2014-06-17
100 0 2 4 Wigner distribution 0 50 100 0 0.5 1 Auto-correlation function 0 50 100 0 2 4 L- Wigner distribution 0 50 100 0 0.5 1 Auto-correlation function ...bilinear or higher order autocorrelation functions will increase the number of missing samples, the analysis shows that accurate instantaneous...frequency estimation can be achieved even if we deal with only few samples, as long as the auto-correlation function is properly chosen to coincide with
Levashov, V A
2014-09-28
We report on a further investigation of a new method that can be used to address vibrational dynamics and propagation of stress waves in liquids. The method is based on the decomposition of the macroscopic Green-Kubo stress correlation function into the atomic level stress correlation functions. This decomposition, as was demonstrated previously for a model liquid studied in molecular dynamics simulations, reveals the presence of stress waves propagating over large distances and a structure that resembles the pair density function. In this paper, by performing the Fourier transforms of the atomic level stress correlation functions, we elucidate how the lifetimes of the stress waves and the ranges of their propagation depend on their frequency, wavevector, and temperature. These results relate frequency and wavevector dependence of the generalized viscosity to the character of propagation of the shear stress waves. In particular, the results suggest that an increase in the value of the frequency dependent viscosity at low frequencies with decrease of temperature is related to the increase in the ranges of propagation of the stress waves of the corresponding low frequencies. We found that the ranges of propagation of the shear stress waves of frequencies less than half of the Einstein frequency extend well beyond the nearest neighbor shell even above the melting temperature. The results also show that the crossover from quasilocalized to propagating behavior occurs at frequencies usually associated with the Boson peak.
Kong, Lingyue; Zhang, John X; Zhang, Yongwei
2016-08-01
The present study used an online grammaticality judgment task to examine whether Chinese discontinuous correlative conjunctions are psychologically real in mental lexicon. High- and low-frequency discontinuous correlative conjunctions were compared with random combinations differing in combination frequencies but matched for constituent word frequency. Forty graduate students participated in the study. Results showed that responses were faster and more accurate for high-frequency correlative conjunctions than low-frequency ones, but the effects were absent for random combinations. The results indicate that Chinese discontinuous correlative conjunctions have psychological reality in mental lexicon in addition to the representation of their constituent words, and that grammatical functions of correlative conjunctions may be a critical factor for the formation of such holistic representations. © The Author(s) 2016.
Frequency-phase analysis of resting-state functional MRI
Goelman, Gadi; Dan, Rotem; Růžička, Filip; Bezdicek, Ondrej; Růžička, Evžen; Roth, Jan; Vymazal, Josef; Jech, Robert
2017-01-01
We describe an analysis method that characterizes the correlation between coupled time-series functions by their frequencies and phases. It provides a unified framework for simultaneous assessment of frequency and latency of a coupled time-series. The analysis is demonstrated on resting-state functional MRI data of 34 healthy subjects. Interactions between fMRI time-series are represented by cross-correlation (with time-lag) functions. A general linear model is used on the cross-correlation functions to obtain the frequencies and phase-differences of the original time-series. We define symmetric, antisymmetric and asymmetric cross-correlation functions that correspond respectively to in-phase, 90° out-of-phase and any phase difference between a pair of time-series, where the last two were never introduced before. Seed maps of the motor system were calculated to demonstrate the strength and capabilities of the analysis. Unique types of functional connections, their dominant frequencies and phase-differences have been identified. The relation between phase-differences and time-delays is shown. The phase-differences are speculated to inform transfer-time and/or to reflect a difference in the hemodynamic response between regions that are modulated by neurotransmitters concentration. The analysis can be used with any coupled functions in many disciplines including electrophysiology, EEG or MEG in neuroscience. PMID:28272522
A novel frequency analysis method for assessing K(ir)2.1 and Na (v)1.5 currents.
Rigby, J R; Poelzing, S
2012-04-01
Voltage clamping is an important tool for measuring individual currents from an electrically active cell. However, it is difficult to isolate individual currents without pharmacological or voltage inhibition. Herein, we present a technique that involves inserting a noise function into a standard voltage step protocol, which allows one to characterize the unique frequency response of an ion channel at different step potentials. Specifically, we compute the fast Fourier transform for a family of current traces at different step potentials for the inward rectifying potassium channel, K(ir)2.1, and the channel encoding the cardiac fast sodium current, Na(v)1.5. Each individual frequency magnitude, as a function of voltage step, is correlated to the peak current produced by each channel. The correlation coefficient vs. frequency relationship reveals that these two channels are associated with some unique frequencies with high absolute correlation. The individual IV relationship can then be recreated using only the unique frequencies with magnitudes of high absolute correlation. Thus, this study demonstrates that ion channels may exhibit unique frequency responses.
Biswas, Sohag; Mallik, Bhabani S
2017-04-12
The fluctuation dynamics of amine stretching frequencies, hydrogen bonds, dangling N-D bonds, and the orientation profile of the amine group of methylamine (MA) were investigated under ambient conditions by means of dispersion-corrected density functional theory-based first principles molecular dynamics (FPMD) simulations. Along with the dynamical properties, various equilibrium properties such as radial distribution function, spatial distribution function, combined radial and angular distribution functions and hydrogen bonding were also calculated. The instantaneous stretching frequencies of amine groups were obtained by wavelet transform of the trajectory obtained from FPMD simulations. The frequency-structure correlation reveals that the amine stretching frequency is weakly correlated with the nearest nitrogen-deuterium distance. The frequency-frequency correlation function has a short time scale of around 110 fs and a longer time scale of about 1.15 ps. It was found that the short time scale originates from the underdamped motion of intact hydrogen bonds of MA pairs. However, the long time scale of the vibrational spectral diffusion of N-D modes is determined by the overall dynamics of hydrogen bonds as well as the dangling ND groups and the inertial rotation of the amine group of the molecule.
NASA Technical Reports Server (NTRS)
Dragonette, Richard A.; Suter, Joseph J.
1992-01-01
An extensive statistical analysis has been undertaken to determine if a correlation exists between changes in an NR atomic hydrogen maser's frequency offset and changes in environmental conditions. Correlation analyses have been performed comparing barometric pressure, humidity, and temperature with maser frequency offset as a function of time for periods ranging from 5.5 to 17 days. Semipartial correlation coefficients as large as -0.9 have been found between barometric pressure and maser frequency offset. Correlation between maser frequency offset and humidity was small compared to barometric pressure and unpredictable. Analysis of temperature data indicates that in the most current design, temperature does not significantly affect maser frequency offset.
The harmonic frequencies of benzene
NASA Astrophysics Data System (ADS)
Handy, Nicholas C.; Maslen, Paul E.; Amos, Roger D.; Andrews, Jamie S.; Murray, Christopher W.; Laming, Gregory J.
1992-09-01
We report calculations for the harmonic frequencies of C 6H 6 and C 6D 6. Our most sophisticated quantum chemistry values are obtained with the MP2 method and a TZ2P+f basis set (288 basis functions), which are the largest such calculations reported on benzene to date. Using the SCF density, we also calculate the frequencies using the exchange and correlation expressions of density functional theory. We compare our calculated harmonic frequencies with those deduced from experiment by Goodman, Ozkabak and Thakur. The density functional frequencies appear to be more reliable predictions than the MP2 frequencies and they are obtained at significantly less cost.
D.W. Peterson; P.B. Reich; K.J. Wrage
2007-01-01
We measured plant functional group cover and tree canopy cover on permanent plots within a long-term prescribed fire frequency experiment and used hierarchical linear modeling to assess plant functional group responses to fire frequency and tree canopy cover. Understory woody plant cover was highest in unburned woodlands and was negatively correlated with fire...
Pipelined digital SAR azimuth correlator using hybrid FFT-transversal filter
NASA Technical Reports Server (NTRS)
Wu, C.; Liu, K. Y. (Inventor)
1984-01-01
A synthetic aperture radar system (SAR) having a range correlator is provided with a hybrid azimuth correlator which utilizes a block-pipe-lined fast Fourier transform (FFT). The correlator has a predetermined FFT transform size with delay elements for delaying SAR range correlated data so as to embed in the Fourier transform operation a corner-turning function as the range correlated SAR data is converted from the time domain to a frequency domain. The azimuth correlator is comprised of a transversal filter to receive the SAR data in the frequency domain, a generator for range migration compensation and azimuth reference functions, and an azimuth reference multiplier for correlation of the SAR data. Following the transversal filter is a block-pipelined inverse FFT used to restore azimuth correlated data in the frequency domain to the time domain for imaging.
NASA Astrophysics Data System (ADS)
Levashov, Valentin A.; Morris, James R.; Egami, Takeshi
2012-02-01
Temporal and spatial correlations among the local atomic level shear stresses were studied for a model liquid iron by molecular dynamics simulation [PRL 106,115703]. Integration over time and space of the shear stress correlation function F(r,t) yields viscosity via Green-Kubo relation. The stress correlation function in time and space F(r,t) was Fourier transformed to study the dependence on frequency, E, and wave vector, Q. The results, F(Q,E), showed damped shear stress waves propagating in the liquid for small Q at high and low temperatures. We also observed additional diffuse feature that appears as temperature is reduced below crossover temperature of potential energy landscape at relatively low frequencies at small Q. We suggest that this additional feature might be related to dynamic heterogeneity and boson peaks. We also discuss a relation between the time-scale of the stress-stress correlation function and the alpha-relaxation time of the intermediate self-scattering function S(Q,E).
Mori, Shuji; Oyama, Kazuki; Kikuchi, Yousuke; Mitsudo, Takako; Hirose, Nobuyuki
2015-01-01
The objective of this study was to examine the hypothesis that between-channel gap detection, which includes between-frequency and between-ear gap detection, and perception of stop consonants, which is mediated by the length of voice-onset time (VOT), share common mechanisms, namely relative-timing operation in monitoring separate perceptual channels. The authors measured gap detection thresholds and identification functions of /ba/ and /pa/ along VOT in 49 native young adult Japanese listeners. There were three gap detection tasks. In the between-frequency task, the leading and trailing markers differed in terms of center frequency (Fc). The leading marker was a broadband noise of 10 to 20,000 Hz. The trailing marker was a 0.5-octave band-passed noise of 1000-, 2000-, 4000-, or 8000-Hz Fc. In the between-ear task, the two markers were spectrally identical but presented to separate ears. In the within-frequency task, the two spectrally identical markers were presented to the same ear. The /ba/-/pa/ identification functions were obtained in a task in which the listeners were presented synthesized speech stimuli of varying VOTs from 10 to 46 msec and asked to identify them as /ba/ or /pa/. The between-ear gap thresholds were significantly positively correlated with the between-frequency gap thresholds (except those obtained with the trailing marker of 4000-Hz Fc). The between-ear gap thresholds were not significantly correlated with the within-frequency gap thresholds, which were significantly correlated with all the between-frequency gap thresholds. The VOT boundaries and slopes of /ba/-/pa/ identification functions were not significantly correlated with any of these gap thresholds. There was a close relation between the between-ear and between-frequency gap detection, supporting the view that these two types of gap detection share common mechanisms of between-channel gap detection. However, there was no evidence for a relation between the perception of stop consonants and the between-frequency/ear gap detection in native Japanese speakers.
Interactions between different EEG frequency bands and their effect on alpha-fMRI correlations.
de Munck, J C; Gonçalves, S I; Mammoliti, R; Heethaar, R M; Lopes da Silva, F H
2009-08-01
In EEG/fMRI correlation studies it is common to consider the fMRI BOLD as filtered version of the EEG alpha power. Here the question is addressed whether other EEG frequency components may affect the correlation between alpha and BOLD. This was done comparing the statistical parametric maps (SPMs) of three different filter models wherein either the free or the standard hemodynamic response functions (HRF) were used in combination with the full spectral bandwidth of the EEG. EEG and fMRI were co-registered in a 30 min resting state condition in 15 healthy young subjects. Power variations in the delta, theta, alpha, beta and gamma bands were extracted from the EEG and used as regressors in a general linear model. Statistical parametric maps (SPMs) were computed using three different filter models, wherein either the free or the standard hemodynamic response functions (HRF) were used in combination with the full spectral bandwidth of the EEG. Results show that the SPMs of different EEG frequency bands, when significant, are very similar to that of the alpha rhythm. This is true in particular for the beta band, despite the fact that the alpha harmonics were discarded. It is shown that inclusion of EEG frequency bands as confounder in the fMRI-alpha correlation model has a large effect on the resulting SPM, in particular when for each frequency band the HRF is extracted from the data. We conclude that power fluctuations of different EEG frequency bands are mutually highly correlated, and that a multi frequency model is required to extract the SPM of the frequency of interest from EEG/fMRI data. When no constraints are put on the shapes of the HRFs of the nuisance frequencies, the correlation model looses so much statistical power that no correlations can be detected.
Peak alpha frequency is a neural marker of cognitive function across the autism spectrum.
Dickinson, Abigail; DiStefano, Charlotte; Senturk, Damla; Jeste, Shafali Spurling
2018-03-01
Cognitive function varies substantially and serves as a key predictor of outcome and response to intervention in autism spectrum disorder (ASD), yet we know little about the neurobiological mechanisms that underlie cognitive function in children with ASD. The dynamics of neuronal oscillations in the alpha range (6-12 Hz) are associated with cognition in typical development. Peak alpha frequency is also highly sensitive to developmental changes in neural networks, which underlie cognitive function, and therefore, it holds promise as a developmentally sensitive neural marker of cognitive function in ASD. Here, we measured peak alpha band frequency under a task-free condition in a heterogeneous sample of children with ASD (N = 59) and age-matched typically developing (TD) children (N = 38). At a group level, peak alpha frequency was decreased in ASD compared to TD children. Moreover, within the ASD group, peak alpha frequency correlated strongly with non-verbal cognition. As peak alpha frequency reflects the integrity of neural networks, our results suggest that deviations in network development may underlie cognitive function in individuals with ASD. By shedding light on the neurobiological correlates of cognitive function in ASD, our findings lay the groundwork for considering peak alpha frequency as a useful biomarker of cognitive function within this population which, in turn, will facilitate investigations of early markers of cognitive impairment and predictors of outcome in high risk infants. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Spatial resolution dependence on spectral frequency in human speech cortex electrocorticography.
Muller, Leah; Hamilton, Liberty S; Edwards, Erik; Bouchard, Kristofer E; Chang, Edward F
2016-10-01
Electrocorticography (ECoG) has become an important tool in human neuroscience and has tremendous potential for emerging applications in neural interface technology. Electrode array design parameters are outstanding issues for both research and clinical applications, and these parameters depend critically on the nature of the neural signals to be recorded. Here, we investigate the functional spatial resolution of neural signals recorded at the human cortical surface. We empirically derive spatial spread functions to quantify the shared neural activity for each frequency band of the electrocorticogram. Five subjects with high-density (4 mm center-to-center spacing) ECoG grid implants participated in speech perception and production tasks while neural activity was recorded from the speech cortex, including superior temporal gyrus, precentral gyrus, and postcentral gyrus. The cortical surface field potential was decomposed into traditional EEG frequency bands. Signal similarity between electrode pairs for each frequency band was quantified using a Pearson correlation coefficient. The correlation of neural activity between electrode pairs was inversely related to the distance between the electrodes; this relationship was used to quantify spatial falloff functions for cortical subdomains. As expected, lower frequencies remained correlated over larger distances than higher frequencies. However, both the envelope and phase of gamma and high gamma frequencies (30-150 Hz) are largely uncorrelated (<90%) at 4 mm, the smallest spacing of the high-density arrays. Thus, ECoG arrays smaller than 4 mm have significant promise for increasing signal resolution at high frequencies, whereas less additional gain is achieved for lower frequencies. Our findings quantitatively demonstrate the dependence of ECoG spatial resolution on the neural frequency of interest. We demonstrate that this relationship is consistent across patients and across cortical areas during activity.
Spatial resolution dependence on spectral frequency in human speech cortex electrocorticography
NASA Astrophysics Data System (ADS)
Muller, Leah; Hamilton, Liberty S.; Edwards, Erik; Bouchard, Kristofer E.; Chang, Edward F.
2016-10-01
Objective. Electrocorticography (ECoG) has become an important tool in human neuroscience and has tremendous potential for emerging applications in neural interface technology. Electrode array design parameters are outstanding issues for both research and clinical applications, and these parameters depend critically on the nature of the neural signals to be recorded. Here, we investigate the functional spatial resolution of neural signals recorded at the human cortical surface. We empirically derive spatial spread functions to quantify the shared neural activity for each frequency band of the electrocorticogram. Approach. Five subjects with high-density (4 mm center-to-center spacing) ECoG grid implants participated in speech perception and production tasks while neural activity was recorded from the speech cortex, including superior temporal gyrus, precentral gyrus, and postcentral gyrus. The cortical surface field potential was decomposed into traditional EEG frequency bands. Signal similarity between electrode pairs for each frequency band was quantified using a Pearson correlation coefficient. Main results. The correlation of neural activity between electrode pairs was inversely related to the distance between the electrodes; this relationship was used to quantify spatial falloff functions for cortical subdomains. As expected, lower frequencies remained correlated over larger distances than higher frequencies. However, both the envelope and phase of gamma and high gamma frequencies (30-150 Hz) are largely uncorrelated (<90%) at 4 mm, the smallest spacing of the high-density arrays. Thus, ECoG arrays smaller than 4 mm have significant promise for increasing signal resolution at high frequencies, whereas less additional gain is achieved for lower frequencies. Significance. Our findings quantitatively demonstrate the dependence of ECoG spatial resolution on the neural frequency of interest. We demonstrate that this relationship is consistent across patients and across cortical areas during activity.
Non-Gaussian lineshapes and dynamics of time-resolved linear and nonlinear (correlation) spectra.
Dinpajooh, Mohammadhasan; Matyushov, Dmitry V
2014-07-17
Signatures of nonlinear and non-Gaussian dynamics in time-resolved linear and nonlinear (correlation) 2D spectra are analyzed in a model considering a linear plus quadratic dependence of the spectroscopic transition frequency on a Gaussian nuclear coordinate of the thermal bath (quadratic coupling). This new model is contrasted to the commonly assumed linear dependence of the transition frequency on the medium nuclear coordinates (linear coupling). The linear coupling model predicts equality between the Stokes shift and equilibrium correlation functions of the transition frequency and time-independent spectral width. Both predictions are often violated, and we are asking here the question of whether a nonlinear solvent response and/or non-Gaussian dynamics are required to explain these observations. We find that correlation functions of spectroscopic observables calculated in the quadratic coupling model depend on the chromophore's electronic state and the spectral width gains time dependence, all in violation of the predictions of the linear coupling models. Lineshape functions of 2D spectra are derived assuming Ornstein-Uhlenbeck dynamics of the bath nuclear modes. The model predicts asymmetry of 2D correlation plots and bending of the center line. The latter is often used to extract two-point correlation functions from 2D spectra. The dynamics of the transition frequency are non-Gaussian. However, the effect of non-Gaussian dynamics is limited to the third-order (skewness) time correlation function, without affecting the time correlation functions of higher order. The theory is tested against molecular dynamics simulations of a model polar-polarizable chromophore dissolved in a force field water.
Electromagnetic Compatibility Testing Studies
NASA Technical Reports Server (NTRS)
Trost, Thomas F.; Mitra, Atindra K.
1996-01-01
This report discusses the results on analytical models and measurement and simulation of statistical properties from a study of microwave reverberation (mode-stirred) chambers performed at Texas Tech University. Two analytical models of power transfer vs. frequency in a chamber, one for antenna-to-antenna transfer and the other for antenna to D-dot sensor, were experimentally validated in our chamber. Two examples are presented of the measurement and calculation of chamber Q, one for each of the models. Measurements of EM power density validate a theoretical probability distribution on and away from the chamber walls and also yield a distribution with larger standard deviation at frequencies below the range of validity of the theory. Measurements of EM power density at pairs of points which validate a theoretical spatial correlation function on the chamber walls and also yield a correlation function with larger correlation length, R(sub corr), at frequencies below the range of validity of the theory. A numerical simulation, employing a rectangular cavity with a moving wall shows agreement with the measurements. The determination that the lowest frequency at which the theoretical spatial correlation function is valid in our chamber is considerably higher than the lowest frequency recommended by current guidelines for utilizing reverberation chambers in EMC testing. Two suggestions have been made for future studies related to EMC testing.
Jacobs, D S; Bastian, A; Bam, L
2014-12-01
The skulls of animals have to perform many functions. Optimization for one function may mean another function is less optimized, resulting in evolutionary trade-offs. Here, we investigate whether a trade-off exists between the masticatory and sensory functions of animal skulls using echolocating bats as model species. Several species of rhinolophid bats deviate from the allometric relationship between body size and echolocation frequency. Such deviation may be the result of selection for increased bite force, resulting in a decrease in snout length which could in turn lead to higher echolocation frequencies. If so, there should be a positive relationship between bite force and echolocation frequency. We investigated this relationship in several species of southern African rhinolophids using phylogenetically informed analyses of the allometry of their bite force and echolocation frequency and of the three-dimensional shape of their skulls. As predicted, echolocation frequency was positively correlated with bite force, suggesting that its evolution is influenced by a trade-off between the masticatory and sensory functions of the skull. In support of this, variation in skull shape was explained by both echolocation frequency (80%) and bite force (20%). Furthermore, it appears that selection has acted on the nasal capsules, which have a frequency-specific impedance matching function during vocalization. There was a negative correlation between echolocation frequency and capsule volume across species. Optimization of the masticatory function of the skull may have been achieved through changes in the shape of the mandible and associated musculature, elements not considered in this study. © 2014 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.
Wang, X; Qiao, Y; Yang, L; Song, S; Han, Y; Tian, Y; Ding, M; Jin, H; Shao, F; Liu, A
2017-11-01
Leptin levels are increased in patients with systemic lupus erythematosus (SLE) but little is known on how this correlates with several disease characteristics including the frequency of regulatory T cells (Tregs). Here we compared serum leptin levels with frequency of circulating Tregs in 47 lupus patients vs. 25 healthy matched controls. Correlations with lupus disease activity were also analyzed, as well as Treg proliferation potential. It was found that leptin was remarkably increased in SLE patients as compared to controls, particularly in SLE patients with moderate and severe active SLE, and the increase correlated with disease activity. Importantly, increased leptin in lupus patients inversely correlated with the frequency of Tregs but not in controls, and leptin neutralization resulted in the expansion of Tregs ex vivo. Thus, hyperleptinemia in lupus patients correlates directly with disease activity and inversely with Treg frequency. The finding that leptin inhibition expands Tregs in SLE suggests possible inhibition of this molecule for an enhanced Treg function in the disease.
Ikeda, Shigeyuki; Takeuchi, Hikaru; Taki, Yasuyuki; Nouchi, Rui; Yokoyama, Ryoichi; Kotozaki, Yuka; Nakagawa, Seishu; Sekiguchi, Atsushi; Iizuka, Kunio; Yamamoto, Yuki; Hanawa, Sugiko; Araki, Tsuyoshi; Miyauchi, Carlos Makoto; Sakaki, Kohei; Nozawa, Takayuki; Yokota, Susumu; Magistro, Daniele; Kawashima, Ryuta
2017-01-01
Recently, the association between human personality traits and resting-state brain activity has gained interest in neuroimaging studies. However, it remains unclear if Big Five personality traits are represented in frequency bands (~0.25 Hz) of resting-state functional magnetic resonance imaging (fMRI) activity. Based on earlier neurophysiological studies, we investigated the correlation between the five personality traits assessed by the NEO Five-Factor Inventory (NEO-FFI), and the fractional amplitude of low-frequency fluctuation (fALFF) at four distinct frequency bands (slow-5 (0.01–0.027 Hz), slow-4 (0.027–0.073 Hz), slow-3 (0.073–0.198 Hz) and slow-2 (0.198–0.25 Hz)). We enrolled 835 young subjects and calculated the correlations of resting-state fMRI signals using a multiple regression analysis. We found a significant and consistent correlation between fALFF and the personality trait of extraversion at all frequency bands. Furthermore, significant correlations were detected in distinct brain regions for each frequency band. This finding supports the frequency-specific spatial representations of personality traits as previously suggested. In conclusion, our data highlight an association between human personality traits and fALFF at four distinct frequency bands. PMID:28680397
Ikeda, Shigeyuki; Takeuchi, Hikaru; Taki, Yasuyuki; Nouchi, Rui; Yokoyama, Ryoichi; Kotozaki, Yuka; Nakagawa, Seishu; Sekiguchi, Atsushi; Iizuka, Kunio; Yamamoto, Yuki; Hanawa, Sugiko; Araki, Tsuyoshi; Miyauchi, Carlos Makoto; Sakaki, Kohei; Nozawa, Takayuki; Yokota, Susumu; Magistro, Daniele; Kawashima, Ryuta
2017-01-01
Recently, the association between human personality traits and resting-state brain activity has gained interest in neuroimaging studies. However, it remains unclear if Big Five personality traits are represented in frequency bands (~0.25 Hz) of resting-state functional magnetic resonance imaging (fMRI) activity. Based on earlier neurophysiological studies, we investigated the correlation between the five personality traits assessed by the NEO Five-Factor Inventory (NEO-FFI), and the fractional amplitude of low-frequency fluctuation (fALFF) at four distinct frequency bands (slow-5 (0.01-0.027 Hz), slow-4 (0.027-0.073 Hz), slow-3 (0.073-0.198 Hz) and slow-2 (0.198-0.25 Hz)). We enrolled 835 young subjects and calculated the correlations of resting-state fMRI signals using a multiple regression analysis. We found a significant and consistent correlation between fALFF and the personality trait of extraversion at all frequency bands. Furthermore, significant correlations were detected in distinct brain regions for each frequency band. This finding supports the frequency-specific spatial representations of personality traits as previously suggested. In conclusion, our data highlight an association between human personality traits and fALFF at four distinct frequency bands.
NASA Astrophysics Data System (ADS)
Chen, Yuebiao; Zhou, Yiqi; Yu, Gang; Lu, Dan
In order to analyze the effect of engine vibration on cab noise of construction machinery in multi-frequency bands, a new method based on ensemble empirical mode decomposition (EEMD) and spectral correlation analysis is proposed. Firstly, the intrinsic mode functions (IMFs) of vibration and noise signals were obtained by EEMD method, and then the IMFs which have the same frequency bands were selected. Secondly, we calculated the spectral correlation coefficients between the selected IMFs, getting the main frequency bands in which engine vibration has significant impact on cab noise. Thirdly, the dominated frequencies were picked out and analyzed by spectral analysis method. The study result shows that the main frequency bands and dominated frequencies in which engine vibration have serious impact on cab noise can be identified effectively by the proposed method, which provides effective guidance to noise reduction of construction machinery.
NASA Astrophysics Data System (ADS)
Wang, Weizhou; Zhang, Yu; Ji, Baoming; Tian, Anmin
2011-06-01
The C-Hal (Hal = Cl, Br, or I) bond-length change and the corresponding vibrational frequency shift of the C-Hal stretch upon the C-Hal ⋯Y (Y is the electron donor) halogen bond formation have been determined by using density functional theory computations. Plots of the C-Hal bond-length change versus the corresponding vibrational frequency shift of the C-Hal stretch all give straight lines. The coefficients of determination range from 0.94366 to 0.99219, showing that the correlation between the C-Hal bond-length change and the corresponding frequency shift is very good in the halogen-bonded complexes. The possible effects of vibrational coupling, computational method, and anharmonicity on the bond-length change-frequency shift correlation are discussed in detail.
Photon correlation in single-photon frequency upconversion.
Gu, Xiaorong; Huang, Kun; Pan, Haifeng; Wu, E; Zeng, Heping
2012-01-30
We experimentally investigated the intensity cross-correlation between the upconverted photons and the unconverted photons in the single-photon frequency upconversion process with multi-longitudinal mode pump and signal sources. In theoretical analysis, with this multi-longitudinal mode of both signal and pump sources system, the properties of the signal photons could also be maintained as in the single-mode frequency upconversion system. Experimentally, based on the conversion efficiency of 80.5%, the joint probability of simultaneously detecting at upconverted and unconverted photons showed an anti-correlation as a function of conversion efficiency which indicated the upconverted photons were one-to-one from the signal photons. While due to the coherent state of the signal photons, the intensity cross-correlation function g(2)(0) was shown to be equal to unity at any conversion efficiency, agreeing with the theoretical prediction. This study will benefit the high-speed wavelength-tunable quantum state translation or photonic quantum interface together with the mature frequency tuning or longitudinal mode selection techniques.
NASA Astrophysics Data System (ADS)
Maekawa, Hiroaki; Sul, Soohwan; Ge, Nien-Hui
2013-08-01
We have applied infrared three-pulse photon echo and single- and dual-frequency 2D IR spectroscopy to the ester Cdbnd O and diazo Ndbnd N stretching modes in ethyl diazoacetate (EDA), and investigated their vibrational frequency fluctuations and correlation. The two modes exhibit different vibrational dynamics and 2D lineshape, which are well simulated by frequency-frequency correlation functions (FFCFs) with two decaying components. Although the FT IR spectrum shows a single Cdbnd O band, absolute magnitude 2D IR nonrephasing spectrum displays spectral signatures supporting the presence of cis and trans conformations. The cross-peak inclined toward the anti-diagonal in the dual-frequency 2D IR spectrum, indicating that the frequency fluctuations of the two modes are anticorrelated. This behavior is attributed to anticorrelated change in the bond orders when solvent and structural fluctuations causes EDA to adopt a different mixture of the two dominant resonance structures. The effects of cross FFCF on the cross-peak line shape are discussed.
Chao, Linda L
2016-10-01
The aim of this study was to examine the relationship between the self-reported frequencies of hearing chemical alarms during deployment and visuospatial function in Gulf War (GW) veterans. The relationship between the self-reported frequency of hearing chemical alarms, neurobehavioral, and volumetric brain imaging data was examined with correlational, regression, and mediation analyses. The self-reported frequency of hearing chemical alarms was inversely associated with and significantly predicted performance on a visuospatial task (ie, Block Design) over and above potentially confounding variables, including concurrent, correlated GW-related exposures. This effect was partially mediated by the relationship between hearing chemical alarms and lateral occipital cortex volume. Exposure to substances that triggered chemical alarms during GW deployment likely had adverse effects on veterans' brain structure and function, warranting further investigation of whether these GW veterans are at an increased risk for dementia.
First-principles studies of PETN molecular crystal vibrational frequencies under high pressure
NASA Astrophysics Data System (ADS)
Perger, Warren; Zhao, Jijun
2005-07-01
The vibrational frequencies of the PETN molecular crystal were calculated using the first-principles CRYSTAL03 program which employs an all-electron LCAO approach and calculates analytic first derivatives of the total energy with respect to atomic displacements. Numerical second derivatives were used to enable calculation of the vibrational frequencies at ambient pressure and under various states of compression. Three different density functionals, B3LYP, PW91, and X3LYP were used to examine the effect of the exchange-correlation functional on the vibrational frequencies. The pressure-induced shift of the vibrational frequencies will be presented and compared with experiment. The average deviation with experimental results is shown to be on the order of 2-3%, depending on the functional used.
The time-frequency method of signal analysis in internal combustion engine diagnostics
NASA Astrophysics Data System (ADS)
Avramchuk, V. S.; Kazmin, V. P.; Faerman, V. A.; Le, V. T.
2017-01-01
The paper presents the results of the study of applicability of time-frequency correlation functions to solving the problems of internal combustion engine fault diagnostics. The proposed methods are theoretically justified and experimentally tested. In particular, the method’s applicability is illustrated by the example of specially generated signals that simulate the vibration of an engine both during the normal operation and in the case of a malfunction in the system supplying fuel to the cylinders. This method was confirmed during an experiment with an automobile internal combustion engine. The study offers the main findings of the simulation and the experiment and highlights certain characteristic features of time-frequency autocorrelation functions that allow one to identify malfunctions in an engine’s cylinder. The possibility in principle of using time-frequency correlation functions in function testing of the internal combustion engine is demonstrated. The paper’s conclusion proposes further research directions including the application of the method to diagnosing automobile gearboxes.
Joos, Kathleen; De Ridder, Dirk; Boey, Ronny A.; Vanneste, Sven
2014-01-01
Introduction: Stuttering is defined as speech characterized by verbal dysfluencies, but should not be seen as an isolated speech disorder, but as a generalized sensorimotor timing deficit due to impaired communication between speech related brain areas. Therefore we focused on resting state brain activity and functional connectivity. Method: We included 11 patients with developmental stuttering and 11 age matched controls. To objectify stuttering severity and the impact on quality of life (QoL), we used the Dutch validated Test for Stuttering Severity-Readers (TSS-R) and the Overall Assessment of the Speaker’s Experience of Stuttering (OASES), respectively. Furthermore, we used standardized low resolution brain electromagnetic tomography (sLORETA) analyses to look at resting state activity and functional connectivity differences and their correlations with the TSS-R and OASES. Results: No significant results could be obtained when looking at neural activity, however significant alterations in resting state functional connectivity could be demonstrated between persons who stutter (PWS) and fluently speaking controls, predominantly interhemispheric, i.e., a decreased functional connectivity for high frequency oscillations (beta and gamma) between motor speech areas (BA44 and 45) and the contralateral premotor (BA6) and motor (BA4) areas. Moreover, a positive correlation was found between functional connectivity at low frequency oscillations (theta and alpha) and stuttering severity, while a mixed increased and decreased functional connectivity at low and high frequency oscillations correlated with QoL. Discussion: PWS are characterized by decreased high frequency interhemispheric functional connectivity between motor speech, premotor and motor areas in the resting state, while higher functional connectivity in the low frequency bands indicates more severe speech disturbances, suggesting that increased interhemispheric and right sided functional connectivity is maladaptive. PMID:25352797
Sale, Martin V.; Rogasch, Nigel C.; Nordstrom, Michael A.
2016-01-01
The amplitude of motor-evoked potentials (MEPs) elicited with transcranial magnetic stimulation (TMS) varies from trial-to-trial. Synchronous oscillations in cortical neuronal excitability contribute to this variability, however it is not known how different frequencies of stimulation influence MEP variability, and whether these oscillations are rhythmic or aperiodic. We stimulated the motor cortex with TMS at different regular (i.e., rhythmic) rates, and compared this with pseudo-random (aperiodic) timing. In 18 subjects, TMS was applied at three regular frequencies (0.05 Hz, 0.2 Hz, 1 Hz) and one aperiodic frequency (mean 0.2 Hz). MEPs (n = 50) were recorded from three intrinsic hand muscles of the left hand with different functional and anatomical relations. MEP amplitude correlation was highest for the functionally related muscle pair, less for the anatomically related muscle pair and least for the functionally- and anatomically-unrelated muscle pair. MEP correlations were greatest with 1 Hz, and least for stimulation at 0.05 Hz. Corticospinal neuron synchrony is higher with shorter TMS intervals. Further, corticospinal neuron synchrony is similar irrespective of whether the stimulation is periodic or aperiodic. These findings suggest TMS frequency is a crucial consideration for studies using TMS to probe correlated activity between muscle pairs. PMID:27014031
NASA Astrophysics Data System (ADS)
Perger, Warren F.; Zhao, Jijun; Winey, J. M.; Gupta, Y. M.
2006-07-01
The vibrational frequencies of the PETN molecular crystal were calculated using the first-principles CRYSTAL03 program which employs an all-electron LCAO approach and calculates analytic first derivatives of the total energy with respect to atomic displacements. Numerical second derivatives were used to enable calculation of the vibrational frequencies at ambient pressure and under various states of compression. Three different density functionals, B3LYP, PW91, and X3LYP were used to examine the effect of the exchange-correlation functional on the vibrational frequencies. The average deviation with experimental results is shown to be on the order of 2-3%, depending on the functional used. The pressure-induced shift of the vibrational frequencies is presented.
A novel iris patterns matching algorithm of weighted polar frequency correlation
NASA Astrophysics Data System (ADS)
Zhao, Weijie; Jiang, Linhua
2014-11-01
Iris recognition is recognized as one of the most accurate techniques for biometric authentication. In this paper, we present a novel correlation method - Weighted Polar Frequency Correlation(WPFC) - to match and evaluate two iris images, actually it can also be used for evaluating the similarity of any two images. The WPFC method is a novel matching and evaluating method for iris image matching, which is complete different from the conventional methods. For instance, the classical John Daugman's method of iris recognition uses 2D Gabor wavelets to extract features of iris image into a compact bit stream, and then matching two bit streams with hamming distance. Our new method is based on the correlation in the polar coordinate system in frequency domain with regulated weights. The new method is motivated by the observation that the pattern of iris that contains far more information for recognition is fine structure at high frequency other than the gross shapes of iris images. Therefore, we transform iris images into frequency domain and set different weights to frequencies. Then calculate the correlation of two iris images in frequency domain. We evaluate the iris images by summing the discrete correlation values with regulated weights, comparing the value with preset threshold to tell whether these two iris images are captured from the same person or not. Experiments are carried out on both CASIA database and self-obtained images. The results show that our method is functional and reliable. Our method provides a new prospect for iris recognition system.
Hansen, J S; Daivis, Peter J; Dyre, Jeppe C; Todd, B D; Bruus, Henrik
2013-01-21
The extended Navier-Stokes theory accounts for the coupling between the translational and rotational molecular degrees of freedom. In this paper, we generalize this theory to non-zero frequencies and wavevectors, which enables a new study of spatio-temporal correlation phenomena present in molecular fluids. To discuss these phenomena in detail, molecular dynamics simulations of molecular chlorine are performed for three different state points. In general, the theory captures the behavior for small wavevector and frequencies as expected. For example, in the hydrodynamic regime and for molecular fluids with small moment of inertia like chlorine, the theory predicts that the longitudinal and transverse intrinsic angular velocity correlation functions are almost identical, which is also seen in the molecular dynamics simulations. However, the theory fails at large wavevector and frequencies. To account for the correlations at these scales, we derive a phenomenological expression for the frequency dependent rotational viscosity and wavevector and frequency dependent longitudinal spin viscosity. From this we observe a significant coupling enhancement between the molecular angular velocity and translational velocity for large frequencies in the gas phase; this is not observed for the supercritical fluid and liquid state points.
1977-01-10
This report is the third in a series of three that evaluate a technique (frequency-domain Prony) for obtaining the poles of a transfer function. The...main objective was to assess the feasibility of classifying or identifying ship-like targets by using pole sets derived from frequency-domain data. A...predictor-correlator procedure for using spectral data and library pole sets for this purpose was developed. Also studied was an iterative method for
Method and apparatus for measuring frequency and phase difference
NASA Technical Reports Server (NTRS)
Shores, Paul (Inventor); Lichtenberg, Christopher (Inventor); Kobayashi, Herbert S. (Inventor); Cunningham, Allen R. (Inventor)
1986-01-01
The present invention is a system for deriving direct digital indications of frequency and phase difference between two incoming pulse trains adaptable for collision avoidance systems or the like. A pair of radar beams are directed toward a target and corresponding beams returning therefrom are detected. A digital difference circuit forms a pulse train from the Doppler shift frequencies of each beam pair having a repetition rate functionally related to the difference in magnitude of the shift frequencies. Pulses from the pulse train are counted as a function of time. Visual indications thereof on display are correlative to target position relative to beams.
NASA Astrophysics Data System (ADS)
Dittmann, Niklas; Splettstoesser, Janine; Helbig, Nicole
2018-03-01
We calculate the frequency-dependent equilibrium noise of a mesoscopic capacitor in time-dependent density functional theory (TDDFT). The capacitor is modeled as a single-level quantum dot with on-site Coulomb interaction and tunnel coupling to a nearby reservoir. The noise spectra are derived from linear-response conductances via the fluctuation-dissipation theorem. Thereby, we analyze the performance of a recently derived exchange-correlation potential with time-nonlocal density dependence in the finite-frequency linear-response regime. We compare our TDDFT noise spectra with real-time perturbation theory and find excellent agreement for noise frequencies below the reservoir temperature.
Koirala, Gyan Raj; Lee, Dongpyo; Eom, Soyong; Kim, Nam-Young; Kim, Heung Dong
2017-11-01
The objective of this study was to elucidate alteration in functional connectivity (FC) in patients with benign epilepsy with centrotemporal spikes (BECTS) as induced by physical exercise therapy and their correlation to the neuropsychological (NP) functions. We analyzed 115 artifact- and spike-free 2-second epochs extracted from resting state EEG recordings before and after 5weeks of physical exercise in eight patients with BECTS. The exact Low Resolution Electromagnetic Tomography (eLORETA) was used for source reconstruction. We evaluated the cortical current source density (CSD) power across five different frequency bands (delta, theta, alpha, beta, and gamma). Altered FC between 34 regions of interests (ROIs) was then examined using lagged phase synchronization (LPS) method. We further investigated the correlation between the altered FC measures and the changes in NP test scores. We observed changes in CSD power following the exercise for all frequency bands and statistically significant increases in the right temporal region for the alpha band. There were a number of altered FC between the cortical ROIs in all frequency bands of interest. Furthermore, significant correlations were observed between FC measures and NP test scores at theta and alpha bands. The increased localization power at alpha band may be an indication of the positive impact of exercise in patients with BECTS. Frequency band-specific alterations in FC among cortical regions were associated with the modulation of cognitive and NP functions. The significant correlation between FC and NP tests suggests that physical exercise may mitigate the severity of BECTS, thereby enhancing NP function. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Sarkar, Debdeep; Srivastava, Kumar Vaibhav
2017-02-01
In this paper, the concept of cross-correlation Green's functions (CGF) is used in conjunction with the finite difference time domain (FDTD) technique for calculation of envelope correlation coefficient (ECC) of any arbitrary MIMO antenna system over wide frequency band. Both frequency-domain (FD) and time-domain (TD) post-processing techniques are proposed for possible application with this FDTD-CGF scheme. The FDTD-CGF time-domain (FDTD-CGF-TD) scheme utilizes time-domain signal processing methods and exhibits significant reduction in ECC computation time as compared to the FDTD-CGF frequency domain (FDTD-CGF-FD) scheme, for high frequency-resolution requirements. The proposed FDTD-CGF based schemes can be applied for accurate and fast prediction of wideband ECC response, instead of the conventional scattering parameter based techniques which have several limitations. Numerical examples of the proposed FDTD-CGF techniques are provided for two-element MIMO systems involving thin-wire half-wavelength dipoles in parallel side-by-side as well as orthogonal arrangements. The results obtained from the FDTD-CGF techniques are compared with results from commercial electromagnetic solver Ansys HFSS, to verify the validity of proposed approach.
NASA Astrophysics Data System (ADS)
Popkov, Artem
2016-01-01
The article contains information about acoustic emission signals analysing using autocorrelation function. Operation factors were analysed, such as shape of signal, the origins time and carrier frequency. The purpose of work is estimating the validity of correlations methods analysing signals. Acoustic emission signal consist of different types of waves, which propagate on different trajectories in object of control. Acoustic emission signal is amplitude-, phase- and frequency-modeling signal. It was described by carrier frequency at a given point of time. Period of signal make up 12.5 microseconds and carrier frequency make up 80 kHz for analysing signal. Usage autocorrelation function like indicator the origin time of acoustic emission signal raises validity localization of emitters.
List, Thomas; John, Mike T.; Ohrbach, Richard; Schiffman, Eric L.; Truelove, Edmond L.; Anderson, Gary C.
2015-01-01
Aims To investigate the relationship of headache frequency with patient-reported physical functioning and emotional functioning in temporomandibular disorder (TMD) subjects with concurrent temple headache. Methods The Research Diagnostic Criteria for TMD (RDC/TMD) Validation Project identified, as a subset of 614 TMD cases and 91 controls (n = 705), 309 subjects with concurrent TMD pain diagnoses (RDC/TMD) and temple headache. The temple headaches were subdivided into infrequent, frequent, and chronic headache according to the International Classification of Headache Disorders, second edition (ICHD–II). Study variables included self-report measures of physical functioning (Jaw Function Limitation Scale [JFLS], Graded Chronic Pain Scale [GCPS], Short Form–12 [SF–12]) and emotional functioning (depression and anxiety as measured by the Symptom Checklist–90R/SCL–90R). Differences among the three headache subgroups were characterized by increasing headache frequency. The relationship between ordered headache frequency and physical as well as emotional functioning was analyzed using linear regression and trend tests for proportions. Results Physical functioning, as assessed with the JFLS (P < .001), SF-12 (P < .001), and GCPS (P < .001), was significantly associated with increased headache frequency. Emotional functioning, reflected in depression and anxiety, was also associated with increased frequency of headache (both P < .001). Conclusion Headache frequency was substantially correlated with reduced physical functioning and emotional functioning in subjects with TMD and concurrent temple headaches. A secondary finding was that headache was precipitated by jaw activities more often in subjects with more frequent temple headaches. PMID:22558607
Mc Laughlin, Myles; Chabwine, Joelle Nsimire; van der Heijden, Marcel; Joris, Philip X
2008-10-01
To localize low-frequency sounds, humans rely on an interaural comparison of the temporally encoded sound waveform after peripheral filtering. This process can be compared with cross-correlation. For a broadband stimulus, after filtering, the correlation function has a damped oscillatory shape where the periodicity reflects the filter's center frequency and the damping reflects the bandwidth (BW). The physiological equivalent of the correlation function is the noise delay (ND) function, which is obtained from binaural cells by measuring response rate to broadband noise with varying interaural time delays (ITDs). For monaural neurons, delay functions are obtained by counting coincidences for varying delays across spike trains obtained to the same stimulus. Previously, we showed that BWs in monaural and binaural neurons were similar. However, earlier work showed that the damping of delay functions differs significantly between these two populations. Here, we address this paradox by looking at the role of sensitivity to changes in interaural correlation. We measured delay and correlation functions in the cat inferior colliculus (IC) and auditory nerve (AN). We find that, at a population level, AN and IC neurons with similar characteristic frequencies (CF) and BWs can have different responses to changes in correlation. Notably, binaural neurons often show compression, which is not found in the AN and which makes the shape of delay functions more invariant with CF at the level of the IC than at the AN. We conclude that binaural sensitivity is more dependent on correlation sensitivity than has hitherto been appreciated and that the mechanisms underlying correlation sensitivity should be addressed in future studies.
Spatio-temporal coordination among functional residues in protein
NASA Astrophysics Data System (ADS)
Dutta, Sutapa; Ghosh, Mahua; Chakrabarti, J.
2017-01-01
The microscopic basis of communication among the functional sites in bio-macromolecules is a fundamental challenge in uncovering their functions. We study the communication through temporal cross-correlation among the binding sites. We illustrate via Molecular Dynamics simulations the properties of the temporal cross-correlation between the dihedrals of a small protein, ubiquitin which participates in protein degradation in eukaryotes. We show that the dihedral angles of the residues possess non-trivial temporal cross-correlations with asymmetry with respect to exchange of the dihedrals, having peaks at low frequencies with time scales in nano-seconds and an algebraic tail with a universal exponent for large frequencies. We show the existence of path for temporally correlated degrees of freedom among the functional residues. We explain the qualitative features of the cross-correlations through a general mathematical model. The generality of our analysis suggests that temporal cross-correlation functions may provide convenient theoretical framework to understand bio-molecular functions on microscopic basis.
NASA Astrophysics Data System (ADS)
Puchkov, V. A.
2016-09-01
Aspect sensitive scattering of multi-frequency probe signals by artificial, magnetic field aligned density irregularities (with transverse size ∼ 1- 10 m) generated in the ionosphere by powerful radio waves is considered. Fluctuations of received signals depending on stochastic properties of the irregularities are calculated. It is shown that in the case of HF probe waves two mechanisms may contribute to the scattered signal fluctuations. The first one is due to the propagation of probe waves in the ionospheric plasma as in a randomly inhomogeneous medium. The second one lies in non-stationary stochastic behavior of irregularities which satisfy the Bragg conditions for the scattering geometry and therefore constitute centers of scattering. In the probe wave frequency band of the order of 10-100 MHz the second mechanism dominates which delivers opportunity to recover some properties of artificial irregularities from received signals. Correlation function of backscattered probe waves with close frequencies is calculated, and it is shown that detailed spatial distribution of irregularities along the scattering vector can be found experimentally from observations of this correlation function.
Temporal masking functions for listeners with real and simulated hearing loss
Desloge, Joseph G.; Reed, Charlotte M.; Braida, Louis D.; Perez, Zachary D.; Delhorne, Lorraine A.
2011-01-01
A functional simulation of hearing loss was evaluated in its ability to reproduce the temporal masking functions for eight listeners with mild to severe sensorineural hearing loss. Each audiometric loss was simulated in a group of age-matched normal-hearing listeners through a combination of spectrally-shaped masking noise and multi-band expansion. Temporal-masking functions were obtained in both groups of listeners using a forward-masking paradigm in which the level of a 110-ms masker required to just mask a 10-ms fixed-level probe (5-10 dB SL) was measured as a function of the time delay between the masker offset and probe onset. At each of four probe frequencies (500, 1000, 2000, and 4000 Hz), temporal-masking functions were obtained using maskers that were 0.55, 1.0, and 1.15 times the probe frequency. The slopes and y-intercepts of the masking functions were not significantly different for listeners with real and simulated hearing loss. The y-intercepts were positively correlated with level of hearing loss while the slopes were negatively correlated. The ratio of the slopes obtained with the low-frequency maskers relative to the on-frequency maskers was similar for both groups of listeners and indicated a smaller compressive effect than that observed in normal-hearing listeners. PMID:21877806
Frequency dependent hub role of the dorsal and ventral right anterior insula.
Wang, Yifeng; Zhu, Lixia; Zou, Qijun; Cui, Qian; Liao, Wei; Duan, Xujun; Biswal, Bharat; Chen, Huafu
2018-01-15
The right anterior insula (rAI) plays a crucial role in generating adaptive behavior by orchestrating multiple brain networks. Based on functional separation findings of the insula and spectral fingerprints theory of cognitive functions, we hypothesize that the hub role of the rAI is region and frequency dependent. Using the Human Connectome Project dataset and backtracking approach, we segregate the rAI into dorsal and ventral parts at frequency bands from slow 6 to slow 3, indicating the frequency dependent functional separation of the rAI. Functional connectivity analysis shows that, within lower than 0.198 Hz frequency range, the dorsal and ventral parts of rAI form a complementary system to synchronize with externally and internally-oriented networks. Moreover, the relationship between the dorsal and ventral rAIs predicts the relationship between anti-correlated networks associated with the dorsal rAI at slow 6 and slow 5, suggesting a frequency dependent regulation of the rAI to brain networks. These findings could improve our understanding of the rAI by supporting the region and frequency dependent function of rAI and its essential role in coordinating brain systems relevant to internal and external environments. Copyright © 2017 Elsevier Inc. All rights reserved.
Sakuragi, Toshiyuki; Fuller, Judith W
2003-07-01
What kinds of linguistic resources do people utilize when they try to translate metaphors into a foreign language? This investigation of the perception of translatability of body-part metaphors examined the effects of the following factors: the similarity between the human body part and the metaphorical expression (e.g., "eye" in "electric eye") in appearance and function; the frequency of the use of the metaphor in the native language; and the perceived distance between the first language and the target language. The results of a survey of American (n = 151) and Japanese (n = 116) university students showed that both Similarity in Appearance and Similarity in Function correlated positively with Translatability, while the effect of the former was stronger than the latter. Frequency correlated positively with Translatability for the Americans, although the correlation was weaker when the target language is "distant" (Japanese or Chinese) than when the target language is "close" (Spanish). Among the Japanese, Frequency did not correlate with translatability regardless of the target language.
Viability and Functionality of Cryopreserved Peripheral Blood Mononuclear Cells in Pediatric Dengue
Perdomo-Celis, Federico; Salgado, Doris M.; Castañeda, Diana M.
2016-01-01
Cryopreserved peripheral blood mononuclear cells (PBMCs) are widely used in studies of dengue. In this disease, elevated frequency of apoptotic PBMCs has been described, and molecules such as soluble tumor necrosis factor (TNF)-related apoptosis-inducing ligands (sTRAIL) are involved. This effect of dengue may affect the efficiency of PBMC cryopreservation. Here, we evaluate the viability (trypan blue dye exclusion and amine-reactive dye staining) and functionality (frequency of gamma interferon [IFN-γ]-producing T cells after polyclonal stimulation) of fresh and cryopreserved PBMCs from children with dengue (in acute and convalescence phases), children with other febrile illnesses, and healthy children as controls. Plasma sTRAIL levels were also evaluated. The frequencies of nonviable PBMCs detected by the two viability assays were positively correlated (r = 0.74; P < 0.0001). Cryopreservation particularly affected the PBMCs of children with dengue, who had a higher frequency of nonviable cells than healthy children and children with other febrile illnesses (P ≤ 0.02), and PBMC viability levels were restored in the convalescent phase. In the acute phase, an increased frequency of CD3+ CD8+ amine-positive cells was found before cryopreservation (P = 0.01). Except for B cells in the acute phase, cryopreservation usually did not affect the relative frequencies of viable PBMC subpopulations. Dengue infection reduced the frequency of IFN-γ-producing CD3+ cells after stimulation compared with healthy controls and convalescent-phase patients (P ≤ 0.003), and plasma sTRAIL correlated with this decreased frequency in dengue (rho = −0.56; P = 0.01). Natural dengue infection in children can affect the viability and functionality of cryopreserved PBMCs. PMID:26961858
Estimation of chirp rates of music-adapted prolate spheroidal atoms using reassignment
NASA Astrophysics Data System (ADS)
Mesz, Bruno; Serrano, Eduardo
2007-09-01
We introduce a modified Matching Pursuit algorithm for estimating frequency and frequency slope of FM-modulated music signals. The use of Matching Pursuit with constant frequency atoms provides coarse estimates which could be improved with chirped atoms, more suited in principle to this kind of signals. Application of the reassignment method is suggested by its good localization properties for chirps. We start considering a family of atoms generated by modulation and scaling of a prolate spheroidal wave function. These functions are concentrated in frequency on intervals of a semitone centered at the frequencies of the well-tempered scale. At each stage of the pursuit, we search the atom most correlated with the signal. We then consider the spectral peaks at each frame of the spectrogram and calculate a modified frequency and frequency slope using the derivatives of the reassignment operators; this is then used to estimate the parameters of a cubic interpolation polynomial that models local pitch fluctuations. We apply the method both to synthetic and music signals.
Modal identification of structures by a novel approach based on FDD-wavelet method
NASA Astrophysics Data System (ADS)
Tarinejad, Reza; Damadipour, Majid
2014-02-01
An important application of system identification in structural dynamics is the determination of natural frequencies, mode shapes and damping ratios during operation which can then be used for calibrating numerical models. In this paper, the combination of two advanced methods of Operational Modal Analysis (OMA) called Frequency Domain Decomposition (FDD) and Continuous Wavelet Transform (CWT) based on novel cyclic averaging of correlation functions (CACF) technique are used for identification of dynamic properties. By using this technique, the autocorrelation of averaged correlation functions is used instead of original signals. Integration of FDD and CWT methods is used to overcome their deficiency and take advantage of the unique capabilities of these methods. The FDD method is able to accurately estimate the natural frequencies and mode shapes of structures in the frequency domain. On the other hand, the CWT method is in the time-frequency domain for decomposition of a signal at different frequencies and determines the damping coefficients. In this paper, a new formulation applied to the wavelet transform of the averaged correlation function of an ambient response is proposed. This application causes to accurate estimation of damping ratios from weak (noise) or strong (earthquake) vibrations and long or short duration record. For this purpose, the modified Morlet wavelet having two free parameters is used. The optimum values of these two parameters are obtained by employing a technique which minimizes the entropy of the wavelet coefficients matrix. The capabilities of the novel FDD-Wavelet method in the system identification of various dynamic systems with regular or irregular distribution of mass and stiffness are illustrated. This combined approach is superior to classic methods and yields results that agree well with the exact solutions of the numerical models.
Complex-valued time-series correlation increases sensitivity in FMRI analysis.
Kociuba, Mary C; Rowe, Daniel B
2016-07-01
To develop a linear matrix representation of correlation between complex-valued (CV) time-series in the temporal Fourier frequency domain, and demonstrate its increased sensitivity over correlation between magnitude-only (MO) time-series in functional MRI (fMRI) analysis. The standard in fMRI is to discard the phase before the statistical analysis of the data, despite evidence of task related change in the phase time-series. With a real-valued isomorphism representation of Fourier reconstruction, correlation is computed in the temporal frequency domain with CV time-series data, rather than with the standard of MO data. A MATLAB simulation compares the Fisher-z transform of MO and CV correlations for varying degrees of task related magnitude and phase amplitude change in the time-series. The increased sensitivity of the complex-valued Fourier representation of correlation is also demonstrated with experimental human data. Since the correlation description in the temporal frequency domain is represented as a summation of second order temporal frequencies, the correlation is easily divided into experimentally relevant frequency bands for each voxel's temporal frequency spectrum. The MO and CV correlations for the experimental human data are analyzed for four voxels of interest (VOIs) to show the framework with high and low contrast-to-noise ratios in the motor cortex and the supplementary motor cortex. The simulation demonstrates the increased strength of CV correlations over MO correlations for low magnitude contrast-to-noise time-series. In the experimental human data, the MO correlation maps are noisier than the CV maps, and it is more difficult to distinguish the motor cortex in the MO correlation maps after spatial processing. Including both magnitude and phase in the spatial correlation computations more accurately defines the correlated left and right motor cortices. Sensitivity in correlation analysis is important to preserve the signal of interest in fMRI data sets with high noise variance, and avoid excessive processing induced correlation. Copyright © 2016 Elsevier Inc. All rights reserved.
Hayashi, Tomoyuki; Mukamel, Shaul
2006-11-21
The coherent nonlinear response of the entire amide line shapes of N-methyl acetamide to three infrared pulses is simulated using an electrostatic density functional theory map. Positive and negative cross peaks contain signatures of correlations between the fundamentals and the combination state. The amide I-A and I-III cross-peak line shapes indicate positive correlation and anticorrelation of frequency fluctuations, respectively. These can be ascribed to correlated hydrogen bonding at C[double bond]O and N-H sites. The amide I frequency is negatively correlated with the hydrogen bond on carbonyl C[double bond]O, whereas the amide A and III are negatively and positively correlated, respectively, with the hydrogen bond on amide N-H.
Temporal and spectral manipulations of correlated photons using a time lens
NASA Astrophysics Data System (ADS)
Mittal, Sunil; Orre, Venkata Vikram; Restelli, Alessandro; Salem, Reza; Goldschmidt, Elizabeth A.; Hafezi, Mohammad
2017-10-01
A common challenge in quantum information processing with photons is the limited ability to manipulate and measure correlated states. An example is the inability to measure picosecond-scale temporal correlations of a multiphoton state, given state-of-the-art detectors have a temporal resolution of about 100 ps. Here, we demonstrate temporal magnification of time-bin-entangled two-photon states using a time lens and measure their temporal correlation function, which is otherwise not accessible because of the limited temporal resolution of single-photon detectors. Furthermore, we show that the time lens maps temporal correlations of photons to frequency correlations and could be used to manipulate frequency-bin-entangled photons. This demonstration opens a new avenue to manipulate and analyze spectral and temporal wave functions of many-photon states.
NASA Astrophysics Data System (ADS)
Nano, Tomi; Escartin, Terenz; Karim, Karim S.; Cunningham, Ian A.
2016-03-01
The ability to improve visualization of structural information in digital radiography without increasing radiation exposures requires improved image quality across all spatial frequencies, especially at high frequencies. The detective quantum efficiency (DQE) as a function of spatial frequency quantifies image quality given by an x-ray detector. We present a method of increasing DQE at high spatial frequencies by improving the modulation transfer function (MTF) and reducing noise aliasing. The Apodized Aperature Pixel (AAP) design uses a detector with micro-elements to synthesize desired pixels and provide higher DQE than conventional detector designs. A cascaded system analysis (CSA) that incorporates x-ray interactions is used for comparison of the theoretical MTF, noise power spectrum (NPS), and DQE. Signal and noise transfer through the converter material is shown to consist of correlated an uncorrelated terms. The AAP design was shown to improve the DQE of both material types that have predominantly correlated transfer (such as CsI) and predominantly uncorrelated transfer (such as Se). Improvement in the MTF by 50% and the DQE by 100% at the sampling cut-off frequency is obtained when uncorrelated transfer is prevalent through the converter material. Optimizing high-frequency DQE results in improved image contrast and visualization of small structures and fine-detail.
Simultaneous EEG/fMRI analysis of the resonance phenomena in steady-state visual evoked responses.
Bayram, Ali; Bayraktaroglu, Zubeyir; Karahan, Esin; Erdogan, Basri; Bilgic, Basar; Ozker, Muge; Kasikci, Itir; Duru, Adil D; Ademoglu, Ahmet; Oztürk, Cengizhan; Arikan, Kemal; Tarhan, Nevzat; Demiralp, Tamer
2011-04-01
The stability of the steady-state visual evoked potentials (SSVEPs) across trials and subjects makes them a suitable tool for the investigation of the visual system. The reproducible pattern of the frequency characteristics of SSVEPs shows a global amplitude maximum around 10 Hz and additional local maxima around 20 and 40 Hz, which have been argued to represent resonant behavior of damped neuronal oscillators. Simultaneous electroencephalogram/functional magnetic resonance imaging (EEG/fMRI) measurement allows testing of the resonance hypothesis about the frequency-selective increases in SSVEP amplitudes in human subjects, because the total synaptic activity that is represented in the fMRI-Blood Oxygen Level Dependent (fMRI-BOLD) response would not increase but get synchronized at the resonance frequency. For this purpose, 40 healthy volunteers were visually stimulated with flickering light at systematically varying frequencies between 6 and 46 Hz, and the correlations between SSVEP amplitudes and the BOLD responses were computed. The SSVEP frequency characteristics of all subjects showed 3 frequency ranges with an amplitude maximum in each of them, which roughly correspond to alpha, beta and gamma bands of the EEG. The correlation maps between BOLD responses and SSVEP amplitude changes across the different stimulation frequencies within each frequency band showed no significant correlation in the alpha range, while significant correlations were obtained in the primary visual area for the beta and gamma bands. This non-linear relationship between the surface recorded SSVEP amplitudes and the BOLD responses of the visual cortex at stimulation frequencies around the alpha band supports the view that a resonance at the tuning frequency of the thalamo-cortical alpha oscillator in the visual system is responsible for the global amplitude maximum of the SSVEP around 10 Hz. Information gained from the SSVEP/fMRI analyses in the present study might be extrapolated to the EEG/fMRI analysis of the transient event-related potentials (ERPs) in terms of expecting more reliable and consistent correlations between EEG and fMRI responses, when the analyses are carried out on evoked or induced oscillations (spectral perturbations) in separate frequency bands instead of the time-domain ERP peaks.
Liu, P.; Archuleta, R.J.; Hartzell, S.H.
2006-01-01
We present a new method for calculating broadband time histories of ground motion based on a hybrid low-frequency/high-frequency approach with correlated source parameters. Using a finite-difference method we calculate low- frequency synthetics (< ∼1 Hz) in a 3D velocity structure. We also compute broadband synthetics in a 1D velocity model using a frequency-wavenumber method. The low frequencies from the 3D calculation are combined with the high frequencies from the 1D calculation by using matched filtering at a crossover frequency of 1 Hz. The source description, common to both the 1D and 3D synthetics, is based on correlated random distributions for the slip amplitude, rupture velocity, and rise time on the fault. This source description allows for the specification of source parameters independent of any a priori inversion results. In our broadband modeling we include correlation between slip amplitude, rupture velocity, and rise time, as suggested by dynamic fault modeling. The method of using correlated random source parameters is flexible and can be easily modified to adjust to our changing understanding of earthquake ruptures. A realistic attenuation model is common to both the 3D and 1D calculations that form the low- and high-frequency components of the broadband synthetics. The value of Q is a function of the local shear-wave velocity. To produce more accurate high-frequency amplitudes and durations, the 1D synthetics are corrected with a randomized, frequency-dependent radiation pattern. The 1D synthetics are further corrected for local site and nonlinear soil effects by using a 1D nonlinear propagation code and generic velocity structure appropriate for the site’s National Earthquake Hazards Reduction Program (NEHRP) site classification. The entire procedure is validated by comparison with the 1994 Northridge, California, strong ground motion data set. The bias and error found here for response spectral acceleration are similar to the best results that have been published by others for the Northridge rupture.
[EMD Time-Frequency Analysis of Raman Spectrum and NIR].
Zhao, Xiao-yu; Fang, Yi-ming; Tan, Feng; Tong, Liang; Zhai, Zhe
2016-02-01
This paper analyzes the Raman spectrum and Near Infrared Spectrum (NIR) with time-frequency method. The empirical mode decomposition spectrum becomes intrinsic mode functions, which the proportion calculation reveals the Raman spectral energy is uniform distributed in each component, while the NIR's low order intrinsic mode functions only undertakes fewer primary spectroscopic effective information. Both the real spectrum and numerical experiments show that the empirical mode decomposition (EMD) regard Raman spectrum as the amplitude-modulated signal, which possessed with high frequency adsorption property; and EMD regards NIR as the frequency-modulated signal, which could be preferably realized high frequency narrow-band demodulation during first-order intrinsic mode functions. The first-order intrinsic mode functions Hilbert transform reveals that during the period of empirical mode decomposes Raman spectrum, modal aliasing happened. Through further analysis of corn leaf's NIR in time-frequency domain, after EMD, the first and second orders components of low energy are cut off, and reconstruct spectral signal by using the remaining intrinsic mode functions, the root-mean-square error is 1.001 1, and the correlation coefficient is 0.981 3, both of these two indexes indicated higher accuracy in re-construction; the decomposition trend term indicates the absorbency is ascending along with the decreasing to wave length in the near-infrared light wave band; and the Hilbert transform of characteristic modal component displays, 657 cm⁻¹ is the specific frequency by the corn leaf stress spectrum, which could be regarded as characteristic frequency for identification.
NASA Astrophysics Data System (ADS)
Di Salvo, T.; Méndez, M.; van der Klis, M.; Ford, E.; Robba, N. R.
2001-01-01
We study the timing properties of the bursting atoll source 4U 1728-34 as a function of its position in the X-ray color-color diagram. In the island part of the color-color diagram (corresponding to the hardest energy spectra), the power spectrum of 4U 1728-34 shows several features such as a band-limited noise component present up to a few tens of Hz, a low-frequency quasi-periodic oscillation (LFQPO) at frequencies between 20 and 40 Hz, a peaked noise component around 100 Hz, and one or two QPOs at kHz frequencies. In addition to these, in the lower banana (corresponding to softer energy spectra) we also find a very low frequency noise (VLFN) component below ~1 Hz. In the upper banana (corresponding to the softest energy spectra), the power spectra are dominated by the VLFN, with a peaked noise component around 20 Hz. We find that the frequencies of the kHz QPOs are well correlated with the position in the X-ray color-color diagram. For the frequency of the LFQPO and the break frequency of the broadband noise component, the relation appears more complex. Both of these frequencies increase when the frequency of the upper kHz QPO increases from 400 to 900 Hz, but at this frequency a jump in the values of the parameters occurs. We interpret this jump in terms of the gradual appearance of a QPO at the position of the break at high inferred mass accretion rate, while the previous LFQPO disappears. Simultaneously, another kind of noise appears with a break frequency of ~7 Hz, similar to the NBO of Z sources. The 100 Hz peaked noise does not seem to correlate with the position of the source in the color-color diagram but remains relatively constant in frequency. This component may be similar to several 100 Hz QPOs observed in black hole binaries.
The Default Mode Network and EEG Regional Spectral Power: A Simultaneous fMRI-EEG Study
Werner, Cornelius J.; Hitz, Konrad; Boers, Frank; Kawohl, Wolfram; Shah, N. Jon
2014-01-01
Electroencephalography (EEG) frequencies have been linked to specific functions as an “electrophysiological signature” of a function. A combination of oscillatory rhythms has also been described for specific functions, with or without predominance of one specific frequency-band. In a simultaneous fMRI-EEG study at 3 T we studied the relationship between the default mode network (DMN) and the power of EEG frequency bands. As a methodological approach, we applied Multivariate Exploratory Linear Optimized Decomposition into Independent Components (MELODIC) and dual regression analysis for fMRI resting state data. EEG power for the alpha, beta, delta and theta-bands were extracted from the structures forming the DMN in a region-of-interest approach by applying Low Resolution Electromagnetic Tomography (LORETA). A strong link between the spontaneous BOLD response of the left parahippocampal gyrus and the delta-band extracted from the anterior cingulate cortex was found. A positive correlation between the beta-1 frequency power extracted from the posterior cingulate cortex (PCC) and the spontaneous BOLD response of the right supplementary motor cortex was also established. The beta-2 frequency power extracted from the PCC and the precuneus showed a positive correlation with the BOLD response of the right frontal cortex. Our results support the notion of beta-band activity governing the “status quo” in cognitive and motor setup. The highly significant correlation found between the delta power within the DMN and the parahippocampal gyrus is in line with the association of delta frequencies with memory processes. We assumed “ongoing activity” during “resting state” in bringing events from the past to the mind, in which the parahippocampal gyrus is a relevant structure. Our data demonstrate that spontaneous BOLD fluctuations within the DMN are associated with different EEG-bands and strengthen the conclusion that this network is characterized by a specific electrophysiological signature created by combination of different brain rhythms subserving different putative functions. PMID:24505434
Meng, Lu; Xiang, Jing
2016-11-01
The present study investigated frequency dependent developmental patterns of the brain resting-state networks from childhood to adolescence. Magnetoencephalography (MEG) data were recorded from 20 healthy subjects at resting-state with eyes-open. The resting-state networks (RSNs) was analyzed at source-level. Brain network organization was characterized by mean clustering coefficient and average path length. The correlations between brain network measures and subjects' age during development from childhood to adolescence were statistically analyzed in delta (1-4Hz), theta (4-8Hz), alpha (8-12Hz), and beta (12-30Hz) frequency bands. A significant positive correlation between functional connectivity with age was found in alpha and beta frequency bands. A significant negative correlation between average path lengths with age was found in beta frequency band. The results suggest that there are significant developmental changes of resting-state networks from childhood to adolescence, which matures from a lattice network to a small-world network. Copyright © 2016 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.
Respiratory modulation of human autonomic rhythms
NASA Technical Reports Server (NTRS)
Badra, L. J.; Cooke, W. H.; Hoag, J. B.; Crossman, A. A.; Kuusela, T. A.; Tahvanainen, K. U.; Eckberg, D. L.
2001-01-01
We studied the influence of three types of breathing [spontaneous, frequency controlled (0.25 Hz), and hyperventilation with 100% oxygen] and apnea on R-R interval, photoplethysmographic arterial pressure, and muscle sympathetic rhythms in nine healthy young adults. We integrated fast Fourier transform power spectra over low (0.05-0.15 Hz) and respiratory (0.15-0.3 Hz) frequencies; estimated vagal baroreceptor-cardiac reflex gain at low frequencies with cross-spectral techniques; and used partial coherence analysis to remove the influence of breathing from the R-R interval, systolic pressure, and muscle sympathetic nerve spectra. Coherence among signals varied as functions of both frequency and time. Partialization abolished the coherence among these signals at respiratory but not at low frequencies. The mode of breathing did not influence low-frequency oscillations, and they persisted during apnea. Our study documents the independence of low-frequency rhythms from respiratory activity and suggests that the close correlations that may exist among arterial pressures, R-R intervals, and muscle sympathetic nerve activity at respiratory frequencies result from the influence of respiration on these measures rather than from arterial baroreflex physiology. Most importantly, our results indicate that correlations among autonomic and hemodynamic rhythms vary over time and frequency, and, thus, are facultative rather than fixed.
Sastrawan, J; Jones, C; Akhalwaya, I; Uys, H; Biercuk, M J
2016-08-01
We introduce concepts from optimal estimation to the stabilization of precision frequency standards limited by noisy local oscillators. We develop a theoretical framework casting various measures for frequency standard variance in terms of frequency-domain transfer functions, capturing the effects of feedback stabilization via a time series of Ramsey measurements. Using this framework, we introduce an optimized hybrid predictive feedforward measurement protocol that employs results from multiple past measurements and transfer-function-based calculations of measurement covariance to improve the accuracy of corrections within the feedback loop. In the presence of common non-Markovian noise processes these measurements will be correlated in a calculable manner, providing a means to capture the stochastic evolution of the local oscillator frequency during the measurement cycle. We present analytic calculations and numerical simulations of oscillator performance under competing feedback schemes and demonstrate benefits in both correction accuracy and long-term oscillator stability using hybrid feedforward. Simulations verify that in the presence of uncompensated dead time and noise with significant spectral weight near the inverse cycle time predictive feedforward outperforms traditional feedback, providing a path towards developing a class of stabilization software routines for frequency standards limited by noisy local oscillators.
Muijrers, Paul E M; Knottnerus, J André; Sijbrandij, Jildou; Janknegt, Rob; Grol, Richard P T M
2004-10-01
To identify determinants of the care-providing function of the community pharmacists (CPs) to explain variations in professional practice. The Netherlands 2001. 328 CPs. A cross-sectional questionnaire survey was performed. Questionnaires were used to collect data about the care provided in pharmacies. As dependent variables three partial constructs: 'individual patient care', 'registration of the care', and 'cooperation with GPs', and one total construct: 'care function' were formed. Independent variables were: gender, work experience, attitude to the care-providing function, tenure, relationship with GPs, pharmacist trainer, frequency of postgraduate training, workload, part-time working, frequency of contact with pharmaceutical representatives, presence of technicians with a specialised caring duty, size of the pharmacy, urbanisation, competition, franchise pharmacy, presence of sufficient personnel. A multiple-regression analysis was performed. Respondents 71%; of the respondents 29% never enquired about the patient's experience when supplying a medication for the second time. The supply of self-care remedies was never registered by 11% of respondents. Ninety percent of pharmacists participate more than four times per year in Pharmacotherapy Audit Meetings. The attitude of the pharmacist, relationship with the GP, presence of specialised technicians, frequency of postgraduate training and the type of tenure are significantly positively correlated with a care-providing function. Being a pharmacist trainer is significantly positively related with 'individual patient care', the frequency of postgraduate training is significantly positively correlated with 'registration of the care' and the number of years in service is significantly negatively correlated with 'cooperation with GPs'. There is a negative correlation between the cooperation with GPs and the number of years a pharmacist has been in service. Based on this survey, the development of programmes focused on optimal attitude, and cooperation between pharmacists and GPs is recommended.
Synchronized delta oscillations correlate with the resting-state functional MRI signal
Lu, Hanbing; Zuo, Yantao; Gu, Hong; Waltz, James A.; Zhan, Wang; Scholl, Clara A.; Rea, William; Yang, Yihong; Stein, Elliot A.
2007-01-01
Synchronized low-frequency spontaneous fluctuations of the functional MRI (fMRI) signal have recently been applied to investigate large-scale neuronal networks of the brain in the absence of specific task instructions. However, the underlying neural mechanisms of these fluctuations remain largely unknown. To this end, electrophysiological recordings and resting-state fMRI measurements were conducted in α-chloralose-anesthetized rats. Using a seed-voxel analysis strategy, region-specific, anesthetic dose-dependent fMRI resting-state functional connectivity was detected in bilateral primary somatosensory cortex (S1FL) of the resting brain. Cortical electroencephalographic signals were also recorded from bilateral S1FL; a visual cortex locus served as a control site. Results demonstrate that, unlike the evoked fMRI response that correlates with power changes in the γ bands, the resting-state fMRI signal correlates with the power coherence in low-frequency bands, particularly the δ band. These data indicate that hemodynamic fMRI signal differentially registers specific electrical oscillatory frequency band activity, suggesting that fMRI may be able to distinguish the ongoing from the evoked activity of the brain. PMID:17991778
Konagaya, Yoko; Watanabe, Tomoyuki; Ohta, Toshiki
2012-01-01
The purpose of this study was to evaluate whether physical activities reduce the risk of cognitive decline in community-dwelling elderly. We investigated correlations between cognitive functions at baseline and physical activities, correlations between cognitive functions at baseline and cognitive decline over 4 years, as well as correlations between physical activity at baseline and cognitive decline over 4 years. At baseline, 2,431 community-dwelling elderly completed the cognitive screening by telephone (TICS-J), and answered the questionnaires about physical activities. Of these, 1,040 subjects again completed the TICS-J over 4 years. Physical activities contained moving ability, walking frequency, walking speed, the exercise frequency. At baseline, 870 elderly (age 75.87±4.96 (mean±SD) years, duration of education 11.05±2.41) showed normal cognitive functions and 170 (79.19±6.22, 9.61±2.23) showed cognitive impairment. The total TICS-J score was significantly higher in cognitive normal subjects compared with that of cognitive impaired subjects (36.02±1.89, 30.19±2.25, respectively, p<0.001). Logistic regression analyses showed that moving ability significantly reduced the risk of cognitive impairment in an unadjusted model, and walking speed also reduced the risk of cognitive impairment at baseline even in an adjusted model. Cognitive function at baseline might be a predictor of cognitive function over 4 years. The longitudinal study revealed that walking speed and exercise frequency significantly correlate with maintenance of cognitive function over 4 years. This study provides that physical activities, especially walking speed have significant correlation with cognitive function.
NASA Astrophysics Data System (ADS)
Rose, F.; Dupuis, N.
2018-05-01
We present an approximation scheme of the nonperturbative renormalization group that preserves the momentum dependence of correlation functions. This approximation scheme can be seen as a simple improvement of the local potential approximation (LPA) where the derivative terms in the effective action are promoted to arbitrary momentum-dependent functions. As in the LPA, the only field dependence comes from the effective potential, which allows us to solve the renormalization-group equations at a relatively modest numerical cost (as compared, e.g., to the Blaizot-Mendéz-Galain-Wschebor approximation scheme). As an application we consider the two-dimensional quantum O(N ) model at zero temperature. We discuss not only the two-point correlation function but also higher-order correlation functions such as the scalar susceptibility (which allows for an investigation of the "Higgs" amplitude mode) and the conductivity. In particular, we show how, using Padé approximants to perform the analytic continuation i ωn→ω +i 0+ of imaginary frequency correlation functions χ (i ωn) computed numerically from the renormalization-group equations, one can obtain spectral functions in the real-frequency domain.
