Science.gov

Sample records for freshwater marsh soil

  1. Freshwater Marsh. Habitat Pac.

    ERIC Educational Resources Information Center

    Fish and Wildlife Service (Dept. of Interior), Washington, DC.

    The materials in this educational packet are designed for use with students in grades 4 through 7. They consist of an overview, three lesson plans and student data sheets, and a poster. The overview describes how the freshwater marsh is an important natural resource for plant, animal, and human populations and how the destruction of marshes causes…

  2. Effect of exogenous phosphorus addition on soil respiration in Calamagrostis angustifolia freshwater marshes of Northeast China

    NASA Astrophysics Data System (ADS)

    Song, Changchun; Liu, Deyan; Song, Yanyu; Yang, Guisheng; Wan, Zhongmei; Li, Yingchen; Xu, Xiaofeng

    2011-03-01

    Anthropogenic activities have increased phosphorus (P) inputs to wetland ecosystems. However, little is known about the effect of P enrichment on soil respiration in these ecosystems. To understand the effect of P enrichment on soil respiration, we conducted a field experiment in Calamagrostis angustifolia-dominated freshwater marshes, the Sanjiang Plain, Northeast China. We investigated soil respiration in the first growing season after P addition at four rates (0, 1.2, 4.8 and 9.6 g P m-2 year-1). In addition, we also examined aboveground biomass, soil labile C fractions (dissolved organic C, DOC; microbial biomass C, MBC; easily oxidizable C, EOC) and enzyme activities (invertase, urease and acid phosphatase activities) following one year of P addition. P addition decreased soil respiration during the growing season. Dissolved organic C in soil pore water increased after P addition at both 5 and 15 cm depths. Moreover, increased P input generally inhibited soil MBC and enzyme activities, and had no effects on aboveground biomass and soil EOC. Our results suggest that, in the short-term, soil respiration declines under P enrichment in C. angustifolia-dominated freshwater marshes of Northeast China, and its extent varies with P addition levels.

  3. High Temperature and Salinity Enhance Soil Nitrogen Mineralization in a Tidal Freshwater Marsh

    PubMed Central

    Gao, Haifeng; Bai, Junhong; He, Xinhua; Zhao, Qingqing; Lu, Qiongqiong; Wang, Junjing

    2014-01-01

    Soil nitrogen (N) mineralization in wetlands is sensitive to various environmental factors. To compare the effects of salinity and temperature on N mineralization, wetland soils from a tidal freshwater marsh locating in the Yellow River Delta was incubated over a 48-d anaerobic incubation period under four salinity concentrations (0, 10, 20 and 35‰) and four temperature levels (10, 20, 30 and 40°C). The results suggested that accumulated ammonium nitrogen (NH4+-N) increased with increasing incubation time under all salinity concentrations. Higher temperatures and salinities significantly enhanced soil N mineralization except for a short-term (≈10 days) inhibiting effect found under 35‰ salinity. The incubation time, temperature, salinity and their interactions exhibited significant effects on N mineralization (P<0.001) except the interactive effect of salinity and temperature (P>0.05), while temperature exhibited the greatest effect (P<0.001). Meanwhile, N mineralization processes were simulated using both an effective accumulated temperature model and a one-pool model. Both models fit well with the simulation of soil N mineralization process in the coastal freshwater wetlands under a range of 30 to 40°C (R2 = 0.88–0.99, P<0.01). Our results indicated that an enhanced NH4+-N release with increasing temperature and salinity deriving from the projected global warming could have profound effects on nutrient cycling in coastal wetland ecosystems. PMID:24733366

  4. High temperature and salinity enhance soil nitrogen mineralization in a tidal freshwater marsh.

    PubMed

    Gao, Haifeng; Bai, Junhong; He, Xinhua; Zhao, Qingqing; Lu, Qiongqiong; Wang, Junjing

    2014-01-01

    Soil nitrogen (N) mineralization in wetlands is sensitive to various environmental factors. To compare the effects of salinity and temperature on N mineralization, wetland soils from a tidal freshwater marsh locating in the Yellow River Delta was incubated over a 48-d anaerobic incubation period under four salinity concentrations (0, 10, 20 and 35‰) and four temperature levels (10, 20, 30 and 40°C). The results suggested that accumulated ammonium nitrogen (NH4+-N) increased with increasing incubation time under all salinity concentrations. Higher temperatures and salinities significantly enhanced soil N mineralization except for a short-term (≈10 days) inhibiting effect found under 35‰ salinity. The incubation time, temperature, salinity and their interactions exhibited significant effects on N mineralization (P<0.001) except the interactive effect of salinity and temperature (P>0.05), while temperature exhibited the greatest effect (P<0.001). Meanwhile, N mineralization processes were simulated using both an effective accumulated temperature model and a one-pool model. Both models fit well with the simulation of soil N mineralization process in the coastal freshwater wetlands under a range of 30 to 40°C (R2 = 0.88-0.99, P<0.01). Our results indicated that an enhanced NH4+-N release with increasing temperature and salinity deriving from the projected global warming could have profound effects on nutrient cycling in coastal wetland ecosystems. PMID:24733366

  5. High temperature and salinity enhance soil nitrogen mineralization in a tidal freshwater marsh.

    PubMed

    Gao, Haifeng; Bai, Junhong; He, Xinhua; Zhao, Qingqing; Lu, Qiongqiong; Wang, Junjing

    2014-01-01

    Soil nitrogen (N) mineralization in wetlands is sensitive to various environmental factors. To compare the effects of salinity and temperature on N mineralization, wetland soils from a tidal freshwater marsh locating in the Yellow River Delta was incubated over a 48-d anaerobic incubation period under four salinity concentrations (0, 10, 20 and 35‰) and four temperature levels (10, 20, 30 and 40°C). The results suggested that accumulated ammonium nitrogen (NH4+-N) increased with increasing incubation time under all salinity concentrations. Higher temperatures and salinities significantly enhanced soil N mineralization except for a short-term (≈10 days) inhibiting effect found under 35‰ salinity. The incubation time, temperature, salinity and their interactions exhibited significant effects on N mineralization (P<0.001) except the interactive effect of salinity and temperature (P>0.05), while temperature exhibited the greatest effect (P<0.001). Meanwhile, N mineralization processes were simulated using both an effective accumulated temperature model and a one-pool model. Both models fit well with the simulation of soil N mineralization process in the coastal freshwater wetlands under a range of 30 to 40°C (R2 = 0.88-0.99, P<0.01). Our results indicated that an enhanced NH4+-N release with increasing temperature and salinity deriving from the projected global warming could have profound effects on nutrient cycling in coastal wetland ecosystems.

  6. Effects of freshwater input on trace element pollution in salt marsh soils of a typical coastal estuary, China

    NASA Astrophysics Data System (ADS)

    Bai, Junhong; Zhao, Qingqing; Lu, Qiongqiong; Wang, Junjing; Reddy, K. Ramesh

    2015-01-01

    Freshwater input is an important pathway for the restoration of degraded coastal wetlands, however, little information is available on the negative effects of freshwater inputs on salt marsh soils in restored wetlands. Soil profile samples to a depth of 70 cm were collected in both degraded wetland (DW) and freshwater restored wetland (RW) in the Yellow River Delta of China to analyze the trace element pollution effects of freshwater input on coastal wetland soils. Heavy metals (i.e. Cd, Cr, Cu, Ni, Pb and Zn) and arsenic (As) concentrations were determined using the inductively coupled plasma atomic absorption spectrometry to investigate their distributions, sources and ecotoxicity in marsh soils from both wetlands. Our results showed that these trace elements had moderate spatial variability in both DW and RW soils. The concentrations of As, Cr, Pb and Cd in all soil layers were generally higher in RW soils than those in DW soils (p < 0.05), whereas the concentrations of Zn and Cu were higher in DW soils. Heavy metals had similar source in both wetlands, however, As and Zn in DW or As, Zn and Ni in RW might have another similar origin. The enrichment factor (EF) values for Cu, Ni and Pb in both wetlands indicated minimal enrichment levels, whereas both As and Cd were significantly enriched with EF values 3 or 6 times greater than 1.5, implying a significant natural or anthropogenic origin. As and Ni exceeded the effect range low (ERL) and threshold effect level (TEL) in both wetlands, even As exceeded the probable effect level (PEL) in RW soils. Cr, Cu and Cd were grouped into TELs-PELs, moreover, Cr concentrations in RW soils exceeded the ERL. However, both Pb and Zn concentrations were below the TELs in both wetlands. Generally, The toxic unit in more than 85% of DW or RW soil samples showed low toxicity with higher contribution of As and Ni. It is necessary to monitor and control trace elements in the freshwater supplied to restored wetlands in coastal wetland

  7. Redox effects on release kinetics of arsenic, cadmium, cobalt, and vanadium in Wax Lake Deltaic freshwater marsh soils.

    PubMed

    Shaheen, Sabry M; Rinklebe, Jörg; Frohne, Tina; White, John R; DeLaune, Ron D

    2016-05-01

    The impact of redox potential (EH), pH, iron (Fe), manganese (Mn), chloride (Cl(-)), aliphatic and aromatic dissolved organic carbon (DOC), and sulfate ( [Formula: see text] ) on the release of dissolved arsenic (As), cadmium (Cd), cobalt (Co), and vanadium (V) were studied in Louisiana freshwater marsh Wax Lake Delta soil (Mississippi River) using an automated biogeochemical microcosm apparatus. The experiment was conducted from reducing (-60 mV) to stepwise oxidizing (+491 mV) conditions. The initial pH was 7.4 and decreased under reducing conditions to 4.9, and remained constant during the increase of EH. Concentrations of As (1.3-120.5 μg L(-1)), V (0.9-48.6 μg L(-1)), Fe, DOC, and the specific UV absorbance increased under reducing conditions and decreased with rising EH. Release of As and V appeared to be related to changes of EH/pH, co-precipitation with Fe oxides, and the release of dissolved aromatic carbon compounds. Concentrations of soluble Cd (4.8-11.2 μg L(-1)), Mn, [Formula: see text] , and Cl(-) increased under oxidizing conditions. Release of Co (166.6-258.2 μg L(-1)) was related to the chemistry of Fe, Mn and DOC. Phospholipid fatty acids analysis indicated the potential for the microbial community to be involved in biogeochemical processes such as the formation of sulfides, oxidation and reduction of compounds, and the bio-methylation of elements such as As. Overall, we measured a release of As and V under anoxic conditions, while oxic conditions favored the release of Cd. These results outline concern on the potential risk of mobilization of toxic elements in temporary waterlogged soils for agricultural purposes in deltaic ecosystems. PMID:26746419

  8. Ecogeomorphological feedbacks in a tidal freshwater marsh

    NASA Astrophysics Data System (ADS)

    Palinkas, C. M.; Engelhardt, K.

