundly impaired intrinsic brain activity and the impairments seem to be frequency-dependent. These results provide further insights into the understanding of the pathophysiology of WD.

  16. Frequency-dependent effects of 4-aminopyridine and almokalant on action-potential duration of adult and neonatal rabbit ventricular muscle.

    PubMed

    Elizalde, A; Barajas, H; Navarro-Polanco, R; Sánchez-Chapula, J

    1999-03-01

    The effects of 4-aminopyridine (1 mM) and almokalant (1 microM) on action-potential duration of neonatal and adult rabbit ventricular multicellular preparations and plateau membrane currents of single ventricular myocytes were studied. In adult ventricular preparations, 4-aminopyridine increased action-potential duration in a frequency-dependent manner, with a greater effect at low stimulation frequencies ("reverse" use dependence). In neonatal preparations, the increase in action-potential duration by 4-aminopyridine was significantly smaller than in adults, and the effect was frequency independent. Almokalant increased the action-potential duration more in neonatal than in adult myocytes. The effect of almokalant was frequency independent between 0.5 and 2 Hz. The block of transient outward current and delayed rectifier current in single myocytes was quantitatively similar. We propose that differences in the kinetic behavior of the transient outward current between adult and neonatal ventricular preparations, slower inactivation, and recovery from inactivation in adults determine differences in the frequency-dependent changes induced by 4-aminopyridine and almokalant on action-potential duration.

  17. Heating-frequency-dependent thermal conductivity: An analytical solution from diffusive to ballistic regime and its relevance to phonon scattering measurements

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Dames, Chris

    2015-04-01

    The heating-frequency dependence of the apparent thermal conductivity in a semi-infinite body with periodic planar surface heating is explained by an analytical solution to the Boltzmann transport equation. This solution is obtained using a two-flux model and gray mean free time approximation and verified numerically with a lattice Boltzmann method and numerical results from the literature. Extending the gray solution to the nongray regime leads to an integral transform and accumulation-function representation of the phonon scattering spectrum, where the natural variable is mean free time rather than mean free path, as often used in previous work. The derivation leads to an approximate cutoff conduction similar in spirit to that of Koh and Cahill [Phys. Rev. B 76, 075207 (2007), 10.1103/PhysRevB.76.075207] except that the most appropriate criterion involves the heater frequency rather than thermal diffusion length. The nongray calculations are consistent with Koh and Cahill's experimental observation that the apparent thermal conductivity shows a stronger heater-frequency dependence in a SiGe alloy than in natural Si. Finally these results are demonstrated using a virtual experiment, which fits the phase lag between surface temperature and heat flux to obtain the apparent thermal conductivity and accumulation function.

  18. Stress relaxation in heterogeneous polymers

    NASA Astrophysics Data System (ADS)

    Witten, T. A.

    1992-05-01

    When heterogeneous polymers such as diblock copolymers form a microdomain phase, an imposed strain gives rise to stress from two sources, and several mechanisms of stress relaxation. The release of stress by disentanglement is strongly influenced by the effective confinement of the junction points to the domain boundaries and by the stretching of the chains. Using accepted notions of entangled chain kinetics, it is argued that the relaxation time for sliding stress is exponential in the chainlength to the 7/9 power. A method for calculating the frequency-dependent dynamic modulus is sketched. Despite the slow relaxation implied by these mechanisms, it appears possible to create domains of high energy.

  19. [Classification and the composition of food fibers].

    PubMed

    Bezhanidze, I Z; Alasaniia, N Sh; Kontselidze, L A; Kharazi, N A; Bezhanidze, N V

    2009-06-01

    Fiber promotes the contractions that keep food moving through the intestine. Also, high-fiber foods expand the inside walls of the colon and eases the passage of waste. The food and fiber research was conducted. In the article, the classification and the composition of food fibers are presented. Multifunctional properties of food fiber in the process of digestion are discussed. The physiological value of food fibers for the human organism is stressed. Diets high in fiber during the entire life are recommended. If a person can't consume enough fiber in diet alone, certain stool softening and bulking agents are recommended. They can be very useful in preventing and treating digestive tract disorders. The analysis of high fiber food sources and world production and consumption of food fiber is also presented.

