Brightening and Volatile Distribution Within Shackleton Crater Observed by the LRO Laser Altimeter.
NASA Technical Reports Server (NTRS)
Smith, D. E.; Zuber, M. T.; Head, J. W.; Neumann, G. A.; Mazarico, E.; Torrence, M. H.; Aharonson, O.; Tye, A. R.; Fassett, C. I.; Rosengurg, M. A.;
2012-01-01
Shackleton crater, whose interior lies largely in permanent shadow, is of interest due to its potential to sequester volatiles. Observations from the Lunar Orbiter Laser Altimeter onboard the Lunar Reconnaissance Orbiter have enabled an unprecedented topographic characterization, revealing Shackleton to be an ancient, unusually well-preserved simple crater whose interior walls are fresher than its floor and rim. Shackleton floor deposits are nearly the same age as the rim, suggesting little floor deposition since crater formation over 3 billion years ago. At 1064 nm the floor of Shackleton is brighter than the surrounding terrain and the interiors of nearby craters, but not as bright as the interior walls. The combined observations are explainable primarily by downslope movement of regolith on the walls exposing fresher underlying material. The relatively brighter crater floor is most simply explained by decreased space weathering due to shadowing, but a 1-mm-thick layer containing approx 20% surficial ice is an alternative possibility.
Alexander, Paul E; Barty, Rebecca; Fei, Yutong; Vandvik, Per Olav; Pai, Menaka; Siemieniuk, Reed A C; Heddle, Nancy M; Blumberg, Neil; McLeod, Shelley L; Liu, Jianping; Eikelboom, John W; Guyatt, Gordon H
2016-01-28
The impact of transfusing fresher vs older red blood cells (RBCs) on patient-important outcomes remains controversial. Two recently published large trials have provided new evidence. We summarized results of randomized trials evaluating the impact of the age of transfused RBCs. We searched MEDLINE, EMBASE, CINAHL, the Cochrane Database for Systematic Reviews, and Cochrane CENTRAL for randomized controlled trials enrolling patients who were transfused fresher vs older RBCs and reported outcomes of death, adverse events, and infection. Independently and in duplicate, reviewers determined eligibility, risk of bias, and abstracted data. We conducted random effects meta-analyses and rated certainty (quality or confidence) of evidence using the GRADE approach. Of 12 trials that enrolled 5229 participants, 6 compared fresher RBCs with older RBCs and 6 compared fresher RBCs with current standard practice. There was little or no impact of fresher vs older RBCs on mortality (relative risk [RR], 1.04; 95% confidence interval [CI], 0.94-1.14; P = .45; I(2) = 0%, moderate certainty evidence) or on adverse events (RR, 1.02; 95% CI, 0.91-1.14; P = .74; I(2) = 0%, low certainty evidence). Fresher RBCs appeared to increase the risk of nosocomial infection (RR, 1.09; 95% CI, 1.00-1.18; P = .04; I(2) = 0%, risk difference 4.3%, low certainty evidence). Current evidence provides moderate certainty that use of fresher RBCs does not influence mortality, and low certainty that it does not influence adverse events but could possibly increase infection rates. The existing evidence provides no support for changing practices toward fresher RBC transfusion. © 2016 by The American Society of Hematology.
Constraints on the Volatile Distribution Within Shackleton Crater at the Lunar South Pole
NASA Technical Reports Server (NTRS)
Zuber, Maria T.; Head, James W.; Smith, David E.; Neumann, Gregory A.; Mazarico, Erwan; Torrence, Mark H.; Aharonson, Oded; Tye, Alexander R.; Fassett, Caleb I.; Rosenburg, Margaret A.;
2012-01-01
Shackleton crater is nearly coincident with the Moon's south pole. Its interior receives almost no direct sunlight and is a perennial cold trap, making Shackleton a promising candidate location in which to seek sequestered volatiles. However, previous orbital and Earth-based radar mapping and orbital optical imaging have yielded conflicting interpretations about the existence of volatiles. Here we present observations from the Lunar Orbiter Laser Altimeter on board the Lunar Reconnaissance Orbiter, revealing Shackleton to be an ancient, unusually well-preserved simple crater whose interior walls are fresher than its floor and rim. Shackleton floor deposits are nearly the same age as the rim, suggesting that little floor deposition has occurred since the crater formed more than three billion years ago. At a wavelength of 1,064 nanometres, the floor of Shackleton is brighter than the surrounding terrain and the interiors of nearby craters, but not as bright as the interior walls. The combined observations are explicable primarily by downslope movement of regolith on the walls exposing fresher underlying material. The relatively brighter crater floor is most simply explained by decreased space weathering due to shadowing, but a one-micrometre-thick layer containing about 20 per cent surficial ice is an alternative possibility.
Enacting Entrepreneurial Intent the Gaps between Student Needs and Higher Education Capability
ERIC Educational Resources Information Center
Collins, Lorna; Hannon, Paul D.; Smith, Alison
2004-01-01
Provides a review of the gap between students entrepreneurial needs and aspirations and the entrepreneurship education offerings within higher education institutions HEIs in Leicestershire, UK. Utilises data from three surveys of university fresher students, held in 2001. Uses the findings as the basis to assess the gap between fresher students…
ERIC Educational Resources Information Center
Stott, Tim; Zaitseva, Elena; Cui, Vanessa
2014-01-01
This four-year mixed method longitudinal study utilises data collected from four cohorts of Outdoor Education (OE) students to compare "fresher" and "graduate" identities and to explore the impact of identity on graduate employment. Findings demonstrate that compared to other programmes, and the university as a whole, OE…
Fuller, A; Fleming, K M; Szatkowski, L; Bains, M
2017-12-15
The transition to university is a potentially influential time upon students' drinking behaviour. This study explored the nature of activities and alcohol-related content in marketing materials from student-led societies and local businesses provided to students, at a university freshers' fair in the UK. All marketing materials handed out at the fair were collected across the 5-day event in September 2015. Written and visual content was analysed using a summative qualitative content analysis. Most student-led societies promoted social events they were hosting (n = 530), most of which took place in a drinking venue or referred to drinking (n = 335). Only four explicitly alcohol-free events were promoted. Student-led societies also promoted activities relating to their interest, e.g. sports training (n = 519), a small proportion of which had references to drinking and drinking venues (n = 54). Three societies provided promotional handouts from local bars or nightclubs. Local bars, pubs and nightclubs promoted events they hosted (n = 81) as well as alcoholic drink promotions (n = 79) and alcohol branded advertising (n = 22), albeit infrequently for the latter. In the first week of university, students are exposed to alcohol-related events, promotions and advertising, which may act as an incentive to participate in drinking. © The Author(s) 2017. Published by Oxford University Press on behalf of Faculty of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com
False Color Processing to Enhance Differences Around Yogi
NASA Technical Reports Server (NTRS)
1997-01-01
In this scene showing the rover deployed at rock Yogi, the colors have similarly been enhanced to bring out differences. The same three kinds of rocks are recognized as in the distance. Yogi (red arrow), one of the large rocks with a weathered coating, exhibits a fresh face to the northeast, resulting perhaps from eolian scouring or from fracturing off of pieces to expose a fresher surface. Barnacle Bill and Cradle (blue arrows) are typical of the unweathered smaller rocks. During its traverse to Yogi the rover stirred the soil and exposed material from several cm in depth. During one of the turns to deploy Sojourner's Alpha Proton X-Ray Spectrometer (inset and white arrow), the wheels dug particularly deeply and exposed white material. Spectra of this white material show it is virtually identical to Scooby Doo, and such white material may underlie much of the site. The lander's rear ramp, which Sojourner used to descend to the Martian surface, is at lower left.
Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and managed the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator. JPL is an operating division of the California Institute of Technology (Caltech).A new perspective on origin of the East Sea Intermediate Water: Observations of Argo floats
NASA Astrophysics Data System (ADS)
Park, JongJin; Lim, Byunghwan
2018-01-01
The East Sea Intermediate Water (ESIW), defined as the salinity minimum in the East Sea (hereafter ES) (Sea of Japan), is examined with respect to its overall characteristics and its low salinity origin using historical Argo float data from 1999 to 2015. Our findings suggest that the ESIW is formed in the western Japan Basin (40-42°N, 130-133°E), especially west of the North Korean front in North Korean waters, where strong negative surface wind stress curl resides in wintertime. The core ESIW near the formation site has temperatures of 3-4 °C and less than 33.98 psu salinity, warmer and fresher than that in the southern part of the ES. In order to trace the origin of the warmer and fresher water at the sea surface in winter, we analyzed the data in three different ways: (1) spatial distribution of surface water properties using monthly climatology from the Argo float data, (2) seasonal variation of heat and salt contents at the formation site, and (3) backtracking of surface drifter trajectories. Based on these analyses, it is likely that the warmer and fresher surface water properties found in the ESIW formation site are attributed to the low-salinity surface water advected from the southern part of the ES in autumn.
ERIC Educational Resources Information Center
Morrison, Tom
2003-01-01
Describes how school restrooms can get a fresher and healthier look with new technologies and better-trained custodial workers. Examples include more automated, no-touch systems and efficient cleaning products. (EV)
Pluto Heart: Like a Cosmic Lava Lamp
2016-06-01
Like a cosmic lava lamp, a large section of Pluto's icy surface is being constantly renewed by a process called convection that replaces older surface ices with fresher material. Scientists from NASA's New Horizons mission used state-of-the-art computer simulations to show that the surface of Pluto's informally named Sputnik Planum is covered with churning ice "cells" that are geologically young and turning over due to a process called convection. The scene above, which is about 250 miles (400 kilometers) across, uses data from the New Horizons Ralph/Multispectral Visible Imaging Camera (MVIC), gathered July 14, 2015. Their findings are published in the June 2, 2016, issue of the journal Nature. http://photojournal.jpl.nasa.gov/catalog/PIA20726
Enjoy exploring our redesigned magazine and website.
2016-07-06
Welcome to your new-look Emergency Nurse - we hope you like what you see. The publication has been redesigned to create a fresher, more modern and reader-friendly feel, based on what our reader research told us you wanted.
Guest editorial, special issue on new food processing technologies and food safety
USDA-ARS?s Scientific Manuscript database
The microflora of foods is very significant to food producers, processors and consumers and the food manufacturers including distributors are responding to consumers’ demand for food products that are safe, fresher and convenient for use. In some cases foods may be improperly processed and/or contam...
USDA-ARS?s Scientific Manuscript database
The microflora of foods is of practical significance to producers, processors and consumers. Food manufacturers and distributors are responding to consumers’ demand for food products that are safe, fresher and convenient for use. In some cases foods may be improperly processed and/or contaminated wi...
NASA Technical Reports Server (NTRS)
Talpe Matthieu; Zuber, Maria T.; Yang, Di; Neumann, Gregory A.; Solomon, Sean C.; Mazarico, Erwan; Vilas, Faith
2012-01-01
Earth-based radar images of Mercury show radar-bright material inside impact craters near the planet s poles. A previous study indicated that the polar-deposit-hosting craters (PDCs) at Mercury s north pole are shallower than craters that lack such deposits. We use data acquired by the Mercury Laser Altimeter on the MESSENGER spacecraft during 11 months of orbital observations to revisit the depths of craters at high northern latitudes on Mercury. We measured the depth and diameter of 537 craters located poleward of 45 N, evaluated the slopes of the northern and southern walls of 30 PDCs, and assessed the floor roughness of 94 craters, including nine PDCs. We find that the PDCs appear to have a fresher crater morphology than the non-PDCs and that the radar-bright material has no detectable influence on crater depths, wall slopes, or floor roughness. The statistical similarity of crater depth-diameter relations for the PDC and non-PDC populations places an upper limit on the thickness of the radar-bright material (< 170 m for a crater 11 km in diameter) that can be refined by future detailed analysis. Results of the current study are consistent with the view that the radar-bright material constitutes a relatively thin layer emplaced preferentially in comparatively young craters.
"Dear Fresher …"--How Online Questionnaires Can Improve Learning and Teaching Statistics
ERIC Educational Resources Information Center
Bebermeier, Sarah; Nussbeck, Fridtjof W.; Ontrup, Greta
2015-01-01
Lecturers teaching statistics are faced with several challenges supporting students' learning in appropriate ways. A variety of methods and tools exist to facilitate students' learning on statistics courses. The online questionnaires presented in this report are a new, slightly different computer-based tool: the central aim was to support students…
NASA Astrophysics Data System (ADS)
Devlieghere, F.; Francois, K.; Vermeulen, A.; Debevere, J.
Recent crises in the food industry have increased the awareness of the public of the food they eat. In the last few decades, dioxins and polychlorinated biphenyls (PCBs), but also microbial hazards such as Listeria monocytogenes or Bacillus cereus have reached the news headlines. The consumer has become more critical towards foods, demanding fresher, healthy, safe, and nutrition-rich food products.
Rain Impact Model Assessment of Near-Surface Salinity Stratification Following Rainfall
NASA Astrophysics Data System (ADS)
Drushka, K.; Jones, L.; Jacob, M. M.; Asher, W.; Santos-Garcia, A.
2016-12-01
Rainfall over oceans produces a layer of fresher surface water, which can have a significant effect on the exchanges between the surface and the bulk mixed layer and also on satellite/in-situ comparisons. For satellite sea surface salinity (SSS) measurements, the standard is the Hybrid Coordinate Ocean Model (HYCOM), but there is a significant difference between the remote sensing sampling depth of 0.01 m and the typical range of 5-10 m of in-situ instruments. Under normal conditions the upper layer of the ocean is well mixed and there is uniform salinity; however, under rainy conditions, there is a dilution of the near-surface salinity that mixes downward by diffusion and by mechanical mixing (gravity waves/wind speed). This significantly modifies the salinity gradient in the upper 1-2 m of the ocean, but these transient salinity stratifications dissipate in a few hours, and the upper layer becomes well mixed at a slightly fresher salinity. Based upon research conducted within the NASA/CONAE Aquarius/SAC-D mission, a rain impact model (RIM) was developed to estimate the change in SSS due to rainfall near the time of the satellite observation, with the objective to identify the probability of salinity stratification. RIM uses HYCOM (which does not include the short-term rain effects) and a NOAA global rainfall product CMORPH to model changes in the near-surface salinity profile in 0.5 h increments. Based upon SPURS-2 experimental near-surface salinity measurements with rain, this paper introduces a term in the RIM model that accounts for the effect of wind speed in the mechanical mixing, which translates into a dynamic vertical diffusivity; whereby a Generalized Ocean Turbulence Model (GOTM) is used to investigate the response to rain events of the upper few meters of the ocean. The objective is to determine how rain and wind forcing control the thickness, stratification strength, and lifetime of fresh lenses and to quantify the impacts of rain-formed fresh lenses on the fresh bias in satellite retrievals of salinity. Results will be presented of comparisons of RIM measurements at depth of a few meters with measurements from in-situ salinity instruments. Also, analytical results will be shown, which assess the accuracy of RIM salinity profiles under a variety of rain rate, wind/wave conditions.
Near Real-Time Data Warehousing Using State-of-the-Art ETL Tools
NASA Astrophysics Data System (ADS)
Jörg, Thomas; Dessloch, Stefan
Data warehouses are traditionally refreshed in a periodic manner, most often on a daily basis. Thus, there is some delay between a business transaction and its appearance in the data warehouse. The most recent data is trapped in the operational sources where it is unavailable for analysis. For timely decision making, today's business users asks for ever fresher data.
NASA Astrophysics Data System (ADS)
Mather, Caroline C.; Skrzypek, Grzegorz; Dogramaci, Shawan; Grierson, Pauline F.
2018-04-01
Groundwater dolocrete occurring within the Fortescue Marsh, a large inland wetland in the Pilbara region of northwest Australia, has been investigated to provide paleoenvironmental and paleohydrological records and further the understanding of low temperature dolomite formation in terrestrial settings over the Quaternary Period. Two major phases of groundwater dolocrete formation are apparent from the presence of two distinct units of dolocrete, based on differences in depth, δ18O values and mineral composition. Group 1 (G1) occurs at depth 20-65 m b.g.l. (below ground level) and contains stoichiometric dolomite with δ18O values of -4.02-0.71‰. Group 2 (G2) is shallower (0-23 m b.g.l.), occurring close to the current groundwater level, and contains Ca-rich dolomite ± secondary calcite with a comparatively lower range of δ18O values (-7.74 and -6.03‰). Modelled δ18O values of paleogroundwater from which older G1 dolomite precipitated indicated highly saline source water, which had similar stable oxygen isotope compositions to relatively old brine groundwater within the Marsh, developed under a different hydroclimatic regime. The higher δ18O values suggest highly evaporitic conditions occurred at the Marsh, which may have been a playa lake to saline mud flat environment. In contrast, G2 dolomite precipitated from comparatively fresher water, and modelled δ18O values suggested formation from mixing between inflowing fresher groundwater with saline-brine groundwater within the Marsh. The δ18O values of the calcite indicates formation from brackish to saline groundwater, which suggests this process may be associated with coeval gypsum dissolution. In contrast to the modern hydrology of the Marsh, which is surface water dependent and driven by a flood and drought regime, past conditions conducive to dolomite precipitation suggest a groundwater dependent system, where shallow groundwaters were influenced by intensive evaporation.
NASA Astrophysics Data System (ADS)
Sijinkumar, A. V.; Clemens, Steven; Nath, B. Nagender; Prell, Warren; Benshila, Rachid; Lengaigne, Matthieu
2016-03-01
Oxygen isotopes of surface, thermocline and bottom dwelling foraminifera were analysed from two well-dated Andaman Sea cores and combined with nine previously published records from the Bay of Bengal (BoB) and Andaman Sea to create a transect spanning 20°N to 5°N. Combined with temperature estimates and the observed seawater δ18O-salinity relationship, these data are used to estimate past changes in BoB salinity structure. Compared to modern, mid-Holocene (9-6 cal ka BP) surface waters in the northern BoB were 2.5 psμ (8%) fresher, Andaman Sea were 3.8 psμ (12%) fresher, and southern BoB were 1.2 psμ (3.5%) fresher. Conversely, during the last glacial maximum (LGM), surface waters in the northern BoB were 2.9 psμ (9%) more saline while Andaman Sea were essentially unchanged and southern BoB were 1.7 psμ (4.9%) more saline compared to modern. The relative freshness of the Andaman during the last glacial maximum is likely the result of basin morphology during sea level low stand, resulting in reduced surface water mixing with the open BoB as well as shelf emergence, causing increased proximity of the core locations to river outflow. Sensitivity experiments using a regional ocean model indicate that the increased mid-Holocene north to south (20°N to 5°N) salinity gradient can be achieved with a ∼50% increase in precipitation/runoff while the decreased glacial age gradient can be achieved with a ∼50% reduction in precipitation/runoff. During the deglaciation, both surface and thermocline-dwelling species in the Andaman and northern BoB exhibit depleted δ18O within the Younger Dryas (YD), indicating colder and/or more saline conditions. None of the records from the southern BoB site have clear YD structure, possibly due to the combined effects of bioturbation and low sedimentation rates.
NASA Astrophysics Data System (ADS)
Viezzoli, A.; Tosi, L.; Teatini, P.; Silvestri, S.
2010-01-01
A comprehensive investigation of the mixing between salt/fresh surficial water and groundwater in transitional environments is an issue of paramount importance considering the ecological, cultural, and socio-economic relevance of coastal zones. Acquiring information, which can improve the process understanding, is often logistically challenging, and generally expensive and slow in these areas. Here we investigate the capability of airborne electromagnetics (AEM) at the margin of the Venice Lagoon, Italy. The quasi-3D interpretation of the AEM outcome by the spatially constrained inversion (SCI) methodology allows us to accurately distinguish several hydrogeological features down to a depth of about 200 m. For example, the extent of the saltwater intrusion in coastal aquifers and the transition between the upper salt saturated and the underlying fresher sediments below the lagoon bottom are detected. The research highlights the AEM capability to improve the hydrogeological characterization of subsurface processes in worldwide lagoons, wetlands, deltas.
Landmarks in the historical development of twenty first century food processing technologies.
Misra, N N; Koubaa, Mohamed; Roohinejad, Shahin; Juliano, Pablo; Alpas, Hami; Inácio, Rita S; Saraiva, Jorge A; Barba, Francisco J
2017-07-01
Over a course of centuries, various food processing technologies have been explored and implemented to provide safe, fresher-tasting and nutritive food products. Among these technologies, application of emerging food processes (e.g., cold plasma, pressurized fluids, pulsed electric fields, ohmic heating, radiofrequency electric fields, ultrasonics and megasonics, high hydrostatic pressure, high pressure homogenization, hyperbaric storage, and negative pressure cavitation extraction) have attracted much attention in the past decades. This is because, compared to their conventional counterparts, novel food processes allow a significant reduction in the overall processing times with savings in energy consumption, while ensuring food safety, and ample benefits for the industry. Noteworthily, industry and university teams have made extensive efforts for the development of novel technologies, with sound scientific knowledge of their effects on different food materials. The main objective of this review is to provide a historical account of the extensive efforts and inventions in the field of emerging food processing technologies since their inception to present day. Copyright © 2017 Elsevier Ltd. All rights reserved.
The Paleoceanography of the Bering Sea During the Last Glacial Cycle
2006-02-01
Stabeno, 1998). Water from the Bering (1995) inferred that the oxygen minimum zone Sea is relatively low salinity and rich in nutrients, (OMZ...fresher, warmer, and enriched in nutrients, particu- planktonic species Neogloboquadrina pachyderma larly silicate, which dissolves from opal- rich seafloor...2- rich 33 North Pacific intermediate water (NPIW), (2) decrease in the [02] of newly-formed NPIW without a change in ventilation rate (Crusius et al
Waterless Clothes-Cleaning Machine
NASA Technical Reports Server (NTRS)
Johnson, Glenn; Ganske, Shane
2013-01-01
A waterless clothes-cleaning machine has been developed that removes loose particulates and deodorizes dirty laundry with regenerative chemical processes to make the clothes more comfortable to wear and have a fresher smell. This system was initially developed for use in zero-g, but could be altered for 1-g environments where water or other re sources are scarce. Some of these processes include, but are not limited to, airflow, filtration, ozone generation, heat, ultraviolet light, and photocatalytic titanium oxide.
Stärz, Michael; Jokat, Wilfried; Knorr, Gregor; Lohmann, Gerrit
2017-01-01
High latitude ocean gateway changes are thought to play a key role in Cenozoic climate evolution. However, the underlying ocean dynamics are poorly understood. Here we use a fully coupled atmosphere-ocean model to investigate the effect of ocean gateway formation that is associated with the subsidence of the Greenland–Scotland Ridge. We find a threshold in sill depth (∼50 m) that is linked to the influence of wind mixing. Sill depth changes within the wind mixed layer establish lagoonal and estuarine conditions with limited exchange across the sill resulting in brackish or even fresher Arctic conditions. Close to the threshold the ocean regime is highly sensitive to changes in atmospheric CO2 and the associated modulation in the hydrological cycle. For larger sill depths a bi-directional flow regime across the ridge develops, providing a baseline for the final step towards the establishment of a modern prototype North Atlantic-Arctic water exchange. PMID:28580952
NASA Astrophysics Data System (ADS)
Showstack, Randy
2009-11-01
The 2009 annual update of the Arctic Report Card, issued on 22 October, indicates that “warming of the Arctic continues to be widespread, and in some cases dramatic. Linkages between air, land, sea, and biology are evident.” The report, a collaborative effort of 71 national and international scientists initiated in 2006 by the Climate Program Office of the U.S. National Oceanic and Atmospheric Administration (NOAA), highlights several concerns, including a change in large-scale wind patterns affected by the loss of summer sea ice; the replacement of multiyear sea ice by first-year sea ice; warmer and fresher water in the upper ocean linked to new ice-free areas; and the effects of the loss of sea ice on Arctic plant, animal, and fish species. “Climate change is happening faster in the Arctic than any other place on Earth-and with wide-ranging consequences,” said NOAA administrator Jane Lubchenco. “This year“s Arctic Report Card underscores the urgency of reducing greenhouse gas pollution and adapting to climate changes already under way.”
Debris-flow initiation from large, slow-moving landslides
Reid, M.E.; Brien, D.L.; LaHusen, R.G.; Roering, J.J.; de la Fuente, J.; Ellen, S.D.; ,
2003-01-01
In some mountainous terrain, debris flows preferentially initiate from the toes and margins of larger, deeper, slower-moving landslides. During the wet winter of 1997, we began real-time monitoring of the large, active Cleveland Corral landslide complex in California, USA. When the main slide is actively moving, small, shallow, first-time slides on the toe and margins mobilize into debris flows and travel down adjacent gullies. We monitored the acceleration of one such failure; changes in velocity provided precursory indications of rapid failure. Three factors appear to aid the initiation of debris flows at this site: 1) locally steepened ground created by dynamic landslide movement, 2) elevated pore-water pressures and abundant soil moisture, and 3) locally cracked and dilated materials. This association between debris flows and large landslides can be widespread in some terrain. Detailed photographic mapping in two watersheds of northwestern California illustrates that the areal density of debris-flow source landsliding is about 3 to 7 times greater in steep geomorphically fresher landslide deposits than in steep ground outside landslide deposits. ?? 2003 Millpress.
Bay of Bengal Surface and Thermocline and the Arabian Sea
2014-09-30
to the atmosphere. How low the SSS gets in the Bay of Bengal or how high in the Arabian Sea, depends on the oceanic exchanges between them via a...potential impact on the SST. 3 Figure 1a: Sea surface temperature (SST) and salinity ( SSS ) relationship during ASIRI 2013 cruises. The left panel...shows the hull ADCP vector, color-coded for SSS . The SST/ SSS scatter falls along a line from the warm/salty southern regions to the cool/fresher
Seawater circulation in sediments driven by interactions between seabed topography and fluid density
Konikow, Leonard F.; Akhavan, M.; Langevin, C.D.; Michael, H.A.; Sawyer, A.H.
2013-01-01
Measurements of submarine groundwater discharge (SGD) in coastal areas often show that the saltwater discharge component is substantially greater than the freshwater discharge. Several mechanisms have been proposed to explain these high saltwater discharge values, including saltwater circulation driven by wave and tidal pumping, wave and tidal setup in intertidal areas, currents over bedforms, and density gradients resulting from mixing along the freshwater-saltwater interface. In this study, a new mechanism for saltwater circulation and discharge is proposed and evaluated. The process results from interaction between bedform topography and buoyancy forces, even without flow or current over the bedform. In this mechanism, an inverted salinity (and density) profile in the presence of both a bedform on the seafloor and an upward flow of fresher groundwater from depth induces a downward flow of saline pore water under the troughs and upward flow under the adjacent crest of the bedform. The magnitude and occurrence of the mechanism were tested using numerical methods. The results indicate that this mechanism could drive seawater circulation under a limited range of conditions and contribute 20%–30% of local SGD when and where the process is operative. Bedform shape, hydraulic conductivity, hydraulic head, and salinity at depth in the porous media, aquifer thickness, effective porosity, and hydrodynamic dispersion are among the factors that control the occurrence and magnitude of the circulation of seawater by this mechanism.
2014-09-27
fresher foams are more resistant to destruction by a magnetic field since its higher water content and thicker films allowed for the movement of loose...of the carbonyl iron particles in the foam. As the strength of the applied magnetic field is increased, the strength of the particle chains resisting ...E. S.; Klamczynski, A.; Glenn, G. M., Starch -lignin Foams. eXPRESS Polym. Lett. 2010, 4, 311–320. 60. Wei, Z.; Yang, Y.; Yang, R.; Wang, C
2014-09-30
Here we use the newly launched Aquarius satellite derived Sea Surface Salinity ( SSS ) data as well as Argo salinity profiles, model simulations and...dipolar sea surface salinity ( SSS ) structure with the salty Arabian Sea (AS) on the west and the fresher Bay of Bengal (BoB) on the east. At the surface...interconnected, region is quantified. PRELIMINARY RESULTS Figure 1 shows the mean Aquarius SSS during August 2011-May 2014 and several boxes that
On the Cause of Eastern Equatorial Pacific Ocean T-S Variations Associated with El Nino
NASA Technical Reports Server (NTRS)
Wang, Ou; Fukumori, Ichiro; Lee, Tong; Cheng, Benny
2004-01-01
The nature of observed variations in temperature-salinity (T-S) relationship between El Nino and non-El Nino years in the pycnocline of the eastern equatorial Pacific Ocean (NINO3 region, 5(deg)S-5(deg)N, 150(deg)W-90(deg)W) is investigated using an ocean general circulation model. The origin of the subject water mass is identified using the adjoint of a simulated passive tracer. The higher salinity during El Nino is attributed to larger convergence of saltier water from the Southern Hemisphere and smaller convergence of fresher water from the Northern Hemisphere.
Transfusion Associated Microchimerism: The Hybrid Within
Bloch, Evan M; Jackman, Rachael P; Lee, Tzong-Hae; Busch, Michael P
2012-01-01
Microchimerism, the coexistence of genetically disparate populations of cells in a receptive host, is well described in both clinical and physiological settings, including transplantation and pregnancy. Microchimerism can also occur following allogeneic blood transfusion in traumatically injured patients, where donor cells have been observed decades after transfusion. To date, transfusion-associated microchimerism (TA-MC) appears confined to this clinical subset, most likely due to the immune perturbations that occur following severe trauma that allow foreign donor cells to survive. TA-MC appears to be unaffected by leukoreduction and has been documented following transfusion with an array of blood products. The only significant predictor of TA-MC to date is the age of red cells, with fresher units associated with higher risk. Thus far, no adverse clinical effect has been observed in limited studies of TA-MC. There are, however, hypothesized links to transfusion-associated graft vs. host disease (TA-GvHD) that may be unrecognized and consequently under-reported. Microchimerism in other settings has gained increasing attention due to a plausible link to autoimmune diseases, as well as its diagnostic and therapeutic potential vis-a-vis ante-natal testing and adoptive immunotherapy, respectively. Furthermore, microchimerism provides a tool to further our understanding of immune tolerance and regulation. PMID:23102759
Gadher, Suresh Jivan; Drahos, László; Vékey, Károly; Kovarova, Hana
2017-07-01
The Central and Eastern European Proteomic Conference (CEEPC) proudly celebrated its 10th Anniversary with an exciting scientific program inclusive of proteome, proteomics and systems biology in Budapest, Hungary. Since 2007, CEEPC has represented 'state-of the-art' proteomics in and around Central and Eastern Europe and these series of conferences have become a well-recognized event in the proteomic calendar. Fresher challenges and global healthcare issues such as ageing and chronic diseases are driving clinical and scientific research towards regenerative, reparative and personalized medicine. To this end, proteomics may enable diverse intertwining research fields to reach their end goals. CEEPC will endeavor to facilitate these goals.
NASA Astrophysics Data System (ADS)
Thompson, E. J.; Asher, W.; Drushka, K.; Schanze, J. J.; Jessup, A. T.; Clark, D.
2016-12-01
Rain can produce a lens of fresher and generally colder, less dense water at the ocean surface. These stable surface layers concentrate heat, freshwater, and momentum into a thin layer and reduce the exchange of these properties between the surface layer and deeper water, which can impact regional freshwater storage and air-sea fluxes of heat and moisture. Although in situ observations have shown that fresh lenses are common in the presence of rain, attempts to correlate the magnitude and lifetime of the surface freshening with rain rate using field data have not produced a definitive relationship. The reasons for this are most likely that in situ rain rate measurements represent the freshwater flux to the ocean surface at a single point in space and time, whereas the fresh lens is the result of the integrated rainfall over time and space, convoluted with the evolution of the fresh lens. Therefore, it is possible that integrated, upstream rainfall estimates might provide a better correlate for the presence of fresh lenses than in situ measurements at a point. This hindcast study seeks to determine the utility of NASA GPM IMERG satellite measurements of rain relative to in situ collocated rain measurements in predicting the occurrence and duration of 0-1 m freshwater stabilization of the ocean. Vertical gradients of temperature, salinity, and density between the surface and at most a few meters were measured using towed profilers and underway sampling during the 2016 SPURS-2 experiment conducted in the tropical east Pacific Ocean. Local wind speed was also measured and taken into account. These measurements were used to determine whether local or integrated upstream precipitation metrics could better predict the occurrence of rain-generated lenses of fresher water at the ocean surface and whether the strength and duration of rain events was correlated with the observed lifetime of fresh lenses.
NASA Astrophysics Data System (ADS)
Heslop, Emma; Aguiar, Eva; Mourre, Baptiste; Juza, Mélanie; Escudier, Romain; Tintoré, Joaquín
2017-04-01
The Ibiza Channel plays an important role in the circulation of the Western Mediterranean Sea, it governs the north/south exchange of different water masses that are known to affect regional ecosystems and is influenced by variability in the different drivers that affect sub-basins to the north (N) and south (S). A complex system. In this study we use a multi-platform approach to resolve the key drivers of this variability, and gain insight into the inter-connection between the N and S of the Western Mediterranean Sea through this choke point. The 6-year glider time series from the quasi-continuous glider endurance line monitoring of the Ibiza Channel, undertaken by SOCIB (Balearic Coastal Ocean observing and Forecasting System), is used as the base from which to identify key sub-seasonal to inter-annual patterns and shifts in water mass properties and transport volumes. The glider data indicates the following key components in the variability of the N/S flow of different water mass through the channel; regional winter mode water production, change in intermediate water mass properties, northward flows of a fresher water mass and the basin-scale circulation. To resolve the drivers of these components of variability, the strength of combining datasets from different sources, glider, modeling, altimetry and moorings, is harnessed. To the north atmospheric forcing in the Gulf of Lions is a dominant driver, while to the south the mesoscale circulation patterns of the Atlantic Jet and Alboran gyres dominate the variability but do not appear to influence the fresher inflows. Evidence of a connection between the northern and southern sub-basins is however indicated. The study highlights importance of sub-seasonal variability and the scale of rapid change possible in the Mediterranean, as well as the benefits of leveraging high resolution glider datasets within a multi-platform and modelling study.
Impact Craters: Size-Dependent Degration Rates
NASA Astrophysics Data System (ADS)
Ravi, S.; Mahanti, P.; Meyer, H. M.; Robinson, M. S.
2017-12-01
From superposition relations, Shoemaker and Hackman (1) devised the lunar geologic timescale with Copernican and Eratosthenian as the most recent periods. Classifying craters into the two periods is key to understanding impactor flux and regolith maturation rates over the last 3 Ga. Both Copernican and Eratosthenian craters exhibit crisp morphologies (sharp rims, steep slopes), however, only the former exhibit high reflectance rays and ejecta (1). Based on the Optical Maturity Parameter (OMAT; 2), Grier et al. (3) classified 50 fresh craters (D >20 km) into 3 categories - young (OMAT >0.22), intermediate, and old (OMAT <0.16). In our previous work, Copernican craters (D > 10) were identified (4) from a catalogue of 11,875 craters (5). In this work; we compare two size ranges (D: 5 km - 10 km and 10 km to 15 km) of 177 Copernican craters based on the average OMAT, measured near the crater rim (3). OMAT is measured at the crater rim (as opposed to further away from the crater) to minimize the influence of spatial variation of OMAT (6) in our investigation. We found that OMAT values are typically lower for smaller craters (5km < D < 10km) in comparison to larger craters (10km < D < 15km). However, when compared against morphological freshness (as determined by d/D for simpler craters), the smaller craters were fresher (higher d/D value). Since the OMAT value decreases with age, craters with higher d/D value (morphologically fresher) should have higher OMAT, but this is not the case. We propose that quicker loss of OMAT (over time) for smaller craters compared to decrease in d/D with crater ageing, is responsible for the observed decreased OMAT for smaller craters. (1) Shoemaker and Hackman, 1962 (2) Lucey et al., 2000 (3) Grier et al., 2001 (4) Ravi et al., 2016 (5) Reinhold et al., 2015 (6) Mahanti et al., 2016
Particulate organic matter fluxes and hydrodynamics at the Tisler cold-water coral reef
NASA Astrophysics Data System (ADS)
Wagner, Hannes; Purser, Autun; Thomsen, Laurenz; Jesus, Carlos César; Lundälv, Tomas
2011-03-01
Cold-water coral reefs occur in many regions of the world's oceans. Fundamental questions regarding their functioning remain unanswered. These include the biogeochemical influence of reefs on their environment ("reef effects") and the influence of hydrodynamic processes on reef nutrition. In a succession of field campaigns in 2007 and 2008, these questions were addressed at the Tisler cold-water coral reef, which is centered on a sill peak in the Norwegian Skagerrak. A variety of methodological approaches were used. These consisted of the collection of CTD and chlorophyll profiles, current measurements, sampling of particulate organic matter (POM) in the benthic boundary layer (BBL) across the reef with subsequent chemical analyses, and the chemical analysis of freshly released Lophelia pertusa mucus. CTD and chlorophyll profiles indicated that downstream of the sill crest, downwelling delivered warmer, fresher and chlorophyll richer water masses down to the BBL. Both sides of the reef received downwelling nutrition delivery, as flow direction over the reef reversed periodically. Several chemical composition indicators revealed that suspended POM was significantly fresher on the downstream side of the reef than on the upstream side. L. pertusa mucus from the Tisler Reef was labile in composition, as indicated by a low C/N ratio and a high amino acid degradation index (DI) value. Particulate organic carbon (POC) content in the BBL was significantly depleted across the reef. Lateral depositional fluxes were calculated to be 18-1485 mg POC m -2 d -1, with a mean of 459 mg POC m -2 d -1. We propose that the combination of fresh, downwelling POM with mucus released from the reef was the cause of the greater lability of the downstream POM. Our data on POC depletion across the reef suggest that cold-water coral reefs could play an important role in carbon cycling along continental margins.
Dietary habits and physical activity in students from the Medical University of Silesia in Poland.
Likus, Wirginia; Milka, Daniela; Bajor, Grzegorz; Jachacz-Łopata, Małgorzata; Dorzak, Beata
2013-01-01
Some of the major human health problems being confronted in the 21st century are cardiovascular disease, diabetes and obesity. It is recognised that having proper dietary habits (nutritional behaviour) and taking moderate physical exercise seem to be the best methods for reducing the risk of cardiovascular disease. To assess whether the dietary habits and levels of physical activity in first year medical students (freshers) are suitable for preventing cardiovascular disease. Subjects surveyed were Polish freshers studying medicine, physiotherapy, nursing and midwifery at the Medical University of Silesia in Katowice situated in South Western Poland (n = 239, mean age 19.82 +/- 1.2 years). Assessments, by questionnaire, included daily food intake, frequency of consuming foodstuffs with an adequate nutritional value and evaluating adverse dietary habits. Also considered were students' health, types of physical activity undertaken, or if not, then awareness of the consequences so arising. Statistical analysis was performed by the Chi2 test. These showed that 25% of students did not eat breakfast, 45.6% snacked in between main meals and 25% ate just before bedtime. Only 29% ate fruit and vegetables daily and 12% never had fish. Energy drinks were consumed by 39% of students daily and also 40% daily drank sweetened beverages. Furthermore, 40% of all subjects rated themselves as physically active, among which the highest were physiotherapy students at 70%. Regular physical activity was not considered essential to health by 5% subjects and 22% of nursing students believed that a lack of exercise, despite eating a healthy diet, did not affect health. The main reasons cited for not performing physical exercise were a lack of time (60%) and energy (26%). Despite being aware of the importance that a proper diet and adequate levels of physical activity confers on health, the students of medicine and related disciplines, nevertheless, did not implement theory into practice.
Salt dissolution and sinkhole formation: Results of laboratory experiments
NASA Astrophysics Data System (ADS)
Oz, Imri; Eyal, Shalev; Yoseph, Yechieli; Ittai, Gavrieli; Elad, Levanon; Haim, Gvirtzman
2016-10-01
The accepted mechanism for the formation of thousands of sinkholes along the coast of the Dead Sea suggests that their primary cause is dissolution of a salt layer by groundwater undersaturated with respect to halite. This is related to the drop in the Dead Sea level, which caused a corresponding drop of the freshwater-saltwater interface, resulting in fresher groundwater replacing the brines that were in contact with the salt layer. In this study we used physical laboratory experiments to examine the validity of this mechanism by reproducing the full dynamic natural process and to examine the impact of different hydrogeological characteristics on this process. The experimental results show surface subsidence and sinkhole formation. The stratigraphic configurations of the aquifer, together with the mechanical properties of the salt layer, determine the dynamic patterns of the sinkhole formation (instantaneous versus gradual formation). Laboratory experiments were also used to study the potential impact of future stratification in the Dead Sea, if and when the "Red Sea-Dead Sea Canal" project is carried out, and the Dead Sea level remains stable. The results show that the dissolution rates are slower by 1 order of magnitude in comparison with a nonstratified saltwater body, and therefore, the processes of salt dissolution and sinkhole formation will be relatively restrained under these conditions.
Polar ocean stratification in a cold climate.
Sigman, Daniel M; Jaccard, Samuel L; Haug, Gerald H
2004-03-04
The low-latitude ocean is strongly stratified by the warmth of its surface water. As a result, the great volume of the deep ocean has easiest access to the atmosphere through the polar surface ocean. In the modern polar ocean during the winter, the vertical distribution of temperature promotes overturning, with colder water over warmer, while the salinity distribution typically promotes stratification, with fresher water over saltier. However, the sensitivity of seawater density to temperature is reduced as temperature approaches the freezing point, with potential consequences for global ocean circulation under cold climates. Here we present deep-sea records of biogenic opal accumulation and sedimentary nitrogen isotopic composition from the Subarctic North Pacific Ocean and the Southern Ocean. These records indicate that vertical stratification increased in both northern and southern high latitudes 2.7 million years ago, when Northern Hemisphere glaciation intensified in association with global cooling during the late Pliocene epoch. We propose that the cooling caused this increased stratification by weakening the role of temperature in polar ocean density structure so as to reduce its opposition to the stratifying effect of the vertical salinity distribution. The shift towards stratification in the polar ocean 2.7 million years ago may have increased the quantity of carbon dioxide trapped in the abyss, amplifying the global cooling.
Ward, W. C.; Halley, Robert B.
1985-01-01
18O compositions of Yucatecan dolomite and of modern ground water suggest dolomite precipitation from mixed water ranging from about 75% seawater, 25% freshwater to nearly all seawater. (Isotope analyses are for the most stable calcian dolomites; more soluble, calcium-rich dolomite presumably is analyzed with calcite and thought to be isotopically lighter than the less soluble dolomite.) In the cement sequence, the most stable dolomite is followed by more soluble dolomite as ground water becomes less saline. Isotope analyses, together with position of dolomite in the cement sequence, suggest the most stable calcian dolomite (including limpid dolomite) precipitated from mixed water with large proportions of seawater, and the less stable, more calcian dolomite precipitated from fresher mixed water.
Moon-Mercury: Relative preservation states of secondary craters
Scott, D.H.
1977-01-01
Geologic mapping of the Kuiper quadrangle of Mercury and other geologic studies of the planet indicate that secondary craters are much better preserved than those on the moon around primary craters of similar size and morphology. Among the oldest recognized secondary craters on the moon associated with craters 100 km across or less are those of Posidonius, Atlas and Plato; these craters have been dated as middle to late Imbrian in age. Many craters on Mercury with dimensions, morphologies and superposed crater densities similar to these lunar craters have fields and clusters of fresher appearing secondary craters. The apparent differences between secondary-crater morphology and parent crater may be due in part to: (1) rapid isostatic adjustment of the parent crater; (2) different impact fluxes between the two planets; and (or) (3) to the greater concentration of Mercurian secondaries around impact areas, thereby accentuating crater forms. Another factor which may contribute to the better state of preservation of Mercurian secondaries relative to the moon is the difference in crater ejecta velocities on both bodies. These velocities have been calculated for fields of secondary craters at about equal ranges from lunar and Mercurian parent craters. Results show that ejection velocities of material producing most of the secondary craters are rather low (<1 km/s) but velocities on Mercury are about 50% greater than those on the moon for equivalent ranges. Higher velocities may produce morphologically enhanced secondary craters which may account for their better preservation with time. ?? 1977.
Demopoulos, Amanda W.J.; McClain-Counts, Jennifer; Ross, Steve W.; Brooke, Sandra; Mienis, Furu
2017-01-01
Examination of food webs and trophic niches provide insights into organisms' functional ecology, yet few studies have examined trophodynamics within submarine canyons, where the interaction of canyon morphology and oceanography influences habitat provision and food deposition. Using stable isotope analysis and Bayesian ellipses, we documented deep-sea food-web structure and trophic niches in Baltimore Canyon and the adjacent open slopes in the US Mid-Atlantic Region. Results revealed isotopically diverse feeding groups, comprising approximately 5 trophic levels. Regression analysis indicated that consumer isotope data are structured by habitat (canyon vs. slope), feeding group, and depth. Benthic feeders were enriched in 13C and 15N relative to suspension feeders, consistent with consuming older, more refractory organic matter. In contrast, canyon suspension feeders had the largest and more distinct isotopic niche, indicating they consume an isotopically discrete food source, possibly fresher organic material. The wider isotopic niche observed for canyon consumers indicated the presence of feeding specialists and generalists. High dispersion in δ13C values for canyon consumers suggests that the isotopic composition of particulate organic matter changes, which is linked to depositional dynamics, resulting in discrete zones of organic matter accumulation or resuspension. Heterogeneity in habitat and food availability likely enhances trophic diversity in canyons. Given their abundance in the world's oceans, our results from Baltimore Canyon suggest that submarine canyons may represent important havens for trophic diversity.
Exposed bright features on the comet 67P/Churyumov-Gerasimenko: distribution and evolution
NASA Astrophysics Data System (ADS)
Deshapriya, J. D. P.; Barucci, M. A.; Fornasier, S.; Hasselmann, P. H.; Feller, C.; Sierks, H.; Lucchetti, A.; Pajola, M.; Oklay, N.; Mottola, S.; Masoumzadeh, N.; Tubiana, C.; Güttler, C.; Barbieri, C.; Lamy, P. L.; Rodrigo, R.; Koschny, D.; Rickman, H.; Bertaux, J.-L.; Bertini, I.; Bodewits, D.; Boudreault, S.; Cremonese, G.; Da Deppo, V.; Davidsson, B. J. R.; Debei, S.; Cecco, M. De; Deller, J.; Fulle, M.; Groussin, O.; Gutierrez, P. J.; Hoang, H. V.; Hviid, S. F.; Ip, W.; Jorda, L.; Keller, H. U.; Knollenberg, J.; Kramm, R.; Kührt, E.; Küppers, M.; Lara, L.; Lazzarin, M.; Lopez Moreno, J. J.; Marzari, F.; Naletto, G.; Preusker, F.; Shi, X.; Thomas, N.; Vincent, J.-B.
2018-05-01
Context. Since its arrival at the comet 67P/Churyumov-Gerasimenko in August 2014, the Rosetta spacecraft followed the comet as it went past the perihelion and beyond until September 2016. During this time there were many scientific instruments operating on board Rosetta to study the comet and its evolution in unprecedented detail. In this context, our study focusses on the distribution and evolution of exposed bright features that have been observed by OSIRIS, which is the scientific imaging instrument aboard Rosetta. Aims: We envisage investigating various morphologies of exposed bright features and the mechanisms that triggered their appearance. Methods: We co-registered multi-filter observations of OSIRIS images that are available in reflectance. The Lommel-Seeliger disk function was used to correct for the illumination conditions and the resulting colour cubes were used to perform spectrophotometric analyses on regions of interest. Results: We present a catalogue of 57 exposed bright features observed on the nucleus of the comet, all of which are attributed to the presence of H2O ice on the comet. Furthermore, we categorise these patches under four different morphologies and present geometric albedos for each category. Conclusions: Although the nucleus of 67P/Churyumov-Gerasimenko appears to be dark in general, there are localised H2O ice sources on the comet. Cometary activity escalates towards the perihelion passage and reveals such volatile ices. We propose that isolated H2O ice patches found in smooth terrains in regions, such as Imhotep, Bes, and Hapi, result from frost as an aftermath of the cessation of the diurnal water cycle on the comet as it recedes from perihelion. Upon the comet's return to perihelion, such patches are revealed when sublimation-driven erosion removes the thin dust layers that got deposited earlier. More powerful activity sources such as cometary outbursts are capable of revealing much fresher, less contaminated H2O ice that is preserved with consolidated cometary material, as observed on exposed patches resting on boulders. This is corroborated by our albedo calculations that attribute higher albedos for bright features with formations related to outbursts.
Eyre, P.R.
1983-01-01
Waiawa shaft is a 1,700-foot long water tunnel which draws water from the top of the Pearl Harbor Ghyben-Herzberg ground-water lens, Oahu, Hawaii. The application of brackish irrigation water to sugarcane fields overlying Waiawa shaft, combined with relatively low pumping rates at the shaft from 1978 to 1980, caused the chloride concentration of water produced by Waiawa shaft to rise to 290 milligrams per liter. Time-series analyses, pumping tests and analyses of water samples show that a zone of degraded water lies at the top of the lens. This zone is mixed in significantly different proportions with the underlying fresher water depending on the pumping rate at Waiawa shaft. The chloride concentration of water in the Waiawa shaft can generally be kept below 250 milligrams per liter for the next few years, if pumping rates of about 15 million gallons per day are maintained. The use of managed pumping to control the chloride problem over the long term is uncertain owing to the possible increase in chloride concentration of the irrigation water. Based on ground-water flow rates and analogy to nearby wells, the chloride concentration of Waiawa shaft 's water will decrease to less than 100 milligrams per liter in 2 to 3 years if the use of brackish irrigation water is discontinued. (USGS)
NASA Astrophysics Data System (ADS)
Soares, S. M.; Richards, K. J.; Annamalai, H.; Natarov, A.
2016-02-01
The Seychelles-Chagos thermocline ridge (SCRT) in the south-eastern tropical Indian Ocean is believed to play an important role on air/sea interactions at monsoonal and intraseasonal timescales. Large gains in predictability of monsoon and intraseasonal variability may result from studying the mechanisms of ocean feedback to the atmosphere in the SCRT region. ARGO data from 2005-2014 show a marked salinity and temperature annual cycle, where mixed layer waters are freshest and warmest around February-March and saltiest and coldest around July-August in the eastern side of the SCRT. An analysis of the mixed-layer salt budget using a mix of observational gridded products and a coupled model shows that: i) surface freshwater fluxes do not play a significant role on the SCRT salinity annual cycle, ii) the freshening during austral Spring is primarily driven by zonal advection of the large pool of less saline waters off the coast of southeast Asia and bay of Bengal, while meridional advection accounts for a large fraction of the salting during Fall. The largest interannual anomalies in the ARGO salinity record occur in the aftermath of the negative Indian Ocean Dipole events of 2005 and 2010, when February mixed layer freshening was much reduced. The appearance of the fresher waters were evident in the DYNAMO/CINDY data collected in the area during Spring 2011 following the passage of a downwelling Rossby wave. Lagrangian parcel tracking indicates a variety of sources for these fresher waters, but generally agrees with the ARGO results above. The fresh surface layer had a significant impact on the measured turbulence and mixing and may have impacted the development of Madden-Julien Oscillation events observed during DYNAMO/CINDY. Given these findings, we examine in detail the suite of DYNAMO observations, combining them with numerical modeling experiments to determine the role of eddy fluxes and vertical processes on the formation of these freshwater layers, as well as their influence on the surface heat budget and possible feedbacks on air-sea interactions.
Compositional Variations of Titan's Impact Craters Indicates Active Surface Erosion
NASA Astrophysics Data System (ADS)
Werynski, Alyssa; Neish, Catherine; Le Gall, Alice; Janssen, Michael A.
2017-10-01
Titan’s crust is assumed to be mostly water-ice. However, the surface composition is not well constrained due to its thick atmosphere. Based on infrared and radiometry data, the surface appears enriched in organics, with only few areas showing evidence of exposed water-ice. Regions of water-ice enrichment include the rims and ejecta blankets of impact craters. This study utilizes these geologic features to examine compositional variations across Titan’s surface, and their subsequent modification due to erosional processes.Sixteen craters and their ejecta blankets were mapped on a Cassini RADAR mosaic. These features were selected because they are some of the best preserved craters on Titan. Composition was inferred from Cassini’s Visual and Infrared Mapping Spectrometer (VIMS) and 2-cm emissivity data from the Cassini radiometer. With VIMS, different compositional units were inferred from their reflectivity at specific wavelengths. With the emissivity data, high values suggest more organic-rich material, while lower values indicate strong volume scattering. Areas with low emissivity have been interpreted to be water-ice rich, as water-ice is a favorable medium for volume scattering.Results show fresher, well-preserved craters in the dunes regions have a low emissivity indicative of water-ice, and a VIMS spectrum consistent with an unknown material, possibly a mixture of water-ice and organics. As these craters erode over time, the VIMS spectra remain the same but the emissivity increases. Well-preserved craters in the mid-latitude plains show VIMS spectra and emissivity values consistent with water-ice. As these plain craters degrade, the VIMS spectra remain the same, but the emissivity increases. The differing VIMS signatures suggest more mixing with organics during the cratering event in the organic-rich dunes than the plains. The changes in emissivity over time are consistent with organic infilling of subsurface fractures in both regions, with limited surficial alteration. These results support the idea that compositional variations in Titan’s impact craters are related primarily to erosion and infilling, and to a lesser extent, local variations in the overlying organic material of the pre-impact substrate.
Seasonal Overturning Circulation in the Red Sea
NASA Astrophysics Data System (ADS)
Yao, F.; Hoteit, I.; Koehl, A.
2010-12-01
The Red Sea exhibits a distinct seasonal overturning circulation. In winter, a typical two-layer exchange structure, with a fresher inflow from the Gulf of Aden on top of an outflow from the Red Sea, is established. In summer months (June to September) this circulation pattern is changed to a three-layer structure: a surface outflow from the Red Sea on top of a subsurface intrusion of the Gulf of Aden Intermediate Water and a weakened deep outflow. This seasonal variability is studied using a general circulation model, MITgcm, with 6 hourly NCEP atmospheric forcing. The model is able to reproduce the observed seasonal variability very well. The forcing mechanisms of the seasonal variability related to seasonal surface wind stress and buoyancy flux, and water mass transformation processes associated with the seasonal overturning circulation are analyzed and presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Renaut, R.W.; Tiercelin, J.J.
Lake Bogoria is a meromictic, saline (90 g/l TDS), alkaline (pH: 10.3) lake with Na-CO[sub 3]-Cl waters, located in a narrow half-graben in the central Kenya Rift. It is fed by hot springs, direct precipitation, and a series of ephemeral streams that discharge into the lake via small deltas and fan-deltas. Examination of the exposed deltas and >50 short cores from the lake floor, have revealed a wide range of deltaic and prodeltaic sediments, including turbidites and subaqueous debris-flow deposits. Studies of 3 long cores and the exposed delta stratigraphy have shown how the style of deltaic sedimentation has respondedmore » to environmental changes during the last 30,000 years. During humid periods when lake level is high the lake waters are fresher and less dense. Theoretically, high sediment yield and more constant discharge may promote underflow (hyperpycnal flow), generating low-density turbidity currents. In contrast, during low stages with dense brine, the less dense, inflowing waters carry fine sediment plumes toward the center of the lake where they settle from suspension (hypopycnal flow). Although applicable as a general model, the sediment record shows that reality is more complex. Variations in meromixis and level of the chemocline, together with local and temporal differences in sediment yield and discharge, may permit density flows even when the lake is under a predominant hypopycnal regime. During periods of aridity when sodium carbonate evaporites were forming, exposed delta plains were subject to desiccation with local development of calcrete and zeolitic paleosols.« less
NASA Astrophysics Data System (ADS)
Dong, Shenfu; Volkov, Denis; Goni, Gustavo; Lumpkin, Rick; Foltz, Gregory R.
2017-07-01
Three surface drifters equipped with temperature and salinity sensors at 0.2 and 5 m depths were deployed in April/May 2015 in the subtropical South Pacific with the objective of measuring near-surface salinity differences seen by satellite and in situ sensors and examining the causes of these differences. Measurements from these drifters indicate that water at a depth of 0.2 m is about 0.013 psu fresher than at 5 m and about 0.024°C warmer. Events with large temperature and salinity differences between the two depths are caused by anomalies in surface freshwater and heat fluxes, modulated by wind. While surface freshening and cooling occurs during rainfall events, surface salinification is generally observed under weak wind conditions (≤4 m/s). Further examination of the drifter measurements demonstrates that (i) the amount of surface freshening and strength of the vertical salinity gradient heavily depend on wind speed during rain events, (ii) salinity differences between 0.2 and 5 m are positively correlated with the corresponding temperature differences for cases with surface salinification, and (iii) temperature exhibits a diurnal cycle at both depths, whereas the diurnal cycle of salinity is observed only at 0.2 m when the wind speed is less than 6 m/s. The amplitudes of the diurnal cycles of temperature at both depths decrease with increasing wind speed. The mean diurnal cycle of surface salinity is dominated by events with winds less than 2 m/s.
NASA Astrophysics Data System (ADS)
Lucas, A.; Sengupta, D.; D'Asaro, E. A.; Nash, J. D.; Shroyer, E.; Mahadevan, A.; Tandon, A.; MacKinnon, J. A.; Pinkel, R.
2016-02-01
The exchange of heat between the atmosphere and ocean depends sensitively on the structure and extent of the oceanic boundary layer. Heat fluxes into and out of the ocean in turn influence atmospheric processes, and, in the northern Indian Ocean, impact the dominant regional weather pattern (the southwest Monsoon). In late 2015, measurements of the physical structure of the oceanic boundary layer were collected from a pair of research vessels and an array of autonomous assets in the Bay of Bengal as part of an India-U.S. scientific collaboration. Repeated CTD casts by a specialized shipboard system to 200m with a repeat rate of <3 min and a lateral spacing of < 200m, as well as near-surface sampling acoustic current profilers, showed how on the edge of an oceanic mesoscale eddy, the interaction of the mesoscale strain field, Ekman dynamics, and nonlinear submesoscale processes acted to subduct relative saline water under a very thin layer of fresher water derived from riverine sources. Our detailed surveys of the front between the overriding thin, fresh layer, and subducting adjacent more saline water demonstrated the important of small-scale physical dynamics to frontal slumping and the resulting re-stratification processes. These processes were strongly 3-dimensional and time-dependent. Such dynamics ultimately influence air-sea interactions by creating strongly stratified and very thin oceanic boundary layers in the Bay of Bengal, and allow the development of strong, persistent subsurface temperature maxima.
NASA Astrophysics Data System (ADS)
Dong, S.; Volkov, D.; Goni, G. J.; Lumpkin, R.; Foltz, G. R.
2017-12-01
Three surface drifters equipped with temperature and salinity sensors at 0.2 m and 5 m depths were deployed in April/May 2015 in the subtropical South Pacific with the objective of measuring near-surface salinity differences seen by satellite and in situ sensors and examining the causes of these differences. Measurements from these drifters indicate that water at a depth of 0.2 m is about 0.013 psu fresher than at 5 m and about 0.024°C warmer. Events with large temperature and salinity differences between the two depths are caused by anomalies in surface freshwater and heat fluxes, modulated by wind. While surface freshening and cooling occurs during rainfall events, surface salinification is generally observed under weak wind conditions (≤4 m/s). Further examination of the drifter measurements demonstrates that (i) the amount of surface freshening and strength of the vertical salinity gradient heavily depend on wind speed during rain events, (ii) salinity differences between 0.2 m and 5 m are positively correlated with the corresponding temperature differences for cases with surface salinification, and (iii) temperature exhibits a diurnal cycle at both depths, whereas the diurnal cycle of salinity is observed only at 0.2 m when the wind speed is less than 6 m/s. The amplitudes of the diurnal cycles of temperature at both depths decrease with increasing wind speed. The mean diurnal cycle of surface salinity is dominated by events with winds less than 2 m/s.
Johnston, Richard H.; Bush, Peter W.; Krause, Richard E.; Miller, James A.; Sprinkle, Craig L.