Stang, Julie; Wiig, Håvard; Hermansen, Marte; Hansen, Ernst Albin
2016-01-01
Understanding of behavior and control of human voluntary rhythmic stereotyped leg movements is useful in work to improve performance, function, and rehabilitation of exercising, healthy, and injured humans. The present study aimed at adding to the existing understanding within this field. To pursue the aim, correlations between freely chosen movement frequencies in relatively simple, single-joint, one- and two-legged knee extension exercise were investigated. The same was done for more complex, multiple-joint, one- and two-legged pedaling. These particular activities were chosen because they could be considered related to some extent, as they shared a key aspect of knee extension, and because they at the same time were different. The activities were performed at submaximal intensities, by healthy individuals (n = 16, thereof eight women; 23.4 ± 2.7 years; 1.70 ± 0.11 m; 68.6 ± 11.2 kg). High and fair correlations (R-values of 0.99 and 0.75) occurred between frequencies generated with the dominant leg and the nondominant leg during knee extension exercise and pedaling, respectively. Fair to high correlations (R-values between 0.71 and 0.95) occurred between frequencies performed with each of the two legs in an activity, and the two-legged frequency performed in the same type of activity. In general, the correlations were higher for knee extension exercise than for pedaling. Correlations between knee extension and pedaling frequencies were of modest occurrence. The correlations between movement frequencies generated separately by each of the legs might be interpreted to support the following working hypothesis, which was based on existing literature. It is likely that involved central pattern generators (CPGs) of the two legs share a common frequency generator or that separate frequency generators of each leg are attuned via interneuronal connections. Further, activity type appeared to be relevant. Thus, the apparent common rhythmogenesis for the two legs appeared to be stronger for the relatively simple single-joint activity of knee extension exercise as compared to the more complex multi-joint activity of pedaling. Finally, it appeared that the shared aspect of knee extension in the related types of activities of knee extension exercise and pedaling was insufficient to cause obvious correlations between generated movement frequencies in the two types of activities. PMID:26973486
Erosion of metals by multiple impacts with water
NASA Technical Reports Server (NTRS)
Rudy, S. L.; Thiruvengadam, A.
1971-01-01
Investigation determines - relation between impact velocity and minimum number of impacts producing visible erosion, relation between high frequency fatigue stresses and number of cycles to failure, water-hammer stresses relation to high frequency endurance limit, erosion rate as exposure time function, and correlates experimental data with recent theory.
NASA Astrophysics Data System (ADS)
Liu, Xiaofei; Zhang, Qiuwen
2016-11-01
Studies have considered the many factors involved in the mechanism of reservoir seismicity. Focusing on the correlation between reservoir-induced seismicity and the water level, this study proposes to utilize copula theory to build a correlation model to analyze their relationships and perform the risk analysis. The sequences of reservoir induced seismicity events from 2003 to 2011 in the Three Gorges reservoir in China are used as a case study to test this new methodology. Next, we construct four correlation models based on the Gumbel, Clayton, Frank copula and M-copula functions and employ four methods to test the goodness of fit: Q-Q plots, the Kolmogorov-Smirnov (K-S) test, the minimum distance (MD) test and the Akaike Information Criterion (AIC) test. Through a comparison of the four models, the M-copula model fits the sample better than the other three models. Based on the M-copula model, we find that, for the case of a sudden drawdown of the water level, the possibility of seismic frequency decreasing obviously increases, whereas for the case of a sudden rising of the water level, the possibility of seismic frequency increasing obviously increases, with the former being greater than the latter. The seismic frequency is mainly distributed in the low-frequency region (Y ⩽ 20) for the low water level and in the middle-frequency region (20 < Y ≤ 80) for both the medium and high water levels; the seismic frequency in the high-frequency region (Y > 80) is the least likely. For the conditional return period, it can be seen that the period of the high-frequency seismicity is much longer than those of the normal and medium frequency seismicity, and the high water level shortens the periods.
Thermal dynamics on the lattice with exponentially improved accuracy
NASA Astrophysics Data System (ADS)
Pawlowski, Jan M.; Rothkopf, Alexander
2018-03-01
We present a novel simulation prescription for thermal quantum fields on a lattice that operates directly in imaginary frequency space. By distinguishing initial conditions from quantum dynamics it provides access to correlation functions also outside of the conventional Matsubara frequencies ωn = 2 πnT. In particular it resolves their frequency dependence between ω = 0 and ω1 = 2 πT, where the thermal physics ω ∼ T of e.g. transport phenomena is dominantly encoded. Real-time spectral functions are related to these correlators via an integral transform with rational kernel, so that their unfolding from the novel simulation data is exponentially improved compared to standard Euclidean simulations. We demonstrate this improvement within a non-trivial 0 + 1-dimensional quantum mechanical toy-model and show that spectral features inaccessible in standard Euclidean simulations are quantitatively captured.
Microscopic Electron Variations Measured Simultaneously By The Cluster Spacecraft
NASA Astrophysics Data System (ADS)
Buckley, A. M.; Carozzi, T. D.; Gough, M. P.; Beloff, N.
Data is used from the Particle Correlator experiments running on each of the four Cluster spacecraft so as to determine common microscopic behaviour in the elec- tron population observed over the macroscopic Cluster separations. The Cluster par- ticle correlator experiments operate by forming on board Auto Correlation Functions (ACFs) generated from short time series of electron counts obtained, as a function of electron energy, from the PEACE HEEA sensor. The information on the microscopic variation of the electron flux covers the frequency range DC up to 41 kHz (encom- passing typical electron plasma frequencies and electron gyro frequencies and their harmonics), the electron energy range is that covered by the PEACE HEEA sensor (within the range 1 eV to 26 keV). Results are presented of coherent electron struc- tures observed simultaneously by the four spacecraft in the differing plasma interac- tion regions and boundaries encountered by Cluster. As an aid to understanding the plasma interactions, use is made of numerical simulations which model both the un- derlying statistical properties of the electrons and also the manner in which particle correlator experiments operate.
NASA Astrophysics Data System (ADS)
Ushakov, V. N.
1995-10-01
A video-frequency acousto-optical correlator with spatial integration, which widens the functional capabilities of correlation-type acousto-optical processors, is described. The correlator is based on a two-dimensional reference transparency and it can filter arbitrary video signals of spectral width limited by the pass band of an acousto-optical modulator. The calculated pulse characteristic is governed by the structure of the reference transparency. A procedure for the synthesis of this transparency is considered and experimental results are reported.
Bhowmik, David; Shanahan, Murray
2013-01-01
Groups of neurons firing synchronously are hypothesized to underlie many cognitive functions such as attention, associative learning, memory, and sensory selection. Recent theories suggest that transient periods of synchronization and desynchronization provide a mechanism for dynamically integrating and forming coalitions of functionally related neural areas, and that at these times conditions are optimal for information transfer. Oscillating neural populations display a great amount of spectral complexity, with several rhythms temporally coexisting in different structures and interacting with each other. This paper explores inter-band frequency modulation between neural oscillators using models of quadratic integrate-and-fire neurons and Hodgkin-Huxley neurons. We vary the structural connectivity in a network of neural oscillators, assess the spectral complexity, and correlate the inter-band frequency modulation. We contrast this correlation against measures of metastable coalition entropy and synchrony. Our results show that oscillations in different neural populations modulate each other so as to change frequency, and that the interaction of these fluctuating frequencies in the network as a whole is able to drive different neural populations towards episodes of synchrony. Further to this, we locate an area in the connectivity space in which the system directs itself in this way so as to explore a large repertoire of synchronous coalitions. We suggest that such dynamics facilitate versatile exploration, integration, and communication between functionally related neural areas, and thereby supports sophisticated cognitive processing in the brain. PMID:23614040
NASA Technical Reports Server (NTRS)
Jameson, A. R.
1990-01-01
The relationship between the rainfall rate (R) obtained from radiometric brightness temperatures and the extinction coefficient (k sub e) is investigated by computing the values of k sub e over a wide range of rainfall rates, for frequencies from 3 to 25 GHz. The results show that the strength of the relation between the R and the k sub e values exhibits considerable variation for frequencies at this range. Practical suggestions are made concerning the selection of particular frequencies for rain measurements to minimize the error in R determinations.
Stephen, Julia M; Ranken, Doug F; Aine, Cheryl J
2006-01-01
The sensitivity of visual areas to different temporal frequencies, as well as the functional connections between these areas, was examined using magnetoencephalography (MEG). Alternating circular sinusoids (0, 3.1, 8.7 and 14 Hz) were presented to foveal and peripheral locations in the visual field to target ventral and dorsal stream structures, respectively. It was hypothesized that higher temporal frequencies would preferentially activate dorsal stream structures. To determine the effect of frequency on the cortical response we analyzed the late time interval (220-770 ms) using a multi-dipole spatio-temporal analysis approach to provide source locations and timecourses for each condition. As an exploratory aspect, we performed cross-correlation analysis on the source timecourses to determine which sources responded similarly within conditions. Contrary to predictions, dorsal stream areas were not activated more frequently during high temporal frequency stimulation. However, across cortical sources the frequency-following response showed a difference, with significantly higher power at the second harmonic for the 3.1 and 8.7 Hz stimulation and at the first and second harmonics for the 14 Hz stimulation with this pattern seen robustly in area V1. Cross-correlations of the source timecourses showed that both low- and high-order visual areas, including dorsal and ventral stream areas, were significantly correlated in the late time interval. The results imply that frequency information is transferred to higher-order visual areas without translation. Despite the less complex waveforms seen in the late interval of time, the cross-correlation results show that visual, temporal and parietal cortical areas are intricately involved in late-interval visual processing.
Gfeller, Kate; Turner, Christopher; Oleson, Jacob; Zhang, Xuyang; Gantz, Bruce; Froman, Rebecca; Olszewski, Carol
2007-06-01
The purposes of this study were to (a) examine the accuracy of cochlear implant recipients who use different types of devices and signal processing strategies on pitch ranking as a function of size of interval and frequency range and (b) to examine the relations between this pitch perception measure and demographic variables, melody recognition, and speech reception in background noise. One hundred fourteen cochlear implant users and 21 normal-hearing adults were tested on a pitch discrimination task (pitch ranking) that required them to determine direction of pitch change as a function of base frequency and interval size. Three groups were tested: (a) long electrode cochlear implant users (N = 101); (b) short electrode users that received acoustic plus electrical stimulation (A+E) (N = 13); and (c) a normal-hearing (NH) comparison group (N = 21). Pitch ranking was tested at standard frequencies of 131 to 1048 Hz, and the size of the pitch-change intervals ranged from 1 to 4 semitones. A generalized linear mixed model (GLMM) was fit to predict pitch ranking and to determine if group differences exist as a function of base frequency and interval size. Overall significance effects were measured with Chi-square tests and individual effects were measured with t-tests. Pitch ranking accuracy was correlated with demographic measures (age at time of testing, length of profound deafness, months of implant use), frequency difference limens, familiar melody recognition, and two measures of speech reception in noise. The long electrode recipients performed significantly poorer on pitch discrimination than the NH and A+E group. The A+E users performed similarly to the NH listeners as a function of interval size in the lower base frequency range, but their pitch discrimination scores deteriorated slightly in the higher frequency range. The long electrode recipients, although less accurate than participants in the NH and A+E groups, tended to perform with greater accuracy within the higher frequency range. There were statistically significant correlations between pitch ranking and familiar melody recognition as well as with pure-tone frequency difference limens at 200 and 400 Hz. Low-frequency acoustic hearing improves pitch discrimination as compared with traditional, electric-only cochlear implants. These findings have implications for musical tasks such as familiar melody recognition.
Stress-stress correlator in ϕ 4 theory: poles or a cut?
NASA Astrophysics Data System (ADS)
Moore, Guy D.
2018-05-01
We explore the analytical properties of the traceless stress tensor 2-point function at zero momentum and small frequency (relevant for shear viscosity and hydrodynamic response) in hot, weakly coupled λ ϕ 4 theory. We show that, rather than one or a small number of poles, the correlator has a cut along the negative imaginary frequency axis. We briefly discuss this result's relevance for constructing 2'nd order hydrodynamic models of hot relativistic field theories.
NASA Astrophysics Data System (ADS)
Song, Xiaopeng; Hu, Xiao; Zhou, Shuqin; Liu, Weiguo; Liu, Yijun; Zhu, Huaiqiu; Gao, Jia-Hong
2016-03-01
Depression is prevalent among patients with Parkinson's disease (PD); however the pathophysiology of depression in PD is not well understood. In order to investigate how depression and motor impairments differentially and interactively affect specific brain regions in Parkinson's disease, we introduced a new data driven approach, namely Frequency Component Analysis (FCA), to decompose the resting-state functional magnetic resonance imaging data of 59 subjects with Parkinson's disease into different frequency bands. We then evaluated the main effects of motor severity and depression, and their interactive effects on the BOLD-fMRI signal oscillation energy in these specific frequency components. Our results show that the severity of motor symptoms is more negatively correlated with energy in the frequency band of 0.10-0.25Hz in the bilateral thalamus (THA), but more positively correlated with energy in the frequency band of 0.01-0.027Hz in the bilateral postcentral gyrus (PoCG). In contrast, the severity of depressive symptoms is more associated with the higher energy of the high frequency oscillations (>0.1Hz) but lower energy of 0.01-0.027Hz in the bilateral subgenual gyrus (SGC). Importantly, the interaction between motor and depressive symptoms is negatively correlated with the energy of high frequency oscillations (>0.1Hz) in the substantia nigra/ventral tegmental area (SN/VTA), left hippocampus (HIPP), left inferior orbital frontal cortex (OFC), and left temporoparietal junction (TPJ), but positively correlated with the energy of 0.02-0.05Hz in the left inferior OFC, left TPJ, left inferior temporal gyrus (ITG), and bilateral cerebellum. These results demonstrated that FCA was a promising method in interrogating the neurophysiological implications of different brain rhythms. Our findings further revealed the neural bases underlying the interactions as well the dissociations between motor and depressive symptoms in Parkinson's disease.
Acoustic radiation from weakly wrinkled premixed flames
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lieuwen, Tim; Mohan, Sripathi; Rajaram, Rajesh
2006-01-01
This paper describes a theoretical analysis of acoustic radiation from weakly wrinkled (i.e., u'/S{sub L}<1) premixed flames. Specifically, it determines the transfer function relating the spectrum of the acoustic pressure oscillations, P'({omega}), to that of the turbulent velocity fluctuations in the approach flow, U'({omega}). In the weakly wrinkled limit, this transfer function is local in frequency space; i.e., velocity fluctuations at a frequency {omega} distort the flame and generate sound at the same frequency. This transfer function primarily depends upon the flame Strouhal number St (based on mean flow velocity and flame length) and the correlation length, {lambda}, of themore » flow fluctuations. For cases where the ratio of the correlation length and duct radius {lambda}/a>>1, the acoustic pressure and turbulent velocity power spectra are related by P'({omega})-{omega}{sup 2}U'({omega}) and P'({omega})-U'({omega}) for St<<1 and St>>1, respectively. For cases where {lambda}/a<<1, the transfer functions take the form P'({omega})-{omega}{sup 2}({lambda}/a){sup 2}U'({omega}) and P'({omega})-{omega}{sup 2}({lambda}/a){sup 2}({psi}-{delta}ln({lambda}/a))U'({omega}) for St<<1 and St>>1, respectively, where (PS) and {delta} are constants. The latter result demonstrates that this transfer function does not exhibit a simple power law relationship in the high frequency region of the spectra. The simultaneous dependence of this pressure-velocity transfer function upon the Strouhal number and correlation length suggests a mechanism for the experimentally observed maximum in acoustic spectra and provides some insight into the controversy in the literature over how this peak should scale with the flame Strouhal number.« less
Spreading activation in nonverbal memory networks.
Foster, Paul S; Wakefield, Candias; Pryjmak, Scott; Roosa, Katelyn M; Branch, Kaylei K; Drago, Valeria; Harrison, David W; Ruff, Ronald
2017-09-01
Theories of spreading activation primarily involve semantic memory networks. However, the existence of separate verbal and visuospatial memory networks suggests that spreading activation may also occur in visuospatial memory networks. The purpose of the present investigation was to explore this possibility. Specifically, this study sought to create and describe the design frequency corpus and to determine whether this measure of visuospatial spreading activation was related to right hemisphere functioning and spreading activation in verbal memory networks. We used word frequencies taken from the Controlled Oral Word Association Test and design frequencies taken from the Ruff Figural Fluency Test as measures of verbal and visuospatial spreading activation, respectively. Average word and design frequencies were then correlated with measures of left and right cerebral functioning. The results indicated that a significant relationship exists between performance on a test of right posterior functioning (Block Design) and design frequency. A significant negative relationship also exists between spreading activation in semantic memory networks and design frequency. Based on our findings, the hypotheses were supported. Further research will need to be conducted to examine whether spreading activation exists in visuospatial memory networks as well as the parameters that might modulate this spreading activation, such as the influence of neurotransmitters.
Overcomplete compact representation of two-particle Green's functions
NASA Astrophysics Data System (ADS)
Shinaoka, Hiroshi; Otsuki, Junya; Haule, Kristjan; Wallerberger, Markus; Gull, Emanuel; Yoshimi, Kazuyoshi; Ohzeki, Masayuki
2018-05-01
Two-particle Green's functions and the vertex functions play a critical role in theoretical frameworks for describing strongly correlated electron systems. However, numerical calculations at the two-particle level often suffer from large computation time and massive memory consumption. We derive a general expansion formula for the two-particle Green's functions in terms of an overcomplete representation based on the recently proposed "intermediate representation" basis. The expansion formula is obtained by decomposing the spectral representation of the two-particle Green's function. We demonstrate that the expansion coefficients decay exponentially, while all high-frequency and long-tail structures in the Matsubara-frequency domain are retained. This representation therefore enables efficient treatment of two-particle quantities and opens a route to the application of modern many-body theories to realistic strongly correlated electron systems.
Enhanced t -3/2 long-time tail for the stress-stress time correlation function
NASA Astrophysics Data System (ADS)
Evans, Denis J.
1980-01-01
Nonequilibrium molecular dynamics is used to calculate the spectrum of shear viscosity for a Lennard-Jones fluid. The calculated zero-frequency shear viscosity agrees well with experimental argon results for the two state points considered. The low-frequency behavior of shear viscosity is dominated by an ω 1/2 cusp. Analysis of the form of this cusp reveals that the stress-stress time correlation function exhibits a t -3/2 "long-time tail." It is shown that for the state points studied, the amplitude of this long-time tail is between 12 and 150 times larger than what has been predicted theoretically. If the low-frequency results are truly asymptotic, they imply that the cross and potential contributions to the Kubo-Green integrand for shear viscosity exhibit a t -3/2 long-time tail. This result contradicts the established theory of such processes.
NASA Astrophysics Data System (ADS)
Núñez, Alvaro; Starinets, Andrei O.
2003-06-01
We use the Lorentzian AdS/CFT prescription to find the poles of the retarded thermal Green’s functions of N=4 SU(N) supersymmetric Yang-Mills theory in the limit of large N and large ’t Hooft coupling. In the process, we propose a natural definition for quasinormal modes in an asymptotically AdS spacetime, with boundary conditions dictated by the AdS/CFT correspondence. The corresponding frequencies determine the dispersion laws for the quasiparticle excitations in the dual finite-temperature gauge theory. Correlation functions of operators dual to massive scalar, vector and gravitational perturbations in a five-dimensional AdS-Schwarzschild background are considered. We find asymptotic formulas for quasinormal frequencies in the massive scalar and tensor cases, and an exact expression for vector perturbations. In the long-distance, low-frequency limit we recover results of the hydrodynamic approximation to thermal Yang-Mills theory.
Ultra-Broad-Band Optical Parametric Amplifier or Oscillator
NASA Technical Reports Server (NTRS)
Strekalov, Dmitry; Matsko, Andrey; Savchenkov, Anatolly; Maleki, Lute
2009-01-01
A concept for an ultra-broad-band optical parametric amplifier or oscillator has emerged as a by-product of a theoretical study in fundamental quantum optics. The study was originally intended to address the question of whether the two-photon temporal correlation function of light [in particular, light produced by spontaneous parametric down conversion (SPDC)] can be considerably narrower than the inverse of the spectral width (bandwidth) of the light. The answer to the question was found to be negative. More specifically, on the basis of the universal integral relations between the quantum two-photon temporal correlation and the classical spectrum of light, it was found that the lower limit of two-photon correlation time is set approximately by the inverse of the bandwidth. The mathematical solution for the minimum two-photon correlation time also provides the minimum relative frequency dispersion of the down-converted light components; in turn, the minimum relative frequency dispersion translates to the maximum bandwidth, which is important for the design of an ultra-broad-band optical parametric oscillator or amplifier. In the study, results of an analysis of the general integral relations were applied in the case of an optically nonlinear, frequency-dispersive crystal in which SPDC produces collinear photons. Equations were found for the crystal orientation and pump wavelength, specific for each parametric-down-converting crystal, that eliminate the relative frequency dispersion of collinear degenerate (equal-frequency) signal and idler components up to the fourth order in the frequency-detuning parameter
Self spectrum window method in wigner-ville distribution.
Liu, Zhongguo; Liu, Changchun; Liu, Boqiang; Lv, Yangsheng; Lei, Yinsheng; Yu, Mengsun
2005-01-01
Wigner-Ville distribution (WVD) is an important type of time-frequency analysis in biomedical signal processing. The cross-term interference in WVD has a disadvantageous influence on its application. In this research, the Self Spectrum Window (SSW) method was put forward to suppress the cross-term interference, based on the fact that the cross-term and auto-WVD- terms in integral kernel function are orthogonal. With the Self Spectrum Window (SSW) algorithm, a real auto-WVD function was used as a template to cross-correlate with the integral kernel function, and the Short Time Fourier Transform (STFT) spectrum of the signal was used as window function to process the WVD in time-frequency plane. The SSW method was confirmed by computer simulation with good analysis results. Satisfactory time- frequency distribution was obtained.
Bernstein, Leslie R; Trahiotis, Constantine
2014-12-01
Binaural detection was measured as a function of the center frequency, bandwidth, and interaural correlation of masking noise. Thresholds were obtained for 500-Hz or 125-Hz Sπ tonal signals and for the latter stimuli (noise or signal-plus-noise) transposed to 4 kHz. A primary goal was assessment of the generality of van der Heijden and Trahiotis' [J. Acoust. Soc. Am. 101, 1019-1022 (1997)] hypothesis that thresholds could be accounted for by the "additive" masking effects of the underlying No and Nπ components of a masker having an interaural correlation of ρ. Results indicated that (1) the overall patterning of the data depended neither upon center frequency nor whether information was conveyed via the waveform or by its envelope; (2) thresholds for transposed stimuli improved relative to their low-frequency counterparts as bandwidth of the masker was increased; (3) the additivity approach accounted well for the data across stimulus conditions but consistently overestimated MLDs, especially for narrowband maskers; (4) a quantitative approach explicitly taking into account the distributions of time-varying ITD-based lateral positions produced by masker-alone and signal-plus-masker waveforms proved more successful, albeit while employing a larger set of assumptions, parameters, and computational complexity.
Alongshore wind forcing of coastal sea level as a function of frequency
Ryan, H.F.; Noble, M.A.
2006-01-01
The amplitude of the frequency response function between coastal alongshore wind stress and adjusted sea level anomalies along the west coast of the United States increases linearly as a function of the logarithm (log10) of the period for time scales up to at least 60, and possibly 100, days. The amplitude of the frequency response function increases even more rapidly at longer periods out to at least 5 yr. At the shortest periods, the amplitude of the frequency response function is small because sea level is forced only by the local component of the wind field. The regional wind field, which controls the wind-forced response in sea level for periods between 20 and 100 days, not only has much broader spatial scales than the local wind, but also propagates along the coast in the same direction as continental shelf waves. Hence, it has a stronger coupling to and an increased frequency response for sea level. At periods of a year or more, observed coastal sea level fluctuations are not only forced by the regional winds, but also by joint correlations among the larger-scale climatic patterns associated with El Nin??o. Therefore, the amplitude of the frequency response function is large, despite the fact that the energy in the coastal wind field is relatively small. These data show that the coastal sea level response to wind stress forcing along the west coast of the United States changes in a consistent and predictable pattern over a very broad range of frequencies with time scales from a few days to several years.
Heisenberg symmetry and collective modes of one dimensional unitary correlated fermions
NASA Astrophysics Data System (ADS)
Abhinav, Kumar; Chandrasekhar, B.; Vyas, Vivek M.; Panigrahi, Prasanta K.
2017-02-01
The correlated fermionic many-particle system, near infinite scattering length, reveals an underlying Heisenberg symmetry in one dimension, as compared to an SO (2 , 1) symmetry in two dimensions. This facilitates an exact map from the interacting to the non-interacting system, both with and without a harmonic trap, and explains the short-distance scaling behavior of the wave-function. Taking advantage of the phenomenological Calogero-Sutherland-type interaction, motivated by the density functional approach, we connect the ground-state energy shift, to many-body correlation effect. For the excited states, modes at integral values of the harmonic frequency ω are predicted in one dimension, in contrast to the breathing modes with frequency 2ω in two dimensions.
ERIC Educational Resources Information Center
Stamoulis, Catherine; Vogel-Farley, Vanessa; Degregorio, Geneva; Jeste, Shafali S.; Nelson, Charles A.
2015-01-01
The electrophysiological correlates of cognitive deficits in tuberous sclerosis complex (TSC) are not well understood, and modulations of neural dynamics by neuroanatomical abnormalities that characterize the disorder remain elusive. Neural oscillations (rhythms) are a fundamental aspect of brain function, and have dominant frequencies in a wide…
Thomas, Robert Joseph; Mietus, Joseph E; Peng, Chung-Kang; Guo, Dan; Gozal, David; Montgomery-Downs, Hawley; Gottlieb, Daniel J; Wang, Cheng-Yen; Goldberger, Ary L
2014-01-01
The physiologic relationship between slow-wave activity (SWA) (0-4 Hz) on the electroencephalogram (EEG) and high-frequency (0.1-0.4 Hz) cardiopulmonary coupling (CPC) derived from electrocardiogram (ECG) sleep spectrograms is not known. Because high-frequency CPC appears to be a biomarker of stable sleep, we tested the hypothesis that that slow-wave EEG power would show a relatively fixed-time relationship to periods of high-frequency CPC. Furthermore, we speculated that this correlation would be independent of conventional nonrapid eye movement (NREM) sleep stages. We analyzed selected datasets from an archived polysomnography (PSG) database, the Sleep Heart Health Study I (SHHS-I). We employed the cross-correlation technique to measure the degree of which 2 signals are correlated as a function of a time lag between them. Correlation analyses between high-frequency CPC and delta power (computed both as absolute and normalized values) from 3150 subjects with an apnea-hypopnea index (AHI) of ≤5 events per hour of sleep were performed. The overall correlation (r) between delta power and high-frequency coupling (HFC) power was 0.40±0.18 (P=.001). Normalized delta power provided improved correlation relative to absolute delta power. Correlations were somewhat reduced in the second half relative to the first half of the night (r=0.45±0.20 vs r=0.34±0.23). Correlations were only affected by age in the eighth decade. There were no sex differences and only small racial or ethnic differences were noted. These results support a tight temporal relationship between slow wave power, both within and outside conventional slow wave sleep periods, and high frequency cardiopulmonary coupling, an ECG-derived biomarker of "stable" sleep. These findings raise mechanistic questions regarding the cross-system integration of neural and cardiopulmonary control during sleep. Copyright © 2013 Elsevier B.V. All rights reserved.
Ultrafast dynamics of liquid water: Frequency fluctuations of the OH stretch and the HOH bend
DOE Office of Scientific and Technical Information (OSTI.GOV)
Imoto, Sho; Xantheas, Sotiris S.; Saito, Shinji
2013-07-28
Frequency fluctuations of the OH stretch and the HOH bend in liquid water are reported from the third-order response function evaluated using the TTM3-F potential for water. The simulated two-dimensional infrared (IR) spectra of the OH stretch are similar to previously reported theoretical results. The present study suggests that the frequency fluctuation of the HOH bend is faster than that of the OH stretch. The ultrafast loss of the frequency correlation of the HOH bend is due to the strong couplings with the OH stretch as well as the intermolecular hydrogen bond bend.
NASA Astrophysics Data System (ADS)
Ma, Wen-Long; Liu, Ren-Bao
2016-08-01
Single-molecule sensitivity of nuclear magnetic resonance (NMR) and angstrom resolution of magnetic resonance imaging (MRI) are the highest challenges in magnetic microscopy. Recent development in dynamical-decoupling- (DD) enhanced diamond quantum sensing has enabled single-nucleus NMR and nanoscale NMR. Similar to conventional NMR and MRI, current DD-based quantum sensing utilizes the "frequency fingerprints" of target nuclear spins. The frequency fingerprints by their nature cannot resolve different nuclear spins that have the same noise frequency or differentiate different types of correlations in nuclear-spin clusters, which limit the resolution of single-molecule MRI. Here we show that this limitation can be overcome by using "wave-function fingerprints" of target nuclear spins, which is much more sensitive than the frequency fingerprints to the weak hyperfine interaction between the targets and a sensor under resonant DD control. We demonstrate a scheme of angstrom-resolution MRI that is capable of counting and individually localizing single nuclear spins of the same frequency and characterizing the correlations in nuclear-spin clusters. A nitrogen-vacancy-center spin sensor near a diamond surface, provided that the coherence time is improved by surface engineering in the near future, may be employed to determine with angstrom resolution the positions and conformation of single molecules that are isotope labeled. The scheme in this work offers an approach to breaking the resolution limit set by the "frequency gradients" in conventional MRI and to reaching the angstrom-scale resolution.
Evaluation of Thermal Protection Tile Transmissibility for Ground Vibration Test
NASA Technical Reports Server (NTRS)
Chung, Y. T.; Fowler, Samuel B.; Lo, Wenso; Towner, Robert
2005-01-01
Transmissibility analyses and tests were conducted on a composite panel with thermal protection system foams to evaluate the quality of the measured frequency response functions. Both the analysis and the test results indicate that the vehicle dynamic responses are fully transmitted to the accelerometers mounted on the thermal protection system in the normal direction below a certain frequency. In addition, the in-plane motions of the accelerometer mounted on the top surface of the thermal protection system behave more actively than those on the composite panel due to the geometric offset of the accelerometer from the panel in the test set-up. The transmissibility tests and analyses show that the frequency response functions measured from the accelerometers mounted on the TPS will provide accurate vehicle responses below 120 Hz for frequency and mode shape identification. By confirming that accurate dynamic responses below a given frequency can be obtained, this study increases the confidence needed for conducting the modal testing, model correlation, and model updating for a vehicle installed with TPS. '
Veldsman, Michele; Egorova, Natalia; Singh, Baljeet; Mungas, Dan; DeCarli, Charles; Brodtmann, Amy
2017-11-01
Disruptions to functional connectivity in subsystems of the default mode network are evident in Alzheimer's disease (AD). Functional connectivity estimates correlations in the time course of low-frequency activity. Much less is known about other potential perturbations to this activity, such as changes in the amplitude of oscillations and how this relates to cognition. We examined the amplitude of low-frequency fluctuations in 44 AD patients and 128 cognitively normal participants and related this to episodic memory, the core deficit in AD. We show higher amplitudes of low-frequency oscillations in AD patients. Rather than being compensatory, this appears to be maladaptive, with greater amplitude in the ventral default mode subnetwork associated with poorer episodic memory. Perturbations to default mode subnetworks in AD are evident in the amplitude of low-frequency oscillations in the resting brain. These disruptions are associated with episodic memory demonstrating their behavioral and clinical relevance in AD. Copyright © 2017 Elsevier Inc. All rights reserved.
The Objective Assessment of Cough Frequency in Bronchiectasis.
Spinou, Arietta; Lee, Kai K; Sinha, Aish; Elston, Caroline; Loebinger, Michael R; Wilson, Robert; Chung, Kian Fan; Yousaf, Nadia; Pavord, Ian D; Matos, Sergio; Garrod, Rachel; Birring, Surinder S
2017-10-01
Cough in bronchiectasis is associated with significant impairment in health status. This study aimed to quantify cough frequency objectively with a cough monitor and investigate its relationship with health status. A secondary aim was to identify clinical predictors of cough frequency. Fifty-four patients with bronchiectasis were compared with thirty-five healthy controls. Objective 24-h cough, health status (cough-specific: Leicester Cough Questionnaire LCQ and bronchiectasis specific: Bronchiectasis Health Questionnaire BHQ), cough severity and lung function were measured. The clinical predictors of cough frequency in bronchiectasis were determined in a multivariate analysis. Objective cough frequency was significantly raised in patients with bronchiectasis compared to healthy controls [geometric mean (standard deviation)] 184.5 (4.0) vs. 20.6 (3.2) coughs/24-h; mean fold-difference (95% confidence interval) 8.9 (5.2, 15.2); p < 0.001 and they had impaired health status. There was a significant correlation between objective cough frequency and subjective measures; LCQ r = -0.52 and BHQ r = -0.62, both p < 0.001. Sputum production, exacerbations (between past 2 weeks to 12 months) and age were significantly associated with objective cough frequency in multivariate analysis, explaining 52% of the variance (p < 0.001). There was no statistically significant association between cough frequency and lung function. Cough is a common and significant symptom in patients with bronchiectasis. Sputum production, exacerbations and age, but not lung function, were independent predictors of cough frequency. Ambulatory objective cough monitoring provides novel insights and should be further investigated as an outcome measure in bronchiectasis.
Yoshitake, Yasuhide; Shinohara, Minoru
2013-11-01
Common drive to a motor unit (MU) pool manifests as low-frequency oscillations in MU discharge rate, producing fluctuations in muscle force. The aim of the study was to examine the temporal correlation between instantaneous MU discharge rate and rectified EMG in low frequencies. Additionally, we attempted to examine whether there is a temporal correlation between the low-frequency oscillations in MU discharge rate and the first derivative of force (dF/dt). Healthy young subjects produced steady submaximal force with their right finger as a single task or while maintaining a pinch-grip force with the left hand as a dual task. Surface EMG and fine-wire MU potentials were recorded from the first dorsal interosseous muscle in the right hand. Surface EMG was band-pass filtered (5-1,000 Hz) and full-wave rectified. Rectified surface EMG and the instantaneous discharge rate of MUs were smoothed by a Hann-window of 400 ms duration (equivalent to 2 Hz low-pass filtering). In each of the identified MUs, the smoothed MU discharge rate was positively correlated with the rectified-and-smoothed EMG as confirmed by the distinct peak in cross-correlation function with greater values in the dual task compared with the single task. Additionally, the smoothed MU discharge rate was temporally correlated with dF/dt more than with force and with rectified-and-smoothed EMG. The results indicated that the low-frequency component of rectified surface EMG and the first derivative of force provide temporal information on the low-frequency oscillations in the MU discharge rate.
Quantum correlation of high dimensional system in a dephasing environment
NASA Astrophysics Data System (ADS)
Ji, Yinghua; Ke, Qiang; Hu, Juju
2018-05-01
For a high dimensional spin-S system embedded in a dephasing environment, we theoretically analyze the time evolutions of quantum correlation and entanglement via Frobenius norm and negativity. The quantum correlation dynamics can be considered as a function of the decoherence parameters, including the ratio between the system oscillator frequency ω0 and the reservoir cutoff frequency ωc , and the different environment temperature. It is shown that the quantum correlation can not only measure nonclassical correlation of the considered system, but also perform a better robustness against the dissipation. In addition, the decoherence presents the non-Markovian features and the quantum correlation freeze phenomenon. The former is much weaker than that in the sub-Ohmic or Ohmic thermal reservoir environment.
NASA Astrophysics Data System (ADS)
Devecioğlu, İsmail; Güçlü, Burak
2017-02-01
Objective. Recent studies showed that intracortical microstimulation (ICMS) generates artificial sensations which can be utilized as somatosensory feedback in cortical neuroprostheses. To mimic the natural psychophysical response, ICMS parameters are modulated according to psychometric equivalence functions (PEFs). PEFs match the intensity levels of ICMS and mechanical stimuli, which elicit equal detection probabilities, but they typically do not include the frequency as a control variable. We aimed to establish frequency-dependent PEFs for vibrotactile stimulation of the glabrous skin and ICMS in the primary somatosensory cortex of awake freely behaving rats. Approach. We collected psychometric data for vibrotactile and ICMS detection at three stimulation frequencies (40, 60 and 80 Hz). The psychometric data were fitted with a model equation of two independent variables (stimulus intensity and frequency) and four subject-dependent parameters. For each rat, we constructed a separate PEF which was used to estimate the ICMS current amplitude for a given displacement amplitude and frequency. The ICMS frequency was set equal to the vibrotactile frequency. We validated the PEFs in a modified task which included randomly selected probe trials presented either with a vibrotactile or an ICMS stimulus, and also at frequencies and intensity levels not tested before. Main results. The PEFs were generally successful in estimating the ICMS current intensities (no significant differences between vibrotactile and ICMS trials in Kolmogorov-Smirnov tests). Specifically, hit rates from both trial conditions were significantly correlated in 86% of the cases, and 52% of all data had perfect match in linear regression. Significance. The psychometric correspondence model presented in this study was constructed based on surface functions which define psychophysical detection probability as a function of stimulus intensity and frequency. Therefore, it may be used for the real-time modulation of the frequency and intensity of ICMS pulses in somatosensory neuroprostheses.
Devecioğlu, İsmail; Güçlü, Burak
2017-02-01
Recent studies showed that intracortical microstimulation (ICMS) generates artificial sensations which can be utilized as somatosensory feedback in cortical neuroprostheses. To mimic the natural psychophysical response, ICMS parameters are modulated according to psychometric equivalence functions (PEFs). PEFs match the intensity levels of ICMS and mechanical stimuli, which elicit equal detection probabilities, but they typically do not include the frequency as a control variable. We aimed to establish frequency-dependent PEFs for vibrotactile stimulation of the glabrous skin and ICMS in the primary somatosensory cortex of awake freely behaving rats. We collected psychometric data for vibrotactile and ICMS detection at three stimulation frequencies (40, 60 and 80 Hz). The psychometric data were fitted with a model equation of two independent variables (stimulus intensity and frequency) and four subject-dependent parameters. For each rat, we constructed a separate PEF which was used to estimate the ICMS current amplitude for a given displacement amplitude and frequency. The ICMS frequency was set equal to the vibrotactile frequency. We validated the PEFs in a modified task which included randomly selected probe trials presented either with a vibrotactile or an ICMS stimulus, and also at frequencies and intensity levels not tested before. The PEFs were generally successful in estimating the ICMS current intensities (no significant differences between vibrotactile and ICMS trials in Kolmogorov-Smirnov tests). Specifically, hit rates from both trial conditions were significantly correlated in 86% of the cases, and 52% of all data had perfect match in linear regression. The psychometric correspondence model presented in this study was constructed based on surface functions which define psychophysical detection probability as a function of stimulus intensity and frequency. Therefore, it may be used for the real-time modulation of the frequency and intensity of ICMS pulses in somatosensory neuroprostheses.
Examining Correlates of Problematic Internet Pornography Use Among University Students.
Harper, Cody; Hodgins, David C
2016-06-01
Background and aims The phenomenon of Internet pornography (IP) addiction is gainingincreasing attention in the popular media and psychological research.What has not been tested empirically is how frequency and amount ofIP use, along with other individual characteristics, are related tosymptoms of IP addiction. Methods 105 female and 86 male university students (mean age 21) from Calgary,Canada, were administered measures of IP use, psychosocial functioning(anxiety and depression, life and relationship satisfaction), addictivepropensities, and addictive IP use. Results Men reported earlier age of exposure and more frequent currentIP use than women. Individuals not in relationships reported morefrequent use than those in relationships. Frequency of IP use wasnot generally correlated with psychosocial functioning but was significantlypositively correlated with level of IP addiction. Higher level ofIP addiction was associated with poorer psychosocial functioning andproblematic alcohol, cannabis, gambling and, in particular, videogame use. A curvilinear association was found between frequency ofIP use and level of addiction such that daily or greater IP use wasassociated with a sharp rise in addictive IP scores. Discussion The failure to find a strong significant relationship between IPuse and general psychosocial functioning suggests that the overalleffect of IP use is not necessarily harmful in and of itself. Addictiveuse of IP, which is associated with poorer psychosocial functioning,emerges when people begin to use IP daily.
Examining Correlates of Problematic Internet Pornography Use Among University Students
Harper, Cody; Hodgins, David C.
2016-01-01
Background and aims The phenomenon of Internet pornography (IP) addiction is gainingincreasing attention in the popular media and psychological research. What has not been tested empirically is how frequency and amount ofIP use, along with other individual characteristics, are related tosymptoms of IP addiction. Methods 105 female and 86 male university students (mean age 21) from Calgary,Canada, were administered measures of IP use, psychosocial functioning (anxiety and depression, life and relationship satisfaction), addictivepropensities, and addictive IP use. Results Men reported earlier age of exposure and more frequent current IP use than women. Individuals not in relationships reported more frequent use than those in relationships. Frequency of IP use wasnot generally correlated with psychosocial functioning but was significantly positively correlated with level of IP addiction. Higher level of IP addiction was associated with poorer psychosocial functioning and problematic alcohol, cannabis, gambling and, in particular, video game use. A curvilinear association was found between frequency of IP use and level of addiction such that daily or greater IP use was associated with a sharp rise in addictive IP scores. Discussion The failure to find a strong significant relationship between IP use and general psychosocial functioning suggests that the overall effect of IP use is not necessarily harmful in and of itself. Addictiveuse of IP, which is associated with poorer psychosocial functioning, emerges when people begin to use IP daily. PMID:27156383
Attention reorganizes connectivity across networks in a frequency specific manner.
Kwon, Soyoung; Watanabe, Masataka; Fischer, Elvira; Bartels, Andreas
2017-01-01
Attention allows our brain to focus its limited resources on a given task. It does so by selective modulation of neural activity and of functional connectivity (FC) across brain-wide networks. While there is extensive literature on activity changes, surprisingly few studies examined brain-wide FC modulations that can be cleanly attributed to attention compared to matched visual processing. In contrast to prior approaches, we used an ultra-long trial design that avoided transients from trial onsets, included slow fluctuations (<0.1Hz) that carry important information on FC, and allowed for frequency-segregated analyses. We found that FC derived from long blocks had a nearly two-fold higher gain compared to FC derived from traditional (short) block designs. Second, attention enhanced intrinsic (negative or positive) correlations across networks, such as between the default-mode network (DMN), the dorsal attention network (DAN), and the visual system (VIS). In contrast attention de-correlated the intrinsically correlated visual regions. Third, the de-correlation within VIS was driven primarily by high frequencies, whereas the increase in DAN-VIS predominantly by low frequencies. These results pinpoint two fundamentally distinct effects of attention on connectivity. Information flow increases between distinct large-scale networks, and de-correlation within sensory cortex indicates decreased redundancy. Copyright © 2016 Elsevier Inc. All rights reserved.
Chen, Xianglong; Zhang, Bingzhi; Feng, Fuzhou; Jiang, Pengcheng
2017-01-01
The kurtosis-based indexes are usually used to identify the optimal resonant frequency band. However, kurtosis can only describe the strength of transient impulses, which cannot differentiate impulse noises and repetitive transient impulses cyclically generated in bearing vibration signals. As a result, it may lead to inaccurate results in identifying resonant frequency bands, in demodulating fault features and hence in fault diagnosis. In view of those drawbacks, this manuscript redefines the correlated kurtosis based on kurtosis and auto-correlative function, puts forward an improved correlated kurtosis based on squared envelope spectrum of bearing vibration signals. Meanwhile, this manuscript proposes an optimal resonant band demodulation method, which can adaptively determine the optimal resonant frequency band and accurately demodulate transient fault features of rolling bearings, by combining the complex Morlet wavelet filter and the Particle Swarm Optimization algorithm. Analysis of both simulation data and experimental data reveal that the improved correlated kurtosis can effectively remedy the drawbacks of kurtosis-based indexes and the proposed optimal resonant band demodulation is more accurate in identifying the optimal central frequencies and bandwidth of resonant bands. Improved fault diagnosis results in experiment verified the validity and advantage of the proposed method over the traditional kurtosis-based indexes. PMID:28208820
Large-scale cortical correlation structure of spontaneous oscillatory activity
Hipp, Joerg F.; Hawellek, David J.; Corbetta, Maurizio; Siegel, Markus; Engel, Andreas K.
2013-01-01
Little is known about the brain-wide correlation of electrophysiological signals. Here we show that spontaneous oscillatory neuronal activity exhibits frequency-specific spatial correlation structure in the human brain. We developed an analysis approach that discounts spurious correlation of signal power caused by the limited spatial resolution of electrophysiological measures. We applied this approach to source estimates of spontaneous neuronal activity reconstructed from magnetoencephalography (MEG). Overall, correlation of power across cortical regions was strongest in the alpha to beta frequency range (8–32 Hz) and correlation patterns depended on the underlying oscillation frequency. Global hubs resided in the medial temporal lobe in the theta frequency range (4–6 Hz), in lateral parietal areas in the alpha to beta frequency range (8–23 Hz), and in sensorimotor areas for higher frequencies (32–45 Hz). Our data suggest that interactions in various large-scale cortical networks may be reflected in frequency specific power-envelope correlations. PMID:22561454
Relationships between electronic game play, obesity, and psychosocial functioning in young men.
Wack, Elizabeth; Tantleff-Dunn, Stacey
2009-04-01
Most estimates suggest that American youth are spending a large amount of time playing video and computer games, spurring researchers to examine the impact this media has on various aspects of health and psychosocial functioning. The current study investigated relationships between frequency of electronic game play and obesity, the social/emotional context of electronic game play, and academic performance among 219 college-aged males. Current game players reported a weekly average of 9.73 hours of game play, with almost 10% of current players reporting an average of 35 hours of play per week. Results indicated that frequency of play was not significantly related to body mass index or grade point average. However, there was a significant positive correlation between frequency of play and self-reported frequency of playing when bored, lonely, or stressed. As opposed to the general conception of electronic gaming as detrimental to functioning, the results suggest that gaming among college-aged men may provide a healthy source of socialization, relaxation, and coping.
Baltus, Alina; Vosskuhl, Johannes; Boetzel, Cindy; Herrmann, Christoph Siegfried
2018-05-13
Recent research provides evidence for a functional role of brain oscillations for perception. For example, auditory temporal resolution seems to be linked to individual gamma frequency of auditory cortex. Individual gamma frequency not only correlates with performance in between-channel gap detection tasks but can be modulated via auditory transcranial alternating current stimulation. Modulation of individual gamma frequency is accompanied by an improvement in gap detection performance. Aging changes electrophysiological frequency components and sensory processing mechanisms. Therefore, we conducted a study to investigate the link between individual gamma frequency and gap detection performance in elderly people using auditory transcranial alternating current stimulation. In a within-subject design, twelve participants were electrically stimulated with two individualized transcranial alternating current stimulation frequencies: 3 Hz above their individual gamma frequency (experimental condition) and 4 Hz below their individual gamma frequency (control condition) while they were performing a between-channel gap detection task. As expected, individual gamma frequencies correlated significantly with gap detection performance at baseline and in the experimental condition, transcranial alternating current stimulation modulated gap detection performance. In the control condition, stimulation did not modulate gap detection performance. In addition, in elderly, the effect of transcranial alternating current stimulation on auditory temporal resolution seems to be dependent on endogenous frequencies in auditory cortex: elderlies with slower individual gamma frequencies and lower auditory temporal resolution profit from auditory transcranial alternating current stimulation and show increased gap detection performance during stimulation. Our results strongly suggest individualized transcranial alternating current stimulation protocols for successful modulation of performance. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Bounds on the cross-correlation functions of state m-sequences
NASA Astrophysics Data System (ADS)
Woodcock, C. F.; Davies, Phillip A.; Shaar, Ahmed A.
1987-03-01
Lower and upper bounds on the peaks of the periodic Hamming cross-correlation function for state m-sequences, which are often used in frequency-hopped spread-spectrum systems, are derived. The state position mapped (SPM) sequences of the state m-sequences are described. The use of SPM sequences for OR-channel code division multiplexing is studied. The relation between the Hamming cross-correlation function and the correlation function of SPM sequence is examined. Numerical results which support the theoretical data are presented.
Time Correlations and the Frequency Spectrum of Sound Radiated by Turbulent Flows
NASA Technical Reports Server (NTRS)
Rubinstein, Robert; Zhou, Ye
1997-01-01
Theories of turbulent time correlations are applied to compute frequency spectra of sound radiated by isotropic turbulence and by turbulent shear flows. The hypothesis that Eulerian time correlations are dominated by the sweeping action of the most energetic scales implies that the frequency spectrum of the sound radiated by isotropic turbulence scales as omega(exp 4) for low frequencies and as omega(exp -3/4) for high frequencies. The sweeping hypothesis is applied to an approximate theory of jet noise. The high frequency noise again scales as omega(exp -3/4), but the low frequency spectrum scales as omega(exp 2). In comparison, a classical theory of jet noise based on dimensional analysis gives omega(exp -2) and omega(exp 2) scaling for these frequency ranges. It is shown that the omega(exp -2) scaling is obtained by simplifying the description of turbulent time correlations. An approximate theory of the effect of shear on turbulent time correlations is developed and applied to the frequency spectrum of sound radiated by shear turbulence. The predicted steepening of the shear dominated spectrum appears to be consistent with jet noise measurements.
Correlation of thermocouple data with voiding function after prostate cryoablation.
Levy, David A
2010-02-01
To identify possible correlations of thermocouple recorded data with altered postoperative voiding function after prostate cryosurgery. A retrospective analysis of the records of 58 patients treated with prostate cryoablation from October 2005 through April 2009 was conducted. Multivariate analysis of patient age, presenting prostate-specific antigen level, Gleason score, clinical T stage, prostate volume, maximum low temperature thermocouple recordings, history of radiation and or hormonal therapy, were studied as possible correlative factors for altered postoperative voiding function. Of 58 patients, 22 (37.9%) manifested postcryoablation urgency and frequency (n = 13) requiring medical therapy or retention (n = 9). On multivariate analysis, age (P = .037) and an external sphincter temperature < or = 23 degrees C (P = .012) were associated with voiding frequency, urgency, or retention (odds ratio = 6.26, 95% CI: 1.62-24.16), whereas anterior rectal wall temperature (Denon) was weakly associated (P = .079). Thermocouple data provide an objective means of assessing cryosurgical outcomes. This is the first report of a correlation of such data to post-treatment voiding function. A total of 37.9% of patients experienced urgency and/or frequency or urinary retention after cryoablation of the prostate for localized disease. Older age and external sphincter temperature < or = 23 degrees C were statistically significant predictors of these events. The data suggest that limiting the degree of freezing at the external sphincter may decrease procedure related morbidity. Further study is warranted to better delineate temperature-related data on treatment outcomes. 2010 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Bahadirlar, Yildirim; Kaplan, Gulay B.
2004-09-01
A new preprocessing and feature extracting approach for classification of non-metallic buried objects are aimed using GPR B-scan data. A frequency-domain adaptive filter without a reference channel effectively removes the background signal resulting mostly from the discontinuity on the air-to-ground path of the electromagnetic waves. The filter only needs average of the first five A-scans as the reference signal for this elimination, and also serves for masking of the B-scan in the frequency-domain. A preprocessed GPR data with significantly suppressed clutter is then obtained by precisely positioning the Hanning window in the frequency-domain. A directional correlation function defined over a B-scan frame gives distinctive curves of buried objects. The main axis of directional correlation, on which the pivotal correlating pixels and short lines of pixels being correlated are considered, makes an angle to the scanning direction of the B-scan. This form of correlation is applied to the frame from the left-hand and the right-hand side and two over-plotted curves are obtained. Nine measures as features emphasizing directional signatures are extracted from these curves. Nine-element feature vectors are applied to the two-layer Artificial Neural Network and preliminary results over test set are promising to continue to comprehensive training and testing processes.
Alecu, I M; Zheng, Jingjing; Zhao, Yan; Truhlar, Donald G
2010-09-14
Optimized scale factors for calculating vibrational harmonic and fundamental frequencies and zero-point energies have been determined for 145 electronic model chemistries, including 119 based on approximate functionals depending on occupied orbitals, 19 based on single-level wave function theory, three based on the neglect-of-diatomic-differential-overlap, two based on doubly hybrid density functional theory, and two based on multicoefficient correlation methods. Forty of the scale factors are obtained from large databases, which are also used to derive two universal scale factor ratios that can be used to interconvert between scale factors optimized for various properties, enabling the derivation of three key scale factors at the effort of optimizing only one of them. A reduced scale factor optimization model is formulated in order to further reduce the cost of optimizing scale factors, and the reduced model is illustrated by using it to obtain 105 additional scale factors. Using root-mean-square errors from the values in the large databases, we find that scaling reduces errors in zero-point energies by a factor of 2.3 and errors in fundamental vibrational frequencies by a factor of 3.0, but it reduces errors in harmonic vibrational frequencies by only a factor of 1.3. It is shown that, upon scaling, the balanced multicoefficient correlation method based on coupled cluster theory with single and double excitations (BMC-CCSD) can lead to very accurate predictions of vibrational frequencies. With a polarized, minimally augmented basis set, the density functionals with zero-point energy scale factors closest to unity are MPWLYP1M (1.009), τHCTHhyb (0.989), BB95 (1.012), BLYP (1.013), BP86 (1.014), B3LYP (0.986), MPW3LYP (0.986), and VSXC (0.986).
Improved real-time dynamics from imaginary frequency lattice simulations
NASA Astrophysics Data System (ADS)
Pawlowski, Jan M.; Rothkopf, Alexander
2018-03-01
The computation of real-time properties, such as transport coefficients or bound state spectra of strongly interacting quantum fields in thermal equilibrium is a pressing matter. Since the sign problem prevents a direct evaluation of these quantities, lattice data needs to be analytically continued from the Euclidean domain of the simulation to Minkowski time, in general an ill-posed inverse problem. Here we report on a novel approach to improve the determination of real-time information in the form of spectral functions by setting up a simulation prescription in imaginary frequencies. By carefully distinguishing between initial conditions and quantum dynamics one obtains access to correlation functions also outside the conventional Matsubara frequencies. In particular the range between ω0 and ω1 = 2πT, which is most relevant for the inverse problem may be more highly resolved. In combination with the fact that in imaginary frequencies the kernel of the inverse problem is not an exponential but only a rational function we observe significant improvements in the reconstruction of spectral functions, demonstrated in a simple 0+1 dimensional scalar field theory toy model.
Relating resting-state fMRI and EEG whole-brain connectomes across frequency bands.
Deligianni, Fani; Centeno, Maria; Carmichael, David W; Clayden, Jonathan D
2014-01-01
Whole brain functional connectomes hold promise for understanding human brain activity across a range of cognitive, developmental and pathological states. So called resting-state (rs) functional MRI studies have contributed to the brain being considered at a macroscopic scale as a set of interacting regions. Interactions are defined as correlation-based signal measurements driven by blood oxygenation level dependent (BOLD) contrast. Understanding the neurophysiological basis of these measurements is important in conveying useful information about brain function. Local coupling between BOLD fMRI and neurophysiological measurements is relatively well defined, with evidence that gamma (range) frequency EEG signals are the closest correlate of BOLD fMRI changes during cognitive processing. However, it is less clear how whole-brain network interactions relate during rest where lower frequency signals have been suggested to play a key role. Simultaneous EEG-fMRI offers the opportunity to observe brain network dynamics with high spatio-temporal resolution. We utilize these measurements to compare the connectomes derived from rs-fMRI and EEG band limited power (BLP). Merging this multi-modal information requires the development of an appropriate statistical framework. We relate the covariance matrices of the Hilbert envelope of the source localized EEG signal across bands to the covariance matrices derived from rs-fMRI with the means of statistical prediction based on sparse Canonical Correlation Analysis (sCCA). Subsequently, we identify the most prominent connections that contribute to this relationship. We compare whole-brain functional connectomes based on their geodesic distance to reliably estimate the performance of the prediction. The performance of predicting fMRI from EEG connectomes is considerably better than predicting EEG from fMRI across all bands, whereas the connectomes derived in low frequency EEG bands resemble best rs-fMRI connectivity.
Relating resting-state fMRI and EEG whole-brain connectomes across frequency bands
Deligianni, Fani; Centeno, Maria; Carmichael, David W.; Clayden, Jonathan D.
2014-01-01
Whole brain functional connectomes hold promise for understanding human brain activity across a range of cognitive, developmental and pathological states. So called resting-state (rs) functional MRI studies have contributed to the brain being considered at a macroscopic scale as a set of interacting regions. Interactions are defined as correlation-based signal measurements driven by blood oxygenation level dependent (BOLD) contrast. Understanding the neurophysiological basis of these measurements is important in conveying useful information about brain function. Local coupling between BOLD fMRI and neurophysiological measurements is relatively well defined, with evidence that gamma (range) frequency EEG signals are the closest correlate of BOLD fMRI changes during cognitive processing. However, it is less clear how whole-brain network interactions relate during rest where lower frequency signals have been suggested to play a key role. Simultaneous EEG-fMRI offers the opportunity to observe brain network dynamics with high spatio-temporal resolution. We utilize these measurements to compare the connectomes derived from rs-fMRI and EEG band limited power (BLP). Merging this multi-modal information requires the development of an appropriate statistical framework. We relate the covariance matrices of the Hilbert envelope of the source localized EEG signal across bands to the covariance matrices derived from rs-fMRI with the means of statistical prediction based on sparse Canonical Correlation Analysis (sCCA). Subsequently, we identify the most prominent connections that contribute to this relationship. We compare whole-brain functional connectomes based on their geodesic distance to reliably estimate the performance of the prediction. The performance of predicting fMRI from EEG connectomes is considerably better than predicting EEG from fMRI across all bands, whereas the connectomes derived in low frequency EEG bands resemble best rs-fMRI connectivity. PMID:25221467
Effects of step length and step frequency on lower-limb muscle function in human gait.
Lim, Yoong Ping; Lin, Yi-Chung; Pandy, Marcus G
2017-05-24
The aim of this study was to quantify the effects of step length and step frequency on lower-limb muscle function in walking. Three-dimensional gait data were used in conjunction with musculoskeletal modeling techniques to evaluate muscle function over a range of walking speeds using prescribed combinations of step length and step frequency. The body was modeled as a 10-segment, 21-degree-of-freedom skeleton actuated by 54 muscle-tendon units. Lower-limb muscle forces were calculated using inverse dynamics and static optimization. We found that five muscles - GMAX, GMED, VAS, GAS, and SOL - dominated vertical support and forward progression independent of changes made to either step length or step frequency, and that, overall, changes in step length had a greater influence on lower-limb joint motion, net joint moments and muscle function than step frequency. Peak forces developed by the uniarticular hip and knee extensors, as well as the normalized fiber lengths at which these muscles developed their peak forces, correlated more closely with changes in step length than step frequency. Increasing step length resulted in larger contributions from the hip and knee extensors and smaller contributions from gravitational forces (limb posture) to vertical support. These results provide insight into why older people with weak hip and knee extensors walk more slowly by reducing step length rather than step frequency and also help to identify the key muscle groups that ought to be targeted in exercise programs designed to improve gait biomechanics in older adults. Copyright © 2017 Elsevier Ltd. All rights reserved.
Yao, Ziming; Du, Jianwei; Wang, Zheng; Zheng, Guoquan; Zhang, Xuesong; Cui, Geng; Wang, Yan
2016-09-01
A retrospective study. The aim of this study was to assess the changes in sexual activities in male patients surgically treated for ankylosing spondylitis (AS)-induced kyphosis and the correlation between these changes and spinal sagittal realignment. Sexual function may be affected by AS. However, little is known about the effect of spinal surgery on the sexual activity of patients with AS-induced kyphosis. Data of 45 male patients who had been surgically treated for AS-induced kyphosis were retrospectively reviewed. Changes in sexual activity were evaluated by the international index of erectile function (IIEF), frequency of sexual activity, and time point at which sexual activity began postoperatively. We compared the above-mentioned parameters before and 24 months postoperatively and analyzed the correlation of the changes in the IIEF with the changes in radiological characteristics. Each domain of the IIEF and the total IIEF were increased postoperatively. Improved sexual function was correlated with changes in spinal sagittal characteristics, among which lumbar lordosis (LL) and the chin-brow vertical angle (CBVA) were the most significant causes (P < 0.05). Most patients (71.1%) resumed their sexual activity 5 to 12 weeks after surgery. At the 24-month follow-up, the frequency of patients' sexual activity was higher than that before surgery (P < 0.05). Surgical correction of spinal deformity may improve sexual function and increase the frequency of sexual activity in men with AS. Spinal sagittal realignment and pelvic rotation may be correlated with improvement of sexual function. 4.
Hybrid density-functional calculations of phonons in LaCoO3
NASA Astrophysics Data System (ADS)
Gryaznov, Denis; Evarestov, Robert A.; Maier, Joachim
2010-12-01
Phonon frequencies at Γ point in nonmagnetic rhombohedral phase of LaCoO3 were calculated using density-functional theory with hybrid exchange correlation functional PBE0. The calculations involved a comparison of results for two types of basis functions commonly used in ab initio calculations, namely, the plane-wave approach and linear combination of atomic orbitals, as implemented in VASP and CRYSTAL computer codes, respectively. A good qualitative, but also within an error margin of less than 30%, a quantitative agreement was observed not only between the two formalisms but also between theoretical and experimental phonon frequency predictions. Moreover, the correlation between the phonon symmetries in cubic and rhombohedral phases is discussed in detail on the basis of group-theoretical analysis. It is concluded that the hybrid PBE0 functional is able to predict correctly the phonon properties in LaCoO3 .
Modeling Carbon Dioxide Vibrational Frequencies in Ionic Liquids: II. Spectroscopic Map.
Daly, Clyde A; Berquist, Eric J; Brinzer, Thomas; Garrett-Roe, Sean; Lambrecht, Daniel S; Corcelli, Steven A
2016-12-15
The primary challenge for connecting molecular dynamics (MD) simulations to linear and two-dimensional infrared measurements is the calculation of the vibrational frequency for the chromophore of interest. Computing the vibrational frequency at each time step of the simulation with a quantum mechanical method like density functional theory (DFT) is generally prohibitively expensive. One approach to circumnavigate this problem is the use of spectroscopic maps. Spectroscopic maps are empirical relationships that correlate the frequency of interest to properties of the surrounding solvent that are readily accessible in the MD simulation. Here, we develop a spectroscopic map for the asymmetric stretch of CO 2 in the 1-butyl-3-methylimidazolium hexafluorophosphate ([C 4 C 1 im][PF 6 ]) ionic liquid (IL). DFT is used to compute the vibrational frequency of 500 statistically independent CO 2 -[C 4 C 1 im][PF 6 ] clusters extracted from an MD simulation. When the map was tested on 500 different CO 2 -[C 4 C 1 im][PF 6 ] clusters, the correlation coefficient between the benchmark frequencies and the predicted frequencies was R = 0.94, and the root-mean-square error was 2.7 cm -1 . The calculated distribution of frequencies also agrees well with experiment. The spectroscopic map required information about the CO 2 angle, the electrostatics of the surrounding solvent, and the Lennard-Jones interaction between the CO 2 and the IL. The contribution of each term in the map was investigated using symmetry-adapted perturbation theory calculations.
Liu, Su; Gurses, Candan; Sha, Zhiyi; Quach, Michael M; Sencer, Altay; Bebek, Nerses; Curry, Daniel J; Prabhu, Sujit; Tummala, Sudhakar; Henry, Thomas R; Ince, Nuri F
2018-01-30
High-frequency oscillations in local field potentials recorded with intracranial EEG are putative biomarkers of seizure onset zones in epileptic brain. However, localized 80-500 Hz oscillations can also be recorded from normal and non-epileptic cerebral structures. When defined only by rate or frequency, physiological high-frequency oscillations are indistinguishable from pathological ones, which limit their application in epilepsy presurgical planning. We hypothesized that pathological high-frequency oscillations occur in a repetitive fashion with a similar waveform morphology that specifically indicates seizure onset zones. We investigated the waveform patterns of automatically detected high-frequency oscillations in 13 epilepsy patients and five control subjects, with an average of 73 subdural and intracerebral electrodes recorded per patient. The repetitive oscillatory waveforms were identified by using a pipeline of unsupervised machine learning techniques and were then correlated with independently clinician-defined seizure onset zones. Consistently in all patients, the stereotypical high-frequency oscillations with the highest degree of waveform similarity were localized within the seizure onset zones only, whereas the channels generating high-frequency oscillations embedded in random waveforms were found in the functional regions independent from the epileptogenic locations. The repetitive waveform pattern was more evident in fast ripples compared to ripples, suggesting a potential association between waveform repetition and the underlying pathological network. Our findings provided a new tool for the interpretation of pathological high-frequency oscillations that can be efficiently applied to distinguish seizure onset zones from functionally important sites, which is a critical step towards the translation of these signature events into valid clinical biomarkers.awx374media15721572971001. © The Author(s) (2018). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Bowles, Marlin L; Jones, Michael D
2013-03-01
Understanding temporal effects of fire frequency on plant species diversity and vegetation structure is critical for managing tallgrass prairie (TGP), which occupies a mid-continental longitudinal precipitation and productivity gradient. Eastern TGP has contributed little information toward understanding whether vegetation-fire interactions are uniform or change across this biome. We resampled 34 fire-managed mid- and late-successional ungrazed TGP remnants occurring across a dry to wet-mesic moisture gradient in the Chicago region of Illinois, USA. We compared hypotheses that burning acts either as a stabilizing force or causes change in diversity and structure, depending upon fire frequency and successional stage. Based on western TGP, we expected a unimodal species richness distribution across a cover-productivity gradient, variable functional group responses to fire frequency, and a negative relationship between fire frequency and species richness. Species diversity was unimodal across the cover gradient and was more strongly humpbacked in stands with greater fire frequency. In support of a stabilizing hypothesis, temporal similarity of late-successional vegetation had a logarithmic relationship with increasing fire frequency, while richness and evenness remained stable. Temporal similarity within mid-successional stands was not correlated with fire frequency, while richness increased and evenness decreased over time. Functional group responses to fire frequency were variable. Summer forb richness increased under high fire frequency, while C4 grasses, spring forbs, and nitrogen-fixing species decreased with fire exclusion. On mesic and wet-mesic sites, vegetation structure measured by the ratio of woody to graminoid species was negatively correlated with abundance of forbs and with fire frequency. Our findings that species richness responds unimodally to an environmental-productivity gradient, and that fire exclusion increases woody vegetation and leads to loss of C4 and N-fixing species, suggest that these processes are uniform across the TGP biome and not affected by its rainfall-productivity gradient. However, increasing fire frequency in eastern TGP appears to increase richness of summer forbs and stabilize late-successional vegetation in the absence of grazing, and these processes may differ across the longitudinal axis of TGP. Managing species diversity in ungrazed eastern TGP may be dependent upon high fire frequency that removes woody vegetation and prevents biomass accumulation.
X-Ray Variability Characteristics of the Seyfert 1 Galaxy NGC 3783
NASA Astrophysics Data System (ADS)
Markowitz, A.
2005-12-01
We have characterized the energy-dependent X-ray variability properties of the Seyfert 1 galaxy NGC 3783 using archival XMM-Newton and Rossi X-Ray Timing Explorer data. The high-frequency fluctuation power spectral density function (PSD) slope is consistent with flattening toward higher energies. Light-curve cross-correlation functions yield no significant lags, but peak coefficients generally decrease as energy separation of the bands increases on both short and long timescales. We have measured the coherence between various X-ray bands over the temporal frequency range of 6×10-8-1×10-4 Hz; this range includes the temporal frequency of the low-frequency PSD break tentatively detected by Markowitz et al. and includes the lowest temporal frequency over which coherence has been measured in any active galactic nucleus to date. Coherence is generally near unity at these temporal frequencies, although it decreases slightly as energy separation of the bands increases. Temporal frequency-dependent phase lags are detected on short timescales; phase lags are consistent with increasing as energy separation increases or as temporal frequency decreases. All of these results are similar to those obtained previously for several Seyfert galaxies and stellar mass black hole systems. Qualitatively, these results are consistent with the variability models of Kotov et al. and Lyubarskii, wherein the X-ray variability is due to inwardly propagating variations in the local mass accretion rate.
Neipert, Christine; Space, Brian
2006-12-14
Sum vibrational frequency spectroscopy, a second order optical process, is interface specific in the dipole approximation. At charged interfaces, there exists a static field, and as a direct consequence, the experimentally detected signal is a combination of enhanced second and static field induced third order contributions. There is significant evidence in the literature of the importance/relative magnitude of this third order contribution, but no previous molecularly detailed approach existed to separately calculate the second and third order contributions. Thus, for the first time, a molecularly detailed time correlation function theory is derived here that allows for the second and third order contributions to sum frequency vibrational spectra to be individually determined. Further, a practical, molecular dynamics based, implementation procedure for the derived correlation functions that describe the third order phenomenon is also presented. This approach includes a novel generalization of point atomic polarizability models to calculate the hyperpolarizability of a molecular system. The full system hyperpolarizability appears in the time correlation functions responsible for third order contributions in the presence of a static field.
Yamaguchi, Tsuyoshi; Yonezawa, Takuya; Koda, Shinobu
2015-07-15
The frequency-dependent viscosity and conductivity of three imidazolium-based ionic liquids were measured at several temperatures in the MHz region, and the results are compared with the intermediate scattering functions determined by neutron spin echo spectroscopy. The relaxations of both the conductivity and the viscosity agree with that of the intermediate scattering function at the ionic correlation when the relaxation time is short. As the relaxation time increases, the relaxations of the two transport properties deviate to lower frequencies than that of the ionic structure. The deviation begins at a shorter relaxation time for viscosity than for conductivity, which explains the fractional Walden rule between the zero-frequency values of the shear viscosity and the molar conductivity.
NASA Astrophysics Data System (ADS)
Bauernfeind, Daniel; Triebl, Robert; Zingl, Manuel; Aichhorn, Markus; Evertz, Hans Gerd
2018-03-01
We investigate the electronic structure of SrMnO3 with density functional theory plus dynamical mean-field theory (DMFT). Within this scheme the selection of the correlated subspace and the construction of the corresponding Wannier functions is a crucial step. Due to the crystal-field splitting of the Mn-3 d orbitals and their separation from the O -2 p bands, SrMnO3 is a material where on first sight a three-band d -only model should be sufficient. However, in the present work we demonstrate that the resulting spectrum is considerably influenced by the number of correlated orbitals and the number of bands included in the Wannier function construction. For example, in a d -d p model we observe a splitting of the t2 g lower Hubbard band into a more complex spectral structure, not observable in d -only models. To illustrate these high-frequency differences we employ the recently developed fork tensor product state (FTPS) impurity solver, as it provides the necessary spectral resolution on the real-frequency axis. We find that the spectral structure of a five-band d -d p model is in good agreement with PES and XAS experiments. Our results demonstrate that the FTPS solver is capable of performing full five-band DMFT calculations directly on the real-frequency axis.
The relationship between journal use in a medical library and citation use.
Tsay, M Y
1998-01-01
The purpose of the study was to investigate the relationship between library journal use and journal citation use in the medical sciences. The six-month journal use study was conducted in the Library of the Veterans General Hospital in Taipei. The data on citation frequency and impact factors were obtained from Journal Citation Reports, 1993 microfiche edition. The study explored the use, citation, and impact factor data, especially for heavily used, highly cited, or high-impact-factor journals. The correlations between frequency of use and citation frequency and between frequency of use and impact factor were determined by using the Spearman rank and Pearson correlation tests. The same comparisons were also made within four subject categories: clinical medicine journals, life science journals, hybrid journals publishing both clinical medicine and life science papers, and journals that publish neither clinical medicine nor life science articles. The results of the study showed that there is a significant correlation between frequency of use and citation frequency, and between frequency of use and impact factor for all titles. There is also a significant correlation between frequency of use and citation frequency and between frequency of use and impact factor for journals that publish either clinical medicine or life science articles, or both. However, the correlation is not significant for other journals. PMID:9549010
Different dynamic resting state fMRI patterns are linked to different frequencies of neural activity
Thompson, Garth John; Pan, Wen-Ju
2015-01-01
Resting state functional magnetic resonance imaging (rsfMRI) results have indicated that network mapping can contribute to understanding behavior and disease, but it has been difficult to translate the maps created with rsfMRI to neuroelectrical states in the brain. Recently, dynamic analyses have revealed multiple patterns in the rsfMRI signal that are strongly associated with particular bands of neural activity. To further investigate these findings, simultaneously recorded invasive electrophysiology and rsfMRI from rats were used to examine two types of electrical activity (directly measured low-frequency/infraslow activity and band-limited power of higher frequencies) and two types of dynamic rsfMRI (quasi-periodic patterns or QPP, and sliding window correlation or SWC). The relationship between neural activity and dynamic rsfMRI was tested under three anesthetic states in rats: dexmedetomidine and high and low doses of isoflurane. Under dexmedetomidine, the lightest anesthetic, infraslow electrophysiology correlated with QPP but not SWC, whereas band-limited power in higher frequencies correlated with SWC but not QPP. Results were similar under isoflurane; however, the QPP was also correlated to band-limited power, possibly due to the burst-suppression state induced by the anesthetic agent. The results provide additional support for the hypothesis that the two types of dynamic rsfMRI are linked to different frequencies of neural activity, but isoflurane anesthesia may make this relationship more complicated. Understanding which neural frequency bands appear as particular dynamic patterns in rsfMRI may ultimately help isolate components of the rsfMRI signal that are of interest to disorders such as schizophrenia and attention deficit disorder. PMID:26041826
Naro, Antonino; Leo, Antonino; Manuli, Alfredo; Cannavò, Antonino; Bramanti, Alessia; Bramanti, Placido; Calabrò, Rocco Salvatore
2017-05-04
Awareness generation and modulation may depend on a balanced information integration and differentiation across default mode network (DMN) and external awareness networks (EAN). Neuromodulation approaches, capable of shaping information processing, may highlight residual network activities supporting awareness, which are not detectable through active paradigms, thus allowing to differentiate chronic disorders of consciousness (DoC). We studied aftereffects of repetitive transcranial magnetic stimulation (rTMS) by applying graph theory within canonical frequency bands to compare the markers of these networks in the electroencephalographic data from 20 patients with DoC. We found that patients' high-frequency networks suffered from a large-scale connectivity breakdown, paralleled by a local hyperconnectivity, whereas low-frequency networks showed a preserved but dysfunctional large-scale connectivity. There was a correlation between metrics and the behavioral awareness. Interestingly, two persons with UWS showed a residual rTMS-induced modulation of the functional correlations between the DMN and the EAN, as observed in patients with MCS. Hence, we may hypothesize that the patients with UWS who demonstrate evidence of residual DMN-EAN functional correlation may be misdiagnosed, given that such residual network correlations could support covert consciousness. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Gherm, Vadim E.; Zernov, Nikolay N.; Strangeways, Hal J.
2011-06-01
It can be important to determine the correlation of different frequency signals in L band that have followed transionospheric paths. In the future, both GPS and the new Galileo satellite system will broadcast three frequencies enabling more advanced three frequency correction schemes so that knowledge of correlations of different frequency pairs for scintillation conditions is desirable. Even at present, it would be helpful to know how dual-frequency Global Navigation Satellite Systems positioning can be affected by lack of correlation between the L1 and L2 signals. To treat this problem of signal correlation for the case of strong scintillation, a previously constructed simulator program, based on the hybrid method, has been further modified to simulate the fields for both frequencies on the ground, taking account of their cross correlation. Then, the errors in the two-frequency range finding method caused by scintillation have been estimated for particular ionospheric conditions and for a realistic fully three-dimensional model of the ionospheric turbulence. The results which are presented for five different frequency pairs (L1/L2, L1/L3, L1/L5, L2/L3, and L2/L5) show the dependence of diffractional errors on the scintillation index S4 and that the errors diverge from a linear relationship, the stronger are scintillation effects, and may reach up to ten centimeters, or more. The correlation of the phases at spaced frequencies has also been studied and found that the correlation coefficients for different pairs of frequencies depend on the procedure of phase retrieval, and reduce slowly as both the variance of the electron density fluctuations and cycle slips increase.
Brosten, Troy R.; Day-Lewis, Frederick D.; Schultz, Gregory M.; Curtis, Gary P.; Lane, John W.
2011-01-01
Electromagnetic induction (EMI) instruments provide rapid, noninvasive, and spatially dense data for characterization of soil and groundwater properties. Data from multi-frequency EMI tools can be inverted to provide quantitative electrical conductivity estimates as a function of depth. In this study, multi-frequency EMI data collected across an abandoned uranium mill site near Naturita, Colorado, USA, are inverted to produce vertical distribution of electrical conductivity (EC) across the site. The relation between measured apparent electrical conductivity (ECa) and hydraulic conductivity (K) is weak (correlation coefficient of 0.20), whereas the correlation between the depth dependent EC obtained from the inversions, and K is sufficiently strong to be used for hydrologic estimation (correlation coefficient of − 0.62). Depth-specific EC values were correlated with co-located K measurements to develop a site-specific ln(EC)–ln(K) relation. This petrophysical relation was applied to produce a spatially detailed map of K across the study area. A synthetic example based on ECa values at the site was used to assess model resolution and correlation loss given variations in depth and/or measurement error. Results from synthetic modeling indicate that optimum correlation with K occurs at ~ 0.5 m followed by a gradual correlation loss of 90% at 2.3 m. These results are consistent with an analysis of depth of investigation (DOI) given the range of frequencies, transmitter–receiver separation, and measurement errors for the field data. DOIs were estimated at 2.0 ± 0.5 m depending on the soil conductivities. A 4-layer model, with varying thicknesses, was used to invert the ECa to maximize available information within the aquifer region for improved correlations with K. Results show improved correlation between K and the corresponding inverted EC at similar depths, underscoring the importance of inversion in using multi-frequency EMI data for hydrologic estimation.
Brosten, T.R.; Day-Lewis, F. D.; Schultz, G.M.; Curtis, G.P.; Lane, J.W.
2011-01-01
Electromagnetic induction (EMI) instruments provide rapid, noninvasive, and spatially dense data for characterization of soil and groundwater properties. Data from multi-frequency EMI tools can be inverted to provide quantitative electrical conductivity estimates as a function of depth. In this study, multi-frequency EMI data collected across an abandoned uranium mill site near Naturita, Colorado, USA, are inverted to produce vertical distribution of electrical conductivity (EC) across the site. The relation between measured apparent electrical conductivity (ECa) and hydraulic conductivity (K) is weak (correlation coefficient of 0.20), whereas the correlation between the depth dependent EC obtained from the inversions, and K is sufficiently strong to be used for hydrologic estimation (correlation coefficient of -0.62). Depth-specific EC values were correlated with co-located K measurements to develop a site-specific ln(EC)-ln(K) relation. This petrophysical relation was applied to produce a spatially detailed map of K across the study area. A synthetic example based on ECa values at the site was used to assess model resolution and correlation loss given variations in depth and/or measurement error. Results from synthetic modeling indicate that optimum correlation with K occurs at ~0.5m followed by a gradual correlation loss of 90% at 2.3m. These results are consistent with an analysis of depth of investigation (DOI) given the range of frequencies, transmitter-receiver separation, and measurement errors for the field data. DOIs were estimated at 2.0??0.5m depending on the soil conductivities. A 4-layer model, with varying thicknesses, was used to invert the ECa to maximize available information within the aquifer region for improved correlations with K. Results show improved correlation between K and the corresponding inverted EC at similar depths, underscoring the importance of inversion in using multi-frequency EMI data for hydrologic estimation. ?? 2011.
