Improved, Low-Stress Economical Submerged Pipeline
NASA Technical Reports Server (NTRS)
Jones, Jack A.; Chao, Yi
2011-01-01
A preliminary study has shown that the use of a high-strength composite fiber cloth material may greatly reduce fabrication and deployment costs of a subsea offshore pipeline. The problem is to develop an inexpensive submerged pipeline that can safely and economically transport large quantities of fresh water, oil, and natural gas underwater for long distances. Above-water pipelines are often not feasible due to safety, cost, and environmental problems, and present, fixed-wall, submerged pipelines are often very expensive. The solution is to have a submerged, compliant-walled tube that when filled, is lighter than the surrounding medium. Some examples include compliant tubes for transporting fresh water under the ocean, for transporting crude oil underneath salt or fresh water, and for transporting high-pressure natural gas from offshore to onshore. In each case, the fluid transported is lighter than its surrounding fluid, and thus the flexible tube will tend to float. The tube should be ballasted to the ocean floor so as to limit the motion of the tube in the horizontal and vertical directions. The tube should be placed below 100-m depth to minimize biofouling and turbulence from surface storms. The tube may also have periodic pumps to maintain flow without over-pressurizing, or it can have a single pump at the beginning. The tube may have periodic valves that allow sections of the tube to be repaired or maintained. Some examples of tube materials that may be particularly suited for these applications are non-porous composite tubes made of high-performance fibers such as Kevlar, Spectra, PBO, Aramid, carbon fibers, or high-strength glass. Above-ground pipes for transporting water, oil, and natural gas have typically been fabricated from fiber-reinforced plastic or from more costly high-strength steel. Also, previous suggested subsea pipeline designs have only included heavy fixed-wall pipes that can be very expensive initially, and can be difficult and expensive to deploy for long distances. A much less expensive Kevlar pipeline can be coiled up on a ship s deck and deployed in the water as the ship moves. Support ships can be used to drop sand into conduits below the uninflated tube, so that the tube remains in place when more buoyant fresh water later fills the tubes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beaulieu, R A
The United States repeatedly experiences floods along the Midwest's large rivers and droughts in the arid Western States that cause traumatic environmental conditions with huge economic impact. With an integrated approach and solution these problems can be alleviated. Tapping into the Mississippi River and its tributaries, the world's third largest fresh water river system, during flood events will mitigate the damage of flooding and provide a new source of fresh water to the Western States. The trend of increased flooding on the Midwest's large rivers is supported by a growing body of scientific literature. The Colorado River Basin and themore » western states are experiencing a protracted multi-year drought. Fresh water can be pumped via pipelines from areas of overabundance/flood to areas of drought or high demand. Calculations document 10 to 60 million acre-feet (maf) of fresh water per flood event can be captured from the Midwest's Rivers and pumped via pipelines to the Colorado River and introduced upstream of Lake Powell, Utah, to destinations near Denver, Colorado, and used in areas along the pipelines. Water users of the Colorado River include the cities in southern Nevada, southern California, northern Arizona, Colorado, Utah, Indian Tribes, and Mexico. The proposed start and end points, and routes of the pipelines are documented, including information on right-of-ways necessary for state and federal permits. A National Smart Water Grid{trademark} (NSWG) Project will create thousands of new jobs for construction, operation, and maintenance and save billions in drought and flood damage reparations tax dollars. The socio-economic benefits of NWSG include decreased flooding in the Midwest; increased agriculture, and recreation and tourism; improved national security, transportation, and fishery and wildlife habitats; mitigated regional climate change and global warming such as increased carbon capture; decreased salinity in Colorado River water crossing the US-Mexico border; and decreased eutrophication (excessive plant growth and decay) in the Gulf of Mexico to name a few. The National Smart Water Grid{trademark} will pay for itself in a single major flood event.« less
Practice; criteria; provisions; mathematical descriptions: Examples
NASA Astrophysics Data System (ADS)
Wijdieks, J.
1983-06-01
Waterhammer is defined as the appearance of pressure changes in closed conduits caused by velocity changes with time of the flow. Therefore waterhammer may occur in all kinds of pipelines in which flow changes occur over time: long or short pipelines for oil, sewage, drinking water, cooling water, slurry, coal slurry, chemicals, and in fresh water or city heating networks. The phenomenon of waterhammer is discussed herein. Specific parameters addressed include: the practical causes of waterhammer, cavitation flow, overpressure, vapor pressures, bulk modulus, continuous and discontinuous flow, and provisions to prevent waterhammer. Calculation of waterhammer is presented along with a mathematical description thereof. Hydraulic equipment (valves, pumps, surge towers) is also discussed.
Duthu, Ray C.
2017-01-01
The process of hydraulic fracturing for recovery of oil and natural gas uses large amounts of fresh water and produces a comparable amount of wastewater, much of which is typically transported by truck. Truck transport of water is an expensive and energy-intensive process with significant external costs including roads damages, and pollution. The integrated development plan (IDP) is the industry nomenclature for an integrated oil and gas infrastructure system incorporating pipeline-based transport of water and wastewater, centralized water treatment, and high rates of wastewater recycling. These IDP have been proposed as an alternative to truck transport systems so as to mitigate many of the economic and environmental problems associated with natural gas production, but the economic and environmental performance of these systems have not been analyzed to date. This study presents a quantification of lifecycle greenhouse gas (GHG) emissions and road damages of a generic oil and gas field, and of an oil and gas development sited in the Denver-Julesburg basin in the northern Colorado region of the US. Results demonstrate that a reduction in economic and environmental externalities can be derived from the development of these IDP-based pipeline water transportation systems. IDPs have marginal utility in reducing GHG emissions and road damage when they are used to replace in-field water transport, but can reduce GHG emissions and road damage by factors of as much as 6 and 7 respectively, when used to replace fresh water transport and waste-disposal routes for exemplar Northern Colorado oil and gas fields. PMID:28686682
Duthu, Ray C; Bradley, Thomas H
2017-01-01
The process of hydraulic fracturing for recovery of oil and natural gas uses large amounts of fresh water and produces a comparable amount of wastewater, much of which is typically transported by truck. Truck transport of water is an expensive and energy-intensive process with significant external costs including roads damages, and pollution. The integrated development plan (IDP) is the industry nomenclature for an integrated oil and gas infrastructure system incorporating pipeline-based transport of water and wastewater, centralized water treatment, and high rates of wastewater recycling. These IDP have been proposed as an alternative to truck transport systems so as to mitigate many of the economic and environmental problems associated with natural gas production, but the economic and environmental performance of these systems have not been analyzed to date. This study presents a quantification of lifecycle greenhouse gas (GHG) emissions and road damages of a generic oil and gas field, and of an oil and gas development sited in the Denver-Julesburg basin in the northern Colorado region of the US. Results demonstrate that a reduction in economic and environmental externalities can be derived from the development of these IDP-based pipeline water transportation systems. IDPs have marginal utility in reducing GHG emissions and road damage when they are used to replace in-field water transport, but can reduce GHG emissions and road damage by factors of as much as 6 and 7 respectively, when used to replace fresh water transport and waste-disposal routes for exemplar Northern Colorado oil and gas fields.
The Indian Ocean island of Diego Garcia has served as a base for B-52 bombers. In 1991 an underground transfer pipeline fracture was discovered after a spill exceeding 200,000 gallons occurred. The hydrogeology is fresh water at less than ten feet down overlying more dense salt...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, R.R.; Staub, W.P.
1993-08-01
Two environmental assessments considered the potential cumulative environmental impacts resulting from the development of eight proposed hydropower projects in the Nooksack River Basin and 11 proposed projects in the Skagit River Basin, North Cascades, Washington, respectively. While not identified as a target resource, slope stability and the alteration of sediment supply to creeks and river mainstems significantly affect other resources. The slope stability assessment emphasized the potential for cumulative impacts under disturbed conditions (e.g., road construction and timber harvesting) and a landslide-induced pipeline rupture scenario. In the case of small-scale slides, the sluicing action of ruptured pipeline water on themore » fresh landslide scarp was found to be capable of eroding significantly more material than the original landslide. For large-scale landslides, sluiced material was found to be a small increment of the original landslide. These results predicted that hypothetical accidental pipeline rupture by small-scale landslides may result in potential cumulative impacts for 12 of the 19 projects with pending license applications in both river basins. 5 refs., 2 tabs.« less
The Virginia Beach shallow ground-water study
Johnson, Henry M.
1999-01-01
IntroductionVirginia Beach is a rapidly growing city of more than 425,000 people. Sources of fresh water within the city, however, are limited. Prior to 1998, the Virginia Beach Public Utilities Department met the city's water needs by purchasing treated drinking water from the City of Norfolk. Because Norfolk had to meet its own requirements, the amount of water available to Virginia Beach was limited to about 30 million gallons per day (mgd) and even less during droughts. This water supply was supplemented with ground water from city-owned, community, and private wells. In many parts of the city, however, ground water cannot be used because of high concentrations of chloride, iron, and (or) sulfur, which give the water an unpleasant taste.In early 1998, a pipeline came on-line that can carry up to 45 mgd of water from Lake Gaston to Virginia Beach. The Gaston pipeline has alleviated concerns about water supply and quality for most residents living north of the "Green Line." These residents primarily use ground water only for small-scale domestic activities such as watering lawns, filling ponds and pools, and washing cars. City water and sewer services have been extended beyond the Green Line into the "Transition Area." Residents and businesses south of the Transition Area, however, continue to rely on ground water to meet most of their needs for potable and non-potable water. To help assure a continued, reliable supply of ground water, the U.S. Geological Survey (USGS), in cooperation with the City of Virginia Beach Public Utilities Department, has begun an assessment of the shallow ground-water resources underlying the City of Virginia Beach.
How Close Do We Live to Water? A Global Analysis of Population Distance to Freshwater Bodies
Kummu, Matti; de Moel, Hans; Ward, Philip J.; Varis, Olli
2011-01-01
Traditionally, people have inhabited places with ready access to fresh water. Today, over 50% of the global population lives in urban areas, and water can be directed via tens of kilometres of pipelines. Still, however, a large part of the world's population is directly dependent on access to natural freshwater sources. So how are inhabited places related to the location of freshwater bodies today? We present a high-resolution global analysis of how close present-day populations live to surface freshwater. We aim to increase the understanding of the relationship between inhabited places, distance to surface freshwater bodies, and climatic characteristics in different climate zones and administrative regions. Our results show that over 50% of the world's population lives closer than 3 km to a surface freshwater body, and only 10% of the population lives further than 10 km away. There are, however, remarkable differences between administrative regions and climatic zones. Populations in Australia, Asia, and Europe live closest to water. Although populations in arid zones live furthest away from freshwater bodies in absolute terms, relatively speaking they live closest to water considering the limited number of freshwater bodies in those areas. Population distributions in arid zones show statistically significant relationships with a combination of climatic factors and distance to water, whilst in other zones there is no statistically significant relationship with distance to water. Global studies on development and climate adaptation can benefit from an improved understanding of these relationships between human populations and the distance to fresh water. PMID:21687675
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-01
... Hydroelectric Project (Eagle Mountain Project). This notice describes the water supply pipeline route proposed... property that would be crossed by the proposed water supply pipeline. We are currently soliciting comments on the proposed water supply pipeline and the draft EIS. Additionally, as discussed below, we will be...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-05
... intake pipe off the existing 12-inch diameter water supply pipeline; (2) a new powerhouse containing one... water into an existing 12-inch water supply pipeline; and (4) appurtenant facilities. The proposed...--Project Blue Energy would utilize Pleasant Grove's water intake pipeline that delivers water to its water...
NASA Astrophysics Data System (ADS)
Razak, K. Abdul; Othman, M. I. H.; Mat Yusuf, S.; Fuad, M. F. I. Ahmad; yahaya, Effah
2018-05-01
Oil and gas today being developed at different water depth characterized as shallow, deep and ultra-deep waters. Among the major components involved during the offshore installation is pipelines. Pipelines are a transportation method of material through a pipe. In oil and gas industry, pipeline come from a bunch of line pipe that welded together to become a long pipeline and can be divided into two which is gas pipeline and oil pipeline. In order to perform pipeline installation, we need pipe laying barge or pipe laying vessel. However, pipe laying vessel can be divided into two types: S-lay vessel and J-lay vessel. The function of pipe lay vessel is not only to perform pipeline installation. It also performed installation of umbilical or electrical cables. In the simple words, pipe lay vessel is performing the installation of subsea in all the connecting infrastructures. Besides that, the installation processes of pipelines require special focus to make the installation succeed. For instance, the heavy pipelines may exceed the lay vessel’s tension capacities in certain kind of water depth. Pipeline have their own characteristic and we can group it or differentiate it by certain parameters such as grade of material, type of material, size of diameter, size of wall thickness and the strength. For instances, wall thickness parameter studies indicate that if use the higher steel grade of the pipelines will have a significant contribution in pipeline wall thickness reduction. When running the process of pipe lay, water depth is the most critical thing that we need to monitor and concern about because of course we cannot control the water depth but we can control the characteristic of the pipe like apply line pipe that have wall thickness suitable with current water depth in order to avoid failure during the installation. This research will analyse whether the pipeline parameter meet the requirements limit and minimum yield stress. It will overlook to simulate pipe grade API 5L X60 which size from 8 to 20mm thickness with a water depth of 50 to 300m. Result shown that pipeline installation will fail from the wall thickness of 18mm onwards since it has been passed the critical yield percentage.
The Brackets Design and Stress Analysis of a Refinery's Hot Water Pipeline
NASA Astrophysics Data System (ADS)
Zhou, San-Ping; He, Yan-Lin
2016-05-01
The reconstruction engineering which reconstructs the hot water pipeline from a power station to a heat exchange station requires the new hot water pipeline combine with old pipe racks. Taking the allowable span calculated based on GB50316 and the design philosophy of the pipeline supports into account, determine the types and locations of brackets. By analyzing the stresses of the pipeline in AutoPIPE, adjusting the supports at dangerous segments, recalculating in AutoPIPE, at last determine the types, locations and numbers of supports reasonably. Then the overall pipeline system will satisfy the requirement of the ASME B31.3.
Almazyad, Abdulaziz S.; Seddiq, Yasser M.; Alotaibi, Ahmed M.; Al-Nasheri, Ahmed Y.; BenSaleh, Mohammed S.; Obeid, Abdulfattah M.; Qasim, Syed Manzoor
2014-01-01
Anomalies such as leakage and bursts in water pipelines have severe consequences for the environment and the economy. To ensure the reliability of water pipelines, they must be monitored effectively. Wireless Sensor Networks (WSNs) have emerged as an effective technology for monitoring critical infrastructure such as water, oil and gas pipelines. In this paper, we present a scalable design and simulation of a water pipeline leakage monitoring system using Radio Frequency IDentification (RFID) and WSN technology. The proposed design targets long-distance aboveground water pipelines that have special considerations for maintenance, energy consumption and cost. The design is based on deploying a group of mobile wireless sensor nodes inside the pipeline and allowing them to work cooperatively according to a prescheduled order. Under this mechanism, only one node is active at a time, while the other nodes are sleeping. The node whose turn is next wakes up according to one of three wakeup techniques: location-based, time-based and interrupt-driven. In this paper, mathematical models are derived for each technique to estimate the corresponding energy consumption and memory size requirements. The proposed equations are analyzed and the results are validated using simulation. PMID:24561404
Almazyad, Abdulaziz S; Seddiq, Yasser M; Alotaibi, Ahmed M; Al-Nasheri, Ahmed Y; BenSaleh, Mohammed S; Obeid, Abdulfattah M; Qasim, Syed Manzoor
2014-02-20
Anomalies such as leakage and bursts in water pipelines have severe consequences for the environment and the economy. To ensure the reliability of water pipelines, they must be monitored effectively. Wireless Sensor Networks (WSNs) have emerged as an effective technology for monitoring critical infrastructure such as water, oil and gas pipelines. In this paper, we present a scalable design and simulation of a water pipeline leakage monitoring system using Radio Frequency IDentification (RFID) and WSN technology. The proposed design targets long-distance aboveground water pipelines that have special considerations for maintenance, energy consumption and cost. The design is based on deploying a group of mobile wireless sensor nodes inside the pipeline and allowing them to work cooperatively according to a prescheduled order. Under this mechanism, only one node is active at a time, while the other nodes are sleeping. The node whose turn is next wakes up according to one of three wakeup techniques: location-based, time-based and interrupt-driven. In this paper, mathematical models are derived for each technique to estimate the corresponding energy consumption and memory size requirements. The proposed equations are analyzed and the results are validated using simulation.
Whiley, H; Keegan, A; Fallowfield, H; Bentham, R
2015-06-01
Water reuse has become increasingly important for sustainable water management. Currently, its application is primarily constrained by the potential health risks. Presently there is limited knowledge regarding the presence and fate of opportunistic pathogens along reuse water distribution pipelines. In this study opportunistic human pathogens Legionella spp., L. pneumophila and Mycobacterium avium complex were detected using real-time polymerase chain reaction along two South Australian reuse water distribution pipelines at maximum concentrations of 10⁵, 10³ and 10⁵ copies/mL, respectively. During the summer period of sampling the concentration of all three organisms significantly increased (P < 0.05) along the pipeline, suggesting multiplication and hence viability. No seasonality in the decrease in chlorine residual along the pipelines was observed. This suggests that the combination of reduced chlorine residual and increased water temperature promoted the presence of these opportunistic pathogens.
Continuous Turbidity Monitoring in the Indian Creek Watershed, Tazewell County, Virginia, 2006-08
Moyer, Douglas; Hyer, Kenneth
2009-01-01
Thousands of miles of natural gas pipelines are installed annually in the United States. These pipelines commonly cross streams, rivers, and other water bodies during pipeline construction. A major concern associated with pipelines crossing water bodies is increased sediment loading and the subsequent impact to the ecology of the aquatic system. Several studies have investigated the techniques used to install pipelines across surface-water bodies and their effect on downstream suspended-sediment concentrations. These studies frequently employ the evaluation of suspended-sediment or turbidity data that were collected using discrete sample-collection methods. No studies, however, have evaluated the utility of continuous turbidity monitoring for identifying real-time sediment input and providing a robust dataset for the evaluation of long-term changes in suspended-sediment concentration as it relates to a pipeline crossing. In 2006, the U.S. Geological Survey, in cooperation with East Tennessee Natural Gas and the U.S. Fish and Wildlife Service, began a study to monitor the effects of construction of the Jewell Ridge Lateral natural gas pipeline on turbidity conditions below pipeline crossings of Indian Creek and an unnamed tributary to Indian Creek, in Tazewell County, Virginia. The potential for increased sediment loading to Indian Creek is of major concern for watershed managers because Indian Creek is listed as one of Virginia's Threatened and Endangered Species Waters and contains critical habitat for two freshwater mussel species, purple bean (Villosa perpurpurea) and rough rabbitsfoot (Quadrula cylindrical strigillata). Additionally, Indian Creek contains the last known reproducing population of the tan riffleshell (Epioblasma florentina walkeri). Therefore, the objectives of the U.S. Geological Survey monitoring effort were to (1) develop a continuous turbidity monitoring network that attempted to measure real-time changes in suspended sediment (using turbidity as a surrogate) downstream from the pipeline crossings, and (2) provide continuous turbidity data that enable the development of a real-time turbidity-input warning system and assessment of long-term changes in turbidity conditions. Water-quality conditions were assessed using continuous water-quality monitors deployed upstream and downstream from the pipeline crossings in Indian Creek and the unnamed tributary. These paired upstream and downstream monitors were outfitted with turbidity, pH (for Indian Creek only), specific-conductance, and water-temperature sensors. Water-quality data were collected continuously (every 15 minutes) during three phases of the pipeline construction: pre-construction, during construction, and post-construction. Continuous turbidity data were evaluated at various time steps to determine whether the construction of the pipeline crossings had an effect on downstream suspended-sediment conditions in Indian Creek and the unnamed tributary. These continuous turbidity data were analyzed in real time with the aid of a turbidity-input warning system. A warning occurred when turbidity values downstream from the pipeline were 6 Formazin Nephelometric Units or 15 percent (depending on the observed range) greater than turbidity upstream from the pipeline crossing. Statistical analyses also were performed on monthly and phase-of-construction turbidity data to determine if the pipeline crossing served as a long-term source of sediment. Results of this intensive water-quality monitoring effort indicate that values of turbidity in Indian Creek increased significantly between the upstream and downstream water-quality monitors during the construction of the Jewell Ridge pipeline. The magnitude of the significant turbidity increase, however, was small (less than 2 Formazin Nephelometric Units). Patterns in the continuous turbidity data indicate that the actual pipeline crossing of Indian Creek had little influence of downstream water quality; co
Study of sleeper’s impact on the deep-water pipeline lateral global buckling
NASA Astrophysics Data System (ADS)
Liu, Wenbin; Li, Bin
2017-08-01
Pipelines are the most important transportation way for offshore oil and gas, and the lateral buckling is the main global buckling form for deep-water pipelines. The sleeper is an economic and efficient device to trigger the lateral buckling in preset location. This paper analyzed the lateral buckling features for on-bottom pipeline and pipeline with sleeper. The stress and strain variation during buckling process is shown to reveal the impact of sleeper on buckling.
30 CFR 250.1003 - Installation, testing, and repair requirements for DOI pipelines.
Code of Federal Regulations, 2011 CFR
2011-07-01
... installed in water depths of less than 200 feet shall be buried to a depth of at least 3 feet unless they... damage potential exists. (b)(1) Pipelines shall be pressure tested with water at a stabilized pressure of... repair, the pipeline shall be pressure tested with water or processed natural gas at a minimum stabilized...
Comparative assessment of water use and environmental implications of coal slurry pipelines
Palmer, Richard N.; James II, I. C.; Hirsch, R.M.
1977-01-01
With other studies conducted by the U.S. Geological Survey of water use in the conversion and transportation of the West 's coal, an analysis of water use and environmental implications of coal-slurry pipeline transport is presented. Simulations of a hypothetical slurry pipeline of 1000-mile length transporting 12.5 million tons per year indicate that pipeline costs and energy requirements are quite sensitive to the coal-to-water ratio. For realistic water prices, the optimal ratio will not vary far from the 50/50 ratio by weight. In comparison to other methods of energy conversion and transport, coal-slurry pipeline utilize about 1/3 the amount of water required for coal gasification, and about 1/5 the amount required for on-site electrical generation. An analysis of net energy output from operating alternative energy transportation systems for the assumed conditions indicates that both slurry pipeline and rail shipment require approximately 4.5 percent of the potential electrical energy output of the coal transported, and high-voltage, direct-current transportation requires approximately 6.5 percent. The environmental impacts of the different transports options are so substantially different that a common basis for comparison does not exist. (Woodard-USGS)
Garden Banks 388 deepwater pipeline span avoidance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, S.W.; Sawyer, M.A.; Kenney, T.D.
1995-12-31
This paper will describe the span avoidance measures taken for the installation of the Garden Banks 388 deepwater oil and gas gathering pipelines. The two 12 inch pipelines connect a shallow water facility in EI-315 to a deep water subsea template in GB-388. These pipelines run across the irregular continental slope typically found in moderate to deep water in the Gulf of Mexico. To minimize pipeline spans, steps were taken during design, survey, and installation phases of the project. During each phase, as additional information became available, analyses and resulting recommended approaches were refined. This continuity, seldom easily obtained, provedmore » beneficial in translating design work into field results.« less
DETAIL VIEW OF WATER TANKS AND PIPELINE TO WATER SOURCE. ...
DETAIL VIEW OF WATER TANKS AND PIPELINE TO WATER SOURCE. LOOKING NORTHWEST FROM LARGE TAILINGS PILE. THE TANK ON THE LEFT IS A WATER TANK, POSSIBLY ASSOCIATED WITH A WATER SHAFT THAT IS SEEN AS A RAISED SPOT ON THE GROUND JUST TO THE RIGHT OF IT. THE TANK ON THE RIGHT IS IN DIRECT CONNECTION WITH THE PIPELINE CARRYING WATER FROM A NEARBY SPRING IN THE DISTANCE AT CENTER. THE WATER WAS THEN PUMPED UP TO ALL PARTS OF THE MINING OPERATION, INCLUDING THE UPPER MINES ONE MILE NORTH, THE MILL, AND THE CYANIDE PLANT. THE PIPELINE ITSELF IS DISMANTLED, WITH PARTS OF IT MISSING OR SCATTERED ALONG THE GROUND, AS SEEN IN THE CENTER DISTANCE. THE SPRING IS APPROX. A QUARTER MILE DISTANT, AND IS NOT PROMINENT IN THIS PHOTOGRAPH. - Keane Wonder Mine, Park Route 4 (Daylight Pass Cutoff), Death Valley Junction, Inyo County, CA
Comparison of carbon footprints of steel versus concrete pipelines for water transmission.
Chilana, Lalit; Bhatt, Arpita H; Najafi, Mohammad; Sattler, Melanie
2016-05-01
The global demand for water transmission and service pipelines is expected to more than double between 2012 and 2022. This study compared the carbon footprint of the two most common materials used for large-diameter water transmission pipelines, steel pipe (SP) and prestressed concrete cylinder pipe (PCCP). A planned water transmission pipeline in Texas was used as a case study. Four life-cycle phases for each material were considered: material production and pipeline fabrication, pipe transportation to the job site, pipe installation in the trench, and operation of the pipeline. In each phase, the energy consumed and the CO2-equivalent emissions were quantified. It was found that pipe manufacturing consumed a large amount of energy, and thus contributed more than 90% of life cycle carbon emissions for both kinds of pipe. Steel pipe had 64% larger CO2-eq emissions from manufacturing compared to PCCP. For the transportation phase, PCCP consumed more fuel due to its heavy weight, and therefore had larger CO2-eq emissions. Fuel consumption by construction equipment for installation of pipe was found to be similar for steel pipe and PCCP. Overall, steel had a 32% larger footprint due to greater energy used during manufacturing. This study compared the carbon footprint of two large-diameter water transmission pipeline materials, steel and prestressed concrete cylinder, considering four life-cycle phases for each. The study provides information that project managers can incorporate into their decision-making process concerning pipeline materials. It also provides information concerning the most important phases of the pipeline life cycle to target for emission reductions.
43 CFR 2801.9 - When do I need a grant?
Code of Federal Regulations, 2014 CFR
2014-10-01
..., pipelines, tunnels, and other systems which impound, store, transport, or distribute water; (2) Pipelines and other systems for transporting or distributing liquids and gases, other than water and other than... and terminal facilities used in connection with them; (3) Pipelines, slurry and emulsion systems, and...
43 CFR 2801.9 - When do I need a grant?
Code of Federal Regulations, 2012 CFR
2012-10-01
..., pipelines, tunnels, and other systems which impound, store, transport, or distribute water; (2) Pipelines and other systems for transporting or distributing liquids and gases, other than water and other than... and terminal facilities used in connection with them; (3) Pipelines, slurry and emulsion systems, and...
43 CFR 2801.9 - When do I need a grant?
Code of Federal Regulations, 2011 CFR
2011-10-01
..., pipelines, tunnels, and other systems which impound, store, transport, or distribute water; (2) Pipelines and other systems for transporting or distributing liquids and gases, other than water and other than... and terminal facilities used in connection with them; (3) Pipelines, slurry and emulsion systems, and...
43 CFR 2801.9 - When do I need a grant?
Code of Federal Regulations, 2013 CFR
2013-10-01
..., pipelines, tunnels, and other systems which impound, store, transport, or distribute water; (2) Pipelines and other systems for transporting or distributing liquids and gases, other than water and other than... and terminal facilities used in connection with them; (3) Pipelines, slurry and emulsion systems, and...
NASA Technical Reports Server (NTRS)
Ortiz, R. M.; Patterson, R. M.; Wade, C. E.; Byers, F. M.
2000-01-01
Water flux rates and osmotic responses of Kemp's Ridley sea turtles (Lepidochelys kempi) acutely exposed to fresh water were quantified. Salt-water adapted turtles were exposed to fresh water for 4 d before being returned to salt water. During the initial salt water phase, absolute and relative water flux rates were 1.2+/-0.1 l d(-1) and 123.0+/-6.8 ml kg(-1) d(-1), respectively. When turtles were exposed to fresh water, rates increased by approximately 30%. Upon return to salt water, rates decreased to original levels. Plasma osmolality, Na(+), K(+), and Cl(-) decreased during exposure to fresh water, and subsequently increased during the return to salt water. The Na(+):K(+) ratio was elevated during the fresh water phase and subsequently decreased upon return to salt water. Aldosterone and corticosterone were not altered during exposure to fresh water. Elevated water flux rates during fresh water exposure reflected an increase in water consumption, resulting in a decrease in ionic and osmotic concentrations. The lack of a change in adrenocorticoids to acute fresh water exposure suggests that adrenal responsiveness to an hypo-osmotic environment may be delayed in marine turtles when compared to marine mammals.
Salazar, Joelle K; Gonsalves, Lauren J; Schill, Kristin M; Sanchez Leon, Maria; Anderson, Nathan; Keller, Susanne E
2018-06-07
The genome of Listeria monocytogenes strain DFPST0073, isolated from imported fresh Mexican soft cheese in 2003, was sequenced using the Illumina MiSeq platform. Reads were assembled using SPAdes, and genome annotation was performed using the NCBI Prokaryotic Genome Annotation Pipeline.
76 FR 60478 - Record of Decision, Texas Clean Energy Project
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-29
... the plant with one or both of the nearby power grids; process water supply pipelines; a natural gas... per year. The CO 2 will be delivered through a regional pipeline network to existing oil fields in the... proposed Fort Stockton Holdings water supply pipeline; Possible changes in discharges to Monahans Draw and...
NASA Astrophysics Data System (ADS)
Collins, J.; Edwards, B. R.; Fredricks, H. F.; Van Mooy, B. A.
2016-02-01
The lipids of marine plankton encompass a diversity of biochemical functions and chemotaxonomic specificities that make them ideal molecular biomarkers in living biomass. While core, nonpolar lipids such as free fatty acids (FFA) have formed the basis for many biomarker studies in fresh biomass, methods that enable the simultaneous profiling of core lipids and intact polar lipids (IPL) have opened new avenues for characterization of environmental stressors. We demonstrate the application of a novel, rules-based lipidomics data analysis pipeline to putatively identify a broad range of intact polar lipids, intact oxidized lipids (ox-lipids) and oxylipins in accurate-mass HPLC-ESI-MS data. Using mass spectra from a lipid peroxidation experiment conducted under the natural, ultraviolet-enriched light field in West Antarctica, we use the pipeline to identify ox-lipid and oxylipin biomarkers that might serve as indicators of photooxidative stress in phytoplankton. The lipidomics pipeline derives much of its functionality from two boutique lipid-oxylipin databases, which together contain entries for more than 60,000 candidate lipid biomarkers. These databases and all scripts required by the pipeline will be publicly available online to other users.
Modelling water hammer in viscoelastic pipelines: short brief
NASA Astrophysics Data System (ADS)
Urbanowicz, K.; Firkowski, M.; Zarzycki, Z.
2016-10-01
The model of water hammer in viscoelastic pipelines is analyzed. An appropriate mathematical model of water hammer in polymer pipelines is presented. An additional term has been added to continuity equation to describe the retarded deformation of the pipe wall. The mechanical behavior of viscoelastic material is described by generalized Kelvin-Voigt model. The comparison of numerical simulation and experimental data from well known papers is presented. Short discussion about obtained results are given.
NASA Astrophysics Data System (ADS)
Lan, G.; Jiang, J.; Li, D. D.; Yi, W. S.; Zhao, Z.; Nie, L. N.
2013-12-01
The calculation of water-hammer pressure phenomenon of single-phase liquid is already more mature for a pipeline of uniform characteristics, but less research has addressed the calculation of slurry water hammer pressure in complex pipelines with slurry flows carrying solid particles. In this paper, based on the developments of slurry pipelines at home and abroad, the fundamental principle and method of numerical simulation of transient processes are presented, and several boundary conditions are given. Through the numerical simulation and analysis of transient processes of a practical engineering of long-distance slurry transportation pipeline system, effective protection measures and operating suggestions are presented. A model for calculating the water impact of solid and fluid phases is established based on a practical engineering of long-distance slurry pipeline transportation system. After performing a numerical simulation of the transient process, analyzing and comparing the results, effective protection measures and operating advice are recommended, which has guiding significance to the design and operating management of practical engineering of longdistance slurry pipeline transportation system.
Lewis, S J; Gilmour, A
1987-04-01
Sterile sections of rubber and stainless steel milk transfer pipeline were inserted sequentially into a milking installation and soiled with fresh raw milk over a period of 5 d. The resultant adherent microbial population was removed and the generic composition of mesophilic and psychotropic types was determined. In all cases Acinetobacter spp. were found to predominate (59.5-75.6%). The generic composition of the raw milk used to soil the milking unit (with inserted pipe section) was determined once during each 5-d soiling period. In general the milk was found to contain a mixed flora in which Gram-positive organisms predominated.
18 CFR 357.3 - FERC Form No. 73, Oil Pipeline Data for Depreciation Analysis.
Code of Federal Regulations, 2010 CFR
2010-04-01
... Pipeline Data for Depreciation Analysis. 357.3 Section 357.3 Conservation of Power and Water Resources... No. 73, Oil Pipeline Data for Depreciation Analysis. (a) Who must file. Any oil pipeline company.... 73, Oil Pipeline Data for Depreciation Analysis, available for review at the Commission's Public...
Developing America's Shale Reserves - Water Strategies For A Sustainable Future (Invited)
NASA Astrophysics Data System (ADS)
Shephard, L. E.; Oshikanlu, T.
2013-12-01
The development of shale oil and gas reserves over the last several years has had a significant impact on securing America's energy future while making substantial contributions to our nation's economic prosperity. These developments have also raised serious concerns about potential detrimental impacts to our environment (i.e., land, air and water) with much media attention focused on the impacts to our nation's fresh water supply. These concerns are being discussed across the nation often with little or no distinction that the nature of the water issues vary depending on local circumstances (e.g., depth of aquifer and reservoir zone, water demand and availability, availability of discharge wells, regulatory framework, etc.) and regional shale reservoir development strategies (depth of wells, length of laterals, fluid-type used for fracturing, etc.). Growing concerns over long standing drought conditions in some areas and competing demands for water from other sectors (e.g., agriculture, domestic, etc.) add even greater uncertainty relative to fresh water. Water demands for gas and oil wells vary from region to region but nominally range from 10 to 15 acre feet of water (4 to 6 million gallons) for drilling and hydraulic fracturing applications. Flowback water from the hydraulic fracturing process varies and can range from 5 to 40 % of the water used for drilling and 'fracing'. Produced water can be substantial, leading to significant volumes of 'disposed water' where injection wells are available. A science-based systems approach to water lifecycle management that incorporates leading-edge technology development and considers economic and social impacts is critical for the long-term sustainable development of shale reserves. Various water recycling and reuse technologies are being deployed within select regions across the nation with each having limited success depending on region. The efficacy of reuse technology will vary based on produced water quantity and quality, flow back rates and the associated economics. A significant contributor to the economics can be offsite transportation costs from hauling water to and from the drill site. While economics often drive decisions on technology and reuse, available water and infrastructure (water pipelines, injection wells, etc.) are also important contributors. In some regions effluent water (i.e., treated or untreated waste water) is playing an increasing role to reduce impacting 'fresh' water supplies for communities in regions where supply is limited and demand continues to increase. In many communities effluent water provides additional revenue to support infrastructure needs arising from accelerated population growth and economic expansion. The development strategy for shale reservoirs can be optimized to assure a sustainable future for water resources. A systems-based sustainable water strategy should be integrated into the regional reservoir development approach at the earliest possible stage with full consideration of the nature of regional water issues and reservoir development strategies impacting water demand and supply, available technology and potential social and economic impacts.
Ceuppens, Siele; De Coninck, Dieter; Bottledoorn, Nadine; Van Nieuwerburgh, Filip; Uyttendaele, Mieke
2017-09-18
Application of 16S rRNA (gene) amplicon sequencing on food samples is increasingly applied for assessing microbial diversity but may as unintended advantage also enable simultaneous detection of any human pathogens without a priori definition. In the present study high-throughput next-generation sequencing (NGS) of the V1-V2-V3 regions of the 16S rRNA gene was applied to identify the bacteria present on fresh basil leaves. However, results were strongly impacted by variations in the bioinformatics analysis pipelines (MEGAN, SILVAngs, QIIME and MG-RAST), including the database choice (Greengenes, RDP and M5RNA) and the annotation algorithm (best hit, representative hit and lowest common ancestor). The use of pipelines with default parameters will lead to discrepancies. The estimate of microbial diversity of fresh basil using 16S rRNA (gene) amplicon sequencing is thus indicative but subject to biases. Salmonella enterica was detected at low frequencies, between 0.1% and 0.4% of bacterial sequences, corresponding with 37 to 166 reads. However, this result was dependent upon the pipeline used: Salmonella was detected by MEGAN, SILVAngs and MG-RAST, but not by QIIME. Confirmation of Salmonella sequences by real-time PCR was unsuccessful. It was shown that taxonomic resolution obtained from the short (500bp) sequence reads of the 16S rRNA gene containing the hypervariable regions V1-V3 cannot allow distinction of Salmonella with closely related enterobacterial species. In conclusion 16S amplicon sequencing, getting the status of standard method in microbial ecology studies of foods, needs expertise on both bioinformatics and microbiology for analysis of results. It is a powerful tool to estimate bacterial diversity but amenable to biases. Limitations concerning taxonomic resolution for some bacterial species or its inability to detect sub-dominant (pathogenic) species should be acknowledged in order to avoid overinterpretation of results. Copyright © 2017 Elsevier B.V. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-23
... new ``y'' pipe intake off the existing 10-inch diameter water supply pipeline; (2) a new 12-foot-long... water supply pipeline; and (5) appurtenant facilities. The proposed project would have an estimated... 22 kW Orchard City Water Treatment Plant Hydroelectric Project would utilize Orchard City's water...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-13
... Water District of Southern California; Notice of Effectiveness of Surrender On September 17, 2001, the Commission issued an Order Granting Exemption from Licensing (Conduit) \\1\\ to the Metropolitan Water District... Connection, which transfers water from the Allen-McCulloch Pipeline to the South County Pipeline. \\1...
Rooftop view of old rain shed (Building No. 43), pipeline ...
Rooftop view of old rain shed (Building No. 43), pipeline on trestle, and water tanks. - Hawaii Volcanoes National Park Water Collection System, Hawaii Volcanoes National Park, Volcano, Hawaii County, HI
Fresh Waters and Fish Diversity: Distribution, Protection and Disturbance in Tropical Australia
Januchowski-Hartley, Stephanie R.; Pearson, Richard G.; Puschendorf, Robert; Rayner, Thomas
2011-01-01
Background Given the globally poor protection of fresh waters for their intrinsic ecological values, assessments are needed to determine how well fresh waters and supported fish species are incidentally protected within existing terrestrial protected-area networks, and to identify their vulnerability to human-induced disturbances. To date, gaps in data have severely constrained any attempt to explore the representation of fresh waters in tropical regions. Methodology and Results We determined the distribution of fresh waters and fish diversity in the Wet Tropics of Queensland, Australia. We then used distribution data of fresh waters, fish species, human-induced disturbances, and the terrestrial protected-area network to assess the effectiveness of terrestrial protected areas for fresh waters and fish species. We also identified human-induced disturbances likely to influence the effectiveness of freshwater protection and evaluated the vulnerability of fresh waters to these disturbances within and outside protected areas. The representation of fresh waters and fish species in the protected areas of the Wet Tropics is poor: 83% of stream types defined by order, 75% of wetland types, and 89% of fish species have less than 20% of their total Wet Tropics length, area or distribution completely within IUCN category II protected areas. Numerous disturbances affect fresh waters both within and outside of protected areas despite the high level of protection afforded to terrestrial areas in the Wet Tropics (>60% of the region). High-order streams and associated wetlands are influenced by the greatest number of human-induced disturbances and are also the least protected. Thirty-two percent of stream length upstream of protected areas has at least one human-induced disturbance present. Conclusions/Significance We demonstrate the need for greater consideration of explicit protection and off-reserve management for fresh waters and supported biodiversity by showing that, even in a region where terrestrial protection is high, it does not adequately capture fresh waters. PMID:21998708
DOT National Transportation Integrated Search
2010-08-01
Significant financial and environmental consequences often result from line leakage of oil product pipelines. Product can escape into the surrounding soil as even the smallest leak can lead to rupture of the pipeline. From a health perspective, water...
State of art of seismic design and seismic hazard analysis for oil and gas pipeline system
NASA Astrophysics Data System (ADS)
Liu, Aiwen; Chen, Kun; Wu, Jian
2010-06-01
The purpose of this paper is to adopt the uniform confidence method in both water pipeline design and oil-gas pipeline design. Based on the importance of pipeline and consequence of its failure, oil and gas pipeline can be classified into three pipe classes, with exceeding probabilities over 50 years of 2%, 5% and 10%, respectively. Performance-based design requires more information about ground motion, which should be obtained by evaluating seismic safety for pipeline engineering site. Different from a city’s water pipeline network, the long-distance oil and gas pipeline system is a spatially linearly distributed system. For the uniform confidence of seismic safety, a long-distance oil and pipeline formed with pump stations and different-class pipe segments should be considered as a whole system when analyzing seismic risk. Considering the uncertainty of earthquake magnitude, the design-basis fault displacements corresponding to the different pipeline classes are proposed to improve deterministic seismic hazard analysis (DSHA). A new empirical relationship between the maximum fault displacement and the surface-wave magnitude is obtained with the supplemented earthquake data in East Asia. The estimation of fault displacement for a refined oil pipeline in Wenchuan M S8.0 earthquake is introduced as an example in this paper.
75 FR 77000 - South Coast Conduit/Upper Reach Reliability Project, Santa Barbara County, CA
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-10
... pipeline for improving water supply reliability to Cachuma Project (CP) and State Water Project (SWP... percent of the water supply for communities along the South Coast of Santa Barbara County. Reclamation... demands it is not able to provide the water needed. No redundant supply or pipeline exists to convey CVP...
77 FR 64431 - Civil Monetary Penalty Inflation Adjustment Rule
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-22
... Rail Carrier (Part A), Motor and Water Carriers (Part B), and Pipeline Carrier (Part C) provisions of... related to motor carriers, water carriers, brokers, and freight forwarders appears at 49 U.S.C. 14901... forwarders, Motor carriers, Pipeline carriers, Rail carriers, Water carriers. Decided: October 12, 2012. By...
Pipeline repair development in support of the Oman to India gas pipeline
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abadie, W.; Carlson, W.
1995-12-01
This paper provides a summary of development which has been conducted to date for the ultra deep, diverless pipeline repair system for the proposed Oman to India Gas Pipeline. The work has addressed critical development areas involving testing and/or prototype development of tools and procedures required to perform a diverless pipeline repair in water depths of up to 3,525 m.
Lay-Ekuakille, Aimé; Fabbiano, Laura; Vacca, Gaetano; Kitoko, Joël Kidiamboko; Kulapa, Patrice Bibala; Telesca, Vito
2018-06-04
Pipelines conveying fluids are considered strategic infrastructures to be protected and maintained. They generally serve for transportation of important fluids such as drinkable water, waste water, oil, gas, chemicals, etc. Monitoring and continuous testing, especially on-line, are necessary to assess the condition of pipelines. The paper presents findings related to a comparison between two spectral response algorithms based on the decimated signal diagonalization (DSD) and decimated Padé approximant (DPA) techniques that allow to one to process signals delivered by pressure sensors mounted on an experimental pipeline.
Wu, Qing; Zhao, Xinhua; Yu, Qing; Li, Jun
2008-07-01
To understand the corrosion of different material water supply pipelines and bacterium in drinking water and biofilms. A pilot distribution network was built and water quality detection was made on popular pipelines of galvanized iron pipe, PPR and ABS plastic pipes by ESEM (environmental scanning electron microscopy). Bacterium in drinking water and biofilms were identified by API Bacteria Identification System 10s and 20E (Biomerieux, France), and pathogenicity of bacterium were estimated. Galvanized zinc pipes were seriously corroded; there were thin layers on inner face of PPR and ABS plastic pipes. 10 bacterium (got from water samples) were identified by API10S, in which 7 bacterium were opportunistic pathogens. 21 bacterium (got from water and biofilms samples) were identified by API20E, in which 5 bacterium were pathogens and 11 bacterium were opportunistic pathogens and 5 bacteria were not reported for their pathogenicities to human beings. The bacterial water quality of drinking water distribution networks were not good. Most bacterium in drinking water and biofilms on the inner face of pipeline of the drinking water distribution network were opportunistic pathogens, it could cause serious water supply accident, if bacteria spread in suitable conditions. In the aspect of pipe material, old pipelines should be changed by new material pipes.
Water Pipeline Monitoring and Leak Detection using Flow Liquid Meter Sensor
NASA Astrophysics Data System (ADS)
Rahmat, R. F.; Satria, I. S.; Siregar, B.; Budiarto, R.
2017-04-01
Water distribution is generally installed through underground pipes. Monitoring the underground water pipelines is more difficult than monitoring the water pipelines located on the ground in open space. This situation will cause a permanent loss if there is a disturbance in the pipeline such as leakage. Leaks in pipes can be caused by several factors, such as the pipe’s age, improper installation, and natural disasters. Therefore, a solution is required to detect and to determine the location of the damage when there is a leak. The detection of the leak location will use fluid mechanics and kinematics physics based on harness water flow rate data obtained using flow liquid meter sensor and Arduino UNO as a microcontroller. The results show that the proposed method is able to work stably to determine the location of the leak which has a maximum distance of 2 metres, and it’s able to determine the leak location as close as possible with flow rate about 10 litters per minute.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-06
... and potable water pipelines, a transmission line, a natural gas supply pipeline, a CO 2 pipeline... line. HECA would also construct an approximately 8-mile natural gas supply pipeline extending southeast... produce synthesis gas (syngas), which would then be processed and purified to produce a hydrogen-rich fuel...
33 CFR 88.15 - Lights on dredge pipelines.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Lights on dredge pipelines. 88.15... NAVIGATION RULES ANNEX V: PILOT RULES § 88.15 Lights on dredge pipelines. Dredge pipelines that are floating or supported on trestles shall display the following lights at night and in periods of restricted...
33 CFR 88.15 - Lights on dredge pipelines.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Lights on dredge pipelines. 88.15... NAVIGATION RULES ANNEX V: PILOT RULES § 88.15 Lights on dredge pipelines. Dredge pipelines that are floating or supported on trestles shall display the following lights at night and in periods of restricted...
33 CFR 88.15 - Lights on dredge pipelines.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Lights on dredge pipelines. 88.15... NAVIGATION RULES ANNEX V: PILOT RULES § 88.15 Lights on dredge pipelines. Dredge pipelines that are floating or supported on trestles shall display the following lights at night and in periods of restricted...
33 CFR 88.15 - Lights on dredge pipelines.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Lights on dredge pipelines. 88.15... NAVIGATION RULES ANNEX V: PILOT RULES § 88.15 Lights on dredge pipelines. Dredge pipelines that are floating or supported on trestles shall display the following lights at night and in periods of restricted...
33 CFR 88.15 - Lights on dredge pipelines.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Lights on dredge pipelines. 88.15... NAVIGATION RULES ANNEX V: PILOT RULES § 88.15 Lights on dredge pipelines. Dredge pipelines that are floating or supported on trestles shall display the following lights at night and in periods of restricted...
NPDES Permit for Rocky Mountain Arsenal Recycled Water Pipeline in Colorado
Under NPDES permit CO-0035009, the U.S. Department of Interior's Fish and Wildlife Service is authorized to discharge from the Rocky Mountain Arsenal recycled water pipeline to Lower Derby Lake in Adams County, Colo.
Industry and water security: overarching conclusions.
Stigson, B
2001-01-01
Fresh water is key to sustainable development. World Business Council for Sustainable Development members are addressing fresh water use "within the corporate fenceline". However, to address water issues "outside the corporate fenceline" will require creative new public-private partnerships. Government's role is to provide sound framework conditions that will encourage businesses to invest time, staff and resources to address vital fresh water issues. Industry is committed to best practice within its internal operations and is ready to enter into partnerships to address broader fresh water issues.
[170 years of struggle of the Viennese physicians for hygienically safe drinking water].
Flamm, Heinz
2010-04-01
Discussions in the Society of Physicians in Vienna about the connection between water contamination and typhoid outbreaks began in 1838. The basis of the water supply at that time was house wells partly drawing contaminated ground water and for a limited area the Kaiser-Ferdinand-Pipeline was useful. After many investigations on quantities and qualities of possible water sources and controversial discussions between Viennese politicians and the Society of Physicians, the latter strictly turned down the usage of surface water. In October 1865 the Society demanded that the source Kaiserbrunn in the Höllental and two other sources nearby in the Limestone Alps should be used for the Viennese water supply. After initial opposition in the municipal council and an outbreak of cholera in Vienna, the erection of the 1st Viennese Mountain-source Water Pipeline was started and the Pipeline was opened in 1873. Because of its insufficient quantity of water for the growing town the Society of Physicians became active again, supported by the Institute of hygiene founded in 1875. This resulted in the erection of the 2nd Viennese Mountain-source Water Pipeline, which was opened in 1910. A threat which had to be met were repeated plans for tourist developments.
Mercer, James W.; Larson, S.P.; Faust, Charles R.
1980-01-01
Model documentation is presented for a two-dimensional (areal) model capable of simulating ground-water flow of salt water and fresh water separated by an interface. The partial differential equations are integrated over the thicknesses of fresh water and salt water resulting in two equations describing the flow characteristics in the areal domain. These equations are approximated using finite-difference techniques and the resulting algebraic equations are solved for the dependent variables, fresh water head and salt water head. An iterative solution method was found to be most appropriate. The program is designed to simulate time-dependent problems such as those associated with the development of coastal aquifers, and can treat water-table conditions or confined conditions with steady-state leakage of fresh water. The program will generally be most applicable to the analysis of regional aquifer problems in which the zone between salt water and fresh water can be considered a surface (sharp interface). Example problems and a listing of the computer code are included. (USGS).
Liu, Wenbin; Liu, Aimin
2018-01-01
With the exploitation of offshore oil and gas gradually moving to deep water, higher temperature differences and pressure differences are applied to the pipeline system, making the global buckling of the pipeline more serious. For unburied deep-water pipelines, the lateral buckling is the major buckling form. The initial imperfections widely exist in the pipeline system due to manufacture defects or the influence of uneven seabed, and the distribution and geometry features of initial imperfections are random. They can be divided into two kinds based on shape: single-arch imperfections and double-arch imperfections. This paper analyzed the global buckling process of a pipeline with 2 initial imperfections by using a numerical simulation method and revealed how the ratio of the initial imperfection’s space length to the imperfection’s wavelength and the combination of imperfections affects the buckling process. The results show that a pipeline with 2 initial imperfections may suffer the superposition of global buckling. The growth ratios of buckling displacement, axial force and bending moment in the superposition zone are several times larger than no buckling superposition pipeline. The ratio of the initial imperfection’s space length to the imperfection’s wavelength decides whether a pipeline suffers buckling superposition. The potential failure point of pipeline exhibiting buckling superposition is as same as the no buckling superposition pipeline, but the failure risk of pipeline exhibiting buckling superposition is much higher. The shape and direction of two nearby imperfections also affects the failure risk of pipeline exhibiting global buckling superposition. The failure risk of pipeline with two double-arch imperfections is higher than pipeline with two single-arch imperfections. PMID:29554123
Sunoco Pipeline, L.P. Clean Water Act Settlement - 2017
EPA, and the U.S. Department of Justice announced that Sunoco Pipeline, L.P. (Sunoco) has agreed to pay a civil penalty for alleged violation of the Clean Water Act stemming from a 2012 gasoline discharge near Wellington, Ohio.
27. DETAIL OF PROBABLY LOCATION OF PELTON WATER WHEEL ON ...
27. DETAIL OF PROBABLY LOCATION OF PELTON WATER WHEEL ON EAST SIDE OF MILL, LOOKING SOUTH SOUTHWEST. THE END OF THE WATER PIPELINE ENCASED IN A SQUARE BLOCK OF CONCRETE IS AT CENTER. THIS IS THE END OF A 23-MILE PIPELINE THAT SUPPLIED WATER FROM TELESCOPE PEAK IN THE PANAMINT MOUNTAINS. - Skidoo Mine, Park Route 38 (Skidoo Road), Death Valley Junction, Inyo County, CA
Ho, Cheng-I; Lin, Min-Der; Lo, Shang-Lien
2010-07-01
A methodology based on the integration of a seismic-based artificial neural network (ANN) model and a geographic information system (GIS) to assess water leakage and to prioritize pipeline replacement is developed in this work. Qualified pipeline break-event data derived from the Taiwan Water Corporation Pipeline Leakage Repair Management System were analyzed. "Pipe diameter," "pipe material," and "the number of magnitude-3( + ) earthquakes" were employed as the input factors of ANN, while "the number of monthly breaks" was used for the prediction output. This study is the first attempt to manipulate earthquake data in the break-event ANN prediction model. Spatial distribution of the pipeline break-event data was analyzed and visualized by GIS. Through this, the users can swiftly figure out the hotspots of the leakage areas. A northeastern township in Taiwan, frequently affected by earthquakes, is chosen as the case study. Compared to the traditional processes for determining the priorities of pipeline replacement, the methodology developed is more effective and efficient. Likewise, the methodology can overcome the difficulty of prioritizing pipeline replacement even in situations where the break-event records are unavailable.