1982-01-01
A summary of hydrologic testing in an offshore oil-test well (LB427) drilled for Tenneco, Inc., 55 miles east of Fernandina Beach, Florida, is presented. The interval tested (1,050 to 1,070 feet below sea level) is in a calcarenite that is equivalent to the Ocala Limestone (late Eocene) of onshore Florida and South Georgia. At this site the Ocala forms the highly productive Tertiary limestone aquifer system of the southeastern United States. Pressure-head measurements indicate an equivalent freshwater head of 24 to 29 feet above sea level. These pressure-head measurements and an earlier one made in the nearby JOIDES J- I hole are the only hydraulic head determinations to date in the offshore extensions of any of the aquifers underlying the Atlantic coastal plain. A drill-stem test recovered water samples containing about 7,000 milligrams per liter chloride. However, seawater used in the drilling process apparently contaminated the samples and the formation water is considered slightly fresher. The head and salinity data from the Tenneco well suggest that the sampled interval lies in the transition zone between fresh and seawater in the limestone aquifer. These data, when viewed with similar data from JOIDES J-I, show the transition zone to slope very slightly landward. The interface position is probably intermediate between a position compatible with present-day heads and a position compatible with predevelopment heads.
Oceanographic structure drives the assembly processes of microbial eukaryotic communities.
Monier, Adam; Comte, Jérôme; Babin, Marcel; Forest, Alexandre; Matsuoka, Atsushi; Lovejoy, Connie
2015-03-17
Arctic Ocean microbial eukaryote phytoplankton form subsurface chlorophyll maximum (SCM), where much of the annual summer production occurs. This SCM is particularly persistent in the Western Arctic Ocean, which is strongly salinity stratified. The recent loss of multiyear sea ice and increased particulate-rich river discharge in the Arctic Ocean results in a greater volume of fresher water that may displace nutrient-rich saltier waters to deeper depths and decrease light penetration in areas affected by river discharge. Here, we surveyed microbial eukaryotic assemblages in the surface waters, and within and below the SCM. In most samples, we detected the pronounced SCM that usually occurs at the interface of the upper mixed layer and Pacific Summer Water (PSW). Poorly developed SCM was seen under two conditions, one above PSW and associated with a downwelling eddy, and the second in a region influenced by the Mackenzie River plume. Four phylogenetically distinct communities were identified: surface, pronounced SCM, weak SCM and a deeper community just below the SCM. Distance-decay relationships and phylogenetic structure suggested distinct ecological processes operating within these communities. In the pronounced SCM, picophytoplanktons were prevalent and community assembly was attributed to water mass history. In contrast, environmental filtering impacted the composition of the weak SCM communities, where heterotrophic Picozoa were more numerous. These results imply that displacement of Pacific waters to greater depth and increased terrigenous input may act as a control on SCM development and result in lower net summer primary production with a more heterotroph dominated eukaryotic microbial community.
The Quaternary impact record from the Pampas, Argentina
NASA Astrophysics Data System (ADS)
Schultz, Peter H.; Zárate, Marcelo; Hames, Bill; Koeberl, Christian; Bunch, Theodore; Storzer, Dieter; Renne, Paul; Wittke, James
2004-03-01
Loess-like deposits cover much of central Argentina and preserve a rich record of impacts since the late Miocene. The present contribution focuses on two localities containing Quaternary impact glasses: along the coastal sequences near Centinela del Mar (CdM) and from near Rio Cuarto (RC). These highly vesicular glasses contain clear evidence for an impact origin including temperatures sufficient to melt most mineral constituents (1700°C) and to leave unique quench products such as β-cristobolite. The CdM glasses occur within a relatively narrow horizon just below a marine transgression expressed by a series of coastal paleo-dunes and systematic changes in the underlying sediments. High-resolution 40Ar/39Ar dating methods yielded an age of 445±21 ka (2σ). Glasses were also recovered from scattered occurrences lower in the section but were dated to 230±40 ka. This inconsistency between stratigraphic and radiometric age is most likely related to a nearby outcrop of glass that had been exposed and locally re-deposited in coastal lagoons during the last marine transgression at 125 ka. Sediments containing the original impact glass layer are now missing due to an unconformity, perhaps related to subsequent marine transgressions after the impact (410 ka and 340 ka) and hiatuses in deposition. Two different types of impact glasses from RC yield two distinct dates. High-resolution 40Ar/39Ar dating of fresher-appearing glasses (well-preserved tachylitic sheen) indicates an age of 6±2 ka (2σ). Independent fission track analyses yielded a similar age of 2.3±1.6 ka (2σ). More weathered glasses, however, gave significantly older ages of 114±26 ka (2σ). Consequently, materials from two separate Quaternary impacts have been recovered at Rio Cuarto. The younger glasses are consistent with previously reported carbon dates for materials on the floor of one of the large elongate structures. The depths of excavation for the RC and CdM impacts are very different. While the RC glasses are largely derived from near-surface materials, the CdM glasses from the upper level contain added components consistent with Miocene marine evaporites at a depth of about 400-500 m (e.g., high CaO and P2O5). The CdM glasses also incorporated older loess-like sediments from depth based on the geochemistry. Several ratios of key trace and rare earth elements of sediments of different ages from the Miocene to the Holocene indicate a systematic compositional change through time. Such changes calibrate the observed differences in glass composition from their host sediments and further indicate incorporation of materials from depth. Consequently, the Argentine loess-like sediments preserve evidence for at least four separate Quaternary impacts. Based on foreign components in the glasses, the CdM impact very likely produced a crater (now buried or eroded) once as large as 6 km in diameter. The younger RC glasses, however, are consistent with shallower excavation consistent with an oblique impact.
NASA Astrophysics Data System (ADS)
Marcello Falcieri, Francesco; Kantha, Lakshmi; Benetazzo, Alvise; Bergamasco, Andrea; Bonaldo, Davide; Barbariol, Francesco; Malačič, Vlado; Sclavo, Mauro; Carniel, Sandro
2016-03-01
The oceanographic campaign CARPET2014 (Characterizing Adriatic Region Preconditionig EvenTs), (30 January-4 February 2014) collected the very first turbulence data in the Gulf of Trieste (northern Adriatic Sea) under moderate wind (average wind speed 10 m s-1) and heat flux (net negative heat flux ranging from 150 to 400 W m-2). Observations consisted of 38 CTD (Conductivity, Temperature, Depth) casts and 478 microstructure profiles (grouped into 145 ensembles) with three sets of yoyo casts, each lasting for about 12 consecutive hours. Averaging closely repeated casts, such as the ensembles, can lead to a smearing effect when in the presence of a vertical density structure with strong interfaces that can move up or down between subsequent casts under the influence of tides and internal waves. In order to minimize the smearing effect of such displacements on mean quantities, we developed an algorithm to realign successive microstructure profiles to produce sharper and more meaningful mean profiles of measured turbulence parameters. During the campaign, the water column in the gulf evolved from well-mixed to stratified conditions due to Adriatic waters intruding at the bottom along the gulf's south-eastern coast. We show that during the warm and relatively dry winter, the water column in the Gulf of Trieste, even under moderate wind forcing, was not completely mixed due to the influence of bottom waters intruding from the open sea. Inside the gulf, two types of water intrusions were found during yoyo casts: one coming from the northern coast of the Adriatic Sea (i.e. cooler, fresher and more turbid) and one coming from the open sea in front of the Po Delta (i.e. warmer, saltier and less turbid). The two intrusions had different impacts on turbulence kinetic energy dissipation rate profiles. The former, with high turbidity, acted as a barrier to wind-driven turbulence, while the latter, with low sediment concentrations and a smaller vertical density gradient, was not able to suppress downward penetration of turbulence from the surface.
Earth Observations taken during Expedition Four
2002-04-21
ISS004-E-10288 (21 April 2002) --- This view featuring the San Francisco Bay Area was photographed by an Expedition 4 crewmember onboard the International Space Station (ISS). The gray urban footprint of San Francisco, Oakland, San Jose, and their surrounding suburbs contrasts strongly with the green hillsides. Of particular note are the Pacific Ocean water patterns that are highlighted in the sun glint. Sets of internal waves traveling east impinge on the coastline south of San Francisco. At the same time, fresher bay water flows out from the bay beneath the Golden Gate Bridge, creating a large plume traveling westward. Tidal current channels suggest the tidal flow deep in the bay. Because the ISS orbits are not synchronous with the sun, station crewmembers view Earth with variable solar illumination angles. This allows them to document phenomena such as the sun reflecting differentially off surface waters in a way that outlines complicated water structures.
Study on Formulation of Optimum Lighting-system for Purchasing Power at Stores
NASA Astrophysics Data System (ADS)
Fujita, Hiroki; Nakashima, Yoshio; Takamatsu, Mamoru; Oota, Masaaki; Sawa, Kazuhiro
In store lighting, difference in the look-and-feel of foods gives effects on the purchasing power of customers. This study conducted the digitalization and quantification on the effects of the variation of light-source color and illuminance used for lighting foods on image recognition on foods. As a result, it was clarified that when meat was illuminated with the light source of “pink” or “faint pink,” image evaluation on foods became higher. In addition, when illuminance increase was applied to these two light-source colors, image evaluation on “faint pink” became further higher. The reason is supposed to be that the redness of meat increased, which may have enhanced fresher impression. From this study, it has been clarified that the light-source color and illuminance optimum for each food are variant. The results show that lighting foods with the optimum light-source color and illuminance can make foods look better.
NASA Astrophysics Data System (ADS)
Yoshimura, Kenji; Akiyama, Tomoaki; Hirofuji, Yushi; Koyama, Shigeru
Ozone has the capability of sterilization and deodorization due to high oxidation power. It is also effective for the conservation of perishable foods and purification of water. However, ozone has a disadvantage, that is, conservation of ozone is difficult because it reacts to oxygen. Recently, ozone-contained ice is taken attention for the purpose of its conservation. The use of ozone-contained ice seems to keep food fresher when we conserve and transport perishable foods due to the effects of cooling and sterilization of ozone-contained ice. In the present study, we have developed an ozone-contained ice making machine employing pressurized air tight containers with commercially available size. And the performance evaluation of the system is also carried out. Furthermore, we investigated the sterilization effect of ozone-contained ice on conservation of fish. It was seen that ozone-contained ice is effective for sterilization of surface of fish.
Geologic Evolution of Saturn's Icy Moon Tethys
NASA Astrophysics Data System (ADS)
Wagner, Roland; Stephan, K.; Schmedemann, N.; Roatsch, T.; Kersten, E.; Neukum, G.; Porco, C. C.
2013-10-01
Tethys, 1072 km in diameter, is a mid-sized icy moon of Saturn imaged for the first time in two Voyager flybys [1][2][3]. Since July 2004, its surface has been imaged by the Cassini ISS cameras at resolutions between 200 and 500 m/pxl. We present results from our ongoing work to define and map geologic units in camera images obtained preferentially during Cassini’s Equinox and Solstice mission phases. In the majority of Tethys’ surface area a densely cratered plains unit [1][2][3][this work] is abundant. The prominent graben system of Ithaca Chasma is mapped as fractured cratered plains. Impact crater and basin materials can be subdivided into three degradational classes. Odysseus is a fresh large impact basin younger than Ithaca Chasma according to crater counts [4]. Heavily degraded craters and basins occur in the densely cratered plains unit. A smooth, less densely cratered plains unit in the trailing hemisphere was previously identified by [2] but mapping of its boundaries is difficult due to varying viewing geometries of ISS images. To the south of Odysseus, we identified a cratered plains unit not seen in Voyager data, characterized by remnants of highly degraded large craters superimposed by younger fresher craters with a lower crater density compared to the densely cratered plains unit. Its distinct linear northern contact with the densely cratered plains suggests a tectonic origin. Sets of minor fractures can be distinguished in the densely cratered plains, and locally, features of mass wasting can be observed. References: [1] Smith B. A. et al. (1981), Science 212, 163-191. [2] Smith B. A. et al. (1982), Science 215, 504-537. [3] Moore J. M. and Ahern J. L. (1983), JGR 88 (suppl.), A577-A584. [4] Giese B. et al. (2007), GRL 34, doi:10.1029/2007GL031467.
Oceanographic structure drives the assembly processes of microbial eukaryotic communities
Monier, Adam; Comte, Jérôme; Babin, Marcel; Forest, Alexandre; Matsuoka, Atsushi; Lovejoy, Connie
2015-01-01
Arctic Ocean microbial eukaryote phytoplankton form subsurface chlorophyll maximum (SCM), where much of the annual summer production occurs. This SCM is particularly persistent in the Western Arctic Ocean, which is strongly salinity stratified. The recent loss of multiyear sea ice and increased particulate-rich river discharge in the Arctic Ocean results in a greater volume of fresher water that may displace nutrient-rich saltier waters to deeper depths and decrease light penetration in areas affected by river discharge. Here, we surveyed microbial eukaryotic assemblages in the surface waters, and within and below the SCM. In most samples, we detected the pronounced SCM that usually occurs at the interface of the upper mixed layer and Pacific Summer Water (PSW). Poorly developed SCM was seen under two conditions, one above PSW and associated with a downwelling eddy, and the second in a region influenced by the Mackenzie River plume. Four phylogenetically distinct communities were identified: surface, pronounced SCM, weak SCM and a deeper community just below the SCM. Distance–decay relationships and phylogenetic structure suggested distinct ecological processes operating within these communities. In the pronounced SCM, picophytoplanktons were prevalent and community assembly was attributed to water mass history. In contrast, environmental filtering impacted the composition of the weak SCM communities, where heterotrophic Picozoa were more numerous. These results imply that displacement of Pacific waters to greater depth and increased terrigenous input may act as a control on SCM development and result in lower net summer primary production with a more heterotroph dominated eukaryotic microbial community. PMID:25325383
Percolation and Reinforcement on Complex Networks
NASA Astrophysics Data System (ADS)
Yuan, Xin
Complex networks appear in almost every aspect of our daily life and are widely studied in the fields of physics, mathematics, finance, biology and computer science. This work utilizes percolation theory in statistical physics to explore the percolation properties of complex networks and develops a reinforcement scheme on improving network resilience. This dissertation covers two major parts of my Ph.D. research on complex networks: i) probe--in the context of both traditional percolation and k-core percolation--the resilience of complex networks with tunable degree distributions or directed dependency links under random, localized or targeted attacks; ii) develop and propose a reinforcement scheme to eradicate catastrophic collapses that occur very often in interdependent networks. We first use generating function and probabilistic methods to obtain analytical solutions to percolation properties of interest, such as the giant component size and the critical occupation probability. We study uncorrelated random networks with Poisson, bi-Poisson, power-law, and Kronecker-delta degree distributions and construct those networks which are based on the configuration model. The computer simulation results show remarkable agreement with theoretical predictions. We discover an increase of network robustness as the degree distribution broadens and a decrease of network robustness as directed dependency links come into play under random attacks. We also find that targeted attacks exert the biggest damage to the structure of both single and interdependent networks in k-core percolation. To strengthen the resilience of interdependent networks, we develop and propose a reinforcement strategy and obtain the critical amount of reinforced nodes analytically for interdependent Erdḧs-Renyi networks and numerically for scale-free and for random regular networks. Our mechanism leads to improvement of network stability of the West U.S. power grid. This dissertation provides us with a deeper understanding of the effects of structural features on network stability and fresher insights into designing resilient interdependent infrastructure networks.
NASA Astrophysics Data System (ADS)
Gillespie, J.; Shimabukuro, D.; Stephens, M.; Chang, W. H.; Ball, L. B.; Everett, R.; Metzger, L.; Landon, M. K.
2016-12-01
The California State Water Resources Control Board and the California Division of Oil, Gas and Geothermal Resources are collaborating with the U.S. Geological Survey to map groundwater resources near oil fields and to assess potential interactions between oil and gas development and groundwater resources. Groundwater resources having salinity less than 10,000 mg/L total dissolved solids may be classified as Underground Sources of Drinking Water (USDW) and subject to protection under the federal Safe Drinking Water Act. In this study, we use information from oil well borehole geophysical logs, oilfield produced water and groundwater chemistry data, and three-dimensional geologic surfaces to map the spatial distribution of salinity in aquifers near oil fields. Salinity in the southern San Joaquin Valley is controlled primarily by depth and location. The base of protected waters occurs at very shallow depths, often < 300 meters, in the western part of the valley where aquifer recharge is low in the rain shadow of the Coast Ranges. The base of protected water is much deeper, often >1,500 meters, in the eastern part of the San Joaquin Valley where higher runoff from the western slopes of the Sierra Nevada provide relatively abundant aquifer recharge. Stratigraphy acts as a secondary control on salinity within these broader areas. Formations deposited in non-marine environments are generally fresher than marine deposits. Layers isolated vertically between confining beds and cut off from recharge sources may be more saline than underlying aquifers that outcrop in upland areas on the edge of the valley with more direct connection to regional recharge areas. The role of faulting is more ambiguous. In some areas, abrupt changes in salinity may be fault controlled but, more commonly, the faults serve as traps separating oil-bearing strata that are exempt from USDW regulations, from water-bearing strata that are not exempt.
Artificial recharge of groundwater and its role in water management
Kimrey, J.O.
1989-01-01
This paper summarizes and discusses the various aspects and methods of artificial recharge with particular emphasis on its uses and potential role in water management in the Arabian Gulf region. Artificial recharge occurs when man's activities cause more water to enter an aquifer, either under pumping or non-pumping conditions, than otherwise would enter the aquifer. Use of artificial recharge can be a practical means of dealing with problems of overdraft of groundwater. Methods of artificial recharge may be grouped under two broad types: (a) water spreading techniques, and (b) well-injection techniques. Successful use of artificial recharge requires a thorough knowledge of the physical and chemical characteristics of the aquifier system, and extensive onsite experimentation and tailoring of the artificial-recharge technique to fit the local or areal conditions. In general, water spreading techniques are less expensive than well injection and large quantities of water can be handled. Water spreading can also result in significant improvement in quality of recharge waters during infiltration and movement through the unsaturated zone and the receiving aquifer. In comparison, well-injection techniques are often used for emplacement of fresh recharge water into saline aquifer zones to form a manageable lens of fresher water, which may later be partially withdrawn for use or continue to be maintained as a barrier against salt-water encroachment. A major advantage in use of groundwater is its availability, on demand to wells, from a natural storage reservoir that is relatively safe from pollution and from damage by sabotage or other hostile action. However, fresh groundwater occurs only in limited quantities in most of the Arabian Gulf region; also, it is heavily overdrafted in many areas, and receives very little natural recharge. Good use could be made of artificial recharge by well injection in replenishing and managing aquifers in strategic locations if sources of freshwater could be made available for the artificial-recharge operations. ?? 1989.
A Large Eddy Simulation Study of Heat Entrainment under Sea Ice in the Canadian Arctic Basin
NASA Astrophysics Data System (ADS)
Ramudu, E.; Yang, D.; Gelderloos, R.; Meneveau, C. V.; Gnanadesikan, A.
2016-12-01
Sea ice cover in the Arctic has declined rapidly in recent decades. The much faster than projected retreat suggests that climate models may be missing some key processes, or that these processes are not accurately represented. The entrainment of heat from the mixed layer by small-scale turbulence is one such process. In the Canadian Basin of the Arctic Ocean, relatively warm Pacific Summer Water (PSW) resides at the base of the mixed layer. With an increasing influx of PSW, the upper ocean in the Canadian Basin has been getting warmer and fresher since the early 2000s. While studies show a correlation between sea ice reduction and an increase in PSW temperature, others argue that PSW intrusions in the Canadian Basin cannot affect sea ice thickness because the strongly-stratified halocline prevents heat from the PSW layer from being entrained into the mixed layer and up to the basal ice surface. In this study, we try to resolve this conundrum by simulating the turbulent entrainment of heat from the PSW layer to a moving basal ice surface using large eddy simulation (LES). The LES model is based on a high-fidelity spectral approach on horizontal planes, and includes a Lagrangian dynamic subgrid model that reduces the need for empirical inputs for subgrid-scale viscosities and diffusivities. This LES tool allows us to investigate physical processes in the mixed layer at a very fine scale. We focus our study on summer conditions, when ice is melting, and show for a range of ice-drift velocities, halocline temperatures, and halocline salinity gradients characteristic of the Canadian Basin how much heat can be entrained from the PSW layer to the sea ice. Our results can be used to improve parameterizations of vertical heat flux under sea ice in coarse-grid ocean and climate models.
Genuine and Natural: The Opinion of Teen Consumers.
Balzan, Stefania; Fasolato, Luca; Cardazzo, Barbara; Penon, Cristiana; Novelli, Enrico
2017-01-24
Food packaging frequently reports the terms natural, 100% natural or similar. Often these indications induce consumers to purchase those products that are considered healthier and fresher. The overall goal of this study was to assess what teen consumers perceive to be genuine and natural foods. A questionnaire was distributed to the students of some high schools (lyceum, technical and professional institutes). It was completed by 349 females and 314 males, with an average age of 17.6 years. Respondents are quite interested in the information on recipes, diet, beauty and food safety; websites were important information retrieval tools. Genuine food is defined mainly as fruits and vegetables, home-made and salubrious, with less or without fat and that is good for health. Meanwhile, natural is demarcated primarily by the absence of additives and manipulation or treatments (negative impact). Also fruits and vegetables and organic production are associated to natural. The existence of a natural food preference is well described and the presence on food label may cause a wrong perception of healthfulness.
Cuba's Urban Landscape Needs a Second Round of Innovation for Health.
Peña, Jorge
2015-07-01
Cuba's economy spiraled downward in the 1990s, reeling from the collapse of European socialism and a tightened US embargo. To mitigate the crash's drastic effects, measures were adopted that transformed our urban landscape, especially in large cities such as Havana, paradoxically linking the period to nascent health-promoting options. One of the most important was the introduction of bicycle lanes on city streets, paths daily ridden by people on the over one million bicycles imported to offset the nearly nonexistent public transport caused by fuel shortages. Second, urban gardens began to sprout up, involving urban dwellers in production of their own food, particularly vegetables. Without minimizing the impact of the crisis, these two seemingly disparate phenomena meant people were getting more exercise, consuming fewer fats and carbohydrates and more fresh vegetables. People were even breathing fresher air, with fewer CO2-belching trucks, old cars and buses on the streets and less diesel used to transport produce in from afar.
Salinity and hypoxia in the Baltic Sea since A.D. 1500
NASA Astrophysics Data System (ADS)
Hansson, Daniel; Gustafsson, Erik
2011-03-01
Over the past century, large salinity variability and deteriorating oxygen conditions have been observed in the Baltic Sea. These long-term changes were investigated in the central Baltic Sea using an ocean climate model with meteorological forcing based on seasonal temperature and pressure reconstructions covering the period 1500-1995. The results indicate that the salinity has slowly increased by 0.5 salinity units since 1500, peaking in the middle eighteenth century. Oxygen concentration is negatively correlated with salinity in the major part of the water column, indicating improved ventilation during a fresher state of the Baltic Sea. It is suggested that anoxic conditions have occurred in the deep water several times per century since 1500. However, since the middle twentieth century, increased oxygen consumption that is most likely the effect of anthropogenic nutrient release has resulted in a persistent oxygen deficiency in the water below 125 m. Within the limitations of our model formulation we suggest that the contemporary severe oxygen conditions are unprecedented since 1500.
Recent Advances in Food Processing Using High Hydrostatic Pressure Technology.
Wang, Chung-Yi; Huang, Hsiao-Wen; Hsu, Chiao-Ping; Yang, Binghuei Barry
2016-01-01
High hydrostatic pressure is an emerging non-thermal technology that can achieve the same standards of food safety as those of heat pasteurization and meet consumer requirements for fresher tasting, minimally processed foods. Applying high-pressure processing can inactivate pathogenic and spoilage microorganisms and enzymes, as well as modify structures with little or no effects on the nutritional and sensory quality of foods. The U.S. Food and Drug Administration (FDA) and the U.S. Department of Agriculture (USDA) have approved the use of high-pressure processing (HPP), which is a reliable technological alternative to conventional heat pasteurization in food-processing procedures. This paper presents the current applications of HPP in processing fruits, vegetables, meats, seafood, dairy, and egg products; such applications include the combination of pressure and biopreservation to generate specific characteristics in certain products. In addition, this paper describes recent findings on the microbiological, chemical, and molecular aspects of HPP technology used in commercial and research applications.
Scale-free distribution of Dead Sea sinkholes: Observations and modeling
NASA Astrophysics Data System (ADS)
Yizhaq, H.; Ish-Shalom, C.; Raz, E.; Ashkenazy, Y.
2017-05-01
There are currently more than 5500 sinkholes along the Dead Sea in Israel. These were formed due to the dissolution of subsurface salt layers as a result of the replacement of hypersaline groundwater by fresh brackish groundwater. This process has been associated with a sharp decline in the Dead Sea water level, currently more than 1 m/yr, resulting in a lower water table that has allowed the intrusion of fresher brackish water. We studied the distribution of the sinkhole sizes and found that it is scale free with a power law exponent close to 2. We constructed a stochastic cellular automata model to understand the observed scale-free behavior and the growth of the sinkhole area in time. The model consists of a lower salt layer and an upper soil layer in which cavities that develop in the lower layer lead to collapses in the upper layer. The model reproduces the observed power law distribution without involving the threshold behavior commonly associated with criticality.
NASA Astrophysics Data System (ADS)
Gadel, F.; Puigbó, A.; Alcan˜iz, J. M.; Charrière, B.; Serve, L.
1990-09-01
The nature of particulate organic matter was studied in suspended material sampled by bottles, particles collected by sediment traps and deposits from deltaic and open sea ecosystems of the northwestern Mediterranean. Elemental analyses were combined with pyrolysis-gas chromatography-mass spectrometry and with analysis of individual compounds such as phenols separated by high-performance liquid chromatography. In the Rhoˆne delta, a multilayered system was observed. The surficial turbid layer was enriched with fresh material of river origin. Organic matter was more altered and richer in phenols in the bottom nepheloid layer. The river regime determined the nature and quantity of suspended material: when in spate, degraded organic matter previously deposited in the river bed was transported to the sea, thereby inducing an increase of pyrolysis derived aromatic hydrocarbons. On the other hand, phenolic aldehydes increased in the bottom nepheloid layer. When water level was low, organic matter seemed to be of more local origin. The content of phenols and nitrogen-containing compounds increased. The influence of the Rhoˆne River decreased off the mouth, when terrestrial markers were diluted by products deriving from phytoplanktonic activity. Compared with suspended material, trapped organic matter was coarser, more degraded and contained more aromatic hydrocarbons. It was different in nature and size, indicating that it was trapped over a longer period. Deposits contained altered organic matter resulting from degrading processes in the water column. Sediments showed a double trend off the mouth of the river; an increase in nitrogen-containing compounds, indicating a more marine character, and a decrease in phenols and carbohydrates deriving from the terrestrial ligno-cellulosic complex. In the southwestern part of the Gulf of Lions, in the Teˆt prodelta, organic matter from sediment traps was fresher than in the Rhoˆne delta. Phenols and some carbohydrates rapidly decreased from the prodelta due to a lower runoff. During the spate, suspended material was rapidly deposited and sediments were enriched in terrestrial phenols. In the open sea environment, in the Lacaze-Duthiers Canyon at 645 m, in summer, the euphotic zone was rich in amino-sugars and contained a large diversity of phenols deriving from fish fecal pellets. In winter/spring, the development of phytoplanktonic blooms in surficial layers led to high contents of nitrogenous compounds. In deeper layers, the nature of organic matter was different from surficial layers in summer and more homogeneous in winter, although a flux of degraded material rich in pyrolysis-derived aromatic hydrocarbons and poor in nitrogenous compounds progressively sank towards the bottom. The two marine prodeltas were compared: organic matter was more degraded in suspended material and sediments collected in the submarine delta of the Rhoˆne River. Organic material originating from the river was transported further offshore, as indicated by a higher content of aromatic hydrocarbons and phenols. In the southwestern part of the Gulf of Lions, the prodelta reflected the influence of local rivers, with lower discharges.
NASA Astrophysics Data System (ADS)
Jakacki, Jaromir; Przyborska, Anna; Sunfjord, Arild; Albertsen, Jon; Białoskórski, Michał; Pliszka, Bartosz
2016-04-01
Hornsund is the southernmost fjord of the Svalbard archipelago island - Spitsbergen. It is under the influence of two main currents - the coastal Sørkapp Current (SC) carrying fresher and colder water masses from the Barents Sea and the West Spitsbergen Current (WSC), which is the branch of the Norwegian Atlantic Current (NwAC) and carries warm and salty waters from the North Atlantic. The main local forcing, which is tidal motion, brings shelf waters into the central fjord basin and then the transformed masses are carried into the easternmost part of the fjord, Brepolen. For the purpose of studying circulation and water exchange in this area a three-dimensional hydrodynamic model has been implemented and validated. The model is based on MIKE by DHI product and covers the Hornsund fjord with the shelf area, which is the fjord foreground. It is sigma a coordinate model (in our case 35 vertical levels) with variable horizontal resolution (mesh grid). The smallest cell has a horizontal dimension less than one hundred meters and the largest cells about 5 km. In spite of model limitations, the model reproduces the main circulation and water pathways in the Brepolen area. Seasonal and annual volume, heat and salt exchanges have been also estimated. The influence of freshwater discharge on shelf-fjord exchange will be also analyzed. The model results allow to study full horizontal and vertical fields of physical parameters (temperature, salinity, sea level variations and currents). The model integration covers only years 2005-2010 and the presented results will be based on this simulation. The project has been financed from the funds of the Leading National Research Centre (KNOW) received by the Centre for Polar Studies for the period 2014-2018
NASA Astrophysics Data System (ADS)
Makarim, S.; Liu, Z.; Yu, W.; Yan, X.; Sprintall, J.
2016-12-01
The global warming slowdown indicated by a slower warming rate at the surface layer accompanied by stronger heat transport into the deeper layers has been explored in the Indian Ocean. Although the mechanisms of the global warming slowdown are still under warm debate, some clues have been recognized that decadal La Nina like-pattern induced decadal cooling in the Pacific Ocean and generated an increase of the Indonesian Throughflow (ITF) transport in 2004-2010. However, how the ITF spreading to the interior of the Indian Ocean and the impact of ITF changes on the Indian Ocean, in particular its water mass transformation and current system are still unknown. To this end, we analyzed thermohaline structure and current system at different depths in the Indian Ocean both during and just before the global warming slowdown period using the ORAS4 and ARGO dataset. Here, we found the new edge of ITF at off Sumatra presumably as northward deflection of ITF Lombok Strait, and The Monsoon Onset Monitoring and Social Ecology Impact (MOMSEI) and Java Upwelling Variation Observation (JUVO) dataset confirmed this evident. An isopycnal mixing method initially proposed by Du et al. (2013) is adopted to quantify the spreading of ITF water in the Indian Ocean, and therefore the impacts of ITF changes on the variation of the Agulhas Current, Leuween Current, Bay of Bengal Water. This study also prevailed the fresher salinity in the Indian Ocean during the slowdown warming period were not only contributed by stronger transport of the ITF, but also by freshening Arabian Sea and infiltrating Antartic Intermediate Water (AAIW).
NASA Astrophysics Data System (ADS)
Niezgodzki, Igor; Knorr, Gregor; Lohmann, Gerrit; Tyszka, Jarosław
2017-04-01
Using the Earth System Model COSMOS, we simulate the Late Cretaceous climate with different gateway configurations in the Arctic Ocean region under constant CO2 level of 1120 ppm (4 x pre-industrial). Based on the Maastrichtian paleogeography, we modify gateway configurations in the Arctic region according to different scenarios recorded from the Campanian - Maastrichtian ( 83-66 Ma). Our simulation with the Greenland-Norwegian Sea even as deep as 1.5 km in the Campanian produces consistent salinities in the Greenland-Norwegian Sea and in the surface Arctic Ocean, with the proxy-based salinity reconstructions. Towards the end of the Maastrichtian the gateway became shallower but didn't close entirely before the K-Pg boundary. During entire interval, the simulated salinity in the Arctic Ocean was well stratified, in agreement with the data. The surface ocean became progressively fresher, starting from the moderately brackish conditions in the Campanian to the (almost) freshwater conditions around the K-Pg boundary. Arctic gateways configuration changes cannot reproduce cooling trends as reconstructed by the proxy data during the Campanian - Maastrichtian interval. Our additional sensitivity tests with the different CO2 levels (1-6 x pre-industrial) and fixed (Maastrichtian) paleogeography show that a doubling of atmospheric CO2 concentration from 560 ppm to 1120 ppm results in an increase in the zonal mean surface air temperature in the polar regions by as high as 10°C. This suggests that the CO2 level decline, rather than gateway configuration changes, was responsible for the cooling trend toward the end of the Maastrichtian. The research was supported from the grant of the National Science Center in Poland based on the decision DEC-2012/07/N/ST10/03419.
Observations of pockmark flow structure in Belfast Bay, Maine, Part 1: current-induced mixing
Fandel, Christina L.; Lippmann, Thomas C.; Irish, James D.; Brothers, Laura L.
2017-01-01
Field observations of current profiles and temperature, salinity, and density structure were used to examine vertical mixing within two pockmarks in Belfast Bay, Maine. The first is located in 21 m water depth (sea level to rim), nearly circular in shape with a 45 m rim diameter and 12 m rim-to-bottom relief. The second is located in 25 m water depth, more elongated in shape with an approximately 80 m (36 m) major (minor) axis length at the rim, and 17 m relief. Hourly averaged current profiles were acquired from bottom-mounted acoustic Doppler current profilers deployed on the rim and center of each pockmark over successive 42 h periods in July 2011. Conductivity–temperature–depth casts at the rim and center of each pockmark show warmer, fresher water in the upper water column, evidence of both active and fossil thermocline structure 5–8 m above the rim, and well-mixed water below the rim to the bottom. Vertical velocities show up- and down-welling events that extend into the depths of each pockmark. An observed temperature change at both the rim and center occurs coincident with an overturning event below the rim, and suggests active mixing of the water column into the depths of each pockmark. Vertical profiles of horizontal velocities show depth variation at both the center and rim consistent with turbulent logarithmic current boundary layers, and suggest that form drag may possibly be influencing the local flow regime. While resource limitations prevented observation of the current structure and water properties at a control site, the acquired data suggest that active mixing and overturning within the sampled pockmarks occur under typical benign conditions, and that current flows are influenced by upstream bathymetric irregularities induced by distant pockmarks.
Optics of the Offshore Columbia River Plume from Glider Observations and Satellite Imagery
NASA Astrophysics Data System (ADS)
Saldias, G.; Shearman, R. K.; Barth, J. A.; Tufillaro, N.
2016-02-01
The Columbia River (CR) is the largest source of freshwater along the U.S. Pacific coast. The resultant plume is often transported southward and offshore forming a large buoyant feature off Oregon and northern California in spring-summer - the offshore CR plume. Observations from autonomous underwater gliders and Moderate Resolution Imaging Spectroradiometer (MODIS) satellite imagery are used to characterize the optics of the offshore CR plume off Newport, Oregon. Vertical sections, under contrasting river flow conditions, reveal a low-salinity and warm surface layer of 20-25 m (fresher in spring and warmer in summer), high Colored Dissolved Organic Matter (CDOM) concentration and backscatter, and associated with the base of the plume high chlorophyll fluorescence. Plume characteristics vary in the offshore direction as the warm and fresh surface layer thickens progressively to an average 30-40 m of depth 270-310 km offshore; CDOM, backscatter, and chlorophyll fluorescence decrease in the upper 20 m and increase at subsurface levels (30-50 m depth). MODIS normalized water-leaving radiance (nLw(λ)) spectra for CR plume cases show enhanced water-leaving radiance at green bands (as compared to no-CR plume cases) up to 154 km from shore. Farther offshore, the spectral shapes for both cases are very similar, and consequently, a contrasting color signature of low-salinity plume water is practically imperceptible from ocean color remote sensing. Empirical algorithms based on multivariate regression analyses of nLw(λ) plus Sea Surface Temperature (SST) data produce more accurate results detecting offshore plume waters than previous studies using single visible bands (e.g. adg(412) or nLw(555)).
NASA Astrophysics Data System (ADS)
Harrison, W. G.; Arístegui, J.; Head, E. J. H.; Li, W. K. W.; Longhurst, A. R.; Sameoto, D. D.
Three trans-Atlantic oceanographic surveys (Nova Scotia to Canary Islands) were carried out during fall 1992 and spring 1993 to describe the large-scale variability in hydrographic, chemical and biological properties of the upper water column of the subtropical gyre and adjacent waters. Significant spatial and temporal variability characterized a number of the biological pools and rate processes whereas others were relatively invariant. Systematic patterns were observed in the zonal distribution of some properties. Most notable were increases (eastward) in mixed-layer temperature and salinity, depths of the nitracline and chlorophyll- a maximum, regenerated production (NH 4 uptake) and bacterial production. Dissolved inorganic carbon (DIC) concentrations, phytoplankton biomass, mesozooplankton biomass and new production (NO 3 uptake) decreased (eastward). Bacterial biomass, primary production, and community respiration exhibited no discernible zonal distribution patterns. Seasonal variability was most evident in hydrography (cooler/fresher mixed-layer in spring), and chemistry (mixed-layer DIC concentration higher and nitracline shallower in spring) although primary production and bacterial production were significantly higher in spring than in fall. In general, seasonal variability was greater in the west than in the east; seasonality in most properties was absent west of Canary Islands (˜20°W). The distribution of autotrophs could be reasonably well explained by hydrography and nutrient structure, independent of location or season. Processes underlying the distribution of the microheterophs, however, were less clear. Heterotrophic biomass and metabolism was less variable than autotrophs and appeared to dominate the upper ocean carbon balance of the subtropical North Atlantic in both fall and spring. Geographical patterns in distribution are considered in the light of recent efforts to partition the ocean into distinct "biogeochemical provinces".
Seasonal variation of the South Indian tropical gyre
NASA Astrophysics Data System (ADS)
Aguiar-González, Borja; Ponsoni, Leandro; Ridderinkhof, Herman; van Aken, Hendrik M.; de Ruijter, Will P. M.; Maas, Leo R. M.
2016-04-01
Based on satellite altimeter data and global atlases of temperature, salinity, wind stress and wind-driven circulation we investigate the seasonal variation of the South Indian tropical gyre and its associated open-ocean upwelling system, known as the Seychelles-Chagos Thermocline Ridge (SCTR). Results show a year-round, altimeter-derived cyclonic gyre where the upwelling regime appears closely related to seasonality of the ocean gyre, a relationship that has not been previously explored in this region. An analysis of major forcing mechanisms suggests that the thermocline ridge results from the constructive interaction of basin-scale wind stress curl, local-scale wind stress forcing and remote forcing driven by Rossby waves of different periodicity: semiannual in the west, under the strong influence of monsoonal winds; and, annual in the east, where the southeasterlies prevail. One exception occurs during winter, when the well-known westward intensification of the upwelling core, the Seychelles Dome, is shown to be largely a response of the wind-driven circulation. At basin-scale, the most outstanding feature is the seasonal shrinkage of the ocean gyre and the SCTR. From late autumn to spring, the eastward South Equatorial Countercurrent (SECC) recirculates early in the east on feeding the westward South Equatorial Current, therefore closing the gyre before arrival to Sumatra. We find this recirculation longitude migrates over 20° and collocates with the westward advance of a zonal thermohaline front emerging from the encounter between (upwelled) Indian Equatorial Water and relatively warmer and fresher Indonesian Throughflow Water. We suggest this front, which we call the Indonesian Throughflow Front, plays an important role as remote forcing to the tropical gyre, generating southward geostrophic flows that contribute to the early recirculation of the SECC.
North Atlantic Deep Water and the World Ocean
NASA Technical Reports Server (NTRS)
Gordon, A. L.
1984-01-01
North Atlantic Deep Water (NADW) by being warmer and more saline than the average abyssal water parcel introduces heat and salt into the abyssal ocean. The source of these properties is upper layer or thermocline water considered to occupy the ocean less dense than sigma-theta of 27.6. That NADW convects even though it's warmer than the abyssal ocean is obviously due to the high salinity. In this way, NADW formation may be viewed as saline convection. The counter force removing heat and salinity (or introducing fresh water) is usually considered to to take place in the Southern Ocean where upwelling deep water is converted to cold fresher Antarctic water masses. The Southern ocean convective process is driven by low temperatures and hence may be considered as thermal convection. A significant fresh water source may also occur in the North Pacific where the northward flowing of abyssal water from the Southern circumpolar belt is saltier and denser than the southward flowing, return abyssal water. The source of the low salinity input may be vertical mixing of the low salinity surface water or the low salinity intermediate water.
Pliocene cooling enhanced by flow of low-salinity Bering Sea water to the Arctic Ocean.
Horikawa, Keiji; Martin, Ellen E; Basak, Chandranath; Onodera, Jonaotaro; Seki, Osamu; Sakamoto, Tatsuhiko; Ikehara, Minoru; Sakai, Saburo; Kawamura, Kimitaka
2015-06-29
Warming of high northern latitudes in the Pliocene (5.33-2.58 Myr ago) has been linked to the closure of the Central American Seaway and intensification of North Atlantic Deep Water. Subsequent cooling in the late Pliocene may be related to the effects of freshwater input from the Arctic Ocean via the Bering Strait, disrupting North Atlantic Deep Water formation and enhancing sea ice formation. However, the timing of Arctic freshening has not been defined. Here we present neodymium and lead isotope records of detrital sediment from the Bering Sea for the past 4.3 million years. Isotopic data suggest the presence of Alaskan glaciers as far back as 4.2 Myr ago, while diatom and C37:4 alkenone records show a long-term trend towards colder and fresher water in the Bering Sea beginning with the M2 glaciation (3.3 Myr ago). We argue that the introduction of low-salinity Bering Sea water to the Arctic Ocean by 3.3 Myr ago preconditioned the climate system for global cooling.
Geologic setting of Boulder 1, Station 2, Apollo 17 landing site
Wolfe, E.W.
1975-01-01
Boulder 1 at Station 2 is one of three boulders sampled by Apollo 17 at the base of the South Massif, which rises 2.3 km above the floor of a linear valley interpreted as a graben formed by deformation related to the southern Serenitatis impact. The boulders probably rolled from the upper part of the massif after emplacement of the light mantle. Orbital gravity data and photogeologic reinterpretation suggest that the Apollo 17 area is located approximately on the third ring of the southern Serenitatis basin, approximately 1.25 times larger than the analogous but fresher Orientale basin structure. The massif exposures are interpreted to represent the upper part of thick ejecta deposited by the southern Serenitatis impact near the rim of the transient cavity. Basin ring structure and the radial grabens that give the massifs definition were imposed on this ejecta at a slightly later stage in the basin-forming process. There is no clear-cut compositional, textural, or photogeologic evidence that Imbrium ejecta was collected at the Apollo 17 site. ?? 1975 D. Reidel Publishing Company, Dordrecht-Holland.
Organochlorine pesticides in soils of Mexico and the potential for soil-air exchange.
Wong, Fiona; Alegria, Henry A; Bidleman, Terry F
2010-03-01
The spatial distribution of organochlorine pesticides (OCs) in soils and their potential for soil-air exchange was examined. The most prominent OCs were the DDTs (Geometric Mean, GM=1.6 ng g(-1)), endosulfans (0.16 ng g(-1)), and toxaphenes (0.64 ng g(-1)). DDTs in soils of southern Mexico showed fresher signatures with higher FDDTe=p,p'-DDT/(p,p'-DDT+p,p'-DDE) and more racemic o,p'-DDT, while the signatures in the central and northern part of Mexico were more indicative of aged residues. Soil-air fugacity fractions showed that some soils are net recipients of DDTs from the atmosphere, while other soils are net sources. Toxaphene profiles in soils and air showed depletion of Parlar 39 and 42 which suggests that soil is the source to the atmosphere. Endosulfan was undergoing net deposition at most sites as it is a currently used pesticide. Other OCs showed wide variability in fugacity, suggesting a mix of net deposition and volatilization. Copyright (c) 2009 Elsevier Ltd. All rights reserved.
Boggess, Durward H.
1970-01-01
During low-flow periods, salty water from the tidal part of the Caloosahatchee River moves upstream during boat lockages at the W. P. Franklin Darn near Ft. Myers, Florida, as shown on figure L Salty water enters the lock chamber through openings of the downstream sector gates which separate tidal and fresh water; when the upstream gates open, some of the salty water moves into the upper pool, probably as a density current. Repeated injections of salty water cause a progressive increase in the salinity of the upstream water. The salty water moves upstream within the deeper parts of the river channel as far as 5 or more miles above the lock. Some mixing of the high-chloride deeper water and the fresher shallow water occurs in the affected reach above the lock, probably as a result of wind and waves, and turbulence created by boat traffic.
Double-diffusive layers in the Adriatic Sea
NASA Astrophysics Data System (ADS)
Carniel, Sandro; Sclavo, Mauro; Kantha, Lakshmi; Prandke, Hartmut
2008-01-01
A microstructure profiler was deployed to make turbulence measurements in the upper layers of the southern Adriatic Sea in the Mediterranean during the Naval Research Laboratory (NRL) DART06A (Dynamics of the Adriatic in Real Time) winter cruise in March 2006. Measurements in the Po river plume along the Italian coast near the Gargano promontory displayed classic double-diffusive layers and staircase structures resulting from the relatively colder and fresher wintertime Po river outflow water masses overlying warmer and more saline water masses from the Adriatic Sea. We report here on the water mass and turbulence structure measurements made both in the double-diffusive interfaces and the adjoining mixed layers in the water columns undergoing double-diffusive convection (DDC). This dataset augments the relatively sparse observations available hitherto on the diffusive layer type of DDC. Measured turbulence diffusivities are consistent with those from earlier theoretical and experimental formulations, suggesting that the wintertime Po river plume is a convenient and easily accessible place to study double diffusive convective processes of importance to mixing in the interior of many regions of the global oceans.
Pliocene cooling enhanced by flow of low-salinity Bering Sea water to the Arctic Ocean
Horikawa, Keiji; Martin, Ellen E.; Basak, Chandranath; Onodera, Jonaotaro; Seki, Osamu; Sakamoto, Tatsuhiko; Ikehara, Minoru; Sakai, Saburo; Kawamura, Kimitaka
2015-01-01
Warming of high northern latitudes in the Pliocene (5.33–2.58 Myr ago) has been linked to the closure of the Central American Seaway and intensification of North Atlantic Deep Water. Subsequent cooling in the late Pliocene may be related to the effects of freshwater input from the Arctic Ocean via the Bering Strait, disrupting North Atlantic Deep Water formation and enhancing sea ice formation. However, the timing of Arctic freshening has not been defined. Here we present neodymium and lead isotope records of detrital sediment from the Bering Sea for the past 4.3 million years. Isotopic data suggest the presence of Alaskan glaciers as far back as 4.2 Myr ago, while diatom and C37:4 alkenone records show a long-term trend towards colder and fresher water in the Bering Sea beginning with the M2 glaciation (3.3 Myr ago). We argue that the introduction of low-salinity Bering Sea water to the Arctic Ocean by 3.3 Myr ago preconditioned the climate system for global cooling. PMID:26119338
A Study on Generation Ice Containing Ozone
NASA Astrophysics Data System (ADS)
Yoshimura, Kenji; Koyama, Shigeru; Yamamoto, Hiromi
Ozone has the capability of sterilization and deodorization due to high oxidation power. It is also effective for the conservation of perishable foods and purification of water. However, ozone has a disadvantage, that is, conservation of ozone is difficult because it changes back into oxygen. Recently, ice containing ozone is taken attention for the purpose of its conservation. The use of ice containing ozone seems to keep food fresher when we conserve and transport perishable foods due to effects of cooling and sterilization of ice containing ozone. In the present study, we investigated the influence of temperatures of water dissolving ozone on the timewise attenuations of ozone concentration in water. We also investigated the influence of cooling temperature, ice diameter, initial temperatures of water dissolving ozone and container internal pressure of the water dissolving ozone on ozone concentration in the ice. In addition, we investigated the influence of the ice diameter on the timewise attenuations of ozone concentration in the ice. It was confirmed that the solidification experimental data can be adjusted by a correlation between ozone concentration in the ice and solidification time.
NASA Astrophysics Data System (ADS)
Fritz, Sherilyn C.; Baker, Paul A.; Seltzer, Geoffrey O.; Ballantyne, Ashley; Tapia, Pedro; Cheng, Hai; Edwards, R. Lawrence
2007-11-01
A 136-m-long drill core of sediments was recovered from tropical high-altitude Lake Titicaca, Bolivia-Peru, enabling a reconstruction of past climate that spans four cycles of regional glacial advance and retreat and that is estimated to extend continuously over the last 370,000 yr. Within the errors of the age model, the periods of regional glacial advance and retreat are concordant respectively with global glacial and interglacial stages. Periods of ice advance in the southern tropical Andes generally were periods of positive water balance, as evidenced by deeper and fresher conditions in Lake Titicaca. Conversely, reduced glaciation occurred during periods of negative water balance and shallow closed-basin conditions in the lake. The apparent coincidence of positive water balance of Lake Titicaca and glacial growth in the adjacent Andes with Northern Hemisphere ice sheet expansion implies that regional water balance and glacial mass balance are strongly influenced by global-scale temperature changes, as well as by precessional forcing of the South American summer monsoon.
Sources And Implications Of Hydrocarbon Gases From The Deep Beaufort Sea, Alaska
NASA Astrophysics Data System (ADS)
Lorenson, T. D.; Hart, P. E.; Pohlman, J.; Edwards, B. D.
2011-12-01
Sediment cores up to 5.7m long were recovered from a large seafloor mound, informally named the Canning Seafloor Mound (CSM), located 2,530 mbsl on the Alaskan Beaufort Sea slope north of Camden Bay, Alaska. The cores contained methane saturated sediment, gas hydrate, and cold seep fauna. The CSM overlies the crest of a buried anticline. The dome-like shape of the CSM indicates that it originated by the expansion and expulsion of deep-seated fluids migrating upwards along the plane of a sharply crested underlying anticline rather than structural uplift. The CSM is one of many mounds on the seaward margin of crustal compression that has resulted in a diapiric fold belt seaward of the fold and thrust belt of the Eastern Brooks Range. Rapid sedimentation rates coupled with and growth faulting and later compression has lead to overpressured sediments beneath the mounds. The cores were stored at 4°C for four months prior to sampling, yet the gas voids retained 10 to 26% methane by volume. High methane concentrations in the core effectively acted as a preservative by keeping the sediments under near-anaerobic conditions. The isotopic composition of the methane ranged from -59.2% to -50.4% with increasing depth while carbon dioxide ranged from -20.9 to -8.8% with depth. The molecular and isotopic composition of the gases indicates the predominant gas source is a mixed source of primary microbial methane, degraded thermogenic gas, and possibly secondary microbial methane. Oxidation of some methane likely occurred during core storage. Trace quantities of thermogenic gases, n-butane, n-pentane, and C6+ gases in the sediment are evidence for at least a partial thermogenic origin. Pore water composition (discussed in detail in a companion abstract by Pohlman et al.) reveals that pore water can be up to 80% fresher than seawater, which is more than can be supplied by gas hydrate dissociation and clay dewatering combined. The gas composition and pore water anomalies support the interpretation of a deep fluid source that likely is related to current oil and gas generation within the ~10 km deep basin with potential fluid connectivity to the continent.
Eyre, P.R.
1987-01-01
The salinity of the water supply of Barbers Point Naval Air Station has increased markedly since 1983. The Naval Air Station obtains its water, about 3 million gal/day, from Barbers Point shaft, a water shaft that taps the Waianae part of the Pearl Harbor aquifer underlying the dry, southeastern flank of the Waianae mountains on the island on Oahu, Hawaii. From 1983 to 1985 the chloride concentration of the water, increased from 220 to 250 mg/L and has remained near that level through 1986. The EPA has established 250 mg/L as the maximum recommended chloride concentration in drinking water because above that level many people can taste the salt. The high chloride concentration in shallow groundwater at all wells in the area indicates that most of the salts in the freshwater lens are contributed by rainfall, sea spray, and irrigation return water. At Barbers Point shaft, pumping may draw a small amount of saltwater from the transition zone and increase the chloride concentration in the pumped water by about 20 mg/L. Salinity of the lens decreases progressively inland in response to recharge from relatively fresher water and in response to an increasing lens thickness with increasing distance from the shoreline. The increase, in 1983, in the chloride concentration of water at the shaft was most probably the result of saltier recharge water reaching the water table, and not the result of increased mixing of underlying saltwater with the freshwater. The chloride concentration of the recharge water has probably increased because, in 1980, the drip method of irrigation began to replace the furrow method on sugarcane fields near the shaft. A mixing-cell model was used to estimate the effect of drip irrigation on the chloride concentration of the groundwater in the vicinity of Barbers Point shaft. The model predicted an increase in chloride concentration of about 50 mg/L. The observed increase was about 30 mg/L and the chloride concentration is presently stable at 245 to 250 mg/L; hence, the chloride concentration is not expected to increase significantly more. (Lantz-PTT)
Turbulence suppression at water density interfaces: observations under moderate wind forcing.
NASA Astrophysics Data System (ADS)
Marcello Falcieri, Francesco; Kanth, Lakshmi H.; Benetazzo, Alvise; Bergamasco, Andrea; Bonaldo, Davide; Barbariol, Francesco; Malačič, Vlado; Sclavo, Mauro; Carniel, Sandro
2016-04-01
Water column stratification has a strong influence on the behaviour of turbulence kinetic energy (TKE) dissipation rates. Density gradient interfaces, due to thermohaline characteristics and to suspended sediment concentration, can act as a barrier and significantly damp TKE. Between January 30th - February 4th 2014 (CARPET2014 oceanographic campaign on R/V URANIA) we collected the very first turbulence data in the Gulf of Trieste (a small bay located in the North-eartern part of the Adriatic Sea). Observation consisted of 38 CTD casts and 478 microstructure profiles (145 ensembles) collected with a free-falling probe (MSS90L). Among those 48 were grouped in three sets of yoyo casts, each lasting for about 12 consecutive hours. The meteorological conditions during the campaign were of moderate wind (average wind speed 10 m s-1) and heat flux (net negative heat flux ranging from 150 to 400 W m-2). The water column characteristics in the Gulf during the campaign evolved from well-mixed to stratified conditions with waters intruding from the Adriatic Sea at the bottom. Two types of water intrusions were found during yoyo casts: one coming from the Adriatic Sea northern coast (i.e. warmer, saltier and more turbid) and one coming from the open sea in front of the Po Delta (i.e. cooler, fresher and less turbid). Our observations show that under moderate wind forcing, the GOT was not completely mixed due to the interfaces created by the bottom waters intruding from the open sea. The comparison of microstructure profiles collected during well mixed and stratified conditions permitted us to highlight the effect of different stratification on TKE dissipation rates. While during well mixed condition TKE profiles are governed just by their forcing, the two intrusions showed different impacts on TKE dissipation rate profiles. The coastal one, with high turbidity, acted as a barrier to surface driven turbulence dumping it of almost two order of magnitude, while the one coming from the open sea, with low sediment concentrations and a smaller vertical density gradient, was not able to suppress downward penetration of turbulence from the surface.
NASA Astrophysics Data System (ADS)
Longobardo, Andrea; Palomba, Ernesto; De Sanctis, Maria Cristina; Zinzi, Angelo; Scully, Jennifer E. C.; Capaccioni, Fabrizio; Tosi, Federico; Zambon, Francesca; Ammannito, Eleonora; Combe, Jean-Philippe; Raymond, Carol A.; Russell, Cristopher T.
2015-10-01
This work is aimed at developing and interpreting infrared albedo, pyroxene and OH band depths, and pyroxene band center maps of Vesta's Gegania and Lucaria quadrangles, obtained from data provided by the Visible and InfraRed (VIR) mapper spectrometer on board NASA's Dawn spacecraft. The Gegania and Lucaria quadrangles span latitudes from 22°S to 22°N and longitudes from 0°E to 144°E. The mineralogical and spectral maps identify two large-scale units on this area of Vesta, which extend eastwards and westward of about 60°E, respectively. The two regions are not associated to large-scale geological units, which have a latitudinal distribution rather than longitudinal, but are defined by different contents of carbonaceous chondrites (CC): the eastern region, poor in CCs, is brighter and OH-depleted, whereas the western one, rich in CCs, is darker and OH-enriched. A detailed analysis of the small-scale units in these quadrangles is also performed. Almost all the units show the typical correspondence between high albedo, deep pyroxene bands, short band centers and absence of OH and vice versa. Only a few exceptions occur, such as the ejecta from the Aelia crater, where dark and bright materials are intimately mixed. The most characteristic features of these quadrangles are the equatorial troughs and the Lucaria tholus. The equatorial troughs consist of graben, i.e. a depression limited by two conjugate faults. The graben do not present their own spectral signatures, but spectral parameters similar to their surroundings, in agreement to their structural origin. This is observed also in graben outside the Gegania and Lucaria quadrangles. However, it is possible to observe other structural features, such as tectonic grooves, characterized by a changing composition and hence an albedo variation. This result is confirmed not only by mineralogical maps of Vesta, but also by analyzing the VIRTIS-Rosetta observations of Lutetia. The albedo change is instead a typical behavior of geomorphic grooves. Finally, ridges are characterized by a bluer color and, in some cases, shorter band centers than their surroundings, suggesting that they are composed of fresher materials. We also performed a comparative analysis between the three tholi of Vesta, i.e. Lucaria (which gives the name to its quadrangle), Aricia (in the Marcia quadrangle) and Brumalia (Numisia quadrangle). Whereas Brumalia tholus is a young magmatic intrusion, the absence of diogenites, the low albedo, and the orientation of Aricia and Lucaria tholi suggest that they are older features, which are covered by dark materials and therefore experienced a different geological history than Brumalia.
Task rotation in an underground coal mine: A pilot study.
Jones, Olivia F; James, Carole L
2018-01-01
Task rotation is used to decrease the risk of workplace injuries and improve work satisfaction. To investigate the feasibility, benefits and challenges of implementing a task rotation schedule within an underground coalmine in NSW, Australia. A mixed method case control pilot study with the development and implementation of a task rotation schedule for 6 months with two work crews. A questionnaire including The Nordic Musculoskeletal Questionnaire, The Need for Recovery after Work Scale, and The Australian WHOQOL- BREF Australian Edition was used to survey workers at baseline, 3 and 6 months. A focus group was completed with the intervention crew and management at the completion of the study. In total, twenty-seven participants completed the survey. Significant improvements in the psychological and environmental domains of the WHOQOL-BREF questionnaire were found in the intervention crew. Musculoskeletal pain was highest in the elbow, lower back and knee, and fatigue scores improved, across both groups. The intervention crew felt 'mentally fresher', 'didn't do the same task twice in a row', and 'had more task variety which made the shift go quickly'. Task rotation was positively regarded, with psychological benefits identified. Three rotations during a 9-hour shift were feasible and practical in this environment.
Aquarius reveals salinity structure of tropical instability waves
NASA Astrophysics Data System (ADS)
Lee, Tong; Lagerloef, Gary; Gierach, Michelle M.; Kao, Hsun-Ying; Yueh, Simon; Dohan, Kathleen
2012-06-01
Sea surface salinity (SSS) measurements from the Aquarius/SAC-D satellite during September-December 2011 provide the first satellite observations of the salinity structure of tropical instability waves (TIWs) in the Pacific. The related SSS anomaly has a magnitude of approximately ±0.5 PSU. Different from sea surface temperature (SST) and sea surface height anomaly (SSHA) where TIW-related propagating signals are stronger a few degrees away from the equator, the SSS signature of TIWs is largest near the equator in the eastern equatorial Pacific where salty South Pacific water meets the fresher Inter-tropical Convergence Zone water. The dominant westward propagation speed of SSS near the equator is approximately 1 m/s. This is twice as fast as the 0.5 m/s TIW speed widely reported in the literature, typically from SST and SSHA away from the equator. This difference is attributed to the more dominant 17-day TIWs near the equator that have a 1 m/s dominant phase speed and the stronger 33-day TIWs away from the equator that have a 0.5 m/s dominant phase speed. The results demonstrate the important value of Aquarius in studying TIWs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collier, Sonya; Zhou, Shan; Onasch, Timothy B.