  20. Tensile creep behavior of polycrystalline alumina fibers

    NASA Technical Reports Server (NTRS)

    Yun, H. M.; Goldsby, J. C.

    1993-01-01

    Tensile creep studies were conducted on polycrystalline Nextel 610 and Fiber FP alumina fibers with grain sizes of 100 and 300 nm, respectively. Test conditions were temperatures from 800 to 1050 C and stresses from 60 to 1000 MPa. For both fibers, only a small primary creep portion occurred followed by steady-state creep. The stress exponents for steady-state creep of Nextel 610 and Fiber FP were found to be about 3 and 1, respectively. At lower temperatures, below 1000 C, the finer grained Nextel 610 had a much higher 0.2 percent creep strength for 100 hr than the Fiber FP; while at higher temperatures, Nextel 610 had a comparable creep strength to the Fiber FP. The stress and grain size dependencies suggest Nextel 610 and Fiber FP creep rates are due to grain boundary sliding controlled by interface reaction and Nabarro-Herring mechanisms, respectively.

  1. Meeting Future C3I (Command-Control-Communications-Intelligence) Needs with Fiber Optics,

    DTIC Science & Technology

    1985-05-01

    Frequency dependence of the sensitivity of fibers with hard coatings is relatively small. Nylon gives the weakest dependence, while the soft UV -cured...elastomer gives the strongest. Maximum sensitivity is obtained with Teflon TFE, while the minimum is achieved with the soft UV coating. With the latter...fiber-optics systems: the LED (Light Emitting Diode) and ILD (Injection Laser Diode). These devices emit light when an electric current is applied. The

  2. The application of carbon fiber resistancein monitoring of curing

    NASA Astrophysics Data System (ADS)

    Sun, X. Y.; Zhang, B. M.; Zong, Yang

    2009-07-01

    Thermal residual stress in resin matrix composite due to the different coefficient of thermal expansion (CTE). The CTE of carbon fiber is lower than resin matrix. Based on mechanics, rising temperature will induce tensile stress, cooling down will induce compress in fiber. There exists expanding and shrinkage during curing process of epoxy. In single fiber composite system, they play different roles, present with tensile and compress stress on fiber. This paper deals with the relationship of the carbon fiber resistance with strain and temperature. The effect of expanding and shrinkage on residual stress is got by the fiber resistant measurement. Resistance variety curve of the experiment shows the chemical process during resin solidification. The shear stress between fiber and matrix existing during temperature load can also measured by the same method. The carbon fiber's resistant can be used as sensor to monitor and control the curing process. This is a simple and effective method to research the curing process.

  3. Interface states in Al2O3/AlGaN/GaN metal-oxide-semiconductor structure by frequency dependent conductance technique

    NASA Astrophysics Data System (ADS)

    Liao, Xue-Yang; Zhang, Kai; Zeng, Chang; Zheng, Xue-Feng; En, Yun-Fei; Lai, Ping; Hao, Yue

    2014-05-01

    Frequency dependent conductance measurements are implemented to investigate the interface states in Al2O3/AlGaN/GaN metal-oxide-semiconductor (MOS) structures. Two types of device structures, namely, the recessed gate structure (RGS) and the normal gate structure (NGS), are studied in the experiment. Interface trap parameters including trap density Dit, trap time constant τit, and trap state energy ET in both devices have been determined. Furthermore, the obtained results demonstrate that the gate recess process can induce extra traps with shallower energy levels at the Al2O3/AlGaN interface due to the damage on the surface of the AlGaN barrier layer resulting from reactive ion etching (RIE).

  4. Frequency-Dependent Social Transmission and the Interethnic Transfer of Female Genital Modification in the African Diaspora and Indigenous Populations of Colombia.

    PubMed

    Ross, Cody T; Campiño, Patricia Joyas; Winterhalder, Bruce

    2015-12-01