Low-frequency connectivity is associated with mild traumatic brain injury.
Dunkley, B T; Da Costa, L; Bethune, A; Jetly, R; Pang, E W; Taylor, M J; Doesburg, S M
2015-01-01
Mild traumatic brain injury (mTBI) occurs from a closed-head impact. Often referred to as concussion, about 20% of cases complain of secondary psychological sequelae, such as disorders of attention and memory. Known as post-concussive symptoms (PCS), these problems can severely disrupt the patient's quality of life. Changes in local spectral power, particularly low-frequency amplitude increases and/or peak alpha slowing have been reported in mTBI, but large-scale connectivity metrics based on inter-regional amplitude correlations relevant for integration and segregation in functional brain networks, and their association with disorders in cognition and behaviour, remain relatively unexplored. Here, we used non-invasive neuroimaging with magnetoencephalography to examine functional connectivity in a resting-state protocol in a group with mTBI (n = 20), and a control group (n = 21). We observed a trend for atypical slow-wave power changes in subcortical, temporal and parietal regions in mTBI, as well as significant long-range increases in amplitude envelope correlations among deep-source, temporal, and frontal regions in the delta, theta, and alpha bands. Subsequently, we conducted an exploratory analysis of patterns of connectivity most associated with variability in secondary symptoms of mTBI, including inattention, anxiety, and depression. Differential patterns of altered resting state neurophysiological network connectivity were found across frequency bands. This indicated that multiple network and frequency specific alterations in large scale brain connectivity may contribute to overlapping cognitive sequelae in mTBI. In conclusion, we show that local spectral power content can be supplemented with measures of correlations in amplitude to define general networks that are atypical in mTBI, and suggest that certain cognitive difficulties are mediated by disturbances in a variety of alterations in network interactions which are differentially expressed across canonical neurophysiological frequency ranges.
A Parametric Study of Fine-scale Turbulence Mixing Noise
NASA Technical Reports Server (NTRS)
Khavaran, Abbas; Bridges, James; Freund, Jonathan B.
2002-01-01
The present paper is a study of aerodynamic noise spectra from model functions that describe the source. The study is motivated by the need to improve the spectral shape of the MGBK jet noise prediction methodology at high frequency. The predicted spectral shape usually appears less broadband than measurements and faster decaying at high frequency. Theoretical representation of the source is based on Lilley's equation. Numerical simulations of high-speed subsonic jets as well as some recent turbulence measurements reveal a number of interesting statistical properties of turbulence correlation functions that may have a bearing on radiated noise. These studies indicate that an exponential spatial function may be a more appropriate representation of a two-point correlation compared to its Gaussian counterpart. The effect of source non-compactness on spectral shape is discussed. It is shown that source non-compactness could well be the differentiating factor between the Gaussian and exponential model functions. In particular, the fall-off of the noise spectra at high frequency is studied and it is shown that a non-compact source with an exponential model function results in a broader spectrum and better agreement with data. An alternate source model that represents the source as a covariance of the convective derivative of fine-scale turbulence kinetic energy is also examined.
NASA Astrophysics Data System (ADS)
Sert, Yusuf; Singer, L. M.; Findlater, M.; Doğan, Hatice; Çırak, Ç.
2014-07-01
In this study, the experimental and theoretical vibrational frequencies of a newly synthesized tert-Butyl N-(thiophen-2yl)carbamate have been investigated. The experimental FT-IR (4000-400 cm-1) spectrum of the molecule in the solid phase have been recorded. The theoretical vibrational frequencies and optimized geometric parameters (bond lengths and bond angles) have been calculated by using density functional theory (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr) and DFT/M06-2X (the highly parametrized, empirical exchange correlation function) quantum chemical methods with the 6-311++G(d,p) basis set by Gaussian 09W software, for the first time. The vibrational frequencies have been assigned using potential energy distribution (PED) analysis by using VEDA 4 software. The computational optimized geometric parameters and vibrational frequencies have been found to be in good agreement with the corresponding experimental data, and with related literature results. In addition, the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) energies and the other related molecular energy values have been calculated and are depicted.
Cyanide levels found in infected cystic fibrosis sputum inhibit airway ciliary function.
Nair, Chandrika; Shoemark, Amelia; Chan, Mario; Ollosson, Sarah; Dixon, Mellissa; Hogg, Claire; Alton, Eric W F W; Davies, Jane C; Williams, Huw D
2014-11-01
We have previously reported cyanide at concentrations of up to 150 μM in the sputum of cystic fibrosis patients infected with Pseudomonas aeruginosa and a negative correlation with lung function. Our aim was to investigate possible mechanisms for this association, focusing on the effect of pathophysiologically relevant cyanide levels on human respiratory cell function. Ciliary beat frequency measurements were performed on nasal brushings and nasal air-liquid interface (ALI) cultures obtained from healthy volunteers and cystic fibrosis patients. Potassium cyanide decreased ciliary beat frequency in healthy nasal brushings (n = 6) after 60 min (150 μM: 47% fall, p<0.0012; 75 μM: 32% fall, p<0.0001). Samples from cystic fibrosis patients (n = 3) showed similar results (150 μM: 55% fall, p = 0.001). Ciliary beat frequency inhibition was not due to loss of cell viability and was reversible. The inhibitory mechanism was independent of ATP levels. KCN also significantly inhibited ciliary beat frequency in ALI cultures, albeit to a lesser extent. Ciliary beat frequency measurements on ALI cultures treated with culture supernatants from P. aeruginosa mutants defective in virulence factor production implicated cyanide as a key component inhibiting the ciliary beat frequency. If cyanide production similarly impairs mucocilliary clearance in vivo, it could explain the link with increased disease severity observed in cystic fibrosis patients with detectable cyanide in their airway. ©ERS 2014.
Network-State Modulation of Power-Law Frequency-Scaling in Visual Cortical Neurons
Béhuret, Sébastien; Baudot, Pierre; Yger, Pierre; Bal, Thierry; Destexhe, Alain; Frégnac, Yves
2009-01-01
Various types of neural-based signals, such as EEG, local field potentials and intracellular synaptic potentials, integrate multiple sources of activity distributed across large assemblies. They have in common a power-law frequency-scaling structure at high frequencies, but it is still unclear whether this scaling property is dominated by intrinsic neuronal properties or by network activity. The latter case is particularly interesting because if frequency-scaling reflects the network state it could be used to characterize the functional impact of the connectivity. In intracellularly recorded neurons of cat primary visual cortex in vivo, the power spectral density of Vm activity displays a power-law structure at high frequencies with a fractional scaling exponent. We show that this exponent is not constant, but depends on the visual statistics used to drive the network. To investigate the determinants of this frequency-scaling, we considered a generic recurrent model of cortex receiving a retinotopically organized external input. Similarly to the in vivo case, our in computo simulations show that the scaling exponent reflects the correlation level imposed in the input. This systematic dependence was also replicated at the single cell level, by controlling independently, in a parametric way, the strength and the temporal decay of the pairwise correlation between presynaptic inputs. This last model was implemented in vitro by imposing the correlation control in artificial presynaptic spike trains through dynamic-clamp techniques. These in vitro manipulations induced a modulation of the scaling exponent, similar to that observed in vivo and predicted in computo. We conclude that the frequency-scaling exponent of the Vm reflects stimulus-driven correlations in the cortical network activity. Therefore, we propose that the scaling exponent could be used to read-out the “effective” connectivity responsible for the dynamical signature of the population signals measured at different integration levels, from Vm to LFP, EEG and fMRI. PMID:19779556
Network-state modulation of power-law frequency-scaling in visual cortical neurons.
El Boustani, Sami; Marre, Olivier; Béhuret, Sébastien; Baudot, Pierre; Yger, Pierre; Bal, Thierry; Destexhe, Alain; Frégnac, Yves
2009-09-01
Various types of neural-based signals, such as EEG, local field potentials and intracellular synaptic potentials, integrate multiple sources of activity distributed across large assemblies. They have in common a power-law frequency-scaling structure at high frequencies, but it is still unclear whether this scaling property is dominated by intrinsic neuronal properties or by network activity. The latter case is particularly interesting because if frequency-scaling reflects the network state it could be used to characterize the functional impact of the connectivity. In intracellularly recorded neurons of cat primary visual cortex in vivo, the power spectral density of V(m) activity displays a power-law structure at high frequencies with a fractional scaling exponent. We show that this exponent is not constant, but depends on the visual statistics used to drive the network. To investigate the determinants of this frequency-scaling, we considered a generic recurrent model of cortex receiving a retinotopically organized external input. Similarly to the in vivo case, our in computo simulations show that the scaling exponent reflects the correlation level imposed in the input. This systematic dependence was also replicated at the single cell level, by controlling independently, in a parametric way, the strength and the temporal decay of the pairwise correlation between presynaptic inputs. This last model was implemented in vitro by imposing the correlation control in artificial presynaptic spike trains through dynamic-clamp techniques. These in vitro manipulations induced a modulation of the scaling exponent, similar to that observed in vivo and predicted in computo. We conclude that the frequency-scaling exponent of the V(m) reflects stimulus-driven correlations in the cortical network activity. Therefore, we propose that the scaling exponent could be used to read-out the "effective" connectivity responsible for the dynamical signature of the population signals measured at different integration levels, from Vm to LFP, EEG and fMRI.
NASA Astrophysics Data System (ADS)
Matos, Catarina; Silveira, Graça; Custódio, Susana; Domingues, Ana; Dias, Nuno; Fonseca, João F. B.; Matias, Luís; Krueger, Frank; Carrilho, Fernando
2014-05-01
Noise cross-correlations are now widely used to extract Green functions between station pairs. But, do all the cross-correlations routinely computed produce successful Green Functions? What is the relationship between noise recorded in a couple of stations and the cross-correlation between them? During the last decade, we have been involved in the deployment of several temporary dense broadband (BB) networks within the scope of both national projects and international collaborations. From 2000 to 2002, a pool of 8 BB stations continuously operated in the Azores in the scope of the Memorandum of Understanding COSEA (COordinated Seismic Experiment in the Azores). Thanks to the Project WILAS (West Iberia Lithosphere and Astenosphere Structure, PTDC/CTE-GIX/097946/2008) we temporarily increased the number of BB deployed in mainland Portugal to more than 50 (permanent + temporary) during the period 2010 - 2012. In 2011/12 a temporary pool of 12 seismometers continuously recorded BB data in the Madeira archipelago, as part of the DOCTAR (Deep Ocean Test Array Experiment) project. Project CV-PLUME (Investigation on the geometry and deep signature of the Cape Verde mantle plume, PTDC/CTE-GIN/64330/2006) covered the archipelago of Cape Verde, North Atlantic, with 40 temporary BB stations in 2007/08. Project MOZART (Mozambique African Rift Tomography, PTDC/CTE-GIX/103249/2008), covered Mozambique, East Africa, with 30 temporary BB stations in the period 2011 - 2013. These networks, located in very distinct geographical and tectonic environments, offer an interesting opportunity to study seasonal and spatial variations of noise sources and their impact on Empirical Green functions computed from noise cross-correlation. Seismic noise recorded at different seismic stations is evaluated by computation of the probability density functions of power spectral density (PSD) of continuous data. To assess seasonal variations of ambient noise sources in frequency content, time-series of PSD at different frequency bands have been computed. The influence of the spatial and seasonal variation is evaluated by analysis of the one-day length cross-correlations, stacked with a 30-day moving window and with an overlap of 30 days. To inspect the effects of frequency content variations, 30-day cross-correlograms have also been computed at different frequency bands. This work is supported by project QuakeLoc-PT (PTDC/GEO-FIQ/3522/2012) and a contribution to project AQUAREL (PTDC/CTE-GIX/116819/2010).
Phase correlation of laser waves with arbitrary frequency spacing.
Huss, A F; Lammegger, R; Neureiter, C; Korsunsky, E A; Windholz, L
2004-11-26
The theoretically predicted correlation of laser phase fluctuations in Lambda-type interaction schemes is experimentally demonstrated. We show that the mechanism of correlation in a Lambda scheme is restricted to high-frequency noise components, whereas in a double-Lambda scheme, due to the laser phase locking in a closed-loop interaction, it extends to all noise frequencies. In this case the correlation is weakly sensitive to coherence losses. Thus the double-Lambda scheme can be used to correlate electromagnetic fields with carrier frequency differences beyond the GHz regime.
NASA Astrophysics Data System (ADS)
Schwartz, J. S.; Simon, A.; Klimetz, L.
2009-12-01
Loss of ecological integrity due to excessive suspended sediment in rivers and streams is a major cause of water quality impairment in the United States. Although 32 states have developed numeric criteria for turbidity or suspended solids, or both according to the USEPA (2006), criteria is typically written as a percent exceedance above background and what constitutes background is not well defined. Defining a background level is problematic considering suspended sediments and related turbidity levels change with flow stage and season, and limited scientific data exists on relationships between sediment exposure and biotic response. Current assessment protocols for development of sediment total maximum daily loads (TMDLs) lack a means to link temporally-variable sediment transport rates with specific losses of ecological functions as loads increase. This study, within the in Northwestern Great Plains Ecoregion, co-located 58 USGS gauging stations with existing flow and suspended sediment data, and fish data from federal and state agencies. Suspended sediment concentration (SSC) transport metrics were quantified into exceedance frequencies of a given magnitude, duration as the number of consecutive days a given concentration was equaled or exceeded, dosage as concentration x duration, and mean annual suspended sediment yields. A functional traits-based approach was used to correlate SSC transport metrics with site occurrences of 20 fish traits organized into four main groups: preferred rearing mesohabitat, trophic structure, feeding habits, and spawning behavior. Negative correlations between SSC metrics and trait occurrences were assumed to represent potential conditions for impairment, specifically identifying an ecological loss by functional trait. Potential impairment conditions were linked with presence of the following traits: habitat preferences for stream pool and river shallow waters; feeding generalists, omnivores, piscivores; and several spawning behaviors. Using these results, TMDL targets were proposed such as < 19 mg/l SSC and 1,500 mg/l-day dosage at the 95% recurrence frequency for feeding generalists and omnivores. In general, traits correlated with: 1) a broad range of SSC exceedance frequencies and flow stages, 2) exceedance frequencies near 90-95% occurring at moderate flow stages; and 3) exceedance frequencies near 0.01-10 % occurring during floods. Unstable channels were found to be greater in transported suspended sediment than stable channels over a range of concentration exceedance frequencies, and likely influence physical habitat quality. Pool-preference and gravel spawner traits were greater in stable channels than unstable channels. Overall, a functional traits-based approach utilizing concentration-duration-frequency characteristics of suspended sediment transport was successful in identifying potential “targets” for biological impairment due to excessive sediment, and will aid in developing sediment TMDLs.
An alternative approach to measure similarity between two deterministic transient signals
NASA Astrophysics Data System (ADS)
Shin, Kihong
2016-06-01
In many practical engineering applications, it is often required to measure the similarity of two signals to gain insight into the conditions of a system. For example, an application that monitors machinery can regularly measure the signal of the vibration and compare it to a healthy reference signal in order to monitor whether or not any fault symptom is developing. Also in modal analysis, a frequency response function (FRF) from a finite element model (FEM) is often compared with an FRF from experimental modal analysis. Many different similarity measures are applicable in such cases, and correlation-based similarity measures may be most frequently used among these such as in the case where the correlation coefficient in the time domain and the frequency response assurance criterion (FRAC) in the frequency domain are used. Although correlation-based similarity measures may be particularly useful for random signals because they are based on probability and statistics, we frequently deal with signals that are largely deterministic and transient. Thus, it may be useful to develop another similarity measure that takes the characteristics of the deterministic transient signal properly into account. In this paper, an alternative approach to measure the similarity between two deterministic transient signals is proposed. This newly proposed similarity measure is based on the fictitious system frequency response function, and it consists of the magnitude similarity and the shape similarity. Finally, a few examples are presented to demonstrate the use of the proposed similarity measure.
Li, J-Y; Kuo, T B J; Hsieh, I-T; Yang, C C H
2012-06-28
Hippocampal theta rhythm (4-12 Hz) can be observed during locomotor behavior, but findings on the relationship between locomotion speed and theta frequency are inconsistent if not contradictory. The inconsistency may be because of the difficulties that previous analyses and protocols have had excluding the effects of behavior training. We recorded the first or second voluntary wheel running each day, and assumed that theta frequency and activity are correlated with speed in different running phases. By simultaneously recording electroencephalography, physical activity, and wheel running speed, this experiment explored the theta oscillations during spontaneous running of the 12-h dark period. The recording was completely wireless and allowed the animal to run freely while being recorded in the wheel. Theta frequency and theta power of middle frequency were elevated before running and theta frequency, theta power of middle frequency, physical activity, and running speed maintained persistently high levels during running. The slopes of the theta frequency and theta activity (4-9.5 Hz) during the initial running were different compared to the same values during subsequent running. During the initial running, the running speed was positively correlated with theta frequency and with theta power of middle frequency. Over the 12-h dark period, the running speed did not positively correlate with theta frequency but was significantly correlated with theta power of middle frequency. Thus, theta frequency was associated with running speed only at the initiation of running. Furthermore, theta power of middle frequency was associated with speed and with physical activity during running when chronological order was not taken into consideration. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.
Recent advances in multidimensional ultrafast spectroscopy
NASA Astrophysics Data System (ADS)
Oliver, Thomas A. A.
2018-01-01
Multidimensional ultrafast spectroscopies are one of the premier tools to investigate condensed phase dynamics of biological, chemical and functional nanomaterial systems. As they reach maturity, the variety of frequency domains that can be explored has vastly increased, with experimental techniques capable of correlating excitation and emission frequencies from the terahertz through to the ultraviolet. Some of the most recent innovations also include extreme cross-peak spectroscopies that directly correlate the dynamics of electronic and vibrational states. This review article summarizes the key technological advances that have permitted these recent advances, and the insights gained from new multidimensional spectroscopic probes.
Recent advances in multidimensional ultrafast spectroscopy
2018-01-01
Multidimensional ultrafast spectroscopies are one of the premier tools to investigate condensed phase dynamics of biological, chemical and functional nanomaterial systems. As they reach maturity, the variety of frequency domains that can be explored has vastly increased, with experimental techniques capable of correlating excitation and emission frequencies from the terahertz through to the ultraviolet. Some of the most recent innovations also include extreme cross-peak spectroscopies that directly correlate the dynamics of electronic and vibrational states. This review article summarizes the key technological advances that have permitted these recent advances, and the insights gained from new multidimensional spectroscopic probes. PMID:29410844
On the Influence of Global Warming on Atlantic Hurricane Frequency
NASA Astrophysics Data System (ADS)
Hosseini, S. R.; Scaioni, M.; Marani, M.
2018-04-01
In this paper, the possible connection between the frequency of Atlantic hurricanes to the climate change, mainly the variation in the Atlantic Ocean surface temperature has been investigated. The correlation between the observed hurricane frequency for different categories of hurricane's intensity and Sea Surface Temperature (SST) has been examined over the Atlantic Tropical Cyclogenesis Regions (ACR). The results suggest that in general, the frequency of hurricanes have a high correlation with SST. In particular, the frequency of extreme hurricanes with Category 5 intensity has the highest correlation coefficient (R = 0.82). In overall, the analyses in this work demonstrates the influence of the climate change condition on the Atlantic hurricanes and suggest a strong correlation between the frequency of extreme hurricanes and SST in the ACR.
UNUSUAL TRENDS IN SOLAR P-MODE FREQUENCIES DURING THE CURRENT EXTENDED MINIMUM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tripathy, S. C.; Jain, K.; Hill, F.
2010-03-10
We investigate the behavior of the intermediate-degree mode frequencies of the Sun during the current extended minimum phase to explore the time-varying conditions in the solar interior. Using contemporaneous helioseismic data from the Global Oscillation Network Group (GONG) and the Michelson Doppler Imager (MDI), we find that the changes in resonant mode frequencies during the activity minimum period are significantly greater than the changes in solar activity as measured by different proxies. We detect a seismic minimum in MDI p-mode frequency shifts during 2008 July-August but no such signature is seen in mean shifts computed from GONG frequencies. We alsomore » analyze the frequencies of individual oscillation modes from GONG data as a function of latitude and observe a signature of the onset of the solar cycle 24 in early 2009. Thus, the intermediate-degree modes do not confirm the onset of the cycle 24 during late 2007 as reported from the analysis of the low-degree Global Oscillations at Low Frequency frequencies. Further, both the GONG and MDI frequencies show a surprising anti-correlation between frequencies and activity proxies during the current minimum, in contrast to the behavior during the minimum between cycles 22 and 23.« less
Wiegers, Evita C; Philips, Bart W J; Heerschap, Arend; van der Graaf, Marinette
2017-12-01
J-difference editing is often used to select resonances of compounds with coupled spins in 1 H-MR spectra. Accurate phase and frequency alignment prior to subtracting J-difference-edited MR spectra is important to avoid artefactual contributions to the edited resonance. In-vivo J-difference-edited MR spectra were aligned by maximizing the normalized scalar product between two spectra (i.e., the correlation over a spectral region). The performance of our correlation method was compared with alignment by spectral registration and by alignment of the highest point in two spectra. The correlation method was tested at different SNR levels and for a broad range of phase and frequency shifts. In-vivo application of the proposed correlation method showed reduced subtraction errors and increased fit reliability in difference spectra as compared with conventional peak alignment. The correlation method and the spectral registration method generally performed equally well. However, better alignment using the correlation method was obtained for spectra with a low SNR (down to ~2) and for relatively large frequency shifts. Our correlation method for simultaneously phase and frequency alignment is able to correct both small and large phase and frequency drifts and also performs well at low SNR levels.
Hara, Yuko; Yuk, Frank; Puri, Rishi; Janssen, William G M; Rapp, Peter R; Morrison, John H
2016-01-20
Humans and nonhuman primates are vulnerable to age- and menopause- related decline in working memory, a cognitive function reliant on area 46 of the dorsolateral prefrontal cortex (dlPFC). We showed previously that presynaptic mitochondrial number and morphology in monkey dlPFC neurons correlate with working memory performance. The current study tested the hypothesis that the types of synaptic connections these boutons form are altered with aging and menopause in rhesus monkeys and that these metrics may be coupled with mitochondrial measures and working memory. Using serial section electron microscopy, we examined the frequencies and characteristics of nonsynaptic, single-synaptic, and multisynaptic boutons (MSBs) in the dlPFC. In contrast to our previous observations in the monkey hippocampal dentate gyrus, where MSBs comprised ∼40% of boutons, the vast majority of dlPFC boutons were single-synaptic, whereas MSBs constituted a mere 10%. The frequency of MSBs was not altered by normal aging, but decreased by over 50% with surgical menopause induced by ovariectomy in aged monkeys. Cyclic estradiol treatment in aged ovariectomized animals restored MSB frequencies to levels comparable to young and aged premenopausal monkeys. Notably, the frequency of MSBs positively correlated with working memory scores, as measured by the average accuracy on the delayed response (DR) test. Furthermore, MSB incidence positively correlated with the number of healthy straight mitochondria in dlPFC boutons and inversely correlated with the number of pathological donut-shaped mitochondria. Together, our data suggest that MSBs are coupled to cognitive function and mitochondrial health and are sensitive to estrogen. Significance statement: Many aged menopausal individuals experience deficits in working memory, an executive function reliant on recurrent firing of prefrontal cortex (PFC) neurons. However, little is known about the organization of presynaptic inputs to these neurons and how they may be altered with aging and menopause. Multisynaptic boutons (MSBs) were of particular interest, because they form multiple synapses and can enhance coupling between presynaptic and postsynaptic neurons. We found that higher MSB frequency correlated with better working memory performance in rhesus monkeys. Additionally, aged surgically menopausal monkeys experienced a 50% loss of MSBs that was restored with cyclic estradiol treatment. Together, our findings suggest that hormone replacement therapy benefits cognitive aging, in part by retaining complex synaptic organizations in the PFC. Copyright © 2016 the authors 0270-6474/16/360902-10$15.00/0.
Coexistence of Th1/Th2 and Th17/Treg imbalances in patients with allergic asthma.
Shi, Yu-heng; Shi, Guo-chao; Wan, Huan-ying; Jiang, Li-hua; Ai, Xiang-yan; Zhu, Hai-xing; Tang, Wei; Ma, Jia-yun; Jin, Xiao-yan; Zhang, Bo-ying
2011-07-05
Recent recognition is that Th2 response is insufficient to fully explain the aetiology of asthma. Other CD4(+) T cells subsets might play a role in asthma. We investigated the relative abundance and activities of Th1, Th2, Th17 and CD4(+)CD25(+) Treg cells in patients with allergic asthma. Twenty-two patients with mild asthma, 17 patients with moderate to severe asthma and 20 healthy donors were enrolled. All patients were allergic to house dust mites. Plasma total IgE, pulmonary function and Asthma Control Questionnaire were assessed. The proportions of peripheral blood Th1, Th2, Th17 and CD4(+)CD25(+) Treg cells were determined by flow cytometry. The expression of cytokines in plasma and in the culture supernatant of peripheral blood mononuclear cells was determined by enzyme linked, immunosorbent assay. The frequency of blood Th2 cells and IL-4 levels in plasma and culture supernatant of peripheral blood mononuclear cells were increased in all patients with allergic asthma. The frequency of Th17 cells and the plasma and culture supernatant levels of IL-17 were increased, whereas the frequency of CD4(+)CD25(+) Treg cells and plasma IL-10 levels were decreased in patients with moderate to severe asthma. Dermatophagoides pteronyssinus specific IgE levels were positively correlated with the percentage of blood Th2 cells and plasma IL-4 levels. Forced expiratory volume in the first second was negatively correlated with the frequency of Th17 cells and plasma IL-17 levels, and positively correlated with the frequency of Treg cells. However, mean Asthma Control Questionnaire scores were positively correlated with the frequency of Th17 cells and plasma IL-17 levels, and negatively correlated with the frequency of Treg cells. Imbalances in Th1/Th2 and Th17/Treg were found in patients with allergic asthma. Furthermore, elevated Th17 cell responses, the absence of Tregs and an imbalance in Th17/Treg levels were associated with moderate to severe asthma.
NASA Technical Reports Server (NTRS)
Smith, Andrew; LaVerde, Bruce; Jones, Douglas; Towner, Robert; Hunt, Ron
2013-01-01
Fluid structural interaction problems that estimate panel vibration from an applied pressure field excitation are quite dependent on the spatial correlation of the pressure field. There is a danger of either over estimating a low frequency response or under predicting broad band panel response in the more modally dense bands if the pressure field spatial correlation is not accounted for adequately. Even when the analyst elects to use a fitted function for the spatial correlation an error may be introduced if the choice of patch density is not fine enough to represent the more continuous spatial correlation function throughout the intended frequency range of interest. Both qualitative and quantitative illustrations evaluating the adequacy of different patch density assumptions to approximate the fitted spatial correlation function are provided. The actual response of a typical vehicle panel system is then evaluated in a convergence study where the patch density assumptions are varied over the same finite element model. The convergence study results are presented illustrating the impact resulting from a poor choice of patch density. The fitted correlation function used in this study represents a Diffuse Acoustic Field (DAF) excitation of the panel to produce vibration response.
Estimation of the EEG power spectrum using MRI T(2) relaxation time in traumatic brain injury.
Thatcher, R W; Biver, C; Gomez, J F; North, D; Curtin, R; Walker, R A; Salazar, A
2001-09-01
To study the relationship between magnetic resonance imaging (MRI) T(2) relaxation time and the power spectrum of the electroencephalogram (EEG) in long-term follow up of traumatic brain injury. Nineteen channel quantitative electroencephalograms or qEEG, tests of cognitive function and quantitative MRI T(2) relaxation times (qMRI) were measured in 18 mild to severe closed head injured outpatients 2 months to 4.6 years after injury and 11 normal controls. MRI T(2) and the Laplacian of T(2) were then correlated with the power spectrum of the scalp electrical potentials and current source densities of the qEEG. qEEG and qMRI T(2) were related by a frequency tuning with maxima in the alpha (8-12Hz) and the lower EEG frequencies (0.5-5Hz), which varied as a function of spatial location. The Laplacian of T(2) acted like a spatial-temporal "lens" by increasing the spatial-temporal resolution of correlation between 3-dimensional T(2) and the ear referenced alert but resting spontaneous qEEG. The severity of traumatic brain injury can be modeled by a linear transfer function that relates the molecular qMRI to qEEG resonant frequencies.
Ultrafast phosphate hydration dynamics in bulk H{sub 2}O
DOE Office of Scientific and Technical Information (OSTI.GOV)
Costard, Rene, E-mail: costard@mbi-berlin.de; Tyborski, Tobias; Fingerhut, Benjamin P., E-mail: fingerhut@mbi-berlin.de
2015-06-07
Phosphate vibrations serve as local probes of hydrogen bonding and structural fluctuations of hydration shells around ions. Interactions of H{sub 2}PO{sub 4}{sup −} ions and their aqueous environment are studied combining femtosecond 2D infrared spectroscopy, ab-initio calculations, and hybrid quantum-classical molecular dynamics (MD) simulations. Two-dimensional infrared spectra of the symmetric (ν{sub S}(PO{sub 2}{sup −})) and asymmetric (ν{sub AS}(PO{sub 2}{sup −})) PO{sub 2}{sup −} stretching vibrations display nearly homogeneous lineshapes and pronounced anharmonic couplings between the two modes and with the δ(P-(OH){sub 2}) bending modes. The frequency-time correlation function derived from the 2D spectra consists of a predominant 50 fs decaymore » and a weak constant component accounting for a residual inhomogeneous broadening. MD simulations show that the fluctuating electric field of the aqueous environment induces strong fluctuations of the ν{sub S}(PO{sub 2}{sup −}) and ν{sub AS}(PO{sub 2}{sup −}) transition frequencies with larger frequency excursions for ν{sub AS}(PO{sub 2}{sup −}). The calculated frequency-time correlation function is in good agreement with the experiment. The ν(PO{sub 2}{sup −}) frequencies are mainly determined by polarization contributions induced by electrostatic phosphate-water interactions. H{sub 2}PO{sub 4}{sup −}/H{sub 2}O cluster calculations reveal substantial frequency shifts and mode mixing with increasing hydration. Predicted phosphate-water hydrogen bond (HB) lifetimes have values on the order of 10 ps, substantially longer than water-water HB lifetimes. The ultrafast phosphate-water interactions observed here are in marked contrast to hydration dynamics of phospholipids where a quasi-static inhomogeneous broadening of phosphate vibrations suggests minor structural fluctuations of interfacial water.« less
Simakov, David S. A.; Pérez-Mercader, Juan
2013-01-01
Oscillating chemical reactions are common in biological systems and they also occur in artificial non-biological systems. Generally, these reactions are subject to random fluctuations in environmental conditions which translate into fluctuations in the values of physical variables, for example, temperature. We formulate a mathematical model for a nonisothermal minimal chemical oscillator containing a single negative feedback loop and study numerically the effects of stochastic fluctuations in temperature in the absence of any deterministic limit cycle or periodic forcing. We show that noise in temperature can induce sustained limit cycle oscillations with a relatively narrow frequency distribution and some characteristic frequency. These properties differ significantly depending on the noise correlation. Here, we have explored white and colored (correlated) noise. A plot of the characteristic frequency of the noise induced oscillations as a function of the correlation exponent shows a maximum, therefore indicating the existence of autonomous stochastic resonance, i.e. coherence resonance. PMID:23929212
Measuring Time-of-Flight in an Ultrasonic LPS System Using Generalized Cross-Correlation
Villladangos, José Manuel; Ureña, Jesús; García, Juan Jesús; Mazo, Manuel; Hernández, Álvaro; Jiménez, Ana; Ruíz, Daniel; De Marziani, Carlos
2011-01-01
In this article, a time-of-flight detection technique in the frequency domain is described for an ultrasonic Local Positioning System (LPS) based on encoded beacons. Beacon transmissions have been synchronized and become simultaneous by means of the DS-CDMA (Direct-Sequence Code Division Multiple Access) technique. Every beacon has been associated to a 255-bit Kasami code. The detection of signal arrival instant at the receiver, from which the distance to each beacon can be obtained, is based on the application of the Generalized Cross-Correlation (GCC), by using the cross-spectral density between the received signal and the sequence to be detected. Prior filtering to enhance the frequency components around the carrier frequency (40 kHz) has improved estimations when obtaining the correlation function maximum, which implies an improvement in distance measurement precision. Positioning has been achieved by using hyperbolic trilateration, based on the Time Differences of Arrival (TDOA) between a reference beacon and the others. PMID:22346645
Measuring time-of-flight in an ultrasonic LPS system using generalized cross-correlation.
Villladangos, José Manuel; Ureña, Jesús; García, Juan Jesús; Mazo, Manuel; Hernández, Alvaro; Jiménez, Ana; Ruíz, Daniel; De Marziani, Carlos
2011-01-01
In this article, a time-of-flight detection technique in the frequency domain is described for an ultrasonic local positioning system (LPS) based on encoded beacons. Beacon transmissions have been synchronized and become simultaneous by means of the DS-CDMA (direct-sequence code Division multiple access) technique. Every beacon has been associated to a 255-bit Kasami code. The detection of signal arrival instant at the receiver, from which the distance to each beacon can be obtained, is based on the application of the generalized cross-correlation (GCC), by using the cross-spectral density between the received signal and the sequence to be detected. Prior filtering to enhance the frequency components around the carrier frequency (40 kHz) has improved estimations when obtaining the correlation function maximum, which implies an improvement in distance measurement precision. Positioning has been achieved by using hyperbolic trilateration, based on the time differences of arrival (TDOA) between a reference beacon and the others.
NASA Technical Reports Server (NTRS)
Kato, Seiji; Sun-Mack, Sunny; Miller, Walter F.; Rose, Fred G.; Chen, Yan; Minnis, Patrick; Wielicki, Bruce A.
2009-01-01
A cloud frequency of occurrence matrix is generated using merged cloud vertical profile derived from Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and Cloud Profiling Radar (CPR). The matrix contains vertical profiles of cloud occurrence frequency as a function of the uppermost cloud top. It is shown that the cloud fraction and uppermost cloud top vertical pro les can be related by a set of equations when the correlation distance of cloud occurrence, which is interpreted as an effective cloud thickness, is introduced. The underlying assumption in establishing the above relation is that cloud overlap approaches the random overlap with increasing distance separating cloud layers and that the probability of deviating from the random overlap decreases exponentially with distance. One month of CALIPSO and CloudSat data support these assumptions. However, the correlation distance sometimes becomes large, which might be an indication of precipitation. The cloud correlation distance is equivalent to the de-correlation distance introduced by Hogan and Illingworth [2000] when cloud fractions of both layers in a two-cloud layer system are the same.
NASA Technical Reports Server (NTRS)
Jackson, F. C.
1979-01-01
Two simple microwave radar techniques that are potentially capable of providing routine satellite measurements of the directional spectrum of ocean waves were developed. One technique, the short pulse technique, makes use of very short pulses to resolve ocean surface wave contrast features in the range direction; the other technique, the two frequency correlation technique makes use of coherency in the transmitted waveform to detect the large ocean wave contrast modulation as a beat or mixing frequency in the power backscattered at two closely separated microwave frequencies. A frequency domain analysis of the short pulse and two frequency systems shows that the two measurement systems are essentially duals; they each operate on the generalized (three frequency) fourth-order statistical moment of the surface transfer function in different, but symmetrical ways, and they both measure the same directional contrast modulation spectrum. A three dimensional physical optics solution for the fourth-order moment was obtained for backscatter in the near vertical, specular regime, assuming Gaussian surface statistics.
Huebl, Julius; Brücke, Christof; Schneider, Gerd-Helge; Blahak, Christian; Krauss, Joachim K; Kühn, Andrea A
2015-07-01
Pallidal deep brain stimulation (DBS) is an effective treatment for patients with primary dystonia leading to a substantial reduction of symptom severity. However, stimulation induced side effects such as bradykinesia have also been reported recently. The influence of stimulation parameters on such side effects have not yet been systemically assessed in these patients. Here we tested the effect of stimulation frequency and duration of stimulation period on hand motor function in 22 patients with primary cervical and segmental dystonia using an unimanual tapping task. Patients performed the task at 4 different stimulation frequencies (0 Hz = OFF stimulation, 20, 50 and ≥130 Hz = high frequency stimulation) after either an SHORT (5 min, N = 16) or a LONG (60 min, N = 6) stimulation period (i.e. changing of DBS-frequency). The change of overall mobility under HFS compared to the preoperative state was assessed with a 5-point Likert-scale. Tapping performance was analysed using a repeated measures ANOVA with the main factor 'FREQUENCY'. Tapping performance at HFS and changes in general mobility were correlated using Spearman's Rho. We found a frequency specific modulation of hand motor function: HFS led to deterioration and 20 Hz stimulation to improvement of tapping rate. The effects were predominant in the 'LONG' group suggesting a significant contribution of stimulation duration. This is important to consider during DBS-programming and evaluation of potential side effects. Furthermore, the impairment in hand motor function under HFS was mirrored by the patients' observation of a deterioration of general mobility. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Danila, B.; McGurn, A. R.
2005-03-01
A theoretical discussion is given of the diffuse scattering of p -polarized electromagnetic waves from a vacuum-dielectric interface characterized by a one-dimensional disorder in the form of parallel, Gaussian shaped, dielectric ridges positioned at random on a planar semi-infinite dielectric substrate. The parameters of the surface roughness are chosen so that the surface is characterized as weakly rough with a low ridge concentration. The emphasis is on phase coherent features in the speckle pattern of light scattered from the surface. These features are determined from the intensity-intensity correlation function of the speckle pattern and are studied as functions of the frequency of light for frequencies near the dielectric frequency resonances of the ridge material. In the first part of the study, the ridges on the substrate are taken to be identical, made from either GaAs, NaF, or ZnS. The substrate for all cases is CdS. In a second set of studies, the heights and widths of the ridges are statistically distributed. The effects of these different types of randomness on the scattering from the random array of dielectric ridges is determined near the dielectric resonance frequency of the ridge material. The work presented is an extension of studies [A. B. McGurn and R. M. Fitzgerald, Phys. Rev. B 65, 155414 (2002)] that originally treated only the differential reflection coefficient of the diffuse scattering of light (not speckle correlation functions) from a system of identical ridges. The object of the present work is to demonstrate the effects of the dielectric frequency resonances of the ridge materials on the phase coherent features found in the speckle patterns of the diffusely scattered light. The dielectric frequency resonances are shown to enhance the observation of the weak localization of electromagnetic surface waves at the random interface. The frequencies treated in this work are in the infrared. Previous weak localization studies have concentrated mainly on the visible and ultraviolet.
Alternating current transport and dielectric relaxation of nanocrystalline graphene oxide
NASA Astrophysics Data System (ADS)
Zedan, I. T.; El-Menyawy, E. M.
2018-07-01
Graphene oxide (GO) has been synthesized from natural graphite using modified Hummer's method and is subjected to sonication for 1 h. X-ray diffraction (XRD) showed that the prepared GO has nanocrystalline structure with particle size of about 5 nm and high-resolution transmission electron microscope showed that it had a layered structure. The nanocrystalline GO powder was pressed as a disk and the alternating current (AC) electrical conductivity, σAC, and dielectric properties have been investigated in the frequency range 50Hz-5 MHz and temperature range 298-523K using parallel plate spectroscopic technique. Analysis of σ AC as a function of frequency shows that the relation follows Jonscher's universal law with frequency exponent decreases with increasing temperature in which the correlated barrier hopping model is applicable to describe the behavior. The dielectric constant and dielectric loss are studied as functions of frequency and temperature. The dielectric modulus formalism is used for describing the relaxation process in which the relaxation time and its activation energy were evaluated.
Reategui, Camille; Costa, Bruna Karen de Sousa; da Fonseca, Caio Queiroz; da Silva, Luana; Morya, Edgard
2017-01-01
Autism spectrum disorder (ASD) is a neuropsychiatric disorder characterized by the impairment in the social reciprocity, interaction/language, and behavior, with stereotypes and signs of sensory function deficits. Electroencephalography (EEG) is a well-established and noninvasive tool for neurophysiological characterization and monitoring of the brain electrical activity, able to identify abnormalities related to frequency range, connectivity, and lateralization of brain functions. This research aims to evidence quantitative differences in the frequency spectrum pattern between EEG signals of children with and without ASD during visualization of human faces in three different expressions: neutral, happy, and angry. Quantitative clinical evaluations, neuropsychological evaluation, and EEG of children with and without ASD were analyzed paired by age and gender. The results showed stronger activation in higher frequencies (above 30 Hz) in frontal, central, parietal, and occipital regions in the ASD group. This pattern of activation may correlate with developmental characteristics in the children with ASD. PMID:29018811
Seshagiri, Chandran V.; Delgutte, Bertrand
2007-01-01
The complex anatomical structure of the central nucleus of the inferior colliculus (ICC), the principal auditory nucleus in the midbrain, may provide the basis for functional organization of auditory information. To investigate this organization, we used tetrodes to record from neighboring neurons in the ICC of anesthetized cats and studied the similarity and difference among the responses of these neurons to pure-tone stimuli using widely used physiological characterizations. Consistent with the tonotopic arrangement of neurons in the ICC and reports of a threshold map, we found a high degree of correlation in the best frequencies (BFs) of neighboring neurons, which were mostly <3 kHz in our sample, and the pure-tone thresholds among neighboring neurons. However, width of frequency tuning, shapes of the frequency response areas, and temporal discharge patterns showed little or no correlation among neighboring neurons. Because the BF and threshold are measured at levels near the threshold and the characteristic frequency (CF), neighboring neurons may receive similar primary inputs tuned to their CF; however, at higher levels, additional inputs from other frequency channels may be recruited, introducing greater variability in the responses. There was also no correlation among neighboring neurons' sensitivity to interaural time differences (ITD) measured with binaural beats. However, the characteristic phases (CPs) of neighboring neurons revealed a significant correlation. Because the CP is related to the neural mechanisms generating the ITD sensitivity, this result is consistent with segregation of inputs to the ICC from the lateral and medial superior olives. PMID:17671101
Seshagiri, Chandran V; Delgutte, Bertrand
2007-10-01
The complex anatomical structure of the central nucleus of the inferior colliculus (ICC), the principal auditory nucleus in the midbrain, may provide the basis for functional organization of auditory information. To investigate this organization, we used tetrodes to record from neighboring neurons in the ICC of anesthetized cats and studied the similarity and difference among the responses of these neurons to pure-tone stimuli using widely used physiological characterizations. Consistent with the tonotopic arrangement of neurons in the ICC and reports of a threshold map, we found a high degree of correlation in the best frequencies (BFs) of neighboring neurons, which were mostly <3 kHz in our sample, and the pure-tone thresholds among neighboring neurons. However, width of frequency tuning, shapes of the frequency response areas, and temporal discharge patterns showed little or no correlation among neighboring neurons. Because the BF and threshold are measured at levels near the threshold and the characteristic frequency (CF), neighboring neurons may receive similar primary inputs tuned to their CF; however, at higher levels, additional inputs from other frequency channels may be recruited, introducing greater variability in the responses. There was also no correlation among neighboring neurons' sensitivity to interaural time differences (ITD) measured with binaural beats. However, the characteristic phases (CPs) of neighboring neurons revealed a significant correlation. Because the CP is related to the neural mechanisms generating the ITD sensitivity, this result is consistent with segregation of inputs to the ICC from the lateral and medial superior olives.
Darveau, Charles-A; Billardon, Fannie; Bélanger, Kasandra
2014-02-15
The evolution of flight energetics requires that phenotypes be variable, repeatable and heritable. We studied intraspecific variation in flight energetics in order to assess the repeatability of flight metabolic rate and wingbeat frequency, as well as the functional basis of phenotypic variation in workers and drones of the bumblebee species Bombus impatiens. We showed that flight metabolic rate and wingbeat frequency were highly repeatable in workers, even when controlling for body mass variation using residual analysis. We did not detect significant repeatability in drones, but a smaller range of variation might have prevented us from finding significant values in our sample. Based on our results and previous findings, we associated the high repeatability of flight phenotypes in workers to the functional links between body mass, thorax mass, wing size, wingbeat frequency and metabolic rate. Moreover, differences between workers and drones were as predicted from these functional associations, where drones had larger wings for their size, lower wingbeat frequency and lower flight metabolic rate. We also investigated thoracic muscle metabolic phenotypes by measuring the activity of carbohydrate metabolism enzymes, and we found positive correlations between mass-independent metabolic rate and the activity of all enzymes measured, but in workers only. When comparing workers and drones that differ in flight metabolic rate, only the activity of the enzymes hexokinase and trehalase showed the predicted differences. Overall, our study indicates that there should be correlated evolution among physiological phenotypes at multiple levels of organization and morphological traits associated with flight.
NASA Astrophysics Data System (ADS)
Lider, M. C.; Yurtseven, H.
2018-05-01
The resonant frequency shifts are related to the thermodynamic quantities (compressibility, order parameter and susceptibility) for the α-β transition in quartz. The experimental data for the resonant frequencies and the bulk modulus from the literature are used for those correlations. By calculating the order parameter from the mean field theory, correlation between the resonant frequencies of various modes and the order parameter is examined according to the quasi-harmonic phonon theory for the α-β transition in quartz. Also, correlation between the bulk modulus in relation to the resonant frequency shifts and the order parameter susceptibility is constructed for the α-β transition in this crystalline system.
Minati, Ludovico; Chiesa, Pietro; Tabarelli, Davide; D'Incerti, Ludovico
2015-01-01
In this paper, the topographical relationship between functional connectivity (intended as inter-regional synchronization), spectral and non-linear dynamical properties across cortical areas of the healthy human brain is considered. Based upon functional MRI acquisitions of spontaneous activity during wakeful idleness, node degree maps are determined by thresholding the temporal correlation coefficient among all voxel pairs. In addition, for individual voxel time-series, the relative amplitude of low-frequency fluctuations and the correlation dimension (D2), determined with respect to Fourier amplitude and value distribution matched surrogate data, are measured. Across cortical areas, high node degree is associated with a shift towards lower frequency activity and, compared to surrogate data, clearer saturation to a lower correlation dimension, suggesting presence of non-linear structure. An attempt to recapitulate this relationship in a network of single-transistor oscillators is made, based on a diffusive ring (n = 90) with added long-distance links defining four extended hub regions. Similarly to the brain data, it is found that oscillators in the hub regions generate signals with larger low-frequency cycle amplitude fluctuations and clearer saturation to a lower correlation dimension compared to surrogates. The effect emerges more markedly close to criticality. The homology observed between the two systems despite profound differences in scale, coupling mechanism and dynamics appears noteworthy. These experimental results motivate further investigation into the heterogeneity of cortical non-linear dynamics in relation to connectivity and underline the ability for small networks of single-transistor oscillators to recreate collective phenomena arising in much more complex biological systems, potentially representing a future platform for modelling disease-related changes. PMID:25833429
Correlated evolution between hearing sensitivity and social calls in bats
Bohn, Kirsten M; Moss, Cynthia F; Wilkinson, Gerald S
2006-01-01
Echolocating bats are auditory specialists, with exquisite hearing that spans several octaves. In the ultrasonic range, bat audiograms typically show highest sensitivity in the spectral region of their species-specific echolocation calls. Well-developed hearing in the audible range has been commonly attributed to a need to detect sounds produced by prey. However, bat pups often emit isolation calls with low-frequency components that facilitate mother–young reunions. In this study, we examine whether low-frequency hearing in bats exhibits correlated evolution with (i) body size; (ii) high-frequency hearing sensitivity or (iii) pup isolation call frequency. Using published audiograms, we found that low-frequency hearing sensitivity is not dependent on body size but is related to high-frequency hearing. After controlling for high-frequency hearing, we found that low-frequency hearing exhibits correlated evolution with isolation call frequency. We infer that detection and discrimination of isolation calls have favoured enhanced low-frequency hearing because accurate parental investment is critical: bats have low reproductive rates, non-volant altricial young and must often identify their pups within large crèches. PMID:17148288
Milz, Patricia; Pascual-Marqui, Roberto D; Lehmann, Dietrich; Faber, Pascal L
2016-05-01
Functional states of the brain are constituted by the temporally attuned activity of spatially distributed neural networks. Such networks can be identified by independent component analysis (ICA) applied to frequency-dependent source-localized EEG data. This methodology allows the identification of networks at high temporal resolution in frequency bands of established location-specific physiological functions. EEG measurements are sensitive to neural activity changes in cortical areas of modality-specific processing. We tested effects of modality-specific processing on functional brain networks. Phasic modality-specific processing was induced via tasks (state effects) and tonic processing was assessed via modality-specific person parameters (trait effects). Modality-specific person parameters and 64-channel EEG were obtained from 70 male, right-handed students. Person parameters were obtained using cognitive style questionnaires, cognitive tests, and thinking modality self-reports. EEG was recorded during four conditions: spatial visualization, object visualization, verbalization, and resting. Twelve cross-frequency networks were extracted from source-localized EEG across six frequency bands using ICA. RMANOVAs, Pearson correlations, and path modelling examined effects of tasks and person parameters on networks. Results identified distinct state- and trait-dependent functional networks. State-dependent networks were characterized by decreased, trait-dependent networks by increased alpha activity in sub-regions of modality-specific pathways. Pathways of competing modalities showed opposing alpha changes. State- and trait-dependent alpha were associated with inhibitory and automated processing, respectively. Antagonistic alpha modulations in areas of competing modalities likely prevent intruding effects of modality-irrelevant processing. Considerable research suggested alpha modulations related to modality-specific states and traits. This study identified the distinct electrophysiological cortical frequency-dependent networks within which they operate.
Increased power spectral density in resting-state pain-related brain networks in fibromyalgia.
Kim, Ji-Young; Kim, Seong-Ho; Seo, Jeehye; Kim, Sang-Hyon; Han, Seung Woo; Nam, Eon Jeong; Kim, Seong-Kyu; Lee, Hui Joong; Lee, Seung-Jae; Kim, Yang-Tae; Chang, Yongmin
2013-09-01
Fibromyalgia (FM), characterized by chronic widespread pain, is known to be associated with heightened responses to painful stimuli and atypical resting-state functional connectivity among pain-related regions of the brain. Previous studies of FM using resting-state functional magnetic resonance imaging (rs-fMRI) have focused on intrinsic functional connectivity, which maps the spatial distribution of temporal correlations among spontaneous low-frequency fluctuation in functional MRI (fMRI) resting-state data. In the current study, using rs-fMRI data in the frequency domain, we investigated the possible alteration of power spectral density (PSD) of low-frequency fluctuation in brain regions associated with central pain processing in patients with FM. rsfMRI data were obtained from 19 patients with FM and 20 age-matched healthy female control subjects. For each subject, the PSDs for each brain region identified from functional connectivity maps were computed for the frequency band of 0.01 to 0.25 Hz. For each group, the average PSD was determined for each brain region and a 2-sample t test was performed to determine the difference in power between the 2 groups. According to the results, patients with FM exhibited significantly increased frequency power in the primary somatosensory cortex (S1), supplementary motor area (SMA), dorsolateral prefrontal cortex, and amygdala. In patients with FM, the increase in PSD did not show an association with depression or anxiety. Therefore, our findings of atypical increased frequency power during the resting state in pain-related brain regions may implicate the enhanced resting-state baseline neural activity in several brain regions associated with pain processing in FM. Copyright © 2013 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
Interferometry theory for the block 2 processor
NASA Technical Reports Server (NTRS)
Thomas, J. B.
1987-01-01
Presented is the interferometry theory for the Block 2 processor, including a high-level functional description and a discussion of data structure. The analysis covers the major processing steps: cross-correlation, fringe counter-rotation, transformation to the frequency domain, phase calibration, bandwidth synthesis, and extraction of the observables of amplitude, phase, phase rate, and delay. Also included are analyses for fractional bitshift correction, station clock error, ionosphere correction, and effective frequencies for the observables.
Siegrist, Karin; Millier, Aurelie; Amri, Ikbal; Aballéa, Samuel; Toumi, Mondher
2015-12-30
The lack of social contacts may be an important element in the presumed vicious circle aggravating, or at least stabilising negative symptoms in patients with schizophrenia. A European 2-year cohort study collected negative symptom scores, psychosocial functioning scores, objective social contact frequency scores and quality of life scores every 6 months. Bivariate analyses, correlation analyses, multivariate regressions and random effects regressions were conducted to describe relations between social contact and outcomes of interest and to gain a better understanding of this relation over time. Using data from 1208 patients with schizophrenia, a link between social contact frequency and negative symptom scores, functioning and quality of life at baseline was established. Regression models confirmed the significant association between social contact and negative symptoms as well as psychosocial functioning. This study aimed at demonstrating the importance of social contact for deficient behavioural aspects of schizophrenia. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
A probabilistic approach for the estimation of earthquake source parameters from spectral inversion
NASA Astrophysics Data System (ADS)
Supino, M.; Festa, G.; Zollo, A.
2017-12-01
The amplitude spectrum of a seismic signal related to an earthquake source carries information about the size of the rupture, moment, stress and energy release. Furthermore, it can be used to characterize the Green's function of the medium crossed by the seismic waves. We describe the earthquake amplitude spectrum assuming a generalized Brune's (1970) source model, and direct P- and S-waves propagating in a layered velocity model, characterized by a frequency-independent Q attenuation factor. The observed displacement spectrum depends indeed on three source parameters, the seismic moment (through the low-frequency spectral level), the corner frequency (that is a proxy of the fault length) and the high-frequency decay parameter. These parameters are strongly correlated each other and with the quality factor Q; a rigorous estimation of the associated uncertainties and parameter resolution is thus needed to obtain reliable estimations.In this work, the uncertainties are characterized adopting a probabilistic approach for the parameter estimation. Assuming an L2-norm based misfit function, we perform a global exploration of the parameter space to find the absolute minimum of the cost function and then we explore the cost-function associated joint a-posteriori probability density function around such a minimum, to extract the correlation matrix of the parameters. The global exploration relies on building a Markov chain in the parameter space and on combining a deterministic minimization with a random exploration of the space (basin-hopping technique). The joint pdf is built from the misfit function using the maximum likelihood principle and assuming a Gaussian-like distribution of the parameters. It is then computed on a grid centered at the global minimum of the cost-function. The numerical integration of the pdf finally provides mean, variance and correlation matrix associated with the set of best-fit parameters describing the model. Synthetic tests are performed to investigate the robustness of the method and uncertainty propagation from the data-space to the parameter space. Finally, the method is applied to characterize the source parameters of the earthquakes occurring during the 2016-2017 Central Italy sequence, with the goal of investigating the source parameter scaling with magnitude.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jesser, Renee D.; Li, Shaobing; Weinberg, Adriana
2006-09-01
HIV-infected patients fail to fully recover cell-mediated immunity despite HAART. To identify regulatory factors, we studied the phenotype and function of in vitro cytomegalovirus (CMV)-stimulated T cells from HAART recipients. CFSE-measured proliferation showed CD4{sup +} and CD8{sup +} cells dividing in CMV-stimulated cultures. Compared with healthy controls, CMV-stimulated lymphocytes from HAART recipients had lower {sup 3}H-thymidine incorporation; lower IFN{gamma} and TNF{alpha} production; higher CD4{sup +}CD27{sup -}CD28{sup -} and CD8{sup +}CD27{sup -}CD28{sup -} frequencies; lower CD4{sup +}CD25{sup hi}; and higher FoxP3 expression in CD8{sup +}CD25{sup hi} cells. CMV-specific proliferation correlated with higher IFN{gamma}, TNF{alpha} and IL10 levels and higher CD4{sup +}perforin{supmore » +} and CD8{sup +}perforin{sup +} frequencies. Decreased proliferation correlated with higher CD4{sup +}CD27{sup -}CD28{sup -} frequencies and TGF{beta}1 production, which also correlated with each other. Anti-TGF{beta}1 neutralizing antibodies restored CMV-specific proliferation in a dose-dependent fashion. In HIV-infected subjects, decreased proliferation correlated with higher CMV-stimulated CD8{sup +}CD25{sup hi} frequencies and their FoxP3 expression. These data indicate that FoxP3- and TGF{beta}1-expressing regulatory T cells contribute to decreased immunity in HAART recipients.« less
Song, Xiaopeng; Hu, Xiao; Zhou, Shuqin; Xu, Yuanyuan; Zhang, Yi; Yuan, Yonggui; Liu, Yijun; Zhu, Huaiqiu; Liu, Weiguo; Gao, Jia-Hong
2015-11-17
A novel empirical mode decomposition method was adopted to investigate the dissociative or interactive neural impact of depression and motor impairments in Parkinson's disease (PD). Resting-state fMRI data of 59 PD subjects were first decomposed into characteristic frequency bands, and the main effects of motor severity and depression and their interaction on the energy of blood-oxygen-level-dependent signal oscillation in specific frequency bands were then evaluated. The results show that the severity of motor symptoms is negatively correlated with the energy in the frequency band of 0.10-0.25 Hz in the bilateral thalamus, but positively correlated with 0.01-0.027 Hz band energy in the bilateral postcentral gyrus. The severity of depression, on the other hand, is positively correlated with the energy of 0.10-0.25 Hz but negatively with 0.01-0.027 Hz in the bilateral subgenual gyrus. Notably, the interaction between motor and depressive symptoms is negatively correlated with the energy of 0.10-0.25 Hz in the substantia nigra, hippocampus, inferior orbitofrontal cortex, and temporoparietal junction, but positively correlated with 0.02-0.05 Hz in the same regions. These findings indicate unique associations of fMRI band signals with motor and depressive symptoms in PD in specific brain regions, which may underscore the neural impact of the comorbidity and the differentiation between the two PD-related disorders.
Aizenberg, Mark; Mwilambwe-Tshilobo, Laetitia; Briguglio, John J.; Natan, Ryan G.; Geffen, Maria N.
2015-01-01
The ability to discriminate tones of different frequencies is fundamentally important for everyday hearing. While neurons in the primary auditory cortex (AC) respond differentially to tones of different frequencies, whether and how AC regulates auditory behaviors that rely on frequency discrimination remains poorly understood. Here, we find that the level of activity of inhibitory neurons in AC controls frequency specificity in innate and learned auditory behaviors that rely on frequency discrimination. Photoactivation of parvalbumin-positive interneurons (PVs) improved the ability of the mouse to detect a shift in tone frequency, whereas photosuppression of PVs impaired the performance. Furthermore, photosuppression of PVs during discriminative auditory fear conditioning increased generalization of conditioned response across tone frequencies, whereas PV photoactivation preserved normal specificity of learning. The observed changes in behavioral performance were correlated with bidirectional changes in the magnitude of tone-evoked responses, consistent with predictions of a model of a coupled excitatory-inhibitory cortical network. Direct photoactivation of excitatory neurons, which did not change tone-evoked response magnitude, did not affect behavioral performance in either task. Our results identify a new function for inhibition in the auditory cortex, demonstrating that it can improve or impair acuity of innate and learned auditory behaviors that rely on frequency discrimination. PMID:26629746
Analysis of cracked RC beams under vibration
NASA Astrophysics Data System (ADS)
Capozucca, R.; Magagnini, E.
2017-05-01
Among the methods of monitoring of integrity, vibration analysis is more convenient as non-destructive testing (NDT) method. Many aspects regarding the vibration monitoring of the structural integrity of damaged RC elements have not been completely analysed in literature. The correlation between the development of the crack pattern on concrete surface under bending loadings, as well as the width and depth of cracks, and the variation of dynamic parameters on a structural element is an important aspects that has to be more investigated. This paper deals with cracked RC beams controlled by NDT based on natural vibration, which may be correlated to damage degree due to cracking of concrete under severe state of loading. An experimental investigation on the assessment of RC beams in different scale under loading has been done through dynamic tests in different constraint conditions of edges measuring frequency values and frequency variation. Envelope of Frequency Response Functions (FRFs) are shown and the changes of natural frequency values are related to the damage degree of RC beams subjected to static tests. Finally, a comparison between data obtained by finite element analysis and experimental results is shown.
Photon entanglement signatures in difference-frequency-generation
Roslyak, Oleksiy; Mukamel, Shaul
2010-01-01
In response to quantum optical fields, pairs of molecules generate coherent nonlinear spectroscopy signals. Homodyne signals are given by sums over terms each being a product of Liouville space pathways of the pair of molecules times the corresponding optical field correlation function. For classical fields all field correlation functions may be factorized and become identical products of field amplitudes. The signal is then given by the absolute square of a susceptibility which in turn is a sum over pathways of a single molecule. The molecular pathways of different molecules in the pair are uncorrelated in this case (each path of a given molecule can be accompanied by any path of the other). However, entangled photons create an entanglement between the molecular pathways. We use the superoperator nonequlibrium Green’s functions formalism to demonstrate the signatures of this pathway-entanglement in the difference frequency generation signal. Comparison is made with an analogous incoherent two-photon fluorescence signal. PMID:19158927
Quantum Critical Point revisited by the Dynamical Mean Field Theory
NASA Astrophysics Data System (ADS)
Xu, Wenhu; Kotliar, Gabriel; Tsvelik, Alexei
Dynamical mean field theory is used to study the quantum critical point (QCP) in the doped Hubbard model on a square lattice. The QCP is characterized by a universal scaling form of the self energy and a spin density wave instability at an incommensurate wave vector. The scaling form unifies the low energy kink and the high energy waterfall feature in the spectral function, while the spin dynamics includes both the critical incommensurate and high energy antiferromagnetic paramagnons. We use the frequency dependent four-point correlation function of spin operators to calculate the momentum dependent correction to the electron self energy. Our results reveal a substantial difference with the calculations based on the Spin-Fermion model which indicates that the frequency dependence of the the quasiparitcle-paramagnon vertices is an important factor. The authors are supported by Center for Computational Design of Functional Strongly Correlated Materials and Theoretical Spectroscopy under DOE Grant DE-FOA-0001276.
Phase coherence induced by correlated disorder.
Hong, Hyunsuk; O'Keeffe, Kevin P; Strogatz, Steven H
2016-02-01
We consider a mean-field model of coupled phase oscillators with quenched disorder in the coupling strengths and natural frequencies. When these two kinds of disorder are uncorrelated (and when the positive and negative couplings are equal in number and strength), it is known that phase coherence cannot occur and synchronization is absent. Here we explore the effects of correlating the disorder. Specifically, we assume that any given oscillator either attracts or repels all the others, and that the sign of the interaction is deterministically correlated with the given oscillator's natural frequency. For symmetrically correlated disorder with zero mean, we find that the system spontaneously synchronizes, once the width of the frequency distribution falls below a critical value. For asymmetrically correlated disorder, the model displays coherent traveling waves: the complex order parameter becomes nonzero and rotates with constant frequency different from the system's mean natural frequency. Thus, in both cases, correlated disorder can trigger phase coherence.
Dual frequency scatterometer measurement of ocean wave height
NASA Technical Reports Server (NTRS)
Johnson, J. W.; Jones, W. L.; Swift, C. T.; Grantham, W. L.; Weissman, D. E.
1975-01-01
A technique for remotely measuring wave height averaged over an area of the sea surface was developed and verified with a series of aircraft flight experiments. The measurement concept involves the cross correlation of the amplitude fluctuations of two monochromatic reflected signals with variable frequency separation. The signal reflected by the randomly distributed specular points on the surface is observed in the backscatter direction at nadir incidence angle. The measured correlation coefficient is equal to the square of the magnitude of the characteristic function of the specular point height from which RMS wave height can be determined. The flight scatterometer operates at 13.9 GHz and 13.9 - delta f GHz with a maximum delta f of 40 MHz. Measurements were conducted for low and moderate sea states at altitudes of 2, 5, and 10 thousand feet. The experimental results agree with the predicted decorrelation with frequency separation and with off-nadir incidence angle.
Rusterholz, Thomas; Achermann, Peter; Dürr, Roland; Koenig, Thomas; Tarokh, Leila
2017-06-01
Investigating functional connectivity between brain networks has become an area of interest in neuroscience. Several methods for investigating connectivity have recently been developed, however, these techniques need to be applied with care. We demonstrate that global field synchronization (GFS), a global measure of phase alignment in the EEG as a function of frequency, must be applied considering signal processing principles in order to yield valid results. Multichannel EEG (27 derivations) was analyzed for GFS based on the complex spectrum derived by the fast Fourier transform (FFT). We examined the effect of window functions on GFS, in particular of non-rectangular windows. Applying a rectangular window when calculating the FFT revealed high GFS values for high frequencies (>15Hz) that were highly correlated (r=0.9) with spectral power in the lower frequency range (0.75-4.5Hz) and tracked the depth of sleep. This turned out to be spurious synchronization. With a non-rectangular window (Tukey or Hanning window) these high frequency synchronization vanished. Both, GFS and power density spectra significantly differed for rectangular and non-rectangular windows. Previous papers using GFS typically did not specify the applied window and may have used a rectangular window function. However, the demonstrated impact of the window function raises the question of the validity of some previous findings at higher frequencies. We demonstrated that it is crucial to apply an appropriate window function for determining synchronization measures based on a spectral approach to avoid spurious synchronization in the beta/gamma range. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kim, Sungyoung; Martens, William L.
2005-04-01
By industry standard (ITU-R. Recommendation BS.775-1), multichannel stereophonic signals within the frequency range of up to 80 or 120 Hz may be mixed and delivered via a single driver (e.g., a subwoofer) without significant impairment of stereophonic sound quality. The assumption that stereophonic information within such low-frequency content is not significant was tested by measuring discrimination thresholds for changes in interaural cross-correlation (IACC) within spectral bands containing the lowest frequency components of low-pitch musical tones. Performances were recorded for three different musical instruments playing single notes ranging in fundamental frequency from 41 Hz to 110 Hz. The recordings, made using a multichannel microphone array composed of five DPA 4006 pressure microphones, were processed to produce a set of stimuli that varied in interaural cross-correlation (IACC) within a low-frequency band, but were otherwise identical in a higher-frequency band. This correlation processing was designed to have minimal effect upon other psychoacoustic variables such as loudness and timbre. The results show that changes in interaural cross correlation (IACC) within low-frequency bands of low-pitch musical tones are most easily discriminated when decorrelated signals are presented via subwoofers positioned at extreme lateral angles (far from the median plane). [Work supported by VRQ.
Sert, Yusuf; Singer, L M; Findlater, M; Doğan, Hatice; Çırak, Ç
2014-07-15
In this study, the experimental and theoretical vibrational frequencies of a newly synthesized tert-Butyl N-(thiophen-2yl)carbamate have been investigated. The experimental FT-IR (4000-400 cm(-1)) spectrum of the molecule in the solid phase have been recorded. The theoretical vibrational frequencies and optimized geometric parameters (bond lengths and bond angles) have been calculated by using density functional theory (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr) and DFT/M06-2X (the highly parametrized, empirical exchange correlation function) quantum chemical methods with the 6-311++G(d,p) basis set by Gaussian 09W software, for the first time. The vibrational frequencies have been assigned using potential energy distribution (PED) analysis by using VEDA 4 software. The computational optimized geometric parameters and vibrational frequencies have been found to be in good agreement with the corresponding experimental data, and with related literature results. In addition, the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) energies and the other related molecular energy values have been calculated and are depicted. Copyright © 2014 Elsevier B.V. All rights reserved.
Thin and Slow Smoke Detection by Using Frequency Image
NASA Astrophysics Data System (ADS)
Zheng, Guang; Oe, Shunitiro
In this paper, a new method to detect thin and slow smoke for early fire alarm by using frequency image has been proposed. The correlation coefficient of the frequency image between the current stage and the initial stage are calculated, so are the gray image correlation coefficient of the color image. When the thin smoke close to transparent enters into the camera view, the correlation coefficient of the frequency image becomes small, while the gray image correlation coefficient of the color image hardly change and keep large. When something which is not transparent, like human beings, etc., enters into the camera view, the correlation coefficient of the frequency image becomes small, as well as that of color image. Based on the difference of correlation coefficient between frequency image and color image in different situations, the thin smoke can be detected. Also, considering the movement of the thin smoke, miss detection caused by the illustration change or noise can be avoided. Several experiments in different situations are carried out, and the experimental results show the effect of the proposed method.
Correlation analysis of the physiological factors controlling fundamental voice frequency.
Atkinson, J E
1978-01-01
A technique has been developed to obtain a quantitative measure of correlation between electromyographic (EMG) activity of various laryngeal muscles, subglottal air pressure, and the fundamental frequency of vibration of the vocal folds (Fo). Data were collected and analyzed on one subject, a native speaker of American English. The results show that an analysis of this type can provide a useful measure of correlation between the physiological and acoustical events in speech and, furthermore, can yield detailed insights into the organization and nature of the speech production process. In particular, based on these results, a model is suggested of Fo control involving laryngeal state functions that seems to agree with present knowledge of laryngeal control and experimental evidence.
Detecting the BCS pairing amplitude via a sudden lattice ramp in a honeycomb lattice
NASA Astrophysics Data System (ADS)
Tiesinga, Eite; Nuske, Marlon; Mathey, Ludwig
2016-05-01
We determine the exact time evolution of an initial Bardeen-Cooper-Schrieffer (BCS) state of ultra-cold atoms in a hexagonal optical lattice. The dynamical evolution is triggered by ramping the lattice potential up, such that the interaction strength Uf is much larger than the hopping amplitude Jf. The quench initiates collective oscillations with frequency | Uf | /(2 π) in the momentum occupation numbers and imprints an oscillating phase with the same frequency on the order parameter Δ. The latter is not reproduced by treating the time evolution in mean-field theory. The momentum density-density or noise correlation functions oscillate at frequency | Uf | /(2 π) as well as its second harmonic. For a very deep lattice, with negligible tunneling energy, the oscillations of momentum occupation numbers are undamped. Non-zero tunneling after the quench leads to dephasing of the different momentum modes and a subsequent damping of the oscillations. This occurs even for a finite-temperature initial BCS state, but not for a non-interacting Fermi gas. We therefore propose to use this dephasing to detect a BCS state. Finally, we predict that the noise correlation functions in a honeycomb lattice will develop strong anti-correlations near the Dirac point. We acknowledge funding from the National Science Foundation.
Subthalamic nucleus phase–amplitude coupling correlates with motor impairment in Parkinson’s disease
van Wijk, Bernadette C.M.; Beudel, Martijn; Jha, Ashwani; Oswal, Ashwini; Foltynie, Tom; Hariz, Marwan I.; Limousin, Patricia; Zrinzo, Ludvic; Aziz, Tipu Z.; Green, Alexander L.; Brown, Peter; Litvak, Vladimir
2016-01-01
Objective High-amplitude beta band oscillations within the subthalamic nucleus are frequently associated with Parkinson’s disease but it is unclear how they might lead to motor impairments. Here we investigate a likely pathological coupling between the phase of beta band oscillations and the amplitude of high-frequency oscillations around 300 Hz. Methods We analysed an extensive data set comprising resting-state recordings obtained from deep brain stimulation electrodes in 33 patients before and/or after taking dopaminergic medication. We correlated mean values of spectral power and phase–amplitude coupling with severity of hemibody bradykinesia/rigidity. In addition, we used simultaneously recorded magnetoencephalography to look at functional interactions between the subthalamic nucleus and ipsilateral motor cortex. Results Beta band power and phase–amplitude coupling within the subthalamic nucleus correlated positively with severity of motor impairment. This effect was more pronounced within the low-beta range, whilst coherence between subthalamic nucleus and motor cortex was dominant in the high-beta range. Conclusions We speculate that the beta band might impede pro-kinetic high-frequency activity patterns when phase–amplitude coupling is prominent. Furthermore, results provide evidence for a functional subdivision of the beta band into low and high frequencies. Significance Our findings contribute to the interpretation of oscillatory activity within the cortico-basal ganglia circuit. PMID:26971483
Ultra-wideband communication system prototype using orthogonal frequency coded SAW correlators.
Gallagher, Daniel R; Kozlovski, Nikolai Y; Malocha, Donald C
2013-03-01
This paper presents preliminary ultra-wideband (UWB) communication system results utilizing orthogonal frequency coded SAW correlators. Orthogonal frequency coding (OFC) and pseudo-noise (PN) coding provides a means for spread-spectrum UWB. The use of OFC spectrally spreads a PN sequence beyond that of CDMA; allowing for improved correlation gain. The transceiver approach is still very similar to that of the CDMA approach, but provides greater code diversity. Use of SAW correlators eliminates many of the costly components that are typically needed in the intermediate frequency (IF) section in the transmitter and receiver, and greatly reduces the signal processing requirements. Development and results of an experimental prototype system with center frequency of 250 MHz are presented. The prototype system is configured using modular RF components and benchtop pulse generator and frequency source. The SAW correlation filters used in the test setup were designed using 7 chip frequencies within the transducer. The fractional bandwidth of approximately 29% was implemented to exceed the defined UWB specification. Discussion of the filter design and results are presented and are compared with packaged device measurements. A prototype UWB system using OFC SAW correlators is demonstrated in wired and wireless configurations. OFC-coded SAW filters are used for generation of a transmitted spread-spectrum UWB and matched filter correlated reception. Autocorrelation and cross-correlation system outputs are compared. The results demonstrate the feasibility of UWB SAW correlators for use in UWB communication transceivers.
ERIC Educational Resources Information Center
Brookes, Bertram C.; Griffiths, Jose M.
1978-01-01
Frequency, rank, and frequency rank distributions are defined. Extensive discussion on several aspects of frequency rank distributions includes the Poisson process as a means of exploring the stability of ranks; the correlation of frequency rank distributions; and the transfer coefficient, a new measure in frequency rank distribution. (MBR)
Lin, Sin-Jie; Hwang, Shinn-Jang; Liu, Chieh-Yu; Lin, Hung-Ru
2012-06-01
Nutrition is an important issue for elderly residents of long-term care facilities (LTCFs). About 20% of elderly LTCF residents in Taiwan are malnourished. This study investigated correlations between nutritional status and physical function, admission frequency, hospitalstay duration, and mortality in elderly LTCF residents. Researchers used a retrospective study design and convenient sampling to enroll 174 subjects aged 67 to 105 years (average, 82.5 years) who were living in legally registered LTCFs in Beitou District, Taipei City, Taiwan. A review of LTCF resident files provided data on subjects' demographics, physical examination laboratory results for the most recent 1-year period, anthropometry, physical function, admission frequency, hospital stay duration, and causes of admissions. Subjects had lived in their LTCF for more than 1 year before their enrollment date. Subjects who died during and after the study period were also included in analysis. Results showed significant changes over the study year in subjects' nutritional status, physical function, and calf circumference. Physical function was found significantly correlated with calf circumference, hospitalization status was found correlated with nasal-gastric tube feeding status, and eating pattern was found correlated with calf circumference and levels of both serum albumin and cholesterol. Nutritional status, calf circumference, albumin level, and cholesterol level also correlated significantly with hospitalization status. In this study, the likelihood of hospitalization increased with age and nasal-gastric tube feeding use. Hospital stay duration for subjects receiving nasal-gastric tube feeding was longer than that for those receiving oral feeding. Also, weak nutritional status scores for calf circumference and hemoglobin levels were factors associated with increased mortality risk. Findings recommend that greater attention should be paid to the nutritional status of elderly persons living in LTCFs to reduce hospitalization and death risks, cut medical expenses, and improve quality of care.
Huang, Ching-Yuan; Weng, Rhay-Hung; Chen, Yi-Ting
2016-08-01
This study aims to ascertain the relationship between transformational leadership, interpersonal interaction and mentoring functions among new staff nurses. Mentoring functions could improve the job performance of new nurses, provide them with support and thus reduce their turnover rate. A cross-sectional study was employed. A questionnaire survey was carried out to collect data among a sample of new nurses from three hospitals in Taiwan. After gathering a total of 306 valid surveys, multiple regression analysis was applied to test the hypothesis. Inspirational motivation, idealised influence and individualised consideration had positive correlations with the overall mentoring function, but intellectual stimulation showed a positive association only with career development function. Perceived similarity and interaction frequency also had positive correlations with mentoring functions. When the shift overlap rate exceeded 80%, mentoring function showed a negative result. The transformational leadership of mentors would improve the mentoring functions among new staff nurses. Perceived similarity and interaction frequency between mentees and mentors also had positive correlations with mentoring functions. It is crucial for hospitals to redesign their leadership training and motivation programmes to enhance the transformational leadership of mentors. Furthermore, nursing managers should promote interaction between new staff nurses and their mentors; however, the shift overlap rate should not be too high. © 2016 John Wiley & Sons Ltd.
Hydration and vibrational dynamics of betaine (N,N,N-trimethylglycine)
NASA Astrophysics Data System (ADS)
Li, Tanping; Cui, Yaowen; Mathaga, John; Kumar, Revati; Kuroda, Daniel G.
2015-06-01
Zwitterions are naturally occurring molecules that have a positive and a negative charge group in its structure and are of great importance in many areas of science. Here, the vibrational and hydration dynamics of the zwitterionic system betaine (N,N,N-trimethylglycine) is reported. The linear infrared spectrum of aqueous betaine exhibits an asymmetric band in the 1550-1700 cm-1 region of the spectrum. This band is attributed to the carboxylate asymmetric stretch of betaine. The potential of mean force computed from ab initio molecular dynamic simulations confirms that the two observed transitions of the linear spectrum are related to two different betaine conformers present in solution. A model of the experimental data using non-linear response theory agrees very well with a vibrational model comprising of two vibrational transitions. In addition, our modeling shows that spectral parameters such as the slope of the zeroth contour plot and central line slope are both sensitive to the presence of overlapping transitions. The vibrational dynamics of the system reveals an ultrafast decay of the vibrational population relaxation as well as the correlation of frequency-frequency correlation function (FFCF). A decay of ˜0.5 ps is observed for the FFCF correlation time and is attributed to the frequency fluctuations caused by the motions of water molecules in the solvation shell. The comparison of the experimental observations with simulations of the FFCF from ab initio molecular dynamics and a density functional theory frequency map shows a very good agreement corroborating the correct characterization and assignment of the derived parameters.
Hydration and vibrational dynamics of betaine (N,N,N-trimethylglycine)
Li, Tanping; Cui, Yaowen; Mathaga, John; Kumar, Revati; Kuroda, Daniel G.