Abstract Wildfires are important contributors to atmospheric aerosols and a large source of emissions that impact regional air quality and global climate. In this study, wildfire emissions in the Pacific Northwest region of the United States were characterized using real-time measurements near their sources using an aircraft, and farther downwind from a fixed ground site located at the Mt. Bachelor Observatory (~ 2700 m a.s.l.). The characteristics of aerosol emissions were found to depend strongly on the modified combustion efficiency (MCE), a qualitative index of the combustion processes of a fire. Organic aerosol emissions had negative correlations with MCE, whereasmore » the carbon oxidation state of organic aerosol increased with MCE. The relationships between the aerosol properties and MCE were consistent between fresher emissions (~1 hour old) and emissions sampled after atmospheric transport (6 - 45 hours), suggesting that organic aerosol mass loading and chemical properties were strongly influenced by combustion processes at the source and conserved to a significant extent during regional transport. These results suggest that MCE can be a useful metric for describing aerosol properties of regionally transported wildfire emissions and their impacts on regional air quality and global climate.« less
An undercurrent off the east coast of Sri Lanka
NASA Astrophysics Data System (ADS)
Anutaliya, Arachaporn; Send, Uwe; McClean, Julie L.; Sprintall, Janet; Rainville, Luc; Lee, Craig M.; Priyantha Jinadasa, S. U.; Wallcraft, Alan J.; Metzger, E. Joseph
2017-12-01
The existence of a seasonally varying undercurrent along 8° N off the east coast of Sri Lanka is inferred from shipboard hydrography, Argo floats, glider measurements, and two ocean general circulation model simulations. Together, they reveal an undercurrent below 100-200 m flowing in the opposite direction to the surface current, which is most pronounced during boreal spring and summer and switches direction between these two seasons. The volume transport of the undercurrent (200-1000 m layer) can be more than 10 Sv in either direction, exceeding the transport of 1-6 Sv carried by the surface current (0-200 m layer). The undercurrent transports relatively fresher water southward during spring, while it advects more saline water northward along the east coast of Sri Lanka during summer. Although the undercurrent is potentially a pathway of salt exchange between the Arabian Sea and the Bay of Bengal, the observations and the ocean general circulation models suggest that the salinity contrast between seasons and between the boundary current and interior is less than 0.09 in the subsurface layer, suggesting a small salt transport by the undercurrent of less than 4 % of the salinity deficit in the Bay of Bengal.
Experimental salinity alleviation at Malaga Bend of the Pecos River, Eddy County, New Mexico
Havens, John S.; Wilkins, D.W.
1979-01-01
Upward-leaking brine, from a confined aquifer at the base of the Rustler Formation, mixes with fresher water in a shallow aquifer , resulting in discharge to the Pecos River in southern Eddy County, New Mexico, of about 0.5 cubic feet per second of saturated brine. Pumping brine from the aquifer at a rate greater than 0.5 cubic feet per second lowered the potentiometric head in the confined aquifer. From July 22, 1963, through December 1968, approximately 3,878 acre-feet of brine had been pumped into the Northeast Depression. The depression leaked brine to the Pecos River. Water downgradient of the depression increased in specific conductance ranging from 1,500 to 99,400 milligrams per liter chloride and water levels near the depression increased over 3 feet from 1963 to 1968. For water years 1952-63, the Pecos River gained about 240 tons per day of chloride in the reach from Malaga gaging station to Pierce Canyon Crossing. The average chloride gain to the Pecos River from July 1963 to August 1966 was 167 tons per day; the 1967-68 gain increased to 256 tons per day after a major flood in August 1966. (USGS)
A multidisciplinary glider survey of an open ocean dead-zone eddy
NASA Astrophysics Data System (ADS)
Karstensen, Johannes; Schütte, Florian; Pietri, Alice; Krahmann, Gerd; Fiedler, Björn; Löscher, Carolin; Grundle, Damian; Hauss, Helena; Körtzinger, Arne; Testor, Pierre; Viera, Nuno
2016-04-01
The physical (temperature, salinity) and biogeochemical (oxygen, nitrate, chlorophyll fluorescence, turbidity) structure of an anticyclonic modewater eddy, hosting an open ocean dead zone, is investigated using observational data sampled in high temporal and spatial resolution with autonomous gliders in March and April 2014. The core of the eddy is identified in the glider data as a volume of fresher (on isopycnals) water in the depth range from the mixed layer base (about 70m) to about 200m depth. The width is about 80km. The core aligns well with the 40 μmolkg-1 oxygen contour. From two surveys about 1 month apart, changes in the minimal oxygen concentrations (below 5μmolkg-1) are observed that indicate that small scale processes are in operation. Several scales of coherent variability of physical and biogeochemical variable are identified - from a few meters to the mesoscale. One of the gliders carried an autonomous Nitrate (N) sensor and the data is used to analyse the possible nitrogen pathways within the eddy. Also the highest N is accompanied by lowest oxygen concentrations, the AOU:N ratio reveals a preferred oxygen cycling per N.
Eyetsemitan, F
1984-06-01
This study attempts to assess the relative influence of chronological age and level of awareness on the crystallization of choice of discipline or career among Nigerian University undergraduates. Crystallization is defined as the ability to know or choose a discipline or vocational environment with characteristics congruent with one's personality or implementing one's vocational self-concept in the appropriate vocational environment. Level of awareness is the amount of information or data one has about a discipline. Seventy-six freshers of the University of Jos, Nigeria in two categories of disciplines--old/professional disciplines (medicine and law) and new disciplines (sociology and psychology) with different levels of awareness about them in Nigerian society were used. It was hypothesized that students in the old/professional disciplines of law and medicine would have better crystallization about their disciplines than students in the newer disciplines of psychology and sociology. This hypothesis was supported at P less than 0.01. Also supported was the hypothesis that crystallization would not increase with chronological age. In conclusion, it is suggested that level of awareness as against chronological age is a more potent determiner of crystallization of career choice in Nigeria.
Dreano, Denis; Raitsos, Dionysios E; Gittings, John; Krokos, George; Hoteit, Ibrahim
2016-01-01
Knowledge on large-scale biological processes in the southern Red Sea is relatively limited, primarily due to the scarce in situ, and satellite-derived chlorophyll-a (Chl-a) datasets. During summer, adverse atmospheric conditions in the southern Red Sea (haze and clouds) have long severely limited the retrieval of satellite ocean colour observations. Recently, a new merged ocean colour product developed by the European Space Agency (ESA)-the Ocean Color Climate Change Initiative (OC-CCI)-has substantially improved the southern Red Sea coverage of Chl-a, allowing the discovery of unexpected intense summer blooms. Here we provide the first detailed description of their spatiotemporal distribution and report the mechanisms regulating them. During summer, the monsoon-driven wind reversal modifies the circulation dynamics at the Bab-el-Mandeb strait, leading to a subsurface influx of colder, fresher, nutrient-rich water from the Indian Ocean. Using satellite observations, model simulation outputs, and in situ datasets, we track the pathway of this intrusion into the extensive shallow areas and coral reef complexes along the basin's shores. We also provide statistical evidence that the subsurface intrusion plays a key role in the development of the southern Red Sea phytoplankton blooms.
Bright, Jordon; Kaufman, D.S.; Forester, R.M.; Dean, W.E.
2006-01-01
Oxygen and carbon isotopes from a continuous, 120-m-long, carbonate-rich core from Bear Lake, Utah-Idaho, document dramatic fluctuations in the hydrologic budget of the lake over the last 250,000 yr. Isotopic analyses of bulk sediment samples capture millennial-scale variability. Ostracode calcite was analyzed from 78 levels, mainly from the upper half of the core where valves are better preserved, to compare the isotopic value of purely endogenic carbonate with the bulk sediment, which comprises both endogenic and detrital components. The long core exhibits three relatively brief intervals with abundant endogenic aragonite (50??10%) and enriched ??18O and ??13C. These intervals are interpreted as warm/dry periods when the lake retracted into a topographically closed basin. We correlate these intervals with the interglacial periods of marine oxygen-isotope stages 1, 5e, and 7a, consistent with the presently available geochronological control. During most of the time represented by the core, the lake was fresher than the modern lake, as evidenced by depleted ??18O and ??13C in bulk-sediment carbonate. ?? 2006 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Schneider, Wolfgang; Donoso, David; Garcés-Vargas, José; Escribano, Rubén
2017-02-01
Here we present results of direct observations of seawater temperature and salinity over the continental shelf off central-south Chile that shows an unprecedented cooling of the entire water column and an increase in upper layer salinity during 2002 to 2013. We provide evidence that this phenomenon is related to the intensification but mostly to a recent southward displacement of the South Pacific High over the same period, from 2007 on. This in turn has accelerated alongshore, equatorward, subtropical coastal upwelling favorable winds, particularly during winter, injecting colder water from below into the upper water column. Consequently, the environmental conditions on the shelf off central-south Chile shifted from a warmer (fresher) to a cooler (saltier) phase; water column temperature dropped from 11.7 °C (2003-2006) to 11.3 °C (2007-2012) and upper layer salinity rose by 0.25; water column stratification gradually decreased. The biological impacts of such abrupt cooling are apparently already happening in this coastal ecosystem, as recent evidence shows substantial changes in the plankton community and negative trends in zooplankton biomass over the same period.
NASA Astrophysics Data System (ADS)
Head, J. W.; Smith, D. E.; Zuber, M. T.; Neumann, G. A.; Fassett, C.; Mazarico, E.; Torrence, M. H.; Dickson, J.
2009-12-01
The 920 km diameter Orientale basin is the youngest and most well-preserved large multi-ringed impact basin on the Moon; it has not been significantly filled with mare basalts, as have other lunar impact basins, and thus the basin interior deposits and ring structures are very well-exposed and provide major insight into the formation and evolution of planetary multi-ringed impact basins. We report here on the acquisition of new altimetry data for the Orientale basin from the Lunar Orbiter Laser Altimeter (LOLA) on board the Lunar Reconnaissance Orbiter. Pre-basin structure had a major effect on the formation of Orientale; we have mapped dozens of impact craters underlying both the Orientale ejecta (Hevelius Formation-HF) and the unit between the basin rim (Cordillera ring-CR) and the Outer Rook ring (OR) (known as the Montes Rook Formation-MRF), ranging up in size to the Mendel-Rydberg basin just to the south of Orientale; this crater-basin topography has influenced the topographic development of the basin rim (CR), sometimes causing the basin rim to lie at a topographically lower level than the inner basin rings (OR and Inner Rook-IR). In contrast to some previous interpretations, the distribution of these features supports the interpretation that the OR ring is the closest approximation to the basin excavation cavity. The total basin interior topography is highly variable and typically ranges ~6-7 km below the surrounding pre-basin surface, with significant variations in different quadrants. The inner basin depression is about 2-4 km deep below the IR plateau and these data permit the quantitative assessment of post-basin-formation thermal response to impact energy input and uplifted isotherms. The Maunder Formation (MF) consists of smooth plains (on the inner basin depression walls and floor) and corrugated deposits (on the IR plateau); this topographic configuration supports the interpretation that the MF consists of different facies of impact melt. The inner depression is floored by tilted mare basalt deposits surrounding a central pre-mare high of several hundred meters elevation and the mare is deformed by wrinkle ridges with similar topographic heights; these data permit the assessment of basin loading by mare basalts and ongoing basin thermal evolution. The depth of the 55 km diameter post-Orientale Maunder crater, located at the edge of the inner depression, is in excess of 3 km; this depth permits the quantitative assessment of the nature of the deeper sub-Orientale material sampled by the crater. New LOLA data show that the pre-Orientale Mendel-Rydberg basin just to the south may be larger, younger, fresher, and more comparable in size to Orientale than previously suspected.
NASA Technical Reports Server (NTRS)
Koeberl, Christian; Reimold, Wolf Uwe; Boer, Rudolf H.
1992-01-01
The Barberton Greenstone belt is a 3.5- to 3.2-Ga-old formation situated in the Swaziland Supergroup near Barberton, northeast Transvaal, South Africa. The belt includes a lower, predominantly volcanic sequence, and an upper sedimentary sequence (e.g., the Fig Tree Group). Within this upper sedimentary sequence, Lowe and Byerly identified a series of different beds of spherules with diameters of around 0.5-2 mm. Lowe and Byerly and Lowe et al. have interpreted these spherules to be condensates of rock vapor produced by large meteorite impacts in the early Archean. We have collected a series of samples from drill cores from the Mt. Morgan and Princeton sections near Barberton, as well as samples taken from underground exposures in the Sheba and Agnes mines. These samples seem much better preserved than the surface samples described by Lowe and Byerly and Lowe et al. Over a scale of just under 30 cm, several well-defined spherule beds are visible, interspaced with shales and/or layers of banded iron formation. Some spherules have clearly been deposited on top of a sedimentary unit because the shale layer shows indentions from the overlying spherules. Although fresher than the surface samples (e.g., spherule bed S-2), there is abundant evidence for extensive alteration, presumably by hydrothermal processes. In some sections of the cores sulfide mineralization is common. For our mineralogical and petrographical studies we have prepared detailed thin sections of all core and underground samples (as well as some surface samples from the S-2 layer for comparison). For geochemical work, layers with thicknesses in the order of 1-5 mm were separated from selected core and underground samples. The chemical analyses are being performed using neutron activation analysis in order to obtain data for about 35 trace elements in each sample. Major elements are being determined by XRF and plasma spectrometry. To clarify the history of the sulfide mineralization, sulfur isotopic compositions are being determined.
Murgulet, Dorina; Murgulet, Valeriu; Spalt, Nicholas; Douglas, Audrey; Hay, Richard G
2016-12-01
There is a lack of understanding and methods for assessing the effects of anthropogenic disruptions, (i.e. river fragmentation due to dam construction) on the extent and degree of groundwater-surface water interaction and geochemical processes affecting the quality of water in semi-arid, coastal catchments. This study applied a novel combination of electrical resistivity tomography (ERT) and elemental and isotope geochemistry in a coastal river disturbed by extended drought and periodic flooding due to the operation of multiple dams. Geochemical analyses show that the saltwater barrier causes an increase in salinity in surface water in the downstream river as a result of limited freshwater inflows, strong evaporation effects on shallow groundwater and mostly stagnant river water, and is not due to saltwater intrusion by tidal flooding. Discharge from bank storage is dominant (~84%) in the downstream fragment and its contribution could increase salinity levels within the hyporheic zone and surface water. When surface water levels go up due to upstream freshwater releases the river temporarily displaces high salinity water trapped in the hyporheic zone to the underlying aquifer. Geochemical modeling shows a higher contribution of distant and deeper groundwater (~40%) in the upstream river and lower discharge from bank storage (~13%) through the hyporheic zone. Recharge from bank storage is a source of high salt to both upstream and downstream portions of the river but its contribution is higher below the dam. Continuous ERT imaging of the river bed complements geochemistry findings and indicate that while lithologically similar, downstream of the dam, the shallow aquifer is affected by salinization while fresher water saturates the aquifer in the upstream fragment. The relative contribution of flows (i.e. surface water releases or groundwater discharge) as related to the river fragmentation control changes of streamwater chemistry and likely impact the interpretation of seasonal trends. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Krueger, Martin; Mazzini, Adriano; Scheeder, Georg; Blumenberg, Martin
2017-04-01
The Lusi eruption represents one of the largest ongoing sedimentary hosted geothermal systems, which started in 2006 following an earthquake on Java Island. Since then it has been continuously producing hot and hydrocarbon rich mud from a central crater with peaks reaching 180.000 m3 per day. Numerous investigations focused on the study of microbial communities which thrive at offshore methane and oil seeps and mud volcanoes, however very little has been done on onshore seeping structures. Lusi represents a unique opportunity to complete a comprehensive study of onshore microbial communities fed by the seepage of CH4 as well as of liquid hydrocarbons originating from one or more km below the surface. While the source of the methane at Lusi is unambiuous, the origin of the seeping oil is still discussed. Both, source and maturity estimates from biomarkers, are in favor of a type II/III organic matter source. Likely the oils were formed from the studied black shales (deeper Ngimbang Fm.) which contained a Type III component in the Type II predominated organic matter. In all samples large numbers of active microorganisms were present. Rates for aerobic methane oxidation were high, as was the potential of the microbial communities to degrade different hydrocarbons. The data suggests a transition of microbial populations from an anaerobic, hydrocarbon-driven metabolism in fresher samples from center or from small seeps to more generalistic, aerobic microbial communities in older, more consolidated sediments. Ongoing microbial activity in crater sediment samples under high temperatures (80-95C) indicate a deep origin of the involved microorganisms. First results of molecular analyses of the microbial community compositions confirm the above findings. This study represents an initial step to better understand onshore seepage systems and provides an ideal analogue for comparison with the better investigated offshore structures.
NASA Astrophysics Data System (ADS)
Dong, Shenfu; Goni, Gustavo; Volkov, Denis; Lumpkin, Rick; Foltz, Gregory
2017-04-01
Three surface drifters equipped with temperature and salinity sensors at 0.2 m and 5 m depths were deployed in April/May 2015 in the subtropical South Pacific Ocean with the objective of measuring near-surface salinity differences seen by satellite and in situ sensors and examining the causes of the differences. Measurements from these drifters indicate that, on average, water at a depth of 0.2 m is about 0.013 psu fresher than at 5 m and about 0.024°C warmer. Events with large temperature and salinity differences between the two depths often occur when surface winds are weak. In addition to the expected surface freshening and cooling during rainfall events, surface salinification occurs under weak wind conditions when there is strong surface warming that enhances evaporation and upper ocean stratification. Further examination of the drifter measurements demonstrate that (i) the amount of surface freshening and vertical salinity gradient heavily depend on wind speed during rain events, (ii) salinity differences between 0.2 m and 5 m are positively correlated with the corresponding temperature differences, and (iii) temperature exhibits a diurnal cycle at both depths, whereas the diurnal cycle of salinity is observed only at 0.2 m when the wind speed is less than 4 m/s. Its phase is consistent with diurnal changes in surface temperature-induced evaporation. Below a wind speed of 6 m/s, the amplitudes of the diurnal cycles of temperature at both depths decrease with increasing wind speed. Wind speed also affects the phasing of the diurnal cycle of T5m with the time of maximum T5m increasing gradually with decreasing wind speed. Wind speed does not affect the phasing of the diurnal cycle of T0.2m. At 0.2 m and 5 m, the diurnal cycle of temperature also depends on surface solar radiation, with the amplitude and time of diurnal maximum increasing as solar radiation increases.
Jaureguizar, A J; Solari, A; Cortés, F; Milessi, A C; Militelli, M I; Camiolo, M D; Luz Clara, M; García, M
2016-07-01
The fish diversity and the main environmental factors affecting the spatial distribution of species, life history stages and community structure in the Río de la Plata (RdP) and adjacent waters are reviewed and analysed, with emphasis on the functional guild classification. The functional guild classification indicated that most species in the RdP were marine stragglers, zoobenthivores and oviparous species, although the biomass was dominated by estuarine species. Salinity had a stronger influence than temperature on the spatial pattern for all life stages, shallower and fresher waters are the preferred habitats of neonates and juveniles. During the breeding season (spring-summer), adults showed an intrusion into the inner part of RdP or to its adjacent nearshore waters from the offshore waters for spawning or mating, respectively. Variations in river discharge and wind patterns greatly affected the spatial extent of estuarine water, which ultimately influenced the domain of the main life-history stages (juveniles or adults) for both marine and estuarine fishes, as well as species and fish assemblage composition. The strong environmental gradient restricts some species and life-history stages to a particular section and defines three main fish assemblage areas. The composition of the fish assemblage is indicative of the recruitment of freshwater and marine species to the estuary in opposite ways, determined by the vertical stratification. Seasonal changes in the species composition were related to migration as a result of salinity and temperature variations and reproductive migrations to spawning and mating areas. This overview reveals that the RdP is under environmental variations that are likely to produce modifications to fish distribution and abundance that affect its fisheries. This context plus fish stock declines and changes in exploitation patterns could amplify the magnitude of the variations in the fisheries resources availability and affect the sustainability of fishing communities. © 2016 The Fisheries Society of the British Isles.
NASA Astrophysics Data System (ADS)
Tajabadi, Mehdi; Zare, Mohammad; Chitsazan, Manouchehr
2018-03-01
Maharlou saline lake is the outlet of Shiraz closed basin in southern Iran, surrounded by several disconnected alluvial fresh water aquifers. These aquifers in the west and northwest of the lake are recharged by karstic anticlines such as Kaftarak in the north and Barmshour in the south. Here groundwater salinity varies along the depth so that better quality water is located below brackish or saline waters. The aim of this study is to investigate the reason for the salinity anomaly and the origin of the fresher groundwater in lower depth. Hence, the change in groundwater salinity along depth has been investigated by means of a set of geoelectrical, hydrogeological, hydrogeochemical, and environmental isotopes data. The interpretation of geoelectrical profiles and hydrogeological data indicates that the aquifer in the southeast of Shiraz plain is a two-layer aquifer separated by a fine-grained (silt and clay) layer with an approximate thickness of 40 m at the depth of about 100-120 m. Hydrgeochemistry showed that the shallow aquifer is recharged by Kaftarak karstic anticline and is affected by the saline lake water. The lake water fraction varies in different parts from zero for shallow aquifer close to the karstic anticlines to ∼70 percent in the margin of the lake. The deep aquifer is protected from the intrusion of saline lake water due to the presence of the above-mentioned confining layer with lake water fraction of zero. The stable isotopes signatures also indicate that the 'fresh' groundwater belonging to the deep aquifer is not subject to severe evaporation or mixing which is typical of the karstic water of the area. It is concluded that the characteristics of the deep aquifer are similar to those of the karstic carbonate aquifer. This karstic aquifer is most probably the Barmshour carbonated anticline buried under the shallow aquifer in the southern part. It may also be the extension of the Kaftarak anticline in the northern part.
Clinical Practice Guidelines From the AABB: Red Blood Cell Transfusion Thresholds and Storage.
Carson, Jeffrey L; Guyatt, Gordon; Heddle, Nancy M; Grossman, Brenda J; Cohn, Claudia S; Fung, Mark K; Gernsheimer, Terry; Holcomb, John B; Kaplan, Lewis J; Katz, Louis M; Peterson, Nikki; Ramsey, Glenn; Rao, Sunil V; Roback, John D; Shander, Aryeh; Tobian, Aaron A R
2016-11-15
More than 100 million units of blood are collected worldwide each year, yet the indication for red blood cell (RBC) transfusion and the optimal length of RBC storage prior to transfusion are uncertain. To provide recommendations for the target hemoglobin level for RBC transfusion among hospitalized adult patients who are hemodynamically stable and the length of time RBCs should be stored prior to transfusion. Reference librarians conducted a literature search for randomized clinical trials (RCTs) evaluating hemoglobin thresholds for RBC transfusion (1950-May 2016) and RBC storage duration (1948-May 2016) without language restrictions. The results were summarized using the Grading of Recommendations Assessment, Development and Evaluation method. For RBC transfusion thresholds, 31 RCTs included 12 587 participants and compared restrictive thresholds (transfusion not indicated until the hemoglobin level is 7-8 g/dL) with liberal thresholds (transfusion not indicated until the hemoglobin level is 9-10 g/dL). The summary estimates across trials demonstrated that restrictive RBC transfusion thresholds were not associated with higher rates of adverse clinical outcomes, including 30-day mortality, myocardial infarction, cerebrovascular accident, rebleeding, pneumonia, or thromboembolism. For RBC storage duration, 13 RCTs included 5515 participants randomly allocated to receive fresher blood or standard-issue blood. These RCTs demonstrated that fresher blood did not improve clinical outcomes. It is good practice to consider the hemoglobin level, the overall clinical context, patient preferences, and alternative therapies when making transfusion decisions regarding an individual patient. Recommendation 1: a restrictive RBC transfusion threshold in which the transfusion is not indicated until the hemoglobin level is 7 g/dL is recommended for hospitalized adult patients who are hemodynamically stable, including critically ill patients, rather than when the hemoglobin level is 10 g/dL (strong recommendation, moderate quality evidence). A restrictive RBC transfusion threshold of 8 g/dL is recommended for patients undergoing orthopedic surgery, cardiac surgery, and those with preexisting cardiovascular disease (strong recommendation, moderate quality evidence). The restrictive transfusion threshold of 7 g/dL is likely comparable with 8 g/dL, but RCT evidence is not available for all patient categories. These recommendations do not apply to patients with acute coronary syndrome, severe thrombocytopenia (patients treated for hematological or oncological reasons who are at risk of bleeding), and chronic transfusion-dependent anemia (not recommended due to insufficient evidence). Recommendation 2: patients, including neonates, should receive RBC units selected at any point within their licensed dating period (standard issue) rather than limiting patients to transfusion of only fresh (storage length: <10 days) RBC units (strong recommendation, moderate quality evidence). Research in RBC transfusion medicine has significantly advanced the science in recent years and provides high-quality evidence to inform guidelines. A restrictive transfusion threshold is safe in most clinical settings and the current blood banking practices of using standard-issue blood should be continued.
NASA Astrophysics Data System (ADS)
Kim, Hyojin; Bishop, James K. B.; Dietrich, William E.; Fung, Inez Y.
2014-09-01
Significant solute flux from the weathered bedrock zone - which underlies soils and saprolite - has been suggested by many studies. However, controlling processes for the hydrochemistry dynamics in this zone are poorly understood. This work reports the first results from a four-year (2009-2012) high-frequency (1-3 day) monitoring of major solutes (Ca, Mg, Na, K and Si) in the perched, dynamic groundwater in a 4000 m2 zero-order basin located at the Angelo Coast Range Reserve, Northern California. Groundwater samples were autonomously collected at three wells (downslope, mid-slope, and upslope) aligned with the axis of the drainage. Rain and throughfall samples, profiles of well headspace pCO2, vertical profiles and time series of groundwater temperature, and contemporaneous data from an extensive hydrologic and climate sensor network provided the framework for data analysis. All runoff at this soil-mantled site occurs by vertical unsaturated flow through a 5-25 m thick weathered argillite and then by lateral flows to the adjacent channel as groundwater perched over fresher bedrock. Driven by strongly seasonal rainfall, over each of the four years of observations, the hydrochemistry of the groundwater at each well repeats an annual cycle, which can be explained by two end-member processes. The first end-member process, which dominates during the winter high-flow season in mid- and upslope areas, is CO2 enhanced cation exchange reaction in the vadose zone in the more shallow conductive weathered bedrock. This process rapidly increases the cation concentrations of the infiltrated rainwater, which is responsible for the lowest cation concentration of groundwater. The second-end member process occurs in the deeper perched groundwater and either dominates year-round (at the downslope well) or becomes progressively dominant during low flow season at the two upper slope wells. This process is the equilibrium reaction with minerals such as calcite and clay minerals, but not with primary minerals, suggesting the critical role of the residence time of the water. Collectively, our measurements reveal that the hydrochemistry dynamics of the groundwater in the weathered bedrock zone is governed by two end-member processes whose dominance varies with critical zone structure, the relative importance of vadose versus groundwater zone processes, and thus with the seasonal variation of the chemistry of recharge and runoff.
NASA Astrophysics Data System (ADS)
Larsen, D.; Paul, J.
2017-12-01
Groundwater salinization is occurring in the Mississippi River Valley Alluvial (MRVA) aquifer in southeastern Arkansas (SE AR). Water samples from the MRVA aquifer in Chicot and Desha counties have yielded elevated Cl-concentrations with some as high as 1,639 mg/L. Considering that the MRVA aquifer is the principle source of irrigation water for the agricultural economy of SE AR, salinization needs to be addressed to ensure the sustainability of crop, groundwater, and soil resources in the area. The origin of elevated salinity in MRVA aquifer was investigated using spatial and factor analysis of historical water quality data, and sampling and tracer analysis of groundwater from irrigation, municipal, and flowing industrial wells in SE AR. Spatial analysis of Cl- data in relation to soil type, geomorphic features and sand-blow density indicate that the Cl- anomalies are more closely related to the sand-blow density than soil data, suggesting an underlying tectonic control for the distribution of salinity. Factor analysis of historical geochemical data from the MRVA and underlying Sparta aquifer shows dilute and saline groups, with saline groups weighted positively with Cl- or Na+ and Cl-. Tracer data suggest a component of evaporatively evolved crustal water of pre-modern age has mixed with younger, fresher meteoric sources in SE AR to create the saline conditions in the MRVA aquifer. Stable hydrogen and oxygen values of waters sampled from the Tertiary Sparta and MRVA aquifers deviate from the global and local meteoric water lines along an evaporative trend (slope=4.4) and mixing line with Eocene Wilcox Group groundwaters. Ca2+ and Cl- contents vary with Br- along mixing trends between dilute MRVA water and Jurassic Smackover Formation pore fluids in southern AR. Increasing Cl- content with C-14 age in MRVA aquifer groundwater suggests that the older waters are more saline. Helium isotope ratios decrease with He gas content for more saline water, consistent with crustal He production. Our model for the system invokes upward migration of Smackover pore fluids and other deep groundwater along faults in SE AR, whereby the saline fluids intrude and mix with dilute water in the MRVA aquifer to create saline conditions. Other processes, such as infiltration of saline irrigation runoff, may also be contributing to the problem.
Small lunar craters at the Apollo 16 and 17 landing sites - morphology and degradation
NASA Astrophysics Data System (ADS)
Mahanti, P.; Robinson, M. S.; Thompson, T. J.; Henriksen, M. R.
2018-01-01
New analysis and modeling approaches are applied to high-resolution images and topography of the Apollo 16 and 17 landing sites to investigate the morphology and estimate degradation of small lunar craters (SLCs; 35 to 250 m diameter). We find SLCs at the two sites are mostly degraded with an average depth-diameter ratio (d/D) < 0.1 , resulting in a landscape dominated by shallow, inverted cone-shaped craters. An improved standardized morphological classification and a novel set of quantitative shape indicators are defined and used to compare SLCs between the two sites. Our classification methodology allows morphological class populations to be designated with minimal (and measurable) ambiguity simplifying the study of SLC degradation at different target regions. SLC shape indicators are computationally obtained from topography, further facilitating a quantitative and repeatable comparison across study areas. Our results indicate that the interior slopes of SLCs evolve faster and through different processes relative to larger craters ( > 500 m). Assuming SLCs are formed with large initial depth-to-diameter ratio (d/D ≥ 0.2), our observation that even the fresher SLCs are relatively shallow imply that a faster mass wasting process post-formation stabilizes the crater walls and eventually slows down degradation. We also found that the Apollo 16 Cayley plains have a higher percentage of fresh craters than the Apollo 17 Taurus Littrow (TL) plains. A combination of a less-cohesive target material and/or seismic shaking resulting from moonquakes or the impact of Tycho crater secondaries was likely responsible for a higher degradation rate in the TL-plains compared to the Cayley plains. This study explores the relationship between the symmetry and probability densities of key morphological traits like d/D, mean wall slope and rate of degradation. We show that the shape of d/D probability density function of SLCs in a study area encodes their rate of degradation. Comparison of power-law fitting and probabilistic modeling of depth-diameter relations shows that probabilistic methods complement regression models and are necessary for robust prediction of SLC depths from diameter (and vice versa) for different geological targets.
Dopant type and/or concentration selective dry photochemical etching of semiconductor materials
Ashby, Carol I. H.; Dishman, James L.
1987-01-01
A method of selectively photochemically dry etching a first semiconductor material of a given composition in the presence of a second semiconductor material which is of a composition different from said first material, said second material substantially not being etched during said method, comprises subjecting both materials to the same photon flux of an energy greater than their respective direct bandgaps and to the same gaseous chemical etchant under conditions where said etchant would be ineffective for chemical etching of either material were the photons not present, said conditions also being such that the resultant electronic structure of the first semiconductor material under said photon flux is sufficient for the first material to undergo substantial photochemical etching under said conditions and being such that the resultant electronic structure of the second semiconductor material under said photon flux is not sufficient for the second material to undergo substantial photochemical etching under said conditions. In a preferred mode, the materials are subjected to a bias voltage which suppresses etching in n- or p- type material but not in p- or n-type material, respectively; or suppresses etching in the more heavily doped of two n-type or two p-type materials.
Dopant type and/or concentration selective dry photochemical etching of semiconductor materials
Ashby, C.R.H.; Dishman, J.L.
1985-10-11
Disclosed is a method of selectively photochemically dry etching a first semiconductor material of a given composition in the presence of a second semiconductor material which is of a composition different from said first material, said second material substantially not being etched during said method. The method comprises subjecting both materials to the same photon flux of an energy greater than their respective direct bandgaps and to the same gaseous chemical etchant under conditions where said etchant would be ineffective for chemical etching of either material were the photons not present, said conditions also being such that the resultant electronic structure of the first semiconductor material under said photon flux is sufficient for the first material to undergo substantial photochemical etching under said conditions and being such that the resultant electronic structure of the second semiconductor material under said photon flux is not sufficient for the second material to undergo substantial photochemical etching under said conditions. In a preferred mode, the materials are subjected to a bias voltage which suppresses etching in n- or p-type material but not in p- or n-type material, respectively; or suppresses etching in the more heavily doped of two n-type or two p-type materials.
Dreano, Denis; Raitsos, Dionysios E.; Gittings, John; Krokos, George; Hoteit, Ibrahim
2016-01-01
Knowledge on large-scale biological processes in the southern Red Sea is relatively limited, primarily due to the scarce in situ, and satellite-derived chlorophyll-a (Chl-a) datasets. During summer, adverse atmospheric conditions in the southern Red Sea (haze and clouds) have long severely limited the retrieval of satellite ocean colour observations. Recently, a new merged ocean colour product developed by the European Space Agency (ESA)—the Ocean Color Climate Change Initiative (OC-CCI)—has substantially improved the southern Red Sea coverage of Chl-a, allowing the discovery of unexpected intense summer blooms. Here we provide the first detailed description of their spatiotemporal distribution and report the mechanisms regulating them. During summer, the monsoon-driven wind reversal modifies the circulation dynamics at the Bab-el-Mandeb strait, leading to a subsurface influx of colder, fresher, nutrient-rich water from the Indian Ocean. Using satellite observations, model simulation outputs, and in situ datasets, we track the pathway of this intrusion into the extensive shallow areas and coral reef complexes along the basin’s shores. We also provide statistical evidence that the subsurface intrusion plays a key role in the development of the southern Red Sea phytoplankton blooms. PMID:28006006
North Atlantic near-surface salinity contrasts and intra-basin water vapor transfer
NASA Astrophysics Data System (ADS)
Reagan, J. R.; Seidov, D.; Boyer, T.
2017-12-01
The geographic distribution of near-surface salinity (NSS) in the North Atlantic is characterized by a very salty (>37) subtropical region contrasting with a much fresher (<35) subpolar area. Multiple studies have shown that preserving this salinity contrast is important for maintaining the Atlantic Meridional Overturning Circulation (AMOC), and that changes to this salinity balance may reduce the strength of the AMOC. High subtropical salinity is primarily due to evaporation (E) dominating precipitation (P), whereas low subpolar salinity is at least partly due to precipitation dominating evaporation. Present-day understanding of the fate of water vapor in the atmosphere over the extratropical North Atlantic is that the precipitation which falls in the subpolar region primarily originates from the water vapor produced through evaporation in the subtropical North Atlantic. With this knowledge and in conjunction with a basic understanding of North Atlantic storm tracks—the main meridional transport conduits in mid and high latitudes— a preliminary time and spatial correlation analysis was completed to relate the North Atlantic decadal climatological salinity between 1985 and 2012 to the evaporation and precipitation climatologies for the same period. Preliminary results indicate that there is a clear connection between subtropical E-P and subpolar NSS. Additional results and potential implications will be presented and discussed.
Eye-tracking AFROC study of the influence of experience and training on chest x-ray interpretation
NASA Astrophysics Data System (ADS)
Manning, David; Ethell, Susan C.; Crawford, Trevor
2003-05-01
Four observer groups with different levels of expertise were tested in an investigation into the comparative nature of expert performance. The radiological task was the detection and localization of significant pulmonary nodules in postero-anterior vies of the chest in adults. Three test banks of 40 images were used. The observer groups were 6 experienced radiographers prior to a six month training program in chest image interpretation, the same radiographers after their tr4aining program, and 6 fresher undergraduate radiography students. Eye tracking was carried out on all observers to demonstrate differences in visual activity and nodule detection performance was measured with an AFROC technique. Detection performances of the four groups showed the radiologists and radiographers after training were measurably superior at the task. The eye-tracking parameters saccadic length, number of fixations visual coverage and scrutiny timer per film were measured for all subjects and compared. The missed nodules fixated and not fixated were also determined for the radiologist group. Results have shown distinct stylistic differences in the visual scanning strategies between the experienced and inexperienced observers that we believe can be generalized into a description of characteristics of expert versus non-expert performance. The findings will be used in the educational program of image interpretation for non-radiology practitioners.
NASA Astrophysics Data System (ADS)
Kellogg, J. P.; McDuff, R. E.; Hautala, S. L.; Stahr, F.
2010-12-01
The Main Endeavour Field (MEF) has had a split personality since it was discovered. The southern half of the field is regularly observed to be hotter and fresher than the northern half. Differences lessened after the 1999 earthquake event, but the thermal and chemical gradient remains. We examine CTD and MAVS current meter data collected during surveys, designed to intersect the rising hydrothermal plume, conducted with the Autonomous Benthic Explorer (ABE) in 2000 and 2004. By taking subsets of the data over known clusters of structures within the field, we attribute fractional contributions to the whole field heat and salt fluxes. Preliminary findings indicate that North MEF contributes ~90% and ~100% of the heat from MEF in 2000 and 2004 respectively. It is clear from this that the majority of the MEF buoyancy flux is from North MEF even though the source fluids from South MEF are estimated to be initially more buoyant than those from North MEF. Within North MEF, ~2/3 of the heat comes from the Grotto, Dante, Lobo sulfide cluster and ~1/4 from the Hulk and Crypto cluster. These data, for the intra-field spatial scales of heat and salt flux, may allow us to infer mechanisms capable of altering the porous network of the hydrothermal system.
NASA Astrophysics Data System (ADS)
Zu, Tingting; Xue, Huijie; Wang, Dongxiao; Geng, Bingxu; Zeng, Lili; Liu, Qinyan; Chen, Ju; He, Yunkai
2018-05-01
Surface geostrophic current derived from altimetry remote sensing data, and current profiles observed from in-situ Acoustic Doppler Current Profilers (ADCP) mooring in the northern South China Sea (NSCS) and southern South China Sea (SSCS) are utilized to study the kinetic and energetic interannual variability of the circulation in the South China Sea (SCS) during winter. Results reveal a more significant interannual variation of the circulation and water mass properties in the SSCS than that in the NSCS. Composite ananlysis shows a significantly reduced western boundary current (WBC) and a closed cyclonic eddy in the SSCS at the mature phase of El Niño event, but a strong WBC and an unclosed cyclonic circulation in winter at normal or La Niña years. The SST is warmer while the subsurface water is colder and fresher in the mature phase of El Niño event than that in the normal or La Niña years in the SSCS. Numerical experiments and energy analysis suggest that both local and remote wind stress change are important for the interannual variation in the SSCS, remote wind forcing and Kuroshio intrusion affect the circulation and water mass properties in the SSCS through WBC advection.
Effect of Increasing Salinity on Development of Giant Reed (Arundo donax) from Rhizome and Culms.
Allinson, Graeme
2017-12-01
Arundo donax (giant reed) has great potential for bioenergy biomass production in constructed wetlands. Large scale use of A. donax in constructed wetlands will require the use of either established plants sourced from nurseries, or the use of cuttings or rhizomes and stems from mother plants derived from nurseries or wild stands. The results of this study suggest that cuttings and rhizomes are not sensitive to salinity up to an EC ~ 4500 µS cm - 1 . Plants used to establish a constructed wetland should have stems of at least 300 mm length, with well established roots. Moreover, culms will emerge from small pieces of stems with viable nodes regardless of salinity, albeit the fresher the water the less likely salinity will subsequently affect the emerging shoot. From a practical perspective, this suggests that wetlands can be planted with giant reed using horizontally laid stems. Unless using plants pre-stressed to a salinity matching that of the wastewater to be treated, giant reed should be established using reasonable quality water (EC < 1000 µS cm - 1 ) until the plants are of a reasonable size, e.g. > 500 mm in height, after which undiluted wastewater can be used.
Future Directions in Myelodysplastic Syndrome: Newer Agents and the Role of Combination Approaches
Gore, Steven D.; Hermes-DeSantis, Evelyn R.
2009-01-01
Myelodysplastic syndrome (MDS) is not a single disease, but a collection of hematopoietic disorders that require newer strategies. Currently, azacitidine, decitabine, and lenalidomide are approved by the US Food and Drug Administration for the treatment of MDS. A recent study demonstrated an improved overall survival (24.4 months vs 15 months) in high-risk MDS patients receiving azacitidine plus best supportive care vs conventional care which has resulted in an updated label for this product. Conventional care consisted of supportive care alone or either low-dose ara-C or standard chemotherapy plus best supportive care. While these data are encouraging, newer agents such as vorinostat, MGCD0103, MS-275, and tipifarnib are currently being studied as monotherapy or in combinations with approved treatments for MDS. The goal of combining pharmacotherapy, such as the combination of DNA methylation inhibitors and histone deacetylase inhibitors, in the management of MDS is to increase the response rates and decrease the toxicities associated with treatment. Clinical experience in the use of combination products has given practitioners the empirical knowledge necessary to better treat patients with MDS. Utilizing convergent or complementary molecular mechanisms with in vitro or in vivo evidence of synergy is a fresher and maybe a more efficacious approach to combination therapy. PMID:18813208
75 FR 22637 - Proposed Collection; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-29
... staff reviews sales material filed under rule 607 for materially misleading statements and omissions... are met. Rule 607 under Regulation E (17 CFR 230.607) entitled, ``Sales material to be filed,'' requires sales material used in connection with securities offerings under Regulation E to be filed with...
39 CFR 3007.10 - Submission of non-public materials under seal.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 39 Postal Service 1 2011-07-01 2011-07-01 false Submission of non-public materials under seal. 3007.10 Section 3007.10 Postal Service POSTAL REGULATORY COMMISSION PERSONNEL TREATMENT OF NON-PUBLIC MATERIALS PROVIDED BY THE POSTAL SERVICE § 3007.10 Submission of non-public materials under seal. (a) Non...
10 CFR 110.9 - List of Nuclear Material under NRC export licensing authority.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false List of Nuclear Material under NRC export licensing authority. 110.9 Section 110.9 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXPORT AND IMPORT OF NUCLEAR EQUIPMENT AND MATERIAL General Provisions § 110.9 List of Nuclear Material under NRC export licensing...
10 CFR 110.9 - List of Nuclear Material under NRC export licensing authority.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 2 2013-01-01 2013-01-01 false List of Nuclear Material under NRC export licensing authority. 110.9 Section 110.9 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXPORT AND IMPORT OF NUCLEAR EQUIPMENT AND MATERIAL General Provisions § 110.9 List of Nuclear Material under NRC export licensing...
10 CFR 110.9 - List of Nuclear Material under NRC export licensing authority.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 2 2012-01-01 2012-01-01 false List of Nuclear Material under NRC export licensing authority. 110.9 Section 110.9 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXPORT AND IMPORT OF NUCLEAR EQUIPMENT AND MATERIAL General Provisions § 110.9 List of Nuclear Material under NRC export licensing...
10 CFR 110.9 - List of Nuclear Material under NRC export licensing authority.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 2 2014-01-01 2014-01-01 false List of Nuclear Material under NRC export licensing authority. 110.9 Section 110.9 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXPORT AND IMPORT OF NUCLEAR EQUIPMENT AND MATERIAL General Provisions § 110.9 List of Nuclear Material under NRC export licensing...
10 CFR 110.9 - List of Nuclear Material under NRC export licensing authority.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false List of Nuclear Material under NRC export licensing authority. 110.9 Section 110.9 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXPORT AND IMPORT OF NUCLEAR EQUIPMENT AND MATERIAL General Provisions § 110.9 List of Nuclear Material under NRC export licensing...
NASA Astrophysics Data System (ADS)
Lofi, J.; Inwood, J.; Proust, J.; Monteverde, D.; Loggia, D.; Basile, C.; Hayashi, T.; Stadler, S.; Fehr, A.; Pezard, P.
2012-12-01
For the first time in the history of international scientific drillings, the Integrated Ocean Drilling Program (IODP) mission-specific platform (MSP) Expedition 313 drilled three 631-755 m-deep boreholes on the middle shelf of a clastic passive margin. This expedition gathered a full set of geophysical data tied to drillcores with 80% of recovery. It offers a unique opportunity to access the internal structure of a siliciclastic system, at scales ranging from the matrix to the margin, and to correlate the geological skeleton with the spatial distribution and salinity of saturating fluids. In addition to the discovery of very low salinity pore water (<3g/l) at depths exceeding 400 m below the middle shelf, this expedition provides evidence for a multi-layered reservoir, with fresh/brackish water intervals alternating vertically with salty intervals. Our observations suggest that the processes controlling salinity distribution are strongly influenced by lithology, porosity and permeability. Saltier pore waters are recovered in less porous, more permeable, intervals whereas fresher pore waters are recovered in more porous, less permeable, intervals. Pore water concentrations are inversely correlated to the Thorium content, with high salinities in low Th intervals (i.e. sandy formations). The transition from fresher to saltier intervals is often marked by cemented horizons acting as permeability barrier. In the lower part of some holes, the salinity varies independently of lithology, suggesting different mechanisms and/or sources of salinity. We have developed a 2D model of permeability distribution along a dip transect of the margin, extrapolated from combined clinoform geometries observed on seismic data and sedimentary facies described on cores. This model clearly illustrates the importance of taking into account the spatial heterogeneity of geological system at several scales. Lithology reflects permeability at a small scale whereas seismic facies and system tracts can be used to infer the reservoir geometry at a larger scale. Four main reservoirs (R1 to R4) that are relatively disconnected have been identified. These are essentially developed in coarse-grained deposits observed either in some clinoform topsets (R4), in upper foresets (R2, R3), or in both of them (R1). R2 to R4 contain salty water while the most proximal reservoir R1, located close to the coastline, is saturated with fresh water, and may form the seaward extension of onshore aquifers. Each of these four reservoirs is separated by confining units of varied thicknesses and of relatively broad spatial extension. At the Expedition 313 drilling sites, the fresh waters stored in confining units have a post-deposition age and may have a fossil origin (Pleistocene low-stands?), whereas saltier water recovered in distal reservoirs (R2 to R4) penetrated at a later stage. Further work must be done to clarify the emplacement mechanisms. Future studies should focus on the inclusion of our 2D permeability model in a groundwater model, in order to examine the specific flow processes that are active in this environment. This research used samples and data provided by the Integrated Ocean Drilling Program (IODP) and the International Continental Scientific Drilling Program (ICDP).
48 CFR 52.232-7 - Payments under Time-and-Materials and Labor-Hour Contracts.
Code of Federal Regulations, 2011 CFR
2011-10-01
...-Materials and Labor-Hour Contracts. 52.232-7 Section 52.232-7 Federal Acquisition Regulations System FEDERAL... Provisions and Clauses 52.232-7 Payments under Time-and-Materials and Labor-Hour Contracts. As prescribed in 32.111(a)(7), insert the following clause: Payments Under Time-and-Materials and Labor-Hour Contracts...
Testing the Marine Hypothesis for The Opportunity Landing Site at Victoria Crater
NASA Astrophysics Data System (ADS)
Parker, T. J.
2006-12-01
Hypothesis Summary: 1. Meridiani Planum is a marine sulfate platform deposit, analogous to terrestrial carbonate platforms but with sulfate mineralogy, laid down during one or multiple marine transgressions over the landing site region. 2. Outcrop laminations, ripples, and larger, dune-scale bedforms are subaqueous in origin, produced by tidal currents. Aqueous deposits may be interbedded with crossbedded aeolian deposits of same composition derived from subjacent water-lain deposits during lowstands. At the scale of observations made by Opportunity, the marine hypothesis differs from the consensus, sabkha model, in two relatively minor ways (but with important differences in the inferred paleoenvironments). 3. Blueberry and cobble "lag" on top of outcrop is a lag, but indicates erosion of perhaps many meters, even tens of meters or more of outcrop material from the region by water. Wind erosion has been very limited over geologic time (perhaps less than a meter locally). 4. Remarkably-flat, horizontal geomorphic surface of outcrop was produced by shallow standing water locally, controlling both deposition and erosion of the sulfate outcrop material to within a few meters of sea level. 5. Craters in the landing site exhibit a continuum of degradation states, with Endurance and Victoria typifying the best preserved craters visited (or to be visited) by Opportunity, and Erebus and Terra Nova representing the most degraded craters visited that are larger than 100 meters across. Terra Nova is similar to numerous kilometer-scale "rock ring" craters in the Meridiani Planum landing site. 6. "Serrated" rim at Victoria is similar to, but fresher in expression, rim morphology at Erebus Crater, and may indicate water pouring over crater rim during tidal or storm surges in water level across the region. Predictions to be tested at Victoria Crater: 1. The crater's ejecta and raised rim have been destroyed by tidal currents in shallow standing water. There is no Endurance-like ejecta blanket at Victoria crater, and the rim is at most a few meters elevated in relation to the surrounding plains. 2. The annulus or sand sheet surrounding Victoria crater is similar to the plains surface between Eagle and Endurance craters, and was likely comminuted from Victoria's rim and ejecta, rather than overlying it. 3. Is the banding that is visible in MOC images indicative of layers exposed within Victoria? If there was standing water within the crater at the end of a marine setting in the region, they might not be layers at all, but strandlines. If so, they should exhibit overhangs, particularly at the promontories along the crater rim. They should maintain horizontality, even when cutting across dipping strata or bedform laminations.
48 CFR 52.225-12 - Notice of Buy American Requirement-Construction Materials Under Trade Agreements.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Requirement-Construction Materials Under Trade Agreements. 52.225-12 Section 52.225-12 Federal Acquisition... CONTRACT CLAUSES Text of Provisions and Clauses 52.225-12 Notice of Buy American Requirement—Construction... Buy American Requirement—Construction Materials Under Trade Agreements (MAY 2014) (a) Definitions...
Magnetic induction constraints on electrical conductivity within Europa
NASA Astrophysics Data System (ADS)
Bills, B. G.; Vance, S.
2017-12-01
We examine the problem of inferring radial variations in electrical conductivity within Europa, from measurements of the magnetic field induced within Europa by its motion through Jupiter's magnetic field. The Europa Clipper mission is expected to make multiple encounters with Europa, sampling several periods at which significant magnetic induction forcing occurs. Most previous analyses have considered a simple 3-layer model of Europa's internal structure, with an insulating core, a uniform conductivity ocean, and an insulating ice shell, and have only examined responses at 2 forcing periods. We attempt to address the broader issues of what level of detail can be inferred from plausible estimates of induced field response at several additional forcing periods. We will present results of an analysis of the periods and amplitudes of magnetic field variations at Europa, and at the Europa Clipper spacecraft. It appears likely that useful information on the induction response will be attained at 6 forcing frequencies, spanning the interval from 1 to just over 15 cycles per orbital period, in Europa's motion about Jupiter. The range of periods is 5.6 to 85 hours. The induced field diffuses into the interior, and signals at longer periods penetrate more deeply. Having measurements at a range of forcing periods thus helps resolve radial structure. Even if the ocean is well mixed and has uniform salinity, there will be some depth-dependent variations in electrical conductivity due to temperature and pressure variations. Much larger variations would be present if the ocean were stably stratified, with a denser brine underlying a fresher upper layer. While vigorous convection within the ocean would likely mix and homogenize the water column, a stratified ocean is at least possible. Could such a feature of the ocean be detected via magnetic induction? Also, the conductivities in the ice shell above, and silicate layer beneath the ocean are expected to be substantially smaller than in a salty ocean. However, they are not zero. We will consider the extent to which these regions might also be interrogated via magnetic induction.
Johnston, R.H.
1983-01-01
Hydrologic testing in an offshore oil well abandoned by Tenneco, Inc., determined the position of the saltwater-freshwater interface in Tertiary limestones underlying the Florida-Georgia continental shelf of the U.S.A. Previous drilling (JOIDES and U.S.G.S. AMCOR projects) established the existence of freshwater far offshore in this area. At the Tenneco well 55 mi. (???88 km) east of Fernandina Beach, Florida, drill-stem tests made in the interval 1050-1070 ft. (320-326 m) below sea level in the Ocala Limestone recovered a sample with a chloride concentration of 7000 mg l-1. Formation water probably is slightly fresher. Pressure-head measurements indicated equivalent freshwater heads of 24-29 ft. (7.3-8.8 m) above sea level. At the coast (Fernandina Beach), a relatively thin transition zone separating freshwater and saltwater occurs at a depth of 2100 ft. (640 m) below sea level. Fifty-five miles (???88 km) offshore, at the Tenneco well, the base of freshwater is ???1100 ft. (???335 m) below sea level. The difference in approximate depth to the freshwater-saltwater transition at these two locations suggests an interface with a very slight landward slope. Assuming the Hubbert interface equation applies here (because the interface and therefore freshwater flow lines are nearly horizontal) the equilibrium depth to the interface should be 40 times the freshwater head above sea level. Using present-day freshwater heads along the coast in the Hubbert equation results in depths to the interface of less than the observed 2100 ft. (640 m). Substituting predevelopment heads in the equation yields depths greater than 2100 ft. (640 m). Thus the interface appears to be in a transient position between the position that would be compatible with present-day heads and the position that would be compatible with predevelopment heads. This implies that some movement of the interface from the predevelopment position has occurred during the past hundred years. The implied movement is incompatible with the hypothesis that the freshwater occurring far offshore in this area is trapped water remaining since the Pleistocene Epoch. ?? 1982.
Dam, W.L.
1995-01-01
Ground water was sampled from wells completed in the Gallup, Dakota, and Morrison aquifers in the San Juan Basin, New Mexico, to examine controls on solute concentrations. Samples were collected from 38 wells primarily from the Morrison aquifer (25 wells) in the northwestern part of the basin. A series of samples was collected along ground-water flow paths; dissolved constituents varied horizontally and vertically. The understanding of the flow system changed as a result of the geochemical analyses. The conceptual model of the flow system in the Morrison aquifer prior to the study reported here assumed the Westwater Canyon Member of the Morrison aquifer as the only significant regional aquifer; flow was assumed to be two dimensional; and vertical leakage was assumed to be negligible. The geochemical results indicate that the Westwater Canyon Member is not the only major water-yielding zone and that the flow system is three dimensional. The data presented in this report suggest an upward component of flow into the Morrison aquifer. The entire section above and below the Morrison aquifer appears to be controlled by a three-dimensional flow regime where saline brine leaks near the San Juan River discharge area. Predominant ions in the Gallup aquifer were calcium bicarbonate in recharge areas and sodium sulfate in discharge areas. In the Dakota aquifer, predominant ions were sodium bicarbonate and sodium sulfate. Water in the Morrison aquifer was predominantly sodium bicarbonate in the recharge area, changing to sodium sulfate downgradient. Chemical and radioisotopic data indicate that water from overlying and underlying units mixes with recharge water in the Morrison aquifer. Recharge water contained a large ratio of chlorine-36 to chlorine and a small ratio of bromide to chloride. Approximately 10 miles downgradient, samples from four wells completed in the Morrison aquifer were considerably different in composition compared to recharge samples. Oxygen stable isotopes decreased by 2.8 per mil and deuterium decreased 26 per mil, relative to recharge. Carbon-14 radioisotope activities were not detectable. Chloride-36 radioisotope ratios were small and bromide to chloride concentration ratios were large. These results suggest two potentially viable processes: ion filtration or trapping of ancient dilute water recharged under a humid climate. For water samples near the San Juan River, pH decreased to about 8.0, chloride concentrations increased to more than 100 milligrams per liter, and ratios of chlorine-36 to chlorine and bromide to chloride were small. Leakage of deep basin brine into the fresher water of the Morrison aquifer appears to control ion concentrations.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 1 2013-01-01 2013-01-01 false Persons using byproduct material under certain Department of Energy and Nuclear Regulatory Commission contracts. 30.12 Section 30.12 Energy NUCLEAR REGULATORY... Persons using byproduct material under certain Department of Energy and Nuclear Regulatory Commission...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 2 2013-01-01 2013-01-01 false Persons using special nuclear material under certain Department of Energy and Nuclear Regulatory Commission contracts. 70.11 Section 70.11 Energy NUCLEAR... using special nuclear material under certain Department of Energy and Nuclear Regulatory Commission...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 1 2014-01-01 2014-01-01 false Persons using byproduct material under certain Department of Energy and Nuclear Regulatory Commission contracts. 30.12 Section 30.12 Energy NUCLEAR REGULATORY... Persons using byproduct material under certain Department of Energy and Nuclear Regulatory Commission...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 2 2012-01-01 2012-01-01 false Persons using special nuclear material under certain Department of Energy and Nuclear Regulatory Commission contracts. 70.11 Section 70.11 Energy NUCLEAR... using special nuclear material under certain Department of Energy and Nuclear Regulatory Commission...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 1 2012-01-01 2012-01-01 false Persons using byproduct material under certain Department of Energy and Nuclear Regulatory Commission contracts. 30.12 Section 30.12 Energy NUCLEAR REGULATORY... Persons using byproduct material under certain Department of Energy and Nuclear Regulatory Commission...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 2 2014-01-01 2014-01-01 false Persons using special nuclear material under certain Department of Energy and Nuclear Regulatory Commission contracts. 70.11 Section 70.11 Energy NUCLEAR... using special nuclear material under certain Department of Energy and Nuclear Regulatory Commission...
Code of Federal Regulations, 2013 CFR
2013-10-01
... the requirements of the Buy American Act, based on claimed unreasonable cost of domestic construction... Requirement-Construction Materials Under Trade Agreements. 52.225-12 Section 52.225-12 Federal Acquisition...—Construction Materials Under Trade Agreements. As prescribed in 25.1102(d)(1), insert the following provision...
Code of Federal Regulations, 2012 CFR
2012-10-01
... the requirements of the Buy American Act, based on claimed unreasonable cost of domestic construction... Requirement-Construction Materials Under Trade Agreements. 52.225-12 Section 52.225-12 Federal Acquisition...—Construction Materials Under Trade Agreements. As prescribed in 25.1102(d)(1), insert the following provision...
Code of Federal Regulations, 2011 CFR
2011-10-01
... the requirements of the Buy American Act, based on claimed unreasonable cost of domestic construction... Requirement-Construction Materials Under Trade Agreements. 52.225-12 Section 52.225-12 Federal Acquisition...—Construction Materials Under Trade Agreements. As prescribed in 25.1102(d)(1), insert the following provision...
Code of Federal Regulations, 2010 CFR
2010-10-01
... the requirements of the Buy American Act, based on claimed unreasonable cost of domestic construction... Requirement-Construction Materials Under Trade Agreements. 52.225-12 Section 52.225-12 Federal Acquisition...—Construction Materials Under Trade Agreements. As prescribed in 25.1102(d)(1), insert the following provision...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false Persons using byproduct material under certain Department of Energy and Nuclear Regulatory Commission contracts. 30.12 Section 30.12 Energy NUCLEAR REGULATORY... Persons using byproduct material under certain Department of Energy and Nuclear Regulatory Commission...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Persons using special nuclear material under certain Department of Energy and Nuclear Regulatory Commission contracts. 70.11 Section 70.11 Energy NUCLEAR... using special nuclear material under certain Department of Energy and Nuclear Regulatory Commission...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 1 2011-01-01 2011-01-01 false Persons using byproduct material under certain Department of Energy and Nuclear Regulatory Commission contracts. 30.12 Section 30.12 Energy NUCLEAR REGULATORY... Persons using byproduct material under certain Department of Energy and Nuclear Regulatory Commission...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Persons using special nuclear material under certain Department of Energy and Nuclear Regulatory Commission contracts. 70.11 Section 70.11 Energy NUCLEAR... using special nuclear material under certain Department of Energy and Nuclear Regulatory Commission...
Seasonal and Interannual Variability in Gulf of Maine Hydrodynamics: 2002-2011.
Li, Yizhen; He, Ruoying; McGillicuddy, Dennis J
2014-05-01
In situ observations including long-term moored meteorological and oceanographic measurements and multi-year gulf-wide ship survey data are used to quantify interannual variability of surface wind, river runoff, and hydrographic conditions in the Gulf of Maine during summers 2002-2011. The cumulative upwelling index shows that upwelling (downwelling)-favorable wind conditions were most persistent in 2010 (2005) over the 10-year study period. River discharge was highest in 2005; peak runoff occurred in early April in 2010 as opposed to late April to middle May in other years. Moored time series show that coastal water temperature was 0.5-2 °C warmer than average in summer 2010, and about 2 °C colder than average in 2004. Coastal salinity in April 2010 was the lowest in the 10-year study period. Both moored Acoustic Doppler Current Profiler (ADCP) current measurements and dynamic height/geostrophic velocity calculations based on gulf-wide ship survey data show May-June 2010 had one of the weakest alongshore transports in the western Gulf of Maine during the 10-year study period, likely associated with intrusions of warm slope water and fresher-than-usual Scotian Shelf water. Comparisons of coastal currents to the Paralytic Shellfish Poisoning (PSP) closure maps resulting from A. fundyense blooms suggest a linkage between alongshore transport and the downstream extent of toxicity.
