Sample records for fresh surface waters

  1. Estimated water use in Puerto Rico, 2000

    USGS Publications Warehouse

    Molina-Rivera, Wanda L.

    2005-01-01

    Water-use data were compiled for the 78 municipios of the Commonwealth of Puerto Rico for 2000. Five offstream categories were considered: public-supply water withdrawals, domestic self-supplied water use, industrial self-supplied withdrawals, crop irrigation water use, and thermoelectric power fresh water use. Two additional categories also were considered: power generation instream use and public wastewater treatment return-flows. Fresh water withdrawals for offstream use from surface- and ground-water sources in Puerto Rico were estimated at 617 million gallons per day. The largest amount of fresh water withdrawn was by public-supply water facilities and was estimated at 540 million gallons per day. Fresh surface- and ground-water withdrawals by domestic self-supplied users was estimated at 2 million gallons per day and the industrial self-supplied withdrawals were estimated at 9.5 million gallons per day. Withdrawals for crop irrigation purposes were estimated at 64 million gallons per day, or approximately 10 percent of all offstream fresh water withdrawals. Saline instream surface-water withdrawals for cooling purposes by thermoelectric power facilities was estimated at 2,191 million gallons per day, and instream fresh water withdrawals by hydroelectric facilities at 171 million gallons per day. Total discharge from public wastewater treatment facilities was estimated at 211 million gallons per day.

  2. Review: Impacts of permafrost degradation on inorganic chemistry of surface fresh water

    NASA Astrophysics Data System (ADS)

    Colombo, Nicola; Salerno, Franco; Gruber, Stephan; Freppaz, Michele; Williams, Mark; Fratianni, Simona; Giardino, Marco

    2018-03-01

    Recent studies have shown that climate change is impacting the inorganic chemical characteristics of surface fresh water in permafrost areas and affecting aquatic ecosystems. Concentrations of major ions (e.g., Ca2 +, Mg2 +, SO42 -, NO3-) can increase following permafrost degradation with associated deepening of flow pathways and increased contributions of deep groundwater. In addition, thickening of the active layer and melting of near-surface ground ice can influence inorganic chemical fluxes from permafrost into surface water. Permafrost degradation has also the capability to modify trace element (e.g., Ni, Mn, Al, Hg, Pb) contents in surface water. Although several local and regional modifications of inorganic chemistry of surface fresh water have been attributed to permafrost degradation, a comprehensive review of the observed changes is lacking. The goal of this paper is to distil insight gained across differing permafrost settings through the identification of common patterns in previous studies, at global scale. In this review we focus on three typical permafrost configurations (pervasive permafrost degradation, thermokarst, and thawing rock glaciers) as examples and distinguish impacts on (i) major ions and (ii) trace elements. Consequences of warming climate have caused spatially-distributed progressive increases of major ion and trace element delivery to surface fresh water in both polar and mountain areas following pervasive permafrost degradation. Moreover, localised releases of major ions and trace elements to surface water due to the liberation of soluble materials sequestered in permafrost and ground ice have been found in ice-rich terrains both at high latitude (thermokarst features) and high elevation (rock glaciers). Further release of solutes and related transport to surface fresh water can be expected under warming climatic conditions. However, complex interactions among several factors able to influence the timing and magnitude of the impacts of permafrost degradation on inorganic chemistry of surface fresh water (e.g., permafrost sensitivity to thawing, modes of permafrost degradation, characteristics of watersheds) require further conceptual and mechanistic understanding together with quantitative diagnosis of the involved mechanisms in order to predict future changes with confidence.

  3. Melting icebergs to produce fresh water and mechanical energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Camirand, W.M.; Hautala, E.; Randall, J.M.

    1981-10-20

    Fresh water and mechanical energy are obtained from melting of icebergs. Warm surface seawater is contacted with a fluid, which is vaporized. The resulting vapor is used to generate mechanical energy and then is condensed by contacting it with cold melt water from the iceberg. The fluid is regenerated with a concomitant elevation in the temperature of the melt water. The warmer melt water is cycled to the body of the iceberg to facilitate its melting and produce additional cold melt water, which is apportioned as fresh water and water cycled to condense the aforesaid vapor. In an alternate embodimentmore » of the invention warm seawater is evaporated at reduced pressure. Mechanical energy is generated from the vapor, which is then condensed by direct and intimate contact with cold melt water from the iceberg. The resultant fresh water is a mixture of condensed vapor and melt water from the iceberg and has a temperature greater than the cold melt water. This fresh water mixture is contacted with the body of the iceberg to further melt it; part of the cold melt water is separated as fresh water and the remainder is cycled for use in condensing the vapor from the warm surface seawater.« less

  4. Water withdrawals, use, discharge, and trends in Florida, 1995

    USGS Publications Warehouse

    Marella, R.L.

    1999-01-01

    In 1995, the total amount of water withdrawn in Florida was nearly 18,200 million gallons per day (Mgal/d), of which 60 percent was saline and 40 percent was freshwater. Ground water accounted for 60 percent of freshwater withdrawals and surface water accounted for the remaining 40 percent. Ninety-three percent of the 14.15 million people in Florida relied on ground water for their drinking water needs in 1995. Almost all (99.9 percent) saline water withdrawals were from surface water. Public supply accounted for 43 percent of ground water withdrawn in 1995, followed by agricultural self-supplied (35 percent), commercial-industrial self-supplied (including mining) (10 percent), domestic self-supplied (7 percent), recreational irrigation (4.5 percent), and power generation (0.5 percent). Agricultural self-supplied accounted for 60 percent of fresh surface water withdrawn in 1995, followed by power generation (21 percent), commercial-industrial self-supplied (9 percent), public supply (7 percent), and recreational irrigation (3 percent). Almost all of saline water withdrawn was used for power generation. The largest amount of freshwater was withdrawn in Palm Beach County and the largest amount of saline water was withdrawn in Hillsborough County. Significant withdrawals (more than 200 Mgal/d) of fresh ground water occurred in Dade, Broward, Polk, Orange, and Palm Beach Counties. Significant withdrawals (more than 200 Mgal/d) of fresh surface water occurred in Palm Beach, Hendry, and St. Lucie Counties. The South Florida Water Management District accounted for the largest amount of freshwater withdrawn (nearly 50 percent). About 57 percent of the total ground water withdrawn was from the Floridan aquifer system; 20 percent was from the Biscayne aquifer. Most of the surface water used in Florida was from managed and maintained canal systems or large water bodies. Major sources of fresh surface water include the Caloosahatchee River, Deer Point Lake, Hillsborough River, Lake Apopka, Lake Okeechobee and associated canals, and the St. Johns River. Freshwater withdrawals increased nearly 29 percent in Florida between 1970 and 1995. Ground-water withdrawals increased 56 percent, and surface-water withdrawals increased 2 percent during this period. Between 1990 and 1995, freshwater withdrawals decreased 5 percent. Fresh ground-water withdrawals decreased 7 percent, and fresh surface-water withdrawals decreased 1 percent during this period. Saline water withdrawals increased 13 percent between 1970 and 1995, and increased 6 percent between 1990 and 1995. An estimated 39 percent of the freshwater withdrawn in Florida was consumed; the remaining 61 percent was returned for use again. Wastewater discharged from the 615 treatment facilities inventoried in 1995 totaled 1,836 Mgal/d, of which 84 percent was from domestic wastewater facilities and the remaining 16 percent was from industrial facilities. Domestic wastewater discharge increased 37 percent between 1985 and 1995, while industrial wastewater discharge increased 7 percent during this period.

  5. River Plumes in Sunglint, Sarawak, Borneo

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The sunglint pattern along the coast of Sarawak (3.0N, 111.5E) delineates the boundry of fresh water river plumes as they flow into the South China Sea. The fresh water lens (boundry between fresh and sea water) overides the saline and more dense sea water and oils, both natural and man made, collect along the convergence zones and dampen wave action. As a result, the smoother sea surface appears bright in the sunglint pattern.

  6. Northern Regions of Russia as Alternative Sources of Pure Water for Sustainable Development: Challenges and Solutions

    NASA Astrophysics Data System (ADS)

    Tsukerman, V. A.; Gudkov, A. V.; Ivanov, S. V.

    The paper discusses problems associated with the existing crisis of water scarcity in the modern conditions of the global water use. Available alternative sources of fresh water may be underground and surface waters of the North and the Arctic. Investigated the current situation and condition of fresh water resources in the technological and industrial development of the North and Arctic. The necessity of developing and using green technologies and measures to prevent pollution of surface and ground water from industrial sectors of the Northern regions is shown. Studied modern technologies and techniques for monitoring groundwater and determination of their age in order to avoid and prevent the effects of environmental contaminants. The ways of use of innovative production technologies of fresh and clean water of north Russia for sustainable development, and delivery of water in the needy regions of the world are investigated.

  7. Estimated Water Flows in 2005: United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, C A; Belles, R D; Simon, A J

    2011-03-16

    Flow charts depicting water use in the United States have been constructed from publicly available data and estimates of water use patterns. Approximately 410,500 million gallons per day of water are managed throughout the United States for use in farming, power production, residential, commercial, and industrial applications. Water is obtained from four major resource classes: fresh surface-water, saline (ocean) surface-water, fresh groundwater and saline (brackish) groundwater. Water that is not consumed or evaporated during its use is returned to surface bodies of water. The flow patterns are represented in a compact 'visual atlas' of 52 state-level (all 50 states inmore » addition to Puerto Rico and the Virgin Islands) and one national water flow chart representing a comprehensive systems view of national water resources, use, and disposition.« less

  8. Toward an Improved Understanding of the Global Fresh Water Budget

    NASA Technical Reports Server (NTRS)

    Hildebrand, Peter H.

    2005-01-01

    The major components of the global fresh water cycle include the evaporation from the land and ocean surfaces, precipitation onto the Ocean and land surfaces, the net atmospheric transport of water from oceanic areas over land, and the return flow of water from the land back into the ocean. The additional components of oceanic water transport are few, principally, the mixing of fresh water through the oceanic boundary layer, transport by ocean currents, and sea ice processes. On land the situation is considerably more complex, and includes the deposition of rain and snow on land; water flow in runoff; infiltration of water into the soil and groundwater; storage of water in soil, lakes and streams, and groundwater; polar and glacial ice; and use of water in vegetation and human activities. Knowledge of the key terms in the fresh water flux budget is poor. Some components of the budget, e.g. precipitation, runoff, storage, are measured with variable accuracy across the globe. We are just now obtaining precise measurements of the major components of global fresh water storage in global ice and ground water. The easily accessible fresh water sources in rivers, lakes and snow runoff are only adequately measured in the more affluent portions of the world. presents proposals are suggesting methods of making global measurements of these quantities from space. At the same time, knowledge of the global fresh water resources under the effects of climate change is of increasing importance and the human population grows. This paper provides an overview of the state of knowledge of the global fresh water budget, evaluating the accuracy of various global water budget measuring and modeling techniques. We review the measurement capabilities of satellite instruments as compared with field validation studies and modeling approaches. Based on these analyses, and on the goal of improved knowledge of the global fresh water budget under the effects of climate change, we suggest priorities for future improvements in global fresh water budget monitoring. The priorities are based on the potential of new approaches to provide improved measurement and modeling systems, and on the need to measure and understand the potential for a speed-up of the global water cycle under the effects of climate change.

  9. Stratigraphic controls on fluid and solute fluxes across the sediment-water interface of an estuary

    USGS Publications Warehouse

    Sawyer, Audrey H.; Lazareva, Olesya; Kroeger, Kevin D.; Crespo, Kyle; Chan, Clara S.; Stieglitz, Thomas; Michael, Holly A.

    2014-01-01

    Shallow stratigraphic features, such as infilled paleovalleys, modify fresh groundwater discharge to coastal waters and fluxes of saltwater and nutrients across the sediment–water interface. We quantify the spatial distribution of shallow surface water–groundwater exchange and nitrogen fluxes near a paleovalley in Indian River Bay, Delaware, using a hand resistivity probe, conventional seepage meters, and pore-water samples. In the interfluve (region outside the paleovalley) most nitrate-rich fresh groundwater discharges rapidly near the coast with little mixing of saline pore water, and nitrogen transport is largely conservative. In the peat-filled paleovalley, fresh groundwater discharge is negligible, and saltwater exchange is deep (∼1 m). Long pore-water residence times and abundant sulfate and organic matter promote sulfate reduction and ammonium production in shallow sediment. Reducing, iron-rich fresh groundwater beneath paleovalley peat discharges diffusely around paleovalley margins offshore. In this zone of diffuse fresh groundwater discharge, saltwater exchange and dispersion are enhanced, ammonium is produced in shallow sediments, and fluxes of ammonium to surface water are large. By modifying patterns of groundwater discharge and the nature of saltwater exchange in shallow sediments, paleovalleys and other stratigraphic features influence the geochemistry of discharging groundwater. Redox reactions near the sediment–water interface affect rates and patterns of geochemical fluxes to coastal surface waters. For example, at this site, more than 99% of the groundwater-borne nitrate flux to the Delaware Inland Bays occurs within the interfluve portion of the coastline, and more than 50% of the ammonium flux occurs at the paleovalley margin.

  10. Finite-difference model to simulate the areal flow of saltwater and fresh water separated by an interface

    USGS Publications Warehouse

    Mercer, James W.; Larson, S.P.; Faust, Charles R.

    1980-01-01

    Model documentation is presented for a two-dimensional (areal) model capable of simulating ground-water flow of salt water and fresh water separated by an interface. The partial differential equations are integrated over the thicknesses of fresh water and salt water resulting in two equations describing the flow characteristics in the areal domain. These equations are approximated using finite-difference techniques and the resulting algebraic equations are solved for the dependent variables, fresh water head and salt water head. An iterative solution method was found to be most appropriate. The program is designed to simulate time-dependent problems such as those associated with the development of coastal aquifers, and can treat water-table conditions or confined conditions with steady-state leakage of fresh water. The program will generally be most applicable to the analysis of regional aquifer problems in which the zone between salt water and fresh water can be considered a surface (sharp interface). Example problems and a listing of the computer code are included. (USGS).

  11. Mapping water availability, cost and projected consumptive use in the eastern United States with comparisons to the west

    NASA Astrophysics Data System (ADS)

    Tidwell, Vincent C.; Moreland, Barbie D.; Shaneyfelt, Calvin R.; Kobos, Peter

    2018-01-01

    The availability of freshwater supplies to meet future demand is a growing concern. Water availability metrics are needed to inform future water development decisions. With the help of water managers, water availability was mapped for over 1300 watersheds throughout the 31 contiguous states in the eastern US complimenting a prior study of the west. The compiled set of water availability data is unique in that it considers multiple sources of water (fresh surface and groundwater, wastewater and brackish groundwater); accommodates institutional controls placed on water use; is accompanied by cost estimates to access, treat and convey each unique source of water; and is compared to projected future growth in consumptive water use to 2030. Although few administrative limits have been set on water availability in the east, water managers have identified 315 fresh surface water and 398 fresh groundwater basins (with 151 overlapping basins) as areas of concern (AOCs) where water supply challenges exist due to drought related concerns, environmental flows, groundwater overdraft, or salt water intrusion. This highlights a difference in management where AOCs are identified in the east which simply require additional permitting, while in the west strict administrative limits are established. Although the east is generally considered ‘water rich’ roughly a quarter of the basins were identified as AOCs; however, this is still in strong contrast to the west where 78% of the surface water basins are operating at or near their administrative limit. Little effort was noted on the part of eastern or western water managers to quantify non-fresh water resources.

  12. Increased salinization of fresh water in the northeastern United States

    PubMed Central

    Kaushal, Sujay S.; Groffman, Peter M.; Likens, Gene E.; Belt, Kenneth T.; Stack, William P.; Kelly, Victoria R.; Band, Lawrence E.; Fisher, Gary T.

    2005-01-01

    Chloride concentrations are increasing at a rate that threatens the availability of fresh water in the northeastern United States. Increases in roadways and deicer use are now salinizing fresh waters, degrading habitat for aquatic organisms, and impacting large supplies of drinking water for humans throughout the region. We observed chloride concentrations of up to 25% of the concentration of seawater in streams of Maryland, New York, and New Hampshire during winters, and chloride concentrations remaining up to 100 times greater than unimpacted forest streams during summers. Mean annual chloride concentration increased as a function of impervious surface and exceeded tolerance for freshwater life in suburban and urban watersheds. Our analysis shows that if salinity were to continue to increase at its present rate due to changes in impervious surface coverage and current management practices, many surface waters in the northeastern United States would not be potable for human consumption and would become toxic to freshwater life within the next century. PMID:16157871

  13. Increased salinization of fresh water in the Northeastern United States

    USGS Publications Warehouse

    Kaushal, S.S.; Groffman, P.M.; Likens, G.E.; Belt, K.T.; Stack, W.P.; Kelly, V.R.; Band, L.E.; Fisher, G.T.

    2005-01-01

    Chloride concentrations are increasing at a rate that threatens the availability of fresh water in the northeastern United States. Increases in roadways and deicer use are now salinizing fresh waters, degrading habitat for aquatic organisms, and impacting large supplies of drinking water for humans throughout the region. We observed chloride concentrations of up to 25% of the concentration of seawater in streams of Maryland, New York, and New Hampshire during winters, and chloride concentrations remaining up to 100 times greater than unimpacted forest streams during summers. Mean annual chloride concentration increased as a function of impervious surface and exceeded tolerance for freshwater life in suburban and urban watersheds. Our analysis shows that if salinity were to continue to increase at its present rate due to changes in impervious surface coverage and current management practices, many surface waters in the northeastern United States would not be potable for human consumption and would become toxic to freshwater life within the next century. ?? 2005 by The National Academy of Sciences of the USA.

  14. Sea Water Characterization at Ujung Kulon Coastal Depth as Raw Water Source for Desalination and Potential Energy

    NASA Astrophysics Data System (ADS)

    Mugisidi, Dan; Heriyani, Okatrina

    2018-02-01

    Fresh water is basic need for life while the source is limited. Therefore, sea water is used as fresh water through desalination process. Sea water has different physical and chemical properties ranging from the surface to the seabed. The energy potential that can be obtained from the hydrostatic pressure also changes according to the depth. As part of the research of the utilization of sea water into fresh water, the aim of this study is to know the characteristics of sea water in the depth that can be utilized as source of fresh water. The sea water samples were taken at 11km from Ujung Kulon beach with depth of 0m, 20m, 40m, 60m, 80m, and 100m under the surface. The results showed that the physical properties at every depth were below the maximum allowable drinking water except for the amount of dissolved solids. Chemical characteristics at any depth above allowable level were fluoride, hardness (CaCo3), chloride, sodium, sulphate, and (KMnO4). In addition to the properties, pressure is one of the considerations in this study to determine the depth of sea water as sources for desalination. Pressure increased by 36.11% as the depth of the sea increased.

  15. Surface Salinity Variability in the North Atlantic During Recent Decades

    NASA Technical Reports Server (NTRS)

    Haekkinen, Sirpa

    2001-01-01

    The sea surface salinity (SSS) variability in the North Atlantic is investigated using numerical model simulations for the last 50 years based on atmospheric forcing variability from Comprehensive Atmosphere Ocean Data Set (COADS) and National Center for Environmental Prediction / National Center for Atmospheric Research (NCEP/NCAR) Reanalysis. The largest interannual and longer term variability occurs in two regions: the Labrador Sea and the North Equatorial Countercurrent (NECC) region. In both regions the seasonality of the surface salinity variability is prominent with the maximum standard deviation occurring in the summer/fall period. In the Labrador Sea the summer SSS anomalies far exceed those of wintertime in amplitude. The interannual SSS variability in the subpolar gyre can be attributed to two factors: excess ice melt and heat flux (i.e. deep mixing) variations. On the other hand, heat flux variability can also lead to meridional overturning changes on decadal time scales such that weak overturning is manifested in fresh surface conditions in the subpolar gyre. The overturning changes also influence the NECC region SSS variability. Moreover, the subpolar freshening events are expected to occur during the negative phase of North Atlantic Oscillation which is associated with a weak wintertime surface heat loss in the subpolar gyre. No excess sea ice melt or precipitation is necessary for the formation of the fresh anomalies, because with the lack of wide-spread deep mixing, the fresh water that would be expected based on climatology, would accumulate at the surface. Thus, the fresh water 'conveyor' in the Atlantic operates via the overturning circulation such that deep mixing inserts fresh water while removing heat from the water column.

  16. Effect of Diamond Bur Grit Size on Composite Repair.

    PubMed

    Valente, Lisia L; Silva, Manuela F; Fonseca, Andrea S; Münchow, Eliseu A; Isolan, Cristina P; Moraes, Rafael R

    2015-06-01

    This study investigated the effect of diamond bur grit size on the repair bond strength of fresh and aged resin composites. Blocks of microhybrid composite (Opallis, FGM) were stored in distilled water at 37°C for 24 h (fresh composite) or subjected to 5000 thermal cycles (aged composite). The surfaces were roughened using diamond-coated, flame-shaped carbide burs with medium grit (#3168), fine grit (#3168F), or extra-fine grit (#3168FF). The control group underwent no surface treatment. Surface roughness, water contact angle, and surface topography by scanning electron microscopy (SEM) were evaluated (n = 3). Samples were restored with resin composite and sectioned into beam-shaped specimens, which were subjected to microtensile bond testing. Failure modes were classified using a stereomicroscope. Data were statistically analyzed using the Student- Newman-Keuls test and two-way ANOVA, with significance set at p < 0.05. Higher surface roughness was observed for groups treated with the medium- and fine-grit burs; aged composites were rougher than fresh composites. The water contact angle formed on the aged composite was lower than that on the fresh composite. The highest repair bond strength was observed for the fine-grit bur group, and the lowest was recorded for control. Interfacial failures were more predominant. SEM images showed that the surfaces treated with fine- and extra-fine-grit burs had a more irregular topography. Surface roughening of fresh or aged resin composites with diamond burs improved retention of the repair material. Fine-grit burs generally performed better than medium- and extra-fine-grit burs.

  17. Mapping water availability, cost and projected consumptive use in the Eastern United States with comparisons to the West

    DOE PAGES

    Tidwell, Vincent; Moreland, Barbara D.; Shaneyfelt, Calvin; ...

    2017-11-08

    The availability of freshwater supplies to meet future demand is a growing concern. Water availability metrics are needed to inform future water development decisions. Furthermore, with the help of water managers, water availability was mapped for over 1300 watersheds throughout the 31-contiguous states in the eastern U.S. complimenting a prior study of the west. The compiled set of water availability data is unique in that it considers multiple sources of water (fresh surface and groundwater, wastewater and brackish groundwater); accommodates institutional controls placed on water use; is accompanied by cost estimates to access, treat and convey each unique source ofmore » water, and; is compared to projected future growth in consumptive water use to 2030. Although few administrative limits have been set on water availability in the east, water managers have identified 315 fresh surface water and 398 fresh groundwater basins (with 151 overlapping basins) as Areas of Concern (AOCs) where water supply challenges exist due to drought related concerns, environmental flows, groundwater overdraft, or salt water intrusion. This highlights a difference in management where AOCs are identified in the east which simply require additional permitting, while in the west strict administrative limits are established. Although the east is generally considered "water rich" roughly a quarter of the basins were identified as AOCs; however, this is still in strong contrast to the west where 78% of the surface water basins are operating at or near their administrative limit. There was little effort noted on the part of eastern or western water managers to quantify non-fresh water resources.« less

  18. Mapping water availability, cost and projected consumptive use in the Eastern United States with comparisons to the West

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tidwell, Vincent; Moreland, Barbara D.; Shaneyfelt, Calvin

    The availability of freshwater supplies to meet future demand is a growing concern. Water availability metrics are needed to inform future water development decisions. Furthermore, with the help of water managers, water availability was mapped for over 1300 watersheds throughout the 31-contiguous states in the eastern U.S. complimenting a prior study of the west. The compiled set of water availability data is unique in that it considers multiple sources of water (fresh surface and groundwater, wastewater and brackish groundwater); accommodates institutional controls placed on water use; is accompanied by cost estimates to access, treat and convey each unique source ofmore » water, and; is compared to projected future growth in consumptive water use to 2030. Although few administrative limits have been set on water availability in the east, water managers have identified 315 fresh surface water and 398 fresh groundwater basins (with 151 overlapping basins) as Areas of Concern (AOCs) where water supply challenges exist due to drought related concerns, environmental flows, groundwater overdraft, or salt water intrusion. This highlights a difference in management where AOCs are identified in the east which simply require additional permitting, while in the west strict administrative limits are established. Although the east is generally considered "water rich" roughly a quarter of the basins were identified as AOCs; however, this is still in strong contrast to the west where 78% of the surface water basins are operating at or near their administrative limit. There was little effort noted on the part of eastern or western water managers to quantify non-fresh water resources.« less

  19. SIMPLE GREEN®

    EPA Pesticide Factsheets

    Technical product bulletin: this water based surface washing agent used in oil spill cleanups is equally effective in fresh water, estuarine, and marine environments at all temperatures. Spray directly on surface of oil.

  20. Effect of Surface Properties on Colloid Retention on Natural and Surrogate Produce Surfaces.

    PubMed

    Lazouskaya, Volha; Sun, Taozhu; Liu, Li; Wang, Gang; Jin, Yan

    2016-12-01

    Bacterial contamination of fresh produce is a growing concern in food industry. Pathogenic bacteria can attach to and colonize the surfaces of fresh produce and cause disease outbreaks among consumers. Surface properties of both bacteria and produce affect bacterial contamination; however, the effects of produce roughness, topography, and hydrophobicity on bacterial retention are still poorly understood. In this work, we used spherical polystyrene colloids as bacterial surrogates to investigate colloid retention on and removal (by rinsing) from fresh produce surfaces including tomato, orange, apple, lettuce, spinach, and cantaloupe, and from surrogate produce surface Sharklet (a micro-patterned polymer). All investigated surfaces were characterized in terms of surface roughness and hydrophobicity (including contact angle and water retention area measurements). The results showed that there was no single parameter that dominated colloid retention on fresh produce, yet strong connection was found between colloid retention and water retention and distribution on all the surfaces investigated except apple. Rinsing was generally not efficient in removing colloids from produce surfaces, which suggests the need to modify current cleaning procedures and to develop novel contamination prevention strategies. This work offers a physicochemical approach to a food safety problem and improves understanding of mechanisms leading to produce contamination. © 2016 Institute of Food Technologists®.

  1. Groundwater-soil-crop relationship with respect to arsenic contamination in farming villages of Bangladesh--a preliminary study.

    PubMed

    Kurosawa, Kiyoshi; Egashira, Kazuhiko; Tani, Masakazu; Jahiruddin, M; Moslehuddin, Abu Zofar Md; Rahman, Zulfikar Md

    2008-11-01

    To clarify the groundwater-soil-crop relationship with respect to arsenic (As) contamination, As concentration was measured in tubewell (TW) water, surface soil from farmyards and paddy fields, and fresh taro (Colocasia esculenta) leaves from farmyards in the farming villages of Bangladesh. The As concentration in TW water from farmyards was at least four times higher than the Bangladesh drinking water standard, and the concentration in fresh taro leaves was equal to or higher than those reported previously for leafy vegetables in Bangladesh. As concentration of surface soils in both farmyards and paddy fields was positively correlated with that of the TW water. Further, the concentration in surface soil was positively correlated with levels in fresh taro leaves in the farmyard. This study, therefore, clarified the groundwater-soil-crop relationship in farmyards and the relationship between groundwater-soil in paddy fields to assess the extent of As contamination in Bangladeshi villages.

  2. Prevalence and Contamination Patterns of Listeria monocytogenes in Fresh Catfish Fillets and their Processing Plants

    USDA-ARS?s Scientific Manuscript database

    Catfish skins, intestines, fresh fillets, processing surfaces at different production stages, chiller water and non-food contact surfaces were sampled for Listeria monocytogenes and other Listeria species. Among 315 samples, prevalence of L. monocytogenes, Listeria innocua and a group of Listeria se...

  3. Physical, chemical, and biological aspects of the Duwamish River Estuary, King County, Washington, 1963-67

    USGS Publications Warehouse

    Santos, John F.; Stoner, J.D.

    1972-01-01

    This report describes the significant results to 1967 of a comprehensive study that began in 1963 to evaluate what changes take place in an estuary as the loads .of raw and partially treated industrial and municipal wastes are replaced by effluent from a secondary treatment plant. The study area is the Duwamish River estuary, about 18.3 river kilometers long. At mean sea level the estuary has a water-surface area of about 1 square mile and a mean width of 440 feet. At the lowest and highest recorded tides, the volume of the estuary is about 205 and 592 million cubic feet, respectively. The estuary is well stratified (salt-wedge type) at fresh-water inflows greater than 1,000 cfs (cubic feet per second), but when inflow rates are less than 1,000 cfs the lower 5.6 kilometers of the estuary grades into the partly mixed type. The crosschannel salinity distribution is uniform for a given location and depth. Salinity migration is controlled by tides and fresh-water inflow. At fresh-water inflow rates greater than 1,000 cfs, water in the upper 8.4 kilometers of the estuary is always fresh regardless of tide. At inflow rates less than 600 cfs and tide heights greater than 10 feet; some salinity has been detected 16.1 kilometers above the mouth of the estuary. Studies using a fluorescent dye show that virtually no downward mixing into the salt wedge occurs; soluble pollutants introduced at the upper end of the estuary stay in the surface layer (5-15 ft thick). On the basis of dye studies when fresh-water inflow is less than 400 cfs, it is estimated that less than 10 percent of a pollutant will remain in the estuary a minimum of 7 days. Longitudinal dispersion coefficients for the surface layer have been determined to be on the order of 100-400 square feet per second. Four water-quality stations automatically monitor DO (dissolved oxygen), water temperature, pH, and specific conductance; at one station solar radiation also is measured. DO concentration in the surface layer decreases almost linearly in a downstream direction. Minimum DO concentration in the surface layer is usually greater than 4 rag/1 (milligrams per liter). The smallest DO values are consistently recorded in the bottom layer at the station 7.7 kilometers above the mouth; monthly means of less than 3 mg/1 of DO have occurred at this point. Manual sampling shows that the DO sag in the bottom layer oscillates between 7.7 and 10.4 kilometers above the mouth of the estuary. Multiple-regression analysis shows that the surface DO content can be estimated from the fresh-water inflow and water temperature. Tidal exchange and fresh-water inflow indirectly control the bottom DO content. Information available from previous studies failed to indicate a progressive decrease in DO content during the period 1949-56, but data from the present study suggest a slight general decrease in the annual minimum DO concentrations in both the upper and lower layers. Average nitrate concentration in fresh water at station 16.2 has increased progressively since 1964, by amounts greater than those which can be attributed to the Renton Treatment Plant, 4.3 kilometers upstream from station 16.2. The BOD (biochemical oxygen demand) in both surface and bottom layers is generally less than 4 rag/1 of oxygen, but values greater than 6 rag/1 have been measured during a period of phytoplankton bloom. Phytoplankton blooms can occur during periods of minimum tidal exchange and fresh-water inflows of less than 300 cfs if solar radiation and water temperature are optimum. Nutrients (nitrogen and phosphorus compounds) do not control the occurrence of a bloom, because sufficient quantities of these nutrients are always present. Nutrients in the treated effluent may increase the biomass of the bloom. Trace-element studies have not defined any role that these elements may play in algal growth. The inflowing fresh water contains principally calcium and bicarbonate and has a dissolved-solids content ra

  4. A feasibility study to estimate minimum surface-casing depths of oil and gas wells to prevent ground-water contamination in four areas of western Pennsylvania

    USGS Publications Warehouse

    Buckwalter, T.F.; Squillace, P.J.

    1995-01-01

    Hydrologic data were evaluated from four areas of western Pennsylvania to estimate the minimum depth of well surface casing needed to prevent contamination of most of the fresh ground-water resources by oil and gas wells. The areas are representative of the different types of oil and gas activities and of the ground-water hydrology of most sections of the Appalachian Plateaus Physiographic Province in western Pennsylvania. Approximate delineation of the base of the fresh ground-water system was attempted by interpreting the following hydrologic data: (1) reports of freshwater and saltwater in oil and gas well-completion reports, (2) water well-completion reports, (3) geophysical logs, and (4) chemical analyses of well water. Because of the poor quality and scarcity of ground-water data, the altitude of the base of the fresh ground-water system in the four study areas cannot be accurately delineated. Consequently, minimum surface-casing depths for oil and gas wells cannot be estimated with confidence. Conscientious and reliable reporting of freshwater and saltwater during drilling of oil and gas wells would expand the existing data base. Reporting of field specific conductance of ground water would greatly enhance the value of the reports of ground water in oil and gas well-completion records. Water-bearing zones in bedrock are controlled mostly by the presence of secondary openings. The vertical and horizontal discontinuity of secondary openings may be responsible, in part, for large differences in altitudes of freshwater zones noted on completion records of adjacent oil and gas wells. In upland and hilltop topographies, maximum depths of fresh ground water are reported from several hundred feet below land surface to slightly more than 1,000 feet, but the few deep reports are not substantiated by results of laboratory analyses of dissolved-solids concentrations. Past and present drillers for shallow oil and gas wells commonly install surface casing to below the base of readily observed fresh ground water. Casing depths are selected generally to maximize drilling efficiency and to stop freshwater from entering the well and subsequently interfering with hydrocarbon recovery. The depths of surface casing generally are not selected with ground-water protection in mind. However, on the basis of existing hydrologic data, most freshwater aquifers generally are protected with current casing depths. Minimum surface-casing depths for deep gas wells are prescribed by Pennsylvania Department of Environmental Resources regulations and appear to be adequate to prevent ground-water contamination, in most respects, for the only study area with deep gas fields examined in Crawford County.

  5. Outdoor water use and water conservation opportunities in Virginia Beach, Virginia

    USGS Publications Warehouse

    Eggleston, John R.

    2010-01-01

    The amount of seasonal water use is important to the City of Virginia Beach because the primary source of this water is a fragile, shallow aquifer that is the only fresh groundwater source available within the city. Residents in the mostly rural southern half of Virginia Beach rely solely on this aquifer, not only for outdoor water uses but also for indoor domestic uses such as drinking and bathing. Groundwater that is close to the land surface in Virginia Beach is mostly fresh, whereas water 200 feet or more below the land surface is mostly saline and generally too salty to drink or use for irrigating lawns and gardens.

  6. Efficacy of Sanitizer Treatments on Survival and Growth Parameters of Escherichia coli O157:H7, Salmonella, and Listeria monocytogenes on Fresh-Cut Pieces of Cantaloupe during Storage.

    PubMed

    Ukuku, Dike O; Huang, Lihan; Sommers, Christopher

    2015-07-01

    For health reasons, people are consuming fresh-cut fruits with or without minimal processing and, thereby, exposing themselves to the risk of foodborne illness if such fruits are contaminated with bacterial pathogens. This study investigated survival and growth parameters of Escherichia coli O157:H7, Salmonella, Listeria monocytogenes, and aerobic mesophilic bacteria transferred from cantaloupe rind surfaces to fresh-cut pieces during fresh-cut preparation. All human bacterial pathogens inoculated on cantaloupe rind surfaces averaged ∼4.8 log CFU/cm(2), and the populations transferred to fresh-cut pieces before washing treatments ranged from 3 to 3.5 log CFU/g for all pathogens. A nisin-based sanitizer developed in our laboratory and chlorinated water at 1,000 mg/liter were evaluated for effectiveness in minimizing transfer of bacterial populations from cantaloupe rind surface to fresh-cut pieces. Inoculated and uninoculated cantaloupes were washed for 5 min before fresh-cut preparation and storage of fresh-cut pieces at 5 and 10°C for 15 days and at 22°C for 24 h. In fresh-cut pieces from cantaloupe washed with chlorinated water, only Salmonella was found (0.9 log CFU/g), whereas E. coli O157:H7 and L. monocytogenes were positive only by enrichment. The nisin-based sanitizer prevented transfer of human bacteria from melon rind surfaces to fresh-cut pieces, and the populations in fresh-cut pieces were below detection even by enrichment. Storage temperature affected survival and the growth rate for each type of bacteria on fresh-cut cantaloupe. Specific growth rates of E. coli O157:H7, Salmonella, and L. monocytogenes in fresh-cut pieces were similar, whereas the aerobic mesophilic bacteria grew 60 to 80 % faster and had shorter lag phases.

  7. Water resources of the New Orleans area, Louisiana

    USGS Publications Warehouse

    Eddards, Miles LeRoy; Kister, L.R.; Scarcia, Glenn

    1956-01-01

    Industry, commerce, and public utilities in 1954 withdrew about 1,500 mgd from surface- and groundwater sources in the New Orleans area. Most of the withdrawal was made from the Mississippi River. However, some withdrawal of surface water was made from Lake Pontchartrain. A large part of the withdrawal from both ground- and surface-water sources is available for reuse. Ground-water withdrawal amounts to about 100 mgd and is primarily for industrial and commercial uses. The average flow of the Mississippi River for the 23-year period, 1931--54, amounted to 309,000 mgd, and the approximate average flow of all the tributaries to Lake Pontchartrain is about 4,000 mgd. The flow of the Pearl River, which adjoins the tributary drainage area of Lake Pontchartrain, averages about 8,000 mgd. Total withdrawal of ground and surface waters amounts to less than 3 percent of the recorded minimum flow of the Mississippi River or less than 1 percent of the average flow. Although large quantities of water are always available in the Mississippi River the quality of the Water is not suitable for all uses. Streams from the north that drain into Lakes Maurepas and Pontchartrain, and the aquifers in that area, offer one of the best sources of fresh water in the State. Industry, if located on the northern shores of Lake Maurepas or Lake Pontchartrain near the mouths of these tributaries, would be assured of an ample supply of either ground or surface water of excellent quality. All the tributaries north of Lake Pontchartrain have dry-weather flows which are dependable. The Pearl River above Bogalusa also is a good source of fresh water of excellent quality. At present it serves to dilute the tidal flow of salt water into Lake Pontchartrain through the Rigolets, the principal outlet of the lake. In the area north of Lake Pontchartrain, wells 60 to 2,000 feet deep yield fresh water. There are no known wells tapping sands below 2,000 feet. However, electrical logs of. oil-test wells show that fresh water is available to a maximum depth of 3,000 feet. In the area south of Lake Pontchartrain, there is no withdrawal of ground water for public water supplies because of the saline content of the water. Three principal water-bearing sands, the '200-foot, ' '400-foot, ' and '700-foot'sands, are tapped in the New Orleans area south of Lake Pontchartrain for industrial and commercial use. In this area all deeper sands yield salt water. In some areas the '200-foot' sand contains saline water of the sodium chloride type. Consequently, this sand is not developed extensively. Water from the 200-foot' sand is relatively fresh north of the Mississippi River and becomes increasingly saline to the south and west. The 400-foot' sand is the second most highly developed aquifer in the New Orleans industrial district. The aquifer appears to be very prolific, but its full capabilities have not yet been determined. This aquifer yields a highly mineralized sodium chloride water in some areas; however, elsewhere it is a source of large quantities of fresh water. The '700-foot' sand is the most continuous freshwater bearing sand in the area and is the principal source of fresh ground water in the New Orleans industrial district. Most of the wells tapping this aquifer yield soft water of the bicarbonate type. In the southern and western parts of the industrial district the water in the '700-foot' sand is too mineralized to be suitable for human consumption.

  8. Plastic shrinkage of mortars with shrinkage reducing admixture and lightweight aggregates studied by neutron tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wyrzykowski, Mateusz, E-mail: mateusz.wyrzykowski@empa.ch; Lodz University of Technology, Department of Building Physics and Building Materials, Lodz; Trtik, Pavel

    2015-07-15

    Water transport in fresh, highly permeable concrete and rapid water evaporation from the concrete surface during the first few hours after placement are the key parameters influencing plastic shrinkage cracking. In this work, neutron tomography was used to determine both the water loss from the concrete surface due to evaporation and the redistribution of fluid that occurs in fresh mortars exposed to external drying. In addition to the reference mortar with a water to cement ratio (w/c) of 0.30, a mortar with the addition of pre-wetted lightweight aggregates (LWA) and a mortar with a shrinkage reducing admixture (SRA) were tested.more » The addition of SRA reduced the evaporation rate from the mortar at the initial stages of drying and reduced the total water loss. The pre-wetted LWA released a large part of the absorbed water as a consequence of capillary pressure developing in the fresh mortar due to evaporation.« less

  9. Sea Surface Salinity Variability in Response to the Congo River Discharge

    NASA Astrophysics Data System (ADS)

    Moller, D.; Chao, Y.; Farrara, J. D.; Schumann, G.; Andreadis, K.

    2014-12-01

    Sea surface salinity (SSS) variability associated with the Congo River discharge is examined using Aquarius satellite-retrieved SSS data and vertical profiles of salinity measured by the Argo floats. The Congo River plume can be clearly identified in the Aquarius SSS data with a westward extension of 500 to 1000 km off the coast of the Democratic Republic of Congo (DRC). The peak amplitude of the SSS variability associated with the Congo River discharge exceeds 2.0 psu. Using the first two years of Aquarius data, a well-defined seasonal cycle is described: maximum fresh-water anomalies are found in the boreal winter and spring seasons. The fresh-water anomalies during the 2012-2013 winter and spring seasons are significantly fresher than the 2011-2012 winter and spring seasons. Vertical profiles of salinity derived from the Argo floats reveal that these fresh-water anomalies can be traced to 40 meters below the sea surface. Combining the Aquarius SSS data with the Argo vertical profiles of salinity, the 3D volume of these fresh-water anomalies can be inferred and used to estimate the Congo River discharge. Reasonably good agreement is found between the Congo River discharge as observed by a stream gauge at Kinshasa and that estimated from the combined Aquarius and Argo data, indicating that Aquarius data can be used to close the fresh-water budget between the coastal ocean and the Congo River. The precipitation minus evaporation portion of the freshwater flux is found to play a secondary role in this region.

  10. Optimization of hot water treatment for removing microbial colonies on fresh blueberry surface.

    PubMed

    Kim, Tae Jo; Corbitt, Melody P; Silva, Juan L; Wang, Dja Shin; Jung, Yean-Sung; Spencer, Barbara

    2011-08-01

    Blueberries for the frozen market are washed but this process sometimes is not effective or further contaminates the berries. This study was designed to optimize conditions for hot water treatment (temperature, time, and antimicrobial concentration) to remove biofilm and decrease microbial load on blueberries. Scanning electron microscopy (SEM) image showed a well-developed microbial biofilm on blueberries dipped in room temperature water. The biofilm consisted of yeast and bacterial cells attached to the berry surface in the form of microcolonies, which produced exopolymer substances between or upon the cells. Berry exposure to 75 and 90 °C showed little to no microorganisms on the blueberry surface; however, the sensory quality (wax/bloom) of berries at those temperatures was unacceptable. Response surface plots showed that increasing temperature was a significant factor on reduction of aerobic plate counts (APCs) and yeast/mold counts (YMCs) while adding Boxyl® did not have significant effect on APC. Overlaid contour plots showed that treatments of 65 to 70 °C for 10 to 15 s showed maximum reductions of 1.5 and 2.0 log CFU/g on APCs and YMCs, respectively; with acceptable level of bloom/wax score on fresh blueberries. This study showed that SEM, response surface, and overlaid contour plots proved successful in arriving at optima to reduce microbial counts while maintaining bloom/wax on the surface of the blueberries. Since chemical sanitizing treatments such as chlorine showed ineffectiveness to reduce microorganisms loaded on berry surface (Beuchat and others 2001, Sapers 2001), hot water treatment on fresh blueberries could maximize microbial reduction with acceptable quality of fresh blueberries. © 2011 Institute of Food Technologists®

  11. Biological and Chemical Significance of Surface Microlayers in Aquatic Ecosystems

    ERIC Educational Resources Information Center

    Parker, B.; Barsom, G.

    1970-01-01

    Reviews methods of study, chemical composition, physical properties and ecology of surface microlayers in marine and fresh water habitats. Relates to problems of air and water pollution. Suggests areas for further research. (EB)

  12. DYNAMIC GREEN™

    EPA Pesticide Factsheets

    Technical product bulletin: this water-based surface washing agent is used in oil spill cleanups on rocks and beaches/sand or any other surface in fresh or salt water. allow soaking, and reapplication may be necessary for heavily weathered oil.

  13. Disagreement between Hydrological and Land Surface models on the water budgets in the Arctic: why is this and which of them is right?

    NASA Astrophysics Data System (ADS)

    Blyth, E.; Martinez-de la Torre, A.; Ellis, R.; Robinson, E.

    2017-12-01

    The fresh-water budget of the Artic region has a diverse range of impacts: the ecosystems of the region, ocean circulation response to Arctic freshwater, methane emissions through changing wetland extent as well as the available fresh water for human consumption. But there are many processes that control the budget including a seasonal snow packs building and thawing, freezing soils and permafrost, extensive organic soils and large wetland systems. All these processes interact to create a complex hydrological system. In this study we examine a suite of 10 models that bring all those processes together in a 25 year reanalysis of the global water budget. We assess their performance in the Arctic region. There are two approaches to modelling fresh-water flows at large scales, referred to here as `Hydrological' and `Land Surface' models. While both approaches include a physically based model of the water stores and fluxes, the Land Surface models links the water flows to an energy-based model for processes such as snow melt and soil freezing. This study will analyse the impact of that basic difference on the regional patterns of evapotranspiration, runoff generation and terrestrial water storage. For the evapotranspiration, the Hydrological models tend to have a bigger spatial range in the model bias (difference to observations), implying greater errors compared to the Land-Surface models. For instance, some regions such as Eastern Siberia have consistently lower Evaporation in the Hydrological models than the Land Surface models. For the Runoff however, the results are the other way round with a slightly higher spatial range in bias for the Land Surface models implying greater errors than the Hydrological models. A simple analysis would suggest that Hydrological models are designed to get the runoff right, while Land Surface models designed to get the evapotranspiration right. Tracing the source of the difference suggests that the difference comes from the treatment of snow and evapotranspiration. The study reveals that expertise in the role of snow on runoff generation and evapotranspiration in Hydrological and Land Surface could be combined to improve the representation of the fresh water flows in the Arctic in both approaches. Improved observations are essential to make these modelling advances possible.

  14. Water-use data by category, county, and water management district in Florida, 1950-90

    USGS Publications Warehouse

    Marella, R.L.

    1995-01-01

    The population for Florida in 1990 was estimated at 12.94 million, an increase of nearly 10.17 million (370 percent) from the population of 2.77 million in 1950. Consequently, water use (fresh and saline) in Florida increased nearly 510 percent (15,175 million gallons per day) between 1950 and 1990. The resident population of the State is projected to surpass 20 million by the year 2020. Through the cooperation of the Florida Department of Environ- mental Protection and the U.S. Geologial Survey, water-use data for the period between 1950 and 1990 has been consolidated into one publication. This report aggregates and summarizes the quantities of water withdrawn annually for all water-use categories (public supply, self-supplied domestic, self-supplied commercial-industrial, agriculture, and thermoelectric power generation), by counties, and water management districts in Florida from 1950 through 1990. Total water withdrawn in Florida increased from 2,923 million gallons per day in 1950 to 17,898 million gallons per day in 1990. Surface- water withdrawals during 1950 totaled 2,333 million gallons per day but were not differentiated between fresh and saline, therefore, comparisons between fresh and saline water were made beginning with 1955 data. Freshwater withdrawals increased 245 percent between 1955 and 1990. Saline water withdrawals increased more than 1,500 percent between 1955 and 1990. In 1955, more than 47 percent of the fresh- water used was withdrawn from ground-water sources and 53 percent was withdrawn from surface-water sources. In 1990, nearly 62 percent of the fresh- water withdrawn was from ground-water sources, while 38 percent was withdrawn from surface-water sources. The steady increase in ground-water withdrawals since the 1950's primarily is a result of the ability to drill and pump water more economically from large, deep wells and the reliability of both the quality and quantity of water from these wells. Water withdrawn for public supply in Florida increased 1,030 percent between 1950 and 1990. The population served by public supply increased from 1.66 million in 1950 to 11.23 million in 1990, and the percentage of the population served by public supply increased from 60 percent in 1950 to nearly 88 percent in 1990. Freshwater withdrawn for self- supplied domestic use in Florida increased 1,010 percent, self-supplied commercial-industrial uses increased 170 percent, and agriculture increased 915 percent between 1950 and 1990. Freshwater with- drawals for thermoelectric power generation decreased 8 percent between 1955 and 1990, while saline water withdrawals increased nearly 1,540 percent between 1955 and 1990. Between 1965 and 1990, total freshwater withdrawals increased in 58 of the 67 counties in Florida. Fresh ground-water was withdrawn in all 67 counties in 1965 through 1990, and increased in 65 counties between 1965 and 1990. Fresh surface-water was withdrawn in 60 counties from 1965 to 1990, and increased in 42 counties between 1965 and 1990. The change in total freshwater withdrawals within the water management districts between 1975 and 1990 were as follows: Northwest Florida Water Management District increased 3 percent, St. Johns River Water Management District decreased 6 percent, South Florida Water Management District increased 37 percent, Southwest Florida Water Management District decreased 1 percent, and Suwannee River Water Management District increased 8 percent.(USGS)

  15. MONITORING DIBUTYLTIN AND TRIPHENYLTIN IN FRESH WATERS AND FISH IN THE UNITED STATES USING MICRO-LIQUID CHROMATOGRAPHY-ELECTROSPRAY/ION TRAP MASS SPECTROMETRY

    EPA Science Inventory

    There is a growing body of evidence that toxic organotins are making their way into humans and other mammals (terrestrial and marine). One possible route of environmental exposure in the U.S. to organotins (specifically dibutyltin and triphenyltin) is via fresh surface waters, an...

  16. Efficacy of home washing methods in controlling surface microbial contamination on fresh produce.

    PubMed

    Kilonzo-Nthenge, Agnes; Chen, Fur-Chi; Godwin, Sandria L

    2006-02-01

    Much effort has been focused on sanitation of fresh produce at the commercial level; however, few options are available to the consumer. The purpose of this study was to determine the efficacy of different cleaning methods in reducing bacterial contamination on fresh produce in a home setting. Lettuce, broccoli, apples, and tomatoes were inoculated with Listeria innocua and then subjected to combinations of the following cleaning procedures: (i) soak for 2 min in tap water, Veggie Wash solution, 5% vinegar solution, or 13% lemon solution and (ii) rinse under running tap water, rinse and rub under running tap water, brush under running tap water, or wipe with wet/dry paper towel. Presoaking in water before rinsing significantly reduced bacteria in apples, tomatoes, and lettuce, but not in broccoli. Wiping apples and tomatoes with wet or dry paper towel showed lower bacterial reductions compared with soaking and rinsing procedures. Blossom ends of apples were more contaminated than the surface after soaking and rinsing; similar results were observed between flower section and stem of broccoli. Reductions of L. innocua in both tomatoes and apples (2.01 to 2.89 log CFU/g) were more than in lettuce and broccoli (1.41 to 1.88 log CFU/g) when subjected to same washing procedures. Reductions of surface contamination of lettuce after soaking in lemon or vinegar solutions were not significantly different (P > 0.05) from lettuce soaking in cold tap water. Therefore, educators and extension workers might consider it appropriate to instruct consumers to rub or brush fresh produce under cold running tap water before consumption.

  17. Generic E. coli levels in surface and nontraditional irrigation water in the mid Atlantic in relation to FSMA water quality standards: A CONSERVE study

    USDA-ARS?s Scientific Manuscript database

    Introduction: The use of surface (pond and river) and nontraditional (reclaimed wastewater, produce wash water) irrigation water (SNIW) could reduce stress on ground water resources. However, it is essential to understand how these irrigation sources may influence the microbiological safety of fresh...

  18. Water withdrawals, use, discharge, and trends in Florida, 2000

    USGS Publications Warehouse

    Marella, Richard L.

    2004-01-01

    In 2000, the estimated amount of water withdrawn in Florida was 20,148 million gallons per day (Mgal/d), of which 59 percent was saline and 41 percent was fresh. Ground water accounted for 62 percent of freshwater withdrawals and surface water accounted for the remaining 38 percent. Ninety-two percent of the 15.98 million people in Florida relied on ground water for their drinking water needs in 2000. Almost all of the saline water withdrawals (99.9 percent) were from surface water. Public supply accounted for 43 percent of ground water withdrawn in 2000, followed by agricultural self-supplied (39 percent), commercial-industrial self-supplied (including mining) (8.5 percent), recreational irrigation (4.5 percent), domestic self-supplied (4 percent), and power generation (1 percent). Agricultural self-supplied accounted for 62 percent of fresh surface water withdrawn in 2000, followed by power generation (20 percent), public supply (8 percent), recreational irrigation (6 percent), and commercial-industrial self-supplied (4 percent). Almost all of saline water withdrawn was used for power generation. The largest amount of freshwater was withdrawn in Palm Beach County and the largest amount of saline water was withdrawn in Hillsborough County. Significant withdrawals (more than 200 Mgal/d) of fresh ground water occurred in Miami-Dade, Polk, Orange, Palm Beach, Broward, and Collier Counties. Significant withdrawals (more than 200 Mgal/d) of fresh surface water occurred in Palm Beach, Hendry, and Escambia Counties. The South Florida Water Management District accounted for the largest amount of freshwater withdrawn (49 percent). About 62 percent of the total ground water withdrawn was from the Floridan aquifer system; 17 percent was from the Biscayne aquifer. Most of the surface water used in Florida was from managed and maintained canal systems or large water bodies. Major sources of fresh surface water include the Caloosahatchee River, Deer Point Lake, Hillsborough River, Lake Okeechobee and associated canals, and the canals associated with the headwaters of the Upper St. Johns River. Freshwater withdrawals increased 46 percent and saline water withdrawals increased 25 percent in Florida between 1970 and 2000. Ground-water withdrawals increased 82 percent, and surface-water withdrawals increased 10 percent during this period. Between 1970 and 2000, total freshwater withdrawals increased for public supply by 176 percent and for agricultural self-supplied by 87 percent; withdrawals for commercial-industrial self-supplied decreased by 37 percent, and power generation (thermoelectric) decreased by 57 percent. Recreational irrigation withdrawals increased 127 percent between 1985 and 2000. Between 1995 and 2000, freshwater withdrawals increased 13 percent, and saline withdrawals increased 9 percent. An estimated 52 percent of the freshwater withdrawn in Florida was consumed; the remaining 48 percent was returned for further use. Domestic wastewater discharged in 2000 totaled 1,495 Mgal/d, of which 44 percent was discharged to surface waters, 34 percent to the ground through land application systems, and 22 percent to deep injection wells. Domestic wastewater discharge increased by 33 percent between 1985 and 2000, but decreased by 3 percent between 1995 and 2000. An estimated 11.21 million people were served by domestic wastewater systems in 2000, whereas the remaining 4.77 million people discharged wastewater to more than 1.95 million septic tanks. Discharge from the septic tanks was estimated to be 263 Mgal/d in 2000.

  19. Distinct kinetics and mechanisms of mZVI particles aging in saline and fresh groundwater: H2 Evolution and surface passivation

    NASA Astrophysics Data System (ADS)

    Xin, Jia; Tang, Fenglin; Zheng, Xilai

    2016-04-01

    Application of microscale zero-valent iron (mZVI) is a promising technology for in-situ contaminated groundwater remediation. However, its longevity would be negatively impacted by surface passivation, especially in saline groundwater. In this study, the aging behaviors of mZVI particles were investigated in three media (milli-Q water, fresh groundwater and saline groundwater) using batch experiments to evaluate their potential corrosion and passivation performance in different field conditions. The results indicated that mZVI was reactive between 0-7 days exposure to water and then gradually lost reactivity over the next few hundred days. The patterns of kinetic curve were analogous among the three different media. In comparison, during the early phase (0-7 d), mZVI in saline groundwater showed a faster corrosion rate with a k value of 1.357, which was relatively higher than k values in milli-Q water and fresh groundwater. However, as the corrosion process further developed, the fastest corrosion rate was observed in milli-Q water followed with fresh groundwater and saline groundwater. These changes in reactivity provided evidence for different patterns and formation mechanisms of passive layers on mZVI in three media. The SEM-EDS analysis demonstrated that in the saline groundwater, a compact and even oxide film of carbonate green rust or Fe oxide (hydroxyl) species was formed immediately on the surface due to the high concentration and widely distributed bicarbonate and hardness, whereas in the fresh groundwater and milli-Q water, the passive layer was composed of loosely and unevenly distributed precipitates which much slowly formed as the iron corrosion proceeded. These findings provide insight into the molecular-scale mechanism of mZVI passivation by inorganic salts with particular implications in saline groundwater.

  20. Developing the greatest Blue Economy: Water productivity, fresh water depletion, and virtual water trade in the Great Lakes basin

    NASA Astrophysics Data System (ADS)

    Mayer, A. S.; Ruddell, B. L.; Mubako, S. T.

    2016-12-01

    The Great Lakes basin hosts the world's most abundant surface fresh water reserve. Historically an industrial and natural resource powerhouse, the region has suffered economic stagnation in recent decades. Meanwhile, growing water resource scarcity around the world is creating pressure on water-intensive human activities. This situation creates the potential for the Great Lakes region to sustainably utilize its relative water wealth for economic benefit. We combine economic production and trade datasets with water consumption data and models of surface water depletion in the region. We find that, on average, the current economy does not create significant impacts on surface waters, but there is some risk that unregulated large water uses can create environmental flow impacts if they are developed in the wrong locations. Water uses drawing on deep groundwater or the Great Lakes themselves are unlikely to create a significant depletion, and discharge of groundwater withdrawals to surface waters offsets most surface water depletion. This relative abundance of surface water means that science-based management of large water uses to avoid accidentally creating "hotspots" is likely to be successful in avoiding future impacts, even if water use is significantly increased. Commercial water uses are the most productive, with thermoelectric, mining, and agricultural water uses in the lowest tier of water productivity. Surprisingly for such a water-abundant economy, the region is a net importer of water-derived goods and services. This, combined with the abundance of surface water, suggests that the region's water-based economy has room to grow in the 21st century.

  1. Rain Rate from IMERG as a Predictor for Salinity Stratification in the Upper Meter of the Ocean during SPURS-2 Rain Events

    NASA Astrophysics Data System (ADS)

    Thompson, E. J.; Asher, W.; Drushka, K.; Schanze, J. J.; Jessup, A. T.; Clark, D.

    2016-12-01

    Rain can produce a lens of fresher and generally colder, less dense water at the ocean surface. These stable surface layers concentrate heat, freshwater, and momentum into a thin layer and reduce the exchange of these properties between the surface layer and deeper water, which can impact regional freshwater storage and air-sea fluxes of heat and moisture. Although in situ observations have shown that fresh lenses are common in the presence of rain, attempts to correlate the magnitude and lifetime of the surface freshening with rain rate using field data have not produced a definitive relationship. The reasons for this are most likely that in situ rain rate measurements represent the freshwater flux to the ocean surface at a single point in space and time, whereas the fresh lens is the result of the integrated rainfall over time and space, convoluted with the evolution of the fresh lens. Therefore, it is possible that integrated, upstream rainfall estimates might provide a better correlate for the presence of fresh lenses than in situ measurements at a point. This hindcast study seeks to determine the utility of NASA GPM IMERG satellite measurements of rain relative to in situ collocated rain measurements in predicting the occurrence and duration of 0-1 m freshwater stabilization of the ocean. Vertical gradients of temperature, salinity, and density between the surface and at most a few meters were measured using towed profilers and underway sampling during the 2016 SPURS-2 experiment conducted in the tropical east Pacific Ocean. Local wind speed was also measured and taken into account. These measurements were used to determine whether local or integrated upstream precipitation metrics could better predict the occurrence of rain-generated lenses of fresher water at the ocean surface and whether the strength and duration of rain events was correlated with the observed lifetime of fresh lenses.

  2. The influence of carbon nanotubes on the properties of water solutions and fresh cement pastes

    NASA Astrophysics Data System (ADS)

    Leonavičius, D.; Pundienė, I.; Girskas, G.; Pranckevičienė, J.; Kligys, M.; Sinica, M.

    2017-10-01

    It is known, that the properties of cement-based materials can be significantly improved by addition of carbon nanotubes (CNTs). The dispersion of CNTs is an important process due to an extremely high specific surface area. This aspect is very relevant and is one of the main factors for the successful use of CNTs in cement-based materials. The influence of CNTs in different amounts (from 0 to 0.5 percent) on the pH values of water solutions and fresh cement pastes, and also on rheological properties, flow characteristics, setting time and EXO reaction of the fresh cement pastes was analyzed in this work. It was found that the increment of the amount of CNTs leads to decreased pH values of water solutions and fresh cement pastes, and also increases viscosity, setting times and EXO peak times of fresh cement pastes.

  3. Coastal groundwater/surface-water interactions: a Great Lakes case study

    USGS Publications Warehouse

    Neff, Brian P.; Haack, Sheridan K.; Rosenberry, Donald O.; Savino, Jacqueline F.; Lundstrom, Scott C.

    2006-01-01

    Key similarities exist between marine and Great Lakes coastal environments. Water and nutrient fluxes across lakebeds in the Great Lakes are influenced by seiche and wind set-up and set-down, analogous to tidal influence in marine settings. Groundwater/surface-water interactions also commonly involve a saline-fresh water interface, although in the Great-Lakes cases, it is groundwater that is commonly saline and surface water that is fresh. Evapotranspiration also affects nearshore hydrology in both settings. Interactions between groundwater and surface water have recently been identified as an important component of ecological processes in the Great Lakes. Water withdrawals and the reversal of the groundwater/surface water seepage gradient are also common to many coastal areas around the Great Lakes. As compared to surface water, regional groundwater that discharges to western Lake Erie from Michigan is highly mineralized. Studies conducted by the U.S. Geological Survey at Erie State Game Area in southeastern Michigan, describe groundwater flow dynamics and chemistry, shallow lake-water chemistry, and fish and invertebrate communities. Results presented here provide an overview of recent progress of ongoing interdisciplinary studies of Great Lakes nearshore systems and describe a conceptual model that identifies relations among geologic, hydrologic, chemical, and biological processes in the coastal habitats of Lake Erie. This conceptual model is based on analysis of hydraulic head in piezometers at the study site and chemical analysis of deep and shallow coastal groundwater.

  4. PETROCLEAN™

    EPA Pesticide Factsheets

    Technical product bulletin: this bioremediation agent is suitable for use in oil cleanups on hard surfaces with limited permeability such as concrete, permeable surfaces such as sand, and fresh or salt water.

  5. Study of Fresh and Hardening Process Properties of Gypsum with Three Different PCM Inclusion Methods

    PubMed Central

    Serrano, Susana; Barreneche, Camila; Navarro, Antonia; Haurie, Laia; Fernandez, A. Inés; Cabeza, Luisa F.

    2015-01-01

    Gypsum has two important states (fresh and hardened states), and the addition of phase change materials (PCM) can vary the properties of the material. Many authors have extensively studied properties in the hardened state; however, the variation of fresh state properties due to the addition of Micronal® DS 5001 X PCM into gypsum has been the object of few investigations. Properties in fresh state define the workability, setting time, adherence and shrinkage, and, therefore the possibility of implementing the material in building walls. The aim of the study is to analyze, compare and evaluate the variability of fresh state properties after the inclusion of 10% PCM. PCM are added into a common gypsum matrix by three different methods: adding microencapsulated PCM, making a suspension of PCM/water, and incorporating PCM through a vacuum impregnation method. Results demonstrate that the inclusion of PCM change completely the water required by the gypsum to achieve good workability, especially the formulation containing Micronal® DS 5001 X: the water required is higher, the retraction is lower (50% less) due to the organic nature of the PCM with high elasticity and, the adherence is reduced (up to 45%) due to the difference between the porosity of the different surfaces as well as the surface tension difference. PMID:28793584

  6. New York Water-Use Program and data, 2000

    USGS Publications Warehouse

    Lumia, Deborah S.; Linsey, Kristin S.

    2005-01-01

    New York ranked third after California and Texas in withdrawals of freshwater for public supply, in the withdrawal of fresh surface water for public-water supply, in total population, and in number of people served by public-water supplies. New York ranked sixth in total withdrawals for the generation of thermoelectric power and total surface-water withdrawals. Finally, New York ranked fourth in withdrawals of ground water for public supply.

  7. SIMPLE GREEN® 2013 Reformulation

    EPA Pesticide Factsheets

    Technical product bulletin: this surface washing agent used in oil spill cleanups is equally effective in fresh water, estuarine, and marine environments at all temperatures. Spray directly on surface of oil.

  8. ACT TERRA FIRMA

    EPA Pesticide Factsheets

    Technical product bulletin: this bioremediation agent is suitable for use in oil cleanups on hard surfaces with limited permeability such as concrete, permeable surfaces such as sand, and fresh or salt water.

  9. Sea Surface Salinity Variability from Simulations and Observations: Preparing for Aquarius

    NASA Technical Reports Server (NTRS)

    Jacob, S. Daniel; LeVine, David M.

    2010-01-01

    Oceanic fresh water transport has been shown to play an important role in the global hydrological cycle. Sea surface salinity (SSS) is representative of the surface fresh water fluxes and the upcoming Aquarius mission scheduled to be launched in December 2010 will provide excellent spatial and temporal SSS coverage to better estimate the net exchange. In most ocean general circulation models, SSS is relaxed to climatology to prevent model drift. While SST remains a well observed variable, relaxing to SST reduces the range of SSS variability in the simulations (Fig.1). The main objective of the present study is to simulate surface tracers using a primitive equation ocean model for multiple forcing data sets to identify and establish a baseline SSS variability. The simulated variability scales are compared to those from near-surface argo salinity measurements.

  10. Flow and geochemistry of groundwater beneath a back-barrier lagoon: The subterranean estuary at Chincoteague Bay, Maryland, USA

    USGS Publications Warehouse

    Bratton, J.F.; Böhlke, J.K.; Krantz, D.E.; Tobias, C.R.

    2009-01-01

    To better understand large-scale interactions between fresh and saline groundwater beneath an Atlantic coastal estuary, an offshore drilling and sampling study was performed in a large barrier-bounded lagoon, Chincoteague Bay, Maryland, USA. Groundwater that was significantly fresher than overlying bay water was found in shallow plumes up to 8??m thick extending more than 1700??m offshore. Groundwater saltier than bay surface water was found locally beneath the lagoon and the barrier island, indicating recharge by saline water concentrated by evaporation prior to infiltration. Steep salinity and nutrient gradients occur within a few meters of the sediment surface in most locations studied, with buried peats and estuarine muds acting as confining units. Groundwater ages were generally more than 50??years in both fresh and brackish waters as deep as 23??m below the bay bottom. Water chemistry and isotopic data indicate that freshened plumes beneath the estuary are mixtures of water originally recharged on land and varying amounts of estuarine surface water that circulated through the bay floor, possibly at some distance from the sampling location. Ammonium is the dominant fixed nitrogen species in saline groundwater beneath the estuary at the locations sampled. Isotopic and dissolved-gas data from one location indicate that denitrification within the subsurface flow system removed terrestrial nitrate from fresh groundwater prior to discharge along the western side of the estuary. Similar situations, with one or more shallow semi-confined flow systems where groundwater geochemistry is strongly influenced by circulation of surface estuary water through organic-rich sediments, may be common on the Atlantic margin and elsewhere.

  11. Importance of mechanical disaggregation in chemical weathering in a cold alpine environment, San Juan Mountains, Colorado

    USGS Publications Warehouse

    Hoch, A.R.; Reddy, M.M.; Drever, J.I.

    1999-01-01

    Weathering of welded tuff near the summit of Snowshoe Mountain (3660 m) in southwestern Colorado was studied by analyzing infiltrating waters in the soil and associated solid phases. Infiltrating waters exhibit anomalously high potassium to silica ratios resulting from dissolution of a potassium-rich glass that occurs as a trace phase in the rock. In laboratory experiments using rock from the field site, initial dissolution generated potassium-rich solutions similar to those observed in the field. The anomalous potassium release decreased over time (about 1 month), after which the dominant cation was calcium, with a much lower potassium to silica ratio. The anomalous potassium concentrations observed in the infiltrating soil solutions result from weathering of freshly exposed rock surfaces. Continual mechanical disaggregation of the rock due to segregation freezing exposes fresh glass to weathering and thus maintains the source of potassium for the infiltrating water. The ongoing process of creation of fresh surfaces by physical processes is an important influence on the composition of infiltrating waters in the vadose zone.

  12. ETHOS CLEAN

    EPA Pesticide Factsheets

    Technical product bulletin: this surface washing agent used in oil spill cleanups has a minimum 30 minutes recommended soak time. Can be used with salt or fresh water, on hard surfaces, shorelines, rocks, and beaches.

  13. Effect of Surface Oxidation on Interfacial Water Structure at a Pyrite (100) Surface as Studied by Molecular Dynamics Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Jiaqi; Miller, Jan D.; Dang, Liem X.

    2015-06-01

    In the first part of this paper, a Scanning Electron Microscopy and contact angle study of a pyrite surface (100) is reported describing the relationship between surface oxidation and the hydrophilic surface state. In addition to these experimental results, the following simulated surface states were examined using Molecular Dynamics Simulation (MDS): fresh unoxidized (100) surface; polysulfide at the (100) surface; elemental sulfur at the (100) surface. Crystal structures for the polysulfide and elemental sulfur at the (100) surface were simulated using Density Functional Theory (DFT) quantum chemical calculations. The well known oxidation mechanism which involves formation of a metal deficientmore » layer was also described with DFT. Our MDS results of the behavior of interfacial water at the fresh and oxidized pyrite (100) surfaces without/with the presence of ferric hydroxide include simulated contact angles, number density distribution for water, water dipole orientation, water residence time, and hydrogen-bonding considerations. The significance of the formation of ferric hydroxide islands in accounting for the corresponding hydrophilic surface state is revealed not only from experimental contact angle measurements but also from simulated contact angle measurements using MDS. The hydrophilic surface state developed at oxidized pyrite surfaces has been described by MDS, on which basis the surface state is explained based on interfacial water structure. The Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences (BES), of the DOE funded work performed by Liem X. Dang. Battelle operates the Pacific Northwest National Laboratory for DOE. The calculations were carried out using computer resources provided by BES.« less

  14. Fresh Water Content Variability in the Arctic Ocean

    NASA Technical Reports Server (NTRS)

    Hakkinen, Sirpa; Proshutinsky, Andrey

    2003-01-01

    Arctic Ocean model simulations have revealed that the Arctic Ocean has a basin wide oscillation with cyclonic and anticyclonic circulation anomalies (Arctic Ocean Oscillation; AOO) which has a prominent decadal variability. This study explores how the simulated AOO affects the Arctic Ocean stratification and its relationship to the sea ice cover variations. The simulation uses the Princeton Ocean Model coupled to sea ice. The surface forcing is based on NCEP-NCAR Reanalysis and its climatology, of which the latter is used to force the model spin-up phase. Our focus is to investigate the competition between ocean dynamics and ice formation/melt on the Arctic basin-wide fresh water balance. We find that changes in the Atlantic water inflow can explain almost all of the simulated fresh water anomalies in the main Arctic basin. The Atlantic water inflow anomalies are an essential part of AOO, which is the wind driven barotropic response to the Arctic Oscillation (AO). The baroclinic response to AO, such as Ekman pumping in the Beaufort Gyre, and ice meldfreeze anomalies in response to AO are less significant considering the whole Arctic fresh water balance.

  15. Salt water and its relation to fresh ground water in Harris County, Texas

    USGS Publications Warehouse

    Winslow, Allen G.; Doyel, William Watson; Wood, L.A.

    1957-01-01

    Other less probable potential sources of salt-water contamination which are discussed include upward movement of salt water from below, vertical movement around salt domes or along faults, downward seepage from surface sources, and contamination through leaking wells.

  16. Carbonate dissolution in mixed waters due to ocean acidification

    NASA Astrophysics Data System (ADS)

    Koski, K.; Wilson, J. L.

    2009-12-01

    Much of the anthropogenically released carbon dioxide has been stored as a dissolved gas in the ocean, causing a 0.1 decrease in ocean surface pH, with models predicting that by 2100 the surface ocean pH will be 0.5 below pre-industrial levels. In mixed ocean water - fresh water environments (e.g. estuaries, coastal aquifers, and edges of ice sheets), the decreased ocean pH couples with the mixed water geochemistry to make water more undersaturated with respect to calcium carbonate than ocean acidification alone. Mixed-water calcite dissolution may be one of the first directly observable effects of ocean acidification, as the ocean water and the fresh water can both be saturated with respect to calcium carbonate while their mixture will be undersaturated. We present a basic quantitative model describing mixed water dissolution in coastal or island freshwater aquifers, using temporally changing ocean pH, sea level, precipitation, and groundwater pumping. The model describes the potential for an increased rate of speleogenesis and porosity/permeability development along the lower edge of a fresh water lens aquifer. The model accounts the indirect effects of rising sea level and a growing coastal population on these processes. Applications are to freshwater carbonate aquifers on islands (e.g. the Bahamas) and in coastal areas (e.g. the unconfined Floridan aquifer of the United States, the Yucatan Peninsula of Mexico).

  17. Internalization of fresh produce by foodborne pathogens.

    PubMed

    Erickson, Marilyn C

    2012-01-01

    Recent studies addressing the internalization of fresh produce by foodborne pathogens arose in response to the growing number of recent and high profile outbreaks involving fresh produce. Because chemical sanitizing agents used during harvest and minimal processing are unlikely to reach enteric pathogens residing within plant tissue, it is imperative that paths for pathogen entry be recognized and minimized. Using both microscopy and microbial enumeration tools, enteric pathogens have been shown to enter plant tissues through both natural apertures (stomata, lateral junctions of roots, flowers) and damaged (wounds, cut surfaces) tissue. In studies revealing preharvest internalization via plant roots or leaf stomata, experimental conditions have primarily involved exposure of plants to high pathogen concentrations (≥ 6 log g⁻¹ soil or 6 log ml⁻¹ water), but those pathogens internalized appear to have short-term persistence. Postharvest internalization of pathogens via cut surfaces may be minimized by maintaining effective levels of sanitizing agents in waters during harvesting and minimal processing.

  18. Evolution of anomalies of salinity of surface waters of Arctic Ocean and their possible influence on climate changes

    NASA Astrophysics Data System (ADS)

    Popov, A.; Rubchenia, A.

    2009-04-01

    Numerous of model simulations of ice extent in Arctic Ocean predict almost full disappearance of sea ice in Arctic regions by 2050. However, the nature, as against models, does not suffer the unidirectional processes. By means of various feedback responses system aspires to come in an equilibrium condition. In Arctic regions one of the most powerful generators of a negative feedback is the fresh-water stream to Greenland Sea and Northern Atlantic. Increasing or decreasing of a fresh-water volume from the Arctic basin to Greenland Sea and Northern Atlantic results in significant changes in climatic system. At the Oceanology department of Arctic and Antarctic Research Institute (AARI) (St-Petersburg, Russia) in 2007, on the basis of the incorporated Russian-American database of the oceanographic data, reconstruction of long-term time series of average salinity of ocean surface was executed. The received time series describes the period from 1950 to 1993. For allocation of the processes determining formation of changes of average salinity of surface waters in Arctic basin the correlation analysis of interrelation of the received time series and several physical parameters which could affect formation of changes of salinity was executed. We found counter-intuitive result: formation of long-term changes of average salinity of surface waters of Arctic basin in the winter period does not depend on changes of a Siberian rivers runoff. Factors of correlation do not exceed -0,31. At the same time, clear inverse relationship of salinity of surface waters from volumes of the ice formed in flaw lead polynyas of the Siberian shelf seas is revealed. In this case factors of correlation change from -0,56 to -0,7. The maximum factor of correlation is -0,7. It characterizes interrelation of total volume of the ice formed in flaw lead polynyas of all seas of the Siberian shelf and average salinity of surface waters of Arctic basin. Thus, at increase of volumes of the ice formed in flaw lead polynyas there is a reduction of average salinity of surface waters of Arctic basin. In the winter period obvious influence of waters of a river runoff on a hydrological situation of this or that sea is limited to a zone of distribution of fast ice and a narrow zone of flaw lead polynyas between fast ice and drift ice. That fresh water from the Arctic seas is transferred in the Arctic basin. There should be a certain effective mechanism to carry it. Presence of clear interrelation of salinity of surface waters and volumes of ice formed in polynyas, allows us to offer the following circuit of formation of average salinity of surface waters in the Arctic basin. The ice formed in polynya, is constantly taken out for limits of an area of flaw lead polynyas. This ice accumulates the fresh water acting with a river runoff. New ice hummocking and accumulate snow - the next source of fresh water. In the summer period ice is melting and forms surface fresh layer. In the cold period of year, presence of thick ice not allows accumulating all fresh water, and the zone of fresh water is forming. These fresh water areas could exist for months. In the reports [1] was offered a hypothesis describing formation of distant connections in climatic system. In the hypothesis offered by us about a role of polynyas in formation of distant feedback in climatic system the most important and, unfortunately, the least certain parameter is «reaching time» of climatic signal from a place of origin (in flaw lead polynya area) up to the Greenland sea and Northern Atlantic. For an estimation of reaching time» we tried to trace drift of this anomaly from polynyas to Greenland Sea. For the initial moment of anomaly genesis month of the maximal development of polynya (when ice production of it was maximal) was chosen. Core of freshwater anomaly was determined for several polynyas. Using results of our simulations, data from database with areas of polynyas, wind stress data and current speed data from several sources, we got vector diagrams of drift of anomalies. Within the limits of the seas were taken into account a vector of constant currents. The vector of displacement within the limits of each of the seas represented the sum of constant current and average for one month of a vector of isobaric drift. In the Arctic basin we used only a vector of isobaric drift. Vectors of isobaric drift are constructed by I. Karelin (AARI, St-Petersburg, Russia) on the basis of average for one month of fields of ground pressure. As shown in numerous researches, monthly averaging most adequately allow us to display a field of wind drift of ice. For construction of vector diagrams on sphere we used «MapInfo Professional 7.5». For conviction of a reality of our hypothetical assumptions of carry of anomalies of salinity we have executed comparison of a spatial-temporal arrangement of areas vector diagrams we got with an arrangement of real anomalies of the salinity revealed as a result of instrumental observations. Such results of comparison have surpassed all expectations. We got confirmation of position of fresh water areas from instrumental observations executed in 2005-2007 by several cruises of AARI institute. Thus good concurrence of time and the location of areas of abnormal fleshing, received by theoretical and instrumentally observed conditions is marked. The map of a field of anomalies of the salinity, constructed for 2007 is most indicative. On this map a number of isolated fresh water areas in surface waters clearly allocated. To each of these areas of observed freshening there corresponds predicted passage of core of predicted anomaly. We could conclude that there is concurrence of predicted fresh water anomalies and observed fresh water areas. It allows us to say hypothesis is working. Flaw lead polynyas really forming significant anomalies of salinity which being distributed in Arctic basin. These anomalies keep the properties within several years. Hydrodynamic aspects of distribution of anomalies are not clear yet. But the fact of formation and distribution of anomalies of salinity of surface waters in Arctic basin could be taken for granted. In a case when the climatic signal from the several seas simultaneously reach Greenland Sea climatically significant anomaly of fresh water of ice could appear. It capable to result in sharp change of a climatic situation. Probably, the similar situation was in 1963-1964 years when «Great Salinity Anomaly» was observed in North Atlantic. Changes of atmospheric circulation was so significant, that in Arctic regions has rather sharply increased ice cover areas and the temperature of air has gone down. In our opinion similar conditions could arise in the present period when after several years of extreme development of flaw lead polynyas extreme freshwater anomaly which reaching of Greenland Sea is possible to expect 2008-2009 should be generated. In 2008 several freshwater anomalies generated in various flaw lead polynyas in 2003-2004 years already has left to Greenland sea and in April, July and November has reached Northern Atlantic. Synoptic situations which, in our opinion, can be connected to the given phenomenon, and also reaction of the Arctic seas to the given atmospheric processes are shown. The analysis of a map of drift of anomalies allows us to conclude, that in 2009 it is necessary to expect an exit of the strong salinity anomaly generated from several large polynyas. To the given event there will correspond reduction of repeatability and reduction of areas of polynyas in the seas of the Siberian shelf, easing of carrying out concerning warm air masses to the Central Arctic regions and increase here ground atmospheric pressure in the cold period of year. In the summer period will take place strengthening of ice cover and, hence - downturn of temperature of air in Arctic regions. We could assume we are at the break point of temperature change and next year there will be cooling in Arctic. [1] Popov A., Rubchenia A. Flaw polynyas as a source of long-distance connections in climate system // Geophysical Research Abstracts, Vol. 10, EGU2008-A-02009, 2008 SRef-ID: 1607-7962/gra/EGU2008-A-02009 EGU General Assembly 2008

  19. Airborne EM, Lithology and in-situ Data Used for Quantizing Groundwater Salinity in Zeeland (NL)

    NASA Astrophysics Data System (ADS)

    Meyer, U.; Siemon, B.; van Baaren, E.; Dabekaussen, W.; Delsman, J. R.; Karaoulis, M.; Gunnink, J.; Pauw, P.; Vermaas, T.

    2017-12-01

    In a setting of predominantly saline surface waters in Zeeland, the Netherlands, the only available shallow fresh groundwater is present in the form of freshwater lenses floating on top of the saline groundwater. This fresh water is vital for agricultural, industrial, ecological, water conservation and drinking water functions. An essential first step for managing the usable water properly is to know the present spatial fresh-brackish-saline groundwater distribution. As traditional salinity monitoring is labor-intensive, airborne electromagnetics, which is fast and can cover large areas in short time, is an efficient alternative. A consortium of BGR, Deltares and TNO conducted FRESHEM Zeeland (FREsh Salt groundwater distribution by Helicopter ElectroMagnetic survey in the Province of Zeeland) in 2014-17. An area of more than 2000 square km was surveyed using BGR's helicopter-borne geophysical system totaling to about 9,600 line-km. The HEM data, after inversion to 2.5 Million resistivity-depth models for each of the three 1D inversion procedures applied (Marquardt single site, smooth and sharp laterally constrained inversion), served as base-line information for further interpretation. A probabilistic Monte Carlo approach combines HEM resistivities, 3D lithology model data (GeoTOP), laboratory results (formation factor and surface conductivity) and local in-situ groundwater measurements for the translation of resistivity to Chloride concentration. The resulting 3D voxel model enables stakeholders to implement spatial Chloride concentration in their groundwater models.

  20. Ground-water resources of Coke County, Texas

    USGS Publications Warehouse

    Wilson, Clyde A.

    1973-01-01

    Coke County, located in semiarid west-central Texas, where large ranches, small farms, and oil production are the main bases of the economy, has a small supply of ground and surface water. Of the approximately 1,900 acre-feet of fresh to moderately saline ground water used in 1968, industry used 880 acre-feet, irrigation used 210 acre-feet, and domestic supply and livestock used 820 acre-feet. All of the water for municipal supply and some of the water for industry is obtained from surface-water reservoirs.

  1. Understanding the formation and evolution of rain-formed fresh lenses at the ocean surface

    NASA Astrophysics Data System (ADS)

    Drushka, Kyla; Asher, William E.; Ward, Brian; Walesby, Kieran

    2016-04-01

    Rain falling on the ocean produces a layer of buoyant fresher surface water, or "fresh lens." Fresh lenses can have significant impacts on satellite-in situ salinity comparisons and on exchanges between the surface and the bulk mixed layer. However, because these are small, transient features, relatively few observations of fresh lenses have been made. Here the Generalized Ocean Turbulence Model (GOTM) is used to explore the response of the upper few meters of the ocean to rain events. Comparisons with observations from several platforms demonstrate that GOTM can reproduce the main characteristics of rain-formed fresh lenses. Idealized sensitivity tests show that the near-surface vertical salinity gradient within fresh lenses has a linear dependence on rain rate and an inverse dependence on wind speed. Yearlong simulations forced with satellite rainfall and reanalysis atmospheric parameters demonstrate that the mean salinity difference between 0.01 and 5 m, equivalent to the measurement depths of satellite radiometers and Argo floats, is -0.04 psu when averaged over the 20°S-20°N tropical band. However, when averaged regionally, the mean vertical salinity difference exceeds -0.15 psu in the Indo-Pacific warm pool, in the Pacific and Atlantic intertropical convergence zone, and in the South Pacific convergence zone. In most of these regions, salinities measured by the Aquarius satellite instrument have a fresh bias relative to Argo measurements at 5 m depth. These results demonstrate that the fresh bias in Aquarius salinities in rainy, low-wind regions may be caused by the presence of rain-produced fresh lenses.