2015-01-01
Zwitterions are naturally occurring molecules that have a positive and a negative charge group in its structure and are of great importance in many areas of science. Here, the vibrational and hydration dynamics of the zwitterionic system betaine (N,N,N-trimethylglycine) is reported. The linear infrared spectrum of aqueous betaine exhibits an asymmetric band in the 1550-1700 cm−1 region of the spectrum. This band is attributed to the carboxylate asymmetric stretch of betaine. The potential of mean force computed from ab initio molecular dynamic simulations confirms that the two observed transitions of the linear spectrum are related to two different betaine conformers present in solution. A model of the experimental data using non-linear response theory agrees very well with a vibrational model comprising of two vibrational transitions. In addition, our modeling shows that spectral parameters such as the slope of the zeroth contour plot and central line slope are both sensitive to the presence of overlapping transitions. The vibrational dynamics of the system reveals an ultrafast decay of the vibrational population relaxation as well as the correlation of frequency-frequency correlation function (FFCF). A decay of ∼0.5 ps is observed for the FFCF correlation time and is attributed to the frequency fluctuations caused by the motions of water molecules in the solvation shell. The comparison of the experimental observations with simulations of the FFCF from ab initio molecular dynamics and a density functional theory frequency map shows a very good agreement corroborating the correct characterization and assignment of the derived parameters. PMID:26049458
NASA Astrophysics Data System (ADS)
Cao, Guangxi; Han, Yan; Cui, Weijun; Guo, Yu
2014-11-01
The cross-correlation between the China Securities Index 300 (CSI 300) index futures and the spot markets based on high-frequency data is discussed in this paper. We empirically analyze the cross-correlation by using the multifractal detrended cross-correlation analysis (MF-DCCA), and investigate further the characteristics of asymmetry, frequency difference, and transmission direction of the cross-correlation. The results indicate that the cross-correlation between the two markets is significant and multifractal. Meanwhile, weak asymmetries exist in the cross-correlation, and higher data frequency results in a lower multifractality degree of the cross-correlation. The causal relationship between the two markets is bidirectional, but the CSI 300 index futures market has greater impact on the spot market.
Spectral functions of strongly correlated extended systems via an exact quantum embedding
NASA Astrophysics Data System (ADS)
Booth, George H.; Chan, Garnet Kin-Lic
2015-04-01
Density matrix embedding theory (DMET) [Phys. Rev. Lett. 109, 186404 (2012), 10.1103/PhysRevLett.109.186404], introduced an approach to quantum cluster embedding methods whereby the mapping of strongly correlated bulk problems to an impurity with finite set of bath states was rigorously formulated to exactly reproduce the entanglement of the ground state. The formalism provided similar physics to dynamical mean-field theory at a tiny fraction of the cost but was inherently limited by the construction of a bath designed to reproduce ground-state, static properties. Here, we generalize the concept of quantum embedding to dynamic properties and demonstrate accurate bulk spectral functions at similarly small computational cost. The proposed spectral DMET utilizes the Schmidt decomposition of a response vector, mapping the bulk dynamic correlation functions to that of a quantum impurity cluster coupled to a set of frequency-dependent bath states. The resultant spectral functions are obtained on the real-frequency axis, without bath discretization error, and allows for the construction of arbitrary dynamic correlation functions. We demonstrate the method on the one- (1D) and two-dimensional (2D) Hubbard model, where we obtain zero temperature and thermodynamic limit spectral functions, and show the trivial extension to two-particle Green's functions. This advance therefore extends the scope and applicability of DMET in condensed-matter problems as a computationally tractable route to correlated spectral functions of extended systems and provides a competitive alternative to dynamical mean-field theory for dynamic quantities.
Self-Transcendence, Sexual Desire, and Sexual Frequency.
Costa, Rui Miguel; Pestana, José; Costa, David
2018-01-02
Self-forgetfulness is a facet of self-transcendence characterized by tendency to experience altered states of consciousness. We examined associations of self-forgetfulness with sexual desire and frequency. Two hundred sixty-one Portuguese men and women completed the self-forgetfulness subscale of the Temperament and Character Inventory-Revised, a measure of openness to experience, and a questionnaire on desired and actual frequency of vaginal intercourse, noncoital sex, and masturbation in the past month. In simple and partial correlations controlling for openness to experience and relationship status, women's self-forgetfulness correlated with desired frequency of intercourse and noncoital sex. For men, self-forgetfulness correlated with actual frequency of intercourse and noncoital sex.
Asif, Muhammad; Guo, Xiangzhou; Zhang, Jing; Miao, Jungang
2018-04-17
Digital cross-correlation is central to many applications including but not limited to Digital Image Processing, Satellite Navigation and Remote Sensing. With recent advancements in digital technology, the computational demands of such applications have increased enormously. In this paper we are presenting a high throughput digital cross correlator, capable of processing 1-bit digitized stream, at the rate of up to 2 GHz, simultaneously on 64 channels i.e., approximately 4 Trillion correlation and accumulation operations per second. In order to achieve higher throughput, we have focused on frequency based partitioning of our design and tried to minimize and localize high frequency operations. This correlator is designed for a Passive Millimeter Wave Imager intended for the detection of contraband items concealed on human body. The goals are to increase the system bandwidth, achieve video rate imaging, improve sensitivity and reduce the size. Design methodology is detailed in subsequent sections, elaborating the techniques enabling high throughput. The design is verified for Xilinx Kintex UltraScale device in simulation and the implementation results are given in terms of device utilization and power consumption estimates. Our results show considerable improvements in throughput as compared to our baseline design, while the correlator successfully meets the functional requirements.
Analysis of EEG activity during sleep - brain hemisphere symmetry of two classes of sleep spindles
NASA Astrophysics Data System (ADS)
Smolen, Magdalena M.
2009-01-01
This paper presents automatic analysis of some selected human electroencephalographic patterns during deep sleep using the Matching Pursuit (MP) algorithm. The periodicity of deep sleep EEG patterns was observed by calculating autocorrelation functions of their percentage contributions. The study confirmed the increasing trend of amplitude-weighted average frequency of sleep spindles from frontal to posterior derivations. The dominant frequencies from the left and the right brain hemisphere were strongly correlated.
Evaluation of electrical impedance ratio measurements in accuracy of electronic apex locators.
Kim, Pil-Jong; Kim, Hong-Gee; Cho, Byeong-Hoon
2015-05-01
The aim of this paper was evaluating the ratios of electrical impedance measurements reported in previous studies through a correlation analysis in order to explicit it as the contributing factor to the accuracy of electronic apex locator (EAL). The literature regarding electrical property measurements of EALs was screened using Medline and Embase. All data acquired were plotted to identify correlations between impedance and log-scaled frequency. The accuracy of the impedance ratio method used to detect the apical constriction (APC) in most EALs was evaluated using linear ramp function fitting. Changes of impedance ratios for various frequencies were evaluated for a variety of file positions. Among the ten papers selected in the search process, the first-order equations between log-scaled frequency and impedance were in the negative direction. When the model for the ratios was assumed to be a linear ramp function, the ratio values decreased if the file went deeper and the average ratio values of the left and right horizontal zones were significantly different in 8 out of 9 studies. The APC was located within the interval of linear relation between the left and right horizontal zones of the linear ramp model. Using the ratio method, the APC was located within a linear interval. Therefore, using the impedance ratio between electrical impedance measurements at different frequencies was a robust method for detection of the APC.
Maharjan, Ashim; Wang, Eunice; Peng, Mei; Cakmak, Yusuf O.
2018-01-01
In past literature on animal models, invasive vagal nerve stimulation using high frequencies has shown to be effective at modulating the activity of the olfactory bulb (OB). Recent advances in invasive vagal nerve stimulation in humans, despite previous findings in animal models, used low frequency stimulation and found no effect on the olfactory functioning. The present article aimed to test potential effects of non-invasive, high and low frequency vagal nerve stimulation in humans, with supplementary exploration of the orbitofrontal cortex using near-infrared spectroscopy (NIRS). Healthy, male adult participants (n = 18) performed two olfactory tests [odor threshold test (OTT) and supra-threshold test (STT)] before and after receiving high-, low frequency vagal nerve stimulation and placebo (no stimulation). Participant's olfactory functioning was monitored using NIRS, and assessed with two behavioral olfactory tests. NIRS data of separate stimulation parameters were statistically analyzed using repeated-measures ANOVA across different stages. Data from olfactory tests were analyzed using paired parametric and non-parametric statistical tests. Only high frequency, non-invasive vagal nerve stimulation was able to positively modulate the performance of the healthy participants in the STT (p = 0.021, Wilcoxon sign-ranked test), with significant differences in NIRS (p = 0.014, post-hoc with Bonferroni correction) recordings of the right hemispheric, orbitofrontal cortex. The results from the current article implore further exploration of the neurocircuitry involved under vagal nerve stimulation and the effects of non-invasive, high frequency, vagal nerve stimulation toward olfactory dysfunction which showcase in Parkinson's and Alzheimer's Diseases. Despite the sufficient effect size (moderate effect, correlation coefficient (r): 0.39 for the STT) of the current study, future research should replicate the current findings with a larger cohort. PMID:29740266
Maharjan, Ashim; Wang, Eunice; Peng, Mei; Cakmak, Yusuf O
2018-01-01
In past literature on animal models, invasive vagal nerve stimulation using high frequencies has shown to be effective at modulating the activity of the olfactory bulb (OB). Recent advances in invasive vagal nerve stimulation in humans, despite previous findings in animal models, used low frequency stimulation and found no effect on the olfactory functioning. The present article aimed to test potential effects of non-invasive, high and low frequency vagal nerve stimulation in humans, with supplementary exploration of the orbitofrontal cortex using near-infrared spectroscopy (NIRS). Healthy, male adult participants ( n = 18) performed two olfactory tests [odor threshold test (OTT) and supra-threshold test (STT)] before and after receiving high-, low frequency vagal nerve stimulation and placebo (no stimulation). Participant's olfactory functioning was monitored using NIRS, and assessed with two behavioral olfactory tests. NIRS data of separate stimulation parameters were statistically analyzed using repeated-measures ANOVA across different stages. Data from olfactory tests were analyzed using paired parametric and non-parametric statistical tests. Only high frequency, non-invasive vagal nerve stimulation was able to positively modulate the performance of the healthy participants in the STT ( p = 0.021, Wilcoxon sign-ranked test), with significant differences in NIRS ( p = 0.014, post-hoc with Bonferroni correction ) recordings of the right hemispheric, orbitofrontal cortex. The results from the current article implore further exploration of the neurocircuitry involved under vagal nerve stimulation and the effects of non-invasive, high frequency, vagal nerve stimulation toward olfactory dysfunction which showcase in Parkinson's and Alzheimer's Diseases. Despite the sufficient effect size (moderate effect, correlation coefficient (r): 0.39 for the STT) of the current study, future research should replicate the current findings with a larger cohort.
Frequency domain analysis of errors in cross-correlations of ambient seismic noise
NASA Astrophysics Data System (ADS)
Liu, Xin; Ben-Zion, Yehuda; Zigone, Dimitri
2016-12-01
We analyse random errors (variances) in cross-correlations of ambient seismic noise in the frequency domain, which differ from previous time domain methods. Extending previous theoretical results on ensemble averaged cross-spectrum, we estimate confidence interval of stacked cross-spectrum of finite amount of data at each frequency using non-overlapping windows with fixed length. The extended theory also connects amplitude and phase variances with the variance of each complex spectrum value. Analysis of synthetic stationary ambient noise is used to estimate the confidence interval of stacked cross-spectrum obtained with different length of noise data corresponding to different number of evenly spaced windows of the same duration. This method allows estimating Signal/Noise Ratio (SNR) of noise cross-correlation in the frequency domain, without specifying filter bandwidth or signal/noise windows that are needed for time domain SNR estimations. Based on synthetic ambient noise data, we also compare the probability distributions, causal part amplitude and SNR of stacked cross-spectrum function using one-bit normalization or pre-whitening with those obtained without these pre-processing steps. Natural continuous noise records contain both ambient noise and small earthquakes that are inseparable from the noise with the existing pre-processing steps. Using probability distributions of random cross-spectrum values based on the theoretical results provides an effective way to exclude such small earthquakes, and additional data segments (outliers) contaminated by signals of different statistics (e.g. rain, cultural noise), from continuous noise waveforms. This technique is applied to constrain values and uncertainties of amplitude and phase velocity of stacked noise cross-spectrum at different frequencies, using data from southern California at both regional scale (˜35 km) and dense linear array (˜20 m) across the plate-boundary faults. A block bootstrap resampling method is used to account for temporal correlation of noise cross-spectrum at low frequencies (0.05-0.2 Hz) near the ocean microseismic peaks.
Ekstrom, Arne D; Watrous, Andrew J
2014-01-15
A prominent and replicated finding is the correlation between running speed and increases in low-frequency oscillatory activity in the hippocampal local field potential. A more recent finding concerns low-frequency oscillations that increase in coherence between the hippocampus and neocortical brain areas such as prefrontal cortex during memory-related behaviors (i.e., remembering the correct location to visit). In this review, we tie together movement-related and memory-related low-frequency oscillations in the rodent with similar findings in humans. We argue that although movement-related low-frequency oscillations, in particular, may have slightly different characteristics in humans than rodents, placing important constraints on our thinking about this issue, both phenomena have similar functional foundations. We review four prominent theoretical models that provide partially conflicting accounts of movement-related low-frequency oscillations. We attempt to tie together these theoretical proposals, and existing data in rodents and humans, with memory-related low-frequency oscillations. We propose that movement-related low-frequency oscillations and memory-related low-frequency oscillatory activity, both of which show significant coherence with oscillations in other brain regions, represent different facets of "spectral fingerprints," or different resonant frequencies within the same brain networks underlying different cognitive processes. Together, movement-related and memory-related low-frequency oscillatory coupling may be linked by their distinct contributions to bottom-up, sensorimotor driven processing and top-down, controlled processing characterizing aspects of memory encoding and retrieval. Copyright © 2013. Published by Elsevier Inc.
Ekstrom, Arne D.; Watrous, Andrew J.
2014-01-01
A prominent and replicated finding is the correlation between running speed and increases in low-frequency oscillatory activity in the hippocampal local field potential. A more recent finding concerns low-frequency oscillations that increase in coherence between the hippocampus and neocortical brain areas such as prefrontal cortex during memory-related behaviors (i.e., remembering the correct arm to explore). In this review, we tie together movement-related and memory-related low-frequency oscillations in the rodent with similar findings in humans. We argue that although movement-related low-frequency oscillations, in particular, may have slightly different characteristics in humans than rodents, placing important constraints on our thinking about this issue, both phenomena have similar functional foundations. We review four prominent theoretical models that provide partially conflicting accounts of movement-related low-frequency oscillations. We attempt to tie together these theoretical proposals, and existing data in rodents and humans, with memory-related low-frequency oscillations. We propose that movement-related low-frequency oscillations and memory-related low-frequency oscillatory activity, both of which show significant coherence with oscillations in other brain regions, represent different facets of “spectral fingerprints,” or different resonant frequencies within the same brain networks underlying different cognitive processes. Together, movement-related and memory-related low-frequency oscillatory coupling may be linked by their distinct contributions to bottom-up, sensorimotor driven processing and top-down, controlled processing characterizing aspects of memory encoding and retrieval. PMID:23792985
[Correlations between functional activity of animal blood lymphocytes and change in solar activity].
Karnaukhova, N A; Sergievich, L A
1999-01-01
It is shown that increase of Solar activity as measurement of the intensity of solar radio emissions at frequency of 2804 MHz leads to the reducing of the functional activity of immunocompetent cells in animal blood defining by parameter alpha.
Shen, Yi; Kern, Allison B.
2018-01-01
Individual differences in the recognition of monosyllabic words, either in isolation (NU6 test) or in sentence context (SPIN test), were investigated under the theoretical framework of the speech intelligibility index (SII). An adaptive psychophysical procedure, namely the quick-band-importance-function procedure, was developed to enable the fitting of the SII model to individual listeners. Using this procedure, the band importance function (i.e., the relative weights of speech information across the spectrum) and the link function relating the SII to recognition scores can be simultaneously estimated while requiring only 200 to 300 trials of testing. Octave-frequency band importance functions and link functions were estimated separately for NU6 and SPIN materials from 30 normal-hearing listeners who were naïve to speech recognition experiments. For each type of speech material, considerable individual differences in the spectral weights were observed in some but not all frequency regions. At frequencies where the greatest intersubject variability was found, the spectral weights were correlated between the two speech materials, suggesting that the variability in spectral weights reflected listener-originated factors. PMID:29532711
Quantum critical singularities in two-dimensional metallic XY ferromagnets
NASA Astrophysics Data System (ADS)
Varma, Chandra M.; Gannon, W. J.; Aronson, M. C.; Rodriguez-Rivera, J. A.; Qiu, Y.
2018-02-01
An important problem in contemporary physics concerns quantum-critical fluctuations in metals. A scaling function for the momentum, frequency, temperature, and magnetic field dependence of the correlation function near a 2D-ferromagnetic quantum-critical point (QCP) is constructed, and its singularities are determined by comparing to the recent calculations of the correlation functions of the dissipative quantum XY model (DQXY). The calculations are motivated by the measured properties of the metallic compound YFe2Al10 , which is a realization of the DQXY model in 2D. The frequency, temperature, and magnetic field dependence of the scaling function as well as the singularities measured in the experiments are given by the theory without adjustable exponents. The same model is applicable to the superconductor-insulator transitions, classes of metallic AFM-QCPs, and as fluctuations of the loop-current ordered state in hole-doped cuprates. The results presented here lend credence to the solution found for the 2D-DQXY model and its applications in understanding quantum-critical properties of diverse systems.
Mostafa, Mohamed; Vali, Reza; Chan, Jeffrey; Omarkhail, Yusuaf; Shammas, Amer
2016-10-01
Potentially false-positive findings on radioiodine scans in children with differentiated thyroid carcinoma can mimic functioning thyroid tissue and functioning thyroid carcinomatous tissue. Such false-positive findings comprise variants and pitfalls that can vary slightly in children as compared with adults. To determine the patterns and frequency of these potential false-positive findings on radioiodine scans in children with differentiated thyroid carcinoma. We reviewed a total of 223 radioiodine scans from 53 pediatric patients (mean age 13.3 years, 37 girls) with differentiated thyroid carcinoma. Focal or regional activity that likely did not represent functioning thyroid tissue or functioning thyroid carcinomatous tissue were categorized as variants or pitfalls. The final diagnosis was confirmed by reviewing the concurrent and follow-up clinical data, correlative ultrasonography, CT scanning, serum thyroglobulin and antithyroglobulin antibody levels. We calculated the frequency of these variants and pitfalls from diagnostic and post-therapy radioiodine scans. The most common variant on the radioiodine scans was the thymic activity (24/223, 10.8%) followed by the cardiac activity (8/223, 3.6%). Salivary contamination and star artifact, caused by prominent thyroid remnant, were the most important observed pitfalls. Variants and pitfalls that mimic functioning thyroid tissue or functioning thyroid carcinomatous tissue on radioiodine scan in children with differentiated thyroid carcinoma are not infrequent, but they decrease in frequency on successive radioiodine scans. Potential false-positive findings can be minimized with proper knowledge of the common variants and pitfalls in children and correlation with clinical, laboratory and imaging data.
Can Functional Cardiac Age be Predicted from ECG in a Normal Healthy Population
NASA Technical Reports Server (NTRS)
Schlegel, Todd; Starc, Vito; Leban, Manja; Sinigoj, Petra; Vrhovec, Milos
2011-01-01
In a normal healthy population, we desired to determine the most age-dependent conventional and advanced ECG parameters. We hypothesized that changes in several ECG parameters might correlate with age and together reliably characterize the functional age of the heart. Methods: An initial study population of 313 apparently healthy subjects was ultimately reduced to 148 subjects (74 men, 84 women, in the range from 10 to 75 years of age) after exclusion criteria. In all subjects, ECG recordings (resting 5-minute 12-lead high frequency ECG) were evaluated via custom software programs to calculate up to 85 different conventional and advanced ECG parameters including beat-to-beat QT and RR variability, waveform complexity, and signal-averaged, high-frequency and spatial/spatiotemporal ECG parameters. The prediction of functional age was evaluated by multiple linear regression analysis using the best 5 univariate predictors. Results: Ignoring what were ultimately small differences between males and females, the functional age was found to be predicted (R2= 0.69, P < 0.001) from a linear combination of 5 independent variables: QRS elevation in the frontal plane (p<0.001), a new repolarization parameter QTcorr (p<0.001), mean high frequency QRS amplitude (p=0.009), the variability parameter % VLF of RRV (p=0.021) and the P-wave width (p=0.10). Here, QTcorr represents the correlation between the calculated QT and the measured QT signal. Conclusions: In apparently healthy subjects with normal conventional ECGs, functional cardiac age can be estimated by multiple linear regression analysis of mostly advanced ECG results. Because some parameters in the regression formula, such as QTcorr, high frequency QRS amplitude and P-wave width also change with disease in the same direction as with increased age, increased functional age of the heart may reflect subtle age-related pathologies in cardiac electrical function that are usually hidden on conventional ECG.
Joint estimation of 2D-DOA and frequency based on space-time matrix and conformal array.
Wan, Liang-Tian; Liu, Lu-Tao; Si, Wei-Jian; Tian, Zuo-Xi
2013-01-01
Each element in the conformal array has a different pattern, which leads to the performance deterioration of the conventional high resolution direction-of-arrival (DOA) algorithms. In this paper, a joint frequency and two-dimension DOA (2D-DOA) estimation algorithm for conformal array are proposed. The delay correlation function is used to suppress noise. Both spatial and time sampling are utilized to construct the spatial-time matrix. The frequency and 2D-DOA estimation are accomplished based on parallel factor (PARAFAC) analysis without spectral peak searching and parameter pairing. The proposed algorithm needs only four guiding elements with precise positions to estimate frequency and 2D-DOA. Other instrumental elements can be arranged flexibly on the surface of the carrier. Simulation results demonstrate the effectiveness of the proposed algorithm.
Solar activity and oscillation frequency splittings
NASA Technical Reports Server (NTRS)
Woodard, M. F.; Libbrecht, K. G.
1993-01-01
Solar p-mode frequency splittings, parameterized by the coefficients through order N = 12 of a Legendre polynomial expansion of the mode frequencies as a function of m/L, were obtained from an analysis of helioseismology data taken at Big Bear Solar Observatory during the 4 years 1986 and 1988-1990 (approximately solar minimum to maximum). Inversion of the even-index splitting coefficients confirms that there is a significant contribution to the frequency splittings originating near the solar poles. The strength of the polar contribution is anti correlated with the overall level or solar activity in the active latitudes, suggesting a relation to polar faculae. From an analysis of the odd-index splitting coefficients we infer an uppor limit to changes in the solar equatorial near-surface rotatinal velocity of less than 1.9 m/s (3 sigma limit) between solar minimum and maximum.
Qubit dephasing due to low-frequency noise.
NASA Astrophysics Data System (ADS)
Sverdlov, Victor; Rabenstein, Kristian; Averin, Dmitri
2004-03-01
We have numerically investigated the effects of the classical low-frequency noise on the qubit dynamics beyond the standard lowest-order perturbation theory in coupling. Noise is generated as a random process with a correlation function characterized by two parameters, the amplitude v0 and the cut-off frequency 2π/τ. Time evolution of the density matrix was averaged over up to 10^7 noise realizations. Contrary to the relaxation time T_1, which for v_0<ω, where ω is the qubit oscillation frequency, is always given correctly by the ``golden-rule'' expression, the dephasing time deviates from the perturbation-theory result, when (v_0/ω)^2(ωτ) ≥1. In this regime, even for unbiased qubit for which the pure dephasing vanishes in perturbation theory, the dephasing is much larger than it's perturbation-theory value 1/(2 T_1).
Ultrasonic hearing and echolocation in the earliest toothed whales.
Park, Travis; Fitzgerald, Erich M G; Evans, Alistair R
2016-04-01
The evolution of biosonar (production of high-frequency sound and reception of its echo) was a key innovation of toothed whales and dolphins (Odontoceti) that facilitated phylogenetic diversification and rise to ecological predominance. Yet exactly when high-frequency hearing first evolved in odontocete history remains a fundamental question in cetacean biology. Here, we show that archaic odontocetes had a cochlea specialized for sensing high-frequency sound, as exemplified by an Oligocene xenorophid, one of the earliest diverging stem groups. This specialization is not as extreme as that seen in the crown clade. Paired with anatomical correlates for high-frequency signal production in Xenorophidae, this is strong evidence that the most archaic toothed whales possessed a functional biosonar system, and that this signature adaptation of odontocetes was acquired at or soon after their origin. © 2016 The Author(s).
High-frequency neural oscillations and visual processing deficits in schizophrenia
Tan, Heng-Ru May; Lana, Luiz; Uhlhaas, Peter J.
2013-01-01
Visual information is fundamental to how we understand our environment, make predictions, and interact with others. Recent research has underscored the importance of visuo-perceptual dysfunctions for cognitive deficits and pathophysiological processes in schizophrenia. In the current paper, we review evidence for the relevance of high frequency (beta/gamma) oscillations towards visuo-perceptual dysfunctions in schizophrenia. In the first part of the paper, we examine the relationship between beta/gamma band oscillations and visual processing during normal brain functioning. We then summarize EEG/MEG-studies which demonstrate reduced amplitude and synchrony of high-frequency activity during visual stimulation in schizophrenia. In the final part of the paper, we identify neurobiological correlates as well as offer perspectives for future research to stimulate further inquiry into the role of high-frequency oscillations in visual processing impairments in the disorder. PMID:24130535
Berns, G S; Song, A W; Mao, H
1999-07-15
Linear experimental designs have dominated the field of functional neuroimaging, but although successful at mapping regions of relative brain activation, the technique assumes that both cognition and brain activation are linear processes. To test these assumptions, we performed a continuous functional magnetic resonance imaging (MRI) experiment of finger opposition. Subjects performed a visually paced bimanual finger-tapping task. The frequency of finger tapping was continuously varied between 1 and 5 Hz, without any rest blocks. After continuous acquisition of fMRI images, the task-related brain regions were identified with independent components analysis (ICA). When the time courses of the task-related components were plotted against tapping frequency, nonlinear "dose- response" curves were obtained for most subjects. Nonlinearities appeared in both the static and dynamic sense, with hysteresis being prominent in several subjects. The ICA decomposition also demonstrated the spatial dynamics with different components active at different times. These results suggest that the brain response to tapping frequency does not scale linearly, and that it is history-dependent even after accounting for the hemodynamic response function. This implies that finger tapping, as measured with fMRI, is a nonstationary process. When analyzed with a conventional general linear model, a strong correlation to tapping frequency was identified, but the spatiotemporal dynamics were not apparent.
McMillan, Garnett P; Hanson, Tim; Bedrick, Edward J; Lapham, Sandra C
2005-09-01
This study demonstrates the usefulness of the Bivariate Dale Model (BDM) as a method for estimating the relationship between risk factors and the quantity and frequency of alcohol use, as well as the degree of association between these highly correlated drinking measures. The BDM is used to evaluate childhood sexual abuse, along with age and gender, as risk factors for the quantity and frequency of beer consumption in a sample of driving-while-intoxicated (DWI) offenders (N = 1,964; 1,612 men). The BDM allows one to estimate the relative odds of drinking up to each level of ordinal-scaled quantity and frequency of alcohol use, as well as model the degree of association between quantity and frequency of alcohol consumption as a function of covariates. Individuals who experienced childhood sexual abuse have increased risks of higher quantity and frequency of beer consumption. History of childhood sexual abuse has a greater effect on women, causing them to drink higher quantities of beer per drinking occasion. The BDM is a useful method for evaluating predictors of the quantity-frequency of alcohol consumption. SAS macrocode for fitting the BDM model is provided.
NASA Astrophysics Data System (ADS)
Ushenko, Yu. A.; Angelskii, P. O.; Dubolazov, A. V.; Karachevtsev, A. O.; Sidor, M. I.; Mintser, O. P.; Oleinichenko, B. P.; Bizer, L. I.
2013-10-01
We present a theoretical formalism of correlation phase analysis of laser images of human blood plasma with spatial-frequency selection of manifestations of mechanisms of linear and circular birefringence of albumin and globulin polycrystalline networks. Comparative results of the measurement of coordinate distributions of the correlation parameter—the modulus of the degree of local correlation of amplitudes—of laser images of blood plasma taken from patients of three groups—healthy patients (donors), rheumatoid-arthritis patients, and breast-cancer patients—are presented. We investigate values and ranges of change of statistical (the first to fourth statistical moments), correlation (excess of autocorrelation functions), and fractal (slopes of approximating curves and dispersion of extrema of logarithmic dependences of power spectra) parameters of coordinate distributions of the degree of local correlation of amplitudes. Objective criteria for diagnostics of occurrence and differentiation of inflammatory and oncological states are determined.
Interplay between Functional Connectivity and Scale-Free Dynamics in Intrinsic fMRI Networks
Ciuciu, Philippe; Abry, Patrice; He, Biyu J.
2014-01-01
Studies employing functional connectivity-type analyses have established that spontaneous fluctuations in functional magnetic resonance imaging (fMRI) signals are organized within large-scale brain networks. Meanwhile, fMRI signals have been shown to exhibit 1/f-type power spectra – a hallmark of scale-free dynamics. We studied the interplay between functional connectivity and scale-free dynamics in fMRI signals, utilizing the fractal connectivity framework – a multivariate extension of the univariate fractional Gaussian noise model, which relies on a wavelet formulation for robust parameter estimation. We applied this framework to fMRI data acquired from healthy young adults at rest and performing a visual detection task. First, we found that scale-invariance existed beyond univariate dynamics, being present also in bivariate cross-temporal dynamics. Second, we observed that frequencies within the scale-free range do not contribute evenly to inter-regional connectivity, with a systematically stronger contribution of the lowest frequencies, both at rest and during task. Third, in addition to a decrease of the Hurst exponent and inter-regional correlations, task performance modified cross-temporal dynamics, inducing a larger contribution of the highest frequencies within the scale-free range to global correlation. Lastly, we found that across individuals, a weaker task modulation of the frequency contribution to inter-regional connectivity was associated with better task performance manifesting as shorter and less variable reaction times. These findings bring together two related fields that have hitherto been studied separately – resting-state networks and scale-free dynamics, and show that scale-free dynamics of human brain activity manifest in cross-regional interactions as well. PMID:24675649
Corrective jitter motion shows similar individual frequencies for the arm and the finger.
Noy, Lior; Alon, Uri; Friedman, Jason
2015-04-01
A characteristic of visuomotor tracking of non-regular oscillating stimuli are high-frequency jittery corrective motions, oscillating around the tracked stimuli. However, the properties of these corrective jitter responses are not well understood. For example, does the jitter response show an idiosyncratic signature? What is the relationship between stimuli properties and jitter properties? Is the jitter response similar across effectors with different inertial properties? To answer these questions, we measured participants' jitter frequencies in two tracking tasks in the arm and the finger. Thirty participants tracked the same set of eleven non-regular oscillating stimuli, vertically moving on a screen, once with forward-backward arm movements (holding a tablet stylus) and once with upward-downward index finger movements (with a motion tracker attached). Participants' jitter frequencies and tracking errors varied systematically as a function of stimuli frequency and amplitude. Additionally, there were clear individual differences in average jitter frequencies between participants, ranging from 0.7 to 1.15 Hz, similar to values reported previously. A comparison of individual jitter frequencies in the two tasks showed a strong correlation between participants' jitter frequencies in the finger and the arm, despite the very different inertial properties of the two effectors. This result suggests that the corrective jitter response stems from common neural processes.
NASA Technical Reports Server (NTRS)
Elphic, R. C.; Gary, S. P.
1990-01-01
This paper describes ISEE plasma and magnetic fluctuation observations during two crossings of the plasma sheet boundary layer (PSBL) in the earth's magnetotail. Distribution function observations show that the counterstreaming ion components undergo pitch-angle scattering and evolve into a shell distribution in velocity space. This evolution is correlated with the development of low frequency, low amplitude magnetic fluctuations. However, the measured wave amplitudes are insufficient to accomplish the observed degree of ion pitch-angle scatttering locally; the near-earth distributions may be the result of processes occurring much farther down the magnetotail. Results show a clear correlation between the ion component beta and the relative streaming speed of the two components, suggesting that electromagnetic ion/ion instabilities do play an important role in the scattering of PSBL ions.
Oscillations, networks, and their development: MEG connectivity changes with age.
Schäfer, Carmen B; Morgan, Benjamin R; Ye, Annette X; Taylor, Margot J; Doesburg, Sam M
2014-10-01
Magnetoencephalographic (MEG) investigations of inter-regional amplitude correlations have yielded new insights into the organization and neurophysiology of resting-state networks (RSNs) first identified using fMRI. Inter-regional MEG amplitude correlations in adult RSNs have been shown to be most prominent in alpha and beta frequency ranges and to express strong congruence with RSN topologies found using fMRI. Despite such advances, little is known about how oscillatory connectivity in RSNs develops throughout childhood and adolescence. This study used a novel fMRI-guided MEG approach to investigate the maturation of resting-state amplitude correlations in physiologically relevant frequency ranges within and among six RSNs in 59 participants, aged 6-34 years. We report age-related increases in inter-regional amplitude correlations that were largest in alpha and beta frequency bands. In contrast to fMRI reports, these changes were observed both within and between the various RSNs analyzed. Our results provide the first evidence of developmental changes in spontaneous neurophysiological connectivity in source-resolved RSNs, which indicate increasing integration within and among intrinsic functional brain networks throughout childhood, adolescence, and early adulthood. Copyright © 2014 Wiley Periodicals, Inc.
Turner, Cameron R; Derylo, Maksymilian; de Santana, C David; Alves-Gomes, José A; Smith, G Troy
2007-12-01
Electrocommunication signals in electric fish are diverse, easily recorded and have well-characterized neural control. Two signal features, the frequency and waveform of the electric organ discharge (EOD), vary widely across species. Modulations of the EOD (i.e. chirps and gradual frequency rises) also function as active communication signals during social interactions, but they have been studied in relatively few species. We compared the electrocommunication signals of 13 species in the largest gymnotiform family, Apteronotidae. Playback stimuli were used to elicit chirps and rises. We analyzed EOD frequency and waveform and the production and structure of chirps and rises. Species diversity in these signals was characterized with discriminant function analyses, and correlations between signal parameters were tested with phylogenetic comparative methods. Signals varied markedly across species and even between congeners and populations of the same species. Chirps and EODs were particularly evolutionarily labile, whereas rises differed little across species. Although all chirp parameters contributed to species differences in these signals, chirp amplitude modulation, frequency modulation (FM) and duration were particularly diverse. Within this diversity, however, interspecific correlations between chirp parameters suggest that mechanistic trade-offs may shape some aspects of signal evolution. In particular, a consistent trade-off between FM and EOD amplitude during chirps is likely to have influenced the evolution of chirp structure. These patterns suggest that functional or mechanistic linkages between signal parameters (e.g. the inability of electromotor neurons increase their firing rates without a loss of synchrony or amplitude of action potentials) constrain the evolution of signal structure.
Stateman, William A.; Knöppel, Alexandra B.; Flegel, Willy A.; Henkin, Robert I.
2015-01-01
PURPOSE Our previous study of Type II congenital smell loss patients revealed a statistically significant lower prevalence of an FY (ACKR1, formerly DARC) haplotype compared to controls. The present study correlates this genetic feature with subgroups of patients defined by specific smell and taste functions. METHODS Smell and taste function measurements were performed by use of olfactometry and gustometry to define degree of abnormality of smell and taste function. Smell loss was classified as anosmia or hyposmia (types I, II or III). Taste loss was similarly classified as ageusia or hypogeusia (types I, II or III). Based upon these results patient erythrocyte antigen expression frequencies were categorized by smell and taste loss with results compared between patients within the Type II group and published controls. RESULTS Comparison of antigen expression frequencies revealed a statistically significant decrease in incidence of an Fyb haplotype only among patients with type I hyposmia and any form of taste loss (hypogeusia). In all other patient groups erythrocyte antigens were expressed at normal frequencies. CONCLUSIONS Data suggest that Type II congenital smell loss patients who exhibit both type I hyposmia and hypogeusia are genetically distinct from all other patients with Type II congenital smell loss. This distinction is based on decreased Fyb expression which correlated with abnormalities in two sensory modalities (hyposmia type I and hypogeusia). Only patients with these two specific sensory abnormalities expressed the Fyb antigen (encoded by the ACKR1 gene on the long arm of chromosome 1) at frequencies different from controls. PMID:27968956
Time delay and distance measurement
NASA Technical Reports Server (NTRS)
Abshire, James B. (Inventor); Sun, Xiaoli (Inventor)
2011-01-01
A method for measuring time delay and distance may include providing an electromagnetic radiation carrier frequency and modulating one or more of amplitude, phase, frequency, polarization, and pointing angle of the carrier frequency with a return to zero (RZ) pseudo random noise (PN) code. The RZ PN code may have a constant bit period and a pulse duration that is less than the bit period. A receiver may detect the electromagnetic radiation and calculate the scattering profile versus time (or range) by computing a cross correlation function between the recorded received signal and a three-state RZ PN code kernel in the receiver. The method also may be used for pulse delay time (i.e., PPM) communications.
Electromagnetic perception and individual features of human beings.
Lebedeva, N N; Kotrovskaya, T I
2001-01-01
An investigation was made of the individual reactions of human subjects exposed to electromagnetic fields. We performed the study on 86 volunteers separated into two groups. The first group was exposed to the electromagnetic field of infralow frequencies, whereas the second group was exposed to the electromagnetic field of extremely high frequencies. We found that the electromagnetic perception of human beings correlated with their individual features, such as EEG parameters, the critical frequency of flash merging, and the electric current sensitivity. Human subjects who had a high-quality perception of electromagnetic waves showed an optimal balance of cerebral processes, an excellent functional state of the central nervous system, and a good decision criterion.
NASA Astrophysics Data System (ADS)
Hasan, Mehedi; Hu, Jianqi; Nikkhah, Hamdam; Hall, Trevor
2017-08-01
A novel photonic integrated circuit architecture for implementing orthogonal frequency division multiplexing by means of photonic generation of phase-correlated sub-carriers is proposed. The circuit can also be used for implementing complex modulation, frequency up-conversion of the electrical signal to the optical domain and frequency multiplication. The principles of operation of the circuit are expounded using transmission matrices and the predictions of the analysis are verified by computer simulation using an industry-standard software tool. Non-ideal scenarios that may affect the correct function of the circuit are taken into consideration and quantified. The discussion of integration feasibility is illustrated by a photonic integrated circuit that has been fabricated using 'library' components and which features most of the elements of the proposed circuit architecture. The circuit is found to be practical and may be fabricated in any material platform that offers a linear electro-optic modulator such as organic or ferroelectric thin films hybridized with silicon photonics.
Christofferson, Austin; Aldrich, Jessica; Jewell, Scott; Kittles, Rick A.; Derome, Mary; Craig, David Wesley; Carpten, John D.
2017-01-01
Multiple Myeloma (MM) is a plasma cell malignancy with significantly greater incidence and mortality rates among African Americans (AA) compared to Caucasians (CA). The overall goal of this study is to elucidate differences in molecular alterations in MM as a function of self-reported race and genetic ancestry. Our study utilized somatic whole exome, RNA-sequencing, and correlated clinical data from 718 MM patients from the Multiple Myeloma Research Foundation CoMMpass study Interim Analysis 9. Somatic mutational analyses based upon self-reported race corrected for ancestry revealed significant differences in mutation frequency between groups. Of interest, BCL7A, BRWD3, and AUTS2 demonstrate significantly higher mutation frequencies among AA cases. These genes are all involved in translocations in B-cell malignancies. Moreover, we detected a significant difference in mutation frequency of TP53 and IRF4 with frequencies higher among CA cases. Our study provides rationale for interrogating diverse tumor cohorts to best understand tumor genomics across populations. PMID:29166413
NASA Astrophysics Data System (ADS)
M, Dongol; M, M. El-Nahass; A, El-Denglawey; A, A. Abuelwafa; T, Soga
2016-06-01
Alternating current (AC) conductivity and dielectric properties of thermally evaporated Au/PtOEP/Au thin films are investigated each as a function of temperature (303 K-473 K) and frequency (50 Hz-5 MHz). The frequency dependence of AC conductivity follows the Jonscher universal dynamic law. The AC-activation energies are determined at different frequencies. It is found that the correlated barrier hopping (CBH) model is the dominant conduction mechanism. The variation of the frequency exponent s with temperature is analyzed in terms of the CBH model. Coulombic barrier height W m , hopping distance R ω , and the density of localized states N(E F) are valued at different frequencies. Dielectric constant ɛ 1(ω,T) and dielectric loss ɛ 2(ω,T) are discussed in terms of the dielectric polarization process. The dielectric modulus shows the non-Debye relaxation in the material. The extracted relaxation time by using the imaginary part of modulus (M″) is found to follow the Arrhenius law.
ERIC Educational Resources Information Center
South, Mikle; Ozonoff, Sally; McMahon, William M.
2007-01-01
This study examined the relationship between everyday repetitive behavior (primary symptoms of autism) and performance on neuropsychological tests of executive function and central coherence (secondary symptoms). It was hypothesized that the frequency and intensity of repetitive behavior would be positively correlated with laboratory measures of…
Multi-ball and one-ball geolocation and location verification
NASA Astrophysics Data System (ADS)
Nelson, D. J.; Townsend, J. L.
2017-05-01
We present analysis methods that may be used to geolocate emitters using one or more moving receivers. While some of the methods we present may apply to a broader class of signals, our primary interest is locating and tracking ships from short pulsed transmissions, such as the maritime Automatic Identification System (AIS.) The AIS signal is difficult to process and track since the pulse duration is only 25 milliseconds, and the pulses may only be transmitted every six to ten seconds. Several fundamental problems are addressed, including demodulation of AIS/GMSK signals, verification of the emitter location, accurate frequency and delay estimation and identification of pulse trains from the same emitter. In particular, we present several new correlation methods, including cross-cross correlation that greatly improves correlation accuracy over conventional methods and cross- TDOA and cross-FDOA functions that make it possible to estimate time and frequency delay without the need of computing a two dimensional cross-ambiguity surface. By isolating pulses from the same emitter and accurately tracking the received signal frequency, we are able to accurately estimate the emitter location from the received Doppler characteristics.
Spatial Correlation in the Ambient Core Noise Field of a Turbofan Engine
NASA Technical Reports Server (NTRS)
Miles, Jeffrey Hilton
2012-01-01
An acoustic transfer function relating combustion noise and turbine exit noise in the presence of enclosed ambient core noise is investigated using a dynamic system model and an acoustic system model for the particular turbofan engine studied and for a range of operating conditions. Measurements of cross-spectra magnitude and phase between the combustor and turbine exit and auto-spectra at the turbine exit and combustor are used to show the presence of indirect and direct combustion noise over the frequency range of 0 400 Hz. The procedure used evaluates the ratio of direct to indirect combustion noise. The procedure used also evaluates the post-combustion residence time in the combustor which is a factor in the formation of thermal NOx and soot in this region. These measurements are masked by the ambient core noise sound field in this frequency range which is observable since the transducers are situated within an acoustic wavelength of one another. An ambient core noise field model based on one and two dimensional spatial correlation functions is used to replicate the spatially correlated response of the pair of transducers. The spatial correlation function increases measured attenuation due to destructive interference and masks the true attenuation of the turbine.
The frequency preference of neurons and synapses in a recurrent oscillatory network.
Tseng, Hua-an; Martinez, Diana; Nadim, Farzan
2014-09-17
A variety of neurons and synapses shows a maximal response at a preferred frequency, generally considered to be important in shaping network activity. We are interested in whether all neurons and synapses in a recurrent oscillatory network can have preferred frequencies and, if so, whether these frequencies are the same or correlated, and whether they influence the network activity. We address this question using identified neurons in the pyloric network of the crab Cancer borealis. Previous work has shown that the pyloric pacemaker neurons exhibit membrane potential resonance whose resonance frequency is correlated with the network frequency. The follower lateral pyloric (LP) neuron makes reciprocally inhibitory synapses with the pacemakers. We find that LP shows resonance at a higher frequency than the pacemakers and the network frequency falls between the two. We also find that the reciprocal synapses between the pacemakers and LP have preferred frequencies but at significantly lower values. The preferred frequency of the LP to pacemaker synapse is correlated with the presynaptic preferred frequency, which is most pronounced when the peak voltage of the LP waveform is within the dynamic range of the synaptic activation curve and a shift in the activation curve by the modulatory neuropeptide proctolin shifts the frequency preference. Proctolin also changes the power of the LP neuron resonance without significantly changing the resonance frequency. These results indicate that different neuron types and synapses in a network may have distinct preferred frequencies, which are subject to neuromodulation and may interact to shape network oscillations. Copyright © 2014 the authors 0270-6474/14/3412933-13$15.00/0.
Sleep bruxism frequency and platelet serotonin transporter activities in young adult subjects.
Minakuchi, Hajime; Sogawa, Chiharu; Miki, Haruna; Hara, Emilio S; Maekawa, Kenji; Sogawa, Norio; Kitayama, Shigeo; Matsuka, Yoshizo; Clark, Glenn Thomas; Kuboki, Takuo
2016-03-01
To evaluate correlations between serotonin transporter (SERT) uptake ability in human peripheral platelets and sleep bruxism (SB) frequency. Subjects were consecutively recruited from sixth-year students at Okayama University Dental School. Subjects were excluded if they (1) were receiving orthodontic treatment, (2) had a dermatological disease, (3) had taken an antidepressant within 6 months, or (4) had used an oral appliance within 6 months. SB frequency was determined as the summary score of three consecutive night assessments using a self-contained electromyography detector/analyzer in their home. Fasting peripheral venous blood samples were collected in the morning following the final SB assessment. SERT amount and platelet number were quantified via an ELISA assay and flow cytometry, respectively. Functional SERT characterization, 5-hydroxytryptamine (5-HT) uptake, maximum velocity (V max), and an affinity constant (K m ) were assessed with a [(3)H] 5-HT uptake assay. The correlations between these variables and SB level were evaluated. Among 50 eligible subjects (26 males, mean age 25.4 ± 2.41 years), 7 were excluded because of venipuncture failure, smoking, and alcohol intake during the experimental period. A small but significant negative correlation between SB level and [(3)H] 5-HT uptake was observed (Spearman's correlation R (2) = 0.063, p = 0.04). However, there were no significant correlations between SB level and total platelet amount, SERT, V max, and K m values (p = 0.08, 0.12, 0.71, and 0.68, respectively). Platelet serotonin uptake is significantly associated with SB frequency, yet only explains a small amount of SB variability.
Effective correlator for RadioAstron project
NASA Astrophysics Data System (ADS)
Sergeev, Sergey
This paper presents the implementation of programme FX-correlator for Very Long Baseline Interferometry, adapted for the project "RadioAstron". Software correlator implemented for heterogeneous computing systems using graphics accelerators. It is shown that for the task interferometry implementation of the graphics hardware has a high efficiency. The host processor of heterogeneous computing system, performs the function of forming the data flow for graphics accelerators, the number of which corresponds to the number of frequency channels. So, for the Radioastron project, such channels is seven. Each accelerator is perform correlation matrix for all bases for a single frequency channel. Initial data is converted to the floating-point format, is correction for the corresponding delay function and computes the entire correlation matrix simultaneously. Calculation of the correlation matrix is performed using the sliding Fourier transform. Thus, thanks to the compliance of a solved problem for architecture graphics accelerators, managed to get a performance for one processor platform Kepler, which corresponds to the performance of this task, the computing cluster platforms Intel on four nodes. This task successfully scaled not only on a large number of graphics accelerators, but also on a large number of nodes with multiple accelerators.
Optimization of a hybrid exchange-correlation functional for silicon carbides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oda, Takuji; Zhang, Yanwen; Weber, William J
2013-01-01
A hybrid exchange-correlation functional is optimized in order to accurately describe the nature of silicon carbides (SiC) in the framework of ab-initio calculations based on density functional theory (DFT), especially with an aim toward future applications in defect studies. It is shown that the Heyd-Scuseria-Ernzerhof (HSE) hybrid functional with the screening parameter of 0.15 -1 outperforms conventional exchange-correlation functionals and other popular hybrid functionals regarding description of band structures in SiC. High transferability is proven through assessment over various SiC polytypes, silicon and diamond. Excellent performance is also confirmed for other fundamental material properties including elastic constants and phonon frequency.
Orion MPCV Service Module Avionics Ring Pallet Testing, Correlation, and Analysis
NASA Technical Reports Server (NTRS)
Staab, Lucas; Akers, James; Suarez, Vicente; Jones, Trevor
2012-01-01
The NASA Orion Multi-Purpose Crew Vehicle (MPCV) is being designed to replace the Space Shuttle as the main manned spacecraft for the agency. Based on the predicted environments in the Service Module avionics ring, an isolation system was deemed necessary to protect the avionics packages carried by the spacecraft. Impact, sinusoidal, and random vibration testing were conducted on a prototype Orion Service Module avionics pallet in March 2010 at the NASA Glenn Research Center Structural Dynamics Laboratory (SDL). The pallet design utilized wire rope isolators to reduce the vibration levels seen by the avionics packages. The current pallet design utilizes the same wire rope isolators (M6-120-10) that were tested in March 2010. In an effort to save cost and schedule, the Finite Element Models of the prototype pallet tested in March 2010 were correlated. Frequency Response Function (FRF) comparisons, mode shape and frequency were all part of the correlation process. The non-linear behavior and the modeling the wire rope isolators proved to be the most difficult part of the correlation process. The correlated models of the wire rope isolators were taken from the prototype design and integrated into the current design for future frequency response analysis and component environment specification.
Evaluation of cerebral function after carotid endarterectomy.
Uclés, P; Almárcegui, C; Lorente, S; Romero, F; Marco, M
1997-05-01
Neuroimaging methods have failed to disclose correlation between degree of cerebral atrophy and blood flow in carotid artery stenosis patients. Moreover, intellectual improvement after carotid endarterectomy does not correlate fully with neuroimaging data in such patients. We performed brain electrical activity mapping and psychological testing before and 4 weeks after operation in 28 patients with symptomatic, high-grade, carotid stenosis. Postoperatively, electroencephalographic (EEG) mean frequency and absolute theta power improved significantly (p < 0.01). Mean frequency increased >1 Hz in most areas while power decreased dramatically, mainly because of resolution of high-voltage foci in 8 patients. Differences were conspicuous in both frontal lobes irrespective of the operated side, which suggests changes in perfusion affecting the whole brain. This is a positive effect of endarterectomy. Mini-Mental test and Set Test for verbal fluency had a positive correlation with the qEEG changes. Quantitative EEG as a measure of cerebral function has disclosed discriminative improvement in the early postoperative period. Our results support the thesis of improvement subsequent to endarterectomy.
Intrinsic Multi-Scale Dynamic Behaviors of Complex Financial Systems.
Ouyang, Fang-Yan; Zheng, Bo; Jiang, Xiong-Fei
2015-01-01
The empirical mode decomposition is applied to analyze the intrinsic multi-scale dynamic behaviors of complex financial systems. In this approach, the time series of the price returns of each stock is decomposed into a small number of intrinsic mode functions, which represent the price motion from high frequency to low frequency. These intrinsic mode functions are then grouped into three modes, i.e., the fast mode, medium mode and slow mode. The probability distribution of returns and auto-correlation of volatilities for the fast and medium modes exhibit similar behaviors as those of the full time series, i.e., these characteristics are rather robust in multi time scale. However, the cross-correlation between individual stocks and the return-volatility correlation are time scale dependent. The structure of business sectors is mainly governed by the fast mode when returns are sampled at a couple of days, while by the medium mode when returns are sampled at dozens of days. More importantly, the leverage and anti-leverage effects are dominated by the medium mode.
Dick, Frederic K; Lehet, Matt I; Callaghan, Martina F; Keller, Tim A; Sereno, Martin I; Holt, Lori L
2017-12-13
Auditory selective attention is vital in natural soundscapes. But it is unclear how attentional focus on the primary dimension of auditory representation-acoustic frequency-might modulate basic auditory functional topography during active listening. In contrast to visual selective attention, which is supported by motor-mediated optimization of input across saccades and pupil dilation, the primate auditory system has fewer means of differentially sampling the world. This makes spectrally-directed endogenous attention a particularly crucial aspect of auditory attention. Using a novel functional paradigm combined with quantitative MRI, we establish in male and female listeners that human frequency-band-selective attention drives activation in both myeloarchitectonically estimated auditory core, and across the majority of tonotopically mapped nonprimary auditory cortex. The attentionally driven best-frequency maps show strong concordance with sensory-driven maps in the same subjects across much of the temporal plane, with poor concordance in areas outside traditional auditory cortex. There is significantly greater activation across most of auditory cortex when best frequency is attended, versus ignored; the same regions do not show this enhancement when attending to the least-preferred frequency band. Finally, the results demonstrate that there is spatial correspondence between the degree of myelination and the strength of the tonotopic signal across a number of regions in auditory cortex. Strong frequency preferences across tonotopically mapped auditory cortex spatially correlate with R 1 -estimated myeloarchitecture, indicating shared functional and anatomical organization that may underlie intrinsic auditory regionalization. SIGNIFICANCE STATEMENT Perception is an active process, especially sensitive to attentional state. Listeners direct auditory attention to track a violin's melody within an ensemble performance, or to follow a voice in a crowded cafe. Although diverse pathologies reduce quality of life by impacting such spectrally directed auditory attention, its neurobiological bases are unclear. We demonstrate that human primary and nonprimary auditory cortical activation is modulated by spectrally directed attention in a manner that recapitulates its tonotopic sensory organization. Further, the graded activation profiles evoked by single-frequency bands are correlated with attentionally driven activation when these bands are presented in complex soundscapes. Finally, we observe a strong concordance in the degree of cortical myelination and the strength of tonotopic activation across several auditory cortical regions. Copyright © 2017 Dick et al.
Loxley, P N
2017-10-01
The two-dimensional Gabor function is adapted to natural image statistics, leading to a tractable probabilistic generative model that can be used to model simple cell receptive field profiles, or generate basis functions for sparse coding applications. Learning is found to be most pronounced in three Gabor function parameters representing the size and spatial frequency of the two-dimensional Gabor function and characterized by a nonuniform probability distribution with heavy tails. All three parameters are found to be strongly correlated, resulting in a basis of multiscale Gabor functions with similar aspect ratios and size-dependent spatial frequencies. A key finding is that the distribution of receptive-field sizes is scale invariant over a wide range of values, so there is no characteristic receptive field size selected by natural image statistics. The Gabor function aspect ratio is found to be approximately conserved by the learning rules and is therefore not well determined by natural image statistics. This allows for three distinct solutions: a basis of Gabor functions with sharp orientation resolution at the expense of spatial-frequency resolution, a basis of Gabor functions with sharp spatial-frequency resolution at the expense of orientation resolution, or a basis with unit aspect ratio. Arbitrary mixtures of all three cases are also possible. Two parameters controlling the shape of the marginal distributions in a probabilistic generative model fully account for all three solutions. The best-performing probabilistic generative model for sparse coding applications is found to be a gaussian copula with Pareto marginal probability density functions.
NASA Technical Reports Server (NTRS)
Smith, Andrew; LaVerde, Bruce; Jones, Douglas; Towner, Robert; Waldon, James; Hunt, Ron
2013-01-01
Producing fluid structural interaction estimates of panel vibration from an applied pressure field excitation are quite dependent on the spatial correlation of the pressure field. There is a danger of either over estimating a low frequency response or under predicting broad band panel response in the more modally dense bands if the pressure field spatial correlation is not accounted for adequately. It is a useful practice to simulate the spatial correlation of the applied pressure field over a 2d surface using a matrix of small patch area regions on a finite element model (FEM). Use of a fitted function for the spatial correlation between patch centers can result in an error if the choice of patch density is not fine enough to represent the more continuous spatial correlation function throughout the intended frequency range of interest. Several patch density assumptions to approximate the fitted spatial correlation function are first evaluated using both qualitative and quantitative illustrations. The actual response of a typical vehicle panel system FEM is then examined in a convergence study where the patch density assumptions are varied over the same model. The convergence study results illustrate the impacts possible from a poor choice of patch density on the analytical response estimate. The fitted correlation function used in this study represents a diffuse acoustic field (DAF) excitation of the panel to produce vibration response.
Liu, Yi-Wen; Neely, Stephen T.
2013-01-01
This paper presents the results of simulating the acoustic suppression of distortion-product otoacoustic emissions (DPOAEs) from a computer model of cochlear mechanics. A tone suppressor was introduced, causing the DPOAE level to decrease, and the decrement was plotted against an increasing suppressor level. Suppression threshold was estimated from the resulting suppression growth functions (SGFs), and suppression tuning curves (STCs) were obtained by plotting the suppression threshold as a function of suppressor frequency. Results show that the slope of SGFs is generally higher for low-frequency suppressors than high-frequency suppressors, resembling those obtained from normal hearing human ears. By comparing responses of normal (100%) vs reduced (50%) outer-hair-cell sensitivities, the model predicts that the tip-to-tail difference of the STCs correlates well with that of intra-cochlear iso-displacement tuning curves. The correlation is poorer, however, between the sharpness of the STCs and that of the intra-cochlear tuning curves. These results agree qualitatively with what was recently reported from normal-hearing and hearing-impaired human subjects, and examination of intra-cochlear model responses can provide the needed insight regarding the interpretation of DPOAE STCs obtained in individual ears. PMID:23363112
Thompson, Garth J.; Pan, Wen-Ju; Billings, Jacob C. W.; Grooms, Joshua K.; Shakil, Sadia; Jaeger, Dieter; Keilholz, Shella D.
2014-01-01
Resting state functional magnetic resonance imaging (fMRI) can identify network alterations that occur in complex psychiatric diseases and behaviors, but its interpretation is difficult because the neural basis of the infraslow BOLD fluctuations is poorly understood. Previous results link dynamic activity during the resting state to both infraslow frequencies in local field potentials (LFP) (<1 Hz) and band-limited power in higher frequency LFP (>1 Hz). To investigate the relationship between these frequencies, LFPs were recorded from rats under two anesthetics: isoflurane and dexmedetomidine. Signal phases were calculated from low-frequency LFP and compared to signal amplitudes from high-frequency LFP to determine if modulation existed between the two frequency bands (phase-amplitude coupling). Isoflurane showed significant, consistent phase-amplitude coupling at nearly all pairs of frequencies, likely due to the burst-suppression pattern of activity that it induces. However, no consistent phase-amplitude coupling was observed in rats that were anesthetized with dexmedetomidine. fMRI-LFP correlations under isoflurane using high frequency LFP were reduced when the low frequency LFP's influence was accounted for, but not vice-versa, or in any condition under dexmedetomidine. The lack of consistent phase-amplitude coupling under dexmedetomidine and lack of shared variance between high frequency and low frequency LFP as it relates to fMRI suggests that high and low frequency neural electrical signals may contribute differently, possibly even independently, to resting state fMRI. This finding suggests that researchers take care in interpreting the neural basis of resting state fMRI, as multiple dynamic factors in the underlying electrophysiology could be driving any particular observation. PMID:24904325
Mon, Sann Y; Riedlinger, Gregory; Abbott, Collette E; Seethala, Raja; Ohori, N Paul; Nikiforova, Marina N; Nikiforov, Yuri E; Hodak, Steven P
2018-05-01
Thyroid-stimulating hormone receptor (TSHR) gene mutations play a critical role in thyroid cell proliferation and function. They are found in 20%-82% of hyperfunctioning nodules, hyperfunctioning follicular thyroid cancers (FTC), and papillary thyroid cancers (PTC). The diagnostic importance of TSHR mutation testing in fine needle aspiration (FNA) specimens remains unstudied. To examine the association of TSHR mutations with the functional status and surgical outcomes of thyroid nodules, we evaluated 703 consecutive thyroid FNA samples with indeterminate cytology for TSHR mutations using next-generation sequencing. Testing for EZH1 mutations was performed in selected cases. The molecular diagnostic testing was done as part of standard of care treatment, and did not require informed consent. TSHR mutations were detected in 31 (4.4%) nodules and were located in exons 281-640, with codon 486 being the most common. Allelic frequency ranged from 3% to 45%. Of 16 cases (12 benign, 3 FTC, 1 PTC) with surgical correlation, 15 had solitary TSHR mutations and 1 PTC had comutation with BRAF V600E. Hyperthyroidism was confirmed in all 3 FTC (2 overt, 1 subclinical). Of 5 nodules with solitary TSHR mutations detected at high allelic frequency, 3 (60%) were FTC. Those at low allelic frequency (3%-22%) were benign. EZH1 mutations were detected in 2 of 4 TSHR-mutant malignant nodules and neither of 2 benign nodules. We report that TSHR mutations occur in ∼5% thyroid nodules in a large consecutive series with indeterminate cytology. TSHR mutations may be associated with an increased cancer risk when present at high allelic frequency, even when the nodule is hyperfunctioning. Benign nodules were however most strongly correlated with TSHR mutations at low allelic frequency. © 2018 Wiley Periodicals, Inc.
Delay differential analysis of time series.
Lainscsek, Claudia; Sejnowski, Terrence J
2015-03-01
Nonlinear dynamical system analysis based on embedding theory has been used for modeling and prediction, but it also has applications to signal detection and classification of time series. An embedding creates a multidimensional geometrical object from a single time series. Traditionally either delay or derivative embeddings have been used. The delay embedding is composed of delayed versions of the signal, and the derivative embedding is composed of successive derivatives of the signal. The delay embedding has been extended to nonuniform embeddings to take multiple timescales into account. Both embeddings provide information on the underlying dynamical system without having direct access to all the system variables. Delay differential analysis is based on functional embeddings, a combination of the derivative embedding with nonuniform delay embeddings. Small delay differential equation (DDE) models that best represent relevant dynamic features of time series data are selected from a pool of candidate models for detection or classification. We show that the properties of DDEs support spectral analysis in the time domain where nonlinear correlation functions are used to detect frequencies, frequency and phase couplings, and bispectra. These can be efficiently computed with short time windows and are robust to noise. For frequency analysis, this framework is a multivariate extension of discrete Fourier transform (DFT), and for higher-order spectra, it is a linear and multivariate alternative to multidimensional fast Fourier transform of multidimensional correlations. This method can be applied to short or sparse time series and can be extended to cross-trial and cross-channel spectra if multiple short data segments of the same experiment are available. Together, this time-domain toolbox provides higher temporal resolution, increased frequency and phase coupling information, and it allows an easy and straightforward implementation of higher-order spectra across time compared with frequency-based methods such as the DFT and cross-spectral analysis.
Ha, Jeong-Hyon; Lee, Kyung-Koo; Park, Kwang-Hee; Choi, Jun-Ho; Jeon, Seung-Joon; Cho, Minhaeng
2009-05-28
By means of integrated and dispersed IR photon echo measurement methods, the vibrational dynamics of C-N stretch modes in 4-cyanophenol and 4-cyanophenoxide in methanol is investigated. The vibrational frequency-frequency correlation function (FFCF) is retrieved from the integrated photon echo signals by assuming that the FFCF is described by two exponential functions with about 400 fs and a few picosecond components. The excited state lifetimes of the C-N stretch modes of neutral and anionic 4-cyanophenols are 1.45 and 0.91 ps, respectively, and the overtone anharmonic frequency shifts are 25 and 28 cm(-1). At short waiting times, a notable underdamped oscillation, which is attributed to a low-frequency intramolecular vibration coupled to the CN stretch, in the integrated and dispersed vibrational echo as well as transient grating signals was observed. The spectral bandwidths of IR absorption and dispersed vibrational echo spectra of the 4-cyanophenoxide are significantly larger than those of its neutral form, indicating that the strong interaction between phenoxide and methanol causes large frequency fluctuation and rapid population relaxation. The resonance effects in a paradisubstituted aromatic compound would be of interest in understanding the conjugation effects and their influences on chemical reactivity of various aromatic compounds in organic solvents.
Buchholz, Jörg M
2011-07-01
Coloration detection thresholds (CDTs) were measured for a single reflection as a function of spectral content and reflection delay for diotic stimulus presentation. The direct sound was a 320-ms long burst of bandpass-filtered noise with varying lower and upper cut-off frequencies. The resulting threshold data revealed that: (1) sensitivity decreases with decreasing bandwidth and increasing reflection delay and (2) high-frequency components contribute less to detection than low-frequency components. The auditory processes that may be involved in coloration detection (CD) are discussed in terms of a spectrum-based auditory model, which is conceptually similar to the pattern-transformation model of pitch (Wightman, 1973). Hence, the model derives an auto-correlation function of the input stimulus by applying a frequency analysis to an auditory representation of the power spectrum. It was found that, to successfully describe the quantitative behavior of the CDT data, three important mechanisms need to be included: (1) auditory bandpass filters with a narrower bandwidth than classic Gammatone filters, the increase in spectral resolution was here linked to cochlear suppression, (2) a spectral contrast enhancement process that reflects neural inhibition mechanisms, and (3) integration of information across auditory frequency bands. Copyright © 2011 Elsevier B.V. All rights reserved.
Speaking-rate-induced variability in F2 trajectories.
Tjaden, K; Weismer, G
1998-10-01
This study examined speaking-rate-induced spectral and temporal variability of F2 formant trajectories for target words produced in a carrier phrase at speaking rates ranging from fast to slow. F2 onset frequency measured at the first glottal pulse following the stop consonant release in target words was used to quantify the extent to which adjacent consonantal and vocalic gestures overlapped; F2 target frequency was operationally defined as the first occurrence of a frequency minimum or maximum following F2 onset frequency. Regression analyses indicated 70% of functions relating F2 onset and vowel duration were statistically significant. The strength of the effect was variable, however, and the direction of significant functions often differed from that predicted by a simple model of overlapping, sliding gestures. Results of a partial correlation analysis examining interrelationships among F2 onset, F2 target frequency, and vowel duration across the speaking rate range indicated that covariation of F2 target with vowel duration may obscure the relationship between F2 onset and vowel duration across rate. The results further suggested that a sliding based model of acoustic variability associated with speaking rate change only partially accounts for the present data, and that such a view accounts for some speakers' data better than others.
Solovenchuk, L L; Arshavskiĭ, V V
1988-05-01
Clearly definable polymorphism of hemisphere interrelations represented by three phenotypes was established by the method of EEG cross-correlation analysis. Each phenotype of the three, representing polymorphism, is characterized by marked specificity of perception and the processing of information, which determines certain integral physiological characteristics of individuals. Phenotype frequencies in aboriginal and new-come populations of the North-East of the USSR differ significantly. In comparison with the inhabitants, Moscow Russians of Magadan are significantly closer to aboriginal population, judging by their frequency distribution, and this may be due to the strategy specificity in adaptation of populations to environmental conditions. Significant difference in phenotype frequencies is shown in representatives of both sexes, this being more pronounced in the aboriginal population. The establishment of interhemispheric reaction type by approx. 10th year of individual's life is confirmed. Phenotype frequency correlations, depending on parental phenotype, were analyzed in children. The role of genetic and environmental factors in manifestation of the hemisphere relationship type is discussed. Rationality of the population analysis of hemisphere asymmetry types is grounded, according to the study of behavioural genetics and population adaptation.
Lehmann, Philipp; Boratyński, Zbyszek; Mappes, Tapio; Mousseau, Timothy A; Møller, Anders P
2016-01-27
A cataract is a clouding of the lens that reduces light transmission to the retina, and it decreases the visual acuity of the bearer. The prevalence of cataracts in natural populations of mammals, and their potential ecological significance, is poorly known. Cataracts have been reported to arise from high levels of oxidative stress and a major cause of oxidative stress is ionizing radiation. We investigated whether elevated frequencies of cataracts are found in eyes of bank voles Myodes glareolus collected from natural populations in areas with varying levels of background radiation in Chernobyl. We found high frequencies of cataracts in voles collected from different areas in Chernobyl. The frequency of cataracts was positively correlated with age, and in females also with the accumulated radiation dose. Furthermore, the number of offspring in female voles was negatively correlated with cataract severity. The results suggest that cataracts primarily develop as a function of ionizing background radiation, most likely as a plastic response to high levels of oxidative stress. It is therefore possible that the elevated levels of background radiation in Chernobyl affect the ecology and fitness of local mammals both directly through, for instance, reduced fertility and indirectly, through increased cataractogenesis.
The effect of a hot, spherical scattering cloud on quasi-periodic oscillation behavior
NASA Astrophysics Data System (ADS)
Bussard, R. W.; Weisskopf, M. C.; Elsner, R. F.; Shibazaki, N.
1988-04-01
A Monte Carlo technique is used to investigate the effects of a hot electron scattering cloud surrounding a time-dependent X-ray source. Results are presented for the time-averaged emergent energy spectra and the mean residence time in the cloud as a function of energy. Moreover, after Fourier transforming the scattering Green's function, it is shown how the cloud affects both the observed power spectrum of a time-dependent source and the cross spectrum (Fourier transform of a cross correlation between energy bands). It is found that the power spectra intrinsic to the source are related to those observed by a relatively simple frequency-dependent multiplicative factor (a transmission function). The cloud can severely attenuate high frequencies in the power spectra, depending on optical depth, and, at lower frequencies, the transmission function has roughly a Lorentzian shape. It is also found that if the intrinsic energy spectrum is constant in time, the phase of the cross spectrum is determined entirely by scattering. Finally, the implications of the results for studies of the X-ray quasi-periodic oscillators are discussed.
Vocal mechanics in Darwin's finches: correlation of beak gape and song frequency.
Podos, Jeffrey; Southall, Joel A; Rossi-Santos, Marcos R
2004-02-01
Recent studies of vocal mechanics in songbirds have identified a functional role for the beak in sound production. The vocal tract (trachea and beak) filters harmonic overtones from sounds produced by the syrinx, and birds can fine-tune vocal tract resonance properties through changes in beak gape. In this study, we examine patterns of beak gape during song production in seven species of Darwin's finches of the Galápagos Islands. Our principal goals were to characterize the relationship between beak gape and vocal frequency during song production and to explore the possible influence therein of diversity in beak morphology and body size. Birds were audio and video recorded (at 30 frames s(-1)) as they sang in the field, and 164 song sequences were analyzed. We found that song frequency regressed significantly and positively on beak gape for 38 of 56 individuals and for all seven species examined. This finding provides broad support for a resonance model of vocal tract function in Darwin's finches. Comparison among species revealed significant variation in regression y-intercept values. Body size correlated negatively with y-intercept values, although not at a statistically significant level. We failed to detect variation in regression slopes among finch species, although the regression slopes of Darwin's finch and two North American sparrow species were found to differ. Analysis within one species (Geospiza fortis) revealed significant inter-individual variation in regression parameters; these parameters did not correlate with song frequency features or plumage scores. Our results suggest that patterns of beak use during song production were conserved during the Darwin's finch adaptive radiation, despite the evolution of substantial variation in beak morphology and body size.
Postural imbalance and falls in PSP correlate with functional pathology of the thalamus.
Zwergal, A; la Fougère, C; Lorenzl, S; Rominger, A; Xiong, G; Deutschenbaur, L; Linn, J; Krafczyk, S; Dieterich, M; Brandt, T; Strupp, M; Bartenstein, P; Jahn, K
2011-07-12
To determine how postural imbalance and falls are related to regional cerebral glucose metabolism (PET) and functional activation of the cerebral postural network (fMRI) in patients with progressive supranuclear palsy (PSP). Sixteen patients with PSP, who had self-monitored their frequency of falls, underwent a standardized clinical assessment, posturographic measurement of balance during modified sensory input, and a resting [¹⁸F]FDG-PET. In addition, patients performed an fMRI paradigm using mental imagery of standing. Results were compared to healthy controls (n = 16). The frequency of falls/month in patients (range 1-40) correlated with total PSP rating score (r = 0.90). Total sway path in PSP significantly correlated with frequency of falls, especially during modulated sensory input (eyes open: r = 0.62, eyes closed: r = 0.67, eyes open/head extended: r = 0.84, eyes open/foam-padded platform: r = 0.87). Higher sway path values and frequency of falls were associated with decreased regional glucose metabolism (rCGM) in the thalamus (sway path: r = -0.80, falls: r = -0.64) and increased rCGM in the precentral gyrus (sway path: r = 0.79, falls: r = 0.64). Mental imagery of standing during fMRI revealed a reduced activation of the mesencephalic brainstem tegmentum and the thalamus in patients with postural imbalance and falls. The new and clinically relevant finding of this study is that imbalance and falls in PSP are closely associated with thalamic dysfunction. Deficits in thalamic postural control get most evident when balance is assessed during modified sensory input. The results are consistent with the hypothesis that reduced thalamic activation via the ascending brainstem projections may cause postural imbalance in PSP.
Collective dynamics in atomistic models with coupled translational and spin degrees of freedom
Perera, Dilina; Nicholson, Don M.; Eisenbach, Markus; ...
2017-01-26
When using an atomistic model that simultaneously treats the dynamics of translational and spin degrees of freedom, we perform combined molecular and spin dynamics simulations to investigate the mutual influence of the phonons and magnons on their respective frequency spectra and lifetimes in ferromagnetic bcc iron. Furthermore, by calculating the Fourier transforms of the space- and time-displaced correlation functions, the characteristic frequencies and the linewidths of the vibrational and magnetic excitation modes were determined. A comparison of the results with that of the stand-alone molecular dynamics and spin dynamics simulations reveals that the dynamic interplay between the phonons and magnonsmore » leads to a shift in the respective frequency spectra and a decrease in the lifetimes. Moreover, in the presence of lattice vibrations, additional longitudinal magnetic excitations were observed with the same frequencies as the longitudinal phonons.« less
Temperature-dependent layer breathing modes in two-dimensional materials
NASA Astrophysics Data System (ADS)
Maity, Indrajit; Maiti, Prabal K.; Jain, Manish
2018-04-01
Relative out-of-plane displacements of the constituent layers of two-dimensional materials give rise to unique low-frequency breathing modes. By computing the height-height correlation functions from molecular dynamics simulations, we show that the layer breathing modes (LBMs) can be mapped consistently to vibrations of a simple linear chain model. Our calculated thickness dependence of LBM frequencies for few-layer (FL) graphene and molybdenum disulfide (MoS2) are in excellent agreement with available experiments. Our results show a redshift of LBM frequency with an increase in temperature, which is a direct consequence of anharmonicities present in the interlayer interaction. We also predict the thickness and temperature dependence of LBM frequencies for FL hexagonal boron nitride. Our Rapid Communication provides a simple and efficient way to probe the interlayer interaction for layered materials and their heterostructures with the inclusion of anharmonic effects.
Heterogeneous dissipative composite structures
NASA Astrophysics Data System (ADS)
Ryabov, Victor; Yartsev, Boris; Parshina, Ludmila
2018-05-01
The paper suggests mathematical models of decaying vibrations in layered anisotropic plates and orthotropic rods based on Hamilton variation principle, first-order shear deformation laminated plate theory (FSDT), as well as on the viscous-elastic correspondence principle of the linear viscoelasticity theory. In the description of the physical relationships between the materials of the layers forming stiff polymeric composites, the effect of vibration frequency and ambient temperature is assumed as negligible, whereas for the viscous-elastic polymer layer, temperature-frequency relationship of elastic dissipation and stiffness properties is considered by means of the experimentally determined generalized curves. Mitigation of Hamilton functional makes it possible to describe decaying vibration of anisotropic structures by an algebraic problem of complex eigenvalues. The system of algebraic equation is generated through Ritz method using Legendre polynomials as coordinate functions. First, real solutions are found. To find complex natural frequencies of the system, the obtained real natural frequencies are taken as input values, and then, by means of the 3rd order iteration method, complex natural frequencies are calculated. The paper provides convergence estimates for the numerical procedures. Reliability of the obtained results is confirmed by a good correlation between analytical and experimental values of natural frequencies and loss factors in the lower vibration tones for the two series of unsupported orthotropic rods formed by stiff GRP and CRP layers and a viscoelastic polymer layer. Analysis of the numerical test data has shown the dissipation & stiffness properties of heterogeneous composite plates and rods to considerably depend on relative thickness of the viscoelastic polymer layer, orientation of stiff composite layers, vibration frequency and ambient temperature.
Female-directed violence as a form of sexual coercion in humans (Homo sapiens).