Tidal and meteorological forcing of sediment transport in tributary mudflat channels.
Ralston, David K; Stacey, Mark T
2007-06-01
Field observations of flow and sediment transport in a tributary channel through intertidal mudflats indicate that suspended sediment was closely linked to advection and dispersion of a tidal salinity front. During calm weather when tidal forcing was dominant, high concentrations of suspended sediment advected up the mudflat channel in the narrow region between salty water from San Francisco Bay and much fresher runoff from the small local watershed. Salinity and suspended sediment dispersed at similar rates through each tidal inundation, such that during receding ebbs the sediment pulse had spread spatially and maximum concentrations had decreased. Net sediment transport was moderately onshore during the calm weather, as asymmetries in stratification due to tidal straining of the salinity front enhanced deposition, particularly during weaker neap tidal forcing. Sediment transport by tidal forcing was periodically altered by winter storms. During storms, strong winds from the south generated wind waves and temporarily increased suspended sediment concentrations. Increased discharge down the tributary channels due to precipitation had more lasting impact on sediment transport, supplying both buoyancy and fine sediment to the system. Net sediment transport depended on the balance between calm weather tidal forcing and perturbations by episodic storms. Net transport in the tributary channel was generally off-shore during storms and during calm weather spring tides, and on-shore during calm weather neap tides.
Tidal and meteorological forcing of sediment transport in tributary mudflat channels
Ralston, David K.; Stacey, Mark T.
2011-01-01
Field observations of flow and sediment transport in a tributary channel through intertidal mudflats indicate that suspended sediment was closely linked to advection and dispersion of a tidal salinity front. During calm weather when tidal forcing was dominant, high concentrations of suspended sediment advected up the mudflat channel in the narrow region between salty water from San Francisco Bay and much fresher runoff from the small local watershed. Salinity and suspended sediment dispersed at similar rates through each tidal inundation, such that during receding ebbs the sediment pulse had spread spatially and maximum concentrations had decreased. Net sediment transport was moderately onshore during the calm weather, as asymmetries in stratification due to tidal straining of the salinity front enhanced deposition, particularly during weaker neap tidal forcing. Sediment transport by tidal forcing was periodically altered by winter storms. During storms, strong winds from the south generated wind waves and temporarily increased suspended sediment concentrations. Increased discharge down the tributary channels due to precipitation had more lasting impact on sediment transport, supplying both buoyancy and fine sediment to the system. Net sediment transport depended on the balance between calm weather tidal forcing and perturbations by episodic storms. Net transport in the tributary channel was generally off-shore during storms and during calm weather spring tides, and on-shore during calm weather neap tides. PMID:21499572
North Atlantic deep water formation and AMOC in CMIP5 models
NASA Astrophysics Data System (ADS)
Heuzé, Céline; Wåhlin, Anna
2017-04-01
North Atlantic deep water formation processes and properties in climate models are indicative of their ability to simulate future ocean circulation, ventilation, carbon and heat uptake, and sea level rise. Historical time series of temperature, salinity, sea ice concentration and ocean transport in the North Atlantic subpolar gyre and Nordic Seas from 23 CMIP5 (Climate Model Intercomparison Project, phase 5) models are compared with observations to reveal the causes and consequences of North Atlantic deep water formation in models. Deep convection occurs at the sea ice edge and is most realistic in models with accurate sea ice extent, mostly those using the CICE model. The trigger of deep convection varies among models; for one third it is intense surface cooling only, while the remaining two thirds also need upward mixing of subsurface warm salty water. The models with the most intense deep convection have the most accurate deep water properties, which are warmer and fresher than in the other models. They also have the strongest Atlantic Meridional Overturning Circulation (AMOC). For over half of the models, 40% of the variability of the AMOC is explained by the volumes of deep water produced in the subpolar gyre and Nordic Seas, with 3 and 4 years lag respectively. Understanding the dynamical drivers of the AMOC in models is key to realistically forecast a possible slow down and its consequences on the global circulation and marine life.
Telling the patient's story: using theatre training to improve case presentation skills.
Hammer, Rachel R; Rian, Johanna D; Gregory, Jeremy K; Bostwick, J Michael; Barrett Birk, Candace; Chalfant, Louise; Scanlon, Paul D; Hall-Flavin, Daniel K
2011-06-01
A medical student's ability to present a case history is a critical skill that is difficult to teach. Case histories presented without theatrical engagement may fail to catch the attention of their intended recipients. More engaging presentations incorporate 'stage presence', eye contact, vocal inflection, interesting detail and succinct, well organised performances. They convey stories effectively without wasting time. To address the didactic challenge for instructing future doctors in how to 'act', the Mayo Medical School and The Mayo Clinic Center for Humanities in Medicine partnered with the Guthrie Theater to pilot the programme 'Telling the Patient's Story'. Guthrie teaching artists taught storytelling skills to medical students through improvisation, writing, movement and acting exercises. Mayo Clinic doctors participated and provided students with feedback on presentations and stories from their own experiences in patient care. The course's primary objective was to build students' confidence and expertise in storytelling. These skills were then applied to presenting cases and communicating with patients in a fresher, more engaging way. This paper outlines the instructional activities as aligned with course objectives. Progress was tracked by comparing pre-course and post-course surveys from the seven participating students. All agreed that the theatrical techniques were effective teaching methods. Moreover, this project can serve as an innovative model for how arts and humanities professionals can be incorporated for teaching and professional development initiatives at all levels of medical education.
Rapid subtropical North Atlantic salinity oscillations across Dansgaard-Oeschger cycles.
Schmidt, Matthew W; Vautravers, Maryline J; Spero, Howard J
2006-10-05
Geochemical and sedimentological evidence suggest that the rapid climate warming oscillations of the last ice age, the Dansgaard-Oeschger cycles, were coupled to fluctuations in North Atlantic meridional overturning circulation through its regulation of poleward heat flux. The balance between cold meltwater from the north and warm, salty subtropical gyre waters from the south influenced the strength and location of North Atlantic overturning circulation during this period of highly variable climate. Here we investigate how rapid reorganizations of the ocean-atmosphere system across these cycles are linked to salinity changes in the subtropical North Atlantic gyre. We combine Mg/Ca palaeothermometry and oxygen isotope ratio measurements on planktonic foraminifera across four Dansgaard-Oeschger cycles (spanning 45.9-59.2 kyr ago) to generate a seawater salinity proxy record from a subtropical gyre deep-sea sediment core. We show that North Atlantic gyre surface salinities oscillated rapidly between saltier stadial conditions and fresher interstadials, covarying with inferred shifts in the Tropical Atlantic hydrologic cycle and North Atlantic overturning circulation. These salinity oscillations suggest a reduction in precipitation into the North Atlantic and/or reduced export of deep salty thermohaline waters during stadials. We hypothesize that increased stadial salinities preconditioned the North Atlantic Ocean for a rapid return to deep overturning circulation and high-latitude warming by contributing to increased North Atlantic surface-water density on interstadial transitions.
Interaction of lateral baroclinic forcing and turbulence in an estuary
Lacy, J.R.; Stacey, M.T.; Burau, J.R.; Monismith, Stephen G.
2003-01-01
Observations of density and velocity in a channel in northern San Francisco Bay show that the onset of vertical density stratification during flood tides is controlled by the balance between the cross-channel baroclinic pressure gradient and vertical mixing due to turbulence. Profiles of velocity, salinity, temperature, and suspended sediment concentration were measured in transects across Suisun Cutoff, in northern San Francisco Bay, on two days over the 12.5-hour tidal cycle. During flood tides an axial density front developed between fresher water flowing from the shallows of Grizzly Bay into the northern side of Suisun Cutoff and saltier water flowing up the channel. North of the front, transverse currents were driven by the lateral salinity gradient, with a top-to-bottom velocity difference greater than 30 cm/s. South of the front, the secondary circulation was weak, and along-channel velocities were greater than to the north. The gradient Richardson number shows that stratification was stable north of the front, while the water column was turbulently mixed south of the front. Time-series measurements of velocity and salinity demonstrate that the front develops during each tidal cycle. In estuaries, longitudinal dynamics predict less stratification during flood than ebb tides. These data show that stratification can develop during flood tides due to a lateral baroclinic pressure gradient in estuaries with complex bathymetry.
NASA Astrophysics Data System (ADS)
Balbín, R.; López-Jurado, J. L.; Flexas, M. M.; Reglero, P.; Vélez-Velchí, P.; González-Pola, C.; Rodríguez, J. M.; García, A.; Alemany, F.
2014-10-01
Six summer surveys conducted from 2001 to 2005 and in 2012 by the Spanish Institute of Oceanography (IEO) reveal that the hydrographic early summer scenarios around the Balearic Islands are related to the winter atmospheric forcing in the northwestern Mediterranean Sea. The Balearic Islands (western Mediterranean Sea) lie at the transition between the southern, fresher, newly arrived Atlantic Waters (AWs) and the northern, saltier, resident AW. The meridional position of the salinity driven oceanic density front separating the new from the resident AW is determined by the presence/absence of Western Intermediate Water (WIW) in the Mallorca and Ibiza channels. When WIW is present in the channels, the oceanic density front is found either at the south of the islands, or along the Emile Baudot escarpment. In contrast, when WIW is absent, new AW progresses northwards crossing the Ibiza channel and/or the Mallorca channel. In this later scenario, the oceanic density front is closer to the Balearic Islands. A good correspondence exists between standardized winter air temperature anomaly in the Gulf of Lions and the presence of WIW in the channels. We discuss the use of a regional climatic index based on these parameters to forecast in a first-order approach the position of the oceanic front, as it is expected to have high impact on the regional marine ecosystem.
Increase The Sugar Concentration of The Solution Sugar by Reverse Osmotic Membrane
NASA Astrophysics Data System (ADS)
Redjeki, S.; Hapsari, N.; Iriani
2018-01-01
Sugar is one of the basic needs of people and food and drink industry. As technology advances and the demand for efficient usage of sugar rises, crystal sugar is seen as less advantageous than liquid sugar. If sugar is always dissolved in water before use, then it will be more efficient and practical for consumers to use sugar in liquid form than in crystal form. Other than that, liquid sugar is also attractive to consumers because it is economical, hygienic, instantly soluble in hot and cold water, fresher and longer-lasting, able to thicken and enrich the texture of foods and drinks, and functions as sweetener, syrup, and flavor enhancer. Liquid sugar is also more beneficial for sugar producers because of simpler production process, cheaper production cost, and similar yield with no extra cost. In sugar production, separation process is found in most of its stages and therefore the use of membrane technology for separating solute and water content has a good potential. In this research, water content reduction of sugar solution was done in order to increase the sugar concentration of the solution. The parameters of this research were 4%, 5%, and 6% starting concentration of sugar solution; 20, 40, and 60 minutes of process time; and 85 and 60 PSI ΔP. The best result was acquired on 4% starting concentration, 60 PSI ΔP, and 60 minutes process time.
NASA Astrophysics Data System (ADS)
Kalén, Ola; Assmann, Karen M.; Wåhlin, Anna K.; Ha, Ho Kyung; Kim, Tae Wan; Lee, Sang Hoon
2016-01-01
The glaciers that drain the West Antarctic Ice Sheet into the Amundsen Sea are accelerating and experiencing increased basal melt of the floating ice shelves. Warm and salty deep water has been observed to flow southward in deep troughs leading from the shelf break to the inner shelf area where the glaciers terminate. It has been suggested that the melting induced by this warm water is responsible for the acceleration of the glaciers. Here we investigate the structure of the currents and the associated heat flow on the shelf using in-situ observations from 2008 to 2014 in Dotson Trough, the main channel in the western part of the Amundsen Sea shelf, together with output from a numerical model. The model is generally able to reproduce the observed velocities and temperatures in the trough, albeit with a thicker warm bottom layer. In the absence of measurements of sea surface height we define the barotropic component of the flow as the vertical average of the velocity. It is shown that the flow is dominated by warm barotropic inflows on the eastern side and colder and fresher barotropic outflows on the western side. The transport of heat appears to be primarily induced by this clockwise barotropic circulation in the trough, contrary to earlier studies emphasizing a bottom-intensified baroclinic inflow as the main contributor.
Introduction: social complexity and the bow in the prehistoric North American record.
Bingham, Paul M; Souza, Joanne; Blitz, John H
2013-01-01
This Special Issue of Evolutionary Anthropology grew out of a symposium at the 2012 Society for American Archaeology (SAA) meeting in Memphis, Tennessee (April 18-22). The goal of the symposium was to explore what we will argue is one of the most important and promising opportunities in the global archeological enterprise. In late prehistoric North America, the initial rise of cultures of strikingly enhanced complexity and the local introduction of a novel weapon technology, the bow, apparently correlate intimately in a diverse set of independent cases across the continent, as originally pointed out by Blitz. If this empirical relationship ultimately proves robust, it gives us an unprecedented opportunity to evaluate hypotheses for the causal processes producing social complexity and, by extension, to assess the possibility of a universal theory of history. The rise of comparably complex cultures was much more recent in North America than it was elsewhere and the resulting fresher archeological record is relatively well explored. These and other features make prehistoric North America a unique empirical environment. Together, the symposium and this issue have brought together outstanding investigators with both empirical and theoretical expertise. The strong cross-feeding and extended interactions between these investigators have given us all the opportunity to advance the promising exploration of what we call the North American Neolithic transitions. Our goal in this paper is to contextualize this issue. Copyright © 2013 Wiley Periodicals, Inc.
Wang, Rui; Shi, Lu
2012-06-30
In recent years supermarkets and fast food restaurants have been replacing those "wet markets" of independent vendors as the major food sources in urban China. Yet how these food outlets relate to children's nutritional intake remains largely unexplored. Using a longitudinal survey of households and communities in China, this study examines the effect of the urban built food environment (density of wet markets, density of supermarkets, and density of fast food restaurants) on children's nutritional intake (daily caloric intake, daily carbohydrate intake, daily protein intake, and daily fat intake). Children aged 6-18 (n = 185) living in cities were followed from 2004 to 2006, and difference-in-difference models are used to address the potential issue of omitted variable bias. Results suggest that the density of wet markets, rather than that of supermarkets, positively predicts children's four dimensions of nutritional intake. In the caloric intake model and the fat intake model, the positive effect of neighborhood wet market density on children's nutritional intake is stronger with children from households of lower income. With their cheaper prices and/or fresher food supply, wet markets are likely to contribute a substantial amount of nutritional intake for children living nearby, especially those in households with lower socioeconomic status. For health officials and urban planners, this study signals a sign of warning as wet markets are disappearing from urban China's food environment.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 2 2010-10-01 2010-10-01 false Materiality. 32.26 Section 32.26... FOR TELECOMMUNICATIONS COMPANIES General Instructions § 32.26 Materiality. Companies shall follow this... materiality under GAAP, unless a waiver has been granted under the provisions of § 32.18 of this subpart to do...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-27
... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration 49 CFR Part... under the Federal hazardous materials transportation law (49 U.S.C. 5101-5128). PHMSA carries out the rulemaking responsibilities of the Secretary of Transportation under the Federal hazardous materials...
Code of Federal Regulations, 2014 CFR
2014-04-01
...) Domestic material. “Domestic material” means a material whose country of origin as determined under these rules is the same country as the country in which the good is produced. (e) Foreign material. “Foreign material” means a material whose country of origin as determined under these rules is not the same country...
Code of Federal Regulations, 2013 CFR
2013-04-01
...) Domestic material. “Domestic material” means a material whose country of origin as determined under these rules is the same country as the country in which the good is produced. (e) Foreign material. “Foreign material” means a material whose country of origin as determined under these rules is not the same country...
Code of Federal Regulations, 2012 CFR
2012-04-01
...) Domestic material. “Domestic material” means a material whose country of origin as determined under these rules is the same country as the country in which the good is produced. (e) Foreign material. “Foreign material” means a material whose country of origin as determined under these rules is not the same country...
Code of Federal Regulations, 2011 CFR
2011-04-01
...) Domestic material. “Domestic material” means a material whose country of origin as determined under these rules is the same country as the country in which the good is produced. (e) Foreign material. “Foreign material” means a material whose country of origin as determined under these rules is not the same country...
NASA Technical Reports Server (NTRS)
Poole, Lamont R.; Councill, Earl L., Jr.
1972-01-01
A series of tests has been conducted to investigate the elastic behavior of Viking-type suspension-line material under dynamic loading conditions. Results indicate that there is a decrease in both rupture-load capability and elongation at rupture as the test strain rate is increased. Preliminary examination of force-strain characteristics indicates that, on the average, the material exhibits some type of viscous effect which results in a greater force being produced, for a particular value of strain, under dynamic loading conditions than that produced under quasi-static loading conditions. A great deal of uncertainty exists in defining a priori the tensile properties of viscoelastic materials, such as nylon or dacron, under dynamic loading conditions. Additional uncertainty enters the picture when woven configurations such as suspension,line material are considered. To eliminate these uncertainties, with respect to the Viking parachute configuration, a test program has been conducted to obtain data on the tensile properties of Viking-type suspension-line material over a wide range of strain rates. Based on preliminary examination of these data, the following conclusions can be drawn: 1. Material rupture-load capability decreases as strain-rate is increased. At strain rates above 75 percent/sec, no rupture loads were observed which would meet the minimum tensile strength specification of 880 pounds. 2. The material, on the average, exhibits some type of viscous effect which, for a particular value of strain, produces a greater load under dynamic loading conditions than that produced under quasi-static loading conditions.
Experimental Investigation of Fibre Reinforced Composite Materials Under Impact Load
NASA Astrophysics Data System (ADS)
Koppula, Sravani; Kaviti, Ajay kumar; Namala, Kiran kumar
2018-03-01
Composite materials are extensively used in various engineering applications. They have very high flexibility design which allows prescribe tailoring of material properties by lamination of composite fibres with reinforcement of resin to it. Complex failure condition prevail in the composite materials under the action of impact loads, major modes of failure in composite may include matrix cracking, fibre matrix, fibre breakage, de-bonding or de- lamination between composite plies. This paper describes the mechanical properties of glass fibre reinforced composite material under impact loading conditions through experimental setup. Experimental tests are performed according to ASTM standards using impact testing machines like Charpy test, computerized universal testing machine.
Electrostatic Studies for the 2008 Hubble Service Repair Mission
NASA Technical Reports Server (NTRS)
Buhler, C. R.; Clements, J. S.; Calle, C. I.
2012-01-01
High vacuum triboelectric testing of space materials was required to identify possible Electrostatic Discharge (ESD) concerns for the astronauts in space during electronics board replacement on the Hubble Space Telescope. Testing under high vacuum conditions with common materials resulted in some interesting results. Many materials were able to charge to high levels which did not dissipate quickly even when grounded. Certain materials were able to charge up in contact with grounded metals while others were not. An interesting result was that like materials did not exchange electrostatic charge under high vacuum conditions. The most surprising experimental result is the lack of brush discharges from charged insulators under high vacuum conditions.
Nonlinear Multiscale Modeling of 3D Woven Fiber Composites under Ballistic Loading
2013-07-11
contact parameters on the underlying damage processes is being studied and worked on. We further develop a material model suitable particularly for...of Material and Process Engineering. 2011/05/23 00:00:00, . : , TOTAL: 1 (d) Manuscripts Number of Peer-Reviewed Conference Proceeding publications...continuum damage mechanics suitable for polymer materials. The effect of contact parameters on the underlying damage processes is being studied and
Code of Federal Regulations, 2012 CFR
2012-01-01
... over nuclear facilities and materials under the Atomic Energy Act. 8.4 Section 8.4 Energy NUCLEAR... nuclear facilities and materials under the Atomic Energy Act. (a) By virtue of the Atomic Energy Act of... Atomic Energy Act of 1954 sets out a pattern for licensing and regulation of certain nuclear materials...
Code of Federal Regulations, 2010 CFR
2010-01-01
... over nuclear facilities and materials under the Atomic Energy Act. 8.4 Section 8.4 Energy NUCLEAR... nuclear facilities and materials under the Atomic Energy Act. (a) By virtue of the Atomic Energy Act of... Atomic Energy Act of 1954 sets out a pattern for licensing and regulation of certain nuclear materials...
Code of Federal Regulations, 2011 CFR
2011-01-01
... over nuclear facilities and materials under the Atomic Energy Act. 8.4 Section 8.4 Energy NUCLEAR... nuclear facilities and materials under the Atomic Energy Act. (a) By virtue of the Atomic Energy Act of... Atomic Energy Act of 1954 sets out a pattern for licensing and regulation of certain nuclear materials...
78 FR 20699 - Submission for OMB Review; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-05
...\\ Commission staff reviews sales material filed under rule 607 for materially misleading statements and... SECURITIES AND EXCHANGE COMMISSION Submission for OMB Review; Comment Request Upon Written Request... other conditions are met. Rule 607 under Regulation E (17 CFR 230.607) entitled, ``Sales material to be...
Shock temperature measurement of transparent materials under shock compression
NASA Astrophysics Data System (ADS)
Hu, Jinbiao
1999-06-01
Under shock compression, some materials have very small absorptance. So it's emissivity is very small too. For this kinds of materials, although they stand in high temperature state under shock compression, the temperature can not be detected easily by using optical radiation technique because of the low emissivity. In this paper, an optical radiation temperature measurement technique of measuring temperature of very low emissive material under shock compression was proposed. For making sure this technique, temperature of crystal NaCl at shock pressure 41 GPa was measured. The result agrees with the results of Kormer et al and Ahrens et al very well. This shows that this technique is reliable and can be used to measuring low emissive shock temperature.
Developing Culturally Relevant Literacy Assessments for Bahamian Children
ERIC Educational Resources Information Center
Sachs, Gertrude Tinker; Jackson, Annmarie P.; Sullivan, Tarika; Wynter-Hoyte, Kamania
2018-01-01
The strong presence of culturally relevant materials in classrooms is seen as an indicator of good teaching but the development and use of these materials is under-investigated. Similarly, the actual construction and use of culturally relevant materials for literacy assessment purposes is under-reported. This paper examines the development and…
Pressure induced swelling in microporous materials
Vogt, Thomas; Hriljac, Joseph A.; Lee, Yongjae
2006-07-11
A method for capturing specified materials which includes contacting a microporous material with a hydrostatic fluid having at least one specified material carried therein, under pressure which structurally distorts the lattice sufficiently to permit entry of the at least one specified material. The microporous material is capable of undergoing a temporary structural distortion which alters resting lattice dimensions under increased ambient pressure and at least partially returning to rest lattice dimensions when returned to ambient pressure. The pressure of the fluid is then reduced to permit return to at least partial resting lattice dimension while the at least one specified material is therein. By this method, at least one specified material is captured in the microporous material to form a modified microporous material.
Along-shelf current variability on the Catalan inner-shelf (NW Mediterranean)
Grifoll, Manel; Aretxabaleta, Alfredo L.; Espino, Manuel; Warner, John C.
2012-01-01
We examine the circulation over the inner shelf of the Catalan Sea using observations of currents obtained from three ADCPs within the inner-shelf (24 and 50 m depth) during March-April 2011. The along-shelf current fluctuations during that period are mainly controlled by the local wind stress on short time scales and by remote pressure gradients on synoptic time scales. Different forcing mechanisms are involved in the along-shelf momentum balance. During storm conditions, wind stress, sea level gradients and the non-linear terms dominate the balance. During weak wind conditions, the momentum balance is controlled by the pressure gradient, while during periods of moderate wind in the presence of considerable stratification, the balance is established between the Coriolis and wind stress terms. Vertical variations of velocity are affected by the strong observed density gradient. The increased vertical shear is accompanied by the development of stratified conditions due to local heating when the wind is not able to counteract (and destroy) stratification. The occasional influence of the Besòs river plume is observed in time scales of hours to days in a limited area in front of Barcelona. The area affected by the plume depends on the vertical extend of the fresher layer, the fast river discharge peak, and the relaxation of cross-shore velocities after northeast storm events. This contribution provides a first interpretation of the inner-shelf dynamics in the Catalan Sea.
Rescic, Jan; Mikulic-Petkovsek, Maja; Rusjan, Denis
2016-11-01
The interest in producing wines preferred by consumers increases the need for improving practices to modify grape and wine composition. The aim of this study was to assess the impacts of three different canopy management measures, (1) early leaf removal in the cluster zone, (2) removal of young leaves above the second pair of wires and (3) Double Maturation Raisonnée, on the yield and chemical composition of 'Istrian Malvasia' grape and wine. Double Maturation Raisonnée had a significantly greater impact on phenolic compounds, while the highest soluble solids (24.3 and 23.5 °Brix) and titratable acidity (7.0 and 7.1 g L -1 ) were measured at early leaf removal. Leaf removal at véraison caused an unexpected augmentation of flavonols in the berry skin. Early leaf removal resulted in significantly lower extracts of wine. Nevertheless, they reached the highest mark (16.5 out of 20.0 points) in sensory evaluation compared with leaf removal at véraison and Double Maturation Raisonnée (15.0 points) and control (16.0 points). Leaf removal at véraison and Double Maturation Raisonnée improved the phenolic composition of wine, producing a full-bodied wine. On the other hand, early leaf removal significantly augmented the yield and titratable acidity, hydroxycinnamic acids and flavanols of wine, which might have led to a fresher but less-bodied wine. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Space weathering trends on carbonaceous asteroids: A possible explanation for Bennu's blue slope?
NASA Astrophysics Data System (ADS)
Lantz, C.; Binzel, R. P.; DeMeo, F. E.
2018-03-01
We compare primitive near-Earth asteroid spectral properties to the irradiated carbonaceous chondrite samples of Lantz et al. (2017) in order to assess how space weathering processes might influence taxonomic classification. Using the same eigenvectors from the asteroid taxonomy by DeMeo et al. (2009), we calculate the principal components for fresh and irradiated meteorites and find that change in spectral slope (blueing or reddening) causes a corresponding shift in the two first principal components along the same line that the C- and X-complexes track. Using a sample of B-, C-, X-, and D-type NEOs with visible and near-infrared spectral data, we further investigated the correlation between prinicipal components and the spectral curvature for the primitive asteroids. We find that space weathering effects are not just slope and albedo, but also include spectral curvature. We show how, through space weathering, surfaces having an original "C-type" reflectance can thus turn into a redder P-type or a bluer B-type, and that space weathering can also decrease (and disguise) the D-type population. Finally we take a look at the case of OSIRIS-REx target (101955) Bennu and propose an explanation for the blue and possibly red spectra that were previously observed on different locations of its surface: parts of Bennu's surface could have become blue due to space weathering, while fresher areas are redder. No clear prediction can be made on Hayabusa-2 target (162173) Ryugu.
Seasonal sea ice cover during the warm Pliocene: Evidence from the Iceland Sea (ODP Site 907)
NASA Astrophysics Data System (ADS)
Clotten, Caroline; Stein, Ruediger; Fahl, Kirsten; De Schepper, Stijn
2018-01-01
Sea ice is a critical component in the Arctic and global climate system, yet little is known about its extent and variability during past warm intervals, such as the Pliocene (5.33-2.58 Ma). Here, we present the first multi-proxy (IP25, sterols, alkenones, palynology) sea ice reconstructions for the Late Pliocene Iceland Sea (ODP Site 907). Our interpretation of a seasonal sea ice cover with occasional ice-free intervals between 3.50-3.00 Ma is supported by reconstructed alkenone-based summer sea surface temperatures. As evidenced from brassicasterol and dinosterol, primary productivity was low between 3.50 and 3.00 Ma and the site experienced generally oligotrophic conditions. The East Greenland Current (and East Icelandic Current) may have transported sea ice into the Iceland Sea and/or brought cooler and fresher waters favoring local sea ice formation. Between 3.00 and 2.40 Ma, the Iceland Sea is mainly sea ice-free, but seasonal sea ice occurred between 2.81 and 2.74 Ma. Sea ice extending into the Iceland Sea at this time may have acted as a positive feedback for the build-up of the Greenland Ice Sheet (GIS), which underwent a major expansion ∼2.75 Ma. Thereafter, most likely a stable sea ice edge developed close to Greenland, possibly changing together with the expansion and retreat of the GIS and affecting the productivity in the Iceland Sea.
Dairy cattle abortion in California: evaluation of diagnostic laboratory data.
Jamaluddin, A A; Case, J T; Hird, D W; Blanchard, P C; Peauroi, J R; Anderson, M L
1996-04-01
A descriptive study was undertaken on 595 dairy cattle abortion submissions to the California Veterinary Diagnostic Laboratory System from July 1, 1987, to December 31, 1989, to determine the etiologic nature and distribution (seasonal and geographical) of dairy cattle abortion in California as reflected by laboratory submissions. Univariate analysis was performed to characterize abortion-related submissions by farm and laboratory variables, and logistic regression analysis was performed to determine factors that may influence success of abortion diagnosis in the laboratory. The proportions of dairies that submitted abortion-related specimens from northern, central, and southern milksheds during the 2.5-year period were 20.3%, 15.7%, and 13.1%, respectively, and 60% of submissions were from medium-sized (200-999 cows) dairies. Submissions consisted of fetus (58%), placenta (2%), fetus and placenta (12%), and fetus, placenta, and maternal blood (0.84%); fetal tissues and uterine fluid constituted the rest. An apparent pattern in abortion submissions was indicated by a peak in submissions during the winter and summer of 1988 and 1989. Infectious agents were associated with 37.1% of submissions; noninfectious causes, 5.5%, and undetermined etiology, 57.3%. Bacterial abortion accounted for 18% of etiologic diagnoses; protozoal, 14.6%; viral, 3.2%; and fungal, 1.3%. Submissions comprising fetus, placenta, maternal blood, or their combinations were associated with a higher likelihood of definitive diagnosis for abortion than tissues, as were fresher specimens and submissions associated with the second trimester of fetal gestation.
Silva, Filipa V M; Tan, Eng Keat; Farid, Mohammed
2012-10-01
High pressure processing (HPP) is a new non-thermal technology commercially used to pasteurize fruit juices and extend shelf-life, while preserving delicate aromas/flavours and bioactive constituents. Given the spoilage incidents and economic losses due to Alicyclobacillus acidoterrestris in the fruit juice industry, the use of high pressure (200 MPa - 600 MPa) in combination with mild temperature (45 °C-65 °C) for 1-15 min, to inactivate these spores in orange juice were investigated. As expected, the higher the temperature, pressure and time, the larger was the A. acidoterrestris inactivation. The survival curves were described by the first order Bigelow model. For 200 MPa, D(45 °C) = 43.9 min, D(55 °C) = 28.8 min, D(65 °C) = 5.0 min and z-value = 21.3 °C. At 600 MPa, D(45 °C) = 12.9 min, D(55 °C) = 7.0 min, D(65 °C) = 3.4 min and z-value = 34.4 °C. Spores were inactivated at 45 °C and 600 MPa, and at 65 °C only 200 MPa was needed to achieve reduction in spore numbers. Results demonstrated that HPP allowed A. acidoterrestris spore inactivation at lower temperatures (45-65 °C) than conventional thermal processing (85-95 °C) without pressure, yielding a fresher and higher quality preserved food. Copyright © 2012 Elsevier Ltd. All rights reserved.
Medieval Aridity in the Central Tropical Pacific
NASA Astrophysics Data System (ADS)
Higley, M. C.; Conroy, J. L.; Schmitt, S.
2016-12-01
Reconstructing last millennium hydroclimate history in the tropical Pacific requires continuous, high temporal resolution archives of past moisture balance. Such records remain rare, particularly in the central tropical Pacific (CTP), where to date only one 1300-year terrestrial record of hydroclimate is available. Here we present a new brackish lake sediment record from Kiritimati Island (1.9° N, 157.4° W). 2000 years of geochemical and sedimentological data indicate centennial periods of fresher and more saline lake water. An episode of increased microbial mat development and gypsum precipitation marks the period 900 to 1250 CE, coincident with the Medieval Climate Anomaly (MCA), indicating a period of enhanced salinity and extended aridity. A shift from gypsum and microbial mats to carbonate sediment at the transition between the MCA and the Little Ice Age (LIA) supports the hypothesis of a southward shift in the Intertropical Convergence Zone (ITCZ) at this time and increased precipitation over Kiritimati. The LIA does not appear anomalously wet in Kiritimati relative to the 20th century, and higher frequency variability in the Kiritimati sediment laminae indicates microbial mats continued to grow at multidecadal intervals until 1700 AD. The periodicity of sub-mm scale laminations within the buried microbial mats is highly variable, and indicates mat-carbonate laminae are too frequent to be related to seasonal or ENSO periodicity. Such laminae are likely related to the organization of microbial communities and organomineralization along environmental microgradients in microbial mats.
Yang, Xunan; Yu, Liuqian; Chen, Zefang; Xu, Meiying
2016-01-01
Traditional risk assessment and source apportionment of sediments based on bulk polycyclic aromatic hydrocarbons (PAHs) can introduce biases due to unknown aging effects in various sediments. We used a mild solvent (hydroxypropyl-β-cyclodextrin) to extract the bioavailable fraction of PAHs (a-PAHs) from sediment samples collected in Pearl River, southern China. We investigated the potential application of this technique for ecological risk assessments and source apportionment. We found that the distribution of PAHs was associated with human activities and that the a-PAHs accounted for a wide range (4.7%–21.2%) of total-PAHs (t-PAHs), and high risk sites were associated with lower t-PAHs but higher a-PAHs. The correlation between a-PAHs and the sediment toxicity assessed using tubificid worms (r = −0.654, P = 0.021) was greater than that from t-PAH-based risk assessment (r = −0.230, P = 0.472). Moreover, the insignificant correlation between a-PAH content and mPEC-Q of low molecular weight PAHs implied the potiential bias of t-PAH-based risk assessment. The source apportionment from mild extracted fractions was consistent across different indicators and was in accordance with typical pollution sources. Our results suggested that mild extraction-based approaches reduce the potential error from aging effects because the mild extracted PAHs provide a more direct indicator of bioavailability and fresher fractions in sediments. PMID:26976450
Creep and Environmental Durability of EBC/CMCs Under Imposed Thermal Gradient Conditions
NASA Technical Reports Server (NTRS)
Appleby, Matthew; Morscher, Gregory N.; Zhu, Dongming
2013-01-01
Interest in SiC fiber-reinforced SiC ceramic matrix composite (CMC) environmental barrier coating (EBC) systems for use in high temperature structural applications has prompted the need for characterization of material strength and creep performance under complex aerospace turbine engine environments. Stress-rupture tests have been performed on SiC/SiC composites systems, with varying fiber types and coating schemes to demonstrate material behavior under isothermal conditions. Further testing was conducted under exposure to thermal stress gradients to determine the effect on creep resistance and material durability. In order to understand the associated damage mechanisms, emphasis is placed on experimental techniques as well as implementation of non-destructive evaluation; including electrical resistivity monitoring. The influence of environmental and loading conditions on life-limiting material properties is shown.
PRODUCTION OF SHEET FROM PARTICULATE MATERIAL
Blainey, A.
1959-05-12
A process is presented for forming coherent sheet material from particulate material such as granular or powdered metal, granular or powdered oxide, slurries, pastes, and plastic mixes which cohere under pressure. The primary object is to avoid the use of expensive and/ or short lived pressing tools, that is, dies and specially profiled rolls, and so to reduce the cost of the product and to prcvide in a simple manner for the making of the product in a variety of shapes or sizes. The sheet material is formed when the particulate material is laterally confined in a boundary material deformable in all lateral directions under axial pressure and then axially compressing the layer of particulate material together with the boundary material.
Design of materials with prescribed nonlinear properties
NASA Astrophysics Data System (ADS)
Wang, F.; Sigmund, O.; Jensen, J. S.
2014-09-01
We systematically design materials using topology optimization to achieve prescribed nonlinear properties under finite deformation. Instead of a formal homogenization procedure, a numerical experiment is proposed to evaluate the material performance in longitudinal and transverse tensile tests under finite deformation, i.e. stress-strain relations and Poissons ratio. By minimizing errors between actual and prescribed properties, materials are tailored to achieve the target. Both two dimensional (2D) truss-based and continuum materials are designed with various prescribed nonlinear properties. The numerical examples illustrate optimized materials with rubber-like behavior and also optimized materials with extreme strain-independent Poissons ratio for axial strain intervals of εi∈[0.00, 0.30].
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-26
...) Payments of this clause, but the ``hourly rate'' for labor hours expended in furnishing work not delivered...] RIN 9000-AM01 Federal Acquisition Regulation; Payments Under Time-and-Materials and Labor-Hour... the authorization to use time-and-materials and labor-hour contract payment requirements. DATES...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-27
... Acquisition Regulation; Payments Under Time-and-Materials and Labor-Hour Contracts AGENCY: Department of... Acquisition Regulation (FAR) to make necessary revisions to accommodate the authorization to use time-and... significant changes to the regulations for time-and- materials and labor-hour contracts: (1) FAR Case 2003-027...
11 CFR 109.23 - Dissemination, distribution, or republication of candidate campaign materials.
Code of Federal Regulations, 2010 CFR
2010-01-01
... in part, of any broadcast or any written, graphic, or other form of campaign materials prepared by..., distribution, or republication of campaign materials is a coordinated communication under 11 CFR 109.21 or a party coordinated communication under 11 CFR 109.37. (b) Exceptions. The following uses of campaign...
NASA Astrophysics Data System (ADS)
Mohanty, Subhasish; Soppet, William K.; Majumdar, Saurindranath; Natesan, Krishnamurti
2016-05-01
Argonne National Laboratory (ANL), under the sponsorship of Department of Energy's Light Water Reactor Sustainability (LWRS) program, is trying to develop a mechanistic approach for more accurate life estimation of LWR components. In this context, ANL has conducted many fatigue experiments under different test and environment conditions on type 316 stainless steel (316 SS) material which is widely used in the US reactors. Contrary to the conventional S ∼ N curve based empirical fatigue life estimation approach, the aim of the present DOE sponsored work is to develop an understanding of the material ageing issues more mechanistically (e.g. time dependent hardening and softening) under different test and environmental conditions. Better mechanistic understanding will help develop computer-based advanced modeling tools to better extrapolate stress-strain evolution of reactor components under multi-axial stress states and hence help predict their fatigue life more accurately. Mechanics-based modeling of fatigue such as by using finite element (FE) tools requires the time/cycle dependent material hardening properties. Presently such time-dependent material hardening properties are hardly available in fatigue modeling literature even under in-air conditions. Getting those material properties under PWR environment, are even harder. Through this work we made preliminary attempt to generate time/cycle dependent stress-strain data both under in-air and PWR water conditions for further study such as for possible development of material models and constitutive relations for FE model implementation. Although, there are open-ended possibility to further improve the discussed test methods and related material estimation techniques we anticipate that the data presented in this paper will help the metal fatigue research community particularly, the researchers who are dealing with mechanistic modeling of metal fatigue such as using FE tools. In this paper the fatigue experiments under different test and environment conditions and related stress-strain results for 316 SS are discussed.
Microgel particles for the delivery of bioactive materials
Frechet, Jean M. J.; Murthy Niren
2010-03-23
Novel microgels, microparticles and related polymeric materials capable of delivering bioactive materials to cells for use as vaccines or therapeutic agents. The materials are made using a crosslinker molecule that contains a linkage cleavable under mild acidic conditions. The crosslinker molecule is exemplified by a bisacryloyl acetal crosslinker. The new materials have the common characteristic of being able to degrade by acid hydrolysis under conditions commonly found within the endosomal or lysosomal compartments of cells thereby releasing their payload within the cell. The materials can also be used for the delivery of therapeutics to the acidic regions of tumors and sites of inflammation.
Microgel particles for the delivery of bioactive materials
Frechet, Jean M.; Murthy, Niren
2006-06-06
Novel microgels, microparticles and related polymeric materials capable of delivering bioactive materials to cells for use as vaccines or therapeutic agents. The materials are made using a crosslinker molecule that contains a linkage cleavable under mild acidic conditions. The crosslinker molecule is exemplified by a bisacryloyl acetal crosslinker. The new materials have the common characteristic of being able to degrade by acid hydrolysis under conditions commonly found within the endosomal or lysosomal compartments of cells thereby releasing their payload within the cell. The materials can also be used for the delivery of therapeutics to the acidic regions of tumors and sites of inflammation.
The Material Point Method and Simulation of Wave Propagation in Heterogeneous Media
NASA Astrophysics Data System (ADS)
Bardenhagen, S. G.; Greening, D. R.; Roessig, K. M.
2004-07-01
The mechanical response of polycrystalline materials, particularly under shock loading, is of significant interest in a variety of munitions and industrial applications. Homogeneous continuum models have been developed to describe material response, including Equation of State, strength, and reactive burn models. These models provide good estimates of bulk material response. However, there is little connection to underlying physics and, consequently, they cannot be applied far from their calibrated regime with confidence. Both explosives and metals have important structure at the (energetic or single crystal) grain scale. The anisotropic properties of the individual grains and the presence of interfaces result in the localization of energy during deformation. In explosives energy localization can lead to initiation under weak shock loading, and in metals to material ejecta under strong shock loading. To develop accurate, quantitative and predictive models it is imperative to develop a sound physical understanding of the grain-scale material response. Numerical simulations are performed to gain insight into grain-scale material response. The Generalized Interpolation Material Point Method family of numerical algorithms, selected for their robust treatment of large deformation problems and convenient framework for implementing material interface models, are reviewed. A three-dimensional simulation of wave propagation through a granular material indicates the scale and complexity of a representative grain-scale computation. Verification and validation calculations on model bimaterial systems indicate the minimum numerical algorithm complexity required for accurate simulation of wave propagation across material interfaces and demonstrate the importance of interfacial decohesion. Preliminary results are presented which predict energy localization at the grain boundary in a metallic bicrystal.
NASA Astrophysics Data System (ADS)
Zhang, Jingyi
Ferroelectric (FE) and closely related antiferroelectric (AFE) materials have unique electromechanical properties that promote various applications in the area of capacitors, sensors, generators (FE) and high density energy storage (AFE). These smart materials with extensive applications have drawn wide interest in the industrial and scientific world because of their reliability and tunable property. However, reliability issues changes its paradigms and requires guidance from detailed mechanism theory as the materials applications are pushed for better performance. A host of modeling work were dedicated to study the macro-structural behavior and microstructural evolution in FE and AFE material under various conditions. This thesis is focused on direct observation of domain evolution under multiphysics loading for both FE and AFE material. Landau-Devonshire time-dependent phase field models were built for both materials, and were simulated in finite element software Comsol. In FE model, dagger-shape 90 degree switched domain was observed at preexisting crack tip under pure mechanical loading. Polycrystal structure was tested under same condition, and blocking effect of the growth of dagger-shape switched domain from grain orientation difference and/or grain boundary was directly observed. AFE ceramic model was developed using two sublattice theory, this model was used to investigate the mechanism of energy efficiency increase with self-confined loading in experimental tests. Consistent results was found in simulation and careful investigation of calculation results gave confirmation that origin of energy density increase is from three aspects: self-confinement induced inner compression field as the cause of increase of critical field, fringe leak as the source of elevated saturation polarization and uneven defects distribution as the reason for critical field shifting and phase transition speed. Another important affecting aspect in polycrystalline materials is the texture of material, textured materials have better alignment and the alignment reorganization is associated with inelastic strain. We developed a vector field of alignment to describe texture degree and introduced the alignment vector into our FE and AFE model. The model with alignment field gave quantatively results for the well-recognized irreversible strain in AFE virgin ceramics during the first poling process. The texture field also shows a shielding zone under mechanical loading around existing crack tip. In conclusion, this thesis developed working models of FE and AFE material and systematically studied their behavior under multiphysics loading in a finite element analysis approach. Materials structure of polycrystal materials including grain orientation, grain boundary, defects and materials texture were tested for their effect on hysteresis and switched domain growth. Detailed microstructure development in domain switching and alignment was directly observed in this simulation.
NASA Technical Reports Server (NTRS)
2008-01-01
The NASA Cryogenics Test Laboratory at Kennedy Space Center conducted long-term testing of SOFI materials under actual-use cryogenic conditions with Cryostat-4. The materials included in the testing were NCFI 24-124 (acreage foam), BX-265 (close-out foam, including intertank flange and bipod areas), and a potential alternate material, NCFI 27-68, (acreage foam with the flame retardant removed). Specimens of these materials were placed at two locations: a site that simulated aging (the Vehicle Assembly Building [VAB]) and a site that simulated weathering (the Atmospheric Exposure Test Site [beach site]). After aging/weathering intervals of 3, 6, and 12 months, the samples were retrieved and tested for their thermal performance under cryogenic vacuum conditions with test apparatus Cryostat-4.
Enhanced densification under shock compression in porous silicon
NASA Astrophysics Data System (ADS)
Lane, J. Matthew D.; Thompson, Aidan P.; Vogler, Tracy J.
2014-10-01
Under shock compression, most porous materials exhibit lower densities for a given pressure than that of a full-dense sample of the same material. However, some porous materials exhibit an anomalous, or enhanced, densification under shock compression. We demonstrate a molecular mechanism that drives this behavior. We also present evidence from atomistic simulation that silicon belongs to this anomalous class of materials. Atomistic simulations indicate that local shear strain in the neighborhood of collapsing pores nucleates a local solid-solid phase transformation even when bulk pressures are below the thermodynamic phase transformation pressure. This metastable, local, and partial, solid-solid phase transformation, which accounts for the enhanced densification in silicon, is driven by the local stress state near the void, not equilibrium thermodynamics. This mechanism may also explain the phenomenon in other covalently bonded materials.
NASA Astrophysics Data System (ADS)
Hu, Yanying; Liu, Huijie; Du, Shuaishuai
2018-06-01
The aim of the present article is to offer insight into the effects of pin profiles on interface defects, tensile shear properties, microstructures, and the material flow of friction stir lap welded joints. The results indicate that, compared to the lap joints welded by the single threaded plane pin, the three-plane threaded pin, and the triangle threaded pin, the lap joint obtained by the conventional conical threaded pin is characterized by the minimum interface defect. The alternate threads and planes on the pin provide periodical stress, leading to pulsatile material flow patterns. Under the effect of pulsatile revolutions, an asymmetrical flow field is formed around the tool. The threads on the pin force the surrounding material to flow downward. The planes cannot only promote the horizontal flow of the material by scraping, but also provide extra space for the material vertical flow. A heuristic model is established to describe the material flow mechanism during friction stir lap welding under the effect of pulsatile revolutions.
Mechanical properties of thermal protection system materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hardy, Robert Douglas; Bronowski, David R.; Lee, Moo Yul
2005-06-01
An experimental study was conducted to measure the mechanical properties of the Thermal Protection System (TPS) materials used for the Space Shuttle. Three types of TPS materials (LI-900, LI-2200, and FRCI-12) were tested in 'in-plane' and 'out-of-plane' orientations. Four types of quasi-static mechanical tests (uniaxial tension, uniaxial compression, uniaxial strain, and shear) were performed under low (10{sup -4} to 10{sup -3}/s) and intermediate (1 to 10/s) strain rate conditions. In addition, split Hopkinson pressure bar tests were conducted to obtain the strength of the materials under a relatively higher strain rate ({approx}10{sup 2} to 10{sup 3}/s) condition. In general, TPSmore » materials have higher strength and higher Young's modulus when tested in 'in-plane' than in 'through-the-thickness' orientation under compressive (unconfined and confined) and tensile stress conditions. In both stress conditions, the strength of the material increases as the strain rate increases. The rate of increase in LI-900 is relatively small compared to those for the other two TPS materials tested in this study. But, the Young's modulus appears to be insensitive to the different strain rates applied. The FRCI-12 material, designed to replace the heavier LI-2200, showed higher strengths under tensile and shear stress conditions. But, under a compressive stress condition, LI-2200 showed higher strength than FRCI-12. As far as the modulus is concerned, LI-2200 has higher Young's modulus both in compression and in tension. The shear modulus of FRCI-12 and LI-2200 fell in the same range.« less
Under Secretary of Defense (Comptroller) > Budget Materials > Budget1998
(Comptroller) Under Secretary of Defense (Comptroller) Home About OUSD(C) OUSD(C) Top Leaders OUSD(C) Org Chart functionalStatements OUSD(C) History FMR Budget Materials Budget Execution Financial Management Improving Financial Closure Program (C-1) PDF icon Excel icon Links to Budget Materials Budget Execution Flexibilities
Thin film composition with biological substance and method of making
Campbell, Allison A.; Song, Lin
1999-01-01
The invention provides a thin-film composition comprising an underlying substrate of a first material including a plurality of attachment sites; a plurality of functional groups chemically attached to the attachment sites of the underlying substrate; and a thin film of a second material deposited onto the attachment sites of the underlying substrate, and a biologically active substance deposited with the thin-film. Preferably the functional groups are attached to a self assembling monolayer attached to the underlying substrate. Preferred functional groups attached to the underlying substrate are chosen from the group consisting of carboxylates, sulfonates, phosphates, optionally substituted, linear or cyclo, alkyl, alkene, alkyne, aryl, alkylaryl, amine, hydroxyl, thiol, silyl, phosphoryl, cyano, metallocenyl, carbonyl, and polyphosphate. Preferred materials for the underlying substrate are selected from the group consisting of a metal, a metal alloy, a plastic, a polymer, a proteic film, a membrane, a glass or a ceramic. The second material is selected from the group consisting of inorganic crystalline structures, inorganic amorphus structures, organic crystalline structures, and organic amorphus structures. Preferred second materials are phosphates, especially calcium phosphates and most particularly calcium apatite. The biologically active molecule is a protein, peptide, DNA segment, RNA segment, nucleotide, polynucleotide, nucleoside, antibiotic, antimicrobal, radioisotope, chelated radioisotope, chelated metal, metal salt, anti-inflamatory, steriod, nonsteriod anti-inflammatory, analgesic, antihistamine, receptor binding agent, or chemotherapeutic agent, or other biologically active material. Preferably the biologically active molecule is an osteogenic factor the compositions listed above.
Planetary rings: Structure and history
NASA Astrophysics Data System (ADS)
Esposito, L.
The composition and structure of planetary rings provide the key evidence to understand their origin and evolution. Before the first space observations, we were able to maintain an idealized view of the rings around Saturn, the only known ring system at that time. Rings were then discovered around Jupiter, Uranus and Neptune. Saturn's F ring was discovered by Pioneer 11. Our ideal view of circular, planar, symmetric and unchanging rings was shattered by observations of inclined, eccentric rings, waves and wavy edges, and numerous processes acting at rates that give timescales much younger than the solar system. Moons within and near the rings sculpt them and are the likely progenitors of future rings. The moonlet lifetimes are much less than Saturn's age. The old idea of ancient rings gave rise to youthful rings, that are recently created by erosion and destruction of small nearby moons. Although this explanation may work well for most rings, Saturn's massive ring system provides a problem. It is extremely improbable that Saturn's rings were recently created by the destruction of a moon as large as Mimas, or even by the breakup of a large comet that passed too close to Saturn. The history of Saturn's rings has been a difficult problem, now made even more challenging by the close-up Cassini measurements. Cassini observations show unexpected ring variability in time and space. Time variations are seen in ring edges, in the thinner D and F rings, and in the neutral oxygen cloud, which outweighs the E ring in the same region around Saturn. The rings are inhomogeneous, with structures on all scales, sharp gradients and edges. Compositional gradients are sharper than expected, but nonetheless cross structural boundaries. This is evidence for ballistic transport that has not gone to completion. The autocovariance maximizes in the middle of the A ring, with smaller structure near the main rings' outer edge. Density wave locations have a fresher ice composition. The processes of collisions, diffusion and transport should have homogenized the rings over the age of the solar system. Instead, these differences persist. The mass density in the Cassini division inferred from density waves is so low, that the material there would be ground to 1 dust in 30,000 years. The observed moons that cause such interesting structure in the rings have short lifetimes against disruption by cometary bombardment and against the angular momentum transfers that push them away from the rings. These rapid processes evident in the Cassini data have been taken as evidence that the rings were recently created, perhaps from a comet that passed too close to Saturn. Instead, an alternative is that primordial material may have been re-used and recycled. In the zone near the Roche limit where rings are found, limited accretion is possible, with the larger bodies able to recapture smaller fragments. The `propeller' structures, the self-gravity wakes, and the size distribution of clumps in Saturn's F ring are all indications of the accretion process. Recycling could extend the ring lifetime almost indefinitely. The variety evident in the latest observations and the low mass density inferred for the largest bodies are both consistent with extensive recycling of ring material as the explanation of the apparent youth of Saturn's rings. Similar processes are likely occurring tin the other ring systems and in the formation of planets around other stars. 2
Method for manufacturing electrical contacts for a thin-film semiconductor device
Carlson, David E.; Dickson, Charles R.; D'Aiello, Robert V.
1988-11-08
A method of fabricating spaced-apart back contacts on a thin film of semiconductor material by forming strips of buffer material on top of the semiconductor material in locations corresponding to the desired dividing lines between back contacts, forming a film of metal substantially covering the semiconductor material and buffer strips, and scribing portions of the metal film overlying the buffer strips with a laser without contacting the underlying semiconductor material to separate the metal layer into a plurality of back contacts. The buffer material serves to protect the underlying semiconductor material from being damaged during the laser scribing. Back contacts and multi-cell photovoltaic modules incorporating such back contacts also are disclosed.
Electrical contacts for a thin-film semiconductor device
Carlson, David E.; Dickson, Charles R.; D'Aiello, Robert V.
1989-08-08
A method of fabricating spaced-apart back contacts on a thin film of semiconductor material by forming strips of buffer material on top of the semiconductor material in locations corresponding to the desired dividing lines between back contacts, forming a film of metal substantially covering the semiconductor material and buffer strips, and scribing portions of the metal film overlying the buffer strips with a laser without contacting the underlying semiconductor material to separate the metal layer into a plurality of back contacts. The buffer material serves to protect the underlying semiconductor material from being damaged during the laser scribing. Back contacts and multi-cell photovoltaic modules incorporating such back contacts also are disclosed.
Stochastic clustering of material surface under high-heat plasma load
NASA Astrophysics Data System (ADS)
Budaev, Viacheslav P.
2017-11-01
The results of a study of a surface formed by high-temperature plasma loads on various materials such as tungsten, carbon and stainless steel are presented. High-temperature plasma irradiation leads to an inhomogeneous stochastic clustering of the surface with self-similar granularity - fractality on the scale from nanoscale to macroscales. Cauliflower-like structure of tungsten and carbon materials are formed under high heat plasma load in fusion devices. The statistical characteristics of hierarchical granularity and scale invariance are estimated. They differ qualitatively from the roughness of the ordinary Brownian surface, which is possibly due to the universal mechanisms of stochastic clustering of material surface under the influence of high-temperature plasma.
NASA Astrophysics Data System (ADS)
Hoang, Tuan L.; Nazarov, Roman; Kang, Changwoo; Fan, Jiangyuan
2018-07-01
Under the multi-ion irradiation conditions present in accelerated material-testing facilities or fission/fusion nuclear reactors, the combined effects of atomic displacements with radiation products may induce complex synergies in the structural materials. However, limited access to multi-ion irradiation facilities and the lack of computational models capable of simulating the evolution of complex defects and their synergies make it difficult to understand the actual physical processes taking place in the materials under these extreme conditions. In this paper, we propose the application of pulsed single/dual-beam irradiation as replacements for the expensive steady triple-beam irradiation to study radiation damages in materials under multi-ion irradiation.
Synthesis and hydrophobic adsorption properties of microporous/mesoporous hybrid materials.
Hu, Qin; Li, Jinjun; Qiao, Shizhang; Hao, Zhengping; Tian, Hua; Ma, Chunyan; He, Chi
2009-05-30
Hybrid materials of silicalite-1 (Sil-1)-coated SBA-15 particles (MSs) have been successfully synthesized by crystallization process under hydrothermal conditions. These MSs materials were characterized by X-ray diffraction, nitrogen adsorption/desorption and TEM techniques, which illustrated that the silicalite-1-coated SBA-15 particles were successfully prepared and had large pore volume and hierarchical pore size distribution. Further experimental studies indicated that longer crystallization time under basic condition caused the mesostructure of SBA-15 materials to collapse destructively and higher calcination temperature tended to disrupt the long-range mesoscopic order while they had little influence on the phase of microcrystalline silicalite-1 zeolite. The resultant MSs materials were investigated by estimating dynamic adsorption capacity under dry and wet conditions to evaluate their adsorptive and hydrophobic properties. The hydrophobicity index (HI) value followed the sequence of silicalite-1>MSs>SBA-15, which revealed that the SBA-15 particles coated with the silicalite-1 seeds enhanced the surface hydrophobicity, and also were consistent with FTIR results. Our studies show that MSs materials combined the advantages of the ordered mesoporous material (high adsorptive capacity, large pore volume) and silicalite-1 zeolite (super-hydrophobic property, high hydrothermal stability), and the presence of micropores directly led to an increase in the dynamic adsorption capacity of benzene under dry and wet conditions.
Circumpolar Deep Water transport and current structure at the Amundsen Sea shelf break
NASA Astrophysics Data System (ADS)
Assmann, Karen M.; Wåhlin, Anna K.; Heywood, Karen J.; Jenkins, Adrian; Kim, Tae Wan; Lee, Sang Hoon
2017-04-01
The West Antarctic Ice Sheet has been losing mass at an increasing rate over the past decades. Ocean heat transport to the ice-ocean interface has been identified as an important contributor to this mass loss and the role it plays in ice sheet stability makes it crucial to understand its drivers in order to make accurate future projections of global sea level. While processes closer to the ice-ocean interface modulate this heat transport, its ultimate source is located in the deep basin off the continental shelf as a core of relatively warm, salty water underlying a colder, fresher shallow surface layer. To reach the marine terminating glaciers and the base of floating ice shelves, this warm, salty water mass must cross the bathymetric obstacle of the shelf break. Glacial troughs that intersect the Amundsen shelf break and deepen southwards towards the ice shelf fronts have been shown to play an important role in transporting warm, salty Circumpolar Deep Water (CDW) towards the ice shelves. North of the shelf break, circulation in the Amundsen Sea occupies an intermediate regime between the eastward Antarctic Circumpolar Current that impinges on the shelf break in the Bellingshausen Sea and the westward southern limb of the Ross Gyre that follows the shelf break in the Ross Sea. Hydrographic and mooring observations and numerical model results at the mouth of the central shelf break trough leading to Pine Island and Thwaites Glaciers show a westward wind-driven shelf break current overlying an eastward undercurrent that turns onto the shelf in the trough. It is thought that the existence of the latter feature facilitates the on-shelf transport of CDW. A less clearly defined shelf break depression further west acts as the main pathway for CDW to Dotson and eastern Getz Ice shelves. Model results indicate that a similar eastward undercurrent exists here driving the on-shelf transport of CDW. Two moorings on the upper slope east of the trough entrance show a persistent westward current in the CDW layer. We use hydrographic and ADCP sections to discuss the mechanisms that could be responsible for the formation of this feature and the implications for oceanic heat transport towards the western Amundsen ice shelves.
Coastal circulation and hydrography in the Gulf of Tehuantepec, Mexico, during winter
NASA Astrophysics Data System (ADS)
Barton, E. D.; Lavín, M. F.; Trasviña, A.
2009-02-01
Winter observations of shelf and slope hydrography and currents in the inner Gulf of Tehuantepec are analysed from two field studies in 1989 and 1996 to specify the variability of near-shore conditions under varying wind stress. During the winter period frequent outbursts of 'Norte' winds over the central Gulf result in persistent alongshore inflows along both its eastern and western coasts. Wind-induced variability on time scales of several days strongly influences the shelf currents, but has greater effect on its western coast because of the generation and separation of anticyclonic eddies there. The steadier inflow (˜0.2 m s -1) on the eastern shelf is evident in a strong down-bowing of shallow isosurfaces towards the coast within 100 km of shore, below a wedge of warmer, fresher and lighter water. This persistent entry of less saline (33.4-34.0), warmer water from the southeast clearly originates in buoyancy input by rivers along the Central American coast, but is augmented by a general shoreward tendency (0.2 m s -1) in the southeastern Gulf. The resultant shallow tongue of anomalous water is generally swept offshore in the head of the Gulf and mixed away by the strong outflow and vertical overturning of the frequent 'Norte' events but during wind relaxations the warm, low-salinity coastal flow may briefly extend further west. In the head of the Gulf, flow is predominantly offshore (<0.2 m s -1) as the alongshore component alternates eastward and westward in association with elevation or depression, respectively, of the pycnocline against the shore. More saline, open ocean water is introduced from the north-western side of the Gulf by the inflow along the west coast. During extended wind relaxations, the flow becomes predominantly eastward beyond the shelf while nearshore the coastally trapped buoyant inflow from the southeast penetrates across the entire head of the gulf at least as far as its western limit. On the basis of these and other recent observations, it seems that the accepted view of a broad, persistent Costa Rica Coastal Current (CRCC) is the result of averaging over many relatively sparse observations and that the instantaneous CRCC is a highly variable and convoluted flow around and between constantly changing eddies. The buoyancy-driven shelf current reported here forms a hitherto unrecognized, but major, component of this CRCC system.