Simulation of systems for shock wave/compression waves damping in technological plants
NASA Astrophysics Data System (ADS)
Sumskoi, S. I.; Sverchkov, A. M.; Lisanov, M. V.; Egorov, A. F.
2016-09-01
At work of pipeline systems, flow velocity decrease can take place in the pipeline as a result of the pumps stop, the valves shutdown. As a result, compression waves appear in the pipeline systems. These waves can propagate in the pipeline system, leading to its destruction. This phenomenon is called water hammer (water hammer flow). The most dangerous situations occur when the flow is stopped quickly. Such urgent flow cutoff often takes place in an emergency situation when liquid hydrocarbons are being loaded into sea tankers. To prevent environment pollution it is necessary to stop the hydrocarbon loading urgently. The flow in this case is cut off within few seconds. To prevent an increase in pressure in a pipeline system during water hammer flow, special protective systems (pressure relief systems) are installed. The approaches to systems of protection against water hammer (pressure relief systems) modeling are described in this paper. A model of certain pressure relief system is considered. It is shown that in case of an increase in the intensity of hydrocarbons loading at a sea tanker, presence of the pressure relief system allows to organize safe mode of loading.
New rain shed (Building No. 241), overhead pipeline and raw ...
New rain shed (Building No. 241), overhead pipeline and raw water tank T4. Distribution pump house can be seen at the center of building. - Hawaii Volcanoes National Park Water Collection System, Hawaii Volcanoes National Park, Volcano, Hawaii County, HI
NASA Technical Reports Server (NTRS)
Ortiz, R. M.; Worthy, G. A.; Byers, F. M.
1999-01-01
The ability of West Indian manatees (Trichechus manatus) to move between fresh and salt water raises the question of whether manatees drink salt water. Water turnover rates were estimated in captive West Indian manatees using the deuterium oxide dilution technique. Rates were quantified in animals using four experimental treatments: (1) held in fresh water and fed lettuce (N=4), (2) held in salt water and fed lettuce (N=2), (3) acutely exposed to salt water and fed lettuce (N=4), and (4) chronically exposed to salt water with limited access to fresh water and fed sea grass (N=5). Animals held in fresh water had the highest turnover rates (145+/-12 ml kg-1 day-1) (mean +/- s.e.m.). Animals acutely exposed to salt water decreased their turnover rate significantly when moved into salt water (from 124+/-15 to 65+/-15 ml kg-1 day-1) and subsequently increased their turnover rate upon re-entry to fresh water (146+/-19 ml kg-1 day-1). Manatees chronically exposed to salt water had significantly lower turnover rates (21+/-3 ml kg-1 day-1) compared with animals held in salt water and fed lettuce (45+/-3 ml kg-1 day-1). Manatees chronically exposed to salt water and fed sea grass had very low turnover rates compared with manatees held in salt water and fed lettuce, which is consistent with a lack of mariposia. Manatees in fresh water drank large volumes of water, which may make them susceptible to hyponatremia if access to a source of Na+ is not provided.
Ortiz, R M; Worthy, G A; Byers, F M
1999-01-01
The ability of West Indian manatees (Trichechus manatus) to move between fresh and salt water raises the question of whether manatees drink salt water. Water turnover rates were estimated in captive West Indian manatees using the deuterium oxide dilution technique. Rates were quantified in animals using four experimental treatments: (1) held in fresh water and fed lettuce (N=4), (2) held in salt water and fed lettuce (N=2), (3) acutely exposed to salt water and fed lettuce (N=4), and (4) chronically exposed to salt water with limited access to fresh water and fed sea grass (N=5). Animals held in fresh water had the highest turnover rates (145+/-12 ml kg-1 day-1) (mean +/- s.e.m.). Animals acutely exposed to salt water decreased their turnover rate significantly when moved into salt water (from 124+/-15 to 65+/-15 ml kg-1 day-1) and subsequently increased their turnover rate upon re-entry to fresh water (146+/-19 ml kg-1 day-1). Manatees chronically exposed to salt water had significantly lower turnover rates (21+/-3 ml kg-1 day-1) compared with animals held in salt water and fed lettuce (45+/-3 ml kg-1 day-1). Manatees chronically exposed to salt water and fed sea grass had very low turnover rates compared with manatees held in salt water and fed lettuce, which is consistent with a lack of mariposia. Manatees in fresh water drank large volumes of water, which may make them susceptible to hyponatremia if access to a source of Na+ is not provided.
Toward an Improved Understanding of the Global Fresh Water Budget
NASA Technical Reports Server (NTRS)
Hildebrand, Peter H.
2005-01-01
The major components of the global fresh water cycle include the evaporation from the land and ocean surfaces, precipitation onto the Ocean and land surfaces, the net atmospheric transport of water from oceanic areas over land, and the return flow of water from the land back into the ocean. The additional components of oceanic water transport are few, principally, the mixing of fresh water through the oceanic boundary layer, transport by ocean currents, and sea ice processes. On land the situation is considerably more complex, and includes the deposition of rain and snow on land; water flow in runoff; infiltration of water into the soil and groundwater; storage of water in soil, lakes and streams, and groundwater; polar and glacial ice; and use of water in vegetation and human activities. Knowledge of the key terms in the fresh water flux budget is poor. Some components of the budget, e.g. precipitation, runoff, storage, are measured with variable accuracy across the globe. We are just now obtaining precise measurements of the major components of global fresh water storage in global ice and ground water. The easily accessible fresh water sources in rivers, lakes and snow runoff are only adequately measured in the more affluent portions of the world. presents proposals are suggesting methods of making global measurements of these quantities from space. At the same time, knowledge of the global fresh water resources under the effects of climate change is of increasing importance and the human population grows. This paper provides an overview of the state of knowledge of the global fresh water budget, evaluating the accuracy of various global water budget measuring and modeling techniques. We review the measurement capabilities of satellite instruments as compared with field validation studies and modeling approaches. Based on these analyses, and on the goal of improved knowledge of the global fresh water budget under the effects of climate change, we suggest priorities for future improvements in global fresh water budget monitoring. The priorities are based on the potential of new approaches to provide improved measurement and modeling systems, and on the need to measure and understand the potential for a speed-up of the global water cycle under the effects of climate change.
Melting icebergs to produce fresh water and mechanical energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Camirand, W.M.; Hautala, E.; Randall, J.M.
1981-10-20
Fresh water and mechanical energy are obtained from melting of icebergs. Warm surface seawater is contacted with a fluid, which is vaporized. The resulting vapor is used to generate mechanical energy and then is condensed by contacting it with cold melt water from the iceberg. The fluid is regenerated with a concomitant elevation in the temperature of the melt water. The warmer melt water is cycled to the body of the iceberg to facilitate its melting and produce additional cold melt water, which is apportioned as fresh water and water cycled to condense the aforesaid vapor. In an alternate embodimentmore » of the invention warm seawater is evaporated at reduced pressure. Mechanical energy is generated from the vapor, which is then condensed by direct and intimate contact with cold melt water from the iceberg. The resultant fresh water is a mixture of condensed vapor and melt water from the iceberg and has a temperature greater than the cold melt water. This fresh water mixture is contacted with the body of the iceberg to further melt it; part of the cold melt water is separated as fresh water and the remainder is cycled for use in condensing the vapor from the warm surface seawater.« less
Establishing the Global Fresh Water Sensor Web
NASA Technical Reports Server (NTRS)
Hildebrand, Peter H.
2005-01-01
This paper presents an approach to measuring the major components of the water cycle from space using the concept of a sensor-web of satellites that are linked to a data assimilation system. This topic is of increasing importance, due to the need for fresh water to support the growing human population, coupled with climate variability and change. The net effect is that water is an increasingly valuable commodity. The distribution of fresh water is highly uneven over the Earth, with both strong latitudinal distributions due to the atmospheric general circulation, and even larger variability due to landforms and the interaction of land with global weather systems. The annual global fresh water budget is largely a balance between evaporation, atmospheric transport, precipitation and runoff. Although the available volume of fresh water on land is small, the short residence time of water in these fresh water reservoirs causes the flux of fresh water - through evaporation, atmospheric transport, precipitation and runoff - to be large. With a total atmospheric water store of approx. 13 x 10(exp 12)cu m, and an annual flux of approx. 460 x 10(exp 12)cu m/y, the mean atmospheric residence time of water is approx. 10 days. River residence times are similar, biological are approx. 1 week, soil moisture is approx. 2 months, and lakes and aquifers are highly variable, extending from weeks to years. The hypothesized potential for redistribution and acceleration of the global hydrological cycle is therefore of concern. This hypothesized speed-up - thought to be associated with global warming - adds to the pressure placed upon water resources by the burgeoning human population, the variability of weather and climate, and concerns about anthropogenic impacts on global fresh water availability.
SNG completes deepest underwater pipelay in Gulf of Mexico
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vogt, G.B.
1992-08-24
This paper reports that gas began flowing this spring in the deepest underwater, large-diameter pipeline in the U.S. Gulf of Mexico. Water depth along the route of the pipeline varies from approximately 460 ft at the Alabaster platform, increasing to the record depth of 1,220 ft in the Mississippi Canyon area, and decreasing to negligible water depth at the landfall site southwest of Venice. The SNG Mississippi Canyon Block 397 pipeline project exemplifies how a pipeline project can encounter an array of conditions which prompt special design considerations and installation techniques. Important considerations for this project were related to pipemore » properties, anti-corrosion and weight coatings, span and buckle considerations, and installation equipment. A team effort was used to study, research, test, design, and install this pipeline.« less
30 CFR 250.1003 - Installation, testing, and repair requirements for DOI pipelines.
Code of Federal Regulations, 2010 CFR
2010-07-01
.... (a)(1) Pipelines greater than 8-5/8 inches in diameter and installed in water depths of less than 200... shall be pressure tested with water at a stabilized pressure of at least 1.25 times the MAOP for at... pressure tested with water or processed natural gas at a minimum stabilized pressure of at least 1.25 times...
Estimated water use in Puerto Rico, 2000
Molina-Rivera, Wanda L.
2005-01-01
Water-use data were compiled for the 78 municipios of the Commonwealth of Puerto Rico for 2000. Five offstream categories were considered: public-supply water withdrawals, domestic self-supplied water use, industrial self-supplied withdrawals, crop irrigation water use, and thermoelectric power fresh water use. Two additional categories also were considered: power generation instream use and public wastewater treatment return-flows. Fresh water withdrawals for offstream use from surface- and ground-water sources in Puerto Rico were estimated at 617 million gallons per day. The largest amount of fresh water withdrawn was by public-supply water facilities and was estimated at 540 million gallons per day. Fresh surface- and ground-water withdrawals by domestic self-supplied users was estimated at 2 million gallons per day and the industrial self-supplied withdrawals were estimated at 9.5 million gallons per day. Withdrawals for crop irrigation purposes were estimated at 64 million gallons per day, or approximately 10 percent of all offstream fresh water withdrawals. Saline instream surface-water withdrawals for cooling purposes by thermoelectric power facilities was estimated at 2,191 million gallons per day, and instream fresh water withdrawals by hydroelectric facilities at 171 million gallons per day. Total discharge from public wastewater treatment facilities was estimated at 211 million gallons per day.
Use of microwaves for the detection of corrosion under insulation: The effect of bends
NASA Astrophysics Data System (ADS)
Jones, R. E.; Simonetti, F.; Lowe, M. J. S.; Bradley, I. P.
2012-05-01
The detection of corrosion under insulation is an ongoing challenge in the oil and gas industry. An early warning of areas of pipe at risk of corrosion can be obtained by screening along the length of the pipeline to inspect the insulation layer for the presence of water, as water is a necessary precursor to corrosion. Long-range detection of water volumes can be achieved with microwave signals, using the structure of the clad and insulated pipeline as a coaxial waveguide, with water volumes presenting an impedance contrast and producing reflections of the incident microwave signal. An investigation into what effect bends in the pipeline will have on this inspection technique is presented here.
Fresh Groundwater Resources in Georgia and Management Problems
NASA Astrophysics Data System (ADS)
Gaprindashvili, George; Gaprindashvili, Merab
2015-04-01
Fresh water represents conditioned factor for human body's life. That's why the superiority of drinking water is recognized as human body's priority according to the international declarations. World is experiencing deficit of quality water. Natural Disasters caused by the pollution of the fresh groundwater is also very painful and acute, because it needed more time, more material and financial means for the liquidation of their results, and what the most important practically is, it is impossible to renew the initial natural conditions completely. All these conditions that the rational use of fresh groundwater passed by the interests of separate countries and became worldwide, international problem - fresh water became as considerable raw material for the worlds import and export. The fresh groundwater place the important role among the water recourses of Georgia. Their existing is considerably connected to the development of industry and agriculture, also with water supply issue of populated area. Groundwater management requires precise knowledge of sources (aquifers). Monitoring of Georgia's most important aquifers started many years ago and has provided large amount of data. This was interrupted at the beginning of the 1990s. It could be noted that fresh water existing in the country is distinguished with high quality. According to the mineralization and temperature parameters groundwater is generally divided into the following groups: 1) Fresh drinking waters (mineralization not exceeding 1.0 g/l); 2) Mineral waters (mineralization over 1.0 g/l); 3) Thermal waters -- healing (20˚C - 35˚C), Geothermal (40˚C - 108˚C). Below we present briefly review about the situation of fresh groundwater resources, started recovery of groundwater monitoring network and the analysis of the management problems.
NASA Technical Reports Server (NTRS)
Dowler, W. L.
1979-01-01
High strength steel pipeline carries hot mixture of powdered coal and coal derived oil to electric-power-generating station. Slurry is processed along way to remove sulfur, ash, and nitrogen and to recycle part of oil. System eliminates hazards and limitations associated with anticipated coal/water-slurry pipelines.
18 CFR 2.57 - Temporary certificates-pipeline companies.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Temporary certificates-pipeline companies. 2.57 Section 2.57 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES GENERAL POLICY AND INTERPRETATIONS Statements of General...
18 CFR 2.57 - Temporary certificates-pipeline companies.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Temporary certificates-pipeline companies. 2.57 Section 2.57 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES GENERAL POLICY AND INTERPRETATIONS Statements of General...
18 CFR 2.57 - Temporary certificates-pipeline companies.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Temporary certificates-pipeline companies. 2.57 Section 2.57 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES GENERAL POLICY AND INTERPRETATIONS Statements of General...
18 CFR 2.57 - Temporary certificates-pipeline companies.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Temporary certificates-pipeline companies. 2.57 Section 2.57 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES GENERAL POLICY AND INTERPRETATIONS Statements of General...
18 CFR 284.265 - Cost recovery by interstate pipeline.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 1978 AND RELATED AUTHORITIES Emergency Natural Gas Sale, Transportation, and Exchange Transactions... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Cost recovery by interstate pipeline. 284.265 Section 284.265 Conservation of Power and Water Resources FEDERAL ENERGY...
18 CFR 284.267 - Intrastate pipeline emergency transportation rates.
Code of Federal Regulations, 2010 CFR
2010-04-01
... POLICY ACT OF 1978 AND RELATED AUTHORITIES Emergency Natural Gas Sale, Transportation, and Exchange... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Intrastate pipeline emergency transportation rates. 284.267 Section 284.267 Conservation of Power and Water Resources FEDERAL...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flynn, J.
1995-02-01
Decisions concerning the route for the world`s deepest pipeline call for some of the most challenging commercial oceanographic and engineering surveys ever undertaken. Oman Oil Co.`s 1, 170-kilometer pipeline will carry 2 billion cubic feet of gas daily across the Arabian Sea from Oman to the northern coast of India at the Gulf of Kutch. Not only will the project be in water depths four times greater than any previous pipeline, but it will cross some of the world`s most rugged seabed terrain, traversing ridges and plunging into deep canyons. Project costs are likely to approach $5 billion.
NASA Astrophysics Data System (ADS)
Miao, Jian; Wang, Qiang
2016-09-01
Multipurpose pipeline is often seriously corroded during its service life, and the phenomenon is more prominent once the transportation medium is changed. Electrochemical polarization curves and impedance spectroscopy of the API 5L Gr. X60 steel pipeline's corrosion process in sedimentary water with different ion types and their concentrations have been studied in this work. The results showed that the corrosion rates were found to be 0.00418 and 0.00232 mm/a for pure water and crude oil, respectively. However, for the mixtures of water and crude oil (with water content increased from 0.2 vol% to 10 vol%), the corrosion rate increased consistently and reached a maximum value of 0.15557 mm/a for 10 vol% water in crude oil. The effect of the concentration of various ions, namely, chloride, bicarbonate and sulfate in (oil/water) mixtures on the corrosion rate was characterized by weight-loss method. The results showed that with increasing the ions' concentrations, the corresponding exchange current density increased significantly. The results were further supported by the observations of corrosion morphology using scanning electron microscopy and are helpful in devising guidelines which would help in reducing corrosion in multipurpose transport pipelines involving a change of transported medium during their service life.
DISPERSIBILITY OF CRUDE OIL IN FRESH WATER
The effects of surfactant composition on the ability of chemical dispersants to disperse crude oil in fresh water were investigated. The objective of this research was to determine whether effective fresh water dispersants can be designed in case this technology is ever consider...
18 CFR 284.12 - Standards for pipeline business operations and communications.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Standards for pipeline business operations and communications. 284.12 Section 284.12 Conservation of Power and Water Resources..., private network connections using internet tools, internet directory services, and internet communication...
18 CFR 2.57 - Temporary certificates-pipeline companies.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Temporary certificates-pipeline companies. 2.57 Section 2.57 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY.... The Federal Energy Regulatory Commission will exercise the emergency powers set forth in the second...
18 CFR 284.266 - Rates and charges for interstate pipelines.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 1978 AND RELATED AUTHORITIES Emergency Natural Gas Sale, Transportation, and Exchange Transactions... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Rates and charges for interstate pipelines. 284.266 Section 284.266 Conservation of Power and Water Resources FEDERAL ENERGY...
Double diffusion in the frontal zones of the Yellow and East China Seas in winter
NASA Astrophysics Data System (ADS)
Oh, K.; Lee, S.
2017-12-01
Where the cold, fresh water of the Yellow Sea (YS) and the warm, salty water of the East China Sea (ECS) meet, northern and southern fronts are formed in the southeastern YS and the northwestern ECS, respectively. Strong thermohaline fronts are formed on the northern front, and a strong thermocline and a temperature reversal phenomenon are represented in this front. To understand the water structure of this thermohaline zone, we examined double diffusion in the frontal zones in February 2003 using hydrographic data. In the northern front, the warm, salty Cheju Warm Current Water (CWCW) moved northwards along the bottom layer and the cold, fresh Yellow Sea Cold Water (YSCW) flowed southward in the upper layer. As a result, strong thermohaline fronts forms in the area where the two water masses met, and the slope was developed downward across the front. In this area, a strong thermocline and temperature reversal structures were present. The cold, fresh Korean Coastal Water (KCW) was also found in the upper layer near the thermocline, and has a low-temperature, low-salinity more than surrounding water. When cold, fresh water is located over warm, salty water, heat diffuses through the interface between the two water masses, and then the diffusive-convection can be expected to occur. On the other hand, when warm, salty water overlays cold, fresh water, heat in the upper layer is preferentially transferred downward, and the salt-fingering occurs. The diffusive-convection occurs predominantly in the northern thermohaline front, where the cold, fresh YSCW is situated above the warm, salty CWCW and has the effect of strengthening stratification, so that the water column maintains a physically stable structure. In addition, this phenomenon seems to play a role in maintaining the reversal structure. The salt-fingering occurs in upper layers of the northern front where the cold, fresh YSCW is located over the most cold, fresh KCW. Near the northern thermo-halocline zone, the salt-fingering occurs simultaneously with the diffusive-convection, because three water masses, YSCW, KCW and CWCW, interact in that area. Therefore, it can be seen that the water structure of the northern frontal zone in winter is influenced mainly by the cold, fresh YSCW, the most cold, fresh KCW, and the warm, salty CWCW.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shem, L.M.; Zimmerman, R.E.; Alsum, S.K.
1994-12-01
The goal of the Gas Research Institute Wetland Corridors Program is to document impacts of existing pipelines on the wetlands they traverse. To accomplish this goal, 12 existing wetland crossings were surveyed. These sites varied in elapsed time since pipeline construction, wetland type, pipeline installation techniques, and right-of-way (ROW) management practices. This report presents results of a survey conducted over the period of August 5--7, 1991, at the Little Timber Creek crossing in Gloucester County, New Jersey, where three pipelines, constructed in 1950, 1960, and 1990, cross the creek and associated wetlands. The old side of the ROW, created bymore » the installation of the 1960 pipeline, was designed to contain a raised peat bed over the 1950 pipeline and an open-water ditch over the 1960 pipeline. The new portion of the ROW, created by installation of the 1990 pipeline, has an open-water ditch over the pipeline (resulting from settling of the backfill) and a raised peat bed (resulting from rebound of compacted peat). Both the old and new ROWs contain dense stands of herbs; the vegetation on the old ROW was more similar to that in the adjacent natural area than was vegetation in the new ROW. The ROW increased species and habitat diversity in the wetlands. It may contribute to the spread of purple loosestrife and affect species sensitive to habitat fragmentation.« less
18 CFR 284.142 - Sales by intrastate pipelines.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Sales by intrastate... AUTHORITIES CERTAIN SALES AND TRANSPORTATION OF NATURAL GAS UNDER THE NATURAL GAS POLICY ACT OF 1978 AND RELATED AUTHORITIES Certain Sales by Intrastate Pipelines § 284.142 Sales by intrastate pipelines. Any...
18 CFR 284.142 - Sales by intrastate pipelines.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Sales by intrastate... AUTHORITIES CERTAIN SALES AND TRANSPORTATION OF NATURAL GAS UNDER THE NATURAL GAS POLICY ACT OF 1978 AND RELATED AUTHORITIES Certain Sales by Intrastate Pipelines § 284.142 Sales by intrastate pipelines. Any...
Detection of leaks in buried rural water pipelines using thermal infrared images
Eidenshink, Jeffery C.
1985-01-01
Leakage is a major problem in many pipelines. Minor leaks called 'seeper leaks', which generally range from 2 to 10 m3 per day, are common and are difficult to detect using conventional ground surveys. The objective of this research was to determine whether airborne thermal-infrared remote sensing could be used in detecting leaks and monitoring rural water pipelines. This study indicates that such leaks can be detected using low-altitude 8.7- to 11.5. micrometer wavelength, thermal infrared images collected under proper conditions.
NASA Astrophysics Data System (ADS)
Ding, Wenhua; Li, Shaopo; Li, Jiading; Li, Qun; Chen, Tieqiang; Zhang, Hai
In recent years, there has been development of several significant pipeline projects for the transmission of oil and gas from deep water environments. The production of gas transmission pipelines for application demands heavy wall, high strength, good lower temperature toughness and good weldability. To overcome the difficulty of producing consistent mechanical property in heavy wall pipe Shougang Steel Research in cooperation with the Shougang Steel Qinhuangdao China (Shouqin) 4.3m heavy wide plate mill research was conducted.
Timescales of AMOC decline in response to fresh water forcing
NASA Astrophysics Data System (ADS)
Jackson, Laura C.; Wood, Richard A.
2017-12-01
The Atlantic meridional overturning circulation (AMOC) is predicted to weaken over the coming century due to warming from greenhouse gases and increased input of fresh water into the North Atlantic, however there is considerable uncertainty as to the amount and rate of AMOC weakening. Understanding what controls the rate and timescale of AMOC weakening may help to reduce this uncertainty and hence reduce the uncertainty surrounding associated impacts. As a first step towards this we consider the timescales associated with weakening in response to idealized freshening scenarios. Here we explore timescales of AMOC weakening in response to a freshening of the North Atlantic in a suite of experiments with an eddy-permitting global climate model (GCM). When the rate of fresh water added to the North Atlantic is small (0.1 Sv; 1 Sv =1× 10^6 m^3 /s), the timescale of AMOC weakening depends mainly on the rate of fresh water input itself and can be longer than a century. When the rate of fresh water added is large (≥ 0.3 Sv) however, the timescale is a few decades and is insensitive to the actual rate of fresh water input. This insensitivity is because with a greater rate of fresh water input the advective feedbacks become more important at exporting fresh anomalies, so the rate of freshening is similar. We find advective feedbacks from: an export of fresh anomalies by the mean flow; less volume import through the Bering Strait; a weakening AMOC transporting less subtropical water northwards; and anomalous subtropical circulations which amplify export of the fresh anomalies. This latter circulation change is driven itself by the presence of fresh anomalies exported from the subpolar gyre through geostrophy. This feedback has not been identified in previous model studies and when the rate of freshening is strong it is found to dominate the total export of fresh anomalies, and hence the timescale of AMOC decline. Although results may be model dependent, qualitatively similar mechanisms are also found in a single experiment with a different GCM.
18 CFR 284.14 - Posting requirements of major non-interstate pipelines.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Posting requirements of major non-interstate pipelines. 284.14 Section 284.14 Conservation of Power and Water Resources FEDERAL... to or greater than 15,000 MMBtu (million British thermal units)/day; or (ii) If a physically metered...
18 CFR 284.14 - Posting requirements of major non-interstate pipelines.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Posting requirements of major non-interstate pipelines. 284.14 Section 284.14 Conservation of Power and Water Resources FEDERAL... to or greater than 15,000 MMBtu (million British thermal units)/day; or (ii) If a physically metered...
18 CFR 284.14 - Posting requirements of major non-interstate pipelines.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Posting requirements of major non-interstate pipelines. 284.14 Section 284.14 Conservation of Power and Water Resources FEDERAL... to or greater than 15,000 MMBtu (million British thermal units)/day; or (ii) If a physically metered...
18 CFR 284.14 - Posting requirements of major non-interstate pipelines.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Posting requirements of major non-interstate pipelines. 284.14 Section 284.14 Conservation of Power and Water Resources FEDERAL... to or greater than 15,000 MMBtu (million British thermal units)/day; or (ii) If a physically metered...
18 CFR 284.14 - Posting requirements of major non-interstate pipelines.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Posting requirements of major non-interstate pipelines. 284.14 Section 284.14 Conservation of Power and Water Resources FEDERAL... to or greater than 15,000 MMBtu (million British thermal units)/day; or (ii) If a physically metered...
18 CFR 284.12 - Standards for pipeline business operations and communications.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Standards for pipeline business operations and communications. 284.12 Section 284.12 Conservation of Power and Water Resources... access requirement; (B) Users must be able to search an entire document online for selected words, and...
Component-based control of oil-gas-water mixture composition in pipelines
NASA Astrophysics Data System (ADS)
Voytyuk, I. N.
2018-03-01
The article theoretically proves the method for measuring the changes in content of oil, gas and water in pipelines; also the measurement system design for implementation thereof is discussed. An assessment is presented in connection with random and systemic errors for the future system, and recommendations for optimization thereof are presented.
18 CFR 38.2 - Communication and information sharing among public utilities and pipelines.
Code of Federal Regulations, 2014 CFR
2014-04-01
... STANDARDS FOR PUBLIC UTILITY BUSINESS OPERATIONS AND COMMUNICATIONS § 38.2 Communication and information... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Communication and information sharing among public utilities and pipelines. 38.2 Section 38.2 Conservation of Power and Water...
49 CFR 192.727 - Abandonment or deactivation of facilities.
Code of Federal Regulations, 2013 CFR
2013-10-01
... with water or inert materials; and sealed at the ends. However, the pipeline need not be purged when... supplies of gas; purged of gas; in the case of offshore pipelines, filled with water or inert materials...-317-3073. A digital data format is preferred, but hard copy submissions are acceptable if they comply...
49 CFR 192.727 - Abandonment or deactivation of facilities.
Code of Federal Regulations, 2014 CFR
2014-10-01
... with water or inert materials; and sealed at the ends. However, the pipeline need not be purged when... supplies of gas; purged of gas; in the case of offshore pipelines, filled with water or inert materials...-317-3073. A digital data format is preferred, but hard copy submissions are acceptable if they comply...
49 CFR 192.727 - Abandonment or deactivation of facilities.
Code of Federal Regulations, 2012 CFR
2012-10-01
... with water or inert materials; and sealed at the ends. However, the pipeline need not be purged when... supplies of gas; purged of gas; in the case of offshore pipelines, filled with water or inert materials...-317-3073. A digital data format is preferred, but hard copy submissions are acceptable if they comply...
18 CFR 284.269 - Intrastate pipeline and local distribution company emergency sales rates.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Intrastate pipeline and... Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY OTHER REGULATIONS UNDER THE NATURAL GAS POLICY ACT OF 1978 AND RELATED AUTHORITIES CERTAIN SALES AND TRANSPORTATION OF NATURAL GAS...
Oman-India pipeline route survey
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mullee, J.E.
1995-12-01
Paper describes the geological setting in the Arabian Sea for a proposed 28-inch gas pipeline from Oman to India reaching 3,500-m water depths. Covers planning, execution, quality control and results of geophysical, geotechnical and oceanographic surveys. Outlines theory and application of pipeline stress analysis on board survey vessel for feasibility assessment, and specifies equipment used.
Hydrocarbons pipeline transportation risk assessment
NASA Astrophysics Data System (ADS)
Zanin, A. V.; Milke, A. A.; Kvasov, I. N.
2018-04-01
The pipeline transportation applying risks assessment issue in the arctic conditions is addressed in the paper. Pipeline quality characteristics in the given environment has been assessed. To achieve the stated objective, the pipelines mathematical model was designed and visualized by using the software product SOLIDWORKS. When developing the mathematical model the obtained results made possible to define the pipeline optimal characteristics for designing on the Arctic sea bottom. In the course of conducting the research the pipe avalanche collapse risks were examined, internal longitudinal and circular loads acting on the pipeline were analyzed, as well as the water impact hydrodynamic force was taken into consideration. The conducted calculation can contribute to the pipeline transport further development under the harsh climate conditions of the Russian Federation Arctic shelf territory.
NASA Astrophysics Data System (ADS)
Long, D.; Wada, Y.; Zhao, J.; Hong, Y.; Liu, D.; You, L.
2017-12-01
As China's Capital, Beijing currently has a population of 22 million people with per capital water resources of less than 100 m3, one twentieth of the national average and one eightieth of the global. Groundwater withdrawals (2.3 billion m3/year) account for approximately two thirds of total water use (3.5 billion m3/year) in Beijing, resulting in significant groundwater depletion and associated environmental issues, such as land subsidence. Increases in human and ecological water demand would add further pressure on Beijing's groundwater resources. Unsustainable groundwater use threatens societal and economic development of Beijing and poses a large uncertainty in future water supply. To partly alleviate the water shortage issue in the more arid and industrialized North China, the Chinese government has launched the largest water diversion project in the world, i.e., the South to North Water Diversion Project (SNWD), which is a multi-decadal mega-infrastructure project, with the aim to transfer 44.8 billion m3 of fresh water annually from the Yangtze River in the more humid south through three canal and pipeline systems (east, central, and west routes). Its central route flows from the upper reaches of the Han River, a tributary of the Yangtze River to Beijing, Tianjin and other major cities in Hebei and Henan Provinces. Since Dec 2014 when the water transferred by the central route reached Beijing to Feb 2017, totally 2 billion m3 of water has been transferred. This has profoundly altered the structure of water supply in Beijing. This study quantifies how the SNWD project impacts groundwater storage of Beijing and projects how groundwater storage changes in the future under different climate and policy scenarios.
A Closed Loop System Using a Brine Reservoir to Replace Fresh Water as the Frac Fluid Source
A non-fresh water source, the Debolt formation, has been proposed and tested in the laboratory and field for application as a fracturing fluid in shale gas formations, with potential to replace much of the fresh water used in the Horn River Basin.
46 CFR 42.50-5 - International load line certificates.
Code of Federal Regulations, 2010 CFR
2010-10-01
...) __ (inches) (WNA) __ (inches) below (S). Allowance for fresh water for all freeboards __ (inches). (All... point of departure and the sea. 2. When a ship is in fresh water of unit density, the appropriate load line may be submerged by the amount of the fresh water allowance shown above. Where the density is...
Garza, Sergio
1983-01-01
Two-dimensional mathematical computer models were developed for aquifer simulation of: (1) Steady-state conditions in a fresh-water system and (2) transient conditions in a brine- fresh-water system where the density effects of the brine are considered. The main results 'of projecting the effects of the proposed Truscott Brine Lake on the fresh-water aquifer are: (1) Hydraulic head rises of 5 to 40 feet would be confined to areas near the proposed dam and along the lake shoreline, and (2) migration of salt water downstream from the dam generally would be limited to less than 1 mile and apparently would not reach equilibrium during the 100-year duration of the project. The modeling efforts did not include possible effects related to hydrodynamic dispersion in the brine- fresh-water system. Possible changes in the hydraulic conductivity of the aquifer, due to physical and chemical interactions in the brine and fresh-water environments, also were not considered.
19. PIPELINE INTERSECTION AT THE MOUTH OF WAIKOLU VALLEY ON ...
19. PIPELINE INTERSECTION AT THE MOUTH OF WAIKOLU VALLEY ON THE BEACH. VALVE AT RIGHT (WITH WRENCH NEARBY) OPENS TO FLUSH VALLEY SYSTEM OUT. VALVE AT LEFT CLOSES TO KEEP WATER FROM ENTERING SYSTEM ALONG THE PALI DURING REPAIRS. - Kalaupapa Water Supply System, Waikolu Valley to Kalaupapa Settlement, Island of Molokai, Kalaupapa, Kalawao County, HI
Code of Federal Regulations, 2012 CFR
2012-04-01
... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Calculation of taxes for property of pipeline companies constructed or acquired after January 1, 1970. 2.67 Section 2.67 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL...
18 CFR 2.104 - Mechanisms for passthrough of pipeline take-or-pay buyout and buydown costs.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Mechanisms for passthrough of pipeline take-or-pay buyout and buydown costs. 2.104 Section 2.104 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES GENERAL POLICY...
18 CFR 2.104 - Mechanisms for passthrough of pipeline take-or-pay buyout and buydown costs.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Mechanisms for passthrough of pipeline take-or-pay buyout and buydown costs. 2.104 Section 2.104 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES GENERAL POLICY...
Code of Federal Regulations, 2014 CFR
2014-04-01
... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Calculation of taxes for property of pipeline companies constructed or acquired after January 1, 1970. 2.67 Section 2.67 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL...
Code of Federal Regulations, 2010 CFR
2010-04-01
... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Calculation of taxes for property of pipeline companies constructed or acquired after January 1, 1970. 2.67 Section 2.67 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL...
18 CFR 2.104 - Mechanisms for passthrough of pipeline take-or-pay buyout and buydown costs.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Mechanisms for passthrough of pipeline take-or-pay buyout and buydown costs. 2.104 Section 2.104 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES GENERAL POLICY...
18 CFR 2.104 - Mechanisms for passthrough of pipeline take-or-pay buyout and buydown costs.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Mechanisms for passthrough of pipeline take-or-pay buyout and buydown costs. 2.104 Section 2.104 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES GENERAL POLICY...
Code of Federal Regulations, 2013 CFR
2013-04-01
... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Calculation of taxes for property of pipeline companies constructed or acquired after January 1, 1970. 2.67 Section 2.67 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL...
Groundwater flow cycling between a submarine spring and an inland fresh water spring
Davis, J. Hal; Verdi, Richard
2014-01-01
Spring Creek Springs and Wakulla Springs are large first magnitude springs that derive water from the Upper Floridan Aquifer. The submarine Spring Creek Springs are located in a marine estuary and Wakulla Springs are located 18 km inland. Wakulla Springs has had a consistent increase in flow from the 1930s to the present. This increase is probably due to the rising sea level, which puts additional pressure head on the submarine Spring Creek Springs, reducing its fresh water flow and increasing flows in Wakulla Springs. To improve understanding of the complex relations between these springs, flow and salinity data were collected from June 25, 2007 to June 30, 2010. The flow in Spring Creek Springs was most sensitive to rainfall and salt water intrusion, and the flow in Wakulla Springs was most sensitive to rainfall and the flow in Spring Creek Springs. Flows from the springs were found to be connected, and composed of three repeating phases in a karst spring flow cycle: Phase 1 occurred during low rainfall periods and was characterized by salt water backflow into the Spring Creek Springs caves. The higher density salt water blocked fresh water flow and resulted in a higher equivalent fresh water head in Spring Creek Springs than in Wakulla Springs. The blocked fresh water was diverted to Wakulla Springs, approximately doubling its flow. Phase 2 occurred when heavy rainfall resulted in temporarily high creek flows to nearby sinkholes that purged the salt water from the Spring Creek Springs caves. Phase 3 occurred after streams returned to base flow. The Spring Creek Springs caves retained a lower equivalent fresh water head than Wakulla Springs, causing them to flow large amounts of fresh water while Wakulla Springs flow was reduced by about half.
Jing, Liwen; Li, Zhao; Wang, Wenjie; Dubey, Amartansh; Lee, Pedro; Meniconi, Silvia; Brunone, Bruno; Murch, Ross D
2018-05-01
An approximate inverse scattering technique is proposed for reconstructing cross-sectional area variation along water pipelines to deduce the size and position of blockages. The technique allows the reconstructed blockage profile to be written explicitly in terms of the measured acoustic reflectivity. It is based upon the Born approximation and provides good accuracy, low computational complexity, and insight into the reconstruction process. Numerical simulations and experimental results are provided for long pipelines with mild and severe blockages of different lengths. Good agreement is found between the inverse result and the actual pipe condition for mild blockages.
Welding and NDT development in support of Oman-India gas pipeline
DOE Office of Scientific and Technical Information (OSTI.GOV)
Even, T.M.; Laing, B.; Hirsch, D.
1995-12-01
The Oman to India gas pipeline is designed for a maximum water depth of 3,500 m. For such a pipeline, resistance to hydrostatic collapse is a critical factor and dictates that very heavy wall pipe be used, preliminarily 24 inch ID x 1.625 inch wall. Because of the water depth, much of the installation will be by J-Lay which requires that the Joint be welded and inspected in a single station. This paper describes the results of welding and NDT test programs conducted to determine the minimum time to perform these operations in heavy wall pipe.
USDA-ARS?s Scientific Manuscript database
Chlorine (sodium hypochlorite) is commonly used by the fresh produce industry to sanitize wash water, fresh and fresh-cut fruits and vegetables. However, possible formation of harmful chlorine by-products is a concern. The objectives of this study were to compare chlorine and chlorine dioxide in t...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Pacific Ocean off Barbers Point, Island of Oahu, Hawaii: Offshore pipeline terminal anchorages. 110.236 Section 110.236 Navigation and... Grounds § 110.236 Pacific Ocean off Barbers Point, Island of Oahu, Hawaii: Offshore pipeline terminal...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Pacific Ocean off Barbers Point, Island of Oahu, Hawaii: Offshore pipeline terminal anchorages. 110.236 Section 110.236 Navigation and... Grounds § 110.236 Pacific Ocean off Barbers Point, Island of Oahu, Hawaii: Offshore pipeline terminal...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Pacific Ocean off Barbers Point, Island of Oahu, Hawaii: Offshore pipeline terminal anchorages. 110.236 Section 110.236 Navigation and... Grounds § 110.236 Pacific Ocean off Barbers Point, Island of Oahu, Hawaii: Offshore pipeline terminal...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-16
... the majority of the infield road and pipeline route. CPAI proposes placement of fill material on 73.1..., gas, and water produced from the reservoir would be carried via pipeline to CD-1 for processing. Sales... construct, operate, and maintain a drill site, access road, pipelines, and ancillary facilities to support...
18 CFR 357.4 - FERC Form No. 6-Q, Quarterly report of oil pipeline companies.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false FERC Form No. 6-Q... No. 6-Q, Quarterly report of oil pipeline companies. (a) Prescription. The quarterly financial report form of oil pipeline companies, designated as FERC Form No. 6-Q, is prescribed for the reporting...
18 CFR 357.4 - FERC Form No. 6-Q, Quarterly report of oil pipeline companies.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false FERC Form No. 6-Q... No. 6-Q, Quarterly report of oil pipeline companies. (a) Prescription. The quarterly financial report form of oil pipeline companies, designated as FERC Form No. 6-Q, is prescribed for the reporting...
18 CFR 357.4 - FERC Form No. 6-Q, Quarterly report of oil pipeline companies.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false FERC Form No. 6-Q... No. 6-Q, Quarterly report of oil pipeline companies. (a) Prescription. The quarterly financial report form of oil pipeline companies, designated as FERC Form No. 6-Q, is prescribed for the reporting...
18 CFR 357.4 - FERC Form No. 6-Q, Quarterly report of oil pipeline companies.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false FERC Form No. 6-Q... No. 6-Q, Quarterly report of oil pipeline companies. (a) Prescription. The quarterly financial report form of oil pipeline companies, designated as FERC Form No. 6-Q, is prescribed for the reporting...
18 CFR 357.4 - FERC Form No. 6-Q, Quarterly report of oil pipeline companies.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false FERC Form No. 6-Q... No. 6-Q, Quarterly report of oil pipeline companies. (a) Prescription. The quarterly financial report form of oil pipeline companies, designated as FERC Form No. 6-Q, is prescribed for the reporting...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rieber, M.; Soo, S.L.
1977-08-01
A coal slurry pipeline system requires that the coal go through a number of processing stages before it is used by the power plant. Once mined, the coal is delivered to a preparation plant where it is pulverized to sizes between 18 and 325 mesh and then suspended in about an equal weight of water. This 50-50 slurry mixture has a consistency approximating toothpaste. It is pushed through the pipeline via electric pumping stations 70 to 100 miles apart. Flow velocity through the line must be maintained within a narrow range. For example, if a 3.5 mph design is usedmore » at 5 mph, the system must be able to withstand double the horsepower, peak pressure, and wear. Minimum flowrate must be maintained to avoid particle settling and plugging. However, in general, once a pipeline system has been designed, because of economic considerations on the one hand and design limits on the other, flowrate is rather inflexible. Pipelines that have a slowly moving throughput and a water carrier may be subject to freezing in northern areas during periods of severe cold. One of the problems associated with slurry pipeline analyses is the lack of operating experience.« less
46 CFR 42.50-15 - Coastwise load line certificates for U.S.-flag vessels.
Code of Federal Regulations, 2010 CFR
2010-10-01
... center of ring. Winter __ (inches) (W) __ (inches) below (S). Allowance for fresh water for all... point of departure and the sea. 2. When a ship is in fresh water of unit density the appropriate load line may be submerged by the amount of the fresh water allowance shown above. Where the density is...
Park, Hyung Soo; Chatterjee, Indranil; Dong, Xiaoli; Wang, Sheng-Hung; Sensen, Christoph W.; Caffrey, Sean M.; Jack, Thomas R.; Boivin, Joe; Voordouw, Gerrit
2011-01-01
Pipelines transporting brackish subsurface water, used in the production of bitumen by steam-assisted gravity drainage, are subject to frequent corrosion failures despite the addition of the oxygen scavenger sodium bisulfite (SBS). Pyrosequencing of 16S rRNA genes was used to determine the microbial community composition for planktonic samples of transported water and for sessile samples of pipe-associated solids (PAS) scraped from pipeline cutouts representing corrosion failures. These were obtained from upstream (PAS-616P) and downstream (PAS-821TP and PAS-821LP, collected under rapid-flow and stagnant conditions, respectively) of the SBS injection point. Most transported water samples had a large fraction (1.8% to 97% of pyrosequencing reads) of Pseudomonas not found in sessile pipe samples. The sessile population of PAS-616P had methanogens (Methanobacteriaceae) as the main (56%) community component, whereas Deltaproteobacteria of the genera Desulfomicrobium and Desulfocapsa were not detected. In contrast, PAS-821TP and PAS-821LP had lower fractions (41% and 0.6%) of Methanobacteriaceae archaea but increased fractions of sulfate-reducing Desulfomicrobium (18% and 48%) and of bisulfite-disproportionating Desulfocapsa (35% and 22%) bacteria. Hence, SBS injection strongly changed the sessile microbial community populations. X-ray diffraction analysis of pipeline scale indicated that iron carbonate was present both upstream and downstream, whereas iron sulfide and sulfur were found only downstream of the SBS injection point, suggesting a contribution of the bisulfite-disproportionating and sulfate-reducing bacteria in the scale to iron corrosion. Incubation of iron coupons with pipeline waters indicated iron corrosion coupled to the formation of methane. Hence, both methanogenic and sulfidogenic microbial communities contributed to corrosion of pipelines transporting these brackish waters. PMID:21856836
NMR imaging of fluid exchange between macropores and matrix in eogenetic karst
Florea, L.J.; Cunningham, K.J.; Altobelli, S.
2009-01-01
Sequential time-step images acquired using nuclear magnetic resonance (NMR) show the displacement of deuterated water (D2O) by fresh water within two limestone samples characterized by a porous and permeable limestone matrix of peloids and ooids. These samples were selected because they have a macropore system representative of some parts of the eogenetic karst limestone of the Biscayne Aquifer in southeastern Florida. The macroporosity, created by the trace fossil Ophiomorpha, is principally well connected and of centimeter scale. These macropores occur in broadly continuous stratiform zones that create preferential flow layers within the hydrogeologic units of the Biscayne. This arrangement of porosity is important because in coastal areas, it could produce a preferential pathway for salt water intrusion. Two experiments were conducted in which samples saturated with D2O were placed in acrylic chambers filled with fresh water and examined with NMR. Results reveal a substantial flux of fresh water into the matrix porosity with a simultaneous loss of D 2O. Specifically, we measured rates upward of 0.001 mL/h/g of sample in static conditions, and perhaps as great as 0.07 mL/h/g of sample when fresh water continuously flows past a sample at velocities less than those found within stressed areas of the Biscayne. These experiments illustrate how fresh water and D2O, with different chemical properties, migrate within one type of matrix porosity found in the Biscayne. Furthermore, these experiments are a comparative exercise in the displacement of sea water by fresh water in the matrix of a coastal, karst aquifer since D2O has a greater density than fresh water. ?? 2008 National Ground Water Association.
Concentrations of boron, molybdenum, and selenium in chinook salmon
Hamilton, Steven J.; Wiedmeyer, Raymond H.
1990-01-01
The concentrations of boron, molybdenum, and selenium in young chinook salmon Oncorhynchus tshawytscha were determined in three partial life cycle chronic toxicity studies. In each study, fish were exposed to a mixture of boron, molybdenum, selenate, and selenite in the proportions found in subsurface agricultural drainage water in the basin of the San Joaquin Valley, California. Tests were conducted in well water and in site-specific fresh and brackish waters. No boron or molybdenum was detected in fish exposed to concentrations as high as 6,046 μg boron/L and 193 μg molybdenum/L for 90 d in well water or fresh water; however, whole-body concentrations of selenium increased with increasing exposure concentrations in well water and fresh water, but not in brackish water. Concentrations of selenium in chinook salmon were strongly correlated with reduced survival and growth of fish in well water and with reduced survival in a 15-d seawater challenge test of fish from fresh water. Concentrations of selenium in fish seemed to reach a steady state after 60 d of exposure in well water or fresh water. Fish in brackish water had only background concentrations of selenium after 60 d of exposure, and no effects on survival and growth in brackish water or on survival in a 10-d seawater challenge test were exhibited. This lack of effect in brackish water was attributed to initiation of the study with advanced fry, which were apparently better able to metabolize the trace element mixture than were the younger fish used in studies with well water and fresh water. In all three experimental waters, concentration factors (whole-body concentration/waterborne concentration) for selenium decreased with increasing exposure concentrations, suggesting decreased uptake or increased excretion, or both, of selenium at the higher concentrations.
Cooper, Hilton Hammond
1964-01-01
Investigations in the coastal part of the Biscayne aquifer, a highly productive aquifer of limestone and sand in the Miami area, Florida, show that the salt-water front is dynamically stable as much as 8 miles seaward of the position computed according to the Ghyben-Herzberg principle. This discrepancy results, at least in part, from the fact that the salt water in the Biscayne aquifer is not static, as explanations of the dynamic balance commonly assume. Cross sections showing lines of equal fresh-water potential indicate that during periods of heavy recharge, the fresh-water head is high enough to cause the fresh water, the salt water, and the zone of diffusion between them to move seaward. When the fresh-water head is low, salt water in the lower part of the aquifer intrudes inland, but some of the diluted sea water in the zone of diffusion continues to flow seaward. Thus, salt water circulates inland from the floor of the sea through the lower part of the aquifer becoming progressively diluted with fresh water to a line along which there is no horizontal component of flow, after which it moves upward and returns to the sea. This cyclic flow is demonstrated by a flow net which is constructed by the use of horizontal gradients determined from the low-head equipotential diagram. The flow net shows that about seven-eights of the total discharge at the shoreline originates as fresh water in inland parts of the aquifer. The remaining one-eighth represents a return of sea water entering the aquifer through the floor of the sea.
Detail of new rain shed (Building No. 241). Note pipeline ...
Detail of new rain shed (Building No. 241). Note pipeline connection from collection trough. - Hawaii Volcanoes National Park Water Collection System, Hawaii Volcanoes National Park, Volcano, Hawaii County, HI
Phylogenetic analysis of a biofilm bacterial population in a water pipeline in the Gulf of Mexico.
López, Miguel A; Zavala-Díaz de la Serna, F Javier; Jan-Roblero, Janet; Romero, Juan M; Hernández-Rodríguez, César
2006-10-01
The aim of this study was to assess the bacterial diversity associated with a corrosive biofilm in a steel pipeline from the Gulf of Mexico used to inject marine water into the oil reservoir. Several aerobic and heterotrophic bacteria were isolated and identified by 16S rRNA gene sequence analysis. Metagenomic DNA was also extracted to perform a denaturing gradient gel electrophoresis analysis of ribosomal genes and to construct a 16S rRNA gene metagenomic library. Denaturing gradient gel electrophoresis profiles and ribosomal libraries exhibited a limited bacterial diversity. Most of the species detected in the ribosomal library or isolated from the pipeline were assigned to Proteobacteria (Halomonas spp., Idiomarina spp., Marinobacter aquaeolei, Thalassospira sp., Silicibacter sp. and Chromohalobacter sp.) and Bacilli (Bacillus spp. and Exiguobacterium spp.). This is the first report that associates some of these bacteria with a corrosive biofilm. It is relevant that no sulfate-reducing bacteria were isolated or detected by a PCR-based method. The diversity and relative abundance of bacteria from water pipeline biofilms may contribute to an understanding of the complexity and mechanisms of metal corrosion during marine water injection in oil secondary recovery.
The effect of sea-water and fresh-water soaking on the quality of Eucheuma sp. syrup and pudding
NASA Astrophysics Data System (ADS)
Novianty, H.; Herandarudewi, S. M. C.
2018-04-01
Eucheuma alvarezii is one of marine commodity with great opportunities to be developed in Indonesia. This seaweed can be used as an additional material in cosmetic and pharmaceutical products or for syrup and pudding. Post-harvest technique conducted by the seaweed farmers will affects the quality of dried and processed products. The purpose of this study was to observe the effect of post harvest technique on the quality of dried seaweed and hedonic test (favorable test) of processed product (syrup and pudding). This study was conducted using descriptive method. The study compared dried, syrup, and puddings from two differents post-harvest technique, between salt and fresh-water draining products. The results showed that fresh-water draining technique obtained better quality results organoleptic test. The results showed that panelist prefered the fresh-water drained products of syrup and pudding. The hedonic scores were much higher for the fresh-water drained products in all three catagories of color, taste, and smell.
River Plumes in Sunglint, Sarawak, Borneo
NASA Technical Reports Server (NTRS)
1991-01-01
The sunglint pattern along the coast of Sarawak (3.0N, 111.5E) delineates the boundry of fresh water river plumes as they flow into the South China Sea. The fresh water lens (boundry between fresh and sea water) overides the saline and more dense sea water and oils, both natural and man made, collect along the convergence zones and dampen wave action. As a result, the smoother sea surface appears bright in the sunglint pattern.
Salt power - Is Neptune's ole salt a tiger in the tank
NASA Astrophysics Data System (ADS)
Wick, G. S.
1980-02-01
Methods of exploiting the 24 atm osmotic pressure difference between fresh and salt water to generate energy include reverse electrodialysis, wherein 80 millivolts of electricity cross each ion-selective membrane placed between solutions of fresh and salt water. Pressure-retarded osmosis, using pumps and pressure chambers, relies on semipermeable membranes that allow fresh water to flow into saline, with power generated by the permeated water being released through a turbine. In reverse vapor compression, water vapor rapidly transfers from fresh water to salt water in an evacuated chamber (due to the vapor pressure difference between them), and power can be extracted using 24 m diameter turbine blades. Environmental concerns include protecting estuaries from stress, managing sediments, and protecting marine animals, while filtration would be needed to keep the membranes free from corrosion, biological fouling, or silting.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Nationwide Proceeding Computation of Federal Income Tax Allowance Independent Producers, Pipeline Affiliates and Pipeline Producers... Total computed revenue 9,465,231,966 8,985,807,669 2,336,439,376 16(gross income) 17 18 revenue...