  2. SOC-10

    EPA Pesticide Factsheets

    Technical product bulletin: this water based surface washing agent used in oil spill cleanups may be sprayed onto soil, sand, or rocks. Suitable for slicks, sheens, and emulsions in fresh, river, brackish, or salt water. Not suitable for tar masses.

  3. Thermal evolutions of two kinds of melt pond with different salinity

    NASA Astrophysics Data System (ADS)

    Kim, Joo-Hong; Wilkinson, Jeremy; Moon, Woosok; Hwang, Byongjun; Granskog, Mats

    2016-04-01

    Melt ponds are water pools on sea ice. Their formation reduces ice surface albedo and alter surface energy balance, by which the ice melting and freezing processes are regulated. Thus, better understanding of their radiative characteristics has been vital to improve the simulation of melting/freezing of sea ice in numerical models. A melt pond would preserve nearly fresh water if it formed on multi-year ice and no flooding of sea water occurred, whereas a melt pond would contain more salty water if it formed on thinner and porous first-year ice, if there were an inflow of sea water by streams or cracks. One would expect that the fluid dynamic/thermodynamic properties (e.g., turbulence, stability, etc.) of pond water are influenced by the salinity, so that the response of pond water to any heat input (e.g., shortwave radiation) would be different. Therefore, better understanding of the salinity-dependent thermal evolution also has significant potential to improve the numerical simulation of the sea ice melting/freezing response to radiative thermal forcing. To observe and understand the salinity-dependent thermal evolution, two ice mass balance buoys (IMBs) were deployed in two kinds (fresh and salty) of melt pond on a same ice floe on 13 August 2015 during Araon Arctic cruise. The thermistor chain, extending from the air through the pond and ice into the sea water, was deployed through a drilled borehole inside the pond. Besides, the IMBs were also accompanied with three broadband solar radiation sensors (two (up and down) in the air over melt pond and one upward-looking under sea ice) to measure the net shortwave radiation at the pond surface and the penetrating solar radiation through ice. Also, the web camera was installed to observe any updates in the conditions of equipment and surrounding environment (e.g., weather, surface state, etc.). On the date of deployment, the fresh pond had salinity of 2.3 psu, light blue color, lots of slush ice particles which increased opacity, and under-pond ice thickness of 219 cm, whereas the salty pond had salinity of 20 psu, dark blue color, only transparent water, and under-pond ice thickness of 100 cm. Temporal evolutions of mean water temperature of the two ponds are contrasted and showed that the fresh pond had about 1degC warmer temperature than the salty pond. The existence of slush ice particles in the pond seems to be responsible for this temperature difference. Multiple scattering by slush ice particles could lead to more absorption of shortwave radiation. A comparison of vertical profiles of water temperature shows that there existed an internal maximum heating layer in the fresh pond. Possibly, this profile might indicate the the below layer unstable, which might have efficient thermal propagation to the ice surface. On the other hand, the vertical temperature profile of the salty pond had internal thermocline near the pond bottom, but so that the upper heating may not efficiently propagate downward to the ice surface.

  4. Ground-water contamination and legal controls in Michigan

    USGS Publications Warehouse

    Deutsch, Morris

    1963-01-01

    The great importance of the fresh ground-water resources of Michigan is evident because 90 percent of the rural and about 70 percent of the total population of the State exclusive of the Detroit metropolitan area are supplied from underground sources. The water-supply and public-health problems that have been caused by some cases of ground-water contamination in the State illustrate the necessity of protecting this vital resource.Manmade and natural contaminants, including many types of chemical and organic matter, have entered many of the numerous aquifers of the State. Aquifers have been contaminated by waste-laden liquids percolating from the surface or from the zone of aeration and by direct injection to the aquifer itself. Industrial and domestic wastes, septic tanks, leaking sewers, flood waters or other poor quality surface waters, mine waters, solids stored or spread at the surface, and even airborne wastes all have been sources of ground-water contamination in Michigan. In addition, naturally occurring saline waters have been induced into other aquifers by overpumping or unrestricted flow from artesian wells, possibly by dewatering operations, and by the deepening of surface stream channels. Vertical migration of saline waters through open holes from formations underlying various important aquifers also has spoiled some of the fresh ground waters in the State. In spite of the contamination that has occurred, however, the total amount of ground water that has been spoiled is only a small part of the total resource. Neither is the contamination so widespread as that of the surface streams of Michigan.Overall legal authority to control most types of ground-water contamination in the State has been assigned by the Michigan Legislature to the Water Resources Commission, although the Department of Conservation and the Health Department also exercise important water-pollution control functions. The Michigan Supreme Court, in an important case upholding the power of the Water Resources Commission to control pollution of ground water, in effect has introduced the doctrine of reasonable use into the law of the State. Excluding controls administered by the Department of Conservation on activities of the oil and gas industry, however, legal controls have not been used abate intrusion of natural saline waters into fresh-water aquifers in response to pumping and other manmade changes in the hydrologic regimen.

  5. Surface-water, water-quality, and meteorological data for the Cambridge, Massachusetts, drinking-water source area, water years 2007-08

    USGS Publications Warehouse

    Smith, Kirk P.

    2011-01-01

    Water samples were collected in nearly all of the subbasins in the Cambridge drinking-water source area and from Fresh Pond during the study period. Discrete water samples were collected during base-flow conditions with an antecedent dry period of at least 3 days. Composite sampl

  6. Biofilm-induced changes in microbial quality of irrigation water: Indicator bacteria and antibiotic-resistance

    USDA-ARS?s Scientific Manuscript database

    Irrigation waters are implicated in the transmission of pathogens to fresh produce, and microbial release and retention from biofilms that form on inner surfaces of irrigation lines may impact the quality of delivered water. Biofilms in water distribution systems have been suggested as a reservoir ...

  7. Reuse of spent granular activated carbon for organic micro-pollutant removal from treated wastewater.

    PubMed

    Hu, Jingyi; Shang, Ran; Heijman, Bas; Rietveld, Luuk

    2015-09-01

    Spent granular activated carbons (sGACs) for drinking water treatments were reused via pulverizing as low-cost adsorbents for micro-pollutant adsorption from a secondary treated wastewater effluent. The changes of physicochemical characteristics of the spent carbons in relation to the fresh carbons were determined and were correlated to the molecular properties of the respective GAC influents (i.e. a surface water and a groundwater). Pore size distribution analysis showed that the carbon pore volume decreased over a wider size range due to preloading by surface water, which contains a broader molecular weight distribution of organic matter in contrast to the groundwater. However, there was still considerable capacity available on the pulverized sGACs for atrazine adsorption in demineralized water and secondary effluent, and this was particularly the case for the groundwater spent GAC. However, as compared to the fresh counterparts, the decreased surface area and the induced surface acidic groups on the pulverized sGACs contributed both to the lower uptake and the more impeded adsorption kinetic of atrazine in the demineralized water. Nonetheless, the pulverized sGACs, especially the one preloaded by surface water, was less susceptible to adsorption competition in the secondary effluent, due to its negatively charged surface which can repulse the accessibility of the co-present organic matter. This suggests the reusability of the drinking water spent GACs for micro-pollutant adsorption in the treated wastewater. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. The use of radar imagery for surface water investigations

    NASA Technical Reports Server (NTRS)

    Bryan, M. L.

    1981-01-01

    The paper is concerned with the interpretation of hydrologic features using L-band (HH) imagery collected by aircraft and Seasat systems. Areas of research needed to more precisely define the accuracy and repeatability of measurements related to the conditions of surfaces and boundaries of fresh water bodies are identified. These include: the definition of shoreline, the nature of variations in surface roughness across a water body and along streams and lake shores, and the separation of ambiguous conditions which appear similar to lakes.

  9. FRESHEM - Fresh-saline groundwater distribution in Zeeland (NL) derived from airborne EM

    NASA Astrophysics Data System (ADS)

    Siemon, Bernhard; van Baaren, Esther; Dabekaussen, Willem; Delsman, Joost; Gunnik, Jan; Karaoulis, Marios; de Louw, Perry; Oude Essink, Gualbert; Pauw, Pieter; Steuer, Annika; Meyer, Uwe

    2017-04-01

    In a setting of predominantly saline surface waters, the availability of fresh water for agricultural purposes is not obvious in Zeeland, The Netherlands. Canals and ditches are mainly brackish to saline due to saline seepage, which originates from old marine deposits and salt-water transgressions during historical times. The only available fresh groundwater is present in the form of freshwater lenses floating on top of the saline groundwater. This fresh groundwater is vital for agricultural, industrial, ecological, water conservation and drinking water functions. An essential first step for managing this fresh groundwater properly is to know the present spatial fresh-brackish-saline groundwater distribution. As traditional salinity monitoring is labour-intensive, airborne electromagnetics (AEM), which is fast and can cover large areas in short time, is an efficient alternative. A consortium of BGR, Deltares and TNO started FRESHEM Zeeland (FREsh Salt groundwater distribution by Helicopter ElectroMagnetic survey in the Province of Zeeland) in October 2014. Within 3x2 weeks of the first project year, the entire area of about 2000 km2 was surveyed using BGR's helicopter-borne geophysical system totalling to about 10,000 line-km. The HEM datasets of 17 subareas were carefully processed using advanced BGR in-house software and inverted to 2.5 Million resistivity-depth models. Ground truthing demonstrated that the large-scale HEM results fit very well with small-scale ground EM data (ECPT). Based on this spatial resistivity distribution, a 3D voxel model for Chloride concentration was derived for the entire province taking into account geological model data (GeoTOP) for the lithology correction and local in-situ groundwater measurements for the translation of water conductivity to Chloride concentration. The 3D voxel model enables stakeholders to implement spatial Chloride concentration in their groundwater models.

  10. Water withdrawals, use, and trends in Florida, 1985

    USGS Publications Warehouse

    Marella, R.L.

    1988-01-01

    Total water withdrawn for use in Florida for 1985, in million gal/day, was 17,057 of which 6,259, or nearly 37%, was freshwater and 10,798 was saline. The majority of freshwater withdrawn was groundwater (64%) and the majority of saline water withdrawn was surface water (99%). Thermoelectric power generation accounted for more than 99% of saline water withdrawals. Agricultural irrigation accounted for the majority of freshwater withdrawals for both groundwater (41%) and surface water (60%) in 1985. Between 1975-85, Florida 's population increased by nearly 3 million people; tourism increased by nearly 13 million visitors; irrigated agricultural acreage increased by 70,000; freshwater used to support those activities increased by almost 388 million gal/day (excluding fresh surface-water withdrawals for thermoelectric power generation); and fresh groundwater withdrawals increased 718 million gal/day. Groundwater accounted for 64% of Florida 's total freshwater use , up from 51% in 1980 and 48% in 1975. Florida ranked sixth in the Nation in groundwater withdrawals for 1985 with more than 4 ,000 million gal/day withdrawn. Groundwater is the primary source of freshwater in Florida because it is readily available and generally is suitable for most uses. The Floridan aquifer system, which underlies the entire State, supplied the majority (62%) of groundwater in Florida for 1985. In contrast to groundwater, withdrawals of surface water declined between 1975-85. (USGS)

  11. Water Withdrawals, Use, and Trends in Florida, 2005

    USGS Publications Warehouse

    Marella, Richard L.

    2009-01-01

    In 2005, the total amount of water withdrawals in Florida was estimated at 18,359 million gallons per day (Mgal/d). Saline water accounted for 11,486 Mgal/d (63 percent), and freshwater accounted for 6,873 Mgal/d (37 percent). Groundwater accounted for 4,247 Mgal/d (62 percent) of freshwater withdrawals, and surface water accounted for the remaining 2,626 Mgal/d (38 percent). Surface water accounted for nearly all (99.9 percent) saline-water withdrawals. An additional 660 Mgal/d of reclaimed wastewater was used in Florida during 2005. The largest amount of freshwater was withdrawn from Palm Beach County, and the largest amount of saline water was withdrawn from Pasco County. Fresh groundwater provided drinking water (public supplied and self-supplied) for 16.19 million people (90 percent of Florida's population), and fresh surface water provided drinking water for 1.73 million people (10 percent). The majority of groundwater withdrawals (nearly 60 percent) in 2005 was obtained from the Floridan aquifer system which is present throughout the entire State. The majority of fresh surface-water withdrawals (59 percent) came from the southern Florida hydrologic unit subregion and is associated with Lake Okeechobee and the canals in the Everglades Agricultural Area of Glades, Hendry, and Palm Beach Counties, as well as the Caloosahatchee River and its tributaries in the agricultural areas of Collier, Glades, Hendry, and Lee Counties. Overall, agricultural irrigation accounted for 40 percent of the total freshwater withdrawals (ground and surface), followed by public supply with 37 percent. Public supply accounted for 52 percent of groundwater withdrawals, followed by agricultural self-supplied (31 percent), ommercial-industrial-mining self-supplied (8.5 percent), recreational irrigation and domestic self-supplied (4 percent each), and power generation (0.5 percent). Agricultural self-supplied accounted for 56 percent of fresh surface-water withdrawals, followed by power generation (20.5 percent), public supply (13 percent), recreational irrigation (6 percent), and commercial-industrial self-supplied (4.5 percent). Power generation accounted for nearly all (99.9 percent) saline-water withdrawals. Of the 17.92 million people who resided in Florida during 2005, 41 percent (7.36 million people) resided in the South Florida Water Management District (SFWMD), followed by the St. Johns River Water Management District (SJRWMD) and the Southwest Florida Water Management District (SWFWMD) with 25 percent each (4.46 and 4.44 million people, respectively), the Northwest Florida Water Management District (NWFWMD) with 7.5 percent (1.34 million people), and the Suwannee River Water Management District (SRWMD) with 1.5 percent (0.32 million people). The largest amount of freshwater withdrawals was from the SFWMD, which was one-half (50 percent) of the State's total freshwater withdrawals, followed by the SJRWMD (19 percent), SWFWMD (16 percent), NWFWMD (10 percent), and SRWMD (5 percent). Between 1950 and 2005, the population of Florida increased by 15.15 million (550 percent), and the total water withdrawals (fresh and saline) increased 15,700 Mgal/d (600 percent). More recently, total withdrawals decreased 1,790 Mgal/d (9 percent) between 2000 and 2005, but the total population increased by 1.94 million (12 percent). Between 1990 and 2005, saline-water withdrawals increased 1,120 Mgal/d (11 percent), whereas between 2000 and 2005, saline-water withdrawals decreased 470 Mgal/d (4 percent). Between 1990 and 2005, freshwater withdrawals decreased 710 Mgal/d (9 percent), whereas between 2000 and 2005, freshwater withdrawals decreased 1,320 Mgal/d (16 percent). The use of highly mineralized groundwater as a source of supply, primarily for public supply, also has increased in Florida. This water, referred as nonpotable water, increased from just less than 2 Mgal/d in 1970, to 142 Mgal/d in 2005. Nonpotable water is treated to meet drin

  12. Hydrologic data for Block Island, Rhode Island

    USGS Publications Warehouse

    Burns, Emily

    1993-01-01

    This report was compiled as part of a study to assess the hydrogeology and the quality and quantity of fresh ground water on Block Island, Rhode Island. Hydrologic data were collected on Block Island during 1988-91. The data are pre- sented in illustrations and tables. Data collec- ted include precipitation, surfae-water, ground- water, lithologic, and well-construction and dis- charge information. Precipitation data include total monthly precipitation values from 11 rain gages and water-quality analyses of 14 precipi- tation samples from one station. Surface-water data include water-level measurements at 12 ponds, water-quality data for five ponds, and field specific-conductance measurements at 56 surface- water sites (streams, ponds, and springs). Ground- water data include water-level measurements at 159 wells, water-quality data at 150 wells, and field specific-conductance data at 52 wells. Lithologic logs for 375 wells and test borings, and construc- tion and location data for 570 wells, springs, and test borings are included. In addition, the data set contains data on water quality of water samples, collected by the Rhode Island Department of Health during 1976-91, from Fresh and Sands Ponds and from wells at the Block Island Water Company well field north of Sands Pond.

  13. Thermal imaging of levitated fresh and salt water drops during laser irradiation

    NASA Astrophysics Data System (ADS)

    Brownell, Cody; Biggs, Harrison

    2017-11-01

    Simulation of high energy laser propagation and scattering in the maritime environment is problematic, due to the high likelihood of turbulence, fog, and rain or sea spray within the beam path. Considering large water drops (diameters of approximately 1-mm), such as those found in a light rain, an incident high energy laser will lead to rapid evaporation of the water drop as it traverses the beam path. In this work we present surface temperature measurements of a water drop obtained using a FLIR IR camera. The drop is acoustically levitated, and subject to a continuous wave laser with a wavelength of 1070-nm and a mean irradiance of approximately 800 W/cm2. These measurements show that the steady-state surface temperature of the drop is well below the saturation temperature, and for pure substances the equilibrium temperature decreases with decreasing drop volume similar to observations with smaller aqueous aerosols. Temperature non-uniformity within the drop is also assessed from statistics of the surface temperature fluctuations. Preliminary results from irradiated salt water drops show notably different behavior from fresh water drops, including temperature spikes as the drop volume decreases and occasional nucleate boiling. Acknowledge support from ONR #N00014-17-WX-00031.

  14. COST EFFECTIVE SEAWATER DESALINATION WITH FICP ELEMENT ARRAYS - PHASE II

    EPA Science Inventory

    Lack of fresh water hinders economic development, devastates human health, leads to environmental degradation and foments political instability. We obtain our water from limited and unevenly distributed surface and underground freshwater sources. Over withdrawal from these ...

  15. Near-surface Stratification and Submesoscale Fronts in the north Bay of Bengal during Summer Monsoon of 2014 and 2015.

    NASA Astrophysics Data System (ADS)

    Sengupta, D.; Jarugula, S. L.; D'Asaro, E. A.; Chaudhuri, D.; S, S.; Tandon, A.; M, R.; Lucas, A.; Simmons, H. L.

    2016-02-01

    The north bay of Bengal is characterised by a shallow layer of fresh water from monsoon rainfall and river discharge, with very strong stratification at its base, and a warm subsurface layer. The thermodynamic structure of the ocean has significant influence on air-sea interaction. We conducted two research cruises of ORV Sagar Nidhi in August-September 2014 and 2015, to study the physical processes that maintain the shallow fresh layer. We collected a total of about 4000 kilometers of underway Conductivity-Temperature-Depth (uCTD) and Acoustic Doppler Current Profiler (ADCP) data. The vertical resolution of the data is 1-2 m; at ship speeds of 4-5 knots, the horizontal resolution is 300-1500 m, sufficient to resolve submesoscale (1-20 km) features. It is known that dynamical instability of submesoscale fronts can lead to slumping of heavier water under lighter water, enhancing vertical stratification. We identified 35 major salinity-dominated near-surface density fronts along the ship track, with surface density gradient exceeding 0.03 kg/m3 per kilometer, and density difference exceeding 0.3 kg/m3. The largest gradients in the open ocean, between fresh water of riverine origin and ambient seawater, exceeded 10 psu in 40 km and 6 psu in 50 km; the spatial scales of the other fronts range from 1 to 25 km. At several submesoscale fronts, the surface mixed layer is shallower directly under the front than on either side, suggesting active restratification. ADCP observations reveal a region of confluence and narrow jets associated with some fronts, consistent with frontal slumping. In addition, wind-driven Ekman transport can enhance near-surface stratification by carrying lighter water over denser water. We discuss the relevance of these two mechanisms in observations and model simulations.

  16. DE-SOLV-IT CLEAN AWAY APC SUPER CONCENTRATE

    EPA Pesticide Factsheets

    Technical product bulletin: this surface washing agent for oil spill cleanups can be used in either salt or fresh water, on all oil coated surfaces including sand, vegetation, and rocks through a detergency mechanism. Dilute with 1:1 ratio.

  17. Removal of Inorganic, Microbial, and Particulate Contaminants from a Fresh Surface Water: Village Marine Tec. Expeditionary Unit Water Purifier, Generation 1

    EPA Science Inventory

    The Village Marine Tec. Generation 1 Expeditionary Unit Water Purifier (EUWP) is a mobile skid-mounted system employing ultrafiltration (UF) and reverse osmosis (RO) to produce drinking water from a variety of different water quality sources. The UF components were evaluated to t...

  18. Involving regional expertise in nationwide modeling for adequate prediction of climate change effects on different demands for fresh water

    NASA Astrophysics Data System (ADS)

    de Lange, Wim; Prinsen, Geert.; Hoogewoud, Jacco; Veldhuizen, Ab; Ruijgh, Erik; Kroon, Timo

    2013-04-01

    Nationwide modeling aims to produce a balanced distribution of climate change effects (e.g. harm on crops) and possible compensation (e.g. volume fresh water) based on consistent calculation. The present work is based on the Netherlands Hydrological Instrument (NHI, www.nhi.nu), which is a national, integrated, hydrological model that simulates distribution, flow and storage of all water in the surface water and groundwater systems. The instrument is developed to assess the impact on water use on land-surface (sprinkling crops, drinking water) and in surface water (navigation, cooling). The regional expertise involved in the development of NHI come from all parties involved in the use, production and management of water, such as waterboards, drinking water supply companies, provinces, ngo's, and so on. Adequate prediction implies that the model computes changes in the order of magnitude that is relevant to the effects. In scenarios related to drought, adequate prediction applies to the water demand and the hydrological effects during average, dry, very dry and extremely dry periods. The NHI acts as a part of the so-called Deltamodel (www.deltamodel.nl), which aims to predict effects and compensating measures of climate change both on safety against flooding and on water shortage during drought. To assess the effects, a limited number of well-defined scenarios is used within the Deltamodel. The effects on demand of fresh water consist of an increase of the demand e.g. for surface water level control to prevent dike burst, for flushing salt in ditches, for sprinkling of crops, for preserving wet nature and so on. Many of the effects are dealt with? by regional and local parties. Therefore, these parties have large interest in the outcome of the scenario analyses. They are participating in the assessment of the NHI previous to the start of the analyses. Regional expertise is welcomed in the calibration phase of NHI. It aims to reduce uncertainties by improving the rules for manmade re-direction of surface water, schematizations & parameters included in the model. This is carried out in workshops and in one-to-one expert meetings on regional models & the NHI. All results of NHI are presented on the internet and any expert may suggest improvements to the model. The final goal of the involvement of regional parties is the acceptation by decision impact receiving authorities

  19. Water resource use and management by the United States forest products industry.

    PubMed

    Wiegand, P S; Flinders, C A; Ice, G G; Malmberg, B J; Fisher, R P

    2009-01-01

    The connections between forest products operations and water resources in the United States is considered and, where possible, quantified. Manufacture of wood, pulp, and paper products and the influences of forest management and forest products manufacture on water quality are discussed. Most fresh water in the US originates in forested areas. Responsible harvesting strategies, best management practices, and forest re-growth combine to minimize or eliminate changes in water availability and degradation of water quality due to harvesting. Relative to alternative land uses and large-scale disturbance events, forested areas produce the highest quality of fresh water. Water inputs for the manufacture of forest products total about 5.8 billion m(3) per year, an amount equal about 0.4% of the surface and groundwater yield from timberland. Approximately 88% of water used in manufacturing is treated and returned directly to surface waters, about 11% is converted to water vapor and released during the manufacturing process, and 1% is imparted to products or solid residuals. Extensive study and continued monitoring of treated effluents suggest few or no concerns regarding the compatibility of current effluents with healthy aquatic systems.

  20. Total water withdrawals in Mississippi, 1990

    USGS Publications Warehouse

    Johnson, P.M.

    1994-01-01

    During 1990, the amount of water withdrawn from ground- and surface-water sources in Mississippi was about 3,600 Mgal/d (million gallons per day). Of this amount, 91 percent, or 3,300 Mgal/d, was withdrawn from freshwater sources. Of the total freshwater withdrawals, about 82 percent, or 2,700 Mgal/d, was withdrawn from ground-water sources. Total water withdrawals in Mississippi in 1990 for eight categories of use were as follows: irrigation, 1,900 Mgal/d; thermoelectric power, 700 Mgal/d; aquaculture, 400 Mgal/d; public supply, 320 Mgal/d; industrial and mining, 270 Mgal/d; domestic, 33 Mgal/d; commercial, 16 Mgal/d; and livestock, 16 Mgal/d. Overall, total withdrawals increased by 20 percent from 1985 to 1990, although the total population decreased about 2 percent. During the same period, total freshwater withdrawals increased by about 17 percent. Total saline with- drawals increased by about 60 percent from 1985 due to an increase in salin withdrawals for thermo- electric power generation. Total fresh and saline surface-water withdrawals decreased by about 6 percent from 1985, due to decrease in surface-water withdrawals for irrigation. Fresh ground-water withdrawals in Mississippi increased by about 33 percent, primarily due to an increase in irrigation. Since 1960, total ground- and surface-water with- drawals increased 70 percent for the same period. Irrigation had the greatest increase in with- drawals since 1960, with a 269 percent increase. Public supply had the second greatest, with a 178 percent increase.

  1. Immediate Repair Bond Strength of Fiber-reinforced Composite after Saliva or Water Contamination.

    PubMed

    Bijelic-Donova, Jasmina; Flett, Andrew; Lassila, Lippo V J; Vallittu, Pekka K

    2018-05-31

    This in vitro study aimed to evaluate the shear bond strength (SBS) of particulate filler composite (PFC) to saliva- or water-contaminated fiber-reinforced composite (FRC). One type of FRC substrate with semi-interpenetrating polymer matrix (semi-IPN) (everStick C&B) was used in this investigation. A microhybrid PFC (Filtek Z250) substrate served as control. Freshly cured PFC and FRC substrates were first subjected to different contamination and surface cleaning treatments, then the microhybrid PFC restorative material (Filtek Z250) was built up on the substrates in 2-mm increments and light cured. Uncontaminated and saliva- or water-contaminated substrate surfaces were either left untreated or were cleaned via phosphoric acid etching or water spray accompanied with or without adhesive composite application prior applying the adherent PFC material. SBS was evaluated after thermocycling the specimens (6000 cycles, 5°C and 55°C). Three-way ANOVA showed that both the surface contamination and the surface treatment signficantly affected the bond strength (p < 0.05). Saliva contamination reduced the SBS more than did the water contamination. SBS loss after saliva contamination was 73.7% and 31.3% for PFC and FRC, respectively. After water contamination, SBS loss was 17.2% and 13.3% for PFC and FRC, respectively. The type of surface treatment was significant for PFC (p < 0.05), but not for FRC (p = 0.572). Upon contamination of freshly cured PFC or semi-IPN FRC, surfaces should be re-prepared via phosphoric acid etching, water cleaning, drying, and application of adhesive composite in order to recover optimal bond strength.

  2. Water Resources of Ouachita Parish

    USGS Publications Warehouse

    Tomaszewski, Dan J.; Lovelace, John K.; Griffith, Jason M.

    2009-01-01

    Ouachita Parish, located in north-central Louisiana, contains fresh groundwater and surface-water resources. In 2005, about 152 million gallons per day (Mgal/d) were withdrawn from water sources in Ouachita Parish. About 84 percent (128 Mgal/d) was withdrawn from surface water, and 16 percent (24 Mgal/d) was withdrawn from groundwater. Power generation (87 Mgal/d) accounted for 58 percent of the total water withdrawn. Withdrawals for other uses included public supply (22 Mgal/d), industrial (24 Mgal/d), and irrigation (18 Mgal/d). This fact sheet summarizes basic information on the water resources of Ouachita Parish, La. Information on groundwater and surface-water availability, quality, development, use, and trends is based on previously published reports.

  3. Efficacy of Peracetic Acid in Inactivating Foodborne Pathogens on Fresh Produce Surface.

    PubMed

    Singh, Prashant; Hung, Yen-Con; Qi, Hang

    2018-02-01

    Washing treatment with effective sanitizer is one of the critical steps in ensuring fresh produce safety. This study was to evaluate the efficacy of peracetic acid (PAA; VigorOx® 15 F&V), chlorine-based sanitizers (acidic electrolyzed water [AEO], near neutral electrolyzed water and bleach), lactic acid, and deionized (DI) water to reduce Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella Typhimurium DT104 from fresh produce surfaces. A 5-strain cocktail of E. coli O157:H7, L. monocytogenes, and S. Typhimurium DT104 was separately prepared and used for surface inoculation on produce samples (E. coli O157:H7 on romaine lettuce, lemons, tomatoes, and blueberries; L. monocytogenes on romaine lettuce and cantaloupe; S. Typhimurium DT104 on lemons, tomatoes, cantaloupe, and blueberries). PAA at 45, 85, and 100 mg/L; AEO, NNEO, and bleach at 100 mg/L of free chlorine; lactic acid at 2%; and DI water were used for washing inoculated produce in an automated produce washer for 5 min. In general, PAA at 100 mg/L achieved the highest microbial inactivation of E. coli O157:H7 (lettuce, lemon, tomato, and blueberry at 2.2, 5.7, 5.5, and 6.7 log CFU/g, respectively), S. Typhimurium DT104 (lemon, tomato, cantaloupe, blueberry at 5.4, 6.8, 4.5, and 5.9 log CFU/g, respectively), and L. monocytogenes (lettuce and cantaloupe at 2.4 and 4.4 log CFU/g, respectively). Efficacy of sanitizers on produce with coarse surface (for example, lettuce and cantaloupe) was lower than produce with smooth texture (lemon, tomato, and blueberry). Cross-contamination of E. coli O157:H7 among romaine lettuce heads during simulated retail crisping process was greatly reduced by the application of PAA and NNEO. NNEO and PAA showed high efficacy in foodborne pathogen removal from fresh produce. Produce surface texture plays an important role in pathogen removal. NNEO and PAA effectively prevented cross-contamination during the crisping process. © 2018 Institute of Food Technologists®.

  4. Scarcity of Fresh Water Resources in the Ganges Delta of Bangladesh

    NASA Astrophysics Data System (ADS)

    Murshed, S. B.; Kaluarachchi, J. J.

    2017-12-01

    The Ganges Delta in Bangladesh is a classical example of water insecurity in a transboundary river basin where limitations in quantity, quality and timing of available water is producing disastrous conditions. Two opposite extreme water conditions, i.e., fresh water scarcity and floods are common in this region during dry and wet seasons, respectively. The purpose of this study is to manage fresh water requirement of people and environment considering the seasonal availability of surface water (SW) and ground water (GW). SW availability was analyzed by incoming stream flow including the effects of upstream water diversion, rainfall, temperature, evapotranspiration (ET). Flow duration curves (FDC), and rainfall and temperature elasticity are used to assess the change of incoming upstream flow. Groundwater data were collected from 285 piezometers and monitoring wells established by Bangladesh water development board. Variation of groundwater depth shows major withdrawals of GW are mostly concentrated in the north part of the study area. Irrigation is the largest sector of off-stream (irrigation, industrial and domestic) water use which occupies 82% SW and 17% GW of total water consumption. Although domestic water use is entirely depend on GW but arsenic pollution is limiting the GW use. FDC depicts a substantial difference between high flow threshold (20%) and low flow threshold (70%) in the Bangladesh part of Ganges River. A large variation of around 83% is observed for instream water volume between wet and dry seasons. The reduction of upstream fresh water flow increased the extent and intensity of salinity intrusion. Presently GW is also contaminated by saline water. This fresh water scarcity is reducing the livelihood options considerably and indirectly forcing population migration from the delta region. This study provides insight to the changes in hydrology and limitations to freshwater availability enabling better formulation of water resources management in the region.

  5. Supercooling ability is surprisingly invariable in eggs of the land snail Cantareus aspersus.

    PubMed

    Ansart, Armelle; Madec, Luc; Vernon, Philippe

    2007-02-01

    From an ontogenetic point of view, invertebrate eggs are generally the most freezing intolerant stage of a species. Development state, water content and acclimation may affect their supercooling ability. In this study, we measured fresh mass, water content and temperature of crystallisation (T(c)) of eggs of the edible land snail Cantareus aspersus, depending on its form ("aspersa"vs. "maxima"), incubation temperature (20, 12 and 7 degrees C) and physiological age (as part of the complete development). We also tested their tolerance to freezing. Despite a high number of individual observations (n=759) and significant differences of fresh mass and water content between both subspecies, no effect of origin, incubation temperature or development state has been found in this study. T(c) remained constant whatever the condition, with an overall mean of -5.40+/-0.24 degrees C (mean+/-SD). We suggest that fresh mass is important, a high water content and a constantly wet surface confer to land snail eggs a poor ability to supercool. Moreover, the presence of ice nucleating agents at the egg surface (microorganisms present in the soil, calcium carbonate crystals of the egg shell) might induce freezing. Thus, considering the present results, to delay hatching by cryopreservation of eggs does not seem possible.

  6. Chemical and physical characterization of produced waters from conventional and unconventional fossil fuel resources.

    PubMed

    Alley, Bethany; Beebe, Alex; Rodgers, John; Castle, James W

    2011-09-01

    Characterization of produced waters (PWs) is an initial step for determining potential beneficial uses such as irrigation and surface water discharge at some sites. A meta-analysis of characteristics of five PW sources [i.e. shale gas (SGPWs), conventional natural gas (NGPWs), conventional oil (OPWs), coal-bed methane (CBMPWs), tight gas sands (TGSPWs)] was conducted from peer-reviewed literature, government or industry documents, book chapters, internet sources, analytical records from industry, and analyses of PW samples. This meta-analysis assembled a large dataset to extract information of interest such as differences and similarities in constituent and constituent concentrations across these sources of PWs. The PW data analyzed were comprised of 377 coal-bed methane, 165 oilfield, 137 tight gas sand, 4000 natural gas, and 541 shale gas records. Majority of SGPWs, NGPWs, OPWs, and TGSPWs contain chloride concentrations ranging from saline (>30000 mg L(-1)) to hypersaline (>40000 mg L(-1)), while most CBMPWs were fresh (<5000 mg L(-1)). For inorganic constituents, most SGPW and NGPW iron concentrations exceeded the numeric criterion for irrigation and surface water discharge, while OPW and CBMPW iron concentrations were less than the criterion. Approximately one-fourth of the PW samples in this database are fresh and likely need minimal treatment for metal and metalloid constituents prior to use, while some PWs are brackish (5000-30000 mg Cl(-) L(-1)) to saline containing metals and metalloids that may require considerable treatment. Other PWs are hypersaline and produce a considerable waste stream from reverse osmosis; remediation of these waters may not be feasible. After renovation, fresh to saline PWs may be used for irrigation and replenishing surface waters. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Geochemistry

    ERIC Educational Resources Information Center

    Ailin-Pyzik, Iris B.; Sommer, Sheldon E.

    1977-01-01

    Enumerates some of the research findings in geochemistry during the last year, including X-ray analysis of the Mars surface, trace analysis of fresh and esterarine waters, and analysis of marine sedements. (MLH)

  8. AQUACLEAN

    EPA Pesticide Factsheets

    Technical product bulletin: this surface washing agent used in oil spill cleanups may be applied with pressure spray, or foam eductor for large spills. Dilute 50 with fresh water for shorelines and beaches.

  9. Particulate-free porous silicon networks for efficient capacitive deionization water desalination

    PubMed Central

    Metke, Thomas; Westover, Andrew S.; Carter, Rachel; Oakes, Landon; Douglas, Anna; Pint, Cary L.

    2016-01-01

    Energy efficient water desalination processes employing low-cost and earth-abundant materials is a critical step to sustainably manage future human needs for clean water resources. Here we demonstrate that porous silicon – a material harnessing earth abundance, cost, and environmental/biological compatibility is a candidate material for water desalination. With appropriate surface passivation of the porous silicon material to prevent surface corrosion in aqueous environments, we show that porous silicon templates can enable salt removal in capacitive deionization (CDI) ranging from 0.36% by mass at the onset from fresh to brackish water (10 mM, or 0.06% salinity) to 0.52% in ocean water salt concentrations (500 mM, or ~0.3% salinity). This is on par with reports of most carbon nanomaterial based CDI systems based on particulate electrodes and covers the full salinity range required of a CDI system with a total ocean-to-fresh water required energy input of ~1.45 Wh/L. The use of porous silicon for CDI enables new routes to directly couple water desalination technology with microfluidic systems and photovoltaics that natively use silicon materials, while mitigating adverse effects of water contamination occurring from nanoparticulate-based CDI electrodes. PMID:27101809

  10. Particulate-free porous silicon networks for efficient capacitive deionization water desalination.

    PubMed

    Metke, Thomas; Westover, Andrew S; Carter, Rachel; Oakes, Landon; Douglas, Anna; Pint, Cary L

    2016-04-22

    Energy efficient water desalination processes employing low-cost and earth-abundant materials is a critical step to sustainably manage future human needs for clean water resources. Here we demonstrate that porous silicon - a material harnessing earth abundance, cost, and environmental/biological compatibility is a candidate material for water desalination. With appropriate surface passivation of the porous silicon material to prevent surface corrosion in aqueous environments, we show that porous silicon templates can enable salt removal in capacitive deionization (CDI) ranging from 0.36% by mass at the onset from fresh to brackish water (10 mM, or 0.06% salinity) to 0.52% in ocean water salt concentrations (500 mM, or ~0.3% salinity). This is on par with reports of most carbon nanomaterial based CDI systems based on particulate electrodes and covers the full salinity range required of a CDI system with a total ocean-to-fresh water required energy input of ~1.45 Wh/L. The use of porous silicon for CDI enables new routes to directly couple water desalination technology with microfluidic systems and photovoltaics that natively use silicon materials, while mitigating adverse effects of water contamination occurring from nanoparticulate-based CDI electrodes.

  11. Spacebased Observation of Water Balance Over Global Oceans

    NASA Astrophysics Data System (ADS)

    Liu, W.; Xie, X.

    2008-12-01

    We demonstrated that ocean surface fresh water flux less the water discharge into the ocean from river and ice melt balances the mass loss in the ocean both in magnitude and in the phase of annual variation. The surface water flux was computed from the divergence of the water transport integrated over the depth of the atmosphere. The atmospheric water transport is estimated from the precipitable water measured by Special Sensor Microwave Imager, the surface wind vector by QuikSCAT, and the NOAA cloud drift wind through a statistical model. The transport has been extensively validated using global radiosonde and data and operational numerical weather prediction results. Its divergence has been shown to agree with the difference between evaporation estimated from the Advanced Microwave Scanning Radiometer data and the precipitation measured by Tropical Rain Measuring Mission over the global tropical and subtropical oceans both in magnitude and geographical distribution for temporal scales ranging from intraseasonal to interannual. The water loss rate in the ocean is estimated by two methods, one is from Gravity Recovery and Climate Experiment and the other is by subtracting the climatological steric change from the sea level change measured by radar altimeter on Jason. Only climatological river discharge and ice melt from in situ measurements are available and the lack of temporal variation may contribute to discrepancies in the balance. We have successfully used the spacebased surface fluxes to estimate to climatological mean heat transport in the Atlantic ocean and is attempting to estimate the meridional fresh water (or salt) transport from the surface flux. The approximate closure of the water balance gives a powerful indirect validation of the spacebased products.

  12. Saline sewage treatment and source separation of urine for more sustainable urban water management.

    PubMed

    Ekama, G A; Wilsenach, J A; Chen, G H

    2011-01-01

    While energy consumption and its associated carbon emission should be minimized in wastewater treatment, it has a much lower priority than human and environmental health, which are both closely related to efficient water quality management. So conservation of surface water quality and quantity are more important for sustainable development than green house gas (GHG) emissions per se. In this paper, two urban water management strategies to conserve fresh water quality and quantity are considered: (1) source separation of urine for improved water quality and (2) saline (e.g. sea) water toilet flushing for reduced fresh water consumption in coastal and mining cities. The former holds promise for simpler and shorter sludge age activated sludge wastewater treatment plants (no nitrification and denitrification), nutrient (Mg, K, P) recovery and improved effluent quality (reduced endocrine disruptor and environmental oestrogen concentrations) and the latter for significantly reduced fresh water consumption, sludge production and oxygen demand (through using anaerobic bioprocesses) and hence energy consumption. Combining source separation of urine and saline water toilet flushing can reduce sewer crown corrosion and reduce effluent P concentrations. To realize the advantages of these two approaches will require significant urban water management changes in that both need dual (fresh and saline) water distribution and (yellow and grey/brown) wastewater collection systems. While considerable work is still required to evaluate these new approaches and quantify their advantages and disadvantages, it would appear that the investment for dual water distribution and wastewater collection systems may be worth making to unlock their benefits for more sustainable urban development.

  13. Geophysical investigation to reveal the groundwater condition at new Borg El-Arab industrial city, Egypt

    NASA Astrophysics Data System (ADS)

    Basheer, Alhussein A.; Mansour, Khamis Q.; Abdalla, Mohammed A.

    2014-12-01

    New Borg El-Arab City, 60 km to the southwest of Alexandria City, is one of new industrial cities planned by the Egyptian Government through its program to transfer the population from the condensed Nile Delta to other places in Egypt. Because such a city includes airport, huge buildings, factories, and worker settlements, a careful geophysical study is planned to reveal the groundwater condition. This will help in defining the places of wells that are supposed to be drilled. Therefore more industrial and agricultural activities will be flourished. The present study embraces Vertical Electrical Soundings (VES'es) and Time Domain Electromagnetic sounding (TEM) to investigate the study area. The study aims to delineate the main subsurface conditions from the viewpoint of groundwater location, depth and water quality. Analysis and interpretation of the obtained results reveal that the subsurface consists of five geoelectrical layers with a gentle general slope toward the Mediterranean Sea. The third and the fourth layers in the succession are suggested to be the two water bearing formations of which the third layer is saturated with fresh water overlying saline water at the bottom of the fourth one. It is worth mentioning that the fresh water depth varies between 50 and 354 m under the ground surface. The thickness of the fresh water aquifer varies from 9.5 to 66 m; and the saline water depth varies between 116 and 384 m below the ground surface, the thickness of saline water aquifer differs from 34 to 90.5 m.

  14. Rise and Fall of one of World's largest deltas; the Mekong delta in Vietnam

    NASA Astrophysics Data System (ADS)

    Minderhoud, P. S. J.; Eslami Arab, S.; Pham, H. V.; Erkens, G.; van der Vegt, M.; Oude Essink, G.; Stouthamer, E.; Hoekstra, P.

    2017-12-01

    The Mekong delta is the third's largest delta in the world. It is home to almost 20 million people and an important region for the food security in South East Asia. As most deltas, the Mekong delta is the dynamic result of a balance of sediment supply, sea level rise and subsidence, hosting a system of fresh and salt water dynamics. Ongoing urbanization, industrialization and intensification of agricultural practices in the delta, during the past decades, resulted in growing domestic, agricultural and industrial demands, and have led to a dramatic increase of fresh water use. Since the year 2000, the amount of fresh groundwater extracted from the subsurface increased by 500%. This accelerated delta subsidence as the groundwater system compacts, with current sinking rates exceeding global sea level rise up to an order of magnitude. These high sinking rates have greatly altered the sediment budget of the delta and, with over 50% of the Mekong delta surface elevated less than 1 meter above sea level, greatly increase vulnerability to flooding and storm surges and ultimately, permanent inundation. Furthermore, as the increasingly larger extractions rapidly reduce the fresh groundwater reserves, groundwater salinization subsequently increases. On top of that, dry season low-flows by the Mekong river cause record salt water intrusion in the delta's estuarine system, creating major problems for rice irrigation. We present the work of three years research by the Dutch-Vietnamese `Rise and Fall' project on land subsidence and salinization in both groundwater and surface water in the Vietnamese Mekong delta.

  15. 36C1 measurements and the hydrology of an acid injection site

    USGS Publications Warehouse

    Vourvopoulos, G.; Brahana, J.V.; Nolte, E.; Korschinek, G.; Priller, A.; Dockhorn, B.

    1990-01-01

    In an area in western Tennessee (United States), an industrial firm is injecting acidic (pH = 0.1) iron chloride into permeable zones of carbonate rocks at depths ranging from 1000 to 2200 m below land surface. Overlying the injection zone at a depth of approximately 500 m below land surface is a regional fresh-water aquifer, the Knox aquifer. A study is currently underway to investigate whether the injection wells are hydraulically isolated from the fresh-water aquifer. Drilling of a test well that will reach a total depth of 2700 m has been initiated. The 36Cl content of 15 samples from the Knox aquifer, from monitor wells in the vicinity of the injection site, and from the test well have been analyzed. ?? 1990.

  16. Enceladus: Starting Hydrothermal Activity

    NASA Technical Reports Server (NTRS)

    Matson, D. L.; Castillo-Rogez, J. C.; Johnson, T. V.; Lunine, J. I.; Davies, A. G.

    2011-01-01

    We describe a process for starting the hydrothermal activity in Enceladus' South Polar Region. The process takes advantage of fissures that reach the water table, about 1 kilometer below the surface. Filling these fissures with fresh ocean water initiates a flow of water up from an ocean that can be self-sustaining. In this hypothesis the heat to sustain the thermal anomalies and the plumes comes from a slightly warm ocean at depth. The heat is brought to the surface by water that circulates up, through the crust and then returns to the ocean.

  17. Estimated Use of Water in the United States in 2000

    USGS Publications Warehouse

    Hutson, Susan S.; Barber, Nancy L.; Kenny, Joan F.; Linsey, Kristin S.; Lumia, Deborah S.; Maupin, Molly A.

    2004-01-01

    Estimates of water use in the United States indicate that about 408 billion gallons per day (one thousand million gallons per day, abbreviated Bgal/d) were withdrawn for all uses during 2000. This total has varied less than 3 percent since 1985 as withdrawals have stabilized for the two largest uses?thermoelectric power and irrigation. Fresh ground-water withdrawals (83.3 Bgal/d) during 2000 were 14 percent more than during 1985. Fresh surface-water withdrawals for 2000 were 262 Bgal/d, varying less than 2 percent since 1985. About 195 Bgal/d, or 48 percent of all freshwater and saline-water withdrawals for 2000, were used for thermoelectric power. Most of this water was derived from surface water and used for once-through cooling at power plants. About 52 percent of fresh surface-water withdrawals and about 96 percent of saline-water withdrawals were for thermoelectric-power use. Withdrawals for thermoelectric power have been relatively stable since 1985. Irrigation remained the largest use of freshwater in the United States and totaled 137 Bgal/d for 2000. Since 1950, irrigation has accounted for about 65 percent of total water withdrawals, excluding those for thermoelectric power. Historically, more surface water than ground water has been used for irrigation. However, the percentage of total irrigation withdrawals from ground water has continued to increase, from 23 percent in 1950 to 42 percent in 2000. Total irrigation withdrawals were 2 percent more for 2000 than for 1995, because of a 16-percent increase in ground-water withdrawals and a small decrease in surface-water withdrawals. Irrigated acreage more than doubled between 1950 and 1980, then remained constant before increasing nearly 7 percent between 1995 and 2000. The number of acres irrigated with sprinkler and microirrigation systems has continued to increase and now comprises more than one-half the total irrigated acreage. Public-supply withdrawals were more than 43 Bgal/d for 2000. Public-supply withdrawals during 1950 were 14 Bgal/d. During 2000, about 85 percent of the population in the United States obtained drinking water from public suppliers, compared to 62 percent during 1950. Surface water provided 63 percent of the total during 2000, whereas surface water provided 74 percent during 1950. Self-supplied industrial withdrawals totaled nearly 20 Bgal/d in 2000, or 12 percent less than in 1995. Compared to 1985, industrial self-supplied withdrawals declined by 24 percent. Estimates of industrial water use in the United States were largest during the years from 1965 to 1980, but during 2000, estimates were at the lowest level since reporting began in 1950. Combined withdrawals for self-supplied domestic, livestock, aquaculture, and mining were less than 13 Bgal/d for 2000, and represented about 3 percent of total withdrawals. California, Texas, and Florida accounted for one-fourth of all water withdrawals for 2000. States with the largest surface-water withdrawals were California, which had large withdrawals for irrigation and thermoelectric power, and Texas, which had large withdrawals for thermoelectric power. States with the largest ground-water withdrawals were California, Texas, and Nebraska, all of which had large withdrawals for irrigation.

  18. Phytoplankton succession in an isolated upwelled Benguela water body in relation to different initial nutrient conditions

    NASA Astrophysics Data System (ADS)

    Wasmund, Norbert; Nausch, Günther; Hansen, Anja

    2014-11-01

    Freshly upwelled water is poor in phytoplankton biomass but rich in nutrients. With its ageing, phytoplankton biomass increases whereas the nutrients are consumed. The overall aim of our investigation was to check the succession in the phytoplankton composition as a consequence of changing nutrient conditions. The experiments were carried out in mesocosms filled with surface water in the northern Benguela region and installed on board of R/V "Maria S. Merian". In the freshly upwelled water, phytoplankton took up nitrogen at a higher rate than phosphorus if compared with the Redfield ratio. Therefore, nitrogen was exhausted already by day 6. Nitrogen limitation after day 6 was indicated by decreasing chlorophyll a (chla) concentrations, primary production rates and productivity indices and increasing C/N ratios in particulate matter. Despite nitrogen limitation, phosphorus addition stimulated further growth, mainly of diatoms, pointing to luxury uptake. Cyanobacteria did not develop and nitrogen fixation was zero even with phosphorus and iron addition. Diatoms stay the most important group in the freshly upwelled water, but autotrophic and heterotrophic dinoflagellates increase strongly in the matured upwelled water. Mesocosms excluded disturbances by advective water transports, which influence the study of succssions under field conditions.

  19. Estimated Water Use in 1990, Island of Kauai, Hawaii

    USGS Publications Warehouse

    Shade, Patricia J.

    1995-01-01

    The estimated total quantity of freshwater withdrawn on the island of Kauai, Hawaii, in 1990 was 370.84 million gallons per day of which 46.29 million gallons per day (12 percent) was from ground-water sources, and 324.55 million gallons per day (88 percent) was from surface-water sources. An additional estimated 40.94 million gallons per day of saline water was withdrawn for thermoelectric power generation. Agricultural irrigation was the principal use, accounting for 66 percent of the total freshwater withdrawals. Irrigation accounted for about 40 percent of the fresh ground-water withdrawals, followed by public supply, thermoelectric power generation, self-supplied domestic, self-supplied commercial, and self-supplied industrial withdrawals. Agricultural irrigation accounted for 69 percent of the total fresh surface-water withdrawals, followed by hydroelectric power generation, self-supplied industrial, public-supply and self-supplied livestock withdrawals. A comparison of water-use data for 1980 and 1990 shows total freshwater uses decreased during 1990 by slightly more than 100 million gallons per day because of decreased withdrawals for sugarcane irrigation and processing. During this time, increased domestic, commercial, and thermoelectric power usage reflects increases in the resident population and in tourism on the island.

  20. MARINE GREEN CLEAN™

    EPA Pesticide Factsheets

    Technical product bulletin: this surface washing agent is for oil spill cleanups in fresh or salt water, sand beaches, gravel, cobble, coarse/rocky shores. Dose rates vary with type/amount petroleum spilled, temperatures, shoreline porosity.

  1. THE REDUCTIVE TRANSFORMATION OF PERCHLORATE IN A FRESH WATER SEDIMENT: LABORATORY BATCH STUDIES

    EPA Science Inventory

    Perchlorate is widely used as a propellant in solid rocket fuel, and has recently been found in ground, surface, and drinking water, in many cases above the interim action level of 18 ppb. Perchlorate is recalcitrant to chemical reduction, however, studies of perchlorate in pure ...

  2. THE REDUCTIVE TRANSFORMATION OF PERCHLORATE IN A FRESH WATER SEDIMENT: LABORATORY BATCH STUDIES.

    EPA Science Inventory

    Perchlorate is widely used as a propellant in solid rocket fuel, and has recently been found in ground, surface, and drinking water, in many cases above the interim action level of 18 ppb. Perchlorate is recalcitrant to chemical reduction, however, studies of perchlorate in pure ...

  3. Detection and variability of the Congo River plume from satellite derived sea surface temperature, salinity, ocean colour and sea level

    NASA Astrophysics Data System (ADS)

    Hopkins, Jo; Lucas, Marc; Dufau, Claire; Sutton, Marion; Lauret, Olivier

    2013-04-01

    The Congo River in Africa has the world's second highest annual mean daily freshwater discharge and is the second largest exporter of terrestrial organic carbon into the oceans. It annually discharges an average of 1,250 × 109 m3 of freshwater into the southeast Atlantic producing a vast fresh water plume, whose signature can be traced hundreds of kilometres from the river mouth. Large river plumes such as this play important roles in the ocean carbon cycle, often functioning as carbon sinks. An understanding of their extent and seasonality is therefore essential if they are to be realistically accounted for in global assessments of the carbon cycle. Despite its size, the variability and dynamics of the Congo plume are minimally documented. In this paper we analyse satellite derived sea surface temperature, salinity, ocean colour and sea level anomaly to describe and quantify the extent, strength and variability of the far-field plume and to explain its behaviour in relation to winds, ocean currents and fresh water discharge. Empirical Orthogonal Function analysis reveals strong seasonal and coastal upwelling signals, potential bimodal seasonality of the Angola Current and responses to fresh water discharge peaks in all data sets. The strongest plume-like signatures however were found in the salinity and ocean colour where the dominant sources of variability come from the Congo River itself, rather than from the wider atmosphere and ocean. These two data sets are then analysed using a statistically based water mass detection technique to isolate the behaviour of the plume. The Congo's close proximity to the equator means that the influence of the earth's rotation on the fresh water inflow is relatively small and the plume tends not to form a distinct coastal current. Instead, its behaviour is determined by wind and surface circulation patterns. The main axis of the plume between November and February, following peak river discharge, is oriented northwest, driven by the wind and Ekman surface currents and possibly a northern branch of the Benguela Coastal Current. From February through to May the main axis swings towards the southwest, extending 750 km from the mouth, coinciding with a westerly shift in the wind direction and an increase in its speed. From June through to August, when discharge is at a minimum and the plumes salinity is highest, the main axis of the plume extends up to 850 km westward, but retreats to 440 km throughout the autumn. Following the end of the coastal upwelling period and an increase in river discharge the plumes salinity starts to rise again and the equatorward fresh water tongue re-establishes itself.

  4. Potentiometric surface of the Floridan Aquifer and its use in management of water resources, St. Johns River Water Management District, Florida

    USGS Publications Warehouse

    Rodis, Harry George; Munch, D.A.

    1983-01-01

    The Floridan aquifer supplies most of the fresh groundwater for municipal, industrial, and agricultural uses within the 12,400 sq mi St. Johns River Water Management District. Because of the growing demand for water and the variation in rainfall, resource managers need timely information on short-term and long-term changes in the availability of fresh water. The purpose of this report is to explain potentiometric surface maps and their value in assessing the resource, particularly during drought conditions. The Floridan aquifer is recharged by rainfall falling directly on the outcrop of the aquifer, and, where the aquifer is overlain by the surficial aquifer with the water table above the potentiometric surface of the Floridan, by water infiltrating downward from the overlying surficial aquifer. Water is discharged by pumping and free-flowing wells, springflow, and upward leakage into overlying formations, streams, and lakes or into the ocean. Fluctuations in the potentiometric surface reflect net gains (recharge) or losses (discharge) of water stored in the aquifer. Net gains occur during the wet season (June through September) when recharge exceeds discharge and causes the potentiometric surface to rise in most places. Net losses in storage, and declines in the potentiometric surface, follow during the dry season (October through May) when discharge exceeds recharge. Seasonal changes in the potentiometric surface, based on a 2-yr average of water level measurements during May and September 1977, and May and September 1978, are illustrated. Two of the greater long-term declines in the potentiometric surface have occurred in the growing metropolitan areas of Jacksonville and Orlando-Winter Park, the two largest public suppliers of water in the Water Management District. Municipal pumpage increased in Jacksonville from 37 million gallons per day (mgd) in 1961 to 56 mgd in 1980. The increased pumpage and a deficiency in rainfall of 15.8 inches contributed to a decline in the potentiometric surface of as much as 15 ft. Orlando-Winter Park municipal pumpage increasing from 27 mgd in 1961 to 62 mgd in 1980. The periodic preparation of maps showing changes in the potentiometric surface of the aquifer provide the best base information for both short-term and long-term management of the water resources in the St. Johns River Water Management District. (Lantz-PTT)

  5. Aluminum/water reactions under extreme conditions

    NASA Astrophysics Data System (ADS)

    Hooper, Joseph

    2013-03-01

    We discuss mechanisms that may control the reaction of aluminum and water under extreme conditions. We are particularly interested in the high-temperature, high-strain regime where the native oxide layer is destroyed and fresh aluminum is initially in direct contact with liquid or supercritical water. Disparate experimental data over the years have suggested rapid oxidation of aluminum is possible in such situations, but no coherent picture has emerged as to the basic oxidation mechanism or the physical processes that govern the extent of reaction. We present theoretical and computational analysis of traditional metal/water reaction mechanisms that treat diffusion through a dynamic oxide layer or reaction limited by surface kinetics. Diffusion through a fresh solid oxide layer is shown to be far too slow to have any effect on the millisecond timescale (even at high temperatures). Quantum molecular dynamics simulations of liquid Al and water surface reactions show rapid water decomposition at the interface, catalyzed by adjacent water molecules in a Grotthus-like relay mechanism. The surface reaction barriers are far too low for this to be rate-limiting in any way. With these straightforward mechanisms ruled out, we investigate two more complex possibilities for the rate-limiting factor; first, we explore the possibility that newly formed oxide remains a metastable liquid well below its freezing point, allowing for diffusion-limited reactions through the oxide shell but on a much faster timescale. The extent of reaction would then be controlled by the solidification kinetics of alumina. Second, we discuss preliminary analysis on surface erosion and turbulent mixing, which may play a prominent role during hypervelocity penetration of solid aluminum projectiles into water.

  6. Isotope Geochemistry and Chronology of Offshore Ground Water Beneath Indian River Bay, Delaware

    USGS Publications Warehouse

    Böhlke, John Karl; Krantz, David E.

    2003-01-01

    Results of geophysical surveys in Indian River Bay, Delaware, indicate a complex pattern of salinity variation in subestuarine ground water. Fresh ground-water plumes up to about 20 meters thick extending hundreds of meters offshore are interspersed with saline ground water, with varying degrees of mixing along the salinity boundaries. It is possible that these features represent pathways for nutrient transport and interaction with estuarine surface water, but the geophysical data do not indicate rates of movement or nutrient sources and reactions. In the current study, samples of subestuarine ground water from temporary wells with short screens placed 3 to 22 meters below the sediment-water interface were analyzed chemically and isotopically to determine the origins, ages, transport pathways, and nutrient contents of the fresh and saline components. Apparent ground-water ages determined from chlorofluorocarbons (CFCs), sulfur hexafluoride (SF6), tritium (3H), and helium isotopes (3He and 4He) commonly were discordant, but nevertheless indicate that both fresh and saline ground waters ranged from a few years to at least 50 years in age. Tritium-helium (3H-3He) ages, tentatively judged to be most reliable, indicate that stratified offshore freshwater plumes originating in distant recharge areas on land were bounded by relatively young saline water that was recharged locally from the overlying estuary. Undenitrified and partially denitrified nitrate of agricultural or mixed origin was transported laterally beneath the estuary in oxic and suboxic fresh ground water. Ammonium produced by anaerobic degradation of organic matter in estuarine sediments was transported downward in suboxic saline ground water around the freshwater plumes. Many of the chemical and isotopic characteristics of the subestuarine ground waters are consistent with conservative mixing of the fresh (terrestrial) and saline (estuarine) endmember water types. These data indicate that freshwater plumes detected by geophysical surveys beneath Indian River Bay represent lateral continuations of the active surficial nitrate-contaminated freshwater flow systems originating on land, but they do not indicate directly the magnitude of fresh ground-water discharge or nutrient exchange with the estuary. There is evidence that some of the terrestrial ground-water nitrate is reduced before discharging directly beneath the estuary. Local estuarine sediment-derived ammonium in saline pore water may be a substantial benthic source of nitrogen in offshore areas of the estuary.

  7. Criteria for assessing the ecological risk of nonylphenol for aquatic life in Chinese surface fresh water.

    PubMed

    Zhang, Liangmao; Wei, Caidi; Zhang, Hui; Song, Mingwei

    2017-10-01

    The typical environmental endocrine disruptor nonylphenol is becoming an increasingly common pollutant in both fresh and salt water; it compromises the growth and development of many aquatic organisms. As yet, water quality criteria with respect to nonylphenol pollution have not been established in China. Here, the predicted "no effect concentration" of nonylphenol was derived from an analysis of species sensitivity distribution covering a range of species mainly native to China, as a means of quantifying the ecological risk of nonylphenol in surface fresh water. The resulting model, based on the log-logistic distribution, proved to be robust; the minimum sample sizes required for generating a stable estimate of HC 5 were 12 for acute toxicity and 13 for chronic toxicity. The criteria maximum concentration and criteria continuous concentration were, respectively 18.49 μg L -1 and 1.85 μg L -1 . Among the 24 sites surveyed, two were associated with a high ecological risk (risk quotient >1) and 12 with a moderate ecological risk (risk quotient >0.1). The potentially affected fraction ranged from 0.008% to 24.600%. The analysis provides a theoretical basis for both short- and long-term risk assessments with respect to nonylphenol, and also a means to quantify the risk to aquatic ecosystems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Application of Satellite Gravimetry for Water Resource Vulnerability Assessment

    NASA Technical Reports Server (NTRS)

    Rodell, Matthew

    2012-01-01

    The force of Earth's gravity field varies in proportion to the amount of mass near the surface. Spatial and temporal variations in the gravity field can be measured via their effects on the orbits of satellites. The Gravity Recovery and Climate Experiment (GRACE) is the first satellite mission dedicated to monitoring temporal variations in the gravity field. The monthly gravity anomaly maps that have been delivered by GRACE since 2002 are being used to infer changes in terrestrial water storage (the sum of groundwater, soil moisture, surface waters, and snow and ice), which are the primary source of gravity variability on monthly to decadal timescales after atmospheric and oceanic circulation effects have been removed. Other remote sensing techniques are unable to detect water below the first few centimeters of the land surface. Conventional ground based techniques can be used to monitor terrestrial water storage, but groundwater, soil moisture, and snow observation networks are sparse in most of the world, and the countries that do collect such data rarely are willing to share them. Thus GRACE is unique in its ability to provide global data on variations in the availability of fresh water, which is both vital to life on land and vulnerable to climate variability and mismanagement. This chapter describes the unique and challenging aspects of GRACE terrestrial water storage data, examples of how the data have been used for research and applications related to fresh water vulnerability and change, and prospects for continued contributions of satellite gravimetry to water resources science and policy.

  9. Sensory quality of drinking water produced by reverse osmosis membrane filtration followed by remineralisation.

    PubMed

    Vingerhoeds, Monique H; Nijenhuis-de Vries, Mariska A; Ruepert, Nienke; van der Laan, Harmen; Bredie, Wender L P; Kremer, Stefanie

    2016-05-01

    Membrane filtration of ground, surface, or sea water by reverse osmosis results in permeate, which is almost free from minerals. Minerals may be added afterwards, not only to comply with (legal) standards and to enhance chemical stability, but also to improve the taste of drinking water made from permeate. Both the nature and the concentrations of added minerals affect the taste of the water and in turn its acceptance by consumers. The aim of this study was to examine differences in taste between various remineralised drinking waters. Samples selected varied in mineral composition, i.e. tap water, permeate, and permeate with added minerals (40 or 120 mg Ca/L, added as CaCO3, and 4 or 24 mg Mg/L added as MgCl2), as well as commercially available bottled drinking waters, to span a relevant product space in which the remineralised samples could be compared. All samples were analysed with respect to their physical-chemical properties. Sensory profiling was done by descriptive analysis using a trained panel. Significant attributes included taste intensity, the tastes bitter, sweet, salt, metal, fresh and dry mouthfeel, bitter and metal aftertaste, and rough afterfeel. Total dissolved solids (TDS) was a major determinant of the taste perception of water. In general, lowering mineral content in drinking water in the range examined (from <5 to 440 mg/L) shifted the sensory perception of water from fresh towards bitter, dry, and rough sensations. In addition, perceived freshness of the waters correlated positively with calcium concentration. The greatest fresh taste was found for water with a TDS between 190 and 350 mg/L. Remineralisation of water after reverse osmosis can improve drinking quality significantly. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Trends in lead concentrations in major US rivers and their relation to historical changes in gasoline-lead consumption, by Richard B. Alexander and Richard A. Smith

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flegal, A.R.; Coale, K.H.

    1989-12-01

    The sequential development of trace metal clean techniques has resulted in a systematic decrease in reported lead concentrations in the ocean. Similar decreases have been observed in reports of lead concentrations in fresh water. This was illustrated by the changes in reported baseline concentrations of lead in Lake Huron. However, even the latest (1980) of those concentrations (19 ng/L) appears to be erroneously high based on recent measurements of lead concentrations in the Great Lakes. Lead concentrations in surface waters in the center of Lake Ontario are < 2 ng/L or one order of magnitude lower than the reported baselinemore » concentration of Lake Huron in 1980. Corresponding concentrations of lead in surface waters of Lake Huron should be equal to or less than those in Lake Ontario. Anthropogenic lead fluxes to Lake Huron (621 metric tons per year) and Lake Ontario (592 metric tons per year) are comparable, while the assimilative capacity of Lake Huron is two-fold greater than that of Lake Ontario. Moreover, the atmospheric flux of industrial lead aerosols to surface waters in Lake Huron is approximately one half of the flux in Lake Ontario. Therefore, if removal rates are similar in these two lakes, the authors expect the baseline concentration of lead in Lake Huron to be {le} 2 ng/L or one order of magnitude lower than the 1980 baseline concentration. Concentrations in remote fresh water systems in North America, where inputs of industrial lead aerosols are orders of magnitude lower should also be < 2 ng/L. The preceding measurements and projected concentrations of lead in fresh water systems in North America are of note in light of some recent reports on the decrease of lead in natural waters within the US. Those reports are questionable, in spite of other reports of decreasing lead concentrations in the Mississippi River and North Atlantic.« less

  11. What Controls Submarine Groundwater Discharge?

    NASA Astrophysics Data System (ADS)

    Martin, J. B.; Cable, J. E.; Cherrier, J.; Roy, M.; Smith, C. G.; Dorsett, A.

    2008-05-01

    Numerous processes have been implicated in controlling submarine groundwater discharge (SGD) to coastal zones since Ghyben, Herzberg and Dupuit developed models of fresh water discharge from coastal aquifers at the turn of the 19th century. Multiple empirical and modeling techniques have also been applied to these environments to measure the flow. By the mid-1950's, Cooper had demonstrated that dispersion across the fresh water-salt water boundary required salt water entrained into fresh water flow be balanced by recharge of salt water across the sediment-water interface seaward of the outflow face. Percolation of water into the beach face from wind and tidal wave run up and changes in pressure at the sediment-water interface with fluctuating tides have now been recognized, and observed, as processes driving seawater into the sediments. Within the past few years, variations in water table levels and the 1:40 amplification from density difference in fresh water and seawater have been implicated to pump salt water seasonally across the sediment- water interface. Salt water driven by waves, tides and seasonal water table fluctuations is now recognized as a component of SGD when it flows back to overlying surface waters. None of these processes are sufficiently large to provide measured volumes of SGD in Indian River Lagoon, Florida, however, because minimal tides and waves exist, flat topography and transmissive aquifers minimize fluctuations of the water table, and little water is entrained across the salt water-fresh water boundary. Nonetheless, the saline fraction of SGD represents more than 99% of the volume of total SGD in the Indian River Lagoon. This volume of saline SGD can be driven by the abundance of burrowing organisms in the lagoon, which pump sufficient amounts of water through the sediment- water interface. These bioirrigating organisms are ubiquitous at all water depths in sandy sediment and thus may provide one of the major sources of SGD world wide. Because bioirrigated water is well oxygenated and passes through sedimentary pore spaces, its influence may be quite large on fluxes of diagenetic reactive components, including organic matter, nutrients, and redox sensitive metals. While fresh meteoric groundwater may be confined to the shoreline in most cases and delivers new material from continents to the ocean, seawater circulating through sediments as part of SGD is apparently a much greater fraction of the total water flux and hence has the potential to significantly impact sediment diagenetic processes and subsequent export of nutrients and other solutes from the sediment to the water column.

  12. Distinct kinetics and mechanisms of mZVI particles aging in saline and fresh groundwater: H2 evolution and surface passivation.

    PubMed

    Xin, Jia; Tang, Fenglin; Zheng, Xilai; Shao, Haibing; Kolditz, Olaf; Lu, Xin

    2016-09-01

    Application of microscale zero-valent iron (mZVI) is a promising technology for in-situ contaminated groundwater remediation; however, its longevity is negatively impacted by surface passivation, especially in saline groundwater. In this study, the aging behavior of mZVI particles was investigated in three media (milli-Q water, fresh groundwater and saline groundwater) using batch experiments to evaluate their potential corrosion and passivation performance under different field conditions. The results indicated that mZVI was reactive for 0-7 days of exposure to water and then gradually lost H2-generating capacity over the next hundred days in all of the tested media. In comparison, mZVI in saline groundwater exhibited the fastest corrosion rate during the early phase (0-7 d), followed by the sharpest kinetic constant decline in the latter phases. The SEM-EDS and XPS analyses demonstrated that in the saline groundwater, a thin and compact oxide film was immediately formed on the surface and significantly shielded the iron reactive site. Nevertheless, in fresh groundwater and milli-Q water, a passive layer composed of loosely and unevenly distributed precipitates slowly formed, with abundant reactive sites available to support continuous iron corrosion. These findings provide insight into the molecular-scale mechanism that governs mZVI passivation and provide implications for long-term mZVI application in saline contaminated groundwater. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Comparison of propidium monoazide-quantitative PCR and reverse transcription quantitative PCR for viability detection of fresh Cryptosporidium oocysts following disinfection and after long-term storage in water samples

    EPA Science Inventory

    Purified oocysts of Cryptosporidium parvum were used to evaluate applicability of two quantitative PCR (qPCR) viability detection methods in raw surface water and disinfection treated water. Propidium monoazide-qPCR targeting hsp70 gene was compared to reverse transcription (RT)-...

  14. Application of Artificial Neuro-Fuzzy Logic Inference System for Predicting the Microbiological Pollution in Fresh Water

    NASA Astrophysics Data System (ADS)

    Bouharati, S.; Benmahammed, K.; Harzallah, D.; El-Assaf, Y. M.

    The classical methods for detecting the micro biological pollution in water are based on the detection of the coliform bacteria which indicators of contamination. But to check each water supply for these contaminants would be a time-consuming job and a qualify operators. In this study, we propose a novel intelligent system which provides a detection of microbiological pollution in fresh water. The proposed system is a hierarchical integration of an Artificial Neuro-Fuzzy Inference System (ANFIS). This method is based on the variations of the physical and chemical parameters occurred during bacteria growth. The instantaneous result obtained by the measurements of the variations of the physical and chemical parameters occurred during bacteria growth-temperature, pH, electrical potential and electrical conductivity of many varieties of water (surface water, well water, drinking water and used water) on the number Escherichia coli in water. The instantaneous result obtained by measurements of the inputs parameters of water from sensors.

  15. Resuscitation of acid-injured Salmonella in enrichment broth, in apple juice and on the surfaces of fresh-cut cucumber and apple.

    PubMed

    Liao, C-H; Fett, W F

    2005-01-01

    To investigate the resuscitation of acid-injured Salmonella enterica in selected enrichment broths, in apple juice and on cut surfaces of apple and cucumber slices. Following exposure to 2.4% acetic acid for 7 min, S. enterica (serovars Mbandaka, Chester and Newport) cells were used to inoculate enrichment broths, phosphate-buffered saline (PBS), apple juice and fruit slices. Injured Salmonella cells resuscitated and regained the ability to form colonies on selective agar (Xylose-Lysine-Tergitol 4) if they were incubated in lactose broth (LB), universal pre-enrichment broth (UPB) or buffered peptone water (BPW), but not in tetrathionate broth, PBS or apple juice. The resuscitation occurred at a significantly (P > 0.05) faster rate in UPB than in LB or BPW. The resuscitation also occurred on the surfaces of fresh-cut cucumber at 20 degrees C, but not at 4 degrees C. Acid-injured Salmonella cells resuscitated in nonselective enrichment broths at different rates, but not in selective enrichment broth, apple juice, PBS or on fresh-cut apple. Pre-enrichment of food samples in UPB prior to selective enrichment is recommended. Injured Salmonella cells have the ability to resuscitate on fresh-cut surfaces of cucumber when stored at abusive temperatures.

  16. Remote sensing of chlorophyll and temperature in marine and fresh waters.

    NASA Technical Reports Server (NTRS)

    Arvesen, J. C.; Millard, J. P.; Weaver, E. C.

    1973-01-01

    An airborne differential radiometer was demonstrated to be a sensitive, real-time detector of surface chlorophyll content in water bodies. The instrument continuously measures the difference in radiance between two wavelength bands, one centered near the maximum of the blue chlorophyll a absorption region and the other at a reference wavelength outside this region. Flights were made over fresh water lakes, marine waters, and an estuary, and the results were compared with 'ground truth' measurements of chlorophyll concentration. A correlation between output signal of the differential radiometer and the chlorophyll concentration was obtained. Examples of flight data are illustrated. Simultaneous airborne measurements of chlorophyll content and water temperature revealed that variations in chlorophyll are often associated with changes in temperature. Thus, simultaneous sensing of chlorophyll and temperature provides useful information for studies of marine food production, water pollution, and physical processes such as upwelling.

  17. Water withdrawals, use, and trends in Florida, 2010

    USGS Publications Warehouse

    Marella, Richard L.

    2014-01-01

    In 2010, the total amount of water withdrawn in Florida was estimated to be 14,988 million gallons per day (Mgal/d). Saline water accounted for 8,589 Mgal/d (57 percent) and freshwater accounted for 6,399 Mgal/d (43 percent). Groundwater accounted for 4,166 Mgal/d (65 percent) of freshwater withdrawals, and surface water accounted for the remaining 2,233 Mgal/d (35 percent). Surface water accounted for nearly all (99.9 percent) saline-water withdrawals. An additional 659 Mgal/d of reclaimed wastewater was used in Florida during 2010. Freshwater withdrawals were greatest in Palm Beach County (707 Mgal/d), and saline-water withdrawals were greatest in Hillsborough County (1,715 Mgal/d). Fresh groundwater provided drinking water (public supplied and self-supplied) for 17.33 million people (92 percent of Florida’s population), and fresh surface water provided drinking water for 1.47 million people (8 percent). The statewide public-supply gross per capita use for 2010 was 134 gallons per day, whereas the statewide public-supply domestic per capita use was 85 gallons per day. The majority of groundwater withdrawals (almost 62 percent) in 2010 were obtained from the Floridan aquifer system, which is present throughout most of the State. The majority of fresh surface-water withdrawals (56 percent) came from the southern Florida hydrologic unit subregion and is associated with Lake Okeechobee and the canals in the Everglades Agricultural Area of Glades, Hendry, and Palm Beach Counties, as well as the Caloosahatchee River and its tributaries in the agricultural areas of Collier, Glades, Hendry, and Lee Counties. Overall, agricultural irrigation accounted for 40 percent of the total freshwater withdrawals (ground and surface), followed by public supply with 35 percent. Public supply accounted for 48 percent of groundwater withdrawals, followed by agricultural self-supplied (34 percent), commercial-industrial-mining self-supplied (7 percent), recreational-landscape irrigation and domestic self-supplied (5 percent each), and power generation (less than 1 percent). Agricultural self-supplied accounted for 51 percent of fresh surface-water withdrawals, followed by power generation (25 percent), public supply (11 percent), recreational-landscape irrigation (9 percent), and commercial-industrial-mining self-supplied (4 percent). Power generation accounted for nearly all (99.8 percent) saline-water withdrawals. Of the 18.80 million people who resided in Florida during 2010, 41 percent (7.68 million people) resided in the South Florida Water Management District (SFWMD), 25 percent each resided in the Southwest Florida Water Management District (SWFWMD) and the St. Johns River Water Management District (SJRWMD) (4.73 and 4.70 million people, respectively), 7 percent (1.36 million people) resided in the Northwest Florida Water Management District (NWFWMD), and 2 percent (0.33 million people) resided in the Suwannee River Water Management District (SRWMD). The largest percentage of freshwater withdrawals was from the SFWMD (47 percent), followed by the SJRWMD (21 percent), SWFWMD (18 percent), NWFWMD (9 percent), and SRWMD (5 percent). Between 1950 and 2010, the population of Florida increased by 16.03 million (580 percent), and the total water withdrawals (fresh and saline) increased by 12,334 Mgal/d (465 percent). More recently, total freshwater withdrawals decreased by more than 1,792 Mgal/d (22 percent) between 2000 and 2010, while the population increased by 2.82 million (18 percent), and total freshwater withdrawals decreased by more than 474 Mgal/d (7 percent) between 2005 and 2010, while the population increased by 0.88 million (8 percent). The recent trend of decreases in freshwater withdrawals is a result of increased rainfall during this period, the development and use of alternative water sources, water conservation efforts, more conservative regulations and mandates, changes in economic conditions, and losses of irrigated lands. Fresh-water withdrawals for public supply, agricultural self-supplied use, and commercial-industrial-mining self-supplied use all decreased between 2000 and 2010 and between 2005 and 2010, whereas freshwater withdrawals for domestic self-supplied use, recreational-landscape irrigation use, and power generation use either remained the same or changed slightly during the decade. The use of highly mineralized groundwater (referred to as nonpotable water) as a source of drinking water has increased in Florida. Nonpotable water use for public supply has increased from nearly 2 Mgal/d in 1970 to about 165 Mgal/d in 2010. Nonpotable water is either blended or treated to meet drinking-water standards and is mostly used along the east and west coasts of central and southern Florida. The use of reclaimed wastewater increased from about 206 Mgal/d in 1986 to nearly 659 Mgal/d in 2010. More than three-quarters (79 percent) of reclaimed wastewater in 2010 was used to supplement potable-quality water withdrawals for urban irrigation, agricultural irrigation, and industrial use.

  18. Hydrogeologic information on the Glorieta Sandstone and the Ogallala Formation in the Oklahoma Panhandle and adjoining areas as related to underground waste disposal

    USGS Publications Warehouse

    Irwin, James Haskell; Morton, Robert B.

    1969-01-01

    The Oklahoma Panhandle and adjacent areas in Texas, Kansas, Colorado, and New Mexico have prospered because of the development of supplies of fresh water and of oil and gas. The Ogallala and, in places, Cretaceous rocks produce fresh water for irrigation, public supply, and domestic and stock use through approximately 9,000 irrigation and public supply wells and a large but undetermined number of other wells. Disposal of oil-field brine and other wastes into the Glorieta Sandstone is of concern to many local residents because of the possibility of pollution of the overlying fresh-water aquifers, particularly the Ogallala Formation. Permits for 147 disposal wells into the Glorieta have been issued in this area. This report summarizes the data on geology, hydrology, and water development currently available to the U.S. Geological Survey. Geologic information indicates that, in the report area, the Glorieta Sandstone lies at depths ranging from about 500 to 1,600 feet below the base of the Ogallala Fox, nation. The rocks between those two formations are of relatively impermeable types, but solution and removal of salt has resulted in collapse of the rocks in some places. Collapse and fracturing of the rocks could result in increased vertical permeability. This might result in movement of brine under hydrostatic head from the Glorieta Sandstone into overlying fresh-water aquifers, in places where an upward hydraulic gradient exists or is created by an increase in pressure within the Glorieta. Abandoned or inadequately sealed boreholes also are possible conduits for such fluids. The mixing of water in the fresh-water aquifers with brines injected into the Glorieta is not known to have occurred anywhere in the report area, but the information available is not adequate to show positively whether or not this may have occurred locally. Much additional information on the stratigraphy and hydrology--particularly, data on the potentiometric surface of water in the Glorieta--needs to be collected and analyzed before conclusions can be drawn regarding the possibility of vertical movement of oil-field brines from the Glorieta to fresh-water aquifers above.

  19. Water Resources of Rapides Parish

    USGS Publications Warehouse

    Griffith, J.M.

    2009-01-01

    Rapides Parish, located in central Louisiana, contains fresh groundwater and surface-water resources. In 2005, about 443 million gallons per day (Mgal/d) were withdrawn from water sources in Rapides Parish. About 92 percent (409 Mgal/d) was withdrawn from surface water, and 8 percent (34 Mgal/d) was withdrawn from groundwater. Withdrawals for power generation accounted for 91 percent (403 Mgal/d) of the total water withdrawn. Withdrawals for other uses included public supply (27 Mgal/d), irrigation (9 Mgal/d), and aquaculture (3 Mgal/d). Water withdrawals in the parish generally increased from 1960 to 1995 and decreased from 1995 to 2005. This fact sheet summarizes basic information on the water resources of Rapides Parish, La. Information on groundwater and surface-water availability, quality, development, use, and trends is based on previously published reports listed in the references section.

  20. Cloud condensation nuclei activity and hygroscopicity of fresh and aged cooking organic aerosol

    NASA Astrophysics Data System (ADS)

    Li, Yanwei; Tasoglou, Antonios; Liangou, Aikaterini; Cain, Kerrigan P.; Jahn, Leif; Gu, Peishi; Kostenidou, Evangelia; Pandis, Spyros N.

    2018-03-01

    Cooking organic aerosol (COA) is potentially a significant fraction of organic particulate matter in urban areas. COA chemical aging experiments, using aerosol produced by grilling hamburgers, took place in a smog chamber in the presence of UV light or excess ozone. The water solubility distributions, cloud condensation nuclei (CCN) activity, and corresponding hygroscopicity of fresh and aged COA were measured. The average mobility equivalent activation diameter of the fresh particles at 0.4% supersaturation ranged from 87 to 126 nm and decreased for aged particles, ranging from 65 to 88 nm. Most of the fresh COA had water solubility less than 0.1 g L-1, even though the corresponding particles were quite CCN active. After aging, the COA fraction with water solubility greater than 0.1 g L-1 increased more than 2 times. Using the extended Köhler theory for multiple partially soluble components in order to predict the measured activation diameters, the COA solubility distribution alone could not explain the CCN activity. Surface tensions less than 30 dyn cm-1 were required to explain the measured activation diameters. In addition, COA particles appear to not be spherical, which can introduce uncertainties into the corresponding calculations.

  1. MARINE GREEN CLEAN PLUS™

    EPA Pesticide Factsheets

    Technical product bulletin: this surface washing agent is for oil spill cleanups in fresh or salt water, sand beaches, gravel, cobble, coarse/rocky shores, public beaches, other sensitive or high impact sites. Foaming is best in direct applications.

  2. Application of microbial risk assessment to the development of standards for enteric pathogens in water used to irrigate fresh produce.

    PubMed

    Stine, Scott W; Song, Inhong; Choi, Christopher Y; Gerba, Charles P

    2005-05-01

    Microbial contamination of the surfaces of cantaloupe, iceberg lettuce, and bell peppers via contact with irrigation water was investigated to aid in the development of irrigation water quality standards for enteric bacteria and viruses. Furrow and subsurface drip irrigation methods were evaluated with the use of nonpathogenic surrogates, coliphage PRD1, and Escherichia coli ATCC 25922. The concentrations of hepatitis A virus (HAV) and Salmonella in irrigation water necessary to achieve a 1:10,000 annual risk of infection, the acceptable level of risk used for drinking water by the U.S. Environmental Protection Agency, were calculated with a quantitative microbial risk assessment approach. These calculations were based on the transfer of the selected nonpathogenic surrogates to fresh produce via irrigation water, as well as previously determined preharvest inactivation rates of pathogenic microorganisms on the surfaces of fresh produce. The risk of infection was found to be variable depending on type of crop, irrigation method, and days between last irrigation event and harvest. The worst-case scenario, in which produce is harvested and consumed the day after the last irrigation event and maximum exposure is assumed, indicated that concentrations of 2.5 CFU/100 ml of Salmonella and 2.5 x 10(-5) most probable number per 100 ml of HAV in irrigation water would result in an annual risk of 1:10,000 when the crop was consumed. If 14 days elapsed before harvest, allowing for die-off of the pathogens, the concentrations were increased to 5.7 x 10(3) Salmonella per 100 ml and 9.9 x 10(-3) HAV per 100 ml.