Code of Federal Regulations, 2012 CFR
2012-01-01
... fee is the sum of budgeted costs for the following activities: (1) Generic and other research... material issued under parts 30 and 33 of this chapter for research and development that do not authorize... licenses for possession and use of byproduct material issued under part 30 of this chapter for research and...
Fracture of Structural Materials under Dynamic Loading
1981-03-25
in character- izing the dynamic fracture resistance of materials, and in designing equipment and procedures for measuring dynamic fracture toughness...useful in assessing the safety of structures under dynamic loads, in characterizing the dyraamic fracture resistance of materials, and in designing ...I INTRODUCTION Structures used by the United States Air Force must be designed to resist catastrophic fracture when subjected ti dynamic loads. For
Tarasevich, B.J.; Rieke, P.C.
1998-06-02
A method is provided for producing a thin film product, comprising a first step in which an underlying substrate of a first material is provided. The underlying substrate includes a plurality of unmodified sites. The underlying substrate is then chemically modified wherein a plurality of organic functional groups are attached to a plurality of the unmodified sites. The arrangement and type of the functional group used can be selected for the purpose of controlling particular properties of the second material deposited. A thin film layer of at least one second material is then deposited onto the chemically modified underlying substrate. This can be accomplished by connecting the thin film to the underlying substrate by binding the thin film to the functional groups. 5 figs.
Tarasevich, Barbara J.; Rieke, Peter C.
1998-01-01
A method is provided for producing a thin film product, comprising a first step in which an underlying substrate of a first material is provided. The underlying substrate includes a plurality of unmodified sites. The underlying substrate is then chemically modified wherein a plurality of organic functional groups are attached to a plurality of the unmodified sites. The arrangement and type of the functional group used can be selected for the purpose of controlling particular properties of the second material deposited. A thin film layer of at least one second material is then deposited onto the chemically modified underlying substrate. This can be accomplished by connecting the thin film to the underlying substrate by binding the thin film to the functional groups.
Measured iron-gallium alloy tensile properties under magnetic fields
NASA Astrophysics Data System (ADS)
Yoo, Jin-Hyeong; Flatau, Alison B.
2004-07-01
Tension testing is used to identify Galfenol material properties under low level DC magnetic bias fields. Dog bone shaped specimens of single crystal Fe100-xGax, where 17<=x<=33, underwent tensile testing along two crystalographic axis orientations, [110] and [100]. The material properties being investigated and calculated from measured quantities are: Young's modulus and Poisson's ratio. Data are presented that demonstrate the dependence of these material properties on applied magnetic field levels and provide a preliminary assessment of the trends in material properties for performance under varied operating conditions. The elastic properties of Fe-Ga alloys were observed to be increasingly anisotropic with rising Ga content for the stoichiometries examined. The largest elastic anisotropies were manifested in [110] Poisson's ratios of as low as -0.63 in one specimen. This negative Poisson's ratio creates a significant in-plane auxetic behavior that could be exploited in applications that capitalize on unique area effects produced under uniaxial loading.
Fate and Transport of Chemical Warfare Agents VX and HD ...
Report The intent of this investigation was to study the fate and transport of CWA applied to painted/sealed materials including the potential partitioning of CWA into permeable paints/sealants and subsequently into underlying porous materials. Based on the results obtained from this investigation, VX and sulfur mustard (HD) have the ability to permeate into paints and sealants, including in some cases the underlying porous materials. It is likely that other permeable materials besides paints and sealants may also show similar behavior.
Magnetic measurement of soft magnetic composites material under 3D SVPWM excitation
NASA Astrophysics Data System (ADS)
Zhang, Changgeng; Jiang, Baolin; Li, Yongjian; Yang, Qingxin
2018-05-01
The magnetic properties measurement and analysis of soft magnetic material under the rotational space-vector pulse width modulation (SVPWM) excitation are key factors in design and optimization of the adjustable speed motor. In this paper, a three-dimensional (3D) magnetic properties testing system fit for SVPWM excitation is built, which includes symmetrical orthogonal excitation magnetic circuit and cubic field-metric sensor. Base on the testing system, the vector B and H loci of soft magnetic composite (SMC) material under SVPWM excitation are measured and analyzed by proposed 3D SVPWM control method. Alternating and rotating core losses under various complex excitation with different magnitude modulation ratio are calculated and compared.
On the dynamic behavior of three readily available soft tissue simulants
NASA Astrophysics Data System (ADS)
Appleby-Thomas, G. J.; Hazell, P. J.; Wilgeroth, J. M.; Shepherd, C. J.; Wood, D. C.; Roberts, A.
2011-04-01
Plate-impact experiments have been employed to investigate the dynamic response of three readily available tissue simulants for ballistic purposes: gelatin, ballistic soap (both subdermal tissue simulants), and lard (adipose layers). All three materials exhibited linear Hugoniot equations-of-state in the US-uP plane. While gelatin behaved hydrodynamically under shock, soap and lard appeared to strengthen under increased loading. Interestingly, the simulants under test appeared to strengthen in a material-independent manner on shock arrival (tentatively attributed to a rearrangement of the amorphous molecular chains under loading). However, material-specific behavior was apparent behind the shock. This behavior appeared to correlate with microstructural complexity, suggesting a steric hindrance effect.
Shock-loading response of advanced materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gray, G.T. III
1993-08-01
Advanced materials, such as composites (metal, ceramic, or polymer-matrix), intermetallics, foams (metallic or polymeric-based), laminated materials, and nanostructured materials are receiving increasing attention because their properties can be custom tailored specific applications. The high-rate/impact response of advanced materials is relevant to a broad range of service environments such as the crashworthiness of civilian/military vehicles, foreign-object-damage in aerospace, and light-weight armor. Increased utilization of these material classes under dynamic loading conditions requires an understanding of the relationship between high-rate/shock-wave response as a function of microstructure if we are to develop models to predict material behavior. In this paper the issues relevantmore » to defect generation, storage, and the underlying physical basis needed in predictive models for several advanced materials will be reviewed.« less
29 CFR 1910.1096 - Ionizing radiation.
Code of Federal Regulations, 2012 CFR
2012-07-01
... material, as defined in the Atomic Energy Act of 1954, as amended, under a license issued by the Nuclear... material, byproduct material, or special nuclear material, as defined in the Atomic Energy Act of 1954, as... source material, byproduct material, or special nuclear material, as defined in the Atomic Energy Act of...
29 CFR 1910.1096 - Ionizing radiation.
Code of Federal Regulations, 2011 CFR
2011-07-01
... material, as defined in the Atomic Energy Act of 1954, as amended, under a license issued by the Nuclear... material, byproduct material, or special nuclear material, as defined in the Atomic Energy Act of 1954, as... source material, byproduct material, or special nuclear material, as defined in the Atomic Energy Act of...
29 CFR 1910.1096 - Ionizing radiation.
Code of Federal Regulations, 2014 CFR
2014-07-01
... material, as defined in the Atomic Energy Act of 1954, as amended, under a license issued by the Nuclear... material, byproduct material, or special nuclear material, as defined in the Atomic Energy Act of 1954, as... source material, byproduct material, or special nuclear material, as defined in the Atomic Energy Act of...
Confined catalysis under two-dimensional materials
Li, Haobo; Xiao, Jianping; Bao, Xinhe
2017-01-01
Confined microenvironments formed in heterogeneous catalysts have recently been recognized as equally important as catalytically active sites. Understanding the fundamentals of confined catalysis has become an important topic in heterogeneous catalysis. Well-defined 2D space between a catalyst surface and a 2D material overlayer provides an ideal microenvironment to explore the confined catalysis experimentally and theoretically. Using density functional theory calculations, we reveal that adsorption of atoms and molecules on a Pt(111) surface always has been weakened under monolayer graphene, which is attributed to the geometric constraint and confinement field in the 2D space between the graphene overlayer and the Pt(111) surface. A similar result has been found on Pt(110) and Pt(100) surfaces covered with graphene. The microenvironment created by coating a catalyst surface with 2D material overlayer can be used to modulate surface reactivity, which has been illustrated by optimizing oxygen reduction reaction activity on Pt(111) covered by various 2D materials. We demonstrate a concept of confined catalysis under 2D cover based on a weak van der Waals interaction between 2D material overlayers and underlying catalyst surfaces. PMID:28533413
Edward W. Kuenzi; Charles B. Norris; Paul M. Jenkinson
1964-01-01
âThis report presents curves of coefficients and formulas for use in calculating the buckling of flat panels of sandwich construction under edgewise compressive loads. The curves were derived for sandwich panels having one facing of either of two orthotropic materials, the other facing of an isotropic material; both facings of orthotropic material; both facings of...
Enhanced densification under shock compression in porous silicon
Lane, J. Matthew; Thompson, Aidan Patrick; Vogler, Tracy
2014-10-27
Under shock compression, most porous materials exhibit lower densities for a given pressure than that of a full-dense sample of the same material. However, some porous materials exhibit an anomalous, or enhanced, densification under shock compression. The mechanism driving this behavior was not completely determined. We present evidence from atomistic simulation that pure silicon belongs to this anomalous class of materials and demonstrate the associated mechanisms responsible for the effect in porous silicon. Atomistic response indicates that local shear strain in the neighborhood of collapsing pores catalyzes a local solid-solid phase transformation even when bulk pressures are below the thermodynamicmore » phase transformation pressure. This metastable, local, and partial, solid-solid phase transformation, which accounts for the enhanced densification in silicon, is driven by the local stress state near the void, not equilibrium thermodynamics. This mechanism may also explain the phenomenon in other covalently bonded materials.« less
Constitutive Models Based on Compressible Plastic Flows
NASA Technical Reports Server (NTRS)
Rajendran, A. M.
1983-01-01
The need for describing materials under time or cycle dependent loading conditions has been emphasized in recent years by several investigators. In response to the need, various constitutive models describing the nonlinear behavior of materials under creep, fatigue, or other complex loading conditions were developed. The developed models for describing the fully dense (non-porous) materials were mostly based on uncoupled plasticity theory. The improved characterization of materials provides a better understanding of the structual response under complex loading conditions. The pesent studies demonstrate that the rate or time dependency of the response of a porous aggregate can be incorporated into the nonlinear constitutive behavior of a porous solid by appropriately modeling the incompressible matrix behavior. It is also sown that the yield function which wads determined by a continuum mechanics approach must be verified by appropriate experiments on void containing sintered materials in order to obtain meaningful numbers for the constants that appear in the yield function.
Development of an analytical environmental TEM system and its application.
Kishita, Keisuke; Sakai, Hisashi; Tanaka, Hiromochi; Saka, Hiroyasu; Kuroda, Kotaro; Sakamoto, Masayuki; Watabe, Akira; Kamino, Takeo
2009-12-01
Many automotive materials, such as catalysts and fuel cell materials, undergo significant changes in structure or properties when subjected to temperature change or the addition of a gas. For this reason, in the development of these materials, it is important to study the behavior of the material under controlled temperatures and gaseous atmospheres. Recently, a new environmental transmission electron microscope (TEM) has been developed for observation with a high resolution at high temperatures and under gaseous atmospheres, thus making it possible to analyze reaction processes in details. Also, the new TEM provides a high degree of reproducibility of observation conditions, thus making it possible to compare and validate observation of various specimens under a given set of conditions. Furthermore, easiness of gas condition and temperature control can provide a powerful tool for the studying of the mechanism of material change, such as oxidation and reduction reactions.
48 CFR 252.223-7001 - Hazard warning labels.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Hazardous Material Identification and Material Safety Data clause of this contract. (b) The Contractor shall label the item package (unit container) of any hazardous material to be delivered under this contract in... which hazardous material listed in the Hazardous Material Identification and Material Safety Data clause...
48 CFR 252.223-7001 - Hazard warning labels.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Hazardous Material Identification and Material Safety Data clause of this contract. (b) The Contractor shall label the item package (unit container) of any hazardous material to be delivered under this contract in... which hazardous material listed in the Hazardous Material Identification and Material Safety Data clause...
48 CFR 252.223-7001 - Hazard warning labels.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Hazardous Material Identification and Material Safety Data clause of this contract. (b) The Contractor shall label the item package (unit container) of any hazardous material to be delivered under this contract in... which hazardous material listed in the Hazardous Material Identification and Material Safety Data clause...
48 CFR 252.223-7001 - Hazard warning labels.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Hazardous Material Identification and Material Safety Data clause of this contract. (b) The Contractor shall label the item package (unit container) of any hazardous material to be delivered under this contract in... which hazardous material listed in the Hazardous Material Identification and Material Safety Data clause...
48 CFR 252.223-7001 - Hazard warning labels.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Hazardous Material Identification and Material Safety Data clause of this contract. (b) The Contractor shall label the item package (unit container) of any hazardous material to be delivered under this contract in... which hazardous material listed in the Hazardous Material Identification and Material Safety Data clause...
NASA Astrophysics Data System (ADS)
Van der Kelen, C.; Göransson, P.; Pluymers, B.; Desmet, W.
2014-12-01
The aspects related to modelling the frequency dependence of the elastic properties of air-saturated porous materials have been largely neglected in the past for several reasons. For acoustic excitation of porous materials, the material behaviour can be quite well represented by models where the properties of the solid frame have little influence. Only recently has the importance of the dynamic moduli of the frame come into focus. This is related to a growing interest in the material behaviour due to structural excitation. Two aspects stand out in connection with the elastic-dynamic behaviour. The first is related to methods for the characterisation of the dynamic moduli of porous materials. The second is a perceived lack of numerical methods able to model the complex material behaviour under structural excitation, in particular at higher frequencies. In the current paper, experimental data from a panel under structural excitation, coated with a porous material, are presented. In an attempt to correlate the experimental data to numerical predictions, it is found that the measured quasi-static material parameters do not suffice for an accurate prediction of the measured results. The elastic material parameters are then estimated by correlating the numerical prediction to the experimental data, following the physical behaviour predicted by the augmented Hooke's law. The change in material behaviour due to the frequency-dependent properties is illustrated in terms of the propagation of the slow wave and the shear wave in the porous material.
Causes of shortage and delay in material supply: a preliminary study
NASA Astrophysics Data System (ADS)
Rahman, M. M.; Yap, Y. H.; Ramli, N. R.; Dullah, M. A.; Shamsuddin, M. S. W.
2017-11-01
Shortage and delay in materials supply is argued to be one of the most important factors that lead to delay in construction project delivery globally. However, the relevant underlying reasons vary from country to country. As such, this paper summarises the outcomes of a study that targeted identifying causes of shortage and delay in materials supply in Brunei Darussalam. The study was conducted through fifteen semi-structured interviews of contractors and materials suppliers in Brunei. The study identified six causes of shortageof materials and nine causes of delay in materials supply in Brunei. The most importantcausefor shortage of materials relates to the origin or availability of construction materials. On the other hand, the most influential cause of delay in material supply was found to be poor materials procurement and inventory management system, which has other underlying reasons such as late identification of the type of materials needed. The observations are expected to help in formulating or reviewing relevant policies, in order to ensure on-time project delivery.
Research on ignition and flame spread of solid materials in Japan
NASA Technical Reports Server (NTRS)
Ito, Kenichi; Fujita, Osamu
1995-01-01
Fire safety is one of the main concerns for crewed missions such as the space station. Materials used in spacecraft may burn even if metalic. There are severe restrictions on the materials used in spacecraft from the view of fire safety. However, such restrictions or safety standards are usually determined based on experimental results under normal gravity, despite large differences between the phenomena under normal and microgravity. To evaluate the appropriateness of materials for use in space, large amount of microgravity fire-safety combustion data is urgently needed. Solid material combustion under microgravity, such as ignition and flame spread, is a relatively new research field in Japan. As the other reports in this workshop describe, most of microgravity combustion research in Japan is droplet combustion as well as some research on gas phase combustion. Since JAMIC, the Japan Microgravity Center, (which offers 10 seconds microgravity time) opened in 1992, microgravity combustion research is robust, and many drop tests relating to solid combustion (paper combustion, cotton string combustion, metal combustion with Aluminium or Magnesium) have been performed. These tests proved that the 10 seconds of microgravity time at JAMIC is useful for solid combustion research. Some experiments were performed before JAMIC opened. For example, latticed paper was burned under microgravity by using a 50 m drop tower to simulate porous material combustion under microgravity. A 50 m tower provides only 2 seconds microgravity time however, and it was not long enough to investigate the solid combustion phenomena.
From Tomography to Material Properties of Thermal Protection Systems
NASA Technical Reports Server (NTRS)
Mansour, Nagi N.; Panerai, Francesco; Ferguson, Joseph C.; Borner, Arnaud; Barnhardt, Michael; Wright, Michael
2017-01-01
A NASA Ames Research Center (ARC) effort, under the Entry Systems Modeling (ESM) project, aims at developing micro-tomography (micro-CT) experiments and simulations for studying materials used in hypersonic entry systems. X-ray micro-tomography allows for non-destructive 3D imaging of a materials micro-structure at the sub-micron scale, providing fiber-scale representations of porous thermal protection systems (TPS) materials. The technique has also allowed for In-situ experiments that can resolve response phenomena under realistic environmental conditions such as high temperature, mechanical loads, and oxidizing atmospheres. Simulation tools have been developed at the NASA Ames Research Center to determine material properties and material response from the high-fidelity tomographic representations of the porous materials with the goal of informing macroscopic TPS response models and guiding future TPS design.
Harman Measurements for Thermoelectric Materials and Modules under Non-Adiabatic Conditions
NASA Astrophysics Data System (ADS)
Roh, Im-Jun; Lee, Yun Goo; Kang, Min-Su; Lee, Jae-Uk; Baek, Seung-Hyub; Kim, Seong Keun; Ju, Byeong-Kwon; Hyun, Dow-Bin; Kim, Jin-Sang; Kwon, Beomjin
2016-12-01
Accuracy of the Harman measurement largely depends on the heat transfer between the sample and its surroundings, so-called parasitic thermal effects (PTEs). Similar to the material evaluations, measuring thermoelectric modules (TEMs) is also affected by the PTEs especially when measuring under atmospheric condition. Here, we study the correction methods for the Harman measurements with systematically varied samples (both bulk materials and TEMs) at various conditions. Among several PTEs, the heat transfer via electric wires is critical. Thus, we estimate the thermal conductance of the electric wires, and correct the measured properties for a certain sample shape and measuring temperature. The PTEs are responsible for the underestimation of the TEM properties especially under atmospheric conditions (10-35%). This study will be useful to accurately characterize the thermoelectric properties of materials and modules.
Lee, Angela C; Reduque, Leila L; Luban, Naomi L C; Ness, Paul M; Anton, Blair; Heitmiller, Eugenie S
2014-01-01
Hyperkalemic cardiac arrest is a potential complication of massive transfusion in children. Our objective was to identify risk factors and potential preventive measures by reviewing the literature on transfusion-associated hyperkalemic cardiac arrest (TAHCA) in the pediatric population. Literature searches were performed in MEDLINE and the Cochrane Database of Systematic Reviews. We identified nine case reports of pediatric patients who had experienced cardiac arrest during massive transfusion. Serum potassium concentration was reported in eight of those reports; the mean was 9.2 ± 1.8 mmol/L. Risk factors for TAHCA noted in the case reports included infancy (n = 6); age of red blood cells (RBCs; n = 5); site of transfusion (n = 5); and the presence of comorbidities such as hyperkalemia, hypocalcemia, acidemia, and hypotension (n = 9). We also identified 13 clinical studies that examined potassium levels associated with transfusion. Of those 13, five studied routine transfusion, two were registries, and six examined massive transfusion. Key points identified from this literature search are as follows: 1) Case reports are skewed toward infants and neonates in particular and 2) the rate of blood transfusion, more so than total volume, cardiac output, and the site of infusion, are key factors in the development of TAHCA. Measures to reduce the risk of TAHCA in young children include anticipating and replacing blood loss before significant hemodynamic compromise occurs, using larger-bore (>23-gauge) peripheral intravenous catheters rather than central venous access, checking and correcting electrolyte abnormalities frequently, and using fresher RBCs for massive transfusion. © 2013 American Association of Blood Banks.
Sea Surface Salinity Variability in Response to the Congo River Discharge
NASA Astrophysics Data System (ADS)
Moller, D.; Chao, Y.; Farrara, J. D.; Schumann, G.; Andreadis, K.
2014-12-01
Sea surface salinity (SSS) variability associated with the Congo River discharge is examined using Aquarius satellite-retrieved SSS data and vertical profiles of salinity measured by the Argo floats. The Congo River plume can be clearly identified in the Aquarius SSS data with a westward extension of 500 to 1000 km off the coast of the Democratic Republic of Congo (DRC). The peak amplitude of the SSS variability associated with the Congo River discharge exceeds 2.0 psu. Using the first two years of Aquarius data, a well-defined seasonal cycle is described: maximum fresh-water anomalies are found in the boreal winter and spring seasons. The fresh-water anomalies during the 2012-2013 winter and spring seasons are significantly fresher than the 2011-2012 winter and spring seasons. Vertical profiles of salinity derived from the Argo floats reveal that these fresh-water anomalies can be traced to 40 meters below the sea surface. Combining the Aquarius SSS data with the Argo vertical profiles of salinity, the 3D volume of these fresh-water anomalies can be inferred and used to estimate the Congo River discharge. Reasonably good agreement is found between the Congo River discharge as observed by a stream gauge at Kinshasa and that estimated from the combined Aquarius and Argo data, indicating that Aquarius data can be used to close the fresh-water budget between the coastal ocean and the Congo River. The precipitation minus evaporation portion of the freshwater flux is found to play a secondary role in this region.
Lejonklev, J; Kidmose, U; Jensen, S; Petersen, M A; Helwing, A L F; Mortensen, G; Weisbjerg, M R; Larsen, M K
2016-10-01
Many essential oils and their terpene constituents display antimicrobial properties, which may affect rumen metabolism and influence milk production parameters. Many of these compounds also have distinct flavors and aromas that may make their way into the milk, altering its sensory properties. Essential oils from caraway (Carum carvi) seeds and oregano (Origanum vulgare) plants were included in dairy cow diets to study the effects on terpene composition and sensory properties of the produced milk, as well as feed consumption, production levels of milk, and methane emissions. Two levels of essential oils, 0.2 and 1.0g of oil/kg of dry matter, were added to the feed of lactating cows for 24d. No effects on feed consumption, milk production, and methane emissions were observed. The amount and composition of volatile terpenes were altered in the produced milk based on the terpene content of the essential oils used, with the total amount of terpenes increasing when essential oils were added to the diet. Sensory properties of the produced milk were altered as well, and milk samples from animals receiving essential oil treatment were perceived as having a fresher aroma and lower stored aroma and flavor. The levels of essential oils used in this study mimic realistic levels of essential oils in herbs from feed, but were too low to affect milk production and methane emissions, and their inclusion in the animal diet did not adversely affect milk flavor. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Kelly, Paige; Clementson, Lesley; Lyne, Vincent
2015-06-01
Sixty years of oceanographic in situ data at Port Hacking (34°S) and Maria Island (42°S) and 15 years of satellite-derived chlorophyll a (chl a) in inshore and offshore waters of southeast Australia show changes in the seasonality and trend of water properties consistent with long-term intensification and southerly extensions of East Australian Current (EAC) water. Decadal analyses reveal that the EAC extension water at Maria Island increased gradually from the 1940s to 1980s, followed by a rapid increase since the 1990s. This acceleration coincided with enhanced winter nitrate, implying increased injections of subantarctic water at Maria Island. Satellite-derived chl a at six coastal sites and offshore companion sites in the western Tasman Sea showed significant inshore-offshore variations in seasonal cycle and long-term trend. After 2004-2005, the Maria Island seasonal cycle became increasingly similar to those of Bass Strait and St. Helens, suggesting that the EAC extension water was extending further southward. Comparative analyses of inshore-offshore sites showed that the presence of EAC extension water declined offshore. Seasonal cycles at Maria Island show a recent shift away from the traditional spring bloom, toward increased winter biomass, and enhanced primary productivity consistent with extensions of warm, energetic EAC extension water and more frequent injections of cooler, fresher nitrate-replete waters. Overall, we find complex temporal, latitudinal, and inshore-offshore changes in multiple water masses, particularly at Maria Island, and changes in primary productivity that will profoundly impact fisheries and ecosystems.
NASA Astrophysics Data System (ADS)
Heslop, E. E.; Mourre, B.; Juza, M.; Troupin, C.; Escudier, R.; Torner, M.; Tintore, J.
2016-02-01
Quasi-continuous glider observations over 5 years have uniquely characterised a high frequency variability in the circulation through the Ibiza Channel, an important `choke' point in the Western Mediterranean Sea. This `choke' point governs the basin/sub-basin scale circulation and the north/south exchanges of different water masses. The resulting multi-scale variability impacts the regional shelf and open ocean ecosystems, including the spawning grounds of Atlantic bluefin tuna. Through the unique glider record we show the relevance of the weekly/mesoscale variability, which is of same order as the previously established seasonal and inter-annual variability. To understand the drivers of this variability we combine the glider data with numerical simulations (WMOP) and altimetry. Two key drivers are identified; extreme winter events, which cause the formation of a cold winter mode water (Winter Intermediate Water) in the shelf areas to the north of the Ibiza Channel, and mesoscale activity, which to the north produce channel `blocking' eddies and to the south intermittent and vigorous flows of fresher `Atlantic' waters through the Ibiza Channel. Results from the 2 km resolution WMOP are compared with the high-resolution (2 - 3 km.) glider data, giving insight into model validation across different scales, for both circulation and water masses. There is an emerging consensus that gliders can uniquely access critical time and length scales and in this study gliders complement existing satellite measurements and models, while opening up new capabilities for multidisciplinary, autonomous and high-resolution ocean observation.
Accelerated freshening of Antarctic Bottom Water over the last decade in the Southern Indian Ocean
Menezes, Viviane V.; Macdonald, Alison M.; Schatzman, Courtney
2017-01-01
Southern Ocean abyssal waters, in contact with the atmosphere at their formation sites around Antarctica, not only bring signals of a changing climate with them as they move around the globe but also contribute to that change through heat uptake and sea level rise. A repeat hydrographic line in the Indian sector of the Southern Ocean, occupied three times in the last two decades (1994, 2007, and, most recently, 2016), reveals that Antarctic Bottom Water (AABW) continues to become fresher (0.004 ± 0.001 kg/g decade−1), warmer (0.06° ± 0.01°C decade−1), and less dense (0.011 ± 0.002 kg/m3 decade−1). The most recent observations in the Australian-Antarctic Basin show a particularly striking acceleration in AABW freshening between 2007 and 2016 (0.008 ± 0.001 kg/g decade−1) compared to the 0.002 ± 0.001 kg/g decade−1 seen between 1994 and 2007. Freshening is, in part, responsible for an overall shift of the mean temperature-salinity curve toward lower densities. The marked freshening may be linked to an abrupt iceberg-glacier collision and calving event that occurred in 2010 on the George V/Adélie Land Coast, the main source region of bottom waters for the Australian-Antarctic Basin. Because AABW is a key component of the global overturning circulation, the persistent decrease in bottom water density and the associated increase in steric height that result from continued warming and freshening have important consequences beyond the Southern Indian Ocean. PMID:28138548
The down canyon evolution of submarine sediment density flows
NASA Astrophysics Data System (ADS)
Parsons, D. R.; Barry, J.; Clare, M. A.; Cartigny, M.; Chaffey, M. R.; Gales, J. A.; Gwiazda, R.; Maier, K. L.; McGann, M.; Paull, C. K.; O'Reilly, T. C.; Rosenberger, K. J.; Simmons, S.; Sumner, E. J.; Talling, P.; Xu, J.
2017-12-01
Submarine density flows, known as turbidity currents, transfer globally significant volumes of terrestrial and shelf sediments, organic carbon, nutrients and fresher-water into the deep ocean. Understanding such flows has wide implications for global organic carbon cycling, the functioning of deep-sea ecosystems, seabed infrastructure hazard assessments, and interpreting geological archives of Earth history. Only river systems transport comparable volumes of sediment over such large areas of the globe. Despite their clear importance, there are remarkably few direct measurements of these oceanic turbidity currents in action. Here we present results from the multi-institution Coordinated Canyon Experiment (CCE) which deployed multiple moorings along the axis of Monterey Canyon (offshore California). An array of six moorings, with downward looking acoustic Doppler current profilers (ADCP) were positioned along the canyon axis from 290 m to 1850 m water depth. The ADCPs reveal the internal flow structure of submarine density flows at each site. We use a novel inversion method to reconstruct the suspended sediment concentration and flow stratification field during each event. Together the six moorings provide the first ever views of the internal structural evolution of turbidity current events as they evolve down system. Across the total 18-month period of deployment at least 15 submarine sediment density flows were measured with velocities up to 8.1 m/sec, with three of these flows extending 50 kms down the canyon beyond the 1850 m water depth mooring. We use these novel data to highlight the controls on ignition, interval structure and collapse of individual events and discuss the implications for the functioning and deposits produced by these enigmatic flows.
Aerosol Size and Chemical Composition in the Canadian High Arctic
NASA Astrophysics Data System (ADS)
Chang, R. Y. W.; Hayes, P. L.; Leaitch, W. R.; Croft, B.; O'Neill, N. T.; Fogal, P.; Drummond, J. R.; Sloan, J. J.
2015-12-01
Arctic aerosol have a strong annual cycle, with winter months dominated by long range transport from lower latitudes resulting in high mass loadings. Conversely, local emissions are more prominent in the summer months because of the decreased influence of transported aerosol, allowing us to regularly observe both transported and local aerosol. This study will present observations of aerosol chemical composition and particle number size distribution collected at the Polar Environment Artic Research Laboratory and the Alert Global Atmospheric Watch Observatory at Eureka (80N, 86W) and Alert (82N, 62W), Nunavut, respectively. Summer time observations of the number size distribution reveal a persistent mode of particles centered between 30-50 nm, with occasional bursts of smaller particles. The non-refractory aerosol chemical composition, measured by the Canadian Network for the Detection of Atmospheric Change quadrupole aerosol mass spectrometer, is primarily organic, with contributions from both aged and fresher organic aerosol. Factor analysis will be conducted to better understand these sources. The site at Eureka is more susceptible to long range transport since it is at the top of a mountain ridge (610 m above sea level) and will be compared to the site at Alert on an elevated plain (200 m above sea level). This will allow us to determine the relative contributions from processes and sources at the sites at different elevations. Comparisons with aerosol optical depth and GEOS-Chem model output will also be presented to put these surface measurements into context with the overlying and regional atmosphere. Results from this study contribute to our knowledge of aerosol in the high Arctic.
NASA Astrophysics Data System (ADS)
Weiss, M.; Kruse, S.; Burnett, W. C.; Chanton, J.; Greenwood, W.; Murray, M.; Peterson, R.; Swarzenski, P.
2005-12-01
In an effort to evaluate geophysical and thermal methods for detecting submarine groundwater discharge (SGD) on the Florida Gulf coast, a suite of water-borne surveys were run in conjunction with aerial thermal imagery over the lower Suwannee estuary in March 2005. Marine resistivity streaming data were collected alongside continuous radon and methane sampling from surface waters. Resistivity measurements were collected with dipole-dipole geometries. Readings were inverted for terrain resistivity assuming two-dimensional structure and constraining uppermost layers to conform to measured water depths and surface water conductivities. Thermal images were collected at the end of winter and at night to maximize temperatures between warmer discharging groundwater and colder surface waters. For the preliminary data analysis presented here, we assume high radon and methane concentrations coincide with zones of high SGD, and look at relationships between radon and methane concentrations and terrain resistivity and thermal imagery intensity values. For a limited set of coincident thermal intensity and radon readings, thermal intensities are higher at sites with the highest radon readings. These preliminary results suggest that in this environment, thermal imagery may be effective for identifying the "hottest" spots for SGD, but not for zones of diffuse discharge. The thermal imagery shows high intensity features at the heads of tidal streams, but shallow water depths precluded boat-based resistivity and sampling at these sites. Shallow terrain resistivities generally show a positive correlation with methane concentrations, as would be expected over zones of discharging groundwater that is fresher than Gulf surface water.
Decadal trends in deep ocean salinity and regional effects on steric sea level
NASA Astrophysics Data System (ADS)
Purkey, S. G.; Llovel, W.
2017-12-01
We present deep (below 2000 m) and abyssal (below 4000 m) global ocean salinity trends from the 1990s through the 2010s and assess the role of deep salinity in local and global sea level budgets. Deep salinity trends are assessed using all deep basins with available full-depth, high-quality hydrographic section data that have been occupied two or more times since the 1980s through either the World Ocean Circulation Experiment (WOCE) Hydrographic Program or the Global Ship-Based Hydrographic Investigations Program (GO-SHIP). All salinity data is calibrated to standard seawater and any intercruise offsets applied. While the global mean deep halosteric contribution to sea level rise is close to zero (-0.017 +/- 0.023 mm/yr below 4000 m), there is a large regional variability with the southern deep basins becoming fresher and northern deep basins becoming more saline. This meridional gradient in the deep salinity trend reflects different mechanisms driving the deep salinity variability. The deep Southern Ocean is freshening owing to a recent increased flux of freshwater to the deep ocean. Outside of the Southern Ocean, the deep salinity and temperature changes are tied to isopycnal heave associated with a falling of deep isopycnals in recent decades. Therefore, regions of the ocean with a deep salinity minimum are experiencing both a halosteric contraction with a thermosteric expansion. While the thermosteric expansion is larger in most cases, in some regions the halosteric compensates for as much as 50% of the deep thermal expansion, making a significant contribution to local sea level rise budgets.
Accelerated freshening of Antarctic Bottom Water over the last decade in the Southern Indian Ocean.
Menezes, Viviane V; Macdonald, Alison M; Schatzman, Courtney
2017-01-01
Southern Ocean abyssal waters, in contact with the atmosphere at their formation sites around Antarctica, not only bring signals of a changing climate with them as they move around the globe but also contribute to that change through heat uptake and sea level rise. A repeat hydrographic line in the Indian sector of the Southern Ocean, occupied three times in the last two decades (1994, 2007, and, most recently, 2016), reveals that Antarctic Bottom Water (AABW) continues to become fresher (0.004 ± 0.001 kg/g decade -1 ), warmer (0.06° ± 0.01°C decade -1 ), and less dense (0.011 ± 0.002 kg/m 3 decade -1 ). The most recent observations in the Australian-Antarctic Basin show a particularly striking acceleration in AABW freshening between 2007 and 2016 (0.008 ± 0.001 kg/g decade -1 ) compared to the 0.002 ± 0.001 kg/g decade -1 seen between 1994 and 2007. Freshening is, in part, responsible for an overall shift of the mean temperature-salinity curve toward lower densities. The marked freshening may be linked to an abrupt iceberg-glacier collision and calving event that occurred in 2010 on the George V/Adélie Land Coast, the main source region of bottom waters for the Australian-Antarctic Basin. Because AABW is a key component of the global overturning circulation, the persistent decrease in bottom water density and the associated increase in steric height that result from continued warming and freshening have important consequences beyond the Southern Indian Ocean.
Bhaisare, Roshan; Kamble, Bhavna
2016-07-01
Note taking while attending a PPT requires high activity of memory and writing process which ultimately leads to what is called "death by power point" referring to boredom and fatigue. To overcome this we planned to evaluate the impact of utilisation of uncompleted handouts given prior to PPT presentations. Final year MBBS students were divided in 2 batches, batch A and batch B. For a set of lectures one batch was provided with handouts before lecture while the other batch was given lectures only. Crossover was done to avoid bias, all the lectures being given by the same presenter. At the end of each lecture, a short questionnaire of 10 Multiple Choice Question (MCQ) was provided to the students. Mean scores were calculated for lectures with handouts and without handouts. For a set of lectures, when batch A was provided with handouts, the mean score was 28.2; for batch B to which no handouts were given the mean score was 23.4. Similarly, for batch B when provided with handouts the mean score was 29.1, for batch A which was not provided with handouts the mean score was 24. There was an average increase of 4.2 marks. Actual gain when handouts were provided was 1.2 marks per lecture. It was more for the batch comprising of repeater students as compared to the batch of fresher students. Increase in attendance was also noted. Providing uncompleted handouts before a didactic lecture definitely results in increase in knowledge gain; repeater students benefit more with uncompleted handouts.
Understanding the formation and evolution of rain-formed fresh lenses at the ocean surface
NASA Astrophysics Data System (ADS)
Drushka, Kyla; Asher, William E.; Ward, Brian; Walesby, Kieran
2016-04-01
Rain falling on the ocean produces a layer of buoyant fresher surface water, or "fresh lens." Fresh lenses can have significant impacts on satellite-in situ salinity comparisons and on exchanges between the surface and the bulk mixed layer. However, because these are small, transient features, relatively few observations of fresh lenses have been made. Here the Generalized Ocean Turbulence Model (GOTM) is used to explore the response of the upper few meters of the ocean to rain events. Comparisons with observations from several platforms demonstrate that GOTM can reproduce the main characteristics of rain-formed fresh lenses. Idealized sensitivity tests show that the near-surface vertical salinity gradient within fresh lenses has a linear dependence on rain rate and an inverse dependence on wind speed. Yearlong simulations forced with satellite rainfall and reanalysis atmospheric parameters demonstrate that the mean salinity difference between 0.01 and 5 m, equivalent to the measurement depths of satellite radiometers and Argo floats, is -0.04 psu when averaged over the 20°S-20°N tropical band. However, when averaged regionally, the mean vertical salinity difference exceeds -0.15 psu in the Indo-Pacific warm pool, in the Pacific and Atlantic intertropical convergence zone, and in the South Pacific convergence zone. In most of these regions, salinities measured by the Aquarius satellite instrument have a fresh bias relative to Argo measurements at 5 m depth. These results demonstrate that the fresh bias in Aquarius salinities in rainy, low-wind regions may be caused by the presence of rain-produced fresh lenses.
Filter materials for metal removal from mine drainage--a review.
Westholm, Lena Johansson; Repo, Eveliina; Sillanpää, Mika
2014-01-01
A large number of filter materials, organic and inorganic, for removal of heavy metals in mine drainage have been reviewed. Bark, chitin, chitosan, commercial ion exchangers, dairy manure compost, lignite, peat, rice husks, vegetal compost, and yeast are examples of organic materials, while bio-carbons, calcareous shale, dolomite, fly ash, limestone, olivine, steel slag materials and zeolites are examples of inorganic materials. The majority of these filter materials have been investigated in laboratory studies, based on various experimental set-ups (batch and/or column tests) and different conditions. A few materials, for instance steel slag materials, have also been subjects to field investigations under real-life conditions. The results from these investigations show that steel slag materials have the potential to remove heavy metals under different conditions. Ion exchange has been suggested as the major metal removal mechanisms not only for steel slag but also for lignite. Other suggested removal mechanisms have also been identified. Adsorption has been suggested important for activated carbon, precipitation for chitosan and sulphate reduction for olivine. General findings indicate that the results with regard to metal removal vary due to experimental set ups, composition of mine drainage and properties of filter materials and the discrepancies between studies renders normalisation of data difficult. However, the literature reveals that Fe, Zn, Pb, Hg and Al are removed to a large extent. Further investigations, especially under real-life conditions, are however necessary in order to find suitable filter materials for treatment of mine drainage.
Li, Yan; Jiang, Chunlan; Wang, Zaicheng; Luo, Puguang
2016-01-01
Metal/fluoropolymer composites represent a new category of energetic structural materials that release energy through exothermic chemical reactions initiated under shock loading conditions. This paper describes an experiment designed to study the reaction characteristics of energetic materials with low porosity under explosive loading. Three PTFE (polytetrafluoroethylene)/Ti/W mixtures with different W contents are processed through pressing and sintering. An inert PTFE/W mixture without reactive Ti particles is also prepared to serve as a reference. Shock-induced chemical reactions are recorded by high-speed video through a narrow observation window. Related shock parameters are calculated based on experimental data, and differences in energy release are discussed. The results show that the reaction propagation of PTFE/Ti/W energetic materials with low porosity under explosive loading is not self-sustained. As propagation distance increases, the energy release gradually decreases. In addition, reaction failure distance in PTFE/Ti/W composites is inversely proportional to the W content. Porosity increased the failure distance due to higher shock temperature. PMID:28774056
Kipf, Elena; Koch, Julia; Geiger, Bettina; Erben, Johannes; Richter, Katrin; Gescher, Johannes; Zengerle, Roland; Kerzenmacher, Sven
2013-10-01
We present a systematic screening of carbon-based anode materials for microbial fuel cells with Shewanella oneidensis MR-1. Under anoxic conditions nanoporous activated carbon cloth is a superior anode material in terms of current density normalized to the projected anode area and anode volume (24.0±0.3 μA cm(-2) and 482±7 μA cm(-3) at -0.2 vs. SCE, respectively). The good performance can be attributed to the high specific surface area of the material, which is available for mediated electron transfer through self-secreted flavins. Under aerated conditions no influence of the specific surface area is observed, which we attribute to a shift from primary indirect electron transfer by mediators to direct electron transfer via adherent cells. Furthermore, we show that an aerated initial growth phase enhances the current density under subsequent anoxic conditions fivefold when compared to a similar experiment that was conducted under permanently anoxic conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.
Phase transition induced strain in ZnO under high pressure
Yan, Xiaozhi; Dong, Haini; Li, Yanchun; ...
2016-05-13
Under high pressure, the phase transition mechanism and mechanical property of material are supposed to be largely associated with the transformation induced elastic strain. However, the experimental evidences for such strain are scanty. The elastic and plastic properties of ZnO, a leading material for applications in chemical sensor, catalyst, and optical thin coatings, were determined using in situ high pressure synchrotron axial and radial x-ray diffraction. The abnormal elastic behaviors of selected lattice planes of ZnO during phase transition revealed the existence of internal elastic strain, which arise from the lattice misfit between wurtzite and rocksalt phase. Furthermore, the strengthmore » decrease of ZnO during phase transition under non-hydrostatic pressure was observed and could be attributed to such internal elastic strain, unveiling the relationship between pressure induced internal strain and mechanical property of material. Ultimately, these findings are of fundamental importance to understanding the mechanism of phase transition and the properties of materials under pressure.« less
Effect of Temperature Change on Interfacial Behavior of an Acoustically Levitated Droplet
NASA Astrophysics Data System (ADS)
Kawakami, Masanori; Abe, Yutaka; Kaneko, Akiko; Yamamoto, Yuji; Hasegawa, Koji
2010-04-01
Under the microgravity environment, new and high quality materials with a homogeneous crystal structure are expected to be manufactured by undercooling solidification, since the material manufacturing under the microgravity environment is more static than that under the normal gravity. However, the temperature change on the interface of the material in space can affect on the material processing. The purpose of the present study is to investigate effect of the temperature change of interface on the large levitated droplet interface. A water droplet levitated by the acoustic standing wave is heated by YAG laser. In order to heat the water droplet by the laser heating, rhodamine 6G is solved in it to achieve high absorbance of the laser. The droplet diameter is from 4 to 5.5 mm. The deformation of the droplet interface is observed by high speed video camera. The temperature of droplet is measured by the radiation thermometer. It is noticed that the larger droplet under the higher sound pressure tends to oscillate remarkably by the laser heating.
Removal of mercury from an alumina refinery aqueous stream.
Mullett, Mark; Tardio, James; Bhargava, Suresh; Dobbs, Charles
2007-06-01
Digestion condensate is formed as a by-product of the alumina refinery digestion process. The solution exhibits a high pH and is chemically reducing, containing many volatile species such as water, volatile organics, ammonia, and mercury. Because digestion condensate is chemically unique, an innovative approach was required to investigate mercury removal. The mercury capacity and adsorption kinetics were investigated using a number of materials including gold, silver and sulphur impregnated silica and a silver impregnated carbon. The results were compared to commercial sorbents, including extruded and powdered virgin activated carbons and a sulphur impregnated mineral. Nano-gold supported on silica (88% removal under batch conditions and 95% removal under flow conditions) and powdered activated carbon (91% under batch conditions and 98% removal under flow conditions) were the most effective materials investigated. The silver and sulphur impregnated materials were unstable in digestion condensate under the test conditions used.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-27
... Activities (Advertising, Sales, and Enrollment Materials, and Candidate Handbooks) Under OMB Review AGENCY....'' SUPPLEMENTARY INFORMATION: Title: Advertising, Sales, and Enrollment Materials, and Candidate Handbooks, 38 CFR... such tests, must maintain a complete record of all advertising, sales materials, enrollment materials...
Fleming, Roland W
2017-09-15
Under typical viewing conditions, human observers effortlessly recognize materials and infer their physical, functional, and multisensory properties at a glance. Without touching materials, we can usually tell whether they would feel hard or soft, rough or smooth, wet or dry. We have vivid visual intuitions about how deformable materials like liquids or textiles respond to external forces and how surfaces like chrome, wax, or leather change appearance when formed into different shapes or viewed under different lighting. These achievements are impressive because the retinal image results from complex optical interactions between lighting, shape, and material, which cannot easily be disentangled. Here I argue that because of the diversity, mutability, and complexity of materials, they pose enormous challenges to vision science: What is material appearance, and how do we measure it? How are material properties estimated and represented? Resolving these questions causes us to scrutinize the basic assumptions of mid-level vision.
NASA Astrophysics Data System (ADS)
Babick, Frank; Mielke, Johannes; Wohlleben, Wendel; Weigel, Stefan; Hodoroaba, Vasile-Dan
2016-06-01
Currently established and projected regulatory frameworks require the classification of materials (whether nano or non-nano) as specified by respective definitions, most of which are based on the size of the constituent particles. This brings up the question if currently available techniques for particle size determination are capable of reliably classifying materials that potentially fall under these definitions. In this study, a wide variety of characterisation techniques, including counting, fractionating, and spectroscopic techniques, has been applied to the same set of materials under harmonised conditions. The selected materials comprised well-defined quality control materials (spherical, monodisperse) as well as industrial materials of complex shapes and considerable polydispersity. As a result, each technique could be evaluated with respect to the determination of the number-weighted median size. Recommendations on the most appropriate and efficient use of techniques for different types of material are given.
Agencies Need Better Guidance for Choosing among Contracts, Grants, and Cooperative Agreements.
1981-09-04
given case may require reference to a range of materials . By en- acting specific authorizing language and providing various sources to help an agency...to: --Inventory recipients’ training materials , get them well-edited, and ready for the agency’s approval, production and distribution. [service... materials to those that do. REA indicated in its Federal Register announcement that under Section 11 of the Rural Electrification Act and under the
NASA Astrophysics Data System (ADS)
Ge, Mingyuan; Liu, Wenjun; Bock, David; De Andrade, Vincent; Yan, Hanfei; Huang, Xiaojing; Marschilok, Amy; Takeuchi, Esther; Xin, Huolin; Chu, Yong S.
2016-09-01
The detection sensitivity of synchrotron-based X-ray techniques has been largely improved due to the ever increasing source brightness, which have significantly advanced ex-situ and in-situ research for energy materials, such as lithium-ion batteries. However, the strong beam-matter interaction arisen from the high beam flux can significantly modify the material structure. The parasitic beam-induced effect inevitably interferes with the intrinsic material property, which brings difficulties in interpreting experimental results, and therefore requires comprehensive evaluation. Here we present a quantitative in-situ study of the beam-effect on one electrode material Ag2VO2PO4 using four different X-ray probes with different radiation dose rate. The material system we reported exhibits interesting and reversible radiation-induced thermal and chemical reactions, which was further evaluated under electron microscopy to illustrate the underlying mechanism. The work we presented here will provide a guideline in using synchrotron X-rays to distinguish the materials' intrinsic behavior from extrinsic structure changed induced by X-rays, especially in the case of in-situ and operando study where the materials are under external field of either temperature or electric field.
Chen, Wen-Ming; Lee, Sung-Jae; Lee, Peter Vee Sin
2014-12-01
Material properties of the plantar soft tissue have not been well quantified in vivo (i.e., from life subjects) nor for areas other than the heel pad. This study explored an in vivo investigation of the plantar soft tissue material behavior under the metatarsal head (MTH). We used a novel device collecting indentation data at controlled metatarsophalangeal joint angles. Combined with inverse analysis, tissues׳ joint-angle dependent material properties were identified. The results showed that the soft tissue under MTH exhibited joint-angle dependent material responses, and the computed parameters using the Ogden material model were 51.3% and 30.9% larger in the dorsiflexed than in the neutral positions, respectively. Using derived parameters in subject-specific foot finite element models revealed only those models that used tissues׳ joint-dependent responses could reproduce the known plantar pressure pattern under the MTH. It is suggested that, to further improve specificity of the personalized foot finite element models, quantitative mechanical properties of the tissue inclusive of the effects of metatarsophalangeal joint dorsiflexion are needed. Copyright © 2014 Elsevier Ltd. All rights reserved.
Majima, K
1998-01-01
To examine the morphological changes of lens epithelial cells (LECs) occurring directly beneath and at regions contacting various intraocular lens (IOL) optic materials, human LECs were cultured on human anterior lens capsules and were further incubated upon placing above the cells lens optics made of polymethylmethacrylate, silicone, and soft acrylic material. Observations as to the morphological changes of LECs under phase-contrast microscope and scanning electron microscope were performed on the 14th day of incubation. Gatherings of LECs were observed at regions contacting the soft acrylic material under phase-contrast microscope, and gatherings of LECs were observed accurately at the same regions mentioned above under scanning electron microscope. On the other hand, LECs in contact with two other optic materials did not show morphological changes. The results suggest that LECs attached to and proliferated on not only the anterior lens capsules but also the soft acrylic IOL optics. The model used in this study may be useful in studying the relationship between cellular movement of LECs and IOL optic material.
Investigation of the mechanical properties of organoplastic under shock wave loading conditions
NASA Astrophysics Data System (ADS)
Bragov, A. M.; Igumnov, L. A.; Konstantinov, A. Yu; Lomunov, A. K.
2018-04-01
The paper presents results of dynamic tests of a typical representative of new composite and damping materials: organoplastics. Compression testing was performed using the traditional Kolsky method and its original modification. The strength and deformation properties of organoplastics under conditions of uniaxial stress and uniaxial deformation were studied. When the organoplastic is compressed transversely to the Kevlar fabric layers under conditions of a uniaxial stress state, the material begins to break down (to lose the layer cohesion) at a stress of about 200 MPa, while under the conditions of uniaxial strain, it retains its apparent integrity at stresses up to 500 MPa. The small value of the lateral thrust factor indicates a large internal strength of the material in tension in the radial direction.
49 CFR 195.1 - Which pipelines are covered by this part?
Code of Federal Regulations, 2010 CFR
2010-10-01
... HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY... may petition the Administrator, under § 190.9 of this chapter, for approval to operate under PHMSA... non-pipeline mode of transportation; or (ii) Through facilities located on the grounds of a materials...
19 CFR 356.18 - Interim sanctions.
Code of Federal Regulations, 2010 CFR
2010-04-01
... on the basis of new and material evidence or other good cause shown. The Deputy Under Secretary or a..., including the protection of proprietary information, the Deputy Under Secretary may petition an...) Barring a person from appearing before the Department; and (4) Requiring the person to return material...
77 FR 2098 - New Postal Product
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-13
... Competitive Products List and Notice of Filing Two Functionally Equivalent Global Plus 1C Contracts Negotiated Service Agreements and Application for Non-Public Treatment of Materials Filed Under Seal, December 30... under seal. Attachment 1 to the Notice is an application for non-public treatment of that material...
Code of Federal Regulations, 2010 CFR
2010-07-01
... review material offered or to be offered for sale or rental on property under DoD jurisdiction and... Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) MISCELLANEOUS SALE OR RENTAL... determines that any material offered for sale or rental on property under DoD jurisdiction is sexually...
44 CFR 5.25 - Available materials.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 44 Emergency Management and Assistance 1 2011-10-01 2011-10-01 false Available materials. 5.25... Agency Information, Rules, Orders, Policies, and Similar Material § 5.25 Available materials. FEMA materials which are available under this subpart are as follows: (a) Final opinions and orders made in the...
44 CFR 5.25 - Available materials.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 44 Emergency Management and Assistance 1 2013-10-01 2013-10-01 false Available materials. 5.25... Agency Information, Rules, Orders, Policies, and Similar Material § 5.25 Available materials. FEMA materials which are available under this subpart are as follows: (a) Final opinions and orders made in the...
44 CFR 5.25 - Available materials.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 44 Emergency Management and Assistance 1 2012-10-01 2011-10-01 true Available materials. 5.25... Agency Information, Rules, Orders, Policies, and Similar Material § 5.25 Available materials. FEMA materials which are available under this subpart are as follows: (a) Final opinions and orders made in the...
Code of Federal Regulations, 2012 CFR
2012-10-01
..., DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS AND OIL TRANSPORTATION HAZARDOUS MATERIALS PROGRAM..., Pipeline and Hazardous Materials Safety Administration. Competent Authority means a national agency that is responsible, under its national law, for the control or regulation of some aspect of hazardous materials...
75 FR 53593 - Hazardous Materials: Minor Editorial Corrections and Clarifications
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-01
... transportation, Packaging and containers, Radioactive materials, Reporting and recordkeeping requirements... section specifies general requirements for packaging hazardous materials for transportation by aircraft... contamination on motor vehicles used to transport Class 7 radioactive materials under exclusive use conditions...
Photoconductivity in Dirac materials
NASA Astrophysics Data System (ADS)
Shao, J. M.; Yang, G. W.
2015-11-01
Two-dimensional (2D) Dirac materials including graphene and the surface of a three-dimensional (3D) topological insulator, and 3D Dirac materials including 3D Dirac semimetal and Weyl semimetal have attracted great attention due to their linear Dirac nodes and exotic properties. Here, we use the Fermi's golden rule and Boltzmann equation within the relaxation time approximation to study and compare the photoconductivity of Dirac materials under different far- or mid-infrared irradiation. Theoretical results show that the photoconductivity exhibits the anisotropic property under the polarized irradiation, but the anisotropic strength is different between 2D and 3D Dirac materials. The photoconductivity depends strongly on the relaxation time for different scattering mechanism, just like the dark conductivity.
Power losses of soft magnetic composite materials under two-dimensional excitation
NASA Astrophysics Data System (ADS)
Zhu, J. G.; Zhong, J. J.; Ramsden, V. S.; Guo, Y. G.
1999-04-01
Soft magnetic composite materials produced by powder metallurgy techniques can be very useful for construction of low cost small motors. However, the rotational core losses and the corresponding B-H relationships of soft magnetic composite materials with two-dimensional rotating fluxes have neither been supplied by the manufacturers nor reported in the literature. This article reports the core loss measurement of a soft magnetic composite material, SOMALOY™ 500, Höganäs AB, Sweden, under two-dimensional excitations. The principle of measurement, testing system, and power loss calculation are presented. The results are analyzed and discussed.
Solid amine development program
NASA Technical Reports Server (NTRS)
Lovell, J. S.
1973-01-01
A regenerable solid amine material to perform the functions of humidity control and CO2 removal for space shuttle type vehicle is reported. Both small scale and large scale testing have shown this material to be competitive, especially for the longer shuttle missions. However, it had been observed that the material off-gasses ammonia under certain conditions. This presents two concerns. The first, that the ammonia would contaminate the cabin atmosphere, and second, that the material is degrading with time. An extensive test program has shown HS-C to produce only trace quantities of atmospheric contaminants, and under normal extremes, to have no practical life limitation.
Mechanical response of unidirectional boron/aluminum under combined loading
NASA Technical Reports Server (NTRS)
Becker, Wolfgang; Pindera, Marek-Jerzy; Herakovich, Carl T.
1987-01-01
Three test methods were employed to characterize the response of unidirectional Boron/Aluminum metal matrix composite material under monotonic and cyclic loading conditions, namely, losipescu shear, off-axis tension and compression. The characterization of the elastic and plastic response includes the elastic material properties, yielding and subsequent hardening of the unidirectional composite under different stress ratios in the material principal coordinate system. Yield loci generated for different stress ratios are compared for the three different test methods, taking into account residual stresses and specimen geometry. Subsequently, the yield locus for in-plane shear is compared with the prediction of an analytical, micromechanical model. The influence of the scatter in the experimental data on the predicted yield surface is also analyzed. Lastly, the experimental material strengths in tension and compression are correlated with the maximum stress and the Tsai-Wu failure criterion.
Harman Measurements for Thermoelectric Materials and Modules under Non-Adiabatic Conditions
Roh, Im-Jun; Lee, Yun Goo; Kang, Min-Su; Lee, Jae-Uk; Baek, Seung-Hyub; Kim, Seong Keun; Ju, Byeong-Kwon; Hyun, Dow-Bin; Kim, Jin-Sang; Kwon, Beomjin
2016-01-01
Accuracy of the Harman measurement largely depends on the heat transfer between the sample and its surroundings, so-called parasitic thermal effects (PTEs). Similar to the material evaluations, measuring thermoelectric modules (TEMs) is also affected by the PTEs especially when measuring under atmospheric condition. Here, we study the correction methods for the Harman measurements with systematically varied samples (both bulk materials and TEMs) at various conditions. Among several PTEs, the heat transfer via electric wires is critical. Thus, we estimate the thermal conductance of the electric wires, and correct the measured properties for a certain sample shape and measuring temperature. The PTEs are responsible for the underestimation of the TEM properties especially under atmospheric conditions (10–35%). This study will be useful to accurately characterize the thermoelectric properties of materials and modules. PMID:27966622
Dynamics of bubble collapse under vessel confinement in 2D hydrodynamic experiments
NASA Astrophysics Data System (ADS)
Shpuntova, Galina; Austin, Joanna
2013-11-01
One trauma mechanism in biomedical treatment techniques based on the application of cumulative pressure pulses generated either externally (as in shock-wave lithotripsy) or internally (by laser-induced plasma) is the collapse of voids. However, prediction of void-collapse driven tissue damage is a challenging problem, involving complex and dynamic thermomechanical processes in a heterogeneous material. We carry out a series of model experiments to investigate the hydrodynamic processes of voids collapsing under dynamic loading in configurations designed to model cavitation with vessel confinement. The baseline case of void collapse near a single interface is also examined. Thin sheets of tissue-surrogate polymer materials with varying acoustic impedance are used to create one or two parallel material interfaces near the void. Shadowgraph photography and two-color, single-frame particle image velocimetry quantify bubble collapse dynamics including jetting, interface dynamics and penetration, and the response of the surrounding material. Research supported by NSF Award #0954769, ``CAREER: Dynamics and damage of void collapse in biological materials under stress wave loading.''
Prolonged storage of packed red blood cells for blood transfusion.