    2013-12-01

    Tidal freshwater marshes are critical components of fluvial and estuarine ecosystems. However, ecogeomorphological feedbacks (i.e., feedbacks between sediment dynamics and the vegetation community) in freshwater marshes have not received as much attention as within their saltwater counterparts. This study evaluates the role of these feedbacks in stabilizing marsh-surface elevation, relative to sea-level rise, in Dyke Marsh Preserve (Potomac River, USA). Specifically, we relate the composition of the vegetation community to current and historical patterns of sedimentation that occur on bimonthly to decadal time scales. Along with a ~3-year time series of bimonthly and seasonal-scale observations, 210Pb (half-life 22.3 y) profiles are used to identify sites with relatively steady sediment accumulation (i.e., stable sediments) and those with numerous deposition/erosion events (i.e., unstable sediments). Differences in the vegetation community (e.g., composition, stem density) and sediment character (e.g., organic content, grain size) among sites in each of these stability categories are examined with statistical techniques and compared to observations of marsh-surface elevation change. The resulting insights are placed into a geomorphological context to assess the potential response of this marsh to rapid global environmental change.

  9. Arsenic and heavy metal pollution in wetland soils from tidal freshwater and salt marshes before and after the flow-sediment regulation regime in the Yellow River Delta, China

    NASA Astrophysics Data System (ADS)

    Bai, Junhong; Xiao, Rong; Zhang, Kejiang; Gao, Haifeng

    2012-07-01

    SummarySoil samples were collected in tidal freshwater and salt marshes in the Yellow River Delta (YRD), northern China, before and after the flow-sediment regulation. Total concentrations of arsenic (As), cadmium (Cd), copper (Cu), lead (Pb) and zinc (Zn) were determined using inductively coupled plasma atomic absorption spectrometry to investigate the characteristics of heavy metal pollution in tidal wetlands before and after the regulation regime. The results demonstrated that marsh soils in both marshes had higher silt and total P contents, higher bulk density and lower sand contents after the flow-sediment regulation; moreover, soil salinity was significantly decreased in the tidal salt marsh. As and Cd concentrations were significantly higher in both marsh soils after the regulation than before, and there were no significant differences in the concentrations of Cu, Pb and Zn measured before and after the regulation. No significant differences in heavy metal concentrations were observed between freshwater and salt marsh soils, either before or after the regulation. Before the regulation regime, soil organic matter, pH and sulfer (S) were the main factors influencing heavy metal distribution in tidal freshwater marshes, whereas for tidal salt marshes, the main factors are soil salinity and moisture, pH and S. However, bulk density and total P became the main influencing factors after the regulation. The sediment quality guidelines and geoaccumulation indices showed moderately or strongly polluted levels of As and Cd and unpolluted or moderately polluted levels of Cu, Pb and Zn; As and Cd pollution became more serious after the regulation. Factor analysis indicated thatthese heavy metals including As were closely correlated and orginated from common pollution sources before the flow-sediment regulation; however, the sources of As and Cd separated from the sources of Cu, Pb and Zn after the regulation regime, implying that the flow-sediment regulation regime

  10. Impact of Mississippi River freshwater reintroduction on enhancing marsh accretionary processes in a Louisiana estuary

    NASA Astrophysics Data System (ADS)

    DeLaune, R. D.; Jugsujinda, A.; Peterson, G. W.; Patrick, W. H.

    2003-11-01

    To counteract extensive wetland loss a series of diversion projects have been implemented to introduce freshwater and sediment from the Mississippi River into Louisiana coastal wetlands. To keep pace with increases in water level due to subsidence Louisiana coastal marshes must vertically accrete through the accumulation of both organic matter and mineral sediment. The impact of Mississippi River freshwater diversion on enhancing vertical marsh accretion (mineral and organic matter accumulation) was examined in Breton Sound estuary, a coastal wetland experiencing marsh deterioration as result of subsidence and salt water intrusion. Using 137Cs dating and artificial marker horizons, increases in the rate of vertical marsh accretion were measured at marsh sites along a spatial gradient which has been receiving diverted water from the Mississippi River (Caernarvon diversion) since 1991. Vertical accretion and accumulation of mineral sediment organic matter and nutrients in the marsh soil profile, increased at marsh sites receiving freshwater and sediment input. Iron and manganese content of the marsh surface sediment were shown to be an excellent signature of riverine sediment deposition. Soil extractable phosphorus was higher and extractable sodium was lower at sites nearest freshwater and sediment input. Results demonstrated that freshwater diversion through sediment input and lowering of salinity will enhance marsh accretion and stability, slowing or reversing the rate of wetland loss.

  11. Spatial patterns of plant litter in a tidal freshwater marsh and implications for marsh persistence.

    PubMed

    Elmore, Andrew J; Engelhardt, Katharina A M; Cadol, Daniel; Palinkas, Cindy M

    2016-04-01

    The maintenance of marsh platform elevation under conditions of sea level rise is dependent on mineral sediment supply to marsh surfaces and conversion of above- and belowground plant biomass to soil organic material. These physical and biological processes interact within the tidal zone, resulting in elevation-dependent processes contributing to marsh accretion. Here, we explore spatial pattern in a variable related to aboveground biomass, plant litter, to reveal its role in the maintenance of marsh surfaces. Plant litter persisting through the dormant season represents the more recalcitrant portion of plant biomass, and as such has an extended period of influence on ecosystem processes. We conducted a field and remote sensing analysis of plant litter height, aboveground biomass, vertical cover, and stem density (collectively termed plant litter structure) at a tidal freshwater marsh located within the Potomac River estuary, USA. LiDAR and field observations show that plant litter structure becomes more prominent with increasing elevation. Spatial patterns in litter structure exhibit stability from year to year and correlate with patterns in soil organic matter content, revealed by measuring the loss on ignition of surface sediments. The amount of mineral material embedded within plant litter decreases with increasing elevation, representing an important tradeoff with litter structure. Therefore, at low elevations where litter structure is short and sparse, the role of plant litter is to capture sediment; at high elevations where litter structure is tall and dense, aboveground litter contributes organic matter to soil development. This organic matter contribution has the potential to eclipse that of belowground biomass as the root:shoot ratio of dominant species at high elevations is low compared to that of dominant species at low elevations. Because of these tradeoffs in mineral and organic matter incorporation into soil across elevation gradients, the rate of

  12. Simulated storm surge effects on freshwater coastal wetland soil porewater salinity and extractable ammonium levels: Implications for marsh recovery after storm surge

    NASA Astrophysics Data System (ADS)

    McKee, M.; White, J. R.; Putnam-Duhon, L. A.

    2016-11-01

    Coastal wetland systems experience both short-term changes in salinity, such as those caused by wind-driven tides and storm surge, and long-term shifts caused by sea level rise. Salinity increases associated with storm surge are known to have significant effects on soil porewater chemistry, but there is little research on the effect of flooding length on salt penetration depth into coastal marsh soils. A simulated storm surge was imposed on intact soil columns collected from a non-vegetated mudflat and a vegetated marsh site in the Wax Lake Delta, LA. Triplicate intact cores were continuously exposed to a 35 salinity water column (practical salinity scale) for 1, 2, and 4 weeks and destructively sampled in order to measure porewater salinity and extractable NH4sbnd N at two cm depth intervals. Salinity was significantly higher in the top 8 cm for both the marsh and mudflat cores after one week of flooding. After four weeks of flooding, salinity was significantly higher in marsh and mudflat cores compared to the control (no salinity) cores throughout the profile for both sites. Extractable ammonium levels increased significantly in the marsh cores throughout the experiment, but there was only a marginally (p < 0.1) significant increase seen in the mudflat cores. Results indicate that porewater salinity levels can become significantly elevated within a coastal marsh soil in just one week. This vertical intrusion of salt can potentially negatively impact macrophytes and associated microbial communities for significantly longer term post-storm surge.

  13. Seasonal comparison of aquatic macroinvertebrate assemblages in a flooded coastal freshwater marsh

    USGS Publications Warehouse

    Kang, Sung-Ryong; King, Sammy L.

    2013-01-01

    Marsh flooding and drying may be important factors affecting aquatic macroinvertebrate density and distribution in coastal freshwater marshes. Limited availability of water as a result of drying in emergent marsh may decrease density, taxonomic diversity, and taxa richness. The principal objectives of this study are to characterize the seasonal aquatic macroinvertebrate assemblage in a freshwater emergent marsh and compare aquatic macroinvertebrate species composition, density, and taxonomic diversity to that of freshwater marsh ponds. We hypothesize that 1) freshwater emergent marsh has lower seasonal density and taxonomic diversity compared to that of freshwater marsh ponds; and 2) freshwater emergent marsh has lower taxa richness than freshwater marsh ponds. Seasonal aquatic macroinvertebrate density in freshwater emergent marsh ranged from 0 organisms/m2 (summer 2009) to 91.1 ± 20.53 organisms/m2 (mean ± SE; spring 2009). Density in spring was higher than in all other seasons. Taxonomic diversity did not differ and there were no unique species in the freshwater emergent marsh. Our data only partially support our first hypothesis as aquatic macroinvertebrate density and taxonomic diversity between freshwater emergent marsh and ponds did not differ in spring, fall, and winter but ponds supported higher macroinvertebrate densities than freshwater emergent marsh during summer. However, our data did not support our second hypothesis as taxa richness between freshwater emergent marsh and ponds did not statistically differ.

  14. Comparative Geomorphology of Salt and Tidal Freshwater Marsh Environments

    NASA Astrophysics Data System (ADS)

    Pasternack, G. B.