  3. Effects of acute fresh water exposure on water flux rates and osmotic responses in Kemp's ridley sea turtles (Lepidochelys kempi)

    NASA Technical Reports Server (NTRS)

    Ortiz, R. M.; Patterson, R. M.; Wade, C. E.; Byers, F. M.

    2000-01-01

    Water flux rates and osmotic responses of Kemp's Ridley sea turtles (Lepidochelys kempi) acutely exposed to fresh water were quantified. Salt-water adapted turtles were exposed to fresh water for 4 d before being returned to salt water. During the initial salt water phase, absolute and relative water flux rates were 1.2+/-0.1 l d(-1) and 123.0+/-6.8 ml kg(-1) d(-1), respectively. When turtles were exposed to fresh water, rates increased by approximately 30%. Upon return to salt water, rates decreased to original levels. Plasma osmolality, Na(+), K(+), and Cl(-) decreased during exposure to fresh water, and subsequently increased during the return to salt water. The Na(+):K(+) ratio was elevated during the fresh water phase and subsequently decreased upon return to salt water. Aldosterone and corticosterone were not altered during exposure to fresh water. Elevated water flux rates during fresh water exposure reflected an increase in water consumption, resulting in a decrease in ionic and osmotic concentrations. The lack of a change in adrenocorticoids to acute fresh water exposure suggests that adrenal responsiveness to an hypo-osmotic environment may be delayed in marine turtles when compared to marine mammals.

  4. Spatio-temporal variability in the freshwater input to the surface water of Southern Ocean

    NASA Astrophysics Data System (ADS)

    Naidu, P. K.; Ghosh, P.; N, A.

    2015-12-01

    Ocean heat content is rising rapidly in high-latitude regions of both hemispheres as a consequence of global warming (e.g., Gille 2002; Karcher et al. 2003; Bindoff et al. 2007; Purkey and Johnson 2010). Recent warming and freshening of Southern Ocean has affected hydrological cycle in terms of increasing tendency of precipitation as liquid water instead of snow. Limited data is available on the extent of fresh water flux by precipitation and sea ice melting to the surface ocean. The spatial extent of sea ice formation is documented based on remote sensing observation. We investigate here spatial variability in freshwater inputs to the Indian sector of Southern Ocean region using combined observation of oxygen isotopes ratios and salinity of surface water during the summer of 2011, 2012 and 2013. Together with this, the measured isotopic ratios of meteoric water and sea ice melt were used in the mass balance equation for deriving the contribution of both of these components in the surface water of southern ocean. The three component mixing equations (Meredith et al., 2013) allowed estimation of fractional contribution of rain over the years. The δ18O of meteoric water followed the pattern nearly similar to the observation documented in the continental stations (Global Network of Isotopes in Precipitation, GNIP) located in the southern hemisphere. However, a slight but consistent heavier composition was documented in rainwater as compared to the GNIP stations. Our observation suggests that the meteoric water is the dominant freshwater source over the ocean, accounting for up to 10-15% of the water present in the surface ocean during the austral summer whereas Sea-ice melt accounts for a much smaller percentage (maximum around 1%). Our observation is consistent with previous studies where similar magnitude of fresh water input was proposed based on observation from coastal region (Meredith et al., 2013).

  5. Involving regional expertise in nationwide modeling for adequate prediction of climate change effects on different demands for fresh water

    NASA Astrophysics Data System (ADS)

    de Lange, W. J.

    2014-05-01

    Wim J. de Lange, Geert F. Prinsen, Jacco H. Hoogewoud, Ab A Veldhuizen, Joachim Hunink, Erik F.W. Ruijgh, Timo Kroon Nationwide modeling aims to produce a balanced distribution of climate change effects (e.g. harm on crops) and possible compensation (e.g. volume fresh water) based on consistent calculation. The present work is based on the Netherlands Hydrological Instrument (NHI, www.nhi.nu), which is a national, integrated, hydrological model that simulates distribution, flow and storage of all water in the surface water and groundwater systems. The instrument is developed to assess the impact on water use on land-surface (sprinkling crops, drinking water) and in surface water (navigation, cooling). The regional expertise involved in the development of NHI come from all parties involved in the use, production and management of water, such as waterboards, drinking water supply companies, provinces, ngo's, and so on. Adequate prediction implies that the model computes changes in the order of magnitude that is relevant to the effects. In scenarios related to drought, adequate prediction applies to the water demand and the hydrological effects during average, dry, very dry and extremely dry periods. The NHI acts as a part of the so-called Deltamodel (www.deltamodel.nl), which aims to predict effects and compensating measures of climate change both on safety against flooding and on water shortage during drought. To assess the effects, a limited number of well-defined scenarios is used within the Deltamodel. The effects on demand of fresh water consist of an increase of the demand e.g. for surface water level control to prevent dike burst, for flushing salt in ditches, for sprinkling of crops, for preserving wet nature and so on. Many of the effects are dealt with by regional and local parties. Therefore, these parties have large interest in the outcome of the scenario analyses. They are participating in the assessment of the NHI previous to the start of the analyses. Regional expertise is welcomed in the calibration phase of NHI. It aims to reduce uncertainties by improving the rules for manmade re-direction of surface water, schematizations & parameters included in the model. This is carried out in workshops and in one-to-one expert meetings on regional models & the NHI. All results of NHI are presented on the internet and any expert may suggest improvements to the model. The final goal of the involvement of regional parties is the acceptation by decision impact receiving authorities. The presentation will give an overview of the experiences and results of the participation process both technically and in the national policy making context.

  6. The Dynamic Surface Tension of Water

    PubMed Central

    2017-01-01

    The surface tension of water is an important parameter for many biological or industrial processes, and roughly a factor of 3 higher than that of nonpolar liquids such as oils, which is usually attributed to hydrogen bonding and dipolar interactions. Here we show by studying the formation of water drops that the surface tension of a freshly created water surface is even higher (∼90 mN m–1) than under equilibrium conditions (∼72 mN m–1) with a relaxation process occurring on a long time scale (∼1 ms). Dynamic adsorption effects of protons or hydroxides may be at the origin of this dynamic surface tension. However, changing the pH does not significantly change the dynamic surface tension. It also seems unlikely that hydrogen bonding or dipole orientation effects play any role at the relatively long time scale probed in the experiments. PMID:28301160

  7. The Dynamic Surface Tension of Water.

    PubMed

    Hauner, Ines M; Deblais, Antoine; Beattie, James K; Kellay, Hamid; Bonn, Daniel

    2017-04-06

    The surface tension of water is an important parameter for many biological or industrial processes, and roughly a factor of 3 higher than that of nonpolar liquids such as oils, which is usually attributed to hydrogen bonding and dipolar interactions. Here we show by studying the formation of water drops that the surface tension of a freshly created water surface is even higher (∼90 mN m -1 ) than under equilibrium conditions (∼72 mN m -1 ) with a relaxation process occurring on a long time scale (∼1 ms). Dynamic adsorption effects of protons or hydroxides may be at the origin of this dynamic surface tension. However, changing the pH does not significantly change the dynamic surface tension. It also seems unlikely that hydrogen bonding or dipole orientation effects play any role at the relatively long time scale probed in the experiments.

  8. 77 FR 72856 - New York State Prohibition of Discharges of Vessel Sewage; Receipt of Petition and Tentative...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-06

    ...: Notice is given that, pursuant to Clean Water Act Section 312(f)(3), the State of New York has determined...: http://www.epa.gov/region02/water/permits.html . ADDRESSES: You may submit comments by any of the... the fresh surface water in the United States and serving as the largest single reservoir on Earth. The...

  9. Hollow-Fiber Ultrafiltration and PCR Detection of Human-Associated Genetic Markers from Various Types of Surface Water in Florida ▿

    PubMed Central

    Leskinen, Stephaney D.; Brownell, Miriam; Lim, Daniel V.; Harwood, Valerie J.

    2010-01-01

    Hollow-fiber ultrafiltration (HFUF) and PCR were combined to detect human-associated microbial source tracking marker genes in large volumes of fresh and estuarine Florida water. HFUF allowed marker detection when membrane filtration did not, demonstrating HFUF's ability to facilitate detection of diluted targets by PCR in a variety of water types. PMID:20435774

  10. Assessing the Role of Dune Topography on a Fresh Water Lens of a Siliciclastic Barrier Along the Northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Anderson, C. P.; Carter, G. A.; Mooneyhan, D.

    2013-12-01

    Carlton P. Anderson, Gregory Carter, and David Mooneyhan University of Southern Mississippi Gulf Coast Geospatial Center Department of Geography and Geology Carlton.p.anderson@eagles.usm.edu The Mississippi-Alabama (MS-AL) barrier island chain consist of dynamic depositional landforms that constantly undergo changes in their evolutionary processes through changes in sea level, sediment supply, and weather events. These complex landscapes of the Northern Gulf of Mexico (NGOM) provide a chance to study their geomorphological progressions, which have been produced by sea level rise and fluvial processes throughout the Holocene. Studies on the freshwater lens of barriers have mainly concentrated on carbonate island settings with minimal focus to barriers with siliciclastic geology. The purpose of this study is to examine the relationship beach dune topography plays in the development and sustainability of the fresh water lens of Cat Island, Mississippi. Cat Island offers the opportunity to research a siliciclastic barrier along the NGOM where minimal anthropogenic activities have taken place. To determine the effect dune topography has on the fresh water lens, a transect of permanent water wells were used in conjunction with test wells at different sites throughout the north spit of the island, to establish the water table height above the ellipsoid (WGS 84), with vertical accuracies of 2 cm. Cross-sectional profiles of the dunes were also performed utilizing purposeful transects that intersected fresh water ponds in the dune-swale systems. These ponds provide water table elevations at the surface which were interpolated across the dunes for areas that lacked permanent well sites. To obtain survey-grade accuracies, a Trimble TSC3 receiver coupled with a R8 antennae RTK system were used. Salinity measurements were taken at test sites to determine the salt-to-freshwater interface. Results provide insights into how dune topography influences the fresh water lens of a siliciclastic barrier.

  11. Influences of sample interference and interference controls on quantification of enterococci fecal indicator bacteria in surface water samples by the qPCR method

    EPA Science Inventory

    A quantitative polymerase chain reaction (qPCR) method for the detection of entercocci fecal indicator bacteria has been shown to be generally applicable for the analysis of temperate fresh (Great Lakes) and marine coastal waters and for providing risk-based determinations of wat...

  12. Multi-isotope (C - O - S - H - B - Mg - Ca - Ba) and trace element variations along a vertical pore water profile across a brackish-fresh water transition, Baltic Sea

    NASA Astrophysics Data System (ADS)

    Böttcher, Michael E.; Lapham, Laura; Gussone, Nikolaus; Struck, Ulrich; Buhl, Dieter; Immenhauser, Adrian; Moeller, Kirsten; Pretet, Chloé; Nägler, Thomas F.; Dellwig, Olaf; Schnetger, Bernhard; Huckriede, Hermann; Halas, Stan; Samankassou, Elias

    2013-04-01

    The Holocene Baltic Sea has been switched several times between fresh water and brackish water modes. Modern linear sedimentation rates, based on 210-Pb, 137-Cs, and Hg dating of surface sediments, are between 0.1 and 0.2 mm per year. The change in paleo-environmental conditions caused downcore gradients in the concentrations of dissolved species from modern brackish waters towards fresh paleo-pore waters, interrupted by the brief brackish Yoldia stage. These strong physico-chemical changes had consequences for e.g., microbial activity and further physical and chemical water-solid interactions associated with multiple stable isotope fractionation processes, and, in turn, have strong implications for isotope and trace element partitioning upon early diagenetic mineral (trans)formations. In this communication, we present the results from the first integrated multi-isotope and trace element investigation conducted in this type of salinity-gradient system. It is found that concentrations of conservative elements (e.g., Na, Cl) decrease with depth due to diffusion of ions from brackish waters into underlying fresh waters. This is associated with pronounced depletions in H-2 and O-18 of pore water with depth. Covariations of both isotope systems are close to the meteoric water line as defined by modern Baltic Sea surface waters. A downward increase and decrease of Ca and Mg concentrations, respectively, is associated with decreasing Ca-44 and Mg-26 isotope values. B-11 isotope values decrease in the limnic part of the sediments, too. On the other hand, an increase in Ba concentrations with depth is associated with an increase in Ba-137/134 isotope values. Microbial sulfate reduction and organic matter oxidation lead to an increase in DIC, but a decrease in sulfate concentrations and in C-13 contents of DIC with depth. Suess (1981) was probably the first to propose, that desorption of Ca and Ba from glacial sediments due to downward diffusing ions may be responsible for a downcore increase in pore water concentrations of earth alkaline ions and the formation of authigenic barites. Coupled S-34 and O-18 isotope signals in authigenic barites suggest that they were formed in pre-Yoldia sediments from pore waters strongly depleted in O-18 (as low as -20 per mil vs. VSMOW). In the present communication, we will discuss possible impacts of diagenetic processes on multi-isotope signals in pore waters and authigenic phases. A combination of mixing between brackish and fresh water, ion exchange, precipitation/dissolution, and transport reactions is considered to explain most of the observed isotope variations along the vertical pore water profile. This work was supported by the Leibniz IOW, BONUS+ program, the Universities of Bern, Geneva, Bochum, Münster, and Oldenburg, and the Natural Museum of History, Berlin.

  13. North Atlantic Deep Water and the World Ocean

    NASA Technical Reports Server (NTRS)

    Gordon, A. L.

    1984-01-01

    North Atlantic Deep Water (NADW) by being warmer and more saline than the average abyssal water parcel introduces heat and salt into the abyssal ocean. The source of these properties is upper layer or thermocline water considered to occupy the ocean less dense than sigma-theta of 27.6. That NADW convects even though it's warmer than the abyssal ocean is obviously due to the high salinity. In this way, NADW formation may be viewed as saline convection. The counter force removing heat and salinity (or introducing fresh water) is usually considered to to take place in the Southern Ocean where upwelling deep water is converted to cold fresher Antarctic water masses. The Southern ocean convective process is driven by low temperatures and hence may be considered as thermal convection. A significant fresh water source may also occur in the North Pacific where the northward flowing of abyssal water from the Southern circumpolar belt is saltier and denser than the southward flowing, return abyssal water. The source of the low salinity input may be vertical mixing of the low salinity surface water or the low salinity intermediate water.

  14. A Mathematical Model for Pathogen Cross-Contamination Dynamics during the Postharvest Processing of Leafy Greens.

    PubMed

    Mokhtari, Amir; Oryang, David; Chen, Yuhuan; Pouillot, Regis; Van Doren, Jane

    2018-01-08

    We developed a probabilistic mathematical model for the postharvest processing of leafy greens focusing on Escherichia coli O157:H7 contamination of fresh-cut romaine lettuce as the case study. Our model can (i) support the investigation of cross-contamination scenarios, and (ii) evaluate and compare different risk mitigation options. We used an agent-based modeling framework to predict the pathogen prevalence and levels in bags of fresh-cut lettuce and quantify spread of E. coli O157:H7 from contaminated lettuce to surface areas of processing equipment. Using an unbalanced factorial design, we were able to propagate combinations of random values assigned to model inputs through different processing steps and ranked statistically significant inputs with respect to their impacts on selected model outputs. Results indicated that whether contamination originated on incoming lettuce heads or on the surface areas of processing equipment, pathogen prevalence among bags of fresh-cut lettuce and batches was most significantly impacted by the level of free chlorine in the flume tank and frequency of replacing the wash water inside the tank. Pathogen levels in bags of fresh-cut lettuce were most significantly influenced by the initial levels of contamination on incoming lettuce heads or surface areas of processing equipment. The influence of surface contamination on pathogen prevalence or levels in fresh-cut bags depended on the location of that surface relative to the flume tank. This study demonstrates that developing a flexible yet mathematically rigorous modeling tool, a "virtual laboratory," can provide valuable insights into the effectiveness of individual and combined risk mitigation options. © 2018 The Authors Risk Analysis published by Wiley Periodicals, Inc. on behalf of Society for Risk Analysis.

  15. How Close Do We Live to Water? A Global Analysis of Population Distance to Freshwater Bodies

    PubMed Central

    Kummu, Matti; de Moel, Hans; Ward, Philip J.; Varis, Olli

    2011-01-01

    Traditionally, people have inhabited places with ready access to fresh water. Today, over 50% of the global population lives in urban areas, and water can be directed via tens of kilometres of pipelines. Still, however, a large part of the world's population is directly dependent on access to natural freshwater sources. So how are inhabited places related to the location of freshwater bodies today? We present a high-resolution global analysis of how close present-day populations live to surface freshwater. We aim to increase the understanding of the relationship between inhabited places, distance to surface freshwater bodies, and climatic characteristics in different climate zones and administrative regions. Our results show that over 50% of the world's population lives closer than 3 km to a surface freshwater body, and only 10% of the population lives further than 10 km away. There are, however, remarkable differences between administrative regions and climatic zones. Populations in Australia, Asia, and Europe live closest to water. Although populations in arid zones live furthest away from freshwater bodies in absolute terms, relatively speaking they live closest to water considering the limited number of freshwater bodies in those areas. Population distributions in arid zones show statistically significant relationships with a combination of climatic factors and distance to water, whilst in other zones there is no statistically significant relationship with distance to water. Global studies on development and climate adaptation can benefit from an improved understanding of these relationships between human populations and the distance to fresh water. PMID:21687675

  16. American River Watershed Investigation, California. Volume 3. Appendix M

    DTIC Science & Technology

    1991-12-01

    curing of the concrete and for general construction. The water used in concrete mixes must be free from injurious materials. Water from the American River...in achieving the desired bond strength between lifts. Water is needed for curing and to maintain freshness of lift joints. Lift surfaces should be kept...dizziness, throat pain, breathing difficulty and coughing . The health effects caused by combined concentrations of certain sulfur oxides and ozone

  17. Diverse Land Use and the Impact on (Irrigation) Water Quality and Need for Measures — A Case Study of a Norwegian River

    PubMed Central

    Johannessen, Gro S.; Wennberg, Aina C.; Nesheim, Ingrid; Tryland, Ingun

    2015-01-01

    Surface water is used for irrigation of food plants all over the World. Such water can be of variable hygienic quality, and can be contaminated from many different sources. The association of contaminated irrigation water with contamination of fresh produce is well established, and many outbreaks of foodborne disease associated with fresh produce consumption have been reported. The objective of the present study was to summarize the data on fecal indicators and selected bacterial pathogens to assess the level of fecal contamination of a Norwegian river used for irrigation in an area which has a high production level of various types of food commodities. Sources for fecal pollution of the river were identified. Measures implemented to reduce discharges from the wastewater sector and agriculture, and potential measures identified for future implementation are presented and discussed in relation to potential benefits and costs. It is important that the users of the water, independent of intended use, are aware of the hygienic quality and the potential interventions that may be applied. Our results suggest that contamination of surface water is a complex web of many factors and that several measures and interventions on different levels are needed to achieve a sound river and safe irrigation. PMID:26090611

  18. Identification of prominent spatio-temporal signals in GRACE derived terrestrial water storage for India

    NASA Astrophysics Data System (ADS)

    Banerjee, C.; Nagesh Kumar, D.

    2014-11-01

    Fresh water is a necessity of the human civilization. But with the increasing global population, the quantity and quality of available fresh water is getting compromised. To mitigate this subliminal problem, it is essential to enhance our level of understanding about the dynamics of global and regional fresh water resources which include surface and ground water reserves. With development in remote sensing technology, traditional and much localized in-situ observations are augmented with satellite data to get a holistic picture of the terrestrial water resources. For this reason, Gravity Recovery And Climate Experiment (GRACE) satellite mission was jointly implemented by NASA and German Aerospace Research Agency - DLR to map the variation of gravitational potential, which after removing atmospheric and oceanic effects is majorly caused by changes in Terrestrial Water Storage (TWS). India also faces the challenge of rejuvenating the fast deteriorating and exhausting water resources due to the rapid urbanization. In the present study we try to identify physically meaningful major spatial and temporal patterns or signals of changes in TWS for India. TWS data set over India for a period of 90 months, from June 2003 to December 2010 is use to isolate spatial and temporal signals using Principal Component Analysis (PCA), an extensively used method in meteorological studies. To achieve better disintegration of the data into more physically meaningful components we use a blind signal separation technique, Independent Component Analysis (ICA).

  19. Plastic (wire-combed) grooving of a slip-formed concrete runway overlay at Patrick Henry Airport: An initial evaluation

    NASA Technical Reports Server (NTRS)

    Marlin, E. C.; Horne, W. B.

    1977-01-01

    A wire-comb technique is described for transversely grooving the surface of a freshly laid (plastic state) slip-formed concrete overlay installed at Patrick Henry Airport. This method of surface texturing yields better water drainage and pavement skid resistance than that obtained with an older conventional burlap drag concrete surface treatment installed on an adjacent portion of the runway.

  20. Description of landscape features, summary of existing hydrologic data, and identification of data gaps for the Osage Nation, northeastern Oklahoma, 1890-2012

    USGS Publications Warehouse

    Andrews, William J.; Smith, S. Jerrod

    2014-01-01

    The Osage Nation of northeastern Oklahoma, conterminous with Osage County, is characterized by gently rolling uplands and incised stream valleys that have downcut into underlying sedimentary rock units of Pennsylvanian through Permian age. Cattle ranching and petroleum and natural-gas extraction are the principal land uses in this rural area. Freshwater resources in the Osage Nation include water flowing in the Arkansas River and several smaller streams, water stored in several lakes, and groundwater contained in unconsolidated alluvial aquifers and bedrock aquifers. The Vamoosa-Ada aquifer is the primary source of fresh groundwater in this area. Fresh groundwater is underlain by saline groundwater in aquifers underlying the Osage Nation. Because of the potential for future population increases, demands for water from neighboring areas such as the Tulsa metropolitan area, and expansion of petroleum and natural-gas extraction on water resources of this area, the U.S. Geological Survey, in cooperation with the Osage Nation, summarized existing hydrologic data and identified data gaps to provide information for planning of future development of water resources in the Osage Nation. Streamflows in the Osage Nation are substantially affected by precipitation. During the relatively wet periods from the 1970s to 2000, the annual streamflows in the Osage Nation increased by as much as a factor of 2 relative to preceding decades, with subsequent decreases in streamflow of as much as 50 percent being recorded during intermittent drier years of the early 2000s. This report summarizes hydrologic data from 3 surface-water sites and 91 wells distributed across the Osage Nation. Data collected at those sites indicate that surface water in the Osage Nation generally has sufficient dissolved oxygen for survival of both coldwater and warmwater aquatic biota. Total dissolved solids concentration exceeded the secondary drinking-water standard of 500 milligrams per liter (mg/L) in up to 75 percent of the surface-water samples, indicating limited availability of potable water at some sites. Some surface-water samples collected in the Osage Nation contained dissolved chloride concentrations exceeding the secondary drinking-water standard of 250 mg/L, with greater chloride concentrations in selected basins appearing to be associated with greater densities of petroleum well locations. Several lakes sampled in the Osage Nation from 2011–12 contained sufficient chlorophyll-a concentrations to be ranked as mesotrophic to eutrophic, indicating impairment by nutrients. Relatively large dissolved phosphorus concentrations in many surface-water samples, compared to water-quality standards, indicate that eutrophication can occur in local streams and lakes. The amount of fresh groundwater stored in alluvial aquifers and the Vamoosa-Ada bedrock aquifer is adequate for domestic and other purposes in the Osage Nation at the current rate of usage. In areas where these aquifers are absent, groundwater must be pumped from minor bedrock aquifers that produce smaller volumes of water. About 30 and 60 percent of 32 and 54 water samples collected from the alluvial and Vamoosa-Ada aquifers, respectively, contained total dissolved solids concentrations larger than the secondary drinking-water standard of 500 mg/L. Local factors, such as natural seepage of brines or leakage from petroleum and natural-gas extraction activities, may cause substantial variations in dissolved chloride concentration in groundwater in the Osage Nation. Total phosphorus concentrations measured in groundwater samples were similar to dissolved phosphorus concentrations measured in the base flow of several streams. Total fresh surface-water withdrawals (use) and fresh groundwater withdrawals in the Osage Nation were estimated to have increased from 0.75 to 16.19 million gallons per day and from 0.13 to 2.39 million gallons per day, respectively, over the period from 1890 through 2010. Estimated saline-groundwater reinjection volumes at the heavily developed Burbank Oil Field in the Osage Nation from 1950 through 2012 were many times larger than the total amounts of freshwater withdrawn in this area, with estimated increases in saline-groundwater reinjection in the 2000s probably being related to increased petroleum extraction. Estimates of freshwater resources in local streams, lakes, and freshwater aquifers and of net annual precipitation indicate that less than 1 percent of freshwater resources and net annual precipitation currently is being withdrawn annually in the Osage Nation. In addition to freshwater resources, the Osage Nation may be underlain by 45,000,000 million gallons of brines, a small portion of which are withdrawn and reinjected during petroleum and natural-gas extraction. Ongoing development of desalinization technology may lead to the ability to expand use of these saline waters in the future. Several additional studies could improve understanding of the hydrologic resources of the Osage Nation. Development of computer models (simulations) of groundwater and surface-water flow for this area could enable testing of scenarios of localized and widespread effects of future climate variations and water-use changes on streamflows, lake-water levels, and groundwater levels in the Osage Nation. Installation of additional long-term streamflow and water-quality sampling stations, some with continuous water-quality monitors, could expand and improve understanding of surface-water quality. Periodic measurement of groundwater levels and sampling of water from a network of wells could provide better information about trends of groundwater quantity and quality with time. Measurement of water withdrawals at selected sites could enable more accurate estimates of water use. Lastly, better understanding of aquifer properties and spatial distribution of saline groundwater provided by geophysical surveys could improve understanding of fresh and saline groundwater resources underlying the Osage Nation.

  1. Assessing More than a Decade of Alaska/yukon, High Elevation, Glacier Ice/rock Landslides

    NASA Astrophysics Data System (ADS)

    Molnia, B. F.; Angeli, K.

    2017-12-01

    On September 14, 2005, an estimated 5.0x106 m3 of rock, glacier ice, and snow fell from below the summit of 3,236-m-high Mt. Steller, Alaska, onto a tributary of Bering Glacier. Next day photography of the slide and source area suggested that meltwater played a significant role in its origin. Aerial photography and space-based electro-optical imagery collected for months following the event recorded continuing evidence of meltwater flowing from the head-scarp region and continued ice and snow melt. We investigated five similar glacier ice-rock landslides. These originated from the north face of Mt. Steller in late 2005-early 2006, the south side of Waxell Ridge in late 2005-early 2006, Mt. Steele on July 24, 2007, Mt. Lituya on June 11, 2012, and Mt. La Perouse on February 16, 2014. None was triggered by a seismic event. Four were detected based on seismic events they generated. All source areas exhibited failed hanging glaciers and/or failed perennial snowfields. Five had detectable glacier hydrologic features (moulins, conduits, and collapsed englacial stream channels) in near-summit failed ice and snow margins. Four displayed fresh concave bedrock failure surfaces. All originated at locations where mean annual temperatures were below freezing. Our observations support water triggering each event. We propose that abnormally warm summer temperatures or extreme winter precipitation produced unusual volumes of water which saturated summit snow and ice and/or filled summit glacier channels and conduits with liquid water. Water reached the frozen water/bedrock interface, destabilizing the contact. Fresh concave bedrock failure surfaces suggest that glacier beds were adhering to steep bedrock surfaces composed of a mélange of freeze/thaw shattered rock held together by interstitial ice. When the mass of saturated glacier ice failed, the bedrock mélange also failed, exposing fresh bedrock scarp depressions and generating the observed gravel-dominated slide debris.

  2. Geology and ground-water conditions in southern Nassau and southeastern Queens Counties, Long Island, New York

    USGS Publications Warehouse

    Perlmutter, N.M.; Geraghty, J.J.

    1963-01-01

    Test drilling, electrical logging, and water sampling of 'outpost' and other wells have revealed the existence of a deep confined body of salt water in the Magothy(?) formation beneath southwestern Nassau and southeastern Queens Counties, Long Island, N.Y. In connection with a test-drilling program, cooperatively sponsored by the U.S. Geological Survey, the Nassau County Department of Public Works, and the New York State Water Resources Commission (formerly Water Power and Control Commission), 13 wells ranging in depth from about 130 to 800 feet were drilled during 1952 and 1953 and screened at various depths in the Magothy(?) formation and Jameco gravel. On the basis of the preliminary geologic, hydrologic, and chemical data from these wells, a detailed investigation of ground-water conditions from the water table to the bedrock was begun in a 200-square-mile area in southern Nassau and southeastern Queens Counties. The Inain purposes of the investigation were to delineate the bodies of fresh and salty ground water in the project area, to relate their occurrence and movement to geologic and hydrologic conditions, to estimate the rate of encroachment, if any, of the salty water, and to evaluate the effectiveness of the existing network of outpost wells as detectors of salt-water encroachment. About a million people in the report area, residing mainly in southern Nassau County, are completely dependent on ground water as a source of supply. Fortunately, precipitation averages about 44 inches per year, of which approximately half is estimated to percolate into the ground-water reservoir. The ground water is contained in and moves through eight differentiated geologic units composed of unconsolidated gravel, sand, and clay, of Late Cretaceous, Pleistocene, and Recent age, having a maximum total thickness of about 1,700 feet. The underlying metamorphic and igneous crystalline basement rocks are of Precambrian age and are not water bearing. The water-yielding units from the surface down are (1) the upper Pleistocene deposits, (2) the principal artesian aquifer, composed of the Jameco gravel and Magothy(?) formation, and (3) the Lloyd sand member of the Raritar formation. The confining units are the '20-foot' clay, the Gardiners clay, and the clay member of the Raritan formation. The upper Pleistocene deposits contain an extensive unconfined body of fresh water. Fresh water under artesian conditions is contained in the principal artesian aquifer and the Lloyd sand member. The piezometric surface of the principal artesian aquifer is similar in shape to the south-ward-sloping water table; it ranges in altitude from about sea level to 55 feet above. The chemical quality of the fresh ground water in most of the area in all aquifers is good to excellent, and concentrations of dissolved solids and of chloride generally are below 100 ppm (parts per million) and 10 ppm, respectively. Analyses of water samples from selected wells show no progressive increase in concentration of chloride in most of the area. The data on quality of water have been used to delineate one major and several minor bodies of salty ground water. The wedgeshaped main confined salt-water body, in which the concentration of chloride reaches about 17,000 ppm, is in the Magothy(?) formation and Jameco gravel in extreme southwestern Nassau County and southeastern Queens County. The base of the salt-water wedge is about at the top of the clay member of the Raritan formation. Beneath the barrier beach in south-central and southeastern Nassau County a shallow extension of the main confined salt-water body contains as much as 4,000 ppm of chloride and is separated from the lower main salt-water body by fresh ground water. Shallow, thin bodies of unconfined salty ground water are common in the upper Pleistocene and Recent deposits adjacent to salty surface water in tidal creeks, bays, and the Atlantic

  3. Water Resources of Lafayette Parish

    USGS Publications Warehouse

    Fendick, Robert B.; Griffith, Jason M.; Prakken, Lawrence B.

    2011-01-01

    Fresh groundwater and surface water resources are available in Lafayette Parish, which is located in south-central Louisiana. In 2005, more than 47 million gallons per day (Mgal/d) were withdrawn from water sources in Lafayette Parish. About 92 percent (43.7 Mgal/d) of withdrawals was groundwater, and 8 percent (3.6 Mgal/d) was surface water. Public-supply withdrawals accounted for nearly 49 percent (23 Mgal/d) of the total groundwater use, with the cities of Lafayette and Carencro using about 21 Mgal/d. Withdrawals for other uses included about 10.4 Mgal/d for rice irrigation and about 8.4 Mgal/d for aquaculture. Water withdrawals in Lafayette Parish increased from 33 Mgal/d in 1995 to about 47 Mgal/d in 2005. This fact sheet summarizes information on the water resources of Lafayette Parish, La. Information on groundwater and surface-water availability, quality, development, use, and trends is based on previously published reports listed in the references section.

  4. Monitoring of nutrients, pesticides, and metals in waters, sediments, and fish of a wetland.

    PubMed

    Salvadó, V; Quintana, X D; Hidalgo, M

    2006-10-01

    Wetland areas are of extraordinary importance for the conservation of wildlife. The Aiguamolls de l'Empordà Natural Park, located in Girona (northeast Spain), is one of the few areas in Europe acting as a way station for migratory birds. The natural park is made up of a brackish water reserve and a fresh water reserve. Agriculture and tourism, which are concentrated especially around coastal population centers, are the main activities in this area and result in the release into the environment of nutrients, pesticides, and heavy metals. This article aims to investigate the presence of nutrients, selected pesticides (organochlorine compounds, permethrin and triazines) and metals (Cr, Cu, Cd, Ni and Pb) in water, sediments, and fish samples. In the case of water, seasonal variations in levels of contamination were also monitored. Comparison was made of the fresh and brackish water reserves and concentration factors for metals and pesticides in sediment were determined. We conclude that the most significant sources of contamination in the natural park are from the entry of pesticides and nutrients into surface waters and sediments as a result of the intensive farming activity of the surrounding areas. The pesticides with the greatest presence were found to be lindane, heptachlor epoxide, permethrin, and atrazine. Among the metals analyzed, Cu and Cr presented the highest concentrations in surface waters and sediments.

  5. Reactive solute transport in streams: A surface complexation approach for trace metal sorption

    USGS Publications Warehouse

    Runkel, Robert L.; Kimball, Briant A.; McKnight, Diane M.; Bencala, Kenneth E.

    1999-01-01

    A model for trace metals that considers in-stream transport, metal oxide precipitation-dissolution, and pH-dependent sorption is presented. Linkage between a surface complexation submodel and the stream transport equations provides a framework for modeling sorption onto static and/or dynamic surfaces. A static surface (e.g., an iron- oxide-coated streambed) is defined as a surface with a temporally constant solid concentration. Limited contact between solutes in the water column and the static surface is considered using a pseudokinetic approach. A dynamic surface (e.g., freshly precipitated metal oxides) has a temporally variable solid concentration and is in equilibrium with the water column. Transport and deposition of solute mass sorbed to the dynamic surface is represented in the stream transport equations that include precipitate settling. The model is applied to a pH-modification experiment in an acid mine drainage stream. Dissolved copper concentrations were depressed for a 3 hour period in response to the experimentally elevated pH. After passage of the pH front, copper was desorbed, and dissolved concentrations returned to ambient levels. Copper sorption is modeled by considering sorption to aged hydrous ferric oxide (HFO) on the streambed (static surface) and freshly precipitated HFO in the water column (dynamic surface). Comparison of parameter estimates with reported values suggests that naturally formed iron oxides may be more effective in removing trace metals than synthetic oxides used in laboratory studies. The model's ability to simulate pH, metal oxide precipitation-dissolution, and pH-dependent sorption provides a means of evaluating the complex interactions between trace metal chemistry and hydrologic transport at the field scale.

  6. A preliminary appraisal of the Garber-Wellington Aquifer, southern Logan and northern Oklahoma counties, Oklahoma

    USGS Publications Warehouse

    Carr, Jerry E.; Marcher, Melvin V.

    1977-01-01

    The Garber-Wellington aquifer, which dips westward at 30 to 40 feet per mile, consists of about 900 feet of interbedded sandstone, shale, and siltstone. Sandstone comprises 35 to 75 percent of the aquifer and averages about 50 percent. Water-table conditions generally exist in the upper 200 feet in the outcrop area of the aquifer; semi-artesian or artesian conditions exist below a depth of 200 feet and beneath rocks of the Hennessey Group (predominantly shale) where the aquifer is fully saturated. Water containing more than 1,000 milligrams per liter dissolved solids occurs at various depths through the area. The altitude of the base of fresh water ranges from 250 feet above sea level in the south-central part of the area to 950 feet in the northwestern part. The thickness of the fresh-water zone ranges from less than 150 feet in the northern part of the area to about 850 feet in the southern part. The total amount of water stored in the fresh-water zone is estimated to be 21 million acre-feet based on specific yield of 0.20. Minimum recharge to the aquifer in 1975 is estimated to be 190 acre-feet per square mile or about 10 percent of the annual precipitation. Total minimum recharge to the aquifer in the study area in 1975 is estimated to be 129,000 acre-feet. Streams in the area are the principal means of ground-water discharge; the amount of discharge is essentially the same as recharge. The amount of groundwater used for municipal and rural water supply in 1975 is estimated to have been 5,000 acre-feet; a similar amount may have been used for industrial purposes. As a result of pumping, the potentiometric surface in 1975 had been lowered about 200 feet in the vicinity of Edmond and about 100 feet in the vicinity of Nichols Hills. Chemical analyses of water from the aquifer indicates that hardness is greater in the upper part of the aquifer than in the lower part, and that sulfate, chloride, and dissolved solids increase with depth. Reported yields of wells more than 250 feet deep range from 70 to 475 gallons per minute and average 240 gallons per minute. Potential well yields range from 225 gallons per minute when the fresh-water zone is 350 feet thick to about 550 gallons per minute where the fresh water zone is 850 feet thick. These estimates of potential yield are based on an available drawdown of half the thickness of the fresh-water zone and a specific capacity of 1.3 gallons per minute per foot. Intrusion of saline water into the fresh-water zone is a potential threat to water quality in the aquifer if the pressure head in the fresh-water zone is reduced sufficiently to allow upconing of saline water. One way to avoid the problem of upconing is by steady pumping at low rates from widely spaced wells; however, information required to determine pumping rates and well spacing is not available. For proper aquifer management the distribution of wells and rates of withdrawals should be designed to capture maximum recharge to the ground-water system. This may be accomplished by developing regional ground-water gradients that are sufficiently large to move water to pumpage centers but not so steep as to cause upconing of saline water or excessive water-level declines.

  7. Leachability of uranium and other elements from freshly erupted volcanic ash

    USGS Publications Warehouse

    Smith, D.B.; Zielinski, R.A.; Rose, W.I.

    1982-01-01

    A study of leaching of freshly erupted basaltic and dacitic air-fall ash and bomb fragment samples, unaffected by rain, shows that glass dissolution is the dominant process by which uranium is initially mobilized from air-fall volcanic ash. Si, Li, and V are also preferentially mobilized by glass dissolution. Gaseous transfer followed by fixation of soluble uranium species on volcanic-ash particles is not an important process affecting uranium mobility. Gaseous transfer, however, may be important in forming water-soluble phases, adsorbed to ash surfaces, enriched in the economically and environmentally important elements Zn, Cu, Cd, Pb, B, F, and Ba. Quick removal of these adsorbed elements by the first exposure of freshly erupted ash to rain and surface water may pose short-term hazards to certain forms of aquatic and terrestrial life. Such rapid release of material may also represent the first step in transportation of economically important elements to environments favorable for precipitation into deposits of commercial interest. Ash samples collected from the active Guatemalan volcanoes Fuego and Pacaya (high-Al basalts) and Santiaguito (hornblende-hypersthene dacite); bomb fragments from Augustine volcano (andesite-dacite), Alaska, and Heimaey (basalt), Vestmann Islands, Iceland; and fragments of "rhyolitic" pumice from various historic eruptions were subjected to three successive leaches with a constant water-to-ash weight ratio of 4:1. The volcanic material was successively leached by: (1) distilled-deionized water (pH = 5.0-5.5) at room temperature for 24 h, which removes water-soluble gases and salts adsorbed on ash surfaces during eruption; (2) dilute HCl solution (pH = 3.5-4.0) at room temperature for 24 h, which continues the attack initiated by the water and also attacks acid-soluble sulfides and oxides; (3) a solution 0.05 M in both Na,CO, and NaHCO, (pH = 9.9) at 80°C for one week, which preferentially dissolves volcanic glass. The first two leaches mimic interaction of ash with rain produced in the vicinity of an active eruption. The third leach accelerates the effect of prolonged contact of volcanic ash with alkaline ground water present during ash diagenesis.

  8. 46 CFR 164.003-4 - Inspections and tests.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... finished product. (c) Not less than a one-pound sample from each 1,000 pounds of kapok shall be tested for... in a rigid wire box or cage with metal reinforced edges, and submerged by weights in a tank of fresh water to a depth of 12 inches below the surface of the water, measurement made to the top of box, for 48...

  9. 46 CFR 164.003-4 - Inspections and tests.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... finished product. (c) Not less than a one-pound sample from each 1,000 pounds of kapok shall be tested for... in a rigid wire box or cage with metal reinforced edges, and submerged by weights in a tank of fresh water to a depth of 12 inches below the surface of the water, measurement made to the top of box, for 48...

  10. 46 CFR 164.003-4 - Inspections and tests.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... finished product. (c) Not less than a one-pound sample from each 1,000 pounds of kapok shall be tested for... in a rigid wire box or cage with metal reinforced edges, and submerged by weights in a tank of fresh water to a depth of 12 inches below the surface of the water, measurement made to the top of box, for 48...

  11. 46 CFR 164.003-4 - Inspections and tests.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... finished product. (c) Not less than a one-pound sample from each 1,000 pounds of kapok shall be tested for... in a rigid wire box or cage with metal reinforced edges, and submerged by weights in a tank of fresh water to a depth of 12 inches below the surface of the water, measurement made to the top of box, for 48...

  12. 46 CFR 164.003-4 - Inspections and tests.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... finished product. (c) Not less than a one-pound sample from each 1,000 pounds of kapok shall be tested for... in a rigid wire box or cage with metal reinforced edges, and submerged by weights in a tank of fresh water to a depth of 12 inches below the surface of the water, measurement made to the top of box, for 48...

  13. Greywater-induced soil hydrophobicity.

    PubMed

    Maimon, Adi; Gross, Amit; Arye, Gilboa

    2017-10-01

    Greywater (GW) reuse for irrigation is a common method of reducing domestic consumption of fresh water. Most of the scientific research and legislation efforts have focused on GW's health risks, while less attention has been given to its environmental outcomes. One of the environmental risks of GW irrigation is its possible effect on soil hydraulic properties. This research examined the ability of GW to induce soil hydrophobicity, as well as its degree and persistence. Fresh water (control) and three model GW solutions representing raw, treated and highly treated GW were used to wet fine-grained sand. Every treatment was subjected to five cycles of wetting, incubation (at 5 °C or 30 °C) and drying (60 °C). After each cycle, capillary rise was measured and the contact angle (CA) was calculated. Samples were also tested by the Wilhelmy plate method to retrieve advancing and receding CA and reservoir surface tension. Water repellence of the sand, as implied from the CA, increased with increasing GW concentration and was highest in the sand coated with the model raw GW and incubated at 5 °C. However, none of the treatments resulted in what is considered to be "water-repellent soil". Furthermore, when raw GW-coated sand was immersed in water, its surface tension was significantly reduced relative to the other treatments, implying a release of surface-active compounds from the sand into the water. It was postulated that untreated GW may induce sub-critical water repellence in sand. However, this effect is sensitive to biodegradation and washing processes and is therefore temporary. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Photochemical reactions between mercury (Hg) and dissolved organic matter decrease Hg bioavailability and methylation

    DOE PAGES

    Luo, Hong-Wei; Yin, Xiangping; Jubb, Aaron M.; ...

    2016-11-09

    Atmospheric deposition of mercury (Hg) to surface water is one of the dominant sources of Hg in aquatic environments and ultimately drives methylmercury (MeHg) toxin accumulation in fish. It is known that freshly deposited Hg is more readily methylated by microorganisms than aged or preexisting Hg; however the underlying mechanism of this process is unclear. Here we report that Hg bioavailability is decreased by photochemical reactions between Hg and dissolved organic matter (DOM) in water. Photo-irradiation of Hg-DOM complexes results in loss of Sn(II)-reducible (i.e. reactive) Hg and up to an 80% decrease in MeHg production by the methylating bacteriummore » Geobacter sulfurreducens PCA. Loss of reactive Hg proceeded at a faster rate with a decrease in the Hg to DOM ratio and is attributed to the possible formation of mercury sulfide (HgS). Lastly, these results suggest a new pathway of abiotic photochemical formation of HgS in surface water and provide a mechanism whereby freshly deposited Hg is readily methylated but, over time, progressively becomes less available for microbial uptake and methylation.« less

  15. Photochemical reactions between mercury (Hg) and dissolved organic matter decrease Hg bioavailability and methylation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Hong-Wei; Yin, Xiangping; Jubb, Aaron M.

    Atmospheric deposition of mercury (Hg) to surface water is one of the dominant sources of Hg in aquatic environments and ultimately drives methylmercury (MeHg) toxin accumulation in fish. It is known that freshly deposited Hg is more readily methylated by microorganisms than aged or preexisting Hg; however the underlying mechanism of this process is unclear. Here we report that Hg bioavailability is decreased by photochemical reactions between Hg and dissolved organic matter (DOM) in water. Photo-irradiation of Hg-DOM complexes results in loss of Sn(II)-reducible (i.e. reactive) Hg and up to an 80% decrease in MeHg production by the methylating bacteriummore » Geobacter sulfurreducens PCA. Loss of reactive Hg proceeded at a faster rate with a decrease in the Hg to DOM ratio and is attributed to the possible formation of mercury sulfide (HgS). Lastly, these results suggest a new pathway of abiotic photochemical formation of HgS in surface water and provide a mechanism whereby freshly deposited Hg is readily methylated but, over time, progressively becomes less available for microbial uptake and methylation.« less

  16. Impact wear behavior of human tooth enamel under simulated chewing conditions.

    PubMed

    Zheng, Jing; Zeng, Yangyang; Wen, Jian; Zheng, Liang; Zhou, Zhongrong

    2016-09-01

    Previous studies mostly focused on the sliding wear behavior of human teeth, and little effort has been made so far to study the impact wear of human teeth. The objective of this study was to investigate the impact wear process and mechanism of human tooth enamel and the influence of water content within enamel. In this paper, the impact wear behaviors of fresh and dried human tooth enamel against SiC ceramic have been investigated using a specially designed impact test machine. Tests lasting up to 5×10(3), 5×10(4), 2.5×10(5), 5.5×10(5), 8×10(5) and 1×10(6) cycles were conducted, respectively. Results showed that for the fresh enamel, the surface damage was dominated by plastic deformation at the early stage of impact wear. Iridescent rings appeared around the impact mark as a result of the accumulation and spread of plastic deformation. As the impact wear progressed, delamination occurred on the surface of enamel, and thus the iridescent rings gradually disappeared. Wear loss increased rapidly with the increase of impact cycles. When a wear particle layer was formed on the enamel surface, the wear rate decreased. It was found that the surface hardness of enamel increased with the impact cycles, and no cracks appeared on the cross section of wear scar. Compared with the fresh enamel, the fracture toughness of dried enamel decreased, and thus there were microcracks appearing on the cross section of wear scar. More obvious delamination occurred on the worn surface of dried enamel, and no iridescent rings were observed. The wear loss of dried enamel was higher than that of fresh enamel. In summary, the impact wear behavior of sound human tooth enamel was metal-like to some degree, and no subsurface cracking occurred. The water content within enamel could increase its fracture toughness and protect the surface from impact wear. The wear mechanism of human tooth enamel is determined by its microstructure. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Patterns of Oversubscribed Water Services: Implications for Groundwater

    NASA Astrophysics Data System (ADS)

    Douglas, E. M.; Vorosmarty, C. J.

    2009-12-01

    Water resources, even at continental and global scales, show signs of water scarcity and stress. Prior work has shown that non-sustainable water use could be a non-trivial component of total withdrawals, a conclusion drawn from documentary evidence but one fraught with high uncertainty. We assessed water supply using a geospatial framework, which enabled calculations to be made of the degree to which fresh water withdrawals exceed locally accessible supplies and those in river corridors. Sources of water to accommodate this oversubscription include interbasin transfers, desalination, and groundwater overdraught. Successfully delivering fresh water under such conditions can also create impairment of inland surface waterways, especially when these become source waters themselves. We find the fraction of global fresh water oversubscription in the range of 10-15% of total human water use, under this condition. While the aggregate percentage is relatively small, overdraft tends to be focused in a few regions of the world and hence very substantial at the local to regional scale. Syndromes include those well-known but now shown to be pandemic: saltwater intrusion, land subsidence, pollution, and economic losses. We present a global mapping that shows good correspondence with documentary evidence corroborating the simulated patterns. We also see evidence for active responses pursued in response to these water stresses. These include so-called “hard path” supply-oriented strategies like the construction of water infrastructure, but also more management-oriented such as those that reduce use through efficiency gains, integrated management, and wastewater reuse. We also see impetus for privatization of water supplies in response to this scarcity.

  18. Effect of airborne contaminants on the wettability of supported graphene and graphite

    NASA Astrophysics Data System (ADS)

    Li, Zhiting; Wang, Yongjin; Kozbial, Andrew; Shenoy, Ganesh; Zhou, Feng; McGinley, Rebecca; Ireland, Patrick; Morganstein, Brittni; Kunkel, Alyssa; Surwade, Sumedh P.; Li, Lei; Liu, Haitao

    2013-10-01

    It is generally accepted that supported graphene is hydrophobic and that its water contact angle is similar to that of graphite. Here, we show that the water contact angles of freshly prepared supported graphene and graphite surfaces increase when they are exposed to ambient air. By using infrared spectroscopy and X-ray photoelectron spectroscopy we demonstrate that airborne hydrocarbons adsorb on graphitic surfaces, and that a concurrent decrease in the water contact angle occurs when these contaminants are partially removed by both thermal annealing and controlled ultraviolet-O3 treatment. Our findings indicate that graphitic surfaces are more hydrophilic than previously believed, and suggest that previously reported data on the wettability of graphitic surfaces may have been affected by unintentional hydrocarbon contamination from ambient air.

  19. Defect-induced wetting on BaF 2(111) and CaF 2(111) at ambient conditions

    NASA Astrophysics Data System (ADS)

    Cardellach, M.; Verdaguer, A.; Fraxedas, J.

    2011-12-01

    The interaction of water with freshly cleaved (111) surfaces of isostructural BaF2 and CaF2 single crystals at ambient conditions (room temperature and under controlled humidity) has been studied using scanning force microscopy in different operation modes and optical microscopy. Such surfaces exhibit contrasting behaviors for both materials: while on BaF2(111) two-dimensional water layers are formed after accumulation at step edges, CaF2(111) does not promote the formation of such layers. We attribute such opposed behavior to lattice match (mismatch) between hexagonal water ice and the hexagonal (111) surfaces of BaF2(CaF2). Optical microscope images reveal that this behavior also determines the way the surfaces become wetted at a macroscopic level.

  20. Effect of airborne contaminants on the wettability of supported graphene and graphite.

    PubMed

    Li, Zhiting; Wang, Yongjin; Kozbial, Andrew; Shenoy, Ganesh; Zhou, Feng; McGinley, Rebecca; Ireland, Patrick; Morganstein, Brittni; Kunkel, Alyssa; Surwade, Sumedh P; Li, Lei; Liu, Haitao

    2013-10-01

    It is generally accepted that supported graphene is hydrophobic and that its water contact angle is similar to that of graphite. Here, we show that the water contact angles of freshly prepared supported graphene and graphite surfaces increase when they are exposed to ambient air. By using infrared spectroscopy and X-ray photoelectron spectroscopy we demonstrate that airborne hydrocarbons adsorb on graphitic surfaces, and that a concurrent decrease in the water contact angle occurs when these contaminants are partially removed by both thermal annealing and controlled ultraviolet-O3 treatment. Our findings indicate that graphitic surfaces are more hydrophilic than previously believed, and suggest that previously reported data on the wettability of graphitic surfaces may have been affected by unintentional hydrocarbon contamination from ambient air.

  1. Carbon-Flow-Based Modeling of Ecophysiological Processes and Biomass Dynamics of Submersed Aquatic Plants

    DTIC Science & Technology

    2007-09-01

    simulation modeling approach to describing carbon- flow-based, ecophysiological processes and biomass dynamics of fresh- water submersed aquatic plant...the distribution and abundance of SAV. In aquatic systems a small part of the irradiance can be reflected by the water surface, and further...to the fact that water temperatures in the lake were relatively low compared to air tem- peratures because of the large inflow of groundwater (Titus

  2. Long-term effects of drinking-water treatment residuals on dissolved phosphorus export from vegetated buffer strips.

    PubMed

    Habibiandehkordi, Reza; Quinton, John N; Surridge, Ben W J

    2015-04-01

    The export of dissolved phosphorus (P) in surface runoff from agricultural land can lead to water quality degradation. Surface application of aluminium (Al)-based water treatment residuals (Al-WTRs) to vegetated buffer strip (VBS) soils can enhance P removal from surface runoff during single runoff events. However, the longer-term effects on P removal in VBSs following application of products such as Al-WTR remain uncertain. We used field experimental plots to examine the long-term effects of applying a freshly generated Al-WTR to VBSs on dissolved P export during multiple runoff events, occurring between 1 day and 42 weeks after the application of Al-WTR. Vegetated buffer strip plots amended with Al-WTR significantly reduced soluble reactive P and total dissolved P concentrations in surface runoff compared to both unamended VBS plots and control plots. However, the effectiveness of Al-WTR decreased over time, by approximately 70% after 42 weeks compared to a day following Al-WTR application. Reduced performance did not appear to be due to drying of Al-WTR in the field. Instead, the development of preferential flow paths as well as burying of Al-WTR with freshly deposited sediments may explain these observations. Better understanding of the processes controlling long-term P removal by Al-WTR is required for effective management of VBSs.

  3. Recent variability in the Atlantic water intrusion and water masses in Kongsfjorden, an Arctic fjord

    NASA Astrophysics Data System (ADS)

    Divya, David T.; Krishnan, K. P.

    2017-03-01

    The present study reports high inter-annual variability in the water masses and in the intrusion of Atlantic origin waters in Kongsfjorden from 2000 to 2013 using both the historical (2000-2010 summers) and recent CTD measurements (2011-2013 summer/fall). An earlier intrusion of Atlantic Water (AW) into Kongsfjorden was observed in the contemporary years. An overall summertime subsurface warming is evident from the maximum September AW temperature in 2011 (4.8 °C), 2012 (5.8 °C) and 2013 (7 °C). The combination of a compensating surface flow to the subsurface intrusion of AW and the strong southeasterly surface winds during the peak summer, resulted in a corresponding net outflow of the surface fresh water layer from Kongsfjorden. This led to the decreased freshwater volume inside the fjord during 2013 (1 km3) compared to 2011 (3.1 km3) and 2012 (2.3 km3).

  4. Climate and Human Pressures on Fresh Groundwater in Coral Atoll Island Nations in the Pacific

    NASA Astrophysics Data System (ADS)

    White, I.; Falkland, T.; Perez, P.; Dray, A.; Overmars, M.; Metai, E.

    2004-12-01

    Population centres in low, coral atolls have water supply problems that are amongst the most acute in the world. Limited land areas and highly permeable soils severely restrict surface water storage, forcing heavy reliance on groundwater. Fresh groundwater is extremely vulnerable to contamination through both natural processes, such as seawater intrusion following storm surges, sea-level rise and droughts, and human activities, such as overpumping, sewerage and waste disposal. Restricted land areas and seawater intrusion also limit fresh groundwater quantities, particularly in frequent ENSO-related droughts. Demand for water is increasing due to natural population growth, inward migration and to growing urbanisation. There are few water professionals in many small island nations. Assessment of groundwater resources is inadequate and application of conventional hydrology often gives erroneous information, such as the assumption of potential evaporation from coconut trees. Water use for traditional and introduced crops competes with community water supplies. Limited resources and isolation restrict the potential for exports so that reliance on aid is systemic. The agendas of developed world aid institutions sometimes conflict with traditions and cultures of small island communities. At the core of water management problems are lack of resource assessment and demand and land tenure and conflicts between the requirements of urbanised societies and the traditional values and rights of subsistence communities. Reforms of governance and provision of water resource knowledge to communities are critical. Long-term, regional partnerships and tools for reducing conflicts over water resources are needed to promote self-reliance.

  5. Hydrodynamics of coalbed methane reservoirs in the Black Warrior Basin: Key to understanding reservoir performance and environmental issues

    USGS Publications Warehouse

    Pashin, J.C.

    2007-01-01

    The Black Warrior Basin of the southeastern United States hosts one of the world's most prolific and long-lived coalbed methane plays, and the wealth of experience in this basin provides insight into the relationships among basin hydrology, production performance, and environmental issues. Along the southeast margin of the basin, meteoric recharge of reservoir coal beds exposed in an upturned fold limb exerts a strong control on water chemistry, reservoir pressure, and production performance. Fresh-water plumes containing Na-HCO3 waters with low TDS content extend from the structurally upturned basin margin into the interior of the basin. Northwest of the plumes, coal beds contain Na-Cl waters with moderate to high-TDS content. Carbon isotope data from produced gas and mineral cements suggest that the fresh-water plumes have been the site of significant bacterial activity and that the coalbed methane reservoirs contain a mixture of thermogenic and late-stage biogenic gases. Water produced from the fresh-water plumes may be disposed safely at the surface, whereas underground injection has been used locally to dispose of highly saline water. Wells in areas that had normal hydrostatic reservoir pressure prior to development tend to produce large volumes of water and may take up to 4 a to reach peak gas production. In contrast, wells drilled in naturally underpressured areas distal to the fresh-water plumes typically produce little water and achieve peak gas rates during the first year of production. Environmental debate has focused largely on issues associated with hydrologic communication between deep reservoir coal beds and shallow aquifers. In the coalbed methane fields of the Black Warrior Basin, a broad range of geologic evidence suggests that flow is effectively confined within coal and that the thick intervals of marine shale separating coal zones limit cross-formational flow. ?? 2007 Elsevier Ltd. All rights reserved.

  6. Determination of low-level Radium isotope activities in fresh waters by gamma spectrometry.

    PubMed

    Molina Porras, Arnold; Condomines, Michel; Seidel, Jean Luc

    2017-02-01

    A new portable sampling system was developed to extract Radium isotopes from large volumes (up to 300L) of fresh surface- and ground-waters of low Ra-activities (<5mBq/L). Ra is quantitatively adsorbed on a small amount (6.5g) of MnO 2 -coated acrylic fibers, which are then dried and burned at 600°C in the laboratory. The resulting Mn-oxide powder (about 2cm 3 when compacted) is then analyzed through gamma-ray spectrometry which allows measurement of the whole Ra quartet ( 226 Ra, 228 Ra, 224 Ra and 223 Ra) in a single counting of a few days. The usual relative standard combined uncertainties (1σ) are 2-3% for 226 Ra, 228 Ra and 224 Ra; and less than 10% for 223 Ra. This method was applied to the analysis of Ra in karstic waters of the Lez aquifer, and surface- and ground-waters of the upper and middle Vidourle watershed (South of France). The analyzed waters have relatively low 226 Ra activities (1-4mBq/L) in both cases, regardless of the contrasted geology (Mesozoic limestone vs crystalline Variscan basement), but clearly distinct ( 228 Ra/ 226 Ra) ratios in agreement with the differences in Th/U ratios of the two drained areas. Short-lived Ra isotopes ( 224 Ra and 223 Ra) appear to be mainly influenced by near-surface desorption/recoil processes for most of the sampling sites. Copyright © 2016. Published by Elsevier Ltd.

  7. Water-Quality Assessment of Southern Florida - Wastewater Discharges and Runoff

    USGS Publications Warehouse

    Marella, Richard L.

    1998-01-01

    Nearly 800 million gallons per day of treated wastewater was discharged in the Southern Florida National Water-Quality Assessment (NAWQA) study unit in 1990, most to the Atlantic Ocean (44 percent) and to deep, saline aquifers (25 percent). About 9 percent was discharged to fresh surface waters and about 22 percent to shallow ground water, of which septic tanks accounted for 9 percent. Runoff from agricultural and urban lands, though not directly measured, is a large source of wastewater in southern Florida.

  8. Regional Hydrogeochemistry of a Modern Coastal Mixing Zone

    NASA Astrophysics Data System (ADS)

    Wicks, Carol M.; Herman, Janet S.

    1996-02-01

    In west central Florida, groundwater samples were collected along flow paths in the unconfined upper Floridan aquifer that cross the inland, freshwater recharge area and the coastal discharge area. A groundwater flow and solute transport model was used to evaluate groundwater flow and mixing of fresh and saline groundwater along a cross section of the unconfined upper Floridan aquifer. Results show that between 8% and 15% of the fresh and 30-31% of the saline groundwater penetrates to the depth in the flow system where contact with and dissolution of gypsum is likely. The deeply circulating fresh and saline groundwater returns to the near-surface environment discharging CaSO4-rich water to the coastal area where it mixes with fresh CaHCO3 groundwater, resulting in a prediction of calcite precipitation in the modern mixing zone.

  9. Two-dimensional wetting: the role of atomic steps on the nucleation of thin water films on BaF2(111) at ambient conditions.

    PubMed

    Cardellach, M; Verdaguer, A; Santiso, J; Fraxedas, J

    2010-06-21

    The interaction of water with freshly cleaved BaF(2)(111) surfaces at ambient conditions (room temperature and under controlled humidity) has been studied using scanning force microscopy in different operation modes. The images strongly suggest a high surface diffusion of water molecules on the surface indicated by the accumulation of water at step edges forming two-dimensional bilayered structures. Steps running along the 110 crystallographic directions show a high degree of hydrophilicity, as evidenced by small step-film contact angles, while steps running along other directions exhibiting a higher degree of kinks surprisingly behave in a quite opposite way. Our results prove that morphological defects such as steps can be crucial in improving two-dimensional monolayer wetting and stabilization of multilayer grown on surfaces that show good lattice mismatch with hexagonal ice.

  10. Hydrogen in rocks: an energy source for deep microbial communities

    NASA Technical Reports Server (NTRS)

    Freund, Friedemann; Dickinson, J. Thomas; Cash, Michele

    2002-01-01

    To survive in deep subsurface environments, lithotrophic microbial communities require a sustainable energy source such as hydrogen. Though H2 can be produced when water reacts with fresh mineral surfaces and oxidizes ferrous iron, this reaction is unreliable since it depends upon the exposure of fresh rock surfaces via the episodic opening of cracks and fissures. A more reliable and potentially more voluminous H2 source exists in nominally anhydrous minerals of igneous and metamorphic rocks. Our experimental results indicate that H2 molecules can be derived from small amounts of H2O dissolved in minerals in the form of hydroxyl, OH- or O3Si-OH, whenever such minerals crystallized in an H2O-laden environment. Two types of experiments were conducted. Single crystal fracture experiments indicated that hydroxyl pairs undergo an in situ redox conversion to H2 molecules plus peroxy links, O3Si/OO\\SiO3. While the peroxy links become part of the mineral structure, the H2 molecules diffused out of the freshly fractured mineral surfaces. If such a mechanism occurred in natural settings, the entire rock column would become a volume source of H2. Crushing experiments to facilitate the outdiffusion of H2 were conducted with common crustal igneous rocks such as granite, andesite, and labradorite. At least 70 nmol of H2/g diffused out of coarsely crushed andesite, equivalent at standard pressure and temperature to 5,000 cm3 of H2/m3 of rock. In the water-saturated, biologically relevant upper portion of the rock column, the diffusion of H2 out of the minerals will be buffered by H2 saturation of the intergranular water film.

  11. Effects of Precipitation on Ocean Mixed-Layer Temperature and Salinity as Simulated in a 2-D Coupled Ocean-Cloud Resolving Atmosphere Model

    NASA Technical Reports Server (NTRS)

    Li, Xiaofan; Sui, C.-H.; Lau, K-M.; Adamec, D.

    1999-01-01

    A two-dimensional coupled ocean-cloud resolving atmosphere model is used to investigate possible roles of convective scale ocean disturbances induced by atmospheric precipitation on ocean mixed-layer heat and salt budgets. The model couples a cloud resolving model with an embedded mixed layer-ocean circulation model. Five experiment are performed under imposed large-scale atmospheric forcing in terms of vertical velocity derived from the TOGA COARE observations during a selected seven-day period. The dominant variability of mixed-layer temperature and salinity are simulated by the coupled model with imposed large-scale forcing. The mixed-layer temperatures in the coupled experiments with 1-D and 2-D ocean models show similar variations when salinity effects are not included. When salinity effects are included, however, differences in the domain-mean mixed-layer salinity and temperature between coupled experiments with 1-D and 2-D ocean models could be as large as 0.3 PSU and 0.4 C respectively. Without fresh water effects, the nocturnal heat loss over ocean surface causes deep mixed layers and weak cooling rates so that the nocturnal mixed-layer temperatures tend to be horizontally-uniform. The fresh water flux, however, causes shallow mixed layers over convective areas while the nocturnal heat loss causes deep mixed layer over convection-free areas so that the mixed-layer temperatures have large horizontal fluctuations. Furthermore, fresh water flux exhibits larger spatial fluctuations than surface heat flux because heavy rainfall occurs over convective areas embedded in broad non-convective or clear areas, whereas diurnal signals over whole model areas yield high spatial correlation of surface heat flux. As a result, mixed-layer salinities contribute more to the density differences than do mixed-layer temperatures.

  12. Repair bond strength of nanohybrid composite resins with a universal adhesive

    PubMed Central

    Altinci, Pinar; Mutluay, Murat; Tezvergil-Mutluay, Arzu

    2018-01-01

    Abstract Objective: To investigate the repair bond strength of fresh and aged nanohybrid and hybrid composite resins using a universal adhesive (UA). Materials and methods: Fresh and aged substrates were prepared using two nanohybrid (Venus Pearl, Heraus Kulzer; Filtek Supreme XTE, 3 M ESPE) and one hybrid (Z100, 3 M ESPE) composite resin, and randomly assigned to different surface treatments: (1) no treatment (control), (2) surface roughening with 320-grit (SR), (3) SR + UA (iBOND, Heraus Kulzer), (4) SR + Silane (Signum, Ceramic Bond I, Heraeus Kulzer) + UA, (5) SR + Sandblasting (CoJet, 3 M ESPE) + Silane + UA. After surface treatment, fresh composite resin was added to the substrates at 2 mm layer increments to a height of 5 mm, and light cured. Restored specimens were water-stored for 24 h and sectioned to obtain 1.0 × 1.0 mm beams (n = 12), and were either water-stored for 24 h at 37 °C, or water-stored for 24 h, and then thermocycled for 6000 cycles before microtensile bond strength (µTBS) testing. Data were analyzed with ANOVA and Tukey’s HSD tests (p = .05). Results: Combined treatment of SR, sandblasting, silane and UA provided repair bond strength values comparable to the cohesive strength of each tested resin material (p < .05). Thermocycling significantly reduced the cohesive strength of the composite resins upto 65% (p < .05). Repair bond strengths of UA-treated groups were more stable under thermocycling. Conclusions: Universal adhesive application is a reliable method for composite repair. Sandblasting and silane application slightly increases the repair strength for all substrate types. PMID:29250576

  13. Repair bond strength of nanohybrid composite resins with a universal adhesive.

    PubMed

    Altinci, Pinar; Mutluay, Murat; Tezvergil-Mutluay, Arzu

    2018-01-01

    Objective: To investigate the repair bond strength of fresh and aged nanohybrid and hybrid composite resins using a universal adhesive (UA). Materials and methods: Fresh and aged substrates were prepared using two nanohybrid (Venus Pearl, Heraus Kulzer; Filtek Supreme XTE, 3 M ESPE) and one hybrid (Z100, 3 M ESPE) composite resin, and randomly assigned to different surface treatments: (1) no treatment (control), (2) surface roughening with 320-grit (SR), (3) SR + UA (iBOND, Heraus Kulzer), (4) SR + Silane (Signum, Ceramic Bond I, Heraeus Kulzer) + UA, (5) SR + Sandblasting (CoJet, 3 M ESPE) + Silane + UA. After surface treatment, fresh composite resin was added to the substrates at 2 mm layer increments to a height of 5 mm, and light cured. Restored specimens were water-stored for 24 h and sectioned to obtain 1.0 × 1.0 mm beams ( n  = 12), and were either water-stored for 24 h at 37 °C, or water-stored for 24 h, and then thermocycled for 6000 cycles before microtensile bond strength (µTBS) testing. Data were analyzed with ANOVA and Tukey's HSD tests ( p  = .05). Results: Combined treatment of SR, sandblasting, silane and UA provided repair bond strength values comparable to the cohesive strength of each tested resin material ( p  < .05). Thermocycling significantly reduced the cohesive strength of the composite resins upto 65% ( p  < .05). Repair bond strengths of UA-treated groups were more stable under thermocycling. Conclusions: Universal adhesive application is a reliable method for composite repair. Sandblasting and silane application slightly increases the repair strength for all substrate types.

  14. Water Resources of Ascension Parish

    USGS Publications Warehouse

    Griffith, J.M.; Fendick, R.B.

    2009-01-01

    Ascension Parish, located along the banks of the Mississippi River in south-central Louisiana, contains fresh groundwater and surface-water resources. In 2005, about 202 million gallons per day (Mgal/d) were withdrawn from water sources in Ascension Parish. About 94 percent (190 Mgal/d) was withdrawn from surface water, and 6 percent (12 Mgal/d) was withdrawn from groundwater. Additional water is supplied to Ascension Parish for public-supply use from East Baton Rouge Parish. Withdrawals for industrial use accounted for 95 percent (192 Mgal/d) of the total water withdrawn. Withdrawals for other uses included public-supply (4 Mgal/d), rural-domestic (3 Mgal/d), and aquaculture (3 Mgal/d). Water withdrawals in the parish generally increased from 1960 to 1995 and decreased from 1995 to 2005. This fact sheet summarizes basic information on the water resources of Ascension Parish, La. Information on groundwater and surface-water availability, quality, development, use, and trends is based on previously published reports listed in the references section.

  15. Antimicrobial effect of electrolyzed oxidizing water against Escherichia coli O157:H7 and Listeria monocytogenes on fresh strawberries (Fragaria x ananassa).

    PubMed

    Udompijitkul, P; Daeschel, M A; Zhao, Y

    2007-11-01

    Antibacterial activity of electrolyzed oxidizing (EO) water prepared from 0.05% or 0.10% (w/v) sodium chloride (NaCl) solutions against indigenous bacteria associated with fresh strawberries (Fragaria x ananassa) was evaluated. The efficacy of EO water and sodium hypochlorite (NaOCl) solution in eliminating and controlling the growth of Listeria monocytogenes and Escherichia coli O157:H7 inoculated onto strawberries stored at 4 +/- 1 degrees C up to 15 d was investigated at exposure time of 1, 5, or 10 min. Posttreatment neutralization of fruit surfaces was also determined. More than 2 log(10) CFU/g reductions of aerobic mesophiles were obtained in fruits washed for 10 or 15 min in EO water prepared from 0.10% (w/v) NaCl solution. Bactericidal activity of the disinfectants against L. monocytogenes and E. coli O157:H7 was not affected by posttreatment neutralization, and increasing exposure time did not significantly increase the antibacterial efficacy against both pathogens. While washing fruit surfaces with distilled water resulted in 1.90 and 1.27 log(10) CFU/mL of rinse fluid reduction of L. monocytogenes and E. coli O157:H7, respectively, >/= 2.60 log(10) CFU/mL of rinse fluid reduction of L. monocytogenes and up to 2.35 and 3.12 log(10) CFU/mL of rinse fluid reduction of E. coli O157:H7 were observed on fruit surfaces washed with EO water and NaOCl solution, respectively. Listeria monocytogenes and E. coli O157:H7 populations decreased over storage regardless of prior treatment. However, EO water and aqueous NaOCl did not show higher antimicrobial potential than water treatment during refrigeration storage.

  16. Vegetation of prairie potholes, North Dakota, in relation to quality of water and other environmental factors

    USGS Publications Warehouse

    Stewart, R.E.; Kantrud, H.A.

    1972-01-01

    Measurements of specific conductance provide an adequate indication of the average salinity of surface waters in natural ponds and lakes of the northern .prairie region. Yearly and seasonal variations in specific conductance were much greater in brackish and subsaline wetlands than in fresh-water areas. The principal vegetational types. Land-use practices of varying brackish to saline wetlands were sulfates and chlorides of sodium and magnesium. In less saline waters, carbonate and bicarbonate salts of calcium and potassium were of greater importance, but as salinity increased, the proportion of these compounds decreased rapidly.A major environmental factor controlling the establishment of marsh and aquatic vegetation is the permanence of surface water. Permanence is a measure of the extent to which surface water persists at a given site. Varying degrees of water permanence during the growing season led to the establishment of distinct vegetational types, which were differentiated primarily on the 'basis of community structure or life form of the dominant vegetation.Salinity of surface waters was closely correlated with differences in species composition of plant communities found in the principal vegetational types. Land-use practices of varying degrees of intensity also had a secondary influence on species composition. Since an unstable water chemistry is characteristic of most prairie ponds and lakes, it is more reliable to use the plant communities as indicators of average salinity than to use single measurements of specific conductance.Characteristic species of wetland vegetational types occupied the central deeper parts of pond and lake basins or occurred as concentric peripheral bands. The wetland vegetational types are wetland low-prairie, wet-meadow, shallow-marsh emergent, deep-marsh emergent, fen emergent, submerged and floating, natural drawdown, cropland drawdown, and cropland tillage vegetation. Combinations of species (plant associations) within these vegetational types were placed in one of six salinity categories designated as fresh, slightly brackish, moderately brackish, brackish, subsaline, and saline. Salt tolerance apparently varied greatly among the various marsh and aquatic plants since the num'ber of species represented in moderately brackish to saline communities decreased markedly with increased salinity of the surface water environment.

  17. Fresh Waters and Fish Diversity: Distribution, Protection and Disturbance in Tropical Australia

    PubMed Central

    Januchowski-Hartley, Stephanie R.; Pearson, Richard G.; Puschendorf, Robert; Rayner, Thomas

    2011-01-01

    Background Given the globally poor protection of fresh waters for their intrinsic ecological values, assessments are needed to determine how well fresh waters and supported fish species are incidentally protected within existing terrestrial protected-area networks, and to identify their vulnerability to human-induced disturbances. To date, gaps in data have severely constrained any attempt to explore the representation of fresh waters in tropical regions. Methodology and Results We determined the distribution of fresh waters and fish diversity in the Wet Tropics of Queensland, Australia. We then used distribution data of fresh waters, fish species, human-induced disturbances, and the terrestrial protected-area network to assess the effectiveness of terrestrial protected areas for fresh waters and fish species. We also identified human-induced disturbances likely to influence the effectiveness of freshwater protection and evaluated the vulnerability of fresh waters to these disturbances within and outside protected areas. The representation of fresh waters and fish species in the protected areas of the Wet Tropics is poor: 83% of stream types defined by order, 75% of wetland types, and 89% of fish species have less than 20% of their total Wet Tropics length, area or distribution completely within IUCN category II protected areas. Numerous disturbances affect fresh waters both within and outside of protected areas despite the high level of protection afforded to terrestrial areas in the Wet Tropics (>60% of the region). High-order streams and associated wetlands are influenced by the greatest number of human-induced disturbances and are also the least protected. Thirty-two percent of stream length upstream of protected areas has at least one human-induced disturbance present. Conclusions/Significance We demonstrate the need for greater consideration of explicit protection and off-reserve management for fresh waters and supported biodiversity by showing that, even in a region where terrestrial protection is high, it does not adequately capture fresh waters. PMID:21998708

  18. Influence of soil structure on contaminant leaching from injected slurry

    USDA-ARS?s Scientific Manuscript database

    Animal manure application to agricultural land provides beneficial organic matter and nutrients but can spread harmful contaminants to the environment. Contamination of fresh produce, surface water and shallow groundwater with the manure-borne pollutants can be a critical concern. Leaching and persi...

  19. THE SOLUBILITY AND SURFACE CHEMISTRY OF FRESHLY PRECIPITATED COPPER SOLIDS

    EPA Science Inventory

    Since the implementation of the United States Environmental Protection Agency’s Lead and Copper Rule (LCR) in 1991, a great deal of research has been conducted on copper corrosion and the leaching of copper from materials in drinking water distribution systems. While important...

  20. Application of chitosan-incorporated LDPE film to sliced fresh red meats for shelf life extension.

    PubMed

    Park, Su-il; Marsh, Kenneth S; Dawson, Paul

    2010-07-01

    Chitosan lactate was impregnated as an antimicrobial additive into low density polyethylene (LDPE) with different concentrations. The antimicrobial effectiveness was tested with three pathogenic bacteria, specifically Listeria monocytogenes, Escherichia coli and Salmonella enteritidis. Also, these chitosan incorporated films were applied on red meat surfaces to determine the effectiveness of chitosan on color shelf life extension and microbial growth inhibition. Chitosan was exposed to 0.1% peptone water containing the three pathogens in separate tests and inhibited microbial growth a higher levels with increasing concentration of chitosan in the film matrix. Oxygen permeability was not affected by the incorporation of chitosan, while the water vapor permeability increased with the addition of chitosan. Film elongation decreased with the addition of chitosan. When chitosan incorporated films were applied on fresh red meat, microorganisms on the meat surface were not inhibited but significant extension of red color shelf life were observed in refrigerated, sliced red meats. Copyright 2010 Elsevier Ltd. All rights reserved.

  1. Summary of estimated water use in the United States in 2015

    USGS Publications Warehouse

    Maupin, Molly A.

    2018-06-19

    A total of 322 Bgal/d of water withdrawals was reported for eight categories of use in the United States in 2015, which was 9 percent less than in 2010 (354 Bgal/d), and continued a declining trend since 2005. The decline in total withdrawals in 2015 primarily was caused by significant decreases (28.8 Bgal/d) in thermoelectric power, which accounted for 89 percent of the decrease in total withdrawals. Between 2010 and 2015, withdrawals decreased in all categories except irrigation (2 percent increase), mining (1 percent increase), and livestock (no change). Fresh surface-water withdrawals (198 Bgal/d) were 14 percent less than in 2010, and fresh groundwater withdrawals (82.3 Bgal/d) were about 8 percent more than in 2010. Saline surface-water withdrawals (38.6 Bgal/d) were 14 percent less than in 2010, and saline groundwater withdrawals (2.34 Bgal/d) were 5 percent more than in 2010. Total population in the United States in 2015 (325 million) increased by 4 percent (12.4 million) from 2010, which was similar to the increase between 2005 and 2010. For the first time since 1995, consumptive use for irrigation and thermoelectric power were reported. Consumptive use accounted for 62 percent (73.2 Bgal/d) of water used for irrigation, and 3 percent (4.31 Bgal/d) of water used for thermoelectric power in 2015.

  2. Different efficiency of ozonated water washing to inactivate Salmonella enterica typhimurium on green onions, grape tomatoes, and green leaf lettuces.

    PubMed

    Xu, Wenqing; Wu, Changqing

    2014-03-01

    Ozonated water washing is one of the emerging techniques to inactivate foodborne pathogens on produce, and limited information is available to optimize processing parameters (treatment time, temperature, and pH) to improve ozone efficacy on Salmonella inactivation for different produce. The efficacy of ozonated water washing for inactivation of Salmonella enterica Typhimurium on green onions, grape tomatoes and green leaf lettuces were studied in our research. Surface inoculated fresh produce were washed by ozonated water for 1, 5, or 10 min at room temperature and pH 5.60 ± 0.03. Then efficacy of ozonated water washing at mild heated (50 °C) and refrigerated (4 °C) temperature for 5 min with pH 5.60 ± 0.03 was investigated. Salmonella inactivation efficacy under pH 5.60 ± 0.03 and 2.64 ± 0.02 with 5 min washing at room temperature were also compared. Our results showed that Salmonella inactivation by ozonated water was time-dependent for 3 fresh produce. Mild heated temperature (50 °C) and pH 2.64 ± 0.02 improved efficacy of ozonated water to inactivate Salmonella on tomatoes and lettuces, but not on green onions. It is suggested that different surface structures of fresh produce significantly impact the antimicrobial efficacy of ozonated water washing operated under various parameters (time, temperature, and pH). Washing is the essential step for green onions and lettuces in the packinghouse and grape tomatoes in the restaurants and grocery stores having salad bars. Ozonated water can be used as disinfectant to reduce microbial contamination (FDA). The effectiveness of this disinfectant depends on the type of product and treatment conditions, such as water temperature, acidity, contact time. Our study showed that Salmonella inactivation by ozonated water washing was time-dependent. Mild heat and low pH improved inactivation efficacy on tomatoes and lettuces, but not on green onions. Processors should consider adjustments that are most appropriate for their produce. © 2014 Institute of Food Technologists®

  3. An Experimental Study on the Effect of Using Fresnel Lenses on the Performance of Solar Stills

    NASA Astrophysics Data System (ADS)

    Abdelsalam, Tarek I.; Abdel-Mesih, Bahy

    The global water concern is mainly about the scarcity of fresh water resources despite the abundance of saline and brackish water in oceans, seas, and underground. Solar desalination offers a worthy solution to produce fresh water by using solar radiation, which also lessens the energy concern by offering a renewable source of energy to alter the consumption of fossil fuels and other non-renewable resources. One of the solar desalination technologies is the solar still system, which is a portable unit capable of producing distilled water by evaporating brackish or saline water by using solar thermal energy. The steam is then condensed on the inside of the glass cover and collected as fresh water. Solar stills are easy to manufacture and install using local materials and workmanship, which suits underprivileged remote communities that face difficulties in finding clean potable water, while locating near a source of saline water. However, efficiency and productivity of solar stills are still feeble when compared to other traditional desalination techniques. As an attempt to overcome these issues, an upgraded system is proposed and tested experimentally to augment the incoming solar radiation falling on the top glass surface of the still by concentrating extra solar radiation to preheat the flowing feedwater to the solar still system. The results of the experimental study showed that the integration of linear Fresnel lenses has approximately tripled the productivity of distilled water and improved efficiency of a solar still, by about 68.76 %, when compared to a conventional non-concentrating solar still.

  4. Methodology of risk assessment of loss of water resources due to climate changes

    NASA Astrophysics Data System (ADS)

    Israfilov, Yusif; Israfilov, Rauf; Guliyev, Hatam; Afandiyev, Galib

    2016-04-01

    For sustainable development and management of rational use of water resources of Azerbaijan Republic it is actual to forecast their changes taking into account different scenarios of climate changes and assessment of possible risks of loss of sections of water resources. The major part of the Azerbaijani territory is located in the arid climate and the vast majority of water is used in the national economic production. An optimal use of conditional groundwater and surface water is of great strategic importance for economy of the country in terms of lack of common water resources. Low annual rate of sediments, high evaporation and complex natural and hydrogeological conditions prevent sustainable formation of conditioned resources of ground and surface water. In addition, reserves of fresh water resources are not equally distributed throughout the Azerbaijani territory. The lack of the common water balance creates tension in the rational use of fresh water resources in various sectors of the national economy, especially in agriculture, and as a result, in food security of the republic. However, the fresh water resources of the republic have direct proportional dependence on climatic factors. 75-85% of the resources of ground stratum-pore water of piedmont plains and fracture-vein water of mountain regions are formed by the infiltration of rainfall and condensate water. Changes of climate parameters involve changes in the hydrological cycle of the hydrosphere and as a rule, are reflected on their resources. Forecasting changes of water resources of the hydrosphere with different scenarios of climate change in regional mathematical models allowed estimating the extent of their relationship and improving the quality of decisions. At the same time, it is extremely necessary to obtain additional data for risk assessment and management to reduce water resources for a detailed analysis, forecasting the quantitative and qualitative parameters of resources, and also for optimization the use of water resources. In this regard, we have developed the methodology of risk assessment including statistical fuzzy analysis of the relationship "probability-consequences", classification of probabilities, the consequences on degree of severity and risk. The current methodology allow providing the possibility of practical use of the obtained results and giving effectual help in the sustainable development and reduction of risk degree of optimal use of water resources of the republic and, as a consequence, the national strategy of economic development.

  5. Tracing coastal and estuarine groundwater discharge sources in a complex faulted and fractured karst aquifer system

    NASA Astrophysics Data System (ADS)

    Lagomasino, D.; Price, R. M.