Martí-Carvajal, Arturo J; Simancas-Racines, Daniel; Peña-González, Barbra S
2015-07-14
A blood transfusion is an acute intervention, used to address life- and health-threatening conditions on a short-term basis. Packed red blood cells are most often used for blood transfusion. Sometimes blood is transfused after prolonged storage but there is continuing debate as to whether transfusion of 'older' blood is as beneficial as transfusion of 'fresher' blood. To assess the clinical benefits and harms of prolonged storage of packed red blood cells, in comparison with fresh, on recipients of blood transfusion. We ran the search on 1st May 2014. We searched the Cochrane Injuries Group Specialized Register, Cochrane Central Register of Controlled Trials (CENTRAL, The Cochrane Library), MEDLINE (OvidSP), Embase (OvidSP), CINAHL (EBSCO Host) and two other databases. We also searched clinical trials registers and screened reference lists of the retrieved publications and reviews. We updated this search in June 2015 but these results have not yet been incorporated. Randomised clinical trials including participants assessed as requiring red blood cell transfusion were eligible for inclusion. Prolonged storage was defined as red blood cells stored for ≥ 21 days in a blood bank. We did not apply limits regarding the duration of follow-up, or country where the study took place. We excluded trials where patients received a combination of short- and long-stored blood products, and also trials without a clear definition of prolonged storage. We independently performed study selection, risk of bias assessment and data extraction by at least two review authors. The major outcomes were death from any cause, transfusion-related acute lung injury, and adverse events. We estimated relative risk for dichotomous outcomes. We measured statistical heterogeneity using I(2). We used a random-effects model to synthesise the findings. We identified three randomised clinical trials, involving a total of 120 participants, comparing packed red blood cells with ≥ 21 days storage ('prolonged' or 'older') versus packed red blood cells with < 21 days storage ('fresh'). We pooled data to assess the effect of prolonged storage on death from any cause. The confidence in the results from these trials was very low, due to the bias in their design and their limited sample sizes.The estimated effect of packed red blood cells with ≥ 21 days storage versus packed red blood cells with < 21 days storage for the outcome death from any cause was imprecise (5/45 [11.11%] versus 2/46 [4.34%]; RR 2.36; 95% CI 0.65 to 8.52; I(2): 0%, P = 0.26, very low quality of evidence). Trial sequential analysis, with only two trials, shows that we do not yet have convincing evidence that older packed red blood cells induce a 20% relative risk reduction of death from any cause compared with fresher packed red blood cells. No trial included other outcomes of interest specified in this review, namely transfusion-related acute lung injury, postoperative infections, and adverse events. The safety profile is unknown. Recognising the limitations of the review, relating to the size and nature of the included trials, this Cochrane Review provides no evidence to support or reject the use of packed red blood cells for blood transfusion which have been stored for ≥ 21 days ('prolonged' or 'older') compared with those stored for < 21 days ('fresh'). These results are based on three small single centre trials with high risks of bias. There is insufficient evidence to determine the effects of fresh or older packed red blood cells for blood transfusion. Therefore, we urge readers to interpret the trial results with caution. The results from four large ongoing trials will help to inform future updates of this review.
Behavior of Materials Under Conditions of Thermal Stress
NASA Technical Reports Server (NTRS)
Manson, S S
1954-01-01
A review is presented of available information on the behavior of brittle and ductile materials under conditions of thermal stress and thermal shock. For brittle materials, a simple formula relating physical properties to thermal-shock resistance is derived and used to determine the relative significance of two indices currently in use for rating materials. For ductile materials, thermal-shock resistance depends upon the complex interrelation among several metallurgical variables which seriously affect strength and ductility. These variables are briefly discussed and illustrated from literature sources. The importance of simulating operating conditions in tests for rating materials is especially to be emphasized because of the importance of testing conditions in metallurgy. A number of practical methods that have been used to minimize the deleterious effects of thermal stress and thermal shock are outlined.
Friction and wear of sintered fiber-metal abradable seal materials
NASA Technical Reports Server (NTRS)
Bill, R. C.; Shiembob, L. T.
1977-01-01
Three abradable gas path seal material systems based on a sintered NiCrAlY fibermetal structure were evaluated under a range of wear conditions representative of those likely to be encountered in various knife-edge seal (labyrinth or shrouded turbine) applications. Conditions leading to undesirable wear of the rotating knife were identified and a model was proposed based on thermal effects arising under different rub conditions. It was found, and predicted by the model, that low incursion (plunge) rates tended to promote smearing of the low density sintered material with consequent wear to the knife-edge. Tradeoffs benefits between baseline 19 percent dense material, a similar material of increased density, and a self lubricating coating applied to the 19 percent material were identified based on relative rub tolerance and erosion resistance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bauer, Stephen J.; Glover, Steven F.; Pfeifle, Tom
A device for electrofracturing a material sample and analyzing the material sample is disclosed. The device simulates an in situ electrofracturing environment so as to obtain electrofractured material characteristics representative of field applications while allowing permeability testing of the fractured sample under in situ conditions.
37 CFR 1.801 - Biological material.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 37 Patents, Trademarks, and Copyrights 1 2012-07-01 2012-07-01 false Biological material. 1.801... Biological Material § 1.801 Biological material. For the purposes of these regulations pertaining to the deposit of biological material for purposes of patents for inventions under 35 U.S.C. 101, the term...
29 CFR 2702.4 - Materials available.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 29 Labor 9 2013-07-01 2013-07-01 false Materials available. 2702.4 Section 2702.4 Labor... IMPLEMENTING THE FREEDOM OF INFORMATION ACT § 2702.4 Materials available. (a) FOIA Reading Room. Materials... paragraph (a). (b) E-FOIA Reading Room. Materials created on or after November 1, 1996, under paragraphs (a...
37 CFR 1.801 - Biological material.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 37 Patents, Trademarks, and Copyrights 1 2013-07-01 2013-07-01 false Biological material. 1.801... Biological Material § 1.801 Biological material. For the purposes of these regulations pertaining to the deposit of biological material for purposes of patents for inventions under 35 U.S.C. 101, the term...
29 CFR 2702.4 - Materials available.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 29 Labor 9 2012-07-01 2012-07-01 false Materials available. 2702.4 Section 2702.4 Labor... IMPLEMENTING THE FREEDOM OF INFORMATION ACT § 2702.4 Materials available. (a) FOIA Reading Room. Materials...-FOIA Reading Room. Materials created on or after November 1, 1996, under paragraphs (a)(1) through (5...
37 CFR 1.801 - Biological material.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 37 Patents, Trademarks, and Copyrights 1 2014-07-01 2014-07-01 false Biological material. 1.801... Biological Material § 1.801 Biological material. For the purposes of these regulations pertaining to the deposit of biological material for purposes of patents for inventions under 35 U.S.C. 101, the term...
48 CFR 252.225-7045 - Balance of Payments Program-Construction Material Under Trade Agreements.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 48 Federal Acquisition Regulations System 3 2011-10-01 2011-10-01 false Balance of Payments... SOLICITATION PROVISIONS AND CONTRACT CLAUSES Text of Provisions And Clauses 252.225-7045 Balance of Payments... clause: Balance of Payments Program—Construction Material Under Trade Agreements (JUN 2011) (a...
48 CFR 252.225-7045 - Balance of Payments Program-Construction Material Under Trade Agreements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Balance of Payments... SOLICITATION PROVISIONS AND CONTRACT CLAUSES Text of Provisions And Clauses 252.225-7045 Balance of Payments... clause: Balance of Payments Program—Construction Material Under Trade Agreements (NOV 2009) (a...
78 FR 4478 - New Postal Product
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-22
... Equivalent Global Plus 2C Contract Negotiated Service Agreement and Application for Non-Public Treatment of... Equivalent Global Plus 2C Agreements, January 13, 2012. Customers for Global Plus 2C contracts are Postal... application for non-public treatment of material filed under seal. The material filed under seal consists of...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Department of the Army (DA) permits to authorize the transportation of dredged material by vessel or other... transportation of dredged material for the purpose of dumping in the ocean waters also require DA permits under... the United States. Applicants for DA permits under this part should also refer to 33 CFR part 322 to...
NASA Technical Reports Server (NTRS)
Boes, D. J.
1984-01-01
This report describes the results of a program designed to evaluate the breakaway friction and dynamic friction/wear characteristics of materials having potential for use as load bearing components in a high-performance high-temperature heavy duty diesel engine. Ten candidate materials were selected, six of which were evaluated under all possible material combinations as both stationary as well as moving breakaway specimens. The remaining materials were evaluated either in the static mode against themselves and all other materials, or against themselves only. Experiments were performed at five temperatures up to 650 C (1200 F) and unit pressures of 700 kPa (100 lb/sq in.), 3500 kPa (500 lb/sq in.), and 7000 kPa (1000 lb/sq in.). Experimental results indicate that under dynamic conditions, four of the ten materials exhibited good to excellent friction/wear characteristics in various material combinations. These materials were: titanium carbide, silicon nitride, silicon carbide (reaction sintered), and Refel (SiC).
Maxwell, James L; Rose, Chris R; Black, Marcie R; Springer, Robert W
2014-03-11
Microelectronic structures and devices, and method of fabricating a three-dimensional microelectronic structure is provided, comprising passing a first precursor material for a selected three-dimensional microelectronic structure into a reaction chamber at temperatures sufficient to maintain said precursor material in a predominantly gaseous state; maintaining said reaction chamber under sufficient pressures to enhance formation of a first portion of said three-dimensional microelectronic structure; applying an electric field between an electrode and said microelectronic structure at a desired point under conditions whereat said first portion of a selected three-dimensional microelectronic structure is formed from said first precursor material; positionally adjusting either said formed three-dimensional microelectronic structure or said electrode whereby further controlled growth of said three-dimensional microelectronic structure occurs; passing a second precursor material for a selected three-dimensional microelectronic structure into a reaction chamber at temperatures sufficient to maintain said precursor material in a predominantly gaseous state; maintaining said reaction chamber under sufficient pressures whereby a second portion of said three-dimensional microelectronic structure formation is enhanced; applying an electric field between an electrode and said microelectronic structure at a desired point under conditions whereat said second portion of a selected three-dimensional microelectronic structure is formed from said second precursor material; and, positionally adjusting either said formed three-dimensional microelectronic structure or said electrode whereby further controlled growth of said three-dimensional microelectronic structure occurs.
Acid Rain: Resource Materials for Schools.
ERIC Educational Resources Information Center
American Biology Teacher, 1983
1983-01-01
Provides listings of acid rain resource material groups under: (1) printed materials (pamphlets, books, articles); (2) audiovisuals (slide/tape presentations, tape, video-cassette); (3) miscellaneous (buttons, pocket lab, umbrella); (4) transparencies; (5) bibliographies; and (6) curriculum materials. Sources and prices (when applicable) are…
NASA Astrophysics Data System (ADS)
Kavner, A.; Armentrout, M. M.; Xie, M.; Weinberger, M.; Kaner, R. B.; Tolbert, S. H.
2010-12-01
A strong synergy ties together the high-pressure subfields of mineral physics, solid-state physics, and materials engineering. The catalog of studies measuring the mechanical properties of materials subjected to large differential stresses in the diamond anvil cell demonstrates a significant pressure-enhancement of strength across many classes of materials, including elemental solids, salts, oxides, silicates, and borides and nitrides. High pressure techniques—both radial diffraction and laser heating in the diamond anvil cell—can be used to characterize the behavior of ultrahard materials under extreme conditions, and help test hypotheses about how composition, structure, and bonding work together to govern the mechanical properties of materials. The principles that are elucidated by these studies can then be used to help design engineering materials to encourage desired properties. Understanding Earth and planetary interiors requires measuring equations of state of relevant materials, including oxides, silicates, and metals under extreme conditions. If these minerals in the diamond anvil cell have any ability to support a differential stress, the assumption of quasi-hydrostaticity no longer applies, with a resulting non-salubrious effect on attempts to measure equation of state. We illustrate these applications with the results of variety of studies from our laboratory and others’ that have used high-pressure radial diffraction techniques and also laser heating in the diamond anvil cell to characterize the mechanical properties of a variety of ultrahard materials, especially osmium metal, osmium diboride, rhenium diboride, and tungsten tetraboride. We compare ambient condition strength studies such as hardness testing with high-pressure studies, especially radial diffraction under differential stress. In addition, we outline criteria for evaluating mechanical properties of materials at combination high pressures and temperatures. Finally, we synthesize our understanding of mechanical properties and composite behavior to suggest new approaches to designing high-pressure experiments to target specific measurements of a wide variety of mechanical properties.
A Microwave Thermostatic Reactor for Processing Liquid Materials Based on a Heat-Exchanger.
Zhou, Yongqiang; Zhang, Chun; Xie, Tian; Hong, Tao; Zhu, Huacheng; Yang, Yang; Liu, Changjun; Huang, Kama
2017-10-08
Microwaves have been widely used in the treatment of different materials. However, the existing adjustable power thermostatic reactors cannot be used to analyze materials characteristics under microwave effects. In this paper, a microwave thermostatic chemical reactor for processing liquid materials is proposed, by controlling the velocity of coolant based on PLC (programmable logic controller) in different liquid under different constant electric field intensity. A nonpolar coolant (Polydimethylsiloxane), which is completely microwave transparent, is employed to cool the liquid materials. Experiments are performed to measure the liquid temperature using optical fibers, the results show that the precision of temperature control is at the range of ±0.5 °C. Compared with the adjustable power thermostatic control system, the effect of electric field changes on material properties are avoided and it also can be used to detect the properties of liquid materials and special microwave effects.
A Microwave Thermostatic Reactor for Processing Liquid Materials Based on a Heat-Exchanger
Zhou, Yongqiang; Zhang, Chun; Xie, Tian; Hong, Tao; Yang, Yang; Liu, Changjun; Huang, Kama
2017-01-01
Microwaves have been widely used in the treatment of different materials. However, the existing adjustable power thermostatic reactors cannot be used to analyze materials characteristics under microwave effects. In this paper, a microwave thermostatic chemical reactor for processing liquid materials is proposed, by controlling the velocity of coolant based on PLC (programmable logic controller) in different liquid under different constant electric field intensity. A nonpolar coolant (Polydimethylsiloxane), which is completely microwave transparent, is employed to cool the liquid materials. Experiments are performed to measure the liquid temperature using optical fibers, the results show that the precision of temperature control is at the range of ±0.5 °C. Compared with the adjustable power thermostatic control system, the effect of electric field changes on material properties are avoided and it also can be used to detect the properties of liquid materials and special microwave effects. PMID:28991195
The Practice is intended for determining volatile organic compound (VOC) emissions from materials and products (building materials, material systems, furniture, consumer products, etc.) and equipment (printers, photocopiers, air cleaners, etc.) under environmental and product-usa...
Proton conducting ceramic membranes for hydrogen separation
Elangovan, S [South Jordan, UT; Nair, Balakrishnan G [Sandy, UT; Small, Troy [Midvale, UT; Heck, Brian [Salt Lake City, UT
2011-09-06
A multi-phase proton conducting material comprising a proton-conducting ceramic phase and a stabilizing ceramic phase. Under the presence of a partial pressure gradient of hydrogen across the membrane or under the influence of an electrical potential, a membrane fabricated with this material selectively transports hydrogen ions through the proton conducting phase, which results in ultrahigh purity hydrogen permeation through the membrane. The stabilizing ceramic phase may be substantially structurally and chemically identical to at least one product of a reaction between the proton conducting phase and at least one expected gas under operating conditions of a membrane fabricated using the material. In a barium cerate-based proton conducting membrane, one stabilizing phase is ceria.
Thermal energy storage flight experiments
NASA Technical Reports Server (NTRS)
Namkoong, D.
1989-01-01
Consideration is given to the development of an experimental program to study heat transfer, energy storage, fluid movement, and void location under microgravity. Plans for experimental flight packages containing Thermal Energy Storage (TES) material applicable for advanced solar heat receivers are discussed. Candidate materials for TES include fluoride salts, salt eutectics, silicides, and metals. The development of a three-dimensional computer program to describe TES material behavior undergoing melting and freezing under microgravity is also discussed. The TES experiment concept and plans for ground and flight tests are outlined.
NASA Astrophysics Data System (ADS)
Savic, P.
The internal structure of Mercury, Venus, Mars, and Jupiter is considered in the framework of the Savic-Kasanin theory of the behavior of materials under high pressure. The main hypothesis underlying the theory is based on the deformation of the electron shells by the dislocation and ejection of electrons from atoms in a given material. This theory is discussed in relation to the spontaneous effect of gravitation and cooling on atoms in the material of a celestial body.
46 CFR 154.430 - Material test.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 5 2013-10-01 2013-10-01 false Material test. 154.430 Section 154.430 Shipping COAST... § 154.430 Material test. (a) The membrane and the membrane supporting insulation must be made of materials that withstand the combined strains calculated under § 154.429(c). (b) Analyzed data of a material...
46 CFR 154.430 - Material test.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 5 2012-10-01 2012-10-01 false Material test. 154.430 Section 154.430 Shipping COAST... § 154.430 Material test. (a) The membrane and the membrane supporting insulation must be made of materials that withstand the combined strains calculated under § 154.429(c). (b) Analyzed data of a material...
19 CFR 10.1016 - Value of materials.
Code of Federal Regulations, 2012 CFR
2012-04-01
... included under paragraph (a) of this section, may be added to the value of the originating material: (i... 19 Customs Duties 1 2012-04-01 2012-04-01 false Value of materials. 10.1016 Section 10.1016... Agreement Rules of Origin § 10.1016 Value of materials. (a) Calculating the value of materials. Except as...
19 CFR 10.1016 - Value of materials.
Code of Federal Regulations, 2014 CFR
2014-04-01
... included under paragraph (a) of this section, may be added to the value of the originating material: (i... 19 Customs Duties 1 2014-04-01 2014-04-01 false Value of materials. 10.1016 Section 10.1016... Agreement Rules of Origin § 10.1016 Value of materials. (a) Calculating the value of materials. Except as...
19 CFR 10.1016 - Value of materials.
Code of Federal Regulations, 2013 CFR
2013-04-01
... included under paragraph (a) of this section, may be added to the value of the originating material: (i... 19 Customs Duties 1 2013-04-01 2013-04-01 false Value of materials. 10.1016 Section 10.1016... Agreement Rules of Origin § 10.1016 Value of materials. (a) Calculating the value of materials. Except as...
Nano-Bio Quantum Technology for Device-Specific Materials
NASA Technical Reports Server (NTRS)
Choi, Sang H.
2009-01-01
The areas discussed are still under development: I. Nano structured materials for TE applications a) SiGe and Be.Te; b) Nano particles and nanoshells. II. Quantum technology for optical devices: a) Quantum apertures; b) Smart optical materials; c) Micro spectrometer. III. Bio-template oriented materials: a) Bionanobattery; b) Bio-fuel cells; c) Energetic materials.
Flat tensile specimen design for advanced composites
NASA Technical Reports Server (NTRS)
Worthem, Dennis W.
1990-01-01
Finite element analyses of flat, reduced gage section tensile specimens with various transition region contours were performed. Within dimensional constraints, such as maximum length, tab region width, gage width, gage length, and minimum tab length, a transition contour radius of 41.9 cm produced the lowest stress values in the specimen transition region. The stresses in the transition region were not sensitive to specimen material properties. The stresses in the tab region were sensitive to specimen composite and/or tab material properties. An evaluation of stresses with different specimen composite and tab material combinations must account for material nonlinearity of both the tab and the specimen composite. Material nonlinearity can either relieve stresses in the composite under the tab or elevate them to cause failure under the tab.
Scope and verification of a Fissile Material (Cutoff) Treaty
von Hippel, Frank N.
2014-01-01
A Fissile Material Cutoff Treaty (FMCT) would ban the production of fissile material – in practice highly-enriched uranium and separated plutonium – for weapons. It has been supported by strong majorities in the United Nations. After it comes into force, newly produced fissile materials could only be produced under international – most likely International Atomic Energy Agency – monitoring. There are many non-weapon states that argue the treaty should also place under safeguards pre-existing stocks of fissile material in civilian use or declared excess for weapons so as to make nuclear-weapons reductions irreversible. Our paper discusses the scope of themore » FMCT, the ability to detect clandestine production and verification challenges in the nuclear-weapons states.« less
Yeh-Stratton Criterion for Stress Concentrations on Fiber-Reinforced Composite Materials
NASA Technical Reports Server (NTRS)
Yeh, Hsien-Yang; Richards, W. Lance
1996-01-01
This study investigated the Yeh-Stratton Failure Criterion with the stress concentrations on fiber-reinforced composites materials under tensile stresses. The Yeh-Stratton Failure Criterion was developed from the initial yielding of materials based on macromechanics. To investigate this criterion, the influence of the materials anisotropic properties and far field loading on the composite materials with central hole and normal crack were studied. Special emphasis was placed on defining the crack tip stress fields and their applications. The study of Yeh-Stratton criterion for damage zone stress fields on fiber-reinforced composites under tensile loading was compared with several fracture criteria; Tsai-Wu Theory, Hoffman Theory, Fischer Theory, and Cowin Theory. Theoretical predictions from these criteria are examined using experimental results.
Structural materials for Gen-IV nuclear reactors: Challenges and opportunities
NASA Astrophysics Data System (ADS)
Murty, K. L.; Charit, I.
2008-12-01
Generation-IV reactor design concepts envisioned thus far cater toward a common goal of providing safer, longer lasting, proliferation-resistant and economically viable nuclear power plants. The foremost consideration in the successful development and deployment of Gen-IV reactor systems is the performance and reliability issues involving structural materials for both in-core and out-of-core applications. The structural materials need to endure much higher temperatures, higher neutron doses and extremely corrosive environment, which are beyond the experience of the current nuclear power plants. Materials under active consideration for use in different reactor components include various ferritic/martensitic steels, austenitic stainless steels, nickel-base superalloys, ceramics, composites, etc. This paper presents a summary of various Gen-IV reactor concepts, with emphasis on the structural materials issues depending on the specific application areas. This paper also discusses the challenges involved in using the existing materials under both service and off-normal conditions. Tasks become increasingly complex due to the operation of various fundamental phenomena like radiation-induced segregation, radiation-enhanced diffusion, precipitation, interactions between impurity elements and radiation-produced defects, swelling, helium generation and so forth. Further, high temperature capability (e.g. creep properties) of these materials is a critical, performance-limiting factor. It is demonstrated that novel alloy and microstructural design approaches coupled with new materials processing and fabrication techniques may mitigate the challenges, and the optimum system performance may be achieved under much demanding conditions.
Stress Wave Propagation in Viscoelastic-Plastic Rock-Like Materials.
Lang, Liu; Song, Ki-Il; Zhai, Yue; Lao, Dezheng; Lee, Hang-Lo
2016-05-17
Rock-like materials are composites that can be regarded as a mixture composed of elastic, plastic, and viscous components. They exhibit viscoelastic-plastic behavior under a high-strain-rate loading according to element model theory. This paper presents an analytical solution for stress wave propagation in viscoelastic-plastic rock-like materials under a high-strain-rate loading and verifies the solution through an experimental test. A constitutive equation of viscoelastic-plastic rock-like materials was first established, and then kinematic and kinetic equations were then solved to derive the analytic solution for stress wave propagation in viscoelastic-plastic rock-like materials. An experimental test using the SHPB (Split Hopkinson Pressure Bar) for a concrete specimen was conducted to obtain a stress-strain curve under a high-strain-rate loading. Inverse analysis based on differential evolution was conducted to estimate undetermined variables for constitutive equations. Finally, the relationship between the attenuation factor and the strain rate in viscoelastic-plastic rock-like materials was investigated. According to the results, the frequency of the stress wave, viscosity coefficient, modulus of elasticity, and density play dominant roles in the attenuation of the stress wave. The attenuation decreases with increasing strain rate, demonstrating strongly strain-dependent attenuation in viscoelastic-plastic rock-like materials.
Stress Wave Propagation in Viscoelastic-Plastic Rock-Like Materials
Lang, Liu; Song, KI-IL; Zhai, Yue; Lao, Dezheng; Lee, Hang-Lo
2016-01-01
Rock-like materials are composites that can be regarded as a mixture composed of elastic, plastic, and viscous components. They exhibit viscoelastic-plastic behavior under a high-strain-rate loading according to element model theory. This paper presents an analytical solution for stress wave propagation in viscoelastic-plastic rock-like materials under a high-strain-rate loading and verifies the solution through an experimental test. A constitutive equation of viscoelastic-plastic rock-like materials was first established, and then kinematic and kinetic equations were then solved to derive the analytic solution for stress wave propagation in viscoelastic-plastic rock-like materials. An experimental test using the SHPB (Split Hopkinson Pressure Bar) for a concrete specimen was conducted to obtain a stress-strain curve under a high-strain-rate loading. Inverse analysis based on differential evolution was conducted to estimate undetermined variables for constitutive equations. Finally, the relationship between the attenuation factor and the strain rate in viscoelastic-plastic rock-like materials was investigated. According to the results, the frequency of the stress wave, viscosity coefficient, modulus of elasticity, and density play dominant roles in the attenuation of the stress wave. The attenuation decreases with increasing strain rate, demonstrating strongly strain-dependent attenuation in viscoelastic-plastic rock-like materials. PMID:28773500
The evidence base for 'own label' resin-based dental restoratives.
Burke, F J Trevor
2013-01-01
There is anecdotal evidence that sales of 'own-label' (OL) or 'private label' dental products is increasing, as dentists become more cost conscious in times of economic downturn. However, the purchase of such (less expensive) products could be a false economy if their performance falls below accepted standards. So, while the examination of a resin-based product under research conditions alone may not guarantee success, it could be considered that a material which has been subjected to testing under research conditions will demonstrate its effectiveness under laboratory conditions or reveal its shortcomings; either of these being better than the material not being examined in any way. It was therefore considered appropriate to determine the materials on which research was carried out, with particular reference to OL brands. To determine whether there is a research base behind OL resin-based restorative dental materials.
Kim, Sangwoo; Choi, Seongdae; Oh, Eunho; Byun, Junghwan; Kim, Hyunjong; Lee, Byeongmoon; Lee, Seunghwan; Hong, Yongtaek
2016-01-01
A percolation theory based on variation of conductive filler fraction has been widely used to explain the behavior of conductive composite materials under both small and large deformation conditions. However, it typically fails in properly analyzing the materials under the large deformation since the assumption may not be valid in such a case. Therefore, we proposed a new three-dimensional percolation theory by considering three key factors: nonlinear elasticity, precisely measured strain-dependent Poisson’s ratio, and strain-dependent percolation threshold. Digital image correlation (DIC) method was used to determine actual Poisson’s ratios at various strain levels, which were used to accurately estimate variation of conductive filler volume fraction under deformation. We also adopted strain-dependent percolation threshold caused by the filler re-location with deformation. When three key factors were considered, electrical performance change was accurately analyzed for composite materials with both isotropic and anisotropic mechanical properties. PMID:27694856
ERIC Educational Resources Information Center
Chai, Qiao; He, Jie
2017-01-01
The current study investigated the stage at which Chinese preschoolers started considering recipients' material welfare and minimizing existing inequalities under both noncollaborative and collaborative contexts. Also, it analyzed how they behaved when recipients' material welfare was in conflict with merit or equality rule. Experiment 1 found…
9 CFR 351.14 - Processes to be supervised; extent of examinations.
Code of Federal Regulations, 2011 CFR
2011-01-01
... examinations. 351.14 Section 351.14 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT... be at least once a month if the plant consistently handles only raw materials acceptable under § 351... consistently handles some raw materials that are acceptable, and some that are unacceptable, under § 351.3, for...
36 CFR 1222.18 - Under what conditions may nonrecord materials be removed from Government agencies?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 36 Parks, Forests, and Public Property 3 2014-07-01 2014-07-01 false Under what conditions may nonrecord materials be removed from Government agencies? 1222.18 Section 1222.18 Parks, Forests, and Public Property NATIONAL ARCHIVES AND RECORDS ADMINISTRATION RECORDS MANAGEMENT CREATION AND MAINTENANCE OF...
36 CFR 1222.18 - Under what conditions may nonrecord materials be removed from Government agencies?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 36 Parks, Forests, and Public Property 3 2012-07-01 2012-07-01 false Under what conditions may nonrecord materials be removed from Government agencies? 1222.18 Section 1222.18 Parks, Forests, and Public Property NATIONAL ARCHIVES AND RECORDS ADMINISTRATION RECORDS MANAGEMENT CREATION AND MAINTENANCE OF...
36 CFR 1222.18 - Under what conditions may nonrecord materials be removed from Government agencies?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 36 Parks, Forests, and Public Property 3 2011-07-01 2011-07-01 false Under what conditions may nonrecord materials be removed from Government agencies? 1222.18 Section 1222.18 Parks, Forests, and Public Property NATIONAL ARCHIVES AND RECORDS ADMINISTRATION RECORDS MANAGEMENT CREATION AND MAINTENANCE OF...
36 CFR 1222.18 - Under what conditions may nonrecord materials be removed from Government agencies?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Under what conditions may nonrecord materials be removed from Government agencies? 1222.18 Section 1222.18 Parks, Forests, and Public Property NATIONAL ARCHIVES AND RECORDS ADMINISTRATION RECORDS MANAGEMENT CREATION AND MAINTENANCE OF...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 1 2013-01-01 2013-01-01 false Persons using source material under certain Department of Energy and Nuclear Regulatory Commission contracts. 40.11 Section 40.11 Energy NUCLEAR REGULATORY... certain Department of Energy and Nuclear Regulatory Commission contracts. Except to the extent that...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 1 2012-01-01 2012-01-01 false Persons using source material under certain Department of Energy and Nuclear Regulatory Commission contracts. 40.11 Section 40.11 Energy NUCLEAR REGULATORY... certain Department of Energy and Nuclear Regulatory Commission contracts. Except to the extent that...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 1 2014-01-01 2014-01-01 false Persons using source material under certain Department of Energy and Nuclear Regulatory Commission contracts. 40.11 Section 40.11 Energy NUCLEAR REGULATORY... certain Department of Energy and Nuclear Regulatory Commission contracts. Except to the extent that...
48 CFR 52.225-11 - Buy American-Construction Materials Under Trade Agreements.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 48 Federal Acquisition Regulations System 2 2014-10-01 2014-10-01 false Buy American-Construction Materials Under Trade Agreements. 52.225-11 Section 52.225-11 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION (CONTINUED) CLAUSES AND FORMS SOLICITATION PROVISIONS AND CONTRACT CLAUSES Text of Provisions and Clauses 52.225-11...
Modeling for Military Operational Medicine Scientific and Technical Objectives
2004-09-01
placed directly under armor ; and (3) new material that matches the human tissue better. 5 Figure 1. Schematic of the newer version of ATM 2.1.1 Laboratory...sensor units are placed directly under armor ; and (3) new material that matches the human tissue better. 2. We conducted a series of laboratory test
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false Persons using source material under certain Department of Energy and Nuclear Regulatory Commission contracts. 40.11 Section 40.11 Energy NUCLEAR REGULATORY... certain Department of Energy and Nuclear Regulatory Commission contracts. Except to the extent that...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 1 2011-01-01 2011-01-01 false Persons using source material under certain Department of Energy and Nuclear Regulatory Commission contracts. 40.11 Section 40.11 Energy NUCLEAR REGULATORY... certain Department of Energy and Nuclear Regulatory Commission contracts. Except to the extent that...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 8 Aliens and Nationality 1 2010-01-01 2010-01-01 false Availability of decisions and interpretive... of decisions and interpretive material under the Freedom of Information Act. (a) Precedent decisions. There may be purchased from the Superintendent of Documents, U.S. Government Printing Office, Washington...
Code of Federal Regulations, 2010 CFR
2010-01-01
... certain materials or products under section 101 of the Consumer Product Safety Improvement Act. 1500.91 Section 1500.91 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT... Safety Improvement Act. (a) The Consumer Product Safety Improvement Act provides for specific lead limits...
Arinc, Hakan
2018-06-01
To evaluate the effects of prosthetic material on the degree of stress to the cortical bone, trabecular bone, framework, and implants using finite element analysis (FEA). A mandibular implant-supported fixed prosthesis was designed. Different prosthetic materials [cobalt-chromium-supported ceramic, zirconia-supported ceramic, and zirconia-reinforced polymethyl methacrylate (ZRPMMA)-supported resin] were used. FEA was used to evaluate stress under different loading conditions. Maximum principal (σmax), minimum principal (σmin), and von Mises (σvM) stress values were obtained. Similar σmax, σmin, and σvM values were observed in the cortical and trabecular bones and in implants under both loading conditions, with the exception of the ZRPMMA model, which showed the highest σmax, σmin, and σvM values in oblique loading. The ZRPMMA model had the lowest σvM value in the framework under both loading conditions. ZRPMMA had the lowest stress values in the framework, with increased stress values in the implants and bone tissue. Framework and veneering materials may influence stress values under different loading conditions.
Facchin, Luiza Tayar; Gir, Elucir; Pazin-Filho, Antonio; Hayashida, Miyeko; da Silva Canini, Silvia Rita Marin
2013-01-01
Pathogens can be transmitted to health professionals after contact with biological material. The exact number of infections deriving from these events is still unknown, due to the lack of systematic surveillance data and under-reporting. A cross-sectional study was carried out, involving 451 nursing professionals from a Brazilian tertiary emergency hospital between April and July 2009. Through an active search, cases of under-reporting of occupational accidents with biological material by the nursing team were identified by means of individual interviews. The Institutional Review Board approved the research project. Over half of the professionals (237) had been victims of one or more accidents (425 in total) involving biological material, and 23.76% of the accidents had not been officially reported using an occupational accident report. Among the underreported accidents, 53.47% were percutaneous and 67.33% were bloodborne. The main reason for nonreporting was that the accident had been considered low risk. The under-reporting rate (23.76%) was low in comparison with other studies, but most cases of exposure were high risk.
Liu, Jie; Guo, Liang; Jiang, Jiping; Jiang, Dexun; Liu, Rentao; Wang, Peng
2016-06-05
In the emergency management relevant to pollution accidents, efficiency emergency rescues can be deeply influenced by a reasonable assignment of the available emergency materials to the related risk sources. In this study, a two-stage optimization framework is developed for emergency material reserve layout planning under uncertainty to identify material warehouse locations and emergency material reserve schemes in pre-accident phase coping with potential environmental accidents. This framework is based on an integration of Hierarchical clustering analysis - improved center of gravity (HCA-ICG) model and material warehouse location - emergency material allocation (MWL-EMA) model. First, decision alternatives are generated using HCA-ICG to identify newly-built emergency material warehouses for risk sources which cannot be satisfied by existing ones with a time-effective manner. Second, emergency material reserve planning is obtained using MWL-EMA to make emergency materials be prepared in advance with a cost-effective manner. The optimization framework is then applied to emergency management system planning in Jiangsu province, China. The results demonstrate that the developed framework not only could facilitate material warehouse selection but also effectively provide emergency material for emergency operations in a quick response. Copyright © 2016. Published by Elsevier B.V.
10 CFR 71.55 - General requirements for fissile material packages.
Code of Federal Regulations, 2011 CFR
2011-01-01
... system so that, under the following conditions, maximum reactivity of the fissile material would be... to cause maximum reactivity consistent with the chemical and physical form of the material; and (4...
10 CFR 71.55 - General requirements for fissile material packages.
Code of Federal Regulations, 2013 CFR
2013-01-01
... system so that, under the following conditions, maximum reactivity of the fissile material would be... to cause maximum reactivity consistent with the chemical and physical form of the material; and (4...
10 CFR 71.55 - General requirements for fissile material packages.
Code of Federal Regulations, 2014 CFR
2014-01-01
... system so that, under the following conditions, maximum reactivity of the fissile material would be... to cause maximum reactivity consistent with the chemical and physical form of the material; and (4...
The photoelectronic behaviors of MoO3-loaded ZrO2/carbon cluster nanocomposite materials
NASA Astrophysics Data System (ADS)
Matsui, H.; Ishiko, A.; Karuppuchamy, S.; Hassan, M. A.; Yoshihara, M.
2012-03-01
A novel nano-sized ZrO2/carbon cluster composite materials (Ic's) were successfully obtained by the calcination of ZrCl4/starch complexes I's under an argon atmosphere. Pt- and/or MoO3-loaded ZrO2/carbon clusters composite materials were also prepared by doping Pt and/or MoO3 particles on the surface of Ic's. The surface characterization of the composite materials was carried out using transmission electron microscopy (TEM). The TEM observation of the materials showed the presence of particles with the diameters of a few nanometers, possibly Pt particles, and of 50-100 nm, possibly MoO3 particles, in the matrix. Pt- and/or MoO3-loaded ZrO2/carbon cluster composite materials show the efficient photocatalytic activity under visible light irradiation.
Toward a virtual platform for materials processing
NASA Astrophysics Data System (ADS)
Schmitz, G. J.; Prahl, U.
2009-05-01
Any production is based on materials eventually becoming components of a final product. Material properties being determined by the microstructure of the material thus are of utmost importance both for productivity and reliability of processing during production and for application and reliability of the product components. A sound prediction of materials properties therefore is highly important. Such a prediction requires tracking of microstructure and properties evolution along the entire component life cycle starting from a homogeneous, isotropic and stress-free melt and eventually ending in failure under operational load. This article will outline ongoing activities at the RWTH Aachen University aiming at establishing a virtual platform for materials processing comprising a virtual, integrative numerical description of processes and of the microstructure evolution along the entire production chain and even extending further toward microstructure and properties evolution under operational conditions.
A study of RSI under combined stresses
NASA Technical Reports Server (NTRS)
Kibler, J. J.; Rosen, B. W.
1974-01-01
The behavior of typical rigidized surface insulation material (RSI) under combined loading states was investigated. In particular, the thermal stress states induced during reentry of the space shuttle were of prime concern. A typical RSI tile was analyzed for reentry thermal stresses under computed thermal gradients for a model of the RSI material. The results of the thermal stress analyses were then used to aid in defining typical combined stress states for the failure analysis of RSI.
The Microstructural Response of Granular Soil Under Uniaxial Strain
1993-10-01
under uniaxial strains of up to 10 percent. The material tested was a poorly graded ottowa sand with specimens consisting of either 0.5- or 0.75-mm...microstructural effects in granular material under uniaxial strain of up to 10.0 percent. The relative influence of several microstructural effects (such as...uniaxial strain. The confinement vessel consisted of a base plate, four walls, and a loading cap. The sidewalls extended up beyond the specimen and served
40 CFR 59.1 - Final determinations under Section 183(e)(3)(C) of the CAA.
Code of Federal Regulations, 2010 CFR
2010-07-01
... furniture coatings; (b) Aerospace coatings; (c) Shipbuilding and repair coatings; (d) Lithographic printing materials; (e) Letterpress printing materials; (f) Flexible packaging printing materials; (g) Flat wood... materials; and (p) Miscellaneous industrial adhesives. [73 FR 58491, Oct. 7, 2008] ...
21 CFR 601.45 - Promotional materials.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 7 2011-04-01 2010-04-01 true Promotional materials. 601.45 Section 601.45 Food... Promotional materials. For biological products being considered for approval under this subpart, unless... preapproval review period copies of all promotional materials, including promotional labeling as well as...
Zhong, Jian; He, Dannong
2015-01-01
Surface deformation and fracture processes of materials under external force are important for understanding and developing materials. Here, a combined horizontal universal mechanical testing machine (HUMTM)-atomic force microscope (AFM) system is developed by modifying UMTM to combine with AFM and designing a height-adjustable stabilizing apparatus. Then the combined HUMTM-AFM system is evaluated. Finally, as initial demonstrations, it is applied to analyze the relationship among macroscopic mechanical properties, surface nanomorphological changes under external force, and fracture processes of two kinds of representative large scale thin film materials: polymer material with high strain rate (Parafilm) and metal material with low strain rate (aluminum foil). All the results demonstrate the combined HUMTM-AFM system overcomes several disadvantages of current AFM-combined tensile/compression devices including small load force, incapability for large scale specimens, disability for materials with high strain rate, and etc. Therefore, the combined HUMTM-AFM system is a promising tool for materials research in the future. PMID:26265357
Zhong, Jian; He, Dannong
2015-08-12
Surface deformation and fracture processes of materials under external force are important for understanding and developing materials. Here, a combined horizontal universal mechanical testing machine (HUMTM)-atomic force microscope (AFM) system is developed by modifying UMTM to combine with AFM and designing a height-adjustable stabilizing apparatus. Then the combined HUMTM-AFM system is evaluated. Finally, as initial demonstrations, it is applied to analyze the relationship among macroscopic mechanical properties, surface nanomorphological changes under external force, and fracture processes of two kinds of representative large scale thin film materials: polymer material with high strain rate (Parafilm) and metal material with low strain rate (aluminum foil). All the results demonstrate the combined HUMTM-AFM system overcomes several disadvantages of current AFM-combined tensile/compression devices including small load force, incapability for large scale specimens, disability for materials with high strain rate, and etc. Therefore, the combined HUMTM-AFM system is a promising tool for materials research in the future.
Effect of storage time on the viscoelastic properties of elastomeric impression materials.
Papadogiannis, Dimitris; Lakes, Roderic; Palaghias, George; Papadogiannis, Yiannis
2012-01-01
The aim of this study was to evaluate creep and viscoelastic properties of dental impression materials after different storage times. Six commercially available impression materials (one polyether and five silicones) were tested after being stored for 30 min to 2 weeks under both static and dynamic testing. Shear and Young's moduli, dynamic viscosity, loss tangent and other viscoelastic parameters were calculated. Four of the materials were tested 1 h after setting under creep for three hours and recovery was recorder for 50 h. The tested materials showed differences among them, while storage time had significant influence on their properties. Young's modulus E ranged from 1.81 to 12.99 MPa with the polyether material being the stiffest. All of the materials showed linear viscoelastic behavior exhibiting permanent deformation after 50h of creep recovery. As storage time affects the materials' properties, pouring time should be limited in the first 48 h after impression. Copyright © 2011 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.
Effects and mechanism on Kapton film under ozone exposure in a ground near space simulator
NASA Astrophysics Data System (ADS)
Wei, Qiang; Yang, Guimin; Liu, Gang; Jiang, Haifu; Zhang, Tingting
2018-05-01
The effect on aircraft materials in the near space environment is a key part of air-and-space integration research. Ozone and aerodynamic fluids are important organizational factors in the near space environment and both have significant influences on the performance of aircraft materials. In the present paper a simulated ozone environment was used to test polyimide material that was rotated at the approximate velocity of 150-250 m/s to form an aerodynamic fluid field. The goal was to evaluate the performance evolution of materials under a comprehensive environment of ozone molecular corrosion and aerodynamic fluids. The research results show that corrosion and sputtering by ozone molecules results in Kapton films exhibiting a rugged "carpet-like" morphology exhibits an increase in surface roughness. The morphology after ozone exposure led to higher surface roughness and an increase in surface optical diffuse reflection, which is expressed by the lower optical transmittance and the gradual transition from light orange to brown. The mass loss test, XPS, and FTIR analysis show that the molecular chains on the surface of the Kapton film are destroyed resulting in Csbnd C bond breaking to form small volatile molecules such as CO2 or CO, which are responsible for a linear increase in mass loss per unit area. The Csbnd N and Csbnd O structures exhibit weakening tendency under ozone exposure. The present paper explores the evaluation method for Kapton's adaptability under the ozone exposure test in the near space environment, and elucidates the corrosion mechanism and damage mode of the polyimide material under the combined action of ozone corrosion and the aerodynamic fluid. This work provides a methodology for studying materials in the near-space environment.
Tourah, Anita; Moshaverinia, Alireza; Chee, Winston W
2014-02-01
Surface roughness and irregularities are important properties of dental investment materials that can affect the fit of a restoration. Whether setting under air pressure affects the surface irregularities of gypsum-bonded and phosphate-bonded investment materials is unknown. The purpose of this study was to investigate the effect of air pressure on the pore size and surface irregularities of investment materials immediately after pouring. Three dental investments, 1 gypsum-bonded investment and 2 phosphate-bonded investments, were investigated. They were vacuum mixed according to the manufacturers' recommendations, then poured into a ringless casting system. The prepared specimens were divided into 2 groups: 1 bench setting and the other placed in a pressure pot at 172 kPa. After 45 minutes of setting, the rings were removed and the investments were cut at a right angle to the long axis with a diamond disk. The surfaces of the investments were steam cleaned, dried with an air spray, and observed with a stereomicroscope. A profilometer was used to evaluate the surface roughness (μm) of the castings. The number of surface pores was counted for 8 specimens from each group and the means and standard deviations were reported. Two-way ANOVA was used to compare the data. Specimens that set under atmospheric air pressure had a significantly higher number of pores than specimens that set under increased pressure (P<.05). No statistically significant differences for surface roughness were found (P=.078). Also, no significant difference was observed among the 3 different types of materials tested (P>.05). Specimens set under positive pressure in a pressure chamber presented fewer surface bubbles than specimens set under atmospheric pressure. Positive pressure is effective and, therefore, is recommended for both gypsum-bonded and phosphate-bonded investment materials. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.
A magnetic-piezoelectric smart material-structure sensing three axis DC and AC magnetic-fields
NASA Astrophysics Data System (ADS)
Hung, Chiao-Fang; Chen, Chin-Chung; Yeh, Po-Chen; Chen, Po-Wen; Chung, Tien-Kan
2017-12-01
In this paper, we demonstrate a smart material-structure can sense not only three-axis AC magnetic-fields but also three-axis DC magnetic-fields. Under x-axis and z-axis AC magnetic field ranging from 0.2 to 3.2 gauss, sensing sensitivity of the smart material-structure stimulated at resonant frequency is approximate 8.79 and 2.80 mV/gauss, respectively. In addition, under x-axis and z-axis DC magnetic fields ranging from 2 to 12 gauss, the sensitivity of the smart material-structure is 1.24-1.54 and 1.25-1.41 mV/gauss, respectively. In addition, under x-axis and z-axis DC magnetic fields ranging from 12 to 20 gauss, the sensitivity of the smart material-structure is 5.17-6.2 and 3.97-4.57 mV/gauss, respectively. These experimental results show that the smart material-structure successfully achieves three-axis DC and AC magnetic sensing as we designed. Furthermore, we also compare the results of the AC and DC magnetic-field sensing to investigate discrepancies. Finally, when applying composite magnetic-fields to the smart material-structure, the smart material-structure shows decent outputs as expected (consistent to the sensing principle). In the future, we believe the smart material-structure capable of sensing AC and DC magnetic fields will have more applications than conventional structures capable of sensing only DC or AC magnetic field. Thus, the smart material-structure will be an important design reference for future magnetic-field sensing technologies.
NASA Astrophysics Data System (ADS)
Clegg, R. A.; White, D. M.; Hayhurst, C.; Ridel, W.; Harwick, W.; Hiermaier, S.
2003-09-01
The development and validation of an advanced material model for orthotropic materials, such as fibre reinforced composites, is described. The model is specifically designed to facilitate the numerical simulation of impact and shock wave propagation through orthotropic materials and the prediction of subsequent material damage. Initial development of the model concentrated on correctly representing shock wave propagation in composite materials under high and hypervelocity impact conditions [1]. This work has now been extended to further concentrate on the development of improved numerical models and material characterisation techniques for the prediction of damage, including residual strength, in fibre reinforced composite materials. The work is focussed on Kevlar-epoxy however materials such as CFRP are also being considered. The paper describes our most recent activities in relation to the implementation of advanced material modelling options in this area. These enable refined non-liner directional characteristics of composite materials to be modelled, in addition to the correct thermodynamic response under shock wave loading. The numerical work is backed by an extensive experimental programme covering a wide range of static and dynamic tests to facilitate derivation of model input data and to validate the predicted material response. Finally, the capability of the developing composite material model is discussed in relation to a hypervelocity impact problem.
Findikoglu, Alp T [Los Alamos, NM; Jia, Quanxi [Los Alamos, NM; Arendt, Paul N [Los Alamos, NM; Matias, Vladimir [Santa Fe, NM; Choi, Woong [Los Alamos, NM
2009-10-27
A template article including a base substrate including: (i) a base material selected from the group consisting of polycrystalline substrates and amorphous substrates, and (ii) at least one layer of a differing material upon the surface of the base material; and, a buffer material layer upon the base substrate, the buffer material layer characterized by: (a) low chemical reactivity with the base substrate, (b) stability at temperatures up to at least about 800.degree. C. under low vacuum conditions, and (c) a lattice crystal structure adapted for subsequent deposition of a semiconductor material; is provided, together with a semiconductor article including a base substrate including: (i) a base material selected from the group consisting of polycrystalline substrates and amorphous substrates, and (ii) at least one layer of a differing material upon the surface of the base material; and, a buffer material layer upon the base substrate, the buffer material layer characterized by: (a) low chemical reactivity with the base substrate, (b) stability at temperatures up to at least about 800.degree. C. under low vacuum conditions, and (c) a lattice crystal structure adapted for subsequent deposition of a semiconductor material, and, a top-layer of semiconductor material upon the buffer material layer.
NASA Astrophysics Data System (ADS)
Hopmann, Ch.; Schöngart, M.; Weber, M.; Klein, J.
2015-05-01
Thermoplastic materials are more and more used as a light weight replacement for metal, especially in the automotive industry. Since these materials do not provide the mechanical properties, which are required to manufacture supporting elements like an auto body or a cross bearer, plastics are combined with metals in so called hybrid structures. Normally, the plastics components are joined to the metal structures using different technologies like welding or screwing. Very often, the hybrid structures are made of flat metal parts, which are stiffened by a reinforcement structure made of thermoplastic materials. The loads on these structures are very often impulsive, for example in the crash situation of an automobile. Due to the large stiffness variation of metal and thermoplastic materials, complex states of stress and very high local strain rates occur in the contact zone under impact conditions. Since the mechanical behavior of thermoplastic materials is highly dependent on these types of load, the crash failure of metal plastic hybrid parts is very complex. The problem is that the normally used strain rate dependent elastic/plastic material models are not capable to simulate the mechanical behavior of thermoplastic materials depended on the state of stress. As part of a research project, a method to simulate the mechanical behavior of hybrid structures under impact conditions is developed at the IKV. For this purpose, a specimen for the measurement of mechanical properties dependet on the state of stress and a method for the strain rate depended characterization of thermoplastic materials were developed. In the second step impact testing is performed. A hybrid structure made from a metal sheet and a reinforcement structure of a Polybutylenterephthalat Polycarbonate blend is tested under impact conditions. The measured stress and strain rate depended material data are used to simulate the mechanical behavior of the hybrid structure under highly dynamic load with impact velocities up to 5 m/s. The mechanical behavior of the plastics structure is simulated using a quadratic yield surface, which takes the state of stress and the strain rate into account. The FE model is made from mid surface elements to reduce the computing time.
49 CFR 173.61 - Mixed packaging requirements.
Code of Federal Regulations, 2011 CFR
2011-10-01
....61 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SHIPPERS-GENERAL... material that could, under normal conditions of transportation, adversely affect the explosive or its...
49 CFR 173.61 - Mixed packaging requirements.
Code of Federal Regulations, 2014 CFR
2014-10-01
....61 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SHIPPERS-GENERAL... material that could, under normal conditions of transportation, adversely affect the explosive or its...
49 CFR 173.61 - Mixed packaging requirements.
Code of Federal Regulations, 2013 CFR
2013-10-01
....61 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SHIPPERS-GENERAL... material that could, under normal conditions of transportation, adversely affect the explosive or its...
49 CFR 173.61 - Mixed packaging requirements.
Code of Federal Regulations, 2012 CFR
2012-10-01
....61 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SHIPPERS-GENERAL... material that could, under normal conditions of transportation, adversely affect the explosive or its...
49 CFR 173.61 - Mixed packaging requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
....61 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SHIPPERS-GENERAL... material that could, under normal conditions of transportation, adversely affect the explosive or its...
A Comparative Study of the Behaviour of Five Dense Glass Materials Under Shock Loading Conditions
NASA Astrophysics Data System (ADS)
Radford, Darren D.; Proud, William G.; Field, John E.
2001-06-01
Previous work at the Cavendish Laboratory on the properties of glasses under shock loading has demonstrated that the material response is highly dependent upon the composition of the glass. The shock response of glass materials with an open structure, such as borosilicate, exhibits a ramping behaviour in the longitudinal stress histories due to structural collapse. Glass materials with a “filled” microstructure, as in the case of Type-D, Extra Dense Flint (DEDF) do not exhibit a ramping behaviour and behave in a manner similar to polycrystalline ceramics [1]. The current investigation compares the behaviour of five such glasses (SF15, DEDF, LACA, SF57 and DEDF-927210) under shock loading conditions. It is observed that slight changes in material composition can have a large affect on the inelastic behaviour. Principal Hugoniot and shear strength data are presented for all of the materials for pressures ranging from 2 to 14 GPa. Evidence of the so-called failure-front [2] is presented via lateral stress histories measured using manganin stress gauges and confirmed with high-speed photography. 1. Bourne, N.K., Millett, J.C.F., and Field, J.E., “On the strength of shocked glasses” Proc. R. Soc. Lond. A 455 (1999) 1275-1282 2. Brar, N.S., “Failure Waves in Glass and Ceramics Under Shock Compression”, in "Shock Compression of Condensed Matter 1999", ed. M.D. Furnish, L.C. Chhabildas, and R.S. Hixson, American Institute of Physics, Woodbury, New York, (1999) 601-606
Jebaseelan, D Davidson; Jebaraj, C; Yoganandan, Narayan; Rajasekaran, S; Kanna, Rishi M
2012-05-01
The objective of the study was to determine the sensitivity of material properties of the juvenile spine to its external and internal responses using a finite element model under compression, and flexion-extension bending moments. The methodology included exercising the 8-year-old juvenile lumbar spine using parametric procedures. The model included the vertebral centrum, growth plates, laminae, pedicles, transverse processes and spinous processes; disc annulus and nucleus; and various ligaments. The sensitivity analysis was conducted by varying the modulus of elasticity for various components. The first simulation was done using mean material properties. Additional simulations were done for each component corresponding to low and high material property variations. External displacement/rotation and internal stress-strain responses were determined under compression and flexion-extension bending. Results indicated that, under compression, disc properties were more sensitive than bone properties, implying an elevated role of the disc under this mode. Under flexion-extension moments, ligament properties were more dominant than the other components, suggesting that various ligaments of the juvenile spine play a key role in modulating bending behaviors. Changes in the growth plate stress associated with ligament properties explained the importance of the growth plate in the pediatric spine with potential implications in progressive deformities.
Tensile behaviour of geopolymer-based materials under medium and high strain rates
NASA Astrophysics Data System (ADS)
Menna, Costantino; Asprone, Domenico; Forni, Daniele; Roviello, Giuseppina; Ricciotti, Laura; Ferone, Claudio; Bozza, Anna; Prota, Andrea; Cadoni, Ezio
2015-09-01
Geopolymers are a promising class of inorganic materials typically obtained from an alluminosilicate source and an alkaline solution, and characterized by an amorphous 3-D framework structure. These materials are particularly attractive for the construction industry due to mechanical and environmental advantages they exhibit compared to conventional systems. Indeed, geopolymer-based concretes represent a challenge for the large scale uses of such a binder material and many research studies currently focus on this topic. However, the behaviour of geopolymers under high dynamic loads is rarely investigated, even though it is of a fundamental concern for the integrity/vulnerability assessment under extreme dynamic events. The present study aims to investigate the effect of high dynamic loading conditions on the tensile behaviour of different geopolymer formulations. The dynamic tests were performed under different strain rates by using a Hydro-pneumatic machine and a modified Hopkinson bar at the DynaMat laboratory of the University of Applied Sciences of Southern Switzerland. The results are processed in terms of stress-strain relationships and strength dynamic increase factor at different strain-rate levels. The dynamic increase factor was also compared with CEB recommendations. The experimental outcomes can be used to assess the constitutive laws of geopolymers under dynamic load conditions and implemented into analytical models.
NASA Astrophysics Data System (ADS)
Ding, Jow; Alexander, C. Scott; Asay, James
2015-06-01
MAPS (Magnetically Applied Pressure Shear) is a new technique that has the potential to study material strength under mega-bar pressures. By applying a mixed-mode pressure-shear loading and measuring the resultant material responses, the technique provides explicit and direct information on material strength under high pressure. In order to apply sufficient shear traction to the test sample, the driver must have substantial strength. Molybdenum was selected for this reason along with its good electrical conductivity. In this work, the mechanical behavior of molybdenum under MAPS loading was studied. To understand the experimental data, a viscoplasticity model with tension-compression asymmetry was also developed. Through a combination of experimental characterization, model development, and numerical simulation, many unique insights were gained on the inelastic behavior of molybdenum such as the effects of strength on the interplay between longitudinal and shear stresses, potential interaction between the magnetic field and molybdenum strength, and the possible tension-compression asymmetry of the inelastic material response. Sandia National Labs is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corp., for the U.S. Dept. of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Paul Allan
We investigate dynamic wave-triggered slip under laboratory shear conditions. The experiment is composed of a three-block system containing two gouge layers composed of glass beads and held in place by a fixed load in a biaxial configuration. When the system is sheared under steady state conditions at a normal load of 4 MPa, we find that shear failure may be instantaneously triggered by a dynamic wave, corresponding to material weakening and softening if the system is in a critical shear stress state (near failure). Following triggering, the gouge material remains in a perturbed state over multiple slip cycles as evidencedmore » by the recovery of the material strength, shear modulus, and slip recurrence time. This work suggests that faults must be critically stressed to trigger under dynamic conditions and that the recovery process following a dynamically triggered event differs from the recovery following a spontaneous event.« less
A study on the strength of an armour-grade aluminum under high strain-rate loading
NASA Astrophysics Data System (ADS)
Appleby-Thomas, G. J.; Hazell, P. J.
2010-06-01
The aluminum alloy 5083 in tempers such as H32 and H131 is an established light-weight armour material. While its dynamic response under high strain-rates has been investigated elsewhere, little account of the effect of material orientation has been made. In addition, little information on its strength under such loadings is available in the literature. Here, both the longitudinal and lateral components of stress have been measured using embedded manganin stress gauges during plate-impact experiments on samples with the rolling direction aligned both orthogonal and parallel to the impact axis. The Hugoniot elastic limit, spall, and shear strengths were investigated for incident pressures in the range 1-8 GPa, providing an insight into the response of this alloy under shock loading. Further, the time dependence of lateral stress behind the shock front was investigated to give an indication of material response.
Johnson, Paul Allan
2016-02-28
We investigate dynamic wave-triggered slip under laboratory shear conditions. The experiment is composed of a three-block system containing two gouge layers composed of glass beads and held in place by a fixed load in a biaxial configuration. When the system is sheared under steady state conditions at a normal load of 4 MPa, we find that shear failure may be instantaneously triggered by a dynamic wave, corresponding to material weakening and softening if the system is in a critical shear stress state (near failure). Following triggering, the gouge material remains in a perturbed state over multiple slip cycles as evidencedmore » by the recovery of the material strength, shear modulus, and slip recurrence time. This work suggests that faults must be critically stressed to trigger under dynamic conditions and that the recovery process following a dynamically triggered event differs from the recovery following a spontaneous event.« less
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Fox, Dennis S.; Miller, Robert A.; Ghosn, Louis J.; Kalluri, Sreeramesh
2004-01-01
The development of advanced high performance constant-volume-combustion-cycle engines (CVCCE) requires robust design of the engine components that are capable of enduring harsh combustion environments under high frequency thermal and mechanical fatigue conditions. In this study, a simulated engine test rig has been established to evaluate thermal fatigue behavior of a candidate engine combustor material, Haynes 188, under superimposed CO2 laser surface impulsive thermal loads (30 to 100 Hz) in conjunction with the mechanical fatigue loads (10 Hz). The mechanical high cycle fatigue (HCF) testing of some laser pre-exposed specimens has also been conducted under a frequency of 100 Hz to determine the laser surface damage effect. The test results have indicated that material surface oxidation and creep-enhanced fatigue is an important mechanism for the surface crack initiation and propagation under the simulated CVCCE engine conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Sun Hee; Shin, Namsoo; Jang, Jum Suk
Bulky AgGaS2 was synthesized as a p-type semiconductor photocatalyst by a conventional solid state reaction under N2 flow for hydrogen production under visible light. To remove the impurity phase involved in the synthesized material and improve its crystallinity, the material was treated at various temperatures of 873-1123 K under H2S flow. Impurity phases were identified as {beta}-Ga2O3 and Ag9GaS6 with Rietveld analysis of XRD, and the local coordination structure around gallium atom in AgGaS2 was investigated by EXAFS. As the H2S-treatment temperature increased, the contribution from impurity phase was diminished. When the temperature reached 1123 K, the impurity phases weremore » completely removed and the material showed the highest photocatalytic activity.« less
NASA Technical Reports Server (NTRS)
Rotem, Assa
1990-01-01
Laminated composite materials tend to fail differently under tensile or compressive load. Under tension, the material accumulates cracks and fiber fractures, while under compression, the material delaminates and buckles. Tensile-compressive fatigue may cause either of these failure modes depending on the specific damage occurring in the laminate. This damage depends on the stress ratio of the fatigue loading. Analysis of the fatigue behavior of the composite laminate under tension-tension, compression-compression, and tension-compression had led to the development of a fatigue envelope presentation of the failure behavior. This envelope indicates the specific failure mode for any stress ratio and number of loading cycles. The construction of the fatigue envelope is based on the applied stress-cycles to failure (S-N) curves of both tensile-tensile and compressive-compressive fatigue. Test results are presented to verify the theoretical analysis.
NASA Technical Reports Server (NTRS)
Johnson, Sylvia M.