    2002-05-01

    Temperate estuaries include a spectrum of coastal marshes ranging from highly saline near the ocean to fresh in tributaries with substantial watershed drainage. While the hydrologic, sedimentary, and geomorphic dynamics of salt marshes have been thoroughly investigated, those aspects of tidal freshwater marshes have only begun to be addressed. Based on a recent burst in research on tidal freshwater systems in Chesapeake Bay by different universities, an attempt is made here to provide comparative geomorphology. In terms of similarities, both have tidal channels whose hydraulic geometry is primarily controlled by the tidal prism. Both show decreasing sedimentation and increasing organics with elevation and distance from channels. At seasonal to interannual time scales, the morphodynamics of both show similarities in the interplay among hydroperiod, vegetation, and geomorphology. Rather than simply evolving from youth to maturity, both systems exhibit strong evidence for dynamic equilibrium between process and morphology. Despite these similarities, there are key differences that motivate further research of tidal freshwater marshes. First, whereas salt marshes are limited by sediment supply, tidal fresh ones may not be limited depending on upstream basin size. E.g., fringing marshes along Pumunkey River have very low sediment supply, while deltaic marshes in Bush River and Sassafras River are not supply-limited. Instead, the growth of deltaic fresh marshes is transport limited, as winds and tides can only generate low momentum and turbulence for sediment transport. As illustrated in multiple systems, a constant availability of sediment leads to higher sedimentation in fresh marshes. Second, in high latitude salt marshes where the tidal range is large and the climate cold, ice acts as a strong erosional agent. In fresh marshes, ice serves to sequester sediment and buffer the erosional impact of autumnal vegetation dieback. Third, the high spatial variation in plant

  15. Freshwater river diversions for marsh restoration in Louisiana: Twenty-six years of changing vegetative cover and marsh area

    NASA Astrophysics Data System (ADS)

    Kearney, Michael S.; Riter, J. C. Alexis; Turner, R. Eugene

    2011-08-01

    The restoration of Louisiana's coastal wetlands will be one of the largest, most costly and longest environmental remediation projects undertaken. We use Landsat data to show that freshwater diversions, a major restoration strategy, have not increased vegetation and marsh coverage in three freshwater diversions operating for ˜19 years. Two analytic methods indicate no significant changes in either relative vegetation or overall marsh area from 1984 to 2005 in zones closest to diversion inlets. After Hurricanes Katrina and Rita, these zones sustained dramatic and enduring losses in vegetation and overall marsh area, whereas the changes in similar marshes of the adjacent reference sites were relatively moderate and short-lived. We suggest that this vulnerability to storm damage reflects the introduction of nutrients in the freshwater diversions (that add insignificant amounts of additional sediments), which promotes poor rhizome and root growth in marshes where below-ground biomass historically played the dominant role in vertical accretion.

  16. Sediment accretion in tidal freshwater forests and oligohaline marshes of the Waccamaw and Savannah Rivers, USA

    USGS Publications Warehouse

    Ensign, Scott H.; Hupp, Cliff R.; Noe, Gregory B.; Krauss, Ken W.; Stagg, Camille L.

    2014-01-01

    Sediment accretion was measured at four sites in varying stages of forest-to-marsh succession along a fresh-to-oligohaline gradient on the Waccamaw River and its tributary Turkey Creek (Coastal Plain watersheds, South Carolina) and the Savannah River (Piedmont watershed, South Carolina and Georgia). Sites included tidal freshwater forests, moderately salt-impacted forests at the freshwater–oligohaline transition, highly salt-impacted forests, and oligohaline marshes. Sediment accretion was measured by use of feldspar marker pads for 2.5 year; accessory information on wetland inundation, canopy litterfall, herbaceous production, and soil characteristics were also collected. Sediment accretion ranged from 4.5 mm year−1 at moderately salt-impacted forest on the Savannah River to 19.1 mm year−1 at its relict, highly salt-impacted forest downstream. Oligohaline marsh sediment accretion was 1.5–2.5 times greater than in tidal freshwater forests. Overall, there was no significant difference in accretion rate between rivers with contrasting sediment loads. Accretion was significantly higher in hollows than on hummocks in tidal freshwater forests. Organic sediment accretion was similar to autochthonous litter production at all sites, but inorganic sediment constituted the majority of accretion at both marshes and the Savannah River highly salt-impacted forest. A strong correlation between inorganic sediment accumulation and autochthonous litter production indicated a positive feedback between herbaceous plant production and allochthonous sediment deposition. The similarity in rates of sediment accretion and sea level rise in tidal freshwater forests indicates that these habitats may become permanently inundated if the rate of sea level rise increases.

  17. Effects Of Five Years Of Nitrogen And Phosphorus Additions On A Zizaniopsis miliacea Tidal Freshwater Marsh

    EPA Science Inventory

    The purpose of this experiment was to determine if nitrogen (N) or phosphorus (P) acts as the limiting nutrient for tidal freshwater marsh vegetation. To answer this question, we added N, P, and N + P to a tidal freshwater marsh dominated by Zizaniopsis miliacea (Michx.) ...

  18. Saltwater intrusion into tidal freshwater marshes alters the biogeochemical processing of organic carbon

    NASA Astrophysics Data System (ADS)

    Neubauer, S. C.; Franklin, R. B.; Berrier, D. J.

    2013-12-01

    Environmental perturbations in wetlands affect the integrated plant-microbial-soil system, causing biogeochemical responses that can manifest at local to global scales. The objective of this study was to determine how saltwater intrusion affects carbon mineralization and greenhouse gas production in coastal wetlands. Working with tidal freshwater marsh soils that had experienced ~ 3.5 yr of in situ saltwater additions, we quantified changes in soil properties, measured extracellular enzyme activity associated with organic matter breakdown, and determined potential rates of anaerobic carbon dioxide (CO2) and methane (CH4) production. Soils from the field plots treated with brackish water had lower carbon content and higher C : N ratios than soils from freshwater plots, indicating that saltwater intrusion reduced carbon availability and increased organic matter recalcitrance. This was reflected in reduced activities of enzymes associated with the hydrolysis of cellulose and the oxidation of lignin, leading to reduced rates of soil CO2 and CH4 production. The effects of long-term saltwater additions contrasted with the effects of short-term exposure to brackish water during three-day laboratory incubations, which increased rates of CO2 production but lowered rates of CH4 production. Collectively, our data suggest that the long-term effect of saltwater intrusion on soil CO2 production is indirect, mediated through the effects of elevated salinity on the quantity and quality of autochthonous organic matter inputs to the soil. In contrast, salinity, organic matter content, and enzyme activities directly influence CH4 production. Our analyses demonstrate that saltwater intrusion into tidal freshwater marshes affects the entire process of carbon mineralization, from the availability of organic carbon through its terminal metabolism to CO2 and/or CH4, and illustrate that long-term shifts in biogeochemical functioning are not necessarily consistent with short

  19. Saltwater intrusion into tidal freshwater marshes alters the biogeochemical processing of organic carbon

    NASA Astrophysics Data System (ADS)

    Neubauer, S. C.; Franklin, R. B.; Berrier, D. J.

    2013-07-01

    Environmental perturbations in wetlands affect the integrated plant-microbial-soil system, causing biogeochemical responses that can manifest at local to global scales. The objective of this study was to determine how saltwater intrusion affects carbon mineralization and greenhouse gas production in coastal wetlands. Working with tidal freshwater marsh soils that had experienced roughly 3.5 yr of in situ saltwater additions, we quantified changes in soil properties, measured extracellular enzyme activity associated with organic matter breakdown, and determined potential rates of anaerobic carbon dioxide (CO2) and methane (CH4) production. Soils from the field plots treated with brackish water had lower carbon content and higher C : N ratios than soils from freshwater plots, indicating that saltwater intrusion reduced carbon availability and increased organic matter recalcitrance. This was reflected in reduced activities of enzymes associated with the hydrolysis of cellulose and the oxidation of lignin, leading to reduced rates of soil CO2 and CH4 production. The effects of long-term saltwater additions contrasted with the effects of short-term exposure to brackish water during three-day laboratory incubations, which increased rates of CO2 production but lowered rates of CH4 production. Collectively, our data suggest that the long-term effect of saltwater intrusion on soil CO2 production is indirect, mediated through the effects of elevated salinity on the quantity and quality of autochthonous organic matter inputs to the soil. In contrast, salinity, organic matter content, and enzyme activities directly influence CH4 production. Our analyses demonstrate that saltwater intrusion into tidal freshwater marshes affects the entire process of carbon mineralization, from the availability of organic carbon through its terminal metabolism to CO2 and/or CH4, and illustrate that long-term shifts in biogeochemical functioning are not necessarily consistent with short

  20. Ecology of tidal freshwater marshes of the United States east coast: a community profile

    SciTech Connect

    Odum, W.E.; Smith, T.J. III; Hoover, J.K.; McIvor, C.C.

    1984-01-01

    Tidal freshwater marshes are a distinctive type of estuarine ecosystem located upstream from tidal saline marshes and downstream from non-tidal freshwater marshes. They are characterized by freshwater or nearly freshwater conditions most of the time, flora and fauna dominated by freshwater species, and daily lunar tidal flushing. This report examines the ecology of this community as it occurs along the Atlantic seaboard from southern New England to northern Florida. This marsh community is heavily influenced by river flow, which maintains freshwater conditions and deposits sediments high in silt and clay. The plant assemblage in tidal freshwater marshes is diverse both in numbers of species and structural plant types. Plant community structure is markedly diverse spatially and seasonally, and reflects the dynamic processing of energy and biomass in the marsh through high productivity, rapid decomposition and seasonal nutrient cycling. The diverse niches in this heterogeneous environment are exploited by a very diverse animal community of as many as 125 species of fish, 102 species of amphibians and reptiles, 280 species of birds, and 46 species of mammals over the community's broad range. Although fewer species are permanent residents or marsh breeders, use of his community for food and cover is high. This use, coupled with the marshes' capacity to be natural buffers and water filters, argue for their high value as natural resources. 349 references, 31 figures, 24 tables.