Barbaro, Nicole; Shackelford, Todd K
2016-11-01
Male-perpetrated female-directed violence (FDV) may be associated with greater sexual access to a female. Accordingly, FDV is expected to be associated with greater copulation frequency. Research on nonhuman primates affirms this hypothesis, but no previous research has investigated this relationship in humans (Homo sapiens). The current research tests the hypothesis that FDV is associated with in-pair copulation frequency and, thus, may function as a form of sexual coercion. It was predicted that men who perpetrate FDV will secure more in-pair copulations than men who do not perpetrate violence (Prediction 1a), and that average monthly rates of FDV would positively correlate with in-pair copulation frequency (Prediction 1b). Male participants (n = 355) completed a survey, reporting limited demographic information (e.g., age, relationship length), in-pair copulation frequency, and history of physical violence perpetration. As predicted, violent men secured more in-pair copulations, on average, than nonviolent men, and monthly rates of violence positively correlated with in-pair copulation frequency. In humans, as in nonhuman primates, FDV by males may facilitate greater sexual access to a female. We discuss the implications of the current research for an evolutionary perspective on partner violence, and draw on research on nonhuman primates to highlight profitable avenues of research on FDV in humans. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Yu, Meichen; Engels, Marjolein M A; Hillebrand, Arjan; van Straaten, Elisabeth C W; Gouw, Alida A; Teunissen, Charlotte; van der Flier, Wiesje M; Scheltens, Philip; Stam, Cornelis J
2017-05-01
Although frequency-specific network analyses have shown that functional brain networks are altered in patients with Alzheimer's disease, the relationships between these frequency-specific network alterations remain largely unknown. Multiplex network analysis is a novel network approach to study complex systems consisting of subsystems with different types of connectivity patterns. In this study, we used magnetoencephalography to integrate five frequency-band specific brain networks in a multiplex framework. Previous structural and functional brain network studies have consistently shown that hub brain areas are selectively disrupted in Alzheimer's disease. Accordingly, we hypothesized that hub regions in the multiplex brain networks are selectively targeted in patients with Alzheimer's disease in comparison to healthy control subjects. Eyes-closed resting-state magnetoencephalography recordings from 27 patients with Alzheimer's disease (60.6 ± 5.4 years, 12 females) and 26 controls (61.8 ± 5.5 years, 14 females) were projected onto atlas-based regions of interest using beamforming. Subsequently, source-space time series for both 78 cortical and 12 subcortical regions were reconstructed in five frequency bands (delta, theta, alpha 1, alpha 2 and beta band). Multiplex brain networks were constructed by integrating frequency-specific magnetoencephalography networks. Functional connections between all pairs of regions of interests were quantified using a phase-based coupling metric, the phase lag index. Several multiplex hub and heterogeneity metrics were computed to capture both overall importance of each brain area and heterogeneity of the connectivity patterns across frequency-specific layers. Different nodal centrality metrics showed consistently that several hub regions, particularly left hippocampus, posterior parts of the default mode network and occipital regions, were vulnerable in patients with Alzheimer's disease compared to control subjects. Of note, these detected vulnerable hubs in Alzheimer's disease were absent in each individual frequency-specific network, thus showing the value of integrating the networks. The connectivity patterns of these vulnerable hub regions in the patients were heterogeneously distributed across layers. Perturbed cognitive function and abnormal cerebrospinal fluid amyloid-β42 levels correlated positively with the vulnerability of the hub regions in patients with Alzheimer's disease. Our analysis therefore demonstrates that the magnetoencephalography-based multiplex brain networks contain important information that cannot be revealed by frequency-specific brain networks. Furthermore, this indicates that functional networks obtained in different frequency bands do not act as independent entities. Overall, our multiplex network study provides an effective framework to integrate the frequency-specific networks with different frequency patterns and reveal neuropathological mechanism of hub disruption in Alzheimer's disease. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Mascali, Daniele; DiNuzzo, Mauro; Gili, Tommaso; Moraschi, Marta; Fratini, Michela; Maraviglia, Bruno; Serra, Laura; Bozzali, Marco; Giove, Federico
2015-01-01
Low frequency fluctuations (LFFs) of the BOLD signal are a major discovery in the study of the resting brain with functional magnetic resonance imaging (fMRI). Two fMRI-based measures, functional connectivity (FC), a measure of signal synchronicity, and the amplitude of LFFs (ALFF), a measure of signal periodicity, have been proved to be sensitive to changes induced by several neurological diseases, including degenerative dementia. In spite of the increasing use of these measures, whether and how they are related to each other remains to be elucidated. In this work we used voxel-wise FC and ALFF computed in different frequency bands (slow-5: 0.01-0.027 Hz; slow-4: 0.027-0.073 Hz; and full-band: 0.01-0.073 Hz), in order to assess their relationship in healthy elderly as well as the relevant changes induced by Alzheimer’s Disease (AD) and Mild Cognitive Impairment (MCI). We found that in healthy elderly subjects FC and ALFF are positively correlated in anterior and posterior cingulate cortex (full-band, slow-4 and slow-5), temporal cortex (full-band and slow-5), and in a set of subcortical regions (full-band and slow-4). These correlation patterns between FC and ALFF were absent in either AD or MCI patients. Notably, the loss of correlation between FC and ALFF in the AD group was primarily due to changes in FC rather than in ALFF. Our results indicate that degenerative dementia is characterized by a loss of global connection rather than by a decrease of fluctuation amplitude. PMID:25844531
Lou, Wutao; Xu, Jin; Sheng, Hengsong; Zhao, Songzhen
2011-11-01
Multichannel EEG recorded in a task condition could contain more information about cognition. However, that has not been widely investigated in the vascular-dementia (VaD)- related studies. The purpose of this study was to explore the differences of brain functional states between VaD patients and normal controls while performing a detection task. Three multichannel linear descriptors, i.e. spatial complexity (Ω), field strength (Σ) and frequency of field changes (Φ), were applied to analyse four frequency bands (delta, theta, alpha and beta) of multichannel event-related EEG signals for 12 VaD patients (mean age ± SD: 69.25 ± 10.56 years ; MMSE score ± SD: 22.58 ± 4.42) and 12 age-matched healthy subjects (mean age ± SD: 67.17 ± 5.97 years ; MMSE score ± SD: 29.08 ± 0.9). The correlations between the three measures and MMSE scores were also analysed. VaD patients showed a significant higher Ω value in the delta (p = 0.013) and theta (p = 0.021) frequency bands, a lower Σ value (p = 0.011) and a higher Φ (p = 0.008) value in the delta frequency band compared with normal controls. The MMSE scores were negatively correlated with the Ω (r = -0.52, p = 0.01) and Φ (r = -0.47, p = 0.02) values in the delta frequency band. The results indicated the VaD patients presented a reduction of synchronization in the slow frequency band during target detection, and suggested more neurons might be activated in VaD patients compared with normal controls. The Ω and Φ measures in the delta frequency band might be used to evaluate the degree of cognitive dysfunction. The multichannel linear descriptors are promising measures to reveal the differences in brain functions between VaD patients and normal subjects, and could potentially be used to evaluate the degree of cognitive dysfunction in VaD patients. Copyright © 2011 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Aeroelastic Flight Data Analysis with the Hilbert-Huang Algorithm
NASA Technical Reports Server (NTRS)
Brenner, Martin J.; Prazenica, Chad
2006-01-01
This report investigates the utility of the Hilbert Huang transform for the analysis of aeroelastic flight data. It is well known that the classical Hilbert transform can be used for time-frequency analysis of functions or signals. Unfortunately, the Hilbert transform can only be effectively applied to an extremely small class of signals, namely those that are characterized by a single frequency component at any instant in time. The recently-developed Hilbert Huang algorithm addresses the limitations of the classical Hilbert transform through a process known as empirical mode decomposition. Using this approach, the data is filtered into a series of intrinsic mode functions, each of which admits a well-behaved Hilbert transform. In this manner, the Hilbert Huang algorithm affords time-frequency analysis of a large class of signals. This powerful tool has been applied in the analysis of scientific data, structural system identification, mechanical system fault detection, and even image processing. The purpose of this report is to demonstrate the potential applications of the Hilbert Huang algorithm for the analysis of aeroelastic systems, with improvements such as localized online processing. Applications for correlations between system input and output, and amongst output sensors, are discussed to characterize the time-varying amplitude and frequency correlations present in the various components of multiple data channels. Online stability analyses and modal identification are also presented. Examples are given using aeroelastic test data from the F-18 Active Aeroelastic Wing airplane, an Aerostructures Test Wing, and pitch plunge simulation.
Aeroelastic Flight Data Analysis with the Hilbert-Huang Algorithm
NASA Technical Reports Server (NTRS)
Brenner, Marty; Prazenica, Chad
2005-01-01
This paper investigates the utility of the Hilbert-Huang transform for the analysis of aeroelastic flight data. It is well known that the classical Hilbert transform can be used for time-frequency analysis of functions or signals. Unfortunately, the Hilbert transform can only be effectively applied to an extremely small class of signals, namely those that are characterized by a single frequency component at any instant in time. The recently-developed Hilbert-Huang algorithm addresses the limitations of the classical Hilbert transform through a process known as empirical mode decomposition. Using this approach, the data is filtered into a series of intrinsic mode functions, each of which admits a well-behaved Hilbert transform. In this manner, the Hilbert-Huang algorithm affords time-frequency analysis of a large class of signals. This powerful tool has been applied in the analysis of scientific data, structural system identification, mechanical system fault detection, and even image processing. The purpose of this paper is to demonstrate the potential applications of the Hilbert-Huang algorithm for the analysis of aeroelastic systems, with improvements such as localized/online processing. Applications for correlations between system input and output, and amongst output sensors, are discussed to characterize the time-varying amplitude and frequency correlations present in the various components of multiple data channels. Online stability analyses and modal identification are also presented. Examples are given using aeroelastic test data from the F/A-18 Active Aeroelastic Wing aircraft, an Aerostructures Test Wing, and pitch-plunge simulation.
Resonant nonlinear ultrasound spectroscopy
Johnson, Paul A.; TenCate, James A.; Guyer, Robert A.; Van Den Abeele, Koen E. A.
2001-01-01
Components with defects are identified from the response to strains applied at acoustic and ultrasound frequencies. The relative resonance frequency shift .vertline..DELTA..function./.function..sub.0.vertline., is determined as a function of applied strain amplitude for an acceptable component, where .function..sub.0 is the frequency of the resonance peak at the lowest amplitude of applied strain and .DELTA..function. is the frequency shift of the resonance peak of a selected mode to determine a reference relationship. Then, the relative resonance frequency shift .vertline..DELTA..function./.function..sub.0 is determined as a function of applied strain for a component under test, where fo .function..sub.0 the frequency of the resonance peak at the lowest amplitude of applied strain and .DELTA..function. is the frequency shift of the resonance peak to determine a quality test relationship. The reference relationship is compared with the quality test relationship to determine the presence of defects in the component under test.
Dynamics of a spin-boson model with structured spectral density
NASA Astrophysics Data System (ADS)
Kurt, Arzu; Eryigit, Resul
2018-05-01
We report the results of a study of the dynamics of a two-state system coupled to an environment with peaked spectral density. An exact analytical expression for the bath correlation function is obtained. Validity range of various approximations to the correlation function for calculating the population difference of the system is discussed as function of tunneling splitting, oscillator frequency, coupling constant, damping rate and the temperature of the bath. An exact expression for the population difference, for a limited range of parameters, is derived.
Reproducibility of resting state spinal cord networks in healthy volunteers at 7 Tesla.
Barry, Robert L; Rogers, Baxter P; Conrad, Benjamin N; Smith, Seth A; Gore, John C
2016-06-01
We recently reported our findings of resting state functional connectivity in the human spinal cord: in a cohort of healthy volunteers we observed robust functional connectivity between left and right ventral (motor) horns and between left and right dorsal (sensory) horns (Barry et al., 2014). Building upon these results, we now quantify the within-subject reproducibility of bilateral motor and sensory networks (intraclass correlation coefficient=0.54-0.56) and explore the impact of including frequencies up to 0.13Hz. Our results suggest that frequencies above 0.08Hz may enhance the detectability of these resting state networks, which would be beneficial for practical studies of spinal cord functional connectivity. Copyright © 2016 Elsevier Inc. All rights reserved.
Microscopic theoretical study of frequency dependent dielectric constant of heavy fermion systems
NASA Astrophysics Data System (ADS)
Shadangi, Keshab Chandra; Rout, G. C.
2017-05-01
The dielectric polarization and the dielectric constant plays a vital role in the deciding the properties of the Heavy Fermion Systems. In the present communication we consider the periodic Anderson's Model which consists of conduction electron kinetic energy, localized f-electron kinetic energy and the hybridization between the conduction and localized electrons, besides the Coulomb correlation energy. We calculate dielectric polarization which involves two particle Green's functions which are calculated by using Zubarev's Green's function technique. Using the equations of motion of the fermion electron operators. Finally, the temperature and frequency dependent dielectric constant is calculated from the dielectric polarization function. The charge susceptibility and dielectric constant are computed numerically for different physical parameters like the position (Ef) of the f-electron level with respect to fermi level, the strength of the hybridization (V) between the conduction and localized f-electrons, Coulomb correlation potential temperature and optical phonon wave vector (q). The results will be discussed in a reference to the experimental observations of the dielectric constants.
A Spherical Harmonic Analysis of the Ooty Wide Field Array (OWFA) Visibility Signal
NASA Astrophysics Data System (ADS)
Chatterjee, Suman; Bharadwaj, Somnath
2018-04-01
Considering redshifted 21-cm intensity mapping with the upcoming OWFA whose field of view subtends ˜57° in the N-S direction, we present a formalism which relates the measured visibilities to the spherical harmonic coefficients of the sky signal. We use this to calculate window functions which relate the two-visibility correlations i.e. the correlation between the visibilities measured at two baselines and two frequencies, to different multipoles of the multi-frequency angular power spectrum Cℓ(ν1, ν2). The formalism here is validated using simulations. We also present approximate closed form analytical expressions which can be used to calculate the window functions. Comparing the widely adopted flat sky approximation, we find that its predictions match those of our spherical harmonic formalism to within 16% across the entire OWFA baseline range. The match improves at large baselines where we have <5% deviations.
Kujala, Jan; Sudre, Gustavo; Vartiainen, Johanna; Liljeström, Mia; Mitchell, Tom; Salmelin, Riitta
2014-01-01
Animal and human studies have frequently shown that in primary sensory and motor regions the BOLD signal correlates positively with high-frequency and negatively with low-frequency neuronal activity. However, recent evidence suggests that this relationship may also vary across cortical areas. Detailed knowledge of the possible spectral diversity between electrophysiological and hemodynamic responses across the human cortex would be essential for neural-level interpretation of fMRI data and for informative multimodal combination of electromagnetic and hemodynamic imaging data, especially in cognitive tasks. We applied multivariate partial least squares correlation analysis to MEG–fMRI data recorded in a reading paradigm to determine the correlation patterns between the data types, at once, across the cortex. Our results revealed heterogeneous patterns of high-frequency correlation between MEG and fMRI responses, with marked dissociation between lower and higher order cortical regions. The low-frequency range showed substantial variance, with negative and positive correlations manifesting at different frequencies across cortical regions. These findings demonstrate the complexity of the neurophysiological counterparts of hemodynamic fluctuations in cognitive processing. PMID:24518260
Diesch, Eugen; Andermann, Martin; Flor, Herta; Rupp, Andre
2010-05-01
The steady-state auditory evoked magnetic field was recorded in tinnitus patients and controls, both either musicians or non-musicians, all of them with high-frequency hearing loss. Stimuli were AM-tones with two modulation frequencies and three carrier frequencies matching the "audiometric edge", i.e. the frequency above which hearing loss increases more rapidly, the tinnitus frequency or the frequency 1 1/2 octaves above the audiometric edge in controls, and a frequency 1 1/2 octaves below the audiometric edge. Stimuli equated in carrier frequency, but differing in modulation frequency, were simultaneously presented to the two ears. The modulation frequency-specific components of the dual steady-state response were recovered by bandpass filtering. In both hemispheres, the source amplitude of the response was larger for contralateral than ipsilateral input. In non-musicians with tinnitus, this laterality effect was enhanced in the hemisphere contralateral and reduced in the hemisphere ipsilateral to the tinnitus ear, especially for the tinnitus frequency. The hemisphere-by-input laterality dominance effect was smaller in musicians than in non-musicians. In both patient groups, source amplitude change over time, i.e. amplitude slope, was increasing with tonal frequency for contralateral input and decreasing for ipsilateral input. However, slope was smaller for musicians than non-musicians. In patients, source amplitude was negatively correlated with the MRI-determined volume of the medial partition of Heschl's gyrus. Tinnitus patients show an altered excitatory-inhibitory balance reflecting the downregulation of inhibition and resulting in a steeper dominance hierarchy among simultaneous processes in auditory cortex. Direction and extent of this alteration are modulated by musicality and auditory cortex volume. 2010 Elsevier Inc. All rights reserved.
Oscillations during observations: Dynamic oscillatory networks serving visuospatial attention.
Wiesman, Alex I; Heinrichs-Graham, Elizabeth; Proskovec, Amy L; McDermott, Timothy J; Wilson, Tony W
2017-10-01
The dynamic allocation of neural resources to discrete features within a visual scene enables us to react quickly and accurately to salient environmental circumstances. A network of bilateral cortical regions is known to subserve such visuospatial attention functions; however the oscillatory and functional connectivity dynamics of information coding within this network are not fully understood. Particularly, the coding of information within prototypical attention-network hubs and the subsecond functional connections formed between these hubs have not been adequately characterized. Herein, we use the precise temporal resolution of magnetoencephalography (MEG) to define spectrally specific functional nodes and connections that underlie the deployment of attention in visual space. Twenty-three healthy young adults completed a visuospatial discrimination task designed to elicit multispectral activity in visual cortex during MEG, and the resulting data were preprocessed and reconstructed in the time-frequency domain. Oscillatory responses were projected to the cortical surface using a beamformer, and time series were extracted from peak voxels to examine their temporal evolution. Dynamic functional connectivity was then computed between nodes within each frequency band of interest. We find that visual attention network nodes are defined functionally by oscillatory frequency, that the allocation of attention to the visual space dynamically modulates functional connectivity between these regions on a millisecond timescale, and that these modulations significantly correlate with performance on a spatial discrimination task. We conclude that functional hubs underlying visuospatial attention are segregated not only anatomically but also by oscillatory frequency, and importantly that these oscillatory signatures promote dynamic communication between these hubs. Hum Brain Mapp 38:5128-5140, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Multitime correlation functions in nonclassical stochastic processes
NASA Astrophysics Data System (ADS)
Krumm, F.; Sperling, J.; Vogel, W.
2016-06-01
A general method is introduced for verifying multitime quantum correlations through the characteristic function of the time-dependent P functional that generalizes the Glauber-Sudarshan P function. Quantum correlation criteria are derived which identify quantum effects for an arbitrary number of points in time. The Magnus expansion is used to visualize the impact of the required time ordering, which becomes crucial in situations when the interaction problem is explicitly time dependent. We show that the latter affects the multi-time-characteristic function and, therefore, the temporal evolution of the nonclassicality. As an example, we apply our technique to an optical parametric process with a frequency mismatch. The resulting two-time-characteristic function yields full insight into the two-time quantum correlation properties of such a system.
NASA Astrophysics Data System (ADS)
Liu, Yao; Wang, Xiufeng; Lin, Jing; Zhao, Wei
2016-11-01
Motor current is an emerging and popular signal which can be used to detect machining chatter with its multiple advantages. To achieve accurate and reliable chatter detection using motor current, it is important to make clear the quantitative relationship between motor current and chatter vibration, which has not yet been studied clearly. In this study, complex continuous wavelet coherence, including cross wavelet transform and wavelet coherence, is applied to the correlation analysis of motor current and chatter vibration in grinding. Experimental results show that complex continuous wavelet coherence performs very well in demonstrating and quantifying the intense correlation between these two signals in frequency, amplitude and phase. When chatter occurs, clear correlations in frequency and amplitude in the chatter frequency band appear and the phase difference of current signal to vibration signal turns from random to stable. The phase lead of the most correlated chatter frequency is the largest. With the further development of chatter, the correlation grows up in intensity and expands to higher order chatter frequency band. The analyzing results confirm that there is a consistent correlation between motor current and vibration signals in the grinding chatter process. However, to achieve accurate and reliable chatter detection using motor current, the frequency response bandwidth of current loop of the feed drive system must be wide enough to response chatter effectively.
AC conductivity and dielectric properties of bulk tungsten trioxide (WO3)
NASA Astrophysics Data System (ADS)
El-Nahass, M. M.; Ali, H. A. M.; Saadeldin, M.; Zaghllol, M.
2012-11-01
AC conductivity and dielectric properties of tungsten trioxide (WO3) in a pellet form were studied in the frequency range from 42 Hz to 5 MHz with a variation of temperature in the range from 303 K to 463 K. AC conductivity, σac(ω) was found to be a function of ωs where ω is the angular frequency and s is the frequency exponent. The values of s were found to be less than unity and decrease with increasing temperature, which supports the correlated barrier hopping mechanism (CBH) as the dominant mechanism for the conduction in WO3. The dielectric constant (ε‧) and dielectric loss (ε″) were measured. The Cole-Cole diagram determined complex impedance for different temperatures.
Smeared spectrum jamming suppression based on generalized S transform and threshold segmentation
NASA Astrophysics Data System (ADS)
Li, Xin; Wang, Chunyang; Tan, Ming; Fu, Xiaolong
2018-04-01
Smeared Spectrum (SMSP) jamming is an effective jamming in countering linear frequency modulation (LFM) radar. According to the time-frequency distribution difference between jamming and echo, a jamming suppression method based on Generalized S transform (GST) and threshold segmentation is proposed. The sub-pulse period is firstly estimated based on auto correlation function firstly. Secondly, the time-frequency image and the related gray scale image are achieved based on GST. Finally, the Tsallis cross entropy is utilized to compute the optimized segmentation threshold, and then the jamming suppression filter is constructed based on the threshold. The simulation results show that the proposed method is of good performance in the suppression of false targets produced by SMSP.
Frequency, thermal and voltage supercapacitor characterization and modeling
NASA Astrophysics Data System (ADS)
Rafik, F.; Gualous, H.; Gallay, R.; Crausaz, A.; Berthon, A.
A simple electrical model has been established to describe supercapacitor behaviour as a function of frequency, voltage and temperature for hybrid vehicle applications. The electrical model consists of 14 RLC elements, which have been determined from experimental data using electrochemical impedance spectroscopy (EIS) applied on a commercial supercapacitor. The frequency analysis has been extended for the first time to the millihertz range to take into account the leakage current and the charge redistribution on the electrode. Simulation and experimental results of supercapacitor charge and discharge have been compared and analysed. A good correlation between the model and the EIS results has been demonstrated from 1 mHz to 1 kHz, from -20 to 60 °C and from 0 to 2.5 V.
Zhang, Le; McCallister, Andrew; Koshlap, Karl M; Branca, Rosa Tamara
2018-03-01
Because the resonance frequency of water-fat intermolecular zero-quantum coherences (iZQCs) reflects the water-fat frequency separation at the microscopic scale, these frequencies have been proposed and used as a mean to obtain more accurate temperature information. The purpose of this work was to investigate the dependence of the water-fat iZQC resonance frequency on sample microstructure and on the specific choice of the correlation distance. The effect of water-fat susceptibility gradients on the water-methylene iZQC resonance frequency was first computed and then measured for different water-fat emulsions and for a mixture of porcine muscle and fat. Similar measurements were also performed for mixed heteronuclear spin systems. A strong dependence of the iZQC resonance frequency on the sample microstructure and on the specific choice of the correlation distance was found for spin systems like water and fat that do not mix, but not for spin systems that mix at the molecular level. Because water and fat spins do not mix at the molecular level, the water-fat iZQC resonance frequency and its temperature coefficient are not only affected by sample microstructure but also by the specific choice of the correlation distance. Magn Reson Med 79:1429-1438, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Deurenberg, P; Andreoli, A; de Lorenzo, A
1996-01-01
Total body water and extracellular water were measured by deuterium oxide and bromide dilution respectively in 23 healthy males and 25 healthy females. In addition, total body impedance was measured at 17 frequencies, ranging from 1 kHz to 1350 kHz. Modelling programs were used to extrapolate impedance values to frequency zero (extracellular resistance) and frequency infinity (total body water resistance). Impedance indexes (height2/Zf) were computed at all 17 frequencies. The estimation errors of extracellular resistance and total body water resistance were 1% and 3%, respectively. Impedance and impedance index at low frequency were correlated with extracellular water, independent of the amount of total body water. Total body water showed the greatest correlation with impedance and impedance index at high frequencies. Extrapolated impedance values did not show a higher correlation compared to measured values. Prediction formulas from the literature applied to fixed frequencies showed the best mean and individual predictions for both extracellular water and total body water. It is concluded that, at least in healthy individuals with normal body water distribution, modelling impedance data has no advantage over impedance values measured at fixed frequencies, probably due to estimation errors in the modelled data.
NASA Technical Reports Server (NTRS)
Pasham, Dheeraj R.; Strohmayer, Tod E.
2013-01-01
Using all the archival XMM-Newton X-ray (3-10 keV) observations of the ultraluminous X-ray source (ULX) M82 X-1, we searched for a correlation between its variable mHz quasi-periodic oscillation (QPO) frequency and its hardness ratio (5-10 keV/3-5 keV), an indicator of the energy spectral power-law index. When stellar-mass black holes (StMBHs) exhibit type-C low-frequency QPOs (0.2-15 Hz), the centroid frequency of the QPO is known to correlate with the energy spectral index. The detection of such a correlation would strengthen the identification of M82 X-1's mHz QPOs as type-C and enable a more reliable mass estimate by scaling its QPO frequencies to those of type-C QPOs in StMBHs of known mass.We resolved the count rates and the hardness ratios of M82 X-1 and a nearby bright ULX (source 5/X42.3+59) through surface brightness modeling.We detected QPOs in the frequency range of 36-210 mHz during which M82 X-1's hardness ratio varied from 0.42 to 0.47. Our primary results are (1) that we do not detect any correlation between the mHz QPO frequency and the hardness ratio (a substitute for the energy spectral power-law index) and (2) similar to some accreting X-ray binaries, we find that M82 X-1's mHz QPO frequency increases with its X-ray count rate (Pearson's correlation coefficient = +0.97). The apparent lack of a correlation between the QPO centroid frequency and the hardness ratio poses a challenge to the earlier claims that the mHz QPOs of M82 X-1 are the analogs of the type-C low-frequency QPOs of StMBHs. On the other hand, it is possible that the observed relation between the hardness ratio and the QPO frequency represents the saturated portion of the correlation seen in type-C QPOs of StMBHs-in which case M82 X-1's mHz QPOs can still be analogous to type-C QPOs.
NASA Astrophysics Data System (ADS)
Liu, X.; Beroza, G. C.; Nakata, N.
2017-12-01
Cross-correlation of fully diffuse wavefields provides Green's function between receivers, although the ambient noise field in the real world contains both diffuse and non-diffuse fields. The non-diffuse field potentially degrades the correlation functions. We attempt to blindly separate the diffuse and the non-diffuse components from cross-correlations of ambient seismic noise and analyze the potential bias caused by the non-diffuse components. We compute the 9-component noise cross-correlations for 17 stations in southern California. For the Rayleigh wave components, we assume that the cross-correlation of multiply scattered waves (diffuse component) is independent from the cross-correlation of ocean microseismic quasi-point source responses (non-diffuse component), and the cross-correlation function of ambient seismic data is the sum of both components. Thus we can blindly separate the non-diffuse component due to physical point sources and the more diffuse component due to cross-correlation of multiply scattered noise based on their statistical independence. We also perform beamforming over different frequency bands for the cross-correlations before and after the separation, and we find that the decomposed Rayleigh wave represents more coherent features among all Rayleigh wave polarization cross-correlation components. We show that after separating the non-diffuse component, the Frequency-Time Analysis results are less ambiguous. In addition, we estimate the bias in phase velocity on the raw cross-correlation data due to the non-diffuse component. We also apply this technique to a few borehole stations in Groningen, the Netherlands, to demonstrate its applicability in different instrument/geology settings.
Characterization of CD4+ T cell-mediated cytotoxicity in patients with multiple myeloma.
Zhang, Xiaole; Gao, Lei; Meng, Kai; Han, Chunting; Li, Qiang; Feng, Zhenjun; Chen, Lei
2018-05-01
Multiple myeloma (MM) is an incurable cancer characterized by the development of malignant plasma cells. The CD8 T cell-mediated cytotoxicity is considered a major player in antitumor immunity, but in MM patients, the CD8 T cells displayed senescence markers and were functionally impaired. To investigate whether cytotoxic CD4 T cells could act as a treatment alternative in MM, we examined the frequency and function of naturally occurring cytotoxic CD4 T cells in MM patients. The cytotoxic CD4 T cells were identified as granzyme-A, granzyme B-, and perforin-expressing CD4 T cells, and their frequencies were significantly upregulated in MM patients when compared with healthy controls. The frequencies of cytotoxic CD4 T cells in MM patients were not associated with the frequencies of cytotoxic CD8 T cells, but were negatively associated with disease severity. Interestingly, the expression levels of inhibitory molecules, including PD-1 and CTLA-4, were significantly lower in cytotoxic CD4 T cells than in cytotoxic CD8 T cells. When co-incubated with autologous CD38 + CD138 + plasma cells, CD4 T cells were capable of eliminating plasma cells with varying degrees of efficacy. In MM patients, the frequency of circulating plasma cells was negatively correlated with the frequency of cytotoxic CD4 T cells. Therefore, CD4 T cell-mediated cytotoxicity existed naturally in MM patients and could potentially act as an option in antitumor therapies. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
van Doesburgh, Marieke; van der Klis, Michiel
2017-03-01
We analyse all available RXTE data on a sample of 13 low-mass X-ray binaries with known neutron star spin that are not persistent pulsars. We carefully measure the correlations between the centroid frequencies of the quasi-periodic oscillations (QPOs). We compare these correlations to the prediction of the relativistic precession model that, due to frame dragging, a QPO will occur at the Lense-Thirring precession frequency νLT of a test-particle orbit whose orbital frequency is the upper kHz QPO frequency νu. Contrary to the most prominent previous studies, we find two different oscillations in the range predicted for νLT that are simultaneously present over a wide range of νu. Additionally, one of the low-frequency noise components evolves into a (third) QPO in the νLT range when νu exceeds 600 Hz. The frequencies of these QPOs all correlate to νu following power laws with indices between 0.4 and 3.3, significantly exceeding the predicted value of 2.0 in 80 per cent of the cases (at 3 to >20σ). Also, there is no evidence that the neutron star spin frequency affects any of these three QPO frequencies, as would be expected for frame dragging. Finally, the observed QPO frequencies tend to be higher than the νLT predicted for reasonable neutron star specific moment of inertia. In the light of recent successes of precession models in black holes, we briefly discuss ways in which such precession can occur in neutron stars at frequencies different from test-particle values and consistent with those observed. A precessing torus geometry and other torques than frame dragging may allow precession to produce the observed frequency correlations, but can only explain one of the three QPOs in the νLT range.
Xu, Tingting; Cullen, Kathryn R.; Mueller, Bryon; Schreiner, Mindy W.; Lim, Kelvin O.; Schulz, S. Charles; Parhi, Keshab K.
2016-01-01
Borderline personality disorder (BPD) is associated with symptoms such as affect dysregulation, impaired sense of self, and self-harm behaviors. Neuroimaging research on BPD has revealed structural and functional abnormalities in specific brain regions and connections. However, little is known about the topological organizations of brain networks in BPD. We collected resting-state functional magnetic resonance imaging (fMRI) data from 20 patients with BPD and 10 healthy controls, and constructed frequency-specific functional brain networks by correlating wavelet-filtered fMRI signals from 82 cortical and subcortical regions. We employed graph-theory based complex network analysis to investigate the topological properties of the brain networks, and employed network-based statistic to identify functional dysconnections in patients. In the 0.03–0.06 Hz frequency band, compared to controls, patients with BPD showed significantly larger measures of global network topology, including the size of largest connected graph component, clustering coefficient, small-worldness, and local efficiency, indicating increased local cliquishness of the functional brain network. Compared to controls, patients showed lower nodal centrality at several hub nodes but greater centrality at several non-hub nodes in the network. Furthermore, an interconnected subnetwork in 0.03–0.06 Hz frequency band was identified that showed significantly lower connectivity in patients. The links in the subnetwork were mainly long-distance connections between regions located at different lobes; and the mean connectivity of this subnetwork was negatively correlated with the increased global topology measures. Lastly, the key network measures showed high correlations with several clinical symptom scores, and classified BPD patients against healthy controls with high accuracy based on linear discriminant analysis. The abnormal topological properties and connectivity found in this study may add new knowledge to the current understanding of functional brain networks in BPD. However, due to limitation of small sample sizes, the results of the current study should be viewed as exploratory and need to be validated on large samples in future works. PMID:26977400
Xu, Tingting; Cullen, Kathryn R; Mueller, Bryon; Schreiner, Mindy W; Lim, Kelvin O; Schulz, S Charles; Parhi, Keshab K
2016-01-01
Borderline personality disorder (BPD) is associated with symptoms such as affect dysregulation, impaired sense of self, and self-harm behaviors. Neuroimaging research on BPD has revealed structural and functional abnormalities in specific brain regions and connections. However, little is known about the topological organizations of brain networks in BPD. We collected resting-state functional magnetic resonance imaging (fMRI) data from 20 patients with BPD and 10 healthy controls, and constructed frequency-specific functional brain networks by correlating wavelet-filtered fMRI signals from 82 cortical and subcortical regions. We employed graph-theory based complex network analysis to investigate the topological properties of the brain networks, and employed network-based statistic to identify functional dysconnections in patients. In the 0.03-0.06 Hz frequency band, compared to controls, patients with BPD showed significantly larger measures of global network topology, including the size of largest connected graph component, clustering coefficient, small-worldness, and local efficiency, indicating increased local cliquishness of the functional brain network. Compared to controls, patients showed lower nodal centrality at several hub nodes but greater centrality at several non-hub nodes in the network. Furthermore, an interconnected subnetwork in 0.03-0.06 Hz frequency band was identified that showed significantly lower connectivity in patients. The links in the subnetwork were mainly long-distance connections between regions located at different lobes; and the mean connectivity of this subnetwork was negatively correlated with the increased global topology measures. Lastly, the key network measures showed high correlations with several clinical symptom scores, and classified BPD patients against healthy controls with high accuracy based on linear discriminant analysis. The abnormal topological properties and connectivity found in this study may add new knowledge to the current understanding of functional brain networks in BPD. However, due to limitation of small sample sizes, the results of the current study should be viewed as exploratory and need to be validated on large samples in future works.
Mitoflash frequency in early adulthood predicts lifespan in Caenorhabditis elegans
NASA Astrophysics Data System (ADS)
Shen, En-Zhi; Song, Chun-Qing; Lin, Yuan; Zhang, Wen-Hong; Su, Pei-Fang; Liu, Wen-Yuan; Zhang, Pan; Xu, Jiejia; Lin, Na; Zhan, Cheng; Wang, Xianhua; Shyr, Yu; Cheng, Heping; Dong, Meng-Qiu
2014-04-01
It has been theorized for decades that mitochondria act as the biological clock of ageing, but the evidence is incomplete. Here we show a strong coupling between mitochondrial function and ageing by in vivo visualization of the mitochondrial flash (mitoflash), a frequency-coded optical readout reflecting free-radical production and energy metabolism at the single-mitochondrion level. Mitoflash activity in Caenorhabditis elegans pharyngeal muscles peaked on adult day 3 during active reproduction and on day 9 when animals started to die off. A plethora of genetic mutations and environmental factors inversely modified the lifespan and the day-3 mitoflash frequency. Even within an isogenic population, the day-3 mitoflash frequency was negatively correlated with the lifespan of individual animals. Furthermore, enhanced activity of the glyoxylate cycle contributed to the decreased day-3 mitoflash frequency and the longevity of daf-2 mutant animals. These results demonstrate that the day-3 mitoflash frequency is a powerful predictor of C. elegans lifespan across genetic, environmental and stochastic factors. They also support the notion that the rate of ageing, although adjustable in later life, has been set to a considerable degree before reproduction ceases.
Joachimsthaler, Bettina; Uhlmann, Michaela; Miller, Frank; Ehret, Günter; Kurt, Simone
2014-01-01
Because of its great genetic potential, the mouse (Mus musculus) has become a popular model species for studies on hearing and sound processing along the auditory pathways. Here, we present the first comparative study on the representation of neuronal response parameters to tones in primary and higher-order auditory cortical fields of awake mice. We quantified 12 neuronal properties of tone processing in order to estimate similarities and differences of function between the fields, and to discuss how far auditory cortex (AC) function in the mouse is comparable to that in awake monkeys and cats. Extracellular recordings were made from 1400 small clusters of neurons from cortical layers III/IV in the primary fields AI (primary auditory field) and AAF (anterior auditory field), and the higher-order fields AII (second auditory field) and DP (dorsoposterior field). Field specificity was shown with regard to spontaneous activity, correlation between spontaneous and evoked activity, tone response latency, sharpness of frequency tuning, temporal response patterns (occurrence of phasic responses, phasic-tonic responses, tonic responses, and off-responses), and degree of variation between the characteristic frequency (CF) and the best frequency (BF) (CF–BF relationship). Field similarities were noted as significant correlations between CFs and BFs, V-shaped frequency tuning curves, similar minimum response thresholds and non-monotonic rate-level functions in approximately two-thirds of the neurons. Comparative and quantitative analyses showed that the measured response characteristics were, to various degrees, susceptible to influences of anesthetics. Therefore, studies of neuronal responses in the awake AC are important in order to establish adequate relationships between neuronal data and auditory perception and acoustic response behavior. PMID:24506843
Smoothed Spectra, Ogives, and Error Estimates for Atmospheric Turbulence Data
NASA Astrophysics Data System (ADS)
Dias, Nelson Luís
2018-01-01
A systematic evaluation is conducted of the smoothed spectrum, which is a spectral estimate obtained by averaging over a window of contiguous frequencies. The technique is extended to the ogive, as well as to the cross-spectrum. It is shown that, combined with existing variance estimates for the periodogram, the variance—and therefore the random error—associated with these estimates can be calculated in a straightforward way. The smoothed spectra and ogives are biased estimates; with simple power-law analytical models, correction procedures are devised, as well as a global constraint that enforces Parseval's identity. Several new results are thus obtained: (1) The analytical variance estimates compare well with the sample variance calculated for the Bartlett spectrum and the variance of the inertial subrange of the cospectrum is shown to be relatively much larger than that of the spectrum. (2) Ogives and spectra estimates with reduced bias are calculated. (3) The bias of the smoothed spectrum and ogive is shown to be negligible at the higher frequencies. (4) The ogives and spectra thus calculated have better frequency resolution than the Bartlett spectrum, with (5) gradually increasing variance and relative error towards the low frequencies. (6) Power-law identification and extraction of the rate of dissipation of turbulence kinetic energy are possible directly from the ogive. (7) The smoothed cross-spectrum is a valid inner product and therefore an acceptable candidate for coherence and spectral correlation coefficient estimation by means of the Cauchy-Schwarz inequality. The quadrature, phase function, coherence function and spectral correlation function obtained from the smoothed spectral estimates compare well with the classical ones derived from the Bartlett spectrum.
Johannesen, Peter T.; Pérez-González, Patricia; Lopez-Poveda, Enrique A.
2014-01-01
Identifying the multiple contributors to the audiometric loss of a hearing impaired (HI) listener at a particular frequency is becoming gradually more useful as new treatments are developed. Here, we infer the contribution of inner (IHC) and outer hair cell (OHC) dysfunction to the total audiometric loss in a sample of 68 hearing aid candidates with mild-to-severe sensorineural hearing loss, and for test frequencies of 0.5, 1, 2, 4, and 6 kHz. It was assumed that the audiometric loss (HLTOTAL) at each test frequency was due to a combination of cochlear gain loss, or OHC dysfunction (HLOHC), and inefficient IHC processes (HLIHC), all of them in decibels. HLOHC and HLIHC were estimated from cochlear I/O curves inferred psychoacoustically using the temporal masking curve (TMC) method. 325 I/O curves were measured and 59% of them showed a compression threshold (CT). The analysis of these I/O curves suggests that (1) HLOHC and HLIHC account on average for 60–70 and 30–40% of HLTOTAL, respectively; (2) these percentages are roughly constant across frequencies; (3) across-listener variability is large; (4) residual cochlear gain is negatively correlated with hearing loss while residual compression is not correlated with hearing loss. Altogether, the present results support the conclusions from earlier studies and extend them to a wider range of test frequencies and hearing-loss ranges. Twenty-four percent of I/O curves were linear and suggested total cochlear gain loss. The number of linear I/O curves increased gradually with increasing frequency. The remaining 17% I/O curves suggested audiometric losses due mostly to IHC dysfunction and were more frequent at low (≤1 kHz) than at high frequencies. It is argued that in a majority of listeners, hearing loss is due to a common mechanism that concomitantly alters IHC and OHC function and that IHC processes may be more labile in the apex than in the base. PMID:25100940
NASA Astrophysics Data System (ADS)
Reese, D. R.; Lignières, F.; Ballot, J.; Dupret, M.-A.; Barban, C.; van't Veer-Menneret, C.; MacGregor, K. B.
2017-05-01
Context. Mode identification has remained a major obstacle in the interpretation of pulsation spectra in rapidly rotating stars. This has motivated recent work on calculating realistic multi-colour mode visibilities in this type of star. Aims: We would like to test mode identification methods and seismic diagnostics in rapidly rotating stars, using oscillation spectra that are based on these new theoretical predictions. Methods: We investigate the auto-correlation function and Fourier transform of theoretically calculated frequency spectra, in which modes are selected according to their visibilities. Given that intrinsic mode amplitudes are determined by non-linear saturation and cannot currently be theoretically predicted, we experimented with various ad-hoc prescriptions for setting the mode amplitudes, including using random values. Furthermore, we analyse the ratios between mode amplitudes observed in different photometric bands to see up to what extent they can identify modes. Results: When non-random intrinsic mode amplitudes are used, our results show that it is possible to extract a mean value for the large frequency separation or half its value and, sometimes, twice the rotation rate, from the auto-correlation of the frequency spectra. Furthermore, the Fourier transforms are mostly sensitive to the large frequency separation or half its value. The combination of the two methods may therefore measure and distinguish the two types of separations. When the intrinsic mode amplitudes include random factors, which seems more representative of real stars, the results are far less favourable. It is only when the large separation or half its value coincides with twice the rotation rate, that it might be possible to detect the signature of a frequency regularity. We also find that amplitude ratios are a good way of grouping together modes with similar characteristics. By analysing the frequencies of these groups, it is possible to constrain mode identification, as well as determine the large frequency separation and the rotation rate.
Structural covariance mapping delineates medial and medio-lateral temporal networks in déjà vu.
Shaw, Daniel Joel; Mareček, Radek; Brázdil, Milan
2016-12-01
Déjà vu (DV) is an eerie phenomenon experienced frequently as an aura of temporal lobe epilepsy, but also reported commonly by healthy individuals. The former pathological manifestation appears to result from aberrant neural activity among brain structures within the medial temporal lobes. Recent studies also implicate medial temporal brain structures in the non-pathological experience of DV, but as one element of a diffuse neuroanatomical correlate; it remains to be seen if neural activity among the medial temporal lobes also underlies this benign manifestation. The present study set out to investigate this. Due to its unpredictable and infrequent occurrence, however, non-pathological DV does not lend itself easily to functional neuroimaging. Instead, we draw on research showing that brain structure covaries among regions that interact frequently as nodes of functional networks. Specifically, we assessed whether grey-matter covariance among structures implicated in non-pathological DV differs according to the frequency with which the phenomenon is experienced. This revealed two diverging patterns of structural covariation: Among the first, comprised primarily of medial temporal structures and the caudate, grey-matter volume becomes more positively correlated with higher frequency of DV experience. The second pattern encompasses medial and lateral temporal structures, among which greater DV frequency is associated with more negatively correlated grey matter. Using a meta-analytic method of co-activation mapping, we demonstrate a higher probability of functional interactions among brain structures constituting the former pattern, particularly during memory-related processes. Our findings suggest that altered neural signalling within memory-related medial temporal brain structures underlies both pathological and non-pathological DV.
A new frequency matching technique for FRF-based model updating
NASA Astrophysics Data System (ADS)
Yang, Xiuming; Guo, Xinglin; Ouyang, Huajiang; Li, Dongsheng
2017-05-01
Frequency Response Function (FRF) residues have been widely used to update Finite Element models. They are a kind of original measurement information and have the advantages of rich data and no extraction errors, etc. However, like other sensitivity-based methods, an FRF-based identification method also needs to face the ill-conditioning problem which is even more serious since the sensitivity of the FRF in the vicinity of a resonance is much greater than elsewhere. Furthermore, for a given frequency measurement, directly using a theoretical FRF at a frequency may lead to a huge difference between the theoretical FRF and the corresponding experimental FRF which finally results in larger effects of measurement errors and damping. Hence in the solution process, correct selection of the appropriate frequency to get the theoretical FRF in every iteration in the sensitivity-based approach is an effective way to improve the robustness of an FRF-based algorithm. A primary tool for right frequency selection based on the correlation of FRFs is the Frequency Domain Assurance Criterion. This paper presents a new frequency selection method which directly finds the frequency that minimizes the difference of the order of magnitude between the theoretical and experimental FRFs. A simulated truss structure is used to compare the performance of different frequency selection methods. For the sake of reality, it is assumed that not all the degrees of freedom (DoFs) are available for measurement. The minimum number of DoFs required in each approach to correctly update the analytical model is regarded as the right identification standard.
Frequency-Modulation Correlation Spectrometer
NASA Technical Reports Server (NTRS)
Margolis, J. S.; Martonchik, J. V.
1985-01-01
New type of correlation spectrometer eliminates need to shift between two cells, one empty and one containing reference gas. Electrooptical phase modulator sinusoidally shift frequencies of sample transmission spectrum.
Deb, Pranab; Haldar, Tapas; Kashid, Somnath M; Banerjee, Subhrashis; Chakrabarty, Suman; Bagchi, Sayan
2016-05-05
Noncovalent interactions, in particular the hydrogen bonds and nonspecific long-range electrostatic interactions are fundamental to biomolecular functions. A molecular understanding of the local electrostatic environment, consistently for both specific (hydrogen-bonding) and nonspecific electrostatic (local polarity) interactions, is essential for a detailed understanding of these processes. Vibrational Stark Effect (VSE) has proven to be an extremely useful method to measure the local electric field using infrared spectroscopy of carbonyl and nitrile based probes. The nitrile chemical group would be an ideal choice because of its absorption in an infrared spectral window transparent to biomolecules, ease of site-specific incorporation into proteins, and common occurrence as a substituent in various drug molecules. However, the inability of VSE to describe the dependence of IR frequency on electric field for hydrogen-bonded nitriles to date has severely limited nitrile's utility to probe the noncovalent interactions. In this work, using infrared spectroscopy and atomistic molecular dynamics simulations, we have reported for the first time a linear correlation between nitrile frequencies and electric fields in a wide range of hydrogen-bonding environments that may bridge the existing gap between VSE and H-bonding interactions. We have demonstrated the robustness of this field-frequency correlation for both aromatic nitriles and sulfur-based nitriles in a wide range of molecules of varying size and compactness, including small molecules in complex solvation environments, an amino acid, disordered peptides, and structured proteins. This correlation, when coupled to VSE, can be used to quantify noncovalent interactions, specific or nonspecific, in a consistent manner.
Tiwari, Mayank; Gupta, Bhupendra
2018-04-01
For source camera identification (SCI), photo response non-uniformity (PRNU) has been widely used as the fingerprint of the camera. The PRNU is extracted from the image by applying a de-noising filter then taking the difference between the original image and the de-noised image. However, it is observed that intensity-based features and high-frequency details (edges and texture) of the image, effect quality of the extracted PRNU. This effects correlation calculation and creates problems in SCI. For solving this problem, we propose a weighting function based on image features. We have experimentally identified image features (intensity and high-frequency contents) effect on the estimated PRNU, and then develop a weighting function which gives higher weights to image regions which give reliable PRNU and at the same point it gives comparatively less weights to the image regions which do not give reliable PRNU. Experimental results show that the proposed weighting function is able to improve the accuracy of SCI up to a great extent. Copyright © 2018 Elsevier B.V. All rights reserved.
Whiteford, Kelly L; Kreft, Heather A; Oxenham, Andrew J
2017-08-01
Natural sounds can be characterized by their fluctuations in amplitude and frequency. Ageing may affect sensitivity to some forms of fluctuations more than others. The present study used individual differences across a wide age range (20-79 years) to test the hypothesis that slow-rate, low-carrier frequency modulation (FM) is coded by phase-locked auditory-nerve responses to temporal fine structure (TFS), whereas fast-rate FM is coded via rate-place (tonotopic) cues, based on amplitude modulation (AM) of the temporal envelope after cochlear filtering. Using a low (500 Hz) carrier frequency, diotic FM and AM detection thresholds were measured at slow (1 Hz) and fast (20 Hz) rates in 85 listeners. Frequency selectivity and TFS coding were assessed using forward masking patterns and interaural phase disparity tasks (slow dichotic FM), respectively. Comparable interaural level disparity tasks (slow and fast dichotic AM and fast dichotic FM) were measured to control for effects of binaural processing not specifically related to TFS coding. Thresholds in FM and AM tasks were correlated, even across tasks thought to use separate peripheral codes. Age was correlated with slow and fast FM thresholds in both diotic and dichotic conditions. The relationship between age and AM thresholds was generally not significant. Once accounting for AM sensitivity, only diotic slow-rate FM thresholds remained significantly correlated with age. Overall, results indicate stronger effects of age on FM than AM. However, because of similar effects for both slow and fast FM when not accounting for AM sensitivity, the effects cannot be unambiguously ascribed to TFS coding.
Rohmann, Kevin N.; Bass, Andrew H.
2011-01-01
SUMMARY Vertebrates displaying seasonal shifts in reproductive behavior provide the opportunity to investigate bidirectional plasticity in sensory function. The midshipman teleost fish exhibits steroid-dependent plasticity in frequency encoding by eighth nerve auditory afferents. In this study, evoked potentials were recorded in vivo from the saccule, the main auditory division of the inner ear of most teleosts, to test the hypothesis that males and females exhibit seasonal changes in hair cell physiology in relation to seasonal changes in plasma levels of steroids. Thresholds across the predominant frequency range of natural vocalizations were significantly less in both sexes in reproductive compared with non-reproductive conditions, with differences greatest at frequencies corresponding to call upper harmonics. A subset of non-reproductive males exhibiting an intermediate saccular phenotype had elevated testosterone levels, supporting the hypothesis that rising steroid levels induce non-reproductive to reproductive transitions in saccular physiology. We propose that elevated levels of steroids act via long-term (days to weeks) signaling pathways to upregulate ion channel expression generating higher resonant frequencies characteristic of non-mammalian auditory hair cells, thereby lowering acoustic thresholds. PMID:21562181
General interference law for nonstationary, separable optical fields.
Manea, Vladimir
2009-09-01
An approach to the theory of partial coherence for nonstationary optical fields is presented. Starting with a spectral representation, a favorable decomposition of the optical signals is discussed that supports a natural extension of the mathematical formalism. The coherence functions are redefined, but still as temporal correlation functions, allowing the obtaining of a more general form of the interference law for partially coherent optical signals. The general theory is applied in some relevant particular cases of nonstationary interference, namely, with quasi-monochromatic beams of different frequencies and with phase-modulated quasi-monochromatic beams of similar frequency spectra. All the results of the general treatment are reducible to the ones given in the literature for the case of stationary interference.
Resonance frequency of fluid-filled and prestressed spherical shell-A model of the human eyeball.
Shih, Po-Jen; Guo, Yi-Ren
2016-04-01
An acoustic tonometer that measures shifts in resonance frequencies associated with intraocular pressure (IOP) could provide an opportunity for a type of tonometer that can be operated at home or worn by patients. However, there is insufficient theoretical background, especially with respect to the uncertainty in operating frequency ranges and the unknown relationships between IOPs and resonance frequencies. The purpose of this paper is to develop a frequency function for application in an acoustic tonometer. A linear wave theory is used to derive an explicit frequency function, consisting of an IOP and seven other physiological parameters. In addition, impulse response experiments are performed to measure the natural frequencies of porcine eyes to validate the provided function. From a real-time detection perspective, explicitly providing a frequency function can be the best way to set up an acoustic tonometer. The theory shows that the resonance oscillation of the eyeball is mainly dominated by liquid inside the eyeball. The experimental validation demonstrates the good prediction of IOPs and resonance frequencies. The proposed explicit frequency function supports further modal analysis not only of the dynamics of eyeballs, but also of the natural frequencies, for further development of the acoustic tonometer.
Noise Intensity-Intensity Correlations and the Fourth Cumulant of Photo-assisted Shot Noise
NASA Astrophysics Data System (ADS)
Forgues, Jean-Charles; Sane, Fatou Bintou; Blanchard, Simon; Spietz, Lafe; Lupien, Christian; Reulet, Bertrand
2013-10-01
We report the measurement of the fourth cumulant of current fluctuations in a tunnel junction under both dc and ac (microwave) excitation. This probes the non-Gaussian character of photo-assisted shot noise. Our measurement reveals the existence of correlations between noise power measured at two different frequencies, which corresponds to two-mode intensity correlations in optics. We observe positive correlations, i.e. photon bunching, which exist only for certain relations between the excitation frequency and the two detection frequencies, depending on the dc bias of the sample.
NASA Astrophysics Data System (ADS)
Yalcin, A.; Olgar, T.
2018-07-01
The aim of this study was to assess the performance of a digital radiography system in terms of effective detective quantum efficiency (eDQE) for different tube voltages, polymethyl methacrylate (PMMA) phantom thicknesses and different grid types. The image performance of the digital radiography system was also evaluated by using CDRAD measurements at the same conditions and the correlation of CDRAD results with eDQE was compared. The eDQE was calculated via measurement of effective modulation transfer function (eMTF), effective normalized noise power spectra (eNNPS), scatter fraction (SF) and transmission factors (TF). SFs and TFs were also calculated for different beam qualities by using MCNP4C Monte Carlo simulation code. The integrated eDQE (IeDQE) over the frequency range was used to find the correlation with the inverse image quality figure (IQFinv) obtained from CDRAD measurements. The highest eDQE was obtained with 60 lp/cm grid frequency and 10:1 grid ratio. No remarkable effect was observed on eDQE with different grid frequency, but eDQE decreased with increasing grid ratio. A significant correlation was found between IeDQE and IQFinv.
Zhang, Mingming; Zhao, Zongya; He, Ping; Wang, Jue
2014-01-01
Gap junctions are the mechanism for striatal fast-spiking interneurons (FSIs) to interconnect with each other and play an important role in determining the physiological functioning of the FSIs. To investigate the effect of gap junctions on the firing activities and synchronization of the network for different external inputs, a simple network with least connections and a Newman-Watts small-world network were constructed. Our research shows that both properties of neural networks are related to the conductance of the gap junctions, as well as the frequency and correlation of the external inputs. The effect of gap junctions on the synchronization of network is different for inputs with different frequencies and correlations. The addition of gap junctions can promote the network synchrony in some conditions but suppress it in others, and they can inhibit the firing activities in most cases. Both the firing rate and synchronization of the network increase along with the increase of the electrical coupling strength for inputs with low frequency and high correlation. Thus, the network of coupled FSIs can act as a detector for synchronous synaptic input from cortex and thalamus.
Effect of endotoxin on ventilation and breath variability: role of cyclooxygenase pathway.
Preas, H L; Jubran, A; Vandivier, R W; Reda, D; Godin, P J; Banks, S M; Tobin, M J; Suffredini, A F
2001-08-15
To evaluate the effects of endotoxemia on respiratory controller function, 12 subjects were randomized to receive endotoxin or saline; six also received ibuprofen, a cyclooxygenase inhibitor, and six received placebo. Administration of endotoxin produced fever, increased respiratory frequency, decreased inspiratory time, and widened alveolar-arterial oxygen tension gradient (all p < or = 0.001); these responses were blocked by ibuprofen. Independent of ibuprofen, endotoxin produced dyspnea, and it increased fractional inspiratory time, minute ventilation, and mean inspiratory flow (all p < or = 0.025). Endotoxin altered the autocorrelative behavior of respiratory frequency by increasing its autocorrelation coefficient at a lag of one breath, the number of breath lags with significant serial correlations, and its correlated fraction (all p < 0.05); these responses were blocked by ibuprofen. Changes in correlated behavior of respiratory frequency were related to changes in arterial carbon dioxide tension (r = 0.86; p < 0.03). Endotoxin decreased the oscillatory fraction of inspiratory time in both the placebo (p < 0.05) and ibuprofen groups (p = 0.06). In conclusion, endotoxin produced increases in respiratory motor output and dyspnea independent of fever and symptoms, and it curtailed the freedom to vary respiratory timing-a response that appears to be mediated by the cyclooxygenase pathway.
Spatial correlation in the ambient core noise field of a turbofan engine.
Miles, Jeffrey Hilton
2012-06-01
An acoustic transfer function relating combustion noise and turbine exit noise in the presence of enclosed ambient core noise is investigated using a dynamic system model and an acoustic system model for the particular turbofan engine studied and for a range of operating conditions. Measurements of cross-spectra magnitude and phase between the combustor and turbine exit and auto-spectra at the turbine exit and combustor are used to show the presence of indirect and direct combustion noise over the frequency range of 0-400 Hz. The procedure used evaluates the ratio of direct to indirect combustion noise. The procedure used also evaluates the post-combustion residence time in the combustor which is a factor in the formation of thermal NO(x) and soot in this region. These measurements are masked by the ambient core noise sound field in this frequency range which is observable since the transducers are situated within an acoustic wavelength of one another. An ambient core noise field model based on one and two dimensional spatial correlation functions is used to replicate the spatially correlated response of the pair of transducers. The spatial correlation function increases measured attenuation due to destructive interference and masks the true attenuation of the turbine.
Thermal noise in confined fluids.
Sanghi, T; Aluru, N R
2014-11-07
In this work, we discuss a combined memory function equation (MFE) and generalized Langevin equation (GLE) approach (referred to as MFE/GLE formulation) to characterize thermal noise in confined fluids. Our study reveals that for fluids confined inside nanoscale geometries, the correlation time and the time decay of the autocorrelation function of the thermal noise are not significantly different across the confinement. We show that it is the strong cross-correlation of the mean force with the molecular velocity that gives rise to the spatial anisotropy in the velocity-autocorrelation function of the confined fluids. Further, we use the MFE/GLE formulation to extract the thermal force a fluid molecule experiences in a MD simulation. Noise extraction from MD simulation suggests that the frequency distribution of the thermal force is non-Gaussian. Also, the frequency distribution of the thermal force near the confining surface is found to be different in the direction parallel and perpendicular to the confinement. We also use the formulation to compute the noise correlation time of water confined inside a (6,6) carbon-nanotube (CNT). It is observed that inside the (6,6) CNT, in which water arranges itself in a highly concerted single-file arrangement, the correlation time of thermal noise is about an order of magnitude higher than that of bulk water.
Signatures of Hong-Ou-Mandel interference at microwave frequencies
NASA Astrophysics Data System (ADS)
Woolley, M. J.; Lang, C.; Eichler, C.; Wallraff, A.; Blais, A.
2013-10-01
Two-photon quantum interference at a beam splitter, commonly known as Hong-Ou-Mandel interference, is a fundamental demonstration of the quantum mechanical nature of electromagnetic fields and a key component of various quantum information processing protocols. The phenomenon was recently demonstrated with microwave-frequency photons by Lang et al (2013 Nature Phys. 9 345-8). This experiment employed circuit QED systems as sources of microwave photons, and was based on the measurement of second-order cross-correlation and auto-correlation functions of the microwave fields at the outputs of the beam splitter using linear detectors. Here we present the calculation of these correlation functions for the cases of inputs corresponding to: (i) trains of pulsed Gaussian or Lorentzian single microwave photons and (ii) resonant fluorescent microwave fields from continuously driven circuit QED systems. In both cases, the signature of two-photon quantum interference is a suppression of the second-order cross-correlation function for small delays. The experiment described in Lang et al (2013) was performed with trains of Lorentzian single photons, and very good agreement with experimental data is obtained. The results are relevant not only to interference experiments using circuit QED systems, but any such setup with highly controllable sources and time-resolved detection.
Thermal noise in confined fluids
NASA Astrophysics Data System (ADS)
Sanghi, T.; Aluru, N. R.
2014-11-01
In this work, we discuss a combined memory function equation (MFE) and generalized Langevin equation (GLE) approach (referred to as MFE/GLE formulation) to characterize thermal noise in confined fluids. Our study reveals that for fluids confined inside nanoscale geometries, the correlation time and the time decay of the autocorrelation function of the thermal noise are not significantly different across the confinement. We show that it is the strong cross-correlation of the mean force with the molecular velocity that gives rise to the spatial anisotropy in the velocity-autocorrelation function of the confined fluids. Further, we use the MFE/GLE formulation to extract the thermal force a fluid molecule experiences in a MD simulation. Noise extraction from MD simulation suggests that the frequency distribution of the thermal force is non-Gaussian. Also, the frequency distribution of the thermal force near the confining surface is found to be different in the direction parallel and perpendicular to the confinement. We also use the formulation to compute the noise correlation time of water confined inside a (6,6) carbon-nanotube (CNT). It is observed that inside the (6,6) CNT, in which water arranges itself in a highly concerted single-file arrangement, the correlation time of thermal noise is about an order of magnitude higher than that of bulk water.
Resting-state low-frequency fluctuations reflect individual differences in spoken language learning.
Deng, Zhizhou; Chandrasekaran, Bharath; Wang, Suiping; Wong, Patrick C M
2016-03-01
A major challenge in language learning studies is to identify objective, pre-training predictors of success. Variation in the low-frequency fluctuations (LFFs) of spontaneous brain activity measured by resting-state functional magnetic resonance imaging (RS-fMRI) has been found to reflect individual differences in cognitive measures. In the present study, we aimed to investigate the extent to which initial spontaneous brain activity is related to individual differences in spoken language learning. We acquired RS-fMRI data and subsequently trained participants on a sound-to-word learning paradigm in which they learned to use foreign pitch patterns (from Mandarin Chinese) to signal word meaning. We performed amplitude of spontaneous low-frequency fluctuation (ALFF) analysis, graph theory-based analysis, and independent component analysis (ICA) to identify functional components of the LFFs in the resting-state. First, we examined the ALFF as a regional measure and showed that regional ALFFs in the left superior temporal gyrus were positively correlated with learning performance, whereas ALFFs in the default mode network (DMN) regions were negatively correlated with learning performance. Furthermore, the graph theory-based analysis indicated that the degree and local efficiency of the left superior temporal gyrus were positively correlated with learning performance. Finally, the default mode network and several task-positive resting-state networks (RSNs) were identified via the ICA. The "competition" (i.e., negative correlation) between the DMN and the dorsal attention network was negatively correlated with learning performance. Our results demonstrate that a) spontaneous brain activity can predict future language learning outcome without prior hypotheses (e.g., selection of regions of interest--ROIs) and b) both regional dynamics and network-level interactions in the resting brain can account for individual differences in future spoken language learning success. Copyright © 2015 Elsevier Ltd. All rights reserved.
Resting-state low-frequency fluctuations reflect individual differences in spoken language learning
Deng, Zhizhou; Chandrasekaran, Bharath; Wang, Suiping; Wong, Patrick C.M.
2016-01-01
A major challenge in language learning studies is to identify objective, pre-training predictors of success. Variation in the low-frequency fluctuations (LFFs) of spontaneous brain activity measured by resting-state functional magnetic resonance imaging (RS-fMRI) has been found to reflect individual differences in cognitive measures. In the present study, we aimed to investigate the extent to which initial spontaneous brain activity is related to individual differences in spoken language learning. We acquired RS-fMRI data and subsequently trained participants on a sound-to-word learning paradigm in which they learned to use foreign pitch patterns (from Mandarin Chinese) to signal word meaning. We performed amplitude of spontaneous low-frequency fluctuation (ALFF) analysis, graph theory-based analysis, and independent component analysis (ICA) to identify functional components of the LFFs in the resting-state. First, we examined the ALFF as a regional measure and showed that regional ALFFs in the left superior temporal gyrus were positively correlated with learning performance, whereas ALFFs in the default mode network (DMN) regions were negatively correlated with learning performance. Furthermore, the graph theory-based analysis indicated that the degree and local efficiency of the left superior temporal gyrus were positively correlated with learning performance. Finally, the default mode network and several task-positive resting-state networks (RSNs) were identified via the ICA. The “competition” (i.e., negative correlation) between the DMN and the dorsal attention network was negatively correlated with learning performance. Our results demonstrate that a) spontaneous brain activity can predict future language learning outcome without prior hypotheses (e.g., selection of regions of interest – ROIs) and b) both regional dynamics and network-level interactions in the resting brain can account for individual differences in future spoken language learning success. PMID:26866283
Passive ultrasonics using sub-Nyquist sampling of high-frequency thermal-mechanical noise.
Sabra, Karim G; Romberg, Justin; Lani, Shane; Degertekin, F Levent
2014-06-01
Monolithic integration of capacitive micromachined ultrasonic transducer arrays with low noise complementary metal oxide semiconductor electronics minimizes interconnect parasitics thus allowing the measurement of thermal-mechanical (TM) noise. This enables passive ultrasonics based on cross-correlations of diffuse TM noise to extract coherent ultrasonic waves propagating between receivers. However, synchronous recording of high-frequency TM noise puts stringent requirements on the analog to digital converter's sampling rate. To alleviate this restriction, high-frequency TM noise cross-correlations (12-25 MHz) were estimated instead using compressed measurements of TM noise which could be digitized at a sampling frequency lower than the Nyquist frequency.
Smitha, K A; Arun, K M; Rajesh, P G; Thomas, B; Kesavadas, C
2017-06-01
Language is a cardinal function that makes human unique. Preservation of language function poses a great challenge for surgeons during resection. The aim of the study was to assess the efficacy of resting-state fMRI in the lateralization of language function in healthy subjects to permit its further testing in patients who are unable to perform task-based fMRI. Eighteen healthy right-handed volunteers were prospectively evaluated with resting-state fMRI and task-based fMRI to assess language networks. The laterality indices of Broca and Wernicke areas were calculated by using task-based fMRI via a voxel-value approach. We adopted seed-based resting-state fMRI connectivity analysis together with parameters such as amplitude of low-frequency fluctuation and fractional amplitude of low-frequency fluctuation (fALFF). Resting-state fMRI connectivity maps for language networks were obtained from Broca and Wernicke areas in both hemispheres. We performed correlation analysis between the laterality index and the z scores of functional connectivity, amplitude of low-frequency fluctuation, and fALFF. Pearson correlation analysis between signals obtained from the z score of fALFF and the laterality index yielded a correlation coefficient of 0.849 ( P < .05). Regression analysis of the fALFF with the laterality index yielded an R 2 value of 0.721, indicating that 72.1% of the variance in the laterality index of task-based fMRI could be predicted from the fALFF of resting-state fMRI. The present study demonstrates that fALFF can be used as an alternative to task-based fMRI for assessing language laterality. There was a strong positive correlation between the fALFF of the Broca area of resting-state fMRI with the laterality index of task-based fMRI. Furthermore, we demonstrated the efficacy of fALFF for predicting the laterality of task-based fMRI. © 2017 by American Journal of Neuroradiology.
2009-02-01
range of modal analysis and the high frequency region of statistical energy analysis , is referred to as the mid-frequency range. The corresponding...frequency range of modal analysis and the high frequency region of statistical energy analysis , is referred to as the mid-frequency range. The...predictions. The averaging process is consistent with the averaging done in statistical energy analysis for stochastic systems. The FEM will always
NASA Astrophysics Data System (ADS)
Sert, Yusuf; Puttaraju, K. B.; Keskinoğlu, Sema; Shivashankar, K.; Ucun, Fatih
2015-01-01
In this study, the experimental and theoretical vibrational frequencies of a newly synthesized bacteriostatic and anti-tumor molecule namely, 4-bromomethyl-6-tert-butyl-2H-chromen-2-one have been investigated. The experimental FT-IR (4000-400 cm-1) and Raman spectra (4000-100 cm-1) of the compound in solid phase have been recorded. The theoretical vibrational frequencies and optimized geometric parameters have been calculated using density functional theory (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr and DFT/M06-2X: highly parametrized, empirical exchange correlation function) with 6-311++G(d, p) basis set by Gaussian 03 software, for the first time. The assignments of the vibrational frequencies have been done by potential energy distribution (PED) analysis using VEDA 4 software. The theoretical optimized geometric parameters and vibrational frequencies have been found to be in good agreement with the corresponding experimental data and results in the literature. In addition, the highest occupied molecular orbital (HOMO) energy, the lowest unoccupied molecular orbital (LUMO) energy and the other related molecular energy values of the compound have been investigated using the same theoretical calculations.
NASA Astrophysics Data System (ADS)
Sert, Yusuf; Doğan, Hatice; Navarrete, Angélica; Somanathan, Ratnasamy; Aguirre, Gerardo; Çırak, Çağrı
2014-07-01
In this study, the experimental and theoretical vibrational frequencies of a newly synthesized 2,3,4,5,6-Pentafluoro-trans-cinnamic acid have been investigated. The experimental FT-IR (4000-400 cm-1) and Laser-Raman spectra (4000-100 cm-1) of the molecule in solid phase have been recorded. The theoretical vibrational frequencies and optimized geometric parameters (bond lengths and bond angles) have been calculated by using density functional theory (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr) and DFT/M06-2X (the highly parameterized, empirical exchange correlation function) quantum chemical methods with 6-311++G(d,p) basis set by Gaussian 09W software, for the first time. The assignments of the vibrational frequencies have been done by potential energy distribution (PED) analysis by using VEDA 4 software. The theoretical optimized geometric parameters and vibrational frequencies have been found to be in good agreement with the corresponding experimental data, and with the results in the literature. In addition, the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) energies and the other related molecular energy values have been calculated and depicted.
Fatigue crack detection by nonlinear spectral correlation with a wideband input
NASA Astrophysics Data System (ADS)
Liu, Peipei; Sohn, Hoon
2017-04-01
Due to crack-induced nonlinearity, ultrasonic wave can distort, create accompanying harmonics, multiply waves of different frequencies, and, under resonance conditions, change resonance frequencies as a function of driving amplitude. All these nonlinear ultrasonic features have been widely studied and proved capable of detecting fatigue crack at its very early stage. However, in noisy environment, the nonlinear features might be drown in the noise, therefore it is difficult to extract those features using a conventional spectral density function. In this study, nonlinear spectral correlation is defined as a new nonlinear feature, which considers not only nonlinear modulations in ultrasonic waves but also spectral correlation between the nonlinear modulations. The proposed nonlinear feature is associated with the following two advantages: (1) stationary noise in the ultrasonic waves has little effect on nonlinear spectral correlation; and (2) the contrast of nonlinear spectral correlation between damage and intact conditions can be enhanced simply by using a wideband input. To validate the proposed nonlinear feature, micro fatigue cracks are introduced to aluminum plates by repeated tensile loading, and the experiment is conducted using surface-mounted piezoelectric transducers for ultrasonic wave generation and measurement. The experimental results confirm that the nonlinear spectral correlation can successfully detect fatigue crack with a higher sensitivity than the classical nonlinear coefficient.
Ueda-Consolvo, Tomoko; Hayashi, Atsushi; Ozaki, Mayumi; Nakamura, Tomoko; Yagou, Takaaki; Abe, Shinya
2017-07-01
To assess the correlation between endothelial dysfunction and frequency of antivascular endothelial growth factor (anti-VEGF) treatment for neovascular age-related macular degeneration (nAMD). We examined 64 consecutive patients with nAMD who were evaluated for endothelial function by use of peripheral arterial tonometry (EndoPAT 2000; Itamar Medical, Caesarea, Israel) at Toyama University Hospital from January 2015. We tallied the number of anti-VEGF treatments between January 2014 and December 2015 and determined the correlation between the number of anti-VEGF injections and endothelial function expressed as the reactive hyperemia index (RHI). Multiple regression analysis was also performed to identify the independent predictors of a larger number of injections. The mean number of anti-VEGF injections was 8.2 ± 3.3. The mean lnRHI was 0.47 ± 0.17. The lnRHI correlated with the number of anti-VEGF injections (r = -0.56; P = 0.030). The multiple regression analysis revealed that endothelial function, neovascular subtypes, and treatment regimens were associated with the number of injections. Endothelial dysfunction may affect the efficacy of anti-VEGF therapy. Neovascular subtypes may also predict a larger number of injections.
Coherency of seismic noise, Green functions and site effects
NASA Astrophysics Data System (ADS)
Prieto, G. A.; Beroza, G. C.
2007-12-01
The newly rediscovered methodology of cross correlating seismic noise (or seismic coda) to retrieve the Green function takes advantage of the coherency of the signals across a set of stations. Only coherent signals are expected to emerge after stacking over a long enough time. Cross-correlation has a significant disadvantage for this purpose, in that the Green function recovered is convolved with the source-time function of the noise source. For seismic waves, this can mean that the microseism peak dominates the signal. We show how the use of the transfer function between sensors provides a better resolved Green function (after inverse Fourier transform), because the deconvolution process removes the effect of the noise source-time function. In addition, we compute the coherence of the seismic noise as a function of frequency and distance, providing information about the effective frequency band over which Green function retrieval is possible. The coherence may also be used in resolution analysis for time reversal as a constraint on the de-coherence length (the distance between sensors over which the signals become uncorrelated). We use the information from the transfer function and the coherence to examine wave propagation effects (attenuation and site effects) for closely spaced stations compared to a reference station.
Lynch, Michael S; Slenkamp, Karla M; Cheng, Mark; Khalil, Munira
2012-07-05
Obtaining a detailed description of photochemical reactions in solution requires measuring time-evolving structural dynamics of transient chemical species on ultrafast time scales. Time-resolved vibrational spectroscopies are sensitive probes of molecular structure and dynamics in solution. In this work, we develop doubly resonant fifth-order nonlinear visible-infrared spectroscopies to probe nonequilibrium vibrational dynamics among coupled high-frequency vibrations during an ultrafast charge transfer process using a heterodyne detection scheme. The method enables the simultaneous collection of third- and fifth-order signals, which respectively measure vibrational dynamics occurring on electronic ground and excited states on a femtosecond time scale. Our data collection and analysis strategy allows transient dispersed vibrational echo (t-DVE) and dispersed pump-probe (t-DPP) spectra to be extracted as a function of electronic and vibrational population periods with high signal-to-noise ratio (S/N > 25). We discuss how fifth-order experiments can measure (i) time-dependent anharmonic vibrational couplings, (ii) nonequilibrium frequency-frequency correlation functions, (iii) incoherent and coherent vibrational relaxation and transfer dynamics, and (iv) coherent vibrational and electronic (vibronic) coupling as a function of a photochemical reaction.
NASA Astrophysics Data System (ADS)
Hwang, Sunghwan
1997-08-01
One of the most prominent features of helicopter rotor dynamics in forward flight is the periodic coefficients in the equations of motion introduced by the rotor rotation. The frequency response characteristics of such a linear time periodic system exhibits sideband behavior, which is not the case for linear time invariant systems. Therefore, a frequency domain identification methodology for linear systems with time periodic coefficients was developed, because the linear time invariant theory cannot account for sideband behavior. The modulated complex Fourier series was introduced to eliminate the smearing effect of Fourier series expansions of exponentially modulated periodic signals. A system identification theory was then developed using modulated complex Fourier series expansion. Correlation and spectral density functions were derived using the modulated complex Fourier series expansion for linear time periodic systems. Expressions of the identified harmonic transfer function were then formulated using the spectral density functions both with and without additive noise processes at input and/or output. A procedure was developed to identify parameters of a model to match the frequency response characteristics between measured and estimated harmonic transfer functions by minimizing an objective function defined in terms of the trace of the squared frequency response error matrix. Feasibility was demonstrated by the identification of the harmonic transfer function and parameters for helicopter rigid blade flapping dynamics in forward flight. This technique is envisioned to satisfy the needs of system identification in the rotating frame, especially in the context of individual blade control. The technique was applied to the coupled flap-lag-inflow dynamics of a rigid blade excited by an active pitch link. The linear time periodic technique results were compared with the linear time invariant technique results. Also, the effect of noise processes and initial parameter guess on the identification procedure were investigated. To study the effect of elastic modes, a rigid blade with a trailing edge flap excited by a smart actuator was selected and system parameters were successfully identified, but with some expense of computational storage and time. Conclusively, the linear time periodic technique substantially improved the identified parameter accuracy compared to the linear time invariant technique. Also, the linear time periodic technique was robust to noises and initial guess of parameters. However, an elastic mode of higher frequency relative to the system pumping frequency tends to increase the computer storage requirement and computing time.
Rosemurgy, Alexander; Downs, Darrell; Luberice, Kenneth; Rodriguez, Christian; Swaid, Forat; Patel, Krishen; Toomey, Paul; Ross, Sharona
2018-02-01
This study was undertaken to determine whether postoperative outcomes after laparoscopic Heller myotomy with anterior fundoplication could be predicted by preoperative findings on esophagography. Preoperative barium esophagograms of 135 patients undergoing laparoscopic Heller myotomy with anterior fundoplication were reviewed. The number of esophageal curves, esophageal width, and angulation of the gastroesophageal junction (GEJ) were determined; correlations between these determined parameters and symptoms were assessed using linear regression analysis. The number of esophageal curves correlated with the preoperative frequency of dysphagia, vomiting, chest pain, regurgitation, and heartburn. The width of the esophagus negatively correlated with the preoperative frequency of regurgitation. The angulation of the GEJ did not correlate with preoperative symptoms. Laparoscopic Heller myotomy with anterior fundoplication significantly reduced the frequency and severity of all symptoms, regardless of the number of esophageal curves, esophageal width, or angulation of the GEJ. Laparoscopic Heller myotomy with anterior fundoplication provides dramatic palliation for achalasia. More esophageal curves on preoperative esophagography correlate well with the frequency of a broad range of preoperative symptoms, including the frequency of dysphagia and regurgitation. Patients experience dramatically improved frequency and severity of symptoms after laparoscopic Heller myotomy with anterior fundoplication for achalasia regardless of the number of esophageal curves, esophageal width, or the angulation of the GEJ. Findings on barium esophagogram, in evaluating achalasia, should not deter the application of laparosocopic Heller myotomy with anterior fundoplication.
Vitamin D, surface electromyography and physical function in uraemic patients.
Heaf, J G; Molsted, S; Harrison, A P; Eiken, P; Prescott, L; Eidemak, I
2010-01-01
Muscle function is impaired in uraemic patients and several causes have been proposed. Deficiency of 25-hydroxyvitamin D (25-OHD), which affects muscle function in non-uraemic patients, may very well also be associated with the myopathy found in these patients. The aim of this study was to investigate the association between 25-OHD and muscle function as well as physical function in chronic kidney disease (CKD) and peritoneal dialysis (PD) patients. In this cross-sectional study, 21 adult patients with CKD stage 3-5 and 21 patients treated with PD were included. Standard biochemistry parameters were measured including 25-OHD, 1,25-dihydroxycholecalciferol (1,25-OHD) and parathyroid hormone analysis. Muscle function was determined by 30-second surface electromyography (sEMG) recordings of a right thigh muscle (vastus lateralis) and a second left finger muscle (second dorsal interosseous) under voluntary contractions. Physical function was determined using a 30-second Chair Stand Test and the Short Form 36 quality of life questionnaire. Clinical characteristics were collected from the patient records. Moderate vitamin 25-OHD deficiency (<40 nmol/l) was measured in 52% of patients with CKD and in 71% of the patients on PD. Severe deficiency (<15 nmol/l) was measured in 14% of patients on PD. There were no significant differences between the CKD and PD patients in terms of sEMG results. 25-OHD was not correlated to any results from the tests of sEMG or physical function. However, a higher sEMG frequency and signal root mean square (RMS) were positively associated with a higher Chair Stand Test score. Time to maximum sEMG frequency was negatively correlated to the Chair Stand Test score (p < 0.05), and positively correlated to the level of comorbidity (p < 0.05). sEMG signal peak-peak amplitude, frequency and RMS were positively correlated to the quality of life scales Physical Function, Role Physical, General Health, Vitality, Social Function, Mental Health, and Physical Component Scale (p < 0.001). 25-OHD deficiency was prevalent in uraemic patients in the present study. Muscle function as determined using sEMG and the Chair Stand Test was not associated with 25-OHD. The results may be biased by the limited variation in 25-OHD and masked by effects of several other variables in this very sick population. (c) 2010 S. Karger AG, Basel.
Role of local network oscillations in resting-state functional connectivity.
Cabral, Joana; Hugues, Etienne; Sporns, Olaf; Deco, Gustavo
2011-07-01
Spatio-temporally organized low-frequency fluctuations (<0.1 Hz), observed in BOLD fMRI signal during rest, suggest the existence of underlying network dynamics that emerge spontaneously from intrinsic brain processes. Furthermore, significant correlations between distinct anatomical regions-or functional connectivity (FC)-have led to the identification of several widely distributed resting-state networks (RSNs). This slow dynamics seems to be highly structured by anatomical connectivity but the mechanism behind it and its relationship with neural activity, particularly in the gamma frequency range, remains largely unknown. Indeed, direct measurements of neuronal activity have revealed similar large-scale correlations, particularly in slow power fluctuations of local field potential gamma frequency range oscillations. To address these questions, we investigated neural dynamics in a large-scale model of the human brain's neural activity. A key ingredient of the model was a structural brain network defined by empirically derived long-range brain connectivity together with the corresponding conduction delays. A neural population, assumed to spontaneously oscillate in the gamma frequency range, was placed at each network node. When these oscillatory units are integrated in the network, they behave as weakly coupled oscillators. The time-delayed interaction between nodes is described by the Kuramoto model of phase oscillators, a biologically-based model of coupled oscillatory systems. For a realistic setting of axonal conduction speed, we show that time-delayed network interaction leads to the emergence of slow neural activity fluctuations, whose patterns correlate significantly with the empirically measured FC. The best agreement of the simulated FC with the empirically measured FC is found for a set of parameters where subsets of nodes tend to synchronize although the network is not globally synchronized. Inside such clusters, the simulated BOLD signal between nodes is found to be correlated, instantiating the empirically observed RSNs. Between clusters, patterns of positive and negative correlations are observed, as described in experimental studies. These results are found to be robust with respect to a biologically plausible range of model parameters. In conclusion, our model suggests how resting-state neural activity can originate from the interplay between the local neural dynamics and the large-scale structure of the brain. Copyright © 2011 Elsevier Inc. All rights reserved.