Code of Federal Regulations, 2014 CFR
2014-04-01
... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Nationwide Proceeding Computation of Federal Income Tax Allowance Independent Producers, Pipeline Affiliates and Pipeline Producers... Total computed revenue 9,465,231,966 8,985,807,669 2,336,439,376 16(gross income) 17 18 revenue...
Code of Federal Regulations, 2013 CFR
2013-04-01
... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Nationwide Proceeding Computation of Federal Income Tax Allowance Independent Producers, Pipeline Affiliates and Pipeline Producers... Total computed revenue 9,465,231,966 8,985,807,669 2,336,439,376 16(gross income) 17 18 revenue...
Determining water content of fresh concrete by microwave reflection or transmission measurement.
DOT National Transportation Integrated Search
1987-01-01
In search of a rapid and accurate method for determining the water content of fresh concrete mixes, the microwave reflection and transmission properties of fresh concrete mixes were studied to determine the extent of correlation between each of these...
Kauppinen, Ari; Ikonen, Jenni; Pursiainen, Anna; Pitkänen, Tarja; Miettinen, Ilkka T
2012-09-01
A contaminated drinking water distribution network can be responsible for major outbreaks of infections. In this study, two chemical decontaminants, peracetic acid (PAA) and chlorine, were used to test how a laboratory-scale pipeline system can be cleaned after simultaneous contamination with human adenovirus 40 (AdV40) and Escherichia coli. In addition, the effect of the decontaminants on biofilms was followed as heterotrophic plate counts (HPC) and total cell counts (TCC). Real-time quantitative polymerase chain reaction (qPCR) was used to determine AdV40 and plate counting was used to enumerate E. coli. PAA and chlorine proved to be effective decontaminants since they decreased the levels of AdV40 and E. coli to below method detection limits in both water and biofilms. However, without decontamination, AdV40 remained present in the pipelines for up to 4 days. In contrast, the concentration of cultivable E. coli decreased rapidly in the control pipelines, implying that E. coli may be an inadequate indicator for the presence of viral pathogens. Biofilms responded to the decontaminants by decreased HPCs while TCC remained stable. This indicates that the mechanism of pipeline decontamination by chlorine and PAA is inactivation rather than physical removal of microbes.
Smith, Barry S.
2003-01-01
Population and tourism continues to grow in Virginia Beach, Virginia, but the supply of freshwater is limited. A pipeline from Lake Gaston supplies water for northern Virginia Beach, but ground water is widely used to water lawns in the north, and most southern areas of the city rely solely on ground water. Water from depths greater than 60 meters generally is too saline to drink. Concentrations of chloride, iron, and manganese exceed drinking-water standards in some areas. The U.S. Geological Survey, in cooperation with the city of Virginia Beach, Department of Public Utilities, investigated the shallow aquifer system of the southern watersheds to determine the distribution of fresh ground water, its potential uses, and its susceptibility to contamination. Aquifers and confining units of the southern watersheds were delineated and chloride concentrations in the aquifers and confining units were contoured. A ground-water-flow and solute-transport model of the shallow aquifer system reached steady state with regard to measured chloride concentrations after 31,550 years of freshwater recharge. Model simulations indicate that if freshwater is found in permeable sediments of the Yorktown-Eastover aquifer, such a well field could supply freshwater, possibly for decades, but eventually the water would become more saline. The rate of saline-water intrusion toward the well field would depend on the rate of pumping, aquifer properties, and on the proximity of the well field to saline water sources. The steady-state, ground-water-flow model also was used to simulate drawdowns around two hypothetical well fields and drawdowns around two hypothetical open-pit mines. The chloride concentrations simulated in the model did not approximate the measured concentrations for some wells, indicating sites where local hydrogeologic units or unit properties do not conform to the simple hydrogeology of the model. The Columbia aquifer, the Yorktown confining unit, and the Yorktown-Eastover aquifer compose the hydrogeologic units of the shallow aquifer system of Virginia Beach. The Columbia and Yorktown-Eastover aquifers are poorly confined throughout most of the southern watersheds of Virginia Beach. The freshwater-to-saline-water distribution probably is in a dynamic equilibrium throughout most of the shallow aquifer system. Freshwater flows continually down and away from the center of the higher altitudes to mix with saline water from the tidal rivers, bays, salt marshes, and the Atlantic Ocean. Fresh ground water from the Columbia aquifer also leaks down through the Yorktown confining unit into the upper half of the Yorktown-Eastover aquifer and flows within the Yorktown-Eastover above saline water in the lower half of the aquifer. Ground-water recharge is minimal in much of the southern watersheds because the land surface generally is low and flat.
The visual and radiological inspection of a pipeline using a teleoperated pipe crawler
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fogle, R.F.; Kuelske, K.; Kellner, R.A.
1996-07-01
In the 1950s the Savannah River Site built an open, unlined retention basin for temporary storage of potentially radionuclide-contaminated cooling water form a chemical separations process and storm water drainage from a nearby waste management facility which stored large quantities of nuclear fission by-products in carbon steel tanks. An underground process pipeline lead to the basin. Once the closure of the basin in 1972, further assessment has been required. A visual and radiological inspection of the pipeline was necessary to aid in the decision about further remediation. This article describes the inspection using a teleoperated pipe crawler. 5 figs.
Geolocation Support for Water Supply and Sewerage Projects in Azerbaijan
NASA Astrophysics Data System (ADS)
Qocamanov, M. H.; Gurbanov, Ch. Z.
2016-10-01
Drinking water supply and sewerage system designing and reconstruction projects are being extensively conducted in Azerbaijan Republic. During implementation of such projects, collecting large amount of information about the area and detailed investigations are crucial. Joint use of the aerospace monitoring and GIS play an essential role for the studies of the impact of environmental factors, development of the analytical information systems and others, while achieving the reliable performance of the existing and designed major water supply pipelines, as well as construction and exploitation of the technical installations. With our participation the GIS has been created in "Azersu" OJSC that includes systematic database of the drinking water supply and sewerage system, and rain water networks to carry out necessary geo information analysis. GIScreated based on "Microstation" platform and aerospace data. Should be mentioned that, in the country, specifically in large cities (i.e. Baku, Ganja, Sumqait, etc.,) drinking water supply pipelines cross regions with different physico-geographical conditions, geo-morphological compositions and seismotectonics.Mains water supply lines in many accidents occur during the operation, it also creates problems with drinking water consumers. In some cases the damage is caused by large-scale accidents. Long-term experience gives reason to say that the elimination of the consequences of accidents is a major cost. Therefore, to avoid such events and to prevent their exploitation and geodetic monitoring system to improve the rules on key issues. Therefore, constant control of the plan-height positioning, geodetic measurements for the detailed examination of the dynamics, repetition of the geodetic measurements for certain time intervals, or in other words regular monitoring is very important. During geodetic monitoring using the GIS has special significance. Given that, collecting geodetic monitoring measurements of the main pipelines on the same coordinate system and processing these data on a single GIS system allows the implementation of overall assessment of plan-height state of major water supply pipeline network facilities and the study of the impact of water supply network on environment and alternatively, the impact of natural processes on major pipeline.
Origin and extent of fresh paleowaters on the Atlantic continental shelf, USA
Cohen, D.; Person, M.; Wang, P.; Gable, C.W.; Hutchinson, D.; Marksamer, A.; Dugan, Brandon; Kooi, H.; Groen, K.; Lizarralde, D.; Evans, R.L.; Day-Lewis, F. D.; Lane, J.W.
2010-01-01
While the existence of relatively fresh groundwater sequestered within permeable, porous sediments beneath the Atlantic continental shelf of North and South America has been known for some time, these waters have never been assessed as a potential resource. This fresh water was likely emplaced during Pleistocene sea-level low stands when the shelf was exposed to meteoric recharge and by elevated recharge in areas overrun by the Laurentide ice sheet at high latitudes. To test this hypothesis, we present results from a high-resolution paleohydrologic model of groundwater flow, heat and solute transport, ice sheet loading, and sea level fluctuations for the continental shelf from New Jersey to Maine over the last 2 million years. Our analysis suggests that the presence of fresh to brackish water within shallow Miocene sands more than 100 km offshore of New Jersey was facilitated by discharge of submarine springs along Baltimore and Hudson Canyons where these shallow aquifers crop out. Recharge rates four times modern levels were computed for portions of New England's continental shelf that were overrun by the Laurentide ice sheet during the last glacial maximum. We estimate the volume of emplaced Pleistocene continental shelf fresh water (less than 1 ppt) to be 1300 km3 in New England. We also present estimates of continental shelf fresh water resources for the U.S. Atlantic eastern seaboard (104 km3) and passive margins globally (3 ?? 105 km3). The simulation results support the hypothesis that offshore fresh water is a potentially valuable, albeit nonrenewable resource for coastal megacities faced with growing water shortages. ?? 2009 National Ground Water Association.
Season-long Changes in Infiltration Rates Associated with Irrigation Water Sodicity and pH
USDA-ARS?s Scientific Manuscript database
There is increasing need to substitute low quality waters, including saline sodic waters and treated municipal waste water for fresh water when irrigating land in arid and semi-arid regions of the world. In almost all instances low quality waters are more sodic than the fresh waters currently utili...
Detail of pipeline on trestle with redwood tank and old ...
Detail of pipeline on trestle with redwood tank and old rain shed (Building No. 43) on either side. - Hawaii Volcanoes National Park Water Collection System, Hawaii Volcanoes National Park, Volcano, Hawaii County, HI
Steel tanks T5 and T4 with overhead pipeline between. Redwood ...
Steel tanks T5 and T4 with overhead pipeline between. Redwood tanks seen in background - Hawaii Volcanoes National Park Water Collection System, Hawaii Volcanoes National Park, Volcano, Hawaii County, HI
46 CFR 42.13-30 - Lines to be used with the load line mark.
Code of Federal Regulations, 2013 CFR
2013-10-01
...) The following load lines shall be used: (1) The summer load line indicated by the upper edge of the... T. (5) The fresh water load line in summer indicated by the upper edge of a line marked F. The fresh water load line in summer is marked abaft the vertical line. The difference between the fresh water load...
46 CFR 42.13-30 - Lines to be used with the load line mark.
Code of Federal Regulations, 2014 CFR
2014-10-01
...) The following load lines shall be used: (1) The summer load line indicated by the upper edge of the... T. (5) The fresh water load line in summer indicated by the upper edge of a line marked F. The fresh water load line in summer is marked abaft the vertical line. The difference between the fresh water load...
Sorption of strontium-90 from fresh waters during sulfate modification of barium manganite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryzhen`kov, A.P.; Egorov, Yu.V.
1995-11-01
Recovery of strontium-90 with barium manganite from fresh waters (natural fresh waters of open basins) can be increased by adding agents that contain sulfate ions and thus modify the sorbent and chemically bind the sorbate. The treatment results in a heterogeneous anion-exchange transformation of barium manganite into barium sulfate-manganese dioxide and in simultaneous absorptive coprecipitation of strontium sulfate (microcomponent).
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Rourke, M.J.; Ballantyne, D.
The document focuses on earthquake damage to water and oil pipelines, water supply, and water treatment following the 22 April 1991 Costa Rica Earthquake. The moment magnitude 7.5 earthquake occurred approximately 40 km south-southwest of Limon, and resulted in a coseismic uplift of up to 1.5 meters along Costa Rica's east coast. The report also provides an overview of the engineering aspects of the event and recovery activities. Turbidity in the watershed which provides Limon's primary water supply increased to as high as 2.4 percent solids, making it extremely difficult to treat. In addition, the water treatment plant was damagedmore » by the earthquake. Cast iron, ductile iron and reinforced concrete cylinder pipe water transmission lines were damaged by both wave propagation and permanent ground deformation. Water distribution piping, also including PVC and galvanized iron, was similarly impacted. Documentation and evaluation of that damage is described, and compared with empirical estimates from previous earthquakes. Twin 150 mm (6 in), 100 km long, oil transmission lines suffered only a single failure from wrinkling. A description of the pipelines and the failure is provided.« less
Groundwater flow cycling between a submarine spring and an inland fresh water spring.
Davis, J Hal; Verdi, Richard
2014-01-01
Spring Creek Springs and Wakulla Springs are large first magnitude springs that derive water from the Upper Floridan Aquifer. The submarine Spring Creek Springs are located in a marine estuary and Wakulla Springs are located 18 km inland. Wakulla Springs has had a consistent increase in flow from the 1930s to the present. This increase is probably due to the rising sea level, which puts additional pressure head on the submarine Spring Creek Springs, reducing its fresh water flow and increasing flows in Wakulla Springs. To improve understanding of the complex relations between these springs, flow and salinity data were collected from June 25, 2007 to June 30, 2010. The flow in Spring Creek Springs was most sensitive to rainfall and salt water intrusion, and the flow in Wakulla Springs was most sensitive to rainfall and the flow in Spring Creek Springs. Flows from the springs were found to be connected, and composed of three repeating phases in a karst spring flow cycle: Phase 1 occurred during low rainfall periods and was characterized by salt water backflow into the Spring Creek Springs caves. The higher density salt water blocked fresh water flow and resulted in a higher equivalent fresh water head in Spring Creek Springs than in Wakulla Springs. The blocked fresh water was diverted to Wakulla Springs, approximately doubling its flow. Phase 2 occurred when heavy rainfall resulted in temporarily high creek flows to nearby sinkholes that purged the salt water from the Spring Creek Springs caves. Phase 3 occurred after streams returned to base flow. The Spring Creek Springs caves retained a lower equivalent fresh water head than Wakulla Springs, causing them to flow large amounts of fresh water while Wakulla Springs flow was reduced by about half. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.
Lehtola, Markku J; Miettinen, Ilkka T; Hirvonen, Arja; Vartiainen, Terttu; Martikainen, Pertti J
2007-12-01
The numbers of bacteria generally increase in distributed water. Often household pipelines or water fittings (e.g., taps) represent the most critical location for microbial growth in water distribution systems. According to the European Union drinking water directive, there should not be abnormal changes in the colony counts in water. We used a pilot distribution system to study the effects of water stagnation on drinking water microbial quality, concentration of copper and formation of biofilms with two commonly used pipeline materials in households; copper and plastic (polyethylene). Water stagnation for more than 4h significantly increased both the copper concentration and the number of bacteria in water. Heterotrophic plate counts were six times higher in PE pipes and ten times higher in copper pipes after 16 h of stagnation than after only 40 min stagnation. The increase in the heterotrophic plate counts was linear with time in both copper and plastic pipelines. In the distribution system, bacteria originated mainly from biofilms, because in laboratory tests with water, there was only minor growth of bacteria after 16 h stagnation. Our study indicates that water stagnation in the distribution system clearly affects microbial numbers and the concentration of copper in water, and should be considered when planning the sampling strategy for drinking water quality control in distribution systems.
Whiley, Harriet; Keegan, Alexandra; Fallowfield, Howard; Bentham, Richard
2014-01-01
Inhalation of potable water presents a potential route of exposure to opportunistic pathogens and hence warrants significant public health concern. This study used qPCR to detect opportunistic pathogens Legionella spp., L. pneumophila and MAC at multiple points along two potable water distribution pipelines. One used chlorine disinfection and the other chloramine disinfection. Samples were collected four times over the year to provide seasonal variation and the chlorine or chloramine residual was measured during collection. Legionella spp., L. pneumophila and MAC were detected in both distribution systems throughout the year and were all detected at a maximum concentration of 103 copies/mL in the chlorine disinfected system and 106, 103 and 104 copies/mL respectively in the chloramine disinfected system. The concentrations of these opportunistic pathogens were primarily controlled throughout the distribution network through the maintenance of disinfection residuals. At a dead-end and when the disinfection residual was not maintained significant (p < 0.05) increases in concentration were observed when compared to the concentration measured closest to the processing plant in the same pipeline and sampling period. Total coliforms were not present in any water sample collected. This study demonstrates the ability of Legionella spp., L. pneumophila and MAC to survive the potable water disinfection process and highlights the need for greater measures to control these organisms along the distribution pipeline and at point of use. PMID:25046636
Whiley, Harriet; Keegan, Alexandra; Fallowfield, Howard; Bentham, Richard
2014-07-18
Inhalation of potable water presents a potential route of exposure to opportunistic pathogens and hence warrants significant public health concern. This study used qPCR to detect opportunistic pathogens Legionella spp., L. pneumophila and MAC at multiple points along two potable water distribution pipelines. One used chlorine disinfection and the other chloramine disinfection. Samples were collected four times over the year to provide seasonal variation and the chlorine or chloramine residual was measured during collection. Legionella spp., L. pneumophila and MAC were detected in both distribution systems throughout the year and were all detected at a maximum concentration of 103 copies/mL in the chlorine disinfected system and 106, 103 and 104 copies/mL respectively in the chloramine disinfected system. The concentrations of these opportunistic pathogens were primarily controlled throughout the distribution network through the maintenance of disinfection residuals. At a dead-end and when the disinfection residual was not maintained significant (p < 0.05) increases in concentration were observed when compared to the concentration measured closest to the processing plant in the same pipeline and sampling period. Total coliforms were not present in any water sample collected. This study demonstrates the ability of Legionella spp., L. pneumophila and MAC to survive the potable water disinfection process and highlights the need for greater measures to control these organisms along the distribution pipeline and at point of use.
Food-Growing, Air- And Water-Cleaning Module
NASA Technical Reports Server (NTRS)
Sauer, R. L.; Scheld, H. W.; Mafnuson, J. W.
1988-01-01
Apparatus produces fresh vegetables and removes pollutants from air. Hydroponic apparatus performs dual function of growing fresh vegetables and purifying air and water. Leafy vegetables rooted in granular growth medium grow in light of fluorescent lamps. Air flowing over leaves supplies carbon dioxide and receives fresh oxygen from them. Adaptable to production of food and cleaning of air and water in closed environments as in underwater research stations and submarines.
Chesapeake Bay Low Freshwater Inflow Study. Biota Assessment. Phase I. Volume II.
1980-08-01
which can regulate in water of reduced salinity , but not fresh water, e holeuryhaline osmoregulators , which can regulate from fresh to full oceanic...salini- ties , and * oligohaline osmoregulators , which can regulate only in fresh water and very low salinities , and maintain blood hyperosmotic to the...areas, or oysters their upstream beds. Temperature: The synergistic effects of temperature and salinity have been described by Kinne (1963, 1964) and
Smith, Aisling M; Cave, Rachel R
2012-11-01
Coastal fresh water sources, which discharge to the sea are expected to be directly influenced by climate change (e.g. increased frequency of extreme weather events). Sea-level rise and changes in rainfall patterns, changes in demand for drinking water and contamination caused by population and land use change, will also have an impact. Coastal waters with submarine groundwater discharge are of particular interest as this fresh water source is very poorly quantified. Two adjacent bays which host shellfish aquaculture sites along the coast of Co. Galway in the west of Ireland have been studied to establish the influence of fresh water inputs on nutrients and dissolved organic carbon (DOC) in each bay. Neither bay has riverine input and both are underlain by the karst limestone of the Burren and are susceptible to submarine groundwater discharge. Water and suspended matter samples were collected half hourly over 13 h tidal cycles over several seasons. Water samples were analysed for nutrients and DOC, while suspended matter was analysed for organic/inorganic content. Temperature and salinity measurements were recorded during each tidal station by SBE 37 MicroCAT conductivity/temperature sensors. Long-term mooring data were used to track freshwater input for Kinvara and Aughinish Bays and compare it with rainfall data. Results show that Kinvara Bay is much more heavily influenced by fresh water input than Aughinish Bay, and this is a strong source of fixed nitrogen to Kinvara Bay. Only during flood events is there a significant input of inorganic nitrogen from fresh water to Aughinish Bay, such as in late November 2009. Fresh water input does not appear to be a significant source of dissolved inorganic phosphate (DIP) to either bay, but is a source of DOC to both bays. C:N ratios of DOC/DON show a clear distinction between marine and terrestrially derived dissolved organic material. Copyright © 2012. Published by Elsevier B.V.
Revelations of an overt water contamination.
Singh, Gurpreet; Kaushik, S K; Mukherji, S
2017-07-01
Contaminated water sources are major cause of water borne diseases of public health importance. Usually, contamination is suspected after an increase in patient load. Two health teams investigated the episode. First team conducted sanitary survey, and second team undertook water safety and morbidity survey. On-site testing was carried out from source till consumer end. Investigation was also undertaken to identify factors which masked the situation. Prevention and control measures included super chlorination, provision of alternate drinking water sources, awareness campaign, layout of new water pipeline bypassing place of contamination, repair of sewers, flushing and cleaning of water pipelines, and repeated water sampling and testing. Multiple sources of drinking water supply were detected. Water samples from consumer end showed 18 coliforms per 100 ml. Sewer cross connection with active leakage in water pipeline was found and this was confirmed by earth excavation. Water safety and morbidity survey found majority of households receiving contaminated water supply. This survey found no significant difference among households receiving contaminated water supply and those receiving clean water. Average proportion of household members with episode of loose motions, pain abdomen, vomiting, fever, and eye conditions was significantly more among households receiving contaminated water. The present study documents detailed methodology of investigation and control measures to be instituted on receipt of contaminated water samples. Effective surveillance mechanisms for drinking water supplies such as routine testing of water samples can identify water contamination at an early stage and prevent an impending outbreak.
NASA Astrophysics Data System (ADS)
Novianty, H.; Herandarudewi, S. M. C.
2018-04-01
Seaweed is a non-fishery marine commodity that has great opportunities to be developed in Indonesia. One of the seaweed with a high economic value is Eucheuma alvarezii. This seaweed can be used as an additional material in cosmetic and pharmaceutical products or directly used for syrup and pudding. Post-harvest technique conducted by the seaweed farmers will affects the quality of dried and processed products. The purpose of this study is to see the effect of post harvest technique on the quality of dried seaweed and hedonic test (favorable test) of processed product (syrup and pudding). This study was conducted using descriptive method. The study compared dried, syrup, and puddings from two differents post-harvest technique, between salt and fresh-water draining products. The results showed that fresh-water draining technique obtained better quality results organoleptic test. Supported by hedonic test, that showed more panelists were prefered the fresh-water drained products of syrup and pudding. The preference were much higher for the fresh-water drained products in all three catagories of color, taste, and smell.
Oman India Pipeline: An operational repair strategy based on a rational assessment of risk
DOE Office of Scientific and Technical Information (OSTI.GOV)
German, P.
1996-12-31
This paper describes the development of a repair strategy for the operational phase of the Oman India Pipeline based upon the probability and consequences of a pipeline failure. Risk analyses and cost benefit analyses performed provide guidance on the level of deepwater repair development effort appropriate for the Oman India Pipeline project and identifies critical areas toward which more intense development effort should be directed. The risk analysis results indicate that the likelihood of a failure of the Oman India Pipeline during its 40-year life is low. Furthermore, the probability of operational failure of the pipeline in deepwater regions ismore » extremely low, the major proportion of operational failure risk being associated with the shallow water regions.« less
Influence of Anchoring on Burial Depth of Submarine Pipelines
Zhuang, Yuan; Li, Yang; Su, Wei
2016-01-01
Since the beginning of the twenty-first century, there has been widespread construction of submarine oil-gas transmission pipelines due to an increase in offshore oil exploration. Vessel anchoring operations are causing more damage to submarine pipelines due to shipping transportation also increasing. Therefore, it is essential that the influence of anchoring on the required burial depth of submarine pipelines is determined. In this paper, mathematical models for ordinary anchoring and emergency anchoring have been established to derive an anchor impact energy equation for each condition. The required effective burial depth for submarine pipelines has then been calculated via an energy absorption equation for the protection layer covering the submarine pipelines. Finally, the results of the model calculation have been verified by accident case analysis, and the impact of the anchoring height, anchoring water depth and the anchor weight on the required burial depth of submarine pipelines has been further analyzed. PMID:27166952
NASA Astrophysics Data System (ADS)
Konakhina, I. A.; Khusnutdinova, E. M.; Khamidullina, G. R.; Khamidullina, A. F.
2016-06-01
This paper describes a mathematical model of flow-related hydrodynamic processes for rheologically complex high-viscosity bitumen oil and oil-water suspensions and presents methods to improve the design and performance of oil pipelines.
Redwood tanks with pipeline on trestle passing behind. Old rain ...
Redwood tanks with pipeline on trestle passing behind. Old rain shed (Building No. 43) can be seen at right behind the trestle. - Hawaii Volcanoes National Park Water Collection System, Hawaii Volcanoes National Park, Volcano, Hawaii County, HI
View of pipeline carried on a trestle from new rain ...
View of pipeline carried on a trestle from new rain shed (Building No. 241). Redwood tanks in background. Steel tanks behind trestle. - Hawaii Volcanoes National Park Water Collection System, Hawaii Volcanoes National Park, Volcano, Hawaii County, HI
Dynamic water behaviour due to one trapped air pocket in a laboratory pipeline apparatus
NASA Astrophysics Data System (ADS)
Bergant, A.; Karadžić, U.; Tijsseling, A.
2016-11-01
Trapped air pockets may cause severe operational problems in hydropower and water supply systems. A locally isolated air pocket creates distinct amplitude, shape and timing of pressure pulses. This paper investigates dynamic behaviour of a single trapped air pocket. The air pocket is incorporated as a boundary condition into the discrete gas cavity model (DGCM). DGCM allows small gas cavities to form at computational sections in the method of characteristics (MOC). The growth of the pocket and gas cavities is described by the water hammer compatibility equation(s), the continuity equation for the cavity volume, and the equation of state of an ideal gas. Isentropic behaviour is assumed for the trapped gas pocket and an isothermal bath for small gas cavities. Experimental investigations have been performed in a laboratory pipeline apparatus. The apparatus consists of an upstream end high-pressure tank, a horizontal steel pipeline (total length 55.37 m, inner diameter 18 mm), four valve units positioned along the pipeline including the end points, and a downstream end tank. A trapped air pocket is captured between two ball valves at the downstream end of the pipeline. The transient event is initiated by rapid opening of the upstream end valve; the downstream end valve stays closed during the event. Predicted and measured results for a few typical cases are compared and discussed.
Spinach biomass yield and physiological response to interactive salinity and water stress
USDA-ARS?s Scientific Manuscript database
Critical shortages of fresh water throughout arid regions means that growers must face the choice of applying insufficient fresh water, applying saline water, or consider the option of combined water and salt stress. The best approach to manage drought and salinity is evaluation of the impact of wat...
40 CFR 230.25 - Salinity gradients.
Code of Federal Regulations, 2010 CFR
2010-07-01
... gradients form where salt water from the ocean meets and mixes with fresh water from land. (b) Possible loss... those organisms that are adapted to freshwater environments. It may also affect municipal water supplies... fresh or salt water may change existing salinity gradients. For example, partial blocking of the...
Zlolniski, Christian
2011-01-01
Favored by neoliberal agrarian policies, the production of fresh crops for international markets has become a common strategy for economic development in Mexico and other Latin American countries. But as some scholars have argued, the global fresh produce industry in developing countries in which fresh crops are produced for consumer markets in affluent nations implies “virtual water flows,” the transfer of high volumes of water embedded in these crops across international borders. This article examines the local effects of the production of fresh produce in the San Quintín Valley in northwestern Mexico for markets in the United States. Although export agriculture has fostered economic growth and employment opportunities for indigenous farm laborers, it has also led to the overexploitation of underground finite water resources, and an alarming decline of the quantity and quality of water available for residents’ domestic use. I discuss how neoliberal water policies have further contributed to water inequalities along class and ethnic lines, the hardships settlers endure to secure access to water for their basic needs, and the political protests and social tensions water scarcity has triggered in the region. Although the production of fresh crops for international markets is promoted by organizations such as the World Bank and Inter-American Development Bank as a model for economic development, I argue that it often produces water insecurity for the poorest, threatening the UN goal of ensuring access to clean water as a universal human right.
Sekimoto, Takero; Iyota, Koki; Osumi, Yuki; Shiraki, Takashi; Harada, Tetsuo
2013-06-01
Adult specimens of three species of oceanic sea skater, Halobates sericeus Eschscholtz, Halobates micans Eschscholtz, and Halobates sp. were placed in one of four solutions of different salinity (sea water [35-36‰], sea water : fresh water = 2:1 [23-24‰], sea water : fresh water = 1:2 [11-13‰], and fresh water [0‰]) after collection from the temperate and subtropical Pacific Ocean, tropical Indian Ocean, and Tomini Gulf in Indonesia, and observed in 2-h intervals until they died. H. micans collected from the tropical Indian Ocean survived twice a long (80-100 h) on average as H. sericeus collected from the temperate and subtropical Pacific Ocean (35-45 h) under salinities of 12-36‰. Paralysis from freshwater treatment occurred within 2-9 h in all specimens of both species of H. sericeus from the Pacific Ocean and H. micans from the Indian Ocean, and all insects died within 2 hr of starting the paralysis. In fresh water, oceanic sea skaters of H. sp. collected from the inner water of Tomini Gulf survived for ≍24 h on average, significantly longer than those collected from the open ocean. Significantly longer length of survival was shown by the three species on one-thirds, two-thirds brackish, and 100‰ sea water than on fresh water. The long length of survival shown by oceanic sea skaters even in brackish water may be an adaptation to the occasional rain fall on the sea water film.
Uplifting behavior of shallow buried pipe in liquefiable soil by dynamic centrifuge test.
Huang, Bo; Liu, Jingwen; Lin, Peng; Ling, Daosheng
2014-01-01
Underground pipelines are widely applied in the so-called lifeline engineerings. It shows according to seismic surveys that the damage from soil liquefaction to underground pipelines was the most serious, whose failures were mainly in the form of pipeline uplifting. In the present study, dynamic centrifuge model tests were conducted to study the uplifting behaviors of shallow-buried pipeline subjected to seismic vibration in liquefied sites. The uplifting mechanism was discussed through the responses of the pore water pressure and earth pressure around the pipeline. Additionally, the analysis of force, which the pipeline was subjected to before and during vibration, was introduced and proved to be reasonable by the comparison of the measured and the calculated results. The uplifting behavior of pipe is the combination effects of multiple forces, and is highly dependent on the excess pore pressure.
NASA Astrophysics Data System (ADS)
Amran, T. S. T.; Ismail, M. P.; Ahmad, M. R.; Amin, M. S. M.; Ismail, M. A.; Sani, S.; Masenwat, N. A.; Basri, N. S. M.
2018-01-01
Water is the most treasure natural resources, however, a huge amount of water are lost during its distribution that leads to water leakage problem. The leaks meant the waste of money and created more economic loss to treat and fix the damaged pipe. Researchers and engineers have put tremendous attempts and effort, to solve the water leakage problem especially in water leakage of buried pipeline. An advanced technology of ground penetrating radar (GPR) has been established as one of the non-destructive testing (NDT) method to detect the underground water pipe leaking. This paper focuses on the ability of GPR in water utility field especially on detection of water leaks in the underground pipeline distribution. A series of laboratory experiments were carried out using 800-MHz antenna, where the performance of GPR on detecting underground pipeline and locating water leakage was investigated and validated. A prototype to recreate water-leaking system was constructed using a 4-inch PVC pipe. Different diameter of holes, i.e. ¼ inch, ½ inch, and ¾ inch, were drilled into the pipe to simulate the water leaking. The PVC pipe was buried at the depth of 60 cm into the test bed that was filled with dry sand. 15 litres of water was injected into the PVC pipe. The water leakage patterns in term of radargram data were gathered. The effectiveness of the GPR in locating the underground water leakage was ascertained, after the results were collected and verified.
Schroeder, Jenna N.
2013-08-31
This report is the third in a series of reports sponsored by the U.S. Department of Energy Geothermal Technologies Program in which a range of water-related issues surrounding geothermal power production are evaluated. The first report made an initial attempt at quantifying the life cycle fresh water requirements of geothermal power-generating systems and explored operational and environmental concerns related to the geochemical composition of geothermal fluids. The initial analysis of life cycle fresh water consumption of geothermal power-generating systems identified that operational water requirements consumed the vast majority of water across the life cycle. However, it relied upon limited operational water consumption data and did not account for belowground operational losses for enhanced geothermal systems (EGSs). A second report presented an initial assessment of fresh water demand for future growth in utility-scale geothermal power generation. The current analysis builds upon this work to improve life cycle fresh water consumption estimates and incorporates regional water availability into the resource assessment to improve the identification of areas where future growth in geothermal electricity generation may encounter water challenges.
Hydrogeologic setting and ground water flow beneath a section of Indian River Bay, Delaware
Krantz, David E.; Manheim, Frank T.; Bratton, John F.; Phelan, Daniel J.
2004-01-01
The small bays along the Atlantic coast of the Delmarva Peninsula (Delaware, Maryland, and Virginia) are a valuable natural resource, and an asset for commerce and recreation. These coastal bays also are vulnerable to eutrophication from the input of excess nutrients derived from agriculture and other human activities in the watersheds. Ground water discharge may be an appreciable source of fresh water and a transport pathway for nutrients entering the bays. This paper presents results from an investigation of the physical properties of the surficial aquifer and the processes associated with ground water flow beneath Indian River Bay, Delaware. A key aspect of the project was the deployment of a new technology, streaming horizontal resistivity, to map the subsurface distribution of fresh and saline ground water beneath the bay. The resistivity profiles showed complex patterns of ground water flow, modes of mixing, and submarine ground water discharge. Cores, gamma and electromagnetic-induction logs, and in situ ground water samples collected during a coring operation in Indian River Bay verified the interpretation of the resistivity profiles. The shore-parallel resistivity lines show subsurface zones of fresh ground water alternating with zones dominated by the flow of salt water from the estuary down into the aquifer. Advective flow produces plumes of fresh ground water 400 to 600 m wide and 20 m thick that may extend more than 1 km beneath the estuary. Zones of dispersive mixing between fresh and saline ground water develop on the upper, lower, and lateral boundaries of the the plume. the plumes generally underlie small incised valleys that can be traced landward to stream draining the upland. The incised valleys are filled with 1 to 2 m of silt and peat that act as a semiconfining layer to restrict the downward flow of salt water from the estuary. Active circulation of both the fresh and saline ground water masses beneath the bay is inferred from the geophysical results and supported by geochemical data.
E.M.I Effects of Cathodic Protection on Electromagnetic Flowmeters
Gundogdu, Serdar; Sahin, Ozge
2007-01-01
Electromagnetic flowmeters are used to measure the speed of water flow in water distribution systems. Corrosion problem in metal pipelines can be solved by cathodic protection methods. This paper presents a research on corruptive effects of the cathodic protection system on electromagnetic flowmeter depending on its measuring principle. Experimental measurements are realized on the water distribution pipelines of the Izmir Municipality, Department of Water and Drainage Administration (IZSU) in Turkey and measurement results are given. Experimental results proved that the values measured by the electromagnetic flowmeter (EMF) are affected by cathodic protection system current. Comments on the measurement results are made and precautions to be taken are proposed.
46 CFR 46.15-10 - Subdivision load lines.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 45 and a “diamond” shall be substituted for the “disk”. No “fresh water” line will be marked. [CGFR... located in line with the highest subdivision load line. (f) One fresh water line shall be marked. When a subdivision and a normal load line are combined, the normal fresh water line only shall be used unless the...
Bdir, Sami; Adwan, Ghaleb
2011-06-01
To detect the species of larval trematodes (cercariae) in Melanopsis praemorsa snails from 5 different fresh water bodies in Palestine. A total of 1 880 Melanopsis praemorsa snails were collected from different fresh water bodies in Palestine from October, 2008 to November, 2010. Cercariae in Melanopsis praemorsa snails were obtained by lighting and crushing methods. The behavior of cercariae was observed using a dissecting microscope. Three different species of larval trematodes were identified from Melanopsis praemorsa snails collected only from Al-Bathan fresh water body, while snails from other water bodies were not infected. These species were microcercous cercaria, xiphidiocercaria and brevifurcate lophocercous cercaria. These cercariae called Cercaria melanopsi palestinia I, Cercaria melanopsi palestinia II and Cercaria melanopsi palestinia III have not been described before from this snail in Palestine. The infection rate of Melanopsis praemorsa collected from Al-Bathan fresh water body was 5.7%, while the overall infection rate of snails collected from all fresh water bodies was 4.3%. Details are presented on the morphology and behavior of the cercariae as well as their development within the snail. These results have been recorded for the first time and these cercariae may be of medical and veterinary importance.
Holvoet, Kevin; Jacxsens, Liesbeth; Sampers, Imca; Uyttendaele, Mieke
2012-04-01
This study provided insight into the degree of microbial contamination in the processing chain of prepacked (bagged) lettuce in two Belgian fresh-cut produce processing companies. The pathogens Salmonella and Listeria monocytogenes were not detected. Total psychrotrophic aerobic bacterial counts (TPACs) in water samples, fresh produce, and environmental samples suggested that the TPAC is not a good indicator of overall quality and best manufacturing practices during production and processing. Because of the high TPACs in the harvested lettuce crops, the process water becomes quickly contaminated, and subsequent TPACs do not change much throughout the production process of a batch. The hygiene indicator Escherichia coli was used to assess the water management practices in these two companies in relation to food safety. Practices such as insufficient cleaning and disinfection of washing baths, irregular refilling of the produce wash baths with water of good microbial quality, and the use of high product/water ratios resulted in a rapid increase in E. coli in the processing water, with potential transfer to the end product (fresh-cut lettuce). The washing step in the production of fresh-cut lettuce was identified as a potential pathway for dispersion of microorganisms and introduction of E. coli to the end product via cross-contamination. An intervention step to reduce microbial contamination is needed, particularly when no sanitizers are used as is the case in some European Union countries. Thus, from a food safety point of view proper water management (and its validation) is a critical point in the fresh-cut produce processing industry.
A New Multifunctional Sensor for Measuring Oil/Water Two-phase State in Pipelines
NASA Astrophysics Data System (ADS)
Sun, Jinwei; Shida, Katsunori
2001-03-01
This paper presents a non-contact U form multi-functional sensor for the oil pipeline flow measurement. Totally four thin and narrow copper plates are twined on both sides of the sensor, from which two variables (capacitance, self inductance) are to be examined as the two functional outputs of the sensor. Thus, the liquid concentration (oil and water), temperature are finally evaluated. The flow velocity inside the pipeline could also be estimated by computing the cross correlation of the capacitance-pair. To restrain the effects of parasitic parameters and improve the dynamic response of the sensor, a proper shielding strategy is considered. A suitable algorithm for data reconstruction is also presented in the system design.
Guo, Shuanghuan; Huang, Runze; Chen, Haiqiang
2017-09-18
With the demand for fresh produce increases in recent decades, concerns for microbiological safety of fresh produce are also raised. To identify effective ultraviolet (UV) light treatment for fresh produce decontamination, we first determined the effect of three forms of UV treatment, dry UV (samples were treated by UV directly), wet UV (samples were dipped in water briefly and then exposed to UV), and water-assisted UV (samples were treated by UV while being immersed in agitated water) on inactivation of Salmonella inoculated on tomatoes and fresh-cut lettuce. In general, the water-assisted UV treatment was found to be the most effective for both produce items. Chlorine and hydrogen peroxide were then tested to determine whether they could be used to enhance the decontamination efficacy of water-assisted UV treatment and prevent transfer of Salmonella via wash water by completely eliminating it. Neither of them significantly enhanced water-assisted UV inactivation of Salmonella on tomatoes. Chlorine significantly improved the decontamination effectiveness of the water-assisted UV treatment for baby-cut carrots and lettuce, but not for spinach. In general, the single water-assisted UV treatment and the combined treatment of water-assisted UV and chlorine were similar or more effective than the chlorine washing treatment. In most of the cases, no Salmonella was detected in the wash water when the single water-assisted UV treatment was used to decontaminate tomatoes. In a few cases when Salmonella was detected in the wash water, the populations were very low,≤2CFU/mL, and the wash water contained an extremely high level of organic load and soil level. Therefore, the single water-assisted UV treatment could potentially be used as an environmentally friendly and non-chemical alternative to chlorine washing for tomatoes after validation in industrial scale. For lettuce, spinach and baby-cut carrots, the combined treatment of water-assisted UV treatment and chlorine was needed to maintain a pathogen free environment in the wash water so that cross contamination could be prevented during fresh produce washing. Copyright © 2017 Elsevier B.V. All rights reserved.
GIS characterization of spatially distributed lifeline damage
Toprak, Selcuk; O'Rourke, Thomas; Tutuncu, Ilker
1999-01-01
This paper describes the visualization of spatially distributed water pipeline damage following an earthquake using geographical information systems (GIS). Pipeline damage is expressed as a repair rate (RR). Repair rate contours are developed with GIS by dividing the study area into grid cells (n ?? n), determining the number of particular pipeline repairs in each grid cell, and dividing the number of repairs by the length of that pipeline in each cell area. The resulting contour plot is a two-dimensional visualization of point source damage. High damage zones are defined herein as areas with an RR value greater than the mean RR for the entire study area of interest. A hyperbolic relationship between visual display of high pipeline damage zones and grid size, n, was developed. The relationship is expressed in terms of two dimensionless parameters, threshold area coverage (TAC) and dimensionless grid size (DGS). The relationship is valid over a wide range of different map scales spanning approximately 1,200 km2 for the largest portion of the Los Angeles water distribution system to 1 km2 for the Marina in San Francisco. This relationship can aid GIS users to get sufficiently refined, but easily visualized, maps of damage patterns.
NASA Astrophysics Data System (ADS)
Senapati, Pradipta Kumar; Mishra, Barada Kanta
2017-06-01
The conventional lean phase copper tailings slurry disposal systems create pollution all around the disposal area through seepage and flooding of waste slurry water. In order to reduce water consumption and minimize pollution, the pipeline disposal of these waste slurries at high solids concentrations may be considered as a viable option. The paper presents the rheological and pipeline flow characteristics of copper tailings samples in the solids concentration range of 65-72 % by weight. The tailings slurry indicated non-Newtonian behaviour at these solids concentrations and the rheological data were best fitted by Bingham plastic model. The influence of solids concentration on yield stress and plastic viscosity for the copper tailings samples were discussed. Using a high concentration test loop, pipeline experiments were conducted in a 50 mm nominal bore (NB) pipe by varying the pipe flow velocity from 1.5 to 3.5 m/s. A non-Newtonian Bingham plastic pressure drop model predicted the experimental data reasonably well for the concentrated tailings slurry. The pressure drop model was used for higher size pipes and the operating conditions for pipeline disposal of concentrated copper tailings slurry in a 200 mm NB pipe with respect to specific power consumption were discussed.
The visual and radiological inspection of a pipeline using a teleoperated pipe crawler
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fogle, R.F.; Kuelske, K.; Kellner, R.
1995-01-01
In the 1950s, the Savannah River Site built an open, unlined retention basin to temporarily store potentially radionuclide contaminated cooling water from a chemical separations process and storm water drainage from a nearby waste management facility that stored large quantities of nuclear fission byproducts in carbon steel tanks. The retention basin was retired from service in 1972 when a new, lined basin was completed. In 1978, the old retention basin was excavated, backfilled with uncontaminated dirt, and covered with grass. At the same time, much of the underground process pipeline leading to the basin was abandoned. Since the closure ofmore » the retention basin, new environmental regulations require that the basin undergo further assessment to determine whether additional remediation is required. A visual and radiological inspection of the pipeline was necessary to aid in the remediation decision making process for the retention basin system. A teleoperated pipe crawler inspection system was developed to survey the abandoned sections of underground pipelines leading to the retired retention basin. This paper will describe the background to this project, the scope of the investigation, the equipment requirements, and the results of the pipeline inspection.« less
The inspection of a radiologically contaminated pipeline using a teleoperated pipe crawler
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fogle, R.F.; Kuelske, K.; Kellner, R.A.
1995-08-01
In the 1950s, the Savannah River Site built an open, unlined retention basin to temporarily store potentially radionuclide contaminated cooling water from a chemical separations process and storm water drainage from a nearby waste management facility that stored large quantities of nuclear fission byproducts in carbon steel tanks. The retention basin was retired from service in 1972 when a new, lined basin was completed. In 1978, the old retention basin was excavated, backfilled with uncontaminated dirt, and covered with grass. At the same time, much of the underground process pipeline leading to the basin was abandoned. Since the closure ofmore » the retention basin, new environmental regulations require that the basin undergo further assessment to determine whether additional remediation is required. A visual and radiological inspection of the pipeline was necessary to aid in the remediation decision making process for the retention basin system. A teleoperated pipe crawler inspection system was developed to survey the abandoned sections of underground pipelines leading to the retired retention basin. This paper will describe the background to this project, the scope of the investigation, the equipment requirements, and the results of the pipeline inspection.« less
Calcium and other ions in blood and skeleton of Nicaraguan fresh-water shark.
URIST, M R
1962-09-21
The bull shark, Carcharhinus leucas, employing archaic but effective means of regulating the physical-chemical composition of its body fluids, thrives in tropical fresh-water rivers and lakes. The ionic strength of the serum and the concentrations of total solutes, calcium, urea, and other ions are below the levels found in marine elasmobranchs but higher than the levels in teleosts. The patterns of the calcium deposits of the vertebrae are identical in marine and fresh-water subspecies.
Computer models of complex multiloop branched pipeline systems
NASA Astrophysics Data System (ADS)
Kudinov, I. V.; Kolesnikov, S. V.; Eremin, A. V.; Branfileva, A. N.
2013-11-01
This paper describes the principal theoretical concepts of the method used for constructing computer models of complex multiloop branched pipeline networks, and this method is based on the theory of graphs and two Kirchhoff's laws applied to electrical circuits. The models make it possible to calculate velocities, flow rates, and pressures of a fluid medium in any section of pipeline networks, when the latter are considered as single hydraulic systems. On the basis of multivariant calculations the reasons for existing problems can be identified, the least costly methods of their elimination can be proposed, and recommendations for planning the modernization of pipeline systems and construction of their new sections can be made. The results obtained can be applied to complex pipeline systems intended for various purposes (water pipelines, petroleum pipelines, etc.). The operability of the model has been verified on an example of designing a unified computer model of the heat network for centralized heat supply of the city of Samara.
18 CFR 343.5 - Required negotiations.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Required negotiations... PIPELINE PROCEEDINGS § 343.5 Required negotiations. The Commission or other decisional authority may require parties to enter into good faith negotiations to settle oil pipeline rate matters. The Commission...
18 CFR 343.5 - Required negotiations.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Required negotiations... PIPELINE PROCEEDINGS § 343.5 Required negotiations. The Commission or other decisional authority may require parties to enter into good faith negotiations to settle oil pipeline rate matters. The Commission...
18 CFR 343.5 - Required negotiations.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Required negotiations... PIPELINE PROCEEDINGS § 343.5 Required negotiations. The Commission or other decisional authority may require parties to enter into good faith negotiations to settle oil pipeline rate matters. The Commission...
18 CFR 343.5 - Required negotiations.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Required negotiations... PIPELINE PROCEEDINGS § 343.5 Required negotiations. The Commission or other decisional authority may require parties to enter into good faith negotiations to settle oil pipeline rate matters. The Commission...
18 CFR 343.5 - Required negotiations.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Required negotiations... PIPELINE PROCEEDINGS § 343.5 Required negotiations. The Commission or other decisional authority may require parties to enter into good faith negotiations to settle oil pipeline rate matters. The Commission...
DOT National Transportation Integrated Search
2009-12-03
While the mechanical properties of composite repairs for pipelines have been investigated extensively, the performance of the entire metal-composite system has not been addressed with regard to corrosion of the substrate, water intrusion at the compo...
33. PIPELINE CROSSING DRY GULCH AT 140', NEAR FORMER U.S. ...
33. PIPELINE CROSSING DRY GULCH AT 140', NEAR FORMER U.S. LEPROSY INVESTIGATIONS STATION SITE. PIPE CROSSING IS SUPPORTED BY CONCRETE PYLONS AT EACH END. - Kalaupapa Water Supply System, Waikolu Valley to Kalaupapa Settlement, Island of Molokai, Kalaupapa, Kalawao County, HI
26. VIEW WEST TOWARDS KALAWAO OF PIPELINE ALONG PALI FORMERLY ...
26. VIEW WEST TOWARDS KALAWAO OF PIPELINE ALONG PALI FORMERLY BURIED WITH BOULDERS, THIS DESIGN WAS VERY SUSCEPTIBLE TO DAMAGE FROM FALLING ROCKS AND WAVE ACTION. - Kalaupapa Water Supply System, Waikolu Valley to Kalaupapa Settlement, Island of Molokai, Kalaupapa, Kalawao County, HI
Uplifting Behavior of Shallow Buried Pipe in Liquefiable Soil by Dynamic Centrifuge Test
Liu, Jingwen; Ling, Daosheng
2014-01-01
Underground pipelines are widely applied in the so-called lifeline engineerings. It shows according to seismic surveys that the damage from soil liquefaction to underground pipelines was the most serious, whose failures were mainly in the form of pipeline uplifting. In the present study, dynamic centrifuge model tests were conducted to study the uplifting behaviors of shallow-buried pipeline subjected to seismic vibration in liquefied sites. The uplifting mechanism was discussed through the responses of the pore water pressure and earth pressure around the pipeline. Additionally, the analysis of force, which the pipeline was subjected to before and during vibration, was introduced and proved to be reasonable by the comparison of the measured and the calculated results. The uplifting behavior of pipe is the combination effects of multiple forces, and is highly dependent on the excess pore pressure. PMID:25121140
Using industry ROV videos to assess fish associations with subsea pipelines
NASA Astrophysics Data System (ADS)
McLean, D. L.; Partridge, J. C.; Bond, T.; Birt, M. J.; Bornt, K. R.; Langlois, T. J.
2017-06-01
Remote Operated Vehicles are routinely used to undertake inspection and maintenance activities of underwater pipelines in north-west Australia. In doing so, many terabytes of geo-referenced underwater video are collected at depths, and on a scale usually unobtainable for ecological research. We assessed fish diversity and abundance from existing ROV videos collected along 2-3 km sections of two pipelines in north-west Australia, one at 60-80 m water depth and the other at 120-130 m. A total of 5962 individual fish from 92 species and 42 families were observed. Both pipelines were characterised by a high abundance of commercially important fishes including: snappers (Lutjanidae) and groupers (Epinephelidae). The presence of thousands of unidentifiable larval fish, in addition to juveniles, sub-adults and adults suggests that the pipelines may be enhancing, rather than simply attracting, fish stocks. The prevalence and high complexity of sponges on the shallower pipeline and of deepwater corals on the deeper pipeline had a strong positive correlation with the fish abundance. These habitats likely offer a significant food source and refuge for fish, but also for invertebrates upon which fish feed. A greater diversity on the shallower pipeline, and a higher abundance of fishes on both pipelines, were associated with unsupported pipeline sections (spans) and many species appeared to be utilising pipeline spans as refuges. This study is a first look at the potential value of subsea pipelines for fishes on the north-west shelf. While the results suggest that these sections of pipeline appear to offer significant habitat that supports diverse and important commercially fished species, further work, including off-pipeline surveys on the natural seafloor, are required to determine conclusively the ecological value of pipelines and thereby inform discussions regarding the ecological implications of pipeline decommissioning.
Allison, J. B.; Cole, William H.
1934-01-01
1. Fundulus heteroclitus was found to be a reliable experimental animal for studies on chemical stimulation in either fresh or sea water. 2. The response of Fundulus to hydrochloric, acetic, propionic, butyric, valeric, and caproic acids was determined in fresh water, while the same acids plus sulfuric and nitric, as well as the sodium salts of the mineral acids, were tested in sea water. 3. Stimulation of Fundulus by hydrochloric acid in fresh water is correlated with the effective hydrogen ion concentration. Stimulation by the n-aliphatic acids in the same environment is correlated with two factors, the effective hydrogen ion concentration and the potential of the non-polar group in the molecule. However, as the number of CH2 groups increases the stimulating effect increases by smaller and smaller amounts, approaching a maximum value. 4. Stimulation of Fundulus by hydrochloric, sulfuric, and nitric acids in sea water is correlated with the forces of primary valence which in turn are correlated with the change in hydrogen ion concentration of the sea water. The n-aliphatic acids increase in stimulating efficiency in sea water as the length of the carbon chain increases, but a limiting value is not reached as soon as in fresh water. 5. Only a slight difference in stimulation by hydrochloric acid is found in sea water and in fresh water. However, there is a significant difference in stimulation by the fatty acids in fresh and in sea water, which is partly explained by the different buffering capacities of the two media. It is to be noted that in the same environment two different fish, Fundulus and Eupomotis, give different results, while the same fish (Fundulus) in two different environments responds similarly to mineral acids but differently to fatty acids. These results illustrate that stimulation is a function of the interaction between environment and receptors, and that each is important in determining the response. 6. Stimulation by sodium chloride, nitrate, and sulfate is correlated with equivalent concentrations of the salts added to sea water, or with the forces of primary valence. Although the threshold for stimulation by the salts is considerably higher than for the acids, the efficiency of stimulation by the salts is greater. PMID:19872815
NASA Astrophysics Data System (ADS)
Mugisidi, Dan; Heriyani, Okatrina
2018-02-01
Fresh water is basic need for life while the source is limited. Therefore, sea water is used as fresh water through desalination process. Sea water has different physical and chemical properties ranging from the surface to the seabed. The energy potential that can be obtained from the hydrostatic pressure also changes according to the depth. As part of the research of the utilization of sea water into fresh water, the aim of this study is to know the characteristics of sea water in the depth that can be utilized as source of fresh water. The sea water samples were taken at 11km from Ujung Kulon beach with depth of 0m, 20m, 40m, 60m, 80m, and 100m under the surface. The results showed that the physical properties at every depth were below the maximum allowable drinking water except for the amount of dissolved solids. Chemical characteristics at any depth above allowable level were fluoride, hardness (CaCo3), chloride, sodium, sulphate, and (KMnO4). In addition to the properties, pressure is one of the considerations in this study to determine the depth of sea water as sources for desalination. Pressure increased by 36.11% as the depth of the sea increased.