2011-01-01
Thermal protection materials and systems (TPS) are required to protect a vehicle returning from space or entering an atmosphere. The selection of the material depends on the heat flux, heat load, pressure, and shear and other mechanical loads imposed on the material, which are in turn determined by the vehicle configuration and size, location on the vehicle, speed, a trajectory, and the atmosphere. In all cases the goal is to use a material that is both reliable and efficient for the application. Reliable materials are well understood and have sufficient test data under the appropriate conditions to provide confidence in their performance. Efficiency relates to the behavior of a material under the specific conditions that it encounters TPS that performs very well at high heat fluxes may not be efficient at lower heat fluxes. Mass of the TPS is a critical element of efficiency. This talk will review the major classes of TPS, reusable or insulating materials and ablators. Ultra high temperature ceramics for sharp leading edges will also be reviewed. The talk will focus on the properties and behavior of these materials.
Methods and instruments for materials testing
NASA Technical Reports Server (NTRS)
Hansma, Paul (Inventor); Drake, Barney (Inventor); Rehn, Douglas (Inventor); Adams, Jonathan (Inventor); Lulejian, Jason (Inventor)
2011-01-01
Methods and instruments for characterizing a material, such as the properties of bone in a living human subject, using a test probe constructed for insertion into the material and a reference probe aligned with the test probe in a housing. The housing is hand held or placed so that the reference probe contacts the surface of the material under pressure applied either by hand or by the weight of the housing. The test probe is inserted into the material to indent the material while maintaining the reference probe substantially under the hand pressure or weight of the housing allowing evaluation of a property of the material related to indentation of the material by the probe. Force can be generated by a voice coil in a magnet structure to the end of which the test probe is connected and supported in the magnet structure by a flexure, opposing flexures, a linear translation stage, or a linear bearing. Optionally, a measurement unit containing the test probe and reference probe is connected to a base unit with a wireless connection, allowing in the field material testing.
Zhang, Lijun; Sun, Changyan
2018-04-18
Aircraft service process is in a state of the composite load of pressure and temperature for a long period of time, which inevitably affects the inherent characteristics of some components in aircraft accordingly. The flow field of aircraft wing materials under different Mach numbers is simulated by Fluent in order to extract pressure and temperature on the wing in this paper. To determine the effect of coupling stress on the wing’s material and structural properties, the fluid-structure interaction (FSI) method is used in ANSYS-Workbench to calculate the stress that is caused by pressure and temperature. Simulation analysis results show that with the increase of Mach number, the pressure and temperature on the wing’s surface both increase exponentially and thermal stress that is caused by temperature will be the main factor in the coupled stress. When compared with three kinds of materials, titanium alloy, aluminum alloy, and Haynes alloy, carbon fiber composite material has better performance in service at high speed, and natural frequency under coupling pre-stressing will get smaller.
Sun, Changyan
2018-01-01
Aircraft service process is in a state of the composite load of pressure and temperature for a long period of time, which inevitably affects the inherent characteristics of some components in aircraft accordingly. The flow field of aircraft wing materials under different Mach numbers is simulated by Fluent in order to extract pressure and temperature on the wing in this paper. To determine the effect of coupling stress on the wing’s material and structural properties, the fluid-structure interaction (FSI) method is used in ANSYS-Workbench to calculate the stress that is caused by pressure and temperature. Simulation analysis results show that with the increase of Mach number, the pressure and temperature on the wing’s surface both increase exponentially and thermal stress that is caused by temperature will be the main factor in the coupled stress. When compared with three kinds of materials, titanium alloy, aluminum alloy, and Haynes alloy, carbon fiber composite material has better performance in service at high speed, and natural frequency under coupling pre-stressing will get smaller. PMID:29670023
Retention of Text Material under Cued and Uncued Recall and Open and Closed Book Conditions
ERIC Educational Resources Information Center
Nevid, Jeffrey S.; Pyun, Yea Seul; Cheney, Brianna
2016-01-01
Evidence supports the benefits of effortful processing in strengthening retention of newly learned material. The present study compared two forms of effortful processing, uncued (free) recall and cued recall, under both open and closed book conditions, on both immediate and delayed (one-week) test performance. Participants read a section of a…
Dynamic Processes in Nanostructured Crystals Under Ion Irradiation
NASA Astrophysics Data System (ADS)
Uglov, V. V.; Kvasov, N. T.; Shimanski, V. I.; Safronov, I. V.; Komarov, N. D.
2018-02-01
The paper presents detailed investigations of dynamic processes occurring in nanostructured Si(Fe) material under the radiation exposure, namely: heating, thermoelastic stress generation, elastic disturbances of the surrounding medium similar to weak shock waves, and dislocation generation. The performance calculations are proposed for elastic properties of the nanostructured material with a glance to size effects in nanoparticles.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.200-1 Tank built under these specifications must meet...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 36 Parks, Forests, and Public Property 3 2013-07-01 2012-07-01 true Under what conditions may nonrecord materials be removed from Government agencies? § 1222.18 Section § 1222.18 Parks, Forests, and Public Property NATIONAL ARCHIVES AND RECORDS ADMINISTRATION RECORDS MANAGEMENT CREATION AND MAINTENANCE...
Attenuation of Ricin Toxin under Ambient Conditions and ...
Report This study focused on the attenuation of ricin toxin on six types of materials representative of a mail sorting facility and/or indoor building materials. Attenuation tests were conducted under various combinations of temperature, relative humidity (RH), and contact time, using two forms of ricin toxin: a commercially-available pure preparation and a crude preparation from castor beans.
48 CFR 52.225-11 - Buy American Act-Construction Materials under Trade Agreements.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 48 Federal Acquisition Regulations System 2 2011-10-01 2011-10-01 false Buy American Act-Construction Materials under Trade Agreements. 52.225-11 Section 52.225-11 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION (CONTINUED) CLAUSES AND FORMS SOLICITATION PROVISIONS AND CONTRACT CLAUSES Text of Provisions and Clauses 52.225...
48 CFR 52.225-11 - Buy American Act-Construction Materials under Trade Agreements.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 48 Federal Acquisition Regulations System 2 2012-10-01 2012-10-01 false Buy American Act-Construction Materials under Trade Agreements. 52.225-11 Section 52.225-11 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION (CONTINUED) CLAUSES AND FORMS SOLICITATION PROVISIONS AND CONTRACT CLAUSES Text of Provisions and Clauses 52.225...
Direct synthesis of BiCuChO-type oxychalcogenides by mechanical alloying
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pele, Vincent; Barreteau, Celine; CNRS, Orsay F-91405
2013-07-15
We report on the direct synthesis of BiCuChO based materials by mechanical alloying (Ch=Se, Te). We show that contrary to the synthesis paths used in the previous reports dealing with this family of materials, which use costly annealings in closed silica tubes under controlled atmosphere, this new synthesis route enables the synthesis of pure phase materials at room temperature under air, with reasonable milling time. This synthesis procedure is easily scalable for large scale applications. - Highlights: • Phase pure BiCuSeO doped and undoped prepared by mechanical alloying. • Synthesis performed under air at room temperature. • Electrical properties similarmore » to that of samples synthesized by a classical path.« less
Ultrafast compression of graphite observed with sub-ps time resolution diffraction on LCLS
NASA Astrophysics Data System (ADS)
Armstrong, Michael; Goncharov, A.; Crowhurst, J.; Zaug, J.; Radousky, H.; Grivickas, P.; Bastea, S.; Goldman, N.; Stavrou, E.; Belof, J.; Gleason, A.; Lee, H. J.; Nagler, R.; Holtgrewe, N.; Walter, P.; Pakaprenka, V.; Nam, I.; Granados, E.; Presher, C.; Koroglu, B.
2017-06-01
We will present ps time resolution pulsed x-ray diffraction measurements of rapidly compressed highly oriented pyrolytic graphite along its basal plane at the Materials under Extreme Conditions (MEC) sector of the Linac Coherent Light Source (LCLS). These experiments explore the possibility of rapid (<100 ps time scale) material transformations occurring under very highly anisotropic compression conditions. Under such conditions, non-equilibrium mechanisms may play a role in the transformation process. We will present experimental results and simulations which explore this possibility. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Security, LLC under Contract DE-AC52-07NA27344.
9 CFR 590.430 - Limitation on entry of material.
Code of Federal Regulations, 2010 CFR
2010-01-01
... AGRICULTURE EGG PRODUCTS INSPECTION INSPECTION OF EGGS AND EGG PRODUCTS (EGG PRODUCTS INSPECTION ACT) Entry of Material into Official Egg Products Plants § 590.430 Limitation on entry of material. (a) The Administrator shall limit the entry of eggs and egg products and other materials into official plants under such...
Foods from an Iowa Farm. A Resource Guide.
ERIC Educational Resources Information Center
Iowa State Dept. of Agriculture and Land Stewardship, Des Moines.
Prepared for elementary and secondary teachers, this guide provides an annotated list of 72 instructional materials for teaching about farming and the products of Iowa farms. Entries, listed under the organization that provides the materials, state type of instructional material, major topics addressed, grades for which materials are appropriate,…
45 CFR 81.80 - Unsponsored written material.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 45 Public Welfare 1 2010-10-01 2010-10-01 false Unsponsored written material. 81.80 Section 81.80... HEARINGS UNDER PART 80 OF THIS TITLE Hearing Procedures § 81.80 Unsponsored written material. Letters expressing views or urging action and other unsponsored written material regarding matters in issue in a...
78 FR 6364 - Proposed Collection; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-30
... (excluding weekends and holidays) prior to its use.\\1\\ Commission staff reviews sales material filed under... Regulation E (17 CFR 230.607) entitled, ``Sales material to be filed,'' requires sales material used in... to protect investors from the use of false or misleading sales material in connection with Regulation...
9 CFR 590.430 - Limitation on entry of material.
Code of Federal Regulations, 2011 CFR
2011-01-01
... AGRICULTURE EGG PRODUCTS INSPECTION INSPECTION OF EGGS AND EGG PRODUCTS (EGG PRODUCTS INSPECTION ACT) Entry of Material into Official Egg Products Plants § 590.430 Limitation on entry of material. (a) The Administrator shall limit the entry of eggs and egg products and other materials into official plants under such...
Recent development in modeling and analysis of functionally graded materials and structures
NASA Astrophysics Data System (ADS)
Gupta, Ankit; Talha, Mohammad
2015-11-01
In this article, an extensive review related to the structural response of the functionally graded materials (FGMs) and structures have been presented. These are high technology materials developed by a group scientist in the late 1980's in Japan. The emphasis has been made here, to present the structural characteristics of FGMs plates/shells under thermo-electro-mechanical loadings under various boundary and environmental conditions. This paper also provides an overview of different fabrication procedures and the future research directions which is required to implement these materials in the design and analysis appropriately. The expected outcome of present review can be treated as milestone for future studies in the area of high technology materials and structures, and would be definitely advantageous for the researchers, scientists, and designers working in this field.
Main chain acid-degradable polymers for the delivery of bioactive materials
Frechet, Jean M. J. [Oakland, CA; Standley, Stephany M [Evanston, IL; Jain, Rachna [Milpitas, CA; Lee, Cameron C [Cambridge, MA
2012-03-20
Novel main chain acid degradable polymer backbones and drug delivery systems comprised of materials capable of delivering bioactive materials to cells for use as vaccines or other therapeutic agents are described. The polymers are synthesized using monomers that contain acid-degradable linkages cleavable under mild acidic conditions. The main chain of the resulting polymers readily degrade into many small molecules at low pH, but remain relatively stable and intact at physiological pH. The new materials have the common characteristic of being able to degrade by acid hydrolysis under conditions commonly found within the endosomal or lysosomal compartments of cells thereby releasing their payload within the cell. The materials can also be used for the delivery of therapeutics to the acidic regions of tumors and other sites of inflammation.
Praeg, W.F.
1984-03-30
This invention pertains to arrangements for performing electrical tests on contact material samples, and in particular for testing contact material test samples in an evacuated environment under high current loads. Frequently, it is desirable in developing high-current separable contact material, to have at least a preliminary analysis of selected candidate conductor materials. Testing of material samples will hopefully identify materials unsuitable for high current electrical contact without requiring incorporation of the materials into a completed and oftentimes complex structure.
Options and recommendations for a web database of material and construction inspection.
DOT National Transportation Integrated Search
2015-02-01
The Illinois Department of Transportation (IDOT) has been using software developed in-house for their : materials management and construction project management needs. The primary packages under : review MISTIC (Materials Management) and ICORS (Const...
NASA Technical Reports Server (NTRS)
Glasgow, S. D.; Kittredge, K. B.
2003-01-01
A thermal interface material is one of the many tools often used as part of the thermal control scheme for space-based applications. Historically, at Marshall Space Flight Center, CHO-THERM 1671 has primarily been used for applications where an interface material was deemed necessary. However, numerous alternatives have come on the market in recent years. It was decided that a number of these materials should be tested against each other to see if there were better performing alternatives. The tests were done strictly to compare the thermal performance of the materials relative to each other under repeatable conditions and do not take into consideration other design issues, such as off-gassing, electrical conduction, isolation, etc. The purpose of this Technical Memorandum is to detail the materials tested, test apparatus, procedures, and results of these tests. The results show that there are a number of better performing alternatives now available.
Effect of flood conditions on the deterioration of porous clay-based brick
NASA Astrophysics Data System (ADS)
Mol, L.; Tomor, A.
2017-12-01
Man-made materials represent an increasingly large proportion of geomaterials that are used to build up a rapidly expanding urbanised landscape. The deterioration of such materials is of increasing concern, in particular in light of the projected increase in storm and flood events and their associated high water levels. The effect of prolonged saturation in porous materials, man-made as well as natural, can lead to accelerated deterioration. This can be of particular concern for load-bearing structural materials, for example bridges. In this study, the effect of moisture movement has been investigated for brick masonry, as one of the most commonly used porous building materials. Saturation of brick masonry can be of particular concern for historical masonry, such as masonry arch bridges in conjunction with under increasing levels of long-term traffic loading. While flooding can lead to scour and sudden collapse of bridges, saturation can also lead to accelerated medium and long-term deterioration. A series of small-scale laboratory tests have been carried out on brick masonry to identify the effects of saturation on the material properties and changes in the rate of deterioration. Brick masonry prisms have been loaded to failure under quasi-static and long-term cyclic compression and monitored with the help of acoustic emission technique, accelerometers, linear variable differential transformers (LVDTs), permeametry and brick surface hardness measurements. Under quasi-static loading saturated samples showed significant reduction in the load capacity and increased fracture development. Under fatigue loading the number of cycles to failure reduced significantly for saturated specimens and characteristic changes in material parameters have been related to stages of fatigue deterioration. Test results indicated that increasing flood events can accelerate moisture-related deterioration in porous brick masonry.
75 FR 31843 - Identification of Non-Hazardous Secondary Materials That Are Solid Waste
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-04
...On January 2, 2009, the Environmental Protection Agency (EPA or the Agency) issued an Advanced Notice of Proposed Rulemaking (ANPRM) to solicit comment on which non-hazardous secondary materials that are used as fuels or ingredients in combustion units are solid wastes under the Resource Conservation and Recovery Act (RCRA). The meaning of ``solid waste'' as defined under RCRA is of particular importance since it will determine whether a combustion unit is required to meet emissions standards for solid waste incineration units issued under section 129 of the Clean Air Act (CAA) or emissions standards for commercial, industrial, and institutional boilers issued under CAA section 112. CAA section 129 states that the term ``solid waste'' shall have the meaning ``established by the Administrator pursuant to [RCRA].'' EPA is proposing a definition of non-hazardous solid waste that would be used to identify whether non-hazardous secondary materials burned as fuels or used as ingredients in combustion units are solid waste. EPA is also proposing that non-hazardous secondary materials that have been discarded, and are therefore solid wastes, may be rendered products after they have been processed (altered chemically or physically) into a fuel or ingredient product. This proposed rule is necessary to identify units for the purpose of developing certain standards under sections 112 and 129 of the CAA. In addition to this proposed rule, EPA is concurrently proposing air emission requirements under CAA section 112 for industrial, commercial, and institutional boilers and process heaters, as well as air emission requirements under CAA section 129 for commercial and industrial solid waste incineration units.
Tribological properties of epoxy composite materials for marine and river transport
NASA Astrophysics Data System (ADS)
Buketov, A. V.; Maruschak, P. O.; Brailo, N. V.; Akimov, A. V.; Kobelnik, O. S.; Panin, S. V.
2016-11-01
Tribological properties of epoxy composites filled with thermoplastics and dispersed particles under sea water environment were analyzed. It has been revealed that the composition, sliding friction conditions, as well as the marine environment, substantially affect the tribological properties of the materials. The improvement of tribological properties of epoxycomposite thermosetting plastics after their filling with thermoplastic polyamide PA-6 granules under friction in sea water environment has been proved. The recommendations on applying the developed material in friction parts for marine and river transport were formulated.
Development of experimental systems for material sciences under microgravity
NASA Technical Reports Server (NTRS)
Tanii, Jun; Obi, Shinzo; Kamimiyata, Yotsuo; Ajimine, Akio
1988-01-01
As part of the Space Experiment Program of the Society of Japanese Aerospace Companies, three experimental systems (G452, G453, G454) have been developed for materials science studies under microgravity by the NEC Corporation. These systems are to be flown as Get Away Special payloads for studying the feasibility of producing new materials. Together with the experimental modules carrying the hardware specific to the experiment, the three systems all comprise standard subsystems consisting of a power supply, sequence controller, temperature controller, data recorder, and video recorder.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, Gary D.; Assink, Roger Alan; Dargaville, Tim Richard
2005-11-01
Piezoelectric polymers based on polyvinylidene fluoride (PVDF) are of interest for large aperture space-based telescopes as adaptive or smart materials. Dimensional adjustments of adaptive polymer films depend on controlled charge deposition. Predicting their long-term performance requires a detailed understanding of the piezoelectric material features, expected to suffer due to space environmental degradation. Hence, the degradation and performance of PVDF and its copolymers under various stress environments expected in low Earth orbit has been reviewed and investigated. Various experiments were conducted to expose these polymers to elevated temperature, vacuum UV, {gamma}-radiation and atomic oxygen. The resulting degradative processes were evaluated. Themore » overall materials performance is governed by a combination of chemical and physical degradation processes. Molecular changes are primarily induced via radiative damage, and physical damage from temperature and atomic oxygen exposure is evident as depoling, loss of orientation and surface erosion. The effects of combined vacuum UV radiation and atomic oxygen resulted in expected surface erosion and pitting rates that determine the lifetime of thin films. Interestingly, the piezo responsiveness in the underlying bulk material remained largely unchanged. This study has delivered a comprehensive framework for material properties and degradation sensitivities with variations in individual polymer performances clearly apparent. The results provide guidance for material selection, qualification, optimization strategies, feedback for manufacturing and processing, or alternative materials. Further material qualification should be conducted via experiments under actual space conditions.« less
NASA Technical Reports Server (NTRS)
Glasgow, Shaun; Kittredge, Ken
2003-01-01
A thermal interface material is one of the many tools that are often used as part of the thermal control scheme for space-based applications. These materials are placed between, for example, an avionics box and a cold plate, in order to improve the conduction heat transfer so that proper temperatures can be maintained. Historically at Marshall Space Flight Center, CHO-THERM@ 1671 has primarily been used for applications where an interface material was deemed necessary. However, there have been numerous alternatives come on the market in recent years. It was decided that a number of these materials should be tested against each other to see if there were better performing alternatives. The tests were done strictly to compare the thermal performance of the materials relative to each other under repeatable conditions and they do not take into consideration other design issues such as off-gassing, electrical conduction or isolation, etc. This paper details the materials tested, test apparatus, procedures, and results of these tests.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Haiqing; Liu, Xiaoyan; Huang, Jianguo, E-mail: jghuang@zju.edu.cn
Graphical abstract: Bio-inspired, tubular structured hierarchical mesoporous titania material with high photocatalytic activity under UV light was fabricated employing natural cellulosic substance (cotton) as hard template and cetyltrimethylammonium bromide (CTAB) surfactant as soft template using a one-pot sol-gel method. Highlights: {yields} Tubular structured mesoporous titania material was fabricated by sol-gel method. {yields} The titania material faithfully recorded the hierarchical structure of the template substrate (cotton). {yields} The titania material exhibited high photocatalytic activity in decomposition of methylene blue. -- Abstract: Bio-inspired, tubular structured hierarchical mesoporous titania material was designed and fabricated employing natural cellulosic substance (cotton) as hard template andmore » cetyltrimethylammonium bromide (CTAB) surfactant as soft template by one-pot sol-gel method. The tubular structured hierarchical mesoporous titania material processes large specific surface area (40.23 m{sup 2}/g) and shows high photocatalytic activity in the photodegradation of methylene blue under UV light irradiation.« less
Material and morphology parameter sensitivity analysis in particulate composite materials
NASA Astrophysics Data System (ADS)
Zhang, Xiaoyu; Oskay, Caglar
2017-12-01
This manuscript presents a novel parameter sensitivity analysis framework for damage and failure modeling of particulate composite materials subjected to dynamic loading. The proposed framework employs global sensitivity analysis to study the variance in the failure response as a function of model parameters. In view of the computational complexity of performing thousands of detailed microstructural simulations to characterize sensitivities, Gaussian process (GP) surrogate modeling is incorporated into the framework. In order to capture the discontinuity in response surfaces, the GP models are integrated with a support vector machine classification algorithm that identifies the discontinuities within response surfaces. The proposed framework is employed to quantify variability and sensitivities in the failure response of polymer bonded particulate energetic materials under dynamic loads to material properties and morphological parameters that define the material microstructure. Particular emphasis is placed on the identification of sensitivity to interfaces between the polymer binder and the energetic particles. The proposed framework has been demonstrated to identify the most consequential material and morphological parameters under vibrational and impact loads.
Morphological effects on sensitivity of heterogeneous energetic materials
NASA Astrophysics Data System (ADS)
Roy, Sidhartha; Rai, Nirmal; Sen, Oishik; Udaykumar, H. S.
2017-06-01
The mesoscale physical response under shock loading in heterogeneous energetics is inherently linked to the microstructural characteristics. The current work demonstrates the connection between the microstructural features of porous energetic material and its sensitivity. A unified levelset based framework is developed to characterize the microstructures of a given sample. Several morphological metrics describing the mesoscale geometry of the materials are extracted using the current tool including anisotropy, tortuosity, surface to volume, nearest neighbors, size and curvature distributions. The relevant metrics among the ones extracted are identified and correlated to the mesoscale response of the energetic materials under shock loading. Two classes of problems are considered here: (a) field of idealized voids embedded in the HMX material and (b) real samples of pressed HMX. The effects of stochasticity associated with void arrangements on the sensitivity of the energetic material samples are shown. In summary, this work demonstrates the relationship between the mesoscale morphology and shock response of heterogeneous energetic materials using a levelset based framework.
Predicting sample lifetimes in creep fracture of heterogeneous materials
NASA Astrophysics Data System (ADS)
Koivisto, Juha; Ovaska, Markus; Miksic, Amandine; Laurson, Lasse; Alava, Mikko J.
2016-08-01
Materials flow—under creep or constant loads—and, finally, fail. The prediction of sample lifetimes is an important and highly challenging problem because of the inherently heterogeneous nature of most materials that results in large sample-to-sample lifetime fluctuations, even under the same conditions. We study creep deformation of paper sheets as one heterogeneous material and thus show how to predict lifetimes of individual samples by exploiting the "universal" features in the sample-inherent creep curves, particularly the passage to an accelerating creep rate. Using simulations of a viscoelastic fiber bundle model, we illustrate how deformation localization controls the shape of the creep curve and thus the degree of lifetime predictability.
Nickel hydroxide positive electrode for alkaline rechargeable battery
Young, Kwo; Wang, Lixin; Mays, William; Reichman, Benjamin; Chao-Ian, Hu; Wong, Diana; Nei, Jean
2018-04-03
Certain nickel hydroxide active cathode materials for use in alkaline rechargeable batteries are capable of transferring >1.3 electrons per Ni atom under reversible electrochemical conditions. The specific capacity of the nickel hydroxide active materials is for example .gtoreq.325 mAh/g. The cathode active materials exhibit an additional discharge plateau near 0.8 V vs. a metal hydride (MH) anode. Ni in an oxidation state of less than 2, such as Ni.sup.1+, is able to participate in electrochemical reactions when using the present cathode active materials. It is possible that up to 2.3 electrons, up to 2.5 electrons or more may be transferred per Ni atom under electrochemical conditions.
Nickel hydroxide positive electrode for alkaline rechargeable battery
Young, Kwo; Wang, Lixin; Mays, William; Reichman, Benjamin; Chao-Ian, Hu; Wong, Diana; Nei, Jean
2018-02-20
Certain nickel hydroxide active cathode materials for use in alkaline rechargeable batteries are capable of transferring >1.3 electrons per Ni atom under reversible electrochemical conditions. The specific capacity of the nickel hydroxide active materials is for example .gtoreq.325 mAh/g. The cathode active materials exhibit an additional discharge plateau near 0.8 V vs. a metal hydride (MH) anode. Ni in an oxidation state of less than 2, such as Ni.sup.1+, is able to participate in electrochemical reactions when using the present cathode active materials. It is possible that up to 2.3 electrons, up to 2.5 electrons or more may be transferred per Ni atom under electrochemical conditions.
NASA Astrophysics Data System (ADS)
Zha, B. L.; Shi, Y. A.; Wang, J. J.; Su, Q. D.
2018-01-01
Self-designed oxygen-kerosene ablation system was employed to study the ablation characteristics of silicone rubber based thermal insulation materials under the condition of boron oxide particles erosion. The ablation test was designed with a mass fraction of 1.69% boron oxide particles and particles-free, the microstructure and elemental analysis of the specimens before and after ablation were carried out by Scanning Electron Microscopy (SEM) and Energy Dispersion Spectrum (EDS). Experiment results show that the average mass ablation rate of the materials was 0.0099 g•s-1 and the average ablation rate was -0.025 mm•s-1 under the condition of pure gas phase ablation; and the average mass ablation rate of the multiphase ablation test group was 0.1775 g•s-1, whose average ablation rate was 0.437 mm•s-1 during the ablation process, the boron oxide particles would adhere a molten layer on the flame contact surface of the specimen, which covering the pores on the material surface, blocking the infiltration channel for the oxidizing component and slowing down the oxidation loss rate of the material below the surface, but because the particles erosion was the main reason for material depletion, the combined effect of the above both led to the upward material ablation rates of Silicone Rubber.
Recycling positive-electrode material of a lithium-ion battery
Sloop, Steven E.
2017-11-21
Examples are disclosed of methods to recycle positive-electrode material of a lithium-ion battery. In one example, the positive-electrode material is heated under pressure in a concentrated lithium hydroxide solution. After heating, the positive-electrode material is separated from the concentrated lithium hydroxide solution. After separating, the positive electrode material is rinsed in a basic liquid. After rinsing, the positive-electrode material is dried and sintered.
77 FR 46257 - Access Authorization Fees; Correction
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-03
[email protected] . List of Subjects 10 CFR Part 11 Hazardous materials--transportation, Investigations, Nuclear materials, Reporting and recordkeeping requirements, Security measures, Special nuclear... authorization fees charged to licensees for work performed under the Material Access Authorization Program (MAAP...
77 FR 26213 - Access Authorization Fees
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-03
... and Regulations section of this Federal Register. List of Subjects 10 CFR Part 11 Hazardous materials--transportation, Investigations, Nuclear materials, Reporting and recordkeeping requirements, Security measures... amend its access authorization fees charged to licensees for work performed under the Material Access...
Control of Nanoscale Materials under the Toxic Substances Control Act
Many nanoscale materials are regarded as chemical substances, but they may have different properties than their larger counterparts. EPA is working to ensure that nanoscale materials are manufactured and used in ways that prevent risk to health.
Current Materials on Barrier-Free Design. Revised.
ERIC Educational Resources Information Center
National Easter Seal Society for Crippled Children and Adults, Chicago, IL.
An eight-page annotated bibliography contains material available from the National Easter Seal Society and current material available from other sources. The annotations are grouped under design, guides, planning resources, standards/legislation, and general. Ordering information is provided. (MLF)
Nuclear power plant cable materials :
DOE Office of Scientific and Technical Information (OSTI.GOV)
Celina, Mathias C.; Gillen, Kenneth T; Lindgren, Eric Richard
2013-05-01
A selective literature review was conducted to assess whether currently available accelerated aging and original qualification data could be used to establish operational margins for the continued use of cable insulation and jacketing materials in nuclear power plant environments. The materials are subject to chemical and physical degradation under extended radiationthermal- oxidative conditions. Of particular interest were the circumstances under which existing aging data could be used to predict whether aged materials should pass loss of coolant accident (LOCA) performance requirements. Original LOCA qualification testing usually involved accelerated aging simulations of the 40-year expected ambient aging conditions followed by amore » LOCA simulation. The accelerated aging simulations were conducted under rapid accelerated aging conditions that did not account for many of the known limitations in accelerated polymer aging and therefore did not correctly simulate actual aging conditions. These highly accelerated aging conditions resulted in insulation materials with mostly inert aging processes as well as jacket materials where oxidative damage dropped quickly away from the air-exposed outside jacket surface. Therefore, for most LOCA performance predictions, testing appears to have relied upon heterogeneous aging behavior with oxidation often limited to the exterior of the cable cross-section a situation which is not comparable with the nearly homogenous oxidative aging that will occur over decades under low dose rate and low temperature plant conditions. The historical aging conditions are therefore insufficient to determine with reasonable confidence the remaining operational margins for these materials. This does not necessarily imply that the existing 40-year-old materials would fail if LOCA conditions occurred, but rather that unambiguous statements about the current aging state and anticipated LOCA performance cannot be provided based on original qualification testing data alone. The non-availability of conclusive predictions for the aging conditions of 40-year-old cables implies that the same levels of uncertainty will remain for any re-qualification or extended operation of these cables. The highly variable aging behavior of the range of materials employed also implies that simple, standardized aging tests are not sufficient to provide the required aging data and performance predictions for all materials. It is recommended that focused studies be conducted that would yield the material aging parameters needed to predict aging behaviors under low dose, low temperature plant equivalent conditions and that appropriately aged specimens be prepared that would mimic oxidatively-aged 40- to 60- year-old materials for confirmatory LOCA performance testing. This study concludes that it is not sufficient to expose materials to rapid, high radiation and high temperature levels with subsequent LOCA qualification testing in order to predictively quantify safety margins of existing infrastructure with regard to LOCA performance. We need to better understand how cable jacketing and insulation materials have degraded over decades of power plant operation and how this aging history relates to service life prediction and the performance of existing equipment to withstand a LOCA situation.« less
Tamasi, Alison L.; Boland, Kevin S.; Czerwinski, Kenneth; ...
2015-03-18
Chemical signatures correlated with uranium oxide processing are of interest to forensic science for inferring sample provenance. Identification of temporal changes in chemical structures of process uranium materials as a function of controlled temperatures and relative humidities may provide additional information regarding sample history. In our study, a high-purity α-U 3O 8 sample and three other uranium oxide samples synthesized from reaction routes used in nuclear conversion processes were stored under controlled conditions over 2–3.5 years, and powder X-ray diffraction analysis and X-ray absorption spectroscopy were employed to characterize chemical speciation. We measured signatures from the α-U 3O 8 samplemore » indicated that the material oxidized and hydrated after storage under high humidity conditions over time. Impurities, such as uranyl fluoride or schoepites, were initially detectable in the other uranium oxide samples. After storage under controlled conditions, the analyses of the samples revealed oxidation over time, although the signature of the uranyl fluoride impurity diminished. The presence of schoepite phases in older uranium oxide material is likely indicative of storage under high humidity and should be taken into account for assessing sample history. Finally, the absence of a signature from a chemical impurity, such as uranyl fluoride hydrate, in an older material may not preclude its presence at the initial time of production.« less
Tamasi, Alison L.; Boland, Kevin S.; Czerwinski, Kenneth; ...
2015-03-18
Chemical signatures correlated with uranium oxide processing are of interest to forensic science for inferring sample provenance. Identification of temporal changes in chemical structures of process uranium materials as a function of controlled temperatures and relative humidities may provide additional information regarding sample history. In our study, a high-purity α-U 3O 8 sample and three other uranium oxide samples synthesized from reaction routes used in nuclear conversion processes were stored under controlled conditions over 2–3.5 years, and powder X-ray diffraction analysis and X-ray absorption spectroscopy were employed to characterize chemical speciation. We measured signatures from the α-U 3O 8 samplemore » indicated that the material oxidized and hydrated after storage under high humidity conditions over time. Impurities, such as uranyl fluoride or schoepites, were initially detectable in the other uranium oxide samples. After storage under controlled conditions, the analyses of the samples revealed oxidation over time, although the signature of the uranyl fluoride impurity diminished. The presence of schoepite phases in older uranium oxide material is likely indicative of storage under high humidity and should be taken into account for assessing sample history. Finally, the absence of a signature from a chemical impurity, such as uranyl fluoride hydrate, in an older material may not preclude its presence at the initial time of production. LA-UR-15-21495.« less
Bratton, J.F.; Böhlke, J.K.; Krantz, D.E.; Tobias, C.R.
2009-01-01
To better understand large-scale interactions between fresh and saline groundwater beneath an Atlantic coastal estuary, an offshore drilling and sampling study was performed in a large barrier-bounded lagoon, Chincoteague Bay, Maryland, USA. Groundwater that was significantly fresher than overlying bay water was found in shallow plumes up to 8??m thick extending more than 1700??m offshore. Groundwater saltier than bay surface water was found locally beneath the lagoon and the barrier island, indicating recharge by saline water concentrated by evaporation prior to infiltration. Steep salinity and nutrient gradients occur within a few meters of the sediment surface in most locations studied, with buried peats and estuarine muds acting as confining units. Groundwater ages were generally more than 50??years in both fresh and brackish waters as deep as 23??m below the bay bottom. Water chemistry and isotopic data indicate that freshened plumes beneath the estuary are mixtures of water originally recharged on land and varying amounts of estuarine surface water that circulated through the bay floor, possibly at some distance from the sampling location. Ammonium is the dominant fixed nitrogen species in saline groundwater beneath the estuary at the locations sampled. Isotopic and dissolved-gas data from one location indicate that denitrification within the subsurface flow system removed terrestrial nitrate from fresh groundwater prior to discharge along the western side of the estuary. Similar situations, with one or more shallow semi-confined flow systems where groundwater geochemistry is strongly influenced by circulation of surface estuary water through organic-rich sediments, may be common on the Atlantic margin and elsewhere.
NASA Astrophysics Data System (ADS)
Osburn, Christopher L.; Mikan, Molly P.; Etheridge, J. Randall; Burchell, Michael R.; Birgand, François
2015-07-01
Fluorescence was used to examine the quality of dissolved and particulate organic matter (DOM and POM) exchanging between a tidal creek in a created salt marsh and its adjacent estuary in eastern North Carolina, USA. Samples from the creek were collected hourly over four tidal cycles in May, July, August, and October 2011. Absorbance and fluorescence of chromophoric DOM (CDOM) and of base-extracted POM (BEPOM) served as the tracers for organic matter quality while dissolved organic carbon (DOC) and base-extracted particulate organic carbon (BEPOC) were used to compute fluxes. Fluorescence was modeled using parallel factor analysis (PARAFAC) and principle components analysis (PCA) of the PARAFAC results. Of nine PARAFAC components (C) modeled, C3 represented recalcitrant DOM and C4 represented fresher soil-derived source DOM. Component 1 represented detrital POM, and C6 represented planktonic POM. Based on mass balance, recalcitrant DOC export was 86 g C m-2 yr-1 and labile DOC export was 49 g C m-2 yr-1; no planktonic DOC was exported. The marsh also exported 41 g C m-2 yr-1 of detrital terrestrial POC, which likely originated from lands adjacent to the North River estuary. Planktonic POC export from the marsh was 6 g C m-2 yr-1. Assuming the exported organic matter was oxidized to CO2 and scaled up to global salt marsh area, respiration of salt marsh DOC and POC transported to estuaries could amount to a global CO2 flux of 11 Tg C yr-1, roughly 4% of the recently estimated CO2 release for marshes and estuaries globally.
Winther, Mette; Nielsen, Per Vaeggemose
2006-10-01
The natural antimicrobial compound allyl isothiocyanate (AITC), found in mustard oil, is effective against cheese-related fungi both on laboratory media and cheese. Penicillium commune, Penicillium roqueforti, and Aspergillus flavus were more sensitive to AITC when it was added just after the spores had completed 100% germination and branching had started on Czapek yeast extract agar than were spores in the dormant phase. The use of 1 AITC label (Wasaouro interior labels, LD30D, 20 by 20 mm) in combination with atmospheric air in the packaging extended the shelf life of Danish Danbo cheese from 4 1/2 to 13 weeks. Two AITC labels extended the shelf life from 4 1/2 to 28 weeks. Both 1 and 2 labels in combination with modified atmosphere packaging extended the shelf life of the cheese from 18 to 28 weeks. This study showed that AITC was absorbed in the cheese, but it was not possible to detect any volatile breakdown products from AITC in the cheese. Cheese stored for up to 12 weeks with an AITC label had an unacceptable mustard flavor. The mustard flavor decreased to an acceptable level between weeks 12 and 28. Cheese stored in atmospheric air had a fresher taste without a CO2 off-flavor than did cheese stored in modified atmosphere packaging. AITC may be a good alternative to modified atmosphere packaging for cheese. The extended shelf life of cheese in the package is very desirable: the cheese can be transported longer distances, and the packaging can be used for the final maturing of the cheese. Furthermore, AITC can address problems such as pinholes and leaking seals in cheese packaging.
Stoner, J.D.
1972-01-01
During a study of the effects of waste-water input on the stratified Duwamish River estuary, intensive water-velocity and salinity measurements were made in both the lower salt wedge and the upper fresher water layer for tidal-cycle periods. The net movement of water and salt mass past a cross section during a tidal cycle was determined from integration of the measured rates of movement of water and salt past the section. The net volume of water that moved downstream past the section during the cycle agreed with the volume of fresh-water inflow at the head of the estuary within (1) 3.8 and 7.2 percent, respectively, for two studies made during periods of maximum and minimum tidal-prism thickness and identical inflow rates .of 312 cfs (cubic feet per second), and (2) 15 percent for one study made during a period of average tidal-prism thickness and an inflow rate of 1,280 cfs. For the three studies, the difference between salt mass transported upstream and downstream during the cycles ranged from 0.8 to 19 percent of the respective mean salt-mass transport. Water was entrained from the .salt-water wedge into the overlying layer of mixed fresh and salt water at tidal-cycle-average rates of 30 and 69 cfs per million square feet of interface for the inflow rates of 312 cfs, and 99 cfs per million square feet of interface for an inflow rate of 1,280 cfs. At a constant inflow rate, the rate of entrainment of salt-wedge water in the Duwamish River estuary more than doubled for a doubling of tidal-prism thickness. It also doubled for a quadrupling of inflow rate at about constant tidal-prism thickness.
Consumer beliefs regarding farmed versus wild fish.
Claret, Anna; Guerrero, Luis; Ginés, Rafael; Grau, Amàlia; Hernández, M Dolores; Aguirre, Enaitz; Peleteiro, José Benito; Fernández-Pato, Carlos; Rodríguez-Rodríguez, Carmen
2014-08-01
Aquaculture is a food-producing activity, alternative to traditional extractive fishing, which still acts as a reference for most consumers. The main objective of the present paper was to study which consumer beliefs, regarding farmed versus wild fish, hinder the potential development of the aquaculture sector. To achieve this purpose the study was organized into two complementary steps: a qualitative approach (focus groups) aimed at assessing consumer perception about wild and farmed fish and to identify the salient beliefs that differentiate them; and a quantitative approach (survey by means of a questionnaire) to validate the results obtained in the focus group discussions over a representative sample of participants (n = 919). Results showed that participants perceive clear differences between farmed and wild fish. Although no significant differences between both kinds of fish were detected on safety, in general farmed fish was perceived to be less affected by marine pollution, heavy metals and parasites. In the contrary, wild fish was considered to have healthier feeding, to contain fewer antibiotics and to be fresher, healthier, less handled and more natural. Beliefs related to quality were in favour of wild fish, while those related to availability and price were in favour of farmed fish. Significant differences were observed in the perception of both kinds of fish depending on the consumers' objective knowledge about fish, on the level of education, age and gender and on the three segments of consumers identified: "Traditional/Conservative", "Connoisseur", "Open to aquaculture". The results provided could play an important role when planning and designing efficient marketing strategies for promoting farmed fish by adapting the information provided to the perception of each segment of consumers identified by the present study. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lewandoski, Sean; Bishop, Mary Anne
2018-01-01
Documenting distribution patterns of juvenile Pacific herring (Clupea pallasii) can clarify habitat preferences and provide insight into ecological factors influencing early life survival. However, few analyses relating juvenile Pacific herring density to habitat characteristics have been conducted. We sampled age-0 Pacific herring in nine bays and fjords distributed throughout Alaska's Prince William Sound during November over a 3-year period (2013-2015) and investigated associations between catch rate and habitat covariates using generalized linear mixed models. Our results indicated that the night-time distribution of age-0 Pacific herring in the pelagic environment was influenced by proximity to eelgrass (Zostera marina) beds, salinity, and water depth. Age-0 Pacific herring catch rate was negatively associated with tow depth, with herring favoring shallower water across the range of depths sampled (7.2-35.4 m). In addition, Pacific herring distribution was positively associated with fresher water within the sampled salinity gradient (24.1-32.3 psu) and proximity to eelgrass beds. Seasonal changes in juvenile Pacific herring distribution were investigated by sampling one bay over a seven month period (October-April). Age-0 Pacific herring tended to remain in the inner bay region throughout the seven months, while age-1 Pacific herring had shifted from the inner to the outer bay by spring (March-April). Additionally, catch rate of age-0 Pacific herring in areas where ice breakup had just occurred was higher than in open water, suggesting that age-0 herring preferentially select ice-covered habitats when available. Based on our results we recommend that habitat preferences of age-0 Pacific herring should be considered in the development of Pacific herring year-class strength indices from catch data.
NASA Astrophysics Data System (ADS)
Venables, Hugh J.; Meredith, Michael P.; Brearley, J. Alexander
2017-05-01
Circumpolar Deep Water (CDW) intrudes from the mid-layers of the Antarctic Circumpolar Current onto the shelf of the western Antarctic Peninsula, providing a source of heat and nutrients to the regional ocean. It is well known that CDW is modified as it flows across the shelf, but the mechanisms responsible for this are not fully known. Here, data from underwater gliders with high spatial resolution are used to demonstrate the importance of detailed bathymetry in inducing multiple local mixing events. Clear evidence for overflows is observed in the glider data as water flows along a deep channel with multiple transverse ridges. The ridges block the densest waters, with overflowing water descending several hundred metres to fill subsequent basins. This vertical flow leads to entrainment of overlying colder and fresher water in localised mixing events. Initially this process leads to an increase in bottom temperatures due to the temperature maximum waters descending to greater depths. After several ridges, however, the mixing is sufficient to remove the temperature maximum completely and the entrainment of colder thermocline waters to depth reduces the bottom temperature, to approximately the same as in the source region of Marguerite Trough. Similarly, it is shown that deep waters of Palmer Deep are warmer than at the same depth at the shelf break. The exact details of the transformations observed are heavily dependent on the local bathymetry and water column structure, but glacially-carved troughs and shallow sills are a common feature of the bathymetry of polar shelves, and these types of processes may be a factor in determining the hydrographic conditions close to the coast across a wider area.
Varve-based Reconstruction of Seasonal Hydroclimate from Nar Gölü, Turkey over the last 2.6 ka BP
NASA Astrophysics Data System (ADS)
Primmer, N.; Jones, M.; Metcalfe, S. E.; Eastwood, W.; Brauer, A.; Roberts, C. N.
2017-12-01
In south-west Asia, the wet-dry seasonality and semi-arid climatology increases societal vulnerability to drought. Long, continuous records of such droughts from the region are therefore important to put recent extremes in context, to benchmark natural variability in water availability. We present the longest annual record of south-west Asian climate to date, spanning the entirety of the Common Era. We reconstruct seasonal hydrological change from a climatically sensitive lake, Nar Gölü, Turkey over the past 2,589 years using varve sedimentology. Organic-calcareous varve deposition is driven by the climatic wet-dry seasonality, where varve microfacies analysis has developed an inter- and intra-annual record of the resultant limnological variability. Calibration using modern meteorological data identified that the March-May evaporation/precipitation ratio as the primary control on carbonate sublayer thickness. Combining these analyses with previous stable isotope, pollen and diatom records from the same cores further develops a holistic environmental record of palaeoseasonality able to gauge past and present hydrology, including drought severity. Two threshold hydrological changes to the spring growing season are well-dated at 535 and 1406 AD, thus coinciding with the onset of the Late Antiquity Little Ice Age (LALIA) and Little Ice Age (LIA) respectively. Carbonate mineralogy indicates generally fresher water conditions during the intermediary 871-year long period, with an inferred dry period at 850 AD possibly marking the start of regional, long-term aridification. By reconstructing high resolution hydroclimate, this well constrained annual record of past water availability provides a unique context for understanding climate change and its potential impact in this vulnerable region.
NASA Technical Reports Server (NTRS)
2005-01-01
[figure removed for brevity, see original site] The theme for the weeks of 1/17 and 1/24 is the north polar region of Mars as seen in false color THEMIS images. Ice/frost will typically appear as bright blue in color; dust mantled ice will appear in tones of red/orange. This full resolution image shows a marked difference in the 'blueness' of the ice surfaces. The lower (presumably older) surface is oranger and the top (presumably younger) surface is blue. This may represent the fresher ice of the upper surface which has not yet covered with as much dust as the lower surface. Image information: VIS instrument. Latitude 80.8, Longitude 302.1 East (57.9 West). 19 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.A warmer and wetter solution for early Mars and the challenges with transient warming
NASA Astrophysics Data System (ADS)
Ramirez, Ramses M.
2017-11-01
The climate of early Mars has been hotly debated for decades. Although most investigators believe that the geology indicates the presence of surface water, disagreement has persisted regarding how warm and wet the surface must have been and how long such conditions may have existed. Although the geologic evidence is most easily explained by a persistently warm climate, the perceived difficulty that climate models have in generating warm surface conditions has seeded various models that assume a cold and glaciated early Mars punctuated by transient warming episodes. However, I use a single-column radiative convective climate model to show that it is relatively more straightforward to satisfy warm and relatively non-glaciated early Mars conditions, requiring only ∼1% H2 and 3 bar CO2 or ∼20% H2 and 0.55 bar CO2. In contrast, the reflectivity of surface ice greatly increases the difficulty to transiently warm an initially frozen surface. Surface pressure thresholds required for warm conditions increase ∼10 - 60% for transient warming models, depending on ice cover fraction. No warm solution is possible for ice cover fractions exceeding 40%, 70%, and 85% for mixed snow/ice and 25%, 35%, and 49% for fresher snow/ice at H2 concentrations of 3%, 10%, and 20%, respectively. If high temperatures (298-323 K) were required to produce the observed surface clay amounts on a transiently warm early Mars (Bishop et al), I show that such temperatures would have required surface pressures that exceed available paleopressure constraints for nearly all H2 concentrations considered (1-20%). I then argue that a warm and semi-arid climate remains the simplest and most logical solution to Mars paleoclimate.
NASA Astrophysics Data System (ADS)
Du, Guangqian; Zhang, Zhaoru; Zhou, Meng; Zhu, Yiwu; Zhong, Yisen
2018-04-01
While the Antarctic Slope Current (ASC) has been intensively studied for the East Antarctica slope area and the Weddell Sea, its fate in the western Antarctic Peninsula (WAP) region remains much less known. Data from two cruises conducted near the South Shetland Islands (SSIs) and the Elephant Island (EI), one in austral summer of 2004 and one in austral winter of 2006, were analyzed to provide a broad picture of the circulation pattern over the continental slope of the surveyed area, and an insight into the dynamical balance of the circulation. The results indicate that southwestward currents are present over the upper slope in the study area, indicating the ASC in the WAP region. Near the Shackleton Gap (SG) north of the EI, the southwestward slope currents near the shelf break are characterized by a water mass colder and fresher than the ambient water, which produces cross-slope density gradients and then vertical shear of the along-slope (or along-isobath) velocity. The vertical shear is associated with a reversal of the along-slope current from northeastward at surface to southwestward in deeper layers, or a depth-intensification of the southwestward slope currents. The water mass with temperature and salinity characteristics similar to the observed cold and fresh water is also revealed on the southern slope of the Scotia Sea, suggesting that this cold and fresh water is originated from the Scotia Sea slope and flows southwestward through the SG. Over the shelf north of the SSIs, the cold and fresh water mass is also observed and originates mainly from the Bransfield Strait. In this area, vertical structure of the southwestward slope currents is associated with the onshore intrusion of the upper Circumpolar Deep Water that creates cross-slope density gradients.
NASA Astrophysics Data System (ADS)
Lee, P.
2016-12-01
Wildfires are commonplace in North America. Air pollution resulted from wildfires pose a significant risk for human health and crop damage. The pollutants alter the vertical distribution of many atmospheric constituents including O3 and many fine particulate (PM) species. Compared to anthropogenic emissions of air pollutants, emissions from wildfires are largely uncontrolled and unpredictable. Therefore, quantitatively describing wildfire emissions and their contributions to air pollution remains a substantial challenge for atmospheric modeler and air quality forecasters. In this study, we investigated the modification and redistribution of atmospheric composition within the Conterminous U.S (CONUS) by wild fire plumes originated within and outside of the CONUS. We used the National Air Quality Forecasting Capability (NAQFC) to conduct the investigation. NAQFC uses dynamic lateral chemical boundary conditions derived from the National Weather Service experimental global aerosol tracer model accounting for intrusion of fire-associated aerosol species. Within CONUS, the NAQFC derives both gaseous and aerosol wildfire associated species from the National Environmental Satellite, Data, and Information Service (NESDIS) hazard mapping system (HMS) hot-spot detection, and US Forestry Service Blue-sky protocol for quantifying fire characteristics, and the US EPA Sparse Matrix Object Kernel Emission (SMOKE) calculation for plume rise. Attributions of both of these wildfire influences inherently reflect the aged plumes intruded into the CONUS through the model boundaries as well as the fresher emissions from sources within the CONUS. Both emission sources contribute significantly to the vertical structure modification of the atmosphere. We conducted case studies within the fire active seasons to demonstrate some possible impacts on the vertical structures of O3 and PM species by the wildfire activities.
Lindgren, T; Norbäck, D; Wieslander, G
2007-06-01
The influence of air humidification in aircraft, on perception of cabin air quality among airline crew (N = 71) was investigated. In-flight investigations were performed in the forward part and in the aft part on eight intercontinental flights with one Boeing 767 individually, equipped with an evaporation humidifier combined with a dehumidifying unit, to reduce accumulation of condensed water in the wall construction. Four flights had the air humidification active when going out, and turned off on the return flight. The four others had the inverse humidification sequence. The sequences were randomized, and double blind. Air humidification increased relative air humidity (RH) by 10% in forward part, and by 3% in aft part of the cabin and in the cockpit. When the humidification device was active, the cabin air was perceived as being less dry (P = 0.008), and fresher (P = 0.002). The mean concentration of viable bacteria (77-108 cfu/m(3)), viable molds (74-84 cfu/m(3)), and respirable particles (1-8 microg/m3) was low, both during humidified and non-humidified flights. On flights with air humidification, there were less particles in the forward part of the aircraft (P = 0.01). In conclusion, RH can be slightly increased by using ceramic evaporation humidifier, without any measurable increase of microorganisms in cabin air. The cabin air quality was perceived as being better with air humidification. PRACTICAL IMPLICATION: Relative air humidity is low (10-20%) during intercontinental flights, and can be increased by using ceramic evaporation humidifier, without any measurable increase of microorganism in cabin air. Air humidification could increase the sensation of better cabin air quality.
Hunsicker, Oliver; Hessler, Katarina; Krannich, Alexander; Boemke, Willehad; Braicu, Ioana; Sehouli, Jalid; Meyer, Oliver; Pruß, Axel; Spies, Claudia; Feldheiser, Aarne
2018-04-17
After transfusion of senescent red blood cells (RBCs) a considerable fraction is rapidly cleared from the recipients' circulation. Thus, transfusion of senescent RBCs may be less effective in terms of increasing hemoglobin concentration (cHb) after transfusion. Data were retrospectively obtained in patients who underwent major abdominal surgery between 2006 and 2012. Patients were eligible if they received RBCs during surgery and had at least two arterial blood gas analyses performed. The primary endpoint was the increase of recipients' cHb related to the transfusion of 1 unit of RBCs with respect to different storage periods. Four storage periods were defined according to the distribution of RBC storage of the study population. General estimating equation was used for calculation of the primary endpoint and to adjust for confounding variables. A total of 598 arterial blood gas samples from 120 patients, receiving 429 RBC units, were analyzed. Mean (±SD) RBC storage was 21 (±9) days. RBC storage duration and the increase in recipients' cHb were inversely and gradually related; that is, the older the RBCs, the lower the increase in the recipients' cHb after transfusion (storage < 12 days, ΔcHb per unit RBCs +0.82 [95% confidence interval, 0.42-1.21] g/dL, p < 0.01; storage 12-20 days, +0.66 [0.46-0.86] g/dL, p < 0.01; storage 21-29 days, +0.56 [0.33-0.79] g/dL, p < 0.01; storage ≥30 days, +0.39 [0.07 to 0.71] g/dL, p = 0.02). Transfusion of senescent RBCs increased cHb less effectively than transfusion of fresher RBCs. © 2018 AABB.
Farrand, W. H.; Gaddis, L.R.; Keszthelyi, L.
2005-01-01
Domes and cones with summit pits located in Acidalia Planitia and Cydonia Mensae were studied using MOC and THEMIS images and a TES-derived thermal inertia map. North of 40.5??N latitude, the features have a dome-like morphology, and south of that latitude, the morphology is more cone-like. Layering is apparent in the summit craters of fresher looking southern cones, and asymmetric aprons were observed in some instances. Some of the northern domes also display layering in their summit craters, but asymmetric aprons were not observed. The northern domes can also display multiple summit pits or no summit pits at all and can occur in association with higher-albedo "pancake" features. The northern domes are higher in albedo but have apparent thermal inertias that are lower than the surrounding plains. The apparent thermal inertia values of the southern cones range from values comparable to the surrounding plains to slightly lower. From the TES thermal inertia map, we infer that the thermal inertia values of the pitted cones are between those of basaltic fine dust and sand, while those of the surrounding plains are closer to that of basaltic sand. While a unique interpretation of the origin of the pitted cones is not possible with the available data, we do not find compelling evidence to suggest an origin related to either basaltic volcanism or ground-ice. Instead, an origin for these features through some combination of mud volcanism and evaporite deposition around geysers and/or springs is most consistent with the observations. Copyright 2005 by the American Geophysical Union.
Enhanced deep ocean ventilation and oxygenation with global warming
NASA Astrophysics Data System (ADS)
Froelicher, T. L.; Jaccard, S.; Dunne, J. P.; Paynter, D.; Gruber, N.
2014-12-01
Twenty-first century coupled climate model simulations, observations from the recent past, and theoretical arguments suggest a consistent trend towards warmer ocean temperatures and fresher polar surface oceans in response to increased radiative forcing resulting in increased upper ocean stratification and reduced ventilation and oxygenation of the deep ocean. Paleo-proxy records of the warming at the end of the last ice age, however, suggests a different outcome, namely a better ventilated and oxygenated deep ocean with global warming. Here we use a four thousand year global warming simulation from a comprehensive Earth System Model (GFDL ESM2M) to show that this conundrum is a consequence of different rates of warming and that the deep ocean is actually better ventilated and oxygenated in a future warmer equilibrated climate consistent with paleo-proxy records. The enhanced deep ocean ventilation in the Southern Ocean occurs in spite of increased positive surface buoyancy fluxes and a constancy of the Southern Hemisphere westerly winds - circumstances that would otherwise be expected to lead to a reduction in deep ocean ventilation. This ventilation recovery occurs through a global scale interaction of the Atlantic Meridional Overturning Circulation undergoing a multi-centennial recovery after an initial century of transient decrease and transports salinity-rich waters inform the subtropical surface ocean to the Southern Ocean interior on multi-century timescales. The subsequent upwelling of salinity-rich waters in the Southern Ocean strips away the freshwater cap that maintains vertical stability and increases open ocean convection and the formation of Antarctic Bottom Waters. As a result, the global ocean oxygen content and the nutrient supply from the deep ocean to the surface are higher in a warmer ocean. The implications for past and future changes in ocean heat and carbon storage will be discussed.
NASA Astrophysics Data System (ADS)
Deng, Wenfeng; Liu, Xi; Chen, Xuefei; Wei, Gangjian; Zeng, Ti; Xie, Luhua; Zhao, Jian-xin
2017-01-01
For the global oceans, the characteristics of high-resolution climate changes during the last millennium remain uncertain because of the limited availability of proxy data. This study reconstructs climate conditions using annually resolved coral records from the South China Sea (SCS) to provide new insights into climate change over the last millennium. The results indicate that the climate of the Medieval Climate Anomaly (MCA, AD 900-1300) was similar to that of the Current Warm Period (CWP, AD 1850-present), which contradicts previous studies. The similar warmth levels for the MCA and CWP have also been recorded in the Makassar Strait of Indonesia, which suggests that the MCA was not warmer than the CWP in the western Pacific and that this may not have been a globally uniform change. Hydrological conditions were drier/saltier during the MCA and similar to those of the CWP. The drier/saltier MCA and CWP in the western Pacific may be associated with the reduced precipitation caused by variations in the Pacific Walker Circulation. As for the Little Ice Age (LIA, AD 1550-1850), the results from this study, together with previous data from the Makassar Strait, indicate a cold and wet period compared with the CWP and the MCA in the western Pacific. The cold LIA period agrees with the timing of the Maunder sunspot minimum and is therefore associated with low solar activity. The fresher/wetter LIA in the western Pacific may have been caused by the synchronized retreat of both the East Asian Summer Monsoon and the Australian Monsoon.
Asymmetric Signature of Glacial Antarctic Intermediate Water in the Central South Pacific
NASA Astrophysics Data System (ADS)
Tapia, R.; Nuernberg, D.; Ho, S. L.; Lamy, F.; Ullermann, J.; Gersonde, R.; Tiedemann, R.
2017-12-01
Southern Ocean Intermediate Waters (SOIWs) play a key role in modulating the global climate on glacial-interglacial time scales as they connect the Southern Ocean and the tropics. Despite their importance, the past evolution of the SOIWs in the central South Pacific is largely unknown due to a dearth of sedimentary archives. Here we compare Mg/Ca-temperature, stable carbon and oxygen isotope records from surface-dwelling (G. bulloides) and deep-dwelling (G. inflata) planktic foraminifera at site PS75/059-2 (54°12.9' S, 125°25.53' W; recovery 13.98 m; 3.613 m water depth), located north of the modern Subantarctic Front. Our study focuses on the temperature and salinity variability controlled by SOIWs, which were subducted at the Subantarctic Front during the Last Glacial Maximum (LGM; 29-17ka BP) and the Penultimate Glacial Maximum (PGM; 180-150ka BP). During both glacial periods conditions at the subsurface ocean were colder and fresher relative to the Holocene (<10ka) suggesting an enhanced presence of SOIWs. In spite of the comparable subsurface cooling during both glacial, the subsurface ocean during the PGM was saltier and 0.35‰ more depleted in δ13C in comparison to the LGM. Interestingly, the mean δ13C value of the PGM is comparable to the Carbon Isotope Minimum Events, which might suggests a larger contribution of "old" low δ13C deep waters to the study site during the PGM. A Latitudinal comparison of subsurface proxies suggests glacial asymmetries in the advection of SOIWs into the central Pacific, plausibly related to glacial changes in the convection depth of SOIWs at the South Antarctic Front area rather than changes in production of the SOIWs.