    2013-05-01

    Groundwater discharge can be an important input of water, nutrients and other constituents to coastal wetlands and adjacent marine areas, particularly in karst regions with little to no surface water flow. A combination of natural processes (e.g., sea-level rise and climate change) and anthropogenic pressures (e.g., urban growth and development) can alter the subterranean water flow to the coastline. For water management practices and environmental preservation to be better suited for the natural and human environment, a better understanding is needed of the hydrogeologic connectivity between the areas of fresh groundwater recharge and the coastal zone. The Yucatan peninsula has a unique tectonic and geologic history consisting of a Cretaceous impact crater, Miocene and Eocene tectonic plate movements, and multiple sea-level stands. These events have shaped many complex geologic formations and structures. The Sian Káan Biosphere Reserve (SKBR), a UNESCO World Heritage Site located along the Atlantic Ocean, overlaps two distinct hydrogeologic regions: the evaporate region to the south and south west, and the Holbox Fracture Zone to the north. These two regions create a complex network of layered, perched and fractured aquifers and an extensive groundwater cave network. The two regions are distinguished by bedrock mineralogical differences that can be used to trace shallow subsurface water from interior portions of the peninsula to the Bahia de la Ascension in the SKBR. The objective of this research was to use naturally occurring geochemical tracers (eg., Cl-, SO42-, HCO3-, K+, Mg2+, Na+, Ca2+ and stable isotopes of oxygen and hydrogen) to decipher the sources of groundwater flow through the coastal wetlands of the SKBR and into the Bahia de la Ascension. Surface water and groundwater samples were collected during two field campaigns in 2010 and 2012 within the coastal and estuarine waters of the SKBR. Additional water samples were collected at select cenotes along the western boundary of the reserve. Fresh groundwater and surface water from the southern evaporate region was characterized as a calcium sulfate water that was identified to contribute the southern portions of the Bahia de la Ascension. In the northern portions of the Bahia, surface and shallow groundwater chemistry was characterized as a more calcium bicarbonate-type water from the north that was undersaturated with respect to calcite. The implications from this preliminary study address the complex nature of the karst aquifer and help define groundwater flow pathways from the interior of the Yucatan peninsula to the coastal wetlands. Further investigation in the area will increase our understanding of the origin, transport, and fate of shallow groundwater; and identify areas of coastal brackish groundwater discharge from the mixing of fresh groundwater and seawater.

  6. Freshwater resources and saline water near the Sac and Fox Nation tribal lands, eastern Lincoln County, Oklahoma

    USGS Publications Warehouse

    Abbott, Marvin M.

    1998-01-01

    The purpose of this project was to evaluate the freshwater resources and possible sources of high-chloride and high-sulfate concentrations in parts of the aquifer near the Sac and Fox Nation tribal land in eastern Lincoln County, Oklahoma. Water-quality sampling and borehole geophysical data indicate the potential for fresh ground water on tribal land generally is greatest in the Vanoss Formation, in the SE1/4 sec. 21, T. 14 N., R. 06 E. and in the NE1/4 sec. 22, T. 14 N., R. 06 E. These locations avoid the flood-prone areas and borehole geophysical resistivity logs indicate the altitude of the base of fresh ground water is below 650 ft. The altitude of the base of fresh ground water is indicated to be generally near the surface under the W1/2 sec. 22, T. 14 N., R. 06 E., the SE1/4 sec. 22, SE1/4 SE1/4 NE1/4 sec. 21, and NE1/4 NW1/4 NW1/4 sec. 27. Conditions are more favorable for placement of fresh ground-water wells in sec. 34, T. 14 N., R. 06 E., where the tribe has leased water rights, than on tribal land in secs. 15, 16, 21, and 22, T. 14 N., R. 06 E. Sandstones overlain by or enclosed in thick clay and shale sequences are likely to be somewhat isolated from the flow system and retain some of the residual brine. Borehole geophysical logs suggest that sandstones near CH1, CM1, and WT1 have more clay and shale content than the sandstones near L2. Greater amounts of clay in the sandstones will retard the flushing of residual brines from the sandstones and could result in a shallow base of fresh water near CH1, CM1, and WT1. For these reasons and because circulation of fresh ground water is limited by discharge to the Deep Fork, general water quality under tribal land would probably be poorer than in the area where the tribe has leased water rights. Samples have chloride or sulfate concentrations greater than 250 milligrams per liter in the W1/2 sec. 22, T. 14 N., R. 06 E. Six cluster well samples from tribal land have chloride or sulfate concentrations above the suggested maximum contaminant levels set by U.S. Environmental Protection Agency. Water-quality data indicate there may be more than one source for the salinity in the very saline and briny samples near the tribal land. Two possible sources for chloride and sulfate in water-quality samples are shallow brines and deep oil brines. Probable sources of shallow brines in the study area are: 1) solution of minerals by fresh water moving through the aquifer and 2) residual brines deposited with the sediment. There are no salt or gypsum beds in the Vanoss, Ada, or Vamoosa Formations, but there may be nodules and finely disseminated minerals present in the formations. Residual brines could remain in sand stones and shales that have low hydraulic conductivity and have not been diluted by freshwater recharge. Data suggest both sources have mixed with the fresh ground water from the Vanoss Formation. This is indicated by the relations of the bromide/chloride concentration ratio to chloride concentration, delta deuterium to delta 18oxygen, and by delta 18oxygen to chloride molality relation.

  7. THE SOLUBILITY AND SURFACE CHEMISTRY OF FRESHLY PRECIPITATED COPPER SOLIDS

    EPA Science Inventory

    Since the implementation of the United States Environmental Protection Agency’s Lead and Copper Rule (LCR) in 1991, a great deal of research has been conducted on copper corrosion and the leaching of copper from materials in drinking water distribution systems. While important p...

  8. Imbalance in Groundwater-Surface Water Interactions and its Relationship to the Coastal Zone Hazards

    NASA Astrophysics Data System (ADS)

    Kontar, Y. A.; Ozorovich, Y. R.; Salokhiddinov, A. T.

    2011-12-01

    We report here some efforts and results in studying the imbalance in groundwater-surface water interactions and processes of groundwater-surface water interactions and groundwater flooding creating hazards in the coastal zones. Hazards, hydrological and geophysical risk analysis related to imbalance in groundwater-surface water interactions and groundwater flooding have been to a large extent under-emphasized for coastal zone applications either due to economical limitations or underestimation of significance of imbalance in groundwater-surface water interactions. This is particularly true for tsunamis creating salt water intrusion to coastal aquifers, even though most tsunami hazard assessments have in the past relied on scenario or deterministic type models, and to increasing mineralization of potable water because of intensive water diversions and also the abundance of highly toxic pollutants (mainly pesticides) in water, air and food, which contribute to the deterioration of the coastal population's health. In the wake of pressing environmental and economic issues, it is of prime importance for the scientific community to shed light onto the great efforts by hydrologists and geophysicists to quantify conceptual uncertainties and to provide quality assurances of potential coastal zone hazard evaluation and prediction under conditions of imbalance in groundwater-surface water interactions. This paper proposes consideration of two case studies which are important and significant for future understanding of a concept of imbalance in groundwater-surface water interactions and development and essential for feasibility studies of hazards in the coastal zone. The territory of the Aral Sea Region in Central Asia is known as an ecological disaster coastal zone. It is now obvious that, in order to provide reasonable living conditions to the coastal zone population, it is first of all necessary to drastically improve the quality of the water dedicated to human needs. Due to their intensive pollution by industrial wastes and by drainage waters from irrigated fields, the Syr Darya and Amu Darya rivers can no longer be considered as a source of safe and sustainable water supply. In such a situation, a number of scientists consider that the population's water supply must be achieved through a more comprehensive use of fresh and even subsaline groundwater resources from the coastal aquifers. The 2004 tsunami in the Indian Ocean caused imbalance in groundwater-surface water interactions and a disaster affecting thousands of kilometers of coastal zone in SE Asia. Many coastal wetlands were affected in the short term by the large inflow of salt seawater and littoral sediment deposited during the tsunami, and in the longer-term by changes in their hydrogeology caused by changes to coastlines and damage to sea-defenses. Many water quality and associated problems were generated by the tsunami. The tsunami has created imbalance in groundwater-surface water interactions and an accelerating process of salt-water intrusion and fresh-water contaminations in affected regions that now require drastic remediation measures.

  9. Industry and water security: overarching conclusions.

    PubMed

    Stigson, B

    2001-01-01

    Fresh water is key to sustainable development. World Business Council for Sustainable Development members are addressing fresh water use "within the corporate fenceline". However, to address water issues "outside the corporate fenceline" will require creative new public-private partnerships. Government's role is to provide sound framework conditions that will encourage businesses to invest time, staff and resources to address vital fresh water issues. Industry is committed to best practice within its internal operations and is ready to enter into partnerships to address broader fresh water issues.

  10. Influence of the Institutional Structure of Surface Water Rights on Agricultural Production in the Central Valley

    NASA Astrophysics Data System (ADS)

    Nelson, K.; Burchfield, E. K.

    2017-12-01

    California's Central Valley region is one of the most productive agricultural systems on the planet. The high levels of agricultural production in this region require large amounts of fresh water for irrigation. However, the long-term availability of water required to sustain such levels of agricultural production has been questioned following the latest drought in California. In this study, we use Bayesian multilevel spatiotemporal modeling techniques to examine the influence of the institutional structure of surface water rights in the Central Valley on agricultural production during the recent drought. The R-INLA package is employed to account for spatial processes that have the potential to influence the effects of water right structures on crop productivity as well as on extent of cultivation. Model results suggest that seniority in surface water access significantly improves crop productivity on cultivated lands, but does not directly affect the ability to maintain cultivated extent. In addition, results suggest that areas with more junior surface water rights tend to reduce extent of cultivation, but maintain crop productivity, as cumulative drought stress increases.

  11. Dynamic Bubble Surface Tension Measurements in Northwest Atlantic Seawater

    NASA Astrophysics Data System (ADS)

    Kieber, D. J.; Long, M. S.; Keene, W. C.; Kinsey, J. D.; Frossard, A. A.; Beaupre, S. R.; Duplessis, P.; Maben, J. R.; Lu, X.; Chang, R.; Zhu, Y.; Bisgrove, J.

    2017-12-01

    Numerous reports suggest that most organic matter (OM) associated with newly formed primary marine aerosol (PMA) originates from the sea-surface microlayer. However, surface-active OM rapidly adsorbs onto bubble surfaces in the water column and is ejected into the atmosphere when bubbles burst at the air-water interface. Here we present dynamic surface tension measurements of bubbles produced in near surface seawater from biologically productive and oligotrophic sites and in deep seawater collected from 2500 m in the northwest Atlantic. In all cases, the surface tension of bubble surfaces decreased within seconds after the bubbles were exposed to seawater. These observations demonstrate that bubble surfaces are rapidly saturated by surfactant material scavenged from seawater. Spatial and diel variability in bubble surface evolution indicate corresponding variability in surfactant concentrations and/or composition. Our results reveal that surface-active OM is found throughout the water column, and that at least some surfactants are not of recent biological origin. Our results also support the hypothesis that the surface microlayer is a minor to negligible source of OM associated with freshly produced PMA.

  12. Computer-aided analysis of LANDSAT data for surveying Texas coastal zone environments. [Pass Cavallo and Port O'Conner

    NASA Technical Reports Server (NTRS)

    Kristof, S. J. (Principal Investigator); Weismiller, R. A.

    1977-01-01

    The author has identified the following significant results. The study areas were Pass Cavallo and Port O'Connor. The following terrestrial and aquatic environments were discriminated: alternating beach ridges, swales, sand dunes, beach birms, deflation surfaces, land-water interface, urban, spoil areas, fresh and salt water marshes, grass and woodland, recently burned or grazed areas, submerged vegetation, and waterways.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, Christopher

    This project investigated possible mechanisms by which melt-water pulses can induce abrupt change in the Atlantic Meridional Overturning Circulation (AMOC) magnitude. AMOC magnitude is an important ingredient in present day climate. Previous studies have hypothesized abrupt reduction in AMOC magnitude in response to influxes of glacial melt water into the North Atlantic. Notable fresh-water influxes are associated with the terminus of the last ice age. During this period large volumes of melt water accumulated behind retreating ice sheets and subsequently drained rapidly when the ice weakened sufficiently. Rapid draining of glacial lakes into the North Atlantic is a possible originmore » of a number of paleo-record abrupt climate shifts. These include the Younger-Dryas cooling event and the 8,200 year cooling event. The studies undertaken focused on whether the mechanistic sequence by which glacial melt-water impacts AMOC, which then impacts Northern Hemisphere global mean surface temperature, is dynamically plausible. The work has implications for better understanding past climate stability. The work also has relevance for today’s environment, in which high-latitude ice melting in Greenland appears to be driving fresh water outflows at an accelerating pace.« less

  14. An Assessment of the Potential Impacts on Zooplankton and Fish of Ocean Dredged Material at the Norfolk Disposal Site.

    DTIC Science & Technology

    1984-09-07

    McConaugha et al., 1983). This retention mechanism is entirely dependent upon southerly winds of sufficient magnitude to drive a northward current. Since the...Chesapeake Bay Inflow Streamline Patterns for Periods of Northerly (Figure 6a) and Southerly (Figure 6b) Winds ..... ...... .... 2-2 7 Surface Salinity ...layer flow: Low salinity water from rivers and other fresh water inputs moves seaward in the upper layer, while high salinity shelf water is drawn into

  15. Ground water in the Sirte area, Tripolitania, United Kingdom of Libya

    USGS Publications Warehouse

    Ogilbee, William

    1964-01-01

    The present study of the ground-water conditions in the Sirte area was made during December 1961 and March-April 1962 at the request of officials of the Government of Libya. Particular attention was given to the potential of the fresh-water aquifer near Qasr Bu Itadi as a source of water for Sirte. The Sirte area lies on the southern coast of the Mediterranean Sea about 450 kilometers east-southeast of Tripoli, cocapital of Libya. Although the area receives some winter precipitation, the climate is arid. The surface rocks of the area are chiefly Miocene limestone containing marl, clay, and some sandstone, though Quaternary deposits occur along the wadis and mantle the Miocene rocks in the coastal plain. Fresh ground water occurs locally in Recent sand dunes near Zaafran and in Miocene limestone near Qasr Bu Hadi, south of a probable fault. Elsewhere in the Sirte area, ground water occurs generally in Tertiary rocks but contains 3,000 or more parts per million of dissolved solids. To establish the hydraulic characteristics of the fresh-water aquifer in the Qasr Bu Itadi area, two test wells were drilled and a controlled pumping test was made. The coefficient of transmissibility was found to be about 25,000 gallons per day per foot (13.68 cubic meters per hour per meter), and the coefficient of storage, about 0.00055. The pumping test also established the presence of two barrier-type hydraulic boundaries for the aquifer, one about 250 meters westward and another about 535 meters northward from well 9a. The first boundary is probably the small anticline on which stands the fort of Qasr Bu Itadi; the second boundary is probably a northwest trending fault. Using the transmissibility and storage coefficients derived from the pumping test, the writer concludes that (1) the total draft from the fresh-water aquifer should not exceed 13.5 cubic meters per hour and (2) production wells should be at least 3 kilometers south of well 9a.

  16. Reconstruction of the Eocene Arctic Ocean Using Ichthyolith Isotope Analyses

    NASA Astrophysics Data System (ADS)

    Gleason, J. D.; Thomas, D. J.; Moore, T. C.; Waddell, L. M.; Blum, J. D.; Haley, B. A.

    2007-12-01

    Nd, Sr, O and C isotopic compositions of Eocene fish debris (teeth, bones, scales), and their reduced organic coatings, have been used to reconstruct water mass composition, water column structure, surface productivity and salinities of the Arctic Ocean Basin at Lomonosov Ridge between 55 and 44 Ma. Cleaned ichthyolith samples from IODP Expedition 302 (ACEX) record epsilon Nd values that range from -5.7 to -7.8, distinct from modern Arctic Intermediate Water (-10.5) and North Atlantic Deep Water. These Nd values may record some exchange with Pacific/Tethyan water masses, but inputs from local continental sources are more likely. Sr isotopic values are consistent with a brackish-to-fresh water surface layer (87Sr/86Sr = 0.7079-0.7087) that was poorly mixed with Eocene global seawater (0.7077-0.7078). Leaching experiments show reduced organic coatings to be more radiogenic (>0.7090) than cleaned ichthyolith phosphate. Ichthyolith Sr isotopic variations likely reflect changes in localized river input as a function of shifts in the Arctic hydrologic cycle, and 87Sr/86Sr values might be used as a proxy for surface water salinity. Model mixing calculations indicate salinities of 5 to 20 per mil, lower than estimates based on O isotopes from fish bone carbonate (16 to 26 per mil). Significant salinity drops (i.e., 55 Ma PETM and 48.5 Ma Azolla event) registered in oxygen isotopes do not show large excursions in the 87Sr/86Sr data. Carbon isotopes in fish debris record a spike in organic activity at 48.5 Ma (Azolla event), and otherwise high-productivity waters between 55 and 44 Ma. The combined Sr-Nd-O-C isotopic record is consistent with highly restricted basin-wide circulation in the Eocene, indicative of a highly stratified water column with anoxic bottom waters, a "fresh" water upper layer, and enhanced continental runoff during warm intervals until the first appearance of ice rafted debris at 45 Ma.

  17. Novel water filtration of saline water in the outermost layer of mangrove roots.

    PubMed

    Kim, Kiwoong; Seo, Eunseok; Chang, Suk-Kyu; Park, Tae Jung; Lee, Sang Joon

    2016-02-05

    The scarcity of fresh water is a global challenge faced at present. Several desalination methods have been suggested to secure fresh water from sea water. However, conventional methods suffer from technical limitations, such as high power consumption, expensive operating costs, and limited system durability. In this study, we examined the feasibility of using halophytes as a novel technology of desalinating high-concentration saline water for long periods. This study investigated the biophysical characteristics of sea water filtration in the roots of the mangrove Rhizophora stylosa from a plant hydrodynamic point of view. R. stylosa can grow even in saline water, and the salt level in its roots is regulated within a certain threshold value through filtration. The root possesses a hierarchical, triple layered pore structure in the epidermis, and most Na(+) ions are filtered at the first sublayer of the outermost layer. The high blockage of Na(+) ions is attributed to the high surface zeta potential of the first layer. The second layer, which is composed of macroporous structures, also facilitates Na(+) ion filtration. This study provides insights into the mechanism underlying water filtration through halophyte roots and serves as a basis for the development of a novel bio-inspired desalination method.

  18. The pink eye syndrome does not impair tuber fresh cut wound-related responses

    USDA-ARS?s Scientific Manuscript database

    The potato tuber pink eye (PE) syndrome is a costly physiological disorder that results in corruption of the native periderm, susceptibility to infection, water vapor loss and associated shrinkage, roughened and cracked tuber surfaces, and various related blemishes and defects. PE results in aberra...

  19. Using helicopter TEM to delineate fresh water and salt water zones in the aquifer beneath the Okavango Delta, Botswana

    NASA Astrophysics Data System (ADS)

    Podgorski, Joel E.; Kinzelbach, Wolfgang K. H.; Kgotlhang, Lesego

    2017-09-01

    The Okavango Delta is a vast wetland wilderness in the middle of the Kalahari Desert of Botswana. It is a largely closed hydrological system with most water leaving the delta by evapotranspiration. In spite of this, the channels and swamps of the delta remain surprisingly low in salinity. To help understand the hydrological processes at work, we reanalyzed a previous inversion of data collected from a helicopter transient electromagnetic (HTEM) survey of the entire delta and performed an inversion of a high resolution dataset recorded during the same survey. Our results show widespread infiltration of fresh water to as much as ∼200 m depth into the regional saline aquifer. Beneath the western delta, freshwater infiltration extends to only about 80 m depth. Hydrological modeling with SEAWAT confirms that this may be due to rebound of the regional saltwater-freshwater interface following the cessation of surface flooding over this part of the delta in the 1880s. Our resistivity models also provide evidence for active and inactive saltwater fingers to as much as ∼100 m beneath islands. These results demonstrate the great extent of freshwater infiltration across the delta and also show that all vegetated areas along the delta's channels and swamps are potential locations for transferring solutes from surface water to an aquifer at depth.

  20. Tethys the Spy

    NASA Image and Video Library

    2014-12-15

    Tethys appears to be peeking out from behind Rhea, watching the watcher. Scientists believe that Tethys' surprisingly high albedo is due to the water ice jets emerging from its neighbor, Enceladus. The fresh water ice becomes the E ring and can eventually arrive at Tethys, giving it a fresh surface layer of clean ice. Lit terrain seen here is on the anti-Saturn side of Rhea. North on Rhea is up. The image was taken in red light with the Cassini spacecraft narrow-angle camera on April 20, 2012. The view was obtained at a distance of approximately 1.1 million miles (1.8 million kilometers) from Rhea and at a Sun-Rhea-spacecraft, or phase, angle of 59 degrees. Image scale is 7 miles (11 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA18293

  1. Estimation of water turnover rates of captive West Indian manatees (Trichechus manatus) held in fresh and salt water

    NASA Technical Reports Server (NTRS)

    Ortiz, R. M.; Worthy, G. A.; Byers, F. M.

    1999-01-01

    The ability of West Indian manatees (Trichechus manatus) to move between fresh and salt water raises the question of whether manatees drink salt water. Water turnover rates were estimated in captive West Indian manatees using the deuterium oxide dilution technique. Rates were quantified in animals using four experimental treatments: (1) held in fresh water and fed lettuce (N=4), (2) held in salt water and fed lettuce (N=2), (3) acutely exposed to salt water and fed lettuce (N=4), and (4) chronically exposed to salt water with limited access to fresh water and fed sea grass (N=5). Animals held in fresh water had the highest turnover rates (145+/-12 ml kg-1 day-1) (mean +/- s.e.m.). Animals acutely exposed to salt water decreased their turnover rate significantly when moved into salt water (from 124+/-15 to 65+/-15 ml kg-1 day-1) and subsequently increased their turnover rate upon re-entry to fresh water (146+/-19 ml kg-1 day-1). Manatees chronically exposed to salt water had significantly lower turnover rates (21+/-3 ml kg-1 day-1) compared with animals held in salt water and fed lettuce (45+/-3 ml kg-1 day-1). Manatees chronically exposed to salt water and fed sea grass had very low turnover rates compared with manatees held in salt water and fed lettuce, which is consistent with a lack of mariposia. Manatees in fresh water drank large volumes of water, which may make them susceptible to hyponatremia if access to a source of Na+ is not provided.

  2. Estimation of water turnover rates of captive West Indian manatees (Trichechus manatus) held in fresh and salt water.

    PubMed

    Ortiz, R M; Worthy, G A; Byers, F M

    1999-01-01

    The ability of West Indian manatees (Trichechus manatus) to move between fresh and salt water raises the question of whether manatees drink salt water. Water turnover rates were estimated in captive West Indian manatees using the deuterium oxide dilution technique. Rates were quantified in animals using four experimental treatments: (1) held in fresh water and fed lettuce (N=4), (2) held in salt water and fed lettuce (N=2), (3) acutely exposed to salt water and fed lettuce (N=4), and (4) chronically exposed to salt water with limited access to fresh water and fed sea grass (N=5). Animals held in fresh water had the highest turnover rates (145+/-12 ml kg-1 day-1) (mean +/- s.e.m.). Animals acutely exposed to salt water decreased their turnover rate significantly when moved into salt water (from 124+/-15 to 65+/-15 ml kg-1 day-1) and subsequently increased their turnover rate upon re-entry to fresh water (146+/-19 ml kg-1 day-1). Manatees chronically exposed to salt water had significantly lower turnover rates (21+/-3 ml kg-1 day-1) compared with animals held in salt water and fed lettuce (45+/-3 ml kg-1 day-1). Manatees chronically exposed to salt water and fed sea grass had very low turnover rates compared with manatees held in salt water and fed lettuce, which is consistent with a lack of mariposia. Manatees in fresh water drank large volumes of water, which may make them susceptible to hyponatremia if access to a source of Na+ is not provided.

  3. Character and spatial distribution of OH/H2O on the surface of the Moon seen by M3 on Chandrayaan-1.

    PubMed

    Pieters, C M; Goswami, J N; Clark, R N; Annadurai, M; Boardman, J; Buratti, B; Combe, J-P; Dyar, M D; Green, R; Head, J W; Hibbitts, C; Hicks, M; Isaacson, P; Klima, R; Kramer, G; Kumar, S; Livo, E; Lundeen, S; Malaret, E; McCord, T; Mustard, J; Nettles, J; Petro, N; Runyon, C; Staid, M; Sunshine, J; Taylor, L A; Tompkins, S; Varanasi, P

    2009-10-23

    The search for water on the surface of the anhydrous Moon had remained an unfulfilled quest for 40 years. However, the Moon Mineralogy Mapper (M3) on Chandrayaan-1 has recently detected absorption features near 2.8 to 3.0 micrometers on the surface of the Moon. For silicate bodies, such features are typically attributed to hydroxyl- and/or water-bearing materials. On the Moon, the feature is seen as a widely distributed absorption that appears strongest at cooler high latitudes and at several fresh feldspathic craters. The general lack of correlation of this feature in sunlit M3 data with neutron spectrometer hydrogen abundance data suggests that the formation and retention of hydroxyl and water are ongoing surficial processes. Hydroxyl/water production processes may feed polar cold traps and make the lunar regolith a candidate source of volatiles for human exploration.

  4. Character and spatial distribution of OH/H2O on the surface of the moon seen by M3 on chandrayaan-1

    USGS Publications Warehouse

    Pieters, C.M.; Goswami, J.N.; Clark, R.N.; Annadurai, M.; Boardman, J.; Buratti, B.; Combe, J.-P.; Dyar, M.D.; Green, R.; Head, J.W.; Hibbitts, C.; Hicks, M.; Isaacson, P.; Klima, R.; Kramer, G.; Kumar, S.; Livo, E.; Lundeen, S.; Malaret, E.; McCord, T.; Mustard, J.; Nettles, J.; Petro, N.; Runyon, C.; Staid, M.; Sunshine, J.; Taylor, L.A.; Tompkins, S.; Varanasi, P.

    2009-01-01

    The search for water on the surface of the anhydrous Moon had remained an unfulfilled quest for 40 years. However, the Moon Mineralogy Mapper (M 3) on Chandrayaan-1 has recently detected absorption features near 2.8 to 3.0 micrometers on the surface of the Moon. For silicate bodies, such features are typically attributed to hydroxyl- and/or water-bearing materials. On the Moon, the feature is seen as a widely distributed absorption that appears strongest at cooler high latitudes and at several fresh feldspathic craters. The general lack of correlation of this feature in sunlit M3 data with neutron spectrometer hydrogen abundance data suggests that the formation and retention of hydroxyl and water are ongoing surficial processes. Hydroxyl/water production processes may feed polar cold traps and make the lunar regolith a candidate source of volatiles for human exploration.

  5. Napa Earthquake impact on water systems

    NASA Astrophysics Data System (ADS)

    Wang, J.

    2014-12-01

    South Napa earthquake occurred in Napa, California on August 24 at 3am, local time, and the magnitude is 6.0. The earthquake was the largest in SF Bay Area since the 1989 Loma Prieta earthquake. Economic loss topped $ 1 billion. Wine makers cleaning up and estimated the damage on tourism. Around 15,000 cases of lovely cabernet were pouring into the garden at the Hess Collection. Earthquake potentially raise water pollution risks, could cause water crisis. CA suffered water shortage recent years, and it could be helpful on how to prevent underground/surface water pollution from earthquake. This research gives a clear view on drinking water system in CA, pollution on river systems, as well as estimation on earthquake impact on water supply. The Sacramento-San Joaquin River delta (close to Napa), is the center of the state's water distribution system, delivering fresh water to more than 25 million residents and 3 million acres of farmland. Delta water conveyed through a network of levees is crucial to Southern California. The drought has significantly curtailed water export, and salt water intrusion reduced fresh water outflows. Strong shaking from a nearby earthquake can cause saturated, loose, sandy soils liquefaction, and could potentially damage major delta levee systems near Napa. Napa earthquake is a wake-up call for Southern California. It could potentially damage freshwater supply system.

  6. Characterization of an island aquifer from tidal response

    NASA Astrophysics Data System (ADS)

    Banerjee, Pallavi; Sarwade, Deepak; Singh, V. S.

    2008-08-01

    Growing demand for potable water for various needs has lead to indiscriminate exploitation of groundwater resources, particularly, in the terrain where surface water resources are negligible. One such area is an island where groundwater is the only source of fresh water. Groundwater is the prime source of fresh water on most of the atolls in the world. Groundwater on these islands is in the form of thin fragile floating lens and is often vulnerable to overexploitation, draught, tidal waves, tsunami and cyclone resulting in seawater ingress. Sustainable development of this meager source of fresh groundwater for a longer time becomes a more difficult task on small atolls with a large population depending on this vital resource. To develop a sustainable management scheme and identify the vulnerable part of aquifer, characterization of the aquifer system on islands is imperative. Groundwater on an atoll is extremely vulnerable to seawater mixing through natural as well as human activities. One such natural process is the tides of the ocean. The response of sea tide to the water table on the island offers valuable data as well as cost-effective means to characterize an aquifer system. Such characterization is vital for the management of groundwater resources on an atoll. The obtained results have compared well with the parameters obtained through a conventional pumping test. Therefore, the use of tidal response to the water table, which can easily be recorded, provides a rapid and cost-effective means to characterization of the aquifer system on the island.

  7. Paleoceanographic Changes Since the Last Glacial as Revealed by Analysis of Alkenone Organic Biomarkers from the Northwest Pacific (Core LV 63-41-2)

    NASA Astrophysics Data System (ADS)

    Yu, P. S.; Liao, C. J.; Chen, M. T.; Zou, J. J.; Shi, X.; Bosin, A. A.; Gorbarenko, S. A.

    2017-12-01

    Sea surface temperature (SST) records from the subarctic Northwestern (NW) Pacific are ideal for reconstructing regional paleoceanographic changes sensitive to global climate change. Core LV 63-41-2 (52.56°N, 160.00° E; water depth 1924 m) retrieved from a high sedimentation site, in which the interactions of the Bering Sea and the warm water mass from the NW Pacific are highly dynamic. Here we reported high-resolution last glacial alkenone-based records from Core LV 63-41-2. Prior to 27-16 ka BP high glacial C37:4 alkenone concentrations indicate large amount of fresh water influencing the surface water of the NW Pacific with a reaching to the Site LV 63-41-2. We further inferred that during the last glacial the low salinity water may be formed from the ice-melting water on site and/or brought by the surface current from the Bering Sea, and are efficient in producing strong water stratification condition. The stratification weakens vertical mixing of the upper water column, that in turn decreases the nutrients upwelled from deep to the surface therefore causes low productivity of coccolithophorids. During the early Bølling-Allerød (B/A) period, a gradual increasing alkenone-SST and associated with high C37:4 alkenone concentrations, implying that a weakened stratification and much stronger nutrient upwelling of the early B/A period than that of the glacial. The late B/A period is characterized by an abrupt warming with possibly more melting sea ices in the Bering Sea and the coast near the Kamchatka Peninsula. The large amount of fresh water lens formed during the ice melting might have ceased vertical mixing and upwelling in the upper water column as evidenced by a decline of biological productivity of both calcerous and soliceous organism during late B/A. We suggest an early warming and low productivity in the NW Pacific that is coincident with a rapid cooling in most of the Northern Hemisphere high latitudes during the Younger Dryas.

  8. Water-use information for California

    USGS Publications Warehouse

    Templin, W.E.

    1986-01-01

    This pamphlet reports on the availability of water use information to and for the state of California, through the development of the State Water-Use Data System (SWUDS). SWUDS is currently organized into 12 water use categories: Agricultural non-irrigation; Commercial; Domestic; Industrial; Irrigation; Mining; Power generation--fossil fuel, geothermal, hydroelectric , nuclear; Sewage treatment; and Water supply. The information needs of this system include type of water use (by category); name of water user; location of water use (latitude/longitude, county, and hydrologic unit--drainage basin); sources of water supply and return (fresh, saline, or reclaimed surface or groundwater); volume of water withdrawn, delivered, consumed, released, and returned; and period of water use (month, year). (Lantz-PTT)

  9. Groundwater geochemistry of Isla de Mona, Puerto Rico

    USGS Publications Warehouse

    Wicks, C.M.; Troester, J.W.

    1998-01-01

    In this study, we explore the differences between the hydrogeochemical processes observed in a setting that is open to input from the land surface and in a setting that is closed with respect to input from the land surface. The closed setting was a water-filled passage in a cave. Samples of groundwater and of a solid that appeared to be suspended in the relatively fresh region of saline-freshwater mixing zone were collected. The solid was determined to be aragonite. Based on the analyses of the composition and saturation state of the groundwater, the mixing of fresh and saline water and precipitation of aragonite are the controlling geochemical processes in this mixing zone. We found no evidence of sulfate reduction. Thus, this mixing zone is similar to that observed in Caleta Xel Ha, Quintana Roo, also a system that is closed with respect to input from the land surface. The open setting was an unconfined aquifer underlying the coastal plain along which four hand-dug wells are located. Two wells are at the downgradient ends of inferred flowpaths and one is along a flowpath. The composition of the groundwater in the downgradient wells is sulfide-rich and brackish. In contrast, at the well located along a flow line, the groundwater is oxygenated and brackish. All groundwater is oversaturated with respect to calcite, aragonite, and dolomite. The composition is attributed to mixing of fresh and saline groundwater, CO2 outgassing, and sulfate reduction. This mixing zone is geochemically similar to that observed in blue holes and cenotes.

  10. Establishing the Global Fresh Water Sensor Web

    NASA Technical Reports Server (NTRS)

    Hildebrand, Peter H.

    2005-01-01

    This paper presents an approach to measuring the major components of the water cycle from space using the concept of a sensor-web of satellites that are linked to a data assimilation system. This topic is of increasing importance, due to the need for fresh water to support the growing human population, coupled with climate variability and change. The net effect is that water is an increasingly valuable commodity. The distribution of fresh water is highly uneven over the Earth, with both strong latitudinal distributions due to the atmospheric general circulation, and even larger variability due to landforms and the interaction of land with global weather systems. The annual global fresh water budget is largely a balance between evaporation, atmospheric transport, precipitation and runoff. Although the available volume of fresh water on land is small, the short residence time of water in these fresh water reservoirs causes the flux of fresh water - through evaporation, atmospheric transport, precipitation and runoff - to be large. With a total atmospheric water store of approx. 13 x 10(exp 12)cu m, and an annual flux of approx. 460 x 10(exp 12)cu m/y, the mean atmospheric residence time of water is approx. 10 days. River residence times are similar, biological are approx. 1 week, soil moisture is approx. 2 months, and lakes and aquifers are highly variable, extending from weeks to years. The hypothesized potential for redistribution and acceleration of the global hydrological cycle is therefore of concern. This hypothesized speed-up - thought to be associated with global warming - adds to the pressure placed upon water resources by the burgeoning human population, the variability of weather and climate, and concerns about anthropogenic impacts on global fresh water availability.

  11. Under-ice melt ponds in the Arctic

    NASA Astrophysics Data System (ADS)

    Smith, Naomi; Flocco, Daniela; Feltham, Daniel

    2017-04-01

    In the summer months, melt water from the surface of the Arctic sea ice can percolate down through the ice and flow out of its base. This water is relatively warm and fresh compared to the ocean water beneath it, and so it floats between the ice and the oceanic mixed layer, forming pools of melt water called under-ice melt ponds. Double diffusion can lead to the formation of a sheet of ice, which is called a false bottom, at the interface between the fresh water and the ocean. These false bottoms isolate under-ice melt ponds from the ocean below, trapping the fresh water against the sea ice. These ponds and false bottoms have been estimated to cover between 5 and 40% of the base of the sea ice. [Notz et al. Journal of Geophysical Research 2003] We have developed a one-dimensional thermodynamic model of sea ice underlain by an under-ice melt pond and false bottom. Not only has this allowed us to simulate the evolution of under-ice melt ponds over time, identifying an alternative outcome than previously observed in the field, but sensitivity studies have helped us to estimate the impact that these pools of fresh water have on the mass-balance sea ice. We have also found evidence of a possible positive feedback cycle whereby increasingly less ice growth is seen due to the presence of under-ice melt ponds as the Arctic warms. Since the rate of basal ablation is affected by these phenomena, their presence alters the salt and freshwater fluxes from the sea ice into the ocean. We have coupled our under-ice melt pond model to a simple model of the oceanic mixed layer to determine how this affects mixed layer properties such as temperature, salinity, and depth. In turn, this changes the oceanic forcing reaching the sea ice.

  12. Occurrence of seven artificial sweeteners in the aquatic environment and precipitation of Tianjin, China.

    PubMed

    Gan, Zhiwei; Sun, Hongwen; Feng, Biting; Wang, Ruonan; Zhang, Yanwei

    2013-09-15

    Seventy water samples, including wastewaters, tap waters, fresh surface waters, coastal waters, groundwaters, and precipitation samples, from Tianjin, China, were analyzed for seven commonly used artificial sweeteners (ASs). The concentrations of the investigated ASs were generally in the order of wastewater treatment plant (WWTP) influent > WWTP effluent > surface water > tap water > groundwater ≈ precipitation, while the composition profiles of ASs varied in different waters. Acesulfame, sucralose, cyclamate, and saccharin were consistently detected in surface waters and ranged from 50 ng/L to 0.12 mg/L, while acesulfame was the dominant AS in surface and tap waters. Aspartame was found in all of the surface waters at a concentration up to 0.21 μg/L, but was not found in groundwaters and tap waters. Neotame and neohesperidin dihydrochalcone were less frequently detected and the concentrations were low. The concentrations of the ASs in some of the surface waters were of the same order with those in the WWTP influents, but not with the effluents, indicating there are probably untreated discharges into the surface waters. The ASs were detected in precipitation samples with high frequency, and acesulfame, saccharin, and cyclamate were the predominant ASs, with concentrations ranging from 3.5 ng/L to 1.3 μg/L. A gross estimation revealed that precipitation may act as a source for saccharin and cyclamate in the surface environment of Tianjin city. Moreover, the presence of ASs in the atmosphere was primarily assessed by taking 4 air samples to evaluate their potential source in precipitation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Subsurface low dissolved oxygen occurred at fresh- and saline-water intersection of the Pearl River estuary during the summer period.

    PubMed

    Li, Gang; Liu, Jiaxing; Diao, Zenghui; Jiang, Xin; Li, Jiajun; Ke, Zhixin; Shen, Pingping; Ren, Lijuan; Huang, Liangmin; Tan, Yehui

    2018-01-01

    Estuarine oxygen depletion is one of the worldwide problems, which is caused by the freshwater-input-derived severe stratification and high nutrients loading. In this study we presented the horizontal and vertical distributions of dissolved oxygen (DO) in the Pearl River estuary, together with temperature, salinity, chlorophyll a concentration and heterotrophic bacteria abundance obtained from two cruises during the summer (wet) and winter (dry) periods of 2015. In surface water, the DO level in the summer period was lower and varied greater, as compared to the winter period. The DO remained unsaturated in the summer period if salinity is <12 and saturated if salinity is >12; while in the winter period it remained saturated throughout the estuary. In subsurface (>5m) water, the DO level varied from 0.71 to 6.65mgL -1 and from 6.58 to 8.20mgL -1 in the summer and winter periods, respectively. Particularly, we observed an area of ~1500km 2 low DO zone in the subsurface water with a threshold of 4mgDOL -1 during this summer period, that located at the fresh- and saline-water intersection where is characterized with severe stratification and high heterotrophic bacteria abundance. In addition, our results indicate that spatial DO variability in surface water was contributed differently by biological and physio-chemical variables in the summer and winter periods, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Quantifying the Consumptive Landscape in the Potomac Watershed Upstream From Washington DC

    NASA Astrophysics Data System (ADS)

    Kearns, M.; Zegre, N.; Fernandez, R.

    2017-12-01

    Some of the largest and fastest-growing eastern cities depend upon Appalachian headwaters for their fresh water. Today's relative abundance of water may be at risk: changes in climate and land use could alter the availability of surface water and human consumption could increase to meet the needs of a growing population and economy. Neither the supply of surface water nor the various withdrawals that support our population, irrigation, energy, and industry are distributed uniformly throughout our watersheds. This study correlates surface water withdrawals, consumptive use coefficients, and land-use/land-cover datasets to create a model for quantifying anthropogenic water consumption. The model suggests a method for downscaling and redistributing USGS county-level surface water withdrawals to 30 meter cells. Initially completed for the Potomac River watershed upstream from Washington DC's public supply intake, this approach could easily scale regionally or nationally. When combined with runoff estimates over the same landscape, the net-production or net-consumption of an area of interest may be calculated at high resolution. By better understanding the spatial relationship between hydrologic supply and demand, we can seek to improve the efficiency and security of our water resources.

  15. Fresh Groundwater Resources in Georgia and Management Problems

    NASA Astrophysics Data System (ADS)

    Gaprindashvili, George; Gaprindashvili, Merab

    2015-04-01

    Fresh water represents conditioned factor for human body's life. That's why the superiority of drinking water is recognized as human body's priority according to the international declarations. World is experiencing deficit of quality water. Natural Disasters caused by the pollution of the fresh groundwater is also very painful and acute, because it needed more time, more material and financial means for the liquidation of their results, and what the most important practically is, it is impossible to renew the initial natural conditions completely. All these conditions that the rational use of fresh groundwater passed by the interests of separate countries and became worldwide, international problem - fresh water became as considerable raw material for the worlds import and export. The fresh groundwater place the important role among the water recourses of Georgia. Their existing is considerably connected to the development of industry and agriculture, also with water supply issue of populated area. Groundwater management requires precise knowledge of sources (aquifers). Monitoring of Georgia's most important aquifers started many years ago and has provided large amount of data. This was interrupted at the beginning of the 1990s. It could be noted that fresh water existing in the country is distinguished with high quality. According to the mineralization and temperature parameters groundwater is generally divided into the following groups: 1) Fresh drinking waters (mineralization not exceeding 1.0 g/l); 2) Mineral waters (mineralization over 1.0 g/l); 3) Thermal waters -- healing (20˚C - 35˚C), Geothermal (40˚C - 108˚C). Below we present briefly review about the situation of fresh groundwater resources, started recovery of groundwater monitoring network and the analysis of the management problems.

  16. Bacterial community diversity and variation in spray water sources and the tomato fruit surface.

    PubMed

    Telias, Adriana; White, James R; Pahl, Donna M; Ottesen, Andrea R; Walsh, Christopher S

    2011-04-21

    Tomato (Solanum lycopersicum) consumption has been one of the most common causes of produce-associated salmonellosis in the United States. Contamination may originate from animal waste, insects, soil or water. Current guidelines for fresh tomato production recommend the use of potable water for applications coming in direct contact with the fruit, but due to high demand, water from other sources is frequently used. We sought to describe the overall bacterial diversity on the surface of tomato fruit and the effect of two different water sources (ground and surface water) when used for direct crop applications by generating a 454-pyrosequencing 16S rRNA dataset of these different environments. This study represents the first in depth characterization of bacterial communities in the tomato fruit surface and the water sources commonly used in commercial vegetable production. The two water sources tested had a significantly different bacterial composition. Proteobacteria was predominant in groundwater samples, whereas in the significantly more diverse surface water, abundant phyla also included Firmicutes, Actinobacteria and Verrucomicrobia. The fruit surface bacterial communities on tomatoes sprayed with both water sources could not be differentiated using various statistical methods. Both fruit surface environments had a high representation of Gammaproteobacteria, and within this class the genera Pantoea and Enterobacter were the most abundant. Despite the major differences observed in the bacterial composition of ground and surface water, the season long use of these very different water sources did not have a significant impact on the bacterial composition of the tomato fruit surface. This study has provided the first next-generation sequencing database describing the bacterial communities living in the fruit surface of a tomato crop under two different spray water regimes, and therefore represents an important step forward towards the development of science-based metrics for Good Agricultural Practices.

  17. Estimated Water Use in Puerto Rico, 2005

    USGS Publications Warehouse

    Molina-Rivera, Wanda L.; Gómez-Gómez, Fernando

    2008-01-01

    Water-use data were compiled for the 78 municipios of the Commonwealth of Puerto Rico for 2005. Five offstream categories were considered: public-supply water withdrawals and deliveries, domestic self-supplied water use, industrial self-supplied ground-water withdrawals, crop irrigation water use, and thermoelectric power freshwater use. One water-use category also was considered: power-generation instream water use (thermoelectric-saline withdrawals and hydroelectric power). Freshwater withdrawals and deliveries for offstream use from surface- and ground-water sources in Puerto Rico were estimated at 712 million gallons per day (Mgal/d). The largest amount of freshwater withdrawn was by public-supply water facilities and was estimated at 652 Mgal/d. The public-supply domestic water use was estimated at 347 Mgal/d. Fresh surface- and ground-water withdrawals by domestic self-supplied users were estimated at 2.1 Mgal/d and the industrial self-supplied withdrawals were estimated at 9.4 Mgal/d. Withdrawals for crop irrigation purposes were estimated at 45.2 Mgal/d, or approximately 6.3 percent of all offstream freshwater withdrawals. Instream freshwater withdrawals by hydroelectric facilities were estimated at 568 Mgal/d and saline instream surface-water withdrawals for cooling purposes by thermoelectric-power facilities was estimated at 2,288 Mgal/d.

  18. Anti-Oxidative and Antibacterial Self-Healing Edible Polyelectrolyte Multilayer Film in Fresh-Cut Fruits.

    PubMed

    Liu, Xuefan; Han, Wei; Zhu, Yanxi; Xuan, Hongyun; Ren, Jiaoyu; Zhang, Jianhao; Ge, Liqin

    2018-04-01

    The consumption of fresh-cut fruits is limited because of the oxidation browning and pathogenic bacteria's growth on the fruit surface. Besides, crack of the fresh-keeping film may shorten the preservation time of fruit. In this work, polyelectrolyte multilayer (PEM) film was fabricated by layer-by-layer (LBL) electrostatic deposition method. The film was made by carboxy methylcellulose sodium (CMC) and chitosan (CS). The as-prepared PEM film had good anti-oxidative and antibacterial capability. It inhibited the growth of Gram-negative bacteria and the antibacterial rate was more than 95%. The stratified structure and linear increase of the absorbance in the film verified a linear increase of film thickness. The slight scratched film could self-heal rapidly after the stimulation of water whatever the layer number was. Moreover, the film could heal cracks whose width was far bigger than the thickness. The application of PEM film on fresh-cut apples showed that PEM film had good browning, weight loss and metabolic activity inhibition ability. These results showed that the PEM film is a good candidate as edible film in fresh-cut fruits applications.

  19. Potato Peroxidase for the Study of Enzyme Properties.

    ERIC Educational Resources Information Center

    Shamaefsky, Brian R.

    1993-01-01

    Explains how the surface of a freshly sliced potato can be used for a variety of enzyme action experiments including the influence of pH on enzyme action, the enzyme denaturation potential of boiling water, the inhibition of enzymes by heavy metals, and the effects of salt concentration on enzyme effectiveness. (PR)

  20. DISPERSIBILITY OF CRUDE OIL IN FRESH WATER

    EPA Science Inventory

    The effects of surfactant composition on the ability of chemical dispersants to disperse crude oil in fresh water were investigated. The objective of this research was to determine whether effective fresh water dispersants can be designed in case this technology is ever consider...

  1. Double diffusion in the frontal zones of the Yellow and East China Seas in winter

    NASA Astrophysics Data System (ADS)

    Oh, K.; Lee, S.

    2017-12-01

    Where the cold, fresh water of the Yellow Sea (YS) and the warm, salty water of the East China Sea (ECS) meet, northern and southern fronts are formed in the southeastern YS and the northwestern ECS, respectively. Strong thermohaline fronts are formed on the northern front, and a strong thermocline and a temperature reversal phenomenon are represented in this front. To understand the water structure of this thermohaline zone, we examined double diffusion in the frontal zones in February 2003 using hydrographic data. In the northern front, the warm, salty Cheju Warm Current Water (CWCW) moved northwards along the bottom layer and the cold, fresh Yellow Sea Cold Water (YSCW) flowed southward in the upper layer. As a result, strong thermohaline fronts forms in the area where the two water masses met, and the slope was developed downward across the front. In this area, a strong thermocline and temperature reversal structures were present. The cold, fresh Korean Coastal Water (KCW) was also found in the upper layer near the thermocline, and has a low-temperature, low-salinity more than surrounding water. When cold, fresh water is located over warm, salty water, heat diffuses through the interface between the two water masses, and then the diffusive-convection can be expected to occur. On the other hand, when warm, salty water overlays cold, fresh water, heat in the upper layer is preferentially transferred downward, and the salt-fingering occurs. The diffusive-convection occurs predominantly in the northern thermohaline front, where the cold, fresh YSCW is situated above the warm, salty CWCW and has the effect of strengthening stratification, so that the water column maintains a physically stable structure. In addition, this phenomenon seems to play a role in maintaining the reversal structure. The salt-fingering occurs in upper layers of the northern front where the cold, fresh YSCW is located over the most cold, fresh KCW. Near the northern thermo-halocline zone, the salt-fingering occurs simultaneously with the diffusive-convection, because three water masses, YSCW, KCW and CWCW, interact in that area. Therefore, it can be seen that the water structure of the northern frontal zone in winter is influenced mainly by the cold, fresh YSCW, the most cold, fresh KCW, and the warm, salty CWCW.

  2. Applying downscaled global climate model data to a hydrodynamic surface-water and groundwater model

    USGS Publications Warehouse

    Swain, Eric; Stefanova, Lydia; Smith, Thomas

    2014-01-01

    Precipitation data from Global Climate Models have been downscaled to smaller regions. Adapting this downscaled precipitation data to a coupled hydrodynamic surface-water/groundwater model of southern Florida allows an examination of future conditions and their effect on groundwater levels, inundation patterns, surface-water stage and flows, and salinity. The downscaled rainfall data include the 1996-2001 time series from the European Center for Medium-Range Weather Forecasting ERA-40 simulation and both the 1996-1999 and 2038-2057 time series from two global climate models: the Community Climate System Model (CCSM) and the Geophysical Fluid Dynamic Laboratory (GFDL). Synthesized surface-water inflow datasets were developed for the 2038-2057 simulations. The resulting hydrologic simulations, with and without a 30-cm sea-level rise, were compared with each other and field data to analyze a range of projected conditions. Simulations predicted generally higher future stage and groundwater levels and surface-water flows, with sea-level rise inducing higher coastal salinities. A coincident rise in sea level, precipitation and surface-water flows resulted in a narrower inland saline/fresh transition zone. The inland areas were affected more by the rainfall difference than the sea-level rise, and the rainfall differences make little difference in coastal inundation, but a larger difference in coastal salinities.

  3. Identifying Water on Mt. Baker and Mt. St. Helens, WA with Geophysics: Implications for Volcanic Landslide Hazards

    NASA Astrophysics Data System (ADS)

    Finn, C.; Bedrosian, P.; Wisniewski, M.; Deszcz-Pan, M.

    2015-12-01

    Groundwater position, abundance, and flow rates within a volcano affect the transmission of fluid pressure, transport of mass and heat and formation of mechanically weak hydrothermal alteration influencing the stability of volcanoes. In addition, eruptions can shatter volcanic rocks, weakening the edifice. Helicopter magnetic and electromagnetic (HEM) data collected over Mt. Baker and Mt. St. Helens volcanoes reveal the distribution of water, shattered volcanic rocks and hydrothermal alteration essential to evaluating volcanic landslide hazards. These data, combined with geological mapping and rock property measurements, indicate the presence of localized <100 m thick zones of water-saturated hydrothermally altered rock beneath Sherman Crater and the Dorr Fumarole Fields at Mt. Baker. Nuclear magnetic resonance data indicate that the hydrothermal clays contain ~50% bound water with no evidence for free water ponded beneath the ice. The HEM data suggest water-saturated fresh volcanic rocks from the surface to the detection limit (~100 m) over the entire summit of Mt. Baker (below the ice). A 50-100 m thick high resistivity layer (>1500 ohm-m) corresponding to domes, debris avalanche, volcanic rocks and glaciers mantles the crater at Mt. St. Helens. Shallow low resistivity layers corresponding to fresh, cold water and hot brines are observed below the high resistivity surface in EM data. Shallow ground water mainly concentrates in shattered dome material in the crater of Mt. St. Helens. Aeromagnetic data indicate the location of basalts sandwiched between debris avalanche deposits and shattered dome material. The combination of the EM and magnetic data help map the location of the shattered dome material that is considered to be the failure surface for the 1980 debris avalanche. The EM data image the regional groundwater table near the base of the volcano. The geophysical identification of groundwater and weak layers constrain landslide hazards assessments.

  4. Ancient ice islands in salt lakes of the Central Andes

    USGS Publications Warehouse

    Hurlbert, S.H.; Chang, Cecily C.Y.

    1984-01-01

    Massive blocks of freshwater ice and frozen sediments protrude from shallow, saline lakes in the Andes of southwestern Bolivia and northeastern Chile. These ice islands range up to 1.5 kilometers long, stand up to 7 meters above the water surface, and may extend out tens of meters and more beneath the unfrozen lake sediments. The upper surfaces of the islands are covered with dry white sediments, mostly aragonite or calcite. The ice blocks may have formed by freezing of the fresh pore water of lake sediments during the "little ice age." The largest blocks are melting rapidly because of possibly recent increases in geothermal heat flux through the lake bottom and undercutting by warm saline lake water during the summer.

  5. The energy-water quality nexus: insights from the 2008 coal ash spill in Tennessee

    NASA Astrophysics Data System (ADS)

    Vengosh, A.; Ruhl, L.; Dwyer, G. S.; Hsu-Kim, H.; Deonarine, A.

    2010-12-01

    Energy production consumes a large volume of water. The USGS estimated that about 52 percent of the total USA fresh surface-water withdrawal in 2000 was for thermoelectric consumption (fresh water use ~188 for thermoelectric out of 563 billion cubic meters a year total water withdrawal in the USA). While water availability and possible changes induced from climate change and increasing demands for other sectors are important limiting factors, this presentation highlights the critical long-term impact on water quality. The Clean Smokestacks Act was enacted to reduce emissions from coal-fired power plants through installation of scrubbers and selective catalytic reduction, aiming to cut emissions of sulfur dioxide, nitrogen oxides and mercury. In addition to the capture of these air pollutants, volatile elements are attached to the residual coal combustion products (CCPs). Consequently, toxic metals concentrations in CCPs are extremely high and become mobile upon interaction of CCPs with aquatic solutions. In particular, several studies have demonstrated the high mobilization of boron, arsenic, selenium, barium and other toxic oxi-anions and metals from CCPs. The 2008 coal ash spill in Kingston, Tennessee, where approximately 4.1 million cubic meters of coal ash was spilled onto the surrounding land surface and into the adjacent Emory and Clinch Rivers, has demonstrated the possible impact of CCPs on the environment. An eighteen-month survey has revealed elevated levels of contaminants in surface water with restricted water exchange and in pore water extracted from the bottom sediments, downstream from the spill. Our research has shown that arsenic concentration in the pore water reached to 2,000 ppb due to the reducing conditions and the high mobility of the non-charged arsenic species. Generation of CCPs however is not restricted to a single accidental release, as over five hundred power plants nationwide generate approximately 130 million tons of CCPs each year, in which more than half is stored in 194 landfills and 161 holding ponds. In each of these sites effluents that are generated from leaching of CCPs could contain high levels of contaminants that could pose severe ecological hazards to the local aquatic systems. Preliminary results from Hyco Lake in North Carolina have demonstrated high levels of toxic metals in effluents that are generated from adjacent coal-fired plant combined with high boron concentrations (1000 ppb) in the fresh lake water. The notion that CCPs generates a direct threat to the aquatic systems through holding ponds, landfills, or even “beneficial use” in sites where CCPs could be exposed and interact with the ambient environment should become an additional factor in evaluating the cost of “cheap coal” and its impact on the environment.

  6. Spatial and Temporal Analysis of Sea Surface Salinity Using Satellite Imagery in Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Rajabi, S.; Hasanlou, M.; Safari, A. R.

    2017-09-01

    The recent development of satellite sea surface salinity (SSS) observations has enabled us to analyse SSS variations with high spatiotemporal resolution. In this regards, The Level3-version4 data observed by Aquarius are used to examine the variability of SSS in Gulf of Mexico for the 2012-2014 time periods. The highest SSS value occurred in April 2013 with the value of 36.72 psu while the lowest value (35.91 psu) was observed in July 2014. Based on the monthly distribution maps which will be demonstrated in the literature, it was observed that east part of the region has lower salinity values than the west part for all months mainly because of the currents which originate from low saline waters of the Caribbean Sea and furthermore the eastward currents like loop current. Also the minimum amounts of salinity occur in coastal waters where the river runoffs make fresh the high saline waters. Our next goal here is to study the patterns of sea surface temperature (SST), chlorophyll-a (CHLa) and fresh water flux (FWF) and examine the contributions of them to SSS variations. So by computing correlation coefficients, the values obtained for SST, FWF and CHLa are 0.7, 0.22 and 0.01 respectively which indicated high correlation of SST on SSS variations. Also by considering the spatial distribution based on the annual means, it found that there is a relationship between the SSS, SST, CHLa and the latitude in the study region which can be interpreted by developing a mathematical model.

  7. Meat shelf-life and extension using collagen/gelatin coatings: a review.

    PubMed

    Antoniewski, M N; Barringer, S A

    2010-08-01

    Different factors lead to the end of shelf-life for fresh meat products. The factors depend upon the animal including breed difference and muscle fiber type, external influences such as diet and stress, and post-harvest storage conditions including time, temperature, and packaging atmosphere. The characteristics that indicate the end of shelf-life for fresh meat products include water loss/purge accumulation, color deterioration due to myoglobin oxidation, rancidity due to lipid oxidation, and microbial spoilage. The characteristics can be measured and studied in the laboratory. Meat shelf-life is extended with the application of a surface coating because it provides a water and oxygen barrier. Collagen and gelatin coatings are used as a barrier on meat products to reduce purge, color deterioration, aroma deterioration, and spoilage, improve sensory scores, and act as an antioxidant.

  8. Research on the operation control strategy of the cooling ceiling combined with fresh air system

    NASA Astrophysics Data System (ADS)

    Huang, Tao; Li, Hao

    2018-03-01

    The cooling ceiling combined with independent fresh air system was built by TRNSYS. And the cooling effects of the air conditioning system of an office in Beijing in a summer typical day were simulated. Based on the “variable temperature” control strategy, the operation strategy of “variable air volume auxiliary adjustment” was put forward. The variation of the indoor temperature, the indoor humidity, the temperature of supplying water and the temperature of returning water were simulated under the two control strategies. The energy consumption of system during the whole summer was compared by utilizing the two control strategies, and the indoor thermal comfort was analyzed. The optimal control strategy was proposed under the condition that the condensation on the surface of the cooling ceiling is not occurred and the indoor thermal comfort is satisfied.

  9. Northern Indian Ocean Salt Transport (NIOST): Estimation of Fresh and Salt Water Transports in the Indian Ocean using Remote Sensing, Hydrographic Observations and HYCOM Simulations

    DTIC Science & Technology

    2014-09-30

    Here we use the newly launched Aquarius satellite derived Sea Surface Salinity ( SSS ) data as well as Argo salinity profiles, model simulations and...dipolar sea surface salinity ( SSS ) structure with the salty Arabian Sea (AS) on the west and the fresher Bay of Bengal (BoB) on the east. At the surface...interconnected, region is quantified. PRELIMINARY RESULTS Figure 1 shows the mean Aquarius SSS during August 2011-May 2014 and several boxes that

  10. The effect of water storage, elapsed time and contaminants on the bond strength and interfacial polymerization of a nanohybrid composite.

    PubMed

    Perriard, Jean; Lorente, Maria Cattani; Scherrer, Susanne; Belser, Urs C; Wiskott, H W Anselm

    2009-12-01

    To systematically characterize the effect of time lapse, water storage, and selected contaminants on the bond strength of a nanofilled dental composite. Half-dumbbell-shaped samples were fabricated out of light-polymerizing composite resin. To function as substrates they were aged for 30 days in water. Prior to bonding, the substrates' surfaces were subjected to the following treatments: 1) Removing a 0.2- to 0.4-mm layer using a fluted carbide bur; 2) grit blasting with 50 microm alumina particles; 3) etching with phosphoric acid gel; 4) grit blasting followed by etching; 5) blasting with tribochemical particles followed by silane application; 6) sanding with 400-grit paper, air aging of the adherent half-sample before bonding; 7) surface contamination with saliva; 8) surface contamination with blood. In each group (n = 30), freshly polymerized (except in group 6) adherent half-samples were bonded to the substrate half-samples by a layer of unfilled adhesive resin. Fifteen full dumbbell-shaped specimens were subjected to tensile testing after 1 h and 15 after 7 days water storage. In a positive control group, freshly cured half-samples were bonded shortly after fabrication. The tensile strength was analyzed using Weibull statistics and presented in terms of the material's characteristic strength and shape parameter. Fractographs of the two weakest and strongest samples of each group were produced. The surfaces were searched to locate hackle, wake hackle and the origin of the fracture. Surface roughness and time lapse increased the bond strength of the repaired specimens. All groups in which surface roughness was produced before bonding increased in repair strength. Post-bonding aging improved strength. Fractographs yielded interpretable data whenever larger surfaces of single phase bonding resin were present. 1) Roughening and etching an aged composite's surface prior to applying a coat of unfilled resin and the filled material increases repair bond strength by up to 100%. 2) The repair bond strength of a roughened aged composite is 25% to 30% inferior to the tensile strength of solid specimens. 3) After 7 days' storage in water, no detrimental effect could be seen from saliva or blood contamination if the surfaces were properly rinsed.

  11. Acidic Electrolyzed Water as a Novel Transmitting Medium for High Hydrostatic Pressure Reduction of Bacterial Loads on Shelled Fresh Shrimp

    PubMed Central

    Du, Suping; Zhang, Zhaohuan; Xiao, Lili; Lou, Yang; Pan, Yingjie; Zhao, Yong

    2016-01-01

    Acidic electrolyzed water (AEW), a novel non-thermal sterilization technology, is widely used in the food industry. In this study, we firstly investigated the effect of AEW as a new pressure transmitting medium for high hydrostatic pressure (AEW-HHP) processing on microorganisms inactivation on shelled fresh shrimp. The optimal conditions of AEW-HHP for Vibrio parahaemolyticus inactivation on sterile shelled fresh shrimp were obtained using response surface methodology: NaCl concentration to electrolysis 1.5 g/L, treatment pressure 400 MPa, treatment time 10 min. Under the optimal conditions mentioned above, AEW dramatically enhanced the efficiency of HHP for inactivating V. parahaemolyticus and Listeria monocytogenes on artificially contaminated shelled fresh shrimp, and the log reductions were up to 6.08 and 5.71 log10 CFU/g respectively, while the common HHP could only inactivate the two pathogens up to 4.74 and 4.31 log10 CFU/g respectively. Meanwhile, scanning electron microscopy (SEM) showed the same phenomenon. For the naturally contaminated shelled fresh shrimp, AEW-HHP could also significantly reduce the micro flora when examined using plate count and PCR-DGGE. There were also no significant changes, histologically, in the muscle tissues of shrimps undergoing the AEW-HHP treatment. In summary, using AEW as a new transmitting medium for HHP processing is an innovative non thermal technology for improving the food safety of shrimp and other aquatic products. PMID:27014228

  12. Effect of oil pollution on fresh groundwater in Kuwait

    NASA Astrophysics Data System (ADS)

    Al-Sulaimi, J.; Viswanathan, M. N.; Székely, F.

    1993-11-01

    Massive oil fires in Kuwait were the aftermath of the Gulf War. This resulted in the pollution of air, water, and soil, the magnitude of which is unparalleled in the history of mankind. Oil fires damaged several oil well heads, resulting in the flow of oil, forming large oil lakes. Products of combustion from oil well fires deposited over large areas. Infiltrating rainwater, leaching out contaminants from oil lakes and products of combustion at ground surface, can reach the water table and contaminate the groundwater. Field investigations, supported by laboratory studies and mathematical models, show that infiltration of oil from oil lakes will be limited to a depth of about 2 m from ground surface. Preliminary mathematical models showed that contaminated rainwater can infiltrate and reach the water table within a period of three to four days, particularly at the Raudhatain and Umm Al-Aish regions. These are the only regions in Kuwait where fresh groundwater exists. After reaching the water table, the lateral movement of contaminants is expected to be very slow under prevailing hydraulic gradients. Groundwater monitoring at the above regions during 1992 showed minor levels of vanadium, nickel, and total hydrocarbons at certain wells. Since average annual rainfall in the region is only 120 mm/yr, groundwater contamination due to the infiltration of contaminated rainwater is expected to be a long-term one.

  13. Marine electrical resistivity imaging of submarine groundwater discharge: Sensitivity analysis and application in Waquoit Bay, Massachusetts, USA

    USGS Publications Warehouse

    Henderson, Rory; Day-Lewis, Frederick D.; Abarca, Elena; Harvey, Charles F.; Karam, Hanan N.; Liu, Lanbo; Lane, John W.

    2010-01-01

    Electrical resistivity imaging has been used in coastal settings to characterize fresh submarine groundwater discharge and the position of the freshwater/salt-water interface because of the relation of bulk electrical conductivity to pore-fluid conductivity, which in turn is a function of salinity. Interpretation of tomograms for hydrologic processes is complicated by inversion artifacts, uncertainty associated with survey geometry limitations, measurement errors, and choice of regularization method. Variation of seawater over tidal cycles poses unique challenges for inversion. The capabilities and limitations of resistivity imaging are presented for characterizing the distribution of freshwater and saltwater beneath a beach. The experimental results provide new insight into fresh submarine groundwater discharge at Waquoit Bay National Estuarine Research Reserve, East Falmouth, Massachusetts (USA). Tomograms from the experimental data indicate that fresh submarine groundwater discharge may shut down at high tide, whereas temperature data indicate that the discharge continues throughout the tidal cycle. Sensitivity analysis and synthetic modeling provide insight into resolving power in the presence of a time-varying saline water layer. In general, vertical electrodes and cross-hole measurements improve the inversion results regardless of the tidal level, whereas the resolution of surface arrays is more sensitive to time-varying saline water layer.

  14. Timescales of AMOC decline in response to fresh water forcing

    NASA Astrophysics Data System (ADS)

    Jackson, Laura C.; Wood, Richard A.

    2017-12-01

    The Atlantic meridional overturning circulation (AMOC) is predicted to weaken over the coming century due to warming from greenhouse gases and increased input of fresh water into the North Atlantic, however there is considerable uncertainty as to the amount and rate of AMOC weakening. Understanding what controls the rate and timescale of AMOC weakening may help to reduce this uncertainty and hence reduce the uncertainty surrounding associated impacts. As a first step towards this we consider the timescales associated with weakening in response to idealized freshening scenarios. Here we explore timescales of AMOC weakening in response to a freshening of the North Atlantic in a suite of experiments with an eddy-permitting global climate model (GCM). When the rate of fresh water added to the North Atlantic is small (0.1 Sv; 1 Sv =1× 10^6 m^3 /s), the timescale of AMOC weakening depends mainly on the rate of fresh water input itself and can be longer than a century. When the rate of fresh water added is large (≥ 0.3 Sv) however, the timescale is a few decades and is insensitive to the actual rate of fresh water input. This insensitivity is because with a greater rate of fresh water input the advective feedbacks become more important at exporting fresh anomalies, so the rate of freshening is similar. We find advective feedbacks from: an export of fresh anomalies by the mean flow; less volume import through the Bering Strait; a weakening AMOC transporting less subtropical water northwards; and anomalous subtropical circulations which amplify export of the fresh anomalies. This latter circulation change is driven itself by the presence of fresh anomalies exported from the subpolar gyre through geostrophy. This feedback has not been identified in previous model studies and when the rate of freshening is strong it is found to dominate the total export of fresh anomalies, and hence the timescale of AMOC decline. Although results may be model dependent, qualitatively similar mechanisms are also found in a single experiment with a different GCM.

  15. Investigation of Submarine Groundwater Discharge along the Tidal Reach of the Caloosahatchee River, Southwest Florida

    USGS Publications Warehouse

    Reich, Christopher D.

    2010-01-01

    The tidal reach of the Caloosahatchee River is an estuarine habitat that supports a diverse assemblage of biota including aquatic vegetation, shellfish, and finfish. The system has been highly modified by anthropogenic activity over the last 150 years (South Florida Water Management District (SFWMD), 2009). For example, the river was channelized and connected to Lake Okeechobee in 1881 (via canal C-43). Subsequently, three control structures (spillway and locks) were installed for flood protection (S-77 and S-78 in the 1930s) and for saltwater-intrusion prevention (S-79, W.P. Franklin Lock and Dam in 1966). The emplacement of these structures and their impact to natural water flow have been blamed for water-quality problems downstream within the estuary (Flaig and Capece, 1998; SFWMD, 2009). Doering and Chamberlain (1999) found that the operation of these control structures caused large and often rapid variations in salinity during various times of the year. Variable salinities could have deleterious impacts on the health of organisms in the Caloosahatchee River estuary. Flow restriction along the Caloosahatchee has also been linked to surface-water eutrophication problems (Doering and Chamberlain, 1999; SFWMD, 2009) and bottom-sediment contamination (Fernandez and others, 1999). Sources of nutrients (nitrogen and phosphorous) that cause eutrophication are primarily from residential sources and agriculture, though wastewater-treatment-plant discharges can also play a major role (SFWMD, 2009). The pathway for many of these nutrients is by land runoff and direct discharge from stormwater drains. An often overlooked source of nutrients and other chemical constituents is from submarine groundwater discharge (SGD). SGD can be either a diffuse or point source (for example, submarine springs) of nutrients and other chemical constituents to coastal waters (Valiela and others, 1990; Swarzenski and others, 2001; 2006; 2007; 2008). SGD can be composed of either fresh or marine water or various mixed ratios of fresh and marine water (Martin and others, 2007). In coastal areas where water-table elevations (hydraulic gradients) are steep, such as in Hood Canal, Washington (Swarzenski and others, 2007; Simonds and others, 2008), groundwater entering the coastal marine waters can be fresh (~1-4 parts per thousand, ppt). SGD in coastal locations that have low relief (low hydraulic gradients) such as the study area or other locations in Florida are typically driven by tidal pumping (Reich and others, 2002; 2008; Swarzenski and others, 2008), and water advecting into surface water is composed of recirculated marine water mixed with either fresh or brackish groundwaters. The importance of SGD in the delivery of nutrients and trace elements to coastal environments has been shown to be both beneficial and deleterious to ecosystem health (Valiela and others, 1990). The logical step in studying SGD is to map areas where SGD occurs. Methods such as continuous surface-water radon-222 (222Rn) mapping and electrical resistivity (continuous resistivity profiles, CRP) have been developed and used to identify potential SGD sites (Dulaiova and others, 2005; Swarzenski and others 2004; 2006; 2007; 2008; Reich and others, 2008). CRP data record subsurface, bulk-resistivity measurements to depths up to 25 meters (m). The bulk resistivity can be representative of changes in porewater salinity or in lithology (Reich and others, 2008; Swarzenski and others, 2008). Radon-222 (half-life = 3.28 days) is a natural tracer of groundwater, because sediments and rocks, containing uranium-bearing materials such as limestone and phosphatic material, continually produce 222Rn. Rn-222 (also referred to simply as radon) is an ideal tracer, because there is a constant source. Since radon is a gas, 222Rn does not build up in the surface water but rather evades directly to the atmosphere (Burnett and Dulaiova, 2003; Burnett and others, 2003; Dulaiova and Burnett, 2006).

  16. Prevalence of enterococcus species and their virulence genes in fresh water prior to and after storm events.

    PubMed

    Sidhu, J P S; Skelly, E; Hodgers, L; Ahmed, W; Li, Y; Toze, S

    2014-01-01

    Enterococcus spp. isolates (n = 286) collected from six surface water bodies in subtropical Brisbane, Australia, prior to and after storm events, were identified to species level and tested for the presence of seven clinically important virulence genes (VGs). Enterococcus faecalis (48%), Enterococcus faecium (14%), Enterococcus mundtii (13%), and Enterococcus casseliflavus (13%) were frequently detected at all sites. The frequency of E. faecium occurrence increased from 6% in the dry period to 18% after the wet period. The endocarditis antigen (efaA), gelatinase (gelE), collagen-binding protein (ace), and aggregation substance (asa1) were detected in 61%, 43%, 43%, and 23% of Enterococcus isolates, respectively. The chances of occurrence of ace, gelE, efaA, and asa1 genes in E. faecalis were found to be much higher compared to the other Enterococcus spp. The observed odds ratio of occurrence of ace and gelE genes in E. faecalis was much higher at 7.96 and 6.40 times, respectively. The hyl gene was 3.84 times more likely to be detected in E. casseliflavus. The presence of multiple VGs in most of the E. faecalis isolates underscores the importance of E. faecalis as a reservoir of VGs in the fresh water aquatic environment. Consequently, if contaminated surface water is to be used for production of potable and nonpotable water some degree of treatment depending upon intended use such as detention in basins prior to use or chlorination is required.

  17. A review of water resources of the Umiat area, northern Alaska

    USGS Publications Warehouse

    Williams, John R.

    1970-01-01

    Surface-water supplies from the Colville River, small tributary creeks, and lakes are abundant in summer but limited in winter by low or zero flow in streams and thick ice cover on lakes. Fresh ground water occurs in unfrozen zones in alluvium and in the upper part of bedrock beneath the Colville River and beneath lakes that do not freeze to the bottom in winter. These unfrozen zones, forming depressions in the upper surface of permafrost, are maintained by flow of heat from bodies of surface water into subjacent alluvium and bedrock. Brackish or saline ground water occurs in bedrock beneath as much as 1,055 feet of permafrost in the Arctic foothills and beneath 750 to 800 feet of permafrost beneath low terraces of the Colville River valley. The foothill area is unfavorable for developing supplies of potable ground water because of the great depth to water, predominance of brackish or saline water, and low potential yield of the bedrock. In the Colville River valley, shallow unfrozen alluvium beneath the river and deep lakes will yield abundant year-round supplies of ground water, but the bedrock below permafrost yields less than 10 gpm (gallons per minute) of saline or brackish water.

  18. A Giant Arctic Freshwater Pond at the end of the Early Eocene; Implications for Ocean Heat Transport and Carbon Cycling

    NASA Astrophysics Data System (ADS)

    Brinkhuis, H.; Schouten, S.; Collinson, M. E.; Sluijs, A.; Sinninghe-Damste, J. S.; Dickens, G. R.; Huber, M.; Cronin, T. M.; Bujak, J. P.; Stein, R.; Eldrett, J. S.; Harding, I. C.; Sangiorgi, F.

    2005-12-01

    In the last decades remains of the free-floating, fresh water fern Azolla have been found in unusually high abundances in basal middle Eocene (~48.5 Ma) marine sediments deposited in all Nordic seas. While generally taken to signal some `freshwater input', their source and significance were not determined. Through palynological and organic geochemical analyses of unique cores obtained from unprecedented Arctic Ocean drilling (IODP 302 - ACEX) we show that the brackish surface conditions that prevailed in the Arctic Ocean through the late Paleocene and early Eocene culminated in the deposition of laminated organic rich deposits yielding huge amounts of remains of Azolla. This, plus e.g., low diversity dinoflagellate assemblages, and concomitant low BIT values, indicates in-situ Azolla growth, and that the surface of the Arctic Ocean episodically resembled a giant fresh water pond over an interval altogether lasting ~800,000 years. The Arctic Basin thus constituted the main source of the freshwater pulses found elsewhere, reaching as far south as the southern North Sea.TEX86-derived surface temperatures were 13-14°C before and after the Azolla interval and only 10°C during the event, which may be related to obstruction of pole ward ocean heat transport and/or increased carbon burial.

  19. Carbon speciation at the air-sea interface during rain

    NASA Astrophysics Data System (ADS)

    McGillis, Wade; Hsueh, Diana; Takeshita, Yui; Donham, Emily; Markowitz, Michele; Turk, Daniela; Martz, Todd; Price, Nicole; Langdon, Chris; Najjar, Raymond; Herrmann, Maria; Sutton, Adrienne; Loose, Brice; Paine, Julia; Zappa, Christopher

    2015-04-01

    This investigation demonstrates the surface ocean dilution during rain events on the ocean and quantifies the lowering of surface pCO2 affecting the air-sea exchange of carbon dioxide. Surface salinity was measured during rain events in Puerto Rico, the Florida Keys, East Coast USA, Panama, and the Palmyra Atoll. End-member analysis is used to determine the subsequent surface ocean carbonate speciation. Surface ocean carbonate chemistry was measured during rain events to verify any approximations made. The physical processes during rain (cold, fresh water intrusion and buoyancy, surface waves and shear, microscale mixing) are described. The role of rain on surface mixing, biogeochemistry, and air-sea gas exchange will be discussed.

  20. A study of the spread of Campylobacter jejuni in four large kitchens.

    PubMed Central

    Dawkins, H. C.; Bolton, F. J.; Hutchinson, D. N.

    1984-01-01

    Campylobacters were sought in swabs taken from work surfaces, sinks and floors of four kitchens-i.e. hospital, university, cook-freeze and commercial, processing frozen or fresh chickens. Each kitchen was visited on four occasions. In the large commercial kitchen environmental contamination was found on each visit, whereas campylobacters were isolated on six of the twelve visits to the other kitchens. The hands of operatives were contaminated with campylobacters on only two of the 45 swabs taken during processing. Cleaning with detergent and hot water (or steam) and drying appears to be sufficient to remove the organism from the environment. Evidence of carriage of campylobacters by the birds was obtained on all 16 visits. In the three kitchens where only frozen birds were used the organism was isolated from 30% and 9.8% of swabs taken from the internal and external surfaces respectively, while 41% of giblets and 22.2% of thawed juices yielded campylobacters. The external surface of 30 (88%) of 34 fresh birds grew campylobacters. PMID:6736643

  1. Influence of soil biochar aging on sorption of the herbicides MCPA, nicosulfuron, terbuthylazine, indaziflam, and fluoroethyldiaminotriazine.

    PubMed

    Trigo, Carmen; Spokas, Kurt A; Cox, Lucia; Koskinen, William C

    2014-11-12

    Sorption of four herbicides and a metabolite of indaziflam on a fresh macadamia nut biochar and biochars aged one or two years in soil was characterized. On fresh biochar, the sorption was terbuthylazine (Kd = 595) > indaziflam (Kd = 162) > MCPA (Kd = 7.5) > fluoroethyldiaminotriazine (Kd = 0.26) and nicosulfuron (Kd = 0). Biochar surface area increased with aging attributed to the loss of a surface film. This was also manifested in a decline in water extractable organic carbon with aging. Correspondingly, an increase in the aromaticity was observed. The higher surface area and porosity in aged biochar increased sorption of indaziflam (KdBC-2yr = 237) and fluoroethyldiaminotriazine (KdBC-1yr = 1.2 and KdBC-2yr = 3.0), but interestingly decreased sorption of terbuthylazine (KdBC-1yr = 312 and KdBC-2yr = 221) and MCPA (KdBC-1yr = 2 and KdBC-2yr = 2). These results will facilitate development of biochars for specific remediation purposes.

  2. Distribution of icy particles across Enceladus' surface as derived from Cassini-VIMS measurements

    USGS Publications Warehouse

    Jaumann, R.; Stephan, K.; Hansen, G.B.; Clark, R.N.; Buratti, B.J.; Brown, R.H.; Baines, K.H.; Newman, S.F.; Bellucci, G.; Filacchione, G.; Coradini, A.; Cruikshank, D.P.; Griffith, C.A.; Hibbitts, C.A.; McCord, T.B.; Nelson, R.M.; Nicholson, P.D.; Sotin, Christophe; Wagner, R.

    2008-01-01

    The surface of Enceladus consists almost completely of water ice. As the band depths of water ice absorptions are sensitive to the size of particles, absorptions can be used to map variations of icy particles across the surface. The Visual and Infrared Mapping Spectrometer (VIMS) observed Enceladus with a high spatial resolution during three Cassini flybys in 2005 (orbits EN 003, EN 004 and EN 011). Based on these data we measured the band depths of water ice absorptions at 1.04, 1.25, 1.5, and 2 ??m. These band depths were compared to water ice models that represent theoretically calculated reflectance spectra for a range of particle diameters between 2 ??m and 1 mm. The agreement between the experimental (VIMS) and model values supports the assumption that pure water ice characterizes the surface of Enceladus and therefore that variations in band depth correspond to variations in water ice particle diameters. Our measurements show that the particle diameter of water ice increases toward younger tectonically altered surface units with the largest particles exposed in relatively "fresh" surface material. The smallest particles were generally found in old densely cratered terrains. The largest particles (???0.2 mm) are concentrated in the so called "tiger stripes" at the south pole. In general, the particle diameters are strongly correlated with geologic features and surface ages, indicating a stratigraphic evolution of the surface that is caused by cryovolcanic resurfacing and impact gardening. ?? 2007 Elsevier Inc. All rights reserved.

  3. Salinity driven oceanographic upwelling

    DOEpatents

    Johnson, D.H.

    1984-08-30

    The salinity driven oceanographic upwelling is maintained in a mariculture device that includes a long main duct in the general shape of a cylinder having perforated cover plates at each end. The mariculture device is suspended vertically in the ocean such that one end of the main duct is in surface water and the other end in relatively deep water that is cold, nutrient rich and relatively fresh in comparison to the surface water which is relatively warm, relatively nutrient deficient and relatively saline. A plurality of elongated flow segregating tubes are disposed in the main duct and extend from the upper cover plate beyond the lower cover plate into a lower manifold plate. The lower manifold plate is spaced from the lower cover plate to define a deep water fluid flow path to the interior space of the main duct. Spacer tubes extend from the upper cover plate and communicate with the interior space of the main duct. The spacer tubes are received in an upper manifold plate spaced from the upper cover plate to define a surface water fluid flow path into the flow segregating tubes. A surface water-deep water counterflow is thus established with deep water flowing upwardly through the main duct interior for discharge beyond the upper manifold plate while surface water flows downwardly through the flow segregating tubes for discharge below the lower manifold plate. During such counterflow heat is transferred from the downflowing warm water to the upflowing cold water. The flow is maintained by the difference in density between the deep water and the surface water due to their differences in salinity. The upwelling of nutrient rich deep water is used for marifarming by fertilizing the nutrient deficient surface water. 1 fig.

  4. Salinity driven oceanographic upwelling

    DOEpatents

    Johnson, David H.

    1986-01-01

    The salinity driven oceanographic upwelling is maintained in a mariculture device that includes a long main duct in the general shape of a cylinder having perforated cover plates at each end. The mariculture device is suspended vertically in the ocean such that one end of the main duct is in surface water and the other end in relatively deep water that is cold, nutrient rich and relatively fresh in comparison to the surface water which is relatively warm, relatively nutrient deficient and relatively saline. A plurality of elongated flow segregating tubes are disposed in the main duct and extend from the upper cover plate beyond the lower cover plate into a lower manifold plate. The lower manifold plate is spaced from the lower cover plate to define a deep water fluid flow path to the interior space of the main duct. Spacer tubes extend from the upper cover plate and communicate with the interior space of the main duct. The spacer tubes are received in an upper manifold plate spaced from the upper cover plate to define a surface water fluid flow path into the flow segregating tubes. A surface water-deep water counterflow is thus established with deep water flowing upwardly through the main duct interior for discharge beyond the upper manifold plate while surface water flows downwardly through the flow segregating tubes for discharge below the lower manifold plate. During such counterflow heat is transferred from the downflowing warm water to the upflowing cold water. The flow is maintained by the difference in density between the deep water and the surface water due to their differences in salinity. The upwelling of nutrient rich deep water is used for marifarming by fertilizing the nutrient deficient surface water.

  5. Surface microstructures of daisy florets (Asteraceae) and characterization of their anisotropic wetting.

    PubMed

    Koch, Kerstin; Bennemann, Michael; Bohn, Holger F; Albach, Dirk C; Barthlott, Wilhelm

    2013-09-01

    The surface microstructures on ray florets of 62 species were characterized and compared with modern phylogenetic data of species affiliation in Asteraceae to determine sculptural patterns and their occurrence in the tribes of Asteraceae. Their wettability was studied to identify structural-induced droplet adhesion, which can be used for the development of artificial surfaces for water harvesting and passive surface water transport. The wettability was characterized by contact angle (CA) and tilt angle measurements, performed on fresh ray florets and their epoxy resin replica. The CAs on ray florets varied between 104° and 156°, but water droplets did not roll off when surface was tilted at 90°. Elongated cell structures and cuticle folding orientated in the same direction as the cell elongation caused capillary forces, leading to anisotropic wetting, with extension of water droplets along the length axis of epidermis cells. The strongest elongation of the droplets was also supported by a parallel, cell-overlapping cuticle striation. In artificial surfaces made of epoxy replica of ray florets, this effect was enhanced. The distribution of the identified four structural types exhibits a strong phylogenetic signal and allows the inference of an evolutionary trend in the modification of floret epidermal cells.