Material Excavated by a Fresh Impact and Identified as Water Ice
2009-09-24
The Compact Reconnaissance Imaging Spectrometer for Mars, an instrument on NASA Mars Reconnaissance Orbiter, obtained information confirming material excavated by a fresh impact and Identified as water ice.
Structural reliability assessment of the Oman India Pipeline
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al-Sharif, A.M.; Preston, R.
1996-12-31
Reliability techniques are increasingly finding application in design. The special design conditions for the deep water sections of the Oman India Pipeline dictate their use since the experience basis for application of standard deterministic techniques is inadequate. The paper discusses the reliability analysis as applied to the Oman India Pipeline, including selection of a collapse model, characterization of the variability in the parameters that affect pipe resistance to collapse, and implementation of first and second order reliability analyses to assess the probability of pipe failure. The reliability analysis results are used as the basis for establishing the pipe wall thicknessmore » requirements for the pipeline.« less
COSOLVENT EFFECTS ON PHENANTHRENE SORPTION-DESORPTION ON A FRESH-WATER SEDIMENT
This study evaluated the effects of the water-miscible cosolvent methanol on the sorption-desorption of phenanthrene by the natural organic matter (NOM) of a fresh-water sediment. A biphasic pattern was observed in the relationship between the log of the carbon-normalized sorpti...
FRESHEM - Fresh-saline groundwater distribution in Zeeland (NL) derived from airborne EM
NASA Astrophysics Data System (ADS)
Siemon, Bernhard; van Baaren, Esther; Dabekaussen, Willem; Delsman, Joost; Gunnik, Jan; Karaoulis, Marios; de Louw, Perry; Oude Essink, Gualbert; Pauw, Pieter; Steuer, Annika; Meyer, Uwe
2017-04-01
In a setting of predominantly saline surface waters, the availability of fresh water for agricultural purposes is not obvious in Zeeland, The Netherlands. Canals and ditches are mainly brackish to saline due to saline seepage, which originates from old marine deposits and salt-water transgressions during historical times. The only available fresh groundwater is present in the form of freshwater lenses floating on top of the saline groundwater. This fresh groundwater is vital for agricultural, industrial, ecological, water conservation and drinking water functions. An essential first step for managing this fresh groundwater properly is to know the present spatial fresh-brackish-saline groundwater distribution. As traditional salinity monitoring is labour-intensive, airborne electromagnetics (AEM), which is fast and can cover large areas in short time, is an efficient alternative. A consortium of BGR, Deltares and TNO started FRESHEM Zeeland (FREsh Salt groundwater distribution by Helicopter ElectroMagnetic survey in the Province of Zeeland) in October 2014. Within 3x2 weeks of the first project year, the entire area of about 2000 km2 was surveyed using BGR's helicopter-borne geophysical system totalling to about 10,000 line-km. The HEM datasets of 17 subareas were carefully processed using advanced BGR in-house software and inverted to 2.5 Million resistivity-depth models. Ground truthing demonstrated that the large-scale HEM results fit very well with small-scale ground EM data (ECPT). Based on this spatial resistivity distribution, a 3D voxel model for Chloride concentration was derived for the entire province taking into account geological model data (GeoTOP) for the lithology correction and local in-situ groundwater measurements for the translation of water conductivity to Chloride concentration. The 3D voxel model enables stakeholders to implement spatial Chloride concentration in their groundwater models.
NASA Astrophysics Data System (ADS)
Margolis, Nate
Secure access to water is a growing problem in the world today. Millions of people do not have contact with fresh or clean water for drinking. Consuming dirty water leads to many illnesses and deaths every year. When water is scarce people are less likely to follow basic hygiene which also adds to the problem of sickness from water. Currently most of the population gets their water from run-off such as rivers, lakes and other fresh water bodies. Aquafers can also provide water, however, once they do not replenish themselves so once they are empty they will no longer provide a fresh water source. This is a serious problem because the population has grown to 7 billion people and only 2% of the world's water is fresh water. Of this, most the fresh water is locked in the polar ice caps. This leaves only .77% of the available fresh water accessible for human use. While wealthy countries may not feel this burden due to their infrastructure. Impoverish countries will feel the full burden of a lack of water. This has led to a growing number of water conflicts over the years some of which have resulted in human deaths. There are several ways that people can collect water from the atmosphere such as collecting rain water or using a solar still to evaporate water out of an undrinkable source. In parts of the world where fog is prevalent, meshes have been used to collect the moisture from the air. However, these systems only work where the environment allows for it. In some places in the world, the only amount of water may come from morning dew. Certain places receive more water from morning dew than they do from annual precipitation. By studying nature, a novel water collection device was developed, tested and modeled. The model is compared to the test data to see the ways in which the device can be optimized. This could be used to help alleviate the growing problems of water shortages in specific parts of the world. The model and device design shows promising data but still has room for improvement. Potential changes for improved performance are explored.
10. VIEW UPSTREAM OF PIPELINE SECTION AT JUNCTION OF HUME ...
10. VIEW UPSTREAM OF PIPELINE SECTION AT JUNCTION OF HUME CEMENT PIPE AND CAST-IRON (460'). NOTE CYLINDRICAL COLLAR OF CEMENT SECTIONS AND BELL JUNCTIONS OF IRON PIPE. - Kalaupapa Water Supply System, Waikolu Valley to Kalaupapa Settlement, Island of Molokai, Kalaupapa, Kalawao County, HI
18 CFR 284.102 - Transportation by interstate pipelines.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Transportation by... RELATED AUTHORITIES CERTAIN SALES AND TRANSPORTATION OF NATURAL GAS UNDER THE NATURAL GAS POLICY ACT OF 1978 AND RELATED AUTHORITIES Certain Transportation by Interstate Pipelines § 284.102 Transportation by...
18 CFR 284.122 - Transportation by intrastate pipelines.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Transportation by... RELATED AUTHORITIES CERTAIN SALES AND TRANSPORTATION OF NATURAL GAS UNDER THE NATURAL GAS POLICY ACT OF 1978 AND RELATED AUTHORITIES Certain Transportation by Intrastate Pipelines § 284.122 Transportation by...
18 CFR 284.122 - Transportation by intrastate pipelines.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Transportation by... RELATED AUTHORITIES CERTAIN SALES AND TRANSPORTATION OF NATURAL GAS UNDER THE NATURAL GAS POLICY ACT OF 1978 AND RELATED AUTHORITIES Certain Transportation by Intrastate Pipelines § 284.122 Transportation by...
18 CFR 284.122 - Transportation by intrastate pipelines.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Transportation by... RELATED AUTHORITIES CERTAIN SALES AND TRANSPORTATION OF NATURAL GAS UNDER THE NATURAL GAS POLICY ACT OF 1978 AND RELATED AUTHORITIES Certain Transportation by Intrastate Pipelines § 284.122 Transportation by...
18 CFR 284.102 - Transportation by interstate pipelines.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Transportation by... RELATED AUTHORITIES CERTAIN SALES AND TRANSPORTATION OF NATURAL GAS UNDER THE NATURAL GAS POLICY ACT OF 1978 AND RELATED AUTHORITIES Certain Transportation by Interstate Pipelines § 284.102 Transportation by...
18 CFR 284.122 - Transportation by intrastate pipelines.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Transportation by... RELATED AUTHORITIES CERTAIN SALES AND TRANSPORTATION OF NATURAL GAS UNDER THE NATURAL GAS POLICY ACT OF 1978 AND RELATED AUTHORITIES Certain Transportation by Intrastate Pipelines § 284.122 Transportation by...
18 CFR 284.102 - Transportation by interstate pipelines.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Transportation by... RELATED AUTHORITIES CERTAIN SALES AND TRANSPORTATION OF NATURAL GAS UNDER THE NATURAL GAS POLICY ACT OF 1978 AND RELATED AUTHORITIES Certain Transportation by Interstate Pipelines § 284.102 Transportation by...
18 CFR 284.102 - Transportation by interstate pipelines.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Transportation by... RELATED AUTHORITIES CERTAIN SALES AND TRANSPORTATION OF NATURAL GAS UNDER THE NATURAL GAS POLICY ACT OF 1978 AND RELATED AUTHORITIES Certain Transportation by Interstate Pipelines § 284.102 Transportation by...
18 CFR 284.102 - Transportation by interstate pipelines.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Transportation by... RELATED AUTHORITIES CERTAIN SALES AND TRANSPORTATION OF NATURAL GAS UNDER THE NATURAL GAS POLICY ACT OF 1978 AND RELATED AUTHORITIES Certain Transportation by Interstate Pipelines § 284.102 Transportation by...
18 CFR 284.122 - Transportation by intrastate pipelines.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Transportation by... RELATED AUTHORITIES CERTAIN SALES AND TRANSPORTATION OF NATURAL GAS UNDER THE NATURAL GAS POLICY ACT OF 1978 AND RELATED AUTHORITIES Certain Transportation by Intrastate Pipelines § 284.122 Transportation by...
The influence of carbon nanotubes on the properties of water solutions and fresh cement pastes
NASA Astrophysics Data System (ADS)
Leonavičius, D.; Pundienė, I.; Girskas, G.; Pranckevičienė, J.; Kligys, M.; Sinica, M.
2017-10-01
It is known, that the properties of cement-based materials can be significantly improved by addition of carbon nanotubes (CNTs). The dispersion of CNTs is an important process due to an extremely high specific surface area. This aspect is very relevant and is one of the main factors for the successful use of CNTs in cement-based materials. The influence of CNTs in different amounts (from 0 to 0.5 percent) on the pH values of water solutions and fresh cement pastes, and also on rheological properties, flow characteristics, setting time and EXO reaction of the fresh cement pastes was analyzed in this work. It was found that the increment of the amount of CNTs leads to decreased pH values of water solutions and fresh cement pastes, and also increases viscosity, setting times and EXO peak times of fresh cement pastes.
Ultrafiltration systems have been used to concentrate pathogens from various types of fresh water samples. However, less work has been done with marine waters for the concentration of pathogens or indicator bacteria. An ultrafiltration approach to concentrate indicator bacteria...
A propagating freshwater mode in the Arctic Ocean with multidecadal time scale
NASA Astrophysics Data System (ADS)
Schmith, Torben; Malskær Olsen, Steffen; Margrethe Ringgaard, Ida
2017-04-01
We apply Principal Oscillatory Pattern analysis to the Arctic Ocean fresh water content as simulated in a 500 year long control run with constant preindustrial forcing with the EC-Earth global climate model. Two modes emerge from this analysis. One mode is a standing mode with decadal time scale describing accumulation and release of fresh water in the Beaufort Gyre, known in the literature as the Beaufort Gyre flywheel. In addition, we identify a propagating mode with a time scale around 80 years, propagating along the rim of the Canadian Basin. This mode has maximum variability of the fresh water content in the Transpolar Drift and represents the bulk of the total variability of the fresh water content in the Arctic Ocean and also projects on the fresh water through the Fram Strait. Therefore, potentially, it can introduce a multidecadal variability to the Atlantic meridional overturning circulation. We will discuss the physical origin of this propagating mode. This include planetary-scale internal Rossby waves with multidecadal time scale, due to the slow variation of the Coriolis parameter at these high latitudes, as well as topographic steering of these Rossby waves.
Installation Of Service Connections For Sensors Or Transmitters In Buried Water Pipes
Burnham, Alan K.; Cooper, John F.
2006-02-21
A system for installing warning units in a buried pipeline. A small hole is drilled in the ground to the pipeline. A collar is affixed to one of the pipes of the pipeline. A valve with an internal passage is connected to the collar. A hole is drilled in the pipe. A warning unit is installed in the pipe by moving the warning unit through the internal passage, the collar, and the hole in the pipe.
2016-09-01
natural gas pipelines , water pipelines , and metallic USTs. The full and complete data sets for curve-fit development were not pro- vided to ERDC...Dunmire (OUSD(AT&L)), Bernie Rodriguez (IMPW-E), and Valerie D. Hines (DAIM-ODF). The work was performed by the Materials and Structures Branch...of structures being tested increases, as in the case of pipelines that run many miles or the case of when a structure’s coating quality
NASA Astrophysics Data System (ADS)
Wagner, F.; Ludwig, R. R.; Noell, U.; Hoang, H. V.; Pham, N. Q.; Larsen, F.; Lindenmaier, F.
2012-04-01
In the Southern Red River Delta (Nam Dinh Province, Vietnam), a local lens of low saline pore water of high quality has been identified in unconsolidated Pleistocene and Neogene aquifers, which are regionally known to contain brackish and saline pore waters. Since the 1990ies, ongoing overexploitation of the fresh groundwater results in decreasing GW heads up to 0.6 m/a and the development of a regional abstraction cone. The presented study focuses on distribution and genesis of fresh and saline pore waters and reflects the results in frame of the regional hydrogeological context. Observations of the geological structure and groundwater dynamics combined with hydrochemical and isotopic studies suggest adjacent Triassic hard rock aquifers as the major source for fresh Pleistocene and Neogene groundwater. Salinization status in the economically most relevant Pleistocene aquifer has been studied based on archive and new hydrochemical and geophysical data. Own hydrochemical field studies as well as laboratory measurements of the specific resistivity of dry sediment samples allow the translation of induction logging data from existing monitoring wells into vertical pore water salinity profiles. This approach suggests the regional occurrence of saline pore water in shallow Holocene sediments in the working area, as confirmed by pore water studies in Hoan et al. (2010). Interpretation of induction logging and stable isotope data suggest vertical diffusion of saline pore water in shallow Holocene sediments as a source for high saline pore water in deeper aquifers. Analytical diffusion modeling for a period of 3000 years confirms that vertical diffusion of Holocene paleo-sea water can explain saline pore water in Pleistocene and Neogene aquifers in a stagnant environment. The constant influx of fresh groundwater from adjacent Triassic hard rocks results in flushing of the primary Pleistocene and Neogene pore water and inhibits the infiltration of saline water from marine Holocene sediments. Consequently, 14C groundwater age dating suggests increasing groundwater ages from fresh to saline pore water in Pleistocene and Neogene up to 14 ka, presuming that contamination with dead carbon is neglectable. Highest 14C ages of low saline water has been observed in the center of the exploited fresh water lens reaching up to 10 ka, reflecting low groundwater flux and recharge rates. Due to the overexploitation, the natural coastward directed groundwater flow has turned towards the centre of the abstraction cone with horizontal apparent velocities of up to 0.6 m/a. This suggests, that brackish and higher saline groundwater from the Red River area (East Nam Dinh) and offshore migrates towards the fresh water lens. Thus, more sustainable exploitation strategies urgently must be implemented to reduce overexploitation of limited and valuable fresh groundwater resources in Nam Dinh Province. Reference: Hoan H., Pham Q. N., Larsen F. Tran L. V., Wagner F., Christiansen A.V. (2010): Processes Controlling High Saline Groundwater in the Nam Dinh Province, Vietnam. 2nd Asia-Pacific Coastal Aquifer Management Meeting (ACAMM), October 18-21, 2011, Jeju Island, Korea.
To cope with the rising demand for fresh water, desalination of brackish groundwater and seawater is increasingly being viewed as a pragmatic option for augmenting fresh water supplies. The large scale deployment of desalination is likely to demonstrably increase electricity use,...
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 3 2014-10-01 2014-10-01 false Test medium. 195.306 Section 195.306... PIPELINE Pressure Testing § 195.306 Test medium. (a) Except as provided in paragraphs (b), (c), and (d) of this section, water must be used as the test medium. (b) Except for offshore pipelines, liquid...
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 3 2013-10-01 2013-10-01 false Test medium. 195.306 Section 195.306... PIPELINE Pressure Testing § 195.306 Test medium. (a) Except as provided in paragraphs (b), (c), and (d) of this section, water must be used as the test medium. (b) Except for offshore pipelines, liquid...
18 CFR 343.2 - Requirements for filing interventions, protests and complaints.
Code of Federal Regulations, 2013 CFR
2013-04-01
... interventions, protests and complaints. 343.2 Section 343.2 Conservation of Power and Water Resources FEDERAL... PROCEDURAL RULES APPLICABLE TO OIL PIPELINE PROCEEDINGS § 343.2 Requirements for filing interventions, protests and complaints. (a) Interventions. Section 385.214 of this chapter applies to oil pipeline...
18 CFR 343.2 - Requirements for filing interventions, protests and complaints.
Code of Federal Regulations, 2010 CFR
2010-04-01
... interventions, protests and complaints. 343.2 Section 343.2 Conservation of Power and Water Resources FEDERAL... PROCEDURAL RULES APPLICABLE TO OIL PIPELINE PROCEEDINGS § 343.2 Requirements for filing interventions, protests and complaints. (a) Interventions. Section 385.214 of this chapter applies to oil pipeline...
18 CFR 343.2 - Requirements for filing interventions, protests and complaints.
Code of Federal Regulations, 2012 CFR
2012-04-01
... interventions, protests and complaints. 343.2 Section 343.2 Conservation of Power and Water Resources FEDERAL... PROCEDURAL RULES APPLICABLE TO OIL PIPELINE PROCEEDINGS § 343.2 Requirements for filing interventions, protests and complaints. (a) Interventions. Section 385.214 of this chapter applies to oil pipeline...
18 CFR 343.2 - Requirements for filing interventions, protests and complaints.
Code of Federal Regulations, 2011 CFR
2011-04-01
... interventions, protests and complaints. 343.2 Section 343.2 Conservation of Power and Water Resources FEDERAL... PROCEDURAL RULES APPLICABLE TO OIL PIPELINE PROCEEDINGS § 343.2 Requirements for filing interventions, protests and complaints. (a) Interventions. Section 385.214 of this chapter applies to oil pipeline...
18 CFR 343.2 - Requirements for filing interventions, protests and complaints.
Code of Federal Regulations, 2014 CFR
2014-04-01
... interventions, protests and complaints. 343.2 Section 343.2 Conservation of Power and Water Resources FEDERAL... PROCEDURAL RULES APPLICABLE TO OIL PIPELINE PROCEEDINGS § 343.2 Requirements for filing interventions, protests and complaints. (a) Interventions. Section 385.214 of this chapter applies to oil pipeline...
Analog Model Study of Ground-Water Flow in the Rehoboth Bay Area, Delaware.
The study concerns ground- water flow in the Rehoboth Bay area, Delaware, a coastal area which depends on ground water for its fresh- water supply...Increased pumping demands may threaten to lower the water table and allow salt- water intrusion into the wells. The study was conducted using a viscous...use two different glycerin solutions to make observations and predict interactions between fresh and salt water in nature. Results indicate the
NASA Astrophysics Data System (ADS)
Tsukerman, V. A.; Gudkov, A. V.; Ivanov, S. V.
The paper discusses problems associated with the existing crisis of water scarcity in the modern conditions of the global water use. Available alternative sources of fresh water may be underground and surface waters of the North and the Arctic. Investigated the current situation and condition of fresh water resources in the technological and industrial development of the North and Arctic. The necessity of developing and using green technologies and measures to prevent pollution of surface and ground water from industrial sectors of the Northern regions is shown. Studied modern technologies and techniques for monitoring groundwater and determination of their age in order to avoid and prevent the effects of environmental contaminants. The ways of use of innovative production technologies of fresh and clean water of north Russia for sustainable development, and delivery of water in the needy regions of the world are investigated.
STANDARDIZED COSTS FOR WATER SUPPLY DISTRIBUTION SYSTEMS
Presented within the report are cost data for construction and operation/maintenance of domestic water distribution and transmission pipelines, domestic water pumping stations, and domestic water storage reservoirs. To allow comparison of new construction with rehabilitation of e...
46 CFR 162.050-23 - Separator: Approval tests.
Code of Federal Regulations, 2014 CFR
2014-10-01
... must be tested using the mixture pump on the test rig. (4) The influent water used in each test must be clean fresh water or clean fresh water in solution with sodium chloride. In either case, the relative density of the water must be no greater than 1.015 at 20 °C. (5) Each test must be conducted at an ambient...
46 CFR 162.050-23 - Separator: Approval tests.
Code of Federal Regulations, 2011 CFR
2011-10-01
... must be tested using the mixture pump on the test rig. (4) The influent water used in each test must be clean fresh water or clean fresh water in solution with sodium chloride. In either case, the relative density of the water must be no greater than 1.015 at 20 °C. (5) Each test must be conducted at an ambient...
46 CFR 162.050-23 - Separator: Approval tests.
Code of Federal Regulations, 2013 CFR
2013-10-01
... must be tested using the mixture pump on the test rig. (4) The influent water used in each test must be clean fresh water or clean fresh water in solution with sodium chloride. In either case, the relative density of the water must be no greater than 1.015 at 20 °C. (5) Each test must be conducted at an ambient...
46 CFR 162.050-23 - Separator: Approval tests.
Code of Federal Regulations, 2012 CFR
2012-10-01
... must be tested using the mixture pump on the test rig. (4) The influent water used in each test must be clean fresh water or clean fresh water in solution with sodium chloride. In either case, the relative density of the water must be no greater than 1.015 at 20 °C. (5) Each test must be conducted at an ambient...
46 CFR 162.050-23 - Separator: Approval tests.
Code of Federal Regulations, 2010 CFR
2010-10-01
... rates of the oil and water that are mixed to form the influent or by use of an oil content meter on the... must be tested using the mixture pump on the test rig. (4) The influent water used in each test must be clean fresh water or clean fresh water in solution with sodium chloride. In either case, the relative...
Scarcity of Fresh Water Resources in the Ganges Delta of Bangladesh
NASA Astrophysics Data System (ADS)
Murshed, S. B.; Kaluarachchi, J. J.
2017-12-01
The Ganges Delta in Bangladesh is a classical example of water insecurity in a transboundary river basin where limitations in quantity, quality and timing of available water is producing disastrous conditions. Two opposite extreme water conditions, i.e., fresh water scarcity and floods are common in this region during dry and wet seasons, respectively. The purpose of this study is to manage fresh water requirement of people and environment considering the seasonal availability of surface water (SW) and ground water (GW). SW availability was analyzed by incoming stream flow including the effects of upstream water diversion, rainfall, temperature, evapotranspiration (ET). Flow duration curves (FDC), and rainfall and temperature elasticity are used to assess the change of incoming upstream flow. Groundwater data were collected from 285 piezometers and monitoring wells established by Bangladesh water development board. Variation of groundwater depth shows major withdrawals of GW are mostly concentrated in the north part of the study area. Irrigation is the largest sector of off-stream (irrigation, industrial and domestic) water use which occupies 82% SW and 17% GW of total water consumption. Although domestic water use is entirely depend on GW but arsenic pollution is limiting the GW use. FDC depicts a substantial difference between high flow threshold (20%) and low flow threshold (70%) in the Bangladesh part of Ganges River. A large variation of around 83% is observed for instream water volume between wet and dry seasons. The reduction of upstream fresh water flow increased the extent and intensity of salinity intrusion. Presently GW is also contaminated by saline water. This fresh water scarcity is reducing the livelihood options considerably and indirectly forcing population migration from the delta region. This study provides insight to the changes in hydrology and limitations to freshwater availability enabling better formulation of water resources management in the region.
The Role of Fresh Water in Fish Processing in Antiquity
NASA Astrophysics Data System (ADS)
Sánchez López, Elena H.
2018-04-01
Water has been traditionally highlighted (together with fish and salt) as one of the essential elements in fish processing. Indeed, the need for large quantities of fresh water for the production of salted fish and fish sauces in Roman times is commonly asserted. This paper analyses water-related structures within Roman halieutic installations, arguing that their common presence in the best known fish processing installations in the Western Roman world should be taken as evidence of the use of fresh water during the production processes, even if its role in the activities carried out in those installations is not clear. In addition, the text proposes some first estimates on the amount of water that could be needed by those fish processing complexes for their functioning, concluding that water needs to be taken into account when reconstructing fish-salting recipes.
Assessment and speciation of chlorine demand in fresh-cut produce wash water
USDA-ARS?s Scientific Manuscript database
Production of high quality, fresh-cut produce is a key driver for the produce industry. A critical area of concern is the chlorinated wash water used during post-harvest processing in large industrial processing facilities. Predominantly using a batch process, wash water is recycled over 8hr shift...
Prueitt, Melvin L.
1996-01-01
Convection towers which are capable of cleaning the pollution from large quantities of air, of generating electricity, and of producing fresh water utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity, and condensers produce fresh water.
Prueitt, Melvin L.
1995-01-01
Convection towers which are capable of cleaning the pollution from large quantities of air, of generating electricity, and of producing fresh water utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity, and condensers produce fresh water.
Prueitt, M.L.
1996-01-16
Convection towers which are capable of cleaning the pollution from large quantities of air, of generating electricity, and of producing fresh water utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity, and condensers produce fresh water. 6 figs.
Fresh Water Content Variability in the Arctic Ocean
NASA Technical Reports Server (NTRS)
Hakkinen, Sirpa; Proshutinsky, Andrey
2003-01-01
Arctic Ocean model simulations have revealed that the Arctic Ocean has a basin wide oscillation with cyclonic and anticyclonic circulation anomalies (Arctic Ocean Oscillation; AOO) which has a prominent decadal variability. This study explores how the simulated AOO affects the Arctic Ocean stratification and its relationship to the sea ice cover variations. The simulation uses the Princeton Ocean Model coupled to sea ice. The surface forcing is based on NCEP-NCAR Reanalysis and its climatology, of which the latter is used to force the model spin-up phase. Our focus is to investigate the competition between ocean dynamics and ice formation/melt on the Arctic basin-wide fresh water balance. We find that changes in the Atlantic water inflow can explain almost all of the simulated fresh water anomalies in the main Arctic basin. The Atlantic water inflow anomalies are an essential part of AOO, which is the wind driven barotropic response to the Arctic Oscillation (AO). The baroclinic response to AO, such as Ekman pumping in the Beaufort Gyre, and ice meldfreeze anomalies in response to AO are less significant considering the whole Arctic fresh water balance.
What Controls Submarine Groundwater Discharge?
NASA Astrophysics Data System (ADS)
Martin, J. B.; Cable, J. E.; Cherrier, J.; Roy, M.; Smith, C. G.; Dorsett, A.
2008-05-01
Numerous processes have been implicated in controlling submarine groundwater discharge (SGD) to coastal zones since Ghyben, Herzberg and Dupuit developed models of fresh water discharge from coastal aquifers at the turn of the 19th century. Multiple empirical and modeling techniques have also been applied to these environments to measure the flow. By the mid-1950's, Cooper had demonstrated that dispersion across the fresh water-salt water boundary required salt water entrained into fresh water flow be balanced by recharge of salt water across the sediment-water interface seaward of the outflow face. Percolation of water into the beach face from wind and tidal wave run up and changes in pressure at the sediment-water interface with fluctuating tides have now been recognized, and observed, as processes driving seawater into the sediments. Within the past few years, variations in water table levels and the 1:40 amplification from density difference in fresh water and seawater have been implicated to pump salt water seasonally across the sediment- water interface. Salt water driven by waves, tides and seasonal water table fluctuations is now recognized as a component of SGD when it flows back to overlying surface waters. None of these processes are sufficiently large to provide measured volumes of SGD in Indian River Lagoon, Florida, however, because minimal tides and waves exist, flat topography and transmissive aquifers minimize fluctuations of the water table, and little water is entrained across the salt water-fresh water boundary. Nonetheless, the saline fraction of SGD represents more than 99% of the volume of total SGD in the Indian River Lagoon. This volume of saline SGD can be driven by the abundance of burrowing organisms in the lagoon, which pump sufficient amounts of water through the sediment- water interface. These bioirrigating organisms are ubiquitous at all water depths in sandy sediment and thus may provide one of the major sources of SGD world wide. Because bioirrigated water is well oxygenated and passes through sedimentary pore spaces, its influence may be quite large on fluxes of diagenetic reactive components, including organic matter, nutrients, and redox sensitive metals. While fresh meteoric groundwater may be confined to the shoreline in most cases and delivers new material from continents to the ocean, seawater circulating through sediments as part of SGD is apparently a much greater fraction of the total water flux and hence has the potential to significantly impact sediment diagenetic processes and subsequent export of nutrients and other solutes from the sediment to the water column.
NASA Astrophysics Data System (ADS)
Wu, Huijuan; Sun, Zhenshi; Qian, Ya; Zhang, Tao; Rao, Yunjiang
2015-07-01
A hydrostatic leak test for water pipeline with a distributed optical fiber vibration sensing (DOVS) system based on the phase-sensitive OTDR technology is studied in this paper. By monitoring one end of a common communication optical fiber cable, which is laid in the inner wall of the pipe, we can detect and locate the water leakages easily. Different apertures under different pressures are tested and it shows that the DOVS has good responses when the aperture is equal or larger than 4 mm and the inner pressure reaches 0.2 Mpa for a steel pipe with DN 91cm×EN 2cm.
Ability to protect oil/gas pipelines and subsea installations from icebergs in the Hibernia area
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weir, F.V.
1981-01-01
Mobil Oil Canada has examined 2 pipeline routes from Hibernia to the Newfoundland coast. The Northern Route is from Hibernia to the Bay of Bulls, a distance of ca 200 miles. The Southern Route is from Hibernia to Trepassey Bay, a distance of ca 225 miles. Both these routes go through the Avalon channel which has water depths of 200 m, or over 600 ft, with very steep slopes on both sides of the channel. To protect pipelines from icebergs and iceberg scour, there is really only one obvious solution and that is to bury the pipeline several feet belowmore » the deepest known iceberg scour depth.« less
The impact of hydration changes in fresh bio-tissue on THz spectroscopic measurements.
Png, G M; Choi, J W; Ng, B W-H; Mickan, S P; Abbott, D; Zhang, X-C
2008-07-07
We present a study of how residual hydration in fresh rat tissue samples can vastly alter their extracted terahertz (THz) optical properties and influence their health assessment. Fresh (as opposed to preserved) tissue most closely mimics in vivo conditions, but high water content creates many challenges for tissue handling and THz measurement. Our THz measurements of fresh tissue over time highlight the effect of tissue hydration on tissue texture and dimension, the latter directly influencing the accuracy of calculated optical properties. We then introduce lyophilization (freeze drying) as a viable solution for overcoming hydration and freshness problems. Lyophilization removes large amounts of water while retaining sample freshness. In addition, lyophilized tissue samples are easy to handle and their textures and dimensions do not vary over time, allowing for consistent and stable THz measurements. A comparison of lyophilized and fresh tissue shows for the first time that freeze drying may be one way of overcoming tissue hydration issues while preserving tissue cellular structure. Finally, we compare THz measurements from fresh tissue against necrotic tissue to verify freshness over time. Indeed, THz measurements from fresh and necrotic tissues show marked differences.
Stratigraphic controls on fluid and solute fluxes across the sediment-water interface of an estuary
Sawyer, Audrey H.; Lazareva, Olesya; Kroeger, Kevin D.; Crespo, Kyle; Chan, Clara S.; Stieglitz, Thomas; Michael, Holly A.
2014-01-01
Shallow stratigraphic features, such as infilled paleovalleys, modify fresh groundwater discharge to coastal waters and fluxes of saltwater and nutrients across the sediment–water interface. We quantify the spatial distribution of shallow surface water–groundwater exchange and nitrogen fluxes near a paleovalley in Indian River Bay, Delaware, using a hand resistivity probe, conventional seepage meters, and pore-water samples. In the interfluve (region outside the paleovalley) most nitrate-rich fresh groundwater discharges rapidly near the coast with little mixing of saline pore water, and nitrogen transport is largely conservative. In the peat-filled paleovalley, fresh groundwater discharge is negligible, and saltwater exchange is deep (∼1 m). Long pore-water residence times and abundant sulfate and organic matter promote sulfate reduction and ammonium production in shallow sediment. Reducing, iron-rich fresh groundwater beneath paleovalley peat discharges diffusely around paleovalley margins offshore. In this zone of diffuse fresh groundwater discharge, saltwater exchange and dispersion are enhanced, ammonium is produced in shallow sediments, and fluxes of ammonium to surface water are large. By modifying patterns of groundwater discharge and the nature of saltwater exchange in shallow sediments, paleovalleys and other stratigraphic features influence the geochemistry of discharging groundwater. Redox reactions near the sediment–water interface affect rates and patterns of geochemical fluxes to coastal surface waters. For example, at this site, more than 99% of the groundwater-borne nitrate flux to the Delaware Inland Bays occurs within the interfluve portion of the coastline, and more than 50% of the ammonium flux occurs at the paleovalley margin.
Effect of hot water dips on the quality of fresh-cut ´Ryan Sun´ peaches
USDA-ARS?s Scientific Manuscript database
Fresh-cut products are an important developing food product category, and as a response of current lifestyles they are becoming increasingly popular due to their convenience, nutritious and fresh-like quality; however, fresh-cut produce has limited shelf life because preparation involves physically ...
Atmospheric moisture transport and fresh water flux over oceans derived from spacebased sensors
NASA Technical Reports Server (NTRS)
Liu, W. T.; Tang, W.
2001-01-01
preliminary results will be shown to demonstrate the application of spacebased IMT and fresh water flux in ocean-atmosphere-land interaction studies, such as the hydrologica balance on Amazon rainfall and Indian monsoon.
Isotope Geochemistry and Chronology of Offshore Ground Water Beneath Indian River Bay, Delaware
Böhlke, John Karl; Krantz, David E.
2003-01-01
Results of geophysical surveys in Indian River Bay, Delaware, indicate a complex pattern of salinity variation in subestuarine ground water. Fresh ground-water plumes up to about 20 meters thick extending hundreds of meters offshore are interspersed with saline ground water, with varying degrees of mixing along the salinity boundaries. It is possible that these features represent pathways for nutrient transport and interaction with estuarine surface water, but the geophysical data do not indicate rates of movement or nutrient sources and reactions. In the current study, samples of subestuarine ground water from temporary wells with short screens placed 3 to 22 meters below the sediment-water interface were analyzed chemically and isotopically to determine the origins, ages, transport pathways, and nutrient contents of the fresh and saline components. Apparent ground-water ages determined from chlorofluorocarbons (CFCs), sulfur hexafluoride (SF6), tritium (3H), and helium isotopes (3He and 4He) commonly were discordant, but nevertheless indicate that both fresh and saline ground waters ranged from a few years to at least 50 years in age. Tritium-helium (3H-3He) ages, tentatively judged to be most reliable, indicate that stratified offshore freshwater plumes originating in distant recharge areas on land were bounded by relatively young saline water that was recharged locally from the overlying estuary. Undenitrified and partially denitrified nitrate of agricultural or mixed origin was transported laterally beneath the estuary in oxic and suboxic fresh ground water. Ammonium produced by anaerobic degradation of organic matter in estuarine sediments was transported downward in suboxic saline ground water around the freshwater plumes. Many of the chemical and isotopic characteristics of the subestuarine ground waters are consistent with conservative mixing of the fresh (terrestrial) and saline (estuarine) endmember water types. These data indicate that freshwater plumes detected by geophysical surveys beneath Indian River Bay represent lateral continuations of the active surficial nitrate-contaminated freshwater flow systems originating on land, but they do not indicate directly the magnitude of fresh ground-water discharge or nutrient exchange with the estuary. There is evidence that some of the terrestrial ground-water nitrate is reduced before discharging directly beneath the estuary. Local estuarine sediment-derived ammonium in saline pore water may be a substantial benthic source of nitrogen in offshore areas of the estuary.
NASA Astrophysics Data System (ADS)
Li, D. D.; Jiang, J.; Zhao, Z.; Yi, W. S.; Lan, G.
2013-12-01
We take a concrete pumping station as an example in this paper. Through the calculation of water hammer protection with a specific pumping station water supply project, and the analysis of the principle, mathematical models and boundary conditions of air vessel and over-pressure relief valve we show that the air vessel can protect the water conveyance system and reduce the transient pressure damage due to various causes. Over-pressure relief valve can effectively reduce the water hammer because the water column re-bridge suddenly stops the pump and prevents pipeline burst. The paper indicates that the combination set of air vessel and over-pressure relief valve can greatly reduce the quantity of the air valve and can eliminate the water hammer phenomenon in the pipeline system due to the vaporization and water column separation and re-bridge. The conclusion could provide a reference for the water hammer protection of long-distance water supply system.
Chung, W S; Yu, M J; Lee, H D
2004-01-01
The drinking water network serving Korea has been used for almost 100 years. Therefore, pipelines have suffered various degrees of deterioration due to aggressive environments. The pipe breaks were caused by in-external corrosion, water hammer, surface loading, etc. In this paper, we focused on describing corrosion status in water distribution pipes in Korea and reviewing some methods to predict corrosion rates. Results indicate that corrosive water of lakes was more aggressive than river water and the winter was more aggressive compared to other seasons. The roughness growth rates of Dongbok lake showed 0.23 mm/year. The high variation of corrosion rates is controlled by the aging pipes and smaller diameter. Also the phenolphthalein test on a cementitious core of cement mortar lined ductile cast iron pipe indicated the pipes over 15 years old had lost 50-100% of their lime active cross sectional area.
NASA Astrophysics Data System (ADS)
Bedi, Amna; Kothari, Vaishali; Kumar, Santosh
2018-02-01
The under laid gas and oil pipelines on the seafloor are prone to various disturbances like seismic movements of the sea bed, oceanic currents, tsunamis. These factors tend to damage such pipelines connecting different locations of the world dependent on these pipelines for their day-to-day use of oil and natural gas. If damaged, the oil spills in the water bodies cause grave loss to marine life along with serious economic issues. It is not feasible to monitor the undersea pipelines manually because of the huge seafloor depth. For timely detection of such damage, a new technique using optical Fiber Bragg grating (FBG) sensors and its installation has been given in this work. The idea of an FBG sensor for detecting damage in pipeline structure based on the acoustic emission has been worked out. The numerical calculation has been done based on the fundamental of strain measurement and the output has been simulated using MATLAB.
75 FR 76077 - Pipeline Safety: Information Collection Activities
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-07
.... ADDRESSES: Comments may be submitted in the following ways: E-Gov Web Site: http://www.regulations.gov....regulations.gov , including any personal information provided. You should know that anyone is able to search... meters) deep as measured from mean low water that are at risk of being an exposed underwater pipeline or...
Continental patterns of submarine groundwater discharge reveal coastal vulnerabilities.
Sawyer, Audrey H; David, Cédric H; Famiglietti, James S
2016-08-12
Submarine groundwater discharge (SGD) delivers water and dissolved chemicals from continents to oceans, and its spatial distribution affects coastal water quality. Unlike rivers, SGD is broadly distributed and relatively difficult to measure, especially at continental scales. We present spatially resolved estimates of fresh (land-derived) SGD for the contiguous United States based on historical climate records and high-resolution hydrographic data. Climate controls regional patterns in fresh SGD, while coastal drainage geometry imparts strong local variability. Because the recharge zones that contribute fresh SGD are densely populated, the quality and quantity of fresh SGD are both vulnerable to anthropogenic disturbance. Our analysis unveils hot spots for contaminant discharge to marine waters and saltwater intrusion into coastal aquifers. Copyright © 2016, American Association for the Advancement of Science.
Analysis of the strength of sea gas pipelines of positive buoyancy conditioned by glaciation
NASA Astrophysics Data System (ADS)
Malkov, Venyamin; Kurbatova, Galina; Ermolaeva, Nadezhda; Malkova, Yulia; Petrukhin, Ruslan
2018-05-01
A technique for estimating the stress state of a gas pipeline laid along the seabed in northern latitudes in the presence of glaciation is proposed. It is assumed that the pipeline lies on the bottom of the seabed, but under certain conditions on the some part of the pipeline a glaciation is formed and the gas pipeline section in the place of glaciation can come off the ground due to the positive buoyancy of the ice. Calculation of additional stresses caused by bending of the pipeline is of practical interest for strength evaluation. The gas pipeline is a two-layer cylindrical shell of circular cross section. The inner layer is made of high-strength steel, the outer layer is made of reinforced ferroconcrete. The proposed methodology for calculating the gas pipeline for strength is based on the equations of the theory of shells. The procedure takes into account the effect of internal gas pressure, external pressure of sea water, the weight of two-layer gas pipeline and the weight of the ice layer. The lifting force created by the displaced fluid and the positive buoyancy of the ice is also taken into account. It is significant that the listed loads cause only two types of deformation of the gas pipeline: axisymmetric and antisymmetric. The interaction of the pipeline with the ground as an elastic foundation is not considered. The main objective of the research is to establish the fact of separation of part of the pipeline from the ground. The method of calculations of stresses and deformations occurring in a model sea gas pipeline is presented.
NASA Astrophysics Data System (ADS)
Tidwell, Vincent C.; Moreland, Barbie D.; Shaneyfelt, Calvin R.; Kobos, Peter
2018-01-01
The availability of freshwater supplies to meet future demand is a growing concern. Water availability metrics are needed to inform future water development decisions. With the help of water managers, water availability was mapped for over 1300 watersheds throughout the 31 contiguous states in the eastern US complimenting a prior study of the west. The compiled set of water availability data is unique in that it considers multiple sources of water (fresh surface and groundwater, wastewater and brackish groundwater); accommodates institutional controls placed on water use; is accompanied by cost estimates to access, treat and convey each unique source of water; and is compared to projected future growth in consumptive water use to 2030. Although few administrative limits have been set on water availability in the east, water managers have identified 315 fresh surface water and 398 fresh groundwater basins (with 151 overlapping basins) as areas of concern (AOCs) where water supply challenges exist due to drought related concerns, environmental flows, groundwater overdraft, or salt water intrusion. This highlights a difference in management where AOCs are identified in the east which simply require additional permitting, while in the west strict administrative limits are established. Although the east is generally considered ‘water rich’ roughly a quarter of the basins were identified as AOCs; however, this is still in strong contrast to the west where 78% of the surface water basins are operating at or near their administrative limit. Little effort was noted on the part of eastern or western water managers to quantify non-fresh water resources.
On the fresh-water invertebrates of the North American Jurassic
White, Charles A.
1886-01-01
Important additions having lately been made to our knowledge of the fresh-water invertebrates of the North American Jurassic strata, I have thought it desirable to present not only descriptions and figures of the new forms in this bulletin, but to make the publication an illustrated synopsis of all the forms yet discovered. I therefore reproduce on the accompanying plates figures of all the species hitherto published, in addition to those of the new forms. Besides this, I offer the following general discussion of the subject of those fresh-water fossils and theft bearing upon continental history.
Divalent Cation Removal by Donnan Dialysis for Improved Reverse Electrodialysis.
Rijnaarts, Timon; Shenkute, Nathnael T; Wood, Jeffery A; de Vos, Wiebe M; Nijmeijer, Kitty
2018-05-07
Divalent cations in feedwater can cause significant decreases in efficiencies for membrane processes, such as reverse electrodialysis (RED). In RED, power is harvested from the mixing of river and seawater, and the obtainable voltage is reduced and the resistance is increased if divalent cations are present. The power density of the RED process can be improved by removing divalent cations from the fresh water. Here, we study divalent cation removal from fresh water using seawater as draw solution in a Donnan dialysis (DD) process. In this way, a membrane system with neither chemicals nor electrodes but only natural salinity gradients can be used to exchange divalent cations. For DD, the permselectivity of the cation exchange membrane is found to be crucial as it determines the ability to block salt leakage (also referred to as co-ion transport). Operating DD using a membrane stack achieved a 76% reduction in the divalent cation content in natural fresh water with residence times of just a few seconds. DD pretreated fresh water was then used in a RED process, which showed improved gross and net power densities of 9.0 and 6.3%, respectively. This improvement is caused by a lower fresh water resistance (at similar open circuit voltages), due to exchange of divalent for monovalent cations.
ERIC Educational Resources Information Center
Solomon, Gerard; And Others
Complete with student worksheets, field trip ideas, illustrations, vocabulary lists, suggested materials, and step-by-step procedures, the document presents a compilation of ideas for teaching elementary school (K-6) students about marine and fresh water. In the first unit students build miniature monuments and observe the deterioration of…
LOWER COLUMBIA RIVER ESTUARY PROGRAM COMPREHENSIVE CONSERVATION AND MANAGEMENT PLAN
An estuary is the area where the fresh water of a river meets the salt water of an ocean. In the Columbia River system, this occurs in the lower 46 river miles. In an estuary, the river has a direct, natural connection with the open sea. This transition from fresh to salt water c...
Cathodic protection of a remote river pipeline
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, B.A.
1994-03-01
The 261-km long 500-mm diam Kutubu pipeline, which runs through dense jungle swamps in Papua, New Guinea, was built for Chevron Niugini to transport oil from the remote Kutubu oil production facility in the Southern Highlands to an offshore loading facility. The pipeline was laid with a section in the bed of a wide, fast-flowing river. This section was subject to substantial telluric effects and current density variations from changing water resistivities. The cathodic protection system's effectiveness was monitored by coupon off'' potentials and required an innovative approach.
Fog as a fresh-water resource: overview and perspectives.
Klemm, Otto; Schemenauer, Robert S; Lummerich, Anne; Cereceda, Pilar; Marzol, Victoria; Corell, David; van Heerden, Johan; Reinhard, Dirk; Gherezghiher, Tseggai; Olivier, Jana; Osses, Pablo; Sarsour, Jamal; Frost, Ernst; Estrela, María J; Valiente, José A; Fessehaye, Gebregiorgis Mussie
2012-05-01
The collection of fog water is a simple and sustainable technology to obtain fresh water for afforestation, gardening, and as a drinking water source for human and animal consumption. In regions where fresh water is sparse and fog frequently occurs, it is feasible to set up a passive mesh system for fog water collection. The mesh is directly exposed to the atmosphere, and the foggy air is pushed through the mesh by the wind. Fog droplets are deposited on the mesh, combine to form larger droplets, and run down passing into a storage tank. Fog water collection rates vary dramatically from site to site but yearly averages from 3 to 10 l m(-2) of mesh per day are typical of operational projects. The scope of this article is to review fog collection projects worldwide, to analyze factors of success, and to evaluate the prospects of this technology.
Carr, Jerry E.; Marcher, Melvin V.
1977-01-01
The Garber-Wellington aquifer, which dips westward at 30 to 40 feet per mile, consists of about 900 feet of interbedded sandstone, shale, and siltstone. Sandstone comprises 35 to 75 percent of the aquifer and averages about 50 percent. Water-table conditions generally exist in the upper 200 feet in the outcrop area of the aquifer; semi-artesian or artesian conditions exist below a depth of 200 feet and beneath rocks of the Hennessey Group (predominantly shale) where the aquifer is fully saturated. Water containing more than 1,000 milligrams per liter dissolved solids occurs at various depths through the area. The altitude of the base of fresh water ranges from 250 feet above sea level in the south-central part of the area to 950 feet in the northwestern part. The thickness of the fresh-water zone ranges from less than 150 feet in the northern part of the area to about 850 feet in the southern part. The total amount of water stored in the fresh-water zone is estimated to be 21 million acre-feet based on specific yield of 0.20. Minimum recharge to the aquifer in 1975 is estimated to be 190 acre-feet per square mile or about 10 percent of the annual precipitation. Total minimum recharge to the aquifer in the study area in 1975 is estimated to be 129,000 acre-feet. Streams in the area are the principal means of ground-water discharge; the amount of discharge is essentially the same as recharge. The amount of groundwater used for municipal and rural water supply in 1975 is estimated to have been 5,000 acre-feet; a similar amount may have been used for industrial purposes. As a result of pumping, the potentiometric surface in 1975 had been lowered about 200 feet in the vicinity of Edmond and about 100 feet in the vicinity of Nichols Hills. Chemical analyses of water from the aquifer indicates that hardness is greater in the upper part of the aquifer than in the lower part, and that sulfate, chloride, and dissolved solids increase with depth. Reported yields of wells more than 250 feet deep range from 70 to 475 gallons per minute and average 240 gallons per minute. Potential well yields range from 225 gallons per minute when the fresh-water zone is 350 feet thick to about 550 gallons per minute where the fresh water zone is 850 feet thick. These estimates of potential yield are based on an available drawdown of half the thickness of the fresh-water zone and a specific capacity of 1.3 gallons per minute per foot. Intrusion of saline water into the fresh-water zone is a potential threat to water quality in the aquifer if the pressure head in the fresh-water zone is reduced sufficiently to allow upconing of saline water. One way to avoid the problem of upconing is by steady pumping at low rates from widely spaced wells; however, information required to determine pumping rates and well spacing is not available. For proper aquifer management the distribution of wells and rates of withdrawals should be designed to capture maximum recharge to the ground-water system. This may be accomplished by developing regional ground-water gradients that are sufficiently large to move water to pumpage centers but not so steep as to cause upconing of saline water or excessive water-level declines.
Yechieli, Y.; Kafri, U.; Goldman, M.; Voss, C.I.
2001-01-01
TDEM (time domain electromagnetic) traverses in the Dead Sea (DS) coastal aquifer help to delineate the configuration of the interrelated fresh-water and brine bodies and the interface in between. A good linear correlation exists between the logarithm of TDEM resistivity and the chloride concentration of groundwater, mostly in the higher salinity range, close to that of the DS brine. In this range, salinity is the most important factor controlling resistivity. The configuration of the fresh-saline water interface is dictated by the hydraulic gradient, which is controlled by a number of hydrological factors. Three types of irregularities in the configuration of fresh-water and saline-water bodies were observed in the study area: 1. Fresh-water aquifers underlying more saline ones ("Reversal") in a multi-aquifer system. 2. "Reversal" and irregular residual saline-water bodies related to historical, frequently fluctuating DS base level and respective interfaces, which have not undergone complete flushing. A rough estimate of flushing rates may be obtained based on knowledge of the above fluctuations. The occurrence of salt beds is also a factor affecting the interface configuration. 3. The interface steepens towards and adjacent to the DS Rift fault zone. Simulation analysis with a numerical, variable-density flow model, using the US Geological Survey's SUTRA code, indicates that interface steep- ening may result from a steep water-level gradient across the zone, possibly due to a low hydraulic conductivity in the immediate vicinity of the fault.
Renal effects of fresh water-induced hypo-osmolality in a marine adapted seal
NASA Technical Reports Server (NTRS)
Ortiz, R. M.; Wade, C. E.; Costa, D. P.; Ortiz, C. L.
2002-01-01
With few exceptions, marine mammals are not exposed to fresh water; however quantifying the endocrine and renal responses of a marine-adapted mammal to the infusion of fresh water could provide insight on the evolutionary adaptation of kidney function and on the renal capabilities of these mammals. Therefore, renal function and hormonal changes associated with fresh water-induced diuresis were examined in four, fasting northern elephant seal ( Mirounga angustirostris) (NES) pups. A series of plasma samples and 24-h urine voids were collected prior to (control) and after the infusion of water. Water infusion resulted in an osmotic diuresis associated with an increase in glomerular filtration rate (GFR), but not an increase in free water clearance. The increase in excreted urea accounted for 96% of the increase in osmotic excretion. Following infusion of fresh water, plasma osmolality and renin activity decreased, while plasma aldosterone increased. Although primary regulators of aldosterone release (Na(+), K(+) and angiotensin II) were not significantly altered in the appropriate directions to individually stimulate aldosterone secretion, increased aldosterone may have resulted from multiple, non-significant changes acting in concert. Aldosterone release may also be hypersensitive to slight reductions in plasma Na(+), which may be an adaptive mechanism in a species not known to drink seawater. Excreted aldosterone and urea were correlated suggesting aldosterone may regulate urea excretion during hypo-osmotic conditions in NES pups. Urea excretion appears to be a significant mechanism by which NES pups sustain electrolyte resorption during conditions that can negatively affect ionic homeostasis such as prolonged fasting.
Listeria monocytogenes in Fresh Produce: Outbreaks, Prevalence and Contamination Levels
Zhu, Qi; Gooneratne, Ravi; Hussain, Malik Altaf
2017-01-01
Listeria monocytogenes, a member of the genus Listeria, is widely distributed in agricultural environments, such as soil, manure and water. This organism is a recognized foodborne pathogenic bacterium that causes many diseases, from mild gastroenteritis to severe blood and/or central nervous system infections, as well as abortion in pregnant women. Generally, processed ready-to-eat and cold-stored meat and dairy products are considered high-risk foods for L. monocytogenes infections that cause human illness (listeriosis). However, recently, several listeriosis outbreaks have been linked to fresh produce contamination around the world. Additionally, many studies have detected L. monocytogenes in fresh produce samples and even in some minimally processed vegetables. Thus L. monocytogenes may contaminate fresh produce if present in the growing environment (soil and water). Prevention of biofilm formation is an important control measure to reduce the prevalence and survival of L. monocytogenes in growing environments and on fresh produce. This article specifically focuses on fresh produce–associated listeriosis outbreaks, prevalence in growing environments, contamination levels of fresh produce, and associated fresh produce safety challenges. PMID:28282938
Li, Weifeng; Ling, Wencui; Liu, Suoxiang; Zhao, Jing; Liu, Ruiping; Chen, Qiuwen; Qiang, Zhimin; Qu, Jiuhui
2011-01-01
Water leakage in drinking water distribution systems is a serious problem for many cities and a huge challenge for water utilities. An integrated system for the detection, early warning, and control of pipeline leakage has been developed and successfully used to manage the pipeline networks in selected areas of Beijing. A method based on the geographic information system has been proposed to quickly and automatically optimize the layout of the instruments which detect leaks. Methods are also proposed to estimate the probability of each pipe segment leaking (on the basis of historic leakage data), and to assist in locating the leakage points (based on leakage signals). The district metering area (DMA) strategy is used. Guidelines and a flowchart for establishing a DMA to manage the large-scale looped networks in Beijing are proposed. These different functions have been implemented into a central software system to simplify the day-to-day use of the system. In 2007 the system detected 102 non-obvious leakages (i.e., 14.2% of the total detected in Beijing) in the selected areas, which was estimated to save a total volume of 2,385,000 m3 of water. These results indicate the feasibility, efficiency and wider applicability of this system.