Coexistence of gamma and high-frequency oscillations in rat medial entorhinal cortex in vitro
Cunningham, M O; Halliday, David M; Davies, Ceri H; Traub, Roger D; Buhl, Eberhard H; Whittington, Miles A
2004-01-01
High frequency oscillations (> 80–90 Hz) occur in neocortex and hippocampus in vivo where they are associated with specific behavioural states and more classical EEG frequency bands. In the hippocampus in vitro these oscillations can occur in the absence of pyramidal neuronal somatodendritic compartments and are temporally correlated with on-going, persistent gamma frequency oscillations. Their occurrence in the hippocampus is dependent on gap-junctional communication and it has been suggested that these high frequency oscillations originate as collective behaviour in populations of electrically coupled principal cell axonal compartments. Here we demonstrate that the superficial layers of medial entorhinal cortex can also generate high frequency oscillations associated with gamma rhythms. During persistent gamma frequency oscillations high frequency oscillations occur with a high bispectral coherence with the field gamma activity. Bursts of high frequency oscillations are temporally correlated with both the onset of compound excitatory postsynaptic potentials in fast-spiking interneurones and spikelet potentials in both pyramidal and stellate principal neurones. Both the gamma frequency and high frequency oscillations were attenuated by the gap junction blocker carbenoxolone. These data suggest that high frequency oscillations may represent the substrate for phasic drive to interneurones during persistent gamma oscillations in the medial entorhinal cortex. PMID:15254156
Method of frequency dependent correlations: investigating the variability of total solar irradiance
NASA Astrophysics Data System (ADS)
Pelt, J.; Käpylä, M. J.; Olspert, N.
2017-04-01
Context. This paper contributes to the field of modeling and hindcasting of the total solar irradiance (TSI) based on different proxy data that extend further back in time than the TSI that is measured from satellites. Aims: We introduce a simple method to analyze persistent frequency-dependent correlations (FDCs) between the time series and use these correlations to hindcast missing historical TSI values. We try to avoid arbitrary choices of the free parameters of the model by computing them using an optimization procedure. The method can be regarded as a general tool for pairs of data sets, where correlating and anticorrelating components can be separated into non-overlapping regions in frequency domain. Methods: Our method is based on low-pass and band-pass filtering with a Gaussian transfer function combined with de-trending and computation of envelope curves. Results: We find a major controversy between the historical proxies and satellite-measured targets: a large variance is detected between the low-frequency parts of targets, while the low-frequency proxy behavior of different measurement series is consistent with high precision. We also show that even though the rotational signal is not strongly manifested in the targets and proxies, it becomes clearly visible in FDC spectrum. A significant part of the variability can be explained by a very simple model consisting of two components: the original proxy describing blanketing by sunspots, and the low-pass-filtered curve describing the overall activity level. The models with the full library of the different building blocks can be applied to hindcasting with a high level of confidence, Rc ≈ 0.90. The usefulness of these models is limited by the major target controversy. Conclusions: The application of the new method to solar data allows us to obtain important insights into the different TSI modeling procedures and their capabilities for hindcasting based on the directly observed time intervals.
Huart, C; Rombaux, Ph; Hummel, T; Mouraux, A
2013-09-01
The clinical usefulness of olfactory event-related brain potentials (OERPs) to assess olfactory function is limited by the relatively low signal-to-noise ratio of the responses identified using conventional time-domain averaging. Recently, it was shown that time-frequency analysis of the obtained EEG signals can markedly improve the signal-to-noise ratio of OERPs in healthy controls, because it enhances both phase-locked and non phase-locked EEG responses. The aim of the present study was to investigate the clinical usefulness of this approach and evaluate its feasibility in a clinical setting. We retrospectively analysed EEG recordings obtained from 45 patients (15 anosmic, 15 hyposmic and 15 normos- mic). The responses to olfactory stimulation were analysed using conventional time-domain analysis and joint time-frequency analysis. The ability of the two methods to discriminate between anosmic, hyposmic and normosmic patients was assessed using a Receiver Operating Characteristic analysis. The discrimination performance of OERPs identified using conventional time-domain averaging was poor. In contrast, the discrimination performance of the EEG response identified in the time-frequency domain was relatively high. Furthermore, we found a significant correlation between the magnitude of this response and the psychophysical olfactory score. Time-frequency analysis of the EEG responses to olfactory stimulation could be used as an effective and reliable diagnostic tool for the objective clinical evaluation of olfactory function in patients.
NASA Astrophysics Data System (ADS)
Ridley, Michael; MacKinnon, Angus; Kantorovich, Lev
2017-04-01
Working within the nonequilibrium Green's function formalism, a formula for the two-time current correlation function is derived for the case of transport through a nanojunction in response to an arbitrary time-dependent bias. The one-particle Hamiltonian and the wide-band limit approximation are assumed, enabling us to extract all necessary Green's functions and self-energies for the system, extending the analytic work presented previously [Ridley et al., Phys. Rev. B 91, 125433 (2015), 10.1103/PhysRevB.91.125433]. We show that our expression for the two-time correlation function generalizes the Büttiker theory of shot and thermal noise on the current through a nanojunction to the time-dependent bias case including the transient regime following the switch-on. Transient terms in the correlation function arise from an initial state that does not assume (as is usually done) that the system is initially uncoupled, i.e., our approach is partition free. We show that when the bias loses its time dependence, the long-time limit of the current correlation function depends on the time difference only, as in this case an ideal steady state is reached. This enables derivation of known results for the single-frequency power spectrum and for the zero-frequency limit of this power spectrum. In addition, we present a technique which facilitates fast calculations of the transient quantum noise, valid for arbitrary temperature, time, and voltage scales. We apply this formalism to a molecular wire system for both dc and ac biases, and find a signature of the traversal time for electrons crossing the wire in the time-dependent cross-lead current correlations.
Simulation of Ground Winds Time Series
NASA Technical Reports Server (NTRS)
Adelfang, S. I.
2008-01-01
A simulation process has been developed for generation of the longitudinal and lateral components of ground wind atmospheric turbulence as a function of mean wind speed, elevation, temporal frequency range and distance between locations. The distance between locations influences the spectral coherence between the simulated series at adjacent locations. Short distances reduce correlation only at high frequencies; as distances increase correlation is reduced over a wider range of frequencies. The choice of values for the constants d1 and d3 in the PSD model is the subject of work in progress. An improved knowledge of the values for zO as a function of wind direction at the ARES-1 launch pads is necessary for definition of d1. Results of other studies at other locations may be helpful as summarized in Fichtl's recent correspondence. Ideally, further research is needed based on measurements of ground wind turbulence with high resolution anemometers at a number of altitudes at a new KSC tower located closer to the ARES-1 launch pad .The proposed research would be based on turbulence measurements that may be influenced by surface terrain roughness that may be significantly different from roughness prior to 1970 in Fichtl's measurements. Significant improvements in instrumentation, data storage end processing will greatly enhance the capability to model ground wind profiles and ground wind turbulence.
Tuning time-frequency methods for the detection of metered HF speech
NASA Astrophysics Data System (ADS)
Nelson, Douglas J.; Smith, Lawrence H.
2002-12-01
Speech is metered if the stresses occur at a nearly regular rate. Metered speech is common in poetry, and it can occur naturally in speech, if the speaker is spelling a word or reciting words or numbers from a list. In radio communications, the CQ request, call sign and other codes are frequently metered. In tactical communications and air traffic control, location, heading and identification codes may be metered. Moreover metering may be expected to survive even in HF communications, which are corrupted by noise, interference and mistuning. For this environment, speech recognition and conventional machine-based methods are not effective. We describe Time-Frequency methods which have been adapted successfully to the problem of mitigation of HF signal conditions and detection of metered speech. These methods are based on modeled time and frequency correlation properties of nearly harmonic functions. We derive these properties and demonstrate a performance gain over conventional correlation and spectral methods. Finally, in addressing the problem of HF single sideband (SSB) communications, the problems of carrier mistuning, interfering signals, such as manual Morse, and fast automatic gain control (AGC) must be addressed. We demonstrate simple methods which may be used to blindly mitigate mistuning and narrowband interference, and effectively invert the fast automatic gain function.
Correlation between insula activation and self-reported quality of orgasm in women.
Ortigue, Stephanie; Grafton, Scott T; Bianchi-Demicheli, Francesco
2007-08-15
Current multidimensional models of women's sexual function acknowledge the implicit impact of psychosocial factors on women's sexual function. Interaction between human sexual function and intensity of love has been also assumed, even if love is not an absolute condition. Yet, whereas great insights have been made in understanding the central mechanisms of the peripheral manifestations of women's sexual response, including orgasm, the cerebral correlates sustaining the interaction between women's sexual satisfaction and the unconscious role of the partner in this interpersonal experience remain unknown. Using functional imaging, we assessed brain activity elicited when 29 healthy female volunteers were unconsciously exposed to the subliminal presentation of their significant partner's name (a task known to elicit a partner-related neural network) and correlated it with individual scores obtained from different sexual dimensions: self-reported partnered orgasm quality (ease, satisfaction, frequency), love intensity and emotional closeness with that partner. Behavioral results identified a correlation between love and self-reported partnered orgasm quality. The more women were in love/emotionally close to their partner, the more they tended to report being satisfied with the quality of their partnered orgasm. However, no relationship was found between intensity of love and partnered orgasm frequency. Neuroimaging data expanded these behavioral results by demonstrating the involvement of a specific left-lateralized insula focus of neural activity correlating with orgasm scores, irrespective of dimension (frequency, ease, satisfaction). In contrast, intensity of being in love was correlated with a network involving the angular gyrus. These findings strongly suggest that intimate and sexual relationships are sustained by partly different mechanisms, even if they share some emotional-related mechanisms. The critical correlation between self-reports of orgasm quality and activation of the left anterior insula, a part of the partner-related neural network known to play a pivotal role in somatic processes, suggests the importance of somatic information in the integration of sexual experience. On the other hand, the correlation between activation of the angular gyrus and love intensity reinforces the assumption that the representation of love calls for higher order cognitive levels, such as those related to the generation of abstract concepts. By highlighting the specific role of the anterior insula in the way women integrate components of physical satisfaction in the context of an intimate relationship with a partner, the current findings take a step in the understanding of a woman's sexual pleasure.
Liang, Xia; Wang, Jinhui; Yan, Chaogan; Shu, Ni; Xu, Ke; Gong, Gaolang; He, Yong
2012-01-01
Graph theoretical analysis of brain networks based on resting-state functional MRI (R-fMRI) has attracted a great deal of attention in recent years. These analyses often involve the selection of correlation metrics and specific preprocessing steps. However, the influence of these factors on the topological properties of functional brain networks has not been systematically examined. Here, we investigated the influences of correlation metric choice (Pearson's correlation versus partial correlation), global signal presence (regressed or not) and frequency band selection [slow-5 (0.01-0.027 Hz) versus slow-4 (0.027-0.073 Hz)] on the topological properties of both binary and weighted brain networks derived from them, and we employed test-retest (TRT) analyses for further guidance on how to choose the "best" network modeling strategy from the reliability perspective. Our results show significant differences in global network metrics associated with both correlation metrics and global signals. Analysis of nodal degree revealed differing hub distributions for brain networks derived from Pearson's correlation versus partial correlation. TRT analysis revealed that the reliability of both global and local topological properties are modulated by correlation metrics and the global signal, with the highest reliability observed for Pearson's-correlation-based brain networks without global signal removal (WOGR-PEAR). The nodal reliability exhibited a spatially heterogeneous distribution wherein regions in association and limbic/paralimbic cortices showed moderate TRT reliability in Pearson's-correlation-based brain networks. Moreover, we found that there were significant frequency-related differences in topological properties of WOGR-PEAR networks, and brain networks derived in the 0.027-0.073 Hz band exhibited greater reliability than those in the 0.01-0.027 Hz band. Taken together, our results provide direct evidence regarding the influences of correlation metrics and specific preprocessing choices on both the global and nodal topological properties of functional brain networks. This study also has important implications for how to choose reliable analytical schemes in brain network studies.
Plasma fluctuations as Markovian noise.
Li, B; Hazeltine, R D; Gentle, K W
2007-12-01
Noise theory is used to study the correlations of stationary Markovian fluctuations that are homogeneous and isotropic in space. The relaxation of the fluctuations is modeled by the diffusion equation. The spatial correlations of random fluctuations are modeled by the exponential decay. Based on these models, the temporal correlations of random fluctuations, such as the correlation function and the power spectrum, are calculated. We find that the diffusion process can give rise to the decay of the correlation function and a broad frequency spectrum of random fluctuations. We also find that the transport coefficients may be estimated by the correlation length and the correlation time. The theoretical results are compared with the observed plasma density fluctuations from the tokamak and helimak experiments.
Measurement of frequency response in short thermocouple wires
NASA Technical Reports Server (NTRS)
Forney, L. J.; Meeks, E. L.; Ma, J.; Fralick, G. C.
1993-01-01
Experimental measurements are made for the steady-state frequency response of a supported thermocouple wire. In particular, the effects of axial heat conduction are demonstrated for both a supported one material wire (type K) and a two material wire (type T) with unequal material properties across the junction. The data for the amplitude ratio and phase angle are correlated to within 10 percent with the theoretical predictions of Fralick and Forney (1991). This is accomplished by choosing a natural frequency omega(sub n) for the wire data to correlate the first order response at large gas temperature frequencies. It is found that a large bead size, however, will increase the amplitude ratio at low frequencies but decrease the natural frequency of the wire. The phase angle data are also distorted for imperfect junctions.
Measurement of frequency response in short thermocouple wires
NASA Technical Reports Server (NTRS)
Forney, L. J.; Meeks, E. L.; Ma, J.
1991-01-01
Experimental measurements are made for the steady-state frequency response of a supported thermocouple wire. In particular, the effects of axial heat conduction are demonstrated for both a supported one material wire (type K) and a two material wire (type T) with unequal material properties across the junction. The data for the amplitude ratio and phase angle are correlated to within 10 percent with the theoretical predictions of Fralick and Forney (1991). This is accomplished by choosing a natural frequency omega(sub n) for the wire data to correlate the first order response at large gas temperature frequencies. It is found that a large bead size, however, will increase the amplitude ratio at low frequencies but decreas the natural frequency of the wire. The phase angle data are also distorted for imperfect junctions.
Dynamical correlation functions of the quadratic coupling spin-Boson model
NASA Astrophysics Data System (ADS)
Zheng, Da-Chuan; Tong, Ning-Hua
2017-06-01
The spin-boson model with quadratic coupling is studied using the bosonic numerical renormalization group method. We focus on the dynamical auto-correlation functions {C}O(ω ), with the operator \\hat{O} taken as {\\hat{{{σ }}}}x, {\\hat{{{σ }}}}z, and \\hat{X}, respectively. In the weak-coupling regime α < {α }{{c}}, these functions show power law ω-dependence in the small frequency limit, with the powers 1+2s, 1+2s, and s, respectively. At the critical point α ={α }{{c}} of the boson-unstable quantum phase transition, the critical exponents y O of these correlation functions are obtained as {y}{{{σ }}x}={y}{{{σ }}z}=1-2s and {y}X=-s, respectively. Here s is the bath index and X is the boson displacement operator. Close to the spin flip point, the high frequency peak of {C}{{{σ }}x}(ω ) is broadened significantly and the line shape changes qualitatively, showing enhanced dephasing at the spin flip point. Project supported by the National Key Basic Research Program of China (Grant No. 2012CB921704), the National Natural Science Foundation of China (Grant No. 11374362), the Fundamental Research Funds for the Central Universities, China, and the Research Funds of Renmin University of China (Grant No. 15XNLQ03).
Photon echo spectroscopy reveals structure-dynamics relationships in carotenoids
NASA Astrophysics Data System (ADS)
Christensson, N.; Polivka, T.; Yartsev, A.; Pullerits, T.
2009-06-01
Based on simultaneous analysis of the frequency-resolved transient grating, peak shift, and echo width signals, we present a model for the third-order optical response of carotenoids including population dynamics and system-bath interactions. Our frequency-resolved photon echo experiments show that the model needs to incorporate the excited-state absorption from both the S2 and the S1 states. We apply our model to analyze the experimental results on astaxanthin and lycopene, aiming to elucidate the relation between structure and system-bath interactions. Our analysis allows us to relate structural motifs to changes in the energy-gap correlation functions. We find that the terminal rings of astaxanthin lead to increased coupling between slow molecular motions and the electronic transition. We also find evidence for stronger coupling to higher frequency overdamped modes in astaxanthin, pointing to the importance of the functional groups in providing coupling to fluctuations influencing the dynamics in the passage through the conical intersection governing the S2-S1 relaxation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanson-Heine, Magnus W. D., E-mail: magnus.hansonheine@nottingham.ac.uk
Carefully choosing a set of optimized coordinates for performing vibrational frequency calculations can significantly reduce the anharmonic correlation energy from the self-consistent field treatment of molecular vibrations. However, moving away from normal coordinates also introduces an additional source of correlation energy arising from mode-coupling at the harmonic level. The impact of this new component of the vibrational energy is examined for a range of molecules, and a method is proposed for correcting the resulting self-consistent field frequencies by adding the full coupling energy from connected pairs of harmonic and pseudoharmonic modes, termed vibrational self-consistent field (harmonic correlation). This approach ismore » found to lift the vibrational degeneracies arising from coordinate optimization and provides better agreement with experimental and benchmark frequencies than uncorrected vibrational self-consistent field theory without relying on traditional correlated methods.« less
Silveira, Vladímir de Aquino; Souza, Givago da Silva; Gomes, Bruno Duarte; Rodrigues, Anderson Raiol; Silveira, Luiz Carlos de Lima
2014-01-01
We used psychometric functions to estimate the joint entropy for space discrimination and spatial frequency discrimination. Space discrimination was taken as discrimination of spatial extent. Seven subjects were tested. Gábor functions comprising unidimensionalsinusoidal gratings (0.4, 2, and 10 cpd) and bidimensionalGaussian envelopes (1°) were used as reference stimuli. The experiment comprised the comparison between reference and test stimulithat differed in grating's spatial frequency or envelope's standard deviation. We tested 21 different envelope's standard deviations around the reference standard deviation to study spatial extent discrimination and 19 different grating's spatial frequencies around the reference spatial frequency to study spatial frequency discrimination. Two series of psychometric functions were obtained for 2%, 5%, 10%, and 100% stimulus contrast. The psychometric function data points for spatial extent discrimination or spatial frequency discrimination were fitted with Gaussian functions using the least square method, and the spatial extent and spatial frequency entropies were estimated from the standard deviation of these Gaussian functions. Then, joint entropy was obtained by multiplying the square root of space extent entropy times the spatial frequency entropy. We compared our results to the theoretical minimum for unidimensional Gábor functions, 1/4π or 0.0796. At low and intermediate spatial frequencies and high contrasts, joint entropy reached levels below the theoretical minimum, suggesting non-linear interactions between two or more visual mechanisms. We concluded that non-linear interactions of visual pathways, such as the M and P pathways, could explain joint entropy values below the theoretical minimum at low and intermediate spatial frequencies and high contrasts. These non-linear interactions might be at work at intermediate and high contrasts at all spatial frequencies once there was a substantial decrease in joint entropy for these stimulus conditions when contrast was raised. PMID:24466158
Silveira, Vladímir de Aquino; Souza, Givago da Silva; Gomes, Bruno Duarte; Rodrigues, Anderson Raiol; Silveira, Luiz Carlos de Lima
2014-01-01
We used psychometric functions to estimate the joint entropy for space discrimination and spatial frequency discrimination. Space discrimination was taken as discrimination of spatial extent. Seven subjects were tested. Gábor functions comprising unidimensionalsinusoidal gratings (0.4, 2, and 10 cpd) and bidimensionalGaussian envelopes (1°) were used as reference stimuli. The experiment comprised the comparison between reference and test stimulithat differed in grating's spatial frequency or envelope's standard deviation. We tested 21 different envelope's standard deviations around the reference standard deviation to study spatial extent discrimination and 19 different grating's spatial frequencies around the reference spatial frequency to study spatial frequency discrimination. Two series of psychometric functions were obtained for 2%, 5%, 10%, and 100% stimulus contrast. The psychometric function data points for spatial extent discrimination or spatial frequency discrimination were fitted with Gaussian functions using the least square method, and the spatial extent and spatial frequency entropies were estimated from the standard deviation of these Gaussian functions. Then, joint entropy was obtained by multiplying the square root of space extent entropy times the spatial frequency entropy. We compared our results to the theoretical minimum for unidimensional Gábor functions, 1/4π or 0.0796. At low and intermediate spatial frequencies and high contrasts, joint entropy reached levels below the theoretical minimum, suggesting non-linear interactions between two or more visual mechanisms. We concluded that non-linear interactions of visual pathways, such as the M and P pathways, could explain joint entropy values below the theoretical minimum at low and intermediate spatial frequencies and high contrasts. These non-linear interactions might be at work at intermediate and high contrasts at all spatial frequencies once there was a substantial decrease in joint entropy for these stimulus conditions when contrast was raised.
Pfeiffer, Florian; Rauhut, Guntram
2011-10-13
Accurate anharmonic frequencies are provided for molecules of current research, i.e., diazirines, diazomethane, the corresponding fluorinated and deuterated compounds, their dioxygen analogs, and others. Vibrational-state energies were obtained from state-specific vibrational multiconfiguration self-consistent field theory (VMCSCF) based on multilevel potential energy surfaces (PES) generated from explicitly correlated coupled cluster, CCSD(T)-F12a, and double-hybrid density functional calculations, B2PLYP. To accelerate the vibrational structure calculations, a configuration selection scheme as well as a polynomial representation of the PES have been exploited. Because experimental data are scarce for these systems, many calculated frequencies of this study are predictions and may guide experiments to come.
Nugent, Allison C; Luber, Bruce; Carver, Frederick W; Robinson, Stephen E; Coppola, Richard; Zarate, Carlos A
2017-02-01
Recently, independent components analysis (ICA) of resting state magnetoencephalography (MEG) recordings has revealed resting state networks (RSNs) that exhibit fluctuations of band-limited power envelopes. Most of the work in this area has concentrated on networks derived from the power envelope of beta bandpass-filtered data. Although research has demonstrated that most networks show maximal correlation in the beta band, little is known about how spatial patterns of correlations may differ across frequencies. This study analyzed MEG data from 18 healthy subjects to determine if the spatial patterns of RSNs differed between delta, theta, alpha, beta, gamma, and high gamma frequency bands. To validate our method, we focused on the sensorimotor network, which is well-characterized and robust in both MEG and functional magnetic resonance imaging (fMRI) resting state data. Synthetic aperture magnetometry (SAM) was used to project signals into anatomical source space separately in each band before a group temporal ICA was performed over all subjects and bands. This method preserved the inherent correlation structure of the data and reflected connectivity derived from single-band ICA, but also allowed identification of spatial spectral modes that are consistent across subjects. The implications of these results on our understanding of sensorimotor function are discussed, as are the potential applications of this technique. Hum Brain Mapp 38:779-791, 2017. © 2016 Wiley Periodicals, Inc. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.
Frequency-specific electrophysiologic correlates of resting state fMRI networks.
Hacker, Carl D; Snyder, Abraham Z; Pahwa, Mrinal; Corbetta, Maurizio; Leuthardt, Eric C
2017-04-01
Resting state functional MRI (R-fMRI) studies have shown that slow (<0.1Hz), intrinsic fluctuations of the blood oxygen level dependent (BOLD) signal are temporally correlated within hierarchically organized functional systems known as resting state networks (RSNs) (Doucet et al., 2011). Most broadly, this hierarchy exhibits a dichotomy between two opposed systems (Fox et al., 2005). One system engages with the environment and includes the visual, auditory, and sensorimotor (SMN) networks as well as the dorsal attention network (DAN), which controls spatial attention. The other system includes the default mode network (DMN) and the fronto-parietal control system (FPC), RSNs that instantiate episodic memory and executive control, respectively. Here, we test the hypothesis, based on the spectral specificity of electrophysiologic responses to perceptual vs. memory tasks (Klimesch, 1999; Pfurtscheller and Lopes da Silva, 1999), that these two large-scale neural systems also manifest frequency specificity in the resting state. We measured the spatial correspondence between electrocorticographic (ECoG) band-limited power (BLP) and R-fMRI correlation patterns in awake, resting, human subjects. Our results show that, while gamma BLP correspondence was common throughout the brain, theta (4-8Hz) BLP correspondence was stronger in the DMN and FPC, whereas alpha (8-12Hz) correspondence was stronger in the SMN and DAN. Thus, the human brain, at rest, exhibits frequency specific electrophysiology, respecting both the spectral structure of task responses and the hierarchical organization of RSNs. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Frequency-specific electrophysiologic correlates of resting state fMRI networks
Hacker, Carl D.; Snyder, Abraham Z.; Pahwa, Mrinal; Corbetta, Maurizio; Leuthardt, Eric C.
2017-01-01
Resting state functional MRI (R-fMRI) studies have shown that slow (< 0.1 Hz), intrinsic fluctuations of the blood oxygen level dependent (BOLD) signal are temporally correlated within hierarchically organized functional systems known as resting state networks (RSNs) (Doucet et al., 2011). Most broadly, this hierarchy exhibits a dichotomy between two opposed systems (Fox et al., 2005). One system engages with the environment and includes the visual, auditory, and sensorimotor (SMN) networks as well as the dorsal attention network (DAN), which controls spatial attention. The other system includes the default mode network (DMN) and the fronto-parietal control system (FPC), RSNs that instantiate episodic memory and executive control, respectively. Here, we test the hypothesis, based on the spectral specificity of electrophysiologic responses to perceptual vs. memory tasks (Klimesch, 1999; Pfurtscheller and Lopes da Silva, 1999), that these two large-scale neural systems also manifest frequency specificity in the resting state. We measured the spatial correspondence between electrocorticographic (ECoG) band-limited power (BLP) and R-fMRI correlation patterns in awake, resting, human subjects. Our results show that, while gamma BLP correspondence was common throughout the brain, theta (4–8 Hz) BLP correspondence was stronger in the DMN and FPC, whereas alpha (8–12 Hz) correspondence was stronger in the SMN and DAN. Thus, the human brain, at rest, exhibits frequency specific electrophysiology, respecting both the spectral structure of task responses and the hierarchical organization of RSNs. PMID:28159686
Intrinsic Multi-Scale Dynamic Behaviors of Complex Financial Systems
Ouyang, Fang-Yan; Zheng, Bo; Jiang, Xiong-Fei
2015-01-01
The empirical mode decomposition is applied to analyze the intrinsic multi-scale dynamic behaviors of complex financial systems. In this approach, the time series of the price returns of each stock is decomposed into a small number of intrinsic mode functions, which represent the price motion from high frequency to low frequency. These intrinsic mode functions are then grouped into three modes, i.e., the fast mode, medium mode and slow mode. The probability distribution of returns and auto-correlation of volatilities for the fast and medium modes exhibit similar behaviors as those of the full time series, i.e., these characteristics are rather robust in multi time scale. However, the cross-correlation between individual stocks and the return-volatility correlation are time scale dependent. The structure of business sectors is mainly governed by the fast mode when returns are sampled at a couple of days, while by the medium mode when returns are sampled at dozens of days. More importantly, the leverage and anti-leverage effects are dominated by the medium mode. PMID:26427063
Stability of individual loudness functions obtained by magnitude estimation and production
NASA Technical Reports Server (NTRS)
Hellman, R. P.
1981-01-01
A correlational analysis of individual magnitude estimation and production exponents at the same frequency is performed, as is an analysis of individual exponents produced in different sessions by the same procedure across frequency (250, 1000, and 3000 Hz). Taken as a whole, the results show that individual exponent differences do not decrease by counterbalancing magnitude estimation with magnitude production and that individual exponent differences remain stable over time despite changes in stimulus frequency. Further results show that although individual magnitude estimation and production exponents do not necessarily obey the .6 power law, it is possible to predict the slope of an equal-sensation function averaged for a group of listeners from individual magnitude estimation and production data. On the assumption that individual listeners with sensorineural hearing also produce stable and reliable magnitude functions, it is also shown that the slope of the loudness-recruitment function measured by magnitude estimation and production can be predicted for individuals with bilateral losses of long duration. Results obtained in normal and pathological ears thus suggest that individual listeners can produce loudness judgements that reveal, although indirectly, the input-output characteristic of the auditory system.
Robust Identification of Local Adaptation from Allele Frequencies
Günther, Torsten; Coop, Graham
2013-01-01
Comparing allele frequencies among populations that differ in environment has long been a tool for detecting loci involved in local adaptation. However, such analyses are complicated by an imperfect knowledge of population allele frequencies and neutral correlations of allele frequencies among populations due to shared population history and gene flow. Here we develop a set of methods to robustly test for unusual allele frequency patterns and correlations between environmental variables and allele frequencies while accounting for these complications based on a Bayesian model previously implemented in the software Bayenv. Using this model, we calculate a set of “standardized allele frequencies” that allows investigators to apply tests of their choice to multiple populations while accounting for sampling and covariance due to population history. We illustrate this first by showing that these standardized frequencies can be used to detect nonparametric correlations with environmental variables; these correlations are also less prone to spurious results due to outlier populations. We then demonstrate how these standardized allele frequencies can be used to construct a test to detect SNPs that deviate strongly from neutral population structure. This test is conceptually related to FST and is shown to be more powerful, as we account for population history. We also extend the model to next-generation sequencing of population pools—a cost-efficient way to estimate population allele frequencies, but one that introduces an additional level of sampling noise. The utility of these methods is demonstrated in simulations and by reanalyzing human SNP data from the Human Genome Diversity Panel populations and pooled next-generation sequencing data from Atlantic herring. An implementation of our method is available from http://gcbias.org. PMID:23821598
Correlation of anthropometric variables, conditional and exercise habits in activite olders
Ramos Bermúdez, Santiago; Parra Sánchez, José H
2012-01-01
Objective: This study sought to correlate the anthropometric and functional variables, and exercise habits in a group of elderly adults who regularly attend exercise programs. Method: Participation of 217 subjects between 60 and 85 years of age, from 13 regions of Colombia. Anthropometric and functional assessment was conducted as a questionnaire on exercise habits. Results: Negative correlations were shown between exercise habits and body fat and positive correlations between hand strength and VO2 max. (r = 0.4), age was negatively associated to functional variables. Conclusions: The functional capacity is influenced by increased age and body fat. With higher frequencies of physical exercise, VO2 max. and strength improved, but less body fat was observed. PMID:24893195
Weil, Taryn N; Inglehart, Marita Rohr
2012-01-01
The purpose was to explore the relationship between the level of functioning (listening/talking/reading/daily self-care/care at home/social skills) of three to 21-year-old patients with autism spectrum disorders (ASDs) and their oral health and oral health-related behavior (brushing, flossing, dental visits). Survey data were collected from 85 parents of ASD patients. Patients' level of functioning was determined with a short version of the Survey Interview Form of the Vineland Adaptive Behavior Scales (2nd edition). The patients ranged from very low to high levels of functioning. Oral health correlated with the ability to: listen (r=.53; P<.001); talk (r=.40; P<.001); read (r=.30; P<.01); engage in daily self-care (r=.36; P<.001); engage in care at home (r=.44; P<.001); and demonstrate social skills (r=.36; P<.001). The parents' comfort levels concerning brushing and flossing their children's teeth and taking their children to the dentist varied considerably and correlated with children's level of functioning. Frequency of tooth-brushing correlated with listening skills (r=31; P<.01); the frequency of flossing correlated with the ability to talk (r=.31; P<.01). Understanding the relationships between level of functioning of children with ASDs and their oral health and oral health-related behavior could increase dentists' ability to provide the best possible care for these patients.
NASA Astrophysics Data System (ADS)
Cai, Jianhua
2017-05-01
The time-frequency analysis method represents signal as a function of time and frequency, and it is considered a powerful tool for handling arbitrary non-stationary time series by using instantaneous frequency and instantaneous amplitude. It also provides a possible alternative to the analysis of the non-stationary magnetotelluric (MT) signal. Based on the Hilbert-Huang transform (HHT), a time-frequency analysis method is proposed to obtain stable estimates of the magnetotelluric response function. In contrast to conventional methods, the response function estimation is performed in the time-frequency domain using instantaneous spectra rather than in the frequency domain, which allows for imaging the response parameter content as a function of time and frequency. The theory of the method is presented and the mathematical model and calculation procedure, which are used to estimate response function based on HHT time-frequency spectrum, are discussed. To evaluate the results, response function estimates are compared with estimates from a standard MT data processing method based on the Fourier transform. All results show that apparent resistivities and phases, which are calculated from the HHT time-frequency method, are generally more stable and reliable than those determined from the simple Fourier analysis. The proposed method overcomes the drawbacks of the traditional Fourier methods, and the resulting parameter minimises the estimation bias caused by the non-stationary characteristics of the MT data.
2017-01-01
Auditory selective attention is vital in natural soundscapes. But it is unclear how attentional focus on the primary dimension of auditory representation—acoustic frequency—might modulate basic auditory functional topography during active listening. In contrast to visual selective attention, which is supported by motor-mediated optimization of input across saccades and pupil dilation, the primate auditory system has fewer means of differentially sampling the world. This makes spectrally-directed endogenous attention a particularly crucial aspect of auditory attention. Using a novel functional paradigm combined with quantitative MRI, we establish in male and female listeners that human frequency-band-selective attention drives activation in both myeloarchitectonically estimated auditory core, and across the majority of tonotopically mapped nonprimary auditory cortex. The attentionally driven best-frequency maps show strong concordance with sensory-driven maps in the same subjects across much of the temporal plane, with poor concordance in areas outside traditional auditory cortex. There is significantly greater activation across most of auditory cortex when best frequency is attended, versus ignored; the same regions do not show this enhancement when attending to the least-preferred frequency band. Finally, the results demonstrate that there is spatial correspondence between the degree of myelination and the strength of the tonotopic signal across a number of regions in auditory cortex. Strong frequency preferences across tonotopically mapped auditory cortex spatially correlate with R1-estimated myeloarchitecture, indicating shared functional and anatomical organization that may underlie intrinsic auditory regionalization. SIGNIFICANCE STATEMENT Perception is an active process, especially sensitive to attentional state. Listeners direct auditory attention to track a violin's melody within an ensemble performance, or to follow a voice in a crowded cafe. Although diverse pathologies reduce quality of life by impacting such spectrally directed auditory attention, its neurobiological bases are unclear. We demonstrate that human primary and nonprimary auditory cortical activation is modulated by spectrally directed attention in a manner that recapitulates its tonotopic sensory organization. Further, the graded activation profiles evoked by single-frequency bands are correlated with attentionally driven activation when these bands are presented in complex soundscapes. Finally, we observe a strong concordance in the degree of cortical myelination and the strength of tonotopic activation across several auditory cortical regions. PMID:29109238
Cholinergic enhancement of visual attention and neural oscillations in the human brain.
Bauer, Markus; Kluge, Christian; Bach, Dominik; Bradbury, David; Heinze, Hans Jochen; Dolan, Raymond J; Driver, Jon
2012-03-06
Cognitive processes such as visual perception and selective attention induce specific patterns of brain oscillations. The neurochemical bases of these spectral changes in neural activity are largely unknown, but neuromodulators are thought to regulate processing. The cholinergic system is linked to attentional function in vivo, whereas separate in vitro studies show that cholinergic agonists induce high-frequency oscillations in slice preparations. This has led to theoretical proposals that cholinergic enhancement of visual attention might operate via gamma oscillations in visual cortex, although low-frequency alpha/beta modulation may also play a key role. Here we used MEG to record cortical oscillations in the context of administration of a cholinergic agonist (physostigmine) during a spatial visual attention task in humans. This cholinergic agonist enhanced spatial attention effects on low-frequency alpha/beta oscillations in visual cortex, an effect correlating with a drug-induced speeding of performance. By contrast, the cholinergic agonist did not alter high-frequency gamma oscillations in visual cortex. Thus, our findings show that cholinergic neuromodulation enhances attentional selection via an impact on oscillatory synchrony in visual cortex, for low rather than high frequencies. We discuss this dissociation between high- and low-frequency oscillations in relation to proposals that lower-frequency oscillations are generated by feedback pathways within visual cortex. Copyright © 2012 Elsevier Ltd. All rights reserved.
Robust k-mer frequency estimation using gapped k-mers
Ghandi, Mahmoud; Mohammad-Noori, Morteza
2013-01-01
Oligomers of fixed length, k, commonly known as k-mers, are often used as fundamental elements in the description of DNA sequence features of diverse biological function, or as intermediate elements in the constuction of more complex descriptors of sequence features such as position weight matrices. k-mers are very useful as general sequence features because they constitute a complete and unbiased feature set, and do not require parameterization based on incomplete knowledge of biological mechanisms. However, a fundamental limitation in the use of k-mers as sequence features is that as k is increased, larger spatial correlations in DNA sequence elements can be described, but the frequency of observing any specific k-mer becomes very small, and rapidly approaches a sparse matrix of binary counts. Thus any statistical learning approach using k-mers will be susceptible to noisy estimation of k-mer frequencies once k becomes large. Because all molecular DNA interactions have limited spatial extent, gapped k-mers often carry the relevant biological signal. Here we use gapped k-mer counts to more robustly estimate the ungapped k-mer frequencies, by deriving an equation for the minimum norm estimate of k-mer frequencies given an observed set of gapped k-mer frequencies. We demonstrate that this approach provides a more accurate estimate of the k-mer frequencies in real biological sequences using a sample of CTCF binding sites in the human genome. PMID:23861010
Robust k-mer frequency estimation using gapped k-mers.
Ghandi, Mahmoud; Mohammad-Noori, Morteza; Beer, Michael A
2014-08-01
Oligomers of fixed length, k, commonly known as k-mers, are often used as fundamental elements in the description of DNA sequence features of diverse biological function, or as intermediate elements in the constuction of more complex descriptors of sequence features such as position weight matrices. k-mers are very useful as general sequence features because they constitute a complete and unbiased feature set, and do not require parameterization based on incomplete knowledge of biological mechanisms. However, a fundamental limitation in the use of k-mers as sequence features is that as k is increased, larger spatial correlations in DNA sequence elements can be described, but the frequency of observing any specific k-mer becomes very small, and rapidly approaches a sparse matrix of binary counts. Thus any statistical learning approach using k-mers will be susceptible to noisy estimation of k-mer frequencies once k becomes large. Because all molecular DNA interactions have limited spatial extent, gapped k-mers often carry the relevant biological signal. Here we use gapped k-mer counts to more robustly estimate the ungapped k-mer frequencies, by deriving an equation for the minimum norm estimate of k-mer frequencies given an observed set of gapped k-mer frequencies. We demonstrate that this approach provides a more accurate estimate of the k-mer frequencies in real biological sequences using a sample of CTCF binding sites in the human genome.
NASA Astrophysics Data System (ADS)
El-Shabaan, M. M.
2018-02-01
Impedance spectroscopy and alternating-current (AC) conductivity (σ AC) studies of bulk 3-amino-7-(dimethylamino)-2-methyl-hydrochloride (neutral red, NR) have been carried out over the temperature (T) range from 303 K to 383 K and frequency (f) range from 0.5 kHz to 5 MHz. Dielectric data were analyzed using the complex impedance (Z *) and complex electric modulus (M *) for bulk NR at various temperatures. The impedance loss peaks were found to shift towards high frequencies, indicating an increase in the relaxation time (τ 0) and loss in the material, with increasing temperature. For each temperature, a single depressed semicircle was observed at high frequencies, originating from the bulk transport, and a spike in the low-frequency region, resulting from the electrode effect. Fitting of these curves yielded an equivalent circuit containing a parallel combination of a resistance R and constant-phase element (CPE) Q. The carrier transport in bulk NR is governed by the correlated barrier hopping (CBH) mechanism, some parameters of which, such as the maximum barrier height (W M), charge density (N), and hopping distance (r), were determined as functions of both temperature and frequency. The frequency dependence of σ AC at different temperatures indicated that the conduction in bulk NR is a thermally activated process. The σ AC value at different frequencies increased linearly with temperature.
Perception of the fundamental frequencies of children's voices by trained and untrained listeners.
Wilson, F B; Wellen, C J; Kimbarow, M L
1983-10-01
This study was designed to determine if trained voice clinicians were better than untrained listeners in judging differences in the fundamental frequencies of children's voices. We also attempted to determine the degree of difference in fundamental frequency necessary for accurate judgments. Finally, ability to perceive pitch differences in speaking voices was correlated with ability to judge puretone stimuli. Results indicated that trained clinicians were no better at judging average fundamental frequency than were untrained listeners. Both groups performed at chance level until differences in vocal fundamental frequency exceeded 20 Hz. Finally, there was no correlation between subjects' success on standardized puretone pitch tests and ability to judge average pitch in the speaking voice.
NASA Astrophysics Data System (ADS)
Peña, Adrian F.; Devine, Jack; Doronin, Alexander; Meglinski, Igor
2014-03-01
We report the use of conventional Optical Coherence Tomography (OCT) for visualization of propagation of low frequency electric field in soft biological tissues ex vivo. To increase the overall quality of the experimental images an adaptive Wiener filtering technique has been employed. Fourier domain correlation has been subsequently applied to enhance spatial resolution of images of biological tissues influenced by low frequency electric field. Image processing has been performed on Graphics Processing Units (GPUs) utilizing Compute Unified Device Architecture (CUDA) framework in the frequencydomain. The results show that variation in voltage and frequency of the applied electric field relates exponentially to the magnitude of its influence on biological tissue. The magnitude of influence is about twice more for fresh tissue samples in comparison to non-fresh ones. The obtained results suggest that OCT can be used for observation and quantitative evaluation of the electro-kinetic changes in biological tissues under different physiological conditions, functional electrical stimulation, and potentially can be used non-invasively for food quality control.
NASA Astrophysics Data System (ADS)
Tewari, S.; Ghosh, A.; Bhattacharjee, A.
2016-11-01
Sintered pellets of zinc oxide (ZnO), both undoped and Al-doped are prepared through a chemical process. Dopant concentration of Aluminium in ZnO [Al/Zn in weight percentage (wt%)] is varied from 0 to 3 wt%. After synthesis structural characterisation of the samples are performed with XRD and SEM-EDAX which confirm that all the samples are of ZnO having polycrystalline nature with particle size from 108.6 to 116 nm. Frequency dependent properties like a.c. conductivity, capacitance, impedance and phase angle are measured in the frequency range 10 Hz to 100 kHz as a function of temperature (in the range 25-150 °C). Nature of a.c. conductivity in these samples indicates hopping type of conduction arising from localised defect states. The frequency and temperature dependent properties under study are found to be as per correlated barrier hoping model. Dielectric and impedance properties studied in the samples indicate distributed relaxation, showing decrease of relaxation time with temperature.
Radio-science performance analysis software
NASA Astrophysics Data System (ADS)
Morabito, D. D.; Asmar, S. W.
1995-02-01
The Radio Science Systems Group (RSSG) provides various support functions for several flight project radio-science teams. Among these support functions are uplink and sequence planning, real-time operations monitoring and support, data validation, archiving and distribution functions, and data processing and analysis. This article describes the support functions that encompass radio-science data performance analysis. The primary tool used by the RSSG to fulfill this support function is the STBLTY program set. STBLTY is used to reconstruct observable frequencies and calculate model frequencies, frequency residuals, frequency stability in terms of Allan deviation, reconstructed phase, frequency and phase power spectral density, and frequency drift rates. In the case of one-way data, using an ultrastable oscillator (USO) as a frequency reference, the program set computes the spacecraft transmitted frequency and maintains a database containing the in-flight history of the USO measurements. The program set also produces graphical displays. Some examples and discussions on operating the program set on Galileo and Ulysses data will be presented.
Radio-Science Performance Analysis Software
NASA Astrophysics Data System (ADS)
Morabito, D. D.; Asmar, S. W.
1994-10-01
The Radio Science Systems Group (RSSG) provides various support functions for several flight project radio-science teams. Among these support functions are uplink and sequence planning, real-time operations monitoring and support, data validation, archiving and distribution functions, and data processing and analysis. This article describes the support functions that encompass radio science data performance analysis. The primary tool used by the RSSG to fulfill this support function is the STBLTY program set. STBLTY is used to reconstruct observable frequencies and calculate model frequencies, frequency residuals, frequency stability in terms of Allan deviation, reconstructed phase, frequency and phase power spectral density, and frequency drift rates. In the case of one-way data, using an ultrastable oscillator (USO) as a frequency reference, the program set computes the spacecraft transmitted frequency and maintains a database containing the in-flight history of the USO measurements. The program set also produces graphical displays. Some examples and discussion on operating the program set on Galileo and Ulysses data will be presented.
Radio-science performance analysis software
NASA Technical Reports Server (NTRS)
Morabito, D. D.; Asmar, S. W.
1995-01-01
The Radio Science Systems Group (RSSG) provides various support functions for several flight project radio-science teams. Among these support functions are uplink and sequence planning, real-time operations monitoring and support, data validation, archiving and distribution functions, and data processing and analysis. This article describes the support functions that encompass radio-science data performance analysis. The primary tool used by the RSSG to fulfill this support function is the STBLTY program set. STBLTY is used to reconstruct observable frequencies and calculate model frequencies, frequency residuals, frequency stability in terms of Allan deviation, reconstructed phase, frequency and phase power spectral density, and frequency drift rates. In the case of one-way data, using an ultrastable oscillator (USO) as a frequency reference, the program set computes the spacecraft transmitted frequency and maintains a database containing the in-flight history of the USO measurements. The program set also produces graphical displays. Some examples and discussions on operating the program set on Galileo and Ulysses data will be presented.
This patent describes a low offset AC correlator avoids DC offset and low frequency noise by frequency operating the correlation signal so that low...noise, low level AC amplification can be substituted for DC amplification. Subsequently, the high level AC signal is demodulated to a DC level. (Author)
NASA Astrophysics Data System (ADS)
Perry, Thomas M.; Marr, J. M.; Read, J. W.; Taylor, G. B.
2011-01-01
We obtained VLBI observations at six frequencies of two Compact Symmetric Objects, 1321+410 and 0026+346. By comparing the lower frequency maps with spectral extrapolations of the higher frequency maps, we produced maps of the optical depth as a function of frequency. The optical-depth maps of 1321+410 are strikingly uniform, consistent with a foreground screen of absorbing gas; the optical depths as a function of frequency are consistent with free-free absorption; and no net polarization was detected. We conclude that the case for free-free absorption in 1321+410 is strong. The optical-depth maps of 0026+346 exhibit structure but the morphology does not correlate with that in the intensity maps, in conflict with that expected in the case of synchrotron self-absorption. No net polarization was detected. The frequency dependence of the optical depths does not fit well to a simple free-free absorption model, but this does not take into account possible structure in the absorbing gas on smaller scales. We conclude that free-free absorption by a thin amount of gas with structure on the scale of our maps and smaller is possible in 0026+346, although no definitive conclusion can be made. A compact feature between the lobes in 0026+346 has an inverted spectrum even at the highest frequencies, suggesting that this component is synchrotron self-absorbed. We infer this to be the location of the core. We estimate an upper limit to the magnetic field in the core of 50 Gauss at a radius of 1 pc. This research was supported by an award from the Research Corporation, a NASA NY Space Grant, and a Booth-Ferris Research Fellowship. The VLBA is operated by the National Radio Astronomy Observatory, a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.
Distribution of major herbicides in ground water of the United States
Barbash, Jack E.; Thelin, Gail P.; Kolpin, Dana W.; Gilliom, Robert J.
1999-01-01
Frequencies of detection at or above 0.01 microgram per liter in shallow ground water beneath agricultural areas during the NAWQA study were significantly correlated with agricultural use in those areas for atrazine, cyanazine, alachlor, and metolachlor (P<0.05; Spearman rank correlations), but not for simazine (P>0.05). In urban areas, overall frequencies of detection of these five herbicides in shallow ground water were positively correlated with their total nonagricultural use nationwide (P=0.026; simple linear correlation). Multivariate statistical analysis indicated that frequencies of detection in shallow ground water beneath agricultural areas were positively correlated with half-lives for transformation in aerobic soil and agricultural use of the compounds (P≤0.0001 for both parameters). Although frequencies of detection were not significantly correlated with their subsurface mobility (Koc; P=0.19) or the median well depths of the sampled networks (P=0.72), the range of Koc values among the five herbicides and the range of well depths were limited.
ERIC Educational Resources Information Center
Eaton, Helen S., Comp.
This semantic frequency list for English, French, German, and Spanish correlates 6,474 concepts represented by individual words in an order of diminishing occurrence. Designed as a research tool, the work is segmented into seven comparative "Thousand Concepts" lists with 115 sectional subdivisions, each of which begins with the key English word…
Song, Xiaopeng; Zhou, Shuqin; Zhang, Yi; Liu, Yijun; Zhu, Huaiqiu; Gao, Jia-Hong
2015-01-01
The eyes-open (EO) and eyes-closed (EC) states have differential effects on BOLD-fMRI signal dynamics, affecting both the BOLD oscillation frequency of a single voxel and the regional homogeneity (ReHo) of several neighboring voxels. To explore how the two resting-states modulate the local synchrony through different frequency bands, we decomposed the time series of each voxel into several components that fell into distinct frequency bands. The ReHo in each of the bands was calculated and compared between the EO and EC conditions. The cross-voxel correlations between the mean frequency and the overall ReHo of each voxel's original BOLD series in different brain areas were also calculated and compared between the two states. Compared with the EC state, ReHo decreased with EO in a wide frequency band of 0.01-0.25 Hz in the bilateral thalamus, sensorimotor network, and superior temporal gyrus, while ReHo increased significantly in the band of 0-0.01 Hz in the primary visual cortex, and in a higher frequency band of 0.02-0.1 Hz in the higher order visual areas. The cross-voxel correlations between the frequency and overall ReHo were negative in all the brain areas but varied from region to region. These correlations were stronger with EO in the visual network and the default mode network. Our results suggested that different frequency bands of ReHo showed different sensitivity to the modulation of EO-EC states. The better spatial consistency between the frequency and overall ReHo maps indicated that the brain might adopt a stricter frequency-dependent configuration with EO than with EC.
Restoration of motion blurred image with Lucy-Richardson algorithm
NASA Astrophysics Data System (ADS)
Li, Jing; Liu, Zhao Hui; Zhou, Liang
2015-10-01
Images will be blurred by relative motion between the camera and the object of interest. In this paper, we analyzed the process of motion-blurred image, and demonstrated a restoration method based on Lucy-Richardson algorithm. The blur extent and angle can be estimated by Radon transform algorithm and auto-correlation function, respectively, and then the point spread function (PSF) of the motion-blurred image can be obtained. Thus with the help of the obtained PSF, the Lucy-Richardson restoration algorithm is used for experimental analysis on the motion-blurred images that have different blur extents, spatial resolutions and signal-to-noise ratios (SNR's). Further, its effectiveness is also evaluated by structural similarity (SSIM). Further studies show that, at first, for the image with a spatial frequency of 0.2 per pixel, the modulation transfer function (MTF) of the restored images can maintains above 0.7 when the blur extent is no bigger than 13 pixels. That means the method compensates low frequency information of the image, while attenuates high frequency information. At second, we fund that the method is more effective on condition that the product of the blur extent and spatial frequency is smaller than 3.75. Finally, the Lucy-Richardson algorithm is found insensitive to the Gaussian noise (of which the variance is not bigger than 0.1) by calculating the MTF of the restored image.
Crosslinking EEG time-frequency decomposition and fMRI in error monitoring.
Hoffmann, Sven; Labrenz, Franziska; Themann, Maria; Wascher, Edmund; Beste, Christian
2014-03-01
Recent studies implicate a common response monitoring system, being active during erroneous and correct responses. Converging evidence from time-frequency decompositions of the response-related ERP revealed that evoked theta activity at fronto-central electrode positions differentiates correct from erroneous responses in simple tasks, but also in more complex tasks. However, up to now it is unclear how different electrophysiological parameters of error processing, especially at the level of neural oscillations are related, or predictive for BOLD signal changes reflecting error processing at a functional-neuroanatomical level. The present study aims to provide crosslinks between time domain information, time-frequency information, MRI BOLD signal and behavioral parameters in a task examining error monitoring due to mistakes in a mental rotation task. The results show that BOLD signal changes reflecting error processing on a functional-neuroanatomical level are best predicted by evoked oscillations in the theta frequency band. Although the fMRI results in this study account for an involvement of the anterior cingulate cortex, middle frontal gyrus, and the Insula in error processing, the correlation of evoked oscillations and BOLD signal was restricted to a coupling of evoked theta and anterior cingulate cortex BOLD activity. The current results indicate that although there is a distributed functional-neuroanatomical network mediating error processing, only distinct parts of this network seem to modulate electrophysiological properties of error monitoring.
He, Xin; Hao, Man-Zhao; Wei, Ming; Xiao, Qin; Lan, Ning
2015-12-01
Involuntary central oscillations at single and double tremor frequencies drive the peripheral neuromechanical system of muscles and joints to cause tremor in Parkinson's disease (PD). The central signal of double tremor frequency was found to correlate more directly to individual muscle EMGs (Timmermann et al. 2003). This study is aimed at investigating what central components of oscillation contribute to inter-muscular synchronization in a group of upper extremity muscles during tremor in PD patients. 11 idiopathic, tremor dominant PD subjects participated in this study. Joint kinematics during tremor in the upper extremity was recorded along with EMGs of six upper arm muscles using a novel experimental apparatus. The apparatus provided support for the upper extremity on a horizontal surface with reduced friction, so that resting tremor in the arm can be recorded with a MotionMonitor II system. In each subject, the frequencies of rhythmic firings in upper arm muscles were determined using spectral analysis. Paired and pool-averaged coherence analyses of EMGs for the group of muscles were performed to correlate the level of inter-muscular synchronization to tremor amplitudes at shoulder and elbow. The phase shift between synchronized antagonistic muscle pairs was calculated to aid coherence analysis in the muscle pool. Recorded EMG revealed that rhythmic firings were present in most recorded muscles, which were either synchronized to form phase-locked bursting cycles at a subject specific frequency, or unsynchronized with a random phase distribution. Paired coherence showed a stronger synchronization among a subset of recorded arm muscles at tremor frequency than that at double tremor frequency. Furthermore, the number of synchronized muscles in the arm was positively correlated to tremor amplitudes at elbow and shoulder. Pool-averaged coherence at tremor frequency also showed a better correlation with the amplitude of resting tremor than that of double tremor frequency, indicating that the neuromechanical coupling in peripheral neuromuscular system was stronger at tremor frequency. Both paired and pool-averaged coherences are more consistent indexes to correlate to tremor intensity in a group of upper extremity muscles of PD patients. The central drive at tremor frequency contributes mainly to synchronize peripheral muscles in the modulation of tremor intensity.
NASA Astrophysics Data System (ADS)
Mizeva, Irina; Di Maria, Costanzo; Frick, Peter; Podtaev, Sergey; Allen, John
2015-03-01
Photoplethysmography (PPG) and laser Doppler flowmetry (LDF) are two recognized optical techniques that can track low-frequency perfusion changes in microcirculation. The aim of this study was to determine, in healthy subjects, the correlation between the techniques for specific low-frequency bands previously defined for microcirculation. Twelve healthy male subjects (age range 18 to 50 years) were studied, with PPG and LDF signals recorded for 20 min from their right and left index (PPG) and middle (LDF) fingers. Wavelet analysis comprised dividing the low-frequency integral wavelet spectrum (IWS) into five established physiological bands relating to cardiac, respiratory, myogenic, neurogenic, and endothelial activities. The correlation between PPG and LDF was quantified using wavelet correlation analysis and Spearman correlation analysis of the median IWS amplitude. The median wavelet correlation between signals (right-left side average) was 0.45 (cardiac), 0.49 (respiratory), 0.86 (myogenic), 0.91 (neurogenic), and 0.91 (endothelial). The correlation of IWS amplitude values (right-left side average) was statistically significant for the cardiac (ρ=0.64, p<0.05) and endothelial (ρ=0.62, p<0.05) bands. This pilot study has shown good correlation between PPG and LDF for specific physiological frequency bands. In particular, the results suggest that PPG has the potential to be a low-cost replacement for LDF for endothelial activity assessments.
Understanding volatility correlation behavior with a magnitude cross-correlation function
NASA Astrophysics Data System (ADS)
Jun, Woo Cheol; Oh, Gabjin; Kim, Seunghwan
2006-06-01
We propose an approach for analyzing the basic relation between correlation properties of the original signal and its magnitude fluctuations by decomposing the original signal into its positive and negative fluctuation components. We use this relation to understand the following phenomenon found in many naturally occurring time series: the magnitude of the signal exhibits long-range correlation, whereas the original signal is short-range correlated. The applications of our approach to heart rate variability signals and high-frequency foreign exchange rates reveal that the difference between the correlation properties of the original signal and its magnitude fluctuations is induced by the time organization structure of the correlation function between the magnitude fluctuations of positive and negative components. We show that this correlation function can be described well by a stretched-exponential function and is related to the nonlinearity and the multifractal structure of the signals.
Understanding volatility correlation behavior with a magnitude cross-correlation function.
Jun, Woo Cheol; Oh, Gabjin; Kim, Seunghwan
2006-06-01
We propose an approach for analyzing the basic relation between correlation properties of the original signal and its magnitude fluctuations by decomposing the original signal into its positive and negative fluctuation components. We use this relation to understand the following phenomenon found in many naturally occurring time series: the magnitude of the signal exhibits long-range correlation, whereas the original signal is short-range correlated. The applications of our approach to heart rate variability signals and high-frequency foreign exchange rates reveal that the difference between the correlation properties of the original signal and its magnitude fluctuations is induced by the time organization structure of the correlation function between the magnitude fluctuations of positive and negative components. We show that this correlation function can be described well by a stretched-exponential function and is related to the nonlinearity and the multifractal structure of the signals.
Hack, Jason B; Goldlust, Eric J; Gibbs, Frantz; Zink, Brian
2014-03-01
Emergency Departments (EDs) care for thousands of alcohol-intoxicated patients annually. No clinically relevant bedside measures currently exist to describe degree of impairment. To assess a group of bedside tests ("Hack's Impairment Index [HII] score") that applies a numerical value to the degree of alcohol-induced impairment in ED patients. A six-month retrospective review of HII score data was performed in a convenience sample of 293 intoxicated ED patients. Patients were scored 0-4 on five tasks, divided by the maximum score (20 if all tasks completed), every 2 hours; and classified by the number of visits: Low-frequency (1 visit); Medium-frequency (2 visits); High-frequency (≥3 visits). Correlations were assessed between HII score, healthcare provider judgment of intoxication, and measured alcohol levels. Study patients had 513 visits; 236 were low-frequency, 26 middle-frequency and 31 high-frequency. Clinical assessment and HII score were strongly correlated (Spearman's rho = 0.82, p < 0.001); clinical assessment and alcohol level less strongly so (rho = 0.49, p < 0.001). Among low-frequency patients, HII score and alcohol level were weakly correlated (r = 0.324, p < 0.001), with no such correlation among high-frequency visitors (r = -0.04, p = 0.89). The mean decline between serial HII scores was 0.126 (95% CI: 0.098-0.154). This pilot study shows the HII score can be performed at the bedside of alcohol-intoxicated patients. The HII declines in a reasonably predictable manner over time; and applies a quantitative, objective assessment of alcohol impairment.
NASA Astrophysics Data System (ADS)
James, S.; Screaton, E.; Russo, R. M.; Panning, M. P.; Bremner, P. M.; Stanciu, A. C.; Torpey, M. E.; Hongsresawat, S.; Farrell, M. E.
2014-12-01
Defining zones of high and low hydraulic conductivity within aquifers is vital to hydrogeologic research and groundwater management. Carbonate aquifers are particularly difficult to characterize due to dissolution and dolomitization. We investigated a new imaging technique for aquifer characterization that uses cross-correlation of ambient seismic noise to determine seismic velocity structure. Differences in densities between confining units and high permeability flow zones can produce distinct seismic velocities in the correlated signals. We deployed an array of 9 short period geophones from 11/2013 to 3/2014 in Indian Lake State Forest, Florida, to determine if the high frequency diffusive seismic wavefield can be used for imaging hydrostratigraphy. Here, a thin surficial layer of siliciclastic deposits overlie a ~ 0.6 km sequence of Cenozoic limestone and dolomite units that comprise the Floridan Aquifer System (FAS). A low permeability dolomite unit vertically divides the FAS throughout most of Florida. Deep boreholes surrounding the site constrain hydrostratigraphy, however the horizontal continuity of the middle dolomite unit as well as its effectiveness as a confining unit in the study area are not well known. The stations were spaced at distances ranging from 0.18 to 2.6 km, and yielded 72 cross-correlation Green's functions for Rayleigh wave propagation at frequencies between 0.2 and 40 Hz, with dominant peaks around 0.8 Hz, 3 Hz and 13 Hz. Local vehicle traffic did interfere to a degree with the correlation of the diffuse waves, but was minimized by using only nighttime data. At the lowest frequencies (greatest depths) investigated, velocities increase with depth; however, correlations become less coherent at higher frequencies, perhaps due to shallow complex scattering. Comparison of cross-correlations for all station pairs also indicates spatial variations in velocity. Thus, the method shows promise for characterization of the heterogeneity of the Floridan Aquifer System.
Autonomous Motivation and Fruit/Vegetable Intake in Parent–Adolescent Dyads
Dwyer, Laura A.; Bolger, Niall; Laurenceau, Jean-Philippe; Patrick, Heather; Oh, April Y.; Nebeling, Linda C.; Hennessy, Erin
2017-01-01
Introduction Autonomous motivation (motivation to engage in a behavior because of personal choice, interest, or value) is often associated with health behaviors. The present study contributes to research on motivation and eating behaviors by examining: (1) how autonomous motivation is correlated within parent–adolescent dyads; and (2) whether parent- and adolescent-reported autonomous motivation predicts the parent–adolescent correlation in fruit and vegetable (FV) intake frequency. Methods Data were drawn from the Family Life, Activity, Sun, Health, and Eating (FLASHE) Study, a cross-sectional U.S. survey of parent–adolescent dyads led by the National Cancer Institute and fielded between April and October 2014. In 2016, data were analyzed from dyads who had responses on a six-item self-report measure of daily frequency of FV consumption and a two-item self-report measure of autonomous motivation for consuming FVs. Results Parents' and adolescents' reports of autonomous motivation and FV intake frequency were positively correlated. Both parents' and adolescents' autonomous motivation predicted higher levels of their own FV intake frequency and that of their dyad partner (p-values ≤0.001). These effects of autonomous motivation explained 22.6% of the parent–adolescent correlation in FV intake frequency. Actor effects (one's motivation predicting their own FV intake frequency) were stronger than partner effects (one's motivation predicting their partner's FV intake frequency). Conclusions Parent–adolescent similarity in autonomous motivation for healthy eating may contribute to similarity in eating behaviors. Future research should further examine how individual-level health behavior correlates influence health behaviors within dyads. PMID:28526363
Autonomous Motivation and Fruit/Vegetable Intake in Parent-Adolescent Dyads.
Dwyer, Laura A; Bolger, Niall; Laurenceau, Jean-Philippe; Patrick, Heather; Oh, April Y; Nebeling, Linda C; Hennessy, Erin
2017-06-01
Autonomous motivation (motivation to engage in a behavior because of personal choice, interest, or value) is often associated with health behaviors. The present study contributes to research on motivation and eating behaviors by examining (1) how autonomous motivation is correlated within parent-adolescent dyads and (2) whether parent- and adolescent-reported autonomous motivation predicts the parent-adolescent correlation in fruit and vegetable (FV) intake frequency. Data were drawn from the Family Life, Activity, Sun, Health, and Eating (FLASHE) Study, a cross-sectional U.S. survey of parent-adolescent dyads led by the National Cancer Institute and fielded between April and October 2014. In 2016, data were analyzed from dyads who had responses on a six-item self-report measure of daily frequency of FV consumption and a two-item self-report measure of autonomous motivation for consuming FVs. Parents' and adolescents' reports of autonomous motivation and FV intake frequency were positively correlated. Both parents' and adolescents' autonomous motivation predicted higher levels of their own FV intake frequency and that of their dyad partner (p-values ≤0.001). These effects of autonomous motivation explained 22.6% of the parent-adolescent correlation in FV intake frequency. Actor effects (one's motivation predicting their own FV intake frequency) were stronger than partner effects (one's motivation predicting their partner's FV intake frequency). Parent-adolescent similarity in autonomous motivation for healthy eating may contribute to similarity in eating behaviors. Future research should further examine how individual-level health behavior correlates influence health behaviors within dyads. Published by Elsevier Inc.
An approximation function for frequency constrained structural optimization
NASA Technical Reports Server (NTRS)
Canfield, R. A.
1989-01-01
The purpose is to examine a function for approximating natural frequency constraints during structural optimization. The nonlinearity of frequencies has posed a barrier to constructing approximations for frequency constraints of high enough quality to facilitate efficient solutions. A new function to represent frequency constraints, called the Rayleigh Quotient Approximation (RQA), is presented. Its ability to represent the actual frequency constraint results in stable convergence with effectively no move limits. The objective of the optimization problem is to minimize structural weight subject to some minimum (or maximum) allowable frequency and perhaps subject to other constraints such as stress, displacement, and gage size, as well. A reason for constraining natural frequencies during design might be to avoid potential resonant frequencies due to machinery or actuators on the structure. Another reason might be to satisy requirements of an aircraft or spacecraft's control law. Whatever the structure supports may be sensitive to a frequency band that must be avoided. Any of these situations or others may require the designer to insure the satisfaction of frequency constraints. A further motivation for considering accurate approximations of natural frequencies is that they are fundamental to dynamic response constraints.
Neural Correlates of Vocal Production and Motor Control in Human Heschl's Gyrus
Oya, Hiroyuki; Nourski, Kirill V.; Kawasaki, Hiroto; Larson, Charles R.; Brugge, John F.; Howard, Matthew A.; Greenlee, Jeremy D.W.
2016-01-01
The present study investigated how pitch frequency, a perceptually relevant aspect of periodicity in natural human vocalizations, is encoded in Heschl's gyrus (HG), and how this information may be used to influence vocal pitch motor control. We recorded local field potentials from multicontact depth electrodes implanted in HG of 14 neurosurgical epilepsy patients as they vocalized vowel sounds and received brief (200 ms) pitch perturbations at 100 Cents in their auditory feedback. Event-related band power responses to vocalizations showed sustained frequency following responses that tracked voice fundamental frequency (F0) and were significantly enhanced in posteromedial HG during speaking compared with when subjects listened to the playback of their own voice. In addition to frequency following responses, a transient response component within the high gamma frequency band (75–150 Hz) was identified. When this response followed the onset of vocalization, the magnitude of the response was the same for the speaking and playback conditions. In contrast, when this response followed a pitch shift, its magnitude was significantly enhanced during speaking compared with playback. We also observed that, in anterolateral HG, the power of high gamma responses to pitch shifts correlated with the magnitude of compensatory vocal responses. These findings demonstrate a functional parcellation of HG with neural activity that encodes pitch in natural human voice, distinguishes between self-generated and passively heard vocalizations, detects discrepancies between the intended and heard vocalization, and contains information about the resulting behavioral vocal compensations in response to auditory feedback pitch perturbations. SIGNIFICANCE STATEMENT The present study is a significant contribution to our understanding of sensor-motor mechanisms of vocal production and motor control. The findings demonstrate distinct functional parcellation of core and noncore areas within human auditory cortex on Heschl's gyrus that process natural human vocalizations and pitch perturbations in the auditory feedback. In addition, our data provide evidence for distinct roles of high gamma neural oscillations and frequency following responses for processing periodicity in human vocalizations during vocal production and motor control. PMID:26888939
NASA Astrophysics Data System (ADS)
Zhang, P.; Yao, H.; Chen, L.; WANG, X.; Fang, L.
2017-12-01
The North China Craton (NCC), one of the oldest cratons in the world, has attracted wide attention in Earth Science for decades because of the unusual Mesozoic destruction of its cratonic lithosphere. Understanding the deep processes and mechanism of this craton destruction demands detailed knowledge about the deep structure of this region. In this study, we calculate P-wave receiver functions (RFs) with two-year teleseismic records from the North China Seismic Array ( 200 stations) deployed in the northeastern NCC. We observe both diffused and concentered PpPs signals from the Moho in RF waveforms, which indicates heterogeneous Moho sharpness variations in the study region. Synthetic Ps phases generated from broad positive velocity gradients at the depth of the Moho (referred as Pms) show a clear frequency dependence nature, which in turn is required to constrain the sharpness of the velocity gradient. Practically, characterizing such a frequency dependence feature in real data is challenging, because of low signal-to-noise ratio, contaminations by multiples generated from shallow structure, distorted signal stacking especially in double-peak Pms signals, etc. We attempt to address these issues by, firstly, utilizing a high-resolution Moho depth model of this region to predict theoretical delay times of Pms that facilitate more accurate Pms identifications. The Moho depth model is derived by wave-equation based poststack depth migration on both Ps phase and surface-reflected multiples in RFs in our previous study (Zhang et al., submitted to JGR). Second, we select data from a major back azimuth range of 100° - 220° that includes 70% teleseismic events due to the uneven data coverage and to avoid azimuthal influence as well. Finally, we apply an adaptive cross-correlation stacking of Pms signals in RFs for each station within different frequency bands. High-quality Pms signals at different frequencies will be selected after careful visual inspection and adaptive cross-correlation stacking. At last, we will model the stacked Pms signals within different frequency bands to obtain the final sharpness of crust-mantle boundary, which may shed new lights on understanding the mechanism of cratonic reactivation and destruction in the NCC.
Choong, Stella Sinn-Yee; Balan, Sumitha Nair; Chua, Leong-Siong
2012-01-01
This study investigated the preference and intake frequency of a list of 15 commonly available high sodium Malaysian foods/dishes, discretionary salt use, and their possible association with demographics, blood pressures and anthropometric measurements among 300 Malaysian university students (114 males, 186 females; 259 ethnic Chinese, 41 Indians; 220 lean, 80 overweight). French fries and instant soup noodle were found to be the most preferred and most frequently consumed salty food, respectively, while salted fish was least preferred and least frequently consumed. Males had a significantly higher intake frequency of at least 6 of the salty foods, but the preference of most salty foods was not significantly different between genders. Ethnic Chinese significantly preferred more and took more frequently traditional and conventional Malaysian foods like asam laksa (a Malaysian salty-sour-spicy noodle in fish stock), salted biscuits and salted vegetable, while Indians have more affinity and frequency towards eating salty Western foods. Body Mass Index was significantly negatively correlated with the intake frequency of canned/packet soup and salted fish while waist circumference was significantly positively correlated with the preference of instant noodle. Also, an increased preference of potato chips and intake frequency of salted biscuits seemed to lead to a decreased WHR. Other than these, all the other overweight/obesity indicators did not seem to fully correlate with the salty food preference and intake frequency. Nevertheless, the preference and intake frequency of asam laksa seemed to be significant negative predictors for blood pressures. Finally, increased preference and intake frequency of high sodium shrimp paste (belacan)-based foods like asam laksa and belacan fried rice seemed to discourage discretionary salt use. In conclusion, the preference and intake frequency of the high sodium belacan-based dish asam laksa seems to be a good predictor for ethnic difference, discretionary salt use and blood pressures. PMID:22808349
Choong, Stella Sinn-Yee; Balan, Sumitha Nair; Chua, Leong-Siong; Say, Yee-How
2012-06-01
This study investigated the preference and intake frequency of a list of 15 commonly available high sodium Malaysian foods/dishes, discretionary salt use, and their possible association with demographics, blood pressures and anthropometric measurements among 300 Malaysian university students (114 males, 186 females; 259 ethnic Chinese, 41 Indians; 220 lean, 80 overweight). French fries and instant soup noodle were found to be the most preferred and most frequently consumed salty food, respectively, while salted fish was least preferred and least frequently consumed. Males had a significantly higher intake frequency of at least 6 of the salty foods, but the preference of most salty foods was not significantly different between genders. Ethnic Chinese significantly preferred more and took more frequently traditional and conventional Malaysian foods like asam laksa (a Malaysian salty-sour-spicy noodle in fish stock), salted biscuits and salted vegetable, while Indians have more affinity and frequency towards eating salty Western foods. Body Mass Index was significantly negatively correlated with the intake frequency of canned/packet soup and salted fish while waist circumference was significantly positively correlated with the preference of instant noodle. Also, an increased preference of potato chips and intake frequency of salted biscuits seemed to lead to a decreased WHR. Other than these, all the other overweight/obesity indicators did not seem to fully correlate with the salty food preference and intake frequency. Nevertheless, the preference and intake frequency of asam laksa seemed to be significant negative predictors for blood pressures. Finally, increased preference and intake frequency of high sodium shrimp paste (belacan)-based foods like asam laksa and belacan fried rice seemed to discourage discretionary salt use. In conclusion, the preference and intake frequency of the high sodium belacan-based dish asam laksa seems to be a good predictor for ethnic difference, discretionary salt use and blood pressures.
Brain-wave Dynamics Related to Cognitive Tasks and Neurofeedback Information Flow
NASA Astrophysics Data System (ADS)
Pop-Jordanova, Nada; Pop-Jordanov, Jordan; Dimitrovski, Darko; Markovska, Natasa
2003-08-01
Synchronization of oscillating neuronal discharges has been recently correlated to the moment of perception and the ensuing motor response, with transition between these two cognitive acts "through cellular mechanisms that remain to be established"[1]. Last year, using genetic strategies, it was found that the switching off persistent electric activity in the brain blocks memory recall [2]. On the other hand, analyzing mental-neural information flow, the nobelist Eccles has formulated a fundamental hypotheses that mental events may change the probability of quantum vesicular emissions of transmitters analogously to probability functions of quantum mechanics [3]. Applying the advanced quantum modeling to molecular rotational states exposed to electric activity in brain cells, we found that the probability of transitions does not depend on the field amplitude, suggesting the electric field frequency as the possible information-bearing physical quantity [4]. In this paper, an attempt is made to inter-correlate the above results on frequency aspects of neural transitions induced by cognitive tasks. Furthermore, considering the consecutive steps of mental-neural information flow during the biofeedback training to normalize EEG frequencies, the rationales for neurofeedback efficiency have been deduced.
Preliminary Shear Velocity Tomography of Mt St Helens, Washington from iMUSH Array
NASA Astrophysics Data System (ADS)
Crosbie, K.; Abers, G. A.; Creager, K. C.; Moran, S. C.; Denlinger, R. P.; Ulberg, C. W.
2015-12-01
The imaging Magma Under Mount St Helens (iMUSH) experiment will illuminate the crust beneath Mt St Helens volcano. The ambient noise tomography (ANT) component of this experiment measures shear velocity structure, which is more sensitive than P velocity to the presence of melt and other pore fluids. Seventy passive-source broadband seismometers for iMUSH were deployed in the summer of 2014 in a dense array of 100 Km diameter with a 10 km station spacing. We cross correlated ambient noise in 120 s windows and summed the result over many months for pairs of stations. Then frequency-domain methods on these cross correlations are employed to measure the phase velocities (Ekström et al. Geophys Rev Lett, 2009). Unlike velocities attained by group velocity methods, velocities for path lengths as small as one wavelength can be measured, enabling analysis of higher frequency signals and increasing spatial resolution. The minimum station spacing from which signals can be recovered ranges from 12 km at 0.18 Hz, a frequency that dominantly samples the upper crust to 20 km, to 37 km at 0.04 Hz, a frequency sensitive to structure through the crust and uppermost mantle, with lower spacing at higher frequencies. These phase velocities are tomographically inverted to obtain shear velocity maps for each frequency, assuming ray theory. Initial shear velocity maps for frequencies between 0.04-0.18 Hz reveal low-velocity sediments in the Puget Lowland west of Mount St Helens at 0.16-0.18 Hz, and a low velocity zone near 0.10 Hz between Mt Rainier and Mt Adams, east of Mount St Helens. The latter may reflect large-scale crustal plumbing of the arc between volcanic centers. In subsequent analyses these ANT results will be jointly inverted with receiver functions in order to further resolve crustal and upper mantle structure.
Perception of force and stiffness in the presence of low-frequency haptic noise
Gurari, Netta; Okamura, Allison M.; Kuchenbecker, Katherine J.
2017-01-01
Objective This work lays the foundation for future research on quantitative modeling of human stiffness perception. Our goal was to develop a method by which a human’s ability to perceive suprathreshold haptic force stimuli and haptic stiffness stimuli can be affected by adding haptic noise. Methods Five human participants performed a same-different task with a one-degree-of-freedom force-feedback device. Participants used the right index finger to actively interact with variations of force (∼5 and ∼8 N) and stiffness (∼290 N/m) stimuli that included one of four scaled amounts of haptically rendered noise (None, Low, Medium, High). The haptic noise was zero-mean Gaussian white noise that was low-pass filtered with a 2 Hz cut-off frequency; the resulting low-frequency signal was added to the force rendered while the participant interacted with the force and stiffness stimuli. Results We found that the precision with which participants could identify the magnitude of both the force and stiffness stimuli was affected by the magnitude of the low-frequency haptically rendered noise added to the haptic stimulus, as well as the magnitude of the haptic stimulus itself. The Weber fraction strongly correlated with the standard deviation of the low-frequency haptic noise with a Pearson product-moment correlation coefficient of ρ > 0.83. The mean standard deviation of the low-frequency haptic noise in the haptic stimuli ranged from 0.184 N to 1.111 N across the four haptically rendered noise levels, and the corresponding mean Weber fractions spanned between 0.042 and 0.101. Conclusions The human ability to perceive both suprathreshold haptic force and stiffness stimuli degrades in the presence of added low-frequency haptic noise. Future work can use the reported methods to investigate how force perception and stiffness perception may relate, with possible applications in haptic watermarking and in the assessment of the functionality of peripheral pathways in individuals with haptic impairments. PMID:28575068
NASA Astrophysics Data System (ADS)
Gabel, Scott A.; Luck, Linda A.; Werbelow, Lawrence G.; London, Robert E.