  6. Pelagic sea snakes dehydrate at sea

    PubMed Central

    Lillywhite, Harvey B.; Sheehy, Coleman M.; Brischoux, François; Grech, Alana

    2014-01-01

    Secondarily marine vertebrates are thought to live independently of fresh water. Here, we demonstrate a paradigm shift for the widely distributed pelagic sea snake, Hydrophis (Pelamis) platurus, which dehydrates at sea and spends a significant part of its life in a dehydrated state corresponding to seasonal drought. Snakes that are captured following prolonged periods without rainfall have lower body water content, lower body condition and increased tendencies to drink fresh water than do snakes that are captured following seasonal periods of high rainfall. These animals do not drink seawater and must rehydrate by drinking from a freshwater lens that forms on the ocean surface during heavy precipitation. The new data based on field studies indicate unequivocally that this marine vertebrate dehydrates at sea where individuals may live in a dehydrated state for possibly six to seven months at a time. This information provides new insights for understanding water requirements of sea snakes, reasons for recent declines and extinctions of sea snakes and more accurate prediction for how changing patterns of precipitation might affect these and other secondarily marine vertebrates living in tropical oceans. PMID:24648228

  7. Efficacy of detergents in removing Salmonella and Shigella spp. from the surface of fresh produce.

    PubMed

    Raiden, Renee M; Sumner, Susan S; Eifert, Joseph D; Pierson, Merle D

    2003-12-01

    Fresh produce has been implicated in several foodborne disease outbreaks. Produce surfaces can be primary sites of contamination during production and handling. One approach to reduce contamination is to treat fresh produce with rinsing agents. In this study, different detergent agents were used at 22 and 40 degrees C to determine their efficacy in removing Salmonella and Shigella spp. from the surfaces of strawberries, tomatoes, and green-leaf lettuce. Produce was inoculated at 22 degrees C with a cocktail of nalidixic acid-resistant organisms (6 to 6.5 log CFU/ml). After air drying for 1 h, samples were rinsed with either 0.1% Tween 80, 0.1% sodium lauryl sulfate (SLS), or water (control) at 22 or 40 degrees C. Rinse solutions were spiral plated onto tryptic soy agar supplemented with 50 mg of nalidixic acid per liter. In trials involving strawberries and lettuce, Salmonella and Shigella were removed at levels of 4 and 3 log CFU/ml, respectively, except from Salmonella-inoculated strawberries rinsed with SLS, for which minimal removal rates were 1.5 log CFU/ml at 22 degrees C and < 1 log CFU/ml at 40 degrees C. When whole strawberries were analyzed after rinsing with SLS, few organisms were recovered. This result suggests that SLS may have a lethal or sublethal effect on Salmonella, especially when a 40 degrees C solution is used. Salmonella and Shigella removal rates for tomatoes were 1 and 1.5 log CFU/ml lower, respectively, than those for strawberries or lettuce. Overall, detergents were no more effective in removing organisms from produce than water was. The detergents examined would not constitute effective overall produce rinse treatments.

  8. A hydrological budget (2002-2008) for a large subtropical wetland ecosystem indicates marine groundwater discharge accompanies diminished freshwater flow

    USGS Publications Warehouse

    Saha, Amartya K.; Moses, Christopher S.; Price, Rene M.; Engel, Victor; Smith, Thomas J.; Anderson, Gordon

    2012-01-01

    Water budget parameters are estimated for Shark River Slough (SRS), the main drainage within Everglades National Park (ENP) from 2002 to 2008. Inputs to the water budget include surface water inflows and precipitation while outputs consist of evapotranspiration, discharge to the Gulf of Mexico and seepage losses due to municipal wellfield extraction. The daily change in volume of SRS is equated to the difference between input and outputs yielding a residual term consisting of component errors and net groundwater exchange. Results predict significant net groundwater discharge to the SRS peaking in June and positively correlated with surface water salinity at the mangrove ecotone, lagging by 1 month. Precipitation, the largest input to the SRS, is offset by ET (the largest output); thereby highlighting the importance of increasing fresh water inflows into ENP for maintaining conditions in terrestrial, estuarine, and marine ecosystems of South Florida.

  9. Adsorption of humic acids and trace metals in natural waters

    NASA Technical Reports Server (NTRS)

    Leung, W. H.

    1982-01-01

    Studies concerning the interactions between suspended hydrous iron oxide and dissolved humic acids and trace metals are reported. As a major component of dissolved organic matters and its readiness for adsorption at the solid/water interface, humic acids may play a very important role in the organometallic geochemistry of suspended sediments and in determining the fate and distribution of trace metals, pesticides and anions in natural water systems. Most of the solid phases in natural waters contain oxides and hydroxides. The most simple promising theory to describe the interactions of hydrous iron oxide interface is the surface complex formation model. In this model, the adsorptions of humic acids on hydrous iron oxide may be interpreted as complex formation of the organic bases (humic acid oxyanions) with surface Fe ions. Measurements on adsorptions were made in both fresh water and seawater. Attempts have been made to fit our data to Langmuir adsorption isotherm. Adsorption equilibrium constants were determined.

  10. Analysis of micromixers and biocidal coatings on water-treatment membranes to minimize biofouling.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Webb, Stephen W.; James, Darryl L.; Hibbs, Michael R.

    2009-12-01

    Biofouling, the unwanted growth of biofilms on a surface, of water-treatment membranes negatively impacts in desalination and water treatment. With biofouling there is a decrease in permeate production, degradation of permeate water quality, and an increase in energy expenditure due to increased cross-flow pressure needed. To date, a universal successful and cost-effect method for controlling biofouling has not been implemented. The overall goal of the work described in this report was to use high-performance computing to direct polymer, material, and biological research to create the next generation of water-treatment membranes. Both physical (micromixers - UV-curable epoxy traces printed on themore » surface of a water-treatment membrane that promote chaotic mixing) and chemical (quaternary ammonium groups) modifications of the membranes for the purpose of increasing resistance to biofouling were evaluated. Creation of low-cost, efficient water-treatment membranes helps assure the availability of fresh water for human use, a growing need in both the U. S. and the world.« less

  11. Hydrographic changes in the Lincoln Sea in the Arctic Ocean with focus on an upper ocean freshwater anomaly between 2007 and 2010

    NASA Astrophysics Data System (ADS)

    de Steur, L.; Steele, M.; Hansen, E.; Morison, J.; Polyakov, I.; Olsen, S. M.; Melling, H.; McLaughlin, F. A.; Kwok, R.; Smethie, W. M.; Schlosser, P.

    2013-09-01

    Hydrographic data from the Arctic Ocean show that freshwater content in the Lincoln Sea, north of Greenland, increased significantly from 2007 to 2010, slightly lagging changes in the eastern and central Arctic. The anomaly was primarily caused by a decrease in the upper ocean salinity. In 2011 upper ocean salinities in the Lincoln Sea returned to values similar to those prior to 2007. Throughout 2008-2010, the freshest surface waters in the western Lincoln Sea show water mass properties similar to fresh Canada Basin waters north of the Canadian Arctic Archipelago. In the northeastern Lincoln Sea fresh surface waters showed a strong link with those observed in the Makarov Basin near the North Pole. The freshening in the Lincoln Sea was associated with a return of a subsurface Pacific Water temperature signal although this was not as strong as observed in the early 1990s. Comparison of repeat stations from the 2000s with the data from the 1990s at 65°W showed an increase of the Atlantic temperature maximum which was associated with the arrival of warmer Atlantic water from the Eurasian Basin. Satellite-derived dynamic ocean topography of winter 2009 showed a ridge extending parallel to the Canadian Archipelago shelf as far as the Lincoln Sea, causing a strong flow toward Nares Strait and likely Fram Strait. The total volume of anomalous freshwater observed in the Lincoln Sea and exported by 2011 was close to 1100±250km3, approximately 13% of the total estimated FW increase in the Arctic in 2008.

  12. Water withdrawal and use in Maryland, 1992-93

    USGS Publications Warehouse

    Wheeler, J.C.

    1997-01-01

    During 1992, about 1,430 million gallons per day (Mgal/d) of freshwater was withdrawn from surface-water and ground-water sources in Maryland. Total freshwater withdrawals increased during 1993 to about 1,480 Mgal/d. Saline surface- water withdrawals for cooling condensers increased from about 5,350 Mgal/d during 1992 to 5,840 Mgal/d during 1993. During 1992-93, most freshwater withdrawals (about 1,180 Mgal/d during 1992 and 1,200 Mgal/d during 1993) were from surface-water sources. Nearly 70 percent of the fresh surface water was withdrawn in the Potomac River drainage basin. Most ground water (about 178 Mgal/d in 1992 and 194 Mgal/d in 1993) was withdrawn in the Upper Chesapeake drainage basin.The Potomac Group aquifers provided most of the ground water (about 61 Mgal/d during 1992 and 64 Mgal/d during 1993). Ten water-use categoriesrepresent the major demands on the surface-water and ground-water resources of the State: Public supply, domestic, commercial, industrial, mining, thermoelectric power, hydroelectric power, livestock, irrigation, and aquaculture. Largest withdrawals were for public supply (790 Mgal/d during 1992 and 812 Mgal/d during 1993), and the water was used by residences, commercial establishments, and industries. Baltimore City received the largest public-supply deliveries (about 126 Mgal/d during1992 and 129 Mgal/d during 1993). Freshwater withdrawals for self-supplied domestic, commercial, mining, aquaculture, and irrigation uses increased during the period, whereas withdrawals for industrial and thermoelectric power uses decreased.

  13. A multi-decadal study of Polar and Atlantic Water changes on the North Iceland shelf during the last Millennium

    NASA Astrophysics Data System (ADS)

    Perner, Kerstin; Moros, Matthias; Simon, Margit; Berben, Sarah; Griem, Lisa; Dokken, Trond; Wacker, Lukas; Jansen, Eystein

    2017-04-01

    The region offshore North Iceland is known to be sensitive to broad scale climatic and oceanographic changes in the North Atlantic Ocean. Changes in surface and subsurface water conditions link to the varying influence of Polar-sourced East Icelandic Current (EIC) and Atlantic-sourced North Irminger Icelandic Current (NIIC). Cold/fresh Polar waters from the East Greenland Current feed the surface flowing EIC, while warm/saline Subpolar Mode Waters (SPMW) from the Irminger Current (IC) feed the subsurface flowing NIIC. Here, we present a new and well-dated multi-proxy record that allows high-resolution reconstruction of surface and subsurface water mass changes on the western North Iceland shelf. An age-depth model for the last Millennium has been developed based on the combined information from radionuclide measurements (137Cs, 210Pb) dating, 25 AMS 14C radiocarbon dates, and identified Tephra horizons. Our dating results provide further support to previous assumptions that North of Iceland a conventional reservoir age correction application of 400 years (ΔR=0) is inadequate (e.g., Eikíksson et al., 2000; Wanamaker Jr. et al., 2012). The combined evidence from radionuclide dating and the identified Tephra horizons point to a ΔR of c. 360 years during the last Millennium. Our benthic and planktic foraminiferal assemblage and stable oxygen isotope (18O) record of Neogloboquadrina pachyderma s. (NPS) resolve the last Millennium at a centennial to multi-decadal resolution. Comparison of abundance changes of the Atlantic Water related species Cassidulina neoteretis and NPS, as well as the 18O record agree well with the instrumental data time series from the monitoring station Hunafloi nearby. This provides further support that our data is representative of relative temperature and salinity changes in surface and subsurface waters. Hence, this new record allows a more detailed investigation on the timing of Polar (EIC) and Atlantic (NIIC, IC) Water contribution to the North Iceland shelf that links to large-scale atmospheric and oceanic changes in the North Atlantic region. We find, during the time of the Medieval Climate Anomaly (MCA), an increased influence of Atlantic waters on surface water conditions, suggesting a stronger inflow of the NIIC, and thus of SPMW from the IC. This influence decreases markedly at the transition from the MCA to the Little Ice Age (LIA) and remains weak during the 20th Century, which likely relates to an enhanced inflow of cold/fresh Polar surface waters to the North Iceland shelf. During the MCA and LIA subsurface water conditions remain predominantly influenced by SPMW from the IC. However, from c. 1950 AD towards the present, this influence and thus likely subsurface water temperatures, decrease on the western North Iceland shelf.

  14. A Closed Loop System Using a Brine Reservoir to Replace Fresh Water as the Frac Fluid Source

    EPA Pesticide Factsheets

    A non-fresh water source, the Debolt formation, has been proposed and tested in the laboratory and field for application as a fracturing fluid in shale gas formations, with potential to replace much of the fresh water used in the Horn River Basin.

  15. 46 CFR 42.50-5 - International load line certificates.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) __ (inches) (WNA) __ (inches) below (S). Allowance for fresh water for all freeboards __ (inches). (All... point of departure and the sea. 2. When a ship is in fresh water of unit density, the appropriate load line may be submerged by the amount of the fresh water allowance shown above. Where the density is...

  16. The Upper 1000-m Slope Currents North of the South Shetland Islands and Elephant Island Based on Ship Cruise Observations

    NASA Astrophysics Data System (ADS)

    Du, Guangqian; Zhang, Zhaoru; Zhou, Meng; Zhu, Yiwu; Zhong, Yisen

    2018-04-01

    While the Antarctic Slope Current (ASC) has been intensively studied for the East Antarctica slope area and the Weddell Sea, its fate in the western Antarctic Peninsula (WAP) region remains much less known. Data from two cruises conducted near the South Shetland Islands (SSIs) and the Elephant Island (EI), one in austral summer of 2004 and one in austral winter of 2006, were analyzed to provide a broad picture of the circulation pattern over the continental slope of the surveyed area, and an insight into the dynamical balance of the circulation. The results indicate that southwestward currents are present over the upper slope in the study area, indicating the ASC in the WAP region. Near the Shackleton Gap (SG) north of the EI, the southwestward slope currents near the shelf break are characterized by a water mass colder and fresher than the ambient water, which produces cross-slope density gradients and then vertical shear of the along-slope (or along-isobath) velocity. The vertical shear is associated with a reversal of the along-slope current from northeastward at surface to southwestward in deeper layers, or a depth-intensification of the southwestward slope currents. The water mass with temperature and salinity characteristics similar to the observed cold and fresh water is also revealed on the southern slope of the Scotia Sea, suggesting that this cold and fresh water is originated from the Scotia Sea slope and flows southwestward through the SG. Over the shelf north of the SSIs, the cold and fresh water mass is also observed and originates mainly from the Bransfield Strait. In this area, vertical structure of the southwestward slope currents is associated with the onshore intrusion of the upper Circumpolar Deep Water that creates cross-slope density gradients.

  17. Coastal water monitoring using a vertical profiler

    NASA Astrophysics Data System (ADS)

    Kim, Dong Guk; Seo, Seongbong; Park, Young-Gyu; Min, Hong Sik

    2017-04-01

    Using a profiler system, the Aqualog, composed of a moored wire and a carrier in which a CTD was installed, we have been monitoring coastal water in Korea since August 2016. With this monitoring system, we were able to observe rapid warming of surface water that resulted in large damage to fish farms. The profiles showed that the warming was associated with low salinity water due to the fresh water discharge from the Yangtze River. We also observed change in water properties due to a typhoon. Along the Korean coast there are many aquafarms, which are becoming more vulnerable to environmental change. With the data from the profiler we would be able to help the aquafarms to sustain.

  18. Groundwater

    USGS Publications Warehouse

    Stonestrom, David A.; Wohl, Ellen E.

    2016-01-01

    Groundwater represents the terrestrial subsurface component of the hydrologic cycle. As such, groundwater is generally in motion, moving from elevated areas of recharge to lower areas of discharge. Groundwater usually moves in accordance with Darcy’s law (Dalmont, Paris: Les Fontaines Publiques de la Ville de Dijon, 1856). Groundwater residence times can be under a day in small upland catchments to over a million years in subcontinental-sized desert basins. The broadest definition of groundwater includes water in the unsaturated zone, considered briefly here. Water chemically bound to minerals, as in gypsum (CaSO4 • 2H2O) or hydrated clays, cannot flow in response to gradients in total hydraulic head (pressure head plus elevation head); such water is thus usually excluded from consideration as groundwater. In 1940, M. King Hubbert showed Darcy’s law to be a special case of thermodynamically based potential field equations governing fluid motion, thereby establishing groundwater hydraulics as a rigorous engineering science (Journal of Geology 48, pp. 785–944). The development of computer-enabled numerical methods for solving the field equations with real-world approximating geometries and boundary conditions in the mid-1960s ushered in the era of digital groundwater modeling. An estimated 30 percent of global fresh water is groundwater, compared to 0.3 percent that is surface water, 0.04 percent atmospheric water, and 70 percent that exists as ice, including permafrost (Shiklomanov and Rodda 2004, cited under Groundwater Occurrence). Groundwater thus constitutes the vast majority—over 98 percent—of the unfrozen fresh-water resources of the planet, excluding surface-water reservoirs. Environmental dimensions of groundwater are equally large, receiving attention on multiple disciplinary fronts. Riparian, streambed, and spring-pool habitats can be sensitively dependent on the amount and quality of groundwater inputs that modulate temperature and solutes, including nutrients and dissolved oxygen. Groundwater withdrawals can negatively impact riparian habitats by depriving ecosystems of adequate fresh water and fragmenting communities when streams go dry. Biochemical reactions in shallow groundwater can remove anthropogenically elevated nitrogen compounds and reduce—but only to a point—the greening of waterways and shorelines with periphyton and harmful algal blooms. Groundwater extraction for beneficial use is increasingly limited by water-quality constraints imposed by naturally occurring and introduced substances. Overdrafting can cause land-surface subsidence, damaging buildings and roads and disrupting canals, sewers, and other gravity-flow conveyances. Increases in groundwater levels can cause soil salinization in dry regions and erosive sapping and flooding in wet regions. Coastal saltwater intrusion, groundwater flooding, salinization associated with groundwater-irrigated agriculture, induced seismicity from injected wastes, and the detrimental impacts of groundwater depletion are among the major environmental challenges of our time.

  19. The circulation of Prince William Sound

    NASA Technical Reports Server (NTRS)

    Muench, R. D. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Results suggest that sediment-laden plumes of fresh water from rivers may be useful tracers, due to their high visibility, of surface water motion. The two useable images obtained to date corroborate that westerly flow was occurring in the Gulf of Alaska just south of Prince William Sound, and that an inflow into Prince William Sound was occurring concurrently with flood tides on both occasions. River plumes are useful tracers, but poor weather conditions somewhat limit the use of satellite imagery.

  20. Projected effects of proposed chloride-control projects on shallow ground water; preliminary results for the Wichita River basin, Texas

    USGS Publications Warehouse

    Garza, Sergio

    1983-01-01

    Two-dimensional mathematical computer models were developed for aquifer simulation of: (1) Steady-state conditions in a fresh-water system and (2) transient conditions in a brine- fresh-water system where the density effects of the brine are considered. The main results 'of projecting the effects of the proposed Truscott Brine Lake on the fresh-water aquifer are: (1) Hydraulic head rises of 5 to 40 feet would be confined to areas near the proposed dam and along the lake shoreline, and (2) migration of salt water downstream from the dam generally would be limited to less than 1 mile and apparently would not reach equilibrium during the 100-year duration of the project. The modeling efforts did not include possible effects related to hydrodynamic dispersion in the brine- fresh-water system. Possible changes in the hydraulic conductivity of the aquifer, due to physical and chemical interactions in the brine and fresh-water environments, also were not considered.

  1. Groundwater flow cycling between a submarine spring and an inland fresh water spring

    USGS Publications Warehouse

    Davis, J. Hal; Verdi, Richard

    2014-01-01

    Spring Creek Springs and Wakulla Springs are large first magnitude springs that derive water from the Upper Floridan Aquifer. The submarine Spring Creek Springs are located in a marine estuary and Wakulla Springs are located 18 km inland. Wakulla Springs has had a consistent increase in flow from the 1930s to the present. This increase is probably due to the rising sea level, which puts additional pressure head on the submarine Spring Creek Springs, reducing its fresh water flow and increasing flows in Wakulla Springs. To improve understanding of the complex relations between these springs, flow and salinity data were collected from June 25, 2007 to June 30, 2010. The flow in Spring Creek Springs was most sensitive to rainfall and salt water intrusion, and the flow in Wakulla Springs was most sensitive to rainfall and the flow in Spring Creek Springs. Flows from the springs were found to be connected, and composed of three repeating phases in a karst spring flow cycle: Phase 1 occurred during low rainfall periods and was characterized by salt water backflow into the Spring Creek Springs caves. The higher density salt water blocked fresh water flow and resulted in a higher equivalent fresh water head in Spring Creek Springs than in Wakulla Springs. The blocked fresh water was diverted to Wakulla Springs, approximately doubling its flow. Phase 2 occurred when heavy rainfall resulted in temporarily high creek flows to nearby sinkholes that purged the salt water from the Spring Creek Springs caves. Phase 3 occurred after streams returned to base flow. The Spring Creek Springs caves retained a lower equivalent fresh water head than Wakulla Springs, causing them to flow large amounts of fresh water while Wakulla Springs flow was reduced by about half.

  2. A robust, melting class bulk superhydrophobic material with heat-healing and self-cleaning properties

    PubMed Central

    Ramakrishna, S.; Santhosh Kumar, K. S.; Mathew, Dona; Reghunadhan Nair, C. P.

    2015-01-01

    Superhydrophobic (SH) materials are essential for a myriad of applications such as anti-icing and self-cleaning due to their extreme water repellency. A single, robust material simultaneously possessing melt-coatability, bulk water repellency, self-cleanability, self-healability, self-refreshability, and adhesiveness has been remaining an elusive goal. We demonstrate a unique class of melt-processable, bulk SH coating by grafting long alkyl chains on silica nanoparticle surface by a facile one-step method. The well-defined nanomaterial shows SH property in the bulk and is found to heal macro-cracks on gentle heating. It retains wettability characteristics even after abrading with a sand paper. The surface regenerates SH features (due to reversible self-assembly of nano structures) quickly at ambient temperature even after cyclic water impalement, boiling water treatment and multiple finger rubbing tests. It exhibits self-cleaning properties on both fresh and cut surfaces. This kind of coating, hitherto undisclosed, is expected to be a breakthrough in the field of melt-processable SH coatings. PMID:26679096

  3. Formation of trichloromethane in chlorinated water and fresh-cut produce and as a result of reacting with citric acid

    USDA-ARS?s Scientific Manuscript database

    Chlorine (sodium hypochlorite) is commonly used by the fresh produce industry to sanitize wash water, fresh and fresh-cut fruits and vegetables. However, possible formation of harmful chlorine by-products is a concern. The objectives of this study were to compare chlorine and chlorine dioxide in t...

  4. Sealing is at the origin of rubber slipping on wet roads.

    PubMed

    Persson, B N J; Tartaglino, U; Albohr, O; Tosatti, E

    2004-12-01

    Loss of braking power and rubber skidding on a wet road is still an open physics problem, as neither the hydrodynamic effects nor the loss of surface adhesion that are sometimes blamed really manage to explain the 20-30% observed loss of low-speed tyre-road friction. Here we report a novel mechanism based on sealing of water-filled substrate pools by the rubber. The sealed-in water effectively smoothens the substrate, thus reducing the viscoelastic dissipation in bulk rubber induced by surface asperities-well established as a major friction contribution. Starting with the measured spectrum of asperities one can calculate the water-smoothened spectrum and from that the predicted friction reduction, which is of the correct magnitude. The theory is directly supported by fresh tyre-asphalt friction data.

  5. Sealing is at the origin of rubber slipping on wet roads

    NASA Astrophysics Data System (ADS)

    Persson, B. N. J.; Tartaglino, U.; Albohr, O.; Tosatti, E.

    2004-12-01

    Loss of braking power and rubber skidding on a wet road is still an open physics problem, as neither the hydrodynamic effects nor the loss of surface adhesion that are sometimes blamed really manage to explain the 20-30% observed loss of low-speed tyre-road friction. Here we report a novel mechanism based on sealing of water-filled substrate pools by the rubber. The sealed-in water effectively smoothens the substrate, thus reducing the viscoelastic dissipation in bulk rubber induced by surface asperities-well established as a major friction contribution. Starting with the measured spectrum of asperities one can calculate the water-smoothened spectrum and from that the predicted friction reduction, which is of the correct magnitude. The theory is directly supported by fresh tyre-asphalt friction data.

  6. Base of moderately saline ground water in the Uinta Basin, Utah, with an introductory section describing the methods used in determining its position

    USGS Publications Warehouse

    Howells, Lewis; Longson, M.S.; Hunt, Gilbert L.

    1987-01-01

    The base of the moderately saline water (water that contains from 3,000 to 10,000 milligrams per liter of dissolved solids) was mapped by using available water-quality data and by determining formation-water resistivities from geophysical well logs based on the resistivity-porosity, spontaneous potential, and resistivity-ratio methods. The contour map developed from these data showed a mound of very saline and briny water, mostly of sodium chloride and sodium bicarbonate type, in most of that part of the Uinta Basin that is underlain by either the Green River or Wasatch Formations. Along its northern edge, the mound rises steeply from below sea level to within 2,000 feet of the land surface and, locally, to land surface. Along its southern edge, the mound rises less steeply and is more complex in outline. This body of very saline to briny water may be a lens; many wells or test holes drilled within the area underlain by the mound re-entered fresh to moderately saline water at depths of 8,000 to 15,000 feet below lam surface.

  7. Analysis of Groundwater Anomalies Estimated by GRACE and GLDAS Satellite-based Hydrological Model in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Lotfata, A.; Ambinakudige, S.

    2017-12-01

    Coastal regions face a higher risk of flooding. A rise in sea-level increases flooding chances in low-lying areas. A major concern is the effect of sea-level rise on the depth of the fresh water/salt water interface in the aquifers of the coastal regions. A sea-level change rise impacts the hydrological system of the aquifers. Salt water intrusion into fresh water aquifers increase water table levels. Flooding prone areas in the coast are at a higher risk of salt water intrusion. The Gulf coast is one of the most vulnerable flood areas due to its natural weather patterns. There is not yet a local assessment of the relation between groundwater level and sea-level rising. This study investigates the projected sea-level rise models and the anomalous groundwater level during January 2002 to December 2016. We used the NASA Gravity Recovery and Climate Experiment (GRACE) and Global Land Data Assimilation System (GLDAS) satellite data in the analysis. We accounted the leakage error and the measurement error in GRACE data. GLDAS data was used to calculate the groundwater storage from the total water storage estimated using GRACE data (ΔGW=ΔTWS (soil moisture, surface water, groundwater, and canopy water) - ΔGLDAS (soil moisture, surface water, and canopy water)). The preliminary results indicate that the total water storage is increasing in parts of the Gulf of Mexico. GRACE data show high soil wetness and groundwater levels in Mississippi, Alabama and Texas coasts. Because sea-level rise increases the probability of flooding in the Gulf coast and affects the groundwater, we will analyze probable interactions between sea-level rise and groundwater in the study area. To understand regional sea-level rise patterns, we will investigate GRACE Ocean data along the Gulf coasts. We will quantify ocean total water storage, its salinity, and its relationship with the groundwater level variations in the Gulf coast.

  8. 46 CFR 42.50-15 - Coastwise load line certificates for U.S.-flag vessels.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... center of ring. Winter __ (inches) (W) __ (inches) below (S). Allowance for fresh water for all... point of departure and the sea. 2. When a ship is in fresh water of unit density the appropriate load line may be submerged by the amount of the fresh water allowance shown above. Where the density is...

  9. NMR imaging of fluid exchange between macropores and matrix in eogenetic karst

    USGS Publications Warehouse

    Florea, L.J.; Cunningham, K.J.; Altobelli, S.

    2009-01-01

    Sequential time-step images acquired using nuclear magnetic resonance (NMR) show the displacement of deuterated water (D2O) by fresh water within two limestone samples characterized by a porous and permeable limestone matrix of peloids and ooids. These samples were selected because they have a macropore system representative of some parts of the eogenetic karst limestone of the Biscayne Aquifer in southeastern Florida. The macroporosity, created by the trace fossil Ophiomorpha, is principally well connected and of centimeter scale. These macropores occur in broadly continuous stratiform zones that create preferential flow layers within the hydrogeologic units of the Biscayne. This arrangement of porosity is important because in coastal areas, it could produce a preferential pathway for salt water intrusion. Two experiments were conducted in which samples saturated with D2O were placed in acrylic chambers filled with fresh water and examined with NMR. Results reveal a substantial flux of fresh water into the matrix porosity with a simultaneous loss of D 2O. Specifically, we measured rates upward of 0.001 mL/h/g of sample in static conditions, and perhaps as great as 0.07 mL/h/g of sample when fresh water continuously flows past a sample at velocities less than those found within stressed areas of the Biscayne. These experiments illustrate how fresh water and D2O, with different chemical properties, migrate within one type of matrix porosity found in the Biscayne. Furthermore, these experiments are a comparative exercise in the displacement of sea water by fresh water in the matrix of a coastal, karst aquifer since D2O has a greater density than fresh water. ?? 2008 National Ground Water Association.

  10. Distribution of oxygen isotopes in the water masses of Drake Passage and the South Atlantic

    NASA Astrophysics Data System (ADS)

    Meredith, Michael P.; Grose, Katie E.; McDonagh, Elaine L.; Heywood, Karen J.; Frew, Russell D.; Dennis, Paul F.

    1999-09-01

    Measurements of the ratio of stable isotopes of oxygen (18O and 16O) from samples collected on World Ocean Circulation Experiment sections SR1b (eastern Drake Passage) and A11 (Punta Arenas to Cape Town) are used, together with hydrographic data, to deduce information about the formation and variability of South Atlantic and Southern Ocean water masses. The Drake Passage surface waters south of the Polar Front (PF) are isotopically light (δ18O around -0.4‰) owing to the influence of meteoric waters. The salinity and δ18O of the A11 surface waters yield an apparent freshwater end-member which is much isotopically lighter than the local precipitation, thus advection of these waters from farther south dominates over local effects in determining the surface water properties. The Drake Passage section shows unusual proximity of the two main fronts of the Antarctic Circumpolar Current (the PF and Subantarctic Front (SAF)), and we observe cold, fresh, and isotopically light water derived from the temperature-minimum Winter Water at the SAF. This water is of the correct density to freshen the intermediate water north of the SAF and thus play a role in the formation of the comparatively fresh Antarctic Intermediate Water (AAIW) of the South Atlantic. This confirms the role of Antarctic water in forming the South Atlantic variety of AAIW. Across the A11 section the oxygen isotope and salinity data at the AAIW core show very similar traces, with waters in the Malvinas Current loop showing lowest values of both. At the eastern boundary of the South Atlantic, the input of Red Sea Water from east of South Africa is observed via the presence of anomalously isotopically heavy AAIW. We deduce potentially significant temporal variability in the isotopic composition of Weddell Sea Deep Water (WSDW) by comparing the Drake Passage data to earlier data covering the outflow of the Weddell Sea. The A11 data show WSDW consistent with such variability, indicating that its effects could persist in the waters as they flow north into the western South Atlantic. We speculate that such variability could be due to small changes in the amount of glacial ice melt in WSDW.

  11. Concentrations of boron, molybdenum, and selenium in chinook salmon

    USGS Publications Warehouse

    Hamilton, Steven J.; Wiedmeyer, Raymond H.

    1990-01-01

    The concentrations of boron, molybdenum, and selenium in young chinook salmon Oncorhynchus tshawytscha were determined in three partial life cycle chronic toxicity studies. In each study, fish were exposed to a mixture of boron, molybdenum, selenate, and selenite in the proportions found in subsurface agricultural drainage water in the basin of the San Joaquin Valley, California. Tests were conducted in well water and in site-specific fresh and brackish waters. No boron or molybdenum was detected in fish exposed to concentrations as high as 6,046 μg boron/L and 193 μg molybdenum/L for 90 d in well water or fresh water; however, whole-body concentrations of selenium increased with increasing exposure concentrations in well water and fresh water, but not in brackish water. Concentrations of selenium in chinook salmon were strongly correlated with reduced survival and growth of fish in well water and with reduced survival in a 15-d seawater challenge test of fish from fresh water. Concentrations of selenium in fish seemed to reach a steady state after 60 d of exposure in well water or fresh water. Fish in brackish water had only background concentrations of selenium after 60 d of exposure, and no effects on survival and growth in brackish water or on survival in a 10-d seawater challenge test were exhibited. This lack of effect in brackish water was attributed to initiation of the study with advanced fry, which were apparently better able to metabolize the trace element mixture than were the younger fish used in studies with well water and fresh water. In all three experimental waters, concentration factors (whole-body concentration/waterborne concentration) for selenium decreased with increasing exposure concentrations, suggesting decreased uptake or increased excretion, or both, of selenium at the higher concentrations.

  12. Sea water in coastal aquifers

    USGS Publications Warehouse

    Cooper, Hilton Hammond

    1964-01-01

    Investigations in the coastal part of the Biscayne aquifer, a highly productive aquifer of limestone and sand in the Miami area, Florida, show that the salt-water front is dynamically stable as much as 8 miles seaward of the position computed according to the Ghyben-Herzberg principle. This discrepancy results, at least in part, from the fact that the salt water in the Biscayne aquifer is not static, as explanations of the dynamic balance commonly assume. Cross sections showing lines of equal fresh-water potential indicate that during periods of heavy recharge, the fresh-water head is high enough to cause the fresh water, the salt water, and the zone of diffusion between them to move seaward. When the fresh-water head is low, salt water in the lower part of the aquifer intrudes inland, but some of the diluted sea water in the zone of diffusion continues to flow seaward. Thus, salt water circulates inland from the floor of the sea through the lower part of the aquifer becoming progressively diluted with fresh water to a line along which there is no horizontal component of flow, after which it moves upward and returns to the sea. This cyclic flow is demonstrated by a flow net which is constructed by the use of horizontal gradients determined from the low-head equipotential diagram. The flow net shows that about seven-eights of the total discharge at the shoreline originates as fresh water in inland parts of the aquifer. The remaining one-eighth represents a return of sea water entering the aquifer through the floor of the sea.

  13. Bacterial community diversity and variation in spray water sources and the tomato fruit surface

    PubMed Central

    2011-01-01

    Background Tomato (Solanum lycopersicum) consumption has been one of the most common causes of produce-associated salmonellosis in the United States. Contamination may originate from animal waste, insects, soil or water. Current guidelines for fresh tomato production recommend the use of potable water for applications coming in direct contact with the fruit, but due to high demand, water from other sources is frequently used. We sought to describe the overall bacterial diversity on the surface of tomato fruit and the effect of two different water sources (ground and surface water) when used for direct crop applications by generating a 454-pyrosequencing 16S rRNA dataset of these different environments. This study represents the first in depth characterization of bacterial communities in the tomato fruit surface and the water sources commonly used in commercial vegetable production. Results The two water sources tested had a significantly different bacterial composition. Proteobacteria was predominant in groundwater samples, whereas in the significantly more diverse surface water, abundant phyla also included Firmicutes, Actinobacteria and Verrucomicrobia. The fruit surface bacterial communities on tomatoes sprayed with both water sources could not be differentiated using various statistical methods. Both fruit surface environments had a high representation of Gammaproteobacteria, and within this class the genera Pantoea and Enterobacter were the most abundant. Conclusions Despite the major differences observed in the bacterial composition of ground and surface water, the season long use of these very different water sources did not have a significant impact on the bacterial composition of the tomato fruit surface. This study has provided the first next-generation sequencing database describing the bacterial communities living in the fruit surface of a tomato crop under two different spray water regimes, and therefore represents an important step forward towards the development of science-based metrics for Good Agricultural Practices. PMID:21510867

  14. Earth-Science Research for Addressing the Water-Energy Nexus

    NASA Astrophysics Data System (ADS)

    Healy, R. W.; Alley, W. M.; Engle, M.; McMahon, P. B.; Bales, J. D.

    2013-12-01

    In the coming decades, the United States will face two significant and sometimes competing challenges: preserving sustainable supplies of fresh water for humans and ecosystems, and ensuring available sources of energy. This presentation provides an overview of the earth-science data collection and research needed to address these challenges. Uncertainty limits our understanding of many aspects of the water-energy nexus. These aspects include availability of water, water requirements for energy development, energy requirements for treating and delivering fresh water, effects of emerging energy development technologies on water quality and quantity, and effects of future climates and land use on water and energy needs. Uncertainties can be reduced with an integrated approach that includes assessments of water availability and energy resources; monitoring of surface water and groundwater quantity and quality, water use, and energy use; research on impacts of energy waste streams, hydraulic fracturing, and other fuel-extraction processes on water quality; and research on the viability and environmental footprint of new technologies such as carbon capture and sequestration and conversion of cellulosic material to ethanol. Planning for water and energy development requires consideration of factors such as economics, population trends, human health, and societal values; however, sound resource management must be grounded on a clear understanding of the earth-science aspects of the water-energy nexus. Information gained from an earth-science data-collection and research program can improve our understanding of water and energy issues and lay the ground work for informed resource management.

  15. Transverse micro-erosion meter measurements; determining minimum sample size

    NASA Astrophysics Data System (ADS)

    Trenhaile, Alan S.; Lakhan, V. Chris

    2011-11-01

    Two transverse micro-erosion meter (TMEM) stations were installed in each of four rock slabs, a slate/shale, basalt, phyllite/schist, and sandstone. One station was sprayed each day with fresh water and the other with a synthetic sea water solution (salt water). To record changes in surface elevation (usually downwearing but with some swelling), 100 measurements (the pilot survey), the maximum for the TMEM used in this study, were made at each station in February 2010, and then at two-monthly intervals until February 2011. The data were normalized using Box-Cox transformations and analyzed to determine the minimum number of measurements needed to obtain station means that fall within a range of confidence limits of the population means, and the means of the pilot survey. The effect on the confidence limits of reducing an already small number of measurements (say 15 or less) is much greater than that of reducing a much larger number of measurements (say more than 50) by the same amount. There was a tendency for the number of measurements, for the same confidence limits, to increase with the rate of downwearing, although it was also dependent on whether the surface was treated with fresh or salt water. About 10 measurements often provided fairly reasonable estimates of rates of surface change but with fairly high percentage confidence intervals in slowly eroding rocks; however, many more measurements were generally needed to derive means within 10% of the population means. The results were tabulated and graphed to provide an indication of the approximate number of measurements required for given confidence limits, and the confidence limits that might be attained for a given number of measurements.

  16. Biomarker Constraints on Arctic Surface Water Conditions During the Middle Eocene

    NASA Astrophysics Data System (ADS)

    Speelman, E. N.; Reichart, G.; Brinkhuis, H.; Sinninghe Damste, J. S.; de Leeuw, J. M.; van Kempen, M.

    2007-12-01

    Through analyses of unique microlaminated sediments of Arctic drill cores, recovered from the Lomonosov Ridge in the central Arctic Ocean during Integrated Ocean Drilling Program (IODP) Expedition 302, it has been shown that enormous quantities of the free floating freshwater fern \\textit {Azolla} grew and reproduced in situ in the Arctic Ocean during the middle Eocene (Brinkhuis et al., Nature, 2006).The presence of the freshwater fern Azolla, both within the Arctic Basin and in all Nordic seas, suggests that at least the sea surface waters were frequently dominated by fresh- to brackish water during an interval of at least 800 kyr. However, to which degree the Arctic Basin became fresh and what the consequences of these enormous Azolla blooms were for regional and global nutrient cycles is still largely unknown. Comparing samples of extant Azolla, including its nitrogen fixing symbionts, with samples from the Arctic Azolla interval revealed the presence of a group of highly specific biomarkers. These biomarkers are closely related to similar organic compounds that have been suggested to play a crucial role in the biogeochemistry of nitrogen fixing bacteria. This finding, therefore, potentially implies that this symbioses dates back to at least the middle Eocene. Furthermore, this particular symbiosis was probably crucial in triggering basin wide Azolla blooms. We now aim to measure compound specific stable hydrogen isotope values of these biomarkers which should provide insight into the degree of mixing between high salinity (isotopically heavy) deeper and low salinity surface water (isotopically light). The results of these compound specific isotope analyses will be extrapolated using calibrations from controlled growth experiments and subsequently evaluated using climate modeling experiments.

  17. Source-to-mainstem: hydrochemical changes of the evolving surface drainage in the valley Brøggerdalen, NW Spitsbergen

    NASA Astrophysics Data System (ADS)

    Zwolinski, Zbigniew; Mazurek, Malgorzata; Gudowicz, Joanna; Niedzielski, Przemyslaw

    2017-04-01

    Present-day paraglacial areas arising in the High Arctic during the Holocene are evidence of large changes in relief and deposits of polar regions. Geosuccession, thus the change of the morphogenetic domain from subglacial to subaerial one implies changes of morphogenetic factors and processes in areas recently exposed to the ice covers. The effect of changes in the morphogenetic domain is the constitution of a new set of landforms. Among the dominant processes that transform contemporary areas freed from the glaciers are slope and fluvial processes expanded in periglacial conditions. During the summer campaign of the project "Late-glacial and present landscape evolution following deglaciation in a climate-sensitive High-Arctic region" we made two field mapping, namely geomorphological and hydrogeochemical in the area left by the retreating glacier Brøgger in the valley Brøggerdalen west of Ny-Ålesund on Brøggerhaløvya (NW Spitsbergen). Intensive glacier recession since the Little Ice Age has created a new set of landforms, for which we examined the chemical properties of sediments and water flowing down the slopes of the valley to the valley floor, i.e. main stem of Brøggerelva. Hydrochemical transformations of fresh waters flowing in paraglacial watercourses on the background of the geochemical properties of the surface sediment covers became the main objective of the study. On the poster we present the results of field studies, the spatial distribution of hydrochemical properties of surface water, alternating directions hydrochemical these waters and pointed out the nature of the water transition from the slope system to a fluvial one. It was found that despite the major relief changes in the valley of the Brøggerbreen contemporary hydrochemical transformations of fresh waters do not stand up now too great diversity.

  18. The effect of sea-water and fresh-water soaking on the quality of Eucheuma sp. syrup and pudding

    NASA Astrophysics Data System (ADS)

    Novianty, H.; Herandarudewi, S. M. C.

    2018-04-01

    Eucheuma alvarezii is one of marine commodity with great opportunities to be developed in Indonesia. This seaweed can be used as an additional material in cosmetic and pharmaceutical products or for syrup and pudding. Post-harvest technique conducted by the seaweed farmers will affects the quality of dried and processed products. The purpose of this study was to observe the effect of post harvest technique on the quality of dried seaweed and hedonic test (favorable test) of processed product (syrup and pudding). This study was conducted using descriptive method. The study compared dried, syrup, and puddings from two differents post-harvest technique, between salt and fresh-water draining products. The results showed that fresh-water draining technique obtained better quality results organoleptic test. The results showed that panelist prefered the fresh-water drained products of syrup and pudding. The hedonic scores were much higher for the fresh-water drained products in all three catagories of color, taste, and smell.

  19. Geology and hydrogeology of northern Guam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barner, W.L.

    1995-12-31

    Recent site characterization activities on the northern portion of the island of Guam have provided data challenging the perception of expected rapid flow within the karst ground water system. The main water bearing formations consist of Tertiary and Quaternary age coralline reef limestones of the Barrigada and Mariana formations. The Barrigada formation lies on top of the underlying Tertiary aged volcanics, and the younger Mariana formation overlies and onlaps the Barrigada formation as a vertical and transgressional facies, changing from a deep to a shallow water depositional sequence. Rain water rapidly infiltrates through the limestone recharging the fresh water aquifer.more » Conditions that affect the occurrence and extent of the fresh water aquifer are: tidal fluctuations, storm surges, stratigraphic settings, and karstification of the limestone. Evidence from boreholes drilled inland and near the coast suggest karstification has occurred between the phreatic and vadose zone at a depth of approximately 150 meters below ground surface, and within the transition zone between the fresh and salt water interface, near sea level. Although one might expect a rapid flow system in this karst aquifer, non-flashy responses on water levels in wells, and current results from a dye tracing study, suggest ground water movement is indicative of diffuse porous flow. However, flow velocity within the vadose zone has been found to be several times that occurring within the aquifer and it is very difficult to predict the direction of movement. Andersen Air Force Base, located on the northern portion of the island of Guam, has been operating since World War II after re-capturing the island from the Japanese in 1944. In the intervening years, sanitary and industrial wastes have been disposed in various trenches, borrow pits, quarries, and sinkholes. Potential ground water degradation may result if hazardous substances, in the form of leachate, are released from these disposal areas.« less

  20. Europe as a goal for colonization

    NASA Astrophysics Data System (ADS)

    Steklov, A. F.; Vidmachenko, A. P.

    2018-05-01

    Europe as a target for human colonization has several advantages over many other bodies of the outer solar system. Although we point out on a few problems. So, Europe has a liquid ocean of water under the ice cover, but access to this water is a serious test. In this case, the abundance of water in Europe is an advantage for possible colonization. After all, ice, fresh lakes and the ocean itself can meet the needs of colonists in the water. It can also be divided into oxygen and hydrogen. It is believed that oxygen can accumulate as a result of radiolysis of ice on the surface, and then be transferred to the subsurface ocean. There, in the ocean, it may be enough of oxygen for using by some life form. Presence of liquid water below the ice surface of Europe, and the fact that the colonists will be spend most of their time under the ice shield in order to protect themselves from radiation, can somewhat alleviate the problems associated with low temperatures. And an unstable surface can be a potential problem.

  1. Salt power - Is Neptune's ole salt a tiger in the tank

    NASA Astrophysics Data System (ADS)

    Wick, G. S.

    1980-02-01

    Methods of exploiting the 24 atm osmotic pressure difference between fresh and salt water to generate energy include reverse electrodialysis, wherein 80 millivolts of electricity cross each ion-selective membrane placed between solutions of fresh and salt water. Pressure-retarded osmosis, using pumps and pressure chambers, relies on semipermeable membranes that allow fresh water to flow into saline, with power generated by the permeated water being released through a turbine. In reverse vapor compression, water vapor rapidly transfers from fresh water to salt water in an evacuated chamber (due to the vapor pressure difference between them), and power can be extracted using 24 m diameter turbine blades. Environmental concerns include protecting estuaries from stress, managing sediments, and protecting marine animals, while filtration would be needed to keep the membranes free from corrosion, biological fouling, or silting.

  2. Measurement of Surface Composition for the Icy Galilean Moons Via Neutral and Ion Mass Spectrometry from Orbit with JIMO

    NASA Technical Reports Server (NTRS)

    Wong, M.; Berthelier, J.; Carlson, R.; Cooper, J.; Johnson, R.; Jurac, S.; Leblanc, F.; Shematovich, V.

    2003-01-01

    In this paper, we will provide insights into mass spectrometer requirements. In addition, we will describe the modeling of the neutrals ejected from likely surface materials and their ionization rates in the Jovian environment. We will use such models to connect the mass spectra measurements of the freshly formed ions to surface composition. We will also discuss what possible compositional signatures are for endogenic materials other than water ice. Finally, since a goal is to identify material composition with surface features, we will describe the transport of neutrals ejected from the surface prior to detection by either an ion or neutral mass spectrometer.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sasan, Koroush; Brady, Patrick; Krumhansl, James L.

    Fresh water scarcity is going to be a global great challenge in the near future because of the increasing population. Our water resources are limited and, hence, water treatment and recycling methods are the only alternatives for fresh water procurement in the upcoming decades. Water treatment and recycling methods serve to remove harmful or problematic constituents from ground, surface and waste waters prior to its consumption, industrial supply, or other uses. Scale formation in industrial and domestic installations is still an important problem during water treatment. In water treatment, silica scaling is a real and constant concern for plant operations.more » The focus of this study is on the viability of using a combination of catechol and active carbon to remove dissolved silica from concentrated cooling tower water (CCTW). Various analytical methods, such as ICP-MS and UV-vis, were used to understand the structure-property relationship between the material and the silica removal results. UV-Vis indicates that catechol can react with silica ions and form a silica-catecholate complex. The speciation calculation of catechol and silica shows that catechol and silica bind in the pH range of 8 – 10; there is no evidence of linkage between them in neutral and acidic pHs. The silica removal results indicate that using ~4g/L of catechol and 10g/L active carbon removes up to 50% of the dissolved silica from the CCTW.« less

  4. Methods for Estimating Water Withdrawals for Mining in the United States, 2005

    USGS Publications Warehouse

    Lovelace, John K.

    2009-01-01

    The mining water-use category includes groundwater and surface water that is withdrawn and used for nonfuels and fuels mining. Nonfuels mining includes the extraction of ores, stone, sand, and gravel. Fuels mining includes the extraction of coal, petroleum, and natural gas. Water is used for mineral extraction, quarrying, milling, and other operations directly associated with mining activities. For petroleum and natural gas extraction, water often is injected for secondary oil or gas recovery. Estimates of water withdrawals for mining are needed for water planning and management. This report documents methods used to estimate withdrawals of fresh and saline groundwater and surface water for mining during 2005 for each county and county equivalent in the United States, Puerto Rico, and the U.S. Virgin Islands. Fresh and saline groundwater and surface-water withdrawals during 2005 for nonfuels- and coal-mining operations in each county or county equivalent in the United States, Puerto Rico, and the U.S. Virgin Islands were estimated. Fresh and saline groundwater withdrawals for oil and gas operations in counties of six states also were estimated. Water withdrawals for nonfuels and coal mining were estimated by using mine-production data and water-use coefficients. Production data for nonfuels mining included the mine location and weight (in metric tons) of crude ore, rock, or mineral produced at each mine in the United States, Puerto Rico, and the U.S. Virgin Islands during 2004. Production data for coal mining included the weight, in metric tons, of coal produced in each county or county equivalent during 2004. Water-use coefficients for mined commodities were compiled from various sources including published reports and written communications from U.S. Geological Survey National Water-use Information Program (NWUIP) personnel in several states. Water withdrawals for oil and gas extraction were estimated for six States including California, Colorado, Louisiana, New Mexico, Texas, and Wyoming, by using data from State agencies that regulate oil and gas extraction. Total water withdrawals for mining in a county were estimated by summing estimated water withdrawals for nonfuels mining, coal mining, and oil and gas extraction. The results of this study were distributed to NWUIP personnel in each State during 2007. NWUIP personnel were required to submit estimated withdrawals for numerous categories of use in their States to a national compilation team for inclusion in a national report describing water use in the United States during 2005. NWUIP personnel had the option of submitting the estimates determined by using the methods described in this report, a modified version of these estimates, or their own set of estimates or reported data. Estimated withdrawals resulting from the methods described in this report may not be included in the national report; therefore the estimates are not presented herein in order to avoid potential inconsistencies with the national report. Water-use coefficients for specific minerals also are not presented to avoid potential disclosure of confidential production data provided by mining operations to the U.S. Geological Survey.

  5. Determining water content of fresh concrete by microwave reflection or transmission measurement.

    DOT National Transportation Integrated Search

    1987-01-01

    In search of a rapid and accurate method for determining the water content of fresh concrete mixes, the microwave reflection and transmission properties of fresh concrete mixes were studied to determine the extent of correlation between each of these...

  6. Water vapor weathering of Taurus-Littrow orange soil - A pore-structure analysis

    NASA Technical Reports Server (NTRS)

    Cadenhead, D. A.; Mikhail, R. S.

    1975-01-01

    A pore-volume analysis was performed on water vapor adsorption data previously obtained on a fresh sample of Taurus-Littrow orange soil, and the analysis was repeated on the same sample after its exposure to moist air for a period of approximately six months. The results indicate that exposure of an outgassed sample to high relative pressures of water vapor can result in the formation of substantial micropore structure, the precise amount being dependent on the sample pretreatment, particularly the outgassing temperature. Micropore formation is explained in terms of water penetration into surface defects. In contrast, long-term exposure to moist air at low relative pressures appears to reverse the process with the elimination of micropores and enlargement of mesopores possibly through surface diffusion of metastable adsorbent material. The results are considered with reference to the storage of lunar samples.

  7. WatER: The proposed Water Elevation Recovery satellite mission

    NASA Astrophysics Data System (ADS)

    Alsdorf, D.; Mognard, N.; Rodriguez, E.; Participants, W.

    2005-12-01

    Surface fresh water is essential for life, yet we have surprisingly poor knowledge of the spatial and temporal dynamics of surface water storage and discharge globally. The core mission objective is to describe and understand the continental water cycle and the hydrological processes (e.g., floodplain hydraulics) at work in a river basin. The key question that will be answered by WatER is: "Where is water stored on Earth's land surfaces, and how does this storage vary in space and time?" WatER will facilitate societal needs by (1) improving our understanding of flood hazards; (2) freely providing water volume information to countries who critically rely on rivers that cross political borders; and (3) mapping the variations in water bodies that contribute to disease vectors (e.g., malaria). Conventional altimeter profiles are, without question, incapable of supplying the measurements needed to address scientific and societal questions. WatER will repeatedly measure the spatially distributed water surface elevations (h) of wetlands, rivers, lakes, reservoirs, etc. Successive h measurements yield dh/dt, (t is time), hence a volumetric change in water stored or lost. Individual images of h yield dh/dx (x is distance), hence surface water slope, which is necessary for estimating streamflow. WatER's main instrument is a Ka-band radar interferometer (KaRIN) which is the only technology capable of supplying the required imaging capability of h. KaRIN has a rich heritage based on (1) the many highly successful ocean observing radar altimeters, (2) the Shuttle Radar Topography Mission (SRTM), and (3) the development effort of the Wide Swath Ocean Altimeter (WSOA). The interferometric altimeter is a near-nadir viewing, 120 km wideswath based instrument that uses interferometric SAR processing of the returned pulses to yield single-look 5m azimuth and 10m to 70m range resolution, with an elevation accuracy of approximately 50 cm. Polynomial based averaging of heights along the water body increases the height accuracy to about 3 cm. The entire globe is covered twice every 16 days and orbit subcycles allow the average visit to be about half this time at low to mid-latitudes, and almost daily at high latitudes. The WatER mission is an international effort with a large, supporting scientific community. It is already proposed as an ESA Earth Explorer Core mission and will also be jointly submitted to NASA's Earth System Science Pathfinder program. WatER is designed to meet high priority targets for all nations and will provide essential data for the EU Water Framework Directive and the European Flood Alert System. WatER will meet the United Nations call for a "greater focus on water related issues", responds to the hydroclimatological needs of the International Working Group on Earth Observations, and answers the U.S. federal government call to focus on our "ability to measure, monitor, and forecast U.S. and global supplies of fresh water".

  8. Municipal, industrial, and irrigation water use in Washington, 1975

    USGS Publications Warehouse

    Dion, N.P.; Lum, W.E.

    1977-01-01

    An assessment of water use in 1975 in the 39 counties and 62 Water Resources Inventory Areas of Washington, indicated that 2.49 trillion gallons of water was used for municipal, industrial, and irrigation purposes. That amount represents a 10-percent increase over a similar water-use assessment in 1965, but a slight decrease from that of 1970. Total municipal water use, which includes municipally supplied industrial water, was 283 billion gallons. Industry used 442 billion gallons, of which 121 billion gallons was from municipal systems and 321 billion gallons was for self-suppled systems. Of the 604 billion gallons of water used for municipal and industrial supplies 145 billion gallons was ground water, 444 billion gallons was fresh surface water, and 14.8 billion gallons was saline surface water. A compilation of statewide industrial use as categorized by SIC (Lumber and Wood Products), SIC 28 (Chemicals and Allied Products), and SIC 20 (Food and Kindred Products)--accounted for about 65 percent of the total water used in industrial processes , In 1975, 5.79 million acre-feet of irrigation water (1,890 billion gallons) as applied to 1.52 million acres. This water was 95 percent surface water and 5 percent ground water. About 97 percent of the irrigation water was supplied in eastern Washington, to about 94 percent of the irrigated acreage in the State. (Woodard-USGS)

  9. Turbulent properties of oceanic near-surface stable boundary layers subject to wind, fresh water, and thermal forcing.

    NASA Astrophysics Data System (ADS)

    St. Laurent, Louis; Clayson, Carol Anne

    2015-04-01

    The near-surface oceanic boundary layer is generally regarded as convectively unstable due to the effects of wind, evaporation, and cooling. However, stable conditions also occur often, when rain or low-winds and diurnal warming provide buoyancy to a thin surface layer. These conditions are prevalent in the tropical and subtropical latitude bands, and are underrepresented in model simulations. Here, we evaluate cases of oceanic stable boundary layers and their turbulent processes using a combination of measurements and process modeling. We focus on the temperature, salinity and density changes with depth from the surface to the upper thermocline, subject to the influence of turbulent processes causing mixing. The stabilizing effects of freshwater from rain as contrasted to conditions of high solar radiation and low winds will be shown, with observations providing surprising new insights into upper ocean mixing in these regimes. Previous observations of freshwater lenses have demonstrated a maximum of dissipation near the bottom of the stable layer; our observations provide a first demonstration of a similar maximum near the bottom of the solar heating-induced stable layer and a fresh-water induced barrier layer. Examples are drawn from recent studies in the tropical Atlantic and Indian oceans, where ocean gliders equipped with microstructure sensors were used to measure high resolution hydrographic properties and turbulence levels. The limitations of current mixing models will be demonstrated. Our findings suggest that parameterizations of near-surface mixing rates during stable stratification and low-wind conditions require considerable revision, in the direction of larger diffusivities.

  10. Use of experimentally determined Henry's Law and salting-out constants for ethanol in seawater for determination of the saturation state of ethanol in coastal waters.

    PubMed

    Willey, Joan D; Powell, Jacqueline P; Avery, G Brooks; Kieber, Robert J; Mead, Ralph N

    2017-09-01

    The Henry's law constant for ethanol in seawater was experimentally determined to be 221 ± 4 M/atm at 22 °C compared with 247 ± 6 M/atm in pure water. The salting out coefficient for ethanol was 0.13 M -1 . In seawater ln(K H ) = -(12.8 ± 0.7) + (5310 ± 197)/T where K H is in M atm -1 and temperature is in K. This plus the salting out coefficient allow calculation of K H for any estuarine or sea water between 1 and 35 °C. High concentrations of dissolved organic carbon do not affect K H values in fresh or seawater. Nearshore surface waters were usually undersaturated with respect to gas phase ethanol except when air concentrations decreased, whereas surface seawater 40 km from shore was supersaturated. The percent saturation in surface waters is driven primarily by changes in air concentrations because these change quickly (hours) and more extensively than surface water. This study allows calculation of ethanol saturation states from air and surface water concentrations which is a necessary step to define the role of surface oceans in the global biogeochemical cycling of ethanol both now and in the future as use of ethanol biofuel continues to grow. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Origin and extent of fresh paleowaters on the Atlantic continental shelf, USA

    USGS Publications Warehouse

    Cohen, D.; Person, M.; Wang, P.; Gable, C.W.; Hutchinson, D.; Marksamer, A.; Dugan, Brandon; Kooi, H.; Groen, K.; Lizarralde, D.; Evans, R.L.; Day-Lewis, F. D.; Lane, J.W.

    2010-01-01

    While the existence of relatively fresh groundwater sequestered within permeable, porous sediments beneath the Atlantic continental shelf of North and South America has been known for some time, these waters have never been assessed as a potential resource. This fresh water was likely emplaced during Pleistocene sea-level low stands when the shelf was exposed to meteoric recharge and by elevated recharge in areas overrun by the Laurentide ice sheet at high latitudes. To test this hypothesis, we present results from a high-resolution paleohydrologic model of groundwater flow, heat and solute transport, ice sheet loading, and sea level fluctuations for the continental shelf from New Jersey to Maine over the last 2 million years. Our analysis suggests that the presence of fresh to brackish water within shallow Miocene sands more than 100 km offshore of New Jersey was facilitated by discharge of submarine springs along Baltimore and Hudson Canyons where these shallow aquifers crop out. Recharge rates four times modern levels were computed for portions of New England's continental shelf that were overrun by the Laurentide ice sheet during the last glacial maximum. We estimate the volume of emplaced Pleistocene continental shelf fresh water (less than 1 ppt) to be 1300 km3 in New England. We also present estimates of continental shelf fresh water resources for the U.S. Atlantic eastern seaboard (104 km3) and passive margins globally (3 ?? 105 km3). The simulation results support the hypothesis that offshore fresh water is a potentially valuable, albeit nonrenewable resource for coastal megacities faced with growing water shortages. ?? 2009 National Ground Water Association.

  12. Analysis of environmental setting, surface-water and groundwater data, and data gaps for the Citizen Potawatomi Nation Tribal Jurisdictional Area, Oklahoma, through 2011

    USGS Publications Warehouse

    Andrews, William J.; Harich, Christopher R.; Smith, S. Jerrod; Lewis, Jason M.; Shivers, Molly J.; Seger, Christian H.; Becker, Carol J.

    2013-01-01

    The Citizen Potawatomi Nation Tribal Jurisdictional Area, consisting of approximately 960 square miles in parts of three counties in central Oklahoma, has an abundance of water resources, being underlain by three principal aquifers (alluvial/terrace, Central Oklahoma, and Vamoosa-Ada), bordered by two major rivers (North Canadian and Canadian), and has several smaller drainages. The Central Oklahoma aquifer (also referred to as the Garber-Wellington aquifer) underlies approximately 3,000 square miles in central Oklahoma in parts of Cleveland, Logan, Lincoln, Oklahoma, and Pottawatomie Counties and much of the tribal jurisdictional area. Water from these aquifers is used for municipal, industrial, commercial, agricultural, and domestic supplies. The approximately 115,000 people living in this area used an estimated 4.41 million gallons of fresh groundwater, 12.12 million gallons of fresh surface water, and 8.15 million gallons of saline groundwater per day in 2005. Approximately 8.48, 2.65, 2.24, 1.55, 0.83, and 0.81 million gallons per day of that water were used for domestic, livestock, commercial, industrial, crop irrigation, and thermoelectric purposes, respectively. Approximately one-third of the water used in 2005 was saline water produced during petroleum production. Future changes in use of freshwater in this area will be affected primarily by changes in population and agricultural practices. Future changes in saline water use will be affected substantially by changes in petroleum production. Parts of the area periodically are subject to flooding and severe droughts that can limit available water resources, particularly during summers, when water use increases and streamflows substantially decrease. Most of the area is characterized by rural types of land cover such as grassland, pasture/hay fields, and deciduous forest, which may limit negative effects on water quality by human activities because of lesser emissions of man-made chemicals on such areas than in more urbanized areas. Much of the water in the area is of good quality, though some parts of this area have water quality impaired by very hard surface water and groundwater; large chloride concentrations in some smaller streams; relatively large concentrations of nutrients and counts of fecal-indicator bacteria in the North Canadian River; and chloride, iron, manganese, and uranium concentrations that exceed primary or secondary drinking-water standards in water samples collected from small numbers of wells. Substantial amounts of hydrologic and water-quality data have been collected in much of this area, but there are gaps in those data caused by relatively few streamflow-gaging stations, uneven distribution of surface-water quality sampling sites, lack of surface-water quality sampling at high-flow and low-flow conditions, and lack of a regularly measured and sampled groundwater network. This report summarizes existing water-use, climatic, geographic, hydrologic, and water-quality data and describes several means of filling gaps in hydrologic data for this area.

  13. Groundwater-surface water interactions and their effects on ecosystem metabolism in a coastal wetland: example from the Florida Everglades

    NASA Astrophysics Data System (ADS)

    Price, R. M.; Zapata, X.; Koch, G. R.

    2013-05-01

    Groundwater typically has higher concentrations of salts and nutrients as compared to surface waters in coastal wetlands affected by saltwater intrusion. Discharge of the nutrient-laden brackish groundwater is expected to influence ecosystem function in the overlying surface water. In the coastal Everglades, elevated concentrations of phosphorus have been observed in the underlying groundwater due to water-rock interactions occurring as seawater intrudes into the coastal carbonate aquifer. The objective of this research was to determine the timing and amount of brackish groundwater discharge to the coastal wetlands of the Everglades and to evaluate the effects of the groundwater discharge on the surface water chemistry and ecosystem metabolism. The timing of groundwater discharge was determined by four techniques including a water balance, hydraulic gradient, temperature, and geochemical tracers. Groundwater discharge rates were quantified from well data using Darcy's Law. Ecosystem metabolism was estimated as daily rates of gross primary production (GPP), ecosystem respiration (R) and net ecosystem production (NEP) from free-water, diel changes in dissolved oxygen. Over 2 years, all four groundwater discharge techniques converged as to the timing of groundwater discharge which was greatest between May and July. Surface water chemistry was fresh from September through February, but became brackish to hypersaline between March and July, concurrent with the times of highest brackish groundwater discharge. Phosphorus concentrations as well as GPP and R were observed to spike in the surface water during the times of greatest groundwater discharge. The results of this research support the conclusions that brackish groundwater discharge effects surface water chemistry and ecosystem function in the coastal Everglades.

  14. Season-long Changes in Infiltration Rates Associated with Irrigation Water Sodicity and pH

    USDA-ARS?s Scientific Manuscript database

    There is increasing need to substitute low quality waters, including saline sodic waters and treated municipal waste water for fresh water when irrigating land in arid and semi-arid regions of the world. In almost all instances low quality waters are more sodic than the fresh waters currently utili...

  15. Water withdrawal and use in Maryland, 1990-91

    USGS Publications Warehouse

    Wheeler, J.C.

    1995-01-01

    During 1990, about 1,460 million gallons per day (Mgal/d) of freshwater was withdrawn from surface- water and ground-water sources in Maryland. Total freshwater withdrawals increased during 1991 to about 1,500 Mgal/d. Saline surface-water withdrawals for cooling condensors increased from about 4,550 Mgal/d during 1990 to 5,760 Mgal/d during 1991. During 1990-91, most freshwater withdrawals (about 1,220 Mgal/d during 1990 and 1,250 Mgal/d during 1991) were from surface-water sources. More than 70 percent of the fresh surface water was withdrawn and used in the Potomac drainage basin. Most ground water (about 170 Mgal/d in 1990 and 184 Mgal/d in 1991) was withdrawn and used in the Upper Chesapeake drainage basin. The Potomac Group aquifers provided most of the ground water (about 64 Mgal/d during 1990 and 68 Mgal/d during 1991 or about 27 percent each year). Ten water-use categories represent the major demands on the surface-water and ground-water resources of the State: Public supply, domestic, commercial, industrial, mining, thermoelectric power, hydroelectric power, livestock, irrigation, and aquaculture. Largest withdrawals were for public supply (798 Mgal/d during 1990 and 826 Mgal/d during 1991), and the water was used by residences, commercial establishments, and industries. Baltimore City received the largest public-supply deliveries (totaling about 135 Mgal/d during 1990 and 127 Mgal/d during 1991). Freshwater withdrawals for self-supplied domestic use, aquaculture, and irrigation increased during the period, whereas withdrawals for commercial, industrial, thermo- electric power, and mining uses decreased.

  16. Proxies of Tropical Cyclone Isotope Spikes in Precipitation: Landfall Site Selection

    NASA Astrophysics Data System (ADS)

    Lawrence, J. R.; Maddocks, R.

    2011-12-01

    The human experience of climate change is not one of gradual changes in seasonal or yearly changes in temperature or rainfall. Despite that most paleoclimatic reconstructions attempt to provide just such information. Humans experience climate change on much shorter time scales. We remember hurricanes, weeks of drought or overwhelming rainy periods. Tropical cyclones produce very low isotope ratios in both rainfall and in atmospheric water vapor. Thus, climate proxies that potentially record these low isotope ratios offer the most concrete record of climate change to which humans can relate. The oxygen isotopic composition of tropical cyclone rainfall has the potential to be recorded in fresh water carbonate fossil material, cave deposits and corals. The hydrogen isotopic composition of tropical cyclone rainfall has the potential to be recorded in tree ring cellulose and organic matter in fresh water bodies. The Class of carbonate organisms known as Ostracoda form their carapaces very rapidly. Thus fresh water ephemeral ponds in the subtropics are ideal locations for isotopic studies because they commonly are totally dry when tropical cyclones make landfall. The other proxies suffer primarily from a dilution effect. The water from tropical cyclones is mixed with pre-existing water. In cave deposits tropical cyclone rains mix with soil and ground waters. In the near shore coral environment the rain mixes with seawater. For tree rings there are three sources of water: soil water, atmospheric water vapor that exchanges with leaf water and tropical cyclone rain. In lakes because of their large size rainfall runoff mixes with ground water and preexisting water in the lake. A region that shows considerable promise is Texas / Northeast Mexico. In a study of surface waters that developed from the passage of Tropical Storm Allison (2001) in SE Texas both the pond water and Ostracoda that bloomed recorded the low oxygen isotope signal of that storm (Lawrence et al, 2008). In 2010 rain from Hurricane Alex, Tropical Depression 2 and Tropical Storm Hermine flooded ephemeral ponds in south Texas. Isotopic analysis of water and fossil Ostracoda from ephemeral ponds in south Texas is planned. Cores (50 cm in length) were taken in one of these ponds where living Ostracoda were found and collected.

  17. Influence of sea level rise on iron diagenesis in an east Florida subterranean estuary

    USGS Publications Warehouse

    Roy, M.; Martin, J.B.; Cherrier, J.; Cable, J.E.; Smith, C.G.

    2010-01-01

    Subterranean estuary occupies the transition zone between hypoxic fresh groundwater and oxic seawater, and between terrestrial and marine sediment deposits. Consequently, we hypothesize, in a subterranean estuary, biogeochemical reactions of Fe respond to submarine groundwater discharge (SGD) and sea level rise. Porewater and sediment samples were collected across a 30-m wide freshwater discharge zone of the Indian River Lagoon (Florida, USA) subterranean estuary, and at a site 250. m offshore. Porewater Fe concentrations range from 0.5 ??M at the shoreline and 250. m offshore to about 286 ??M at the freshwater-saltwater boundary. Sediment sulfur and porewater sulfide maxima occur in near-surface OC-rich black sediments of marine origin, and dissolved Fe maxima occur in underlying OC-poor orange sediments of terrestrial origin. Freshwater SGD flow rates decrease offshore from around 1 to 0.1. cm/day, while bioirrigation exchange deepens with distance from about 10. cm at the shoreline to about 40. cm at the freshwater-saltwater boundary. DOC concentrations increase from around 75 ??M at the shoreline to as much as 700 ??M at the freshwater-saltwater boundary as a result of labile marine carbon inputs from marine SGD. This labile DOC reduces Fe-oxides, which in conjunction with slow discharge of SGD at the boundary, allows dissolved Fe to accumulate. Upward advection of fresh SGD carries dissolved Fe from the Fe-oxide reduction zone to the sulfate reduction zone, where dissolved Fe precipitates as Fe-sulfides. Saturation models of Fe-sulfides indicate some fractions of these Fe-sulfides get dissolved near the sediment-water interface, where bioirrigation exchanges oxic surface water. The estimated dissolved Fe flux is approximately 0.84 ??M Fe/day per meter of shoreline to lagoon surface waters. Accelerated sea level rise predictions are thus likely to increase the Fe flux to surface waters and local primary productivity, particularly along coastlines where groundwater discharges through sediments. ?? 2010 Elsevier Ltd.

  18. 46 CFR 42.13-30 - Lines to be used with the load line mark.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) The following load lines shall be used: (1) The summer load line indicated by the upper edge of the... T. (5) The fresh water load line in summer indicated by the upper edge of a line marked F. The fresh water load line in summer is marked abaft the vertical line. The difference between the fresh water load...

  19. 46 CFR 42.13-30 - Lines to be used with the load line mark.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) The following load lines shall be used: (1) The summer load line indicated by the upper edge of the... T. (5) The fresh water load line in summer indicated by the upper edge of a line marked F. The fresh water load line in summer is marked abaft the vertical line. The difference between the fresh water load...

  20. Sorption of strontium-90 from fresh waters during sulfate modification of barium manganite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryzhen`kov, A.P.; Egorov, Yu.V.

    1995-11-01

    Recovery of strontium-90 with barium manganite from fresh waters (natural fresh waters of open basins) can be increased by adding agents that contain sulfate ions and thus modify the sorbent and chemically bind the sorbate. The treatment results in a heterogeneous anion-exchange transformation of barium manganite into barium sulfate-manganese dioxide and in simultaneous absorptive coprecipitation of strontium sulfate (microcomponent).

  1. Using the agricultural environment to select better surrogates for foodborne pathogens associated with fresh produce.

    PubMed

    Cook, Kimberly L; Givan, Ethan C; Mayton, Holly M; Parekh, Rohan R; Taylor, Ritchie; Walker, Sharon L

    2017-12-04

    Despite continuing efforts to reduce foodborne pathogen contamination of fresh produce, significant outbreaks continue to occur. Identification of appropriate surrogates for foodborne pathogens facilitates relevant research to identify reservoirs and amplifiers of these contaminants in production and processing environments. Therefore, the objective of this study was to identify environmental Escherichia coli isolates from manures (poultry, swine and dairy) and surface water sources with properties similar to those of the produce associated foodborne pathogens E. coli O157:H7 and Salmonella enterica serotype Typhimurium. The most similar environmental E. coli isolates were from poultry (n=3) and surface water (n=1) sources. The best environmental E. coli surrogates had cell surface characteristics (zeta potential, hydrophobicity and exopolysaccharide composition) that were similar (i.e., within 15%) to those of S. Typhimurium and/or formed biofilms more often when grown in low nutrient media prepared from lettuce lysates (24%) than when grown on high nutrient broth (7%). The rate of attachment of environmental isolates to lettuce leaves was also similar to that of S. Typhimurium. In contrast, E. coli O157:H7, a commonly used E. coli quality control strain and swine isolates behaved similarly; all were in the lowest 10% of isolates for biofilm formation and leaf attachment. These data suggest that the environment may provide a valuable resource for selection of surrogates for foodborne pathogens. Published by Elsevier B.V.

  2. Cryopreserved and frozen hyaline cartilage imaged by environmental scanning electron microscope. An experimental and prospective study.

    PubMed

    Sastre, Sergi; Suso, Santiago; Segur, Josep-Maria; Bori, Guillem; Carbonell, José-Antonio; Agustí, Elba; Nuñez, Montse

    2008-08-01

    To obtain images of the articular surface of osteochondral grafts (fresh, frozen, and cryopreserved in RPMI) using an environmental scanning electron microscope (ESEM). To evaluate and compare the main morphological aspects of the chondral surface of the fresh, frozen, and cryopreserved grafts as visualized via ESEM. The study was based on osteochondral fragments from the internal condyle of the knee joint of New Zealand rabbits, corresponding to the chondral surface from fresh, frozen, and cryopreserved samples. One hundred ESEM images were obtained from each group and then classified according to a validated system. The kappa index and the corresponding concordance index were calculated, and the groups were compared by Pearson's chi-squared test (p < 0.05). The articular surface of cryopreserved osteochondral grafts had fewer even surfaces and filled lacunae and a higher number of empty lacunae as compared to fresh samples; these differences correspond to images of cell membrane lesions that lead to destruction of the chondrocyte. Frozen grafts showed more hillocky and knobby surfaces than did fresh grafts; they also had a greater number of empty chondrocyte lacunae. ESEM is useful for obtaining images of the surface of osteochondral grafts. When compared to fresh samples, cryopreservation in RPMI medium produces changes in the surface of hyaline cartilage, but to a lesser extent than those produced by freezing.

  3. Uptake and Accumulation of Pharmaceuticals in Lettuce Under Surface and Overhead Irrigations

    NASA Astrophysics Data System (ADS)

    Bhalsod, G.; Chuang, Y. H.; Jeon, S.; Gui, W.; Li, H.; Guber, A.; Zhang, W.

    2015-12-01

    Pharmaceuticals and personal care products are being widely detected in wastewater and surface waters. As fresh water becomes scarcer, interests in using reclaimed water for crop irrigation is intensified. Since reclaimed waters often carry trace levels of pharmaceuticals, accumulation of pharmaceuticals in food crops could increase the risk of human exposure. This study aims to investigate uptake and accumulations of pharmaceuticals in greenhouse-grown lettuce under contrasting irrigation practices (i.e., overhead and surface irrigations). Lettuce was irrigated with water spiked with 11 commonly used pharmaceuticals (acetaminophen, caffeine, carbamazepine, sulfadiazine, sulfamethoxazole, carbadox, trimethoprim, lincomycin hydrochloride, oxytetracycline hydrochloride, monensin sodium, and tylosin). Weekly sampling of lettuce roots, shoots, and soils were continued for 5 weeks, and the samples were freeze dried, extracted for pharmaceuticals and analyzed by LC-MS/MS. Preliminary results indicate that higher concentrations of pharmaceuticals were found in overhead irrigated lettuce compared to surface irrigated lettuce. For carbamezapine, sulfadiazine, trimethoprim, oxytetracycline, and monensin sodium, their concentrations generally increased in lettuce shoots in the overhead treatment over time. However, acetaminophen was found at higher concentrations in both shoots and roots, indicating that acetaminophen can be easily transported in the plant system. This study provides insight on developing better strategies for using reclaimed water for crop irrigations, while minimizing the potential risks of pharmaceutical contamination of vegetables.

  4. Groundwater flow cycling between a submarine spring and an inland fresh water spring.

    PubMed

    Davis, J Hal; Verdi, Richard

    2014-01-01

    Spring Creek Springs and Wakulla Springs are large first magnitude springs that derive water from the Upper Floridan Aquifer. The submarine Spring Creek Springs are located in a marine estuary and Wakulla Springs are located 18 km inland. Wakulla Springs has had a consistent increase in flow from the 1930s to the present. This increase is probably due to the rising sea level, which puts additional pressure head on the submarine Spring Creek Springs, reducing its fresh water flow and increasing flows in Wakulla Springs. To improve understanding of the complex relations between these springs, flow and salinity data were collected from June 25, 2007 to June 30, 2010. The flow in Spring Creek Springs was most sensitive to rainfall and salt water intrusion, and the flow in Wakulla Springs was most sensitive to rainfall and the flow in Spring Creek Springs. Flows from the springs were found to be connected, and composed of three repeating phases in a karst spring flow cycle: Phase 1 occurred during low rainfall periods and was characterized by salt water backflow into the Spring Creek Springs caves. The higher density salt water blocked fresh water flow and resulted in a higher equivalent fresh water head in Spring Creek Springs than in Wakulla Springs. The blocked fresh water was diverted to Wakulla Springs, approximately doubling its flow. Phase 2 occurred when heavy rainfall resulted in temporarily high creek flows to nearby sinkholes that purged the salt water from the Spring Creek Springs caves. Phase 3 occurred after streams returned to base flow. The Spring Creek Springs caves retained a lower equivalent fresh water head than Wakulla Springs, causing them to flow large amounts of fresh water while Wakulla Springs flow was reduced by about half. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  5. Ground Water and Climate Change

    NASA Technical Reports Server (NTRS)

    Taylor, Richard G.; Scanlon, Bridget; Doell, Petra; Rodell, Matt; van Beek, Rens; Wada, Yoshihide; Longuevergne, Laurent; Leblanc, Marc; Famiglietti, James S.; Edmunds, Mike; hide

    2013-01-01

    As the world's largest distributed store of fresh water, ground water plays a central part in sustaining ecosystems and enabling human adaptation to climate variability and change. The strategic importance of ground water for global water and food security will probably intensify under climate change as more frequent and intense climate extremes (droughts and floods) increase variability in precipitation, soil moisture and surface water. Here we critically review recent research assessing the impacts of climate on ground water through natural and human-induced processes as well as through groundwater-driven feedbacks on the climate system. Furthermore, we examine the possible opportunities and challenges of using and sustaining groundwater resources in climate adaptation strategies, and highlight the lack of groundwater observations, which, at present, limits our understanding of the dynamic relationship between ground water and climate.

  6. Ground water and climate change

    USGS Publications Warehouse

    Taylor, Richard G.; Scanlon, Bridget R.; Döll, Petra; Rodell, Matt; van Beek, Rens; Wada, Yoshihide; Longuevergne, Laurent; Leblanc, Marc; Famiglietti, James S.; Edmunds, Mike; Konikow, Leonard F.; Green, Timothy R.; Chen, Jianyao; Taniguchi, Makoto; Bierkens, Marc F.P.; MacDonald, Alan; Fan, Ying; Maxwell, Reed M.; Yechieli, Yossi; Gurdak, Jason J.; Allen, Diana M.; Shamsudduha, Mohammad; Hiscock, Kevin; Yeh, Pat J.-F.; Holman, Ian; Treidel, Holger

    2012-01-01

    As the world's largest distributed store of fresh water, ground water plays a central part in sustaining ecosystems and enabling human adaptation to climate variability and change. The strategic importance of ground water for global water and food security will probably intensify under climate change as more frequent and intense climate extremes (droughts and floods) increase variability in precipitation, soil moisture and surface water. Here we critically review recent research assessing the impacts of climate on ground water through natural and human-induced processes as well as through groundwater-driven feedbacks on the climate system. Furthermore, we examine the possible opportunities and challenges of using and sustaining groundwater resources in climate adaptation strategies, and highlight the lack of groundwater observations, which, at present, limits our understanding of the dynamic relationship between ground water and climate.

  7. Fate and agricultural consequences of leachable elements added to the environment from the 2011 Cordón Caulle tephra fall

    NASA Astrophysics Data System (ADS)

    Stewart, Carol; Craig, Heather M.; Gaw, Sally; Wilson, Thomas; Villarosa, Gustavo; Outes, Valeria; Cronin, Shane; Oze, Christopher

    2016-11-01

    The June 2011 eruption of Cordón Caulle volcano, Chile, dispersed tephra over 350,000 km2, including productive agricultural land. This resulted in the death of nearly one million livestock. Two distinct environments were affected: a proximal temperate Andean setting, and the semi-arid Argentine steppe farther from the volcano. The purpose of this study was to better understand the fate and agricultural consequences of leachable elements added to the environment by this large silicic tephra fall. Tephra, soil and surface water samples across the depositional area were collected both immediately after the eruption (tephra and water) and nine months afterwards (tephra, soil and water). Tephra samples were analysed following a new hazard assessment protocol developed by the International Volcanic Health Hazard Network (IVHHN). Water-extractable element concentrations in freshly-collected tephra were very low to low compared to other eruptions, and showed no trends with distance from the volcano. Surface water analyses suggested short-term changes to water composition due to the release of elements from tephra. No effect on the fertility of soils underlying tephra was apparent after nine months. Water-extractable fluorine (F) in freshly-collected tephra ranged from 12 to 167 mg/kg, with a median value of 67 mg/kg. Based on parallels with the 11-12 October 1995 eruption of Ruapehu volcano, New Zealand, we conclude that F toxicity was a possible contributing factor to the large-scale livestock deaths as well as to chronic fluorosis widely reported in wild deer populations across the Cordón Caulle tephra depositional area. Finally, we recommend that effective response to widespread tephra fall over agricultural areas should include: (1) rapid, statistically representative field sampling of tephra, soils, surface water supplies and forage crops; (2) analysis using appropriate and reliable laboratory methods; (3) modelling both short and long-term impacts on the ecosystem, especially for elements that may generate chronic hazard; (4) timely dissemination of results to agricultural agencies; (5) longitudinal sampling and monitoring to adapt impact models; and (6) developing reliable animal fatality diagnoses through autopsies and chemical analysis.

  8. Modeling of estuarne chlorophyll a from an airborne scanner

    USGS Publications Warehouse

    Khorram, Siamak; Catts, Glenn P.; Cloern, James E.; Knight, Allen W.

    1987-01-01

    Near simultaneous collection of 34 surface water samples and airborne multispectral scanner data provided input for regression models developed to predict surface concentrations of estuarine chlorophyll a. Two wavelength ratios were employed in model development. The ratios werechosen to capitalize on the spectral characteristics of chlorophyll a, while minimizing atmospheric influences. Models were then applied to data previously acquired over the study area thre years earlier. Results are in the form of color-coded displays of predicted chlorophyll a concentrations and comparisons of the agreement among measured surface samples and predictions basedon coincident remotely sensed data. The influence of large variations in fresh-water inflow to the estuary are clearly apparent in the results. The synoptic view provided by remote sensing is another method of examining important estuarine dynamics difficult to observe from in situ sampling alone.

  9. Water Resource Assessment in KRS Reservoir Using Remote Sensing and GIS Modelling

    NASA Astrophysics Data System (ADS)

    Manubabu, V. H.; Gouda, K. C.; Bhat, N.; Reddy, A.