  1. Marsh Soil Responses to Nutrients: Belowground Structural and Organic Properties

    EPA Science Inventory

    Coastal marsh responses to nutrient enrichment apparently depend upon soil matrix and whether the system is primarily biogenic or minerogenic. Deteriorating organic rich marshes (Jamaica Bay, NY) receiving wastewater effluent had lower belowground biomass, organic matter, and soi...

  2. Marsh Soil Responses to Nutrients: Belowground Structural and Organic Properties.

    EPA Science Inventory

    Coastal marsh responses to nutrient enrichment apparently depend upon soil matrix and whether the system is primarily biogenic or minerogenic. Deteriorating organic rich marshes (Jamaica Bay, NY) receiving wastewater effluent had lower belowground biomass, organic matter, and soi...

  3. Development of soil halinity classes for Connecticut tidal marshes

    NASA Astrophysics Data System (ADS)

    Theve, Marissa

    2014-08-01

    A soil's halinity, or ocean derived salinity, can determine much about its use, capabilities, and ecology. This paper uses measurements of electrical conductivity (in a 1 part soil and 5 parts deionized water by volume mixture, EC1:5vol) of estuarine soil samples stratified by ecological community to correlate soil halinity to vegetative community on the Connecticut River. The communities studied here are (in decreasing order of halinity): 1) Low salt marsh/Spartina alterniflora; 2) High salt marsh/Spartina patens, Distichlis spicata, and Juncus gerardii; 3) Back salt marsh/Bolboschoenus and Schoenoplectus species; 4) Brackish marsh/Iva frutescens and Panicum virgatum; and 5) Tidal fresh marsh/Typha and Phragmites species. Out of these, four distinct tidal marsh communities (low salt marsh, high salt marsh, back salt marsh, and tidal fresh) were found to have significantly different mean halinities. These results are a starting place for generating a regional and national soil halinity classification system, and the methods are recommended for use in other estuaries for purposes of ecological classification, soil mapping, and general land/habitat management.

  4. Biogeochemical response of organic-rich freshwater marshes in the Louisiana delta plain to chronic river water influx

    USGS Publications Warehouse

    Swarzenski, C.M.; Doyle, T.W.; Fry, B.; Hargis, T.G.

    2008-01-01

    To help evaluate effects of Mississippi River inputs to sustainability of coastal Louisiana ecosystems, we compared porewater and substrate quality of organic-rich Panicum hemitomon freshwater marshes inundated by river water annually for more than 30 years (Penchant basin, PB) or not during the same time (Barataria basin, BB). In the marshes receiving river water the soil environment was more reduced, the organic substrate was more decomposed and accumulated more sulfur. The porewater dissolved ammonium and orthophosphate concentrations were an order of magnitude higher and sulfide and alkalinity concentrations were more than twice as high in PB compared with BB marshes. The pH was higher and dissolved iron concentrations were more than an order of magnitude lower in PB marshes than in BB marshes. The influx of nutrient-rich river water did not enhance end-of-year above-ground standing biomass or vertical accretion rates of the shallow substrate. The differences in porewater chemistry and substrate quality are reasonably linked to the long-term influx of river water through biogeochemical processes and transformations involving alkalinity, nitrate and sulfate. The key factor is the continual replenishment of alkalinity, nitrate and sulfate via overland flow during high river stage each year for several weeks to more than 6 months. This leads to a reducing soil environment, pooling of the phytotoxin sulfide and inorganic nutrients in porewater, and internally generated alkalinity. Organic matter decomposition is enhanced under these conditions and root mats degraded. The more decomposed root mat makes these marshes more susceptible to erosion during infrequent high-energy events (for example hurricanes) and regular low-energy events, such as tides and the passage of weather fronts. Our findings were unexpected and, if generally applicable, suggest that river diversions may not be the beneficial mitigating agent of wetland restoration and conservation that they are

  5. Evaluating physical and biological influences on sedimentation in a tidal freshwater marsh with 7Be

    NASA Astrophysics Data System (ADS)

    Palinkas, Cindy M.; Engelhardt, Katharina A. M.; Cadol, Dan

    2013-09-01

    Key differences exist between tidal fresh- and saltwater marshes, such as the relative importance of mineral versus organic sedimentation and plant species diversity, that likely result in different drivers of sedimentation. In tidal freshwater marshes, we hypothesize that vegetation composition, along with physical marsh features (i.e., elevation and tidal channels), play a critical role in sedimentation. This hypothesis is evaluated in Dyke Marsh Preserve (Potomac River, VA, USA) by examining sediment character (grain size, organic content) and deposition rates across the marsh in spring and summer 2010 and 2011. 7Be is especially well suited to capture seasonal sedimentation patterns owing to its short half-life (53.3 d) and ability to assess both sediment deposition and erosion. However, its use in marshes can be challenging, especially due the presence of vegetation. In this study, 7Be-derived sedimentation rates are compared with sediment deposition observed on ceramic tiles to assess its utility in tidal freshwater marshes, and biophysical influences on sediment deposition are examined through statistical models. 7Be- and tile-derived sedimentation rates show similar spatial and temporal patterns, with highest rates occurring at sites closer to tidal channels, highlighting the importance of sediment availability. In addition, complex feedbacks between sedimentation and the plant community are discussed.

  6. Vegetation Influences on Tidal Freshwater Marsh Sedimentation and Accretion

    NASA Astrophysics Data System (ADS)

    Cadol, D. D.; Elmore, A. J.; Engelhardt, K.; Palinkas, C. M.

    2011-12-01

    Continued sea level rise, and the potential for acceleration over the next century, threatens low-lying natural and cultural resources throughout the world. In the national capital region of the United States, for example, the National Park Service manages over 50 km^2 of land along the shores of the tidal Potomac River and its tributaries that may be affected by sea level rise. Dyke Marsh Wildlife Preserve on the Potomac River south of Washington, DC, is one such resource with a rich history of scientific investigation. It is a candidate for restoration to replace marsh area lost to dredging in the 1960s, yet for restoration to succeed in the long term, accretion must maintain the marsh surface within the tidal range of rising relative sea level. Marsh surface accretion rates tend to increase with depth in the tidal frame until a threshold depth is reached below which marsh vegetation cannot be sustained. Suspended sediment concentration, salinity, tidal range, and vegetation community all influence the relationship between depth and accretion rate. The complex interactions among these factors make sedimentation rates difficult to generalize across sites. Surface elevation tables (SET) and feldspar marker horizons have been monitored at 9 locations in Dyke Marsh for 5 years, providing detailed data on sedimentation, subsidence, and net accretion rates at these locations. We combine these data with spatially rich vegetation surveys, a LiDAR derived 1-m digital elevation model of the marsh, and temperature-derived inundation durations to model accretion rates across the marsh. Temperature loggers suggest a delayed arrival of tidal water within the marsh relative to that predicted by elevation alone, likely due to hydraulic resistance caused by vegetation. Wave driven coastal erosion has contributed to bank retreat rates of ~2.5 m/yr along the Potomac River side of the marsh while depositing a small berm of material inland of the retreating shoreline. Excluding sites

  7. Seed dispersal into wetlands: Techniques and results for a restored tidal freshwater marsh

    USGS Publications Warehouse

    Neff, K.P.; Baldwin, A.H.

    2005-01-01

    Although seed dispersal is assumed to be a major factor determining plant community development in restored wetlands, little research exists on density and species richness of seed available through dispersal in these systems. We measured composition and seed dispersal rates at a restored tidal freshwater marsh in Washington, DC, USA by collecting seed dispersing through water and wind. Seed dispersal by water was measured using two methods of seed collection: (1) stationary traps composed of coconut fiber mat along an elevation gradient bracketing the tidal range and (2) a floating surface trawl net attached to a boat. To estimate wind dispersal rates, we collected seed from stationary traps composed of coconut fiber mat positioned above marsh vegetation. We also collected a small number of samples of debris deposited along high tide lines (drift lines) and feces of Canada Goose to explore their seed content. We used the seedling emergence method to determine seed density in all samples, which involved placing the fiber mats or sample material on top of potting soil in a greenhouse misting room and enumerating emerging seedlings. Seedlings from a total of 125 plant species emerged during this study (including 82 in river trawls, 89 in stationary water traps, 21 in drift lines, 39 in wind traps, and 10 in goose feces). The most abundant taxa included Bidens frondosa, Boehmeria cylindrica, Cyperus spp., Eclipta prostrata, and Ludwigia palustris. Total seedling density was significantly greater for the stationary water traps (212 + 30.6 seeds/m2/month) than the equal-sized stationary wind traps (18 + 6.0 seeds/m(2)/month). Lower-bound estimates of total species richness based on the non-parametric Chao 2 asymptotic estimators were greater for seeds in water (106 + 1.4 for stationary water traps and 104 + 5.5 for trawl samples) than for wind (54 + 6.4). Our results indicate that water is the primary source of seeds dispersing to the site and that a species-rich pool

  8. Man's Impact on the Environment: The Freshwater Marsh as an Ecosystem. Update.

    ERIC Educational Resources Information Center

    Brevard County School Board, Cocoa, FL.

    This environmental education program emphasizes the cause and effect of change in a freshwater marsh ecosystem with special attention given to man and his role in environmental change. Concepts are employed from the natural and social sciences to investigate environmental problems. Unit activities are inquiry oriented and answer these questions:…

  9. Ecogeomorphology of Spartina patens-dominated tidal marshes: Soil organic matter accumulation, marsh elevation dynamics, and disturbance

    USGS Publications Warehouse

    Cahoon, D.R.; Ford, M.A.; Hensel, P.F.; Fagherazzi, Sergio; Marani, Marco; Blum, Linda K.