1997-10-01
The13C multiplet structure ofD-[1-13C,1-2H]glucose complexed to theEscherichia coliperiplasmic glucose/galactose receptor has been studied as a function of temperature. Asymmetric multiplet patterns observed are shown to arise from dynamic frequency shifts. Multiplet asymmetry contributions resulting from shift anisotropy-dipolar cross correlations were found to be small, with optimal fits of the data corresponding to small, negative values of the correlation factor, χCD-CSA. Additional broadening at higher temperatures most probably results from ligand exchange between free and complexed states. Effects of internal motion are also considered theoretically, and indicate that the order parameter for the bound glucose is ≥0.9.
Lisman, John E; Jensen, Ole
2013-03-20
Theta and gamma frequency oscillations occur in the same brain regions and interact with each other, a process called cross-frequency coupling. Here, we review evidence for the following hypothesis: that the dual oscillations form a code for representing multiple items in an ordered way. This form of coding has been most clearly demonstrated in the hippocampus, where different spatial information is represented in different gamma subcycles of a theta cycle. Other experiments have tested the functional importance of oscillations and their coupling. These involve correlation of oscillatory properties with memory states, correlation with memory performance, and effects of disrupting oscillations on memory. Recent work suggests that this coding scheme coordinates communication between brain regions and is involved in sensory as well as memory processes. Copyright © 2013 Elsevier Inc. All rights reserved.
A study of the coherence length of ULF waves in the earth's foreshock
NASA Technical Reports Server (NTRS)
Le, G.; Russell, C. T.
1990-01-01
High-time-resolution magnetic-field data for different separations of ISEE 1 and 2 in the earth's ion foreshock region are examined to study the coherence length of upstream ULF waves. Examining the correlation coefficients of the low-frequency waves as a function of separation distance shows that the correlation coefficient depends mainly on the separation distance of ISEE 1 and 2 transverse to the solar-wind flow. It drops to about 0.5 when the transverse separation is about 1 earth radius, a distance much larger than the proton thermal gyroradius in the solar wind. Thus the coherence length of the low-frequency waves is about one earth radius, which is of the order of the wavelength, and is consistent with that estimated from the bandwidth of the waves.
Ross, Zev; Kheirbek, Iyad; Clougherty, Jane E; Ito, Kazuhiko; Matte, Thomas; Markowitz, Steven; Eisl, Holger
2011-11-01
Epidemiological studies have linked both noise and air pollution to common adverse health outcomes such as increased blood pressure and myocardial infarction. In urban settings, noise and air pollution share important sources, notably traffic, and several recent studies have shown spatial correlations between noise and air pollution. The temporal association between these exposures, however, has yet to be thoroughly investigated despite the importance of time series studies in air pollution epidemiology and the potential that correlations between these exposures could at least partly confound statistical associations identified in these studies. An aethelometer, for continuous elemental carbon measurement, was co-located with a continuous noise monitor near a major urban highway in New York City for six days in August 2009. Hourly elemental carbon measurements and hourly data on overall noise levels and low, medium and high frequency noise levels were collected. Hourly average concentrations of fine particles and nitrogen oxides, wind speed and direction and car, truck and bus traffic were obtained from nearby regulatory monitors. Overall temporal patterns, as well as day-night and weekday-weekend patterns, were characterized and compared for all variables. Noise levels were correlated with car, truck, and bus traffic and with air pollutants. We observed strong day-night and weekday-weekend variation in noise and air pollutants and correlations between pollutants varied by noise frequency. Medium and high frequency noise were generally more strongly correlated with traffic and traffic-related pollutants than low frequency noise and the correlation with medium and high frequency noise was generally stronger at night. Correlations with nighttime high frequency noise were particularly high for car traffic (Spearman rho=0.84), nitric oxide (0.73) and nitrogen dioxide (0.83). Wind speed and direction mediated relationships between pollutants and noise. Noise levels are temporally correlated with traffic and combustion pollutants and correlations are modified by the time of day, noise frequency and wind. Our results underscore the potential importance of assessing temporal variation in co-exposures to noise and air pollution in studies of the health effects of these urban pollutants. Copyright © 2011 Elsevier Inc. All rights reserved.
Kim, Yeon Jin; Reynaud, Alexandre; Hess, Robert F; Mullen, Kathy T
2017-07-01
The measurement of achromatic sensitivity has been an important tool for monitoring subtle changes in vision as the result of disease or response to therapy. In this study, we aimed to provide a normative data set for achromatic and chromatic contrast sensitivity functions within a common cone contrast space using an abbreviated measurement approach suitable for clinical practice. In addition, we aimed to provide comparisons of achromatic and chromatic binocular summation across spatial frequency. We estimated monocular cone contrast sensitivity functions (CCSFs) using a quick Contrast Sensitivity Function (qCSF) approach for achromatic as well as isoluminant, L/M cone opponent, and S cone opponent stimuli in a healthy population of 51 subjects. We determined the binocular CCSFs for achromatic and chromatic vision to evaluate the degree of binocular summation across spatial frequency for these three different mechanisms in a subset of 20 subjects. Each data set shows consistent contrast sensitivity across the population. They highlight the extremely high cone contrast sensitivity of L/M cone opponency compared with the S-cone and achromatic responses. We also find that the two chromatic sensitivities are correlated across the healthy population. In addition, binocular summation for all mechanisms depends strongly on stimulus spatial frequency. This study, using an approach well suited to the clinic, is the first to provide a comparative normative data set for the chromatic and achromatic contrast sensitivity functions, yielding quantitative comparisons of achromatic, L/M cone opponent, and S cone opponent chromatic sensitivities as a function of spatial frequency.
Magnetic field effects on charge structure factors of gapped graphene structure
NASA Astrophysics Data System (ADS)
Rezania, Hamed; Tawoose, Nasrin
2018-02-01
We present the behaviors of dynamical and static charge susceptibilities of undoped gapped graphene using the Green's function approach in the context of tight binding model Hamiltonian. Specially, the effects of magnetic field on the plasmon modes of gapped graphene structure are investigated via calculating correlation function of charge density operators. Our results show the increase of magnetic field leads to disappear high frequency plasmon mode for gapped case. We also show that low frequency plasmon mode has not affected by increase of magnetic field and chemical potential. Finally the temperature dependence of static charge structure factor of gapp graphene structure is studied. The effects of both magnetic field and gap parameter on the static structure factor are discusses in details.
Comparison of analysis and flight test data for a drone aircraft with active flutter suppression
NASA Technical Reports Server (NTRS)
Newsom, J. R.; Pototzky, A. S.
1981-01-01
A drone aircraft equipped with an active flutter suppression system is considered with emphasis on the comparison of modal dampings and frequencies as a function of Mach number. Results are presented for both symmetric and antisymmetric motion with flutter suppression off. Only symmetric results are given for flutter suppression on. Frequency response functions of the vehicle are presented from both flight test data and analysis. The analysis correlation is improved by using an empirical aerodynamic correction factor which is proportional to the ratio of experimental to analytical steady-state lift curve slope. The mathematical models are included and existing analytical techniques are described as well as an alternative analytical technique for obtaining closed-loop results.
Multiple-taper spectral analysis: A stand-alone C-subroutine
NASA Astrophysics Data System (ADS)
Lees, Jonathan M.; Park, Jeffrey
1995-03-01
A simple set of subroutines in ANSI-C are presented for multiple taper spectrum estimation. The multitaper approach provides an optimal spectrum estimate by minimizing spectral leakage while reducing the variance of the estimate by averaging orthogonal eigenspectrum estimates. The orthogonal tapers are Slepian nπ prolate functions used as tapers on the windowed time series. Because the taper functions are orthogonal, combining them to achieve an average spectrum does not introduce spurious correlations as standard smoothed single-taper estimates do. Furthermore, estimates of the degrees of freedom and F-test values at each frequency provide diagnostics for determining levels of confidence in narrow band (single frequency) periodicities. The program provided is portable and has been tested on both Unix and Macintosh systems.
Parametric Effects of Word Frequency in Memory for Mixed Frequency Lists
ERIC Educational Resources Information Center
Lohnas, Lynn J.; Kahana, Michael J.
2013-01-01
The "word frequency paradox" refers to the finding that low frequency words are better recognized than high frequency words yet high frequency words are better recalled than low frequency words. Rather than comparing separate groups of low and high frequency words, we sought to quantify the functional relation between word frequency and…
Huang, Lifang; Juan Dong, Hong; Wang, Xi; Wang, Yan; Xiao, Zheman
2017-12-01
The aim of this study was to evaluate the changes in the cognitive performance of migraine patients using a comprehensive series of cognitive/behavioral and electrophysiological tests. A randomized, cross-sectional, within subject approach was used to compare neuropsychological and electrophysiological evaluations from migrane-affected and healthy subjects. Thirty-four patients with migraine (6 males, 28 females, average 36 years old) were included. Migraineurs performed worse in the majority of the Montreal Cognitive Assessment (MoCA) (p = 0.007) compared to the healthy subjects, significantly in language (p = 0.005), memory (p = 0.006), executive functions (p = 0.042), calculation (p = 0.018) and orientation (p = 0.012). Migraineurs had a lower score on the memory trial of the Rey-Osterrieth complex figure test (ROCF) (p = 0.012). The P3 latency in Fz, Cz, Pz was prolonged in migraineurs compared with the normal control group (P < 0.001). In addition, we analyzed significant correlations between MoCA score and the duration of migraine. We also observed that a decrease in the MoCA-executive functions and calculation score and in the ROCF-recall score were both correlated to the frequency of migraine. Migraineurs were more anxious than healthy subjects (p = 0.001), which is independent of cognitive testing. Differences were unrelated to age, gender and literacy. Cognitive performance decreases during migraine, and cognitive dysfunction can be related to the duration and frequency of a migraine attack.
Identifying Wave-Particle Interactions in the Solar Wind using Statistical Correlations
NASA Astrophysics Data System (ADS)
Broiles, T. W.; Jian, L. K.; Gary, S. P.; Lepri, S. T.; Stevens, M. L.
2017-12-01
Heavy ions are a trace component of the solar wind, which can resonate with plasma waves, causing heating and acceleration relative to the bulk plasma. While wave-particle interactions are generally accepted as the cause of heavy ion heating and acceleration, observations to constrain the physics are lacking. In this work, we statistically link specific wave modes to heavy ion heating and acceleration. We have computed the Fast Fourier Transform (FFT) of transverse and compressional magnetic waves between 0 and 5.5 Hz using 9 days of ACE and Wind Magnetometer data. The FFTs are averaged over plasma measurement cycles to compute statistical correlations between magnetic wave power at each discrete frequency, and ion kinetic properties measured by ACE/SWICS and Wind/SWE. The results show that lower frequency transverse oscillations (< 0.2 Hz) and higher frequency compressional oscillations (> 0.4 Hz) are positively correlated with enhancements in the heavy ion thermal and drift speeds. Moreover, the correlation results for the He2+ and O6+ were similar on most days. The correlations were often weak, but most days had some frequencies that correlated with statistical significance. This work suggests that the solar wind heavy ions are possibly being heated and accelerated by both transverse and compressional waves at different frequencies.
Swept-sine noise-induced damage as a hearing loss model for preclinical assays
Sanz, Lorena; Murillo-Cuesta, Silvia; Cobo, Pedro; Cediel-Algovia, Rafael; Contreras, Julio; Rivera, Teresa; Varela-Nieto, Isabel; Avendaño, Carlos
2015-01-01
Mouse models are key tools for studying cochlear alterations in noise-induced hearing loss (NIHL) and for evaluating new therapies. Stimuli used to induce deafness in mice are usually white and octave band noises that include very low frequencies, considering the large mouse auditory range. We designed different sound stimuli, enriched in frequencies up to 20 kHz (“violet” noises) to examine their impact on hearing thresholds and cochlear cytoarchitecture after short exposure. In addition, we developed a cytocochleogram to quantitatively assess the ensuing structural degeneration and its functional correlation. Finally, we used this mouse model and cochleogram procedure to evaluate the potential therapeutic effect of transforming growth factor β1 (TGF-β1) inhibitors P17 and P144 on NIHL. CBA mice were exposed to violet swept-sine noise (VS) with different frequency ranges (2–20 or 9–13 kHz) and levels (105 or 120 dB SPL) for 30 min. Mice were evaluated by auditory brainstem response (ABR) and otoacoustic emission tests prior to and 2, 14 and 28 days after noise exposure. Cochlear pathology was assessed with gross histology; hair cell number was estimated by a stereological counting method. Our results indicate that functional and morphological changes induced by VS depend on the sound level and frequency composition. Partial hearing recovery followed the exposure to 105 dB SPL, whereas permanent cochlear damage resulted from the exposure to 120 dB SPL. Exposure to 9–13 kHz noise caused an auditory threshold shift (TS) in those frequencies that correlated with hair cell loss in the corresponding areas of the cochlea that were spotted on the cytocochleogram. In summary, we present mouse models of NIHL, which depending on the sound properties of the noise, cause different degrees of cochlear damage, and could therefore be used to study molecules which are potential players in hearing loss protection and repair. PMID:25762930
How wind turbines affect the performance of seismic monitoring stations and networks
NASA Astrophysics Data System (ADS)
Neuffer, Tobias; Kremers, Simon
2017-12-01
In recent years, several minor seismic events were observed in the apparently aseismic region of the natural gas fields in Northern Germany. A seismic network was installed in the region consisting of borehole stations with sensor depths up to 200 m and surface stations to monitor induced seismicity. After installation of the network in 2012, an increasing number of wind turbines was established in proximity (<5 km) to several stations, thereby influencing the local noise conditions. This study demonstrates the impact of wind turbines on seismic noise level in a frequency range of 1-10 Hz at the monitoring sites with correlation to wind speed, based on the calculation of power spectral density functions and I95 values of waveforms over a time period of 4 yr. It could be shown that higher wind speeds increase the power spectral density amplitudes at distinct frequencies in the considered frequency band, depending on height as well as number and type of influencing wind turbines. The azimuthal direction of incoming Rayleigh waves at a surface station was determined to identify the noise sources. The analysis of the perturbed wave field showed that Rayleigh waves with backazimuths pointing to wind turbines in operation are dominating the wave field in a frequency band of 3-4 Hz. Additional peaks in a frequency range of 1-4 Hz could be attributed to turbine tower eigenfrequencies of various turbine manufactures with the hub height as defining parameter. Moreover, the influence of varying noise levels at a station on the ability to automatically detect seismic events was investigated. The increased noise level in correlation to higher wind speeds at the monitoring sites deteriorates the station's recording quality inhibiting the automatic detection of small seismic events. As a result, functionality and task fulfilment of the seismic monitoring network is more and more limited by the increasing number of nearby wind turbines.
Kinetic and temporospatial gait parameters in a heterogeneous group of dogs.
Kano, Washington T; Rahal, Sheila C; Agostinho, Felipe S; Mesquita, Luciane R; Santos, Rogerio R; Monteiro, Frederico O B; Castilho, Maira S; Melchert, Alessandra
2016-01-04
A prime concern of the gait analysis in a heterogeneous group of dogs is the potential influence of factors such as individual body size, body mass, type of gait, and velocity. Thus, this study aimed to evaluate in a heterogeneous group of dogs a possible correlation of the stride frequency with kinetic and temporospatial variables, as well as the percentage of body weight distribution (%BWD), and compare symmetry index (SI) between trotting and walking dogs. Twenty-nine clinically healthy dogs moving in a controlled velocity were used. The dogs were organized into two groups based on duty factor. Group 1 comprised 15 walking dogs, aged from 9 months to 8 years and weighing about 22.3 kg. Group 2 had 14 trotting dogs, aged from 1 to 6 years and weighing about 6.5 kg. The kinetic data and temporospatial parameters were obtained using a pressure-sensing walkway. The velocity was 0.9-1.1 m/s. The peak vertical force (PVF), vertical impulse (VI), gait cycle time, stance time, swing time, stride length, and percentages of body weight distribution among the four limbs were determined. For each variable, the SIs were calculated. Pearson's coefficient was used to evaluate correlation between stride frequency and other variables, initially in each group and after including all animals. Except for the %BWD (approximately 60% for the forelimbs and 40% for the hind limbs), all other parameters differed between groups. Considering each Group individually a strong correlation was observed for most of the temporospatial parameters, but no significant correlation occurred between stride frequency and PVF, and stride frequency and %BWD. However, including all dogs a strong correlation was observed in all temporospatial parameters, and moderate correlation between stride frequency and VI, and weak correlation between stride frequency and PVF. There was no correlation between stride frequency and %BWD. Groups 1 and 2 did not differ statistically in SIs. In a heterogeneous group of dogs conducted at a controlled velocity, the %BWD and most of SIs presented low variability. However, %BWD seems to be the most accurate, since factors such as the magnitude of the variables may influence the SIs inducing wrong interpretation. Based on results obtained from correlations, the standardization of stride frequency could be an alternative to minimize the variability of temporospatial parameters.
NASA Astrophysics Data System (ADS)
Trollinger, Valerie L.
This study investigated the relationship between acoustical measurement of singing accuracy in relationship to speech fundamental frequency, speech fundamental frequency range, age and gender in preschool-aged children. Seventy subjects from Southeastern Pennsylvania; the San Francisco Bay Area, California; and Terre Haute, Indiana, participated in the study. Speech frequency was measured by having the subjects participate in spontaneous and guided speech activities with the researcher, with 18 diverse samples extracted from each subject's recording for acoustical analysis for fundamental frequency in Hz with the CSpeech computer program. The fundamental frequencies were averaged together to derive a mean speech frequency score for each subject. Speech range was calculated by subtracting the lowest fundamental frequency produced from the highest fundamental frequency produced, resulting in a speech range measured in increments of Hz. Singing accuracy was measured by having the subjects each echo-sing six randomized patterns using the pitches Middle C, D, E, F♯, G and A (440), using the solfege syllables of Do and Re, which were recorded by a 5-year-old female model. For each subject, 18 samples of singing were recorded. All samples were analyzed by the CSpeech for fundamental frequency. For each subject, deviation scores in Hz were derived by calculating the difference between what the model sang in Hz and what the subject sang in response in Hz. Individual scores for each child consisted of an overall mean total deviation frequency, mean frequency deviations for each pattern, and mean frequency deviation for each pitch. Pearson correlations, MANOVA and ANOVA analyses, Multiple Regressions and Discriminant Analysis revealed the following findings: (1) moderate but significant (p < .001) relationships emerged between mean speech frequency and the ability to sing the pitches E, F♯, G and A in the study; (2) mean speech frequency also emerged as the strongest predictor of subjects' ability to sing the notes E and F♯; (3) mean speech frequency correlated moderately and significantly (p < .001) with sharpness and flatness of singing response accuracy in Hz; (4) speech range was the strongest predictor of singing accuracy for the pitches G and A in the study (p < .001); (5) gender emerged as a significant, but not the strongest, predictor for ability to sing the pitches in the study above C and D; (6) gender did not correlate with mean speech frequency and speech range; (7) age in months emerged as a low but significant predictor of ability to sing the lower notes (C and D) in the study; (8) age correlated significantly but negatively low (r = -.23, p < .05, two-tailed) with mean speech frequency; and (9) age did not emerge as a significant predictor of overall singing accuracy. Ancillary findings indicated that there were significant differences in singing accuracy based on geographic location by gender, and that siblings and fraternal twins in the study generally performed similarly. In addition, reliability for using the CSpeech for acoustical analysis revealed test/retest correlations of .99, with one exception at .94. Based on these results, suggestions were made concerning future research concerned with studying the use of voice in speech and how it may affect singing development, overall use in singing, and pitch-matching accuracy.
Ohto, Tatsuhiko; Usui, Kota; Hasegawa, Taisuke; Bonn, Mischa; Nagata, Yuki
2015-09-28
Interfacial water structures have been studied intensively by probing the O-H stretch mode of water molecules using sum-frequency generation (SFG) spectroscopy. This surface-specific technique is finding increasingly widespread use, and accordingly, computational approaches to calculate SFG spectra using molecular dynamics (MD) trajectories of interfacial water molecules have been developed and employed to correlate specific spectral signatures with distinct interfacial water structures. Such simulations typically require relatively long (several nanoseconds) MD trajectories to allow reliable calculation of the SFG response functions through the dipole moment-polarizability time correlation function. These long trajectories limit the use of computationally expensive MD techniques such as ab initio MD and centroid MD simulations. Here, we present an efficient algorithm determining the SFG response from the surface-specific velocity-velocity correlation function (ssVVCF). This ssVVCF formalism allows us to calculate SFG spectra using a MD trajectory of only ∼100 ps, resulting in the substantial reduction of the computational costs, by almost an order of magnitude. We demonstrate that the O-H stretch SFG spectra at the water-air interface calculated by using the ssVVCF formalism well reproduce those calculated by using the dipole moment-polarizability time correlation function. Furthermore, we applied this ssVVCF technique for computing the SFG spectra from the ab initio MD trajectories with various density functionals. We report that the SFG responses computed from both ab initio MD simulations and MD simulations with an ab initio based force field model do not show a positive feature in its imaginary component at 3100 cm(-1).
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
Frequency-dependent correlations, such as the spectral function and the dynamical structure factor, help illustrate condensed matter experiments. Within the density matrix renormalization group (DMRG) framework, an accurate method for calculating spectral functions directly in frequency is the correction-vector method. The correction vector can be computed by solving a linear equation or by minimizing a functional. Our paper proposes an alternative to calculate the correction vector: to use the Krylov-space approach. This paper also studies the accuracy and performance of the Krylov-space approach, when applied to the Heisenberg, the t-J, and the Hubbard models. The cases we studied indicate that themore » Krylov-space approach can be more accurate and efficient than the conjugate gradient, and that the error of the former integrates best when a Krylov-space decomposition is also used for ground state DMRG.« less
None, None
2016-11-21
Frequency-dependent correlations, such as the spectral function and the dynamical structure factor, help illustrate condensed matter experiments. Within the density matrix renormalization group (DMRG) framework, an accurate method for calculating spectral functions directly in frequency is the correction-vector method. The correction vector can be computed by solving a linear equation or by minimizing a functional. Our paper proposes an alternative to calculate the correction vector: to use the Krylov-space approach. This paper also studies the accuracy and performance of the Krylov-space approach, when applied to the Heisenberg, the t-J, and the Hubbard models. The cases we studied indicate that themore » Krylov-space approach can be more accurate and efficient than the conjugate gradient, and that the error of the former integrates best when a Krylov-space decomposition is also used for ground state DMRG.« less
Parot, S; Miara, B; Milic-Emili, J; Gautier, H
1982-11-01
The results of lung function tests (total and functional residual capacities, residual volume/total lung capacity ratio, forced expiratory volume in one second) breathing patterns and arterial PO2 and PCO2 were studied in 651 ambulatory male patients with chronic obstructive pulmonary disease, functionally and clinically stable. Function tests were only loosely correlated with gas tensions: abnormalities in mechanics and in gas exchange are not necessarily related. In patients matched for the degree of obstruction, the breathing pattern depended upon both PaO2 and PaCO2. Isolated hypoxemia was accompanied by increased respiratory frequency without any variation in tidal volume: this suggests that the chemoreceptive systems still responded to changes in PaO2. Isolated hypercapnia was accompanied by a decrease in tidal volume and an increase in respiratory frequency. Consequently, the dead space/tidal volume ratio increased, leading to a drop in alveolar ventilation and to CO2 retention.
NASA Astrophysics Data System (ADS)
Yamaguchi, Tsuyoshi
2017-03-01
The frequency-dependent shear viscosity of high alcohols and linear alkanes, including 1-butanol, 1-octanol, 1-dodecanol, n-hexane, n-decane, and n-tetradecane, was calculated using molecular dynamics simulation. The relaxation of all the liquids was bimodal. The correlation functions of the collective orientation were also evaluated. The analysis of these functions showed that the slower relaxation mode of alkanes is assigned to the translation-orientation coupling, while that of high alcohols is not. The X-ray structure factors of all the alcohols showed prepeaks, as have been reported in the literature, and the intermediate scattering functions were calculated at the prepeak. Comparing the intermediate scattering function with the frequency-dependent shear viscosity based on the mode-coupling theory, it was demonstrated that the slower viscoelastic relaxation of the alcohols is assigned to the relaxation of the heterogeneous structure described by the prepeak.
Cho, Mi Sook; Kim, Miseon; Cho, Wookyoun
2014-08-01
A higher frequency of family meals is associated with good dietary habits in young people. This study focused on the relationships of family meal frequency with food neophobia and personality traits in adolescents. For this purpose, we administered a survey to 495 middle school students in Seoul metropolitan city, after which the data were analyzed using the SPSS (18.0) program. Pearson correlation was used to determine the relationships among dietary habits, personality traits, and food neophobia according to frequency of family meals. Dietary habits, personality traits, and food neophobia all showed significant differences according to the frequency of family meals. Further, eating regular family meals was associated with good dietary habits (P < 0.001) and was linked with improved extraversion, agreeableness, conscientiousness, emotional stability, and openness/intellect (P < 0.001). On the other hand, it showed a negative relationship with food neophobia (P < 0.001). The relationship between dietary habits and food neophobia showed a negative correlation (P < 0.01). The relationship between dietary habits and personality traits showed a positive correlation (P < 0.01). Lastly, the relationship between personality traits and food neophobia showed a negative correlation (P < 0.01). Based on the results of the study, the frequency of family meals affects dietary habits, personality traits, and food neophobia in adolescents.
NASA Astrophysics Data System (ADS)
Prawoko, S. S.; Nelwan, L. C.; Odang, R. W.; Kusdhany, L. S.
2017-08-01
The histomorphometric test is the gold standard for dental implant stability quantification; however, it is invasive, and therefore, it is inapplicable to clinical patients. Consequently, accurate and objective alternative methods are required. Resonance frequency analysis (RFA) and digital radiographic analysis are noninvasive methods with excellent objectivity and reproducibility. To analyze the correlation between the radiographic analysis of alveolar bone density around a dental implant and the resonance frequency of the dental implant. Digital radiographic images for 35 samples were obtained, and the resonance frequency of the dental implant was acquired using Osstell ISQ immediately after dental implant placement and on third-month follow-up. The alveolar bone density around the dental implant was subsequently analyzed using SIDEXIS-XG software. No significant correlation was reported between the alveolar bone density around the dental implant and the resonance frequency of the dental implant (r = -0.102 at baseline, r = 0.146 at follow-up, p > 0.05). However, the alveolar bone density and resonance frequency showed a significant difference throughout the healing period (p = 0.005 and p = 0.000, respectively). Conclusion: Digital dental radiographs and Osstell ISQ showed excellent objectivity and reproducibility in quantifying dental implant stability. Nonetheless, no significant correlation was observed between the results obtained using these two methods.
Neural pulse frequency modulation of an exponentially correlated Gaussian process
NASA Technical Reports Server (NTRS)
Hutchinson, C. E.; Chon, Y.-T.
1976-01-01
The effect of NPFM (Neural Pulse Frequency Modulation) on a stationary Gaussian input, namely an exponentially correlated Gaussian input, is investigated with special emphasis on the determination of the average number of pulses in unit time, known also as the average frequency of pulse occurrence. For some classes of stationary input processes where the formulation of the appropriate multidimensional Markov diffusion model of the input-plus-NPFM system is possible, the average impulse frequency may be obtained by a generalization of the approach adopted. The results are approximate and numerical, but are in close agreement with Monte Carlo computer simulation results.
Energy Spectra and High Frequency Oscillations in 4U 0614+091
NASA Technical Reports Server (NTRS)
Ford, E. C.; Kaaret, P.; Chen, K.; Tavani, M.; Barret, D.; Bloser, P.; Grindlay, J.; Harmon, B. A.; Paciesas, W. S.; Zhang, S. N.
1997-01-01
We investigate the behavior of the high frequency quasi-periodic oscillations (QPOs) in 4U 0614+091, combining timing and spectral analysis of RXTE (Rossi X-ray Timing Explorer) observations. The energy spectrum of the source can be described by a power law plus a blackbody component. The blackbody has a variable temperature (kT approximately 0.8 to 1.4 keV) and accounts for 10 to 25% of the total energy flux. The power law flux and photon index also vary (F approximately 0.8 to 1.6 x 10(exp -9) erg/sq cm.s and alpha approximately 2.0 to 2.8 respectively). We find a robust correlation of the frequency of the higher frequency QPO with the flux of the blackbody. The source follows the same relation even in observations separated by several months. The QPO frequency does not have a similarly unique correlation with the total flux or the flux of the power law component. The RMS amplitudes of the higher frequency QPO rise with energy but are consistent with a constant for the lower frequency QPO. These results may be interpreted in terms of a beat frequency model for the production of the high frequency QPOs.
Bernstein, Leslie R; Trahiotis, Constantine
2014-02-01
Sensitivity to ongoing interaural temporal disparities (ITDs) was measured using bandpass-filtered pulse trains centered at 4600, 6500, or 9200 Hz. Save for minor differences in the exact center frequencies, those target stimuli were those employed by Majdak and Laback [J. Acoust. Soc. Am. 125, 3903-3913 (2009)]. At each center frequency, threshold ITD was measured for pulse repetition rates ranging from 64 to 609 Hz. The results and quantitative predictions by a cross-correlation-based model indicated that (1) at most pulse repetition rates, threshold ITD increased with center frequency, (2) the cutoff frequency of the putative envelope low-pass filter that determines sensitivity to ITD at high envelope rates appears to be inversely related to center frequency, and (3) both outcomes were accounted for by assuming that, independent of the center frequency, the listeners' decision variable was a constant criterion change in interaural correlation of the stimuli as processed internally. The finding of an inverse relation between center frequency and the envelope rate limitation, while consistent with much prior literature, runs counter to the conclusion reached by Majdak and Laback.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minati, Ludovico, E-mail: lminati@ieee.org, E-mail: ludovico.minati@unitn.it, E-mail: lminati@istituto-besta.it; Center for Mind/Brain Sciences, University of Trento, Trento; Chiesa, Pietro
In this paper, the topographical relationship between functional connectivity (intended as inter-regional synchronization), spectral and non-linear dynamical properties across cortical areas of the healthy human brain is considered. Based upon functional MRI acquisitions of spontaneous activity during wakeful idleness, node degree maps are determined by thresholding the temporal correlation coefficient among all voxel pairs. In addition, for individual voxel time-series, the relative amplitude of low-frequency fluctuations and the correlation dimension (D{sub 2}), determined with respect to Fourier amplitude and value distribution matched surrogate data, are measured. Across cortical areas, high node degree is associated with a shift towards lower frequencymore » activity and, compared to surrogate data, clearer saturation to a lower correlation dimension, suggesting presence of non-linear structure. An attempt to recapitulate this relationship in a network of single-transistor oscillators is made, based on a diffusive ring (n = 90) with added long-distance links defining four extended hub regions. Similarly to the brain data, it is found that oscillators in the hub regions generate signals with larger low-frequency cycle amplitude fluctuations and clearer saturation to a lower correlation dimension compared to surrogates. The effect emerges more markedly close to criticality. The homology observed between the two systems despite profound differences in scale, coupling mechanism and dynamics appears noteworthy. These experimental results motivate further investigation into the heterogeneity of cortical non-linear dynamics in relation to connectivity and underline the ability for small networks of single-transistor oscillators to recreate collective phenomena arising in much more complex biological systems, potentially representing a future platform for modelling disease-related changes.« less
Xu, Zhouwei; Alruwaili, Ashwag Rafea S; Henderson, Robert David; McCombe, Pamela Ann
2017-05-15
To screen for cognitive and behavioural impairment in people with amyotrophic lateral sclerosis (ALS) and controls with neuromuscular disease and to correlate these with clinical features. 108 people with ALS and 60 controls with other neuromuscular diseases were recruited and assessed with the Addenbrooke's cognitive examination-III (ACE-III), the frontal assessment battery (FAB), and the executive function component of the Edinburgh cognitive and behavioural ALS screen (ECAS). The Amyotrophic lateral sclerosis-Frontotemporal dementia questionnaire (ALS-FTD-Q) and the Motor Neuron Disease Behavioural instrument (MiND-B) were administered to the caregivers of people with ALS. The prevalence of abnormalities was determined and correlated with clinical features and survival. In 37 people with ALS, serial studies were performed. The frequencies of cognitive impairment based on the ACE-III and FAB were 30.0% and 14.0%, in ALS and 11.7% and 3.3% in controls, respectively. Age and years of education influence the results of the ACE-III and ECAS executive function. In ALS, the frequencies of behavioural impairment based on ALS-FTD-Q and MiND-B were 32.1% and 39.4%, respectively. There is significant correlation of ALS-FTD-Q and MiND-B with the ALSFRS-R score. ALS participants with cognitive impairment measured with ACE-III had significantly shorter survival time than those without. ALS participants with behavioural impairment measured with ALS-FTD-Q had worse prognosis than those without. No significant difference was found between the first two serial cognitive tests based on ACE-III and FAB by using generalized estimating equation. There is a greater frequency of cognitive impairment in people with ALS than in patients with other neuromuscular diseases. The cognitive and behavioural tests are potential biomarkers of the prognosis of ALS. The results of cognitive tests are stable over 6months and possibly longer. Copyright © 2017 Elsevier B.V. All rights reserved.
Vibrational dephasing and frequency shifts of hydrogen-bonded pyridine-water complexes
NASA Astrophysics Data System (ADS)
Kalampounias, A. G.; Tsilomelekis, G.; Boghosian, S.
2015-01-01
In this paper we present the picosecond vibrational dynamics and Raman shifts of hydrogen-bonded pyridine-water complexes present in aqueous solutions in a wide concentration range from dense to extreme dilute solutions. We studied the vibrational dephasing and vibrational frequency modulation by calculating time correlation functions of vibrational relaxation by fits in the frequency domain. The concentration induced variations in bandwidths, band frequencies and characteristic dephasing times have been estimated and interpreted as effects due to solute-solvent interactions. The time-correlation functions of vibrational dephasing were obtained for the ring breathing mode of both "free" and hydrogen-bonded pyridine molecules and it was found that sufficiently deviate from the Kubo model. There is a general agreement in the whole concentration range with the modeling proposed by the Rothschild approach, which applies to complex liquids. The results have shown that the reorientation of pyridine aqueous solutions is very slow and hence in both scattering geometries only vibrational dephasing is probed. It is proposed that the spectral changes depend on the perturbations induced by the dynamics of the water molecules in the first hydration cell and water in bulk, while at extreme dilution conditions, the number of bulk water molecules increases and the interchange between molecules belonging to the first hydration cell may not be the predominant modulation mechanism. The evolution of several parameters, such as the characteristic times, the percentage of Gaussian character in the peak shape and the a parameter are indicative of drastic variations at extreme dilution revealing changes in the vibrational relaxation of the pyridine complexes in the aqueous environment. The higher dilution is correlated to diffusion of water molecules into the reference pyridine system in agreement with the jump diffusion model, while at extreme dilutions, almost all pyridine molecules are elaborated in hydrogen bonding. The results are discussed in the framework of the current phenomenological status of the field.
Removing the Impact of Correlated PSF Uncertainties in Weak Lensing
NASA Astrophysics Data System (ADS)
Lu, Tianhuan; Zhang, Jun; Dong, Fuyu; Li, Yingke; Liu, Dezi; Fu, Liping; Li, Guoliang; Fan, Zuhui
2018-05-01
Accurate reconstruction of the spatial distributions of the point-spread function (PSF) is crucial for high precision cosmic shear measurements. Nevertheless, current methods are not good at recovering the PSF fluctuations of high spatial frequencies. In general, the residual PSF fluctuations are spatially correlated, and therefore can significantly contaminate the correlation functions of the weak lensing signals. We propose a method to correct for this contamination statistically, without any assumptions on the PSF and galaxy morphologies or their spatial distribution. We demonstrate our idea with the data from the W2 field of CFHTLenS.
Frequency discriminator/phase detector
NASA Technical Reports Server (NTRS)
Crow, R. B.
1974-01-01
Circuit provides dual function of frequency discriminator/phase detector which reduces frequency acquisition time without adding to circuit complexity. Both frequency discriminators, in evaluated frequency discriminator/phase detector circuits, are effective two decades above and below center frequency.
FREQUENCY DEPENDENCE OF POLARIZATION OF ZEBRA PATTERN IN TYPE-IV SOLAR RADIO BURSTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaneda, Kazutaka; Misawa, H.; Tsuchiya, F.
2015-08-01
We investigated the polarization characteristics of a zebra pattern (ZP) in a type-IV solar radio burst observed with AMATERAS on 2011 June 21 for the purpose of evaluating the generation processes of ZPs. Analyzing highly resolved spectral and polarization data revealed the frequency dependence of the degree of circular polarization and the delay between two polarized components for the first time. The degree of circular polarization was 50%–70% right-handed and it varied little as a function of frequency. Cross-correlation analysis determined that the left-handed circularly polarized component was delayed by 50–70 ms relative to the right-handed component over the entiremore » frequency range of the ZP and this delay increased with the frequency. We examined the obtained polarization characteristics by using pre-existing ZP models and concluded that the ZP was generated by the double-plasma-resonance process. Our results suggest that the ZP emission was originally generated in a completely polarized state in the O-mode and was partly converted into the X-mode near the source. Subsequently, the difference between the group velocities of the O-mode and X-mode caused the temporal delay.« less
Jacobs, Julia; Banks, Sarah; Zelmann, Rina; Zijlmans, Maeike; Jones-Gotman, Marilyn; Gotman, Jean
2016-09-01
High-frequency oscillations (HFOs, 80-500Hz) are newly-described EEG markers of epileptogenicity. The proportion of physiological and pathological HFOs is unclear, as frequency analysis is insufficient for separating the two types of events. For instance, ripples (80-250Hz) also occur physiologically during memory consolidation processes in medial temporal lobe structures. We investigated the correlation between HFO rates and memory performance. Patients investigated with bilateral medial temporal electrodes and an intellectual capacity allowing for memory testing were included. High-frequency oscillations were visually marked, and rates of HFOs were calculated for each channel during slow-wave sleep. Patients underwent three verbal and three nonverbal memory tests. They were grouped into severe impairment, some impairment, mostly intact, or intact for verbal and nonverbal memory. We calculated a Pearson correlation between HFO rates in the hippocampi and the memory category and compared HFO rates in each hippocampus with the corresponding (verbal - left, nonverbal - right) memory result using Wilcoxon rank-sum test. Twenty patients were included; ten had bilateral, five had unilateral, and five had no memory impairment. Unilateral memory impairment was verbal in one patient and nonverbal in four. There was no correlation between HFO rates and memory performance in seizure onset areas. There was, however, a significant negative correlation between the overall memory performance and ripple rates (r=-0.50, p=0.03) outside the seizure onset zone. Our results suggest that the majority of spontaneous hippocampal ripples, as defined in the present study, may reflect pathological activity, taking into account the association with memory impairment. The absence of negative correlation between memory performance and HFO rates in seizure onset areas could be explained by HFO rates in the SOZ being generally so high that differences between areas with remaining and impaired memory function cannot be seen. Copyright © 2016 Elsevier Inc. All rights reserved.
The neural correlates of dreaming
Siclari, F.; Baird, B.; Perogamvros, L.; Bernardi, G.; LaRocque, J. J.; Riedner, B.; Boly, M.; Postle, B. R.; Tononi, G.
2017-01-01
Consciousness never fades during wake. However, if awakened from sleep, sometimes we report dreams and sometimes no experiences. Traditionally, dreaming has been identified with REM sleep, characterized by a wake-like, globally ‘activated’, high-frequency EEG. However, dreaming also occurs in NREM sleep, characterized by prominent low-frequency activity. This challenges our understanding of the neural correlates of conscious experiences in sleep. Using high-density EEG, we contrasted the presence and absence of dreaming within NREM and REM sleep. In both NREM and REM sleep, reports of dream experience were associated with a local decrease in low-frequency activity in posterior cortical regions. High-frequency activity within these regions correlated with specific dream contents. Monitoring this posterior ‘hot zone’ predicted whether an individual reported dreaming or the absence of experiences during NREM sleep in real time, suggesting that it may constitute a core correlate of conscious experiences in sleep. PMID:28394322
The neural correlates of dreaming.
Siclari, Francesca; Baird, Benjamin; Perogamvros, Lampros; Bernardi, Giulio; LaRocque, Joshua J; Riedner, Brady; Boly, Melanie; Postle, Bradley R; Tononi, Giulio
2017-06-01
Consciousness never fades during waking. However, when awakened from sleep, we sometimes recall dreams and sometimes recall no experiences. Traditionally, dreaming has been identified with rapid eye-movement (REM) sleep, characterized by wake-like, globally 'activated', high-frequency electroencephalographic activity. However, dreaming also occurs in non-REM (NREM) sleep, characterized by prominent low-frequency activity. This challenges our understanding of the neural correlates of conscious experiences in sleep. Using high-density electroencephalography, we contrasted the presence and absence of dreaming in NREM and REM sleep. In both NREM and REM sleep, reports of dream experience were associated with local decreases in low-frequency activity in posterior cortical regions. High-frequency activity in these regions correlated with specific dream contents. Monitoring this posterior 'hot zone' in real time predicted whether an individual reported dreaming or the absence of dream experiences during NREM sleep, suggesting that it may constitute a core correlate of conscious experiences in sleep.
Geomagnetic and solar activity dependence of ionospheric upflowing O+: FAST observations
NASA Astrophysics Data System (ADS)
Zhao, K.; Jiang, Y.; Chen, K. W.; Huang, L. F.
2016-09-01
This paper investigates the dependence of the occurrence frequency of ionospheric upflowing oxygen (O+) ions on the sunspot cycle and geomagnetic activity. We examine the upflows response to the geomagnetic disturbances as well as the influence of the ion energy factor in controlling the magnitude of the occurrence frequency and the net energy flux. We discuss the spatial distribution of the upflow occurrence frequency and construct a regression model as a function of the magnetic latitude. The results show an overall enhancement of the upflow occurrence frequency during magnetically disturbed periods and indicate that the high-occurrence area spreads out from the source regions during magnetically quiet periods. The high-occurrence areas are located at 70° magnetic latitude (mLat) in the dayside auroral oval zone and between 76-80° mLat in the dayside polar cusp region. In the nightside auroral oval zone, these areas are near 60° mLat, penetrating further equatorward to 55° mLat during magnetically disturbed periods. High energy (≥1 keV) upflowing ions are common in the nightside auroral oval zone while low energy (<1 keV) upflowing ions are found escaping from the high latitude dayside cusp region. A Gaussian function is shown to be a good fit to the occurrence frequency over the magnetic latitude. For high energy upflowing O+ ions, the occurrence frequency exhibits a single peak located at about 60° mLat in the nightside auroral oval zone while for low energy upflowing O+ ions, it exhibits two peaks, one near 60° mLat in the auroral oval zone and the other near 78° mLat in the cusp region. We study the solar activity dependence by analyzing the relationship between the upflow occurrence frequency and the sunspot number (RZ). The statistical result shows that the frequency decreases with declining solar activity level, from ˜30 % at solar maximum to ˜5 % at solar minimum. In addition, the correlation coefficient between the occurrence frequency and RZ is 0.9.
NASA Astrophysics Data System (ADS)
Sudharsanan, Subramania I.; Mahalanobis, Abhijit; Sundareshan, Malur K.
1990-12-01
Discrete frequency domain design of Minimum Average Correlation Energy filters for optical pattern recognition introduces an implementational limitation of circular correlation. An alternative methodology which uses space domain computations to overcome this problem is presented. The technique is generalized to construct an improved synthetic discriminant function which satisfies the conflicting requirements of reduced noise variance and sharp correlation peaks to facilitate ease of detection. A quantitative evaluation of the performance characteristics of the new filter is conducted and is shown to compare favorably with the well known Minimum Variance Synthetic Discriminant Function and the space domain Minimum Average Correlation Energy filter, which are special cases of the present design.
Decadal predictability of winter windstorm frequency in Eastern Europe
NASA Astrophysics Data System (ADS)
Höschel, Ines; Grieger, Jens; Ulbrich, Uwe
2017-04-01
Winter windstorms are one of the most impact relevant extreme-weather events in Europe. This study is focussed on windstorm frequency in Eastern Europe at multi-year time scale. Individual storms are identified by using 6-hourly 10m-wind-fields. The impact-oriented tracking algorithm is based on the exceedance of the local 98 percentile of wind speed and a minimum duration of 18 hours. Here, storm frequency is the number of 1000km-footprints of identified windstorms touching the location during extended boreal winter from October to March. The temporal development of annual storm frequencies in Eastern Europe shows variations on a six to fifteen years period. Higher than normal windstorm frequency occurred end of the 1950s and in beginning of the seventies, while lower than normal frequency were around 1960 and in the forties, for example. The correlation between bandpass filtered storm frequency and North Atlantic sea surface temperature shows a significant pattern with a positive correlation in the subtropical East Atlantic and significant negative correlations in the Gulfstream region. The relationship between these multi-year variations and predictability on decadal time scales is discussed. The resulting skill of winter wind storms in the German decadal prediction system MiKlip, based on the numerical earth system model MPI-ESM, will be presented.
Kim, Hee Kyung; Merrow, Arnold C; Shiraj, Sahar; Wong, Brenda L; Horn, Paul S; Laor, Tal
2013-10-01
Prior reports focus primarily on muscle fatty infiltration in Duchenne muscular dystrophy (DMD). However, the significance of muscle edema is uncertain. To evaluate the frequency and degree of muscle fat and edema, and correlate these with clinical function. Forty-two boys (ages 5-19 years) with DMD underwent pelvic MRI. Axial T1- and fat-suppressed T2-weighted images were evaluated to grade muscle fatty infiltration (0-4) and edema (0-3), respectively. Degree and frequency of disease involvement were compared to clinical evaluations. Gluteus maximus had the greatest mean fatty infiltration score, followed by adductor magnus and gluteus medius muscles, and had the most frequent and greatest degree of fatty infiltration. Gluteus maximus also had the greatest mean edema score, followed by vastus lateralis and gluteus medius muscles. These muscles had the most frequent edema, although the greatest degree of edema was seen in other muscles. There was correlation between cumulative scores of fatty infiltration and all clinical evaluations (P < 0.05). In DMD, the muscles with the most frequent fatty infiltration had the greatest degree of fatty infiltration and correlated with patient function. However, the muscles with the most frequent edema were different from those with the greatest degree of edema. Thus, edema may not predict patient functional status.
Li, Huahui; Kong, Lingzhi; Wu, Xihong; Li, Liang
2013-01-01
In reverberant rooms with multiple-people talking, spatial separation between speech sources improves recognition of attended speech, even though both the head-shadowing and interaural-interaction unmasking cues are limited by numerous reflections. It is the perceptual integration between the direct wave and its reflections that bridges the direct-reflection temporal gaps and results in the spatial unmasking under reverberant conditions. This study further investigated (1) the temporal dynamic of the direct-reflection-integration-based spatial unmasking as a function of the reflection delay, and (2) whether this temporal dynamic is correlated with the listeners’ auditory ability to temporally retain raw acoustic signals (i.e., the fast decaying primitive auditory memory, PAM). The results showed that recognition of the target speech against the speech-masker background is a descending exponential function of the delay of the simulated target reflection. In addition, the temporal extent of PAM is frequency dependent and markedly longer than that for perceptual fusion. More importantly, the temporal dynamic of the speech-recognition function is significantly correlated with the temporal extent of the PAM of low-frequency raw signals. Thus, we propose that a chain process, which links the earlier-stage PAM with the later-stage correlation computation, perceptual integration, and attention facilitation, plays a role in spatially unmasking target speech under reverberant conditions. PMID:23658664
Dumas, R; Boyer, L; Richieri, R; Guedj, E; Auquier, P; Lançon, C
2014-02-01
Major depressive disorder remains one of the leading causes of disability in developed countries despite pharmacological and psychological treatments. Patients with major depression have poorer health-related quality of life than persons of the general population, or patients with chronic somatic illness. Improvement of health-related quality of life in depression is thus a pertinent treatment objective. Both high-frequency repetitive transcranial magnetic stimulation (rTMS) over the left dorsolateral prefrontal cortex and low-frequency rTMS over the right dorsolateral prefrontal cortex have shown their effectiveness in medication-resistant depression. However, the Health-related Quality of Life questionnaire remains under-utilized to assess the effectiveness of rTMS in research or in a routine clinical setting. Our study aims to investigate in an open label trial the efficacy of low-frequency rTMS over the right dorsolateral prefrontal cortex on health-related quality of life and clinical outcomes in medication-resistant depression. In a naturalistic trial, 33 unipolar and bipolar patients with medication-resistant depression were treated with daily low-frequency rTMS over the right dorsolateral prefrontal cortex for 4 weeks. Health-related quality of life was assessed using the SF-36 questionnaire. The SF-36 is a generic, self-administered, and worldwide-used questionnaire, consisting of 36 items describing eight health dimensions: physical functioning, social functioning, role-physical problems, role-emotional problems, mental health, vitality, bodily pain, and general health. Physical component summary and mental component summary scores were then obtained. Depression severity was assessed using the 21-item self-report Beck Depression Inventory. Anxiety severity was assessed using the State-Trait Anxiety Inventory. The SF-36, the Beck Depression Inventory and the State-Trait Anxiety Inventory were assessed before and after low-frequency rTMS. The effect of rTMS treatment on the SF-36 and the clinical outcome was evaluated for significance with the Wilcoxon two-tailed signed-rank test. The reliable change index (RCI) was calculated to determine clinically significant change in the eight dimension and composite scores of the SF-36 from pre-intervention to post-intervention, at the level of individual patients. Effect size (r) was then calculated, r values from 0.1 to 0.29, 0.3 to 0.49 and from 0.5 were considered as indicating small, medium and large effect sizes, respectively. Correlations between improvement in Health-related Quality of Life and improvement in the other rating scale scores were calculated using Spearman's correlation test. There were significant improvements of 37.6% in the mental health (P=0.018), 130 % in the role-emotional problem (P=0.045), 15.5% in the physical functioning (P=0.008), 110.6% in the role-physical problem (P=0.002), 22.4% in the bodily pain (P=0.013) dimensions, 6.1% in the Physical Component Score (P=0.043), and 22,5 % in the Beck Depression Inventory (P=0.002). Eighteen patients (54%) showed clinically significant improvement in one of the two composite scores after RCI calculation. Seven out of the eight SF-36 dimension scores and the two composite scores showed effect sizes ranging from 0.12 to 0.38, indicating small to moderate effect. Significant correlations were found between improvement in the Beck Depression Inventory and improvement in the Mental Component Score, the social functioning, the mental health, the general health, the vitality and the physical functioning dimensions. Small sample size and non-controlled design. Low-frequency rTMS over the right dorsolateral prefrontal cortex improves Health-related Quality of Life in unipolar and bipolar patients with medication-resistant depression. Improvement in mental health-related quality of life is significantly correlated with improvement in depressive symptoms. However, further studies with larger samples and controlled designs are needed to clarify our findings. Copyright © 2013. Published by Elsevier Masson SAS.
Hegan, Denise Campisi; Narayanan, Latha; Jirik, Frank R; Edelmann, Winfried; Liskay, R Michael; Glazer, Peter M
2006-12-01
Defects in genes associated with DNA mismatch repair (MMR) have been linked to hereditary colon cancer. Because the MMR pathway includes multiple factors with both overlapping and divergent functions, we sought to compare the impact of deficiencies in each of several MMR genes on genetic instability using a collection of knock-out mouse models. We investigated mutation frequencies and patterns in MMR-deficient mice using two transgenic reporter genes, supFG1 and cII, in the context of mice deficient for Pms2, Mlh1, Msh2, Msh3 or Msh6 or both Msh2 and Msh3 or both Msh3 and Msh6. We found that the mean mutation frequencies of all of the MMR-deficient mice were significantly higher than the mean mutation frequencies of wild-type mice. Mlh1-deficient mice and Msh2-deficient mice had the highest mutation frequencies in a comparison of the single nullizygous mice. Of all the mice studied, mice nullizygous for both Msh2 and Msh3 and those nullizygous for both Msh3 and Msh6 displayed the greatest overall increases in mutation frequencies compared with wild-type mice. Sequence analysis of the mutated reporter genes revealed significant differences between the individual groups of MMR-deficient mice. Taken together, our results further characterize the functions of the MMR factors in mutation avoidance and provide in vivo correlation to biochemical models of the MMR pathway.
[Acute and remote biochemical and physiological effects of exhaustive weightlifting exercise].
Minigalin, A D; Shumakov, A R; Baranova, T I; Danilova, M A; Kalinskiĭ, M I; Morozov, V I
2011-01-01
The goal of the work was a study of exhaustive weightlifting exercise effect on prolonged changes in physiological and biochemical variables characterized functional status of skeletal muscles. An exercise gave rise to significant blood lactate concentration increase that was indicative of an anaerobic metabolism to be a predominant mechanism of muscle contraction energy supply. A reduction of m. rectus femoris EMG activity (amplitude and frequency), tonus of tension and an increase in tonus of relaxation were found immediately after exercise. Both EMG amplitude and frequency were increased 1 day post-exercise. However, after 3 days of recovery, EMG amplitude and frequency were decreased again and, in parallel, blood serum creatine kinase (CK) activity was significantly increased. After 9 recovery days, all measured variables with the exception of CK were normalized. A significant reverse correlation was found between blood serum lactate concentration and m. rectus femoris EMG activity at the same time points. Blood serum CK activity and m. rectus femoris EMG and tonus variables were observed to be significantly reversely correlated on the 3rd post-exercise day. Presented data demonstrate that exhaustive exercise-induced muscle injury resulted in phase alterations in electrical activity and tonus which correlated with lactate concentration and CK activity in blood serum.
Emotional and cognitive health correlates of leisure activities in older Latino and Caucasian women
Herrera, Angelica P.; Meeks, Thomas W.; Dawes, Sharron E.; Hernandez, Dominique M.; Thompson, Wesley K.; Sommerfeld, David H.; Allison, Matthew A.; Jeste, Dilip V.
2011-01-01
This study examined differences in the frequency of leisure activity participation and relationships to depressive symptom burden and cognition in Latino and Caucasian women. Cross-sectional data were obtained from a demographically matched subsample of Latino and Caucasian (n = 113 each) post-menopausal women (age ≥60), interviewed in 2004–06 for a multi-ethnic cohort study of successful aging in San Diego County. Frequencies of engagement in 16 leisure activities and associations between objective cognitive performance and depressive symptom burden by ethnicity were identified using bivariate and linear regression, adjusted for physical functioning and demographic covariates. Compared to Caucasian women, Latinas were significantly more likely to be caregivers and used computers less often. Engaging in organized social activity was associated with fewer depressive symptoms in both groups. Listening to the radio was positively correlated with lower depressive symptom burden for Latinas, and better cognitive functioning in Caucasians. Cognitive functioning was better in Latinas who read and did puzzles. Housework was negatively associated with Latinas’ emotional health and Caucasians’ cognitive functioning. Latino and Caucasian women participate in different patterns of leisure activities. Additionally, ethnicity significantly affects the relationship between leisure activities and both emotional and cognitive health. PMID:21391135
The vibrational spectrum of H2O3: An ab initio investigation
NASA Technical Reports Server (NTRS)
Jackels, Charles F.
1991-01-01
Theoretically determined frequencies and absorption intensities are reported for the vibrational spectrum of the covalent HOOOH and hydrogen bonded HO---HOO intermediates that may form in the reaction of the hydroxyl and hydroperoxyl radicals. Basis sets of DZP quality, augmented by diffuse and second sets of polarization functions have been used with CASSCF wave functions. The calculated harmonic vibrational frequencies of HOOOH have been corrected with empirical factors and presented in the form of a 'stick' spectrum. The oxygen backbone vibrations, predicted to occur at 519, 760, and 870 cm(exp -1), are well separated from most interferences, and may be the most useful for the species' identification. In the case of the hydrogen bonded isomer, emphasis has been placed upon prediction of the shifts in the intramolecular vibrational frequencies that take place upon formation of the complex. In particular, the HO stretch and HOO bend of HO2 are predicted to have shifts of -59 and 53 cm(exp -1), respectively, which should facilitate their identification. It is also noted that the antisymmetric stretching frequency of the oxygen backbone in HOOOH exhibits a strong sensitivity to the degree of electron correlation, such as has been previously observed for the same mode in ozone.
Adam, R.; Ade, P. A. R.; Aghanim, N.; ...
2016-09-20
The Planck High Frequency Instrument (HFI) has observed the full sky at six frequencies (100, 143, 217, 353, 545, and 857 GHz) in intensity and at four frequencies in linear polarization (100, 143, 217, and 353 GHz). In order to obtain sky maps, the time-ordered information (TOI) containing the detector and pointing samples must be processed and the angular response must be assessed. The full mission TOI is included in the Planck 2015 release. This study describes the HFI TOI and beam processing for the 2015 release. HFI calibration and map making are described in a companion paper. The mainmore » pipeline has been modified since the last release (2013 nominal mission in intensity only), by including a correction for the nonlinearity of the warm readout and by improving the model of the bolometer time response. The beam processing is an essential tool that derives the angular response used in all the Planck science papers and we report an improvement in the effective beam window function uncertainty of more than a factor of 10 relative to the2013 release. Noise correlations introduced by pipeline filtering function are assessed using dedicated simulations. Finally, angular cross-power spectra using data sets that are decorrelated in time are immune to the main systematic effects.« less
NASA Astrophysics Data System (ADS)
Planck Collaboration; Adam, R.; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bertincourt, B.; Bielewicz, P.; Bock, J. J.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chiang, H. C.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Ghosh, T.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Henrot-Versillé, S.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Le Jeune, M.; Leahy, J. P.; Lellouch, E.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; McGehee, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Moreno, R.; Morgante, G.; Mortlock, D.; Moss, A.; Mottet, S.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rowan-Robinson, M.; Rusholme, B.; Sandri, M.; Santos, D.; Sauvé, A.; Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vibert, L.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Watson, R.; Wehus, I. K.; Yvon, D.; Zacchei, A.; Zonca, A.
2016-09-01
The Planck High Frequency Instrument (HFI) has observed the full sky at six frequencies (100, 143, 217, 353, 545, and 857 GHz) in intensity and at four frequencies in linear polarization (100, 143, 217, and 353 GHz). In order to obtain sky maps, the time-ordered information (TOI) containing the detector and pointing samples must be processed and the angular response must be assessed. The full mission TOI is included in the Planck 2015 release. This paper describes the HFI TOI and beam processing for the 2015 release. HFI calibration and map making are described in a companion paper. The main pipeline has been modified since the last release (2013 nominal mission in intensity only), by including a correction for the nonlinearity of the warm readout and by improving the model of the bolometer time response. The beam processing is an essential tool that derives the angular response used in all the Planck science papers and we report an improvement in the effective beam window function uncertainty of more than a factor of 10 relative to the2013 release. Noise correlations introduced by pipeline filtering function are assessed using dedicated simulations. Angular cross-power spectra using data sets that are decorrelated in time are immune to the main systematic effects.
NASA Astrophysics Data System (ADS)
Sert, Yusuf; El-Emam, Ali A.; Al-Deeb, Omar A.; Al-Turkistani, Abdulghafoor A.; Ucun, Fatih; Çırak, Çağrı
In this study, the experimental and theoretical vibrational frequencies of a newly synthesized potential chemotherapeutic agent namely, 2-[(2-methoxyl)sulfanyl]-4-(2-methylpropyl)-6-oxo-1,6-dihydropyrimidine-5-carbonitrile have been investigated. The experimental FT-IR (4000-400 cm-1) and Laser-Raman spectra (4000-100 cm-1) of the molecule in solid phase have been recorded. The theoretical vibrational frequencies and optimized geometric parameters (bond lengths and bond angles) have been calculated by using density functional theory (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr) and M06-2X (the highly parametrized, empirical exchange correlation function) quantum chemical methods with 6-311++G(d,p) basis set by Gaussian 09W software, for the first time. The assignments of the vibrational frequencies have been done by potential energy distribution (PED) analysis by using VEDA 4 software. The theoretical optimized geometric parameters and vibrational frequencies have been found to be in good agreement with the corresponding experimental data, and with the results in the literature. In addition, the highest occupied molecular orbital (HOMO) energy, the lowest unoccupied molecular orbital (LUMO) energy and the other related molecular energy values of the compound have been investigated using the same theoretical calculations.
Sert, Yusuf; Sreenivasa, S; Doğan, H; Manojkumar, K E; Suchetan, P A; Ucun, Fatih
2014-06-05
In this study the experimental and theoretical vibrational frequencies of a newly synthesized anti-tumor and anti-inflammatory agent namely, methyl 4-(trifluoromethyl)-1H-pyrrole-3-carboxylate have been investigated. The experimental FT-IR (4000-400cm(-1)) and Laser-Raman spectra (4000-100cm(-1)) of the molecule in solid phase have been recorded. The theoretical vibrational frequencies and optimized geometric parameters (bond lengths, bond angles and torsion angles) have been calculated using density functional theory (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr and DFT/M06-2X: highly parameterized, empirical exchange correlation function) with 6-311++G(d,p) basis set by Gaussian 03 software, for the first time. The assignments of the vibrational frequencies have been done by potential energy distribution (PED) analysis using VEDA 4 software. The theoretical optimized geometric parameters and vibrational frequencies have been found to be in good agreement with the corresponding experimental data and results in the literature. In addition, the highest occupied molecular orbital (HOMO) energy, the lowest unoccupied molecular orbital (LUMO) energy and the other related molecular energy values of the compound have been investigated using the same theoretical calculations. Copyright © 2014 Elsevier B.V. All rights reserved.
Sert, Yusuf; Mahendra, M; Keskinoğlu, S; Chandra; Srikantamurthy, N; Umesha, K B; Çırak, Ç
2015-03-15
In this study the experimental and theoretical vibrational frequencies of a newly synthesized anti-tumor, antiviral, hypoglycemic, antifungal and anti-HIV agent namely, 5-Methyl-3-phenylisoxazole-4-carboxylic acid has been investigated. The experimental FT-IR (4000-400 cm(-1)) and Laser-Raman spectra (4000-100 cm(-1)) of the molecule in solid phase have been recorded. The theoretical vibrational frequencies and optimized geometric parameters (bond lengths, bond angles and torsion angles) have been calculated by using density functional theory (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr and DFT/M06-2X: highly parametrized, empirical exchange correlation function) with 6-311++G(d,p) basis set by Gaussian 09W software, for the first time. The assignments of the vibrational frequencies have been done by potential energy distribution (PED) analysis by using VEDA 4 software. The theoretical optimized geometric parameters and vibrational frequencies have been found to be in good agreement with the corresponding experimental data and results in the literature. In addition, the highest occupied molecular orbital (HOMO) energy, the lowest unoccupied molecular orbital (LUMO) energy and the other related molecular energy values of the compound have been investigated by using the same theoretical calculations. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sert, Yusuf; Sreenivasa, S.; Doğan, H.; Manojkumar, K. E.; Suchetan, P. A.; Ucun, Fatih
2014-06-01
In this study the experimental and theoretical vibrational frequencies of a newly synthesized anti-tumor and anti-inflammatory agent namely, methyl 4-(trifluoromethyl)-1H-pyrrole-3-carboxylate have been investigated. The experimental FT-IR (4000-400 cm-1) and Laser-Raman spectra (4000-100 cm-1) of the molecule in solid phase have been recorded. The theoretical vibrational frequencies and optimized geometric parameters (bond lengths, bond angles and torsion angles) have been calculated using density functional theory (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr and DFT/M06-2X: highly parameterized, empirical exchange correlation function) with 6-311++G(d,p) basis set by Gaussian 03 software, for the first time. The assignments of the vibrational frequencies have been done by potential energy distribution (PED) analysis using VEDA 4 software. The theoretical optimized geometric parameters and vibrational frequencies have been found to be in good agreement with the corresponding experimental data and results in the literature. In addition, the highest occupied molecular orbital (HOMO) energy, the lowest unoccupied molecular orbital (LUMO) energy and the other related molecular energy values of the compound have been investigated using the same theoretical calculations.
Sert, Yusuf; Doğan, Hatice; Navarrete, Angélica; Somanathan, Ratnasamy; Aguirre, Gerardo; Çırak, Çağrı
2014-07-15
In this study, the experimental and theoretical vibrational frequencies of a newly synthesized 2,3,4,5,6-Pentafluoro-trans-cinnamic acid have been investigated. The experimental FT-IR (4000-400 cm(-1)) and Laser-Raman spectra (4000-100 cm(-1)) of the molecule in solid phase have been recorded. The theoretical vibrational frequencies and optimized geometric parameters (bond lengths and bond angles) have been calculated by using density functional theory (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr) and DFT/M06-2X (the highly parameterized, empirical exchange correlation function) quantum chemical methods with 6-311++G(d,p) basis set by Gaussian 09W software, for the first time. The assignments of the vibrational frequencies have been done by potential energy distribution (PED) analysis by using VEDA 4 software. The theoretical optimized geometric parameters and vibrational frequencies have been found to be in good agreement with the corresponding experimental data, and with the results in the literature. In addition, the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) energies and the other related molecular energy values have been calculated and depicted. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sert, Yusuf; Balakit, Asim A.; Öztürk, Nuri; Ucun, Fatih; El-Hiti, Gamal A.
2014-10-01
The spectroscopic properties of (E)-3-(4-bromo-5-methylthiophen-2-yl)acrylonitrile have been investigated by FT-IR, UV, 1H and 13C NMR techniques. The theoretical vibrational frequencies and optimized geometric parameters (bond lengths and angles) have been calculated using density functional theory (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr) and DFT/M06-2X (the highly parameterized, empirical exchange correlation function) quantum chemical methods with 6-311++G(d,p) basis set by Gaussian 03 software, for the first time. The assignments of the vibrational frequencies have been carried out by potential energy distribution (PED) analysis by using VEDA 4 software. The theoretical optimized geometric parameters and vibrational frequencies were in good agreement with the corresponding experimental data, and with the results in the literature. 1H and 13C NMR chemical shifts were calculated by using the gauge-invariant atomic orbital (GIAO) method. The electronic properties, such as excitation energies, oscillator strength wavelengths were performed by B3LYP methods. In addition, the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) energies and the other related molecular energy values have been calculated and depicted.
NASA Astrophysics Data System (ADS)
Sert, Yusuf; Mahendra, M.; Keskinoğlu, S.; Chandra; Srikantamurthy, N.; Umesha, K. B.; Çırak, Ç.
2015-03-01
In this study the experimental and theoretical vibrational frequencies of a newly synthesized anti-tumor, antiviral, hypoglycemic, antifungal and anti-HIV agent namely, 5-Methyl-3-phenylisoxazole-4-carboxylic acid has been investigated. The experimental FT-IR (4000-400 cm-1) and Laser-Raman spectra (4000-100 cm-1) of the molecule in solid phase have been recorded. The theoretical vibrational frequencies and optimized geometric parameters (bond lengths, bond angles and torsion angles) have been calculated by using density functional theory (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr and DFT/M06-2X: highly parametrized, empirical exchange correlation function) with 6-311++G(d,p) basis set by Gaussian 09W software, for the first time. The assignments of the vibrational frequencies have been done by potential energy distribution (PED) analysis by using VEDA 4 software. The theoretical optimized geometric parameters and vibrational frequencies have been found to be in good agreement with the corresponding experimental data and results in the literature. In addition, the highest occupied molecular orbital (HOMO) energy, the lowest unoccupied molecular orbital (LUMO) energy and the other related molecular energy values of the compound have been investigated by using the same theoretical calculations.
Pitch contour identification with combined place and temporal cues using cochlear implants
Luo, Xin; Padilla, Monica; Landsberger, David M.
2012-01-01
This study investigated the integration of place- and temporal-pitch cues in pitch contour identification (PCI), in which cochlear implant (CI) users were asked to judge the overall pitch-change direction of stimuli. Falling and rising pitch contours were created either by continuously steering current between adjacent electrodes (place pitch), by continuously changing amplitude modulation (AM) frequency (temporal pitch), or both. The percentage of rising responses was recorded as a function of current steering or AM frequency change, with single or combined pitch cues. A significant correlation was found between subjects’ sensitivity to current steering and AM frequency change. The integration of place- and temporal-pitch cues was most effective when the two cues were similarly discriminable in isolation. Adding the other (place or temporal) pitch cues shifted the temporal- or place-pitch psychometric functions horizontally without changing the slopes. PCI was significantly better with consistent place- and temporal-pitch cues than with inconsistent cues. PCI with single cues and integration of pitch cues were similar on different electrodes. The results suggest that CI users effectively integrate place- and temporal-pitch cues in relative pitch perception tasks. Current steering and AM frequency change should be coordinated to better transmit dynamic pitch information to CI users. PMID:22352506
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adam, R.; Ade, P. A. R.; Aghanim, N.
The Planck High Frequency Instrument (HFI) has observed the full sky at six frequencies (100, 143, 217, 353, 545, and 857 GHz) in intensity and at four frequencies in linear polarization (100, 143, 217, and 353 GHz). In order to obtain sky maps, the time-ordered information (TOI) containing the detector and pointing samples must be processed and the angular response must be assessed. The full mission TOI is included in the Planck 2015 release. This study describes the HFI TOI and beam processing for the 2015 release. HFI calibration and map making are described in a companion paper. The mainmore » pipeline has been modified since the last release (2013 nominal mission in intensity only), by including a correction for the nonlinearity of the warm readout and by improving the model of the bolometer time response. The beam processing is an essential tool that derives the angular response used in all the Planck science papers and we report an improvement in the effective beam window function uncertainty of more than a factor of 10 relative to the2013 release. Noise correlations introduced by pipeline filtering function are assessed using dedicated simulations. Finally, angular cross-power spectra using data sets that are decorrelated in time are immune to the main systematic effects.« less
Shen, Yi
2015-01-01
Purpose Gap detection and the temporal modulation transfer function (TMTF) are 2 common methods to obtain behavioral estimates of auditory temporal acuity. However, the agreement between the 2 measures is not clear. This study compares results from these 2 methods and their dependencies on listener age and hearing status. Method Gap detection thresholds and the parameters that describe the TMTF (sensitivity and cutoff frequency) were estimated for young and older listeners who were naive to the experimental tasks. Stimuli were 800-Hz-wide noises with upper frequency limits of 2400 Hz, presented at 85 dB SPL. A 2-track procedure (Shen & Richards, 2013) was used for the efficient estimation of the TMTF. Results No significant correlation was found between gap detection threshold and the sensitivity or the cutoff frequency of the TMTF. No significant effect of age and hearing loss on either the gap detection threshold or the TMTF cutoff frequency was found, while the TMTF sensitivity improved with increasing hearing threshold and worsened with increasing age. Conclusion Estimates of temporal acuity using gap detection and TMTF paradigms do not seem to provide a consistent description of the effects of listener age and hearing status on temporal envelope processing. PMID:25087722
Interpretation of the instantaneous frequency of phonocardiogram signals
NASA Astrophysics Data System (ADS)
Rey, Alexis B.
2005-06-01
Short-Time Fourier transforms, Wigner-Ville distribution, and Wavelet Transforms have been commonly used when dealing with non-stationary signals, and they have been known as time-frequency distributions. Also, it is commonly intended to investigate the behaviour of phonocardiogram signals as a means of prediction some oh the pathologies of the human hart. For this, this paper aims to analyze the relationship between the instantaneous frequency of a PCG signal and the so-mentioned time-frequency distributions; three algorithms using Matlab functions have been developed: the first one, the estimation of the IF using the normalized linear moment, the second one, the estimation of the IF using the periodic first moment, and the third one, the computing of the WVD. Meanwhile, the computing of the STFT spectrogram is carried out with a Matlab function. Several simulations of the spectrogram for a set of PCG signals and the estimation of the IF are shown, and its relationship is validated through correlation. Finally, the second algorithm is a better choice because the estimation is not biased, whereas the WVD is very computing-demanding and offers no benefit since the estimation of the IF by using this TFD has an equivalent result when using the derivative of the phase of the analytic signal, which is also less computing-demanding.
Leicht, Gregor; Troschütz, Stefan; Andreou, Christina; Karamatskos, Evangelos; Ertl, Matthias; Naber, Dieter; Mulert, Christoph
2013-01-01
The processing of reward and punishment stimuli in humans appears to involve brain oscillatory activity of several frequencies, probably each with a distinct function. The exact nature of associations of these electrophysiological measures with impulsive or risk-seeking personality traits is not completely clear. Thus, the aim of the present study was to investigate event-related oscillatory activity during reward processing across a wide spectrum of frequencies, and its associations with impulsivity and sensation seeking in healthy subjects. During recording of a 32-channel EEG 22 healthy volunteers were characterized with the Barratt Impulsiveness and the Sensation Seeking Scale and performed a computerized two-choice gambling task comprising different feedback options with positive vs. negative valence (gain or loss) and high or low magnitude (5 vs. 25 points). We observed greater increases of amplitudes of the feedback-related negativity and of activity in the theta, alpha and low-beta frequency range following loss feedback and, in contrast, greater increase of activity in the high-beta frequency range following gain feedback. Significant magnitude effects were observed for theta and delta oscillations, indicating greater amplitudes upon feedback concerning large stakes. The theta amplitude changes during loss were negatively correlated with motor impulsivity scores, whereas alpha and low-beta increase upon loss and high-beta increase upon gain were positively correlated with various dimensions of sensation seeking. The findings suggest that the processing of feedback information involves several distinct processes, which are subserved by oscillations of different frequencies and are associated with different personality traits.
NASA Astrophysics Data System (ADS)
Folgosi-Correa, M. S.; Nogueira, G. E. C.
2012-06-01
The laser Doppler flowmetry allows the non-invasive assessment of the skin perfusion in real-time, being an attractive technique to study the human microcirculation in clinical settings. Low-frequency oscillations in the laser Doppler blood flow signal from the skin have been related to the endothelial, endothelial-metabolic, neurogenic and myogenic mechanisms of microvascular flow control, in the range 0.005-0.0095 Hz, 0.0095-0.021 Hz, 0.021-0.052 Hz and 0.052- 0.145 Hz respectively. The mean Amplitude (A) of the periodic fluctuations in the laser Doppler blood flow signal, in each frequency range, derived from the respective wavelet-transformed coefficients, has been used to assess the function and dysfunctions of each mechanism of flow control. Known sources of flow signal variances include spatial and temporal variability, diminishing the discriminatory capability of the technique. Here a new time domain method of analysis is proposed, based on the Time of Correlation (TC) of flow fluctuations between two adjacent sites. Registers of blood flow from two adjacent regions, for skin temperature at 32 0C (basal) and thermally stimulated (42 0C) of volar forearms from 20 healthy volunteers were collected and analyzed. The results obtained revealed high time of correlation between two adjacent regions when thermally stimulated, for signals in the endothelial, endothelial-metabolic, neurogenic and myogenic frequency ranges. Experimental data also indicate lower variability for TC when compared to A, when thermally stimulated, suggesting a new promising parameter for assessment of the microvascular flow control.
Functional Topography of Human Auditory Cortex
Rauschecker, Josef P.
2016-01-01
Functional and anatomical studies have clearly demonstrated that auditory cortex is populated by multiple subfields. However, functional characterization of those fields has been largely the domain of animal electrophysiology, limiting the extent to which human and animal research can inform each other. In this study, we used high-resolution functional magnetic resonance imaging to characterize human auditory cortical subfields using a variety of low-level acoustic features in the spectral and temporal domains. Specifically, we show that topographic gradients of frequency preference, or tonotopy, extend along two axes in human auditory cortex, thus reconciling historical accounts of a tonotopic axis oriented medial to lateral along Heschl's gyrus and more recent findings emphasizing tonotopic organization along the anterior–posterior axis. Contradictory findings regarding topographic organization according to temporal modulation rate in acoustic stimuli, or “periodotopy,” are also addressed. Although isolated subregions show a preference for high rates of amplitude-modulated white noise (AMWN) in our data, large-scale “periodotopic” organization was not found. Organization by AM rate was correlated with dominant pitch percepts in AMWN in many regions. In short, our data expose early auditory cortex chiefly as a frequency analyzer, and spectral frequency, as imposed by the sensory receptor surface in the cochlea, seems to be the dominant feature governing large-scale topographic organization across human auditory cortex. SIGNIFICANCE STATEMENT In this study, we examine the nature of topographic organization in human auditory cortex with fMRI. Topographic organization by spectral frequency (tonotopy) extended in two directions: medial to lateral, consistent with early neuroimaging studies, and anterior to posterior, consistent with more recent reports. Large-scale organization by rates of temporal modulation (periodotopy) was correlated with confounding spectral content of amplitude-modulated white-noise stimuli. Together, our results suggest that the organization of human auditory cortex is driven primarily by its response to spectral acoustic features, and large-scale periodotopy spanning across multiple regions is not supported. This fundamental information regarding the functional organization of early auditory cortex will inform our growing understanding of speech perception and the processing of other complex sounds. PMID:26818527
NASA Astrophysics Data System (ADS)
Pimienta, Lucas; Borgomano, Jan V. M.; Fortin, Jérôme; Guéguen, Yves
2017-12-01
Because measuring the frequency dependence of elastic properties in the laboratory is a technical challenge, not enough experimental data exist to test the existing theories. We report measurements of three fluid-saturated sandstones over a broad frequency band: Wilkenson, Berea, and Bentheim sandstones. Those sandstones samples, chosen for their variable porosities and mineral content, are saturated by fluids of varying viscosities. The samples elastic response (Young's modulus and Poisson's ratio) and hydraulic response (fluid flow out of the sample) are measured as a function of frequency. Large dispersion and attenuation phenomena are observed over the investigated frequency range. For all samples, the variation at lowest frequency relates to a large fluid flow directly measured out of the rock samples. These are the cause (i.e., fluid flow) and consequence (i.e., dispersion/attenuation) of the transition between drained and undrained regimes. Consistently, the characteristic frequency correlates with permeability for each sandstone. Beyond this frequency, a second variation is observed for all samples, but the rocks behave differently. For Berea sandstone, an onset of dispersion/attenuation is expected from both Young's modulus and Poisson's ratio at highest frequency. For Bentheim and Wilkenson sandstones, however, only Young's modulus shows dispersion/attenuation phenomena. For Wilkenson sandstone, the viscoelastic-like dispersion/attenuation response is interpreted as squirt flow. For Bentheim sandstone, the second effect does not fully follow such response, which could be due to a lower accuracy in the measured attenuation or to the occurence of another physical effect in this rock sample.
Nonlinear dynamics of the human lumbar intervertebral disc.