    2014-12-01

    In the recent time the fresh water resource becomes very important because of various reasons like population growth, pollution, over exploitation of the ground water resources etc. As there is no efficient and proper measures for recharging ground water exists and also the climatological impacts on water resources like global warming exacerbating water shortages, growing populations and rising demand for freshwater in agriculture, industry, and energy production. There is a need and challenging task for analyzing the future changes in regional water availability and it is also very much necessary to asses and predict the fresh water present in a lake or reservoir to make better decision making in the optimal usage of surface water. In the present study is intended to provide a practical discussion of methodology that deals with how to asses and predict amount of surface water available in the future using Remote Sensing(RS) data , Geographical Information System(GIS) techniques, and GCM (Global Circulation Model). Basically the study emphasized over one of the biggest reservoir i.e. the Krishna Raja Sagara (KRS) reservoir situated in the state of Karnataka in India. Multispectral satellite images like IRS LISS III and Landsat L8 from different open source web portals like NRSC-Bhuvan and NASA Earth Explorer respectively are used for the present analysis. The multispectral satellite images are used to identify the temporal changes of the water quantity in the reservoir for the period 2000 to 2014. Also the water volume are being calculated using Advances Space born Thermal Emission and Reflection Radiometer (ASTER) Global DEM over the reservoir basin. The hydro meteorological parameters are also studied using multi-source observed data and the empirical water budget models for the reservoir in terms of rainfall, temperature, run off, water inflow and outflow etc. are being developed and analyzed. Statistical analysis are also carried out to quantify the relation between reservoir water volume and the hydrological parameters (Figure 1). A general circulation model (GCM) is used for the prediction of major hydro meteorological parameters like rainfall and using the GCM predictions the water availability in terms of water volume in future are simulated using the empirical water budget model.

  10. A thick lens of fresh groundwater in the southern Lihue Basin, Kauai, Hawaii, USA

    USGS Publications Warehouse

    Izuka, S.K.; Gingerich, S.B.

    2003-01-01

    A thick lens of fresh groundwater exists in a large region of low permeability in the southern Lihue Basin, Kauai, Hawaii, USA. The conventional conceptual model for groundwater occurence in Hawaii and other shield-volcano islands does not account for such a thick freshwater lens. In the conventional conceptual model, the lava-flow accumulations of which most shield volcanoes are built form large regions of relatively high permeability and thin freshwater lenses. In the southern Lihue Basin, basin-filling lavas and sediments form a large region of low regional hydraulic conductivity, which, in the moist climate of the basin, is saturated nearly to the land surface and water tables are hundreds of meters above sea level within a few kilometers from the coast. Such high water levels in shield-volcano islands were previously thought to exist only under perched or dike-impounded conditions, but in the southern Lihue Basin, high water levels exist in an apparently dike-free, fully saturated aquifer. A new conceptual model of groundwater occurrence in shield-volcano islands is needed to explain conditions in the southern Lihue Basin.

  11. Landscape co-evolution and river discharge.

    NASA Astrophysics Data System (ADS)

    van der Velde, Ype; Temme, Arnaud

    2015-04-01

    Fresh water is crucial for society and ecosystems. However, our ability to secure fresh water resources under climatic and anthropogenic change is impaired by the complexity of interactions between human society, ecosystems, soils, and topography. These interactions cause landscape properties to co-evolve, continuously changing the flow paths of water through the landscape. These co-evolution driven flow path changes and their effect on river runoff are, to-date, poorly understood. In this presentation we introduce a spatially distributed landscape evolution model that incorporates growing vegetation and its effect on evapotranspiration, interception, infiltration, soil permeability, groundwater-surface water exchange and erosion. This landscape scale (10km2) model is calibrated to evolve towards well known empirical organising principles such as the Budyko curve and Hacks law under different climate conditions. To understand how positive and negative feedbacks within the model structure form complex landscape patterns of forests and peat bogs that resemble observed landscapes under humid and boreal climates, we analysed the effects of individual processes on the spatial distribution of vegetation and river peak and mean flows. Our results show that especially river peak flows and droughts decrease with increasing evolution of the landscape, which is a result that has direct implications for flood management.

  12. From land to water: bringing dielectric elastomer sensing to the underwater realm

    NASA Astrophysics Data System (ADS)

    Walker, Christopher; Anderson, Iain

    2016-04-01

    Since the late 1990's dielectric elastomers (DEs) have been investigated for their use as sensors. To date, there have been some impressive developments: finger displacement controls for video games and integration with medical rehabilitation devices to aid patient recovery. It is clear DE sensing is well established for dry applications, the next frontier, however, is to adapt this technology for the other 71% of the Earth's surface. With proven and perhaps improved water resistance, many new applications could be developed in areas such as diver communication and control of underwater robotics; even wearable devices on land must withstand sweat, washing, and the rain. This study investigated the influence of fresh and salt water on DE sensing. In particular, sensors have been manufactured with waterproof connections and submersed in fresh and salt water baths. Temperature and resting capacitance were recorded. Issues with the basic DE sensor have been identified and compensated for with modifications to the sensor. The electrostatic field, prior and post modification, has been modeled with ANSYS Maxwell. The aim of this investigation was to identify issues, perform modifications and propose a new sensor design suited to wet and underwater applications.

  13. Food-Growing, Air- And Water-Cleaning Module

    NASA Technical Reports Server (NTRS)

    Sauer, R. L.; Scheld, H. W.; Mafnuson, J. W.

    1988-01-01

    Apparatus produces fresh vegetables and removes pollutants from air. Hydroponic apparatus performs dual function of growing fresh vegetables and purifying air and water. Leafy vegetables rooted in granular growth medium grow in light of fluorescent lamps. Air flowing over leaves supplies carbon dioxide and receives fresh oxygen from them. Adaptable to production of food and cleaning of air and water in closed environments as in underwater research stations and submarines.

  14. Chesapeake Bay Low Freshwater Inflow Study. Biota Assessment. Phase I. Volume II.

    DTIC Science & Technology

    1980-08-01

    which can regulate in water of reduced salinity , but not fresh water, e holeuryhaline osmoregulators , which can regulate from fresh to full oceanic...salini- ties , and * oligohaline osmoregulators , which can regulate only in fresh water and very low salinities , and maintain blood hyperosmotic to the...areas, or oysters their upstream beds. Temperature: The synergistic effects of temperature and salinity have been described by Kinne (1963, 1964) and

  15. Influence of fresh water, nutrients and DOC in two submarine-groundwater-fed estuaries on the west of Ireland.

    PubMed

    Smith, Aisling M; Cave, Rachel R

    2012-11-01

    Coastal fresh water sources, which discharge to the sea are expected to be directly influenced by climate change (e.g. increased frequency of extreme weather events). Sea-level rise and changes in rainfall patterns, changes in demand for drinking water and contamination caused by population and land use change, will also have an impact. Coastal waters with submarine groundwater discharge are of particular interest as this fresh water source is very poorly quantified. Two adjacent bays which host shellfish aquaculture sites along the coast of Co. Galway in the west of Ireland have been studied to establish the influence of fresh water inputs on nutrients and dissolved organic carbon (DOC) in each bay. Neither bay has riverine input and both are underlain by the karst limestone of the Burren and are susceptible to submarine groundwater discharge. Water and suspended matter samples were collected half hourly over 13 h tidal cycles over several seasons. Water samples were analysed for nutrients and DOC, while suspended matter was analysed for organic/inorganic content. Temperature and salinity measurements were recorded during each tidal station by SBE 37 MicroCAT conductivity/temperature sensors. Long-term mooring data were used to track freshwater input for Kinvara and Aughinish Bays and compare it with rainfall data. Results show that Kinvara Bay is much more heavily influenced by fresh water input than Aughinish Bay, and this is a strong source of fixed nitrogen to Kinvara Bay. Only during flood events is there a significant input of inorganic nitrogen from fresh water to Aughinish Bay, such as in late November 2009. Fresh water input does not appear to be a significant source of dissolved inorganic phosphate (DIP) to either bay, but is a source of DOC to both bays. C:N ratios of DOC/DON show a clear distinction between marine and terrestrially derived dissolved organic material. Copyright © 2012. Published by Elsevier B.V.

  16. The effect of sea-water and fresh-water soaking on the hedonic test of Eucheuma sp. syrup and pudding

    NASA Astrophysics Data System (ADS)

    Novianty, H.; Herandarudewi, S. M. C.

    2018-04-01

    Seaweed is a non-fishery marine commodity that has great opportunities to be developed in Indonesia. One of the seaweed with a high economic value is Eucheuma alvarezii. This seaweed can be used as an additional material in cosmetic and pharmaceutical products or directly used for syrup and pudding. Post-harvest technique conducted by the seaweed farmers will affects the quality of dried and processed products. The purpose of this study is to see the effect of post harvest technique on the quality of dried seaweed and hedonic test (favorable test) of processed product (syrup and pudding). This study was conducted using descriptive method. The study compared dried, syrup, and puddings from two differents post-harvest technique, between salt and fresh-water draining products. The results showed that fresh-water draining technique obtained better quality results organoleptic test. Supported by hedonic test, that showed more panelists were prefered the fresh-water drained products of syrup and pudding. The preference were much higher for the fresh-water drained products in all three catagories of color, taste, and smell.

  17. Water resources of the Big Black River basin, Mississippi

    USGS Publications Warehouse

    Wasson, B.E.

    1971-01-01

    Abundant supplies of water of good quality are available in the Big Black River basin from either ground-water or surface-water sources. For 90 percent of the time flow in the lower part of the Big Black River below Pickens is not less than 85 cfs (cubic feet per second), and low flows of more than 5 cfs are available in five of the eastern tributary streams in the upper half of the basin. Chemical quality of water in the streams is excellent, except for impairment caused by pollution at several places. The Big Black River basin is underlain by several thousand feet of clay, silt, sand, gravel, and limestone. This sedimentary material is mostly loose to semiconsolidated and is stratified. The beds dip to the southwest at the rate of 20 to 50 feet per mile. The Big Black River flows southwestward but at a lower gradient; therefore, any specific formation is at a greater depth below the river the farther one goes down stream. The formations crop out in northwest-southeast trending belts. Most of the available ground water is contained in six geologic units; thickness of these individual units ranges from 100 to 1,000 feet. The aquifers overlap to the extent that a well drilled to the base of fresh water will, in most places, penetrate two or more aquifers. Well depths range from less than 10 to 2,400 feet. Water suitable for most needs can be obtained from the aquifers available at most localities. Dissolved-solids content of water within an aquifer increases down the dip. Also, generally the deeper a well is the higher will be the dissolved-solids content of the water. Shallow ground water (less than 200 ft deep) in the basin usually contains about 100 mg/l (milligrams per liter) of dissolved solids. Most water in the basin from more than 2,500 feet below land surface contains m ore than 1,000 mg/l of dissolved solids. In several areas fresh water is deeper than 2,500 feet, but near the mouth of the Big Black River brackish water is only about 300 feet below land surface. Practically all water pumped for man's use in the basin is from the ground (about 11 million gallons per day); however, a small amount of surface water is used for supplemental irrigation of row crops. Wells producing 500 to 1,000 gpm (gallons per minute) are not unusual in the basin. Most of the area is underlain by one or more aquifers from which a properly constructed well could produce as much as 2,000 gpm. All the towns in the area have sufficient ground water available to at least double or triple their ground-water pumpage.

  18. Tropical Indian Ocean surface salinity bias in Climate Forecasting System coupled models and the role of upper ocean processes

    NASA Astrophysics Data System (ADS)

    Parekh, Anant; Chowdary, Jasti S.; Sayantani, Ojha; Fousiya, T. S.; Gnanaseelan, C.

    2016-04-01

    In the present study sea surface salinity (SSS) biases and seasonal tendency over the Tropical Indian Ocean (TIO) in the coupled models [Climate Forecasting System version 1 (CFSv1) and version 2 (CFSv2)] are examined with respect to observations. Both CFSv1 and CFSv2 overestimate SSS over the TIO throughout the year. CFSv1 displays improper SSS seasonal cycle over the Bay of Bengal (BoB), which is due to weaker model precipitation and improper river runoff especially during summer and fall. Over the southeastern Arabian Sea (AS) weak horizontal advection associated with East Indian coastal current during winter limits the formation of spring fresh water pool. On the other hand, weaker Somali jet during summer results for reduced positive salt tendency in the central and eastern AS. Strong positive precipitation bias in CFSv1 over the region off Somalia during winter, weaker vertical mixing and absence of horizontal salt advection lead to unrealistic barrier layer during winter and spring. The weaker stratification and improper spatial distribution of barrier layer thickness (BLT) in CFSv1 indicate that not only horizontal flux distribution but also vertical salt distribution displays large discrepancies. Absence of fall Wyrtki jet and winter equatorial currents in this model limit the advection of horizontal salt flux to the eastern equatorial Indian Ocean. The associated weaker stratification in eastern equatorial Indian Ocean can lead to deeper mixed layer and negative Sea Surface Temperature (SST) bias, which in turn favor positive Indian Ocean Dipole bias in CFSv1. It is important to note that improper spatial distribution of barrier layer and stratification can alter the air-sea interaction and precipitation in the models. On the other hand CFSv2 could produce the seasonal evolution and spatial distribution of SSS, BLT and stratification better than CFSv1. However CFSv2 displays positive bias in evaporation over the whole domain and negative bias in precipitation over the BoB and equatorial Indian Ocean, resulting net reduction in the fresh water availability. This net reduction in fresh water forcing and the associated weaker stratification lead to deeper (than observed) mixed layer depth and is primarily responsible for the cold SST bias in CFSv2. However overall improvement of mean salinity distribution in CFSv2 is about 30 % and the mean error has reduced by more than 1 psu over the BoB. This improvement is mainly due to better fresh water forcing and model physics. Realistic run off information, better ocean model and high resolution in CFSv2 contributed for the improvement. Further improvement can be achieved by reducing biases in the moisture flux and precipitation.

  19. Bromus tectorum expansion and biodiversity loss on the Snake River Plain, southern Idaho, USA

    Treesearch

    N. L. Shaw; V. A. Saab; S. B. Monsen; T. D. Rich

    1999-01-01

    The Snake River Plain forms a 6 million ha arc-shaped depression across southern Idaho. Basalt flows, fresh water sediments, loess and volcanic deposits cover its surface. Elevation increases eastward from 650 to 2,150 m altitude. Climate is semi-arid with annual precipitation ranging from 150 to 400 mm, arriving primarily in winter and spring. Native shrub steppe...

  20. Surface binding properties of aged and fresh (recently excreted) Toxoplasma gondii oocysts

    USDA-ARS?s Scientific Manuscript database

    The surface properties of aged (stored for 10 years) and fresh (recently excreted) oocysts of Toxoplasma gondii were investigated using monoclonal antibody (mAb) and lectin-binding assays. Fresh oocysts bound a wall-specific mAb labeled with fluorescein isothiocyanate while aged oocysts did not. In ...

  1. Hydrogeologic processes in saline systems: Playas, sabkhas, and saline lakes

    USGS Publications Warehouse

    Yechieli, Y.; Wood, W.W.

    2002-01-01

    Pans, playas, sabkhas, salinas, saline lakes, and salt flats are hydrologically similar, varying only in their boundary conditions. Thus, in evaluating geochemical processes in these systems, a generic water and solute mass-balance approach can be utilized. A conceptual model of a coastal sabkha near the Arabian Gulf is used as an example to illustrate the various water and solute fluxes. Analysis of this model suggests that upward flux of ground water from underlying formations could be a major source of solutes in the sabkha, but contribute only a small volume of the water. Local rainfall is the main source of water in the modeled sabkha system with a surprisingly large recharge-to-rainfall ratio of more than 50%. The contribution of seawater to the solute budget depends on the ratio of the width of the supratidal zone to the total width and is generally confined to a narrow zone near the shoreline of a typical coastal sabkha. Because of a short residence time of water, steady-state flow is expected within a short time (50,000 years). The solute composition of the brine in a closed saline system depends largely on the original composition of the input water. The high total ion content in the brine limits the efficiency of water-rock interaction and absorption. Because most natural systems are hydrologically open, the chemistry of the brines and the associated evaporite deposits may be significantly different than that predicted for hydrologically closed systems. Seasonal changes in temperature of the unsaturated zone cause precipitation of minerals in saline systems undergoing evaporation. Thus, during the hot dry season months, minerals exhibit retrograde solubility so that gypsum, anhydrite and calcite precipitate. Evaporation near the surface is also a major process that causes mineral precipitation in the upper portion of the unsaturated zone (e.g. halite and carnallite), provided that the relative humidity of the atmosphere is less than the activity of water. The slope of the fresh/brine-water interface in saline lake systems is shallower than in fresh/seawater interface because of the greater density difference between the fresh/brine-water bodies. The interface between sabkha brines and seawater slopes seaward, unlike normal marine-fresh water systems that slope landward. Moreover, the brine/seawater interface does not achieve steady state because it is pushed toward the sea by the sabkha's brine. ?? 2002 Elsevier Science B.V. All rights reserved.

  2. Analog-model studies of ground-water hydrology in the Houston District, Texas

    USGS Publications Warehouse

    Jorgensen, Donald G.

    1974-01-01

    The major water-bearing units in the Houston district are the Chicot and the Evangeline aquifers. The Chicot aquifer overlies the Evangeline aquifer, which is underlain by the Burkeville confining layer. Both aquifers consist of unconsolidated and discontinuous layers of sand and clay that dip toward the Gulf of Mexico. Heavy pumping of fresh water has caused large declines in the altitudes of the potentiometric surfaces in both aquifers and has created large cones of depression around Houston. The declines have caused compaction of clay layers, which has resulted in land surface subsidence and the movement of saline ground water toward the centers of the cones of depression. An electric analog model was used to study the hydrologic system and to simulate the declines in the altitudes of the potentiometric surfaces for several alternative plans of ground-water development. The results indicate that the largest part. of the pumped water comes from storage in the water-table part of the Chicot aquifer. Vertical leakage from the aquifers and water derived from the compaction of clay layers in the aquifers are also large sources of the water being pumped. The response of the system, as observed on the model, indicates that development of additional ground-water supplies from the water-table part of the Chicot aquifer north of Houston would result in a minimum decline of the altitudes of the potentiometric surfaces. Total withdrawals of about 1,000 million gallons (5.8 million cubic meters) per day may be possible without seriously, increasing subsidence or salt-water encroachment. Analyses of the recovery of water levels indicate that both land-surface subsidence and salt-water encroachment could be reduced by artificially recharging the artesian part of the aquifer.

  3. Identifying Alteration and Water on MT. Baker, WA with Geophysics: Implications for Volcanic Landslide Hazards

    NASA Astrophysics Data System (ADS)

    Finn, C.; Deszcz-Pan, M.; Bedrosian, P.; Minsley, B. J.

    2016-12-01

    Helicopter magnetic and electromagnetic (HEM) data, along with rock property measurements, local ground-based gravity, time domain electromagnetic (TEM) and nuclear magnetic resonance (NMR) data help identify alteration and water-saturated zones on Mount Baker, Washington. Hydrothermally altered rocks, particularly if water-saturated, can weaken volcanic edifices, increasing the potential for catastrophic sector collapses that can lead to far traveled and destructive debris flows. At Mount Baker volcano, collapses of hydrothermally altered rocks from the edifice have generated numerous debris flows that constitute their greatest volcanic hazards. Critical to quantifying this hazard is knowledge of the three-dimensional distribution of pervasively altered rock, shallow groundwater and ice that plays an important role in transforming debris avalanches to far traveled lahars. The helicopter geophysical data, combined with geological mapping and rock property measurements, indicate the presence of localized zones of less than 100 m thickness of water-saturated hydrothermally altered rock beneath Sherman Crater and the Dorr Fumarole Fields at Mt. Baker. New stochastic inversions of the HEM data indicate variations in resistivity in inferred perched aquifers—distinguishing between fresh and saline waters, possibly indicating the influence of nearby alteration and/or hydrothermal systems on water quality. The new stochastic results better resolve ice thickness than previous inversions, and also provide important estimates of uncertainty on ice thickness and other parameters. New gravity data will help constrain the thickness of the ice and alteration. Nuclear magnetic resonance data indicate that the hydrothermal clays contain 50% water with no evidence for water beneath the ice. The HEM data identify water-saturated fresh volcanic rocks from the surface to the detection limit ( 100 m) over the entire summit of Mt. Baker. Localized time domain EM soundings indicate that low resistivity layers extend at least to 250 m below the surface. The combined geophysical identification of groundwater and weak layers constrain landslide hazards assessments.

  4. Transfer of Escherichia coli O157:H7 from equipment surfaces to fresh-cut leafy greens during processing in a model pilot-plant production line with sanitizer-free water.

    PubMed

    Buchholz, Annemarie L; Davidson, Gordon R; Marks, Bradley P; Todd, Ewen C D; Ryser, Elliot T

    2012-11-01

    Escherichia coli O157:H7 contamination of fresh-cut leafy greens has become a public health concern as a result of several large outbreaks. The goal of this study was to generate baseline data for E. coli O157:H7 transfer from product-inoculated equipment surfaces to uninoculated lettuce during pilot-scale processing without a sanitizer. Uninoculated cored heads of iceberg and romaine lettuce (22.7 kg) were processed using a commercial shredder, step conveyor, 3.3-m flume tank with sanitizer-free tap water, shaker table, and centrifugal dryer, followed by 22.7 kg of product that had been dip inoculated to contain ∼10(6), 10(4), or 10(2) CFU/g of a four-strain avirulent, green fluorescent protein-labeled, ampicillin-resistant E. coli O157:H7 cocktail. After draining the flume tank and refilling the holding tank with tap water, 90.8 kg of uninoculated product was similarly processed and collected in ∼5-kg aliquots. After processing, 42 equipment surface samples and 46 iceberg or 36 romaine lettuce samples (25 g each) from the collection baskets were quantitatively examined for E. coli O157:H7 by direct plating or membrane filtration using tryptic soy agar containing 0.6% yeast extract and 100 ppm of ampicillin. Initially, the greatest E. coli O157:H7 transfer was seen from inoculated lettuce to the shredder and conveyor belt, with all equipment surface populations decreasing 90 to 99% after processing 90.8 kg of uncontaminated product. After processing lettuce containing 10(6) or 10(4) E. coli O157:H7 CFU/g followed by uninoculated lettuce, E. coli O157:H7 was quantifiable throughout the entire 90.8 kg of product. At an inoculation level of 10(2) CFU/g, E. coli O157:H7 was consistently detected in the first 21.2 kg of previously uninoculated lettuce at 2 to 3 log CFU/100 g and transferred to 78 kg of product. These baseline E. coli O157:H7 transfer results will help determine the degree of sanitizer efficacy required to better ensure the safety of fresh-cut leafy greens.

  5. Microbial safety and overall quality of cantaloupe fresh-cut pieces prepared from whole fruit after wet steam treatment.

    PubMed

    Ukuku, Dike O; Geveke, David J; Chau, Lee; Niemira, Brendan A

    2016-08-16

    Fresh-cut cantaloupes have been associated with outbreaks of Salmonellosis. Minimally processed fresh-cut fruits have a limited shelf life because of deterioration caused by spoilage microflora and physiological processes. The objectives of this study were to use a wet steam process to 1) reduce indigenous spoilage microflora and inoculated populations of Salmonella, Escherichia coli O157:H7 and Listeria monocytogenes on the surface of cantaloupes, and 2) reduce the populations counts in cantaloupe fresh-cut pieces after rind removal and cutting. The average inocula of Salmonella, E. coli O157:H7 and Listeria monocytogenes was 10(7)CFU/ml and the populations recovered on the cantaloupe rind surfaces after inoculation averaged 4.5, 4.8 and 4.1logCFU/cm(2), respectively. Whole cantaloupes were treated with a wet steam processing unit for 180s, and the treated melons were stored at 5°C for 29days. Bacterial populations in fresh-cut pieces prepared from treated and control samples stored at 5 and 10°C for up to 12days were determined and changes in color (CIE L*, a*, and b*) due to treatments were measured during storage. Presence and growth of aerobic mesophilic bacteria and Salmonella, E. coli O157:H7 and L. monocytogenes were determined in fresh-cut cantaloupe samples. There were no visual signs of physical damage on all treated cantaloupe surfaces immediately after treatments and during storage. All fresh-cut pieces from treated cantaloupes rind surfaces were negative for bacterial pathogens even after an enrichment process. Steam treatment significantly (p<0.05) changed the color of the fresh-cut pieces. Minimal wet steam treatment of cantaloupes rind surfaces designated for fresh-cut preparation will enhance the microbial safety of fresh-cut pieces, by reducing total bacterial populations. This process holds the potential to significantly reduce the incidence of foodborne illness associated with fresh-cut fruits. Published by Elsevier B.V.

  6. Challenge of urban sewage disposal in a karst region: Mérida, Yucátan, Mexico

    NASA Astrophysics Data System (ADS)

    Perry, E. C.; Villasuso, M.

    2013-05-01

    Four hydrogeologic factors influence urban sewage management on the northern Yucátan (Mexico) Peninsula: 1) lack of rivers capable of transporting and/or oxidizing sewage, 2) near-surface flat-lying, porous, permeable limestone and dolomite with shallow layers of variable permeability but without major subsurface aquitards, 3) rapid groundwater transmission, penetration of seawater inland beneath a fresh water lens, and a flat water table only a few meters below land surface and controlled by sea level, 4) near absence of soil cover. Mérida, Yucátan (population approaching one million, approximately the world's 450th most populous city) has no central sewage system. The water table beneath the city is consistently only 7-9 m below land surface, and the 40 m-thick fresh water lens, which is the sole source of municipal, industrial, and agricultural water, directly overlies a marine intrusion of modified seawater composition. The old city has an estimated 130,000 drains feeding untreated household waste directly into the permeable karst aquifer. Numerous storm drains send street runoff directly to the aquifer. In addition, industries, hotels, and some subdivisions have unmonitored injection wells that pump untreated wastewater into the underlying saline intrusion. Some injection wells have flow problems possibly because of low aquifer permeability within the saline intrusion. Deep injection is also problematic because density contrast with saline intrusion water can produce a gravity imbalance, and high sulfate water can react with organic waste to produce H2S. Some city water supply wells are reportedly affected by inflation of the water table beneath the city, by local upconing of saline water, and by nitrate contamination. Paradoxically, Mérida with an abundant, easily contaminated source of fresh water, lacks streams to transport sewage off-site, and thus shares some water supply/sewage treatment problems with cities in arid regions. Recently, compact, efficient systems that provide almost tertiary-level sewage treatment have been developed and installed in various localities worldwide. Fitting the old parts of Mérida with several such systems would be less disruptive than blasting a monolithic sewer network through the city's rocky base, and it would minimize the problem of pumping sewage in an almost completely flat-lying area. Appropriate reuse of water from such local treatment facilities would be more flexible than from a single central system. Furthermore, injecting water into the aquifer after secondary or tertiary treatment would be a huge improvement over pumping of untreated "aguas negras" into the saline intrusion. Finally, there is a renaissance of sorts in sewage treatment technology, and it would be much easier to upgrade a number of individual systems as they became obsolete than to replace a monolithic central system. Safe, effective operation and monitoring of the suggested of sewage system would be challenging. Yet, as more cities join those 500 world-wide that now have populations approaching or exceeding one million, use of streams to export pollution may become infeasible. Perhaps Mérida can become a model to demonstrate that people can safely process and reuse their own wastewater.

  7. Uptake of uranium by aquatic plants growing in fresh water ecosystem around uranium mill tailings pond at Jaduguda, India.

    PubMed

    Jha, V N; Tripathi, R M; Sethy, N K; Sahoo, S K

    2016-01-01

    Concentration of uranium was determined in aquatic plants and substrate (sediment or water) of fresh water ecosystem on and around uranium mill tailings pond at Jaduguda, India. Aquatic plant/substrate concentration ratios (CRs) of uranium were estimated for different sites on and around the uranium mill tailings disposal area. These sites include upstream and downstream side of surface water sources carrying the treated tailings effluent, a small pond inside tailings disposal area and residual water of this area. Three types of plant groups were investigated namely algae (filamentous and non-filamentous), other free floating & water submerged and sediment rooted plants. Wide variability in concentration ratio was observed for different groups of plants studied. The filamentous algae uranium concentration was significantly correlated with that of water (r=0.86, p<0.003). For sediment rooted plants significant correlation was found between uranium concentration in plant and the substrate (r=0.88, p<0.001). Both for other free floating species and sediment rooted plants, uranium concentration was significantly correlated with Mn, Fe, and Ni concentration of plants (p<0.01). Filamentous algae, Jussiaea and Pistia owing to their high bioproductivity, biomass, uranium accumulation and concentration ratio can be useful for prospecting phytoremediation of stream carrying treated or untreated uranium mill tailings effluent. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Abiotic transformation of high explosives by freshly precipitated iron minerals in aqueous Fe¹¹ solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boparai, Hardiljeet K.; Comfort, Steve; Satapanajaru, Tunlawit

    Zerovalent iron barriers have become a viable treatment for field-scale cleanup of various ground water contaminants. While contact with the iron surface is important for contaminant destruction, the interstitial pore water within and near the iron barrier will be laden with aqueous, adsorbed and precipitated FeII phases. These freshly precipitated iron minerals could play an important role in transforming high explosives (HE). Our objective was to determine the transformation of RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine), HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine), and TNT (2,4,6-trinitrotoluene) by freshly precipitated iron FeII/FeIII minerals. This was accomplished by quantifying the effects of initial FeII concentration, pH, and the presence of aquifermore » solids (FeIII phases) on HE transformation rates. Results showed that at pH 8.2, freshly precipitated iron minerals transformed RDX, HMX, and TNT with reaction rates increasing with increasing FeII concentrations. RDX and HMX transformations in these solutions also increased with increasing pH (5.8-8.55). By contrast, TNT transformation was not influenced by pH (6.85-8.55) except at pH values <6.35. Transformations observed via LC/MS included a variety of nitroso products (RDX, HMX) and amino degradation products (TNT). XRD analysis identified green rust and magnetite as the dominant iron solid phases that precipitated from the aqueous FeII during HE treatment under anaerobic conditions. Geochemical modeling also predicted FeII activity would likely be controlled by green rust and magnetite. These results illustrate the important role freshly precipitated FeII/FeIII minerals in aqueous FeII solutions play in the transformation of high explosives.« less

  9. Fluorescence-Based Sensor for Monitoring Activation of Lunar Dust

    NASA Technical Reports Server (NTRS)

    Wallace, William T.; Jeevarajan, Antony S.

    2012-01-01

    This sensor unit is designed to determine the level of activation of lunar dust or simulant particles using a fluorescent technique. Activation of the surface of a lunar soil sample (for instance, through grinding) should produce a freshly fractured surface. When these reactive surfaces interact with oxygen and water, they produce hydroxyl radicals. These radicals will react with a terephthalate diluted in the aqueous medium to form 2-hydroxyterephthalate. The fluorescence produced by 2-hydroxyterephthalate provides qualitative proof of the activation of the sample. Using a calibration curve produced by synthesized 2-hydroxyterephthalate, the amount of hydroxyl radicals produced as a function of sample concentration can also be determined.

  10. A linear spectral matching technique for retrieving equivalent water thickness and biochemical constituents of green vegetation

    NASA Technical Reports Server (NTRS)

    Gao, Bo-Cai; Goetz, Alexander F. H.

    1992-01-01

    Over the last decade, technological advances in airborne imaging spectrometers, having spectral resolution comparable with laboratory spectrometers, have made it possible to estimate biochemical constituents of vegetation canopies. Wessman estimated lignin concentration from data acquired with NASA's Airborne Imaging Spectrometer (AIS) over Blackhawk Island in Wisconsin. A stepwise linear regression technique was used to determine the single spectral channel or channels in the AIS data that best correlated with measured lignin contents using chemical methods. The regression technique does not take advantage of the spectral shape of the lignin reflectance feature as a diagnostic tool nor the increased discrimination among other leaf components with overlapping spectral features. A nonlinear least squares spectral matching technique was recently reported for deriving both the equivalent water thicknesses of surface vegetation and the amounts of water vapor in the atmosphere from contiguous spectra measured with the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). The same technique was applied to a laboratory reflectance spectrum of fresh, green leaves. The result demonstrates that the fresh leaf spectrum in the 1.0-2.5 microns region consists of spectral components of dry leaves and the spectral component of liquid water. A linear least squares spectral matching technique for retrieving equivalent water thickness and biochemical components of green vegetation is described.

  11. Spinach biomass yield and physiological response to interactive salinity and water stress

    USDA-ARS?s Scientific Manuscript database

    Critical shortages of fresh water throughout arid regions means that growers must face the choice of applying insufficient fresh water, applying saline water, or consider the option of combined water and salt stress. The best approach to manage drought and salinity is evaluation of the impact of wat...

  12. 40 CFR 230.25 - Salinity gradients.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... gradients form where salt water from the ocean meets and mixes with fresh water from land. (b) Possible loss... those organisms that are adapted to freshwater environments. It may also affect municipal water supplies... fresh or salt water may change existing salinity gradients. For example, partial blocking of the...

  13. Earth Observations taken by the Expedition 21 Crew

    NASA Image and Video Library

    2009-11-14

    ISS021-E-026475 (14 Nov. 2009) --- Ounianga Lakes in the Sahara Desert, in the nation of Chad are featured in this image photographed by an Expedition 21 crew member on the International Space Station. This view features one of the largest of a series of ten, mostly fresh water lakes in the Ounianga basin in the heart of the Sahara Desert of northeastern Chad. According to scientists, the lakes are the remnant of a single large lake, probably tens of kilometers long that once occupied this remote area approximately 14,800 to 5,500 years ago. As the climate dried out during the subsequent millennia, the lake was reduced in size and large wind-driven sand dunes invaded the original depression dividing it into several smaller basins. The area shown in this image measures approximately 11 x 9 kilometers, with the dark water surfaces of the lake segregated almost completely by orange linear sand dunes that stream into the depression from the northeast. The almost year-round northeast winds and cloudless skies make for very high evaporation (an evaporation rate of greater than six meters per year has been measured in one of the nearby lakes). Despite this, only one of the ten lakes is saline. According to scientists, the reason for the apparent paradox of fresh water lakes in the heart of the desert lies in the fact that fresh water from a very large aquifer reaches the surface in the Ounianga depression in the form of the lakes. The aquifer is large enough to keep supplying the small lakes with water despite the high evaporation rate. Mats of floating reeds also reduce the evaporation in places. The lakes form a hydrological system that is unique in the Sahara Desert. Scientists believe the aquifer was charged with fresh water, and the large original lake evolved, during the so-called African Humid Period (approximately 14,800 to 5,500 years ago) when the West African summer monsoon was stronger than it is today. Associated southerly winds brought Atlantic moisture well north of modern limits, producing sufficient rainfall in the central Sahara to foster an almost complete savanna vegetation cover. Pollen data from lake sediments of the original 50-meters-deep Ounianga Lake suggests to scientists that a mild tropical climate with a wooded grassland savanna existed in the region. This vegetation association is now only encountered 300 kilometers further south. Ferns grew in the stream floodplains which must have been occasionally flooded. Even shrubs that now occur only on the very high, cool summits (greater than 2,900 meters, greater than 9,500 feet) of the Tibesti Mts. have been found in the Ounianga lake sediments.

  14. Water resources of southeastern Florida, with special reference to geology and ground water of the Miami area

    USGS Publications Warehouse

    Parker, Garald G.; Ferguson, G.E.; Love, S.K.

    1955-01-01

    The circulation of water, in any form, from the surface of the earth to the atmosphere and back again is called the hydrologic cycle. A comprehensive study of the water resources of any area must, therefore, include data on the climate of the area. The humid subtropical climate of southeast Florida is characterized by relatively high temperatures, alternating semi-annual wet and dry season, and usually light put persistent winds. The recurrence of drought in an area having relatively large rainfall such as southeastern Florida indicates that the agencies that remove water are especially effective. Two of the most important of the agencies associated with climate are evaporation and transpiration, or 'evapotranspiraton'. Evaporation losses from permanent water areas are believed to average between 40 and 45 inches per year. Over land areas indirect methods much be used to determine losses by evapotranspiration; necessarily, there values are not precise. Because of their importance in the occurrence and movement of both surface and ground waters, detailed studies were made of the geology and geomorphology of southern Florida. As a result of widespread crustal movements, southern Florida emerged from the sea in later Pliocene time and probably was slightly tilted to the west. At the beginning of the Pleistocene the continent emerged still farther as a result of the lowering of sea level attending the first widespread glaciation. During this epoch, south Florida may have stood several hundred feet above sea level. During the interglacial ages the sea repeatedly flooded southern Florida. The marine members of the Fort Thompson formation in the Lake Okeechobee-Everglades depression and the Calossahatchee River Valley apparently are the deposits of the interglacial invasions by the sea. The fresh-water marls, sands, and organic deposits of the Fort Thompson formation appear to have accumulated during glacial ages when seas level was low and the area was a land surface partly occupied by fresh-water lakes and marshes. Elsewhere in southern Florida the deposits are mainly limestone and sandy terrace deposits. The Pliocene surface upon which there Pleistocene sediments were deposited was highest to the north and west of the present Everglades and Kissimmee River basin, and it sloped gently to the south, southeast, and east. On this slightly sloping floor, alternately submerged and emerged, the later materials were built; these materials, modified by wind, rain, and surface and ground waters. Have largely determined the present topographic and ecologic character of southern Florida. The most important aquifer in southern Florida, and the one in which most of the wells are developed, is the Biscayne aquifer. It is composed of parts of the Tamiami formation (Miocene), Caloosahatchee marl (Pliocene), fort Thompson formation, Anastasia formation, Key Largo limestone, Miami oolite, and Pamlico sand (Pleistoncene). In some parts of southern Florida, the Pamlico sand and the Anastasia formation are not a part of the Biscayne aquifer; however, they are utilized in the development of small water supplies. Most of the Calossahatchee marl and the Fort Thompson formation in the Lake Okeechobeee area is of very low permeability. In the northern Everglades their less permeable parts contain highly mineralized waters, which appear to have been trapped since the invasions by the Pleistocene seas. These waters have been modified by dilution with fresh ground water and by chemical reactions with surrounding materials. Sea-level fluctuations, starting at the close of the Pliocene with highest levels and progressing toward the Recent with successively lower levels. Have built a series of nearly flat marine terraces abutting against one another much like a series of broad stairsteps. Erosion and solution have deface and, in places, have obliterated the original surficial forms of these old sea bottoms, shores, and shoreline feathers,

  15. Estimated water use in Puerto Rico, 2010

    USGS Publications Warehouse

    Molina-Rivera, Wanda L.

    2014-01-01

    Water-use data were aggregated for the 78 municipios of the Commonwealth of Puerto Rico for 2010. Five major offstream categories were considered: public-supply water withdrawals and deliveries, domestic and industrial self-supplied water use, crop-irrigation water use, and thermoelectric-power freshwater use. One instream water-use category also was compiled: power-generation instream water use (thermoelectric saline withdrawals and hydroelectric power). Freshwater withdrawals for offstream use from surface-water [606 million gallons per day (Mgal/d)] and groundwater (118 Mgal/d) sources in Puerto Rico were estimated at 724 million gallons per day. The largest amount of freshwater withdrawn was by public-supply water facilities estimated at 677 Mgal/d. Public-supply domestic water use was estimated at 206 Mgal/d. Fresh groundwater withdrawals by domestic self-supplied users were estimated at 2.41 Mgal/d. Industrial self-supplied withdrawals were estimated at 4.30 Mgal/d. Withdrawals for crop irrigation purposes were estimated at 38.2 Mgal/d, or approximately 5 percent of all offstream freshwater withdrawals. Instream freshwater withdrawals by hydroelectric facilities were estimated at 556 Mgal/d and saline instream surface-water withdrawals for cooling purposes by thermoelectric-power facilities was estimated at 2,262 Mgal/d.

  16. Water flowing north of the border: export agriculture and water politics in a rural community in Baja California.

    PubMed

    Zlolniski, Christian

    2011-01-01

    Favored by neoliberal agrarian policies, the production of fresh crops for international markets has become a common strategy for economic development in Mexico and other Latin American countries. But as some scholars have argued, the global fresh produce industry in developing countries in which fresh crops are produced for consumer markets in affluent nations implies “virtual water flows,” the transfer of high volumes of water embedded in these crops across international borders. This article examines the local effects of the production of fresh produce in the San Quintín Valley in northwestern Mexico for markets in the United States. Although export agriculture has fostered economic growth and employment opportunities for indigenous farm laborers, it has also led to the overexploitation of underground finite water resources, and an alarming decline of the quantity and quality of water available for residents’ domestic use. I discuss how neoliberal water policies have further contributed to water inequalities along class and ethnic lines, the hardships settlers endure to secure access to water for their basic needs, and the political protests and social tensions water scarcity has triggered in the region. Although the production of fresh crops for international markets is promoted by organizations such as the World Bank and Inter-American Development Bank as a model for economic development, I argue that it often produces water insecurity for the poorest, threatening the UN goal of ensuring access to clean water as a universal human right.

  17. Lowered salinity tolerance in sea skaters Halobates micans, Halobates sericeus, and Halobates sp. (Heteroptera: Gerridae).

    PubMed

    Sekimoto, Takero; Iyota, Koki; Osumi, Yuki; Shiraki, Takashi; Harada, Tetsuo

    2013-06-01

    Adult specimens of three species of oceanic sea skater, Halobates sericeus Eschscholtz, Halobates micans Eschscholtz, and Halobates sp. were placed in one of four solutions of different salinity (sea water [35-36‰], sea water : fresh water = 2:1 [23-24‰], sea water : fresh water = 1:2 [11-13‰], and fresh water [0‰]) after collection from the temperate and subtropical Pacific Ocean, tropical Indian Ocean, and Tomini Gulf in Indonesia, and observed in 2-h intervals until they died. H. micans collected from the tropical Indian Ocean survived twice a long (80-100 h) on average as H. sericeus collected from the temperate and subtropical Pacific Ocean (35-45 h) under salinities of 12-36‰. Paralysis from freshwater treatment occurred within 2-9 h in all specimens of both species of H. sericeus from the Pacific Ocean and H. micans from the Indian Ocean, and all insects died within 2 hr of starting the paralysis. In fresh water, oceanic sea skaters of H. sp. collected from the inner water of Tomini Gulf survived for ≍24 h on average, significantly longer than those collected from the open ocean. Significantly longer length of survival was shown by the three species on one-thirds, two-thirds brackish, and 100‰ sea water than on fresh water. The long length of survival shown by oceanic sea skaters even in brackish water may be an adaptation to the occasional rain fall on the sea water film.

  18. Higher plant modelling for life support applications: first results of a simple mechanistic model

    NASA Astrophysics Data System (ADS)

    Hezard, Pauline; Dussap, Claude-Gilles; Sasidharan L, Swathy

    2012-07-01

    In the case of closed ecological life support systems, the air and water regeneration and food production are performed using microorganisms and higher plants. Wheat, rice, soybean, lettuce, tomato or other types of eatable annual plants produce fresh food while recycling CO2 into breathable oxygen. Additionally, they evaporate a large quantity of water, which can be condensed and used as potable water. This shows that recycling functions of air revitalization and food production are completely linked. Consequently, the control of a growth chamber for higher plant production has to be performed with efficient mechanistic models, in order to ensure a realistic prediction of plant behaviour, water and gas recycling whatever the environmental conditions. Purely mechanistic models of plant production in controlled environments are not available yet. This is the reason why new models must be developed and validated. This work concerns the design and test of a simplified version of a mathematical model coupling plant architecture and mass balance purposes in order to compare its results with available data of lettuce grown in closed and controlled chambers. The carbon exchange rate, water absorption and evaporation rate, biomass fresh weight as well as leaf surface are modelled and compared with available data. The model consists of four modules. The first one evaluates plant architecture, like total leaf surface, leaf area index and stem length data. The second one calculates the rate of matter and energy exchange depending on architectural and environmental data: light absorption in the canopy, CO2 uptake or release, water uptake and evapotranspiration. The third module evaluates which of the previous rates is limiting overall biomass growth; and the last one calculates biomass growth rate depending on matter exchange rates, using a global stoichiometric equation. All these rates are a set of differential equations, which are integrated with time in order to provide total biomass fresh weight during the full growth duration. The model predicts a growth with exponential rate at the beginning and then it becomes linear for the end of the growth; this follows rather accurately the experimental data. Even if this model is too simple to be realistic for more complex plants in changing environments, this is the first step for an integrated approach of plant growth accounting of architectural and mass transfer limitations.

  19. Life Cycle Water Consumption and Water Resource Assessment for Utility-Scale Geothermal Systems: An In-Depth Analysis of Historical and Forthcoming EGS Projects

    DOE Data Explorer

    Schroeder, Jenna N.

    2013-08-31

    This report is the third in a series of reports sponsored by the U.S. Department of Energy Geothermal Technologies Program in which a range of water-related issues surrounding geothermal power production are evaluated. The first report made an initial attempt at quantifying the life cycle fresh water requirements of geothermal power-generating systems and explored operational and environmental concerns related to the geochemical composition of geothermal fluids. The initial analysis of life cycle fresh water consumption of geothermal power-generating systems identified that operational water requirements consumed the vast majority of water across the life cycle. However, it relied upon limited operational water consumption data and did not account for belowground operational losses for enhanced geothermal systems (EGSs). A second report presented an initial assessment of fresh water demand for future growth in utility-scale geothermal power generation. The current analysis builds upon this work to improve life cycle fresh water consumption estimates and incorporates regional water availability into the resource assessment to improve the identification of areas where future growth in geothermal electricity generation may encounter water challenges.

  20. Hydrogeologic setting and ground water flow beneath a section of Indian River Bay, Delaware

    USGS Publications Warehouse

    Krantz, David E.; Manheim, Frank T.; Bratton, John F.; Phelan, Daniel J.

    2004-01-01

    The small bays along the Atlantic coast of the Delmarva Peninsula (Delaware, Maryland, and Virginia) are a valuable natural resource, and an asset for commerce and recreation. These coastal bays also are vulnerable to eutrophication from the input of excess nutrients derived from agriculture and other human activities in the watersheds. Ground water discharge may be an appreciable source of fresh water and a transport pathway for nutrients entering the bays. This paper presents results from an investigation of the physical properties of the surficial aquifer and the processes associated with ground water flow beneath Indian River Bay, Delaware. A key aspect of the project was the deployment of a new technology, streaming horizontal resistivity, to map the subsurface distribution of fresh and saline ground water beneath the bay. The resistivity profiles showed complex patterns of ground water flow, modes of mixing, and submarine ground water discharge. Cores, gamma and electromagnetic-induction logs, and in situ ground water samples collected during a coring operation in Indian River Bay verified the interpretation of the resistivity profiles. The shore-parallel resistivity lines show subsurface zones of fresh ground water alternating with zones dominated by the flow of salt water from the estuary down into the aquifer. Advective flow produces plumes of fresh ground water 400 to 600 m wide and 20 m thick that may extend more than 1 km beneath the estuary. Zones of dispersive mixing between fresh and saline ground water develop on the upper, lower, and lateral boundaries of the the plume. the plumes generally underlie small incised valleys that can be traced landward to stream draining the upland. The incised valleys are filled with 1 to 2 m of silt and peat that act as a semiconfining layer to restrict the downward flow of salt water from the estuary. Active circulation of both the fresh and saline ground water masses beneath the bay is inferred from the geophysical results and supported by geochemical data.

  1. The Bay of Bengal : an ideal laboratory for studying salinity

    NASA Astrophysics Data System (ADS)

    Vialard, jerome; Lengaigne, Matthieu; Akhil, Valiya; Chaitanya, Akurathi; Krishna-Mohan, Krishna; D'Ovidio, Francesco; Keerthi, Madhavan; Benshila, Rachid; Durand, Fabien; Papa, Fabrice; Suresh, Iyappan; Neetu, Singh

    2017-04-01

    The Bay of Bengal combines several unique features that make it an excellent laboratory to study the variability of salinity and its potential effects on the oceanic circulation and climate. This basin receives very large quantities of freshwater in association to the southwest monsoon, either directly from rain or indirectly through the runoffs of the Ganges-Brahmaputra and Irrawaddy. This large quantity of freshwater in a small, semi enclosed basin results in some of the lowest sea surface salinities (SSS) and strongest near-surface haline stratification in the tropical band. The strong monsoon winds also drive an energetic circulation, which exports the excess water received during the monsoon and results in strong horizontal salinity gradients. In this talk, I will summarize several studies of the Bay of Bengal salinity variability and its impacts undertaken in the context of an Indo-French collaboration. In situ data collected along the coast by fishermen and model results show that the intense, coastally-trapped East India Coastal Current (EICC) transports the very fresh water near the Ganges-Brahmaputra river mouth along the eastern Bay of Bengal rim to create a narrow, very fresh "river in the sea" after the southwest monsoon. The salinity-induced pressure gradient contributes to almost 50% of the EICC intensity and sustains mesoscale eddy generation through its effect on horizontal current shears and baroclinic gradients. Oceanic eddies play a strong role in exporting this fresh water from the coast to the basin interior. This "river in the sea" has a strong interannual variability related to the EICC remote modulation by the Indian Ocean Dipole (a regional climate mode). I will also discuss the potential effect of haline stratification on the regional climate through its influence on the upper ocean budget. Finally, I will briefly discuss the performance of remote-sensing for observing SSS in the Bay of Bengal.

  2. Natural radionuclides in fish species from surface water of Bagjata and Banduhurang uranium mining areas, East Singhbhum, Jharkhand, India.

    PubMed

    Giri, Soma; Singh, Gurdeep; Jha, V N; Tripathi, R M

    2010-11-01

    To study the natural radionuclides in the freshwater fish samples around the uranium mining areas of Bagjata and Banduhurang, East Singhbhum, Jharkhand, India. The naturally occurring radioisotopes of uranium, U(nat), consisting of (234)U, (235)U and (238)U; (226)Ra, (230)Th and (210)Po were analysed in the fish samples from the surface water of Bagjata and Banduhurang mining areas after acid digestion. The ingestion dose, concentration factor and excess lifetime cancer risk of the radionuclides were estimated. The geometric mean activity of U(nat), (226)Ra, (230)Th and (210)Po in the fish samples was found to be 0.05, 0.19, 0.29 and 0.95 Bq kg(-1)(fresh) (Becquerel per kilogram fresh fish), respectively, in the Bagjata mining area, while for Banduhurang mining area it was estimated to be 0.08, 0.41, 0.22 and 2.48 Bq kg(-1)(fresh), respectively. The ingestion dose was computed to be 1.88 and 4.16 μSvY(-1), respectively, for both the areas which is much below the 1 mSv limit set in the new International Commission on Radiological Protection (ICRP) recommendations. The estimation of the Concentration Factors (CF) reveal that the CF from water is greater than 1 l/kg(-1)in most of the cases while from sediment CF is less than 1. The excess individual lifetime cancer risk due to the consumption of fish was calculated to be 2.53 × 10(-5) and 6.48 × 10(-5), respectively, for Bagjata and Banduhurang areas, which is within the acceptable excess individual lifetime cancer risk value of 1 × 10(-4). The study confirms that current levels of radioactivity do not pose a significant radiological risk to freshwater fish consumers.

  3. California coastal processes study: Skylab. [San Pablo and San Francisco Bays

    NASA Technical Reports Server (NTRS)

    Pirie, D. M.; Steller, D. D. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. In San Pablo Bay, the patterns of dredged sediment discharges were plotted over a three month period. It was found that lithogenous particles, kept in suspension by the fresh water from the Sacramento-San Joaquin, were transported downstream to the estuarine area at varying rates depending on the river discharge level. Skylab collected California coastal imagery at limited times and not at constant intervals. Resolution, however, helped compensate for lack of coverage. Increased spatial and spectral resolution provided details not possible utilizing Landsat imagery. The S-192 data was reformatted; band by band image density stretching was utilized to enhance sediment discharge patterns entrainment, boundaries, and eddys. The 26 January 1974 Skylab 4 imagery of San Francisco Bay was taken during an exceptionally high fresh water and suspended sediment discharge period. A three pronged surface sediment pattern was visible where the Sacramento-San Joaquin Rivers entered San Pablo Bay through Carquinez Strait.

  4. Integration of Rs/gis for Surface Water Pollution Risk Modeling. Case Study: Al-Abrash Syrian Coastal Basin

    NASA Astrophysics Data System (ADS)

    Yaghi, Y.; Salim, H.

    2017-09-01

    Recently the topic of the quality of surface water (rivers - lakes) and the sea is an important topics at different levels. It is known that there are two major groups of pollutants: Point Source Pollution (PSP) and non-point Source pollution (NPSP). Historically most of the surface water pollution protection programs dealing with the first set of pollutants which comes from sewage pipes and factories drainage. With the growing need for current and future water security must stand on the current reality of the coastal rivers basin in terms of freshness and cleanliness and condition of water pollution. This research aims to assign the NPS pollutants that reach Al Abrash River and preparation of databases and producing of risk Pollution map for NPS pollutants in order to put the basin management plan to ensure the reduction of pollutants that reach the river. This research resulted of establishing of Databases of NPSP (Like pesticides and fertilizers) and producing of thematic maps for pollution severity and pollution risk based on the pollution models designed in GIS environment and utilizing from remote sensing data. Preliminary recommendations for managing these pollutants were put.

  5. Green ultrasound-assisted extraction of anthocyanin and phenolic compounds from purple sweet potato using response surface methodology

    NASA Astrophysics Data System (ADS)

    Zhu, Zhenzhou; Guan, Qingyan; Guo, Ying; He, Jingren; Liu, Gang; Li, Shuyi; Barba, Francisco J.; Jaffrin, Michel Y.

    2016-01-01

    Response surface methodology was used to optimize experimental conditions for ultrasound-assisted extraction of valuable components (anthocyanins and phenolics) from purple sweet potatoes using water as a solvent. The Box-Behnken design was used for optimizing extraction responses of anthocyanin extraction yield, phenolic extraction yield, and specific energy consumption. Conditions to obtain maximal anthocyanin extraction yield, maximal phenolic extraction yield, and minimal specific energy consumption were different; an overall desirability function was used to search for overall optimal conditions: extraction temperature of 68ºC, ultrasonic treatment time of 52 min, and a liquid/solid ratio of 20. The optimized anthocyanin extraction yield, phenolic extraction yield, and specific energy consumption were 4.91 mg 100 g-1 fresh weight, 3.24 mg g-1 fresh weight, and 2.07 kWh g-1, respectively, with a desirability of 0.99. This study indicates that ultrasound-assisted extraction should contribute to a green process for valorization of purple sweet potatoes.

  6. Effects of various final irrigants on the shear bond strength of resin-based sealer to dentin.

    PubMed

    Kandaswamy, Deivanayagam; Venkateshbabu, Nagendrababu; Arathi, Ganesh; Roohi, Riaz; Anand, Suresh

    2011-01-01

    This study has been designed to evaluate the effect of strong (MTAD) or soft (1- hydroxyethylidene - 1, 1-bisphosphonate (HEBP) final irrigating solution on the shear bond strength of AH plus sealer to coronal dentin. 17% EDTA was used as the reference. Forty freshly extracted human maxillary first premolars were prepared using different irrigation protocols (n=10). All the test groups had 1.3% NaOCl as initial rinse and followed by specific final rinse for each group: G1 - distilled water(control), G2 - 17% EDTA, G3- 18% HEBP and G4 - MTAD. Sections of polyethylene tubes that are 3mm long were filled with freshly mixed sealer and placed on the dentin surfaces. The bonding between the sealer and dentine surface was evaluated using shear bond testing. The values were statistically evaluated using one-way ANOVA followed by Tukey's test. Significant difference was found among the irrigating regimes. EDTA showed highest bond strength followed by HEBP and MTAD.

  7. 46 CFR 46.15-10 - Subdivision load lines.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 and a “diamond” shall be substituted for the “disk”. No “fresh water” line will be marked. [CGFR... located in line with the highest subdivision load line. (f) One fresh water line shall be marked. When a subdivision and a normal load line are combined, the normal fresh water line only shall be used unless the...

  8. Rotating optical geometry sensor for inner pipe-surface reconstruction

    NASA Astrophysics Data System (ADS)

    Ritter, Moritz; Frey, Christan W.

    2010-01-01

    The inspection of sewer or fresh water pipes is usually carried out by a remotely controlled inspection vehicle equipped with a high resolution camera and a lightning system. This operator-oriented approach based on offline analysis of the recorded images is highly subjective and prone to errors. Beside the subjective classification of pipe defects through the operator standard closed circuit television (CCTV) technology is not suitable for detecting geometrical deformations resulting from e.g. structural mechanical weakness of the pipe, corrosion of e.g. cast-iron material or sedimentations. At Fraunhofer Institute of Optronics, System Technologies and Image Exploitation (IOSB) in Karlsruhe, Germany, a new Rotating Optical Geometry Sensor (ROGS) for pipe inspection has been developed which is capable of measuring the inner pipe geometry very precisely over the whole pipe length. This paper describes the developed ROGS system and the online adaption strategy for choosing the optimal system parameters. These parameters are the rotation and traveling speed dependent from the pipe diameter. Furthermore, a practicable calibration methodology is presented which guarantees an identification of the several internal sensor parameters. ROGS has been integrated in two different systems: A rod based system for small fresh water pipes and a standard inspection vehicle based system for large sewer Pipes. These systems have been successfully applied to different pipe systems. With this measurement method the geometric information can be used efficiently for an objective repeatable quality evaluation. Results and experiences in the area of fresh water pipe inspection will be presented.

  9. Larval stages of digenetic trematodes in Melanopsis praemorsa snails from freshwater bodies in Palestine.

    PubMed

    Bdir, Sami; Adwan, Ghaleb

    2011-06-01

    To detect the species of larval trematodes (cercariae) in Melanopsis praemorsa snails from 5 different fresh water bodies in Palestine. A total of 1 880 Melanopsis praemorsa snails were collected from different fresh water bodies in Palestine from October, 2008 to November, 2010. Cercariae in Melanopsis praemorsa snails were obtained by lighting and crushing methods. The behavior of cercariae was observed using a dissecting microscope. Three different species of larval trematodes were identified from Melanopsis praemorsa snails collected only from Al-Bathan fresh water body, while snails from other water bodies were not infected. These species were microcercous cercaria, xiphidiocercaria and brevifurcate lophocercous cercaria. These cercariae called Cercaria melanopsi palestinia I, Cercaria melanopsi palestinia II and Cercaria melanopsi palestinia III have not been described before from this snail in Palestine. The infection rate of Melanopsis praemorsa collected from Al-Bathan fresh water body was 5.7%, while the overall infection rate of snails collected from all fresh water bodies was 4.3%. Details are presented on the morphology and behavior of the cercariae as well as their development within the snail. These results have been recorded for the first time and these cercariae may be of medical and veterinary importance.

  10. Insight into the prevalence and distribution of microbial contamination to evaluate water management in the fresh produce processing industry.

    PubMed

    Holvoet, Kevin; Jacxsens, Liesbeth; Sampers, Imca; Uyttendaele, Mieke

    2012-04-01

    This study provided insight into the degree of microbial contamination in the processing chain of prepacked (bagged) lettuce in two Belgian fresh-cut produce processing companies. The pathogens Salmonella and Listeria monocytogenes were not detected. Total psychrotrophic aerobic bacterial counts (TPACs) in water samples, fresh produce, and environmental samples suggested that the TPAC is not a good indicator of overall quality and best manufacturing practices during production and processing. Because of the high TPACs in the harvested lettuce crops, the process water becomes quickly contaminated, and subsequent TPACs do not change much throughout the production process of a batch. The hygiene indicator Escherichia coli was used to assess the water management practices in these two companies in relation to food safety. Practices such as insufficient cleaning and disinfection of washing baths, irregular refilling of the produce wash baths with water of good microbial quality, and the use of high product/water ratios resulted in a rapid increase in E. coli in the processing water, with potential transfer to the end product (fresh-cut lettuce). The washing step in the production of fresh-cut lettuce was identified as a potential pathway for dispersion of microorganisms and introduction of E. coli to the end product via cross-contamination. An intervention step to reduce microbial contamination is needed, particularly when no sanitizers are used as is the case in some European Union countries. Thus, from a food safety point of view proper water management (and its validation) is a critical point in the fresh-cut produce processing industry.

  11. Chapman Conference on the Hydrologic Aspects of Global Climate Change, Lake Chelan, WA, June 12-14, 1990, Selected Papers

    NASA Technical Reports Server (NTRS)

    Lettenmaier, Dennis P. (Editor); Rind, D. (Editor)

    1992-01-01

    The present conference on the hydrological aspects of global climate change discusses land-surface schemes for future climate models, modeling of the land-surface boundary in climate models as a composite of independent vegetation, a land-surface hydrology parameterizaton with subgrid variability for general circulation models, and conceptual aspects of a statistical-dynamical approach to represent landscape subgrid-scale heterogeneities in atmospheric models. Attention is given to the impact of global warming on river runoff, the influence of atmospheric moisture transport on the fresh water balance of the Atlantic drainage basin, a comparison of observations and model simulations of tropospheric water vapor, and the use of weather types to disaggregate the prediction of general circulation models. Topics addressed include the potential response of an Arctic watershed during a period of global warming and the sensitivity of groundwater recharge estimates to climate variability and change.

  12. Improved, Low-Stress Economical Submerged Pipeline

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.; Chao, Yi

    2011-01-01

    A preliminary study has shown that the use of a high-strength composite fiber cloth material may greatly reduce fabrication and deployment costs of a subsea offshore pipeline. The problem is to develop an inexpensive submerged pipeline that can safely and economically transport large quantities of fresh water, oil, and natural gas underwater for long distances. Above-water pipelines are often not feasible due to safety, cost, and environmental problems, and present, fixed-wall, submerged pipelines are often very expensive. The solution is to have a submerged, compliant-walled tube that when filled, is lighter than the surrounding medium. Some examples include compliant tubes for transporting fresh water under the ocean, for transporting crude oil underneath salt or fresh water, and for transporting high-pressure natural gas from offshore to onshore. In each case, the fluid transported is lighter than its surrounding fluid, and thus the flexible tube will tend to float. The tube should be ballasted to the ocean floor so as to limit the motion of the tube in the horizontal and vertical directions. The tube should be placed below 100-m depth to minimize biofouling and turbulence from surface storms. The tube may also have periodic pumps to maintain flow without over-pressurizing, or it can have a single pump at the beginning. The tube may have periodic valves that allow sections of the tube to be repaired or maintained. Some examples of tube materials that may be particularly suited for these applications are non-porous composite tubes made of high-performance fibers such as Kevlar, Spectra, PBO, Aramid, carbon fibers, or high-strength glass. Above-ground pipes for transporting water, oil, and natural gas have typically been fabricated from fiber-reinforced plastic or from more costly high-strength steel. Also, previous suggested subsea pipeline designs have only included heavy fixed-wall pipes that can be very expensive initially, and can be difficult and expensive to deploy for long distances. A much less expensive Kevlar pipeline can be coiled up on a ship s deck and deployed in the water as the ship moves. Support ships can be used to drop sand into conduits below the uninflated tube, so that the tube remains in place when more buoyant fresh water later fills the tubes.

  13. Percolation blockage: A process that enables melt pond formation on first year Arctic sea ice

    NASA Astrophysics Data System (ADS)

    Polashenski, Chris; Golden, Kenneth M.; Perovich, Donald K.; Skyllingstad, Eric; Arnsten, Alexandra; Stwertka, Carolyn; Wright, Nicholas

    2017-01-01

    Melt pond formation atop Arctic sea ice is a primary control of shortwave energy balance in the Arctic Ocean. During late spring and summer, the ponds determine sea ice albedo and how much solar radiation is transmitted into the upper ocean through the sea ice. The initial formation of ponds requires that melt water be retained above sea level on the ice surface. Both theory and observations, however, show that first year sea ice is so highly porous prior to the formation of melt ponds that multiday retention of water above hydraulic equilibrium should not be possible. Here we present results of percolation experiments that identify and directly demonstrate a mechanism allowing melt pond formation. The infiltration of fresh water into the pore structure of sea ice is responsible for blocking percolation pathways with ice, sealing the ice against water percolation, and allowing water to pool above sea level. We demonstrate that this mechanism is dependent on fresh water availability, known to be predominantly from snowmelt, and ice temperature at melt onset. We argue that the blockage process has the potential to exert significant control over interannual variability in ice albedo. Finally, we suggest that incorporating the mechanism into models would enhance their physical realism. Full treatment would be complex. We provide a simple temperature threshold-based scheme that may be used to incorporate percolation blockage behavior into existing model frameworks.

  14. An iodine supplementation of tomato fruits coated with an edible film of the iodide-doped chitosan.

    PubMed

    Limchoowong, Nunticha; Sricharoen, Phitchan; Techawongstien, Suchila; Chanthai, Saksit

    2016-06-01

    In general, the risk of numerous thyroid cancers inevitably increases among people with iodine deficiencies. An iodide-doped chitosan (CT-I) solution was prepared for dipping tomatoes to coat the fresh surface with an edible film (1.5 μm), thereby providing iodine-rich fruits for daily intake. Characterisation of the thin film was conducted by FTIR and SEM. Stability of the CT-I film was studied via water immersion at various time intervals, and no residual iodide leached out due to intrinsic interactions between the cationic amino group of chitosan and iodide ions. Moreover, the iodide supplement exhibited no effect on the antioxidant activity of tomatoes. The iodine content in the film-coated tomato was determined by ICP-OES. The tomato coating with 1.5% (w/v) CT-I contained approximately 0.4 μg iodide per gram fresh weight. In addition, the freshness and storability of iodine-doped tomatoes were also maintained for shelf-life concerns. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Water-soluble elements in snow and ice on Mt. Yulong.

    PubMed

    Niu, Hewen; Kang, Shichang; Shi, Xiaofei; He, Yuanqing; Lu, Xixi; Shi, Xiaoyi; Paudyal, Rukumesh; Du, Jiankuo; Wang, Shijin; Du, Jun; Chen, Jizu

    2017-01-01

    Melting of high-elevation glaciers can be accelerated by the deposition of light-absorbing aerosols (e.g., organic carbon, mineral dust), resulting in significant reductions of the surface albedo on glaciers. Organic carbon deposited in glaciers is of great significance to global carbon cycles, snow photochemistry, and air-snow exchange processes. In this work, various snow and ice samples were collected at high elevation sites (4300-4850masl) from Mt. Yulong on the southeastern Tibetan Plateau in 2015. These samples were analyzed for water-soluble organic carbon (DOC), total nitrogen (TN), and water-soluble inorganic ions (WSIs) to elucidate the chemical species and compositions of the glaciers in the Mt. Yulong region. Generally, glacial meltwater had the lowest DOC content (0.39mgL -1 ), while fresh snow had the highest (2.03mgL -1 ) among various types of snow and ice samples. There were obvious spatial and temporal trends of DOC and WSIs in glaciers. The DOC and TN concentrations decreased in the order of fresh snow, snow meltwater, snowpit, and surface snow, resulting from the photolysis of DOC and snow's quick-melt effects. The surface snow had low DOC and TN depletion ratios in the melt season; specifically, the ratios were -0.79 and -0.19mgL -1 d -1 , respectively. In the winter season, the ratios of DOC and TN were remarkably higher, with values of -0.20mgL -1 d -1 and -0.08mgL -1 d -1 , respectively. A reduction of the DOC and TN content in glaciers was due to snow's quick melt and sublimation. Deposition of these light-absorbing impurities (LAPs) in glaciers might accelerate snowmelt and even glacial retreat. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Wintertime re-ventilation of the East Greenland Current's Atlantic-origin Overflow Water in the western Iceland Sea

    NASA Astrophysics Data System (ADS)

    Våge, Kjetil; Håvik, Lisbeth; Papritz, Lukas; Spall, Michael; Moore, Kent

    2017-04-01

    The Deep Western Boundary Current constitutes the lower limb of the Atlantic Meridional Overturning Circulation, and, as such, is a crucial component of the Earth's climate system. The largest and densest contribution to the current stems from the overflow plume that passes through Denmark Strait. A main source of Denmark Strait Overflow Water (DSOW) is the East Greenland Current (EGC). The DSOW transported by the EGC originates from the Atlantic inflow into the Nordic Seas. This is then transformed into Atlantic-origin Overflow Water while progressing northward through the eastern part of the Nordic Seas. Here we show, using measurements from autonomous gliders deployed from fall 2015 to spring 2016, that the Atlantic-origin Overflow Water transported toward Denmark Strait by the EGC was re-ventilated while transiting the western Iceland Sea in winter. In summer, this region is characterized by an upper layer of cold, fresh Polar Surface Water that is thought to prevent convection. But in fall and winter this fresh water mass is diverted toward the Greenland shelf by enhanced northerly winds, which results in a water column that is preconditioned for convection. Severe heat loss from the ocean to the atmosphere offshore of the ice edge subsequently causes the formation of deep mixed layers. This further transforms the Atlantic-origin Overflow Water and impacts the properties of the DSOW, and hence the deepest and densest component of the lower limb of the Atlantic Meridional Overturning Circulation.

  17. Estimated water use, by county, in North Carolina, 1995

    USGS Publications Warehouse

    Walters, D.A.

    1997-01-01

    Data on water use in North Carolina were compiled for 1995 as part of a cooperative agreement between the U.S. Geological Survey and the Division of Water Resources of the North Carolina Department of Environment and Natural Resources. Data were compiled from a number of Federal, State, and private sources for the offstream water-use categories of public supply, domestic, commercial, industrial, mining, livestock, irrigation, and thermoelectric-power generation. Data also were collected for instream use from hydroelectric facilities. Total withdrawals (fresh and saline) during 1995 were an estimated 9,286 million gallons per day for the offstream water-use categories. About 94 percent of the water withdrawn was from surface water. Thermoelectric-power generation accounted for 80 percent of all withdrawals. Instream water use for hydroelectric-power generation totaled about 56,400 million gallons per day. Each water-use category is summarized in this report by county and source of water supply.

  18. Application of water-assisted ultraviolet light in combination of chlorine and hydrogen peroxide to inactivate Salmonella on fresh produce.

    PubMed

    Guo, Shuanghuan; Huang, Runze; Chen, Haiqiang

    2017-09-18

    With the demand for fresh produce increases in recent decades, concerns for microbiological safety of fresh produce are also raised. To identify effective ultraviolet (UV) light treatment for fresh produce decontamination, we first determined the effect of three forms of UV treatment, dry UV (samples were treated by UV directly), wet UV (samples were dipped in water briefly and then exposed to UV), and water-assisted UV (samples were treated by UV while being immersed in agitated water) on inactivation of Salmonella inoculated on tomatoes and fresh-cut lettuce. In general, the water-assisted UV treatment was found to be the most effective for both produce items. Chlorine and hydrogen peroxide were then tested to determine whether they could be used to enhance the decontamination efficacy of water-assisted UV treatment and prevent transfer of Salmonella via wash water by completely eliminating it. Neither of them significantly enhanced water-assisted UV inactivation of Salmonella on tomatoes. Chlorine significantly improved the decontamination effectiveness of the water-assisted UV treatment for baby-cut carrots and lettuce, but not for spinach. In general, the single water-assisted UV treatment and the combined treatment of water-assisted UV and chlorine were similar or more effective than the chlorine washing treatment. In most of the cases, no Salmonella was detected in the wash water when the single water-assisted UV treatment was used to decontaminate tomatoes. In a few cases when Salmonella was detected in the wash water, the populations were very low,≤2CFU/mL, and the wash water contained an extremely high level of organic load and soil level. Therefore, the single water-assisted UV treatment could potentially be used as an environmentally friendly and non-chemical alternative to chlorine washing for tomatoes after validation in industrial scale. For lettuce, spinach and baby-cut carrots, the combined treatment of water-assisted UV treatment and chlorine was needed to maintain a pathogen free environment in the wash water so that cross contamination could be prevented during fresh produce washing. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Effects of the Structure of Water Rights on Agricultural Production During Drought: A Spatiotemporal Analysis of California's Central Valley

    NASA Astrophysics Data System (ADS)

    Nelson, K. S.; Burchfield, E. K.

    2017-10-01

    California's Central Valley region has been called the "bread-basket" of the United States. The region is home to one of the most productive agricultural systems on the planet. Such high levels of agricultural productivity require large amounts of fresh water for irrigation. However, the long-term availability of water required to sustain high levels of agricultural production is being called into question following the latest drought in California. In this paper, we use Bayesian multilevel spatiotemporal modeling techniques to examine the influence of the structure of surface water rights in the Central Valley on agricultural production during the recent drought. California is an important place to study these dynamics as it is the only state to recognize the two dominant approaches to surface water management in the United States: riparian and appropriative rights. In this study, Bayesian spatiotemporal modeling is employed to account for spatial processes that have the potential to influence the effects of water right structures on agricultural production. Results suggest that, after accounting for spatiotemporal dependencies in the data, seniority in surface water access significantly improves crop health and productivity on cultivated lands but does not independently affect the ability to maintain cultivated extent. In addition, agricultural productivity in watersheds with more junior surface water rights shows less sensitivity to cumulative drought exposure than other watersheds, however the extent of cultivation in these same watersheds is relatively more sensitive to cumulative drought exposure.

  20. Laccase-Catalyzed Surface Modification of Thermo-Mechanical Pulp (TMP) for the Production of Wood Fiber Insulation Boards Using Industrial Process Water

    PubMed Central

    Schubert, Mark; Ruedin, Pascal; Civardi, Chiara; Richter, Michael; Hach, André; Christen, Herbert

    2015-01-01

    Low-density wood fiber insulation boards are traditionally manufactured in a wet process using a closed water circuit (process water). The water of these industrial processes contains natural phenolic extractives, aside from small amounts of admixtures (e.g., binders and paraffin). The suitability of two fungal laccases and one bacterial laccase was determined by biochemical characterization considering stability and substrate spectra. In a series of laboratory scale experiments, the selected commercial laccase from Myceliophtora thermophila was used to catalyze the surface modification of thermo-mechanical pulp (TMP) using process water. The laccase catalyzed the covalent binding of the phenolic compounds of the process water onto the wood fiber surface and led to change of the surface chemistry directly via crosslinking of lignin moieties. Although a complete substitution of the binder was not accomplished by laccase, the combined use of laccase and latex significantly improved the mechanical strength properties of wood fiber boards. The enzymatically-treated TMP showed better interactions with the synthetic binder, as shown by FTIR-analysis. Moreover, the enzyme is extensively stable in the process water and the approach requires no fresh water as well as no cost-intensive mediator. By applying a second-order polynomial model in combination with the genetic algorithm (GA), the required amount of laccase and synthetic latex could be optimized enabling the reduction of the binder by 40%. PMID:26046652

  1. Calcium and other ions in blood and skeleton of Nicaraguan fresh-water shark.

    PubMed

    URIST, M R

    1962-09-21

    The bull shark, Carcharhinus leucas, employing archaic but effective means of regulating the physical-chemical composition of its body fluids, thrives in tropical fresh-water rivers and lakes. The ionic strength of the serum and the concentrations of total solutes, calcium, urea, and other ions are below the levels found in marine elasmobranchs but higher than the levels in teleosts. The patterns of the calcium deposits of the vertebrae are identical in marine and fresh-water subspecies.

  2. Occurrence of enteric viruses in reclaimed and surface irrigation water: relationship with microbiological and physicochemical indicators.

    PubMed

    López-Gálvez, F; Truchado, P; Sánchez, G; Aznar, R; Gil, M I; Allende, A

    2016-10-01

    To assess the prevalence of enteric viruses in different irrigation water sources and in the irrigated produce, and the possible links with microbiological and physicochemical water characteristics. The prevalence and levels of Escherichia coli, Norovirus (NoV) genogroup I (GI) and II (GII), as well as Hepatitis A virus were assessed in three types of water: surface water (surface-W), reclaimed water subjected to secondary treatment (secondary-W) and reclaimed water subjected to tertiary treatment (tertiary-W), as well as in zucchini irrigated with these irrigation water sources. Chemical oxygen demand (COD), turbidity, total suspended solids, alkalinity and maximum filterable volume (MFV) were also measured in the water. Higher prevalence of NoV in secondary-W (GI 100%, GII 55·6%) and tertiary-W (GI 91·7%, GII 66·7%) compared with surface-W (GI 58·4%, GII 22·2%) was observed. Nov GI showed positive correlation with E. coli (Spearman's correlation coefficient = 0·68, P < 0·01), and with some physicochemical parameters such as COD (0·52, P < 0·01), turbidity (0·52, P < 0·01) and MFV (0·54, P < 0·01). Escherichia coli and enteric viruses were not detected in zucchini. There is a potential risk of contamination of crops with NoV when reclaimed water is used for irrigation. Increase the knowledge on the prevalence of enteric viruses in different irrigation water sources, and its consequences for fresh produce safety. © 2016 The Society for Applied Microbiology.

  3. Life cycle greenhouse gas emissions, consumptive water use and levelized costs of unconventional oil in North America

    NASA Astrophysics Data System (ADS)

    Mangmeechai, Aweewan

    Conventional petroleum production in many countries that supply U.S. crude oil as well as domestic production has declined in recent years. Along with instability in the world oil market, this has stimulated the discussion of developing unconventional oil production, e.g., oil sands and oil shale. Expanding the U.S. energy mix to include oil sands and oil shale may be an important component in diversifying and securing the U.S. energy supply. At the same time, life cycle GHG emissions of these energy sources and consumptive water use are a concern. In this study, consumptive water use includes not only fresh water use but entire consumptive use including brackish water and seawater. The goal of this study is to determine the life cycle greenhouse gas (GHG) emissions and consumptive water use of synthetic crude oil (SCO) derived from Canadian oil sands and U.S. oil shale to be compared with U.S. domestic crude oil, U.S. imported crude oil, and coal-to-liquid (CTL). Levelized costs of SCO derived from Canadian oil sands and U.S. oil shale were also estimated. The results of this study suggest that CTL with no carbon capture and sequestration (CCS) and current electricity grid mix is the worst while crude oil imported from United Kingdom is the best in GHG emissions. The life cycle GHG emissions of oil shale surface mining, oil shale in-situ process, oil sands surface mining, and oil sands in-situ process are 43% to 62%, 13% to 32%, 5% to 22%, and 11% to 13% higher than those of U.S. domestic crude oil. Oil shale in-situ process has the largest consumptive water use among alternative fuels, evaluated due to consumptive water use in electricity generation. Life cycle consumptive water use of oil sands in-situ process is the lowest. Specifically, fresh water consumption in the production processes is the most concern given its scarcity. However, disaggregated data on fresh water consumption in the total water consumption of each fuel production process is not available. Given current information, it is inconclusive whether unconventional oil would require more or less consumptive fresh water use than U.S. domestic crude oil production. It depends on the water conservative strategy applied in each process. Increasing import of SCO derived from Canadian oil sands and U.S. oil shale would slightly increase life cycle GHG emissions of the U.S. petroleum status quo. The expected additional 2 million bpd of Canadian SCO from oil sands and U.S. oil shale would increase life cycle GHG emissions of the U.S. petroleum status quo on average only 10 and 40 kg CO2 equiv/bbl, or about 7.5 and 29 million tons CO2 equiv/year. However this increase represents less than 1 and 5% of U.S. transportation emissions in 2007. Because U.S. oil shale resources are located in areas experiencing water scarcity, methods to manage the issue were explored. The result also shows that trading water rights between Upper and Lower Colorado River basin and transporting synthetic crude shale oil to refinery elsewhere is the best scenario for life cycle GHG emissions and consumptive water use of U.S. oil shale production. GHG emissions and costs of water supply system contribute only 1-2% of life cycle GHG emissions and 1-6% of total levelized costs. The levelized costs of using SCO from oil shale as feedstock are greater than SCO from oil sands, and CTL. The levelized costs of producing liquid fuel (gasoline and diesel) using SCO derived from Canadian oil sands as feedstock are approximately 0.80-1.00/gal of liquid fuel. The levelized costs of SCO derived from oil shale are 1.6-4.5/gal of liquid fuel (oil shale surface mining process) and 1.6-5.2/gal of liquid fuel (oil shale in-situ process). From an energy security perspective, increasing the use of Canadian oil sands, U.S. oil shale, and CTL may be preferable to increasing Middle East imports. However, oil shale and CTL has the advantage security wise over Canadian oil sands because oil shale and coal are abundant U.S. resources. From a GHG emissions and consumptive water use perspective, CTL requires less consumptive water use than oil shale in-situ process but produces more GHG emissions than oil shale in-situ and surface mining process, unless CTL plant performs CCS and renewable electricity.

  4. Water Retention in Mature and Immature Lunar Regolith

    NASA Astrophysics Data System (ADS)

    Flom, A. J.; Kramer, G. Y.; Combe, J. P.

    2017-12-01

    The study of water and hydroxyl (HOH/OH) in lunar regolith and how it is retained has important implications for understanding how the Solar System and the Moon were formed. As a "hydration" phenomenon, understanding the process may provide a vital resource in space exploration. This study looks at how the amount of surface HOH/OH changes over time (eons) in lunar regolith. This is done by comparing the spectral absorption feature in the 3 micron area in Moon Mineralogy Mapper (M3) data [1]. This area of the spectrum is affected by thermal emission and it is known that the initial M3 correction for this is was not sufficient. To correct for this, a new thermal correction has been done on the data using a surface roughness model. With this correction, the 3 micron area spectral absorption feature between mature regolith (that has been exposed to weathering processes on the surface) against immature regolith (in fresh crater ejecta which has been mostly unaffected by these processes) [2]. It is commonly believed that HOH/OH is being formed due to hydrogen atoms from the solar wind interacting with oxygen in lunar minerals. There are a couple competing hypotheses about the process that dominates retaining this HOH/OH once it forms. The first suggests that the exposed oxygen atoms on freshly fractured mineral surfaces facilitate adsorption of protons. Alternately, a second proposes that HOH/OH is trapped in vesicles in the glassy parts of more mature regolith. The first hypothesis would lead to the mature regolith having a weaker HOH/OH absorption than immature regolith, because its weathered glassy coating would prevent it from capturing hydrogen atoms as efficiently. The second hypothesis would lead to the mature regolith having a stronger absorption because the glassy component of the regolith increases with maturity, and therefore so do the vesicles in that glassy coating. This study looks at fresh craters across Crisium, South Pole Aitken, and Reiner Gamma in order to identify a trend across many different terrains and compare these two hypotheses. References [1] Pieters, C. M. et al. (2009) Science 326 [2] Kramer, G.Y. and Combe, J-P. (2016) LPSC 47

  5. Effect of a brown seaweed (Laminaria digitata) extract containing laminarin and fucoidan on the quality and shelf-life of fresh and cooked minced pork patties.

    PubMed

    Moroney, N C; O'Grady, M N; O'Doherty, J V; Kerry, J P

    2013-07-01

    A spray-dried seaweed extract containing laminarin (L, 9.3%) and fucoidan (F, 7.8%) (L/F extract) from brown seaweed (Laminaria digitata) was added directly to minced pork (M. longissimus dorsi) (LD) at levels of 0.01%, 0.1% and 0.5% (w/w). Fresh and cooked minced pork patties were stored in modified atmosphere packs containing 80% O2:20% CO2 and 70% N2:30% CO2, respectively, for up to 14 days at 4 °C. The L/F extract reduced the surface redness ('a*' values) of fresh patties as a function of concentration. The L/F extract (0.5%) exerted the greatest lipid pro-oxidant activity in fresh patties. The L/F extract (0.5%) significantly decreased (P<0.05) lipid oxidation in cooked patties. The L/F extract had no effect on the microbiological status, pH, water holding capacity (WHC) or cook loss of patties. Pork patties containing 0.01% L/F were preferred by sensory panellists. Further research will focus on the use of refined purified seaweed extracts in functional meat products. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Global occurrence of Torque teno virus in water systems.

    PubMed

    Charest, A J; Plummer, J D; Long, S C; Carducci, A; Verani, M; Sidhu, J P S

    2015-09-01

    Bacterial indicator organisms are used globally to assess the microbiological safety of waters. However, waterborne viral outbreaks have occurred in drinking water systems despite negative bacterial results. Using viral markers may therefore provide more accurate health risk assessment data. In this study, fecal, wastewater, stormwater, surface water (fresh and salt), groundwater, and drinking water samples were analyzed for the presence or concentration of traditional indicators, innovative indicators and viral markers. Samples were obtained in the United States, Italy, and Australia and results compared to those reported for studies conducted in Asia and South America as well. Indicators included total coliforms, Escherichia coli, enterococci, male-specific coliphages, somatic coliphages and microviradae. Viral markers included adenovirus, polyomavirus, and a potential new surrogate, Torque teno virus (TTV). TTV was more frequently found in wastewaters (38-100%) and waters influenced by waste discharges (25%) than in surface waters used as drinking water sources (5%). TTV was also specific to human rather than animal feces. While TTV numbers were strongly correlated to other viral markers in wastewaters, suggesting its utility as a fecal contamination marker, data limitations and TTV presence in treated drinking waters demonstrates that additional research is needed on this potential viral indicator.