    2004-01-01

    Marsh soil development and vertical accretion in Spartina patens (Aiton) Muhl.-dominated tidal marshes is largely dependent on soil organic matter accumulation from root-rhizome production and litter deposition. Yet there are few quantitative data sets on belowground production and the relationship between soil organic matter accumulation and soil elevation dynamics for this marsh type. Spartina patens marshes are subject to numerous stressors, including sea-level rise, water level manipulations (i.e., flooding and draining) by impoundments, and prescribed burning. These stressors could influence long-term marsh sustainability by their effect on root production, soil organic matter accumulation, and soil elevation dynamics. In this review, we summarize current knowledge on the interactions among vegetative production, soil organic matter accumulation and marsh elevation dynamics, or the ecogeomorphology, of Spartina patens-dominated tidal marshes. Additional studies are needed of belowground production/decomposition and soil elevation change (measured simultaneously) to better understand the links among soil organic matter accumulation, soil elevation change, and disturbance in this marsh type. From a management perspective, we need to better understand the impacts of disturbance stressors, both lethal and sub-lethal, and the interactive effect of multiple stressors on soil elevation dynamics in order to develop better management practices to safeguard marsh sustainability as sea level rises.

  10. Effects of water level, shade and time on germination and growth of freshwater marsh plants along a simulated successional gradient

    USGS Publications Warehouse

    Kellogg, C.H.; Bridgham, S.D.; Leicht, S.A.

    2003-01-01

    1. We examined the effect of soil organic content (1.4, 3.6, 7.2% soil C), water level (+2, -1, -4 cm from soil surface) and duration (13 or 33 days) on 10 species that varied in abundance during succession in freshwater marshes. We also determined the effect of shade (0, 40, 80% shade) and soil organic content (1.4 and 7.2% soil C) on germination of six species over 62 days with water 0.5 cm below the soil surface. 2. Water level consistently affected species germination on both dates. Above-ground biomass was generally higher with increasing organic content of soil, but shade had little effect on germination or height. 3 The hydrologic zone in which species were found in the field was a good indicator of the response of germination to hydrology. Both early successional species and species wide-spread across the successional gradient show similar germination on all organic contents, while later successional species appear to germinate best at higher organic contents. 4. Successional changes in soils are capable of affecting plant community development, independent of disturbance.

  11. Changes in marsh soils for six months after a fire

    NASA Technical Reports Server (NTRS)

    Schmalzer, Paul A.; Hinkle, C. R.; Koller, Albert M., Jr.

    1991-01-01

    An examination is conducted of changes in soil-nutrient levels in marsh systems after a fire, in conjunction with studies of particulates and gases generated by such biomass combustion. Attention is given to data covering six months after the fire. It is noted that changes in soil property occur at different times after the fire, and persist for different intervals; this implies a need for long-term postfire observations. The marshes studied were representative of a variety of graminoid wetlands in the southeastern U.S. which periodically burn either naturally or upon prescription. Nitrogen transformations in flooded soils differ from those in well-drained ones.

  12. Influence of salinity and prey presence on the survival of aquatic macroinvertebrates of a freshwater marsh

    USGS Publications Warehouse

    Kang, Sung-Ryong; King, Sammy L.

    2012-01-01

    Salinization of coastal freshwater environments is a global issue. Increased salinity from sea level rise, storm surges, or other mechanisms is common in coastal freshwater marshes of Louisiana, USA. The effects of salinity increases on aquatic macroinvertebrates in these systems have received little attention, despite the importance of aquatic macroinvertebrates for nutrient cycling, biodiversity, and as a food source for vertebrate species. We used microcosm experiments to evaluate the effects of salinity, duration of exposure, and prey availability on the relative survival of dominant aquatic macroinvertebrates (i.e., Procambarus clarkii Girard, Cambarellus puer Hobbs, Libellulidae, Dytiscidae cybister) in a freshwater marsh of southwestern Louisiana. We hypothesized that increased salinity, absence of prey, and increased duration of exposure would decrease survival of aquatic macroinvertebrates and that crustaceans would have higher survival than aquatic insect taxon. Our first hypothesis was only partially supported as only salinity increases combined with prolonged exposure duration affected aquatic macroinvertebrate survival. Furthermore, crustaceans had higher survival than aquatic insects. Salinity stress may cause mortality when acting together with other stressful conditions.

  13. Climatic variability, hydrologic anomaly, and methane emission can turn productive freshwater marshes into net carbon sources.

    PubMed

    Chu, Housen; Gottgens, Johan F; Chen, Jiquan; Sun, Ge; Desai, Ankur R; Ouyang, Zutao; Shao, Changliang; Czajkowski, Kevin

    2015-03-01

    Freshwater marshes are well-known for their ecological functions in carbon sequestration, but complete carbon budgets that include both methane (CH4 ) and lateral carbon fluxes for these ecosystems are rarely available. To the best of our knowledge, this is the first full carbon balance for a freshwater marsh where vertical gaseous [carbon dioxide (CO2 ) and CH4 ] and lateral hydrologic fluxes (dissolved and particulate organic carbon) have been simultaneously measured for multiple years (2011-2013). Carbon accumulation in the sediments suggested that the marsh was a long-term carbon sink and accumulated ~96.9 ± 10.3 (±95% CI) g C m(-2)  yr(-1) during the last ~50 years. However, abnormal climate conditions in the last 3 years turned the marsh to a source of carbon (42.7 ± 23.4 g C m(-2)  yr(-1) ). Gross ecosystem production and ecosystem respiration were the two largest fluxes in the annual carbon budget. Yet, these two fluxes compensated each other to a large extent and led to the marsh being a CO2 sink in 2011 (-78.8 ± 33.6 g C m(-2)  yr(-1) ), near CO2 -neutral in 2012 (29.7 ± 37.2 g C m(-2)  yr(-1) ), and a CO2 source in 2013 (92.9 ± 28.0 g C m(-2)  yr(-1) ). The CH4 emission was consistently high with a three-year average of 50.8 ± 1.0 g C m(-2)  yr(-1) . Considerable hydrologic carbon flowed laterally both into and out of the marsh (108.3 ± 5.4 and 86.2 ± 10.5 g C m(-2)  yr(-1) , respectively). In total, hydrologic carbon fluxes contributed ~23 ± 13 g C m(-2)  yr(-1) to the three-year carbon budget. Our findings highlight the importance of lateral hydrologic inflows/outflows in wetland carbon budgets, especially in those characterized by a flow-through hydrologic regime. In addition, different carbon fluxes responded unequally to climate variability/anomalies and, thus, the total carbon budgets may vary drastically among years.

  14. Soil Dynamics Following Fire in Juncus and Spartina Marshes

    NASA Technical Reports Server (NTRS)

    Schmalzer, Paul A.; Hinkle, C. Ross

    1992-01-01

    We examined soil changes in the O-5 and 5-15 cm layers for one year after a fire in burned Juncus roemerianus and Spartina bakeri marshes and an unburned Juncus marsh. Each marsh was sampled (N = 25) preburn, immediately postburn, and 1, 3, 6, 9, and 12 months postburn. All marshes were flooded at the time of the fire; water levels declined below the surface by 6 months but reflooded at 12 months after the fire. Soil samples were analyzed for pH, conductivity, organic matter, exchangeable Ca, Mg, and K, available PO4-P, total Kjeldahl nitrogen (TKN), exchangeable NO3-N, NO2-N, and NH4-N. Changes due to burning were most pronounced in the surface (0-5 cm) layer. Soil pH increased 0.16-0.28 units immediately postburn but returned to preburn levels in 1 month. Organic matter increased by 1 month and remained elevated through 9 months after the fire. Calcium, Mg, K, and PO4-P all increased by 1 month after burning, and the increases persisted for 6 to 12 months. Conductivity increased in association with these cations. Burning released ions from organic matter as indicated by the increase in pH, conductivity, Ca, Mg, K, and PO4-P. NH4-N in burned marshes was elevated 6 months and NO3-N 12 months after burning. TKN showed seasonal variations but no clear fire-related changes. Nitrogen species were affected by the seasonally varying water levels as well as fire; these changes differed from those observed in many upland systems.

  15. The effect of increasing salinity and forest mortality on soil nitrogen and phosphorus mineralization in tidal freshwater forested wetlands

    USGS Publications Warehouse

    Noe, Gregory B.; Krauss, Ken W.; Lockaby, B. Graeme; Conner, William H.; Hupp, Cliff R.

    2013-01-01

    Tidal freshwater wetlands are sensitive to sea level rise and increased salinity, although little information is known about the impact of salinification on nutrient biogeochemistry in tidal freshwater forested wetlands. We quantified soil nitrogen (N) and phosphorus (P) mineralization using seasonal in situ incubations of modified resin cores along spatial gradients of chronic salinification (from continuously freshwater tidal forest to salt impacted tidal forest to oligohaline marsh) and in hummocks and hollows of the continuously freshwater tidal forest along the blackwater Waccamaw River and alluvial Savannah River. Salinification increased rates of net N and P mineralization fluxes and turnover in tidal freshwater forested wetland soils, most likely through tree stress and senescence (for N) and conversion to oligohaline marsh (for P). Stimulation of N and P mineralization by chronic salinification was apparently unrelated to inputs of sulfate (for N and P) or direct effects of increased soil conductivity (for N). In addition, the tidal wetland soils of the alluvial river mineralized more P relative to N than the blackwater river. Finally, hummocks had much greater nitrification fluxes than hollows at the continuously freshwater tidal forested wetland sites. These findings add to knowledge of the responses of tidal freshwater ecosystems to sea level rise and salinification that is necessary to predict the consequences of state changes in coastal ecosystem structure and function due to global change, including potential impacts on estuarine eutrophication.

  16. Marsh soils as potential sinks for Bacteroides fecal indicator bacteria, Waccamaw National Wildlife Refuge, Georgetown, SC, USA

    USGS Publications Warehouse

    Drexler, Judith Z.; Johnson, Heather E.; Duris, Joseph W.; Krauss, Ken W.

    2014-01-01

    A soil core collected in a tidal freshwater marsh in the Waccamaw National Wildlife Refuge (Georgetown, SC) exuded a particularly strong odor of cow manure upon extrusion. In order to test for manure and determine its provenance, we carried out microbial source tracking using DNA markers for Bacteroides, a noncoliform, anaerobic bacterial group that represents a broad group of the fecal population. Three core sections from 0-3 cm, 9-12 cm and 30-33 were analyzed for the presence of Bacteroides. The ages of core sediments were estimated using 210Pb and 137Cs dating. All three core sections tested positive for Bacteroides DNA markers related to cow or deer feces. Because cow manure is stockpiled, used as fertilizer, and a source of direct contamination in the Great Pee Dee River/Winyah Bay watershed, it is very likely the source of the Bacteroides that was deposited on the marsh. The mid-points of the core sections were dated as follows: 0-3 cm: 2009; 9-12 cm: 1999, and 30-33 cm: 1961. The presence of Bacteroides at different depths/ages in the soil profile indicates that soils in tidal freshwater marshes are, at the least, capable of being short-term sinks for Bacteroides and, may have the potential to be long-term sinks of stable, naturalized populations.