Engineering and Design: Composite Materials for Civil Engineering Structures
1997-03-31
the effects of acidic, salt, and fresh waters . Acidic, salt, and fresh waters are corrosive to ferrous metals. In Corps of Engineers structures, high...what is commonly called a toughened epoxy. (5) Polymeric resins will absorb moisture. Since many applications are in contact with water (at least...ultraviolet radiation. Some coatings can reduce the amount of moisture absorption by the structure. All polymeric resins will absorb water to some
Sediment-Submersed Macrophyte Relationships in Freshwater Systems.
1982-06-01
aide if necessary and Identify by block nuobe.) Aquatic plants Fresh- water ecology Fresh- water flora Sedimentation and deposition 20, A114 ACT...a large and important source of N and P for rooted aquatic macrophytes, but K is probably supplied to these plants primarily from the water . .Xy... aquatic systems. In a subsequent related investigation, K uptake by Hydr~ia verticiZZata Royle from sediment versus overlying water was evaluated in
Quantifying the Global Fresh Water Budget: Capabilities from Current and Future Satellite Sensors
NASA Technical Reports Server (NTRS)
Hildebrand, Peter; Zaitchik, Benjamin
2007-01-01
The global water cycle is complex and its components are difficult to measure, particularly at the global scales and with the precision needed for assessing climate impacts. Recent advances in satellite observational capabilities, however, are greatly improving our knowledge of the key terms in the fresh water flux budget. Many components of the of the global water budget, e.g. precipitation, atmospheric moisture profiles, soil moisture, snow cover, sea ice are now routinely measured globally using instruments on satellites such as TRMM, AQUA, TERRA, GRACE, and ICESat, as well as on operational satellites. New techniques, many using data assimilation approaches, are providing pathways toward measuring snow water equivalent, evapotranspiration, ground water, ice mass, as well as improving the measurement quality for other components of the global water budget. This paper evaluates these current and developing satellite capabilities to observe the global fresh water budget, then looks forward to evaluate the potential for improvements that may result from future space missions as detailed by the US Decadal Survey, and operational plans. Based on these analyses, and on the goal of improved knowledge of the global fresh water budget under the effects of climate change, we suggest some priorities for the future, based on new approaches that may provide the improved measurements and the analyses needed to understand and observe the potential speed-up of the global water cycle under the effects of climate change.
Hydrogeologic conditions in the town of Shelter Island, Suffolk County, Long Island, New York
Soren, Julian
1978-01-01
Shelter Island, an area of about 11 square miles, in Suffolk County, N.Y., is situated between the north and south forks of eastern Long Island. The upper glacial aquifer is the sole source of freshwater supply for Shelter Island 's population, which currently ranges seasonally from 2,000 to 8,000. Fresh ground water seems to be limited to sand and gravel deposits in the aquifer, which is thin and can be readily infiltrated by surrounding saline ground water. The aquifer is underlain by confining clay formations that contain saline water, and the geologic formations below the clay probably contain saline water also. The fresh ground water is mostly soft and has low dissolved-solids concentrations; however, several wells near shorelines have yielded excessive amounts of chloride. Man-induced contamination of the aquifer is evident but not severe, as shown by somewhat elevated concentrations of nitrate nitrogen and methylene blue active substances (MBAS). Increased pumping will cause deterioration of the fresh ground-water supply by inducing saline-water infiltration and by adding greater volumes of septic-tank and cesspool effluents to the aquifer. Test drilling could help in water-supply management by determining the extent of the aquifer and of fresh ground-water storage, and observation wells could provide early detection of saline-water infiltration. (Woodard-USGS)
NASA Astrophysics Data System (ADS)
Polovnikov, V. Yu.
2018-05-01
This paper presents the results of numerical analysis of thermal regimes and heat losses of underground channel heating systems under flooding conditions with the use of a convective-conductive heat transfer model with the example of the configuration of the heat pipeline widely used in the Russian Federation — a nonpassage ferroconcrete channel (crawlway) and pipelines insulated with mineral wool and a protective covering layer. It has been shown that convective motion of water in the channel cavity of the heat pipeline under flooding conditions has no marked effect on the intensification of heat losses. It has been established that for the case under consideration, heat losses of the heat pipeline under flooding conditions increase from 0.75 to 52.39% due to the sharp increase in the effective thermal characteristics of the covering layer and the heat insulator caused by their moistening.
NASA Astrophysics Data System (ADS)
Polovnikov, V. Yu.
2018-03-01
This paper presents the results of numerical analysis of thermal regimes and heat losses of underground channel heating systems under flooding conditions with the use of a convective-conductive heat transfer model with the example of the configuration of the heat pipeline widely used in the Russian Federation — a nonpassage ferroconcrete channel (crawlway) and pipelines insulated with mineral wool and a protective covering layer. It has been shown that convective motion of water in the channel cavity of the heat pipeline under flooding conditions has no marked effect on the intensification of heat losses. It has been established that for the case under consideration, heat losses of the heat pipeline under flooding conditions increase from 0.75 to 52.39% due to the sharp increase in the effective thermal characteristics of the covering layer and the heat insulator caused by their moistening.
The CWF pipeline system from Shen mu to the Yellow Sea
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ercolani, D.
1993-12-31
A feasibility study on the applicability of coal-water fuel (CWF) technology in the People`s Republic of China (PRC) is in progress. This study, awarded to Snamprogetti by the International Centre for Scientific Culture (World Laboratory) of Geneva, Switzerland, is performed on behalf of Chinese Organizations led by the Ministry of Energy Resources and the Academy of Sciences of the People`s Republic of China. Slurry pipelines appear to be a solution for solving the logistic problems created by a progressively increasing coal consumption and a limited availability of conventional transport infrastructures in the PRC. Within this framework, CWF pipelines are themore » most innovative technological option in consideration of the various advantages the technology offers with respect to conventional slurry pipelines. The PRC CWF pipeline system study evaluates two alternative transport streams, but originating from the same slurry production plant, located at Shachuanguo, about 100 km from Sheng Mu.« less
Tang, Jing; Tang, Lin; Zhang, Chang; Zeng, Guangming; Deng, Yaocheng; Dong, Haoran; Wang, Jingjing; Wu, Yanan
2015-10-01
Semi-volatile organic compounds (SVOCs) derived from plastic pipes widely used in water distribution definitely influence our daily drinking water quality. There are still few scientific or integrated studies on the release and degradation of the migrating chemicals in pipelines. This investigation was carried out at field sites along a pipeline in Changsha, China. Two chemicals, 2, 4-tert-buthylphenol and 1, 3-diphenylguanidine, were found to be migrating from high density polyethylene (HDPE) pipe material. New pipes released more of these two compounds than older pipes, and microorganisms living in older pipes tended to degrade them faster, indicating that the aged pipes were safer for water transmission. Microorganism degradation in water plays a dominant role in the control of these substances. To minimize the potential harm to human, a more detailed study incorporating assessment of their risk should be carried out, along with seeking safer drinking pipes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1976-03-01
Each week, pilots of Michigan Wisconsin Pipe Line Co.'s aerial patrol fly over the entire 12,000 mi of the company's pipeline system to discover possible gas leaks and prevent accidental encroachment of pipeline right-of-way. (Leaks are uncommon, but as many as 10 potential trespassing incidents can occur along a route in a week.) Following the pipeline is facilitated by the warmth emitted by the line which affects the plant life directly above it. Gas leaks may be indicated by a patch of brown vegetation or by sediment brought to water surfaces by escaping gas bubbles. The 1- and 2-engine patrolmore » planes, which receive special permission from federal authorities to fly at low altitudes, undergo 100-h safety checks and frequent overhauls.« less
An Analysis of the Impact of Valve Closure Time on the Course of Water Hammer
NASA Astrophysics Data System (ADS)
Kodura, Apoloniusz
2016-06-01
The knowledge of transient flow in pressure pipelines is very important for the designing and describing of pressure networks. The water hammer is the most common example of transient flow in pressure pipelines. During this phenomenon, the transformation of kinetic energy into pressure energy causes significant changes in pressure, which can lead to serious problems in the management of pressure networks. The phenomenon is very complex, and a large number of different factors influence its course. In the case of a water hammer caused by valve closing, the characteristic of gate closure is one of the most important factors. However, this factor is rarely investigated. In this paper, the results of physical experiments with water hammer in steel and PE pipelines are described and analyzed. For each water hammer, characteristics of pressure change and valve closing were recorded. The measurements were compared with the results of calculations perfomed by common methods used by engineers - Michaud's equation and Wood and Jones's method. The comparison revealed very significant differences between the results of calculations and the results of experiments. In addition, it was shown that, the characteristic of butterfly valve closure has a significant influence on water hammer, which should be taken into account in analyzing this phenomenon. Comparison of the results of experiments with the results of calculations? may lead to new, improved calculation methods and to new methods to describe transient flow.
New biosensors for food safety screening solutions
NASA Astrophysics Data System (ADS)
Dyer, Maureen A.; Oberholtzer, Jennifer A.; Mulligan, David C.; Hanson, William P.
2009-05-01
Hanson Technologies has developed the automated OmniFresh 1000 system to sample large volumes of produce wash water, collect the pathogens, and detect their presence. By collecting a continuous sidestream of wash water, the OmniFresh uses a sample that represent the entire lot of produce being washed. The OmniFresh does not require bacterial culture or enrichment, and it detects both live and dead bacteria in the collected sample using an in-line sensor. Detection occurs in an array biosensor capable of handling large samples with complex matrices. Additionally, sample can be sent for traditional confirming tests after the screening performed by the OmniFresh.
This insitu pipe loop study was designed to determine the disinfectant kinetics associated with very old unlined cast iron pipelines with both chlorine and chloramination residuals. An abandoned 90-year-old unlined cast iron pipeline about 2000 ft long was acclimated to conduct a...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-19
...-diameter Diamond Valley Ranch Loop pipeline; (2) an approximately 22-foot-wide by 35-foot-long powerhouse... the 18-inch-diameter Diamond Valley Ranch Loop; and (4) appurtenant facilities. The proposed project..., canal, Y pipeline, aqueduct, flume, ditch, or similar manmade water conveyance that is operated for the...
Biagioni, Cristian; D'Orazio, Massimo; Lepore, Giovanni O; d'Acapito, Francesco; Vezzoni, Simone
2017-06-01
Following the detection of a severe thallium contamination of the drinkable water from the public distribution system of Valdicastello Carducci-Pietrasanta (northern Tuscany, Italy), and the identification of the source of contamination in the Molini di Sant'Anna spring (average Tl content≈15μgL -1 ), the replacement of the contaminated water with a virtually Tl-free one (Tl<0.10μgL -1 ) caused an increase in Tl concentration in the drinkable water. This suggested that the pipeline interior had become a secondary source of Tl contamination, promoting its mineralogical and geochemical study. Rust scales samples taken from several pipeline segments, as well as leaching products obtained from these samples, were investigated through scanning electron microscopy, X-ray fluorescence chemical analyses, inductively coupled plasma - mass spectrometry, X-ray diffraction, and X-ray absorption spectroscopy. Thallium-rich rust scales (up to 5.3wt% Tl) have been found only in pipeline samples taken downstream the water treatment plant, whereas the sample taken upstream contains much less Tl (~90μgg -1 ). The Tl-rich nature of such scales is related to the occurrence of nano- and micro-spherules of Tl 2 O 3 and less abundant nanocrystalline μm-sized encrustations of TlCl. Leaching experiments on Tl-rich rust scales indicate that a fraction of the available Tl is easily dissolved in tap water; X-ray absorption spectroscopy suggests that monovalent thallium occurs in water equilibrated with the rust scales, probably related to the dissolution of TlCl encrustations. Therefore, Tl dissolved as Tl + only in the water from the Molini di Sant'Anna spring was partially removed through oxidative precipitation of Tl 2 O 3 and precipitation of TlCl. This highlights the critical role played by the addition of chlorine-based oxidants in water treatment plants that could favour the deposition of Tl-rich coatings within the pipelines, giving rise to unexpected secondary sources of contamination. Copyright © 2017 Elsevier B.V. All rights reserved.
The flushing time of an estuary is generally defined as the turnover time of fresh water in the estuary, that is, the time required to replace the fresh water contained in the estuary with freshwater inflow. Thus, the flushing time of an estuary is the ratio of the volume of fres...
USDA-ARS?s Scientific Manuscript database
This study investigated the fusion of spectra and texture data of hyperspectral imaging (HSI, 1000–2500 nm) for predicting the water-holding capacity (WHC) of intact, fresh chicken breast filets. Three physical and chemical indicators drip loss, expressible fluid, and salt-induced water gain were me...
Portugal, Steven J; Maurer, Golo; Cassey, Phillip
2010-01-01
Typically, eggshell water vapor conductance is measured on whole eggs, freshly collected at the commencement of a study. At times, however, it may not be possible to obtain whole fresh eggs but rather egg fragments or previously blown eggs. Here we evaluate and describe in detail a technique for modern laboratory analysis of eggshell conductance that uses fragments from fresh and museum eggs to determine eggshell water vapor conductance. We used fresh unincubated eggs of domesticated chickens (Gallus gallus domesticus), ducks (Anas platyrhynchos domesticus), and guinea fowl (Numida meleagris) to investigate the reliability, validity, and repeatability of the technique. To assess the suitability of museum samples, museum and freshly collected black-headed gull eggs (Larus ridibundus) were used. Fragments were cut out of the eggshell from the blunt end (B), equator (E), and pointy end (P). Eggshell fragments were glued to the top of a 0.25-mL micro test tube (Eppendorf) filled with 200 μL of distilled water and placed in a desiccator at 25°C. Eppendorfs were weighed three times at 24-h intervals, and mass loss was assumed to be a result of water evaporation. We report the following results: (1) mass loss between weighing sessions was highly repeatable and consistent in all species; (2) the majority of intraspecific variability in eggshell water vapor conductance between different eggs of the same species was explained through the differences in water vapor conductance between the three eggshell parts of the same egg (B, E, and P); (3) the technique was sensitive enough to detect significant differences between the three domestic species; (4) there was no overall significant difference between water vapor conductance of museum and fresh black-headed gull eggs; (5) there was no significant difference in water vapor conductance for egg fragments taken from the same egg both between different trials and within the same trial. We conclude, therefore, that this technique is an effective way of measuring interspecific water vapor conductance from eggshell fragments and that museum eggs are a suitable resource for such work.
NASA Astrophysics Data System (ADS)
Henclik, Sławomir
2018-03-01
The influence of dynamic fluid-structure interaction (FSI) onto the course of water hammer (WH) can be significant in non-rigid pipeline systems. The essence of this effect is the dynamic transfer of liquid energy to the pipeline structure and back, which is important for elastic structures and can be negligible for rigid ones. In the paper a special model of such behavior is analyzed. A straight pipeline with a steady flow, fixed to the floor with several rigid supports is assumed. The transient is generated by a quickly closed valve installed at the end of the pipeline. FSI effects are assumed to be present mainly at the valve which is fixed with a spring dash-pot attachment. Analysis of WH runs, especially transient pressure changes, for various stiffness and damping parameters of the spring dash-pot valve attachment is presented in the paper. The solutions are found analytically and numerically. Numerical results have been computed with the use of an own computer program developed on the basis of the four equation model of WH-FSI and the specific boundary conditions formulated at the valve. Analytical solutions have been found with the separation of variables method for slightly simplified assumptions. Damping at the dash-pot is taken into account within the numerical study. The influence of valve attachment parameters onto the WH courses was discovered and it was found the transient amplitudes can be reduced. Such a system, elastically attached shut-off valve in a pipeline or other, equivalent design can be a real solution applicable in practice.
Ground-water resources of Kleberg County, Texas
Livingston, Penn Poore; Bridges, Thomas W.
1936-01-01
Water obtained from the fresh-water horizon is comparatively fresh in the western and central parts of the county but contains a somewhat higher proportion of chlorides toward the Gulf. Samples obtained from about 100 wells, located for the most part in the central part of the county, showed a. higher chloride content than is normal for the freshwater beds in the area. These wells are believed in large part to be defective and to be admitting salt water. This was demonstrated and the leaks located in several wells that were tested. No evidence was found of salt-water contamination by percolation through the formations, however. The leaky wells should be repaired, If practicable, or sealed to prevent them from contaminating the fresh-water sand. The chances of leaks developing can be largely eliminated If the wells are properly drilled and provided with casing of good grade, and the casing is adequately seated.
Tidwell, Vincent; Moreland, Barbara D.; Shaneyfelt, Calvin; ...
2017-11-08
The availability of freshwater supplies to meet future demand is a growing concern. Water availability metrics are needed to inform future water development decisions. Furthermore, with the help of water managers, water availability was mapped for over 1300 watersheds throughout the 31-contiguous states in the eastern U.S. complimenting a prior study of the west. The compiled set of water availability data is unique in that it considers multiple sources of water (fresh surface and groundwater, wastewater and brackish groundwater); accommodates institutional controls placed on water use; is accompanied by cost estimates to access, treat and convey each unique source ofmore » water, and; is compared to projected future growth in consumptive water use to 2030. Although few administrative limits have been set on water availability in the east, water managers have identified 315 fresh surface water and 398 fresh groundwater basins (with 151 overlapping basins) as Areas of Concern (AOCs) where water supply challenges exist due to drought related concerns, environmental flows, groundwater overdraft, or salt water intrusion. This highlights a difference in management where AOCs are identified in the east which simply require additional permitting, while in the west strict administrative limits are established. Although the east is generally considered "water rich" roughly a quarter of the basins were identified as AOCs; however, this is still in strong contrast to the west where 78% of the surface water basins are operating at or near their administrative limit. There was little effort noted on the part of eastern or western water managers to quantify non-fresh water resources.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tidwell, Vincent; Moreland, Barbara D.; Shaneyfelt, Calvin
The availability of freshwater supplies to meet future demand is a growing concern. Water availability metrics are needed to inform future water development decisions. Furthermore, with the help of water managers, water availability was mapped for over 1300 watersheds throughout the 31-contiguous states in the eastern U.S. complimenting a prior study of the west. The compiled set of water availability data is unique in that it considers multiple sources of water (fresh surface and groundwater, wastewater and brackish groundwater); accommodates institutional controls placed on water use; is accompanied by cost estimates to access, treat and convey each unique source ofmore » water, and; is compared to projected future growth in consumptive water use to 2030. Although few administrative limits have been set on water availability in the east, water managers have identified 315 fresh surface water and 398 fresh groundwater basins (with 151 overlapping basins) as Areas of Concern (AOCs) where water supply challenges exist due to drought related concerns, environmental flows, groundwater overdraft, or salt water intrusion. This highlights a difference in management where AOCs are identified in the east which simply require additional permitting, while in the west strict administrative limits are established. Although the east is generally considered "water rich" roughly a quarter of the basins were identified as AOCs; however, this is still in strong contrast to the west where 78% of the surface water basins are operating at or near their administrative limit. There was little effort noted on the part of eastern or western water managers to quantify non-fresh water resources.« less
Estimated use of water in the United States in 1970
Murray, Charles Richard; Reeves, E. Bodette
1972-01-01
The average annual streamflow--simplified measure of the total available water supply--is approximately 1,200 bgd in the conterminous United States. Total water withdrawn in 1970 for off-channel uses (withdrawals other than for hydroelectric power) amounted to about 30 percent of the average annual streamflow: 7 percent of the 1,200 bgd basic supply was consumed. However, comparisons of Water Resources Council regions indicate that the rate of withdrawal was higher than the locally dependable supply in the Middle Atlantic, Texas-Gulf, Rio Grande, Lower Colorado, and California-South Pacific regions. Consumption amounted to nearly 25 percent of withdrawals in the conterminous United States; however, fresh-water consumption amounted to only 14 percent of off-channel withdrawals in the 31 Eastern States and ranged from 30 percent to nearly 70 percent of off-channel withdrawals in the Water Resources Council regions in the West. In the Rio Grande and Lower Colorado regions, fresh-water consumption in 1970 exceeded the estimated dependable supply of fresh water.
Gates, Joseph Spencer; Stanley, W.D.
1976-01-01
Airborne-electromagnetic and earth-resistivity surveys were used to explore for fresh ground water in the Hueco Bolson southeast of El Paso, Texas. Aerial surveys were made along about 500 miles (800 km) of flight line, and 67 resistivity soundings were made along 110 miles (180 km) of profile. The surveys did not indicate the presence of any large bodies of fresh ground water, but several areas may be underlain by small to moderate amounts of fresh to slightly saline water.The material underlying the flood plain of the Rio Grande is predominantly clay or sand of low resistivity. Along a band on the mesa next to and parallel to the flood plain, more resistive material composed partly of deposits of an ancient river channel extends to depths of about 400 to 1,700 feet (120 to 520 m). Locally, the lower part of this more resistive material is saturated with fresh to slightly saline water. The largest body of fresh to slightly saline ground water detected in this study is between Fabens and Tornillo, Texas, mostly in the sandhill area between the flood plain and the mesa. Under assumed conditions, the total amount of water in storage may be as much as 400,000 to 800,000 acre-feet (500 million to 1 billion m ).The resistivity data indicate that the deep artesian zone southwest of Fabens extends from a depth of about 1,200 feet (365 m) to about 2,800 feet (855 m).
Relating the Electrical Resistance of Fresh Concrete to Mixture Proportions.
Obla, K; Hong, R; Sherman, S; Bentz, D P; Jones, S Z
2018-01-01
Characterization of fresh concrete is critical for assuring the quality of our nation's constructed infrastructure. While fresh concrete arriving at a job site in a ready-mixed concrete truck is typically characterized by measuring temperature, slump, unit weight, and air content, here the measurement of the electrical resistance of a freshly cast cylinder of concrete is investigated as a means of assessing mixture proportions, specifically cement and water contents. Both cement and water contents influence the measured electrical resistance of a sample of fresh concrete: the cement by producing ions (chiefly K + , Na + , and OH - ) that are the main source of electrical conduction; and the water by providing the main conductive pathways through which the current travels. Relating the measured electrical resistance to attributes of the mixture proportions, such as water-cement ratio by mass ( w/c ), is explored for a set of eleven different concrete mixtures prepared in the laboratory. In these mixtures, w/c , paste content, air content, fly ash content, high range water reducer dosage, and cement alkali content are all varied. Additionally, concrete electrical resistance data is supplemented by measuring the resistivity of its component pore solution obtained from 5 laboratory-prepared cement pastes with the same proportions as their corresponding concrete mixtures. Only measuring the concrete electrical resistance can provide a prediction of the mixture's paste content or the product w*c ; conversely, when pore solution resistivity is also available, w/c and water content of the concrete mixture can be reasonably assessed.
Microbial Quality and Phylogenetic Diversity of Fresh Rainwater and Tropical Freshwater Reservoir
Kaushik, Rajni; Balasubramanian, Rajasekhar; Dunstan, Hugh
2014-01-01
The impact of rainwater on the microbial quality of a tropical freshwater reservoir through atmospheric wet deposition of microorganisms was studied for the first time. Reservoir water samples were collected at four different sampling points and rainwater samples were collected in the immediate vicinity of the reservoir sites for a period of four months (January to April, 2012) during the Northeast monsoon period. Microbial quality of all fresh rainwater and reservoir water samples was assessed based on the counts for the microbial indicators: Escherichia coli (E. coli), total coliforms, and Enterococci along with total heterotrophic plate counts (HPC). The taxonomic richness and phylogenetic relationship of the freshwater reservoir with those of the fresh rainwater were also assessed using 16 S rRNA gene clone library construction. The levels of E. coli were found to be in the range of 0 CFU/100 mL – 75 CFU/100 mL for the rainwater, and were 10–94 CFU/100 mL for the reservoir water. The sampling sites that were influenced by highway traffic emissions showed the maximum counts for all the bacterial indicators assessed. There was no significant increase in the bacterial abundances observed in the reservoir water immediately following rainfall. However, the composite fresh rainwater and reservoir water samples exhibited broad phylogenetic diversity, including sequences representing Betaproteobacteria, Alphaproteobacteria, Gammaproteobacteria, Actinobacteria, Lentisphaerae and Bacteriodetes. Members of the Betaproteobacteria group were the most dominant in both fresh rainwater and reservoir water, followed by Alphaproteobacteria, Sphingobacteria, Actinobacteria and Gammaproteobacteria. PMID:24979573
Microbial quality and phylogenetic diversity of fresh rainwater and tropical freshwater reservoir.
Kaushik, Rajni; Balasubramanian, Rajasekhar; Dunstan, Hugh
2014-01-01
The impact of rainwater on the microbial quality of a tropical freshwater reservoir through atmospheric wet deposition of microorganisms was studied for the first time. Reservoir water samples were collected at four different sampling points and rainwater samples were collected in the immediate vicinity of the reservoir sites for a period of four months (January to April, 2012) during the Northeast monsoon period. Microbial quality of all fresh rainwater and reservoir water samples was assessed based on the counts for the microbial indicators: Escherichia coli (E. coli), total coliforms, and Enterococci along with total heterotrophic plate counts (HPC). The taxonomic richness and phylogenetic relationship of the freshwater reservoir with those of the fresh rainwater were also assessed using 16 S rRNA gene clone library construction. The levels of E. coli were found to be in the range of 0 CFU/100 mL-75 CFU/100 mL for the rainwater, and were 10-94 CFU/100 mL for the reservoir water. The sampling sites that were influenced by highway traffic emissions showed the maximum counts for all the bacterial indicators assessed. There was no significant increase in the bacterial abundances observed in the reservoir water immediately following rainfall. However, the composite fresh rainwater and reservoir water samples exhibited broad phylogenetic diversity, including sequences representing Betaproteobacteria, Alphaproteobacteria, Gammaproteobacteria, Actinobacteria, Lentisphaerae and Bacteriodetes. Members of the Betaproteobacteria group were the most dominant in both fresh rainwater and reservoir water, followed by Alphaproteobacteria, Sphingobacteria, Actinobacteria and Gammaproteobacteria.
Relating the Electrical Resistance of Fresh Concrete to Mixture Proportions
Obla, K.; Hong, R.; Sherman, S.; Bentz, D.P.; Jones, S.Z.
2018-01-01
Characterization of fresh concrete is critical for assuring the quality of our nation’s constructed infrastructure. While fresh concrete arriving at a job site in a ready-mixed concrete truck is typically characterized by measuring temperature, slump, unit weight, and air content, here the measurement of the electrical resistance of a freshly cast cylinder of concrete is investigated as a means of assessing mixture proportions, specifically cement and water contents. Both cement and water contents influence the measured electrical resistance of a sample of fresh concrete: the cement by producing ions (chiefly K+, Na+, and OH-) that are the main source of electrical conduction; and the water by providing the main conductive pathways through which the current travels. Relating the measured electrical resistance to attributes of the mixture proportions, such as water-cement ratio by mass (w/c), is explored for a set of eleven different concrete mixtures prepared in the laboratory. In these mixtures, w/c, paste content, air content, fly ash content, high range water reducer dosage, and cement alkali content are all varied. Additionally, concrete electrical resistance data is supplemented by measuring the resistivity of its component pore solution obtained from 5 laboratory-prepared cement pastes with the same proportions as their corresponding concrete mixtures. Only measuring the concrete electrical resistance can provide a prediction of the mixture’s paste content or the product w*c; conversely, when pore solution resistivity is also available, w/c and water content of the concrete mixture can be reasonably assessed. PMID:29882546
Consumptive water use associated with food waste: case study of fresh mango in Australia
NASA Astrophysics Data System (ADS)
Ridoutt, B. G.; Juliano, P.; Sanguansri, P.; Sellahewa, J.
2009-07-01
In many parts of the world, freshwater is already a scarce and overexploited natural resource, raising concerns about global food security and damage to freshwater ecosystems. This situation is expected to intensify with the FAO estimating that world food production must double by 2050. Food chains must therefore become much more efficient in terms of consumptive water use. For the small and geographically well-defined Australian mango industry, having an average annual production of 44 692 t of marketable fresh fruit, the average virtual water content (sum of green, blue and gray water) at orchard gate was 2298 l kg-1. However, due to wastage in the distribution and consumption stages of the product life cycle, the average virtual water content of one kg of Australian-grown fresh mango consumed by an Australian household was 5218 l. This latter figure compares to an Australian-equivalent water footprint of 217 l kg-1, which is the volume of direct water use by an Australian household having an equivalent potential to contribute to water scarcity. Nationally, distribution and consumption waste in the food chain of Australian-grown fresh mango to Australian households represented an annual waste of 26.7 Gl of green water and 16.6 Gl of blue water. These findings suggest that interventions to reduce food chain waste will likely have as great or even greater impact on freshwater resource availability as other water use efficiency measures in agriculture and food production.
Different parameter and technique affecting the rate of evaporation on active solar still -a review
NASA Astrophysics Data System (ADS)
A, Muthu Manokar; D, Prince Winston; A. E, Kabeel; Sathyamurthy, Ravishankar; T, Arunkumar
2018-03-01
Water is one of the essential sources for the endurance of human on the earth. As earth having only a small amount of water resources for consumption purpose people in rural and urban areas are getting affected by consuming dirty water that leads to water-borne diseases. Even though ground water is available in small quantity, it has to be treated properly before its use for internal consumption. Brackish water contains dissolve and undissolved contents, and hence it is not suitable for the household purpose. Nowadays, distillation process is done by using passive and active solar stills. The major problem in using passive solar still is meeting higher demand for fresh water. The fresh water production from passive solar still is critically low to meet the demand. To improve the productivity of conventional solar still, input feed water is preheated by integrating the solar still to different collector panels. In this review article, the different parameters that affect the rate of evaporation in an active solar still and the different methods incorporated has been presented. In addition to active distillation system, forced convection technique can be incorporated to increase the yield of fresh water by decreasing the temperature of cover. Furthermore, it is identified that the yield of fresh water from the active desalination system can be improved by sensible and latent heat energy storage. This review will motivate the researchers to decide appropriate active solar still technology for promoting development.
Rectal Glands of Marine and Fresh-Water Sharks: Comparative Histology.
Oguri, M
1964-05-29
The rectal glands of elasmobranchs perform the function of salt-excreting organs. These glands are smaller and show regressive changes in specimens of the bull shark, Carcharhinus leucas found in fresh-water environment, compared with specimens of this and other species from a marine habitat.
The limited and localized flow of fresh groundwater to the world's oceans
NASA Astrophysics Data System (ADS)
Luijendijk, E.; Gleeson, T. P.; Moosdorf, N.
2017-12-01
Submarine groundwater discharge, the flow of fresh or saline groundwater to oceans [Burnett et al., 2003], may be a significant contributor to the water and chemical budgets of the world's oceans [Taniguchi et al., 2002] potentially buffering ocean acidification with groundwater alkalinity and is arguably the most uncertain component of the global groundwater budget [Alley et al., 2002]. The fresh component of submarine groundwater discharge is critical due to its high solute and nutrient load, and has been quantified locally and but only roughly estimated globally using significant assumptions. Here we show that that fresh submarine groundwater discharge is an insignificant water contributor to global oceans (0.05% of the total input) but that the freshwater discharge may still be an important chemical and nutrient contributor especially around distinct hotspots. The first spatially-explicit, physically-based global estimate of fresh submarine groundwater discharge was derived by combining density-dependent numerical groundwater models and a geospatial analysis of global coastal watersheds to robustly simulate the partitioning of onshore and offshore groundwater discharge. Although fresh submarine groundwater discharge is an insignificant part of fresh coastal groundwater discharge, results are consistent with previous estimates of significant recirculated seawater discharging as groundwater as well as quantifying the significant near-shore terrestrial discharge, a flux that has so far been overlooked in global hydrological studies and that affects coastal water budgets, evapotranspiration and ecosystems.
Water-use data by category, county, and water management district in Florida, 1950-90
Marella, R.L.
1995-01-01
The population for Florida in 1990 was estimated at 12.94 million, an increase of nearly 10.17 million (370 percent) from the population of 2.77 million in 1950. Consequently, water use (fresh and saline) in Florida increased nearly 510 percent (15,175 million gallons per day) between 1950 and 1990. The resident population of the State is projected to surpass 20 million by the year 2020. Through the cooperation of the Florida Department of Environ- mental Protection and the U.S. Geologial Survey, water-use data for the period between 1950 and 1990 has been consolidated into one publication. This report aggregates and summarizes the quantities of water withdrawn annually for all water-use categories (public supply, self-supplied domestic, self-supplied commercial-industrial, agriculture, and thermoelectric power generation), by counties, and water management districts in Florida from 1950 through 1990. Total water withdrawn in Florida increased from 2,923 million gallons per day in 1950 to 17,898 million gallons per day in 1990. Surface- water withdrawals during 1950 totaled 2,333 million gallons per day but were not differentiated between fresh and saline, therefore, comparisons between fresh and saline water were made beginning with 1955 data. Freshwater withdrawals increased 245 percent between 1955 and 1990. Saline water withdrawals increased more than 1,500 percent between 1955 and 1990. In 1955, more than 47 percent of the fresh- water used was withdrawn from ground-water sources and 53 percent was withdrawn from surface-water sources. In 1990, nearly 62 percent of the fresh- water withdrawn was from ground-water sources, while 38 percent was withdrawn from surface-water sources. The steady increase in ground-water withdrawals since the 1950's primarily is a result of the ability to drill and pump water more economically from large, deep wells and the reliability of both the quality and quantity of water from these wells. Water withdrawn for public supply in Florida increased 1,030 percent between 1950 and 1990. The population served by public supply increased from 1.66 million in 1950 to 11.23 million in 1990, and the percentage of the population served by public supply increased from 60 percent in 1950 to nearly 88 percent in 1990. Freshwater withdrawn for self- supplied domestic use in Florida increased 1,010 percent, self-supplied commercial-industrial uses increased 170 percent, and agriculture increased 915 percent between 1950 and 1990. Freshwater with- drawals for thermoelectric power generation decreased 8 percent between 1955 and 1990, while saline water withdrawals increased nearly 1,540 percent between 1955 and 1990. Between 1965 and 1990, total freshwater withdrawals increased in 58 of the 67 counties in Florida. Fresh ground-water was withdrawn in all 67 counties in 1965 through 1990, and increased in 65 counties between 1965 and 1990. Fresh surface-water was withdrawn in 60 counties from 1965 to 1990, and increased in 42 counties between 1965 and 1990. The change in total freshwater withdrawals within the water management districts between 1975 and 1990 were as follows: Northwest Florida Water Management District increased 3 percent, St. Johns River Water Management District decreased 6 percent, South Florida Water Management District increased 37 percent, Southwest Florida Water Management District decreased 1 percent, and Suwannee River Water Management District increased 8 percent.(USGS)
Multiple-Nozzle Spray Head Applies Foam Insulation
NASA Technical Reports Server (NTRS)
Walls, Joe T.
1993-01-01
Spray head equipped with four-nozzle turret mixes two reactive components of polyurethane and polyisocyanurate foam insulating material and sprays reacting mixture onto surface to be insulated. If nozzle in use becomes clogged, fresh one automatically rotated into position, with minimal interruption of spraying process. Incorporates features recirculating and controlling pressures of reactive components to maintain quality of foam by ensuring proper blend at outset. Also used to spray protective coats on or in ships, aircraft, and pipelines. Sprays such reactive adhesives as epoxy/polyurethane mixtures. Components of spray contain solid-particle fillers for strength, fire retardance, toughness, resistance to abrasion, or radar absorption.
Tschudin, A; Clauss, M; Codron, D; Liesegang, A; Hatt, J-M
2011-08-01
Rabbits (Oryctolagus cuniculus) are often presented suffering from urolithiasis. A high water intake is important in the prophylaxis of uroliths. We investigated the influence factors for water intake using 12 rabbits subjected to different feed and water regimes with practical relevance: Hay, fresh parsley, a seed mix and two different pelleted feed were offered in diverse combinations. Water was provided either by open dish or nipple drinker. Water was accessible ad libitum except for four treatments with 6 h or 12 h water access. Under the different feeding regimes, the drinker had no influence on water intake, but faecal dry matter content was significantly higher with nipple drinkers [60.0 ± 2.1 vs. 57.2 ± 2.1% of wet weight (mean ± 95% confidence interval), p = 0.003]. Dry food led to a higher drinking water intake but total water intake was still lower than with addition of 'fresh' food. With restricted water access, rabbits exhibited a significantly higher water intake with open dishes compared with nipple drinkers (54.9 ± 9.8 vs. 48.1 ± 8.2 g/kg(0.75) /day (mean ± 95% confidence interval), p = 0.04). High proportions of fresh parsley or hay in the diet enhanced total water intake and urine output, and led to lower urinary dry matter content and lower urinary calcium concentrations. Restricted access to drinkers led to a decreased total daily water intake and increased dry matter content of urine and faeces. For optimal water provision and urolith prophylaxis, we recommend a diet with a high 'fresh food' proportion as well as additionally hay ad libitum with free water access, offered in an open bowl. © 2010 Blackwell Verlag GmbH.
Saline sewage treatment and source separation of urine for more sustainable urban water management.
Ekama, G A; Wilsenach, J A; Chen, G H
2011-01-01
While energy consumption and its associated carbon emission should be minimized in wastewater treatment, it has a much lower priority than human and environmental health, which are both closely related to efficient water quality management. So conservation of surface water quality and quantity are more important for sustainable development than green house gas (GHG) emissions per se. In this paper, two urban water management strategies to conserve fresh water quality and quantity are considered: (1) source separation of urine for improved water quality and (2) saline (e.g. sea) water toilet flushing for reduced fresh water consumption in coastal and mining cities. The former holds promise for simpler and shorter sludge age activated sludge wastewater treatment plants (no nitrification and denitrification), nutrient (Mg, K, P) recovery and improved effluent quality (reduced endocrine disruptor and environmental oestrogen concentrations) and the latter for significantly reduced fresh water consumption, sludge production and oxygen demand (through using anaerobic bioprocesses) and hence energy consumption. Combining source separation of urine and saline water toilet flushing can reduce sewer crown corrosion and reduce effluent P concentrations. To realize the advantages of these two approaches will require significant urban water management changes in that both need dual (fresh and saline) water distribution and (yellow and grey/brown) wastewater collection systems. While considerable work is still required to evaluate these new approaches and quantify their advantages and disadvantages, it would appear that the investment for dual water distribution and wastewater collection systems may be worth making to unlock their benefits for more sustainable urban development.
Porosity development in coastal carbonate aquifers
Sanford, W.E.; Konikow, Leonard F.
1989-01-01
Combines geochemical mixing theory with the hydrodynamics of fresh-water-salt-water mixing zones in a coupled reaction-transport model. Results from the reaction-path model PHREEQE are used with a variable-density groundwater flow and solute-transport model to simulate an idealized cross section of a coastal carbonate aquifer. The dissolution process is sensitive to fresh-water chemistry, groundwater velocities, and sea-level movement. -from Authors
Fred H. Everest; Christina Kakoyannis; Laurie Houston; George Stankey; Jeffery Kline; Ralph Alig
2004-01-01
Fresh water is a valuable and essential commodity in the Pacific Northwest States, specifically Oregon, Washington, and Idaho, and one provided abundantly by forested watersheds in the region. The maintenance and growth of industrial, municipal, agricultural, and recreational activities in the region are dependent on adequate and sustainable supplies of fresh water...
Review: Impacts of permafrost degradation on inorganic chemistry of surface fresh water
NASA Astrophysics Data System (ADS)
Colombo, Nicola; Salerno, Franco; Gruber, Stephan; Freppaz, Michele; Williams, Mark; Fratianni, Simona; Giardino, Marco
2018-03-01
Recent studies have shown that climate change is impacting the inorganic chemical characteristics of surface fresh water in permafrost areas and affecting aquatic ecosystems. Concentrations of major ions (e.g., Ca2 +, Mg2 +, SO42 -, NO3-) can increase following permafrost degradation with associated deepening of flow pathways and increased contributions of deep groundwater. In addition, thickening of the active layer and melting of near-surface ground ice can influence inorganic chemical fluxes from permafrost into surface water. Permafrost degradation has also the capability to modify trace element (e.g., Ni, Mn, Al, Hg, Pb) contents in surface water. Although several local and regional modifications of inorganic chemistry of surface fresh water have been attributed to permafrost degradation, a comprehensive review of the observed changes is lacking. The goal of this paper is to distil insight gained across differing permafrost settings through the identification of common patterns in previous studies, at global scale. In this review we focus on three typical permafrost configurations (pervasive permafrost degradation, thermokarst, and thawing rock glaciers) as examples and distinguish impacts on (i) major ions and (ii) trace elements. Consequences of warming climate have caused spatially-distributed progressive increases of major ion and trace element delivery to surface fresh water in both polar and mountain areas following pervasive permafrost degradation. Moreover, localised releases of major ions and trace elements to surface water due to the liberation of soluble materials sequestered in permafrost and ground ice have been found in ice-rich terrains both at high latitude (thermokarst features) and high elevation (rock glaciers). Further release of solutes and related transport to surface fresh water can be expected under warming climatic conditions. However, complex interactions among several factors able to influence the timing and magnitude of the impacts of permafrost degradation on inorganic chemistry of surface fresh water (e.g., permafrost sensitivity to thawing, modes of permafrost degradation, characteristics of watersheds) require further conceptual and mechanistic understanding together with quantitative diagnosis of the involved mechanisms in order to predict future changes with confidence.
Irwin, James Haskell; Morton, Robert B.
1969-01-01
The Oklahoma Panhandle and adjacent areas in Texas, Kansas, Colorado, and New Mexico have prospered because of the development of supplies of fresh water and of oil and gas. The Ogallala and, in places, Cretaceous rocks produce fresh water for irrigation, public supply, and domestic and stock use through approximately 9,000 irrigation and public supply wells and a large but undetermined number of other wells. Disposal of oil-field brine and other wastes into the Glorieta Sandstone is of concern to many local residents because of the possibility of pollution of the overlying fresh-water aquifers, particularly the Ogallala Formation. Permits for 147 disposal wells into the Glorieta have been issued in this area. This report summarizes the data on geology, hydrology, and water development currently available to the U.S. Geological Survey. Geologic information indicates that, in the report area, the Glorieta Sandstone lies at depths ranging from about 500 to 1,600 feet below the base of the Ogallala Fox, nation. The rocks between those two formations are of relatively impermeable types, but solution and removal of salt has resulted in collapse of the rocks in some places. Collapse and fracturing of the rocks could result in increased vertical permeability. This might result in movement of brine under hydrostatic head from the Glorieta Sandstone into overlying fresh-water aquifers, in places where an upward hydraulic gradient exists or is created by an increase in pressure within the Glorieta. Abandoned or inadequately sealed boreholes also are possible conduits for such fluids. The mixing of water in the fresh-water aquifers with brines injected into the Glorieta is not known to have occurred anywhere in the report area, but the information available is not adequate to show positively whether or not this may have occurred locally. Much additional information on the stratigraphy and hydrology--particularly, data on the potentiometric surface of water in the Glorieta--needs to be collected and analyzed before conclusions can be drawn regarding the possibility of vertical movement of oil-field brines from the Glorieta to fresh-water aquifers above.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-19
... Water Resources Authority; Notice of Preliminary Determination of a Qualifying Conduit Hydropower... along the proposed McLaughlin Fish Hatchery Pipeline at the Massachusetts Water Resources Authority's..., Massachusetts Water Resources Authority, 100 First Avenue, Charlestown Navy Yard, Boston, MA 02129, Phone No...
WATER SECURITY MONITORING USING SURFACE-ENHANCED RAMAN SPECTROSCOPY - PHASE II
Clean drinking water is a critical component of the United States infrastructure and is therefore a potential target for terrorists. In addition to physical attacks to the water network, like dams, pumping stations and pipelines, there must be vigilance to prevent the water i...
Impact of treated wastewater for irrigation on soil microbial communities
USDA-ARS?s Scientific Manuscript database
The use of treated wastewater (TWW) for irrigation has been suggested as an alternative to use of fresh water because of the increasing scarcity of fresh water in arid and semiarid regions of the world. However, significant barriers exist to widespread adoption due to some potential contaminants tha...
Methods for Chemical Analysis of Fresh Waters.
ERIC Educational Resources Information Center
Golterman, H. L.
This manual, one of a series prepared for the guidance of research workers conducting studies as part of the International Biological Programme, contains recommended methods for the analysis of fresh water. The techniques are grouped in the following major sections: Sample Taking and Storage; Conductivity, pH, Oxidation-Reduction Potential,…
Threat to the Planet: Dark and Bright Sides of Global Warming
NASA Astrophysics Data System (ADS)
Hansen, J. E.
2008-12-01
. Earth's history reveals that climate is sensitive to forcings, imposed perturbations of the planet's energy balance. Human-made forcings now dwarf natural forcings. Despite the climate system's great inertia, climate changes are emerging above the 'noise' of unforced chaotic variability, and greater changes are 'in the pipeline'. There is a clear and present danger of the climate passing certain 'tipping points', climate states where warming in the pipeline and positive feedbacks guarantee large relatively rapid changes with no additional climate forcing. The fact that we are close to dangerous consequences has a bright side: we must reduce greenhouse gas emissions to a level that will minimize many impacts that had begun to seem almost inevitable, including ocean acidification, intensification of regional climate extremes, and fresh water shortages. Actions required to stabilize climate, including prompt phase-out of coal emissions, are defined well enough by our understanding of the climate system, the carbon cycle, and fossil fuel reservoirs. These actions would also yield cleaner air and water, with ancillary benefits for human health, agricultural productivity, and wildlife preservation. Yet the actions required to stabilize climate are not being pursued. Denial of climate change by the fossil fuel industry and reactionary governments has been replaced by 'greenwash'. The policies of even the 'greenest' nations are demonstrably impotent for the purpose of averting climate disasters. I conclude that inaction stems in large part from 'success' of special financial interests in subverting the intent of the democratic process to operate for the general good. The consequence is intergenerational inequity and injustice, affecting negatively the young and the unborn. The defense of prior generations, that they 'did not know', is no longer viable. Indeed, actions by fossil fuel interests that served to deceive the public about the dangers of human-made climate change raise questions of ethics and legal liabilities. Youth, at least those who are not too young or unborn, have recourse through democratic systems, but continued failure of the political process may cause increasing public protests.
Remediation of Mudboil Discharges in the Tully Valley of Central New York
Kappel, William M.
2009-01-01
Mudboils have been documented in the Tully Valley in Onondaga County, in central New York State, since the late 1890s and have continuously discharged sediment-laden (turbid) water into nearby Onondaga Creek since the 1950s. The discharge of sediment causes gradual land-surface subsidence that, in the past, necessitated rerouting a major petroleum pipeline and a buried telephone cable, and caused two road bridges to collapse. The turbid water discharged from mudboils can be either fresh or brackish (salty). Mudboil activity was first reported in the Syracuse, NY, Post Standard in a short article dated October 19, 1899: 'Tully Valley - A Miniature Volcano Few people are aware of the existence of a volcano in this town. It is a small one, to be sure, but very interesting. In the 20-rod gorge where the crossroad leads by the Tully Valley grist mill the hard highway bed has been rising foot after foot till the apex of a cone which has been booming has broken open and quicksand and water flow down the miniature mountain sides. It is an ever increasing cone obliterating wagon tracks as soon as crossed. The nearby bluff is slowly sinking. Probably the highway must sometime be changed on account of the sand and water volcano, unless it ceases its eruption.' This newspaper article accurately describes mudboil activity and presages the collapse of the Otisco Road bridge, 92 years later in 1991. The article indicates that land subsidence occurred nearby, but gives no indication that Onondaga Creek was turbid; this was either an oversight by the reporter or was not a concern at that time.
22. VIEW EAST TOWARDS WAIKOLU VALLEY OF PIPELINE ALONG PALI. ...
22. VIEW EAST TOWARDS WAIKOLU VALLEY OF PIPELINE ALONG PALI. EYE BOLTS IN ROCK FACE AT RIGHT WERE USED BRIEFLY IN PLACE OF PIERS TO SUSPEND PIPE BY CHAIN BECAUSE THE CONCRETE PIERS WERE SUSCEPTIBLE TO HEAVY WAVE ACTION IN THIS AREA. - Kalaupapa Water Supply System, Waikolu Valley to Kalaupapa Settlement, Island of Molokai, Kalaupapa, Kalawao County, HI
Code of Federal Regulations, 2010 CFR
2010-04-01
... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Reports by natural gas..., NATURAL GAS ACT STATEMENTS AND REPORTS (SCHEDULES) § 260.9 Reports by natural gas pipeline companies on service interruptions and damage to facilities. (a)(1) Every natural gas company must report to the...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Pacific Ocean off Barbers Point... Grounds § 110.236 Pacific Ocean off Barbers Point, Island of Oahu, Hawaii: Offshore pipeline terminal... regulations. (1) No vessels may anchor, moor, or navigate in anchorages A, B, C, or D except: (i) Vessels...
The application of Mike Urban model in drainage and waterlogging in Lincheng county, China
NASA Astrophysics Data System (ADS)
Luan, Qinghua; Zhang, Kun; Liu, Jiahong; Wang, Dong; Ma, Jun
2018-06-01
Recently, the water disaster in cities especially in Chinese mountainous cities is more serious, due to the coupling influences of waterlogging and regional floods. It is necessary to study the surface runoff process of mountainous cities and examine the regional drainage pipeline network. In this study, the runoff processes of Lincheng county (located in Hebei province, China) in different scenarios were simulated through Mike Urban model. The results show that all of the runoff process of the old town and the new residential area with larger slope, is significant and full flow of these above zones exists in the part of the drainage pipeline network; and the overflow exists in part of the drainage pipeline network when the return period is ten years or twenty years, which illuminates that the waterlogging risk in this zone of Lincheng is higher. Therefore, remodeling drainage pipeline network in the old town of Lincheng and adding water storage ponds in the new residential areas were suggested. This research provides both technical support and decision-making reference to local storm flood management, also give the experiences for the study on the runoff process of similar cities.
Automatic Measuring System for Oil Stream Paraffin Deposits Parameters
NASA Astrophysics Data System (ADS)
Kopteva, A. V.; Koptev, V. Yu
2018-03-01
This paper describes a new method for monitoring oil pipelines, as well as a highly efficient and automated paraffin deposit monitoring method. When operating oil pipelines, there is an issue of paraffin, resin and salt deposits on the pipeline walls that come with the oil stream. It ultimately results in frequent transportation suspension to clean or even replace pipes and other equipment, thus shortening operation periods between repairs, creating emergency situations and increasing production expenses, badly affecting environment, damaging ecology and spoil underground water, killing animals, birds etc. Oil spills contaminate rivers, lakes, and ground waters. Oil transportation monitoring issues are still subject for further studying. Thus, there is the need to invent a radically new automated process control and management system, together with measurement means intellectualization. The measurement principle is based on the Lambert-Beer law that describes the dependence between the gamma-radiation frequency and the density together with the linear attenuation coefficient for a substance. Using the measuring system with high accuracy (± 0,2%), one can measure the thickness of paraffin deposits with an absolute accuracy of ± 5 mm, which is sufficient to ensure reliable operation of the pipeline system. Safety is a key advantage, when using the proposed control system.