  7. Uptake and Accumulation of Pharmaceuticals in Overhead- and Surface-Irrigated Greenhouse Lettuce.

    PubMed

    Bhalsod, Gemini D; Chuang, Ya-Hui; Jeon, Sangho; Gui, Wenjun; Li, Hui; Ryser, Elliot T; Guber, Andrey K; Zhang, Wei

    2018-01-31

    Understanding the uptake and accumulation of pharmaceuticals in vegetables under typical irrigation practices is critical to risk assessment of crop irrigation with reclaimed water. This study investigated the pharmaceutical residues in greenhouse lettuce under overhead and soil-surface irrigations using pharmaceutical-contaminated water. Compared to soil-surface irrigation, overhead irrigation substantially increased the pharmaceutical residues in lettuce shoots. The increased residue levels persisted even after washing for trimethoprim, monensin sodium, and tylosin, indicating their strong sorption to the shoots. The postwashing concentrations in fresh shoots varied from 0.05 ± 0.04 μg/kg for sulfadiazine to 345 ± 139 μg/kg for carbamazepine. Root concentration factors ranged from 0.04 ± 0.14 for tylosin to 19.2 ± 15.7 for sulfamethoxazole. Translocation factors in surface-irrigated lettuce were low for sulfamethoxalzole, trimethoprim, monensin sodium, and tylosin (0.07-0.15), but high for caffeine (4.28 ± 3.01) and carbamazepine (8.15 ± 2.87). Carbamazepine was persistent in soil and hyperaccumulated in shoots.

  8. STIMULATION OF FUNDULUS BY HYDROCHLORIC AND FATTY ACIDS IN FRESH WATER, AND BY FATTY ACIDS, MINERAL ACIDS, AND THE SODIUM SALTS OF MINERAL ACIDS IN SEA WATER

    PubMed Central

    Allison, J. B.; Cole, William H.

    1934-01-01

    1. Fundulus heteroclitus was found to be a reliable experimental animal for studies on chemical stimulation in either fresh or sea water. 2. The response of Fundulus to hydrochloric, acetic, propionic, butyric, valeric, and caproic acids was determined in fresh water, while the same acids plus sulfuric and nitric, as well as the sodium salts of the mineral acids, were tested in sea water. 3. Stimulation of Fundulus by hydrochloric acid in fresh water is correlated with the effective hydrogen ion concentration. Stimulation by the n-aliphatic acids in the same environment is correlated with two factors, the effective hydrogen ion concentration and the potential of the non-polar group in the molecule. However, as the number of CH2 groups increases the stimulating effect increases by smaller and smaller amounts, approaching a maximum value. 4. Stimulation of Fundulus by hydrochloric, sulfuric, and nitric acids in sea water is correlated with the forces of primary valence which in turn are correlated with the change in hydrogen ion concentration of the sea water. The n-aliphatic acids increase in stimulating efficiency in sea water as the length of the carbon chain increases, but a limiting value is not reached as soon as in fresh water. 5. Only a slight difference in stimulation by hydrochloric acid is found in sea water and in fresh water. However, there is a significant difference in stimulation by the fatty acids in fresh and in sea water, which is partly explained by the different buffering capacities of the two media. It is to be noted that in the same environment two different fish, Fundulus and Eupomotis, give different results, while the same fish (Fundulus) in two different environments responds similarly to mineral acids but differently to fatty acids. These results illustrate that stimulation is a function of the interaction between environment and receptors, and that each is important in determining the response. 6. Stimulation by sodium chloride, nitrate, and sulfate is correlated with equivalent concentrations of the salts added to sea water, or with the forces of primary valence. Although the threshold for stimulation by the salts is considerably higher than for the acids, the efficiency of stimulation by the salts is greater. PMID:19872815

  9. Preliminary evaluation of the feasibility of artificial recharge in northern Qater

    USGS Publications Warehouse

    Vecchioli, John

    1976-01-01

    Fresh ground water in northern Qatar occurs as a lens in limestone and dolomite of Eocene age. Natural recharge from precipitation averages 17x106 cubic metres per year whereas current discharge averages 26.6x106 cubic metres per year. Depletion of storage is accompanied by a deterioration in quality due to encroachment of salty water from the Gulf and from underlying formations. Artificial recharge with desalted sea water to permit additional agricultural development appears technically feasible but its practicability needs to be examined further. A hydrogeological appraisal including test drilling, geophysical logging, pumping tests, and a recharge test, coupled with engineering analysis of direct surface storage/distribution of desalted sea water versus aquifer storage/distribution, is recommended.

  10. Insights into the Groundwater Salinization Processes in Manas River Basin, Northwest China

    NASA Astrophysics Data System (ADS)

    Jin, M.; Liu, Y.; Liang, X.

    2017-12-01

    Manas River Basin (MRB) is a typical mountains-oasis-desert inland basin in northwest China, where groundwater salinization is threatening the local water use and the environment, but the groundwater salinization process is not clear. Based on groundwater flow system analysis by integrating flow fields, hydrochemical and isotopic characteristics, a deuterium excess analytical method was used to quantitatively assess salinization mechanism and calculate the contribution ratios of evapoconcentration effect to the salinities. 73 groundwater samples and 11 surface water samples were collected from the basin. Hydrochemical diagrams and δD and δ18O compositions indicated that evapoconcentration, mineral dissolution and transpiration, increased the groundwater salinities (i.e. total dissolved solids). The results showed that the average contribution ratios of evapoconcentration effect to the increased salinities were 5.8% and 32.7% in groundwater and surface water, respectively. From the piedmont plain to the desert plain, the evapoconcentration effect increased the average groundwater loss from 7% to 29%. However, it only increased slight salinity (0 - 0.27 g/L), as determined from the deuterium excess signals. Minerals dissolution and anthropogenic activities are the major cause of groundwater salinization problem. The results revealed that fresh water in the rivers directly and quickly infiltrated the aquifers in the piedmont area with evapoconcentration affected weakly, and the fresh water interacted with the sediments and dissolved soluble minerals, subsequently increasing the salinities. Combined with the groundwater stable isotopic compositions and hydrochemical evolution, the relationships between δ18O and Cl and salinities reveal the soil evaporites leaching by the vertical recharge (irrigation return flow and channels leakage) mainly affect the groundwater salinization processes in the middle alluvial-diluvial plain and the desert land. The saline water released from aquitards by continuous decline of water level due to over exploitation is an additional factor for groundwater salinization.

  11. The Role of Late Summer Melt Pond Water Layers in the Ocean Mixed Layer on Enhancing Ice/Ocean Albedo Feedbacks in the Arctic

    NASA Astrophysics Data System (ADS)

    Stanton, T. P.; Shaw, W. J.

    2016-02-01

    Drainage of surface melt pond water into the top of the ocean mixed layer is seen widely in the Arctic ice pack in later summer (for example Gallaher et al 2015). Under calm conditions, this fresh water forms a thin, stratified layer immediately below the ice which is dynamically decoupled from the thicker, underlying seasonal mixed layer by the density difference between the two layers. The ephemeral surface layer is significantly warmer than the underlying ocean water owing to the higher freezing temperature of the fresh melt water. How the presence of this warm ephemeral layer enhances basal melt rate and speeds the destruction of the floes is investigated. High resolution timeseries measurements of T/S profiles in the 2m of the ocean immediately below the ice, and eddy-correlation fluxes of heat, salt and momentum 2.5m below the ice were made from an Autonomous Ocean Flux Buoy over a 2 month interval in later summer of 2015 as a component of the ONR Marginal Ice Zone project. The stratification and turbulent forcing observations are used with a 1 D turbulence closure model to understand how momentum and incoming radiative energy are stored and redistributed within the ephemeral layer. Under low wind forcing conditions both turbulent mixing energy and the water with high departure from freezing are trapped in the ephemeral layer by the strong density gradient at the base of the layer, resulting in rapid basal melting. This case is contrasted with model runs where the ephemeral layer heat is allowed to mix across the seasonal mixed layer, which results in slower basal melt rates. Consequently, the salinity-trapped warm ephemeral layer results in the formation of more open water earlier in the summer season, in turn resulting in increased cumulative heating of the ocean mixed layer, enhancing ice/ocean albedo feedbacks.

  12. Wetland and water supply

    USGS Publications Warehouse

    Baker, John Augustus

    1960-01-01

    The Geological Survey has received numerous inquiries about the effects of proposed changes in the wetland environment. The nature of the inquiries suggests a general confusion in the public mind as to wetland values and an increasing concern by the public with the need for facts as a basis for sound decisions when public action is required. Perhaps the largest gap in our knowledge is in regard to the role played by the wetland in the natural water scheme. Specialists in such fields as agriculture and conservation have studied the wetland in relation to its special uses and values for farming and as a habitat for fish and wildlife. However, except as studied incidentally by these specialists, the role of the wetland with respect to water has been largely neglected. This facet of the wetland problem is of direct concern to the Geological Survey. We commonly speak of water in terms of its place in the hydrologic environment---as, for example, surface water or ground water. These terms imply that water can be neatly pigeonholed. With respect to the wetland environment nothing can be further from the truth. In fact, one objective of this discussion is to demonstrate that for the wetland environment surface water, ground water, and soil water cannot be separated realistically, but are closely interrelated and must be studied together. It should be noted that this statement holds true for the hydrologic environment in general, and that the wetland environment is by no means unique in this respect. Our second and principal objective is to identify some of the problems that must be studied in order to clarify the role of the wetland in relation to water supply. We have chosen to approach these objectives by briefly describing one area for which we have some information, and by using this example to point out some of the problems that need study. First, however, let us define what we, as geohydrologists, mean by wetland and briefly consider wetland classifications. For our purpose wetlands are land areas that are covered with shallow water or subjected to intermittent flooding and subsequent slow drainage, and which generally are characterized by an accumulation of organic matter hereafter termed swamp deposits.' These wetlands may be classified in a number of different ways depending on the purpose of the classifier. For example, the Fish and Wildlife Service classifies wetlands into 20 different types based on water quality (fresh or salty), drainage, and vegetation. At the risk of some oversimplification we might consider 4 types of wetland from the standpoint of hydrology: (1) fresh-water swamps in which the swamp deposits are underlain by glacial till or bedrock; (2)fresh-water swamps in which the swamp deposits are underlain by marine or lacustrine clay and silt; (3) fresh-water swamps in which the swamp deposits are underlain by glacial outwash or alluvium consisting mostly of sand or sand and gravel; and (4) salt .marshes and salt meadows. The three fresh-water types of wetland are of interest with respect to water supply, and of these, the type in which swamp deposits are underlain by glacial outwash is of particular interest in New England. In the Ipswich River basin above the Geological Survey gaging station at South Middleton, Mass., is an area of 44 square miles which forms the headwaters section of the basin. The relief of the area is low. About half the area consists of hills mostly underlain by bedrock but mantled by a thin layer of glacial till. The other half consists Of lowlands---including swamps, low terraces and plains---underlain by glacial outwash, Swampland, used hereafter as a synonym for wetland, forms about a fourth of the area. Some of the swamps occupy depressions in the till blanket and are situated at somewhat higher levels than the lowlands. The largest swamps, however, border the Ipswich River and its tributaries. Here the swamp deposits, which consist of muck and peat mixed with s

  13. Material Excavated by a Fresh Impact and Identified as Water Ice

    NASA Image and Video Library

    2009-09-24

    The Compact Reconnaissance Imaging Spectrometer for Mars, an instrument on NASA Mars Reconnaissance Orbiter, obtained information confirming material excavated by a fresh impact and Identified as water ice.

  14. ARC-1979-A79-7016

    NASA Image and Video Library

    1979-03-01

    Range : 4.2 million kilometers (2.6 million miles) Ganymede is Jupiter's Largest Galilean satellites and 3rd from the planet. Photo taken after midnight Ganymede is slightly larger than Mercury but much less dense (twice the density of water). Its surface brightness is 4 times of Earth's Moon. Mare regions (dark features) are like the Moon's but have twice the brightness, and believed to be unlikely of rock or lava as the Moon's are. It's north pole seems covered with brighter material and may be water frost. Scattered brighter spots may be related to impact craters or source of fresh ice.

  15. Earth observations taken during the STS-59 mission

    NASA Image and Video Library

    1994-04-16

    STS059-90-098 (9-20 April 1994) --- Ice-covered Lake Baikal, in Siberia, is about 400 miles long within a major rift valley. The water surface is 455 meters above sea level, but the bottom is 1,295 meters below sea level; the lake represents the largest body of fresh water in the world, except for the Antarctic and Greenland ice sheets. A tributary, the Senusi River, has built a delta on the east side. The Angara River exits the lake to the northwest; the city of Irkutsk is under the small, rippled cloud bank that crosses the river. Hasselblad camera.

  16. ARC-1979-A79-7019

    NASA Image and Video Library

    1979-02-27

    Range : 6 million kilometers (3.7 million miles) Central Longitude 120 degrees west, North is up. and 3rd from the planet. Photo taken after midnight Ganymede is slightly larger than Mercury but much less dense (twice the density of water). Its surface brightness is 4 times of Earth's Moon. Mare regions (dark features) are like the Moon's but have twice the brightness, and believed to be unlikely of rock or lava as the Moon's are. It's north pole seems covered with brighter material and may be water frost. Scattered brighter spots may be related to impact craters or source of fresh ice.

  17. Wetland paleoecological study of southwest coastal Louisiana: sediment cores and diatom calibration dataset

    USGS Publications Warehouse

    Smith, Kathryn E. L.; Flocks, James G.; Steyer, Gregory D.; Piazza, Sarai C.

    2015-01-01

    Wetland sediment data were collected in 2009 and 2010 throughout the southwest Louisiana Chenier Plain as part of a pilot study to develop a diatom-based proxy for past wetland water chemistry and the identification of sediment deposits from tropical storms. The complete dataset includes forty-six surface sediment samples and nine sediment cores. The surface sediment samples were collected in fresh, intermediate, and brackish marsh and are located coincident with Coastwide Reference Monitoring System (CRMS) sites. The nine sediment cores were collected at the Rockefeller Wildlife Refuge (RWR) located in Grand Chenier, La.

  18. Progress report on studies of salt-water encroachment on Long Island, New York, 1953

    USGS Publications Warehouse

    Lusczynski, N.J.; Upson, J.E.

    1954-01-01

    Nearly all the water used on Long Island, N. Y., is derived by wells from the thick and extensive water-bearing formations that underlie and compose the entire island. The unconsolidated deposits, consisting of sand, gravel, and clay, range in thickness from a few feet in northern Queens County to more than 2,000 feet in southern Suffolk County. Four main and relatively distinct aquifers, all interconnected hydraulically to a greater or lesser degree, have been recognized and delineated at least in a general way. They are, from younger to older, the upper Pleistocene deposits, in which the ground water is mainly unconfined, and three formations in which the water is generally confined - the Jameco gravel, of Pleistocene age, and the Magothy (?) formation and the Lloyd sand member of the Rartian formation, both of Lake Cretaceous age. Except for some artificial recharge, these aquifers are replenished entirely by infiltration of precipitation. Under natural conditions, the fresh water moves into and through the formations, discharging into the sea. With the growth of population on Long Island and the continuously increasing use of water over the years, not only has the infiltration of precipitation been seriously impeded at places, but the withdrawals from the ground-water reservoir have increased markedly. These factors have upset the natural balance between the fresh surface and ground water of the island and the surrounding sea water, and with increased use of water will do so more and more, thus leading to salt-water encroachment. In a sense, the whole problem of utilization of ground water on Long Island is one of determining how much ground water can be withdrawn without serious salt-water encroachment.

  19. Geophysical imaging reveals topographic stress control of bedrock weathering

    NASA Astrophysics Data System (ADS)

    St. Clair, J.; Moon, S.; Holbrook, W. S.; Perron, J. T.; Riebe, C. S.; Martel, S. J.; Carr, B.; Harman, C.; Singha, K.; Richter, D. deB.

    2015-10-01

    Bedrock fracture systems facilitate weathering, allowing fresh mineral surfaces to interact with corrosive waters and biota from Earth’s surface, while simultaneously promoting drainage of chemically equilibrated fluids. We show that topographic perturbations to regional stress fields explain bedrock fracture distributions, as revealed by seismic velocity and electrical resistivity surveys from three landscapes. The base of the fracture-rich zone mirrors surface topography where the ratio of horizontal compressive tectonic stresses to near-surface gravitational stresses is relatively large, and it parallels the surface topography where the ratio is relatively small. Three-dimensional stress calculations predict these results, suggesting that tectonic stresses interact with topography to influence bedrock disaggregation, groundwater flow, chemical weathering, and the depth of the “critical zone” in which many biogeochemical processes occur.

  20. COSOLVENT EFFECTS ON PHENANTHRENE SORPTION-DESORPTION ON A FRESH-WATER SEDIMENT

    EPA Science Inventory

    This study evaluated the effects of the water-miscible cosolvent methanol on the sorption-desorption of phenanthrene by the natural organic matter (NOM) of a fresh-water sediment. A biphasic pattern was observed in the relationship between the log of the carbon-normalized sorpti...

  1. Stability of low levels of perchlorate in drinking water and natural water samples

    USGS Publications Warehouse

    Stetson, S.J.; Wanty, R.B.; Helsel, D.R.; Kalkhoff, S.J.; Macalady, D.L.

    2006-01-01

    Perchlorate ion (ClO4-) is an environmental contaminant of growing concern due to its potential human health effects, impact on aquatic and land animals, and widespread occurrence throughout the United States. The determination of perchlorate cannot normally be carried out in the field. As such, water samples for perchlorate analysis are often shipped to a central laboratory, where they may be stored for a significant period before analysis. The stability of perchlorate ion in various types of commonly encountered water samples has not been generally examined-the effect of such storage is thus not known. In the present study, the long-term stability of perchlorate ion in deionized water, tap water, ground water, and surface water was examined. Sample sets containing approximately 1000, 100, 1.0, and 0.5 ??g l-1 perchlorate ion in deionized water and also in local tap water were formulated. These samples were analyzed by ion chromatography for perchlorate ion concentration against freshly prepared standards every 24 h for the first 7 days, biweekly for the next 4 weeks, and periodically after that for a total of 400 or 610 days for the two lowest concentrations and a total of 428 or 638 days for the high concentrations. Ground and surface water samples containing perchlorate were collected, held and analyzed for perchlorate concentration periodically over at least 360 days. All samples except for the surface water samples were found to be stable for the duration of the study, allowing for holding times of at least 300 days for ground water samples and at least 90 days for surface water samples. ?? 2006 Elsevier B.V. All rights reserved.

  2. Hygromorphic Scales for Use in Water from Morning Dew and Elementary Model of Hydrogel Expansion Properties

    NASA Astrophysics Data System (ADS)

    Margolis, Nate

    Secure access to water is a growing problem in the world today. Millions of people do not have contact with fresh or clean water for drinking. Consuming dirty water leads to many illnesses and deaths every year. When water is scarce people are less likely to follow basic hygiene which also adds to the problem of sickness from water. Currently most of the population gets their water from run-off such as rivers, lakes and other fresh water bodies. Aquafers can also provide water, however, once they do not replenish themselves so once they are empty they will no longer provide a fresh water source. This is a serious problem because the population has grown to 7 billion people and only 2% of the world's water is fresh water. Of this, most the fresh water is locked in the polar ice caps. This leaves only .77% of the available fresh water accessible for human use. While wealthy countries may not feel this burden due to their infrastructure. Impoverish countries will feel the full burden of a lack of water. This has led to a growing number of water conflicts over the years some of which have resulted in human deaths. There are several ways that people can collect water from the atmosphere such as collecting rain water or using a solar still to evaporate water out of an undrinkable source. In parts of the world where fog is prevalent, meshes have been used to collect the moisture from the air. However, these systems only work where the environment allows for it. In some places in the world, the only amount of water may come from morning dew. Certain places receive more water from morning dew than they do from annual precipitation. By studying nature, a novel water collection device was developed, tested and modeled. The model is compared to the test data to see the ways in which the device can be optimized. This could be used to help alleviate the growing problems of water shortages in specific parts of the world. The model and device design shows promising data but still has room for improvement. Potential changes for improved performance are explored.

  3. Subarctic physicochemical weathering of serpentinized peridotite

    NASA Astrophysics Data System (ADS)

    Ulven, O. I.; Beinlich, A.; Hövelmann, J.; Austrheim, H.; Jamtveit, B.

    2017-06-01

    Frost weathering is effective in arctic and subarctic climate zones where chemical reactions are limited by the reduced availability of liquid water and the prevailing low temperature. However, small scale mineral dissolution reactions are nevertheless important for the generation of porosity by allowing infiltration of surface water with subsequent fracturing due to growth of ice and carbonate minerals. Here we combine textural and mineralogical observations in natural samples of partly serpentinized ultramafic rocks with a discrete element model describing the fracture mechanics of a solid when subject to pressure from the growth of ice and carbonate minerals in surface-near fractures. The mechanical model is coupled with a reaction-diffusion model that describes an initial stage of brucite dissolution as observed during weathering of serpentinized harzburgites and dunites from the Feragen Ultramafic Body (FUB), SE-Norway. Olivine and serpentine are effectively inert at relevant conditions and time scales, whereas brucite dissolution produces well-defined cm to dm thick weathering rinds with elevated porosity that allows influx of water. Brucite dissolution also increases the water saturation state with respect to hydrous Mg carbonate minerals, which are commonly found as infill in fractures in the fresh rock. This suggests that fracture propagation is at least partly driven by carbonate precipitation. Dissolution of secondary carbonate minerals during favorable climatic conditions provides open space available for ice crystallization that drives fracturing during winter. Our model reproduces the observed cm-scale meandering fractures that propagate into the fresh part of the rock, as well as dm-scale fractures that initiate the breakup of larger domains. Rock disintegration increases the reactive surface area and hence the rate of chemical weathering, enhances transport of dissolved and particulate matter in the weathering fluid, and facilitates CO2 uptake by carbonate precipitation. Our observations have implications for element cycling and CO2 sequestration in natural gravel and mine tailings.

  4. Factors initiating phytoplankton blooms and resulting effects on dissolved oxygen in Duwamish River estuary, Seattle, Washington

    USGS Publications Warehouse

    Welch, Eugene Brummer

    1969-01-01

    Phytoplankton productivity, standing stock, and related environmental factors were studied during 1964-66 in the Duwamish River estuary, at Seattle, Wash., to ascertain the factors that affect phytoplankton growth in the estuary; a knowledge of these factors in turn permits the detection and evaluation of the influence that effluent nutrients have on phytoplankton production. The factors that control the concentration of dissolved oxygen were also evaluated because of the importance of dissolved oxygen to the salmonid populations that migrate through the estuary. Phytoplankton blooms, primarily of diatoms, occurred in the lower estuary during August 1965 and 1966. No bloom occurred during 1964, but the presence of oxygen-supersaturated surface water in August 1963 indicates that a bloom did occur then. Nutrients probably were not the primary factor controlling the timing of phytoplankton blooms. Ammonia ,and phosphate concentrations increased significantly downstream from the Municipality of Metropolitan Seattle's Renton Treatment Plant outfall after the plant began operation in June 1965, and concentrations of nitrogen and phosphorus were relatively high before operation of the Renton Treatment Plant and during nonbloom periods. The consistent coincidence of blooms with minimum fresh-water discharge and tidal exchange during August throughout the study period indicates that bloom timing probably was controlled mostly by hydrographic factors that determine retention time and stability of the surface-water layer. This control was demonstrated in part by a highly significant correlation of gross productivity with retention time (as indicated by fresh-water discharge) and vertical stability (as indicated by the difference between mean surface and mean bottom temperatures). The failure of a bloom to develop in 1964 is related to a minimum fresh-water discharge that was much greater than normal during that summer. Hydrographic factors are apparently important because, as shown by studies of other estuarine environments by other workers, phytoplankton production increases when the zone of vertical turbulent mixing is not markedly deeper than the compensation depth. Phytoplankton cells produced in the surface waters sink, thereby contributing oxidizable organic matter to the bottom saline-water wedge. The maximum BOD (biochemical oxygen demand) in this bottom wedge occurs in the same section of the estuary and ,at the same time as the maximum phytoplankton biomass (as indicated by chlorophyll a) and minimum DO (dissolved oxygen). Other sources of BOD occur in the estuary, and conditions of minimum discharge and tidal exchange assist in reducing DO. Nonetheless, the highly significant correlation of chlorophyll a with BOD throughout the summer indicates that respiration and decomposition of phytoplankton cells is dearly an important contributor of BOD. Increases in the biomass and resultant B0D of blooms because of increased effluent nutrients presumably would further decrease the concentration of DO. This possible effect of effluent nutrients was evaluated by laboratory .bioassays and by a comparison of mean annual biomasses in the estuary. A green algal population in vitro did increase in response to added effluent nutrients; however, the available field data suggest that a 46-percent increase in effluent discharge between 1965 and 1966 did not increase the estuary's phytoplankton biomass significantly.

  5. Occurrence of Campylobacter spp. and Cryptosporidium spp. in seagulls (Larus spp.).

    PubMed

    Moore, John E; Gilpin, Deidre; Crothers, Elizabeth; Canney, Anne; Kaneko, Aki; Matsuda, Motoo

    2002-01-01

    An investigation was carried out into the prevalence of thermophilic Campylobacter subspecies (spp.) and Cryptosporidium spp. in fresh fecal specimens collected from members of the gull family (Larus spp.) from three coastal locations of Northern Ireland. A total of 205 fresh fecal specimens were collected from gulls, of which 28 of 205 (13.7%) were positive for Campylobacter spp. and none of 205 for Cryptosporidium spp. Of these campylobacters, 21 of 28 (75%) isolates obtained belonged to the urease-positive thermophilic Campylobacter (UPTC) taxon, followed by five of 28 (17.9%) Campylobacter lari and 2/28 (7.1%) Campylobacter jejuni. It is significant that seagulls are the sole warm-blooded animal host of this bacterial taxon in Northern Ireland. It is proposed that physiological adaptation to starvation by gulls may lead to increased concentrations of urea through energy production from protein, yielding increased levels of urea for metabolism by UPTC organisms. In general, the possibility exists that environmental contamination of surface waters with campylobacters might be mediated by wild birds (such as gulls), where such waters are used for recreational purposes or where such waters are consumed untreated, might represent a risk to public health.

  6. EFFICIENT RECOVERY OF ENTEROCOCCI FROM MARINE AND FRESH WATER BEACHES BY A 30,000 MOLECULAR WEIGHT CUTOFF HOLLOW FIBER ULTRAFILTER

    EPA Science Inventory

    Ultrafiltration systems have been used to concentrate pathogens from various types of fresh water samples. However, less work has been done with marine waters for the concentration of pathogens or indicator bacteria. An ultrafiltration approach to concentrate indicator bacteria...

  7. A propagating freshwater mode in the Arctic Ocean with multidecadal time scale

    NASA Astrophysics Data System (ADS)

    Schmith, Torben; Malskær Olsen, Steffen; Margrethe Ringgaard, Ida

    2017-04-01

    We apply Principal Oscillatory Pattern analysis to the Arctic Ocean fresh water content as simulated in a 500 year long control run with constant preindustrial forcing with the EC-Earth global climate model. Two modes emerge from this analysis. One mode is a standing mode with decadal time scale describing accumulation and release of fresh water in the Beaufort Gyre, known in the literature as the Beaufort Gyre flywheel. In addition, we identify a propagating mode with a time scale around 80 years, propagating along the rim of the Canadian Basin. This mode has maximum variability of the fresh water content in the Transpolar Drift and represents the bulk of the total variability of the fresh water content in the Arctic Ocean and also projects on the fresh water through the Fram Strait. Therefore, potentially, it can introduce a multidecadal variability to the Atlantic meridional overturning circulation. We will discuss the physical origin of this propagating mode. This include planetary-scale internal Rossby waves with multidecadal time scale, due to the slow variation of the Coriolis parameter at these high latitudes, as well as topographic steering of these Rossby waves.

  8. Genesis of economic relevant fresh groundwater resources in Pleistocene/ Neogene aquifers in Nam Dinh (Red River Delta, Vietnam).

    NASA Astrophysics Data System (ADS)

    Wagner, F.; Ludwig, R. R.; Noell, U.; Hoang, H. V.; Pham, N. Q.; Larsen, F.; Lindenmaier, F.

    2012-04-01

    In the Southern Red River Delta (Nam Dinh Province, Vietnam), a local lens of low saline pore water of high quality has been identified in unconsolidated Pleistocene and Neogene aquifers, which are regionally known to contain brackish and saline pore waters. Since the 1990ies, ongoing overexploitation of the fresh groundwater results in decreasing GW heads up to 0.6 m/a and the development of a regional abstraction cone. The presented study focuses on distribution and genesis of fresh and saline pore waters and reflects the results in frame of the regional hydrogeological context. Observations of the geological structure and groundwater dynamics combined with hydrochemical and isotopic studies suggest adjacent Triassic hard rock aquifers as the major source for fresh Pleistocene and Neogene groundwater. Salinization status in the economically most relevant Pleistocene aquifer has been studied based on archive and new hydrochemical and geophysical data. Own hydrochemical field studies as well as laboratory measurements of the specific resistivity of dry sediment samples allow the translation of induction logging data from existing monitoring wells into vertical pore water salinity profiles. This approach suggests the regional occurrence of saline pore water in shallow Holocene sediments in the working area, as confirmed by pore water studies in Hoan et al. (2010). Interpretation of induction logging and stable isotope data suggest vertical diffusion of saline pore water in shallow Holocene sediments as a source for high saline pore water in deeper aquifers. Analytical diffusion modeling for a period of 3000 years confirms that vertical diffusion of Holocene paleo-sea water can explain saline pore water in Pleistocene and Neogene aquifers in a stagnant environment. The constant influx of fresh groundwater from adjacent Triassic hard rocks results in flushing of the primary Pleistocene and Neogene pore water and inhibits the infiltration of saline water from marine Holocene sediments. Consequently, 14C groundwater age dating suggests increasing groundwater ages from fresh to saline pore water in Pleistocene and Neogene up to 14 ka, presuming that contamination with dead carbon is neglectable. Highest 14C ages of low saline water has been observed in the center of the exploited fresh water lens reaching up to 10 ka, reflecting low groundwater flux and recharge rates. Due to the overexploitation, the natural coastward directed groundwater flow has turned towards the centre of the abstraction cone with horizontal apparent velocities of up to 0.6 m/a. This suggests, that brackish and higher saline groundwater from the Red River area (East Nam Dinh) and offshore migrates towards the fresh water lens. Thus, more sustainable exploitation strategies urgently must be implemented to reduce overexploitation of limited and valuable fresh groundwater resources in Nam Dinh Province. Reference: Hoan H., Pham Q. N., Larsen F. Tran L. V., Wagner F., Christiansen A.V. (2010): Processes Controlling High Saline Groundwater in the Nam Dinh Province, Vietnam. 2nd Asia-Pacific Coastal Aquifer Management Meeting (ACAMM), October 18-21, 2011, Jeju Island, Korea.

  9. Desalination

    EPA Science Inventory

    To cope with the rising demand for fresh water, desalination of brackish groundwater and seawater is increasingly being viewed as a pragmatic option for augmenting fresh water supplies. The large scale deployment of desalination is likely to demonstrably increase electricity use,...

  10. Weathered oil: effect on hatchability of heron and gull eggs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macko, S.A.; King, S.M.

    1980-08-01

    Contact with weathered oil seems more likely for waterbirds than contact with fresh oil; however, the effects of weathered oil on embryo survival have only partially been explored. Results of one study showed that 20 ..mu..L of 4 week-old crude oil applied to the eggshell surface caused a significant decrease in embryo survival of mallard (Anas platyrhynchos) eggs. In that study, oil was weathered under laboratory conditions using fresh water. To our knowledge, there have been no tests to determine the effects on egg hatchability of oil naturally weathered in marine habitats. The present study assesses the effects of externalmore » applications of naturally weathered crude oil on embryo survival of Louisiana heron (Hydranassa tricolor) and laughing gull (Larus atricilla) eggs.« less

  11. Microbiological monitoring for the US Geological Survey National Water-Quality Assessment Program

    USGS Publications Warehouse

    Francy, Donna S.; Myers, Donna N.; Helsel, Dennis R.

    2000-01-01

    Data to characterize the microbiological quality of the Nation?s fresh, marine, and estuarine waters are usually collected for local purposes, most often to judge compliance with standards for protection of public health in swimmable or drinkable waters. Methods and procedures vary with the objectives and practices of the parties collecting data and are continuously being developed or modified. Therefore, it is difficult to provide a nationally consistent picture of the microbial quality of the Nation?s waters. Study objectives and guidelines for a national microbiological monitoring program are outlined in this report, using the framework of the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) program. A national program is designed to provide long-term data on the presence of microbiological pathogens and indicators in ground water and surface water to support effective water policy and management. Three major groups of waterborne pathogens affect the public health acceptability of waters in the United States?bacteria, protozoa, and viruses. Microbiological monitoring in NAWQA would be designed to assess the occurrence, distribution, and trends of pathogenic organisms and indicators in surface waters and ground waters; relate the patterns discerned to factors that help explain them; and improve our understanding of the processes that control microbiological water quality.

  12. Suitability of different Escherichia coli enumeration techniques to assess the microbial quality of different irrigation water sources.

    PubMed

    Truchado, P; Lopez-Galvez, F; Gil, M I; Pedrero-Salcedo, F; Alarcón, J J; Allende, A

    2016-09-01

    The use of fecal indicators such as Escherichia coli has been proposed as a potential tool to characterize microbial contamination of irrigation water. Recently, not only the type of microbial indicator but also the methodologies used for enumeration have been called into question. The goal of this study was to assess the microbial quality of different water sources for irrigation of zucchini plants by using E. coli as an indicator of fecal contamination and the occurrence of foodborne pathogens. Three water sources were evaluated including reclaimed secondary treated water (RW-2), reclaimed tertiary UV-C treated water (RW-3) and surface water (SW). The suitability of two E. coli quantification techniques (plate count and qPCR) was examined for irrigation water and fresh produce. E. coli levels using qPCR assay were significantly higher than that obtained by plate count in all samples of irrigation water and fresh produce. The microbial quality of water samples from RW-2 was well predicted by qPCR, as the presence of foodborne pathogens were positively correlated with high E. coli levels. However, differences in the water characteristics influenced the suitability of qPCR as a tool to predict potential contamination in irrigation water. No significant differences were obtained between the number of cells of E. coli from RW-2 and RW-3, probably due to the fact that qPCR assay cannot distinguish between viable and dead cells. These results indicated that the selection of the most suitable technique for enumeration of indicator microorganisms able to predict potential presence of fecal contamination might be influenced by the water characteristics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Analog Model Study of Ground-Water Flow in the Rehoboth Bay Area, Delaware.

    DTIC Science & Technology

    The study concerns ground- water flow in the Rehoboth Bay area, Delaware, a coastal area which depends on ground water for its fresh- water supply...Increased pumping demands may threaten to lower the water table and allow salt- water intrusion into the wells. The study was conducted using a viscous...use two different glycerin solutions to make observations and predict interactions between fresh and salt water in nature. Results indicate the

  14. Effective reprocessing of reusable dispensers for surface disinfection tissues – the devil is in the details

    PubMed Central

    Kampf, Günter; Degenhardt, Stina; Lackner, Sibylle; Ostermeyer, Christiane

    2014-01-01

    Background: It has recently been reported that reusable dispensers for surface disinfection tissues may be contaminated, especially with adapted Achromobacter species 3, when products based on surface-active ingredients are used. Fresh solution may quickly become recontaminated if dispensers are not processed adequately. Methods: We evaluated the abilities of six manual and three automatic processes for processing contaminated dispensers to prevent recolonisation of a freshly-prepared disinfectant solution (Mikrobac forte 0.5%). Dispensers were left at room temperature for 28 days. Samples of the disinfectant solution were taken every 7 days and assessed quantitatively for bacterial contamination. Results: All automatic procedures prevented recolonisation of the disinfectant solution when a temperature of 60–70°C was ensured for at least 5 min, with or without the addition of chemical cleaning agents. Manual procedures prevented recontamination of the disinfectant solution when rinsing with hot water or a thorough cleaning step was performed before treating all surfaces with an alcohol-based disinfectant or an oxygen-releaser. Other cleaning and disinfection procedures, including the use of an alcohol-based disinfectant, did not prevent recolonisation. Conclusions: These results indicate that not all processes are effective for processing reusable dispensers for surface-disinfectant tissues, and that a high temperature during the cleaning step or use of a biofilm-active cleaning agent are essential. PMID:24653973

  15. 46 CFR 162.050-23 - Separator: Approval tests.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... must be tested using the mixture pump on the test rig. (4) The influent water used in each test must be clean fresh water or clean fresh water in solution with sodium chloride. In either case, the relative density of the water must be no greater than 1.015 at 20 °C. (5) Each test must be conducted at an ambient...

  16. 46 CFR 162.050-23 - Separator: Approval tests.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... must be tested using the mixture pump on the test rig. (4) The influent water used in each test must be clean fresh water or clean fresh water in solution with sodium chloride. In either case, the relative density of the water must be no greater than 1.015 at 20 °C. (5) Each test must be conducted at an ambient...

  17. 46 CFR 162.050-23 - Separator: Approval tests.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... must be tested using the mixture pump on the test rig. (4) The influent water used in each test must be clean fresh water or clean fresh water in solution with sodium chloride. In either case, the relative density of the water must be no greater than 1.015 at 20 °C. (5) Each test must be conducted at an ambient...

  18. 46 CFR 162.050-23 - Separator: Approval tests.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... must be tested using the mixture pump on the test rig. (4) The influent water used in each test must be clean fresh water or clean fresh water in solution with sodium chloride. In either case, the relative density of the water must be no greater than 1.015 at 20 °C. (5) Each test must be conducted at an ambient...

  19. 46 CFR 162.050-23 - Separator: Approval tests.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... rates of the oil and water that are mixed to form the influent or by use of an oil content meter on the... must be tested using the mixture pump on the test rig. (4) The influent water used in each test must be clean fresh water or clean fresh water in solution with sodium chloride. In either case, the relative...

  20. The Ocean`s Thermohaline Circulation in a Fish Tank

    NASA Astrophysics Data System (ADS)

    Lavender, K.; Joyce, P.; Graziano, L.; Harris, S.; Jaroslow, G.; Lea, C.; Schell, J.; Witting, J.

    2005-12-01

    This demonstration develops intuition about density stratification, a concept critical to understanding the ocean`s thermohaline circulation. In addition, students learn how temperature and salinity affect density, how these characteristics may be density-compensating, and students gain practice in graphing and interpreting vertical profiles and temperature-salinity (T-S) diagrams. The demonstration requires a rectangular fish tank (5-10 gallons) with a plexiglass partition, preparation of three colored ''water masses'' representing surface water (warm and fresh), ''mystery'' Mediterranean Water (warm and salty), and North Atlantic Deep Water (NADW; cold and salty), a kitchen sponge, and a temperature and salinity probe. Density may be computed using an Equation of State calculator (e.g. online version at http://fermi.jhuapl.edu/denscalc.html). The larger side of the fish tank is filled halfway with NADW, then surface water is layered on top by carefully pouring it on a floating sponge. A student volunteer measures the temperature and salinity of the two water masses, while another computes the densities. Students draw vertical profiles and T-S diagrams representing the temperature, salinity, and density of the water column. The properties of the ''mystery'' water are measured and students predict what will happen when the water is poured on the opposite side of the partition and is allowed to overflow into the layered water. If the density gradients are sufficiently large, a beautiful internal wave develops as the mystery water overflows the sill and becomes intermediate Mediterranean Water. If time permits, having a student blow on the surface illustrates the limited influence of ''wind'' with depth; an internal wave may by forced by depressing the thermocline with a large, flat spoon; and pouring extra NADW on the sponge floating at the surface may illustrate deep convection.

  1. Long-Term Variability of Satellite Lake Surface Water Temperatures in the Great Lakes

    NASA Astrophysics Data System (ADS)

    Gierach, M. M.; Matsumoto, K.; Holt, B.; McKinney, P. J.; Tokos, K.

    2014-12-01

    The Great Lakes are the largest group of freshwater lakes on Earth that approximately 37 million people depend upon for fresh drinking water, food, flood and drought mitigation, and natural resources that support industry, jobs, shipping and tourism. Recent reports have stated (e.g., the National Climate Assessment) that climate change can impact and exacerbate a range of risks to the Great Lakes, including changes in the range and distribution of certain fish species, increased invasive species and harmful algal blooms, declining beach health, and lengthened commercial navigation season. In this study, we will examine the impact of climate change on the Laurentian Great Lakes through investigation of long-term lake surface water temperatures (LSWT). We will use the ATSR Reprocessing for Climate: Lake Surface Water Temperature & Ice Cover (ARC-Lake) product over the period 1995-2012 to investigate individual and interlake variability. Specifically, we will quantify the seasonal amplitude of LSWTs, the first and last appearances of the 4°C isotherm (i.e., an important identifier of the seasonal evolution of the lakes denoting winter and summer stratification), and interpret these quantities in the context of global interannual climate variability such as ENSO.

  2. Growing importance of atmospheric water demands on the hydrologcial condition of East Asia

    NASA Astrophysics Data System (ADS)

    Park, C. E.; Ho, C. H.; Jeong, S. J.; Park, H.

    2015-12-01

    As global temperature increases, enhanced exchange of fresh water between the surface and atmosphere expected to make dry regions drier and wet regions wetter. This concept is well fitted for the ocean, but oversimplified for the land. How the climate change causes the complex patterns of the continental dryness change is one of challenging questions. Here we investigate the observed dryness changes of the land surface by examining the quantitative influence of several climate parameters on the background aridity changes over East Asia, containing various climate regimes from cold-arid to warm-humid regions, using observations of 189 stations covering the period from 1961 to 2010. Overall mean aridity trend is changed from negative to positive around early 1990s. The turning of dryness trend is largely influenced by sharp increase in atmospheric water demands, regardless of the background climate. The warming induced increase in water demands is larger in warm-humid regions than in cold-arid region due to the Clausius-Clapeyron relation between air temperature and saturation vapor pressure. The results show the drying of anthropogenic warming already begins and influences on the patterns of dryness change over the land surface.

  3. Monitoring Earth's reservoir and lake dynamics from space

    NASA Astrophysics Data System (ADS)

    Donchyts, G.; Eilander, D.; Schellekens, J.; Winsemius, H.; Gorelick, N.; Erickson, T.; Van De Giesen, N.

    2016-12-01

    Reservoirs and lakes constitute about 90% of the Earth's fresh surface water. They play a major role in the water cycle and are critical for the ever increasing demands of the world's growing population. Water from reservoirs is used for agricultural, industrial, domestic, and other purposes. Current digital databases of lakes and reservoirs are scarce, mainly providing only descriptive and static properties of the reservoirs. The Global Reservoir and Dam (GRanD) database contains almost 7000 entries while OpenStreetMap counts more than 500 000 entries tagged as a reservoir. In the last decade several research efforts already focused on accurate estimates of surface water dynamics, mainly using satellite altimetry, However, currently they are limited only to less than 1000 (mostly large) water bodies. Our approach is based on three main components. Firstly, a novel method, allowing automated and accurate estimation of surface area from (partially) cloud-free optical multispectral or radar satellite imagery. The algorithm uses satellite imagery measured by Landsat, Sentinel and MODIS missions. Secondly, a database to store reservoir static and dynamic parameters. Thirdly, a web-based tool, built on top of Google Earth Engine infrastructure. The tool allows estimation of surface area for lakes and reservoirs at planetary-scale at high spatial and temporal resolution. A prototype version of the method, database, and tool will be presented as well as validation using in-situ measurements.

  4. Ultraviolet light treatment for the restoration of age-related degradation of titanium bioactivity.

    PubMed

    Hori, Norio; Ueno, Takeshi; Suzuki, Takeo; Yamada, Masahiro; Att, Wael; Okada, Shunsaku; Ohno, Akinori; Aita, Hideki; Kimoto, Katsuhiko; Ogawa, Takahiro

    2010-01-01

    To examine the bioactivity of differently aged titanium (Ti) disks and to determine whether ultraviolet (UV) light treatment reverses the possible adverse effects of Ti aging. Ti disks with three different surface topographies were prepared: machined, acid-etched, and sandblasted. The disks were divided into three groups: disks tested for biologic capacity immediately after processing (fresh surfaces), disks stored under dark ambient conditions for 4 weeks, and disks stored for 4 weeks and treated with UV light. The protein adsorption capacity of Ti was examined using albumin and fibronectin. Cell attraction to Ti was evaluated by examining migration, attachment, and spreading behaviors of human osteoblasts on Ti disks. Osteoblast differentiation was evaluated by examining alkaline phosphatase activity, the expression of bone-related genes, and mineralized nodule area in the culture. Four-week-old Ti disks showed = or < 50% protein adsorption after 6 hours of incubation compared with fresh disks, regardless of surface topography. Total protein adsorption for 4-week-old surfaces did not reach the level of fresh surfaces, even after 24 hours of incubation. Fifty percent fewer human osteoblasts migrated and attached to 4-week-old surfaces compared with fresh surfaces. Alkaline phosphatase activity, gene expression, and mineralized nodule area were substantially reduced on the 4-week-old surfaces. The reduction of these biologic parameters was associated with the conversion of Ti disks from superhydrophilicity to hydrophobicity during storage for 4 weeks. UV-treated 4-week-old disks showed even higher protein adsorption, osteoblast migration, attachment, differentiation, and mineralization than fresh surfaces, and were associated with regenerated superhydrophilicity. Time-related degradation of Ti bioactivity is substantial and impairs the recruitment and function of human osteoblasts as compared to freshly prepared Ti surfaces, suggesting a "biologic aging"-like change of Ti. UV treatment of aged Ti, however, restores and even enhances bioactivity, exceeding its innate levels.

  5. Rapid releases of metal salts and nutrients following the deposition of volcanic ash into aqueous environments

    NASA Astrophysics Data System (ADS)

    Jones, Morgan T.; Gislason, Sigurður R.

    2008-08-01

    Deposition of volcanic ash into aqueous environments leads to dissolution of adsorbed metal salts and aerosols, increasing the bioavailability of key nutrients. Volcanogenic fertilization events could increase marine primary productivity, leading to a drawdown of atmospheric CO 2. Here we conduct flow-through experiments on unhydrated volcanic ash samples from a variety of locations and sources, measuring the concentrations and fluxes of elements into de-ionized water and two contrasting ocean surface waters. Comparisons of element fluxes show that dissolution of adsorbed surface salts and aerosols dominates over glass dissolution, even in sustained low pH conditions. These surface ash-leachates appear unstable, decaying in situ even if kept unhydrated. Volcanic ash from recent eruptions is shown to have a large fertilization potential in both fresh and saline water. Fluorine concentrations are integral to bulk dissolution rates and samples with high F concentrations display elevated fluxes of some nutrients, particularly Fe, Si, and P. Bio-limiting micronutrients are released in large quantities, suggesting that subsequent biological growth will be limited by macronutrient availability. Importantly, acidification of surface waters and high fluxes of toxic elements highlights the potential of volcanic ash-leachates to poison aqueous environments. In particular, large pH changes can cause undersaturation of CaCO 3 polymorphs, damaging populations of calcifying organisms. Deposition of volcanic ash can both fertilize and/or poison aqueous environments, causing significant changes to surface water chemistry and biogeochemical cycles.

  6. Buoyancy forcing and the MOC: insights from experiments, simulations and global models

    NASA Astrophysics Data System (ADS)

    White, B. L.; Passaggia, P. Y.; Zemskova, V.

    2017-12-01

    The driving forces behind the Meridional Overturning Circulation (MOC) have been widely debated, with wind-driven upwelling, surface buoyancy fluxes due to heating/cooling/freshwater input, and vertical diffusion due to turbulent mixing all thought to play significant roles. To explore the specific role of buoyancy forcing we present results from experiments and simulations of Horizontal Convection (HC), where a circulation is driven by differential buoyancy forcing applied along a horizontal surface. We interpret these results using energy budgets based on the local Available Potential Energy framework introduced in [Scotti and White, J. Fluid Mech., 2014]. We first describe HC experiments driven by the diffusion of salt in water across membranes localized at the surface, at Schmidt numbers {Sc}≈ 610 and Rayleigh numbers in the range 1012 < Ra=Δ b L3/(ν κ ) < 1017, where ν is the kinematic viscosity of water, κ is the diffusion coefficient of salt, L=[.5,2,5]m is the length of the different tanks and Δ b=g(ρ salt}-ρ {fresh}/ρ_{fresh is the reduced gravity difference. We show that the scaling follows a Nu ˜ Ra1/4 type scaling recently theorized by Shishkina et; al. (2016). We then present numerical results for rotating horizontal convection with a zonally re-entrant channel to represent the Southern Ocean branch of the MOC. While the zonal wind stress profile is important to the spatial pattern of the circulation, perhaps surprisingly, the energy budget shows only a weak dependence on the magnitude of the wind input, suggesting that surface APE generation by buoyancy forcing is dominant in driving the overturning circulation.

  7. The Role of Fresh Water in Fish Processing in Antiquity

    NASA Astrophysics Data System (ADS)

    Sánchez López, Elena H.

    2018-04-01

    Water has been traditionally highlighted (together with fish and salt) as one of the essential elements in fish processing. Indeed, the need for large quantities of fresh water for the production of salted fish and fish sauces in Roman times is commonly asserted. This paper analyses water-related structures within Roman halieutic installations, arguing that their common presence in the best known fish processing installations in the Western Roman world should be taken as evidence of the use of fresh water during the production processes, even if its role in the activities carried out in those installations is not clear. In addition, the text proposes some first estimates on the amount of water that could be needed by those fish processing complexes for their functioning, concluding that water needs to be taken into account when reconstructing fish-salting recipes.

  8. Photochemical Transformation and Bacterial Utilization of Dissolved Organic Matter and Disinfection Byproduct Precursors from Foliar Litter

    NASA Astrophysics Data System (ADS)

    Chow, A. T.; Wong, P.; O'Geen, A. T.; Dahlgren, R. A.

    2009-12-01

    Foliar litter is an important terrestrial source of dissolved organic matter (DOM) in surface water. DOM is a public health concern since it is a precursor of carcinogenic disinfection byproducts (DBPs) during drinking water treatment. Chemical characterization of in-situ water samples for their impact on water treatment may be misleading because DOM characteristics can be altered from their original composition during downstream transport to water treatment plants. In this study, we collected leachate from four fresh litters and decomposed duffs from four dominant vegetation components of California oak woodlands: blue oak (Quercus douglassi), live oak (Quercus wislizenii), foothill pine (Pinus sabiniana), and annual grasses to evaluate their DOM degradability and the reactivity of altered DOM towards DBP formation. Samples were filtered through a sterilized membrane (0.2 micron) and exposed to natural sunlight and Escherichia coli K-12 independently for 14 days. Generally speaking, leachate from decomposed duff was relatively resistant towards biodegradation compared to that from fresh litter, but the former was more susceptible to photo-transformation. Photo-bleaching caused a 30% decrease in ultra-violet absorbance at 254 nm (UVA) but no significant changes in dissolved organic carbon (DOC) concentration. This apparent loss of aromatic carbon in DOM, in terms of specific UVA, did not result in a decrease of specific trihalomethane (THM) formation potential, although aromatic carbon is considered as a major reactive site for THM formation. In addition, there were significant increases (p < 0.05) of chloral hydrate after the 14-day exposure, suggesting that the photolytic products could be a precursor of chloral hydrate. In contrast, samples inoculated with E. coli did not show a significant effect on the DOC concentration, UVA or DBP formation, although the colony counts indicated a 2-log cell growth during the 14-day incubation. Results suggest photolysis is a major biogeochemical process altering terrestrial DOC in surface water.

  9. Hydrochemical Impacts of CO2 Leakage on Fresh Groundwater: a Field Scale Experiment

    NASA Astrophysics Data System (ADS)

    Lions, J.; Gal, F.; Gombert, P.; Lafortune, S.; Darmoul, Y.; Prevot, F.; Grellier, S.; Squarcioni, P.

    2013-12-01

    One of the questions related to the emerging technology for Carbon Geological Storage concerns the risk of CO2 migration beyond the geological storage formation. In the event of leakage toward the surface, the CO2 might affect resources in neighbouring formations (geothermal or mineral resources, groundwater) or even represent a hazard for human activities at the surface or in the subsurface. In view of the preservation of the groundwater resources mainly for human consumption, this project studies the potential hydrogeochemical impacts of CO2 leakage on fresh groundwater quality. One of the objectives is to characterize the bio-geochemical mechanisms that may impair the quality of fresh groundwater resources in case of CO2 leakage. To reach the above mentioned objectives, this project proposes a field experiment to characterize in situ the mechanisms that could impact the water quality, the CO2-water-rock interactions and also to improve the monitoring methodology by controlled CO2 leakage in shallow aquifer. The tests were carried out in an experimental site in the chalk formation of the Paris Basin. The site is equipped with an appropriate instrumentation and was previously characterized (8 piezometers, 25 m deep and 4 piezairs 11 m deep). The injection test was preceded by 6 months of monitoring in order to characterize hydrodynamics and geochemical baselines of the site (groundwater, vadose and soil). Leakage into groundwater is simulated via the injection of a small quantity of food-grade CO2 (~20 kg dissolved in 10 m3 of water) in the injection well at a depth of about 20 m. A plume of dissolved CO2 is formed and moves downward according to the direction of groundwater flow and probably by degassing in part to the surface. During the injection test, hydrochemical monitoring of the aquifer is done in situ and by sampling. The parameters monitored in the groundwater are the piezometric head, temperature, pH and electrical conductivity. Analysis on water samples provide chemical elements (major, minor and trace metals), dissolved gases, microbiological diversity and isotopes (13C). The evolution of the composition of the groundwater in terms of major elements, trace elements and isotope signatures is interpreted in terms of geochemical mechanisms, and the water-rock-CO2 interactions are characterized. Modification of the chemical composition of water in the aquifer due to CO2 injection is assessed in term of groundwater quality i.e. metal element release and the possibility of exceeding references and quality of water for human consumption. One outcome of the CIPRES project will be to highlight mechanisms that can impact groundwater quality when a CO2 leakage occurs and to propose recommendations to prevent or/and eliminate negative effects and any risks to the environment and human health. This project is partially funded by the French Research Agency (ANR).

  10. Assessment and speciation of chlorine demand in fresh-cut produce wash water

    USDA-ARS?s Scientific Manuscript database

    Production of high quality, fresh-cut produce is a key driver for the produce industry. A critical area of concern is the chlorinated wash water used during post-harvest processing in large industrial processing facilities. Predominantly using a batch process, wash water is recycled over 8hr shift...

  11. Convection towers

    DOEpatents

    Prueitt, Melvin L.

    1996-01-01

    Convection towers which are capable of cleaning the pollution from large quantities of air, of generating electricity, and of producing fresh water utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity, and condensers produce fresh water.

  12. Convection towers

    DOEpatents

    Prueitt, Melvin L.

    1995-01-01

    Convection towers which are capable of cleaning the pollution from large quantities of air, of generating electricity, and of producing fresh water utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity, and condensers produce fresh water.

  13. Convection towers

    DOEpatents

    Prueitt, M.L.

    1996-01-16

    Convection towers which are capable of cleaning the pollution from large quantities of air, of generating electricity, and of producing fresh water utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity, and condensers produce fresh water. 6 figs.

  14. Characterization of the Intrinsic Water Wettability of Graphite Using Contact Angle Measurements: Effect of Defects on Static and Dynamic Contact Angles.

    PubMed

    Kozbial, Andrew; Trouba, Charlie; Liu, Haitao; Li, Lei

    2017-01-31

    Elucidating the intrinsic water wettability of the graphitic surface has increasingly attracted research interests, triggered by the recent finding that the well-established hydrophobicity of graphitic surfaces actually results from airborne hydrocarbon contamination. Currently, static water contact angle (WCA) is often used to characterize the intrinsic water wettability of graphitic surfaces. In the current paper, we show that because of the existence of defects, static WCA does not necessarily characterize the intrinsic water wettability. Freshly exfoliated graphite of varying qualities, characterized using atomic force microscopy and Raman spectroscopy, was studied using static, advancing, and receding WCA measurements. The results showed that graphite of different qualities (i.e., defect density) always has a similar advancing WCA, but it could have very different static and receding WCAs. This finding indicates that defects play an important role in contact angle measurements, and the static contact angle does not always represent the intrinsic water wettability of pristine graphite. On the basis of the experimental results, a qualitative model is proposed to explain the effect of defects on static, advancing, and receding contact angles. The model suggests that the advancing WCA reflects the intrinsic water wettability of pristine (defect-free) graphite. Our results showed that the advancing WCA for pristine graphite is 68.6°, which indicates that graphitic carbon is intrinsically mildly hydrophilic.

  15. The impact of hydration changes in fresh bio-tissue on THz spectroscopic measurements.

    PubMed

    Png, G M; Choi, J W; Ng, B W-H; Mickan, S P; Abbott, D; Zhang, X-C

    2008-07-07

    We present a study of how residual hydration in fresh rat tissue samples can vastly alter their extracted terahertz (THz) optical properties and influence their health assessment. Fresh (as opposed to preserved) tissue most closely mimics in vivo conditions, but high water content creates many challenges for tissue handling and THz measurement. Our THz measurements of fresh tissue over time highlight the effect of tissue hydration on tissue texture and dimension, the latter directly influencing the accuracy of calculated optical properties. We then introduce lyophilization (freeze drying) as a viable solution for overcoming hydration and freshness problems. Lyophilization removes large amounts of water while retaining sample freshness. In addition, lyophilized tissue samples are easy to handle and their textures and dimensions do not vary over time, allowing for consistent and stable THz measurements. A comparison of lyophilized and fresh tissue shows for the first time that freeze drying may be one way of overcoming tissue hydration issues while preserving tissue cellular structure. Finally, we compare THz measurements from fresh tissue against necrotic tissue to verify freshness over time. Indeed, THz measurements from fresh and necrotic tissues show marked differences.

  16. Estuarine studies in upper Grays Harbor, Washington

    USGS Publications Warehouse

    Beverage, Joseph P.; Swecker, Milton N.

    1969-01-01

    Improved management of the water resources of Grays Harbor, Wash., requires more data on the water quality of the harbor and a better understanding of the influences of industrial and domestic wastes on the local fisheries resources. To provide a more comprehensive understanding of these influences, the U.S. Geological Survey joined other agencies in a cooperative study of Grays Harbor. This report summarizes the Survey's study of circulation patterns, description of water-quality conditions, and characterization of bottom material in the upper harbor. Salt water was found to intrude at least as far as Montesano, 28.4 nautical miles from the mouth of the harbor. Longitudinal salinity distributions were used to compute dispersion (diffusivity) coefficients ranging from 842 to 3,520 square feet per second. These values were corroborated by half-tidal-cycle dye studies. The waters of the harbor were found to be well mixed after extended periods of low fresh-water flow but stratified at high flows. Salinity data were used lo define the cumulative 'mean age' of the harbor water, which may be used to approximate a mean 'flushing time.' Velocity-time curves for the upper harbor are distorted from simple harmonic functions owing to channel geometry and frictional effects. Surface and bottom velocity data were used to estimate net tidal 'separation' distance, neglecting vertical mixing. Net separation distances between top and bottom water ranged from 1.65 nautical miles when fresh-water inflow was 610 cubic feet per second to 13.4 miles when inflow was 15,900 cubic feet per second. The cumulative mean age from integration of the fresh-water velocity equation was about twice that obtained from the salinity distribution. Excursion distances obtained with dye over half-tidal cycles exceeded those estimated from longitudinal salinity distributions and those obtained by earlier investigators who used floats. Net tidal excursions were as much as twice those obtained with floats. The carbon content of bottom materials was related to channel fine material: C= 0.315+0.0238 F where C is in percent by dry weight, and F is percent by weight finer than 0.062 millimeter. Carbon content was low upstream and downstream of the upper harbor area, and high in the Cow Point-Rennie Island reach. The high-carbon-content reach coincides with the general area of a dissolved-oxygen sag. The logarithm of the fresh-water discharge gave a high degree of correlation with daily maximum specific conductance at Cosmopolis. The regression equation is: Kc max---- 76.4-- 17.7 logl0 Qf where Kc max is in millimhos at 25 ? Celsius (centigrade), and Qf is the estimated daily fresh-water discharge, in cubic feet per second. Dissolved oxygen is the most critical water-quality parameter in Grays Harbor. At Cosmopolis, the daily minimum dissolved oxygen content, DOc min, correlated well with discharge and tidal range, delta H. The regression equation relating the variables is: DOc min---- 6.03 + 0.00096 Qf - 0.291 delta H in which DOc min is in milligrams per liter and delta H is in feet. The upper harbor was found to contain 250 million cubic feet less water than average during the critical low-flow period, on the basis of the frequency distribution of predicted tides. About 78,000 pounds of dissolved oxygen is thus unavailable for oxidation of waste during summer.

  17. Ground-water resources of Kansas

    USGS Publications Warehouse

    Moore, R.C.; Lohman, S.W.; Frye, J.C.; Waite, H.A.; McLaughlin, Thad G.; Latta, Bruce

    1940-01-01

    Importance of ground-water resources.—The importance of Kansas' ground-water resources may be emphasized from various viewpoints and in different ways. More than three-fourths of the public water supplies of Kansas are obtained from wells. In 1939, only 60 out of 375 municipal water supplies in Kansas, which is 16 percent, utilized surface waters. If the water wells of the cities and those located on all privately owned land in the state were suddenly destroyed, making it necessary to go to streams, springs, lakes (which are almost all artificial), and ponds for water supply domestic, stock, and industrial use, there would be almost incalculable difficulty and expense. If one could not go to springs, or dig new wells, or use any surface water derived from underground flow, much of Kansas would become uninhabitable.  These suggested conditions seem absurd, but they emphasize our dependence on ground-water resources. Fromm a quantitative standpoint, ground-water supplies existent in Kansas far outweigh surface waters that are present in the state at any one time. No exact figures for such comparison can be given, but, taking 384 square miles as the total surface water area of the state and estimating an average water depth of five feet, the computed volume of surface waters is found to be 1/100th of that of the conservatively estimated ground-water storage in Kansas. The latter takes account only of potable fresh water and is based on an assumed mean thickness of ten feet of reservoir having an effective porosity of twenty percent. It is to be remembered, however, that most of the surface water is run-off, which soon leaves the state, stream valleys being replenished from rainfall and flow from ground-water reservoirs. Most of the ground-water supplies, on the other hand, have existed for many years with almost no appreciable movement--in fact, it is reasonably certain that some well water drawn from beneath the surface of Kansas in 1940 represents rainfall in this region at time before the first white man entered Kansas, even before the visit of Coronado in the 16th century. Most ground water is to be regarded as water in storage rather than water in transit.   

  18. Effect of hot water dips on the quality of fresh-cut ´Ryan Sun´ peaches

    USDA-ARS?s Scientific Manuscript database

    Fresh-cut products are an important developing food product category, and as a response of current lifestyles they are becoming increasingly popular due to their convenience, nutritious and fresh-like quality; however, fresh-cut produce has limited shelf life because preparation involves physically ...

  19. Atmospheric moisture transport and fresh water flux over oceans derived from spacebased sensors

    NASA Technical Reports Server (NTRS)

    Liu, W. T.; Tang, W.

    2001-01-01

    preliminary results will be shown to demonstrate the application of spacebased IMT and fresh water flux in ocean-atmosphere-land interaction studies, such as the hydrologica balance on Amazon rainfall and Indian monsoon.

  20. Radioactive springs geochemical data related to uranium exploration

    USGS Publications Warehouse

    Cadigan, R.A.; Felmlee, J.K.

    1977-01-01

    Radioactive mineral springs and wells at 33 localities in the States of Colorado, Utah, Arizona and New Mexico in the United States were sampled and studied to obtain geochemical data which might be used for U exploration. The major source of radioactivity at mineral spring sites is 226Ra. Minor amounts of 228Ra, 238U and 232Th are also present. Ra is presumed to have been selectively removed from possibly quite deep uranium-mineralized rock by hydrothermal solutions and is either precipitated at the surface or added to fresh surface water. In this way, the source rocks influence the geochemistry of the spring waters and precipitates. Characteristics of the spring waters at or near the surface are also affected by variations in total dissolved solids, alkalinity, temperature and co-precipitation. Spring precipitates, both hard and soft, consist of four major types: (1) calcite travertine; (2) iron- and arsenic-rich precipitates; (3) manganese- and barium-rich precipitates; and (4) barite, in some instances accompanied by S, Ra and U, if present in the spring water, are co-precipitated with the barite, Mn-Ba and Fe-As precipitates. Using parameters based on U and Ra concentrations in waters and precipitates springsite areas are tentatively rated for favourability as potential uraniferous areas. ?? 1977.

  1. Phosphorus dynamics in soils irrigated with reclaimed waste water or fresh water - A study using oxygen isotopic composition of phosphate

    USGS Publications Warehouse

    Zohar, I.; Shaviv, A.; Young, M.; Kendall, C.; Silva, S.; Paytan, A.

    2010-01-01

    Transformations of phosphate (Pi) in different soil fractions were tracked using the stable isotopic composition of oxygen in phosphate (??18Op) and Pi concentrations. Clay soil from Israel was treated with either reclaimed waste water (secondary, low grade) or with fresh water amended with a chemical fertilizer of a known isotopic signature. Changes of ??18Op and Pi within different soil fractions, during a month of incubation, elucidate biogeochemical processes in the soil, revealing the biological and the chemical transformation impacting the various P pools. P in the soil solution is affected primarily by enzymatic activity that yields isotopic equilibrium with the water molecules in the soil solution. The dissolved P interacts rapidly with the loosely bound P (extracted by bicarbonate). The oxides and mineral P fractions (extracted by NaOH and HCl, respectively), which are considered as relatively stable pools of P, also exhibited isotopic alterations in the first two weeks after P application, likely related to the activity of microbial populations associated with soil surfaces. Specifically, isotopic depletion which could result from organic P mineralization was followed by isotopic enrichment which could result from preferential biological uptake of depleted P from the mineralized pool. Similar transformations were observed in both soils although transformations related to biological activity were more pronounced in the soil treated with reclaimed waste water compared to the fertilizer treated soil. ?? 2010 Elsevier B.V.

  2. Submarine groundwater discharge into the coast revealed by water chemistry of man-made undersea liquefied petroleum gas cavern

    NASA Astrophysics Data System (ADS)

    Lee, Jin-Yong; Cho, Byung Wook

    2008-10-01

    SummaryThe occurrence of submarine groundwater discharge (SGD) as well as its supply of many nutrients and metals to coastal seawaters is now generally known. However, previous studies have focused on the chemical and radiological analysis of groundwater, surface seawater, shallow marine sediments and their pore waters, as well as the measurement of upward flow through the marine sediments, as end members of the discharge process. In this study, chemical and isotopic analysis results of marine subsurface waters are reported. These were obtained from deep boreholes of an undersea liquefied petroleum gas (LPG) storage cavern, located about 8 km off the western coast of Korea. The cavern is about 130-150 m below the sea bottom, which is covered by a 4.8-19.5 m silty clay stratum. An isotopic composition (δ 2H and δ 18O) of the marine subsurface waters falls on a mixing line between terrestrial groundwater and seawater. Vertical EC profiling at the cavern boreholes revealed the existence of a fresh water zone. An increase in the contents of ferrous iron and manganese and a decrease in levels of nitrate, bicarbonate and cavern seepage were recorded in August 2006, indicating a decreased submarine groundwater flux originating from land, mainly caused by an elevated cavern gas pressure. It is suggested in this study that the main source of fresh waters in the man-made undersea cavern is the submarine groundwater discharge mainly originating from the land.

  3. Preparation and application of agar/alginate/collagen ternary blend functional food packaging films.

    PubMed

    Wang, Long-Feng; Rhim, Jong-Whan

    2015-09-01

    Ternary blend agar/alginate/collagen (A/A/C) hydrogel films with silver nanoparticles (AgNPs) and grapefruit seed extract (GSE) were prepared. Their performance properties, transparency, tensile strength (TS), water vapor permeability (WVP), water contact angle (CA), water swelling ratio (SR), water solubility (WS), and antimicrobial activity were determined. The A/A/C film was highly transparent, and both AgNPs and GSE incorporated blend films (A/A/C(AgNPs) and A/A/C(GSE)) exhibited UV-screening effect, especially, the A/A/C(GSE) film had high UV-screening effect without sacrificing the transmittance. In addition, the A/A/C blend films formed efficient hydrogel film with the water holding capacity of 23.6 times of their weight. Both A/A/C(AgNPs) and A/A/C(GSE) composite films exhibited strong antimicrobial activity against both Gram-positive (Listeria monocytogenes) and Gram-negative (Escherichia coli) food-borne pathogenic bacteria. The test results of fresh potatoes packaging revealed that all the A/A/C ternary blend films prevented forming of condensed water on the packaged film surface, both A/A/C(AgNPs) and A/A/C(GSE) composite films prevented greening of potatoes during storage. The results indicate that the ternary blend hydrogel films incorporated with AgNPs or GSE can be used not only as antifogging packaging films for highly respiring fresh agriculture produce, but also as an active food packaging system utilizing their strong antimicrobial activity. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Fracture mechanics and surface chemistry studies of fatigue crack growth in an aluminum alloy

    NASA Astrophysics Data System (ADS)

    Wei, R. P.; Pao, P. S.; Hart, R. G.; Weir, T. W.; Simmons, G. W.

    1980-12-01

    Fracture mechanics and surface chemistry studies were carried out to develop further understanding of the influence of water vapor on fatigue crack growth in aluminum alloys. The room temperature fatigue crack growth response was determined for 2219-T851 aluminum alloy exposed to water vapor at pressures from 1 to 30 Pa over a range of stress intensity factors ( K). Data were also obtained in vacuum (at < 0.50 μPa), and dehumidified argon. The test results showed that, at a frequency of 5 Hz, the rate of crack growth is essentially unaffected by water vapor until a threshold pressure is reached. Above this threshold, the rates increased, reaching a maximum within one order of magnitude increase in vapor pressure. This maximum crack growth rate is equal to that obtained in air (40 to 60 pct relative humidity), distilled water and 3.5 pct NaCl solution on the same material. Parallel studies of the reactions of water vapor with fresh alloy surfaces (produced either by in situ impact fracture or by ion etching) were made by Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS). The extent of surface reaction was monitored by changes in the oxygen AES and XPS signals. Correlation between the fatigue crack growth response and the surface reaction kinetics has been made, and is consistent with a transport-limited model for crack growth. The results also suggest that enhancement of fatigue crack growth by water vapor in the aluminum alloys occurs through a “hydrogen embrittle ment” mechanism.

  5. Salinity Impacts on Agriculture and Groundwater in Delta Regions

    NASA Astrophysics Data System (ADS)

    Clarke, D.; Salehin, M.; Jairuddin, M.; Saleh, A. F. M.; Rahman, M. M.; Parks, K. E.; Haque, M. A.; Lázár, A. N.; Payo, A.

    2015-12-01

    Delta regions are attractive for high intensity agriculture due to the availability of rich sedimentary soils and of fresh water. Many of the world's tropical deltas support high population densities which are reliant on irrigated agriculture. However environmental changes such as sea level rise, tidal inundation and reduced river flows have reduced the quantity and quality of water available for successful agriculture. Additionally, anthropogenic influences such as the over abstraction of ground water and the increased use of low quality water from river inlets has resulted in the accumulation of salts in the soils which diminishes crop productivity. Communities based in these regions are usually reliant on the same water for drinking and cooking because surface water is frequently contaminated by commercial and urban pollution. The expansion of shallow tube well systems for drinking water and agricultural use over the last few decades has resulted in mobilisation of salinity in the coastal and estuarine fringes. Sustainable development in delta regions is becoming constrained by water salinity. However salinity is often studied as an independent issue by specialists working in the fields of agriculture, community water supply and groundwater. The lack of interaction between these disciplines often results in corrective actions being applied to one sector without fully assessing the effects of these actions on other sectors. This paper describes a framework for indentifying the causes and impacts of salinity in delta regions based on the source-pathway-receptor framework. It uses examples and scenarios from the Ganges-Brahmaputra-Meghna delta in Bangladesh together with field measurements and observations made in vulnerable coastal communities. The paper demonstrates the importance of creating an holistic understanding of the development and management of water resources to reduce the impact of salinity in fresh water in delta regions.

  6. Hydrogeology of the Islamic Republic of Mauritania

    USGS Publications Warehouse

    Friedel, Michael J.; Finn, Carol

    2008-01-01

    Hydrogeologic maps were constructed for the Islamic Republic of Mauritania. The ground-water flow system in the country can best be described as two interconnected regional systems: the porous Continental Terminal coastal system and the interior, fractured sedimentary Taoudeni Basin system. In these systems, ground-water flow occurs in fill deposits and carbonate, clastic, metasedimentary, and metavolcanic rocks. Based on an evaluation of the potentiometric surface, there are three areas of ground-water recharge in the Taoudeni Basin system. One region occurs in the northwest at the edge of the Shield, one occurs to the south overlying the Tillites, and one is centered at the city of Tidjikdja. In contrast to the flow system in the Taoudeni Basin, the potentiometric surfaces reveal two areas of discharge in the Continental Terminal system but no localized recharge areas; the recharge is more likely to be areal. In addition to these recharge and discharge areas, ground water flows across the country's borders. Specifically, ground water from the Atlantic Ocean flows into Mauritania, transporting dissolved sodium from the west as a salt water intrusion, whereas fresh ground water discharges from the east into Mali. To the north, there is a relatively low gradient with inflow of fresh water to Mauritania, whereas ground-water flow discharges to the Senegal River to the south. A geographical information system (GIS) was used to digitize, manage, store, and analyze geologic data used to develop the hydrogeologic map. The data acquired for map development included existing digital GIS files, published maps, tabulated data in reports and public-access files, and the SIPPE2 Access database. Once in digital formats, regional geologic and hydrologic features were converted to a common coordinate system and combined into one map. The 42 regional geologic map units were then reclassified into 13 hydrogeologic units, each having considerable lateral extent and distinct hydrologic properties. Because the hydrologic properties of these units are also influenced by depth and degree of fracturing, the hydraulic conductivity values of these hydrogeologic units can range over many orders of magnitude.

  7. Bacterial adhesion to surfaces and microbial safety of fresh produce

    USDA-ARS?s Scientific Manuscript database

    Consumption of fresh produce is a central component of a healthy diet. However, contamination of fresh and fresh-cut fruits and vegetables such as leafy greens, tomatoes, cantaloupes is a source of ongoing concern for consumers. Growers, packers, processors and retailers work to control the incidenc...

  8. Distribution of living radiolarians and its response on the environments in spring from the section South China Sea

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Hu, W.; Chen, M.; Zeng, L.; Xiang, R.; Zhou, W.

    2013-12-01

    The composition and spatial (horizontal and vertical) distribution of living radiolarians in spring was firstly studied in the section (18°N and 113°E) South China Sea. Vertical plankton tows were collected at depth-intervals from 0 to 300 m in spring using a closing-type net with 62 um mesh size. And we distinguished the living specimens by staining with Rose Bengal. It dominated by tropical-subtropical warm species in spring from the studied areas. The abundance of nassellarians was the almost same as that of spumellarians in the upper-surface waters (0-25m). In the below-surface waters (25-50m), nassellarian abundance was the almost twice that of spumellarians. And the abundances generally decreased with depth (more than 50m), but nasselarian abundance reduced more quickly. The results showed that the horizontal and vertical distribution patterns of living radiolarians were closely related to the mesoscale eddies. The horizontal distributions of radiolarian abundance were uneven and pachy, which may be related to the complicated mecoscale eddies during the sampling period. That is, there were comparatively high abundances in the upper-surface waters where had the cold eddies development. But in the cold eddies of Meigong River mouth, radiolarian abundance was low due to the large input of fresh water, suggesting that low salinity had more important influence than the nutrient on the radiolarian development and reproduction. Vertically, the highest abundances occurred at the mixed layer in the cold eddies, and gradually decreased with depth. However, in the warm eddies, the maximum abundances were in the thermocline layers, where had an abundant supply of nutrients for radiolarians. This study showed that Didymocyrtis tetrathalamus tetrathalamus mostly occurred at the mixed layer, which should be closely related to the cold eddies and rich nutrition and be limited by the fresh water. Based on the distribution of Didymocyrtis tetrathalamus tetrathalamus, we concluded that the influence of west Pacific waters was obviously weak on the northwestern Luzon Island during the sampling period. As a tropical surface warm species, Tetrapyle octacantha was also found to be indicator of tropical upwelling eutrophication water. Acanthodesmia vinculata was mainly living in the mixed layer, and had a good response to the cold eddies far away the continental shelf. Besides, we also concluded that Siphonosphaera polysiphonia should be tropical surface warm species, having a gregarious life, which had a closely related to the warm eddies. Interestingly, the typical deep-dwellers (Cornutella profunda and Cyrtopera laguncula) occurred in the different depth intervals, even in the upper-surface waters, which suggested that the temperature might not be the mostly one of factors to control their living-depth. This study was funded by the following research programs: the National Natural Science Foundation of China (Nos. 41276051, 91228207, 40906030).

  9. Comparison of the orogenic displacement of sodium caseinate with the caseins from the air-water interface by nonionic surfactants.

    PubMed

    Woodward, N C; Gunning, A P; Mackie, A R; Wilde, P J; Morris, V J

    2009-06-16

    Displacement of sodium caseinate from the air-water interface by nonionic surfactants Tween 20 and Tween 60 was observed by atomic force microscopy (AFM). The interfacial structure was sampled by Langmuir-Blodgett deposition onto freshly cleaved mica substrates. Protein displacement occurred through an orogenic mechanism: it involved the nucleation and growth of surfactant domains within the protein network, followed by failure of the protein network. The surface pressure at which failure of the protein network occurred was essentially independent of the type of surfactant. The major component of sodium caseinate is beta-casein, and previous studies at the air-water interface have shown that beta-casein networks are weak, failing at surface pressures below that observed for sodium caseinate. The other components of sodium caseinate are alpha(s)- and kappa-caseins. Studies of the displacement of alpha(s)-caseins from air-water interfaces show that these proteins also form weak networks that fail at surface pressures below that observed for sodium caseinate. However, kappa-casein was found to form strong networks that resisted displacement and failed at surface pressures comparable to those observed for sodium caseinate. The AFM images of the displacement suggest that, despite kappa-casein being a minor component, it dominates the failure of sodium caseinate networks: alpha(s)-casein and beta-casein are preferentially desorbed at lower surface pressures, allowing the residual kappa-casein to control the breakdown of the sodium caseinate network at higher surface pressures.

  10. Continental patterns of submarine groundwater discharge reveal coastal vulnerabilities.

    PubMed

    Sawyer, Audrey H; David, Cédric H; Famiglietti, James S

    2016-08-12

    Submarine groundwater discharge (SGD) delivers water and dissolved chemicals from continents to oceans, and its spatial distribution affects coastal water quality. Unlike rivers, SGD is broadly distributed and relatively difficult to measure, especially at continental scales. We present spatially resolved estimates of fresh (land-derived) SGD for the contiguous United States based on historical climate records and high-resolution hydrographic data. Climate controls regional patterns in fresh SGD, while coastal drainage geometry imparts strong local variability. Because the recharge zones that contribute fresh SGD are densely populated, the quality and quantity of fresh SGD are both vulnerable to anthropogenic disturbance. Our analysis unveils hot spots for contaminant discharge to marine waters and saltwater intrusion into coastal aquifers. Copyright © 2016, American Association for the Advancement of Science.

  11. Field experiment provides ground truth for surface nuclear magnetic resonance measurement

    USGS Publications Warehouse

    Knight, R.; Grunewald, E.; Irons, T.; Dlubac, K.; Song, Y.; Bachman, H.N.; Grau, B.; Walsh, D.; Abraham, J.D.; Cannia, J.

    2012-01-01

    The need for sustainable management of fresh water resources is one of the great challenges of the 21st century. Since most of the planet's liquid fresh water exists as groundwater, it is essential to develop non-invasive geophysical techniques to characterize groundwater aquifers. A field experiment was conducted in the High Plains Aquifer, central United States, to explore the mechanisms governing the non-invasive Surface NMR (SNMR) technology. We acquired both SNMR data and logging NMR data at a field site, along with lithology information from drill cuttings. This allowed us to directly compare the NMR relaxation parameter measured during logging,T2, to the relaxation parameter T2* measured using the SNMR method. The latter can be affected by inhomogeneity in the magnetic field, thus obscuring the link between the NMR relaxation parameter and the hydraulic conductivity of the geologic material. When the logging T2data were transformed to pseudo-T2* data, by accounting for inhomogeneity in the magnetic field and instrument dead time, we found good agreement with T2* obtained from the SNMR measurement. These results, combined with the additional information about lithology at the site, allowed us to delineate the physical mechanisms governing the SNMR measurement. Such understanding is a critical step in developing SNMR as a reliable geophysical method for the assessment of groundwater resources.

  12. Environmental Consequences of Big Nasty Impacts on the Early Earth

    NASA Astrophysics Data System (ADS)

    Zahnle, K. J.

    2015-12-01

    The geological record of the Archean Earth is spattered with impact spherules from a dozen or so major cosmic collisions involving Earth and asteroids or comets (Lowe, Byerly 1986, 2015). Extrapolation of the documented deposits suggests that most of these impacts were as big or bigger than the Chicxulub event that famously ended the reign of the thunder lizards. As the Archean impacts were greater, the environmental effects were also greater. The number and magnitude of the impacts is bounded by the lunar record. There are no lunar craters bigger than Chicxulub that date to Earth's mid-to-late Archean. Chance dictates that Earth experienced ~10 impacts bigger than Chicxulub between 2.5 Ga and 3.5 Ga, the biggest of which were ~30-100X more energetic than Chicxulub. To quantify the thermal consequences of big impacts on old Earth, we model the global flow of energy from the impact into the environment. The model presumes that a significant fraction of the impact energy goes into ejecta that interact with the atmosphere. Much of this energy is initially in rock vapor, melt, and high speed particles. (i) The upper atmosphere is heated by ejecta as they reenter the atmosphere. The mix of hot air, rock vapor, and hot silicates cools by thermal radiation. Rock raindrops fall out as the upper atmosphere cools. (ii) The energy balance of the lower atmosphere is set by radiative exchange with the upper atmosphere and with the surface, and by evaporation of seawater. Susequent cooling is governed by condensation of water vapor. (iii) The oceans are heated by thermal radiation and rock rain and cooled by evaporation. Surface waters become hot and salty; if a deep ocean remains it is relatively cool. Subsequently water vapor condenses to replenish the oceans with hot fresh water (how fresh depending on continental weathering, which might be rather rapid under the circumstances). (iv) The surface temperature of dry land is presumed to be the same as the lower atmosphere. A thermal wave propagates into the land at a rate set by conduction. Impacts larger than Chicxulub can raise the surface temperature by tens, hundreds, or even thousands of degrees, and evaporate meters to hundreds of meters of water. The biggest should have vitrified exposed dry land. More results - including shock chemistry - are for the talk, as here we have run out of space.

  13. On the fresh-water invertebrates of the North American Jurassic

    USGS Publications Warehouse

    White, Charles A.

    1886-01-01

    Important additions having lately been made to our knowledge of the fresh-water invertebrates of the North American Jurassic strata, I have thought it desirable to present not only descriptions and figures of the new forms in this bulletin, but to make the publication an illustrated synopsis of all the forms yet discovered. I therefore reproduce on the accompanying plates figures of all the species hitherto published, in addition to those of the new forms. Besides this, I offer the following general discussion of the subject of those fresh-water fossils and theft bearing upon continental history.