  17. Monitoring Everglades freshwater marsh water level using L-band synthetic aperture radar backscatter

    USGS Publications Warehouse

    Kim, Jin-Woo; Lu, Zhong; Jones, John W.; Shum, C.K.; Lee, Hyongki; Jia, Yuanyuan

    2014-01-01

    The Florida Everglades plays a significant role in controlling floods, improving water quality, supporting ecosystems, and maintaining biodiversity in south Florida. Adaptive restoration and management of the Everglades requires the best information possible regarding wetland hydrology. We developed a new and innovative approach to quantify spatial and temporal variations in wetland water levels within the Everglades, Florida. We observed high correlations between water level measured at in situ gages and L-band SAR backscatter coefficients in the freshwater marsh, though C-band SAR backscatter has no close relationship with water level. Here we illustrate the complementarity of SAR backscatter coefficient differencing and interferometry (InSAR) for improved estimation of high spatial resolution water level variations in the Everglades. This technique has a certain limitation in applying to swamp forests with dense vegetation cover, but we conclude that this new method is promising in future applications to wetland hydrology research.

  18. Monitoring seasonal and annual wetland changes in a freshwater marsh with SPOT HRV data

    SciTech Connect

    Mackey, H.E. Jr.

    1989-12-31

    Eleven dates of SPOT HRV data along with near-concurrent vertical aerial photographic and phenological data for 1987, 1988, and 1989 were evaluated to determine seasonal and annual changes in a 400-hectare, southeastern freshwater marsh. Early April through mid-May was the best time to discriminate among the cypress (Taxodium distichum)/water tupelo (Nyssa acquatica) swamp forest and the non-persistent (Ludwigia spp.) and persistent (Typha spp.) stands in this wetlands. Furthermore, a ten-fold decrease in flow rate from 11 cubic meters per sec (cms) in 1987 to one cms in 1988 was recorded in the marsh followed by a shift to drier wetland communities. The Savannah River Site (SRS), maintained by the US Department of Energy, is a 777 km{sup 2} area located in south central South Carolina. Five tributaries of the Savannah River run southwest through the SRS and into the floodplain swamp of the Savannah River. This paper describes the use of SPOT HRV data to monitor seasonal and annual trends in one of these swamp deltas, Pen Branch Delta, during a three-year period, 1987--1989.

  19. Monitoring seasonal and annual wetland changes in a freshwater marsh with SPOT HRV data

    SciTech Connect

    Mackey, H.E. Jr.

    1989-01-01

    Eleven dates of SPOT HRV data along with near-concurrent vertical aerial photographic and phenological data for 1987, 1988, and 1989 were evaluated to determine seasonal and annual changes in a 400-hectare, southeastern freshwater marsh. Early April through mid-May was the best time to discriminate among the cypress (Taxodium distichum)/water tupelo (Nyssa acquatica) swamp forest and the non-persistent (Ludwigia spp.) and persistent (Typha spp.) stands in this wetlands. Furthermore, a ten-fold decrease in flow rate from 11 cubic meters per sec (cms) in 1987 to one cms in 1988 was recorded in the marsh followed by a shift to drier wetland communities. The Savannah River Site (SRS), maintained by the US Department of Energy, is a 777 km{sup 2} area located in south central South Carolina. Five tributaries of the Savannah River run southwest through the SRS and into the floodplain swamp of the Savannah River. This paper describes the use of SPOT HRV data to monitor seasonal and annual trends in one of these swamp deltas, Pen Branch Delta, during a three-year period, 1987--1989.

  20. Canopy-scale GPP from Measurements of Carbonyl Sulfide in a Freshwater Marsh

    NASA Astrophysics Data System (ADS)

    Seibt, U.; Maseyk, K. S.; Lett, C.; Sun, W.

    2015-12-01

    We demonstrate the application of carbonyl sulfide (COS) measurements to obtain new estimates of canopy-scale Gross Primary Production (GPP). We measured net ecosystem fluxes of COS and CO2 at an established flux tower site in a freshwater marsh in southern California during the growing season. The ecosystem acted as a strong sink of COS. The daytime variations mirrored those of CO2, however, COS uptake continued at night whereas the CO2 flux became very small. During the first part of the field campaign, the marsh was inundated which essentially eliminated surface fluxes, providing ideal test conditions for the COS-based flux partitioning method. The GPP estimates obtained from measured COS fluxes agreed well with thoses calculated using CO2-based partitioning methods. One of the most widely used flux partitioning methods, using the relationship of night-time fluxes and temperature, did poorly due to lack of turbulence at night. Our results demonstrate that adding COS to flux tower measurements would provide valuable observation-based constraints on the land carbon cycle.

  1. Ecosystem level methane fluxes from tidal freshwater and brackish marshes of the Mississippi River Delta: Implications for coastal wetland carbon projects

    USGS Publications Warehouse

    Holm, Guerry O.; Perez, Brian C.; McWhorter, David E.; Krauss, Ken W.; Johnson, Darren J.; Raynie, Richard C.; Killebrew, Charles J.

    2016-01-01

    Sulfate from seawater inhibits methane production in tidal wetlands, and by extension, salinity has been used as a general predictor of methane emissions. With the need to reduce methane flux uncertainties from tidal wetlands, eddy covariance (EC) techniques provide an integrated methane budget. The goals of this study were to: 1) establish methane emissions from natural, freshwater and brackish wetlands in Louisiana based on EC; and 2) determine if EC estimates conform to a methane-salinity relationship derived from temperate tidal wetlands with chamber sampling. Annual estimates of methane emissions from this study were 62.3 g CH4/m2/yr and 13.8 g CH4/m2/yr for the freshwater and brackish (8–10 psu) sites, respectively. If it is assumed that long-term, annual soil carbon sequestration rates of natural marshes are ~200 g C/m2/yr (7.3 tCO2e/ha/yr), healthy brackish marshes could be expected to act as a net radiative sink, equivalent to less than one-half the soil carbon accumulation rate after subtracting methane emissions (4.1 tCO2e/ha/yr). Carbon sequestration rates would need case-by-case assessment, but the EC methane emissions estimates in this study conformed well to an existing salinity-methane model that should serve as a basis for establishing emission factors for wetland carbon offset projects.

  2. Responses of plant nutrient resorption to phosphorus addition in freshwater marsh of Northeast China

    PubMed Central

    Mao, Rong; Zeng, De-Hui; Zhang, Xin-Hou; Song, Chang-Chun

    2015-01-01

    Anthropogenic activities have increased phosphorus (P) inputs to most aquatic and terrestrial ecosystems. However, the relationship between plant nutrient resorption and P availability is still unclear, and much less is known about the underlying mechanisms. Here, we used a multi-level P addition experiment (0, 1.2, 4.8, and 9.6 g P m−2 year−1) to assess the effect of P enrichment on nutrient resorption at plant organ, species, and community levels in a freshwater marsh of Northeast China. The response of nutrient resorption to P addition generally did not vary with addition rates. Moreover, nutrient resorption exhibited similar responses to P addition across the three hierarchical levels. Specifically, P addition decreased nitrogen (N) resorption proficiency, P resorption efficiency and proficiency, but did not impact N resorption efficiency. In addition, P resorption efficiency and proficiency were linearly related to the ratio of inorganic P to organic P and organic P fraction in mature plant organs, respectively. Our findings suggest that the allocation pattern of plant P between inorganic and organic P fractions is an underlying mechanism controlling P resorption processes, and that P enrichment could strongly influence plant-mediated biogeochemical cycles through altered nutrient resorption in the freshwater wetlands of Northeast China. PMID:25631373

  3. Responses of plant nutrient resorption to phosphorus addition in freshwater marsh of Northeast China

    NASA Astrophysics Data System (ADS)

    Mao, Rong; Zeng, De-Hui; Zhang, Xin-Hou; Song, Chang-Chun

    2015-01-01

    Anthropogenic activities have increased phosphorus (P) inputs to most aquatic and terrestrial ecosystems. However, the relationship between plant nutrient resorption and P availability is still unclear, and much less is known about the underlying mechanisms. Here, we used a multi-level P addition experiment (0, 1.2, 4.8, and 9.6 g P m-2 year-1) to assess the effect of P enrichment on nutrient resorption at plant organ, species, and community levels in a freshwater marsh of Northeast China. The response of nutrient resorption to P addition generally did not vary with addition rates. Moreover, nutrient resorption exhibited similar responses to P addition across the three hierarchical levels. Specifically, P addition decreased nitrogen (N) resorption proficiency, P resorption efficiency and proficiency, but did not impact N resorption efficiency. In addition, P resorption efficiency and proficiency were linearly related to the ratio of inorganic P to organic P and organic P fraction in mature plant organs, respectively. Our findings suggest that the allocation pattern of plant P between inorganic and organic P fractions is an underlying mechanism controlling P resorption processes, and that P enrichment could strongly influence plant-mediated biogeochemical cycles through altered nutrient resorption in the freshwater wetlands of Northeast China.

  4. Responses of plant nutrient resorption to phosphorus addition in freshwater marsh of Northeast China.

    PubMed

    Mao, Rong; Zeng, De-Hui; Zhang, Xin-Hou; Song, Chang-Chun

    2015-01-29

    Anthropogenic activities have increased phosphorus (P) inputs to most aquatic and terrestrial ecosystems. However, the relationship between plant nutrient resorption and P availability is still unclear, and much less is known about the underlying mechanisms. Here, we used a multi-level P addition experiment (0, 1.2, 4.8, and 9.6 g P m(-2) year(-1)) to assess the effect of P enrichment on nutrient resorption at plant organ, species, and community levels in a freshwater marsh of Northeast China. The response of nutrient resorption to P addition generally did not vary with addition rates. Moreover, nutrient resorption exhibited similar responses to P addition across the three hierarchical levels. Specifically, P addition decreased nitrogen (N) resorption proficiency, P resorption efficiency and proficiency, but did not impact N resorption efficiency. In addition, P resorption efficiency and proficiency were linearly related to the ratio of inorganic P to organic P and organic P fraction in mature plant organs, respectively. Our findings suggest that the allocation pattern of plant P between inorganic and organic P fractions is an underlying mechanism controlling P resorption processes, and that P enrichment could strongly influence plant-mediated biogeochemical cycles through altered nutrient resorption in the freshwater wetlands of Northeast China.