Van Haute, Sam; Holvoet, Kevin; Uyttendaele, Mieke
2013-01-01
Chlorine was assessed as a reconditioning agent and wash water disinfectant in the fresh-cut produce industry. Artificial fresh-cut lettuce wash water, made from butterhead lettuce, was used for the experiments. In the reconditioning experiments, chlorine was added to artificial wash water inoculated with Escherichia coli O157 (6 log CFU/ml). Regression models were constructed based on the inactivation data and validated in actual wash water from leafy vegetable processing companies. The model that incorporated chlorine dose and chemical oxygen demand (COD) of the wash water accurately predicted inactivation. Listeria monocytogenes was more resistant to chlorine reconditioning in artificial wash water than Salmonella spp. and Escherichia coli O157. During the washing process with inoculated lettuce (4 log CFU/g), in the absence of chlorine, there was a rapid microbial buildup in the water that accumulated to 5.4 ± 0.4 log CFU/100 ml after 1 h. When maintaining a residual concentration of 1 mg/liter free chlorine, wash water contamination was maintained below 2.7, 2.5, and 2.5 log CFU/100 ml for tap water and artificial process water with COD values of 500 and 1,000 mg O2/liter, respectively. A model was developed to predict water contamination during the dynamic washing process. Only minor amounts of total trihalomethanes were formed in the water during reconditioning. Total trihalomethanes accumulated to larger amounts in the water during the wash water disinfection experiments and reached 124.5 ± 13.4 μg/liter after 1 h of execution of the washing process in water with a COD of 1,000 mg O2/liter. However, no total trihalomethanes were found on the fresh-cut lettuce after rinsing. PMID:23396332
Van Haute, Sam; Sampers, Imca; Holvoet, Kevin; Uyttendaele, Mieke
2013-05-01
Chlorine was assessed as a reconditioning agent and wash water disinfectant in the fresh-cut produce industry. Artificial fresh-cut lettuce wash water, made from butterhead lettuce, was used for the experiments. In the reconditioning experiments, chlorine was added to artificial wash water inoculated with Escherichia coli O157 (6 log CFU/ml). Regression models were constructed based on the inactivation data and validated in actual wash water from leafy vegetable processing companies. The model that incorporated chlorine dose and chemical oxygen demand (COD) of the wash water accurately predicted inactivation. Listeria monocytogenes was more resistant to chlorine reconditioning in artificial wash water than Salmonella spp. and Escherichia coli O157. During the washing process with inoculated lettuce (4 log CFU/g), in the absence of chlorine, there was a rapid microbial buildup in the water that accumulated to 5.4 ± 0.4 log CFU/100 ml after 1 h. When maintaining a residual concentration of 1 mg/liter free chlorine, wash water contamination was maintained below 2.7, 2.5, and 2.5 log CFU/100 ml for tap water and artificial process water with COD values of 500 and 1,000 mg O2/liter, respectively. A model was developed to predict water contamination during the dynamic washing process. Only minor amounts of total trihalomethanes were formed in the water during reconditioning. Total trihalomethanes accumulated to larger amounts in the water during the wash water disinfection experiments and reached 124.5 ± 13.4 μg/liter after 1 h of execution of the washing process in water with a COD of 1,000 mg O2/liter. However, no total trihalomethanes were found on the fresh-cut lettuce after rinsing.
Shamim, M Z; Pandey, A
2017-07-31
Blackgram is an important pulse crop of the tropic and sub-tropic area and has been identified as a potential crop in many countries. In the south-East Asia arsenic toxicity in soil and water is one of the most environmental problems. Crop productivity is highly affected by cultivation in arsenic polluted soil or irrigation through arsenic polluted water. The present study was conducted to evaluate the effect of arsenic (As) on fresh shoot length, fresh shoot weight, fresh root length, fresh shoot weight and total fresh biomass, The results indicate that root length is more affected than shoot length due to arsenic toxicity. The fresh shoot weight observed was more affected than fresh root weight. This study indicates that arsenic toxicity causes the deleterious effect on blackgram growth. The toxic effect of blackgram depends on the genotypic variability. Some blackgram genotypes show very less toxic effect of arsenic due to its genetic makeup. Experimental findings of study indicate that longer root length and more shoot weight in arsenic stress condition may be tolerant blackgram genotype to arsenic toxicity.
NASA Astrophysics Data System (ADS)
Ryabkov, A. V.; Stafeeva, N. A.; Ivanov, V. A.; Zakuraev, A. F.
2018-05-01
A complex construction consisting of a universal floating pontoon road for laying pipelines in automatic mode on its body all year round and in any weather for Siberia and the Far North has been designed. A new method is proposed for the construction of pipelines on pontoon modules, which are made of composite materials. Pontoons made of composite materials for bedding pipelines with track-forming guides for automated wheeled transport, pipelayer, are designed. The proposed system eliminates the construction of a road along the route, ensures the buoyancy and smoothness of the self-propelled automated stacker in the form of a "centipede", which has a number of significant advantages in the construction and operation of the entire complex in the swamp and watered areas without overburden.
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. M. Capron
2008-04-29
The 100-F-26:12 waste site was an approximately 308-m-long, 1.8-m-diameter east-west-trending reinforced concrete pipe that joined the North Process Sewer Pipelines (100-F-26:1) and the South Process Pipelines (100-F-26:4) with the 1.8-m reactor cooling water effluent pipeline (100-F-19). In accordance with this evaluation, the verification sampling results support a reclassification of this site to Interim Closed Out. The results of verification sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.
Modelling of non-equilibrium flow in the branched pipeline systems
NASA Astrophysics Data System (ADS)
Sumskoi, S. I.; Sverchkov, A. M.; Lisanov, M. V.; Egorov, A. F.
2016-09-01
This article presents a mathematical model and a numerical method for solving the task of water hammer in the branched pipeline system. The task is considered in the onedimensional non-stationary formulation taking into account the realities such as the change in the diameter of the pipeline and its branches. By comparison with the existing analytic solution it has been shown that the proposed method possesses good accuracy. With the help of the developed model and numerical method the task has been solved concerning the transmission of the compression waves complex in the branching pipeline system when several shut down valves operate. It should be noted that the offered model and method may be easily introduced to a number of other tasks, for example, to describe the flow of blood in the vessels.
Hospital visits for gastrointestinal Illness after a major water main break in 2010
Background/Aim Water main breaks can occur due to the stresses of an aging infrastructure and changing climate. Water main breaks are a public health concern because they can cause pressure transients (specifically, abrupt decreases in water pressure/flow in the pipeline), which ...
Sustainable Water and Energy in Gaza Strip
NASA Astrophysics Data System (ADS)
Hamdan, L.; Zarei, M.; Chianelli, R.; Gardner, E.
2007-12-01
Shortage of fresh water is a common problem in different areas of the world including the Middle East. Desalination of seawater and brackish water is the cheapest way to obtain fresh water in many regions. This research focuses on the situation in Gaza Strip where there is a severe shortage in the energy and water supply. The depletion of fresh water supplies and lack of wastewater treatments result in environmental problems. A solar powered cogeneration plant producing water and energy is proposed to be a suitable solution for Gaza Strip. Solar energy, using Concentrating Solar thermal Power (CSP) technologies, is used to produce electricity by a steam cycle power plant. Then the steam is directed to a desalination plant where it is used to heat the seawater to obtain freshwater. The main objective of this research is to outline a solution for the water problems in Gaza Strip, which includes a cogeneration (power and water) solar powered plant. The research includes four specific objectives: 1- an environmental and economic comparison between solar and fossil fuel energies; 2- technical details for the cogeneration plant; 3- cost and funding, 4- the benefits.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pineda Porras, Omar Andrey; Ordaz, Mario
2009-01-01
Though Differential Ground Subsidence (DGS) impacts the seismic response of segmented buried pipelines augmenting their vulnerability, fragility formulations to estimate repair rates under such condition are not available in the literature. Physical models to estimate pipeline seismic damage considering other cases of permanent ground subsidence (e.g. faulting, tectonic uplift, liquefaction, and landslides) have been extensively reported, not being the case of DGS. The refinement of the study of two important phenomena in Mexico City - the 1985 Michoacan earthquake scenario and the sinking of the city due to ground subsidence - has contributed to the analysis of the interrelation ofmore » pipeline damage, ground motion intensity, and DGS; from the analysis of the 48-inch pipeline network of the Mexico City's Water System, fragility formulations for segmented buried pipeline systems for two DGS levels are proposed. The novel parameter PGV{sup 2}/PGA, being PGV peak ground velocity and PGA peak ground acceleration, has been used as seismic parameter in these formulations, since it has shown better correlation to pipeline damage than PGV alone according to previous studies. By comparing the proposed fragilities, it is concluded that a change in the DGS level (from Low-Medium to High) could increase the pipeline repair rates (number of repairs per kilometer) by factors ranging from 1.3 to 2.0; being the higher the seismic intensity the lower the factor.« less
Water resources of the New Orleans area, Louisiana
Eddards, Miles LeRoy; Kister, L.R.; Scarcia, Glenn
1956-01-01
Industry, commerce, and public utilities in 1954 withdrew about 1,500 mgd from surface- and groundwater sources in the New Orleans area. Most of the withdrawal was made from the Mississippi River. However, some withdrawal of surface water was made from Lake Pontchartrain. A large part of the withdrawal from both ground- and surface-water sources is available for reuse. Ground-water withdrawal amounts to about 100 mgd and is primarily for industrial and commercial uses. The average flow of the Mississippi River for the 23-year period, 1931--54, amounted to 309,000 mgd, and the approximate average flow of all the tributaries to Lake Pontchartrain is about 4,000 mgd. The flow of the Pearl River, which adjoins the tributary drainage area of Lake Pontchartrain, averages about 8,000 mgd. Total withdrawal of ground and surface waters amounts to less than 3 percent of the recorded minimum flow of the Mississippi River or less than 1 percent of the average flow. Although large quantities of water are always available in the Mississippi River the quality of the Water is not suitable for all uses. Streams from the north that drain into Lakes Maurepas and Pontchartrain, and the aquifers in that area, offer one of the best sources of fresh water in the State. Industry, if located on the northern shores of Lake Maurepas or Lake Pontchartrain near the mouths of these tributaries, would be assured of an ample supply of either ground or surface water of excellent quality. All the tributaries north of Lake Pontchartrain have dry-weather flows which are dependable. The Pearl River above Bogalusa also is a good source of fresh water of excellent quality. At present it serves to dilute the tidal flow of salt water into Lake Pontchartrain through the Rigolets, the principal outlet of the lake. In the area north of Lake Pontchartrain, wells 60 to 2,000 feet deep yield fresh water. There are no known wells tapping sands below 2,000 feet. However, electrical logs of. oil-test wells show that fresh water is available to a maximum depth of 3,000 feet. In the area south of Lake Pontchartrain, there is no withdrawal of ground water for public water supplies because of the saline content of the water. Three principal water-bearing sands, the '200-foot, ' '400-foot, ' and '700-foot'sands, are tapped in the New Orleans area south of Lake Pontchartrain for industrial and commercial use. In this area all deeper sands yield salt water. In some areas the '200-foot' sand contains saline water of the sodium chloride type. Consequently, this sand is not developed extensively. Water from the 200-foot' sand is relatively fresh north of the Mississippi River and becomes increasingly saline to the south and west. The 400-foot' sand is the second most highly developed aquifer in the New Orleans industrial district. The aquifer appears to be very prolific, but its full capabilities have not yet been determined. This aquifer yields a highly mineralized sodium chloride water in some areas; however, elsewhere it is a source of large quantities of fresh water. The '700-foot' sand is the most continuous freshwater bearing sand in the area and is the principal source of fresh ground water in the New Orleans industrial district. Most of the wells tapping this aquifer yield soft water of the bicarbonate type. In the southern and western parts of the industrial district the water in the '700-foot' sand is too mineralized to be suitable for human consumption.
Modelling the growth of Listeria monocytogenes in fresh green coconut (Cocos nucifera L.) water.
Walter, Eduardo H M; Kabuki, Dirce Y; Esper, Luciana M R; Sant'Ana, Anderson S; Kuaye, Arnaldo Y
2009-09-01
The behaviour of Listeria monocytogenes in the fresh coconut water stored at 4 degrees C, 10 degrees C and 35 degrees C was studied. The coconut water was aseptically extracted from green coconuts (Cocos nucifera L.) and samples were inoculated in triplicate with a mixture of 5 strains of L. monocytogenes with a mean population of approximately 3 log(10) CFU/mL. The kinetic parameters of the bacteria were estimated from the Baranyi model, and compared with predictions of the Pathogen Modelling Program so as to predict its behaviour in the beverage. The results demonstrated that fresh green coconut water was a beverage propitious for the survival and growth of L. monocytogenes and that refrigeration at 10 degrees C or 4 degrees C retarded, but did not inhibit, growth of this bacterium. Temperature abuse at 35 degrees C considerably reduced the lagtimes. The study shows that L. monocytogenes growth in fresh green coconut water is controlled for several days by storage at low temperature, mainly at 4 degrees C. Thus, for risk population this product should only be drunk directly from the coconut or despite the sensorial alterations should be consumed pasteurized.
Biofilms on Hospital Shower Hoses: Characterization and Implications for Nosocomial Infections
Although the source of drinking water used in hospitals is commonly, biofilms on water pipelines are refuge to bacteria that survive different disinfection strategies. Drinking water (DW) biofilms are well known to harbor opportunistic pathogens, however, these biofilm communitie...
EPA Research Highlights: EPA Studies Aging Water Infrastructure
The nation's extensive water infrastructure has the capacity to treat, store, and transport trillions of gallons of water and wastewater per day through millions of miles of pipelines. However, some infrastructure components are more than 100 years old, and as the infrastructure ...
78 FR 25067 - Northwest Pipeline GP; Notice of Application
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-29
... the Blue Water Liquefied Natural Gas (LNG) Meter Station and associated appurtenances at Benton County, Washington. The Blue Water LNG Meter Station will include three meters, associated valves and piping, and...
The geology and ground water resources of Calcasieu Parish, Louisiana
Harder, Alfred H.
1960-01-01
Large quantities of fresh ground water are available in Calcasieu Parish. Fresh water is present in sand of Recent, Pleistocene, Pliocene, and Miocene ages, although locally only small supplies for rural or stock use can be obtained from the shallow sand lenses of Recent and Pleistocene ages. The principal fresh-water-bearing sands are the '200-foot,' '500-foot,' and '700-foot' sands of the Chicot aquifer of Pleistocene age, from which 105 million gallons is pumped daily. A yield of as much as 4,500 gpm (gallons per minute) has been obtained from a single well. The sands are typical of the Chicot aquifer throughout southwestern Louisiana in that generally they grade from fine sand at the top to coarse sand and gravel at the base of the aquifer. The coefficient of permeability of the principal sands in Calcasieu Parish ranges from 660 to about 2,000 gpd (gallons per day) per square foot and averages 1,200 gpd per square foot. The permeability of the sands generally varies with textural changes. The maximum depth of occurrence of fresh ground water in Calcasieu Parish ranges from about 700 feet to 2,500 feet below mean sea level; locally, however, where the sands overlie structures associated with oil fields, the maximum depth is less than 300 feet. Pumping has caused water levels to decline, at varying rates, in all the sands. In the '200-foot' sand they are declining at a rate of about 2 feet per year. In the industrial district of Calcasieu Parish, levels in the '500-foot' sand are declining at a rate of about 5 feet per year, and in the '700-foot' sand at a rate of about 3.5 feet per year. Salt-water contamination is accompanying the water-level decline in the '700-foot' sand in the central part of the parish. Quality-of-water data indicate that water from wells screened in the Chicot aquifer generally is suitable for some uses without treatment but would require treatment to be satisfactory for other uses. The temperature of the water ranges from 70? to 79?F. The lenticular sands of Pliocene and Miocene ages have not been used as a source of fresh ground water in Calcasieu Parish; however, north of the Houston River these formations contain fresh water, and the water contained in these formations in other parts of southwestern Louisiana is known to be soft and suitable for most purposes.
Hydrogeologic reconnaissance of Poro Point and vicinity, Luzon Island, Philippines
Worts, George Frank
1964-01-01
In 1961 a reconnaissance of the geology and ground-water hydrology of Poro Point, on the west coast of Luzon Island, Philippines, was made on behalf of the U.S. Department of the Navy. Poro Point, which marks the northern end of Lingayen Gulf, is about half a mile wide and projects northwestward about 2 miles into the China Sea. The point is underlain by coralline limestone of probable Pleistocene age. The aquifer system consists of a fresh-water lens floating on salt water within the coralline limestone. Several tube wells obtain fresh water from the lens, but in May, at the end of the 6-month dry season during which rainfall totals only 40 inches, the water becomes brackish. 'Skimming wells' are considered the best method of obtaining fresh water from the lens, whose annual range in average thickness is probably 25 to 40 feet. Recharge is about 2,000-3,000 acre-feet per year and is derived wholly from precipitation during the 6-month wet season in which rainfall totals about 92 inches. The approximate amount of ground water stored in the fresh-water lens ranges from about 3,000 acre-feet at the end of the dry season to about 5,000 acre-feet at the end of the wet season. Most of the ground water is discharged through seeps and submarine springs around Poro Point; pumpage in 1961 was only about 100 acre-feet.
Tulp, Ingrid; Keller, Marieke; Navez, Jacques; Winter, Hendrik V; de Graaf, Martin; Baeyens, Willy
2013-01-01
Smelt Osmerus eperlanus has two different life history strategies in The Netherlands. The migrating population inhabits the Wadden Sea and spawns in freshwater areas. After the closure of the Afsluitdijk in 1932, part of the smelt population became landlocked. The fresh water smelt population has been in severe decline since 1990, and has strongly negatively impacted the numbers of piscivorous water birds relying on smelt as their main prey. The lakes that were formed after the dike closure, IJsselmeer and Markermeer have been assigned as Natura 2000 sites, based on their importance for (among others) piscivorous water birds. Because of the declining fresh water smelt population, the question arose whether this population is still supported by the diadromous population. Opportunities for exchange between fresh water and the sea are however limited to discharge sluices. The relationship between the diadromous and landlocked smelt population was analysed by means of otolith microchemistry. Our interpretation of otolith strontium ((88)Sr) patterns from smelt specimens collected in the fresh water area of Lake IJsselmeer and Markermeer, compared to those collected in the nearby marine environment, is that there is currently no evidence for a substantial contribution from the diadromous population to the spawning stock of the landlocked population.
McCobb, Timothy D.; LeBlanc, Denis R.
2002-01-01
Trichloroethene and tetrachloroethene were detected in ground water in a vertical interval from about 68 to 176 feet below sea level beneath the shoreline where the contaminant plume emanating from a capped landfill on the Massachusetts Military Reservation intersects Red Brook Harbor. The highest concentrations at the shoreline, about 15 micrograms per liter of trichloroethene and 1 microgram per liter of tetrachloroethene, were measured in samples from one well at about 176 feet below sea level. The concentrations of nutrients, such as nitrate and ammonium, and trace metals, such as iron and manganese, in these same samples are typical of uncontaminated ground water on Cape Cod. Fresh ground water (bulk electrical conductance less than 100 millisiemens per meter) is present beneath the harbor at 40 of 48 locations investigated within about 250 feet of the shoreline. Fresh ground water also was detected at one location approximately 450 feet from shore. The harbor bottom consists of soft sediments that range in thickness from 0 to greater than 20 feet and overlie sandy aquifer materials. Trichloroethene was detected at several locations in fresh ground water from the sandy aquifer materials beneath the harbor. The highest trichloroethene concentration, about 4.5 micrograms per liter, was measured about 450 feet from shore.
Improving Pathogen Reduction by Chlorine Wash Prior to Cutting in Fresh-Cut Processing
USDA-ARS?s Scientific Manuscript database
Introduction: Currently, most fresh-cut processing facilities in the United States use chlorinated water or other sanitizer solutions for microbial reduction after lettuce is cut. Freshly cut lettuce releases significant amounts of organic matter that negatively impacts the effectiveness of chlorine...
Guidelines for riser splash zone design and repair
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-02-01
The many years of offshore oil and gas development has established the subsea pipeline as a reliable and cost effective means of transportation for produced hydrocarbons. The requirement for subsea pipeline systems will continue to move into deeper water and more remote locations with the future development of oil and gas exploration. The integrity of subsea pipeline and riser systems, throughout their operating lifetime, is an important area for operators to consider in maximizing reliability and serviceability for economic, contractual and environmental reasons. Adequate design and installation are the basis for ensuring the integrity of any subsea pipeline and risermore » systems. In the event of system damage, from any source, quick and accurate repair and reinstatement of the pipeline system is essential. This report has been developed to provide guidelines for riser and splash zone design, to perform a detailed overview of existing riser repair techniques and products, and to prepare comprehensive guidelines identifying the capabilities and limits of riser reinstatement systems.« less
Ballasting pipeline moving in horizontal well as method of control sticking phenomenon
NASA Astrophysics Data System (ADS)
Toropov, V. S.; Toropov, E. S.
2018-05-01
The mechanism of the phenomenon of sticking a pipeline moving in a well while pulled by the facility horizontal directional drilling is investigated. A quantitative evaluation of the force arising from sticking is given. At the same time, the working hypothesis takes a view of the combined effect of adhesion and friction interactions as the reasons that cause this phenomenon. As a measure to control the occurrence of sticking and to reduce the resistance force to movement of the pipeline in the well, several methods of ballasting the working pipeline are proposed, depending on the profile of the well and the ratio of the length of the curved sections of the inlet and outlet and the straight horizontal sections of the profile. It is shown that for crossings, which profile contains an extended horizontal section, it is possible to partially fill the pipeline with water to achieve zero buoyancy, and for crossings with curvature along the entire profile, the ballasting efficiency will be minimal.
Abbott, Marvin M.
1998-01-01
The purpose of this project was to evaluate the freshwater resources and possible sources of high-chloride and high-sulfate concentrations in parts of the aquifer near the Sac and Fox Nation tribal land in eastern Lincoln County, Oklahoma. Water-quality sampling and borehole geophysical data indicate the potential for fresh ground water on tribal land generally is greatest in the Vanoss Formation, in the SE1/4 sec. 21, T. 14 N., R. 06 E. and in the NE1/4 sec. 22, T. 14 N., R. 06 E. These locations avoid the flood-prone areas and borehole geophysical resistivity logs indicate the altitude of the base of fresh ground water is below 650 ft. The altitude of the base of fresh ground water is indicated to be generally near the surface under the W1/2 sec. 22, T. 14 N., R. 06 E., the SE1/4 sec. 22, SE1/4 SE1/4 NE1/4 sec. 21, and NE1/4 NW1/4 NW1/4 sec. 27. Conditions are more favorable for placement of fresh ground-water wells in sec. 34, T. 14 N., R. 06 E., where the tribe has leased water rights, than on tribal land in secs. 15, 16, 21, and 22, T. 14 N., R. 06 E. Sandstones overlain by or enclosed in thick clay and shale sequences are likely to be somewhat isolated from the flow system and retain some of the residual brine. Borehole geophysical logs suggest that sandstones near CH1, CM1, and WT1 have more clay and shale content than the sandstones near L2. Greater amounts of clay in the sandstones will retard the flushing of residual brines from the sandstones and could result in a shallow base of fresh water near CH1, CM1, and WT1. For these reasons and because circulation of fresh ground water is limited by discharge to the Deep Fork, general water quality under tribal land would probably be poorer than in the area where the tribe has leased water rights. Samples have chloride or sulfate concentrations greater than 250 milligrams per liter in the W1/2 sec. 22, T. 14 N., R. 06 E. Six cluster well samples from tribal land have chloride or sulfate concentrations above the suggested maximum contaminant levels set by U.S. Environmental Protection Agency. Water-quality data indicate there may be more than one source for the salinity in the very saline and briny samples near the tribal land. Two possible sources for chloride and sulfate in water-quality samples are shallow brines and deep oil brines. Probable sources of shallow brines in the study area are: 1) solution of minerals by fresh water moving through the aquifer and 2) residual brines deposited with the sediment. There are no salt or gypsum beds in the Vanoss, Ada, or Vamoosa Formations, but there may be nodules and finely disseminated minerals present in the formations. Residual brines could remain in sand stones and shales that have low hydraulic conductivity and have not been diluted by freshwater recharge. Data suggest both sources have mixed with the fresh ground water from the Vanoss Formation. This is indicated by the relations of the bromide/chloride concentration ratio to chloride concentration, delta deuterium to delta 18oxygen, and by delta 18oxygen to chloride molality relation.
Research notes : the pH of water in contact with fresh concrete.
DOT National Transportation Integrated Search
2003-02-01
Fresh concrete can significantly change the pH of water. To study the impacts, the pH of a few drilled shaft pours on Bear Creek near Zigzag (US Highway 26, MP 42.6) were monitored in order to aid discussion on future similar work. The concrete was p...
Low toxic corrosion inhibitors for aluminum in fresh water
NASA Technical Reports Server (NTRS)
Humphries, T. S.
1978-01-01
Combinations of chemical compounds that reportedly reduce the corrosion of aluminum in fresh water were evaluated. These included combinations of borates, nitrates, nitrites, phosphates, silicates, and mercaptobenzothiazole. Eight of fifty inhibitor combinations evaluated gave excellent corrosion protection and compared favorably with sodium chromate, which has generally been considered standard for many years.
USDA-ARS?s Scientific Manuscript database
Chlorinated water is widely used as the primary anti-microbial intervention during fresh-cut produce processing. Free chlorine in chlorinated water can provide effective reduction of potential contaminations by microbial pathogens, and, more importantly, effectively prevent cross contamination of p...
Water withdrawals, use, discharge, and trends in Florida, 1995
Marella, R.L.
1999-01-01
In 1995, the total amount of water withdrawn in Florida was nearly 18,200 million gallons per day (Mgal/d), of which 60 percent was saline and 40 percent was freshwater. Ground water accounted for 60 percent of freshwater withdrawals and surface water accounted for the remaining 40 percent. Ninety-three percent of the 14.15 million people in Florida relied on ground water for their drinking water needs in 1995. Almost all (99.9 percent) saline water withdrawals were from surface water. Public supply accounted for 43 percent of ground water withdrawn in 1995, followed by agricultural self-supplied (35 percent), commercial-industrial self-supplied (including mining) (10 percent), domestic self-supplied (7 percent), recreational irrigation (4.5 percent), and power generation (0.5 percent). Agricultural self-supplied accounted for 60 percent of fresh surface water withdrawn in 1995, followed by power generation (21 percent), commercial-industrial self-supplied (9 percent), public supply (7 percent), and recreational irrigation (3 percent). Almost all of saline water withdrawn was used for power generation. The largest amount of freshwater was withdrawn in Palm Beach County and the largest amount of saline water was withdrawn in Hillsborough County. Significant withdrawals (more than 200 Mgal/d) of fresh ground water occurred in Dade, Broward, Polk, Orange, and Palm Beach Counties. Significant withdrawals (more than 200 Mgal/d) of fresh surface water occurred in Palm Beach, Hendry, and St. Lucie Counties. The South Florida Water Management District accounted for the largest amount of freshwater withdrawn (nearly 50 percent). About 57 percent of the total ground water withdrawn was from the Floridan aquifer system; 20 percent was from the Biscayne aquifer. Most of the surface water used in Florida was from managed and maintained canal systems or large water bodies. Major sources of fresh surface water include the Caloosahatchee River, Deer Point Lake, Hillsborough River, Lake Apopka, Lake Okeechobee and associated canals, and the St. Johns River. Freshwater withdrawals increased nearly 29 percent in Florida between 1970 and 1995. Ground-water withdrawals increased 56 percent, and surface-water withdrawals increased 2 percent during this period. Between 1990 and 1995, freshwater withdrawals decreased 5 percent. Fresh ground-water withdrawals decreased 7 percent, and fresh surface-water withdrawals decreased 1 percent during this period. Saline water withdrawals increased 13 percent between 1970 and 1995, and increased 6 percent between 1990 and 1995. An estimated 39 percent of the freshwater withdrawn in Florida was consumed; the remaining 61 percent was returned for use again. Wastewater discharged from the 615 treatment facilities inventoried in 1995 totaled 1,836 Mgal/d, of which 84 percent was from domestic wastewater facilities and the remaining 16 percent was from industrial facilities. Domestic wastewater discharge increased 37 percent between 1985 and 1995, while industrial wastewater discharge increased 7 percent during this period.
Code of Federal Regulations, 2010 CFR
2010-10-01
... the Gulf of Mexico and its inlets. 192.612 Section 192.612 Transportation Other Regulations Relating... Mexico and its inlets. (a) Each operator shall prepare and follow a procedure to identify its pipelines in the Gulf of Mexico and its inlets in waters less than 15 feet (4.6 meters) deep as measured from...
Code of Federal Regulations, 2011 CFR
2011-10-01
... the Gulf of Mexico and its inlets. 192.612 Section 192.612 Transportation Other Regulations Relating... Mexico and its inlets. (a) Each operator shall prepare and follow a procedure to identify its pipelines in the Gulf of Mexico and its inlets in waters less than 15 feet (4.6 meters) deep as measured from...
Code of Federal Regulations, 2012 CFR
2012-10-01
... the Gulf of Mexico and its inlets. 192.612 Section 192.612 Transportation Other Regulations Relating... Mexico and its inlets. (a) Each operator shall prepare and follow a procedure to identify its pipelines in the Gulf of Mexico and its inlets in waters less than 15 feet (4.6 meters) deep as measured from...
Code of Federal Regulations, 2013 CFR
2013-10-01
... the Gulf of Mexico and its inlets. 192.612 Section 192.612 Transportation Other Regulations Relating... Mexico and its inlets. (a) Each operator shall prepare and follow a procedure to identify its pipelines in the Gulf of Mexico and its inlets in waters less than 15 feet (4.6 meters) deep as measured from...
Code of Federal Regulations, 2014 CFR
2014-10-01
... the Gulf of Mexico and its inlets. 192.612 Section 192.612 Transportation Other Regulations Relating... Mexico and its inlets. (a) Each operator shall prepare and follow a procedure to identify its pipelines in the Gulf of Mexico and its inlets in waters less than 15 feet (4.6 meters) deep as measured from...
Vingerhoeds, Monique H; Nijenhuis-de Vries, Mariska A; Ruepert, Nienke; van der Laan, Harmen; Bredie, Wender L P; Kremer, Stefanie
2016-05-01
Membrane filtration of ground, surface, or sea water by reverse osmosis results in permeate, which is almost free from minerals. Minerals may be added afterwards, not only to comply with (legal) standards and to enhance chemical stability, but also to improve the taste of drinking water made from permeate. Both the nature and the concentrations of added minerals affect the taste of the water and in turn its acceptance by consumers. The aim of this study was to examine differences in taste between various remineralised drinking waters. Samples selected varied in mineral composition, i.e. tap water, permeate, and permeate with added minerals (40 or 120 mg Ca/L, added as CaCO3, and 4 or 24 mg Mg/L added as MgCl2), as well as commercially available bottled drinking waters, to span a relevant product space in which the remineralised samples could be compared. All samples were analysed with respect to their physical-chemical properties. Sensory profiling was done by descriptive analysis using a trained panel. Significant attributes included taste intensity, the tastes bitter, sweet, salt, metal, fresh and dry mouthfeel, bitter and metal aftertaste, and rough afterfeel. Total dissolved solids (TDS) was a major determinant of the taste perception of water. In general, lowering mineral content in drinking water in the range examined (from <5 to 440 mg/L) shifted the sensory perception of water from fresh towards bitter, dry, and rough sensations. In addition, perceived freshness of the waters correlated positively with calcium concentration. The greatest fresh taste was found for water with a TDS between 190 and 350 mg/L. Remineralisation of water after reverse osmosis can improve drinking quality significantly. Copyright © 2016 Elsevier Ltd. All rights reserved.
Life cycle water demand coefficients for crude oil production from five North American locations.
Ali, Babkir; Kumar, Amit
2017-10-15
The production of liquid fuels from crude oil requires water. There has been limited focus on the assessment of life cycle water demand footprints for crude oil production and refining. The overall aim of this paper is address this gap. The objective of this research is to develop water demand coefficients over the life cycle of fuels produced from crude oil pathways. Five crude oil fields were selected in the three North American countries to reflect the impact of different spatial locations and technologies on water demand. These include the Alaska North Slope, California's Kern County heavy oil, and Mars in the U.S.; Maya in Mexico; and Bow River heavy oil in Alberta, Canada. A boundary for an assessment of the life cycle water footprint was set to cover the unit operations related to exploration, drilling, extraction, and refining. The recovery technology used to extract crude oil is one of the key determining factors for water demand. The amount of produced water that is re-injected to recover the oil is essential in determining the amount of fresh water that will be required. During the complete life cycle of one barrel of conventional crude oil, 1.71-8.25 barrels of fresh water are consumed and 2.4-9.51 barrels of fresh water are withdrawn. The lowest coefficients are for Bow River heavy oil and the highest coefficients are for Maya crude oil. Of all the unit operations, exploration and drilling require the least fresh water (less than 0.015 barrel of water per barrel of oil produced). A sensitivity analysis was conducted and uncertainty in the estimates was determined. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sampath, Prasanna Venkatesh; Liao, Hua-Sheng; Curtis, Zachary Kristopher; Doran, Patrick J; Herbert, Matthew E; May, Christopher A; Li, Shu-Guang
2015-01-01
The sources of water and corresponding delivery mechanisms to groundwater-fed fens are not well understood due to the multi-scale geo-morphologic variability of the glacial landscape in which they occur. This lack of understanding limits the ability to effectively conserve these systems and the ecosystem services they provide, including biodiversity and water provisioning. While fens tend to occur in clusters around regional groundwater mounds, Ives Road Fen in southern Michigan is an example of a geographically-isolated fen. In this paper, we apply a multi-scale groundwater modeling approach to understand the groundwater sources for Ives Road fen. We apply Transition Probability geo-statistics on more than 3000 well logs from a state-wide water well database to characterize the complex geology using conditional simulations. We subsequently implement a 3-dimensional reverse particle tracking to delineate groundwater contribution areas to the fen. The fen receives water from multiple sources: local recharge, regional recharge from an extensive till plain, a regional groundwater mound, and a nearby pond. The regional sources deliver water through a tortuous, 3-dimensional "pipeline" consisting of a confined aquifer lying beneath an extensive clay layer. Water in this pipeline reaches the fen by upwelling through openings in the clay layer. The pipeline connects the geographically-isolated fen to the same regional mound that provides water to other fen clusters in southern Michigan. The major implication of these findings is that fen conservation efforts must be expanded from focusing on individual fens and their immediate surroundings, to studying the much larger and inter-connected hydrologic network that sustains multiple fens.
New test for oil soluble/water dispersible gas pipeline inhibitors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stegmann, D.W.; Asperger, R.G.
1987-01-01
The wheel test provides good mixing of the condensate and water phases, the coupons are exposed to both phases. Therefore, the wheel test cannot distinguish between inhibitors that need continuous mixing of the these phases to maintain a water dispersion of the inhibitor and inhibitors that will self disperse into the water. This concept becomes important for pipelines in stratified flow where the water can settle out. In these cases with low turbulence, the inhibitor must self disperse into the water to be effective. The paper describes a test method to measure the effectiveness of an inhibitor and its abilitymore » to self disperse. The effectiveness of several inhibitors as predicted by the new test method is discussed relative to data from the wheel test and breaker tests. Field performance of these inhibitors in a gas gathering line, with liquids in stratified flow, are cities and compared with the results of the various laboratory tests.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wyrzykowski, Mateusz, E-mail: mateusz.wyrzykowski@empa.ch; Lodz University of Technology, Department of Building Physics and Building Materials, Lodz; Trtik, Pavel
2015-07-15
Water transport in fresh, highly permeable concrete and rapid water evaporation from the concrete surface during the first few hours after placement are the key parameters influencing plastic shrinkage cracking. In this work, neutron tomography was used to determine both the water loss from the concrete surface due to evaporation and the redistribution of fluid that occurs in fresh mortars exposed to external drying. In addition to the reference mortar with a water to cement ratio (w/c) of 0.30, a mortar with the addition of pre-wetted lightweight aggregates (LWA) and a mortar with a shrinkage reducing admixture (SRA) were tested.more » The addition of SRA reduced the evaporation rate from the mortar at the initial stages of drying and reduced the total water loss. The pre-wetted LWA released a large part of the absorbed water as a consequence of capillary pressure developing in the fresh mortar due to evaporation.« less
Liu, Shijie; Lu, Yonglong; Xie, Shuangwei; Wang, Tieyu; Jones, Kevin C; Sweetman, Andrew J
2015-12-01
Perfluorooctane Sulfonate (PFOS) and related substances have been widely applied in both industrial processes and domestic products in China. Exploring the environmental fate and transport of PFOS using modeling methods provides an important link between emission and multimedia diffusion which forms a vital part in the human health risk assessment and chemical management for these substances. In this study, the gridded fugacity based BETR model was modified to make it more suitable to model transfer processes of PFOS in a coastal region, including changes to PFOS partition coefficients to reflect the influence of water salinity on its sorption behavior. The fate and transport of PFOS in the Bohai coastal region of China were simulated under steady state with the modified version of the model. Spatially distributed emissions of PFOS and related substances in 2010 were estimated and used in these simulations. Four different emission scenarios were investigated, in which a range of half-lives for PFOS related substances were considered. Concentrations of PFOS in air, vegetation, soil, fresh water, fresh water sediment and coastal water were derived from the model under the steady-state assumption. The median modeled PFOS concentrations in fresh water, fresh water sediment and soil were 7.20ng/L, 0.39ng/g and 0.21ng/g, respectively, under Emission Scenario 2 (which assumed all PFOS related substances immediately degrade to PFOS) for the whole region, while the maximum concentrations were 47.10ng/L, 4.98ng/g and 2.49ng/g, respectively. Measured concentration data for PFOS in the Bohai coastal region around the year of 2010 were collected from the literature. The reliability of the model results was evaluated by comparing the range of modeled concentrations with the measured data, which generally matched well for the main compartments. Fate and transfer fluxes were derived from the model based on the calculated inventory within the compartments, transfer fluxes between compartments and advection fluxes between sub-regions. It showed that soil and costal water were likely to be the most important sinks of PFOS in the Bohai costal region, in which more than 90% of PFOS was stored. Flows of fresh water were the driving force for spatial transport of PFOS in this region. Influences of the seasonal change of fresh water fluxes on the model results were also analyzed. When only seasonal changes of the fresh water flow rates were considered, concentrations of PFOS in winter and spring were predicted to be higher than that under annual average conditions, while the concentrations in summer and autumn were lower. For PFOS fluxes entering the sea, opposite conclusions were drawn compared to the concentrations. Environmental risks from the presence of PFOS in fresh water were assessed for this region through comparison with available water quality criteria values. The predicted concentrations of PFOS in the Bohai coastal region provided by the model were lower than the water quality criteria published by the United States Environmental Protection Agency and Chinese researchers, while the concentrations in more than 80% of the sampling locations exceeded the European Union Water Framework Directive Environmental Quality Standards values. Seasonal variations of flow rate might cause a significant increase in environmental risks. Copyright © 2015 Elsevier Ltd. All rights reserved.
Coincidental match of numerical simulation and physics
NASA Astrophysics Data System (ADS)
Pierre, B.; Gudmundsson, J. S.
2010-08-01
Consequences of rapid pressure transients in pipelines range from increased fatigue to leakages and to complete ruptures of pipeline. Therefore, accurate predictions of rapid pressure transients in pipelines using numerical simulations are critical. State of the art modelling of pressure transient in general, and water hammer in particular include unsteady friction in addition to the steady frictional pressure drop, and numerical simulations rely on the method of characteristics. Comparison of rapid pressure transient calculations by the method of characteristics and a selected high resolution finite volume method highlights issues related to modelling of pressure waves and illustrates that matches between numerical simulations and physics are purely coincidental.
Chesapeake Bay Low Freshwater Inflow Study. Biota Assessment. Phase II. Main Report.
1982-05-01
organisms in shallow water with a sensitive life stage occurring in the spring of the year. This indicates that aquatic vegetation and sessile animals are...variety of animals, primarily waterfowl and aquatic mammals, although the fresh water marsh species are primarily used directly. The major pathway through...of the diverse freshwater /oligohaline SAV community, all of which would be *: similarly impacted by fresh water inflow reductions. In addition, input
Parasitic contamination of fresh vegetables sold at central markets in Khartoum state, Sudan.
Mohamed, Mona Ali; Siddig, Emmanuel Edwar; Elaagip, Arwa Hassan; Edris, Ali Mahmoud Mohammed; Nasr, Awad Ahmed
2016-03-11
Fresh vegetables are considered as vital nutrients of a healthy diet as they supply the body with essential supplements. The consumption of raw vegetables is the main way for transmission of intestinal parasitic organisms. This study was aimed at detecting the parasitic contamination in fresh vegetables sold in two central open-aired markets in Khartoum state, Sudan. In this prospective cross-sectional study, a total of 260 fresh vegetable samples and 50 water samples used to sprinkle vegetable(s) were collected from two central open-aired markets (namely; Elshaabi and Central markets) during November 2011 to May 2012. The samples were microscopically examined for detection of parasitic life forms using standardized parasitological techniques for protozoans and helminthes worms. Of the 260 fresh vegetable samples, 35 (13.5 %) were microscopically positive for intestinal parasites whereas 7/50 (14 %) of water samples used to sprinkle vegetable(s) were found positives. Remarkably, high level of contamination in fresh vegetable samples was recorded in lettuce (Lactuca sativa) 36.4 % (4/11) while cayenne pepper (Capsicum annuum) and cucumber (Cucumis sativus) were not contaminated. The identified protozoans and helminthes were Entamoeba histolytica/dispar, Entamoeba coli, Giardia lamblia, Ascaris lumbricoides, Strongyloides stercoralis, T. trichiura and hookworms. The most predominant parasite encountered was E. histolytica/dispar (42.9 %) whereas both T. trichiura and A. lumbricoides (2.9 %) were the least detected parasites. None of the fresh vegetables had single parasitic contamination. The highest percentages found in water samples used to sprinkle vegetable(s) was for Strongyloides larvae 60 % (3/5). It is worth-mentioned that the rate of contamination in Elshaabi market was higher compared with Central market. However, there was no significant correlation between the type of vegetables and existence of parasites in both markets and a high significant relationship was observed between the type of parasite and total prevalence in fresh vegetables (p = 0.000). The study has identified a moderate rate of fresh vegetables contaminated with protozoan and helminthes. Contaminated fresh vegetables in central markets of Khartoum state may play a significant role in transmission of intestinal parasitic infections to humans, and the water used by greengrocers to sprinkle vegetable(s) can be implicated in vegetable contamination.
An outbreak of hepatitis A associated with a contaminated well in a middle school, Guangxi, China.
Ye-Qing, Xu; Fu-Qing, Cui; Jia-Tong, Zhuo; Guo-Ming, Zhang; Jin-Fa, Du; Qu-Yun, Den; Hui-Min, Luo
2012-10-01
In May 2012, an outbreak of viral hepatitis A was reported to the Guangxi Center for Disease Control and Prevention from a middle school in Liujiang County. An investigation was conducted to identify the cause and mode of transmission and to recommend control and prevention measures. A case was defined as any person from the middle school with onset of fatigue, anorexia, abdominal pain, diarrhoea or jaundice from 20 February to 20 May 2012. We compared attack rates (AR) between boys and girls, assuming that only boys used well water and girls used pipeline water. We then selected 133 students from three classes in each of the three grades to compare AR by reported water source and drinking history. There were 22 cases, an AR of 3.8% (21/553) for students and 1.5% for teachers (1/65). Those who used well water were 8.7 (95% confidence interval [CI] = 2.1-37.2) times more likely to be ill than those using pipeline water. The cohort study showed that students who reported using well water daily were 5.2 (95% CI = 0.7-41.8) times more likely to be ill than those that reported using the pipeline water daily. Eighteen cases were confirmed as hepatitis A. This hepatitis A outbreak was potentially caused by a contaminated school well. We recommended that the school discontinue using the well and that the students should drink boiled water. As there is a vaccine for hepatitis A, we recommended that several doses of the vaccine be stored for controlling outbreaks and for immunizing susceptible populations in future outbreaks.
Macfarlane, P.A.; Bohling, G.; Thompson, K.W.; Townsend, M.
2006-01-01
Environmental and earth science students are novice learners and lack the experience needed to rise to the level of expert. To address this problem we have developed the prototype Plume Busters?? software as a capstone educational experience, in which students take on the role of an environmental consultant. Following a pipeline spill, the environmental consultant is hired by the pipeline owner to locate the resulting plume created by spill and remediate the contaminated aquifer at minimum monetary and time cost. The contamination must be removed from the aquifer before it reaches the river and eventually a downstream public water supply. The software consists of an interactive Java application and accompanying HTML linked pages. The application simulates movement of a plume from a pipeline break throug h a shallow alluvial aquifer towards the river. The accompanying web pages establish the simulated contamination scenario and provide students with background material on ground-water flow and transport principles. To make the role-play more realistic, the student must consider cost and time when making decisions about siting observation wells and wells for the pump-and-treat remediation system.
WATER SECURITY MONITORING USING SURFACE-ENHANCED RAMAN SPECTROSCOPY - PHASE I
Clean drinking water is a critical component of the United States infrastructure and is therefore a potential target for terrorists. In addition to physical attacks to the water network including dams, pumping stations and pipelines, there must be vigilance to prevent the wate...
Santos, John F.; Stoner, J.D.
1972-01-01
This report describes the significant results to 1967 of a comprehensive study that began in 1963 to evaluate what changes take place in an estuary as the loads .of raw and partially treated industrial and municipal wastes are replaced by effluent from a secondary treatment plant. The study area is the Duwamish River estuary, about 18.3 river kilometers long. At mean sea level the estuary has a water-surface area of about 1 square mile and a mean width of 440 feet. At the lowest and highest recorded tides, the volume of the estuary is about 205 and 592 million cubic feet, respectively. The estuary is well stratified (salt-wedge type) at fresh-water inflows greater than 1,000 cfs (cubic feet per second), but when inflow rates are less than 1,000 cfs the lower 5.6 kilometers of the estuary grades into the partly mixed type. The crosschannel salinity distribution is uniform for a given location and depth. Salinity migration is controlled by tides and fresh-water inflow. At fresh-water inflow rates greater than 1,000 cfs, water in the upper 8.4 kilometers of the estuary is always fresh regardless of tide. At inflow rates less than 600 cfs and tide heights greater than 10 feet; some salinity has been detected 16.1 kilometers above the mouth of the estuary. Studies using a fluorescent dye show that virtually no downward mixing into the salt wedge occurs; soluble pollutants introduced at the upper end of the estuary stay in the surface layer (5-15 ft thick). On the basis of dye studies when fresh-water inflow is less than 400 cfs, it is estimated that less than 10 percent of a pollutant will remain in the estuary a minimum of 7 days. Longitudinal dispersion coefficients for the surface layer have been determined to be on the order of 100-400 square feet per second. Four water-quality stations automatically monitor DO (dissolved oxygen), water temperature, pH, and specific conductance; at one station solar radiation also is measured. DO concentration in the surface layer decreases almost linearly in a downstream direction. Minimum DO concentration in the surface layer is usually greater than 4 rag/1 (milligrams per liter). The smallest DO values are consistently recorded in the bottom layer at the station 7.7 kilometers above the mouth; monthly means of less than 3 mg/1 of DO have occurred at this point. Manual sampling shows that the DO sag in the bottom layer oscillates between 7.7 and 10.4 kilometers above the mouth of the estuary. Multiple-regression analysis shows that the surface DO content can be estimated from the fresh-water inflow and water temperature. Tidal exchange and fresh-water inflow indirectly control the bottom DO content. Information available from previous studies failed to indicate a progressive decrease in DO content during the period 1949-56, but data from the present study suggest a slight general decrease in the annual minimum DO concentrations in both the upper and lower layers. Average nitrate concentration in fresh water at station 16.2 has increased progressively since 1964, by amounts greater than those which can be attributed to the Renton Treatment Plant, 4.3 kilometers upstream from station 16.2. The BOD (biochemical oxygen demand) in both surface and bottom layers is generally less than 4 rag/1 of oxygen, but values greater than 6 rag/1 have been measured during a period of phytoplankton bloom. Phytoplankton blooms can occur during periods of minimum tidal exchange and fresh-water inflows of less than 300 cfs if solar radiation and water temperature are optimum. Nutrients (nitrogen and phosphorus compounds) do not control the occurrence of a bloom, because sufficient quantities of these nutrients are always present. Nutrients in the treated effluent may increase the biomass of the bloom. Trace-element studies have not defined any role that these elements may play in algal growth. The inflowing fresh water contains principally calcium and bicarbonate and has a dissolved-solids content ra
There is a growing body of evidence that toxic organotins are making their way into humans and other mammals (terrestrial and marine). One possible route of environmental exposure in the U.S. to organotins (specifically dibutyltin and triphenyltin) is via fresh surface waters, an...
Fingerprints of resistant Escherichia coli O157:H7 from vegetables and environmental samples
USDA-ARS?s Scientific Manuscript database
In the last decade, increases in E. coli O157:H7 outbreaks linked to fresh produce had been associated with contaminated irrigation water. However, studies on antibiotics resistance in E. coli associated with fresh produce impacted by contaminated water in Nigeria is very limited. The aim of this st...
Consequences of Groundwater Development on Water Resources of Hawai`i
NASA Astrophysics Data System (ADS)
Rotzoll, K.; Izuka, S. K.; El-Kadi, A. I.
2017-12-01
The availability of fresh groundwater for human use is limited by whether the impacts of withdrawals are deemed acceptable by community stakeholders and water-resource managers. Quantifying the island-wide hydrologic impacts of withdrawal—saltwater intrusion, water-table decline, and reduction of groundwater discharge to streams, nearshore environments and downgradient groundwater bodies—is thus a key step for assessing fresh groundwater availability in Hawai`i. Groundwater-flow models of the individual islands of Kaua`i, O`ahu, and Maui were constructed using MODFLOW 2005 with the Seawater-Intrusion Package (SWI2). Consistent model construction among the islands, calibration, and analysis were streamlined using Python scripts. Results of simulating historical withdrawals from Hawai`i's volcanic aquifers show that the types and magnitudes of impacts that can limit fresh groundwater availability vary among each islands' unique hydrogeologic settings. In high-permeability freshwater-lens aquifers, saltwater intrusion and reductions in coastal groundwater discharge are the principal consequences of withdrawals that can limit groundwater availability. In dike-impounded groundwater and thickly saturated low-permeability aquifers, reduced groundwater discharge to streams, water-table decline, or reduced flows to adjacent freshwater-lens aquifers can limit fresh groundwater availability. The numerical models are used to quantify and delineate the spatial distribution of these impacts for the three islands. The models were also used to examine how anticipated changes in groundwater recharge and withdrawals will affect fresh groundwater availability in the future.
Hongping, Wang; Jilun, Zhang; Ting, Jiang; Yixi, Bao; Xiaoming, Zhou
2011-01-01
We evaluated the Kanagawa hemolytic test and tdh gene test for accuracy in identifying pathogenic Vibrio parahaemolyticus isolates in Shanghai. One hundred and seventy-two V. parahaemolyticus isolates were collected from diarrhea patients, freshly harvested sea fish, or fresh water samples. Statistical data for the Kanagawa hemolytic test and tdh gene test were compared. There were 83.51% isolates (81/97) from patients and 22.22% isolates (10/45) from sea-fish positive for the tdh gene. However, none of 30 isolates from fresh water samples were tdh-positive. Positive Kanagawa hemolytic tests were obtained in 88.66%, 46.67%, and 76.67% of isolates, which were from patients, sea fish, and fresh water samples, respectively. Positive rates of the Kanagawa hemolytic tests and the tdh gene tests were significantly different in isolates from those 3 sources (P < 0.001). The tdh gene test showed higher specificity than the Kanagawa hemolytic test on identifying pathogenic V. parahaemolyticus isolates in Shanghai, China. Copyright © 2011 Elsevier Inc. All rights reserved.
Low-cost failure sensor design and development for water pipeline distribution systems.
Khan, K; Widdop, P D; Day, A J; Wood, A S; Mounce, S R; Machell, J
2002-01-01
This paper describes the design and development of a new sensor which is low cost to manufacture and install and is reliable in operation with sufficient accuracy, resolution and repeatability for use in newly developed systems for pipeline monitoring and leakage detection. To provide an appropriate signal, the concept of a "failure" sensor is introduced, in which the output is not necessarily proportional to the input, but is unmistakably affected when an unusual event occurs. The design of this failure sensor is based on the water opacity which can be indicative of an unusual event in a water distribution network. The laboratory work and field trials necessary to design and prove out this type of failure sensor are described here. It is concluded that a low-cost failure sensor of this type has good potential for use in a comprehensive water monitoring and management system based on Artificial Neural Networks (ANN).
An investigation on mechanical properties of steel fibre reinforced for underwater welded joint
NASA Astrophysics Data System (ADS)
Navin, K.; Zakaria, M. S.; Zairi, S.
2017-09-01
Underwater pipelines are always exposed to water and have a high tendency to have corrosion especially on the welded joint. This research is about using fiber glass as steel fiber to coat the welded joint to determine the effectiveness in corrosion prevention of the welded joint. Number of coating is varied to determine the better number coating to coat the pipeline. Few samples were left without immersion in salt water and few samples are immersed into salt water with same salinity as sea water. The material sample is prepared in dog bone shape to enable to be used in Universal Tensile Machine (UTM). The material prepared is left immersed for recommended time and tested in Universal Tensile Machine. Upon analyzing the result, the result is used to determine the breakage point whether broken on the welded joint or different place and also the suitable number of coating to be used.
Kirchhoff, K N; Hauffe, T; Stelbrink, B; Albrecht, C; Wilke, T
2017-08-01
Species richness in freshwater bony fishes depends on two main processes: the transition into and the diversification within freshwater habitats. In contrast to bony fishes, only few cartilaginous fishes, mostly stingrays (Myliobatoidei), were able to colonize fresh water. Respective transition processes have been mainly assessed from a physiological and morphological perspective, indicating that the freshwater lifestyle is strongly limited by the ability to perform osmoregulatory adaptations. However, the transition history and the effect of physiological constraints on the diversification in stingrays remain poorly understood. Herein, we estimated the geographic pathways of freshwater colonization and inferred the mode of habitat transitions. Further, we assessed habitat-related speciation rates in a time-calibrated phylogenetic framework to understand factors driving the transition of stingrays into and the diversification within fresh water. Using South American and Southeast Asian freshwater taxa as model organisms, we found one independent freshwater colonization event by stingrays in South America and at least three in Southeast Asia. We revealed that vicariant processes most likely caused freshwater transition during the time of major marine incursions. The habitat transition rates indicate that brackish water species switch preferably back into marine than forth into freshwater habitats. Moreover, our results showed significantly lower diversification rates in brackish water lineages, whereas freshwater and marine lineages exhibit similar rates. Thus, brackish water habitats may have functioned as evolutionary bottlenecks for the colonization of fresh water by stingrays, probably because of the higher variability of environmental conditions in brackish water. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.