BHAISARE, ROSHAN; KAMBLE, BHAVNA
2016-01-01
Introduction Note taking while attending a PPT requires high activity of memory and writing process which ultimately leads to what is called “death by power point” referring to boredom and fatigue. To overcome this we planned to evaluate the impact of utilisation of uncompleted handouts given prior to PPT presentations. Methods Final year MBBS students were divided in 2 batches, batch A and batch B. For a set of lectures one batch was provided with handouts before lecture while the other batch was given lectures only. Crossover was done to avoid bias, all the lectures being given by the same presenter. At the end of each lecture, a short questionnaire of 10 Multiple Choice Question (MCQ) was provided to the students. Mean scores were calculated for lectures with handouts and without handouts. Results For a set of lectures, when batch A was provided with handouts, the mean score was 28.2; for batch B to which no handouts were given the mean score was 23.4. Similarly, for batch B when provided with handouts the mean score was 29.1, for batch A which was not provided with handouts the mean score was 24. There was an average increase of 4.2 marks. Actual gain when handouts were provided was 1.2 marks per lecture. It was more for the batch comprising of repeater students as compared to the batch of fresher students. Increase in attendance was also noted. Conclusion Providing uncompleted handouts before a didactic lecture definitely results in increase in knowledge gain; repeater students benefit more with uncompleted handouts, PMID:27382583
Anatomy and dry weight yields of two Populus clones grown under intensive culture.
John B. Crist; David H. Dawson
1975-01-01
Two Populus clones grown for short rotations at three dense planting spacings produced some extremely high yields of material of acceptable quality. However, variation in yields and quality illustrates that selection of genetic material and the cultured regime under which a species is growth are significant factors that must be determined in maximum-yield systems....
ERIC Educational Resources Information Center
McDonald, Cheryl; Hylton, John A.
In 1970-1971 Learning Mastery System (LMS) materials were made available to schools within the state of California under an Exclusive Use Agreement. The LMS is a set of materials and procedures prepared by the Southwest Regional Laboratory (SWRL) as an objectives-based framework to assist in managing the learning activities of existing reading…
R.A. Haack; A. Uzunovic; K. Hoover; J.A. Cook
2011-01-01
ISPM No. 15 presents guidelines for treating wood packaging material used in international trade. There are currently two approved phytosanitary treatments: heat treatment and methyl bromide fumigation. New treatments are under development, and are needed given that methyl bromide is being phased out. Probit 9 efficacy (100% mortality of at least 93 613 test organisms...
26 CFR 301.6104(a)-2 - Public inspection of material relating to pension and other plans.
Code of Federal Regulations, 2010 CFR
2010-04-01
... pension and other plans. 301.6104(a)-2 Section 301.6104(a)-2 Internal Revenue INTERNAL REVENUE SERVICE... and Returns Returns and Records § 301.6104(a)-2 Public inspection of material relating to pension and...— (i) A pension, profit-sharing, or stock bonus plan under section 401(a), (ii) An annuity plan under...
Fractographic study of epoxy fractured under mode I loading and mixed mode I/III loading
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Fei; Wang, Jy-An John; Bertelsen, Williams D.
2011-01-01
Fiber reinforced polymeric composite materials are widely used in structural components such as wind turbine blades, which are typically subject to complicated loading conditions. Thus, material response under mixed mode loading is of great significance to the reliability of these structures. Epoxy is a thermosetting polymer that is currently used in manufacturing wind turbine blades. The fracture behavior of epoxy is relevant to the mechanical integrity of the wind turbine composite materials. In this study, a novel fracture testing methodology, the spiral notch torsion test (SNTT), was applied to study the fracture behavior of an epoxy material. SNTT samples weremore » tested using either monotonic loading or cyclic loading, while both mode I and mixed mode I/III loading conditions were used. Fractographic examination indicated the epoxy samples included in this study were prone to mode I failure even when the samples were subject to mixed mode loading. Different fatigue precracks were observed on mode I and mixed mode samples, i.e. precracks appeared as a uniform band under mode I loading, and a semi-ellipse under mixed mode loading. Fracture toughness was also estimated using quantitative fractography.« less
Atmospheric aerosols in Rome, Italy: sources, dynamics and spatial variations during two seasons
NASA Astrophysics Data System (ADS)
Struckmeier, Caroline; Drewnick, Frank; Fachinger, Friederike; Gobbi, Gian Paolo; Borrmann, Stephan
2016-12-01
Investigations on atmospheric aerosols and their sources were carried out in October/November 2013 and May/June 2014 consecutively in a suburban area of Rome (Tor Vergata) and in central Rome (near St Peter's Basilica). During both years a Saharan dust advection event temporarily increased PM10 concentrations at ground level by about 12-17 µg m-3. Generally, in October/November the ambient aerosol was more strongly influenced by primary emissions, whereas higher relative contributions of secondary particles (sulfate, aged organic aerosol) were found in May/June. Absolute concentrations of anthropogenic emission tracers (e.g. NOx, CO2, particulate polycyclic aromatic hydrocarbons, traffic-related organic aerosol) were generally higher at the urban location. Positive matrix factorization was applied to the PM1 organic aerosol (OA) fraction of aerosol mass spectrometer (HR-ToF-AMS) data to identify different sources of primary OA (POA): traffic, cooking, biomass burning and (local) cigarette smoking. While biomass burning OA was only found at the suburban site, where it accounted for the major fraction of POA (18-24 % of total OA), traffic and cooking were more dominant sources at the urban site. A particle type associated with cigarette smoke emissions, which is associated with a potential characteristic marker peak (m/z 84, C5H10N+, a nicotine fragment) in the mass spectrum, was only found in central Rome, where it was emitted in close vicinity to the measurement location. Regarding secondary OA, in October/November, only a very aged, regionally advected oxygenated OA was found, which contributed 42-53 % to the total OA. In May/June total oxygenated OA accounted for 56-76 % of the OA. Here a fraction (18-26 % of total OA) of a fresher, less oxygenated OA of more local origin was also observed. New particle formation events were identified from measured particle number concentrations and size distributions in May/June 2014 at both sites. While they were observed every day at the urban location, at the suburban location they were only found under favourable meteorological conditions, but were independent of advection of the Rome emission plume. Particles from sources in the metropolitan area of Rome and particles advected from outside Rome contributed 42-70 and 30-58 % to the total measured PM1, respectively. Apart from the general aerosol characteristics, in this study the properties (e.g. emission strength) and dynamics (e.g. temporal behaviour) of each identified aerosol type is investigated in detail to provide a better understanding of the observed seasonal and spatial differences.
Helicopter electromagnetic survey of the Model Land Area, Southeastern Miami-Dade County, Florida
Fitterman, David V.; Deszcz-Pan, Maria; Prinos, Scott T.
2012-01-01
This report describes a helicopter electromagnetic survey flown over the Model Land Area in southeastern Miami-Dade County, Florida, to map saltwater intrusion in the Biscayne aquifer. The survey, which is located south and east of Florida City, Florida, covers an area of 115 square kilometers with a flight-line spacing of 400 meters. A five-frequency, horizontal, coplanar bird with frequencies ranging from 400 to 100,000 Hertz was used. The data were interpreted using differential resistivity analysis and inversion to produce cross sections and resistivity depth-slice maps. The depth of investigation is as deep as 100 meters in freshwater-saturated portions of the Biscayne aquifer and the depth diminishes to about 50 meters in areas that are intruded by saltwater. The results compare favorably with ground-based, time-domain electromagnetic soundings and induction logs from observation wells in the area. The base of a high-resistivity, freshwater-saturated zone mapped in the northern 2 kilometers of the survey area corresponds quite well with the base of the surficial aquifer that has been determined by drilling. In general, saltwater in the survey area extends 9 to 12 kilometers inland from the coast; however, there is a long nose of saltwater centered along the Card Sound Road Canal that extends 15 kilometers inland. The cause of this preferential intrusion is likely due to uncontrolled surface flow along the canal and subsequent leakage of saltwater into the aquifer. Saltwater also extends farther inland in the area between U.S. Highway 1 and Card Sound Road than it does to the west of this area. Until 1944, a railroad grade occupied the current location of U.S. Highway 1. Borrow ditches associated with the railroad grade connected to Barnes Sound and allowed saltwater to flow during droughts and storm surges to within a few kilometers of Florida City. Relicts of this saltwater that settled to the bottom of the Biscayne aquifer can be seen in the helicopter electromagnetic data. The area to the west of U.S. Highway 1 is more resistive in the upper 10 meters than the area to the east of the road; this reflects the influence of surface-water flows that are blocked by U.S. Highway 1. Between Card Sound Road and U.S. Highway 1, resistivities are slightly lower compared to adjacent areas. In the southern portion of the survey area, the surficial aquifer underlying the Biscayne aquifer is more resistive; this indicates that it contains fresher water than that found at the base of the Biscayne aquifer.
NASA Technical Reports Server (NTRS)
Castelli, Michael G.; Arnold, Steven M.
2000-01-01
Structural materials for the design of advanced aeropropulsion components are usually subject to loading under elevated temperatures, where a material's viscosity (resistance to flow) is greatly reduced in comparison to its viscosity under low-temperature conditions. As a result, the propensity for the material to exhibit time-dependent deformation is significantly enhanced, even when loading is limited to a quasi-linear stress-strain regime as an effort to avoid permanent (irreversible) nonlinear deformation. An understanding and assessment of such time-dependent effects in the context of combined reversible and irreversible deformation is critical to the development of constitutive models that can accurately predict the general hereditary behavior of material deformation. To this end, researchers at the NASA Glenn Research Center at Lewis Field developed a unique experimental technique that identifies the existence of and explicitly determines a threshold stress k, below which the time-dependent material deformation is wholly reversible, and above which irreversible deformation is incurred. This technique is unique in the sense that it allows, for the first time, an objective, explicit, experimental measurement of k. The underlying concept for the experiment is based on the assumption that the material s time-dependent reversible response is invariable, even in the presence of irreversible deformation.
Constitutive models for static and dynamic response of geotechnical materials
NASA Astrophysics Data System (ADS)
Nemat-Nasser, S.
1983-11-01
The objective of this research program has been to develop realistic macroscopic constitutive relations which describe static and dynamic properties of geotechnical materials (soils and rocks). To this end a coordinated theoretical and experimental activity has been followed. The theoretical work includes a balanced combination of statistical microscopic (at the grain size level) modeling and a nonclassical elasto-plastic macroscopic formulation. The latter includes the effects of internal friction, plastic compressibility, and pressure sensitivity, as well as anisotropy which is commonly observed in geotechnical materials. The following specific goals have been sought: (1) to develop three-dimensional constitutive relations under ordinary or high pressures (such as those induced by blasting or tectonic forces which may cause a large amount of densification by relative motion and possible crushing of grains); and (2) to examine and characterize the behavior of saturated granular materials under dynamic loading. The latter item includes characterization of possible liquefaction and subsidence which may be induced in granular materials under confining pressure by ground vibration or passage of waves. The theoretical work has been carefully coordinated with key experiments in order to: (1) understand the basic physics of the process, both at macroscopic and microscopic levels; (2) to verify the corresponding theoretical predictions; and (3) to establish relevant material parameters.
Xu, Mengchen; Lerner, Amy L; Funkenbusch, Paul D; Richhariya, Ashutosh; Yoon, Geunyoung
2018-02-01
The optical performance of the human cornea under intraocular pressure (IOP) is the result of complex material properties and their interactions. The measurement of the numerous material parameters that define this material behavior may be key in the refinement of patient-specific models. The goal of this study was to investigate the relative contribution of these parameters to the biomechanical and optical responses of human cornea predicted by a widely accepted anisotropic hyperelastic finite element model, with regional variations in the alignment of fibers. Design of experiments methods were used to quantify the relative importance of material properties including matrix stiffness, fiber stiffness, fiber nonlinearity and fiber dispersion under physiological IOP. Our sensitivity results showed that corneal apical displacement was influenced nearly evenly by matrix stiffness, fiber stiffness and nonlinearity. However, the variations in corneal optical aberrations (refractive power and spherical aberration) were primarily dependent on the value of the matrix stiffness. The optical aberrations predicted by variations in this material parameter were sufficiently large to predict clinically important changes in retinal image quality. Therefore, well-characterized individual variations in matrix stiffness could be critical in cornea modeling in order to reliably predict optical behavior under different IOPs or after corneal surgery.
Morphing Continuum Theory: A First Order Approximation to the Balance Laws
NASA Astrophysics Data System (ADS)
Wonnell, Louis; Cheikh, Mohamad Ibrahim; Chen, James
2017-11-01
Morphing Continuum Theory is constructed under the framework of Rational Continuum Mechanics (RCM) for fluid flows with inner structure. This multiscale theory has been successfully emplyed to model turbulent flows. The framework of RCM ensures the mathematical rigor of MCT, but contains new material constants related to the inner structure. The physical meanings of these material constants have yet to be determined. Here, a linear deviation from the zeroth-order Boltzmann-Curtiss distribution function is derived. When applied to the Boltzmann-Curtiss equation, a first-order approximation of the MCT governing equations is obtained. The integral equations are then related to the appropriate material constants found in the heat flux, Cauchy stress, and moment stress terms in the governing equations. These new material properties associated with the inner structure of the fluid are compared with the corresponding integrals, and a clearer physical interpretation of these coefficients emerges. The physical meanings of these material properties is determined by analyzing previous results obtained from numerical simulations of MCT for compressible and incompressible flows. The implications for the physics underlying the MCT governing equations will also be discussed. This material is based upon work supported by the Air Force Office of Scientific Research under Award Number FA9550-17-1-0154.
Ecological performance of construction materials subject to ocean climate change.
Davis, Kay L; Coleman, Melinda A; Connell, Sean D; Russell, Bayden D; Gillanders, Bronwyn M; Kelaher, Brendan P
2017-10-01
Artificial structures will be increasingly utilized to protect coastal infrastructure from sea-level rise and storms associated with climate change. Although it is well documented that the materials comprising artificial structures influence the composition of organisms that use them as habitat, little is known about how these materials may chemically react with changing seawater conditions, and what effects this will have on associated biota. We investigated the effects of ocean warming, acidification, and type of coastal infrastructure material on algal turfs. Seawater acidification resulted in greater covers of turf, though this effect was counteracted by elevated temperatures. Concrete supported a greater cover of turf than granite or high-density polyethylene (HDPE) under all temperature and pH treatments, with the greatest covers occurring under simulated ocean acidification. Furthermore, photosynthetic efficiency under acidification was greater on concrete substratum compared to all other materials and treatment combinations. These results demonstrate the capacity to maximise ecological benefits whilst still meeting local management objectives when engineering coastal defense structures by selecting materials that are appropriate in an ocean change context. Therefore, mitigation efforts to offset impacts from sea-level rise and storms can also be engineered to alter, or even reduce, the effects of climatic change on biological assemblages. Copyright © 2017 Elsevier Ltd. All rights reserved.
Simulation of hydrogen adsorption systems adopting the flow through cooling concept
Corgnale, Claudio; Hardy, Bruce; Chahine, Richard; ...
2014-10-13
Hydrogen storage systems based on adsorbent materials have the potential of achieving the U.S. Department of Energy (DOE) targets, especially in terms of gravimetric capacity. This paper deals with analysis of adsorption storage systems adopting the flow through cooling concept. By this approach the feeding hydrogen provides the needed cold to maintain the tank at low temperatures. Two adsorption systems have been examined and modeled adopting the Dubinin-Astakhov model, to see their performance under selected operating conditions. A first case has been analyzed, modeling a storage tank filled with carbon based material (namely MaxSorb®) and comparing the numerical outcomes withmore » the available experimental results for a 2.5 L tank. Under selected operating conditions (minimum inlet hydrogen temperature of approximately 100 K and maximum pressure on the order of 8.5 MPa) and adopting the flow through cooling concept the material shows a gravimetric capacity of about 5.7 %. A second case has been modeled, examining the same tank filled with metal organic framework material (MOF5®) under approximately the same conditions. The model shows that the latter material can achieve a (material) gravimetric capacity on the order of 11%, making the system potentially able to achieve the DOE 2017 target.« less
Musioł, Marta; Rydz, Joanna; Janeczek, Henryk; Radecka, Iza; Jiang, Guozhan; Kowalczuk, Marek
2017-06-01
The public awareness of the quality of environment stimulates the endeavor to safe polymeric materials and their degradation products. The aim of the forensic engineering case study presented in this paper is to evaluate the aging process of commercial oxo-degradable polyethylene bag under real industrial composting conditions and in distilled water at 70°C, for comparison. Partial degradation of the investigated material was monitored by changes in molecular weight, thermal properties and Keto Carbonyl Bond Index and Vinyl Bond Index, which were calculated from the FTIR spectra. The results indicate that such an oxo-degradable product offered in markets degrades slowly under industrial composting conditions. Even fragmentation is slow, and it is dubious that biological mineralization of this material would occur within a year under industrial composting conditions. The slow degradation and fragmentation is most likely due to partially crosslinking after long time of degradation, which results in the limitation of low molecular weight residues for assimilation. The work suggests that these materials should not be labeled as biodegradable, and should be further analyzed in order to avoid the spread of persistent artificial materials in nature. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wickramasinghe, Viresh K.; Hagood, Nesbitt W.
2004-10-01
The primary objective of this work was to perform material characterization of the active fiber composite (AFC) actuator system for the Boeing active material rotor (AMR) blade application. The purpose of the AMR was to demonstrate active vibration control in helicopters through integral twist-actuation of the blade. The AFCs were a new structural actuator system consisting of piezoceramic fibers embedded in an epoxy matrix and sandwiched between interdigitated electrodes to enhance actuation performance. These conformable actuators were integrated directly into the blade spar laminate as active plies within the composite structure to perform structural control. Therefore, extensive electromechanical material characterization was required to evaluate AFCs both as actuators and as structural components of the blade. The characterization tests designed to extract important electromechanical properties under simulated blade operating conditions included nominal actuation tests, stress-strain tests and actuation under tensile load tests. This paper presents the test results as well as the comprehensive testing procedure developed to evaluate the relevant properties of the AFCs for structural application. The material characterization tests provided an invaluable insight into the behavior of the AFCs under various electromechanical conditions. The results from this comprehensive material characterization of the AFC actuator system supported the design and operation of the AMR blades scheduled for wind tunnel tests.
A Call for Improvement: The Need for Research-Based Materials in American Sign Language Education
ERIC Educational Resources Information Center
Thoryk, Robertta
2010-01-01
Educational reform and financial considerations have emphasized accountability and use of research-based materials and strategies in education. Simultaneously, with growing enrollment in elementary, secondary, and postsecondary ASL programs, the number of commercially marketed materials has grown. Do such materials stand up under scrutiny when…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-13
... Application for Special Nuclear Materials License From Passport Systems, Inc., Opportunity To Request a... special nuclear material (SNM), submitted by Passport Systems, Inc. (Passport or the Applicant). The..., if approved, would authorize Passport to possess and use special nuclear materials under 10 CFR Part...
19 CFR 10.2016 - Value of materials.
Code of Federal Regulations, 2014 CFR
2014-04-01
..., the following expenses, if not included under paragraph (a) of this section, may be added to the value... 19 Customs Duties 1 2014-04-01 2014-04-01 false Value of materials. 10.2016 Section 10.2016... Agreement Rules of Origin § 10.2016 Value of materials. (a) Calculating the value of materials. For purposes...
48 CFR 52.225-11 - Buy American Act-Construction Materials under Trade Agreements.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., Dominican Republic, El Salvador, Guatemala, Honduras, Mexico, Morocco, Nicaragua, Oman, Peru, or Singapore..., product, or manufacture of Bahrain, Mexico, or Oman ; or (2) In the case of a construction material that... Bahrain, Mexico, or Oman into a new and different construction material distinct from the materials from...
48 CFR 52.225-11 - Buy American Act-Construction Materials under Trade Agreements.
Code of Federal Regulations, 2013 CFR
2013-10-01
..., Morocco, Nicaragua, Oman, Panama, Peru, or Singapore); (3) A least developed country (Afghanistan, Angola..., product, or manufacture of Bahrain, Mexico, or Oman ; or (2) In the case of a construction material that... Bahrain, Mexico, or Oman into a new and different construction material distinct from the materials from...
ERIC Educational Resources Information Center
Shrum, L. J.; Lee, Jaehoon; Burroughs, James E.; Rindfleisch, Aric
2011-01-01
Two studies investigated the interrelations among television viewing, materialism, and life satisfaction, and their underlying processes. Study 1 tested an online process model for television's cultivation of materialism by manipulating level of materialistic content. Viewing level influenced materialism, but only among participants who reported…
Structural materials challenges for advanced reactor systems
NASA Astrophysics Data System (ADS)
Yvon, P.; Carré, F.
2009-03-01
Key technologies for advanced nuclear systems encompass high temperature structural materials, fast neutron resistant core materials, and specific reactor and power conversion technologies (intermediate heat exchanger, turbo-machinery, high temperature electrolytic or thermo-chemical water splitting processes, etc.). The main requirements for the materials to be used in these reactor systems are dimensional stability under irradiation, whether under stress (irradiation creep or relaxation) or without stress (swelling, growth), an acceptable evolution under ageing of the mechanical properties (tensile strength, ductility, creep resistance, fracture toughness, resilience) and a good behavior in corrosive environments (reactor coolant or process fluid). Other criteria for the materials are their cost to fabricate and to assemble, and their composition could be optimized in order for instance to present low-activation (or rapid desactivation) features which facilitate maintenance and disposal. These requirements have to be met under normal operating conditions, as well as in incidental and accidental conditions. These challenging requirements imply that in most cases, the use of conventional nuclear materials is excluded, even after optimization and a new range of materials has to be developed and qualified for nuclear use. This paper gives a brief overview of various materials that are essential to establish advanced systems feasibility and performance for in pile and out of pile applications, such as ferritic/martensitic steels (9-12% Cr), nickel based alloys (Haynes 230, Inconel 617, etc.), oxide dispersion strengthened ferritic/martensitic steels, and ceramics (SiC, TiC, etc.). This article gives also an insight into the various natures of R&D needed on advanced materials, including fundamental research to investigate basic physical and chemical phenomena occurring in normal and accidental operating conditions, lab-scale tests to characterize candidate materials mechanical properties and corrosion resistance, as well as component mock-up tests on technology loops to validate potential applications while accounting for mechanical design rules and manufacturing processes. The selection, assessment and validation of materials necessitate a large number of experiments, involving rare and expensive facilities such as research reactors, hot laboratories or corrosion loops. The modelling and the codification of the behaviour of materials will always involve the use of such technological experiments, but it is of utmost importance to develop also a predictive material science. Finally, the paper stresses the benefit of prospects of multilateral collaboration to join skills and share efforts of R&D to achieve in the nuclear field breakthroughs on materials that have already been achieved over the past decades in other industry sectors (aeronautics, metallurgy, chemistry, etc.).
NASA Technical Reports Server (NTRS)
Gandin, Charles-Andre; Ratke, Lorenz
2008-01-01
The Materials Science Laboratory - Columnar-to-Equiaxed Transition in Solidification Processing and Microstructure Formation in Casting of Technical Alloys under Diffusive and Magnetically Controlled Convective Conditions (MSL-CETSOL and MICAST) are two investigations which supports research into metallurgical solidification, semiconductor crystal growth (Bridgman and zone melting), and measurement of thermo-physical properties of materials. This is a cooperative investigation with the European Space Agency (ESA) and National Aeronautics and Space Administration (NASA) for accommodation and operation aboard the International Space Station (ISS). Research Summary: Materials Science Laboratory - Columnar-to-Equiaxed Transition in Solidification Processing (CETSOL) and Microstructure Formation in Casting of Technical Alloys under Diffusive and Magnetically Controlled Convective Conditions (MICAST) are two complementary investigations which will examine different growth patterns and evolution of microstructures during crystallization of metallic alloys in microgravity. The aim of these experiments is to deepen the quantitative understanding of the physical principles that govern solidification processes in cast alloys by directional solidification.
Angelini, Daniel J; Harris, Jacquelyn V; Burton, Laura L; Rastogi, Pooja R; Smith, Lisa S; Rastogi, Vipin K
2018-03-01
Environmental surface sampling is crucial in determining the zones of contamination and overall threat assessment. Viability retention of sampled material is central to such assessments. A systematic study was completed to determine viability of vegetative cells under nonpermissive storage conditions. Despite major gains in nucleic acid sequencing technologies, initial positive identification of threats must be made through direct culture of the sampled material using classical microbiological methods. Solutions have been developed to preserve the viability of pathogens contained within clinical samples, but many have not been examined for their ability to preserve biological agents. The purpose of this study was to systematically examine existing preservation materials that can retain the viability of Bacillus anthracis vegetative cells stored under nonpermissive temperatures. The results show effectiveness of five of seventeen solutions, which are capable of retaining viability of a sporulation deficient strain of B. anthracis Sterne when stored under nonrefrigerated conditions. © 2017 American Academy of Forensic Sciences.
From bacteria to mollusks: the principles underlying the biomineralization of iron oxide materials.
Faivre, Damien; Godec, Tina Ukmar
2015-04-13
Various organisms possess a genetic program that enables the controlled formation of a mineral, a process termed biomineralization. The variety of biological material architectures is mind-boggling and arises from the ability of organisms to exert control over crystal nucleation and growth. The structure and composition of biominerals equip biomineralizing organisms with properties and functionalities that abiotically formed materials, made of the same mineral, usually lack. Therefore, elucidating the mechanisms underlying biomineralization and morphogenesis is of interdisciplinary interest to extract design principles that will enable the biomimetic formation of functional materials with similar capabilities. Herein, we summarize what is known about iron oxides formed by bacteria and mollusks for their magnetic and mechanical properties. We describe the chemical and biological machineries that are involved in controlling mineral precipitation and organization and show how these organisms are able to form highly complex structures under physiological conditions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Numerical model of thermo-mechanical coupling for the tensile failure process of brittle materials
NASA Astrophysics Data System (ADS)
Fu, Yu; Wang, Zhe; Ren, Fengyu; Wang, Daguo
2017-10-01
A numerical model of thermal cracking with a thermo-mechanical coupling effect was established. The theory of tensile failure and heat conduction is used to study the tensile failure process of brittle materials, such as rock and concrete under high temperature environment. The validity of the model is verified by thick-wall cylinders with analytical solutions. The failure modes of brittle materials under thermal stresses caused by temperature gradient and different thermal expansion coefficient were studied by using a thick-wall cylinder model and an embedded particle model, respectively. In the thick-wall cylinder model, different forms of cracks induced by temperature gradient were obtained under different temperature boundary conditions. In the embedded particle model, radial cracks were produced in the medium part with lower tensile strength when temperature increased because of the different thermal expansion coefficient. Model results are in good agreement with the experimental results, thereby providing a new finite element method for analyzing the thermal damage process and mechanism of brittle materials.
Installing Mechanics of Granular Materials (MGM) Experiment Test Cell
NASA Technical Reports Server (NTRS)
1996-01-01
Astronaut Carl Walz installs Mechanics of Granular Materials (MGM) test cell on STS-79. Sand and soil grains have faces that can cause friction as they roll and slide against each other, or even cause sticking and form small voids between grains. This complex behavior can cause soil to behave like a liquid under certain conditions such as earthquakes or when powders are handled in industrial processes. Mechanics of Granular Materials (MGM) experiments aboard the Space Shuttle use the microgravity of space to simulate this behavior under conditons that carnot be achieved in laboratory tests on Earth. MGM is shedding light on the behavior of fine-grain materials under low effective stresses. Applications include earthquake engineering, granular flow technologies (such as powder feed systems for pharmaceuticals and fertilizers), and terrestrial and planetary geology. Nine MGM specimens have flown on two Space Shuttle flights. Another three are scheduled to fly on STS-107. The principal investigator is Stein Sture of the University of Colorado at Boulder. Credit: NASA/John Space Center
Probabilistic analysis of a materially nonlinear structure
NASA Technical Reports Server (NTRS)
Millwater, H. R.; Wu, Y.-T.; Fossum, A. F.
1990-01-01
A probabilistic finite element program is used to perform probabilistic analysis of a materially nonlinear structure. The program used in this study is NESSUS (Numerical Evaluation of Stochastic Structure Under Stress), under development at Southwest Research Institute. The cumulative distribution function (CDF) of the radial stress of a thick-walled cylinder under internal pressure is computed and compared with the analytical solution. In addition, sensitivity factors showing the relative importance of the input random variables are calculated. Significant plasticity is present in this problem and has a pronounced effect on the probabilistic results. The random input variables are the material yield stress and internal pressure with Weibull and normal distributions, respectively. The results verify the ability of NESSUS to compute the CDF and sensitivity factors of a materially nonlinear structure. In addition, the ability of the Advanced Mean Value (AMV) procedure to assess the probabilistic behavior of structures which exhibit a highly nonlinear response is shown. Thus, the AMV procedure can be applied with confidence to other structures which exhibit nonlinear behavior.
Color constancy: phenomenal or projective?
Reeves, Adam J; Amano, Kinjiro; Foster, David H
2008-02-01
Naive observers viewed a sequence of colored Mondrian patterns, simulated on a color monitor. Each pattern was presented twice in succession, first under one daylight illuminant with a correlated color temperature of either 16,000 or 4000 K and then under the other, to test for color constancy. The observers compared the central square of the pattern across illuminants, either rating it for sameness of material appearance or sameness of hue and saturation or judging an objective property-that is, whether its change of color originated from a change in material or only from a change in illumination. Average color constancy indices were high for material appearance ratings and binary judgments of origin and low for hue-saturation ratings. Individuals' performance varied, but judgments of material and of hue and saturation remained demarcated. Observers seem able to separate phenomenal percepts from their ontological projections of mental appearance onto physical phenomena; thus, even when a chromatic change alters perceived hue and saturation, observers can reliably infer the cause, the constancy of the underlying surface spectral reflectance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barua, Bipul; Mohanty, Subhasish; Listwan, Joseph T.
In this paper, a cyclic-plasticity based fully mechanistic fatigue modeling approach is presented. This is based on time-dependent stress-strain evolution of the material over the entire fatigue life rather than just based on the end of live information typically used for empirical S~N curve based fatigue evaluation approaches. Previously we presented constant amplitude fatigue test based related material models for 316 SS base, 508 LAS base and 316 SS- 316 SS weld which are used in nuclear reactor components such as pressure vessels, nozzles, and surge line pipes. However, we found that constant amplitude fatigue data based models have limitationmore » in capturing the stress-strain evolution under arbitrary fatigue loading. To address the above mentioned limitation, in this paper, we present a more advanced approach that can be used for modeling the cyclic stress-strain evolution and fatigue life not only under constant amplitude but also under any arbitrary (random/variable) fatigue loading. The related material model and analytical model results are presented for 316 SS base metal. Two methodologies (either based on time/cycle or based on accumulated plastic strain energy) to track the material parameters at a given time/cycle are discussed and associated analytical model results are presented. From the material model and analytical cyclic plasticity model results, it is found that the proposed cyclic plasticity model can predict all the important stages of material behavior during the entire fatigue life of the specimens with more than 90% accuracy« less
Barua, Bipul; Mohanty, Subhasish; Listwan, Joseph T.; ...
2017-12-05
In this paper, a cyclic-plasticity based fully mechanistic fatigue modeling approach is presented. This is based on time-dependent stress-strain evolution of the material over the entire fatigue life rather than just based on the end of live information typically used for empirical S~N curve based fatigue evaluation approaches. Previously we presented constant amplitude fatigue test based related material models for 316 SS base, 508 LAS base and 316 SS- 316 SS weld which are used in nuclear reactor components such as pressure vessels, nozzles, and surge line pipes. However, we found that constant amplitude fatigue data based models have limitationmore » in capturing the stress-strain evolution under arbitrary fatigue loading. To address the above mentioned limitation, in this paper, we present a more advanced approach that can be used for modeling the cyclic stress-strain evolution and fatigue life not only under constant amplitude but also under any arbitrary (random/variable) fatigue loading. The related material model and analytical model results are presented for 316 SS base metal. Two methodologies (either based on time/cycle or based on accumulated plastic strain energy) to track the material parameters at a given time/cycle are discussed and associated analytical model results are presented. From the material model and analytical cyclic plasticity model results, it is found that the proposed cyclic plasticity model can predict all the important stages of material behavior during the entire fatigue life of the specimens with more than 90% accuracy« less
Yazici, A Ruya; Tuncer, Duygu; Antonson, Sibel; Onen, Alev; Kilinc, Evren
2010-01-01
The aim of this study was to investigate the effect of delayed finishing/polishing on the surface roughness, hardness and gloss of tooth-coloured restorative materials. Four different tooth-coloured restoratives: a flowable resin composite- Tetric Flow, a hybrid resin composite- Venus, a nanohybrid resin composite- Grandio, and a polyacid modified resin composite- Dyract Extra were used. 30 specimens were made for each material and randomly assigned into three groups. The first group was finished/polished immediately and the second group was finished/polished after 24 hours. The remaining 10 specimens served as control. The surface roughness of each sample was recorded using a laser profilometer. Gloss measurements were performed using a small-area glossmeter. Vickers microhardness measurements were performed from three locations on each specimen surface under 100g load and 10s dwell time. Data for surface roughness and hardness were analyzed by Kruskal Wallis test and data for gloss were subjected to one-way ANOVA and Tukey test (P <.05). The smoothest surfaces were obtained under Mylar strip for all materials. While there were no significant differences in surface roughness of immediate and delayed finished/polished Dyract Extra samples, immediately finished/polished Venus and Grandio samples showed significantly higher roughness than the delayed polished samples (P <.05). In Tetric Flow samples, immediately finishing/polishing provided smoother surface than delayed finishing/polishing (P <.05). The highest gloss values were recorded under Mylar strip for all materials. While delayed finishing/polishing resulted in a significantly higher gloss compared to immediate finishing/polishing in Venus samples (P <.05), no differences were observed between delayed or immediate finishing/polishing for the other materials (P>.05). The lowest hardness values were found under Mylar strip. Delayed finishing/polishing significantly increased the hardness of all materials. The effect of delayed finishing/polishing on surface roughness, gloss and hardness appears to be material dependent.
77 FR 26149 - Access Authorization Fees
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-03
... Regulatory Affairs of OMB. List of Subjects 10 CFR Part 11 Hazardous materials--transportation... licensees for work performed under the Material Access Authorization Program (MAAP) and the Information... assigned duties which require access to special nuclear material (plutonium, uranium-233, and uranium...
Testing of materials from the Minnesota Cold Regions pavement research test facility
DOT National Transportation Integrated Search
1996-09-01
The U.S. Army Cold Regions Research and Engineering Laboratory (CRREL) conducted various laboratory tests on pavement materials from the Mn/ ROAD facility. The tests helped to characterize the behavior of materials under season frost conditions, and ...
A rapid method to extract Seebeck coefficient under a large temperature difference
NASA Astrophysics Data System (ADS)
Zhu, Qing; Kim, Hee Seok; Ren, Zhifeng
2017-09-01
The Seebeck coefficient is one of the three important properties in thermoelectric materials. Since thermoelectric materials usually work under large temperature difference in real applications, we propose a quasi-steady state method to accurately measure the Seebeck coefficient under large temperature gradient. Compared to other methods, this method is not only highly accurate but also less time consuming. It can measure the Seebeck coefficient in both the temperature heating up and cooling down processes. In this work, a Zintl material (Mg3.15Nb0.05Sb1.5Bi0.49Te0.01) was tested to extract the Seebeck coefficient from room temperature to 573 K. Compared with a commercialized Seebeck coefficient measurement device (ZEM-3), there is ±5% difference between those from ZEM-3 and this method.
Theoretical prediction on corrugated sandwich panels under bending loads
NASA Astrophysics Data System (ADS)
Shu, Chengfu; Hou, Shujuan
2018-05-01
In this paper, an aluminum corrugated sandwich panel with triangular core under bending loads was investigated. Firstly, the equivalent material parameters of the triangular corrugated core layer, which could be considered as an orthotropic panel, were obtained by using Castigliano's theorem and equivalent homogeneous model. Secondly, contributions of the corrugated core layer and two face panels were both considered to compute the equivalent material parameters of the whole structure through the classical lamination theory, and these equivalent material parameters were compared with finite element analysis solutions. Then, based on the Mindlin orthotropic plate theory, this study obtain the closed-form solutions of the displacement for a corrugated sandwich panel under bending loads in specified boundary conditions, and parameters study and comparison by the finite element method were executed simultaneously.
Analysis of polymer/oxide interfaces under ambient conditions - An experimental perspective
NASA Astrophysics Data System (ADS)
González-Orive, A.; Giner, I.; de los Arcos, T.; Keller, A.; Grundmeier, G.
2018-06-01
In many different hybrid materials and materials composites polymers adhere to bulk oxides or oxide covered metal. The formed polymer/oxide interfaces are of crucial importance for the functionality and durability of such complex materials. Especially, under humid and corrosive conditions such interfaces tend to degrade due to permeability of polymers for water, the high adsorption energy of water on oxide surfaces and even corrosion processes of the metal. Different experimental studies considered such interfaces ranging from spectroscopy to electrochemical analysis. However, it is still a challenge to understand the complex interaction especially under non-ideal ambient conditions. The perspective article presents an overview on the existing experimental approaches and considers most recent experimental developments with regard to their potential applications in the area of polymer/oxide interfaces in the future.
Study of bulk Hafnium oxide (HfO2) under compression
NASA Astrophysics Data System (ADS)
Pathak, Santanu; Mandal, Guruprasad; Das, Parnika
2018-04-01
Hafnium oxide (HfO2) is a technologically important material. This material has K-value of 25 and band gap 5.8 eV. A k value of 25-30 is preferred for a gate dielectric [1]. As it shows good insulating and capacitive properties, HfO2 is being considered as a replacement to SiO2 in microelectronic devices as gate dielectrics. On the other hand because of toughening mechanism due to phase transformation induced by stress field observed in these oxides, HFO2 has been a material of investigations in various configurations for a very long time. However the controversies about phase transition of HfO2 under pressure still exists. High quality synchrotron radiation has been used to study the structural phase transition of HfO2 under pressure.
Electronic Structure of Energetic Molecules and Crystals Under Compression
NASA Astrophysics Data System (ADS)
Kay, Jeffrey
Understanding how the electronic structure of energetic materials change under compression is important to elucidating mechanisms of shock-induced reactions and detonation. In this presentation, the electronic structure of prototypical energetic crystals are examined under high degrees of compression using ab initio quantum chemical calculations. The effects of compression on and interactions between the constituent molecules are examined in particular. The insights these results provide into previous experimental observations and theoretical predictions of energetic materials under high pressure are discussed. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Dirac State in Giant Magnetoresistive Materials
NASA Astrophysics Data System (ADS)
Wu, Y.; Jo, N. H.; Ochi, M.; Huang, L.; Mou, D.; Kong, T.; Mun, E.; Wang, L.; Lee, Y.; Bud'Ko, S. L.; Canfield, P. C.; Trivedi, N.; Arito, R.; Kaminski, A.
We use ultrahigh resolution, tunable, vacuum ultraviolet laser-based angle-resolved photoemission spectroscopy (ARPES) to study the electronic properties of materials that recently were discovered to display titanic magnetoresistance. We find that that several of these materials have Dirac-like features in their band structure. In some materials those features are ``ordinary'' Dirac cones, while in others the linear Dirac dispersion of two crossing bands forms a linear object in 3D momentum space. Our observation poses an important question about the role of Dirac dispersion in the unusually high, non-saturating magnetoresistance of these materials. Research was supported by the US DOE, Office of Basic Energy Sciences under Contract No. DE-AC02-07CH11358; Gordon and Betty Moore Foundation EPiQS Initiative (Grant No. GBMF4411); CEM, a NSF MRSEC, under Grant No. DMR-1420451.
Water-Based Coating Simplifies Circuit Board Manufacturing
NASA Technical Reports Server (NTRS)
2008-01-01
The Structures and Materials Division at Glenn Research Center is devoted to developing advanced, high-temperature materials and processes for future aerospace propulsion and power generation systems. The Polymers Branch falls under this division, and it is involved in the development of high-performance materials, including polymers for high-temperature polymer matrix composites; nanocomposites for both high- and low-temperature applications; durable aerogels; purification and functionalization of carbon nanotubes and their use in composites; computational modeling of materials and biological systems and processes; and developing polymer-derived molecular sensors. Essentially, this branch creates high-performance materials to reduce the weight and boost performance of components for space missions and aircraft engine components. Under the leadership of chemical engineer, Dr. Michael Meador, the Polymers Branch boasts world-class laboratories, composite manufacturing facilities, testing stations, and some of the best scientists in the field.
Development of an Assessment Method for Building Materials Under Euratom Scope.
de With, Govert
2017-11-01
In 2013, the European Commission published its basic safety standards for protection against the dangers arising from exposure to ionizing radiation (Council Directive 2013/59/Euratom)-also known as EU-BSS. As a result, the use of raw materials with potentially elevated activity concentrations such as fly ash, phosphogypsum, and slags will now fall under EU-BSS scope when applied in building materials. In light of this new policy, a variety of tools are available to assess compliance with the 1-mSv y reference level for building materials. At the heart of these tools is a gamma-spectrometric determination of the naturally occurring radionuclides Ra, Th, and K in the material of concern. As a large number of construction products contain a certain amount of the raw material that falls under the scope of the EU regulation, this policy will lead to substantial measurement of building materials that pose little radiation risk. For this reason, a method is developed to enable assessment against the 1-mSv value not on the basis of gamma-spectrometric analysis but rather based on the product's material composition. The proposed method prescribes a maximum permitted content of raw materials with potentially elevated activity concentrations in terms of a weight percentage of the end product, where the raw materials of concern are defined as those listed in Annex XIII of the EU-BSS. The permitted content is a function of the product's surface density. Therefore, a product with a low surface density of up to 25 kg m can consist of nearly 100% raw materials with potentially elevated activity concentrations, and this percentage drops to around 15% for products with a surface density of around 500 kg m. Building materials that comply with these requirements on product composition are exempt from testing, while products that do not comply must perform regular gamma-spectrometric analysis. A full validation and testing of the method is provided. In addition, the paper discusses issues relevant for regulatory implementation.
Wormhole Formation in RSRM Nozzle Joint Backfill
NASA Technical Reports Server (NTRS)
Stevens, J.
2000-01-01
The RSRM nozzle uses a barrier of RTV rubber upstream of the nozzle O-ring seals. Post flight inspection of the RSRM nozzle continues to reveal occurrence of "wormholes" into the RTV backfill. The term "wormholes", sometimes called "gas paths", indicates a gas flow path not caused by pre-existing voids, but by a little-understood internal failure mode of the material during motor operation. Fundamental understanding of the mechanics of the RSRM nozzle joints during motor operation, nonlinear viscoelastic characterization of the RTV backfill material, identification of the conditions that predispose the RTV to form wormholes, and screening of candidate replacement materials is being pursued by a joint effort between Thiokol Propulsion, NASA, and the Army Propulsion & Structures Directorate at Redstone Arsenal. The performance of the RTV backfill in the joint is controlled by the joint environment. Joint movement, which applies a tension and shear load on the material, coupled with the introduction of high pressure gas in combination create an environment that exceeds the capability of the material to withstand the wormhole effect. Little data exists to evaluate why the material fails under the modeled joint conditions, so an effort to characterize and evaluate the material under these conditions was undertaken. Viscoelastic property data from characterization testing will anchor structural analysis models. Data over a range of temperatures, environmental pressures, and strain rates was used to develop a nonlinear viscoelastic model to predict material performance, develop criteria for replacement materials, and quantify material properties influencing wormhole growth. Three joint simulation analogs were developed to analyze and validate joint thermal barrier (backfill) material performance. Two exploratory tests focus on detection of wormhole failure under specific motor operating conditions. A "validation" test system provides data to "validate" computer models and predictions. Finally, two candidate replacement materials are being screened and "validated" using the developed test systems.
NASA Astrophysics Data System (ADS)
Paliwal, Bhasker
The constitutive behaviors and failure processes of brittle materials under far-field compressive loading are studied in this work. Several approaches are used: experiments to study the compressive failure behavior of ceramics, design of experimental techniques by means of finite element simulations, and the development of micro-mechanical damage models to analyze and predict mechanical response of brittle materials under far-field compression. Experiments have been conducted on various ceramics, (primarily on a transparent polycrystalline ceramic, aluminum oxynitride or AlON) under loading rates ranging from quasi-static (˜ 5X10-6) to dynamic (˜ 200 MPa/mus), using a servo-controlled hydraulic test machine and a modified compression Kolsky bar (MKB) technique respectively. High-speed photography has also been used with exposure times as low as 20 ns to observe the dynamic activation, growth and coalescence of cracks and resulting damage zones in the specimen. The photographs were correlated in time with measurements of the stresses in the specimen. Further, by means of 3D finite element simulations, an experimental technique has been developed to impose a controlled, homogeneous, planar confinement in the specimen. The technique can be used in conjunction with a high-speed camera to study the in situ dynamic failure behavior of materials under confinement. AlON specimens are used for the study. The statically pre-compressed specimen is subjected to axial dynamic compressive loading using the MKB. Results suggest that confinement not only increases the load carrying capacity, it also results in a non-linear stress evolution in the material. High-speed photographs also suggest an inelastic deformation mechanism in AlON under confinement which evolves more slowly than the typical brittle-cracking type of damage in the unconfined case. Next, an interacting micro-crack damage model is developed that explicitly accounts for the interaction among the micro-cracks in brittle materials. The model incorporates pre-existing defect distributions and a crack growth law. The damage is defined as a scalar parameter which is a function of the micro-crack density, the evolution of which is a function of the existing defect distribution and the crack growth dynamics. A specific case of a uniaxial compressive loading under constant strain-rate has been studied to predict the effects of the strain-rate, defect distribution and the crack growth dynamics on the constitutive response and failure behavior of brittle materials. Finally, the effects of crack growth dynamics on the strain-rate sensitivity of brittle materials are studied with the help of the micro-mechanical damage model. The results are compared with the experimentally observed damage evolution and the rate-sensitive behavior of the compressive strength of several engineering ceramics. The dynamic failure of armor-grade hot-pressed boron carbide (B 4C) under loading rates of ˜ 5X10-6 to 200 MPa/mus is also discussed.
NASA Astrophysics Data System (ADS)
Ao, Tommy; Asay, James; Knudson, Marcus; Davis, Jean-Paul
2007-06-01
The Isentropic Compression Experiment technique has proven to be a valuable complement to the well-established method of shock compression of condensed matter. However, whereas the high-pressure compression response of window materials has been studied extensively under shock loading, similar knowledge of these materials under ICE loading is limited. We present recent experimental results on the isentropic compression of the high-pressure windows sapphire and LiF. It has previously been observed that c-cut sapphire yields under shock loading at the HEL of ˜15-18GPa, and subsequently loses transparency at higher stresses. However, it will be shown that under isentropic ramp wave loading sapphire appears to remain elastic and transparent at stresses well above 20GPa [D.B. Hayes et al, JAP 94, 2331 (2003)]. LiF is another frequently used window material in isentropic loading and unloading experiments, yet the unloading response of LiF is usually neglected. Research is in progress to measure strength properties of LiF for ramp loading and unloading. It will be shown how the strength of LiF may influence wave profile analysis and thus inferred material strength. Sandia is a multiprogram laboratory operated by Sandia Corp., a Lockheed Martin Company, for the US DOE's NNSA under Contract No.DE-AC04-94AL85000.
Manufacture of ceramic tiles from fly ash
Hnat, James G.; Mathur, Akshay; Simpson, James C.
1999-01-01
The present invention relates to a process for forming glass-ceramic tiles. Fly ash containing organic material, metal contaminants, and glass forming materials is oxidized under conditions effective to combust the organic material and partially oxidize the metallic contaminants and the glass forming materials. The oxidized glass forming materials are vitrified to form a glass melt. This glass melt is then formed into tiles containing metallic contaminants.
28 CFR 13.6 - Criteria for reward.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Judicial Administration DEPARTMENT OF JUSTICE ATOMIC WEAPONS AND SPECIAL NUCLEAR MATERIALS REWARDS... reward under the Atomic Weapons and Special Nuclear Materials Rewards Act must be original, and must..., acquire or export special nuclear material or atomic weapons, or (5) Loss, diversion or disposal or...
28 CFR 13.6 - Criteria for reward.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Judicial Administration DEPARTMENT OF JUSTICE ATOMIC WEAPONS AND SPECIAL NUCLEAR MATERIALS REWARDS... reward under the Atomic Weapons and Special Nuclear Materials Rewards Act must be original, and must..., acquire or export special nuclear material or atomic weapons, or (5) Loss, diversion or disposal or...
28 CFR 13.6 - Criteria for reward.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Judicial Administration DEPARTMENT OF JUSTICE ATOMIC WEAPONS AND SPECIAL NUCLEAR MATERIALS REWARDS... reward under the Atomic Weapons and Special Nuclear Materials Rewards Act must be original, and must..., acquire or export special nuclear material or atomic weapons, or (5) Loss, diversion or disposal or...
28 CFR 13.6 - Criteria for reward.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Judicial Administration DEPARTMENT OF JUSTICE ATOMIC WEAPONS AND SPECIAL NUCLEAR MATERIALS REWARDS... reward under the Atomic Weapons and Special Nuclear Materials Rewards Act must be original, and must..., acquire or export special nuclear material or atomic weapons, or (5) Loss, diversion or disposal or...
28 CFR 13.6 - Criteria for reward.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Judicial Administration DEPARTMENT OF JUSTICE ATOMIC WEAPONS AND SPECIAL NUCLEAR MATERIALS REWARDS... reward under the Atomic Weapons and Special Nuclear Materials Rewards Act must be original, and must..., acquire or export special nuclear material or atomic weapons, or (5) Loss, diversion or disposal or...
9 CFR 381.144 - Packaging materials.
Code of Federal Regulations, 2010 CFR
2010-01-01
..., from the packaging supplier under whose brand name and firm name the material is marketed to the... distinguishing brand name or code designation appearing on the packaging material shipping container; must....13) will be acceptable. The management of the establishment must maintain a file containing...
21 CFR 113.81 - Product preparation.
Code of Federal Regulations, 2011 CFR
2011-04-01
... Production and Process Controls § 113.81 Product preparation. (a) Before using raw materials and ingredients susceptible to microbiological contamination, the processor shall ensure that those materials and ingredients... by receiving the raw materials and ingredients under a supplier's guarantee that they are suitable...
9 CFR 317.24 - Packaging materials.
Code of Federal Regulations, 2014 CFR
2014-01-01
... supplier under whose brand name and firm name the material is marketed to the official establishment. The... packaging materials must be traceable to the applicable guaranty. (c) The guaranty by the packaging supplier.... Official establishments and packaging suppliers providing written guaranties to those official...
9 CFR 381.144 - Packaging materials.
Code of Federal Regulations, 2013 CFR
2013-01-01
..., from the packaging supplier under whose brand name and firm name the material is marketed to the... packaging supplier will be accepted by Program inspectors to establish that the use of material complies.... Official establishments and packaging suppliers providing written guaranties to those official...
9 CFR 317.24 - Packaging materials.
Code of Federal Regulations, 2012 CFR
2012-01-01
... supplier under whose brand name and firm name the material is marketed to the official establishment. The... packaging materials must be traceable to the applicable guaranty. (c) The guaranty by the packaging supplier.... Official establishments and packaging suppliers providing written guaranties to those official...
9 CFR 381.144 - Packaging materials.
Code of Federal Regulations, 2012 CFR
2012-01-01
..., from the packaging supplier under whose brand name and firm name the material is marketed to the... packaging supplier will be accepted by Program inspectors to establish that the use of material complies.... Official establishments and packaging suppliers providing written guaranties to those official...
9 CFR 381.144 - Packaging materials.
Code of Federal Regulations, 2014 CFR
2014-01-01
..., from the packaging supplier under whose brand name and firm name the material is marketed to the... packaging supplier will be accepted by Program inspectors to establish that the use of material complies.... Official establishments and packaging suppliers providing written guaranties to those official...
9 CFR 317.24 - Packaging materials.
Code of Federal Regulations, 2013 CFR
2013-01-01
... supplier under whose brand name and firm name the material is marketed to the official establishment. The... packaging materials must be traceable to the applicable guaranty. (c) The guaranty by the packaging supplier.... Official establishments and packaging suppliers providing written guaranties to those official...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dougherty, D.; Fainberg, A.; Sanborn, J.
On 27 September 1993, President Clinton proposed {open_quotes}... a multilateral convention prohibiting the production of highly enriched uranium or plutonium for nuclear explosives purposes or outside of international safeguards.{close_quotes} The UN General Assembly subsequently adopted a resolution recommending negotiation of a non-discriminatory, multilateral, and internationally and effectively verifiable treaty (hereinafter referred to as {open_quotes}the Cutoff Convention{close_quotes}) banning the production of fissile material for nuclear weapons. The matter is now on the agenda of the Conference on Disarmament, although not yet under negotiation. This accord would, in effect, place all fissile material (defined as highly enriched uranium and plutonium) produced aftermore » entry into force (EIF) of the accord under international safeguards. {open_quotes}Production{close_quotes} would mean separation of the material in question from radioactive fission products, as in spent fuel reprocessing, or enrichment of uranium above the 20% level, which defines highly enriched uranium (HEU). Facilities where such production could occur would be safeguarded to verify that either such production is not occurring or that all material produced at these facilities is maintained under safeguards.« less
Amputee socks: how does sock ply relate to sock thickness?
Sanders, Joan E; Cagle, John C; Harrison, Daniel S; Karchin, Ari
2012-03-01
The term 'sock ply' may be a source of confusion in prosthetics practice because there may not be a consistent relationship between sock ply and sock thickness. The purpose of this study was to characterize how sock ply related to sock thickness for different sock materials commonly used in limb prosthetics. We also evaluated how sock thickness changed under loading conditions experienced while wearing a lower limb prosthesis compared with unstressed conditions. Experimental. Mechanical assessment. Seven sock materials of varying ply and sheaths were tested using a custom instrument. Sock thickness under eight different compressive stress conditions and two different biaxial in-plane tensile strain conditions were measured. For socks woven from a single material, thickness under walking stance phase conditions averaged 0.7, 1.2 and 1.5 mm for 1, 3 and 5-ply, respectively. For socks woven from several materials, the corresponding results were 0.4, 0.7 and 0.8 mm, respectively. Sock ply did not sum, e.g. a 3-ply sock was not three times the thickness of a 1-ply sock. Sock thickness and compressive stiffness are strongly dependent upon sock material, interface pressure, and in-plane biaxial strain.
Reddy, Krishna R; Xie, Tao; Dastgheibi, Sara
2014-01-01
In recent years, several best management practices have been developed for the removal of different types of pollutants from stormwater runoff that lead to effective stormwater management. Filter materials that remove a wide range of contaminants have great potential for extensive use in filtration systems. In this study, four filter materials (calcite, zeolite, sand, and iron filings) were investigated for their adsorption and efficiency in the removal of nutrients and heavy metals when they exist individually versus when they co-exist. Laboratory batch experiments were conducted separately under individual and mixed contaminants conditions at different initial concentrations. Adsorption capacities varied under the individual and mixed contaminant conditions due to different removal mechanisms. Most filter materials showed lower removal efficiency under mixed contaminant conditions. In general, iron filings were found effective in the removal of nutrients and heavy metals simultaneously to the maximum levels. Freundlich and Langmuir isotherms were used to model the batch adsorption results and the former better fitted the experimental results. Overall, the results indicate that the filter materials used in this study have the potential to be effective media for the treatment of nutrients and heavy metals commonly found in urban stormwater runoff.
Laboratory test methods for evaluating the fire response of aerospace materials
NASA Technical Reports Server (NTRS)
Hilado, C. J.
1979-01-01
The test methods which were developed or evaluated were intended to serve as means of comparing materials on the basis of specific responses under specific sets of test conditions, using apparatus, facilities, and personnel that would be within the capabilities of perhaps the majority of laboratories. Priority was given to test methods which showed promise of addressing the pre-ignition state of a potential fire. These test methods were intended to indicate which materials may present more hazard than others under specific test conditions. These test methods are discussed and arranged according to the stage of a fire to which they are most relevant. Some observations of material performance which resulted from this work are also discussed.
A promising new thermoelectric material - Ruthenium silicide
NASA Technical Reports Server (NTRS)
Vining, Cronin B.; Mccormack, Joseph A.; Zoltan, Andrew; Zoltan, Leslie D.
1991-01-01
Experimental and theoretical efforts directed toward increasing thermoelectric figure of merit values by a factor of 2 or 3 have been encouraging in several respects. An accurate and detailed theoretical model developed for n-type silicon-germanium (SiGe) indicates that ZT values several times higher than currently available are expected under certain conditions. These new, high ZT materials are expected to be significantly different from SiGe, but not unreasonably so. Several promising candidate materials have been identified which may meet the conditions required by theory. One such candidate, ruthenium silicide, currently under development at JPL, has been estimated to have the potential to exhibit figure of merit values 4 times higher than conventional SiGe materials. Recent results are summarized.
Engineering aspects of the application of structural materials in the 5 MW-ESS-mercury-target
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guttek, B.
1996-06-01
A main problem of the ESS-Hg-target development and the design of the components of its primary Hg-circuit is the choice of structural materials. As designing, calculations and experiments with elected materials take time and are very costy, a preview on their successful application has to be done before as detailed as possible. One aspect on this is to have the knowledge of characteristics values of the structural material candidates under the occuring mechanical and thermal loads, irradiation, corrosion and erosion. Another point is the technology of engineering concerning the manufacturing, welding, surface treatment, and quality control of such parts andmore » components under the demand to reach maximum lifetime.« less
The electrical discharge machining of ceramics
NASA Astrophysics Data System (ADS)
Trueman, Christopher Stuart
This study introduces the concept of developing a novel and rapid rough-machining methodology for spark eroding suitable ceramic compositions based on material removal by thermal shock induced spalling, as opposed to conventional melting mechanisms. The principal materials studied were TiB2 dispersion toughened SiC, and Syalon501 - a commercially available TiN toughened sialon ceramic specifically designed for spark erosion. A preliminary study was also carried out on a range of SiC:B4C composites. Machinability and material performance were assessed where appropriate using machining parameters, material removal rate tests, surface analysis, four-point flexure testing, and tool wear. The machining technologies which supported the different mechanisms of material removal were identified, and each mechanism investigated by analysis of captured debris and sectioning of the workpiece. The SiC:B4C composites were found to be spark erodible only with B4C levels above 50% (by mass), and material removal was found to be solely by melting mechanisms. A SiC:TiB2 composition with the addition of 26.5% TiB2 (by mass) was found to be more machinable than a composition with 10% TiB2 (by mass), achieving greater material removal rates owing to its higher electrical conductivity. An in-depth study of the latter (10%TiB2) SiC composition and Syalon501 revealed surprisingly robust materials. Under conventional sparking (no arcing), material was removed by combined dissociation, melting and evaporation. Syalon501 in particular behaved with a high degree of predictability, and neither material could be made to spall under conventional sparking. However, by imposing conditions which deliberately induced arcing, both compositions spalled large flakes of material (up to several hundred microns across) in the localised region of the arc-strike. Examination of captured debris and fracture facets of the spall interface revealed the existence of small "penny cracks", each characterised by the presence of a dispersed particle (of greater thermal expansion) at its centre acting as a stress- raising nucleation point under the intense thermal loading of arcing. Sub-surface cracks in the near horizontal and near-vertical planes were discovered in line with published models based on the application of a hot-spot to brittle material, and evidence of discrete crack propagation under the thermally punctuated pulses of successive sparking was identified. Similar sub-surface cracking was also confirmed in Syalon501 which had been subjected to arcing. Sectioning of the workpiece revealed shallow sub-surface cracks which followed the profile of the machined surface in the near-horizontal plane, and which often limited the extent of near-vertical cracking to the layer of material above the crack, thereby offering the potential for a reliable and fast "planning" technique in which material would be removed in shallow layers. This research has shown that the possibility exists for increased material removal rates and improved process efficiency under a spalling-based machining regime, in which layers of material are released by thermal-shock induced fracture caused by arcing. The viability of developing a new rough-machining technology for ceramics, in which material is "planed" away prior to fine surface finishing by conventional spark erosion has, therefore, been successfully demonstrated.
Investigation of strength characteristics of aluminum alloy under dynamic tension
NASA Astrophysics Data System (ADS)
Evstifeev, A. D.
2018-04-01
The study presents the results of experimental-theoretical analysis for aluminum alloy subjected to static and dynamic tension on samples of different types. The material was tested under initial coarse-grained (CG) and in ultrafine-grained (UFG) condition. The time dependence of the tensile strength is calculated using an incubation time fracture criterion based on a set of fixed constants of the material.
Code of Federal Regulations, 2014 CFR
2014-01-01
... this chapter; and (iii) Under accident conditions (such as fire and explosion) associated with handling, storage and use of the device, it is unlikely that any person would receive an external radiation dose or..., “Caution-Radioactive Material,” the radiation symbol described in § 20.1901 of this chapter, and the name...