  5. Responses of plant nutrient resorption to phosphorus addition in freshwater marsh of Northeast China.

    PubMed

    Mao, Rong; Zeng, De-Hui; Zhang, Xin-Hou; Song, Chang-Chun

    2015-01-01

    Anthropogenic activities have increased phosphorus (P) inputs to most aquatic and terrestrial ecosystems. However, the relationship between plant nutrient resorption and P availability is still unclear, and much less is known about the underlying mechanisms. Here, we used a multi-level P addition experiment (0, 1.2, 4.8, and 9.6 g P m(-2) year(-1)) to assess the effect of P enrichment on nutrient resorption at plant organ, species, and community levels in a freshwater marsh of Northeast China. The response of nutrient resorption to P addition generally did not vary with addition rates. Moreover, nutrient resorption exhibited similar responses to P addition across the three hierarchical levels. Specifically, P addition decreased nitrogen (N) resorption proficiency, P resorption efficiency and proficiency, but did not impact N resorption efficiency. In addition, P resorption efficiency and proficiency were linearly related to the ratio of inorganic P to organic P and organic P fraction in mature plant organs, respectively. Our findings suggest that the allocation pattern of plant P between inorganic and organic P fractions is an underlying mechanism controlling P resorption processes, and that P enrichment could strongly influence plant-mediated biogeochemical cycles through altered nutrient resorption in the freshwater wetlands of Northeast China. PMID:25631373

  6. The effect of Hurricane Katrina on nekton communities in the tidal freshwater marshes of Breton Sound, Louisiana, USA

    NASA Astrophysics Data System (ADS)

    Piazza, Bryan P.; La Peyre, Megan K.

    2009-06-01

    Hurricanes are climatically-induced resource pulses that affect community structure through the combination of physical and chemical habitat change. Estuaries are susceptible to hurricane pulses and are thought to be resilient to habitat change, because biotic communities often return quickly to pre-hurricane conditions. Although several examples provide evidence of quick recovery of estuarine nekton communities following a hurricane, few studies take place in tidal freshwater habitat where physical habitat effects can be extensive and may not be readily mitigated. We examined nekton communities (density, biomass, α and β diversity, % occurrence by residence status) in tidal freshwater marshes in Breton Sound, Louisiana, before and after a direct hit by Hurricane Katrina (2005). Vegetative marsh loss in the study area was extensive, and elevated salinity persisted for almost 6 months. Post-Katrina nekton density and biomass increased significantly, and the nekton community shifted from one of tidal freshwater/resident species to one containing brackish/migrant species, many of which are characterized by pelagic and benthic life history strategies. By spring 2007, the nekton community had shifted back to tidal freshwater/resident species, despite the enduring loss of vegetated marsh habitat.

  7. The effect of Hurricane Katrina on nekton communities in the tidal freshwater marshes of Breton Sound, Louisiana, USA

    USGS Publications Warehouse

    Piazza, Bryan P.; La Peyre, M.K.

    2009-01-01

    Hurricanes are climatically-induced resource pulses that affect community structure through the combination of physical and chemical habitat change. Estuaries are susceptible to hurricane pulses and are thought to be resilient to habitat change, because biotic communities often return quickly to pre-hurricane conditions. Although several examples provide evidence of quick recovery of estuarine nekton communities following a hurricane, few studies take place in tidal freshwater habitat where physical habitat effects can be extensive and may not be readily mitigated. We examined nekton communities (density, biomass, ?? and ?? diversity, % occurrence by residence status) in tidal freshwater marshes in Breton Sound, Louisiana, before and after a direct hit by Hurricane Katrina (2005). Vegetative marsh loss in the study area was extensive, and elevated salinity persisted for almost 6 months. Post-Katrina nekton density and biomass increased significantly, and the nekton community shifted from one of tidal freshwater/resident species to one containing brackish/migrant species, many of which are characterized by pelagic and benthic life history strategies. By spring 2007, the nekton community had shifted back to tidal freshwater/resident species, despite the enduring loss of vegetated marsh habitat. ?? 2009 Elsevier Ltd.

  8. Modeling of sulfur sequestration in coastal marsh soils

    SciTech Connect

    Hussein, A.H.; Rabenhorst, M.C.

    1999-12-01

    In transgressive coastal areas, marshes form in response to sea level rise and they generally represent an ideal environment for the sequestration of S species. Various predictions in rates of sea-level rise associated with global warming and concern for potential environmental problems from acid-sulfate weathering have prompted interest in modeling rates of S sequestration during coastal marsh pedogenesis. In this study, predictive models were derived for organic and pyrite S using data from pedons along two marsh transects in Dorchester County, MD. Organic S accumulates mainly in the organic horizons, and the rate is mainly driven by sea-level rise. Rates of organic S accumulation for the last 150 yr averaged 4.3 {+-} 1.19 g m{sup {minus}2} yr{sup {minus}1}; before this, long-term rates ranged between 0.95 and 2.05 g m{sup {minus}2} yr{sup {minus}1}. Pyrite S sequestration reflects accumulation both in organic horizons and in the submerged mineral soil. The rate of pyrite sequestration in organic horizons is generally driven by seal-level rise and the availability of reactive Fe. During the last 150 yr, the rates of pyrite accumulation averaged 7.2 {+-} 1.6 g m{sup {minus}2} yr{sup {minus}1}; before this, long-term rates ranged between 0.53 and 1.14 g m{sup {minus}2} yr{sup {minus}1}. Modeled predictions of pyrite and organic S accumulations in newly forming marshes during the next century were 15 {+-} 4.3 g m{sup {minus}2} yr{sup {minus}1} and 19 {+-} 8.2 g m{sup {minus}2} yr{sup {minus}1}, respectively.

  9. Seasonal patterns in energy partitioning of two freshwater marsh ecosystems in the Florida Everglades

    NASA Astrophysics Data System (ADS)

    Malone, Sparkle L.; Staudhammer, Christina L.; Loescher, Henry W.; Olivas, Paulo; Oberbauer, Steven F.; Ryan, Michael G.; Schedlbauer, Jessica; Starr, Gregory

    2014-08-01

    We analyzed energy partitioning in short- and long-hydroperiod freshwater marsh ecosystems in the Florida Everglades by examining energy balance components (eddy covariance derived latent energy (LE) and sensible heat (H) flux). The study period included several wet and dry seasons and variable water levels, allowing us to gain better mechanistic information about the control of and changes in marsh hydroperiods. The annual length of inundation is ~5 months at the short-hydroperiod site (25°26'16.5″N, 80°35'40.68″W), whereas the long-hydroperiod site (25°33'6.72″N, 80°46'57.36″W) is inundated for ~12 months annually due to differences in elevation and exposure to surface flow. In the Everglades, surface fluxes feed back to wet season precipitation and affect the magnitude of seasonal change in water levels through water loss as LE (evapotranspiration (ET)). At both sites, annual precipitation was higher than ET (1304 versus 1008 at the short-hydroperiod site and 1207 versus 1115 mm yr-1 at the long-hydroperiod site), though there were seasonal differences in the ratio of ET:precipitation. Results also show that energy balance closure was within the range found at other wetland sites (60 to 80%) and was lower when sites were inundated (60 to 70%). Patterns in energy partitioning covaried with hydroperiods and climate, suggesting that shifts in any of these components could disrupt current water and biogeochemical cycles throughout the Everglades region. These results suggest that the complex relationships between hydroperiods, energy exchange, and climate are important for creating conditions sufficient to maintain Everglades ecosystems.

  10. Modeling tidal freshwater marsh sustainability in the Sacramento-San Joaquin Delta under a broad suite of potential future scenarios

    USGS Publications Warehouse

    Swanson, Kathleen M.; Drexler, Judith Z.; Fuller, Christopher C.; Schoellhamer, David H.

    2015-01-01

    In this paper, we report on the adaptation and application of a one-dimensional marsh surface elevation model, the Wetland Accretion Rate Model of Ecosystem Resilience (WARMER), to explore the conditions that lead to sustainable tidal freshwater marshes in the Sacramento–San Joaquin Delta. We defined marsh accretion parameters to encapsulate the range of observed values over historic and modern time-scales based on measurements from four marshes in high and low energy fluvial environments as well as possible future trends in sediment supply and mean sea level. A sensitivity analysis of 450 simulations was conducted encompassing a range of eScholarship provides open access, scholarly publishing services to the University of California and delivers a dynamic research platform to scholars worldwide. porosity values, initial elevations, organic and inorganic matter accumulation rates, and sea-level rise rates. For the range of inputs considered, the magnitude of SLR over the next century was the primary driver of marsh surface elevation change. Sediment supply was the secondary control. More than 84% of the scenarios resulted in sustainable marshes with 88 cm of SLR by 2100, but only 32% and 11% of the scenarios resulted in surviving marshes when SLR was increased to 133 cm and 179 cm, respectively. Marshes situated in high-energy zones were marginally more resilient than those in low-energy zones because of their higher inorganic sediment supply. Overall, the results from this modeling exercise suggest that marshes at the upstream reaches of the Delta—where SLR may be attenuated—and high energy marshes along major channels with high inorganic sediment accumulation rates will be more resilient to global SLR in excess of 88 cm over the next century than their downstream and low-energy counterparts. However, considerable uncertainties exist in the projected rates of sea-level rise and sediment avail-ability. In addition, more research is needed to constrain future

  11. Man's Impact on the Environment: The Freshwater Marsh as an Ecosystem.

    ERIC Educational Resources Information Center

    Brevard County School Board, Cocoa, FL.