Marini, Giacomo; Huber, Gerd; Püschel, Klaus; Ferguson, Stephen J
2015-02-05
Systems with a quasi-static response similar to the axial response of the intervertebral disc (i.e. progressive stiffening) often present complex dynamics, characterized by peculiar nonlinearities in the frequency response. However, such characteristics have not been reported for the dynamic response of the disc. The accurate understanding of disc dynamics is essential to investigate the unclear correlation between whole body vibration and low back pain. The present study investigated the dynamic response of the disc, including its potential nonlinear response, over a range of loading conditions. Human lumbar discs were tested by applying a static preload to the top and a sinusoidal displacement at the bottom of the disc. The frequency of the stimuli was set to increase linearly from a low frequency to a high frequency limit and back down. In general, the response showed nonlinear and asymmetric characteristics. For each test, the disc had different response in the frequency-increasing compared to the frequency-decreasing sweep. In particular, the system presented abrupt changes of the oscillation amplitude at specific frequencies, which differed between the two sweeps. This behaviour indicates that the system oscillation has a different equilibrium condition depending on the path followed by the stimuli. Preload and amplitude of the oscillation directly influenced the disc response by changing the nonlinear dynamics and frequency of the jump-phenomenon. These results show that the characterization of the dynamic response of physiological systems should be readdressed to determine potential nonlinearities. Their direct effect on the system function should be further investigated. Copyright © 2014 Elsevier Ltd. All rights reserved.
Evaluating Multispectral Snowpack Reflectivity With Changing Snow Correlation Lengths
NASA Technical Reports Server (NTRS)
Kang, Do Hyuk; Barros, Ana P.; Kim, Edward J.
2016-01-01
This study investigates the sensitivity of multispectral reflectivity to changing snow correlation lengths. Matzler's ice-lamellae radiative transfer model was implemented and tested to evaluate the reflectivity of snow correlation lengths at multiple frequencies from the ultraviolet (UV) to the microwave bands. The model reveals that, in the UV to infrared (IR) frequency range, the reflectivity and correlation length are inversely related, whereas reflectivity increases with snow correlation length in the microwave frequency range. The model further shows that the reflectivity behavior can be mainly attributed to scattering rather than absorption for shallow snowpacks. The largest scattering coefficients and reflectivity occur at very small correlation lengths (approximately 10(exp -5 m) for frequencies higher than the IR band. In the microwave range, the largest scattering coefficients are found at millimeter wavelengths. For validation purposes, the ice-lamella model is coupled with a multilayer snow physics model to characterize the reflectivity response of realistic snow hydrological processes. The evolution of the coupled model simulated reflectivities in both the visible and the microwave bands is consistent with satellite-based reflectivity observations in the same frequencies. The model results are also compared with colocated in situ snow correlation length measurements (Cold Land Processes Field Experiment 2002-2003). The analysis and evaluation of model results indicate that the coupled multifrequency radiative transfer and snow hydrology modeling system can be used as a forward operator in a data-assimilation framework to predict the status of snow physical properties, including snow correlation length.
Absolute spike frequency as a predictor of surgical outcome in temporal lobe epilepsy.
Ngo, Ly; Sperling, Michael R; Skidmore, Christopher; Mintzer, Scott; Nei, Maromi
2017-04-01
Frequent interictal epileptiform abnormalities may correlate with poor prognosis after temporal lobe resection for refractory epilepsy. To date, studies have focused on limited resections such as selective amygdalohippocampectomy and apical temporal lobectomy without hippocampectomy. However, it is unclear whether the frequency of spikes predicts outcome after standard anterior temporal lobectomy. Preoperative scalp video-EEG monitoring data from patients who subsequently underwent anterior temporal lobectomy over a three year period and were followed for at least one year were reviewed for the frequency of interictal epileptiform abnormalities. Surgical outcome for those patients with frequent spikes (>60/h) was compared with those with less frequent spikes. Additionally, spike frequency was evaluated as a continuous variable and correlated with outcome to determine if increased spike frequency correlated with worse outcome, as assessed by modified Engel Class outcome. Forty-seven patients (18 men, 29 women; mean age 40 years at surgery) were included. Forty-six patients had standard anterior temporal lobectomy (24 right, 22 left) and one had a modified left temporal lobectomy. There was no significant difference in seizure outcome between those with frequent (57% Class I) vs. those with less frequent (58% Class I) spikes. Increased spike frequency did not correlate with worse outcome. Greater than 20 complex partial seizures/month and generalized tonic-clonic seizures within one year of surgery correlated with worse outcome. This study suggests that absolute spike frequency does not predict seizure outcome after anterior temporal lobectomy unlike in selective procedures, and should not be used as a prognostic factor in this population. Copyright © 2017 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.
Agarwal, Shruti; Lu, Hanzhang; Pillai, Jay J
2017-08-01
The aim of this study was to explore whether the phenomenon of brain tumor-related neurovascular uncoupling (NVU) in resting-state blood oxygen level-dependent functional magnetic resonance imaging (BOLD fMRI) (rsfMRI) may also affect the resting-state fMRI (rsfMRI) frequency domain metrics the amplitude of low-frequency fluctuation (ALFF) and fractional ALFF (fALFF). Twelve de novo brain tumor patients, who underwent clinical fMRI examinations, including task-based fMRI (tbfMRI) and rsfMRI, were included in this Institutional Review Board-approved study. Each patient displayed decreased/absent tbfMRI activation in the primary ipsilesional (IL) sensorimotor cortex in the absence of a corresponding motor deficit or suboptimal task performance, consistent with NVU. Z-score maps for the motor tasks were obtained from general linear model analysis (reflecting motor activation vs. rest). Seed-based correlation analysis (SCA) maps of sensorimotor network, ALFF, and fALFF were calculated from rsfMRI data. Precentral and postcentral gyri in contralesional (CL) and IL hemispheres were parcellated using an automated anatomical labeling template for each patient. Region of interest (ROI) analysis was performed on four maps: tbfMRI, SCA, ALFF, and fALFF. Voxel values in the CL and IL ROIs of each map were divided by the corresponding global mean of ALFF and fALFF in the cortical brain tissue. Group analysis revealed significantly decreased IL ALFF (p = 0.02) and fALFF (p = 0.03) metrics compared with CL ROIs, consistent with similar findings of significantly decreased IL BOLD signal for tbfMRI (p = 0.0005) and SCA maps (p = 0.0004). The frequency domain metrics ALFF and fALFF may be markers of lesion-induced NVU in rsfMRI similar to previously reported alterations in tbfMRI activation and SCA-derived resting-state functional connectivity maps.
Huybrechts, I; Börnhorst, C; Pala, V; Moreno, L A; Barba, G; Lissner, L; Fraterman, A; Veidebaum, T; Hebestreit, A; Sieri, S; Ottevaere, C; Tornaritis, M; Molnár, D; Ahrens, W; De Henauw, S
2011-04-01
Measuring dietary intake in children is notoriously difficult. Therefore, it is crucial to evaluate the performance of dietary intake assessment methods in children. Given the important contribution of milk consumption to calcium (Ca) and potassium (K) intakes, urinary calcium (UCa) and potassium (UK) excretions in spot urine samples could be used for estimating correlations with milk consumption frequencies. The aim of this study was to evaluate the assessment of milk consumption frequencies derived from the Food Frequency Questionnaire section of the Children's Eating Habits Questionnaire (CEHQ-FFQ) used in the IDEFICS (Identification and prevention of dietary- and lifestyle induced health effects in children and infants) study by comparing with UCa and UK excretions in spot urine samples. This study was conducted as a setting-based community-oriented intervention study and results from the first cross-sectional survey have been included in the analysis. A total of 10,309 children aged 2-10 years from eight European countries are included in this analysis. UCa and UK excretions were measured in morning spot urine samples. Calcium and potassium urine concentrations were standardised for urinary creatinine (Cr) excretion. Ratios of UCa/Cr and UK/Cr were used for multivariate regression analyses after logarithmic transformation to obtain normal distributions of data. Milk consumption frequencies were obtained from the CEHQ-FFQ. Multivariate regression analyses were used to investigate the effect of milk consumption frequencies on UCa and UK concentrations, adjusting for age, gender, study centre, soft drink consumption and frequency of main meals consumed at home. A significant positive correlation was found between milk consumption frequencies and ratios of UK/Cr and a weaker but still significant positive correlation with ratios of UCa/Cr, when using crude or partial Spearman's correlations. Multivariate regression analyses showed that milk consumption frequencies were predictive of UCa/Cr and UK/Cr ratios, when adjusted for age, gender, study centre, soft drink consumption and frequency of main meals consumed at home. Mean ratios of UK/Cr for increasing milk consumption frequency tertiles showed a progressive increase in UK/Cr. Children consuming at least two milk servings per day had significantly higher mean UCa/Cr and UK/Cr ratios than children who did not. Large differences in correlations between milk consumption frequencies and ratios of UCa/Cr and UK/Cr were found between the different study centres. Higher milk consumption frequencies resulted in a progressive increase in UK/Cr and UCa/Cr ratios, reflecting the higher Ca and K intakes that coincide with increasing milk consumption, which constitutes a major K and Ca source in children's diet.
Gaoatswe, Gadintshware; Kent, Brian D; Corrigan, Michelle A; Nolan, Geraldine; Hogan, Andrew E; McNicholas, Walter T; O'Shea, Donal
2015-10-01
Emerging evidence links obstructive sleep apnea (OSA) with increased cancer incidence and mortality. Invariant natural killer T (iNKT) cells play an important role in cancer immunity. We hypothesized that patients with OSA have low number of circulating invariant natural killer T (iNKT) cells, which may also be functionally impaired. This study aims to evaluate the frequency of circulating iNKT cells in OSA. We evaluated the frequency of circulating iNKT cells by flow cytometry in 33 snorers being assessed for possible OSA. Using iNKT cell lines, we also evaluated the effect of exposure to hypoxia over 24 hours on apoptosis, cytotoxicity, and cytokine production. Teaching hospital based sleep unit and research laboratory. Thirty-three snorers were evaluated: 9 with no OSA (apnea-hypopnea frequency [AHI] < 5/h), 12 with mild-moderate OSA (AHI 5-30) and 12 with severe OSA (AHI > 30). Patients with severe OSA had considerably fewer iNKT cells (0.18%) compared to patients with mild-moderate (0.24%) or no OSA (0.35%), P = 0.0026. The frequency of iNKT cells correlated negatively with apnea-hypopnea index (r = -0.58, P = 0.001), oxygen desaturation index (r = -0.58, P = 0.0003), and SpO2% < 90% (r = -0.5407, P = 0.005). The frequency of iNKT cells increased following 12 months of nCPAP therapy (P = 0.015). Hypoxia resulted in increased apoptosis (P = 0.016) and impaired cytotoxicity (P = 0.035). Patients with obstructive sleep apnea (OSA) have significantly reduced levels of circulating invariant natural killer T (iNKT) cells and hypoxia leads to impaired iNKT cell function. These observations may partly explain the increased cancer risk reported in patients with OSA. © 2015 Associated Professional Sleep Societies, LLC.
Cymerblit-Sabba, Adi; Schiller, Yitzhak
2012-03-01
The prevailing view of epileptic seizures is that they are caused by increased hypersynchronous activity in the cortical network. However, this view is based mostly on electroencephalography (EEG) recordings that do not directly monitor neuronal synchronization of action potential firing. In this study, we used multielectrode single-unit recordings from the hippocampus to investigate firing of individual CA1 neurons and directly monitor synchronization of action potential firing between neurons during the different ictal phases of chemoconvulsant-induced epileptic seizures in vivo. During the early phase of seizures manifesting as low-amplitude rhythmic β-electrocorticography (ECoG) activity, the firing frequency of most neurons markedly increased. To our surprise, the average overall neuronal synchronization as measured by the cross-correlation function was reduced compared with control conditions with ~60% of neuronal pairs showing no significant correlated firing. However, correlated firing was not uniform and a minority of neuronal pairs showed a high degree of correlated firing. Moreover, during the early phase of seizures, correlated firing between 9.8 ± 5.1% of all stably recorded pairs increased compared with control conditions. As seizures progressed and high-frequency ECoG polyspikes developed, the firing frequency of neurons further increased and enhanced correlated firing was observed between virtually all neuronal pairs. These findings indicated that epileptic seizures represented a hyperactive state with widespread increase in action potential firing. Hypersynchrony also characterized seizures. However, it initially developed in a small subset of neurons and gradually spread to involve the entire cortical network only in the later more intense ictal phases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bu, Qingcui; Chen, Li; Belloni, T. M.
Using archival Rossi X-ray Timing Explorer ( RXTE ) data, we studied the low-frequency quasi-periodic oscillations (LFQPOs) in the neutron star low-mass X-ray binary (LMXB) Cir X-1 and examined their contribution to frequency–frequency correlations for Z sources. We also studied the orbital phase effects on the LFQPO properties and found them to be phase independent. Comparing LFQPO frequencies in different classes of LMXBs, we found that systems that show both Z and atoll states form a common track with atoll/BH sources in the so-called WK correlation, while persistent Z systems are offset by a factor of about two. We foundmore » that neither source luminosity nor mass accretion rate is related to the shift of persistent Z systems. We discuss the possibility of a misidentification of fundamental frequency for horizontal branch oscillations from persistent Z systems and interpreted the oscillations in terms of models based on relativistic precession.« less
Evolution of spatial and temporal correlations in the solar wind - Observations and interpretation
NASA Technical Reports Server (NTRS)
Klein, L. W.; Matthaeus, W. H.; Roberts, D. A.; Goldstein, M. L.
1992-01-01
Observations of solar wind magnetic field spectra from 1-22 AU indicate a distinctive structure in frequency which evolves with increasing heliocentric distance. At 1 AU extremely low frequency correlations are associated with temporal variations at the solar period and its first few harmonics. For periods of l2-96 hours, a l/f distribution is observed, which we interpret as an aggregate of uncorrelated coronal structures which have not dynamically interacted by 1 AU. At higher frequencies the familiar Kolmogorov-like power law is seen. Farther from the sun the frequency break point between the shallow l/f and the steeper Kolmogorov spectrum evolves systematically towards lower frequencies. We suggest that the Kolmogorov-like spectra emerge due to in situ turbulence that generates spatial correlations associated with the turbulent cascade and that the background l/f noise is a largely temporal phenomenon, not associated with in situ dynamical processes. In this paper we discuss these ideas from the standpoint of observations from several interplanetary spacecraft.
Temporal and Cross Correlations in Business News
NASA Astrophysics Data System (ADS)
Mizuno, T.; Takei, K.; Ohnishi, T.; Watanabe, T.
We empirically investigate temporal and cross correlations inthe frequency of news reports on companies, using a dataset of more than 100 million news articles reported in English by around 500 press agencies worldwide for the period 2003--2009. Our first finding is that the frequency of news reports on a company does not follow a Poisson process, but instead exhibits long memory with a positive autocorrelation for longer than one year. The second finding is that there exist significant correlations in the frequency of news across companies. Specifically, on a daily time scale or longer the frequency of news is governed by external dynamics, while on a time scale of minutes it is governed by internal dynamics. These two findings indicate that the frequency of news reports on companies has statistical properties similar to trading volume or price volatility in stock markets, suggesting that the flow of information through company news plays an important role in price dynamics in stock markets.
Kamp, Siri-Maria; Brumback, Ty; Donchin, Emanuel
2013-11-01
We examined the degree to which ERP components elicited by items that are isolated from their context, either by their font size ("size isolates") or by their frequency of usage, are correlated with subsequent immediate recall. Study lists contained (a) 15 words including a size isolate, (b) 14 high frequency (HF) words with one low frequency word ("LF isolate"), or (c) 14 LF words with one HF word. We used spatiotemporal PCA to quantify ERP components. We replicated previously reported P300 subsequent memory effects for size isolates and found additional correlations with recall in the novelty P3, a right lateralized positivity, and a left lateralized slow wave that was distinct from the slow wave correlated with recall for nonisolates. LF isolates also showed evidence of a P300 subsequent memory effect and also elicited the left lateralized subsequent memory effect, supporting a role of distinctiveness in word frequency effects in recall. Copyright © 2013 Society for Psychophysiological Research.
NASA Astrophysics Data System (ADS)
Dovlo, Edem; Lashkari, Bahman; Mandelis, Andreas
2016-03-01
Frequency-domain photoacoustic radar (FD-PAR) imaging of absorbers in turbid media and their comparison and/or validation as well as co-registration with their corresponding ultrasound (US) images are demonstrated in this paper. Also presented are the FD-PAR tomography and the effects of reducing the number of scan lines (or angles) on image quality, resolution, and contrast. The FD-PAR modality uses intensity-modulated (coded) continuous wave laser sources driven by frequency-swept (chirp) waveforms. The spatial cross-correlation function between the PA response and the reference signal used for laser source modulation produces the reconstructed image. Live animal testing is demonstrated, and images of comparable signal-to-noise ratio, contrast, and spatial resolution were obtained. Various image improvement techniques to further reduce absorber spread and artifacts in the images such as normalization, filtering, and amplification were also investigated. The co-registered image produced from the combined US and PA images provides more information than both images independently. The significance of this work lies in the fact that achieving PA imaging functionality on a commercial ultrasound instrument could accelerate its clinical acceptance and use. This work is aimed at functional PA imaging of small animals in vivo.
Tejani, Viral D; Abbas, Paul J; Brown, Carolyn J
This study investigates the relationship between electrophysiological and psychophysical measures of amplitude modulation (AM) detection. Prior studies have reported both measures of AM detection recorded separately from cochlear implant (CI) users and acutely deafened animals, but no study has made both measures in the same CI users. Animal studies suggest a progressive loss of high-frequency encoding as one ascends the auditory pathway from the auditory nerve to the cortex. Because the CI speech processor uses the envelope of an ongoing acoustic signal to modulate pulse trains that are subsequently delivered to the intracochlear electrodes, it is of interest to explore auditory nerve responses to modulated stimuli. In addition, psychophysical AM detection abilities have been correlated with speech perception outcomes. Thus, the goal was to explore how the auditory nerve responds to AM stimuli and to relate those physiologic measures to perception. Eight patients using Cochlear Ltd. Implants participated in this study. Electrically evoked compound action potentials (ECAPs) were recorded using a 4000 pps pulse train that was sinusoidally amplitude modulated at 125, 250, 500, and 1000 Hz rates. Responses were measured for each pulse over at least one modulation cycle for an apical, medial, and basal electrode. Psychophysical modulation detection thresholds (MDTs) were also measured via a three-alternative forced choice, two-down, one-up adaptive procedure using the same modulation frequencies and electrodes. ECAPs were recorded from individual pulses in the AM pulse train. ECAP amplitudes varied sinusoidally, reflecting the sinusoidal variation in the stimulus. A modulated response amplitude (MRA) metric was calculated as the difference in the maximal and minimum ECAP amplitudes over the modulation cycles. MRA increased as modulation frequency increased, with no apparent cutoff (up to 1000 Hz). In contrast, MDTs increased as the modulation frequency increased. This trend is inconsistent with the physiologic measures. For a fixed modulation frequency, correlations were observed between MDTs and MRAs; this trend was evident at all frequencies except 1000 Hz (although only statistically significant for 250 and 500 Hz AM rates), possibly an indication of central limitations in processing of high modulation frequencies. Finally, peripheral responses were larger and psychophysical thresholds were lower in the apical electrodes relative to basal and medial electrodes, which may reflect better cochlear health and neural survival evidenced by lower preoperative low-frequency audiometric thresholds and steeper growth of neural responses in ECAP amplitude growth functions for apical electrodes. Robust ECAPs were recorded for all modulation frequencies tested. ECAP amplitudes varied sinusoidally, reflecting the periodicity of the modulated stimuli. MRAs increased as the modulation frequency increased, a trend we attribute to neural adaptation. For low modulation frequencies, there are multiple current steps between the peak and valley of the modulation cycle, which means successive stimuli are more similar to one another and neural responses are more likely to adapt. Higher MRAs were correlated with lower psychophysical thresholds at low modulation frequencies but not at 1000 Hz, implying a central limitation to processing of modulated stimuli.
Lexical Influences on Spoken Spondaic Word Recognition in Hearing-Impaired Patients
Moulin, Annie; Richard, Céline
2015-01-01
Top-down contextual influences play a major part in speech understanding, especially in hearing-impaired patients with deteriorated auditory input. Those influences are most obvious in difficult listening situations, such as listening to sentences in noise but can also be observed at the word level under more favorable conditions, as in one of the most commonly used tasks in audiology, i.e., repeating isolated words in silence. This study aimed to explore the role of top-down contextual influences and their dependence on lexical factors and patient-specific factors using standard clinical linguistic material. Spondaic word perception was tested in 160 hearing-impaired patients aged 23–88 years with a four-frequency average pure-tone threshold ranging from 21 to 88 dB HL. Sixty spondaic words were randomly presented at a level adjusted to correspond to a speech perception score ranging between 40 and 70% of the performance intensity function obtained using monosyllabic words. Phoneme and whole-word recognition scores were used to calculate two context-influence indices (the j factor and the ratio of word scores to phonemic scores) and were correlated with linguistic factors, such as the phonological neighborhood density and several indices of word occurrence frequencies. Contextual influence was greater for spondaic words than in similar studies using monosyllabic words, with an overall j factor of 2.07 (SD = 0.5). For both indices, context use decreased with increasing hearing loss once the average hearing loss exceeded 55 dB HL. In right-handed patients, significantly greater context influence was observed for words presented in the right ears than for words presented in the left, especially in patients with many years of education. The correlations between raw word scores (and context influence indices) and word occurrence frequencies showed a significant age-dependent effect, with a stronger correlation between perception scores and word occurrence frequencies when the occurrence frequencies were based on the years corresponding to the patients' youth, showing a “historic” word frequency effect. This effect was still observed for patients with few years of formal education, but recent occurrence frequencies based on current word exposure had a stronger influence for those patients, especially for younger ones. PMID:26778945
Normal forms for reduced stochastic climate models
Majda, Andrew J.; Franzke, Christian; Crommelin, Daan
2009-01-01
The systematic development of reduced low-dimensional stochastic climate models from observations or comprehensive high-dimensional climate models is an important topic for atmospheric low-frequency variability, climate sensitivity, and improved extended range forecasting. Here techniques from applied mathematics are utilized to systematically derive normal forms for reduced stochastic climate models for low-frequency variables. The use of a few Empirical Orthogonal Functions (EOFs) (also known as Principal Component Analysis, Karhunen–Loéve and Proper Orthogonal Decomposition) depending on observational data to span the low-frequency subspace requires the assessment of dyad interactions besides the more familiar triads in the interaction between the low- and high-frequency subspaces of the dynamics. It is shown below that the dyad and multiplicative triad interactions combine with the climatological linear operator interactions to simultaneously produce both strong nonlinear dissipation and Correlated Additive and Multiplicative (CAM) stochastic noise. For a single low-frequency variable the dyad interactions and climatological linear operator alone produce a normal form with CAM noise from advection of the large scales by the small scales and simultaneously strong cubic damping. These normal forms should prove useful for developing systematic strategies for the estimation of stochastic models from climate data. As an illustrative example the one-dimensional normal form is applied below to low-frequency patterns such as the North Atlantic Oscillation (NAO) in a climate model. The results here also illustrate the short comings of a recent linear scalar CAM noise model proposed elsewhere for low-frequency variability. PMID:19228943
An underestimated role of precipitation frequency in regulating summer soil moisture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Chaoyang; Chen, Jing M.; Pumpanen, Jukka
2012-04-26
Soil moisture induced droughts are expected to become more frequent under future global climate change. Precipitation has been previously assumed to be mainly responsible for variability in summer soil moisture. However, little is known about the impacts of precipitation frequency on summer soil moisture, either interannually or spatially. To better understand the temporal and spatial drivers of summer drought, 415 site yr measurements observed at 75 flux sites world wide were used to analyze the temporal and spatial relationships between summer soil water content (SWC) and the precipitation frequencies at various temporal scales, i.e., from half-hourly, 3, 6, 12 andmore » 24 h measurements. Summer precipitation was found to be an indicator of interannual SWC variability with r of 0.49 (p < 0.001) for the overall dataset. However, interannual variability in summer SWC was also significantly correlated with the five precipitation frequencies and the sub-daily precipitation frequencies seemed to explain the interannual SWC variability better than the total of precipitation. Spatially, all these precipitation frequencies were better indicators of summer SWC than precipitation totals, but these better performances were only observed in non-forest ecosystems. Our results demonstrate that precipitation frequency may play an important role in regulating both interannual and spatial variations of summer SWC, which has probably been overlooked or underestimated. However, the spatial interpretation should carefully consider other factors, such as the plant functional types and soil characteristics of diverse ecoregions.« less
Prado, Laura de Godoy Rousseff; Bicalho, Isabella Carolina Santos; Vidigal-Lopes, Mauro; Prado, Vitor de Godoy Rousseff; Gomez, Rodrigo Santiago; de Souza, Leonardo Cruz; Teixeira, Antônio Lúcio
2017-01-01
ABSTRACT Objective To investigate the frequency of anxiety and depression and their association with clinical features of amyotrophic lateral sclerosis. Methods This is a cross-sectional and descriptive study including a consecutive series of patients with sporadic amyotrophic lateral sclerosis according to Awaji’s criteria. Patients underwent clinical and psychiatric assessment (anxiety and depression symptoms). Results We included 76 patients. The men/women ratio was 1.6:1. Participants’ mean age at disease onset was 55 years (SD±12.1). Sixty-six patients (86.8%) were able to complete psychiatric evaluation. Clinically significant anxiety was found in 23 patients (34.8%) while clinically significant depression was found in 24 patients (36.4%). When we compared patients with and without depression a significant difference was seen only in the frequency of anxiety symptoms (p<0.001). We did further analysis comparing subgroups of patients classified according to the presence or not of anxiety and or depression, without any significant difference regarding sex, age at onset, initial form, disease duration or functional measures. A positive correlation between anxiety and depressive symptoms was found (p<0.001). Conclusion Anxiety and depressive symptoms were highly correlated and frequent in patients with amyotrophic lateral sclerosis. In addition, anxiety and depression were not associated with disease duration and presentation, sex, age at onset, and functional score. PMID:28444090
Extracting a shape function for a signal with intra-wave frequency modulation.
Hou, Thomas Y; Shi, Zuoqiang
2016-04-13
In this paper, we develop an effective and robust adaptive time-frequency analysis method for signals with intra-wave frequency modulation. To handle this kind of signals effectively, we generalize our data-driven time-frequency analysis by using a shape function to describe the intra-wave frequency modulation. The idea of using a shape function in time-frequency analysis was first proposed by Wu (Wu 2013 Appl. Comput. Harmon. Anal. 35, 181-199. (doi:10.1016/j.acha.2012.08.008)). A shape function could be any smooth 2π-periodic function. Based on this model, we propose to solve an optimization problem to extract the shape function. By exploring the fact that the shape function is a periodic function with respect to its phase function, we can identify certain low-rank structure of the signal. This low-rank structure enables us to extract the shape function from the signal. Once the shape function is obtained, the instantaneous frequency with intra-wave modulation can be recovered from the shape function. We demonstrate the robustness and efficiency of our method by applying it to several synthetic and real signals. One important observation is that this approach is very stable to noise perturbation. By using the shape function approach, we can capture the intra-wave frequency modulation very well even for noise-polluted signals. In comparison, existing methods such as empirical mode decomposition/ensemble empirical mode decomposition seem to have difficulty in capturing the intra-wave modulation when the signal is polluted by noise. © 2016 The Author(s).
Modeling Fractal Structure of City-Size Distributions Using Correlation Functions
Chen, Yanguang
2011-01-01
Zipf's law is one the most conspicuous empirical facts for cities, however, there is no convincing explanation for the scaling relation between rank and size and its scaling exponent. Using the idea from general fractals and scaling, I propose a dual competition hypothesis of city development to explain the value intervals and the special value, 1, of the power exponent. Zipf's law and Pareto's law can be mathematically transformed into one another, but represent different processes of urban evolution, respectively. Based on the Pareto distribution, a frequency correlation function can be constructed. By scaling analysis and multifractals spectrum, the parameter interval of Pareto exponent is derived as (0.5, 1]; Based on the Zipf distribution, a size correlation function can be built, and it is opposite to the first one. By the second correlation function and multifractals notion, the Pareto exponent interval is derived as [1, 2). Thus the process of urban evolution falls into two effects: one is the Pareto effect indicating city number increase (external complexity), and the other the Zipf effect indicating city size growth (internal complexity). Because of struggle of the two effects, the scaling exponent varies from 0.5 to 2; but if the two effects reach equilibrium with each other, the scaling exponent approaches 1. A series of mathematical experiments on hierarchical correlation are employed to verify the models and a conclusion can be drawn that if cities in a given region follow Zipf's law, the frequency and size correlations will follow the scaling law. This theory can be generalized to interpret the inverse power-law distributions in various fields of physical and social sciences. PMID:21949753
NASA Astrophysics Data System (ADS)
Wang, Y. L.; Yeh, T. C. J.; Wen, J. C.
2017-12-01
This study is to investigate the ability of river stage tomography to estimate the spatial distribution of hydraulic transmissivity (T), storage coefficient (S), and diffusivity (D) in groundwater basins using information of groundwater level variations induced by periodic variations of stream stage, and infiltrated flux from the stream boundary. In order to accomplish this objective, the sensitivity and correlation of groundwater heads with respect to the hydraulic properties is first conducted to investigate the spatial characteristics of groundwater level in response to the stream variations at different frequencies. Results of the analysis show that the spatial distributions of the sensitivity of heads at an observation well in response to periodic river stage variations are highly correlated despite different frequencies. On the other hand, the spatial patterns of the sensitivity of the observed head to river flux boundaries at different frequencies are different. Specifically, the observed head is highly correlated with T at the region between the stream and observation well when the high-frequency periodic flux is considered. On the other hand, it is highly correlated with T at the region between monitoring well and the boundary opposite to the stream when the low-frequency periodic flux is prescribed to the stream. We also find that the spatial distributions of the sensitivity of observed head to S variation are highly correlated with all frequencies in spite of heads or fluxes stream boundary. Subsequently, the differences of the spatial correlations of the observed heads to the hydraulic properties under the head and flux boundary conditions are further investigated by an inverse model (i.e., successive stochastic linear estimator). This investigation uses noise-free groundwater and stream data of a synthetic aquifer, where aquifer heterogeneity is known exactly. The ability of river stage tomography is then tested with these synthetic data sets to estimate T, S, and D distribution. The results reveal that boundary flux variations with different frequencies contain different information about the aquifer characteristics while the head boundary does not.
NASA Astrophysics Data System (ADS)
Constantoudis, Vassilios; Papavieros, George; Lorusso, Gian; Rutigliani, Vito; Van Roey, Frieda; Gogolides, Evangelos
2018-03-01
The aim of this paper is to investigate the role of etch transfer in two challenges of LER metrology raised by recent evolutions in lithography: the effects of SEM noise and the cross-line and edge correlations. The first comes from the ongoing scaling down of linewidths, which dictates SEM imaging with less scanning frames to reduce specimen damage and hence with more noise. During the last decade, it has been shown that image noise can be an important budget of the measured LER while systematically affects and alter the PSD curve of LER at high frequencies. A recent method for unbiased LER measurement is based on the systematic Fourier or correlation analysis to decompose the effects of noise from true LER (Fourier-Correlation filtering method). The success of the method depends on the PSD and HHCF curve. Previous experimental and model works have revealed that etch transfer affects the PSD of LER reducing its high frequency values. In this work, we estimate the noise contribution to the biased LER through PSD flat floor at high frequencies and relate it with the differences between the PSDs of lithography and etched LER. Based on this comparison, we propose an improvement of the PSD/HHCF-based method for noise-free LER measurement to include the missed high frequency real LER. The second issue is related with the increased density of lithographic patterns and the special characteristics of DSA and MP lithography patterns exhibits. In a previous work, we presented an enlarged LER characterization methodology for such patterns, which includes updated versions of the old metrics along with new metrics defined and developed to capture cross-edge and cross-line correlations. The fundamental concept has been the Line Center Roughness (LCR), the edge c-factor and the line c-factor correlation function and length quantifying the line fluctuations and the extent of cross-edge and cross-line correlations. In this work, we focus on the role of etch steps on cross-edge and line correlation metrics in SAQP data. We find that the spacer etch steps reduce edge correlations while etch steps with pattern transfer increase these. Furthermore, the density doubling and quadrupling increase edge correlations as well as cross-line correlations.
Investigating the effects of nitrous oxide sedation on frontal-parietal interactions.
Ryu, Ji-Ho; Kim, Pil-Jong; Kim, Hong-Gee; Koo, Yong-Seo; Shin, Teo Jeon
2017-06-09
Although functional connectivity has received considerable attention in the study of consciousness, few studies have investigated functional connectivity limited to the sedated state where consciousness is maintained but impaired. The aim of the present study was to investigate changes in functional connectivity of the parietal-frontal network resulting from nitrous oxide-induced sedation, and to determine the neural correlates of cognitive impairment during consciousness transition states. Electroencephalography was acquired from healthy adult patients who underwent nitrous oxide inhalation to induce cognitive impairment, and was analyzed using Granger causality (GC). Periods of awake, sedation and recovery for GC between frontal and parietal areas in the delta, theta, alpha, beta, gamma and total frequency bands were obtained. The Friedman test with post-hoc analysis was conducted for GC values of each period for comparison. As a sedated state was induced by nitrous oxide inhalation, power in the low frequency band showed increased activity in frontal regions that was reversed with discontinuation of nitrous oxide. Feedback and feedforward connections analyzed in spectral GC were changed differently in accordance with EEG frequency bands in the sedated state by nitrous oxide administration. Calculated spectral GC of the theta, alpha, and beta frequency regions in the parietal-to-frontal direction was significantly decreased in the sedated state while spectral GC in the reverse direction did not show significant change. Frontal-parietal functional connectivity is significantly affected by nitrous oxide inhalation. Significantly decreased parietal-to-frontal interaction may induce a sedated state. Copyright © 2017 Elsevier B.V. All rights reserved.
Grant, Wally; Curthoys, Ian
2017-09-01
Vestibular otolithic organs are recognized as transducers of head acceleration and they function as such up to their corner frequency or undamped natural frequency. It is well recognized that these organs respond to frequencies above their corner frequency up to the 2-3 kHz range (Curthoys et al., 2016). A mechanics model for the transduction of these organs is developed that predicts the response below the undamped natural frequency as an accelerometer and above that frequency as a seismometer. The model is converted to a transfer function using hair cell bundle deflection. Measured threshold acceleration stimuli are used along with threshold deflections for threshold transfer function values. These are compared to model predicted values, both below and above their undamped natural frequency. Threshold deflection values are adjusted to match the model transfer function. The resulting threshold deflection values were well within in measure threshold bundle deflection ranges. Vestibular Evoked Myogenic Potentials (VEMPs) today routinely uses stimulus frequencies of 500 and 1000 Hz, and otoliths have been established incontrovertibly by clinical and neural evidence as the stimulus source. The mechanism for stimulus at these frequencies above the undamped natural frequency of otoliths is presented where otoliths are utilizing a seismometer mode of response for VEMP transduction. Copyright © 2017 Elsevier B.V. All rights reserved.
A model for studying the energetics of sustained high frequency firing
Morris, Catherine E.
2018-01-01
Regulating membrane potential and synaptic function contributes significantly to the energetic costs of brain signaling, but the relative costs of action potentials (APs) and synaptic transmission during high-frequency firing are unknown. The continuous high-frequency (200-600Hz) electric organ discharge (EOD) of Eigenmannia, a weakly electric fish, underlies its electrosensing and communication. EODs reflect APs fired by the muscle-derived electrocytes of the electric organ (EO). Cholinergic synapses at the excitable posterior membranes of the elongated electrocytes control AP frequency. Based on whole-fish O2 consumption, ATP demand per EOD-linked AP increases exponentially with AP frequency. Continual EOD-AP generation implies first, that ion homeostatic processes reliably counteract any dissipation of posterior membrane ENa and EK and second that high frequency synaptic activation is reliably supported. Both of these processes require energy. To facilitate an exploration of the expected energy demands of each, we modify a previous excitability model and include synaptic currents able to drive APs at frequencies as high as 600 Hz. Synaptic stimuli are modeled as pulsatile cation conductance changes, with or without a small (sustained) background conductance. Over the full species range of EOD frequencies (200–600 Hz) we calculate frequency-dependent “Na+-entry budgets” for an electrocyte AP as a surrogate for required 3Na+/2K+-ATPase activity. We find that the cost per AP of maintaining constant-amplitude APs increases nonlinearly with frequency, whereas the cost per AP for synaptic input current is essentially constant. This predicts that Na+ channel density should correlate positively with EOD frequency, whereas AChR density should be the same across fish. Importantly, calculated costs (inferred from Na+-entry through Nav and ACh channels) for electrocyte APs as frequencies rise are much less than expected from published whole-fish EOD-linked O2 consumption. For APs at increasingly high frequencies, we suggest that EOD-related costs external to electrocytes (including packaging of synaptic transmitter) substantially exceed the direct cost of electrocyte ion homeostasis. PMID:29708986
Improved Characterization of Far-Regional and Near-Teleseismic Phases Observed in Central Asia
2010-07-02
Pn/P travel-time residuals as a function of epicentral distance. To generate this figure, we retrieved International Seismic Centre (ISC) bulletins...spectral frequency-wave number methods (e.g., Capon, 1969), multiple signal characteristic ( MUSIC ; Stoica and Nehorai, 1989), cross-correlation (Tibuleac...root and cross-correlation implementations. Methods such as MUSIC do not suffer these limitations and can perform well on far-regional arrivals
Frequency modulation detection in cochlear implant subjects
NASA Astrophysics Data System (ADS)
Chen, Hongbin; Zeng, Fan-Gang
2004-10-01
Frequency modulation (FM) detection was investigated in acoustic and electric hearing to characterize cochlear-implant subjects' ability to detect dynamic frequency changes and to assess the relative contributions of temporal and spectral cues to frequency processing. Difference limens were measured for frequency upward sweeps, downward sweeps, and sinusoidal FM as a function of standard frequency and modulation rate. In electric hearing, factors including electrode position and stimulation level were also studied. Electric hearing data showed that the difference limen increased monotonically as a function of standard frequency regardless of the modulation type, the modulation rate, the electrode position, and the stimulation level. In contrast, acoustic hearing data showed that the difference limen was nearly a constant as a function of standard frequency. This difference was interpreted to mean that temporal cues are used only at low standard frequencies and at low modulation rates. At higher standard frequencies and modulation rates, the reliance on the place cue is increased, accounting for the better performance in acoustic hearing than for electric hearing with single-electrode stimulation. The present data suggest a speech processing strategy that encodes slow frequency changes using lower stimulation rates than those typically employed by contemporary cochlear-implant speech processors. .
1981-10-07
new instrument (cf. Fig. 1) is simply a four - quadrant ring-diode multi- 5 plier (Fig. 2). The reference frequency (RF) and local oscillator (LO) inputs...movement, and scan speed of the corner-cube. Other Components. A rotating-sector chopper modulates the laser pulse train at a frequency of approximately 50...the cross-correlation experiment. In this application, the detection bandpass is simply displaced from DC to the chopper frequency; problems arising
Chinese translation norms for 1,429 English words.
Wen, Yun; van Heuven, Walter J B
2017-06-01
We present Chinese translation norms for 1,429 English words. Chinese-English bilinguals (N = 28) were asked to provide the first Chinese translation that came to mind for 1,429 English words. The results revealed that 71 % of the English words received more than one correct translation indicating the large amount of translation ambiguity when translating from English to Chinese. The relationship between translation ambiguity and word frequency, concreteness and language proficiency was investigated. Although the significant correlations were not strong, results revealed that English word frequency was positively correlated with the number of alternative translations, whereas English word concreteness was negatively correlated with the number of translations. Importantly, regression analyses showed that the number of Chinese translations was predicted by word frequency and concreteness. Furthermore, an interaction between these predictors revealed that the number of translations was more affected by word frequency for more concrete words than for less concrete words. In addition, mixed-effects modelling showed that word frequency, concreteness and English language proficiency were all significant predictors of whether or not a dominant translation was provided. Finally, correlations between the word frequencies of English words and their Chinese dominant translations were higher for translation-unambiguous pairs than for translation-ambiguous pairs. The translation norms are made available in a database together with lexical information about the words, which will be a useful resource for researchers investigating Chinese-English bilingual language processing.
Cho, Mi Sook; Kim, Miseon
2014-01-01
BACKGROUND A higher frequency of family meals is associated with good dietary habits in young people. This study focused on the relationships of family meal frequency with food neophobia and personality traits in adolescents. SUBJECTS/METHOD For this purpose, we administered a survey to 495 middle school students in Seoul metropolitan city, after which the data were analyzed using the SPSS (18.0) program. Pearson correlation was used to determine the relationships among dietary habits, personality traits, and food neophobia according to frequency of family meals. RESULTS Dietary habits, personality traits, and food neophobia all showed significant differences according to the frequency of family meals. Further, eating regular family meals was associated with good dietary habits (P < 0.001) and was linked with improved extraversion, agreeableness, conscientiousness, emotional stability, and openness/intellect (P < 0.001). On the other hand, it showed a negative relationship with food neophobia (P < 0.001). The relationship between dietary habits and food neophobia showed a negative correlation (P < 0.01). The relationship between dietary habits and personality traits showed a positive correlation (P < 0.01). Lastly, the relationship between personality traits and food neophobia showed a negative correlation (P < 0.01). CONCLUSION Based on the results of the study, the frequency of family meals affects dietary habits, personality traits, and food neophobia in adolescents. PMID:25110570
Hong, Jui-Yang; Kilpatrick, Lisa A.; Labus, Jennifer; Gupta, Arpana; Jiang, Zhiguo; Ashe-McNalley, Cody; Stains, Jean; Heendeniya, Nuwanthi; Ebrat, Bahar; Smith, Suzanne; Tillisch, Kirsten; Naliboff, Bruce
2013-01-01
Abnormal responses of the brain to delivered and expected aversive gut stimuli have been implicated in the pathophysiology of irritable bowel syndrome (IBS), a visceral pain syndrome occurring more commonly in women. Task-free resting-state functional magnetic resonance imaging (fMRI) can provide information about the dynamics of brain activity that may be involved in altered processing and/or modulation of visceral afferent signals. Fractional amplitude of low-frequency fluctuation is a measure of the power spectrum intensity of spontaneous brain oscillations. This approach was used here to identify differences in the resting-state activity of the human brain in IBS subjects compared with healthy controls (HCs) and to identify the role of sex-related differences. We found that both the female HCs and female IBS subjects had a frequency power distribution skewed toward high frequency to a greater extent in the amygdala and hippocampus compared with male subjects. In addition, female IBS subjects had a frequency power distribution skewed toward high frequency in the insula and toward low frequency in the sensorimotor cortex to a greater extent than male IBS subjects. Correlations were observed between resting-state blood oxygen level-dependent signal dynamics and some clinical symptom measures (e.g., abdominal discomfort). These findings provide the first insight into sex-related differences in IBS subjects compared with HCs using resting-state fMRI. PMID:23864686
Multivariate spatial models of excess crash frequency at area level: case of Costa Rica.
Aguero-Valverde, Jonathan
2013-10-01
Recently, areal models of crash frequency have being used in the analysis of various area-wide factors affecting road crashes. On the other hand, disease mapping methods are commonly used in epidemiology to assess the relative risk of the population at different spatial units. A natural next step is to combine these two approaches to estimate the excess crash frequency at area level as a measure of absolute crash risk. Furthermore, multivariate spatial models of crash severity are explored in order to account for both frequency and severity of crashes and control for the spatial correlation frequently found in crash data. This paper aims to extent the concept of safety performance functions to be used in areal models of crash frequency. A multivariate spatial model is used for that purpose and compared to its univariate counterpart. Full Bayes hierarchical approach is used to estimate the models of crash frequency at canton level for Costa Rica. An intrinsic multivariate conditional autoregressive model is used for modeling spatial random effects. The results show that the multivariate spatial model performs better than its univariate counterpart in terms of the penalized goodness-of-fit measure Deviance Information Criteria. Additionally, the effects of the spatial smoothing due to the multivariate spatial random effects are evident in the estimation of excess equivalent property damage only crashes. Copyright © 2013 Elsevier Ltd. All rights reserved.
Florin, Esther; Baillet, Sylvain
2015-01-01
Functional imaging of the resting brain consistently reveals broad motifs of correlated blood oxygen level dependent (BOLD) activity that engage cerebral regions from distinct functional systems. Yet, the neurophysiological processes underlying these organized, large-scale fluctuations remain to be uncovered. Using magnetoencephalography (MEG) imaging during rest in 12 healthy subjects we analyse the resting state networks and their underlying neurophysiology. We first demonstrate non-invasively that cortical occurrences of high-frequency oscillatory activity are conditioned to the phase of slower spontaneous fluctuations in neural ensembles. We further show that resting-state networks emerge from synchronized phase-amplitude coupling across the brain. Overall, these findings suggest a unified principle of local-to-global neural signaling for long-range brain communication. PMID:25680519
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Wenhu; Kotliar, Gabriel; Tsvelik, Alexei M.
Dynamical mean-field theory is used to study the quantum critical point (QCP) in the doped Hubbard model on a square lattice. We characterize the QCP by a universal scaling form of the self-energy and a spin density wave instability at an incommensurate wave vector. The scaling form unifies the low-energy kink and the high-energy waterfall feature in the spectral function, while the spin dynamics includes both the critical incommensurate and high-energy antiferromagnetic paramagnons. Here, we use the frequency-dependent four-point correlation function of spin operators to calculate the momentum-dependent correction to the electron self-energy. Furthermore, by comparing with the calculations basedmore » on the spin-fermion model, our results indicate the frequency dependence of the quasiparticle-paramagnon vertices is an important factor to capture the momentum dependence in quasiparticle scattering.« less
Construction of a Magnetic Induction Antenna to Detect Schumann Resonances
NASA Astrophysics Data System (ADS)
Fernald, Trevr; Bowers, Alexis; Cossel, Raquel; McIntyre, Maxwell; Reid, John, , Dr.
2016-03-01
An antenna was designed and built to detect magnetic field changes in the form of Schumann resonances. This was done in hopes of eventually being able to correlate data with sprite occurrence. A square loop was constructed with one meter sides using 2x4s and was wrapped with six hundred turns of 0.2mm thick copper wire. The antenna was tested in a rural location in northern Pennsylvania, chosen for its isolation and expectations of low electrical noise. Detected signals were filtered using a band-pass filter and observed using an oscilloscope. The signal had too much interference to make it possible to see any unmistakably Schumann character, but a Fourier Transform function made it possible to see the contribution of each component frequency to the overall interference. This function revealed possible presence of Schumann character in the signal, indicating mostly 2nd and 3rd mode Schumann frequencies. The fundamental mode may have been observed as well, but was less consistent and pronounced than the other frequencies. The performance of the filter was somewhat questionable and electrical noise was evident, so further experimentation is necessary.
Brauer, Jens; Xiao, Yaqiong; Poulain, Tanja; Friederici, Angela D; Schirmer, Annett
2016-08-01
Previous behavioral research points to a positive relationship between maternal touch and early social development. Here, we explored the brain correlates of this relationship. The frequency of maternal touch was recorded for 43 five-year-old children during a 10 min standardized play session. Additionally, all children completed a resting-state functional magnetic resonance imaging session. Investigating the default mode network revealed a positive relation between the frequency of maternal touch and activity in the right posterior superior temporal sulcus (pSTS) extending into the temporo-parietal junction. Using this effect as a seed in a functional connectivity analysis identified a network including extended bilateral regions along the temporal lobe, bilateral frontal cortex, and left insula. Compared with children with low maternal touch, children with high maternal touch showed additional connectivity with the right dorso-medial prefrontal cortex. Together these results support the notion that childhood tactile experiences shape the developing "social brain" with a particular emphasis on a network involved in mentalizing. © The Author 2016. Published by Oxford University Press.
Wavelet-based group and phase velocity measurements: Method
NASA Astrophysics Data System (ADS)
Yang, H. Y.; Wang, W. W.; Hung, S. H.
2016-12-01
Measurements of group and phase velocities of surface waves are often carried out by applying a series of narrow bandpass or stationary Gaussian filters localized at specific frequencies to wave packets and estimating the corresponding arrival times at the peak envelopes and phases of the Fourier spectra. However, it's known that seismic waves are inherently nonstationary and not well represented by a sum of sinusoids. Alternatively, a continuous wavelet transform (CWT) which decomposes a time series into a family of wavelets, translated and scaled copies of a generally fast oscillating and decaying function known as the mother wavelet, is capable of retaining localization in both the time and frequency domain and well-suited for the time-frequency analysis of nonstationary signals. Here we develop a wavelet-based method to measure frequency-dependent group and phase velocities, an essential dataset used in crust and mantle tomography. For a given time series, we employ the complex morlet wavelet to obtain the scalogram of amplitude modulus |Wg| and phase φ on the time-frequency plane. The instantaneous frequency (IF) is then calculated by taking the derivative of phase with respect to time, i.e., (1/2π)dφ(f, t)/dt. Time windows comprising strong energy arrivals to be measured can be identified by those IFs close to the frequencies with the maximum modulus and varying smoothly and monotonically with time. The respective IFs in each selected time window are further interpolated to yield a smooth branch of ridge points or representative IFs at which the arrival time, tridge(f), and phase, φridge(f), after unwrapping and correcting cycle skipping based on a priori knowledge of the possible velocity range, are determined for group and phase velocity estimation. We will demonstrate our measurement method using both ambient noise cross correlation functions and multi-mode surface waves from earthquakes. The obtained dispersion curves will be compared with those by a conventional narrow bandpass method.
Importance of strong-correlation on the lattice dynamics of light-actinides Th-Pa alloy
NASA Astrophysics Data System (ADS)
de La Peã+/-A Seaman, Omar; Heid, Rolf; Bohnen, Klaus-Peter
We have studied the structural, electronic, and lattice dynamics of the Th1-xPax actinide alloy. This system have been analyzed within the framework of density functional perturbation theory, using a mixed-basis pseudopotential method and the virtual crystal approximation (VCA) for modeling the alloy. In particular, the energetics is analyzed as the ground-state crystal structure is changed form fcc to bct, as well as the electronic density of states (DOS), and the phonon frequencies. Such properties have been calculated with and without strong correlations effects through the LDA+U formalism. Although the strong-correlation does not influence on a great manner the Th properties, such effects are more important as the content increases towards Pa, affecting even the definition of the ground-state crystal structure for Pa (experimentally determined as bct). The evolution of the density of states at the Fermi level (N (EF)) and the phonon frequencies as a function of Pa-content are presented and discussed in detail, aiming to understand their influence on the electron-phonon coupling for the Th-Pa alloy. This research was supported by Conacyt-México under project No. CB2013-221807-F.
The isolation of low frequency impact sounds in hotel construction
NASA Astrophysics Data System (ADS)
LoVerde, John J.; Dong, David W.
2002-11-01
One of the design challenges in the acoustical design of hotels is reducing low frequency sounds from footfalls occurring on both carpeted and hard-surfaced floors. Research on low frequency impact noise [W. Blazier and R. DuPree, J. Acoust. Soc. Am. 96, 1521-1532 (1994)] resulted in a conclusion that in wood construction low frequency impact sounds were clearly audible and that feasible control methods were not available. The results of numerous FIIC (Field Impact Insulation Class) measurements performed in accordance with ASTM E1007 indicate the lack of correlation between FIIC ratings and the reaction of occupants in the room below. The measurements presented include FIIC ratings and sound pressure level measurements below the ASTM E1007 low frequency limit of 100 Hertz, and reveal that excessive sound levels in the frequency range of 63 to 100 Hertz correlate with occupant complaints. Based upon this history, a tentative criterion for maximum impact sound level in the low frequency range is presented. The results presented of modifying existing constructions to reduce the transmission of impact sounds at low frequencies indicate that there may be practical solutions to this longstanding problem.
Low frequency noise elimination technique for 24-bit Σ-Δ data acquisition systems.
Qu, Shao-Bo; Robert, Olivier; Lognonné, Philippe; Zhou, Ze-Bing; Yang, Shan-Qing
2015-03-01
Low frequency 1/f noise is one of the key limiting factors of high precision measurement instruments. In this paper, digital correlated double sampling is implemented to reduce the offset and low frequency 1/f noise of a data acquisition system with 24-bit sigma delta (Σ-Δ) analog to digital converter (ADC). The input voltage is modulated by cross-coupled switches, which are synchronized to the sampling clock, and converted into digital signal by ADC. By using a proper switch frequency, the unwanted parasitic signal frequencies generated by the switches are avoided. The noise elimination processing is made through the principle of digital correlated double sampling, which is equivalent to a time shifted subtraction for the sampled voltage. The low frequency 1/f noise spectrum density of the data acquisition system is reduced to be flat down to the measurement frequency lower limit, which is about 0.0001 Hz in this paper. The noise spectrum density is eliminated by more than 60 dB at 0.0001 Hz, with a residual noise floor of (9 ± 2) nV/Hz(1/2) which is limited by the intrinsic white noise floor of the ADC above its corner frequency.
Brötzner, Christina P; Klimesch, Wolfgang; Doppelmayr, Michael; Zauner, Andrea; Kerschbaum, Hubert H
2014-08-19
Ongoing intrinsic brain activity in resting, but awake humans is dominated by alpha oscillations. In human, individual alpha frequency (IAF) is associated with cognitive performance. Noticeable, performance in cognitive and emotional tasks in women is associated with menstrual cycle phase and sex hormone levels, respectively. In the present study, we correlated frequency of alpha oscillation in resting women with menstrual cycle phase, sex hormone level, or use of oral contraceptives. Electroencephalogram (EEG) was recorded from 57 women (aged 24.07 ± 3.67 years) having a natural menstrual cycle as well as from 57 women (aged 22.37 ± 2.20 years) using oral contraceptives while they sat in an armchair with eyes closed. Alpha frequency was related to the menstrual cycle phase. Luteal women showed highest and late follicular women showed lowest IAF or center frequency. Furthermore, IAF as well as center frequency correlated negatively with endogenous estradiol level, but did not reveal an association with endogenous progesterone. Women using oral contraceptives showed an alpha frequency similar to women in the early follicular phase. We suggest that endogenous estradiol modulate resting alpha frequency. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
Noise correlations in cosmic microwave background experiments
NASA Technical Reports Server (NTRS)
Dodelson, Scott; Kosowsky, Arthur; Myers, Steven T.
1995-01-01
Many analysis of microwave background experiments neglect the correlation of noise in different frequency of polarization channels. We show that these correlations, should they be present, can lead to serve misinterpretation of an experiment. In particular, correlated noise arising from either electronics or atmosphere may mimic a cosmic signal. We quantify how the likelihood function for a given experiment varies with noise correlation, using both simple analytic models and actual data. For a typical microwave background anisotropy experiment, noise correlations at the level of 1% of the overall noise can seriously reduce the significance of a given detection.
Non-Stationary Effects and Cross Correlations in Solar Activity
NASA Astrophysics Data System (ADS)
Nefedyev, Yuri; Panischev, Oleg; Demin, Sergey
2016-07-01
In this paper within the framework of the Flicker-Noise Spectroscopy (FNS) we consider the dynamic properties of the solar activity by analyzing the Zurich sunspot numbers. As is well-known astrophysics objects are the non-stationary open systems, whose evolution are the quite individual and have the alternation effects. The main difference of FNS compared to other related methods is the separation of the original signal reflecting the dynamics of solar activity into three frequency bands: system-specific "resonances" and their interferential contributions at lower frequencies, chaotic "random walk" ("irregularity-jump") components at larger frequencies, and chaotic "irregularity-spike" (inertial) components in the highest frequency range. Specific parameters corresponding to each of the bands are introduced and calculated. These irregularities as well as specific resonance frequencies are considered as the information carriers on every hierarchical level of the evolution of a complex natural system with intermittent behavior, consecutive alternation of rapid chaotic changes in the values of dynamic variables on small time intervals with small variations of the values on longer time intervals ("laminar" phases). The jump and spike irregularities are described by power spectra and difference moments (transient structural functions) of the second order. FNS allows revealing the most crucial points of the solar activity dynamics by means of "spikiness" factor. It is shown that this variable behaves as the predictor of crucial changes of the sunspot number dynamics, particularly when the number comes up to maximum value. The change of averaging interval allows revealing the non-stationary effects depending by 11-year cycle and by inside processes in a cycle. To consider the cross correlations between the different variables of solar activity we use the Zurich sunspot numbers and the sequence of corona's radiation energy. The FNS-approach allows extracting the information about cross correlation dynamics between the signals from separate points of the studied system. The 3D cross correlators and their plain projections allow revealing the periodic laws of solar evolution. Work was supported by grants RFBR 15-02-01638-a and 16-02-00496-a.
Effects of onboard insecticide use on airline flight attendants.
Kilburn, Kaye H
2004-06-01
Flight attendants (FAs) exposed to insecticide spray in an aircraft were compared with unexposed subjects for neurobehavioral function, pulmonary function, mood states, and symptoms. The 33 symptomatic FAs were self-selected, and 5 had retired for disability. Testing procedures included balance, reaction time, color discrimination, visual fields, grip strength, verbal recall, problem solving, attention and discrimination functions, and long-term memory functions. Measurements were expressed as a percentage of their predicted values (derived from unexposed controls), and the author compared the means of the percentage predicted values by analysis of variance. Symptom frequencies and Profile of Mood States (POMS) scores were assessed. FAs were significantly more impaired than controls with respect to balance with eyes closed, grip strength, and color discrimination. Nearly half had 3 or more abnormal neurobehavioral functions, after adjustment was made for age, sex, and education level. Neither elevated POMS scores nor frequencies of average symptoms correlated with their numbers of abnormal measurements. Occupational exposure to synthetic pyrethrin insecticides on airliners was associated with neurobehavioral impairment and disability retirement.
Physical practice is associated with less functional disability in medical students with migraine.
Domingues, Renan B; Teixeira, Antônio Lúcio; Domingues, Simone A
2011-02-01
The aim of this study was to investigate possible association between migraine and physical practice among 480 medical students who were submitted to a questionnaire about headaches and physical practices. Migraine diagnosis was assessed by ID-Migraine and functional disability was evaluated with MIDAS. The type (aerobic or strength training), the weekly frequency and the intensity of physical practice and body mass index (BMI) were assessed. There was a reduction in functional disability of migraine in students reporting physical practice (no physical practice - MIDAS=8.81±1.40, physical practice - MIDAS=15.49±1.78; P=0.03). Frequency, intensity, and type of physical practices were not associated with functional impact of migraine. BMI did not correlate with migraine impact (normal weight - MIDAS=12.34±1.33, overweight or obese - MIDAS=17.45±3.86; P=0.33). These results were confirmed by multivariate analysis. Our data suggest that physical practice is inversely related with functional disability of migraine in university students regardless of BMI.
Kolotilova, O I; Pavlenko, V B; Koreniuk, I I; Kulychenko, O M; Fokina, Iu O
2007-01-01
Correlative interconnections between frequency of impulse activity of aminergic neurons and neocortex electrical activity during action of bemitil (50 mg/kg) were investigated in 5 cats. It was shown that bemitil affects correlations between frequency of impulses of aminergic neurons and electrical activity of neocortex.
An unscaled quantum mechanical harmonic force field for p-benzoquinone
NASA Astrophysics Data System (ADS)
Nonella, Marco; Tavan, Paul
1995-10-01
Structure and harmonic vibrational frequencies of p-benzoquinone have been calculated using quantum chemical ab initio and density functional methods. Our calculations show that a satisfactory description of fundamentals and normal mode compositions is achieved upon consideration of correlation effects by means of Møller-Plesset perturbation expansion (MP2) or by density functional theory (DFT). Furthermore, for correct prediction of CO bondlength and force constant, basis sets augmented by polarization functions are required. Applying such basis sets, MP2 and DFT calculations both give results which are generally in reasonable agreement with experimental data. The quantitatively better agreement, however, is achieved with the computationally less demanding DFT method. This method particularly allows very precise prediction of the experimentally important absorptions in the frequency region between 1500 and 1800 cm -1 and of the isotopic shifts of these vibrations due to 13C or 18O substitution.
NASA Astrophysics Data System (ADS)
Czymzik, M.; Muscheler, R.; Brauer, A.
2015-10-01
Solar influences on climate variability are one of the most controversially discussed topics in climate research. We analyze solar forcing of flood frequency in Central Europe on inter-annual to millennial time-scales using daily discharge data of River Ammer (southern Germany) back to AD 1926 and revisiting the 5500 year flood layer time-series from varved sediments of the downstream Lake Ammersee. Flood frequency in the discharge record is significantly correlated to changes in solar activity during solar cycles 16-23 (r = -0.47, p < 0.0001, n = 73). Flood layer frequency (n = 1501) in the sediment record depicts distinct multi-decadal variability and significant correlations to 10Be fluxes from a Greenland ice core (r = 0.45, p < 0.0001) and 14C production rates (r =0.36, p < 0.0001), proxy records of solar activity. Flood frequency is higher when solar activity is reduced. These correlations between flood frequency and solar activity might provide empirical support for the solar top-down mechanism expected to modify the mid-latitude storm tracks over Europe by model studies. A lag of flood frequency responses in the Ammer discharge record to changes in solar activity of about one to three years could be explained by a modelled ocean-atmosphere feedback delaying the atmospheric reaction to solar activity variations up to a few years.
Kapucu, Fikret E.; Välkki, Inkeri; Mikkonen, Jarno E.; Leone, Chiara; Lenk, Kerstin; Tanskanen, Jarno M. A.; Hyttinen, Jari A. K.
2016-01-01
Synchrony and asynchrony are essential aspects of the functioning of interconnected neuronal cells and networks. New information on neuronal synchronization can be expected to aid in understanding these systems. Synchronization provides insight in the functional connectivity and the spatial distribution of the information processing in the networks. Synchronization is generally studied with time domain analysis of neuronal events, or using direct frequency spectrum analysis, e.g., in specific frequency bands. However, these methods have their pitfalls. Thus, we have previously proposed a method to analyze temporal changes in the complexity of the frequency of signals originating from different network regions. The method is based on the correlation of time varying spectral entropies (SEs). SE assesses the regularity, or complexity, of a time series by quantifying the uniformity of the frequency spectrum distribution. It has been previously employed, e.g., in electroencephalogram analysis. Here, we revisit our correlated spectral entropy method (CorSE), providing evidence of its justification, usability, and benefits. Here, CorSE is assessed with simulations and in vitro microelectrode array (MEA) data. CorSE is first demonstrated with a specifically tailored toy simulation to illustrate how it can identify synchronized populations. To provide a form of validation, the method was tested with simulated data from integrate-and-fire model based computational neuronal networks. To demonstrate the analysis of real data, CorSE was applied on in vitro MEA data measured from rat cortical cell cultures, and the results were compared with three known event based synchronization measures. Finally, we show the usability by tracking the development of networks in dissociated mouse cortical cell cultures. The results show that temporal correlations in frequency spectrum distributions reflect the network relations of neuronal populations. In the simulated data, CorSE unraveled the synchronizations. With the real in vitro MEA data, CorSE produced biologically plausible results. Since CorSE analyses continuous data, it is not affected by possibly poor spike or other event detection quality. We conclude that CorSE can reveal neuronal network synchronization based on in vitro MEA field potential measurements. CorSE is expected to be equally applicable also in the analysis of corresponding in vivo and ex vivo data analysis. PMID:27803660
Liang, Xia; Wang, Jinhui; Yan, Chaogan; Shu, Ni; Xu, Ke; Gong, Gaolang; He, Yong
2012-01-01
Graph theoretical analysis of brain networks based on resting-state functional MRI (R-fMRI) has attracted a great deal of attention in recent years. These analyses often involve the selection of correlation metrics and specific preprocessing steps. However, the influence of these factors on the topological properties of functional brain networks has not been systematically examined. Here, we investigated the influences of correlation metric choice (Pearson's correlation versus partial correlation), global signal presence (regressed or not) and frequency band selection [slow-5 (0.01–0.027 Hz) versus slow-4 (0.027–0.073 Hz)] on the topological properties of both binary and weighted brain networks derived from them, and we employed test-retest (TRT) analyses for further guidance on how to choose the “best” network modeling strategy from the reliability perspective. Our results show significant differences in global network metrics associated with both correlation metrics and global signals. Analysis of nodal degree revealed differing hub distributions for brain networks derived from Pearson's correlation versus partial correlation. TRT analysis revealed that the reliability of both global and local topological properties are modulated by correlation metrics and the global signal, with the highest reliability observed for Pearson's-correlation-based brain networks without global signal removal (WOGR-PEAR). The nodal reliability exhibited a spatially heterogeneous distribution wherein regions in association and limbic/paralimbic cortices showed moderate TRT reliability in Pearson's-correlation-based brain networks. Moreover, we found that there were significant frequency-related differences in topological properties of WOGR-PEAR networks, and brain networks derived in the 0.027–0.073 Hz band exhibited greater reliability than those in the 0.01–0.027 Hz band. Taken together, our results provide direct evidence regarding the influences of correlation metrics and specific preprocessing choices on both the global and nodal topological properties of functional brain networks. This study also has important implications for how to choose reliable analytical schemes in brain network studies. PMID:22412922
Different responses of spontaneous and stimulus-related alpha activity to ambient luminance changes.
Benedetto, Alessandro; Lozano-Soldevilla, Diego; VanRullen, Rufin
2017-12-04
Alpha oscillations are particularly important in determining our percepts and have been implicated in fundamental brain functions. Oscillatory activity can be spontaneous or stimulus-related. Furthermore, stimulus-related responses can be phase- or non-phase-locked to the stimulus. Non-phase-locked (induced) activity can be identified as the average amplitude changes in response to a stimulation, while phase-locked activity can be measured via reverse-correlation techniques (echo function). However, the mechanisms and the functional roles of these oscillations are far from clear. Here, we investigated the effect of ambient luminance changes, known to dramatically modulate neural oscillations, on spontaneous and stimulus-related alpha. We investigated the effect of ambient luminance on EEG alpha during spontaneous human brain activity at rest (experiment 1) and during visual stimulation (experiment 2). Results show that spontaneous alpha amplitude increased by decreasing ambient luminance, while alpha frequency remained unaffected. In the second experiment, we found that under low-luminance viewing, the stimulus-related alpha amplitude was lower, and its frequency was slightly faster. These effects were evident in the phase-locked part of the alpha response (echo function), but weaker or absent in the induced (non-phase-locked) alpha responses. Finally, we explored the possible behavioural correlates of these modulations in a monocular critical flicker frequency task (experiment 3), finding that dark adaptation in the left eye decreased the temporal threshold of the right eye. Overall, we found that ambient luminance changes impact differently on spontaneous and stimulus-related alpha expression. We suggest that stimulus-related alpha activity is crucial in determining human temporal segmentation abilities. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Yang, Xiao-Yan; Long, Li-Li; Xiao, Bo
2016-07-01
To investigate the effects of temporal lobe epilepsy and idiopathic epilepsy on cognitive function and emotion in children and the risk factors for cognitive impairment. A retrospective analysis was performed for the clinical data of 38 children with temporal lobe epilepsy and 40 children with idiopathic epilepsy. The controls were 42 healthy children. All subjects received the following neuropsychological tests: Montreal Cognitive Assessment (MoCA) scale, verbal fluency test, digit span test, block design test, Social Anxiety Scale for Children (SASC), and Depression Self-rating Scale for Children (DSRSC). Compared with the control group, the temporal lobe epilepsy and idiopathic epilepsy groups showed significantly lower scores of MoCA, verbal fluency, digit span, and block design (P<0.05) and significantly higher scores on SASC and DSRSC (P<0.05). Compared with the idiopathic epilepsy group, the temporal lobe epilepsy group showed significantly lower scores of MoCA, verbal fluency, digit span, and block design (P<0.05) and significantly higher scores on SASC and DSRSC (P<0.05). In the temporal lobe epilepsy group, MoCA score was negatively correlated with SASC score, DSRSC score, and seizure frequency (r=-0.571, -0.529, and -0.545 respectively; P<0.01). In the idiopathic epilepsy group, MoCA score was also negatively correlated with SASC score, DSRSC score, and seizure frequency (r=-0.542, -0.487, and -0.555 respectively; P<0.01). Children with temporal lobe epilepsy and idiopathic epilepsy show impaired whole cognition, verbal fluency, memory, and executive function and have anxiety and depression, which are more significant in children with temporal lobe epilepsy. High levels of anxiety, depression, and seizure frequency are risk factors for impaired cognitive function.
Yang, Yang; Xiao, Li; Qu, Wenzhong; Lu, Ye
2017-11-01
Recent theoretical and experimental studies have demonstrated that a local Green's function can be retrieved from the cross-correlation of ambient noise field. This technique can be used to detect fatigue cracking in metallic structures, owing to the fact that the presence of crack can lead to a change in Green's function. This paper presents a method of structural fatigue cracking characterization method by measuring Green's function reconstruction from noise excitation and verifies the feasibility of crack detection in poor noise source distribution. Fatigue cracks usually generate nonlinear effects, in which different wave amplitudes and frequency compositions can cause different nonlinear responses. This study also undertakes analysis of the capacity of the proposed approach to identify fatigue cracking under different noise amplitudes and frequency ranges. Experimental investigations of an aluminum plate are conducted to assess the cross-correlations of received noise between sensor pairs and finally to detect the introduced fatigue crack. A damage index is proposed according to the variation between cross-correlations obtained from the pristine crack closed state and the crack opening-closure state when sufficient noise amplitude is used to generate nonlinearity. A probability distribution map of damage is calculated based on damage indices. The fatigue crack introduced in the aluminum plate is successfully identified and oriented, verifying that a fatigue crack can be detected by reconstructing Green's functions from an imperfect diffuse field in which ambient noise sources exist locally. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Shaposhnikov, Nickolai; Titarchuk, Lev
2006-01-01
We present timing and spectral analysis of approx. 2.2 Ms of Rossi X-ray Time Explorer (RXTE) archival data from Cyg X-1. Using the generic Comptonization model we reveal that the spectrum of Cyg X-1 consists of three components: a thermal seed photon spectrum, a Comptonized part of the seed photon spectrum and the iron line. We find a strong correlation between 0.1-20 Hz frequencies of quasiperiodic oscillations (QPOs) and the spectral power-law index. Presence of two spectral phases (states) are clearly seen in the data when the spectral indices saturate at low and high values of QPO frequencies. This saturation effect was discovered earlier in a number of black hole candidate (BHC) sources and now we strongly confirm this phenomenon in Cyg X-1. In the soft state this index- QPO frequency correlation shows a saturation of the photon index Gamma approx. 2.1 at high values of the low frequency upsilon(sub L). The saturation level of Gamma approx. 2.1 is the lowest value found yet in BHCs. The bolometric luminosity does not show clear correlation with the index. We also show that Fe K(sub alpha) emission line strength (equivalent width, EW) correlates with the QPO frequency. EW increases from 200 eV in the low/hard state to 1.5 keV in the high/soft state. The revealed observational correlations allow us to propose a scenario for the spectral transition and iron line formation which occur in BHC sources. We also present the spectral state (the power-law index) evolution for eight years of Cyg X-1 observations by RXTE.
NASA Astrophysics Data System (ADS)
Li, Xuebao; Wang, Jing; Li, Yinfei; Zhang, Qian; Lu, Tiebing; Cui, Xiang
2018-06-01
Corona-generated audible noise is induced by the collisions between space charges and air molecules. It has been proven that there is a close correlation between audible noise and corona current from DC corona discharge. Analysis on the correlation between audible noise and corona current can promote the cognition of the generation mechanism of corona discharge. In this paper, time-domain waveforms of AC corona-generated audible noise and corona current are measured simultaneously. The one-to-one relationship between sound pressure pulses and corona current pulses can be found and is used to remove the interferences from background noise. After the interferences are removed, the linear correlated relationships between sound pressure pulse amplitude and corona current pulse amplitude are obtained through statistical analysis. Besides, frequency components at the harmonics of power frequency (50 Hz) can be found both in the frequency spectrums of audible noise and corona current through frequency analysis. Furthermore, the self-correlation relationships between harmonic components below 400 Hz with the 50 Hz component are analyzed for audible noise and corona current and corresponding empirical formulas are proposed to calculate the harmonic components based on the 50 Hz component. Finally, based on the AC corona discharge process and generation mechanism of audible noise and corona current, the correlation between audible noise and corona current in time domain and frequency domain are interpreted qualitatively. Besides, with the aid of analytical expressions of periodic square waves, sound pressure pulses, and corona current pulses, the modulation effects from the AC voltage on the pulse trains are used to interpret the generation of the harmonic components of audible noise and corona current.
Narsale, Aditi; Moya, Rosita; Robertson, Hannah Kathryn; Davies, Joanna Davida
2016-09-01
Partial remission in patients newly diagnosed with type 1 diabetes is a period of good glucose control that can last from several weeks to over a year. The clinical significance of the remission period is that patients might be more responsive to immunotherapy if treated within this period. This article provides clinical data that indicates the level of glucose control and insulin-secreting β-cell function of each patient in the study at baseline (within 3 months of diagnosis), and at 3, 6, 9, 12, 18 and 24 months post-baseline. The relative frequency of immune cell subsets in the PBMC of each patient and the association between the frequency of immune cell subsets measured and length of remission is also shown. These data support the findings reported in the accompanying publication, "A pilot study showing associations between frequency of CD4+ memory cell subsets at diagnosis and duration of partial remission in type 1 diabetes" (Moya et al., 2016) [1], where a full interpretation, including biological relevance of the study can be found.
Chabli, A; Guitton, D; Fortin, S; Molotchnikoff, S
2000-03-01
The present study examined, in the superior colliculus (SC) of anaesthetised cats, the functional connectivity between superficial-layer neurones (SLNs) and tectoreticular neurones (TRNs: collicular output cells). TRNs were antidromically identified by electrical stimulation of the predorsal bundle. The auto- and cross-correlation histograms of visual responses of both types of neurones were recorded and analysed. A delayed, sharp peak in cross-correlograms allowed us to verify whether SLN and TRN cells were coupled; in addition, oscillatory activities were compared to verify if rhythmic responses of SLN sites were transmitted to TRN sites. We found that oscillatory activity was rarely observed in spontaneous activity of superficial (1/74) and TRN sites (1/48). Moving light bars induced oscillation in 31% (23/74) of the superficial-layer and in 23% (11/48) of the TRN sites. The strength of the rhythmic responses was determined by specific ranges of stimulus velocity in 83% (19/23) and 64% (7/11) of oscillating SLN and TRN sites, respectively. Frequencies of oscillations ranged between 5 and 125 Hz and were confined, for 53% of the cells, to the 5-20 Hz band. Thus, the band-width of frequencies of the stimulus-related oscillations in the superior colliculus was broader than the gamma range. Analysis of cross-correlation histograms revealed a significant predominant peak with a mean delay of 2.7+/-0.9 ms in 46% (17/37) of SLN-TRN pairs. Most correlated SLN-TRN pairs (88%: 15/17) had superimposed receptive fields, suggesting they were functionally interconnected. However, individual oscillatory frequencies of correlated and oscillatory SLN and TRN cells were never the same (0/8). Together, these results suggest that the neurones in collicular superficial layer contact TRNs and, consequently, support the idea that the superficial layers contribute to collicular outputs producing eye- and head-orienting movements.
Nozaradan, Sylvie; Peretz, Isabelle; Keller, Peter E.
2016-01-01
The current study aims at characterizing the mechanisms that allow humans to entrain the mind and body to incoming rhythmic sensory inputs in real time. We addressed this unresolved issue by examining the relationship between covert neural processes and overt behavior in the context of musical rhythm. We measured temporal prediction abilities, sensorimotor synchronization accuracy and neural entrainment to auditory rhythms as captured using an EEG frequency-tagging approach. Importantly, movement synchronization accuracy with a rhythmic beat could be explained by the amplitude of neural activity selectively locked with the beat period when listening to the rhythmic inputs. Furthermore, stronger endogenous neural entrainment at the beat frequency was associated with superior temporal prediction abilities. Together, these results reveal a direct link between cortical and behavioral measures of rhythmic entrainment, thus providing evidence that frequency-tagged brain activity has functional relevance for beat perception and synchronization. PMID:26847160
Nozaradan, Sylvie; Peretz, Isabelle; Keller, Peter E
2016-02-05
The current study aims at characterizing the mechanisms that allow humans to entrain the mind and body to incoming rhythmic sensory inputs in real time. We addressed this unresolved issue by examining the relationship between covert neural processes and overt behavior in the context of musical rhythm. We measured temporal prediction abilities, sensorimotor synchronization accuracy and neural entrainment to auditory rhythms as captured using an EEG frequency-tagging approach. Importantly, movement synchronization accuracy with a rhythmic beat could be explained by the amplitude of neural activity selectively locked with the beat period when listening to the rhythmic inputs. Furthermore, stronger endogenous neural entrainment at the beat frequency was associated with superior temporal prediction abilities. Together, these results reveal a direct link between cortical and behavioral measures of rhythmic entrainment, thus providing evidence that frequency-tagged brain activity has functional relevance for beat perception and synchronization.
Holographic imaging based on time-domain data of natural-fiber-containing materials
Bunch, Kyle J.; McMakin, Douglas L.
2012-09-04
Methods and apparatuses for imaging material properties in natural-fiber-containing materials can utilize time-domain data. In particular, images can be constructed that provide quantified measures of localized moisture content. For example, one or more antennas and at least one transceiver can be configured to collect time-domain data from radiation interacting with the natural-fiber-containing materials. The antennas and the transceivers are configured to transmit and receive electromagnetic radiation at one or more frequencies, which are between 50 MHz and 1 THz, according to a time-domain impulse function. A computing device is configured to transform the time-domain data to frequency-domain data, to apply a synthetic imaging algorithm for constructing a three-dimensional image of the natural-fiber-containing materials, and to provide a quantified measure of localized moisture content based on a pre-determined correlation of moisture content to frequency-domain data.
Rogers, D W; Baker, R H; Chapman, T; Denniff, M; Pomiankowski, A; Fowler, K
2005-05-01
Traditionally it was thought that fitness-related traits such as male mating frequency, with a history of strong directional selection, should have little additive genetic variance and thus respond asymmetrically to bidirectional artificial selection. However, recent findings and theory suggest that a balance between selection for increased male mating frequency and opposing selection pressures on physiologically linked traits will cause male mating frequency to have high additive genetic variation and hence respond symmetrically to selection. We tested these hypotheses in the stalk-eyed fly, Cyrtodiopsis dalmanni, in which males hold harems comprising many females and so have the opportunity to mate at extremely high frequencies. We subjected male stalk-eyed flies to artificial selection for increased ('high') and decreased ('low') mating frequency in the presence of ecologically realistic, high numbers of females. High line males mated significantly more often than control or low line males. The direct response to selection was approximately symmetric in the high and low lines, revealing high additive genetic variation for, and no significant genetic constraints on, increased male mating frequency in C. dalmanni. In order to investigate trade-offs that might constrain male mating frequency under natural conditions we examined correlated responses to artificial selection. We measured accessory gland length, testis length and eyespan after 7 and 14 generations of selection. High line males had significantly larger accessory glands than low line males. No consistent correlated responses to selection were found in testis length or eyespan. Our results suggest that costs associated with the production and maintenance of large accessory glands, although yet to be identified, are likely to be a major constraint on mating frequency in natural populations of C. dalmanni.