  14. Divalent Cation Removal by Donnan Dialysis for Improved Reverse Electrodialysis.

    PubMed

    Rijnaarts, Timon; Shenkute, Nathnael T; Wood, Jeffery A; de Vos, Wiebe M; Nijmeijer, Kitty

    2018-05-07

    Divalent cations in feedwater can cause significant decreases in efficiencies for membrane processes, such as reverse electrodialysis (RED). In RED, power is harvested from the mixing of river and seawater, and the obtainable voltage is reduced and the resistance is increased if divalent cations are present. The power density of the RED process can be improved by removing divalent cations from the fresh water. Here, we study divalent cation removal from fresh water using seawater as draw solution in a Donnan dialysis (DD) process. In this way, a membrane system with neither chemicals nor electrodes but only natural salinity gradients can be used to exchange divalent cations. For DD, the permselectivity of the cation exchange membrane is found to be crucial as it determines the ability to block salt leakage (also referred to as co-ion transport). Operating DD using a membrane stack achieved a 76% reduction in the divalent cation content in natural fresh water with residence times of just a few seconds. DD pretreated fresh water was then used in a RED process, which showed improved gross and net power densities of 9.0 and 6.3%, respectively. This improvement is caused by a lower fresh water resistance (at similar open circuit voltages), due to exchange of divalent for monovalent cations.

  15. Ocean thermal energy conversion: Perspective and status

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, A.; Hillis, D.L.

    1990-01-01

    The use of the thermal gradient between the warm surface waters and the deep cold waters of tropical oceans was first proposed by J. A. d'Arsonval in 1881 and tried unsuccessfully be George Claude in 1930. Interest in Ocean Thermal Energy Conversion (OTEC) and other renewable energy sources revived in the 1970s as a result of oil embargoes. At that time, the emphasis was on large floating plants miles from shore producing 250--400 MW for maintained grids. When the problems of such plants became better understood and the price of oil reversed its upward trend, the emphasis shifted to smallermore » (10 MW) shore-based plants on tropical islands. Such plants would be especially attractive if they produce fresh water as a by-product. During the past 15 years, major progress has been made in converting OTEC unknowns into knowns. Mini-OTEC proved the closed-cycle concept. Cost-effective heat-exchanger concepts were identified. An effective biofouling control technique was discovered. Aluminum was determined to be promising for OTEC heat exchangers. Heat-transfer augmentation techniques were identified, which promised a reduction on heat-exchanger size and cost. Fresh water was produced by an OTEC open-cycle flash evaporator, using the heat energy in the seawater itself. The current R D emphasis is on the design and construction of a test facility to demonstrate the technical feasibility of the open-cycle process. The 10 MW shore-based, closed-cycle plant can be built with today's technology; with the incorporation of a flash evaporator, it will produce fresh water as well as electrical power -- both valuable commodities on many tropical islands. The open-cycle process has unknowns that require solution before the technical feasibility can be demonstrated. The economic viability of either cycle depends on reducing the capital costs of OTEC plants and on future trends in the costs of conventional energy sources. 7 refs.« less

  16. Ocean thermal energy conversion: Perspective and status

    NASA Astrophysics Data System (ADS)

    Thomas, Anthony; Hillis, David L.

    The use of the thermal gradient between the warm surface waters and the deep cold waters of tropical oceans was first proposed by J. A. d'Arsonval in 1881 and tried unsuccessfully by George Claude in 1930. Interest in Ocean Thermal Energy Conversion (OTEC) and other renewable energy sources revived in the 1970s as a result of oil embargoes. At that time, the emphasis was on large floating plants miles from shore producing 250 to 400 MW for maintained grids. When the problems of such plants became better understood and the price of oil reversed its upward trend, the emphasis shifted to smaller (10 MW) shore based plants on tropical islands. Such plants would be especially attractive if they produce fresh water as a by-product. During the past 15 years, major progress has been made in converting OTEC unknowns into knowns. Mini-OTEC proved the closed cycle concept. Cost effective heat exchanger concepts were identified. An effective biofouling control technique was discovered. Aluminum was determined to be promising for OTEC heat exchangers. Heat transfer augmentation techniques were identified, which promised a reduction on heat exchanger size and cost. Fresh water was produced by an OTEC open cycle flash evaporator, using the heat energy in the seawater itself. The current R and D emphasis is on the design and construction of a test facility to demonstrate the technical feasibility of the open cycle process. The 10 MW shore-based, closed cycle plant can be built with today's technology; with the incorporation of a flash evaporator, it will produce fresh water as well as electrical power; both valuable commodities on many tropical islands. The open cycle process has unknowns that require solution before the technical feasibility can be demonstrated. The economic viability of either cycle depends on reducing the capital costs of OTEC plants and on future trends in the costs of conventional energy sources.

  17. Wet Worlds: Explore the World of Water. Marine and Fresh Water Activities for the Elementary Classroom.

    ERIC Educational Resources Information Center

    Solomon, Gerard; And Others

    Complete with student worksheets, field trip ideas, illustrations, vocabulary lists, suggested materials, and step-by-step procedures, the document presents a compilation of ideas for teaching elementary school (K-6) students about marine and fresh water. In the first unit students build miniature monuments and observe the deterioration of…

  18. LOWER COLUMBIA RIVER ESTUARY PROGRAM COMPREHENSIVE CONSERVATION AND MANAGEMENT PLAN

    EPA Science Inventory

    An estuary is the area where the fresh water of a river meets the salt water of an ocean. In the Columbia River system, this occurs in the lower 46 river miles. In an estuary, the river has a direct, natural connection with the open sea. This transition from fresh to salt water c...

  19. Fog as a fresh-water resource: overview and perspectives.

    PubMed

    Klemm, Otto; Schemenauer, Robert S; Lummerich, Anne; Cereceda, Pilar; Marzol, Victoria; Corell, David; van Heerden, Johan; Reinhard, Dirk; Gherezghiher, Tseggai; Olivier, Jana; Osses, Pablo; Sarsour, Jamal; Frost, Ernst; Estrela, María J; Valiente, José A; Fessehaye, Gebregiorgis Mussie

    2012-05-01

    The collection of fog water is a simple and sustainable technology to obtain fresh water for afforestation, gardening, and as a drinking water source for human and animal consumption. In regions where fresh water is sparse and fog frequently occurs, it is feasible to set up a passive mesh system for fog water collection. The mesh is directly exposed to the atmosphere, and the foggy air is pushed through the mesh by the wind. Fog droplets are deposited on the mesh, combine to form larger droplets, and run down passing into a storage tank. Fog water collection rates vary dramatically from site to site but yearly averages from 3 to 10 l m(-2) of mesh per day are typical of operational projects. The scope of this article is to review fog collection projects worldwide, to analyze factors of success, and to evaluate the prospects of this technology.

  20. Efficacy of chlorinated and ozonated water in reducing Salmonella typhimurium attached to tomato surfaces.

    PubMed

    Chaidez, Cristobal; Lopez, Javier; Vidales, Juan; Campo, Nohelia Castro-Del

    2007-08-01

    The purpose of this study was to compare chlorinated and ozonated water in reducing Salmonella typhimurium inoculated onto fresh ripe tomatoes. Surface-inoculated tomatoes were immersed/sprayed with chlorinated (200 mg l(-1)) and ozonated water (1 and 2 mg l(-1)) under 2 and 100 nefelometric turbidity units (NTU). Contact times were 120 and 30 s for immersing and spraying applications, respectively. Immersing in chlorinated water and low turbidity resulted in the most effective application with 3.61 log(10) bacterial reduction, while 1 and 2 mg l(-1) of ozone reduced 2.32 and 2.53 log(10), respectively. High turbidity and chlorine reduced the bacterial counts by 3.39 log(10), while 1 and 2 mg l(-1) of ozonated water and low turbidity reduced the bacteria by 1.48 and 1.92 log(10), respectively. Spraying chlorinated water reduced bacteria by 3 log(10), and ozonated water at 1 and 2 mg l(-1) reduced counts by 1.84 and 2.40 log(10), respectively. No statistical differences were found between chlorine and ozone (2 mg l(-1)) during spraying applications (p < 0.05). The use of ozonated water both in immersing and spraying applications is suggested when water turbidity remains low.

  1. Orientation-Induced Effects of Water Harvesting on Humps-on-Strings of Bioinspired Fibers

    PubMed Central

    Chen, Yuan; Li, Dan; Wang, Ting; Zheng, Yongmei

    2016-01-01

    Smart water-collecting functions are naturally endowed on biological surfaces with unique wettable microstructures, e.g., beetle back with “alternate hydrophobic, hydrophilic micro-regions”, and spider silk with wet-rebuilt “spindle-knot, joint” structures. Enlightened by the creature features, design of bio-inspired surfaces becomes the active issue in need of human beings for fresh water resource. Recently, as observed from spider web in nature, the net of spider silk is usually set in different situations and slopes in air, thus spider silks can be placed in all kinds of orientations as capturing water. Here, we show the styles and orientations of hump-on-string to control the ability of water collection as bioinspired silks are fabricated successfully. As different strings, sizes (height, length, pitch) of humps can become the controlling on volumes of extreme water drops. It is related to the different solid/liquid contact regions resulting in the as-modulated wet adhesion due to orientations of humps-on-strings. The conversion of high-low adhesion can be achieved to rely on orientations for the effect of capturing water drops. These studies offer an insight into enhancement of water collection efficiency and are helpful to design smart materials for controlled water drop capture and release via conversions of high-low adhesion. PMID:26812942

  2. Photographer : JPL Range : 4.2 million kilometers (2.6 million miles) Ganymede is Jupiter's Largest

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Photographer : JPL Range : 4.2 million kilometers (2.6 million miles) Ganymede is Jupiter's Largest Galilean satellites and 3rd from the planet. Photo taken after midnight Ganymede is slightly larger than Mercury but much less dense (twice the density of water). Its surface brightness is 4 times of Earth's Moon. Mare regions (dark features) are like the Moon's but have twice the brightness, and believed to be unlikely of rock or lava as the Moon's are. It's north pole seems covered with brighter material and may be water frost. Scattered brighter spots may be related to impact craters or source of fresh ice.

  3. Photographer : JPL Range : 6 million kilometers (3.7 million miles) Central Longitude 120 degrees

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Photographer : JPL Range : 6 million kilometers (3.7 million miles) Central Longitude 120 degrees west, North is up. and 3rd from the planet. Photo taken after midnight Ganymede is slightly larger than Mercury but much less dense (twice the density of water). Its surface brightness is 4 times of Earth's Moon. Mare regions (dark features) are like the Moon's but have twice the brightness, and believed to be unlikely of rock or lava as the Moon's are. It's north pole seems covered with brighter material and may be water frost. Scattered brighter spots may be related to impact craters or source of fresh ice.

  4. Micronised bran-enriched fresh egg tagliatelle: Significance of gums addition on pasta technological features.

    PubMed

    Martín-Esparza, M E; Raga, A; González-Martínez, C; Albors, A

    2018-06-01

    The aim of the work was to produce fibre-enriched fresh pasta based on micronised wheat bran and durum wheat semolina with appropriate techno-functional properties. Wheat semolina was replaced with fine particle size (50% below 75 µm) wheat bran - up to 11.54% (w/w). A Box-Behnken design with randomised response surface methodology was used to determine a suitable combination of carboxymethylcellulose, xanthan gum and locust bean gum to improve pasta attributes: minimum cooking loss, maximum values for water gain and swelling index, as well as better colour and texture characteristics before and after cooking. The proximate chemical composition of wheat semolina and bran was determined and the microstructure of uncooked pasta was observed as well. From the response surface methodology analysis, it is recommended to use: (i) xanthan gum over 0.6% w/w as it led to bran-enriched pasta with a better developed structure and superior cooking behaviour, (ii) a combination of xanthan gum (0.8% w/w) and carboxymethylcellulose (over 0.6% w/w) to enhance uncooked pasta yellowness.

  5. Effects of various final irrigants on the shear bond strength of resin-based sealer to dentin

    PubMed Central

    Kandaswamy, Deivanayagam; Venkateshbabu, Nagendrababu; Arathi, Ganesh; Roohi, Riaz; Anand, Suresh

    2011-01-01

    Aim: This study has been designed to evaluate the effect of strong (MTAD) or soft (1- hydroxyethylidene – 1, 1-bisphosphonate (HEBP) final irrigating solution on the shear bond strength of AH plus sealer to coronal dentin. 17% EDTA was used as the reference. Materials and Methods: Forty freshly extracted human maxillary first premolars were prepared using different irrigation protocols (n=10). All the test groups had 1.3% NaOCl as initial rinse and followed by specific final rinse for each group: G1 – distilled water(control), G2 – 17% EDTA, G3- 18% HEBP and G4 – MTAD. Sections of polyethylene tubes that are 3mm long were filled with freshly mixed sealer and placed on the dentin surfaces. The bonding between the sealer and dentine surface was evaluated using shear bond testing. The values were statistically evaluated using one-way ANOVA followed by Tukey's test. Result: Significant difference was found among the irrigating regimes. EDTA showed highest bond strength followed by HEBP and MTAD PMID:21691504

  6. Bioinspired materials for water supply and management: water collection, water purification and separation of water from oil.

    PubMed

    Brown, Philip S; Bhushan, Bharat

    2016-08-06

    Access to a safe supply of water is a human right. However, with growing populations, global warming and contamination due to human activity, it is one that is increasingly under threat. It is hoped that nature can inspire the creation of materials to aid in the supply and management of water, from water collection and purification to water source clean-up and rehabilitation from oil contamination. Many species thrive in even the driest places, with some surviving on water harvested from fog. By studying these species, new materials can be developed to provide a source of fresh water from fog for communities across the globe. The vast majority of water on the Earth is in the oceans. However, current desalination processes are energy-intensive. Systems in our own bodies have evolved to transport water efficiently while blocking other molecules and ions. Inspiration can be taken from such to improve the efficiency of desalination and help purify water containing other contaminants. Finally, oil contamination of water from spills or the fracking technique can be a devastating environmental disaster. By studying how natural surfaces interact with liquids, new techniques can be developed to clean up oil spills and further protect our most precious resource.This article is part of the themed issue 'Bioinspired hierarchically structured surfaces for green science'. © 2016 The Author(s).

  7. Factors controlling the configuration of the fresh-saline water interface in the Dead Sea coastal aquifers: Synthesis of TDEM surveys and numerical groundwater modeling

    USGS Publications Warehouse

    Yechieli, Y.; Kafri, U.; Goldman, M.; Voss, C.I.

    2001-01-01

    TDEM (time domain electromagnetic) traverses in the Dead Sea (DS) coastal aquifer help to delineate the configuration of the interrelated fresh-water and brine bodies and the interface in between. A good linear correlation exists between the logarithm of TDEM resistivity and the chloride concentration of groundwater, mostly in the higher salinity range, close to that of the DS brine. In this range, salinity is the most important factor controlling resistivity. The configuration of the fresh-saline water interface is dictated by the hydraulic gradient, which is controlled by a number of hydrological factors. Three types of irregularities in the configuration of fresh-water and saline-water bodies were observed in the study area: 1. Fresh-water aquifers underlying more saline ones ("Reversal") in a multi-aquifer system. 2. "Reversal" and irregular residual saline-water bodies related to historical, frequently fluctuating DS base level and respective interfaces, which have not undergone complete flushing. A rough estimate of flushing rates may be obtained based on knowledge of the above fluctuations. The occurrence of salt beds is also a factor affecting the interface configuration. 3. The interface steepens towards and adjacent to the DS Rift fault zone. Simulation analysis with a numerical, variable-density flow model, using the US Geological Survey's SUTRA code, indicates that interface steep- ening may result from a steep water-level gradient across the zone, possibly due to a low hydraulic conductivity in the immediate vicinity of the fault.

  8. Renal effects of fresh water-induced hypo-osmolality in a marine adapted seal

    NASA Technical Reports Server (NTRS)

    Ortiz, R. M.; Wade, C. E.; Costa, D. P.; Ortiz, C. L.

    2002-01-01

    With few exceptions, marine mammals are not exposed to fresh water; however quantifying the endocrine and renal responses of a marine-adapted mammal to the infusion of fresh water could provide insight on the evolutionary adaptation of kidney function and on the renal capabilities of these mammals. Therefore, renal function and hormonal changes associated with fresh water-induced diuresis were examined in four, fasting northern elephant seal ( Mirounga angustirostris) (NES) pups. A series of plasma samples and 24-h urine voids were collected prior to (control) and after the infusion of water. Water infusion resulted in an osmotic diuresis associated with an increase in glomerular filtration rate (GFR), but not an increase in free water clearance. The increase in excreted urea accounted for 96% of the increase in osmotic excretion. Following infusion of fresh water, plasma osmolality and renin activity decreased, while plasma aldosterone increased. Although primary regulators of aldosterone release (Na(+), K(+) and angiotensin II) were not significantly altered in the appropriate directions to individually stimulate aldosterone secretion, increased aldosterone may have resulted from multiple, non-significant changes acting in concert. Aldosterone release may also be hypersensitive to slight reductions in plasma Na(+), which may be an adaptive mechanism in a species not known to drink seawater. Excreted aldosterone and urea were correlated suggesting aldosterone may regulate urea excretion during hypo-osmotic conditions in NES pups. Urea excretion appears to be a significant mechanism by which NES pups sustain electrolyte resorption during conditions that can negatively affect ionic homeostasis such as prolonged fasting.

  9. Use of ICP/MS with ultrasonic nebulizer for routine determination of uranium activity ratios in natural water

    USGS Publications Warehouse

    Kraemer, T.F.; Doughten, M.W.; Bullen, T.D.

    2002-01-01

    A method is described that allows precise determination of 234U/238U activity ratios (UAR) in most natural waters using commonly available inductively coupled plasma/mass spectrometry (ICP/MS) instrumentation and accessories. The precision achieved by this technique (??0.5% RSD, 1 sigma) is intermediate between thermal ionization mass spectrometry (??0.25% RSID, 1 sigma) and alpha particle spectrometry (??5% RSD, 1 sigma). It is precise and rapid enough to allow analysis of a large number of samples in a short period of time at low cost using standard, commercially available quadrupole instrumentation with ultrasonic nebulizer and desolvator accessories. UARs have been analyzed successfully in fresh to moderately saline waters with U concentrations of from less than 1 ??g/L to nearly 100 ??g/L. An example of the uses of these data is shown for a study of surface-water mixing in the North Platte River in western Nebraska. This rapid and easy technique should encourage the wider use of uranium isotopes in surface-water and groundwater investigations, both for qualitative (e.g. identifying sources of water) and quantitative (e.g. determining end-member mixing ratios purposes.

  10. Listeria monocytogenes in Fresh Produce: Outbreaks, Prevalence and Contamination Levels

    PubMed Central

    Zhu, Qi; Gooneratne, Ravi; Hussain, Malik Altaf

    2017-01-01

    Listeria monocytogenes, a member of the genus Listeria, is widely distributed in agricultural environments, such as soil, manure and water. This organism is a recognized foodborne pathogenic bacterium that causes many diseases, from mild gastroenteritis to severe blood and/or central nervous system infections, as well as abortion in pregnant women. Generally, processed ready-to-eat and cold-stored meat and dairy products are considered high-risk foods for L. monocytogenes infections that cause human illness (listeriosis). However, recently, several listeriosis outbreaks have been linked to fresh produce contamination around the world. Additionally, many studies have detected L. monocytogenes in fresh produce samples and even in some minimally processed vegetables. Thus L. monocytogenes may contaminate fresh produce if present in the growing environment (soil and water). Prevention of biofilm formation is an important control measure to reduce the prevalence and survival of L. monocytogenes in growing environments and on fresh produce. This article specifically focuses on fresh produce–associated listeriosis outbreaks, prevalence in growing environments, contamination levels of fresh produce, and associated fresh produce safety challenges. PMID:28282938

  11. The effect of evaporative air chilling and storage temperature on quality and shelf life of fresh chicken carcasses.

    PubMed

    Mielnik, M B; Dainty, R H; Lundby, F; Mielnik, J

    1999-07-01

    The effect of evaporative air chilling on quality of fresh chicken carcasses was compared with air chilling as reference method. Cooling efficiency and total heat loss were significantly higher for evaporative air chilling. The chilling method was of great importance for weight loss. Chicken chilled in cold air lost considerably more weight than chicken cooled by evaporative air chilling; the difference was 1.8%. The chilling method also affected the skin color and the amount of moisture on skin surface. After evaporative air chilling, the chicken carcasses had a lighter color and more water on the back and under the wings. The moisture content in skin and meat, cooking loss, and pH were not affected by chilling method. Odor attributes of raw chicken and odor and flavor attributes of cooked chicken did not show any significant differences between the two chilling methods. The shelf life of chicken stored at 4 and -1 C were not affected significantly by chilling method. Storage time and temperature appeared to be the decisive factors for sensory and microbiological quality of fresh chicken carcasses.

  12. Surface compositions across Pluto and Charon.

    PubMed

    Grundy, W M; Binzel, R P; Buratti, B J; Cook, J C; Cruikshank, D P; Dalle Ore, C M; Earle, A M; Ennico, K; Howett, C J A; Lunsford, A W; Olkin, C B; Parker, A H; Philippe, S; Protopapa, S; Quirico, E; Reuter, D C; Schmitt, B; Singer, K N; Verbiscer, A J; Beyer, R A; Buie, M W; Cheng, A F; Jennings, D E; Linscott, I R; Parker, J Wm; Schenk, P M; Spencer, J R; Stansberry, J A; Stern, S A; Throop, H B; Tsang, C C C; Weaver, H A; Weigle, G E; Young, L A

    2016-03-18

    The New Horizons spacecraft mapped colors and infrared spectra across the encounter hemispheres of Pluto and Charon. The volatile methane, carbon monoxide, and nitrogen ices that dominate Pluto's surface have complicated spatial distributions resulting from sublimation, condensation, and glacial flow acting over seasonal and geological time scales. Pluto's water ice "bedrock" was also mapped, with isolated outcrops occurring in a variety of settings. Pluto's surface exhibits complex regional color diversity associated with its distinct provinces. Charon's color pattern is simpler, dominated by neutral low latitudes and a reddish northern polar region. Charon's near-infrared spectra reveal highly localized areas with strong ammonia absorption tied to small craters with relatively fresh-appearing impact ejecta. Copyright © 2016, American Association for the Advancement of Science.

  13. Alteration of the UV-visible reflectance spectra of H2O ice by ion bombardment

    NASA Technical Reports Server (NTRS)

    Sack, N. J.; Boring, J. W.; Johnson, R. E.; Baragiola, R. A.; Shi, M.

    1991-01-01

    Satellite in the Jovian and Saturnian system exhibit differences in reflectivity between their 'leading' and 'trailing' surfaces which can affect the local vapor pressure. Since these differences are thought to be due to differences in the flux of bombarding magnetospheric ions, the influence of ion impact on the UV-visible reflectance of water ice surfaces (20-90 K) by keV ion bombardment was studied. An observed decrease in reflectance in the UV is attributed to rearrangement processes that affect the physical microstructure and surface 'roughness'. The ratio in reflectance of bombarded to freshly deposited films is compared to the ratio of the reflectance of the leading and trailing hemispheres for Europa and Ganymede.

  14. Engineering and Design: Composite Materials for Civil Engineering Structures

    DTIC Science & Technology

    1997-03-31

    the effects of acidic, salt, and fresh waters . Acidic, salt, and fresh waters are corrosive to ferrous metals. In Corps of Engineers structures, high...what is commonly called a toughened epoxy. (5) Polymeric resins will absorb moisture. Since many applications are in contact with water (at least...ultraviolet radiation. Some coatings can reduce the amount of moisture absorption by the structure. All polymeric resins will absorb water to some

  15. Sediment-Submersed Macrophyte Relationships in Freshwater Systems.

    DTIC Science & Technology

    1982-06-01

    aide if necessary and Identify by block nuobe.) Aquatic plants Fresh- water ecology Fresh- water flora Sedimentation and deposition 20, A114 ACT...a large and important source of N and P for rooted aquatic macrophytes, but K is probably supplied to these plants primarily from the water . .Xy... aquatic systems. In a subsequent related investigation, K uptake by Hydr~ia verticiZZata Royle from sediment versus overlying water was evaluated in

  16. Quantifying the Global Fresh Water Budget: Capabilities from Current and Future Satellite Sensors

    NASA Technical Reports Server (NTRS)

    Hildebrand, Peter; Zaitchik, Benjamin

    2007-01-01

    The global water cycle is complex and its components are difficult to measure, particularly at the global scales and with the precision needed for assessing climate impacts. Recent advances in satellite observational capabilities, however, are greatly improving our knowledge of the key terms in the fresh water flux budget. Many components of the of the global water budget, e.g. precipitation, atmospheric moisture profiles, soil moisture, snow cover, sea ice are now routinely measured globally using instruments on satellites such as TRMM, AQUA, TERRA, GRACE, and ICESat, as well as on operational satellites. New techniques, many using data assimilation approaches, are providing pathways toward measuring snow water equivalent, evapotranspiration, ground water, ice mass, as well as improving the measurement quality for other components of the global water budget. This paper evaluates these current and developing satellite capabilities to observe the global fresh water budget, then looks forward to evaluate the potential for improvements that may result from future space missions as detailed by the US Decadal Survey, and operational plans. Based on these analyses, and on the goal of improved knowledge of the global fresh water budget under the effects of climate change, we suggest some priorities for the future, based on new approaches that may provide the improved measurements and the analyses needed to understand and observe the potential speed-up of the global water cycle under the effects of climate change.

  17. Hydrogeologic conditions in the town of Shelter Island, Suffolk County, Long Island, New York

    USGS Publications Warehouse

    Soren, Julian

    1978-01-01

    Shelter Island, an area of about 11 square miles, in Suffolk County, N.Y., is situated between the north and south forks of eastern Long Island. The upper glacial aquifer is the sole source of freshwater supply for Shelter Island 's population, which currently ranges seasonally from 2,000 to 8,000. Fresh ground water seems to be limited to sand and gravel deposits in the aquifer, which is thin and can be readily infiltrated by surrounding saline ground water. The aquifer is underlain by confining clay formations that contain saline water, and the geologic formations below the clay probably contain saline water also. The fresh ground water is mostly soft and has low dissolved-solids concentrations; however, several wells near shorelines have yielded excessive amounts of chloride. Man-induced contamination of the aquifer is evident but not severe, as shown by somewhat elevated concentrations of nitrate nitrogen and methylene blue active substances (MBAS). Increased pumping will cause deterioration of the fresh ground-water supply by inducing saline-water infiltration and by adding greater volumes of septic-tank and cesspool effluents to the aquifer. Test drilling could help in water-supply management by determining the extent of the aquifer and of fresh ground-water storage, and observation wells could provide early detection of saline-water infiltration. (Woodard-USGS)

  18. Texas review of hydraulic fracturing water use and consumption

    NASA Astrophysics Data System (ADS)

    Nicot, J.; Reedy, R. C.; Costley, R.

    2012-12-01

    Hydraulic fracturing (HF) has a long history in the state of Texas where are located (1) several established plays, such as the Barnett Shale, (2) plays of recent interest, such as the Eagle Ford or the Wolfcamp, and (3) older plays being revisited such as the Wolfberry or the Granite Wash. We compiled current water use for year 2011 (about 82,000 acre-feet) and compared it to an older analysis done for year 2008 (about 36,000 acre-feet). A private database compiling state information and providing water use is complemented by a survey of the industry. Industry survey is the only way to access fresh water consumption estimated to be only a fraction of the total water use because of reuse of flowback water, use of recycled water from treatment plants and produced water, and use of brackish water. We analyzed these different components of the HF budget as well as their source, surface water vs. groundwater, with a focus on impacts on aquifers and groundwater resources.

  19. Groundwater studies in arid areas in Egypt using LANDSAT satellite images

    NASA Technical Reports Server (NTRS)

    Elshazly, E. M.; Abdelhady, M. A.; Elshazly, M. M.

    1977-01-01

    Various features are interpreted which have strong bearing on groundwater in the arid environment. These include the nature of geological and lithologic units, structural lineaments, present and old drainage systems, distribution and form of water pools, geomorphologic units, weathering surfaces and other weathering phenomena, desert soils, sand dunes and dune sand accumulations, growths of natural vegetation and agriculture, and salt crusts and other expressions of salinization. There are many impressive examples which illustrate the significance of satellite image interpretation on the regional conditions of groundwater which could be traced and interconnected over several tens or even several hundreds of kilometers. This is especially true in the northern Western Desert of Egypt where ground water issuing from deep strata comes to the surface along ENE-WSW and ESE-WNW fault lines and fracture systems. Another striking example is illustrated by the occurrence of fresh to brackish groundwater on the Mediterranean Sea Coastal Zone of the Western Desert where the groundwater is found in the form of lenses floating on the saline sea water.

  20. Seasonality of Arctic Mediterranean Exchanges

    NASA Astrophysics Data System (ADS)

    Rieper, Christoph; Quadfasel, Detlef

    2015-04-01

    The Arctic Mediterranean communicates through a number of passages with the Atlantic and the Pacific Oceans. Most of the volume exchange happens at the Greenland-Scotland-Ridge: warm and saline Atlantic Water flows in at the surface, cold, dense Overflow Water flows back at the bottom and fresh and cold Polar Water flows out along the East Greenland coast. All surface inflows show a seasonal signal whereas only the outflow through the Faroe Bank Channel exhibits significant seasonality. Here we present a quantification of the seasonal cycle of the exchanges across the Greenland-Scotland ridge based on volume estimates of the in- and outflows within the last 20 years (ADCP and altimetry). Our approach is comparatistic: we compare different properties of the seasonal cycle like the strength or the phase between the different in- and outflows. On the seasonal time scale the in- and outflows across the Greenland-Scotland-Ridge are not balanced. The net flux thus has to be balanced by the other passages on the Canadian Archipelago, Bering Strait as well as runoff from land.

  1. Sea surface temperature and salinity from French research vessels, 2001–2013

    PubMed Central

    Gaillard, Fabienne; Diverres, Denis; Jacquin, Stéphane; Gouriou, Yves; Grelet, Jacques; Le Menn, Marc; Tassel, Joelle; Reverdin, Gilles

    2015-01-01

    French Research vessels have been collecting thermo-salinometer (TSG) data since 1999 to contribute to the Global Ocean Surface Underway Data (GOSUD) programme. The instruments are regularly calibrated and continuously monitored. Water samples are taken on a daily basis by the crew and later analysed in the laboratory. We present here the delayed mode processing of the 2001–2013 dataset and an overview of the resulting quality. Salinity measurement error was a few hundredths of a unit or less on the practical salinity scale (PSS), due to careful calibration and instrument maintenance, complemented with a rigorous adjustment on water samples. In a global comparison, these data show excellent agreement with an ARGO-based salinity gridded product. The Sea Surface Salinity and Temperature from French REsearch SHips (SSST-FRESH) dataset is very valuable for the ‘calibration and validation’ of the new satellite observations delivered by the Soil Moisture and Ocean Salinity (SMOS) and Aquarius missions. PMID:26504523

  2. Open ocean pelago-benthic coupling: cyanobacteria as tracers of sedimenting salp faeces

    NASA Astrophysics Data System (ADS)

    Pfannkuche, Olaf; Lochte, Karin

    1993-04-01

    Coupling between surface water plankton and abyssal benthos was investigated during a mass development of salps ( Salpa fusiformis) in the Northeast Atlantic. Cyanobacteria numbers and composition of photosynthetic pigments were determined in faeces of captured salps from surface waters, sediment trap material, detritus from plankton hauls, surface sediments from 4500-4800 m depth and Holothurian gut contents. Cyanobacteria were found in all samples containing salp faeces and also in the guts of deep-sea Holothuria. The ratio between zeaxanthin (typical of cyanobacteria) and sum of chlorophyll a pigments was higher in samples from the deep sea when compared to fresh salp faeces, indicating that this carotenoid persisted longer in the sedimenting material than total chlorophyll a pigments. The microscopic and chemical observations allowed us to trace sedimenting salp faeces from the epipelagial to the abyssal benthos, and demonstrated their role as a fast and direct link between both systems. Cyanobacteria may provide a simple tracer for sedimenting phytodetritus.

  3. Biogeochemical transport in the Loxahatchee River estuary, Florida: The role of submarine groundwater discharge

    USGS Publications Warehouse

    Swarzenski, P.W.; Orem, W.H.; McPherson, B.F.; Baskaran, M.; Wan, Y.

    2006-01-01

    The distributions of dissolved organic carbon (DOC), Ba, U, and a suite of naturally occurring radionuclides in the U/Th decay series (222Rn, 223,224,226,228Ra) were studied during high- and low-discharge conditions in the Loxahatchee River estuary, Florida to examine the role of submarine groundwater discharge in estuarine transport. The fresh water endmember of this still relatively pristine estuary may reflect not only river-borne constituents, but also those advected during active groundwater/surface water (hyporheic) exchange. During both discharge conditions, Ba concentrations indicated slight non-conservative mixing. Such Ba excesses could be attributed either to submarine groundwater discharge or particle desorption processes. Estuarine dissolved organic carbon concentrations were highest at salinities closest to zero. Uranium distributions were lowest in the fresh water sites and mixed mostly conservatively with an increase in salinity. Suspended particulate matter (SPM) concentrations were generally lowest ( 28??dpm L- 1) at the freshwater endmember of the estuary and appear to identify regions of the river most influenced by the discharge of fresh groundwater. Activities of four naturally occurring isotopes of Ra (223,224,226,228Ra) in this estuary and select adjacent shallow groundwater wells yield mean estuarine water-mass transit times of less than 1 day; these values are in close agreement to those calculated by tidal prism and tidal frequency. Submarine groundwater discharge rates to the Loxahatchee River estuary were calculated using a tidal prism approach, an excess 226Ra mass balance, and an electromagnetic seepage meter. Average SGD rates ranged from 1.0 to 3.8 ?? 105??m3 d- 1 (20-74??L m- 2 d- 1), depending on river-discharge stage. Such calculated SGD estimates, which must include both a recirculated as well as fresh water component, are in close agreement with results obtained from a first-order watershed mass balance. Average submarine groundwater discharge rates yield NH4+ and PO4- 3 flux estimates to the Loxahatchee River estuary that range from 62.7 to 1063.1 and 69.2 to 378.5????mol m- 2 d- 1, respectively, depending on river stage. SGD-derived nutrient flux rates are compared to yearly computed riverine total N and total P load estimates. ?? 2006 Elsevier B.V. All rights reserved.

  4. New biosensors for food safety screening solutions

    NASA Astrophysics Data System (ADS)

    Dyer, Maureen A.; Oberholtzer, Jennifer A.; Mulligan, David C.; Hanson, William P.

    2009-05-01

    Hanson Technologies has developed the automated OmniFresh 1000 system to sample large volumes of produce wash water, collect the pathogens, and detect their presence. By collecting a continuous sidestream of wash water, the OmniFresh uses a sample that represent the entire lot of produce being washed. The OmniFresh does not require bacterial culture or enrichment, and it detects both live and dead bacteria in the collected sample using an in-line sensor. Detection occurs in an array biosensor capable of handling large samples with complex matrices. Additionally, sample can be sent for traditional confirming tests after the screening performed by the OmniFresh.

  5. Water for the growing needs of Harrison County, Mississippi

    USGS Publications Warehouse

    Newcome, Roy; Shattles, Donald E.; Humphreys, Carney P.

    1968-01-01

    The potential for water-supply development in Harrison County is almost unlimited. During an average year, more than 350 billion gallons of water flow into the Gulf of Mexico from the streams of the county. With storage reservoirs these streams have a potential sustained supply of hundreds of millions of. gallons per day. Recreation uses and flood-control benefits could also be considered in reservoir design. Upstream from the zones of salt-water penetration, mineral content is low and fairly constant. Water in the streams generally has high color and low pH ; treatment would be required for most municipal and industrial uses. Impoundment in reservoirs normally would have little effect on the quality of the surface water. However, impoundment would trap most of the suspended-sediment load of the streams. Flooding along the major streams of Harrison County is a minor hazard at present (1966), but with further industrial development and urbanization, flooding in these now rural areas could become serious. Intense rainfall from thunderstorms and hurricanes causes serious local flooding in the populous areas near the coast. Tidal flooding, a result of tropical storms, is an ever-present hazard in areas near the coast. The ground-water reservoir, which at present provides all fresh-water supplies, is capable of supporting many times the 25 million gallons per day withdrawal through existing wells. Fresh water occurs to depths as great as 2,500 feet in sand aquifers of Pliocene and Miocene age. Many of the aquifers have high transmissibility; most of those tested have transmissibility in the range, of 50,000-100,000 gallons per day per foot. Although few wells produce more than 1,000 gallons per minute, several of the aquifers can yield two to three times that amount to wells designed for the higher production. Artesian water levels along the coast are declining at a rate of 1 foot per year on the average; however, water levels are still above or only slightly below the land surface in most places, and considerable additional drawdown is economically available. Newly discovered deep aquifers (1,700-2,500 ft) have water levels 100 feet above the surface and probably will provide flow yields of 2,000 gallons per minute or more. The temperature of this deep water is nearly 100?F. Nearly all the ground water is of good quality and requires little or no treatment for most uses. It is soft, and total mineral content is usually less than 250 parts per million. Color is seldom a problem, although it may have to be considered in the undeveloped deep aquifers. The pH ordinarily is greater than 7.0, but it is slightly less than 7.0 in most places in the shallow aquifers.

  6. Origin and Evolution of Li-rich Brines at Clayton Valley, Nevada, USA

    NASA Astrophysics Data System (ADS)

    Munk, L. A.; Bradley, D. C.; Hynek, S. A.; Chamberlain, C. P.

    2011-12-01

    Lithium is the key component in Li-ion batteries which are the primary energy storage for electric/hybrid cars and most electronics. Lithium is also an element of major importance on a global scale because of interest in increasing reliance on alternative energy sources. Lithium brines and pegmatites are the primary and secondary sources, respectively of all produced Li. The only Li-brine in the USA that is currently in production exists in Clayton Valley, NV. The groundwater brines at Clayton Valley are located in a closed basin with an average evaporation rate of 142 cm/yr. The brines are pumped from six aquifer units that are composed of varying amounts of volcanic ash, gravel, salt, tufa, and fine-grained sediments. Samples collected include spring water, fresh groundwater, groundwater brine, and meteoric water (snow). The brines are classified as Na-Cl waters and the springs and fresh groundwater have a mixed composition and are more dilute than the brines. The Li content of the waters in Clayton Valley ranges from less than 1 μg/L (snow) up to 406.9 mg/L in the lower ash aquifer system (one of six aquifers in the basin). The cold springs surrounding Clayton Valley have Li concentrations of about 1 mg/L. A hot spring located just east of Clayton Valley contains 1.6 mg/L Li. The Li concentration of the fresh groundwater is less than 1 mg/L. Hot groundwater collected in the basin contain 30-40 mg/L Li. Water collected from a geothermal drilling north of Silver Peak, NV, had water with 4.9 mg/L Li at a depth of >1000m. The δD and δ18O isotopic signatures of fresh groundwater and brine form an evaporation path that extends from the global meteoric water line toward the brine from the salt aquifer system (the most isotopically enriched brine with ave. δD = -3.5, ave. δ18O = -67.0). This suggests that mixing of inflow water with the salt aquifer brine could have played an important role in the evolution of the brines. Along with mixing, evaporation appears to be an important process in the brine evolution. This is evident because of the increase in Na concentration as a function of enrichment in δD for most brine samples. In contrast the non-brine waters flowing into the basin show an increase in Na at relatively constant δD indicating little evaporation. The δD of clays sampled throughout a sediment core extending to 354 m below the surface show fluctuations that likely indicate warmer and cooler periods through time. Further investigation of the relationship of past climate and Li accumulation is in progress.

  7. Investigation of Underground Hydrocarbon Leakage using Ground Penetrating Radar

    NASA Astrophysics Data System (ADS)

    Srigutomo, Wahyu; Trimadona; Agustine, Eleonora

    2016-08-01

    Ground Penetrating Radar (GPR) survey was carried out in several petroleum plants to investigate hydrocarbon contamination beneath the surface. The hydrocarbon spills are generally recognized as Light Non-Aqueous Phase Liquids (LNAPL) if the plume of leakage is distributed in the capillary fringe above the water table and as Dense Non-Aqueous Phase Liquids (DNAPL) if it is below the water table. GPR antennas of 200 MHz and 400 MHz were deployed to obtain clear radargrams until 4 m deep. In general, the interpreted radargram sections indicate the presence of surface concrete layer, the compacted silty soill followed by sand layer and the original clayey soil as well as the water table. The presence of hydrocarbon plumes are identified as shadow zones (radar velocity and intensity contrasts) in the radargram that blur the layering pattern with different intensity of reflected signal. Based on our results, the characteristic of the shadow zones in the radargram is controlled by several factors: types of hydrocarbon (fresh or bio-degraded), water moisture in the soil, and clay content which contribute variation in electrical conductivity and dielectric constants of the soil.

  8. Lagrangian drifter design for the determination of surface currents by remote sensing. [for pollution trajectory determination in estuaries

    NASA Technical Reports Server (NTRS)

    Gordon, H. H.; Munday, J. C., Jr.

    1977-01-01

    In estuaries, the interaction of wind, tidal current, and mixing of fresh and saline water produces a variable depth profile of current, with foam lines and convergence zones between water types. Careful measurement of surface currents via Lagrangian drifters requires a drifter design appropriate to both the depth of current to be measured and the tide and wind conditions of interest. The use of remote sensing to track drifters contributes additional constraints on drifter design. Several designs of biodegradable drifters which emit uranine dye plumes, resolvable in aerial imagery to 1:60,000 scale, were tested for wind drag in field conditions against data from calibrated current meters. A 20 cm-vaned wooden drifter and a window shade drifter set to 1.5 m depth had negligible wind drag in winds to 8 m/sec. Prediction of oil slick trajectories using surface current data and a wind factor should be approached cautiously, as surface current data may be wind-contaminated, while the usual 3.5% wind factor is appropriate only for currents measured at depth.

  9. Flushing Time

    EPA Science Inventory

    The flushing time of an estuary is generally defined as the turnover time of fresh water in the estuary, that is, the time required to replace the fresh water contained in the estuary with freshwater inflow. Thus, the flushing time of an estuary is the ratio of the volume of fres...

  10. Fusion of spectra and texture data of hyperspectral imaging for the prediction of the water-holding capacity of fresh chicken breast filets

    USDA-ARS?s Scientific Manuscript database

    This study investigated the fusion of spectra and texture data of hyperspectral imaging (HSI, 1000–2500 nm) for predicting the water-holding capacity (WHC) of intact, fresh chicken breast filets. Three physical and chemical indicators drip loss, expressible fluid, and salt-induced water gain were me...

  11. How well are the climate indices related to the GRACE-observed total water storage changes in China?

    NASA Astrophysics Data System (ADS)

    Devaraju, B.; Vishwakarma, B.; Sneeuw, N. J.

    2017-12-01

    The fresh water availability over land masses is changing rapidly under the influence of climate change and human intervention. In order to manage our water resources and plan for a better future, we need to demarcate the role of climate change. The total water storage change in a region can be obtained from the GRACE satellite mission. On the other hand, many climate change indicators, for example ENSO, are derived from sea surface temperature. In this contribution we investigate the relationship between the total water storage change over China with the climate indices using statistical time-series decomposition techniques, such as Seasonal and Trend decomposition using Loess (STL), Principal Component Analysis (PCA) and Canonical Correlation Analysis (CCA). The anomalies in climate variables, such as sea surface temperature, are responsible for anomalous precipitation and thus an anomalous total water storage change over land. Therefore, it is imperative that we use a GRACE product that can capture anomalous water storage changes with unprecedented accuracy. Since filtering decreases the sensitivity of GRACE products substantially, we use the data-driven method of deviation for recovering the signal lost due to filtering. To this end, we are able to obtain the spatial fingerprint of individual climate index on total water storage change observed over China.

  12. Eggshell permeability: a standard technique for determining interspecific rates of water vapor conductance.

    PubMed

    Portugal, Steven J; Maurer, Golo; Cassey, Phillip

    2010-01-01

    Typically, eggshell water vapor conductance is measured on whole eggs, freshly collected at the commencement of a study. At times, however, it may not be possible to obtain whole fresh eggs but rather egg fragments or previously blown eggs. Here we evaluate and describe in detail a technique for modern laboratory analysis of eggshell conductance that uses fragments from fresh and museum eggs to determine eggshell water vapor conductance. We used fresh unincubated eggs of domesticated chickens (Gallus gallus domesticus), ducks (Anas platyrhynchos domesticus), and guinea fowl (Numida meleagris) to investigate the reliability, validity, and repeatability of the technique. To assess the suitability of museum samples, museum and freshly collected black-headed gull eggs (Larus ridibundus) were used. Fragments were cut out of the eggshell from the blunt end (B), equator (E), and pointy end (P). Eggshell fragments were glued to the top of a 0.25-mL micro test tube (Eppendorf) filled with 200 μL of distilled water and placed in a desiccator at 25°C. Eppendorfs were weighed three times at 24-h intervals, and mass loss was assumed to be a result of water evaporation. We report the following results: (1) mass loss between weighing sessions was highly repeatable and consistent in all species; (2) the majority of intraspecific variability in eggshell water vapor conductance between different eggs of the same species was explained through the differences in water vapor conductance between the three eggshell parts of the same egg (B, E, and P); (3) the technique was sensitive enough to detect significant differences between the three domestic species; (4) there was no overall significant difference between water vapor conductance of museum and fresh black-headed gull eggs; (5) there was no significant difference in water vapor conductance for egg fragments taken from the same egg both between different trials and within the same trial. We conclude, therefore, that this technique is an effective way of measuring interspecific water vapor conductance from eggshell fragments and that museum eggs are a suitable resource for such work.

  13. Concentration of polycyclic aromatic hydrocarbons in water samples from different stages of treatment

    NASA Astrophysics Data System (ADS)

    Pogorzelec, Marta; Piekarska, Katarzyna

    2017-11-01

    The aim of this study was to analyze the presence and concentration of selected polycyclic aromatic hydrocarbons in water samples from different stages of treatment and to verify the usefulness of semipermeable membrane devices for analysis of drinking water. For this purpose, study was conducted for a period of 5 months. Semipermeable membrane devices were deployed in a surface water treatment plant located in Lower Silesia (Poland). To determine the effect of water treatment on concentration of PAHs, three sampling places were chosen: raw water input, stream of water just before disinfection and treated water output. After each month of sampling SPMDs were changed for fresh ones and prepared for further analysis. Concentrations of fifteen polycyclic aromatic hydrocarbons were determined by high performance liquid chromatography (HPLC). Presented study indicates that the use of semipermeable membrane devices can be an effective tool for the analysis of aquatic environment, including monitoring of drinking water, where organic micropollutants are present at very low concentrations.

  14. Water requirements of the styrene, butadiene and synthetic-rubber industries

    USGS Publications Warehouse

    Durfor, Charles N.

    1963-01-01

    About 710 million gallons of makeup water is withdrawn daily by the styrene, butadiene, styrene-butadiene rubber (SBR), and specialty-rubber industries; 88 percent of this water is used only for once-through cooling. About 429 million gallons of water daily (mgd) is withdrawn by the butadiene industry; 158 ragd is withdrawn by the styrene industry; 94 mgd is used to make special-purpose synthetic rubber; and 29 mgd is used in the direct manufacture of SBR. The amount of makeup water withdrawn to produce SBR ranges from 11,400 to 418,000 gallons per long ton of finished rubber. The amount of makeup water withdrawn depends upon the type of rubber, the processes used to make SBR and its intermediates (styrene and butadiene), and the availability of water at the styrene, butadiene, and SBR plants. The amount of makeup water used to make styrene ranged from 2.19 to 123 gallons per pound; to make butadiene, ranged from 5.38 to 22.0 gallons per pound; and in the direct manufacture of SBR, ranged from 0.883 to 10.2 gallons per pound of finished rubber. The amount of makeup water withdrawn for use in the manufacture of special-purpose synthetic rubber ranged from 8.45 to 104 gallons per pound. About 64 percent of the makeup water was obtained from salty water sources. These waters, which were used only in once-through cooling, contained as much as 35,000 ppm of dissolved solids. About 26 percent of the makeup water was obtained from fresh-water streams and lakes, and most of the other makeup waters were obtained from ground water. Less than 1 percent of the makeup water was obtained from reprocessed municipal sewage. Most makeup water from fresh-water streams, lakes, and wells contained less than 1,000 ppm of dissolved solids, and most makeup water used in the manufacture of SBR contained less than 500 ppm of dissolved solids. The maximum hardness of the untreated fresh makeup waters; used in the manufacture of SBR was less than 500 ppm. About 97 percent of the makeup water withdrawn was discharged to surface waters; the warmed salty waters were returned to their source. The remaining 3 percent, or about 23.6 mgd, of makeup water was used consumptively. The styrene industry consumptively used about 2.0 percent of its intake; the butadiene industry, about 4.5 percent; the specialty-rubber industry, about 9.1 percent; and the SBR industry, about 11 percent. The water shipped in the synthetic-rubber products increased the consumptive use of water by these industries.

  15. Fluoride abundance and controls in fresh groundwater in Quaternary deposits and bedrock fractures in an area with fluorine-rich granitoid rocks.

    PubMed

    Berger, Tobias; Mathurin, Frédéric A; Drake, Henrik; Åström, Mats E

    2016-11-01

    This study focuses on fluoride (F(-)) concentrations in groundwater in an area in northern Europe (Laxemar, southeast Sweden) where high F(-) concentrations have previously been found in surface waters such as streams and quarries. Fluoride concentrations were determined over time in groundwater in the Quaternary deposits ("regolith groundwater"), and with different sampling techniques from just beneath the ground surface to nearly -700m in the bedrock (fracture) groundwater. A number of potential controls of dissolved F(-) were studied, including geological variables, mineralogy, mineral chemistry and hydrology. In the regolith groundwater the F(-) concentrations (0.3-4.2mg/L) were relatively stable over time at each sampling site but varied widely among the sampling sites. In these groundwaters, the F(-) concentrations were uncorrelated with sample (filter) depth and the water table in meters above sea level (masl), with the thicknesses of the groundwater column and the regolith, and with the distribution of soil types at the sampling sites. Fluoride concentrations were, however, correlated with the anticipated spatial distribution of erosional material (till) derived from a F-rich circular granite intrusion. Abundant release of F(-) from such material is thus suggested, primarily via dissolution of fluorite and weathering of biotite. In the fresh fracture groundwater, the F(-) concentrations (1.2-7.4mg/L) were generally higher than in the regolith groundwater, and were uncorrelated with depth and with location relative to the granite intrusion. Two mechanisms explaining the overall high F(-) levels in the fracture groundwater were addressed. First, weathering/dissolution of fluorite, bastnäsite and apophyllite, which are secondary minerals formed in the fractures during past hydrothermal events, and biotite which is a primary mineral exposed on fracture walls. Second, long water-residence times, favoring water-rock interaction and build-up of high dissolved F(-) concentrations. The findings are relevant in contexts of extraction of groundwater for drinking-water purposes. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Groundwater/Seawater Exchange over Multiple Time Scales: Two Years of High-Frequency Data from the Coastal Seabed

    NASA Astrophysics Data System (ADS)

    Karam, H. N.; Mulligan, A. E.; Abarca, E.; Gardner, A.; Hemond, H.; Harvey, C. F.

    2013-12-01

    We present time series of vertical pressure gradients in the sea floor at Waquoit Bay, MA, collected along a transect of locations perpendicular to shore, with a 10-minute resolution over two years. The custom-made instruments used for data collection measure pressure differences with an accuracy of 0.5 mm freshwater head, and record pore water and surface water salinities, allowing a robust calculation of the direction and magnitude of flux across the sediment-water interface given an estimate of sediment permeability. Distinct processes of seawater circulation in the subsurface driven by different forcings, including storms, tides, variations in fresh groundwater head, and salinity gradients in coastal groundwater, are manifest as different frequency components in the time series. We characterize the relative contributions of these different forcings to seafloor fluxes at our site, as a function of the time of year and the distance from shore. We find that: 1) Sea level variations drive variations in seafloor flux at time scales of hours to weeks, around a mean flux that is produced by processes with longer time scales, including the seasonal cycle in fresh groundwater head and the density-driven circulation of seawater through the coastal aquifer. 2) Seafloor flux responds non-linearly to shifts in seawater level. Furthermore, this response is asymmetric, with very low tides producing an amplified response in submarine groundwater discharge relative to the recharge produced by equivalently high tides. 3) The amplitude of seafloor pressure gradients shows a three-fold increase during winters relative to summers. We present a model to explain this effect based on the increase in shallow pore water viscosity at colder temperatures. We generalize our findings to help guide the design of sampling studies of seafloor fluxes at other sites. Finally, we present the distribution of subsurface residence times for seawater in Waquoit Bay, derived from our pressure gradient data sets, and discuss the implications for surface water and sediment chemistry.

  17. Ground-water resources of Kleberg County, Texas

    USGS Publications Warehouse

    Livingston, Penn Poore; Bridges, Thomas W.

    1936-01-01

    Water obtained from the fresh-water horizon is comparatively fresh in the western and central parts of the county but contains a somewhat higher proportion of chlorides toward the Gulf. Samples obtained from about 100 wells, located for the most part in the central part of the county, showed a. higher chloride content than is normal for the freshwater beds in the area. These wells are believed in large part to be defective and to be admitting salt water. This was demonstrated and the leaks located in several wells that were tested. No evidence was found of salt-water contamination by percolation through the formations, however. The leaky wells should be repaired, If practicable, or sealed to prevent them from contaminating the fresh-water sand. The chances of leaks developing can be largely eliminated If the wells are properly drilled and provided with casing of good grade, and the casing is adequately seated.

  18. Earth Observations by the Expedition 19 crew

    NASA Image and Video Library

    2009-04-09

    ISS019-E-005501 (9 April 2009) --- Split Region in Croatia is featured in this image photographed by an Expedition 19 crewmember on the International Space Station. One the world?s most rugged coastlines are located in Croatia along the Adriatic Sea. This view features the Dalmatian coastline of Croatia around the city of Split. Much of the region can be characterized by northwest-southeast oriented linear islands and embayments of the Adriatic Sea. This distinctive coastal geomorphology is the result of faulting caused by tectonic activity in the region and sea level rise. Split has a long history - the Roman Emperor Diocletian retired to Spalatum (the present-day Split) in 305, and his palace constitutes the core of the city today. The city is a popular resort destination for its historic sites, Mediterranean climate, and ready access to the Adriatic islands (such as Brac to the south). Other large cities in the region include Kastela and Trogir; together with Split, these form an almost continuous urban area bordering the coast (visible as pink regions). A thin zone marking a water boundary is visible in this image between Split and the island of Brac. It may represent a local plankton bloom, or a line of convergence between water masses creating rougher water. A unique combination of geography -- including dramatic topography that channels local winds, the complicated coastline, input of fresh water from rivers, and ample nutrients and surface oils -- makes for interesting mesoscale surface dynamics throughout the Adriatic Sea. Over the years, astronauts have taken images of the Split region using sunglint and changes in water color to highlight features like eddies, water boundaries and mixing zones between fresh waters flowing into the saltier (denser) waters of the Adriatic, and wind-driven surface currents. Split is an important transit center connecting islands in the Adriatic Sea to the Italian peninsula, and an important regional manufacturing center of goods such as solar cells, plastics, and paper products. The city was heavily industrialized during the post World War II period as a member state of Yugoslavia. By the 1980s, the marine environment bordered by Split, Kastela, and Trogir (known as Kastela Bay) had been identified as one of the most polluted areas of the Adriatic from both sewage and industrial wastes. Concerted efforts by the Croatian government and international partners to improve waste handling and treatment infrastructure over the past 10 years seem to have been successful ? both marine species and water polo players have returned to the area.

  19. Synthetic aperture radar interferometry coherence analysis over Katmai volcano group, Alaska

    USGS Publications Warehouse

    Lu, Z.; Freymueller, J.T.

    1998-01-01

    The feasibility of measuring volcanic deformation or monitoring deformation of active volcanoes using space-borne synthetic aperture radar (SAR) interferometry depends on the ability to maintain phase coherence over appropriate time intervals. Using ERS 1 C band (λ=5.66 cm) SAR imagery, we studied the seasonal and temporal changes of the interferometric SAR coherence for fresh lava, weathered lava, tephra with weak water reworking, tephra with strong water reworking, and fluvial deposits representing the range of typical volcanic surface materials in the Katmai volcano group, Alaska. For interferograms based on two passes with 35 days separation taken during the same summer season, we found that coherence increases after early June, reaches a peak between the middle of July and the middle of September, and finally decreases until the middle of November when coherence is completely lost for all five sites. Fresh lava has the highest coherence, followed by either weathered lava or fluvial deposits. These surfaces maintain relatively high levels of coherence for periods up to the length of the summer season. Coherence degrades more rapidly with time for surfaces covered with tephra. For images taken in different summers, only the lavas maintained coherence well enough to provide useful interferometric images, but we found only a small reduction in coherence after the first year for surfaces with lava. Measurement of volcanic deformation is possible using summer images spaced a few years apart, as long as the surface is dominated by lavas. Our studies suggest that in order to make volcanic monitoring feasible along the Aleutian arc or other regions with similar climatic conditions, observation intervals of the satellite with C band SAR should be at least every month from July through September, every week during the late spring/early summer or late fall, and every 2–3 days during the winter.

  20. Effect of temperature and concentration on the surface tension of chia seed mucilage

    NASA Astrophysics Data System (ADS)

    Fu, Yuting; Arye, Gilboa

    2017-04-01

    The production of mucilage by the seed coat during hydration is a common adaptation of many different plant species. The mucilage may play many ecological roles in adaptation and seed germination in diverse environments, especially in extreme desert conditions. The major compound of the seed mucilage is polysaccharides (e.g. pectins and hemicelluloses), which makes it highly hydrophilic. Consequently, it can hydrate quickly in the presence of water; forming a gel like coating surrounding the seed. However, the seed mucilage also reported to contain small amounts of protein and lipid which may exhibit surface activity at the water-air interface. As a result, decay in the surface tension of water can be occur and consequently a reduction in soil capillary pressure. This in turn may affect the water retention and transport during seed germination. The physical properties of the seeds mucilage have been studied mainly in conjunction with its rheological properties. To the best of our knowledge, its surface activity at the water-air interface has been reported mainly in the realms of food engineering, using a robust method of extraction. The main objective of this study was to quantify the effect of temperature and concentration on the surface tension of seed mucilage. The mucilage in this study was extracted from chia (Salvia hispanica L.) seeds, using distilled water (1:20 w/w) by shaking for 12 h at 4°C. The extracts were freeze dried after centrifuge (5000rpm for 20min). Fresh samples of different concentrations, ranging from 0.5 to 6 mg/ml, were prepared before each surface tension measurements. The equilibrium surface tension was measured by the Wilhelmy plate method using a tensiometer (DCAT 11, Data Physics) with temperature control unit. For a given mucilage concentration, surface tension measurements carried out at 5, 15, 25, 35, 45 °C. The quantitative and thermodynamic analysis of the results will be presented and discussed.

  1. Estimated use of water in the United States in 1970

    USGS Publications Warehouse

    Murray, Charles Richard; Reeves, E. Bodette

    1972-01-01

    The average annual streamflow--simplified measure of the total available water supply--is approximately 1,200 bgd in the conterminous United States. Total water withdrawn in 1970 for off-channel uses (withdrawals other than for hydroelectric power) amounted to about 30 percent of the average annual streamflow: 7 percent of the 1,200 bgd basic supply was consumed. However, comparisons of Water Resources Council regions indicate that the rate of withdrawal was higher than the locally dependable supply in the Middle Atlantic, Texas-Gulf, Rio Grande, Lower Colorado, and California-South Pacific regions. Consumption amounted to nearly 25 percent of withdrawals in the conterminous United States; however, fresh-water consumption amounted to only 14 percent of off-channel withdrawals in the 31 Eastern States and ranged from 30 percent to nearly 70 percent of off-channel withdrawals in the Water Resources Council regions in the West. In the Rio Grande and Lower Colorado regions, fresh-water consumption in 1970 exceeded the estimated dependable supply of fresh water.

  2. Hydrologic interpretation of geophysical data from the southeastern Hueco Bolson, El Paso, and Hudspeth Counties, Texas

    USGS Publications Warehouse

    Gates, Joseph Spencer; Stanley, W.D.

    1976-01-01

    Airborne-electromagnetic and earth-resistivity surveys were used to explore for fresh ground water in the Hueco Bolson southeast of El Paso, Texas. Aerial surveys were made along about 500 miles (800 km) of flight line, and 67 resistivity soundings were made along 110 miles (180 km) of profile. The surveys did not indicate the presence of any large bodies of fresh ground water, but several areas may be underlain by small to moderate amounts of fresh to slightly saline water.The material underlying the flood plain of the Rio Grande is predominantly clay or sand of low resistivity. Along a band on the mesa next to and parallel to the flood plain, more resistive material composed partly of deposits of an ancient river channel extends to depths of about 400 to 1,700 feet (120 to 520 m). Locally, the lower part of this more resistive material is saturated with fresh to slightly saline water. The largest body of fresh to slightly saline ground water detected in this study is between Fabens and Tornillo, Texas, mostly in the sandhill area between the flood plain and the mesa. Under assumed conditions, the total amount of water in storage may be as much as 400,000 to 800,000 acre-feet (500 million to 1 billion m ).The resistivity data indicate that the deep artesian zone southwest of Fabens extends from a depth of about 1,200 feet (365 m) to about 2,800 feet (855 m).

  3. Relating the Electrical Resistance of Fresh Concrete to Mixture Proportions.

    PubMed

    Obla, K; Hong, R; Sherman, S; Bentz, D P; Jones, S Z

    2018-01-01

    Characterization of fresh concrete is critical for assuring the quality of our nation's constructed infrastructure. While fresh concrete arriving at a job site in a ready-mixed concrete truck is typically characterized by measuring temperature, slump, unit weight, and air content, here the measurement of the electrical resistance of a freshly cast cylinder of concrete is investigated as a means of assessing mixture proportions, specifically cement and water contents. Both cement and water contents influence the measured electrical resistance of a sample of fresh concrete: the cement by producing ions (chiefly K + , Na + , and OH - ) that are the main source of electrical conduction; and the water by providing the main conductive pathways through which the current travels. Relating the measured electrical resistance to attributes of the mixture proportions, such as water-cement ratio by mass ( w/c ), is explored for a set of eleven different concrete mixtures prepared in the laboratory. In these mixtures, w/c , paste content, air content, fly ash content, high range water reducer dosage, and cement alkali content are all varied. Additionally, concrete electrical resistance data is supplemented by measuring the resistivity of its component pore solution obtained from 5 laboratory-prepared cement pastes with the same proportions as their corresponding concrete mixtures. Only measuring the concrete electrical resistance can provide a prediction of the mixture's paste content or the product w*c ; conversely, when pore solution resistivity is also available, w/c and water content of the concrete mixture can be reasonably assessed.

  4. Microbial Quality and Phylogenetic Diversity of Fresh Rainwater and Tropical Freshwater Reservoir

    PubMed Central

    Kaushik, Rajni; Balasubramanian, Rajasekhar; Dunstan, Hugh

    2014-01-01

    The impact of rainwater on the microbial quality of a tropical freshwater reservoir through atmospheric wet deposition of microorganisms was studied for the first time. Reservoir water samples were collected at four different sampling points and rainwater samples were collected in the immediate vicinity of the reservoir sites for a period of four months (January to April, 2012) during the Northeast monsoon period. Microbial quality of all fresh rainwater and reservoir water samples was assessed based on the counts for the microbial indicators: Escherichia coli (E. coli), total coliforms, and Enterococci along with total heterotrophic plate counts (HPC). The taxonomic richness and phylogenetic relationship of the freshwater reservoir with those of the fresh rainwater were also assessed using 16 S rRNA gene clone library construction. The levels of E. coli were found to be in the range of 0 CFU/100 mL – 75 CFU/100 mL for the rainwater, and were 10–94 CFU/100 mL for the reservoir water. The sampling sites that were influenced by highway traffic emissions showed the maximum counts for all the bacterial indicators assessed. There was no significant increase in the bacterial abundances observed in the reservoir water immediately following rainfall. However, the composite fresh rainwater and reservoir water samples exhibited broad phylogenetic diversity, including sequences representing Betaproteobacteria, Alphaproteobacteria, Gammaproteobacteria, Actinobacteria, Lentisphaerae and Bacteriodetes. Members of the Betaproteobacteria group were the most dominant in both fresh rainwater and reservoir water, followed by Alphaproteobacteria, Sphingobacteria, Actinobacteria and Gammaproteobacteria. PMID:24979573

  5. Microbial quality and phylogenetic diversity of fresh rainwater and tropical freshwater reservoir.

    PubMed

    Kaushik, Rajni; Balasubramanian, Rajasekhar; Dunstan, Hugh

    2014-01-01

    The impact of rainwater on the microbial quality of a tropical freshwater reservoir through atmospheric wet deposition of microorganisms was studied for the first time. Reservoir water samples were collected at four different sampling points and rainwater samples were collected in the immediate vicinity of the reservoir sites for a period of four months (January to April, 2012) during the Northeast monsoon period. Microbial quality of all fresh rainwater and reservoir water samples was assessed based on the counts for the microbial indicators: Escherichia coli (E. coli), total coliforms, and Enterococci along with total heterotrophic plate counts (HPC). The taxonomic richness and phylogenetic relationship of the freshwater reservoir with those of the fresh rainwater were also assessed using 16 S rRNA gene clone library construction. The levels of E. coli were found to be in the range of 0 CFU/100 mL-75 CFU/100 mL for the rainwater, and were 10-94 CFU/100 mL for the reservoir water. The sampling sites that were influenced by highway traffic emissions showed the maximum counts for all the bacterial indicators assessed. There was no significant increase in the bacterial abundances observed in the reservoir water immediately following rainfall. However, the composite fresh rainwater and reservoir water samples exhibited broad phylogenetic diversity, including sequences representing Betaproteobacteria, Alphaproteobacteria, Gammaproteobacteria, Actinobacteria, Lentisphaerae and Bacteriodetes. Members of the Betaproteobacteria group were the most dominant in both fresh rainwater and reservoir water, followed by Alphaproteobacteria, Sphingobacteria, Actinobacteria and Gammaproteobacteria.

  6. Relating the Electrical Resistance of Fresh Concrete to Mixture Proportions

    PubMed Central

    Obla, K.; Hong, R.; Sherman, S.; Bentz, D.P.; Jones, S.Z.

    2018-01-01

    Characterization of fresh concrete is critical for assuring the quality of our nation’s constructed infrastructure. While fresh concrete arriving at a job site in a ready-mixed concrete truck is typically characterized by measuring temperature, slump, unit weight, and air content, here the measurement of the electrical resistance of a freshly cast cylinder of concrete is investigated as a means of assessing mixture proportions, specifically cement and water contents. Both cement and water contents influence the measured electrical resistance of a sample of fresh concrete: the cement by producing ions (chiefly K+, Na+, and OH-) that are the main source of electrical conduction; and the water by providing the main conductive pathways through which the current travels. Relating the measured electrical resistance to attributes of the mixture proportions, such as water-cement ratio by mass (w/c), is explored for a set of eleven different concrete mixtures prepared in the laboratory. In these mixtures, w/c, paste content, air content, fly ash content, high range water reducer dosage, and cement alkali content are all varied. Additionally, concrete electrical resistance data is supplemented by measuring the resistivity of its component pore solution obtained from 5 laboratory-prepared cement pastes with the same proportions as their corresponding concrete mixtures. Only measuring the concrete electrical resistance can provide a prediction of the mixture’s paste content or the product w*c; conversely, when pore solution resistivity is also available, w/c and water content of the concrete mixture can be reasonably assessed. PMID:29882546

  7. Consumptive water use associated with food waste: case study of fresh mango in Australia

    NASA Astrophysics Data System (ADS)

    Ridoutt, B. G.; Juliano, P.; Sanguansri, P.; Sellahewa, J.

    2009-07-01

    In many parts of the world, freshwater is already a scarce and overexploited natural resource, raising concerns about global food security and damage to freshwater ecosystems. This situation is expected to intensify with the FAO estimating that world food production must double by 2050. Food chains must therefore become much more efficient in terms of consumptive water use. For the small and geographically well-defined Australian mango industry, having an average annual production of 44 692 t of marketable fresh fruit, the average virtual water content (sum of green, blue and gray water) at orchard gate was 2298 l kg-1. However, due to wastage in the distribution and consumption stages of the product life cycle, the average virtual water content of one kg of Australian-grown fresh mango consumed by an Australian household was 5218 l. This latter figure compares to an Australian-equivalent water footprint of 217 l kg-1, which is the volume of direct water use by an Australian household having an equivalent potential to contribute to water scarcity. Nationally, distribution and consumption waste in the food chain of Australian-grown fresh mango to Australian households represented an annual waste of 26.7 Gl of green water and 16.6 Gl of blue water. These findings suggest that interventions to reduce food chain waste will likely have as great or even greater impact on freshwater resource availability as other water use efficiency measures in agriculture and food production.

  8. Different parameter and technique affecting the rate of evaporation on active solar still -a review

    NASA Astrophysics Data System (ADS)

    A, Muthu Manokar; D, Prince Winston; A. E, Kabeel; Sathyamurthy, Ravishankar; T, Arunkumar

    2018-03-01

    Water is one of the essential sources for the endurance of human on the earth. As earth having only a small amount of water resources for consumption purpose people in rural and urban areas are getting affected by consuming dirty water that leads to water-borne diseases. Even though ground water is available in small quantity, it has to be treated properly before its use for internal consumption. Brackish water contains dissolve and undissolved contents, and hence it is not suitable for the household purpose. Nowadays, distillation process is done by using passive and active solar stills. The major problem in using passive solar still is meeting higher demand for fresh water. The fresh water production from passive solar still is critically low to meet the demand. To improve the productivity of conventional solar still, input feed water is preheated by integrating the solar still to different collector panels. In this review article, the different parameters that affect the rate of evaporation in an active solar still and the different methods incorporated has been presented. In addition to active distillation system, forced convection technique can be incorporated to increase the yield of fresh water by decreasing the temperature of cover. Furthermore, it is identified that the yield of fresh water from the active desalination system can be improved by sensible and latent heat energy storage. This review will motivate the researchers to decide appropriate active solar still technology for promoting development.

  9. Iron-Oxidizing Bacteria: A Review of Corrosion Mechanisms in Fresh Water and Marine Environments

    DTIC Science & Technology

    2010-01-01

    ABSTRACT Models for corrosion influenced by iron-oxidizing ba < v-~~/ •" *> combinations, i.e., 300 series stainless steel exposed to oxygenated...surrounding oxygenated cathode . Metal at the anode dissolves, forming metal cations that undergo hydrolysis and decrease pH. The extent of the pH...S, K, Ca and Mn in addition to Fe. The underside of the tubercle, the surface that had been in contact with the metal, was comprised of bacteria

  10. Imaging radar studies of polar ice

    NASA Technical Reports Server (NTRS)

    Carsey, Frank

    1993-01-01

    A vugraph format presentation is given. The following topics are discussed: scientific overview, radar data opportunities, sea ice investigations, and ice sheet investigations. The Sea Ice Scientific Objectives are as follows: (1) to estimate globally the surface brine generation, heat flux, and fresh water advection (as ice); (2) to monitor phasing of seasonal melt and freeze events and accurately estimate melt and growth rates; and (3) to develop improved treatment of momentum transfer and ice mechanics in coupled air-sea-ice models.

  11. Intraseasonal to Interannual Variability of the Atlantic Meridional Overturning Circulation from Eddy-Resolving Simulations and Observations

    DTIC Science & Technology

    2014-08-12

    2007 , a period of intensive field observations in the northern South China Sea. Internal solitary waves are detected in the plots of the surface...of cold, fresh water [see Long- worth and Bryden, 2007 ; Richardson, 2008, for historical review]. Because of its large heat and freshwater transports...al., 2008]. It may also have triggered the recent rapid melting of the Arctic sea ice [Serreze et al., 2007 ] and Greenland glaciers [Holland et al

  12. Hydraulic Design of Navigation Locks

    DTIC Science & Technology

    1989-09-01

    service brought about by surface deposits, erossion, corrosion , bacterial slimes and growths and marine and fresh water fouling. Experience of similar...Drawn brass, copper, alluminium , etc. 0.0025 Glass, plastic, perspex, fibre glass, etc. 0.0025 2. Steel pipes New smooth pipes 0.025 Centrifugally...1 H l I T j I 1 1 In E 1- 0 C D I ) N N C4dv Fig. .1. oodyChar TBT7 2. Adequate initial protection to prevent corrosion and erosion. 3. Chlorination

  13. Methanotrophic bacteria in oilsands tailings ponds of northern Alberta

    PubMed Central

    Saidi-Mehrabad, Alireza; He, Zhiguo; Tamas, Ivica; Sharp, Christine E; Brady, Allyson L; Rochman, Fauziah F; Bodrossy, Levente; Abell, Guy CJ; Penner, Tara; Dong, Xiaoli; Sensen, Christoph W; Dunfield, Peter F

    2013-01-01

    We investigated methanotrophic bacteria in slightly alkaline surface water (pH 7.4–8.7) of oilsands tailings ponds in Fort McMurray, Canada. These large lakes (up to 10 km2) contain water, silt, clay and residual hydrocarbons that are not recovered in oilsands mining. They are primarily anoxic and produce methane but have an aerobic surface layer. Aerobic methane oxidation was measured in the surface water at rates up to 152 nmol CH4 ml−1 water d−1. Microbial diversity was investigated via pyrotag sequencing of amplified 16S rRNA genes, as well as by analysis of methanotroph-specific pmoA genes using both pyrosequencing and microarray analysis. The predominantly detected methanotroph in surface waters at all sampling times was an uncultured species related to the gammaproteobacterial genus Methylocaldum, although a few other methanotrophs were also detected, including Methylomonas spp. Active species were identified via 13CH4 stable isotope probing (SIP) of DNA, combined with pyrotag sequencing and shotgun metagenomic sequencing of heavy 13C-DNA. The SIP-PCR results demonstrated that the Methylocaldum and Methylomonas spp. actively consumed methane in fresh tailings pond water. Metagenomic analysis of DNA from the heavy SIP fraction verified the PCR-based results and identified additional pmoA genes not detected via PCR. The metagenome indicated that the overall methylotrophic community possessed known pathways for formaldehyde oxidation, carbon fixation and detoxification of nitrogenous compounds but appeared to possess only particulate methane monooxygenase not soluble methane monooxygenase. PMID:23254511

  14. Rectal Glands of Marine and Fresh-Water Sharks: Comparative Histology.

    PubMed

    Oguri, M

    1964-05-29

    The rectal glands of elasmobranchs perform the function of salt-excreting organs. These glands are smaller and show regressive changes in specimens of the bull shark, Carcharhinus leucas found in fresh-water environment, compared with specimens of this and other species from a marine habitat.

  15. Iron oxidation kinetics and phosphate immobilization along the flow-path from groundwater into surface water

    NASA Astrophysics Data System (ADS)

    van der Grift, B.; Rozemeijer, J. C.; Griffioen, J.; van der Velde, Y.

    2014-11-01

    The retention of phosphorus in surface waters through co-precipitation of phosphate with Fe-oxyhydroxides during exfiltration of anaerobic Fe(II) rich groundwater is not well understood. We developed an experimental field set-up to study Fe(II) oxidation and P immobilization along the flow-path from groundwater into surface water in an agricultural experimental catchment of a small lowland river. We physically separated tube drain effluent from groundwater discharge before it entered a ditch in an agricultural field. Through continuous discharge measurements and weekly water quality sampling of groundwater, tube drain water, exfiltrated groundwater, and surface water, we investigated Fe(II) oxidation kinetics and P immobilization processes. The oxidation rate inferred from our field measurements closely agreed with the general rate law for abiotic oxidation of Fe(II) by O2. Seasonal changes in climatic conditions affected the Fe(II) oxidation process. Lower pH and lower temperatures in winter (compared to summer) resulted in low Fe oxidation rates. After exfiltration to the surface water, it took a couple of days to more than a week before complete oxidation of Fe(II) is reached. In summer time, Fe oxidation rates were much higher. The Fe concentrations in the exfiltrated groundwater were low, indicating that dissolved Fe(II) is completely oxidized prior to inflow into a ditch. While the Fe oxidation rates reduce drastically from summer to winter, P concentrations remained high in the groundwater and an order of magnitude lower in the surface water throughout the year. This study shows very fast immobilization of dissolved P during the initial stage of the Fe(II) oxidation process which results in P-depleted water before Fe(II) is completely depleted. This cannot be explained by surface complexation of phosphate to freshly formed Fe-oxyhydroxides but indicates the formation of Fe(III)-phosphate precipitates. The formation of Fe(III)-phosphates at redox gradients seems an important geochemical mechanism in the transformation of dissolved phosphate to structural phosphate and, therefore, a major control on the P retention in natural waters that drain anaerobic aquifers.

  16. A battery of in vivo and in vitro tests useful for genotoxic pollutant detection in surface waters.

    PubMed

    Pellacani, Claudia; Buschini, Annamaria; Furlini, Mariangela; Poli, Paola; Rossi, Carlo

    2006-04-20

    Since the 1980s, stricter water quality regulations have been promulgated in many countries throughout the world. We discuss the application of a battery of both in vivo and in vitro genotoxicity tests on lake water as a tool for a more complete assessment of surface water quality. The lake water concentrated by adsorption on C18 silica cartridges were used for the following in vitro biological assays: gene conversion, point mutation, mitochondrial DNA mutability assays on the diploid Saccharomyces cerevisiae D7 strain, with or without endogenous P450 complex induction; DNA damage on fresh human leukocytes by the comet. Toxicity testing on yeast and human cells was also performed. In vivo genotoxicity was determined by the comet assay on two well-established bio-indicator organisms of water quality (Cyprinus carpio erythrocytes and Dreissena polymorpha haemocytes) exposed in situ. The in vivo experiments and the water samplings were carried out during different campaigns to detect seasonal variations of both the water contents and physiological state of the animals. Temperature and oxygen level seasonal variations and different pollutant contents in the lake water appeared to affect the DNA migration in carp and zebra mussel cells. Seasonal variability of lake water quality was also evident in the in vitro genotoxicity and cytotoxicity tests, with regards to water pollutant quantity and quality (direct-acting compounds or indirect-acting compounds on yeast cells). However, the measured biological effects did not appear clearly related to the physical-chemical characteristics of lake waters. Therefore, together with the conventional chemical analysis, mutagenicity/genotoxicity assays should be included as additional parameters in water quality monitoring programs: their use could permit the quantification of mutagenic hazard in surface waters.

  17. Water-quality assessment of the New England Coastal Basins in Maine, Massachusetts, New Hampshire, and Rhode Island : environmental settings and implications for water quality and aquatic biota

    USGS Publications Warehouse

    Flanagan, Sarah M.; Nielsen, Martha G.; Robinson, Keith W.; Coles, James F.

    1999-01-01

    The New England Coastal Basins in Maine, Massachusetts, New Hampshire, and Rhode Island constitute one of 59 study units selected for water-quality assessment as part of the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) program. England Coastal Basins study unit encompasses the fresh surface waters and ground waters in a 23,000 square-mile area that drains to the Atlantic Ocean. Major basins include those of the Kennebec, Androscoggin, Saco, Merrimack, Charles, Blackstone, Taunton, and Pawcatuck Rivers. Defining the environmental setting of the study unit is the first step in designing and conducting a multi-disciplinary regional water-quality assessment. The report describes the natural and human factors that affect water quality in the basins and includes descriptions of the physiography, climate, geology, soils, surface- and ground-water hydrology, land use, and the aquatic ecosystem. Although surface-water quality has greatly improved over the past 30 years as a result of improved wastewater treatment at municipal and industrial wastewater facilities, a number of water-quality problems remain. Industrial and municipal wastewater discharges, combined sewer overflows, hydrologic modifications from dams and water diversions, and runoff from urban land use are the major causes of water-quality degradation in 1998. The most frequently detected contaminants in ground water in the study area are volatile organic compounds, petroleum-related products, nitrates, and chloride and sodium. Sources of these contaminants include leaking storage tanks, accidental spills, landfills, road salting, and septic systems and lagoons. Elevated concentrations of mercury are found in fish tissue from streams and lakes throughout the study area.

  18. The stable isotopes of site wide waters at an oil sands mine in northern Alberta, Canada

    NASA Astrophysics Data System (ADS)

    Baer, Thomas; Barbour, S. Lee; Gibson, John J.

    2016-10-01

    Oil sands mines have large disturbance footprints and contain a range of new landforms constructed from mine waste such as shale overburden and the byproducts of bitumen extraction such as sand and fluid fine tailings. Each of these landforms are a potential source of water and chemical release to adjacent surface and groundwater, and consequently, the development of methods to track water migration through these landforms is of importance. The stable isotopes of water (i.e. 2H and 18O) have been widely used in hydrology and hydrogeology to characterize surface water/groundwater interactions but have not been extensively applied in mining applications, or specifically to oil sands mining in northern Alberta. A prerequisite for applying these techniques is the establishment of a Local Meteoric Water Line (LMWL) to characterize precipitation at the mine sites as well as the development of a 'catalogue' of the stable water isotope signatures of various mine site waters. This study was undertaken at the Mildred Lake Mine Site, owned and operated by Syncrude Canada Ltd. The LMWL developed from 2 years (2009/2012) of sample collection is shown to be consistent with other LMWLs in western Canada. The results of the study highlight the unique stable water isotope signatures associated with hydraulically placed tailings (sand or fluid fine tailings) and overburden shale dumps relative to natural surface water and groundwater. The signature associated with the snow melt water on reclaimed landscapes was found to be similar to ground water recharge in the region. The isotopic composition of the shale overburden deposits are also distinct and consistent with observations made by other researchers in western Canada on undisturbed shales. The process water associated with the fine and coarse tailings streams has highly enriched 2H and 18O signatures. These signatures are developed through the non-equilibrium fractionation of imported fresh river water during evaporation from cooling towers used within the raw water process circuit. This highly fractionated surface water eventually becomes part of the recycled tailings water circuit, and as a consequence it undergoes further non-equilibrium fractionation as a result of surface evaporation, leading to additional enrichment along local evaporation lines.

  19. The limited and localized flow of fresh groundwater to the world's oceans

    NASA Astrophysics Data System (ADS)

    Luijendijk, E.; Gleeson, T. P.; Moosdorf, N.

    2017-12-01

    Submarine groundwater discharge, the flow of fresh or saline groundwater to oceans [Burnett et al., 2003], may be a significant contributor to the water and chemical budgets of the world's oceans [Taniguchi et al., 2002] potentially buffering ocean acidification with groundwater alkalinity and is arguably the most uncertain component of the global groundwater budget [Alley et al., 2002]. The fresh component of submarine groundwater discharge is critical due to its high solute and nutrient load, and has been quantified locally and but only roughly estimated globally using significant assumptions. Here we show that that fresh submarine groundwater discharge is an insignificant water contributor to global oceans (0.05% of the total input) but that the freshwater discharge may still be an important chemical and nutrient contributor especially around distinct hotspots. The first spatially-explicit, physically-based global estimate of fresh submarine groundwater discharge was derived by combining density-dependent numerical groundwater models and a geospatial analysis of global coastal watersheds to robustly simulate the partitioning of onshore and offshore groundwater discharge. Although fresh submarine groundwater discharge is an insignificant part of fresh coastal groundwater discharge, results are consistent with previous estimates of significant recirculated seawater discharging as groundwater as well as quantifying the significant near-shore terrestrial discharge, a flux that has so far been overlooked in global hydrological studies and that affects coastal water budgets, evapotranspiration and ecosystems.

  20. Algae Resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Algae are highly efficient at producing biomass, and they can be found all over the planet. Many use sunlight and nutrients to create biomass, which contain key components—including lipids, proteins, and carbohydrates— that can be converted and upgraded to a variety of biofuels and products. A functional algal biofuels production system requires resources such as suitable land and climate, sustainable management of water resources, a supplemental carbon dioxide (CO2) supply, and other nutrients (e.g., nitrogen and phosphorus). Algae can be an attractive feedstock for many locations in the United States because their diversity allows for highpotential biomass yields in amore » variety of climates and environments. Depending on the strain, algae can grow by using fresh, saline, or brackish water from surface water sources, groundwater, or seawater. Additionally, they can grow in water from second-use sources such as treated industrial wastewater; municipal, agricultural, or aquaculture wastewater; or produced water generated from oil and gas drilling operations.« less

Top