Adaptations to a New Physical Training Program in the Combat Controller Training Pipeline
2010-09-01
education regarding optimizing recovery through hydration and nutrition . We designed and implemented a short class that explained the benefits of pre...to poor nutrition and hydration practices. Finally, many of the training methods employed throughout the pipeline were outdated, non-periodized, and...contributing to overtraining. Creation of a nutrition and hydration class. Apart from being told to drink copious amounts of water, trainees had little
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greenwood, Margaret Stautberg
2015-12-01
To design an ultrasonic sensor to measure the attenuation and density of a slurry carried by a large steel pipeline (diameter up to 70 cm) is the goal of this research. The pitch-catch attenuation sensor, placed in a small section of the pipeline, contains a send unit with a focused transducer that focuses the ultrasound to a small region of the receive unit on the opposite wall. The focused transducer consists of a section of a sphere (base ~12 cm) on the outer side of the send unit and a 500 kHz piezoelectric shell of PZT5A epoxied to it. Themore » Rayleigh surface integral is used to calculate the pressure in steel and in water (slurry). An incremental method to plot the paths of ultrasonic rays shows that the rays focus where expected. Further, there is a region where the parallel rays are perpendicular to the wall of the receive unit. Designs for pipeline diameters of 25 cm and 71 cm show that the pressure in water at the receive transducer is about 17 times that for a pitch-catch system using 5 cm diameter disk transducers. The enhanced signal increases the sensitivity of the measurements and improves the signal-to-noise ratio.« less
Greenwood, Margaret Stautberg
2015-12-01
To design an ultrasonic sensor to measure the attenuation and density of slurry carried by a large steel pipeline (diameter up to 70 cm) is the goal of this research. The pitch-catch attenuation sensor, placed in a small section of the pipeline, contains a send unit with a focused transducer that focuses the ultrasound to a small region of the receive unit on the opposite wall. The focused transducer consists of a section of a sphere (base ∼12 cm) on the outer side of the send unit and a 500 kHz piezoelectric shell of lead zirconate titanate epoxied to it. The Rayleigh surface integral is used to calculate the pressure in steel and in water (slurry). An incremental method to plot the paths of ultrasonic rays shows that the rays focus where expected. Further, there is a region where the parallel rays are perpendicular to the wall of the receive unit. Designs for pipeline diameters of 25 and 71 cm show that the pressure in water at the receive transducer is about 17 times that for a pitch-catch system using 5 cm diameter disk transducers. The enhanced signal increases the sensitivity of the measurements and improves the signal-to-noise ratio.
Weinstein, Y.; Burnett, W.C.; Swarzenski, P.W.; Shalem, Y.; Yechieli, Y.; Herut, B.
2007-01-01
A case study is shown in which the pattern of submarine groundwater discharge and of seawater recycling is controlled by local hydrogeological variability. The coastal aquifer in Dor Bay is composed of two units: a partly confined calcaranitic sandstone (Kurkar) and an overlying loose sand. Groundwater in the Kurkar has elevated activities of 222Rn (∼390 dpm/L) and relatively low 224Ra/223Ra activity ratios (3–4), while the sand groundwater is significantly less radiogenic (6–90 dpm/L) and shows higher 224Ra/223Ra ratios. Groundwater discharging from sand-covered areas of the bay has salinities of 16–31 and an average 222Rn activity of 168 dpm/L, which lies on a mixing line between Rn-rich Kurkar fresh water and Rn-poor seawater. Another key observation is that seawater infiltrates to some extent into onshore sand groundwater, while the fresh water within the submarine Kurkar can be traced up to 40 m offshore. This implies that while fresh water mainly discharges from the Kurkar unit, seawater recycling is limited to the loose sand, and that the discharge from sand-covered areas is a mixture of Kurkar water with recycled seawater. Advection rates from the bay floor were calculated from Rn time series and found to vary between 0 and 36 cm/d, correlating negatively with bay water depth. The average flux was 8.1 cm/d, and it did not seem to change much during March, May, and July 2006. The average amount of fresh water discharging to the bay was 5.0 m3/d per meter of shoreline. Radon activity in the sand groundwater also fluctuates due to influx of Kurkar-type groundwater.
USDA-ARS?s Scientific Manuscript database
Human norovirus (NoV) is a major cause of fresh produce associated outbreaks and human NoV in irrigation water can potentially lead to viral internalization in fresh produce. Therefore, there is a need to develop novel intervention strategies to target internalized viral pathogens while maintainin...
Artificial recharge to a freshwater-sensitive brackish-water sand aquifer, Norfolk, Virginia
Brown, Donald L.; Silvey, William Dudley
1977-01-01
Fresh water was injected into a brackish-water sand for storage and retrieval. The initial injection rate of 400 gpm decreased to 70 gpm during test 3. The specific capacity of the well decreased also, from 15.4 to 0.93 gpm. Current-meter surveys indicated uniform reduction in hydraulic conductivity of all contributing zones in the aquifer. Hydraulic and chemical data indicate this was caused by dispersion of the interstitial clay upon introduction of the calcium bicarbonate water into the sodium chloride bearing sand aquifer. The clay dispersion also caused particulate rearrangement and clogging of well screen. A pre-flush of 0.2 N calcium chloride solution injected in front of the fresh water at the start of test 4 stabilized the clay. However, it did not reverse the particulate clogging that permanently reduced permeability and caused sanding during redevelopment. Clogging can be prevented by stabilization of the clay using commercially available trivalent aluminum compounds. Test 1 and test 2 showed that 85 percent of the water injected can be recovered, and the water meets U.S. Public Health Standards. Storage of fresh water in a brackish-water aquifer appears feasible provided proper control measures are used. (Woodard-USGS)
NASA Astrophysics Data System (ADS)
Anderson, C. P.; Carter, G. A.; Mooneyhan, D.
2013-12-01
Carlton P. Anderson, Gregory Carter, and David Mooneyhan University of Southern Mississippi Gulf Coast Geospatial Center Department of Geography and Geology Carlton.p.anderson@eagles.usm.edu The Mississippi-Alabama (MS-AL) barrier island chain consist of dynamic depositional landforms that constantly undergo changes in their evolutionary processes through changes in sea level, sediment supply, and weather events. These complex landscapes of the Northern Gulf of Mexico (NGOM) provide a chance to study their geomorphological progressions, which have been produced by sea level rise and fluvial processes throughout the Holocene. Studies on the freshwater lens of barriers have mainly concentrated on carbonate island settings with minimal focus to barriers with siliciclastic geology. The purpose of this study is to examine the relationship beach dune topography plays in the development and sustainability of the fresh water lens of Cat Island, Mississippi. Cat Island offers the opportunity to research a siliciclastic barrier along the NGOM where minimal anthropogenic activities have taken place. To determine the effect dune topography has on the fresh water lens, a transect of permanent water wells were used in conjunction with test wells at different sites throughout the north spit of the island, to establish the water table height above the ellipsoid (WGS 84), with vertical accuracies of 2 cm. Cross-sectional profiles of the dunes were also performed utilizing purposeful transects that intersected fresh water ponds in the dune-swale systems. These ponds provide water table elevations at the surface which were interpolated across the dunes for areas that lacked permanent well sites. To obtain survey-grade accuracies, a Trimble TSC3 receiver coupled with a R8 antennae RTK system were used. Salinity measurements were taken at test sites to determine the salt-to-freshwater interface. Results provide insights into how dune topography influences the fresh water lens of a siliciclastic barrier.
Estimated use of water in the United States in 2005
Kenny, Joan F.; Barber, Nancy L.; Hutson, Susan S.; Linsey, Kristin S.; Lovelace, John K.; Maupin, Molly A.
2009-01-01
About 67 percent of fresh groundwater withdrawals in 2005 were for irrigation, and 18 percent were for public supply. More than half of fresh groundwater withdrawals in the United States in 2005 occurred in six States. In California, Texas, Nebraska, Arkansas, and Idaho, most of the fresh groundwater withdrawals were for irrigation. In Florida, 52 percent of all fresh groundwater withdrawals were for public supply, and 34 percent were for irrigation.
Thermodynamics of saline and fresh water mixing in estuaries
NASA Astrophysics Data System (ADS)
Zhang, Zhilin; Savenije, Hubert H. G.
2018-03-01
The mixing of saline and fresh water is a process of energy dissipation. The freshwater flow that enters an estuary from the river contains potential energy with respect to the saline ocean water. This potential energy is able to perform work. Looking from the ocean to the river, there is a gradual transition from saline to fresh water and an associated rise in the water level in accordance with the increase in potential energy. Alluvial estuaries are systems that are free to adjust dissipation processes to the energy sources that drive them, primarily the kinetic energy of the tide and the potential energy of the river flow and to a minor extent the energy in wind and waves. Mixing is the process that dissipates the potential energy of the fresh water. The maximum power (MP) concept assumes that this dissipation takes place at maximum power, whereby the different mixing mechanisms of the estuary jointly perform the work. In this paper, the power is maximized with respect to the dispersion coefficient that reflects the combined mixing processes. The resulting equation is an additional differential equation that can be solved in combination with the advection-dispersion equation, requiring only two boundary conditions for the salinity and the dispersion. The new equation has been confronted with 52 salinity distributions observed in 23 estuaries in different parts of the world and performs very well.
Salakinkop, S R; Shivaprasad, P
2012-01-01
A field experiment was conducted to study the influence of treated coffee effluent irrigation on performance of established robusta coffee, nutrient contribution and microbial activities in the soil. The results revealed that the field irrigated with coffee effluent from aerobic tank having COD of 1009 ppm, did not affect the yield of clean coffee (1309 kg/ha) and it was statistically similar (on par) with the plots irrigated with fresh water (1310 kg/ha) with respect to clean coffee yield. Effluent irrigation increased significantly the population bacteria, yeast, fungi, actinomycetes and PSB (122, 52, 12, 34 and 6 x 104/g respectively)) in the soil compared to the soil irrigated with fresh water (87, 22, 5, 24 and 2 x 10(4)/g respectively). The organic carbon (2.60%), available nutrients in the soil like P (57.2 kg/ha), K (401.6 kg/ha, Ca (695.3 ppm), S (5.3 ppm),Cu (4.09 ppm) and Zn(4.78 ppm) were also increased due to effluent irrigation compared to fresh water irrigation. Thus analysis of coffee effluent for major and minor plant nutrients content revealed its potential as source of nutrients and water for plant growth.
Irrigation waters and pipe-based biofilms as sources for antibiotic-resistant bacteria
USDA-ARS?s Scientific Manuscript database
The presence of antibiotic-resistant bacteria in environmental surface waters has gained recent attention. Wastewater- and drinking water distribution systems are known to disseminate antibiotic-resistant bacteria, with the biofilms that form on the inner-surfaces of the pipeline as a hotspot for pr...
49 CFR 195.248 - Cover over buried pipeline.
Code of Federal Regulations, 2010 CFR
2010-10-01
... waters less than 15 feet (4.6 meters) deep as measured from mean low water 36 (914) 18 (457) Other offshore areas under water less than 12 ft (3.7 meters) deep as measured from mean low water 36 (914) 18... residential areas 36 (914) 30 (762) Crossing of inland bodies of water with a width of at least 100 feet (30...
The dynamics of water in hydrated white bread investigated using quasielastic neutron scattering
NASA Astrophysics Data System (ADS)
Sjöström, J.; Kargl, F.; Fernandez-Alonso, F.; Swenson, J.
2007-10-01
The dynamics of water in fresh and in rehydrated white bread is studied using quasielastic neutron scattering (QENS). A diffusion constant for water in fresh bread, without temperature gradients and with the use of a non-destructive technique, is presented here for the first time. The self-diffusion constant for fresh bread is estimated to be Ds = 3.8 × 10-10 m2 s-1 and the result agrees well with previous findings for similar systems. It is also suggested that water exhibits a faster dynamics than previously reported in the literature using equilibration of a hydration-level gradient monitored by vibrational spectroscopy. The temperature dependence of the dynamics of low hydration bread is also investigated for T = 280-350 K. The average relaxation time at constant momentum transfer (Q) shows an Arrhenius behavior in the temperature range investigated.
Sea Surface Salinity Variability in Response to the Congo River Discharge
NASA Astrophysics Data System (ADS)
Moller, D.; Chao, Y.; Farrara, J. D.; Schumann, G.; Andreadis, K.
2014-12-01
Sea surface salinity (SSS) variability associated with the Congo River discharge is examined using Aquarius satellite-retrieved SSS data and vertical profiles of salinity measured by the Argo floats. The Congo River plume can be clearly identified in the Aquarius SSS data with a westward extension of 500 to 1000 km off the coast of the Democratic Republic of Congo (DRC). The peak amplitude of the SSS variability associated with the Congo River discharge exceeds 2.0 psu. Using the first two years of Aquarius data, a well-defined seasonal cycle is described: maximum fresh-water anomalies are found in the boreal winter and spring seasons. The fresh-water anomalies during the 2012-2013 winter and spring seasons are significantly fresher than the 2011-2012 winter and spring seasons. Vertical profiles of salinity derived from the Argo floats reveal that these fresh-water anomalies can be traced to 40 meters below the sea surface. Combining the Aquarius SSS data with the Argo vertical profiles of salinity, the 3D volume of these fresh-water anomalies can be inferred and used to estimate the Congo River discharge. Reasonably good agreement is found between the Congo River discharge as observed by a stream gauge at Kinshasa and that estimated from the combined Aquarius and Argo data, indicating that Aquarius data can be used to close the fresh-water budget between the coastal ocean and the Congo River. The precipitation minus evaporation portion of the freshwater flux is found to play a secondary role in this region.
Energy Harvesting from Fluid Flow in Water Pipelines for Smart Metering Applications
NASA Astrophysics Data System (ADS)
Hoffmann, D.; Willmann, A.; Göpfert, R.; Becker, P.; Folkmer, B.; Manoli, Y.
2013-12-01
In this paper a rotational, radial-flux energy harvester incorporating a three-phase generation principle is presented for converting energy from water flow in domestic water pipelines. The energy harvester together with a power management circuit and energy storage is used to power a smart metering system installed underground making it independent from external power supplies or depleting batteries. The design of the radial-flux energy harvester is adapted to the housing of a conventional mechanical water flow meter enabling the use of standard components such as housing and impeller. The energy harvester is able to generate up to 720 mW when using a flow rate of 20 l/min (fully opened water tab). A minimum flow rate of 3 l/min is required to get the harvester started. In this case a power output of 2 mW is achievable. By further design optimization of the mechanical structure including the impeller and magnetic circuit the threshold flow rate can be further reduced.
Increased salinization of fresh water in the northeastern United States
Kaushal, Sujay S.; Groffman, Peter M.; Likens, Gene E.; Belt, Kenneth T.; Stack, William P.; Kelly, Victoria R.; Band, Lawrence E.; Fisher, Gary T.
2005-01-01
Chloride concentrations are increasing at a rate that threatens the availability of fresh water in the northeastern United States. Increases in roadways and deicer use are now salinizing fresh waters, degrading habitat for aquatic organisms, and impacting large supplies of drinking water for humans throughout the region. We observed chloride concentrations of up to 25% of the concentration of seawater in streams of Maryland, New York, and New Hampshire during winters, and chloride concentrations remaining up to 100 times greater than unimpacted forest streams during summers. Mean annual chloride concentration increased as a function of impervious surface and exceeded tolerance for freshwater life in suburban and urban watersheds. Our analysis shows that if salinity were to continue to increase at its present rate due to changes in impervious surface coverage and current management practices, many surface waters in the northeastern United States would not be potable for human consumption and would become toxic to freshwater life within the next century. PMID:16157871
Increased salinization of fresh water in the Northeastern United States
Kaushal, S.S.; Groffman, P.M.; Likens, G.E.; Belt, K.T.; Stack, W.P.; Kelly, V.R.; Band, L.E.; Fisher, G.T.
2005-01-01
Chloride concentrations are increasing at a rate that threatens the availability of fresh water in the northeastern United States. Increases in roadways and deicer use are now salinizing fresh waters, degrading habitat for aquatic organisms, and impacting large supplies of drinking water for humans throughout the region. We observed chloride concentrations of up to 25% of the concentration of seawater in streams of Maryland, New York, and New Hampshire during winters, and chloride concentrations remaining up to 100 times greater than unimpacted forest streams during summers. Mean annual chloride concentration increased as a function of impervious surface and exceeded tolerance for freshwater life in suburban and urban watersheds. Our analysis shows that if salinity were to continue to increase at its present rate due to changes in impervious surface coverage and current management practices, many surface waters in the northeastern United States would not be potable for human consumption and would become toxic to freshwater life within the next century. ?? 2005 by The National Academy of Sciences of the USA.
U. K. to resume natural gas imports
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-02-17
This paper reports that the U.K. government has opened the way for resuming gas imports into Britain by approving a contract signed by U.K. electric power utility National Power to buy gas from Norway. A new joint marketing venture of BP Exploration, Den norske stats oljeselskap AS (Statoil), and Norsk Hydro AS also will be allowed to import gas for electric power plant fuel once it has a contract. National Power and the BP/Statoil/Norsk Hydro group will use the Frigg pipeline from Norwegian waters into St. Fergus, north of Aberdeen, the only existing link between the British transmission system andmore » foreign supplies of gas. Meantime, progress is under way toward a second pipeline to link the U.K. with foreign natural gas supplies, calling for a pipeline across the English Channel joining the continental European pipeline system to the U.K. network.« less
An Investigation of the Cryogenic Freezing of Water in Non-Metallic Pipelines
NASA Astrophysics Data System (ADS)
Martin, C. I.; Richardson, R. N.; Bowen, R. J.
2004-06-01
Pipe freezing is increasingly used in a range of industries to solve otherwise intractable pipe line maintenance and servicing problems. This paper presents the interim results from an experimental study on deliberate freezing of polymeric pipelines. Previous and contemporary works are reviewed. The object of the current research is to confirm the feasibility of ice plug formation within a polymeric pipe as a method of isolation. Tests have been conducted on a range of polymeric pipes of various sizes. The results reported here all relate to freezing of horizontal pipelines. In each case the process of plug formation was photographed, the frozen plug pressure tested and the pipe inspected for signs of damage resulting from the freeze procedure. The time to freeze was recorded and various temperatures logged. These tests have demonstrated that despite the poor thermal and mechanical properties of the polymers, freezing offers a viable alternative method of isolation in polymeric pipelines.
Development Of A Centrifugal Hydrogen Pipeline Gas Compressor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Di Bella, Francis A.
2015-04-16
Concepts NREC (CN) has completed a Department of Energy (DOE) sponsored project to analyze, design, and fabricate a pipeline capacity hydrogen compressor. The pipeline compressor is a critical component in the DOE strategy to provide sufficient quantities of hydrogen to support the expected shift in transportation fuels from liquid and natural gas to hydrogen. The hydrogen would be generated by renewable energy (solar, wind, and perhaps even tidal or ocean), and would be electrolyzed from water. The hydrogen would then be transported to the population centers in the U.S., where fuel-cell vehicles are expected to become popular and necessary tomore » relieve dependency on fossil fuels. The specifications for the required pipeline hydrogen compressor indicates a need for a small package that is efficient, less costly, and more reliable than what is available in the form of a multi-cylinder, reciprocating (positive displacement) compressor for compressing hydrogen in the gas industry.« less
Estimated Water Flows in 2005: United States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, C A; Belles, R D; Simon, A J
2011-03-16
Flow charts depicting water use in the United States have been constructed from publicly available data and estimates of water use patterns. Approximately 410,500 million gallons per day of water are managed throughout the United States for use in farming, power production, residential, commercial, and industrial applications. Water is obtained from four major resource classes: fresh surface-water, saline (ocean) surface-water, fresh groundwater and saline (brackish) groundwater. Water that is not consumed or evaporated during its use is returned to surface bodies of water. The flow patterns are represented in a compact 'visual atlas' of 52 state-level (all 50 states inmore » addition to Puerto Rico and the Virgin Islands) and one national water flow chart representing a comprehensive systems view of national water resources, use, and disposition.« less
Leak detection in medium density polyethylene (MDPE) pipe using pressure transient method
NASA Astrophysics Data System (ADS)
Amin, M. M.; Ghazali, M. F.; PiRemli, M. A.; Hamat, A. M. A.; Adnan, N. F.
2015-12-01
Water is an essential part of commodity for a daily life usage for an average person, from personal uses such as residential or commercial consumers to industries utilization. This study emphasizes on detection of leaking in medium density polyethylene (MDPE) pipe using pressure transient method. This type of pipe is used to analyze the position of the leakage in the pipeline by using Ensemble Empirical Mode Decomposition Method (EEMD) with signal masking. Water hammer would induce an impulse throughout the pipeline that caused the system turns into a surge of water wave. Thus, solenoid valve is used to create a water hammer through the pipelines. The data from the pressure sensor is collected using DASYLab software. The data analysis of the pressure signal will be decomposed into a series of wave composition using EEMD signal masking method in matrix laboratory (MATLAB) software. The series of decomposition of signals is then carefully selected which reflected intrinsic mode function (IMF). These IMFs will be displayed by using a mathematical algorithm, known as Hilbert transform (HT) spectrum. The IMF signal was analysed to capture the differences. The analyzed data is compared with the actual measurement of the leakage in term of percentage error. The error recorded is below than 1% and it is proved that this method highly reliable and accurate for leak detection.
An urban, water-borne outbreak of diarrhoea and shigellosis in a district town in eastern India.
Saha, T; Murhekar, M; Hutin, Y J; Ramamurthy, T
2009-01-01
In September 2007, the Gayeshpur municipality reported a cluster of cases with diarrhoea. We aimed to identify the causative agent and the source of the disease. We defined a case as the occurrence of diarrhoea (> 3 loose stools/day) with fever or bloody stools in a resident of Gayeshpur in September-October 2007. We asked healthcare facilities to report cases, collected stool specimens from patients, constructed an epidemic curve, drew a map and calculated the incidence by age and sex. We also conducted a matched case-control study (58 in each group), calculated matched odds ratio (MOR) and population attributable fraction (PAF), as well as assessed the environment. We identified 461 cases (attack rate: 46/1000 population) and isolated Shigella flexneri (serotype 2a and 3a) from 3 of 4 stool specimens. The attack rate was higher among females (52/1000) and those in the age group of 45-59 years (71/1000). The outbreak started on 22 September, peaked multiple times and subsided on 12 October 2007. Cases were clustered distal to a leaking pipeline that crossed an open drain to intermittently supply non-chlorinated water to taps. The 58 cases and 58 controls were matched for age and sex. Drinking tap water (MOR: 10; 95% CI: 3-32; PAF: 89%), washing utensils in tap water (MOR: 3.7; 95% CI: 1.2-11.3) and bathing in tap water (MOR: 3.5; 95% CI: 1.1-11) were associated with the illness. This outbreak of diarrhoea and Shigella flexneri dysentery was caused by contamination of tap water and subsided following repair of the pipeline. We recommended regular chlorination of the water and maintenance of pipelines.
Ground-water hydrology of the Cocoa well-field area, Orange County, Florida
Tibbals, C.H.; Frazee, J.M.
1976-01-01
The city of Cocoa, Brevard County, Florida, supplies water for much of central Brevard County including Cape Kennedy and Patrick Air Force Base. The water supply is obtained from a well field in east Orange County. Many of the easternmost wells in that well field yield salty water (chloride concentration greater than 250 milligrams per liter). The interface between the fresh and salty water in the west part of the well field occurs at a depth of about 1,400 feet. An upward hydraulic gradient exists between the the lower (salty) zones and the upper, or pumped zones of the Floridan aquifer in the west part of the well field. Secondary artesian aquifers in the well-field area are relatively high-yielding but are of limited areal extent. However, they are suitable as a source of water for supplemental supply or for artificially recharging the Floridan aquifer. Fresh water was transferred by siphon from a secondary artesian aquifer to the Floridan aquifer at 90 gallons per minute. Artificial recharge and recovery experiments show that it is feasible to retrieve fresh water stored in salty zones of the Floridan aquifer. (Woodard-USGS)
Nicholas, Joseph W; Dieker, Laura E; Sloan, E Dendy; Koh, Carolyn A
2009-03-15
Adhesive forces between cyclopentane (CyC5) hydrates and carbon steel (CS) were measured. These forces were found to be substantially lower than CyC5 hydrate-CyC5 hydrate particle measurements and were also lower than ice-CS measurements. The measured adhesive forces were used in a force balance to predict particle removal from the pipeline wall, assuming no free water was present. The force balance predicted entrained hydrate particles of 3 microns and larger diameter would be removed at typical operating flow rates in offshore oil and gas pipelines. These predictions also suggest that hydrate deposition will not occur in stabilized (cold) flow practices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kern, J.J.
1978-01-01
The recently completed 800-mile trans-Alaska pipeline is reviewed from the perspective of its first six months of successful operation. Because of the many environmental and political constraints, the $7.7 billion project is viewed as a triumph of both engineering and capitalism. Design problems were imposed by the harsh climate and terrain and by the constant public and bureaucratic monitoring. Specifications are reviewed for the pipes, valves, river crossings, pump stations, control stations, and the terminal at Valdez, where special ballast treatment and a vapor-recovery system were required to protect the harbor's water and air quality. The article outlines operating proceduresmore » and contingency planning for the pipeline and terminal. (DCK)« less
Improving Water Use Efficiency of Lettuce (Lactuca sativa L.) Using Phosphorous Fertilizers.
Alkhader, Asad M F; Abu Rayyan, Azmi M
2013-01-01
A greenhouse pot experiment was conducted to evaluate the effect of phosphorous (P) fertilizers application to an alkaline calcareous soil on the water use efficiency (WUE) of lettuce cultivar "robinson" of iceberg type. Head fresh and dry weights, total water applied and WUE were affected significantly by the P fertilizer type and rate. P fertilizers addition induced a significant enhancement in the WUE and fresh and dry weights of the crop. A local phosphate rock (PR) applied directly was found to be inferior to the other types of P fertilizers (Mono ammonium phosphate (MAP), Single superphosphate (SSP), and Di ammonium phosphate ((DAP)). MAP fertilizer at 375 and 500 kg P2O5/ha application rates recorded the highest significant values of head fresh weight and WUE, respectively.
The Amazon, measuring a mighty river
,
1967-01-01
The Amazon, the world's largest river, discharges enough water into the sea each day to provide fresh water to the City of New York for over 9 years. Its flow accounts for about 15 percent of all the fresh water discharged into the oceans by all the rivers of the world. By comparison, the Amazon's flow is over 4 times that of the Congo River, the world's second largest river. And it is 10 times that of the Mississippi, the largest river on the North American Continent.
USDA-ARS?s Scientific Manuscript database
Currently, nearly all fresh-cut lettuce processing facilities in the United States use chlorinated water or other sanitizer solutions for microbial reduction after lettuce is cut. It is believed that freshly cut lettuce releases significant amounts of organic matters that negatively impact the effec...
Kim, Hyun-Wook; Miller, Danika K; Lee, Yong Jae; Kim, Yuan H Brad
2016-07-01
The objective of this study was to determine the effects of pectin and insoluble fiber isolated from soy hulls on water-holding capacity (WHC), texture, color, and lipid oxidation of fresh and frozen/thawed beef patties. Beef patties were formulated with no dietary fiber (control), 1% soy hull pectin, insoluble fiber, or their mixture (1:1), respectively. The addition of soy hull pectin significantly decreased display weight loss and increased cook yield of both fresh and frozen/thawed beef patties. In addition, no significant difference in hardness between fresh and frozen/thawed beef patties was observed for all dietary fiber treatments. However, incorporation of insoluble soy hull fiber decreased color and lipid oxidation stabilities of both fresh and frozen/thawed beef patties. Our results indicate that the incorporation of soy hull pectin could be an effective non-meat ingredient to minimize water loss and hardness defects of frozen beef patties. Copyright © 2016 Elsevier Ltd. All rights reserved.
Demineralization of drinking water: Is it prudent?
Verma, K C; Kushwaha, A S
2014-10-01
Water is the elixir of life. The requirement of water for very existence of life and preservation of health has driven man to devise methods for maintaining its purity and wholesomeness. The water can get contaminated, polluted and become a potential hazard to human health. Water in its purest form devoid of natural minerals can also be the other end of spectrum where health could be adversely affected. Limited availability of fresh water and increased requirements has led to an increased usage of personal, domestic and commercial methods of purification of water. Desalination of saline water where fresh water is in limited supply has led to development of the latest technology of reverse osmosis but is it going to be safe to use such demineralized water over a long duration needs to be debated and discussed.
Lee, Wan-Ning; Huang, Ching-Hua; Zhu, Guangxuan
2018-08-01
Chlorine sanitizers used in washing fresh and fresh-cut produce can lead to generation of disinfection by-products (DBPs) that are harmful to human health. Monitoring of DBPs is necessary to protect food safety but comprehensive analytical methods have been lacking. This study has optimized three U.S. Environmental Protection Agency methods for drinking water DBPs to improve their performance for produce wash water. The method development encompasses 40 conventional and emerging DBPs. Good recoveries (60-130%) were achieved for most DBPs in deionized water and in lettuce, strawberry and cabbage wash water. The method detection limits are in the range of 0.06-0.58 μg/L for most DBPs and 10-24 ng/L for nitrosamines in produce wash water. Preliminary results revealed the formation of many DBPs when produce is washed with chlorine. The optimized analytical methods by this study effectively reduce matrix interference and can serve as useful tools for future research on food DBPs. Copyright © 2018 Elsevier Ltd. All rights reserved.
Intertidal and submarine groundwater discharge on the west coast of Ireland
NASA Astrophysics Data System (ADS)
R., R.; | T., Cave; Henry
2011-05-01
Submarine Groundwater Discharge is now a phenomenon of global interest, as studies show that it represents both a significant proportion of the fresh water input to the ocean, and a significant contribution to the loads of many substances. At present, little monitoring of groundwater in Ireland is carried out at its point of entry to seawater, and consequently the volumes of fresh water, and the loads of nutrients and contaminants being carried into Irish coastal waters by submarine and intertidal groundwater discharge (SiGD), are unknown. SiGD is the principal source of fresh water entering Irish coastal waters between the major west coast estuaries of the Corrib and the Shannon. Calculations of the volume of submarine SiGD delivered to southern Galway bay in winter indicate it equals 10-25% of the discharge of the R. Corrib, and that its nutrient load may be of the same order of magnitude as that from the R. Corrib. This coastal karst area includes important commercial shellfish waters, which may be strongly impacted by SiGD.
Ukuku, Dike O; Huang, Lihan; Sommers, Christopher
2015-07-01
For health reasons, people are consuming fresh-cut fruits with or without minimal processing and, thereby, exposing themselves to the risk of foodborne illness if such fruits are contaminated with bacterial pathogens. This study investigated survival and growth parameters of Escherichia coli O157:H7, Salmonella, Listeria monocytogenes, and aerobic mesophilic bacteria transferred from cantaloupe rind surfaces to fresh-cut pieces during fresh-cut preparation. All human bacterial pathogens inoculated on cantaloupe rind surfaces averaged ∼4.8 log CFU/cm(2), and the populations transferred to fresh-cut pieces before washing treatments ranged from 3 to 3.5 log CFU/g for all pathogens. A nisin-based sanitizer developed in our laboratory and chlorinated water at 1,000 mg/liter were evaluated for effectiveness in minimizing transfer of bacterial populations from cantaloupe rind surface to fresh-cut pieces. Inoculated and uninoculated cantaloupes were washed for 5 min before fresh-cut preparation and storage of fresh-cut pieces at 5 and 10°C for 15 days and at 22°C for 24 h. In fresh-cut pieces from cantaloupe washed with chlorinated water, only Salmonella was found (0.9 log CFU/g), whereas E. coli O157:H7 and L. monocytogenes were positive only by enrichment. The nisin-based sanitizer prevented transfer of human bacteria from melon rind surfaces to fresh-cut pieces, and the populations in fresh-cut pieces were below detection even by enrichment. Storage temperature affected survival and the growth rate for each type of bacteria on fresh-cut cantaloupe. Specific growth rates of E. coli O157:H7, Salmonella, and L. monocytogenes in fresh-cut pieces were similar, whereas the aerobic mesophilic bacteria grew 60 to 80 % faster and had shorter lag phases.
Gregg, Dean O.; Zimmerman, Everett Alfred
1974-01-01
Water from a brackish-water zone (1,050-1,350 ft) has concentrations as high as 2,150 milligrams per liter chloride, and concentrations are suspected to be higher than 3,000 milligrams per liter chloride. This brackish water has been identified as the source of the water that contaminates the upper and lower fresh-water-bearing zones of the principal artesian aquifer. The confining unit separating the fresh and brackish water seems to contain breaks that act as vertical conduits for the movement of brackish water into the fresh-water zones of the aquifer. Faults are suspected to be responsible for the breaks in the confining unit. The rate of upward movement of brackish water seems to be a function of the rate of water-level decline in the aquifer. There are two main areas of brackish-water intrusion. One area is near Bay and Prince Streets, and the other area is near Reynolds and Q Streets. Successive maps showing chloride ion concentration trace the movement of the chloride front northward in the Bay Street area at the rate of about 350 feet per year toward the center of pumping. An average of about 400 gallons per minute of water containing 2,000 milligrams per liter chloride invaded the upper water-bearing zone between December 1962 and December 1966. A like amount may have entered the lower water-bearing zone. Maximum chloride concentration in the upper water-bearing zone is 1,540 milligrams per liter in the Bay Street area and 640 milligrams per liter in the Reynolds Street area. In a few areas, where individual wells have been drilled deep enough to penetrate the confining unit over the brackish-water zone, the well furnishes a conduit for brackish water to recharge the fresh-water aquifer. Plugging the lower part of these wells usually reduces the chloride concentration of the water. The chloride concentration of water in the principal artesian aquifer can probably be reduced by use of interceptor wells, relief wells, or well-field spacing. Interceptor wells would prevent laterally moving brackish water from contaminating a well field. A relief well would tap and withdraw poor quality water from only the brackish-water zone to lower the head in that zone and decrease the rate of leakage into the fresh-water aquifer. Wider spacing of wells would prevent the development of a deep cone of depression and the steeper hydraulic gradients that accompany it. The brackish water pumped by the interceptor or relief wells could be used for industry, aquaculture, recreation, or for other processes in which the chloride content is not critical.
Denys, Sébastien; Fraize-Frontier, Sandrine; Moussa, Oumar; Le Bizec, Bruno; Veyrand, Bruno; Volatier, Jean-Luc
2014-12-01
PFAS are man-made compounds that are highly spread in the environment. Human dietary exposure to such contaminants is of high concern as they may accumulate in the food chain. Different studies already demonstrated the importance of the fish consumption in the dietary exposure of these molecules and the potential increase of internal doses of PFAS following the consumption of PFAS. However, so far few study aimed to study the link between the consumption of fresh water fishes and the internal exposure to PFAS. Objectives of this study were (i) to estimate the internal exposure of populations that are potentially high consumers of fresh water fishes and (ii) to determine whether the consumption of fish caught from fresh water is a significant determinant of the internal exposure of PFAS. In this work, a large sample of adult freshwater anglers from the French metropolitan population (478 individuals) was constituted randomly from participants lists of anglers associations. Questionnaires provided social and demographic information and diet information for each subject. In addition, analyses of blood serum samples provided the internal concentration of 14 PFAS. The survey design allowed to extrapolate the data obtained on the 478 individuals to the freshwater angler population. Descriptive data regarding internal levels of PFAS were discussed at the population level, whereas identification of the determinants were done at the 478 individuals level as sufficient contrast was required in terms of fresh water fish consumption. Only molecules for which the detection frequency were above 80% in blood were considered, i.e., PFOS, PFOA, PFHxS, PFNA, PFHpS, and PFDA. Distribution profiles showed log-normal distribution and PFOS and PFOA were the main contributors of the PFAS sum. For PFOS, the results obtained on the 478 individuals showed that upper percentiles were higher as compared to upper percentiles obtained on occidental general population. This confirmed an over-exposure of a fraction of the 478 individuals. Though, when the results were considered at the population level, the values were close. This was attributed to the low consumption frequency of fresh water fish in the general population. For PFOS, PFNA, PFHxS, PFHpS and PFDA, the fresh water fish consumption was identified as one of the contributors of internal PFAS concentrations. Gender, age, geographical location and consumption of home-grown products as other determinants were also discussed in this paper. Copyright © 2014. Published by Elsevier Ireland Ltd.
Detection of Two Buried Cross Pipelines by Observation of the Scattered Electromagnetic Field
NASA Astrophysics Data System (ADS)
Mangini, Fabio; Di Gregorio, Pietro Paolo; Frezza, Fabrizio; Muzi, Marco; Tedeschi, Nicola
2015-04-01
In this work we present a numerical study on the effects that can be observed in the electromagnetic scattering of a plane wave due to the presence of two crossed pipelines buried in a half-space occupied by cement. The pipeline, supposed to be used for water conveyance, is modeled as a cylindrical shell made of metallic or poly-vinyl chloride (PVC) material. In order to make the model simpler, the pipelines are supposed running parallel to the air-cement interface on two different parallel planes; moreover, initially we suppose that the two tubes make an angle of 90 degrees. We consider a circularly-polarized plane wave impinging normally to the interface between air and the previously-mentioned medium, which excites the structure in order to determine the most useful configuration in terms of scattered-field sensitivity. To perform the study, a commercially available simulator which implements the Finite Element Method was adopted. A preliminary frequency sweep allows us to choose the most suitable operating frequency depending on the dimensions of the commercial pipeline cross-section. We monitor the three components of the scattered electric field along a line just above the interface between the two media. The electromagnetic properties of the materials employed in this study are taken from the literature and, since a frequency-domain technique is adopted, no further approximation is needed. Once the ideal problem has been studied, i.e. having considered orthogonal and tangential scenario, we further complicate the model by considering different crossing angles and distances between the tubes, in two cases of PVC and metallic material. The results obtained in these cases are compared with those of the initial problem with the goal of determining the scattered field dependence on the geometrical characteristics of the cross between two pipelines. One of the practical applications in the field of Civil Engineering of this study may be the use of ground penetrating radar (GPR) techniques to monitor the fouling conditions of water pipelines without the need to intervene destructively on the structure. Acknowledgements: This work is a contribution to COST Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar".
ERIC Educational Resources Information Center
National Geographic World, 1983
1983-01-01
Provides background information on many topics related to water. These include the water cycle, groundwater, fresh water, chemical wastes, water purification, river pollution, acid rain, and water conservation. Information is presented at an elementary level. (JM)
Petri, Eva; Rodríguez, Mariola; García, Silvia
2015-01-01
Most current disinfection strategies for fresh-cut industry are focused on the use of different chemical agents; however, very little has been reported on the effectiveness of the hurdle technology. The effect of combined decontamination methods based on the use of different sanitizers (peroxyacetic acid and chlorine dioxide) and the application of pressure (vacuum/positive pressure) on the inactivation of the foodborne pathogen E. coli O157:H7 on fresh-cut lettuce (Lactuca sativa) and carrots (Daucus carota) was studied. Fresh produce, inoculated with E. coli O157:H7, was immersed (4 °C, 2 min) in tap water (W), chlorine water (CW), chlorine dioxide (ClO2: 2 mg/L) and peroxyacetic acid (PAA: 100 mg/L) in combination with: (a) vacuum (V: 10 mbar) or (b) positive pressure application (P: 3 bar). The product quality and antimicrobial effects of the treatment on bacterial counts were determined both in process washing water and on fresh-cut produce. Evidence obtained in this study, suggests that the use of combined methods (P/V + sanitizers) results in a reduction on the microorganism population on produce similar to that found at atmospheric pressure. Moreover, the application of physical methods led to a significant detrimental effect on the visual quality of lettuce regardless of the solution used. Concerning the process water, PAA proved to be an effective alternative to chlorine for the avoidance of cross-contamination. PMID:26213954
Petri, Eva; Rodríguez, Mariola; García, Silvia
2015-07-23
Most current disinfection strategies for fresh-cut industry are focused on the use of different chemical agents; however, very little has been reported on the effectiveness of the hurdle technology. The effect of combined decontamination methods based on the use of different sanitizers (peroxyacetic acid and chlorine dioxide) and the application of pressure (vacuum/positive pressure) on the inactivation of the foodborne pathogen E. coli O157:H7 on fresh-cut lettuce (Lactuca sativa) and carrots (Daucus carota) was studied. Fresh produce, inoculated with E. coli O157:H7, was immersed (4 °C, 2 min) in tap water (W), chlorine water (CW), chlorine dioxide (ClO2: 2 mg/L) and peroxyacetic acid (PAA: 100 mg/L) in combination with: (a) vacuum (V: 10 mbar) or (b) positive pressure application (P: 3 bar). The product quality and antimicrobial effects of the treatment on bacterial counts were determined both in process washing water and on fresh-cut produce. Evidence obtained in this study, suggests that the use of combined methods (P/V + sanitizers) results in a reduction on the microorganism population on produce similar to that found at atmospheric pressure. Moreover, the application of physical methods led to a significant detrimental effect on the visual quality of lettuce regardless of the solution used. Concerning the process water, PAA proved to be an effective alternative to chlorine for the avoidance of cross-contamination.
Outdoor water use and water conservation opportunities in Virginia Beach, Virginia
Eggleston, John R.
2010-01-01
The amount of seasonal water use is important to the City of Virginia Beach because the primary source of this water is a fragile, shallow aquifer that is the only fresh groundwater source available within the city. Residents in the mostly rural southern half of Virginia Beach rely solely on this aquifer, not only for outdoor water uses but also for indoor domestic uses such as drinking and bathing. Groundwater that is close to the land surface in Virginia Beach is mostly fresh, whereas water 200 feet or more below the land surface is mostly saline and generally too salty to drink or use for irrigating lawns and gardens.
Study of Fresh and Hardening Process Properties of Gypsum with Three Different PCM Inclusion Methods
Serrano, Susana; Barreneche, Camila; Navarro, Antonia; Haurie, Laia; Fernandez, A. Inés; Cabeza, Luisa F.
2015-01-01
Gypsum has two important states (fresh and hardened states), and the addition of phase change materials (PCM) can vary the properties of the material. Many authors have extensively studied properties in the hardened state; however, the variation of fresh state properties due to the addition of Micronal® DS 5001 X PCM into gypsum has been the object of few investigations. Properties in fresh state define the workability, setting time, adherence and shrinkage, and, therefore the possibility of implementing the material in building walls. The aim of the study is to analyze, compare and evaluate the variability of fresh state properties after the inclusion of 10% PCM. PCM are added into a common gypsum matrix by three different methods: adding microencapsulated PCM, making a suspension of PCM/water, and incorporating PCM through a vacuum impregnation method. Results demonstrate that the inclusion of PCM change completely the water required by the gypsum to achieve good workability, especially the formulation containing Micronal® DS 5001 X: the water required is higher, the retraction is lower (50% less) due to the organic nature of the PCM with high elasticity and, the adherence is reduced (up to 45%) due to the difference between the porosity of the different surfaces as well as the surface tension difference. PMID:28793584
Alcohol Brine Freezing of Japanese Horse Mackerel (Trachurus japonicus) for Raw Consumption
NASA Astrophysics Data System (ADS)
Maeda, Toshimichi; Yuki, Atsuhiko; Sakurai, Hiroshi; Watanabe, Koichiro; Itoh, Nobuo; Inui, Etsuro; Seike, Kazunori; Mizukami, Yoichi; Fukuda, Yutaka; Harada, Kazuki
In order to test the possible application of alcohol brine freezing to Japanese horse mackerel (Trachurus japonicus) for raw consumption, the quality and taste of fish frozen by direct immersion in 60% ethanol brine at -20, -25 and -30°C was compared with those by air freezing and fresh fish without freezing. Cracks were not found during the freezing. Smell of ethanol did not remain. K value, an indicator of freshness, of fish frozen in alcohol brine was less than 8.3%, which was at the same level as those by air freezing and fresh fish. Oxidation of lipid was at the same level as air freezing does, and lower than that of fresh fish. The pH of fish frozen in alcohol brine at -25 and -30°C was 6.5 and 6.6, respectively, which were higher than that by air freezing and that of fresh fish. Fish frozen in alcohol brine was better than that by air and at the same level as fresh fish in total evaluation of sensory tests. These results show that the alcohol brine freezing is superior to air freezing, and fish frozen in alcohol brine can be a material for raw consumption. The methods of thawing in tap water, cold water, refrigerator, and at room temperature were compared. Thawing in tap water is considered to be convenient due to the short thaw time and the quality of thawed fish that was best among the methods.
California crude-pipeline plans detailed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ronco, M.J.
1986-06-09
California and the U.S. West have recently become a center for crude-oil pipeline activity. That activity includes existing and proposed lines, offshore and onshore terminals, and some unusual permitting and construction requirements. Operation of existing pipelines is influenced by the varying gravities of crudes in the area. California has three distinct producing areas from which pipelines deliver crude to refineries or marines terminals: 1. The inland Los Angeles basin and coast from Orange County to Ventura County. 2. The San Joaquin Valley in central California which is between the coastal mountains and the Sierras. 3. That portion of the Outermore » Continental Shelf (OCS) located primarily in federal waters off Santa Barbara and San Luis Obispo counties on the central coast. The Los Angeles coastal and inland basin crude-oil pipeline system consists of gathering lines to move crude from the many wells throughout Ventura, Orange, and Los Angeles counties to operating refineries in the greater Los Angeles area. Major refineries include ARCO at Carson, Chevron at El Segundo, Mobil at Torrance, and Shell, Texaco, and Unical at Wilmington. The many different crude-oil pipelines serving these refineries from Ventura County and Orange County and from the many sites around Los Angeles County are too numerous to list.« less
75 FR 49949 - Notice of Lodging of Consent Decree Under The Clean Water Act
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-16
... DEPARTMENT OF JUSTICE Notice of Lodging of Consent Decree Under The Clean Water Act Notice is... Southern District of Texas. In this action, the United States alleges civil claims under the Clean Water...) improve pipeline operation and integrity management practices, and (3) enhance leak detection capabilities...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-05
... such as oil, gas, or water pipeline, or utility distribution systems. Seamless pressure pipes are intended for the conveyance of water, steam, petrochemicals, chemicals, oil products, natural gas and other... high temperature service. They are intended for the low temperature and pressure conveyance of water...
Catastrophic subsidence: An environmental hazard, shelby county, Alabama
NASA Astrophysics Data System (ADS)
Lamoreaux, Philip E.; Newton, J. G.
1986-03-01
Induced sinkholes (catastrophic subsidence) are those caused or accelerated by human activities These sinkholes commonly result from a water level decline due to pumpage Construction activities in a cone of depression greatly increases the likelihood of sinkhole occurrence Almost all occur where cavities develop in unconsolidated deposits overlying solution openings in carbonate rocks. Triggering mechanisms resulting from water level declines are (1) loss of buoyant support of the water, (2) increased gradient and water velocity, (3) water-level fluctuations, and (4) induced recharge Construction activities triggering sinkhole development include ditching, removing overburden, drilling, movement of heavy equipment, blasting and the diversion and impoundment of drainage Triggering mechanisms include piping, saturation, and loading Induced sinkholes resulting from human water development/management activities are most predictable in a youthful karst area impacted by groundwater withdrawals Shape, depth, and timing of catastrophic subsidence can be predicted in general terms Remote sensing techniques are used in prediction of locations of catastrophic subsidence. This provides a basis for design and relocation of structures such as a gas pipeline, dam, or building Utilization of techniques and a case history of the relocation of a pipeline are described
USDA-ARS?s Scientific Manuscript database
Agricultural water may contact fresh produce during irrigation and/or when crop protection sprays (e.g., cooling to prevent sunburn, frost protection, and agrochemical mixtures) are applied. This document provides a framework for designing research studies that would add to our understanding of preh...
Hot water, fresh beer, and salt
NASA Astrophysics Data System (ADS)
Crawford, Frank S.
1990-11-01
In the ``hot chocolate effect'' the best musical scales (those with the finest tone quality, largest range, and best tempo) are obtained by adding salt to a glass of hot water supersaturated with air. Good scales can also be obtained by adding salt to a glass of freshly opened beer (supersaturated with CO2) provided you first (a) get rid of much of the excess CO2 so as to produce smaller, hence slower, rising bubbles, and (b) get rid of the head of foam, which damps the standing wave and ruins the tone quality. Finally the old question, ``Do ionizing particles produce bubbles in fresh beer?'' is answered experimentally.
14. PROJECT PLAN, INTAKE PIER, RAW WATER CONDUITS, PUMPING STATION ...
14. PROJECT PLAN, INTAKE PIER, RAW WATER CONDUITS, PUMPING STATION FORCE MAINS, TREATED WATER PIPELINES, AND FILTRATION PLANT, SHEET 1 OF 117, 1920. - Sacramento River Water Treatment Plant Intake Pier & Access Bridge, Spanning Sacramento River approximately 175 feet west of eastern levee on river; roughly .5 mile downstream from confluence of Sacramento & American Rivers, Sacramento, Sacramento County, CA
Mustonen, Satu M; Tissari, Soile; Huikko, Laura; Kolehmainen, Mikko; Lehtola, Markku J; Hirvonen, Arja
2008-05-01
The distribution of drinking water generates soft deposits and biofilms in the pipelines of distribution systems. Disturbances in water distribution can detach these deposits and biofilms and thus deteriorate the water quality. We studied the effects of simulated pressure shocks on the water quality with online analysers. The study was conducted with copper and composite plastic pipelines in a pilot distribution system. The online data gathered during the study was evaluated with Self-Organising Map (SOM) and Sammon's mapping, which are useful methods in exploring large amounts of multivariate data. The objective was to test the usefulness of these methods in pinpointing the abnormal water quality changes in the online data. The pressure shocks increased temporarily the number of particles, turbidity and electrical conductivity. SOM and Sammon's mapping were able to separate these situations from the normal data and thus make those visible. Therefore these methods make it possible to detect abrupt changes in water quality and thus to react rapidly to any disturbances in the system. These methods are useful in developing alert systems and predictive applications connected to online monitoring.
Yang, Xinchao; Wang, Ke; Wang, Huijun; Zhang, Jianhua; Mao, Zhonggui
2017-04-01
A novel cleaner ethanol production process has been developed. Thin stillage is treated initially by anaerobic digestion followed by aerobic digestion and then further treated by chloride anion exchange resin. This allows the fully-digested and resin-treated stillage to be completely recycled for use as process water in the next ethanol fermentation batch, which eliminates wastewater discharges and minimizes consumption of fresh water. The method was evaluated at the laboratory scale. Process parameters were very similar to those found using tap water. Maximal ethanol production rate in the fully-recycled stillage was 0.9g/L/h, which was similar to the 0.9g/L/h found with the tap water control. The consumption of fresh water was reduced from 4.1L/L (fresh water/ethanol) to zero. Compared with anaerobically-aerobically digested stillage which had not been treated with resin, the fermentation time was reduced by 28% (from 72h to 52h) and reached the level achieved with tap water. This novel process can assist in sustainable development of the ethanol industry. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wasmund, Norbert; Nausch, Günther; Hansen, Anja
2014-11-01
Freshly upwelled water is poor in phytoplankton biomass but rich in nutrients. With its ageing, phytoplankton biomass increases whereas the nutrients are consumed. The overall aim of our investigation was to check the succession in the phytoplankton composition as a consequence of changing nutrient conditions. The experiments were carried out in mesocosms filled with surface water in the northern Benguela region and installed on board of R/V "Maria S. Merian". In the freshly upwelled water, phytoplankton took up nitrogen at a higher rate than phosphorus if compared with the Redfield ratio. Therefore, nitrogen was exhausted already by day 6. Nitrogen limitation after day 6 was indicated by decreasing chlorophyll a (chla) concentrations, primary production rates and productivity indices and increasing C/N ratios in particulate matter. Despite nitrogen limitation, phosphorus addition stimulated further growth, mainly of diatoms, pointing to luxury uptake. Cyanobacteria did not develop and nitrogen fixation was zero even with phosphorus and iron addition. Diatoms stay the most important group in the freshly upwelled water, but autotrophic and heterotrophic dinoflagellates increase strongly in the matured upwelled water. Mesocosms excluded disturbances by advective water transports, which influence the study of succssions under field conditions.
Ultra-high pressure waterjets efficient in removing coatings
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-06-01
Little if any thought was given to pipeline rehabilitation 50 years, a time when pipe manufacturers often coated the external diameter of pipe with coal tar to help eliminate corrosion. Unfortunately, contractors rehabilitating these pipelines today encounter major difficulties when attempting to remove coal tar with traditional removal processes. A leading pipeline rehabilitation firm, F.F. Yockey Company, Inc. of Magnolia, Texas, faced a constant challenge stripping coal tar with rotating knives and brushes. The process generated heat that melted the tar and caused the machines to jam. Another problem was the damage to the substrate caused by the friction-based cleaningmore » techniques of rotating knives and brushes. The knives also failed to completely clean the substrate, leaving behind a significant amount of residue. Contractors learned that new coating bonded poorly to the substrates covered with residual contaminants, thus yielding unsatisfactory results. As he looked for a solution, Dick Yockey, president and CEO of R.F. Yockey, began exploring the use of ultra-high pressure waterjet surface preparation equipment. This system involved water pressurized at levels ranging from 35,000 to 55,000 psi. The water travels through small orifices in a high-speed rotating nozzle, forming a cohesive stream of water. This paper reviews the design and performance of this system.« less
USDA-ARS?s Scientific Manuscript database
NIFA Project 2015-69003-23410 addresses the urgent need for novel technologies that improve the safety of fresh and fresh-cut fruits and vegetables that preserve quality while reducing water usage. This portion of the project is to investigate emerging non-thermal technologies, such as antimicrobial...
Code of Federal Regulations, 2010 CFR
2010-04-01
... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Procedures. 348.2 Section 348.2 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE INTERSTATE COMMERCE ACT OIL PIPELINE APPLICATIONS FOR MARKET POWER...
Tao, Jing; Zhu, Qin; Qin, Fang; Wang, Mingfu; Chen, Jie; Zheng, Zong-Ping
2017-06-01
Oil-in-water microemulsions (O/W MEs) allow the preparation of insoluble compounds into liquid. In this study, we prepared O/W MEs to improve the solubility and stability of steppogenin (S) in aqueous liquid, and studied their ability to inhibit fresh apple juice browning. The ME technique greatly increased steppogenin solubility up to 3000-fold higher than that in water. All SMEs demonstrated good stability after acceleration and long-term storage. In particular, 0.01% SME was associated with dramatic inhibition of fresh apple juice browning after 24h at room temperature and 7days at 4°C, and its antibrowning effects were further improved when combined with 0.05% ascorbic acid. On the other hand, simultaneous encapsulation of steppogenin with vitamin E or butylated hydroxytoluene into ME did not greatly improve SME antibrowning effects. Taken together, these results suggested that steppogenin might serve as a potential antibrowning agent to preserve fresh apple juice. Copyright © 2016 Elsevier Ltd. All rights reserved.
Permeability of tritiated water through human cervical and vaginal tissue.
Sassi, Alexandra B; McCullough, Kristy D; Cost, Marilyn R; Hillier, Sharon L; Rohan, Lisa Cencia
2004-08-01
The increased incidence of human immunodeficiency virus infection in women has identified an urgent need to develop a female-controlled method to prevent acquisition of human immunodeficiency virus and other sexually transmitted diseases. Women would apply the product intravaginally before intercourse. Development of such a product requires a better understanding of the permeability characteristics of the tissues with which such products would come into contact. However, limited studies have been performed in this area. In the present study, water permeability of fresh human cervical and vaginal tissue was evaluated. The average apparent permeability coefficient was found to be 8 x 10(-5) cm/s for fresh human cervical tissue and 7 x 10(-5) cm/s for fresh human vaginal tissue. Considering the lack of regularity in obtaining cervical and vaginal tissue from surgical specimens, additional tests were performed to evaluate the effect of freezing on tritiated water permeability. No statistically significant differences were observed in the permeability values obtained when comparing fresh versus frozen tissues. Copyright 2004 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 93:2009-2016, 2004
NASA Astrophysics Data System (ADS)
Xin, Jia; Tang, Fenglin; Zheng, Xilai
2016-04-01
Application of microscale zero-valent iron (mZVI) is a promising technology for in-situ contaminated groundwater remediation. However, its longevity would be negatively impacted by surface passivation, especially in saline groundwater. In this study, the aging behaviors of mZVI particles were investigated in three media (milli-Q water, fresh groundwater and saline groundwater) using batch experiments to evaluate their potential corrosion and passivation performance in different field conditions. The results indicated that mZVI was reactive between 0-7 days exposure to water and then gradually lost reactivity over the next few hundred days. The patterns of kinetic curve were analogous among the three different media. In comparison, during the early phase (0-7 d), mZVI in saline groundwater showed a faster corrosion rate with a k value of 1.357, which was relatively higher than k values in milli-Q water and fresh groundwater. However, as the corrosion process further developed, the fastest corrosion rate was observed in milli-Q water followed with fresh groundwater and saline groundwater. These changes in reactivity provided evidence for different patterns and formation mechanisms of passive layers on mZVI in three media. The SEM-EDS analysis demonstrated that in the saline groundwater, a compact and even oxide film of carbonate green rust or Fe oxide (hydroxyl) species was formed immediately on the surface due to the high concentration and widely distributed bicarbonate and hardness, whereas in the fresh groundwater and milli-Q water, the passive layer was composed of loosely and unevenly distributed precipitates which much slowly formed as the iron corrosion proceeded. These findings provide insight into the molecular-scale mechanism of mZVI passivation by inorganic salts with particular implications in saline groundwater.
Brennan, Reid S; Hwang, Ruth; Tse, Michelle; Fangue, Nann A; Whitehead, Andrew
2016-06-01
Regulation of internal ion homeostasis is essential for fishes inhabiting environments where salinities differ from their internal concentrations. It is hypothesized that selection will reduce energetic costs of osmoregulation in a population's native osmotic habitat, producing patterns of local adaptation. Killifish, Fundulus heteroclitus, occupy estuarine habitats where salinities range from fresh to seawater. Populations inhabiting an environmental salinity gradient differ in physiological traits associated with acclimation to acute salinity stress, consistent with local adaptation. Similarly, metabolic rates differ in populations adapted to different temperatures, but have not been studied in regard to salinity. We investigated evidence for local adaptation between populations of killifish native to fresh and brackish water habitats. Aerobic scope (the difference between minimum and maximum metabolic rates), excess post-exercise oxygen consumption, and swimming performance (time and distance to reach exhaustion) were used as proxies for fitness in fresh and brackish water treatments. Swimming performance results supported local adaptation; fish native to brackish water habitats performed significantly better than freshwater-native fish at high salinity while low salinity performance was similar between populations. However, results from metabolic measures did not support this conclusion; both populations showed an increase in resting metabolic rate and a decrease of aerobic scope in fresh water. Similarly, excess post-exercise oxygen consumption was higher for both populations in fresh than in brackish water. While swimming results suggest that environmentally dependent performance differences may be a result of selection in divergent osmotic environments, the differences between populations are not coupled with divergence in metabolic performance. Copyright © 2016 Elsevier Inc. All rights reserved.
Efficacy of home washing methods in controlling surface microbial contamination on fresh produce.
Kilonzo-Nthenge, Agnes; Chen, Fur-Chi; Godwin, Sandria L
2006-02-01
Much effort has been focused on sanitation of fresh produce at the commercial level; however, few options are available to the consumer. The purpose of this study was to determine the efficacy of different cleaning methods in reducing bacterial contamination on fresh produce in a home setting. Lettuce, broccoli, apples, and tomatoes were inoculated with Listeria innocua and then subjected to combinations of the following cleaning procedures: (i) soak for 2 min in tap water, Veggie Wash solution, 5% vinegar solution, or 13% lemon solution and (ii) rinse under running tap water, rinse and rub under running tap water, brush under running tap water, or wipe with wet/dry paper towel. Presoaking in water before rinsing significantly reduced bacteria in apples, tomatoes, and lettuce, but not in broccoli. Wiping apples and tomatoes with wet or dry paper towel showed lower bacterial reductions compared with soaking and rinsing procedures. Blossom ends of apples were more contaminated than the surface after soaking and rinsing; similar results were observed between flower section and stem of broccoli. Reductions of L. innocua in both tomatoes and apples (2.01 to 2.89 log CFU/g) were more than in lettuce and broccoli (1.41 to 1.88 log CFU/g) when subjected to same washing procedures. Reductions of surface contamination of lettuce after soaking in lemon or vinegar solutions were not significantly different (P > 0.05) from lettuce soaking in cold tap water. Therefore, educators and extension workers might consider it appropriate to instruct consumers to rub or brush fresh produce under cold running tap water before consumption.
Awua, Adolf K; Doe, Edna D; Agyare, Rebecca
2011-10-27
Fresh coconut (Cocos nucifera L) water is a clear, sterile, colourless, slightly acidic and naturally flavoured drink, mostly consumed in tropical areas. It is a rich source of nutrients and has been used for medical purposes. This study was designed to investigate changes in selected characteristics of coconut water after autoclaving, gamma irradiation and storage. Also, the study was designed for assessing the possibility of measuring the growth of bacterial in fresh, stored or sterilised coconut water using turbidity measurements (at wavelengths between 600 nm and 800 nm) or by dry biomass determinations. Portions of coconut water aseptically extracted from the matured fruit, (average pH of 6.33 ± 0.17) were either stored at 4°C, autoclaved at 121°C for 20 min., or irradiated with gamma rays at 5 kGy. Subsequent changes in selected characteristics were determined. Autoclaving, gamma irradiation and long term storage of coconut water at 4°C resulted both in the development of a pale to intense yellow colour and changes in turbidity. After storage, the dry matter content of fresh, autoclaved and irradiated coconut water by 52.0%, 23.5% and 5.0% respectively. There were also significant differences in the UV spectra before and after sterilisation and during the storage of the coconut water. Although changes in total carbohydrates were observed, they were not significant (p > 0.05). The enormous differences in the characteristics before and after storage suggests that the use of turbidity and dry biomass measurements for measuring the growth of bacteria in fresh, autoclaved and gamma irradiated coconut water before storage is practicable without any possibility of interference by the innate turbidity, colour and dry matter of the coconut water. However, this is not practicable after storing the coconut waters at 4°C, since there were increases in the turbidity and dry matter of the coconut water to levels that will mask the turbidity of a growing bacteria culture.
Smithfield Fresh Meats Corp. - Clean Water Act Public Notice
The EPA is providing notice of a proposed Administrative Penalty Assessment against Smithfield Fresh Meats Corp., a business located at 2223 County Road 1, Crete, NE 68333-0007, for alleged violations at its facility
Saline contamination of soil and water on Pawnee tribal trust land, eastern Payne County, Oklahoma
Runkle, Donna L.; Abbott, Marvin M.; Lucius, Jeffrey E.
2001-01-01
The Bureau of Land Management reported evidence of saline contamination of soils and water in Payne County on Pawnee tribal trust land. Representatives of the Bureau of Land Management and U.S. Geological Survey inspected the site, in September 1997, and observed dead grass, small shrubs, and large trees near some abandoned oil production wells, a tank yard, an pit, and pipelines. Soil and bedrock slumps and large dead trees were observed near a repaired pipeline on the side of the steep slope dipping toward an unnamed tributary of Eagle Creek. The U.S. Geological Survey, in cooperation with the Bureau of Land Management, initiated an investigation in March 1998 to examine soil conductance and water quality on 160 acres of Pawnee tribal trust land where there was evidence of saline contamination and concern about saline contamination of the Ada Group, the shallowest freshwater aquifer in the area. The proximity of high specific conductance in streams to areas containing pipeline spill, abandoned oil wells, the tank yard, and the pit indicates that surface-water quality is affected by production brines. Specific conductances measured in Eagle Creek and Eagle Creek tributary ranged from 1,187 to 10,230 microsiemens per centimeter, with the greatest specific conductance measured downgradient of a pipeline spill. Specific conductance in an unnamed tributary of Salt Creek ranged from 961 to 11,500 microsiemens per centimeter. Specific conductance in three ponds ranged from 295 to 967 microsiemens per centimeter, with the greatest specific conductance measured in a pond located downhill from the tank yard and the abandoned oil well. Specific conductance in water from two brine storage pits ranged from 9,840 to 100,000 microsiemens per centimeter, with water from the pit near a tank yard having the greater specific conductance. Bartlesville brine samples from the oil well and injection well have the greatest specific conductance, chloride concentration, and dissolved solids concentrations, and plot the furthest from meteoric water on a graph of 8 deuterium and d 18oxygen. Waterflooding of the Bartlesville sand in the study area started in 1957 and continued until 1998. Waterflooding is the process of injecting brine water under pressure to drive the remaining oil to the production wells. The high dissolved solids concentration samples from observation wells 1, 3B, 5,7, and 8 could result from mixing of the Bartlesville brine from the waterfiood with meteoric water.
... water containers like pet and animal watering containers, flower planter dishes or cover water storage barrels. Look ... water indoors such as in vases with fresh flowers and clean at least once a week. The ...
Fresh-water discharge salinity relations in the tidal Delaware River
Keighton, Walter B.
1966-01-01
Sustained flows of fresh water greater than 3,500, 4,400, and 5,300 cubic feet per second into the Delaware River estuary at Trenton, NJ assure low salinity at League Island, Eddystone, and Marcus Hook, respectively. When the discharge at Trenton is less than these critical values, salinity is very sensitive to change in discharge, so that a relatively small decrease in fresh-water discharge results in a relatively great increase in salinity. Comparison of the discharge-salinity relations observed for the 14-year period August 1949-December 1963 with relations proposed by other workers but based on other time periods indicate that such relations change with time and that salinity is affected not only by discharge but also by dredging; construction of breakwater, dikes, and tidal barriers; changing sea level; tidal elevation; tidal range; and wind intensity and direction.
Kvamme, Bjørn; Kuznetsova, Tatiana; Jensen, Bjørnar; Stensholt, Sigvat; Bauman, Jordan; Sjøblom, Sara; Nes Lervik, Kim
2014-05-14
Deciding on the upper bound of water content permissible in a stream of dense carbon dioxide under pipeline transport conditions without facing the risks of hydrate formation is a complex issue. In this work, we outline and analyze ten primary routes of hydrate formation inside a rusty pipeline, with hydrogen sulfide, methane, argon, and nitrogen as additional impurities. A comprehensive treatment of equilibrium absolute thermodynamics as applied to multiple hydrate phase transitions is provided. We also discuss in detail the implications of the Gibbs phase rule that make it necessary to consider non-equilibrium thermodynamics. The analysis of hydrate formation risk has been revised for the dominant routes, including the one traditionally considered in industrial practice and hydrate calculators. The application of absolute thermodynamics with parameters derived from atomistic simulations leads to several important conclusions regarding the impact of hydrogen sulfide. When present at studied concentrations below 5 mol%, the presence of hydrogen sulfide will only support the carbon-dioxide-dominated hydrate formation on the phase interface between liquid water and hydrate formers entering from the carbon dioxide phase. This is in contrast to a homogeneous hydrate nucleation and growth inside the aqueous solution bulk. Our case studies indicate that hydrogen sulfide at higher than 0.1 mol% concentration in carbon dioxide can lead to growth of multiple hydrate phases immediately adjacent to the adsorbed water layers. We conclude that hydrate formation via water adsorption on rusty pipeline walls will be the dominant contributor to the hydrate formation risk, with initial concentration of hydrogen sulfide being the critical factor.
Maqsoud, Abdelkabir; Neculita, Carmen Mihaela; Bussière, Bruno; Benzaazoua, Mostafa; Dionne, Jean
2016-05-01
The abandoned Manitou mine site has produced acid mine drainage (AMD) for several decades. In order to limit the detrimental environmental impacts of AMD, different rehabilitation scenarios were proposed and analyzed. The selected rehabilitation scenario was to use fresh tailings from the neighboring Goldex gold mine as monolayer cover and to maintain an elevated water table. In order to assess the impact of the Goldex tailing deposition on the hydrogeochemistry of the Manitou mine site, a network of 30 piezometers was installed. These piezometers were used for continuous measurement of the groundwater level, as well as for water sampling campaigns for chemical quality monitoring, over a 3-year period. Hydrochemical data were analyzed using principal component analysis. Results clearly showed the benefic impact of fresh tailing deposition on the groundwater quality around the contaminated area. These findings were also confirmed by the evolution of electrical conductivity. In addition to the improvement of the physicochemical quality of water on the Manitou mine site, new tailing deposition induced an increase of water table level. However, at this time, the Manitou reactive tailings are not completely submerged and possible oxidation might still occur, especially after ceasing of the fresh tailing deposition. Therefore, complementary rehabilitation scenarios should still be considered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hardesty, C.H.; Shipper, E.S. Jr.
The cost of transporting coal is the most important aspect of the nation's failure to turn to coal and energy independence. The coal consumer is interested only in comparing the delivered costs of competitive sources of energy, and coal is frequently prohibitively high. The case for coal slurry pipelines and the need for federal legislation granting eminent domain and water rights is clear. The benefits to the public derive from increased use of domestic coal reserves at lower costs and from increased coal exports. Coal slurry pipelines will not be dependent upon federal largesse. While passage of legislation does notmore » guarantee construction, it will ensure that a genuine element of competition will be introduced. Without new legislation, slurry pipelines will remain ''pipe dreams.'' 108 references.« less
Code of Federal Regulations, 2011 CFR
2011-07-01
... rights-of-way through public lands and certain reservations of the United States, for electrical plants... telegraph purposes, and for pipelines, canals, ditches, water plants, and other purposes to the extent of the ground occupied by such canals, ditches, water plants, or other works permitted thereunder and not...
18 CFR 284.501 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Applicability. 284.501 Section 284.501 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT... Applications for Market-Based Rates for Storage § 284.501 Applicability. Any pipeline or storage service...
18 CFR 281.210 - Conflicting data.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Conflicting data. 281.210 Section 281.210 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION... Conflicting data. (a) Interstate pipelines. Notwithstanding any other provision of this subpart, if the...
18 CFR 281.210 - Conflicting data.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Conflicting data. 281.210 Section 281.210 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION... Conflicting data. (a) Interstate pipelines. Notwithstanding any other provision of this subpart, if the...
18 CFR 281.210 - Conflicting data.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Conflicting data. 281.210 Section 281.210 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION... Conflicting data. (a) Interstate pipelines. Notwithstanding any other provision of this subpart, if the...
18 CFR 281.210 - Conflicting data.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Conflicting data. 281.210 Section 281.210 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION... Conflicting data. (a) Interstate pipelines. Notwithstanding any other provision of this subpart, if the...
18 CFR 281.210 - Conflicting data.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Conflicting data. 281.210 Section 281.210 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION... Conflicting data. (a) Interstate pipelines. Notwithstanding any other provision of this subpart, if the...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, Corrie E.; Harto, Christopher B.; Schroeder, Jenna N.
This report is the third in a series of reports sponsored by the U.S. Department of Energy Geothermal Technologies Program in which a range of water-related issues surrounding geothermal power production are evaluated. The first report made an initial attempt at quantifying the life cycle fresh water requirements of geothermal power-generating systems and explored operational and environmental concerns related to the geochemical composition of geothermal fluids. The initial analysis of life cycle fresh water consumption of geothermal power-generating systems identified that operational water requirements consumed the vast majority of water across the life cycle. However, it relied upon limited operationalmore » water consumption data and did not account for belowground operational losses for enhanced geothermal systems (EGSs). A second report presented an initial assessment of fresh water demand for future growth in utility-scale geothermal power generation. The current analysis builds upon this work to improve life cycle fresh water consumption estimates and incorporates regional water availability into the resource assessment to improve the identification of areas where future growth in geothermal electricity generation may encounter water challenges. This report is divided into nine chapters. Chapter 1 gives the background of the project and its purpose, which is to assess the water consumption of geothermal technologies and identify areas where water availability may present a challenge to utility-scale geothermal development. Water consumption refers to the water that is withdrawn from a resource such as a river, lake, or nongeothermal aquifer that is not returned to that resource. The geothermal electricity generation technologies evaluated in this study include conventional hydrothermal flash and binary systems, as well as EGSs that rely on engineering a productive reservoir where heat exists, but where water availability or permeability may be limited. Chapter 2 describes the approach and methods for this work and identifies the four power plant scenarios evaluated: a 20-MW EGS binary plant, a 50-MW EGS binary plant, a 10-MW hydrothermal binary plant, and a 50-MW hydrothermal flash plant. The methods focus on (1) the collection of data to improve estimation of EGS stimulation volumes, aboveground operational consumption for all geothermal technologies, and belowground operational consumption for EGS; and (2) the mapping of the geothermal and water resources of the western United States to assist in the identification of potential water challenges to geothermal growth. Chapters 3 and 4 present the water requirements for the power plant life cycle. Chapter 3 presents the results of the current data collection effort, and Chapter 4 presents the normalized volume of fresh water consumed at each life cycle stage per lifetime energy output for the power plant scenarios evaluated. Over the life cycle of a geothermal power plant, from construction through 30 years of operation, the majority of water is consumed by plant operations. For the EGS binary scenarios, where dry cooling was assumed, belowground operational water loss is the greatest contributor depending upon the physical and operational conditions of the reservoir. Total life cycle water consumption requirements for air-cooled EGS binary scenarios vary between 0.22 and 1.85 gal/kWh, depending upon the extent of belowground operational water consumption. The air-cooled hydrothermal binary and flash plants experience far less fresh water consumption over the life cycle, at 0.04 gal/kWh. Fresh water requirements associated with air- cooled binary operations are primarily from aboveground water needs, including dust control, maintenance, and domestic use. Although wet-cooled hydrothermal flash systems require water for cooling, these plants generally rely upon the geofluid, fluid from the geothermal reservoir, which typically has high salinity and total dissolved solids concentration and is much warmer than normal groundwater sources, for their cooling water needs; thus, while there is considerable geofluid loss at 2.7 gal/kWh, fresh water consumption during operations is similar to that of aircooled binary systems. Chapter 5 presents the assessment of water demand for future growth in deployment of utility-scale geothermal power generation. The approach combines the life cycle analysis of geothermal water consumption with a geothermal supply curve according to resource type, levelized cost of electricity (LCOE), and potential growth scenarios. A total of 17 growth scenarios were evaluated. In general, the scenarios that assumed lower costs for EGSs as a result of learning and technological improvements resulted in greater geothermal potential, but also significantly greater water demand due to the higher water consumption by EGSs. It was shown, however, that this effect could be largely mitigated if nonpotable water sources were used for belowground operational water demands. The geographical areas that showed the highest water demand for most growth scenarios were southern and northern California, as well as most of Nevada. In addition to water demand by geothermal power production, Chapter 5 includes data on water availability for geothermal development areas. A qualitative analysis is included that identifies some of the basins where the limited availability of water is most likely to affect the development of geothermal resources. The data indicate that water availability is fairly limited, especially under drought conditions, in most of the areas with significant near- and medium-term geothermal potential. Southern California was found to have the greatest potential for water-related challenges with its combination of high geothermal potential and limited water availability. The results of this work are summarized in Chapter 6. Overall, this work highlights the importance of utilizing dry cooling systems for binary and EGS systems and minimizing fresh water consumption throughout the life cycle of geothermal power development. The large resource base for EGSs represents a major opportunity for the geothermal industry; however, depending upon geology, these systems can require large quantities of makeup water due to belowground reservoir losses. Identifying potential sources of compatible degraded or low-quality water for use for makeup injection for EGS and flash systems represents an important opportunity to reduce the impacts of geothermal development on fresh water resources. The importance of identifying alternative water sources for geothermal systems is heightened by the fact that a large fraction of the geothermal resource is located in areas already experiencing water stress. Chapter 7 is a glossary of the technical terms used in the report, and Chapters 8 and 9 provide references and a bibliography, respectively.« less
Seike, Yasushi; Fukumori, Ryoko; Senga, Yukiko; Oka, Hiroki; Fujinaga, Kaoru; Okumura, Minoru
2004-01-01
A new and simple method for the determination of hydroxylamine in environmental water, such as fresh rivers and lakes using hypochlorite, followed by its gas choromatographic detection, has been developed. A glass vial filled with sample water was sealed by a butyl-rubber stopper and aluminum cap without head-space, and then sodium hypochlorite solution was injected into the vial through a syringe to convert hydroxylamine to nitrous oxide. The head-space in the glass vial was prepared with 99.9% grade N2 using a gas-tight syringe. After the glass vial was shaken for a few minutes, nitrous oxide in the gas-phase was measured by a gas chromatograph with an electron-capture detector. The dissolved nitrous oxide in the liquid-phase was calculated according to the solubility formula. The proposed method was applied to the analysis of fresh-water samples taken from Iu river and Hii river, flowing into brackish Lakes Nakaumi and Shinji, respectively.
Organic Matter and Water Addition Enhance Soil Respiration in an Arid Region
Lai, Liming; Wang, Jianjian; Tian, Yuan; Zhao, Xuechun; Jiang, Lianhe; Chen, Xi; Gao, Yong; Wang, Shaoming; Zheng, Yuanrun
2013-01-01
Climate change is generally predicted to increase net primary production, which could lead to additional C input to soil. In arid central Asia, precipitation has increased and is predicted to increase further. To assess the combined effects of these changes on soil CO2 efflux in arid land, a two factorial manipulation experiment in the shrubland of an arid region in northwest China was conducted. The experiment used a nested design with fresh organic matter and water as the two controlled parameters. It was found that both fresh organic matter and water enhanced soil respiration, and there was a synergistic effect of these two treatments on soil respiration increase. Water addition not only enhanced soil C emission, but also regulated soil C sequestration by fresh organic matter addition. The results indicated that the soil CO2 flux of the shrubland is likely to increase with climate change, and precipitation played a dominant role in regulating soil C balance in the shrubland of an arid region. PMID:24204907
Kurosawa, Kiyoshi; Egashira, Kazuhiko; Tani, Masakazu; Jahiruddin, M; Moslehuddin, Abu Zofar Md; Rahman, Zulfikar Md
2008-11-01
To clarify the groundwater-soil-crop relationship with respect to arsenic (As) contamination, As concentration was measured in tubewell (TW) water, surface soil from farmyards and paddy fields, and fresh taro (Colocasia esculenta) leaves from farmyards in the farming villages of Bangladesh. The As concentration in TW water from farmyards was at least four times higher than the Bangladesh drinking water standard, and the concentration in fresh taro leaves was equal to or higher than those reported previously for leafy vegetables in Bangladesh. As concentration of surface soils in both farmyards and paddy fields was positively correlated with that of the TW water. Further, the concentration in surface soil was positively correlated with levels in fresh taro leaves in the farmyard. This study, therefore, clarified the groundwater-soil-crop relationship in farmyards and the relationship between groundwater-soil in paddy fields to assess the extent of As contamination in Bangladeshi villages.
The Baltic haline conveyor belt or the overturning circulation and mixing in the Baltic.
Döös, Kristofer; Meier, H E Markus; Döscher, Ralf
2004-06-01
A study of the water-mass circulation of the Baltic has been undertaken by making use of a three dimensional Baltic Sea model simulation. The saline water from the North Atlantic is traced through the Danish Sounds into the Baltic where it upwells and mixes with the fresh water inflow from the rivers forming a Baltic haline conveyor belt. The mixing of the saline water from the Great Belt and Oresund with the fresh water is investigated making use of overturning stream functions and Lagrangian trajectories. The overturning stream function was calculated as a function of four different vertical coordinates (depth, salinity, temperature and density) in order to understand the path of the water and where it upwells and mixes. Evidence of a fictive depth overturning cell similar to the Deacon Cell in the Southern Ocean was found in the Baltic proper corresponding to the gyre circulation around Gotland, which vanishes when the overturning stream function is projected on density layers. A Lagrangian trajectory study was performed to obtain a better view of the circulation and mixing of the saline and fresh waters. The residence time of the water masses in the Baltic is calculated to be 26-29 years and the Lagrangian dispersion reaches basin saturation after 5 years.
NASA Astrophysics Data System (ADS)
Neumann-Redlin, Christian; Huaranca Olivera, Rodolfo
2018-03-01
An area of 2000 km2 in the arid western cordillera of Bolivia was geologically and hydro-geologically surveyed for the purpose of determining locations for borehole drilling in the framework of groundwater reconnaissance. Vertical geoelectrical resistivity soundings were applied to identify areas at depth in which aquifers with a sufficient thickness of fresh groundwater can be expected. A chemical and isotopic inventory of the regionally occurring groundwater revealed the presence of meteorically-recharged fresh and thermal waters as well as highly mineralized waters from fumaroles and a deep reservoir. Due to their chemical and isotopic composition, the latter group shows influences of juvenile water. Carbon fourteen dating performed on the fresh and thermal waters indicates that they were recharged during the last pluvial phase, about 10,500 years ago. The occurrence of these fossil waters explains the discharge of up to 200 l/s from some springs in a now-arid climate with mean precipitation of 100 mm/y and essentially no groundwater recharge. Extremely low contents of tritium of about 0.1 TU confirm the 14C age determinations.
Pashin, J.C.
2007-01-01
The Black Warrior Basin of the southeastern United States hosts one of the world's most prolific and long-lived coalbed methane plays, and the wealth of experience in this basin provides insight into the relationships among basin hydrology, production performance, and environmental issues. Along the southeast margin of the basin, meteoric recharge of reservoir coal beds exposed in an upturned fold limb exerts a strong control on water chemistry, reservoir pressure, and production performance. Fresh-water plumes containing Na-HCO3 waters with low TDS content extend from the structurally upturned basin margin into the interior of the basin. Northwest of the plumes, coal beds contain Na-Cl waters with moderate to high-TDS content. Carbon isotope data from produced gas and mineral cements suggest that the fresh-water plumes have been the site of significant bacterial activity and that the coalbed methane reservoirs contain a mixture of thermogenic and late-stage biogenic gases. Water produced from the fresh-water plumes may be disposed safely at the surface, whereas underground injection has been used locally to dispose of highly saline water. Wells in areas that had normal hydrostatic reservoir pressure prior to development tend to produce large volumes of water and may take up to 4 a to reach peak gas production. In contrast, wells drilled in naturally underpressured areas distal to the fresh-water plumes typically produce little water and achieve peak gas rates during the first year of production. Environmental debate has focused largely on issues associated with hydrologic communication between deep reservoir coal beds and shallow aquifers. In the coalbed methane fields of the Black Warrior Basin, a broad range of geologic evidence suggests that flow is effectively confined within coal and that the thick intervals of marine shale separating coal zones limit cross-formational flow. ?? 2007 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
van Geldern, Robert; Hayashi, Takeshi; Böttcher, Michael E.; Mottl, Michael J.; Barth, Johannes A. C.; Stadler, Susanne
2013-04-01
Scientific drillings in the 1970s revealed the presence of a large fresh water lens below the New Jersey Shelf. The origin and age of this fresh water body is still under debate. Groundwater flow models suggest that the water mainly originates from glacial melt water that entered the ground below large continental ice sheets during the last glacial maximum (LGM), whereas other studies suggest an age up to late Miocene. In this study, interstitial water was sampled during the Integrated Ocean Drilling Program (IODP) expedition 313 "New Jersey Shallow Shelf" (Mountain et al., 2010) and analyzed for water chemistry and stable isotope ratios (van Geldern et al, 2013). The pore fluid stable isotope values define a mixing line with end members that have oxygen and hydrogen isotope values of -7.0‰ and -41‰ for fresh water, and -0.8‰ and -6‰ for saltwater, respectively. The analyses revealed the following sources of fluids beneath the shelf: (1) modern rainwater, (2) modern seawater, and (3) a brine that ascends from deep sediments. The stable isotope composition of the water samples indicates modern meteoric recharge from New Jersey onshore aquifers as the fresh-water end member. This contradicts earlier views on the formation of the New Jersey fresh water lens, as it does not support the ice-age-origin theory. The salt-water end member is identical to modern New Jersey shelf seawater. Lower core parts of the drilling sites are characterized by mixing with a brine that originates from evaporites in the deep underground and that ascends via faults into the overlying sediments. The geochemical data from this study may provide the basis for an approach to construct a transect across the New Jersey shallow shelf since they fill a missing link in the shelf's geochemical profile. They also lay foundations for future research on hardly explored near-shore freshwater resources. References Mountain, G. and the Expedition 313 Scientists, 2010, Proceedings of the Integrated Ocean Drilling Program, Volume 313, Tokyo, available at: http://publications.iodp.org/proceedings/313/313toc.htm. van Geldern, R., Hayashi, T., Böttcher, M. E., Mottl, M. J., Barth, J. A. C., and Stadler, S., 2013, Stable isotope geochemistry of pore waters and marine sediments from the New Jersey shelf: Methane formation and fluid origin: Geosphere, v. 9, no. 1, p. in press.
Chlorine stress mediates microbial surface attachment in drinking water systems.
Liu, Li; Le, Yang; Jin, Juliang; Zhou, Yuliang; Chen, Guowei
2015-03-01
Microbial attachment to drinking water pipe surfaces facilitates pathogen survival and deteriorates disinfection performance, directly threatening the safety of drinking water. Notwithstanding that the formation of biofilm has been studied for decades, the underlying mechanisms for the origins of microbial surface attachment in biofilm development in drinking water pipelines remain largely elusive. We combined experimental and mathematical methods to investigate the role of environmental stress-mediated cell motility on microbial surface attachment in chlorination-stressed drinking water distribution systems. Results show that at low levels of disinfectant (0.0-1.0 mg/L), the presence of chlorine promotes initiation of microbial surface attachment, while higher amounts of disinfectant (>1.0 mg/L) inhibit microbial attachment. The proposed mathematical model further demonstrates that chlorination stress (0.0-5.0 mg/L)-mediated microbial cell motility regulates the frequency of cell-wall collision and thereby controls initial microbial surface attachment. The results reveal that transport processes and decay patterns of chlorine in drinking water pipelines regulate microbial cell motility and, thus, control initial surface cell attachment. It provides a mechanistic understanding of microbial attachment shaped by environmental disinfection stress and leads to new insights into microbial safety protocols in water distribution systems.
Integrated Energy-Water Planning in the Western and Texas Interconnections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tidwell, Vincent; Gasper, John; Goldstein, Robert
2013-07-29
While long-term regional electricity transmission planning has traditionally focused on cost, infrastructure utilization, and reliability, issues concerning the availability of water represent an emerging issue. Thermoelectric expansion must be considered in the context of competing demands from other water use sectors balanced with fresh and non-fresh water supplies subject to climate variability. An integrated Energy-Water Decision Support System (DSS) is being developed that will enable planners in the Western and Texas Interconnections to analyze the potential implications of water availability and cost for long-range transmission planning. The project brings together electric transmission planners (Western Electricity Coordinating Council and Electric Reliabilitymore » Council of Texas) with western water planners (Western Governors’ Association and the Western States Water Council). This paper lays out the basic framework for this integrated Energy-Water DSS.« less
49 CFR 173.182 - Barium azide-50 percent or more water wet.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 2 2013-10-01 2013-10-01 false Barium azide-50 percent or more water wet. 173.182 Section 173.182 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS... Class 1 and Class 7 § 173.182 Barium azide—50 percent or more water wet. Barium azide—50 percent or more...
Carbonate dissolution in mixed waters due to ocean acidification
NASA Astrophysics Data System (ADS)
Koski, K.; Wilson, J. L.
2009-12-01
Much of the anthropogenically released carbon dioxide has been stored as a dissolved gas in the ocean, causing a 0.1 decrease in ocean surface pH, with models predicting that by 2100 the surface ocean pH will be 0.5 below pre-industrial levels. In mixed ocean water - fresh water environments (e.g. estuaries, coastal aquifers, and edges of ice sheets), the decreased ocean pH couples with the mixed water geochemistry to make water more undersaturated with respect to calcium carbonate than ocean acidification alone. Mixed-water calcite dissolution may be one of the first directly observable effects of ocean acidification, as the ocean water and the fresh water can both be saturated with respect to calcium carbonate while their mixture will be undersaturated. We present a basic quantitative model describing mixed water dissolution in coastal or island freshwater aquifers, using temporally changing ocean pH, sea level, precipitation, and groundwater pumping. The model describes the potential for an increased rate of speleogenesis and porosity/permeability development along the lower edge of a fresh water lens aquifer. The model accounts the indirect effects of rising sea level and a growing coastal population on these processes. Applications are to freshwater carbonate aquifers on islands (e.g. the Bahamas) and in coastal areas (e.g. the unconfined Floridan aquifer of the United States, the Yucatan Peninsula of Mexico).
Recycling produced water for algal cultivation for biofuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neal, Justin N.; Sullivan, Enid J.; Dean, Cynthia A.
2012-08-09
Algal growth demands a continuous source of water of appropriate salinity and nutritional content. Fresh water sources are scarce in the deserts of the Southwestern United States, hence, salt water algae species are being investigated as a renewable biofuel source. The use of produced water from oil wells (PW) could offset the demand for fresh water in cultivation. Produced water can contain various concentrations of dissolved solids, metals and organic contaminants and often requires treatment beyond oil/water separation to make it suitable for algae cultivation. The produced water used in this study was taken from an oil well in Jal,more » New Mexico. An F/2-Si (minus silica) growth media commonly used to cultivate Nannochloropsis salina 1776 (NS 1776) was prepared using the produced water (F/2-Si PW) taking into account the metals and salts already present in the water. NS 1776 was seeded into a bioreactor containing 5L of the (F/2-Si PW) media. After eleven days the optical density at 750 nm (an indicator of algal growth) increased from 0 to 2.52. These results indicate algae are able to grow, though inhibited when compared with non-PW media, in the complex chemical conditions found in produced water. Savings from using nutrients present in the PW, such as P, K, and HCO{sub 3}{sup -}, results in a 44.38% cost savings over fresh water to mix the F/2-Si media.« less
Hot water, fresh beer, and salt
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crawford, F.S.
1990-11-01
In the hot chocolate effect'' the best musical scales (those with the finest tone quality, largest range, and best tempo) are obtained by adding salt to a glass of hot water supersaturated with air. Good scales can also be obtained by adding salt to a glass of freshly opened beer (supersaturated with CO{sub 2}) provided you first (a) get rid of much of the excess CO{sub 2} so as to produce smaller, hence slower, rising bubbles, and (b) get rid of the head of foam, which damps the standing wave and ruins the tone quality. Finally the old question, Domore » ionizing particles produce bubbles in fresh beer '' is answered experimentally.« less
Electromyogram as a measure of heavy metal toxicity in fresh water and salt water mussels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kidder, G.W. III; McCoy, A.A.
1996-02-01
The response of bivalves to heavy metals and other toxins has usually been determined by observing valve position. Since mussels close their valves to avoid noxious stimuli, experimental delivery of chemicals ins uncertain. To obtain constant results plastic spacers can be employed to hold the valves apart. This obviates valve position as an index of response and some other method is required. Electromyography of intact mussels is one such index, giving a simple, effective, and quantitative measurement of activity. Experiments are reported in this article on the effects of added mercury on salt water and fresh water species.
Ali, Asgar; Yeoh, Wei Keat; Forney, Charles; Siddiqui, Mohammed Wasim
2017-10-26
Minimally processed fresh produce is one of the fastest growing segments of the food industry due to consumer demand for fresh, healthy, and convenient foods. However, mechanical operations of cutting and peeling induce the liberation of cellular contents at the site of wounding that can promote the growth of pathogenic and spoilage microorganisms. In addition, rates of tissue senescence can be enhanced resulting in reduced storage life of fresh-cut fruits and vegetables. Chlorine has been widely adopted in the disinfection and washing procedures of fresh-cut produce due to its low cost and efficacy against a broad spectrum of microorganisms. Continuous replenishment of chlorine in high organic wash water can promote the formation of carcinogenic compounds such as trihalomethanes, which threaten human and environmental health. Alternative green and innovative chemical and physical postharvest treatments such as ozone, electrolyzed water, hydrogen peroxide, ultraviolet radiation, high pressure processing, and ultrasound can achieve similar reduction of microorganisms as chlorine without the production of harmful compounds or compromising the quality of fresh-cut produce.
He, Jianfei; Zhu, Qin; Dong, Xue; Pan, Hongyang; Chen, Jie; Zheng, Zong-Ping
2017-01-01
The purpose of this study is to prepare an oxyresveratrol (Oxy) microemulsion (ME) with improved Oxy's solubility and stability and to investigate its antibrowning effects on fresh-cut lotus root slices. The formula of OxyME consisted of ethyl butyrate, Tween 80, PEG400, and water with w/w of 4%, 10.67%, 5.33%, and 80%, respectively. Encapsulating Oxy into OxyME greatly increased its solubility and stability compared with that of in water. Strong antibrowning effects were observed on fresh-cut lotus root slices treated with OxyME, even better than 4-hexylresorcinol. The addition of ascorbic acid (VC) into OxyME greatly improved the Oxy stability in long-term storage and antibrowning effects on fresh-cut lotus root slices. However, the simultaneous addition of calcium chloride and VC did not obviously improve the antibrowning effects compared with the addition of VC alone. These results indicated that Oxy+VCME may be suitable as an antibrowning agent for fresh-cut vegetables. Copyright © 2016 Elsevier Ltd. All rights reserved.
Gill lesions and death of bluegill in an acid mine drainage mixing zone
Henry, T.B.; Irwin, E.R.; Grizzle, J.M.; Brumbaugh, W.G.; Wildhaber, M.L.
2001-01-01
The toxicity of an acid mine drainage (AMD) mixing zone was investigated by placing bluegill (Lepomis macrochirus) at the confluence of a stream contaminated by AMD and a stream having neutral pH. A mixing channel receiving water from both streams was assembled in the field, during July and October 1996, to determine the toxicity of freshly mixed and aged water (2.9–7.5 min). The AMD stream had elevated concentrations of Al and Fe, which precipitated upon mixing, and of Mn, which did not precipitate in the mixing zone. Fish exposed to freshly mixed water had higher mortality than fish exposed to water after aging. Precipitating Al, but not Fe, accumulated on the gills of bluegill, and accumulation was more rapid early during the mixing process than after aging. Fish exposed for 3.5 h to freshly mixed water had hypertrophy and hyperplasia of gill filament and lamellar epithelial cells. Similar lesions were observed after 6.0 h in fish exposed to water aged after mixing. Results demonstrated that Al was the predominant metal accumulating on the gills of fish in this AMD mixing zone, and that mixing zones can be more toxic than AMD streams in equilibrium.
NASA Astrophysics Data System (ADS)
Sahu, Paulami; Sikdar, P. K.; Chakraborty, Surajit
2016-02-01
Detailed geochemical analysis of groundwater beneath 1223 km2 area in southern Bengal Basin along with statistical analysis on the chemical data was attempted, to develop a better understanding of the geochemical processes that control the groundwater evolution in the deltaic aquifer of the region. Groundwater is categorized into three types: `excellent', `good' and `poor' and seven hydrochemical facies are assigned to three broad types: `fresh', `mixed' and `brackish' waters. The `fresh' water type dominated with sodium indicates active flushing of the aquifer, whereas chloride-rich `brackish' groundwater represents freshening of modified connate water. The `mixed' type groundwater has possibly evolved due to hydraulic mixing of `fresh' and `brackish' waters. Enrichment of major ions in groundwater is due to weathering of feldspathic and ferro-magnesian minerals by percolating water. The groundwater of Rajarhat New Town (RNT) and adjacent areas in the north and southeast is contaminated with arsenic. Current-pumping may induce more arsenic to flow into the aquifers of RNT and Kolkata cities. Future large-scale pumping of groundwater beneath RNT can modify the hydrological system, which may transport arsenic and low quality water from adjacent aquifers to presently unpolluted aquifer.
Molecular dynamics studies of water deposition on hematite surfaces
NASA Astrophysics Data System (ADS)
Kvamme, Bjørn; Kuznetsova, Tatiana; Haynes, Martin
2012-12-01
The interest in carbon dioxide for enhanced oil recovery is increasing proportional to the decrease in naturally driven oil production and also due to the increasing demand for reduced emission of carbon dioxide to the atmosphere. Transport of carbon dioxide in offshore pipelines involves high pressure and low temperatures which may lead to the formation of hydrate between residual water dissolved in carbon dioxide. The critical question is whether the water at some condition of temperature and pressure will drop out as liquid droplets or as water adsorbed on the surfaces of the pipeline and then subsequently form hydrates heterogeneously. In this work we have used the 6-311G basis set with B3LYP to estimate the charge distribution of different sizes of hematite crystals. The obtained surface charge distribution were kept unchanged while the inner charge distribution where scaled so as to result in an overall neutral crystal. These rust particles were embedded in water and chemical potential for adsorbed water molecules were estimated through thermodynamic integration and compared to similar estimates for same size water cluster. Estimated values of water chemical potentials indicate that it is thermodynamically favorable for water to adsorb on hematite, and that evaluation of potential carbon dioxide hydrate formation conditions and kinetics should be based this sequence of processes.
Infrared thermography for inspecting of pipeline specimen
NASA Astrophysics Data System (ADS)
Chen, Dapeng; Li, Xiaoli; Sun, Zuoming; Zhang, Xiaolong
2018-02-01
Infrared thermography is a fast and effective non-destructive testing method, which has an increasing application in the field of Aeronautics, Astronautic, architecture and medical, et al. Most of the reports about the application of this technology are focus on the specimens of planar, pulse light is often used as the heat stimulation and a plane heat source is generated on the surface of the specimen by the using of a lampshade, however, this method is not suitable for the specimen of non-planar, such as the pipeline. Therefore, in this paper, according the NDT problem of a steel and composite pipeline specimen, ultrasonic and hot water are applied as the heat source respectively, and an IR camera is used to record the temperature varies of the surface of the specimen, defects are revealed by the thermal images sequence processing. Furthermore, the results of light pulse thermography are also shown as comparison, it is indicated that choose the right stimulation method, can get a more effective NDT results for the pipeline specimen.
Leakage detection in galvanized iron pipelines using ensemble empirical mode decomposition analysis
NASA Astrophysics Data System (ADS)
Amin, Makeen; Ghazali, M. Fairusham
2015-05-01
There are many numbers of possible approaches to detect leaks. Some leaks are simply noticeable when the liquids or water appears on the surface. However many leaks do not find their way to the surface and the existence has to be check by analysis of fluid flow in the pipeline. The first step is to determine the approximate position of leak. This can be done by isolate the sections of the mains in turn and noting which section causes a drop in the flow. Next approach is by using sensor to locate leaks. This approach are involves strain gauge pressure transducers and piezoelectric sensor. the occurrence of leaks and know its exact location in the pipeline by using specific method which are Acoustic leak detection method and transient method. The objective is to utilize the signal processing technique in order to analyse leaking in the pipeline. With this, an EEMD method will be applied as the analysis method to collect and analyse the data.
Environmental Assessment of the Prather Water Line Improvement Project Otero County, New Mexico
2009-04-01
concrete pipe currently in place. Placing a new pipeline along: (2) the Old El Paso Highway from the BWWSA to CoA facilities on Panorama Drive, or (3...Placing a new pipeline along: (2) the Old El Paso Highway from the BWWSA to CoA facilities on Panorama Drive, or (3) along the La Luz Gate Road from...grandeur of large panoramas and natural landscapes. Noise levels in the vicinity of the proposed project originate primarily from highway and railroad
18 CFR 154.305 - Tax normalization.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Tax normalization. 154.305 Section 154.305 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION... Changes § 154.305 Tax normalization. (a) Applicability. An interstate pipeline must compute the income tax...
18 CFR 154.305 - Tax normalization.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Tax normalization. 154.305 Section 154.305 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION... Changes § 154.305 Tax normalization. (a) Applicability. An interstate pipeline must compute the income tax...
18 CFR 154.305 - Tax normalization.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Tax normalization. 154.305 Section 154.305 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION... Changes § 154.305 Tax normalization. (a) Applicability. An interstate pipeline must compute the income tax...
18 CFR 154.305 - Tax normalization.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Tax normalization. 154.305 Section 154.305 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION... Changes § 154.305 Tax normalization. (a) Applicability. An interstate pipeline must compute the income tax...
30 CFR 715.19 - Use of explosives.
Code of Federal Regulations, 2010 CFR
2010-07-01
... wells, petroleum or gas-storage facilities, municipal water-storage facilities, fluid-transmission pipelines, gas or oil-collection lines, or water and sewage lines; and (C) 500 feet of an underground mine... explosive materials shall— (i) Have demonstrated a knowledge of, and a willingness to comply with, safety...
33 CFR 154.1130 - Requirements for prepositioned response equipment.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Additional Response Plan Requirements for a Trans-Alaska Pipeline Authorization Act (TAPAA) Facility...: (a) On-water recovery equipment with a minimum effective daily recovery rate of 30,000 barrels... of a discharge. (c) On-water recovery equipment with a minimum effective daily recovery rate of 40...
33 CFR 154.1130 - Requirements for prepositioned response equipment.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Additional Response Plan Requirements for a Trans-Alaska Pipeline Authorization Act (TAPAA) Facility...: (a) On-water recovery equipment with a minimum effective daily recovery rate of 30,000 barrels... of a discharge. (c) On-water recovery equipment with a minimum effective daily recovery rate of 40...
33 CFR 154.1130 - Requirements for prepositioned response equipment.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Additional Response Plan Requirements for a Trans-Alaska Pipeline Authorization Act (TAPAA) Facility...: (a) On-water recovery equipment with a minimum effective daily recovery rate of 30,000 barrels... of a discharge. (c) On-water recovery equipment with a minimum effective daily recovery rate of 40...
33 CFR 154.1130 - Requirements for prepositioned response equipment.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Additional Response Plan Requirements for a Trans-Alaska Pipeline Authorization Act (TAPAA) Facility...: (a) On-water recovery equipment with a minimum effective daily recovery rate of 30,000 barrels... of a discharge. (c) On-water recovery equipment with a minimum effective daily recovery rate of 40...
Code of Federal Regulations, 2013 CFR
2013-07-01
... telegraph purposes, and for pipelines, canals, ditches, water plants, and other purposes to the extent of the ground occupied by such canals, ditches, water plants, or other works permitted thereunder and not... citizen, association, or corporation of the United States, where it is intended by such to exercise the...
Code of Federal Regulations, 2012 CFR
2012-07-01
... telegraph purposes, and for pipelines, canals, ditches, water plants, and other purposes to the extent of the ground occupied by such canals, ditches, water plants, or other works permitted thereunder and not... citizen, association, or corporation of the United States, where it is intended by such to exercise the...
Code of Federal Regulations, 2014 CFR
2014-07-01
... telegraph purposes, and for pipelines, canals, ditches, water plants, and other purposes to the extent of the ground occupied by such canals, ditches, water plants, or other works permitted thereunder and not... citizen, association, or corporation of the United States, where it is intended by such to exercise the...
18 CFR 284.402 - Blanket marketing certificates.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Blanket marketing certificates. 284.402 Section 284.402 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY... RELATED AUTHORITIES Certain Sales for Resale by Non-interstate Pipelines § 284.402 Blanket marketing...
18 CFR 284.402 - Blanket marketing certificates.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Blanket marketing certificates. 284.402 Section 284.402 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY... RELATED AUTHORITIES Certain Sales for Resale by Non-interstate Pipelines § 284.402 Blanket marketing...
18 CFR 284.402 - Blanket marketing certificates.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Blanket marketing certificates. 284.402 Section 284.402 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY... RELATED AUTHORITIES Certain Sales for Resale by Non-interstate Pipelines § 284.402 Blanket marketing...
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Refunds. 154.501 Section 154.501 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT... other time period established by the Commission or as established in the pipeline's tariff. (b) Costs of...
Code of Federal Regulations, 2010 CFR
2010-04-01
... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Refunds. 154.501 Section 154.501 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT... other time period established by the Commission or as established in the pipeline's tariff. (b) Costs of...
Code of Federal Regulations, 2012 CFR
2012-04-01
... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Refunds. 154.501 Section 154.501 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT... other time period established by the Commission or as established in the pipeline's tariff. (b) Costs of...
Environmental Levels Of 129I Present In Bovine Thyroid And Fresh Water In Argentina
DOE Office of Scientific and Technical Information (OSTI.GOV)
Negri, A. E.; Arazi, A.; Carnellia, P. F. F.
2010-08-04
Concentrations of {sup 129}I in bovine thyroid and fresh water samples coming from all over Argentina were analyzed by Accelerator Mass Spectrometry (AMS) and total iodine present in samples by Gas Chromatography (GC) and Inductive Coupled Plasma Mass Spectrometry (ICP-MS), respectively. Once we complete this study, it will be the first set of data of this kind from an extended region of the south American subcontinent.
Force of resistance to pipeline pulling in plane and volumetrically curved wells
NASA Astrophysics Data System (ADS)
Toropov, V. S.; Toropov, S. Yu; Toropov, E. S.
2018-05-01
A method has been developed for calculating the component of the pulling force of a pipeline, arising from the well curvature in one or several planes, with the assumption that the pipeline is ballasted by filling with water or otherwise until zero buoyancy in the drilling mud is reached. This paper shows that when calculating this force, one can neglect the effect of sections with zero curvature. In the other case, if buoyancy of the pipeline is other than zero, the resistance force in the curvilinear sections should be calculated taking into account the difference between the normal components of the buoyancy force and weight. In the paper, it is proved that without taking into account resistance forces from the viscosity of the drilling mud, if buoyancy of the pipeline is zero, the total resistance force is independent of the length of the pipe and is determined by the angle equal to the sum of the entry angle and the exit angle of the pipeline to the day surface. For the case of the well curvature in several planes, it is proposed to perform the calculation of such volumetrically curved well by the central angle of the well profile. Analytical dependences are obtained that allow calculating the pulling force for well profiles with a variable curvature radius, i.e. at different angles of deviation between the drill pipes along the well profile.