    This teaching guide deals with the ecological composition of a marsh and the ecological effects certain changes might have on a marsh. This study focuses on the fresh water marsh found in the Florida Everglades which can furnish the student with several examples of past, present, and possible future ecological changes which impact this ecosystem.…

  12. Copepod (Crustacea) emergence from soils from everglades marshes with different hydroperiods

    USGS Publications Warehouse

    Loftus, W.F.; Reid, J.W.

    2000-01-01

    During a severe drought period in the winter and spring of 1989, we made three collections of dried marsh soils from freshwater sloughs in Everglades National Park, Florida, at sites characterized by either long or intermediate annual periods of flooding (hydroperiod). After rehydrating the soils in aquaria, we documented the temporal patterns of copepod emergence over two-week periods. The species richness of copepods in the rehydrated soils was lower than in pre-drought samples from the same slough sites. Only six of the 16 species recorded from the Everglades emerged in the aquarium tests. The long hydroperiod site had a slightly different assemblage and higher numbers of most species than the intermediate-hydroperiod sites. More individuals and species emerged from the early dry-season samples compared with samples taken later in the dry season. The harpacticoid, Cletocamptus deitersi, and the cyclopoid, Microcyclops rubellus, were abundant at most sites. The cyclopoids - Ectocyclops phaleratus, Homocyclops ater, and Paracyclops chiltoni - are new records for the Everglades. We infer that 1) only a subset of Everglades copepod species can survive drought by resting in soils; and that 2) survival ability over time differs by species.

  13. A long-term comparison of carbon sequestration rates in impounded and naturally tidal freshwater marshes along the lower Waccamaw River, South Carolina

    USGS Publications Warehouse

    Drexler, Judith Z.; Krauss, Ken W.; Sasser, M. Craig; Fuller, Christopher C.; Swarzenski, Christopher M.; Powell, Amber; Swanson, Kathleen M.; Orlando, James

    2013-01-01

    Carbon storage was compared between impounded and naturally tidal freshwater marshes along the Lower Waccamaw River in South Carolina, USA. Soil cores were collected in (1) naturally tidal, (2) moist soil (impounded, seasonally drained since ~1970), and (3) deeply flooded “treatments” (impounded, flooded to ~90 cm since ~2002). Cores were analyzed for % organic carbon, % total carbon, bulk density, and 210Pb and 137Cs for dating purposes. Carbon sequestration rates ranged from 25 to 200 g C m−2 yr−1 (moist soil), 80–435 g C m−2 yr−1 (naturally tidal), and 100–250 g C m−2 yr−1 (deeply flooded). The moist soil and naturally tidal treatments were compared over a period of 40 years. The naturally tidal treatment had significantly higher carbon storage (mean = 219 g C m−2 yr−1 vs. mean = 91 g C m−2 yr−1) and four times the vertical accretion rate (mean = 0.84 cm yr−1 vs. mean = 0.21 cm yr−1) of the moist soil treatment. The results strongly suggest that the long drainage period in moist soil management limits carbon storage over time. Managers across the National Wildlife Refuge system have an opportunity to increase carbon storage by minimizing drainage in impoundments as much as practicable.

  14. Ambient and potential denitrification rates in marsh soils of Northeast Creek and Bass Harbor Marsh watersheds, Mount Desert Island, Maine

    USGS Publications Warehouse

    Huntington, Thomas G.; Culbertson, Charles W.; Duff, John H.

    2012-01-01

    Nutrient enrichment from atmospheric deposition, agricultural activities, wildlife, and domestic sources is a concern at Acadia National Park on Mount Desert Island, Maine, because of the potential problems of degradation of water quality and eutrophication in estuaries. Degradation of water quality has been observed at Bass Harbor Marsh estuary in the park but only minimally in Northeast Creek estuary. Previous studies at Acadia National Park have estimated nutrient inputs to estuaries from atmospheric deposition and surface-water runoff, and have identified shallow groundwater as an additional potential source of nutrients. Previous studies at Acadia National Park have assumed that a certain fraction of the nitrogen input was removed through microbial denitrification, but rates of denitrification (natural or maximum potential) in marsh soils have not been determined. The U.S. Geological Survey, in cooperation with Acadia National Park, measured in-place denitrification rates in marsh soils in Northeast Creek and in Bass Harbor Marsh watersheds during summer 2008 and summer 2009. Denitrification was measured under ambient conditions as well as after additions of inorganic nitrogen and glucose. In-place denitrification rates under ambient conditions were similar to those reported for other coastal wetlands, although they were generally lower than those reported for salt marshes having high ambient concentrations of nitrate (NO3). Denitrification rates generally increased by at least an order of magnitude following NO3 additions, with or without glucose (as the carbohydrate) additions, compared with the ambient treatments that received no nutrient additions. The treatment that added both glucose and NO3 resulted in a variety of denitrification responses when compared with the addition of NO3 alone. In most cases, the addition of glucose to a given rate of NO3 addition resulted in higher rates of denitrification. These variable responses indicate that the amount of

  15. Patterns of short-term sedimentation in a freshwater created marsh.

    PubMed

    Harter, Sarah K; Mitsch, William J

    2003-01-01

    This study investigated different sedimentation measurement techniques and examined patterns of short-term sedimentation in two 1-ha replicate created freshwater marshes in central Ohio, USA. Short-term (one-year) sediment accumulation above feldspar, clay, glitter, and sand artificial marker horizons was compared at different water depths and distances from wetland inflow. A sediment budget was also constructed from turbidity and suspended sediment data for comparison with marker horizons. Glitter and sand marker horizons were the most successful for measuring sediment accumulation (81-100% marker recovery), while clay markers were completely unsuccessful. The sedimentation rate for both wetlands averaged 4.9 cm yr(-1) (36 kg m(-2) yr(-1)), and ranged from 1.82 to 9.23 cm yr(-1) (12.4 to 69.7 kg m(-2) yr(-1)). Sedimentation rates in deep, open water areas were significantly higher than in shallow, vegetated areas for both wetlands (t test, p < 0.05). However, observed sedimentation patterns may be attributed more to preferential flow through open water areas than to water depth or presence of vegetation. Contrary to the expected spatial distribution, sedimentation was highly variable within the wetlands, suggesting that bioturbation and turbulence may cause significant resuspension or that high hydrologic loads may distribute sediments throughout the basins. A sediment budget estimated sediment retention of approximately 740 g m(-2) yr(-1) per wetland (43% removal rate), yet gross sediment accumulation was 36,000 g m(-2) yr(-1) measured by marker horizons. These results suggest that erosive forces may have influenced sedimentation, but also may indicate problems with the sediment budget calculation methodology.

  16. Effects of nitrogen on the ecosystem respiration, CH4 and N2O emissions to the atmosphere from the freshwater marshes in northeast China

    NASA Astrophysics Data System (ADS)

    Zhang, Lihua; Song, Changchun; Zheng, Xunhua; Wang, Dexuan; Wang, Yiyong

    2007-04-01

    Freshwater marshes could be a source of greenhouse gases emission because they contain large amounts of soil carbon and nitrogen. These emissions are strongly influenced by exogenous nitrogen. We investigate the effects of exogenous nitrogen on ecosystem respiration (CO2), CH4 and N2O emissions from freshwater marshes in situ in the Sanjiang Plain Northeast of China during the growing seasons of 2004 and 2005, using a field fertilizer experiment and the static opaque chamber/GC techniques. The results show that there were no significant differences in patterns of seasonal variations of CO2 and CH4 among the fertilizer and non-fertilizer treatments, but the seasonal patterns of N2O emission were significantly influenced by the exogenous nitrogen. Seasonal averages of the CO2 flux from non-fertilizer and fertilizer were 987.74 and 1,344.35 mg m -2 h -1, respectively, in 2004, and 898.59 and 2,154.17 mg m -2 h -1, respectively, in 2005. And the CH4 from the control and fertilizer treatments were 6.05 and 13.56 mg m -2 h -1 and 0.72 and 1.88 mg m -2 h -1, respectively, in 2004 and 2005. The difference of N2O flux between the fertilizer and non-fertilizer treatments is also significant either in 2004 and 2005. On the time scale of 20-, 100-, and 500-year periods, the integrated global warming potential (GWP) of CO2 +CH4 +N2O released during the two growing seasons for the treatment of fertilizer was 97, 94 and 89%, respectively, higher than that for the control, which suggested that the nitrogen fertilizer can enhance the GWP of the CH4 and N2O either in long time or short time scale.

  17. Effects of soil stratigraphy on pore-water flow in a creek-marsh system

    NASA Astrophysics Data System (ADS)

    Xin, Pei; Kong, Jun; Li, Ling; Barry, D. A.

    2012-12-01

    SummaryIn coastal marshes, low-permeability mud is often found overlying high permeability sandy deposits. A recently developed 3D creek-marsh model was used to investigate the effects of soil stratigraphy (a mud layer overlying a sandy-loam layer) on pore-water flow in the marsh. Simulation results showed significant modifications of tide-induced pore-water flow due to the layered soil. The presence of the lower sandy-loam layer with a relatively high hydraulic conductivity not only increased the pore-water flow speed but also changed the flow direction, particularly in the upper mud layer where enhanced vertical flow dominated. Particle tracking revealed large changes in the overall pore-water circulation pattern, and associated particle travel path and time due to the influence of the soil stratigraphy. While the amount of water exchange between the marsh soil and tidal water increased, the residence time of particles in both soil layers was reduced. Sensitivity analysis showed the importance of soil compressibility, capillary rise and hydraulic conductivity contrast between the soil layers in modulating the effect of soil stratigraphy. In particular, the total net influx and efflux across the marsh surface (including the creek/channel bank and bed) increased proportionally with the square root of the lower layer's hydraulic conductivity. These results demonstrated the interplay of tides, marsh topography and soil stratigraphy in controlling the pore-water flow characteristics, which underpin solute transport and transformation as well as the aeration condition in the marsh soil.

  18. Can elevated CO2 modify regeneration from seed banks of floating freshwater marshes subjected to rising sea-level?

    USGS Publications Warehouse

    Middleton, Beth A.; McKee, Karen L.

    2012-01-01

    Higher atmospheric concentrations of CO2 can offset the negative effects of flooding or salinity on plant species, but previous studies have focused on mature, rather than regenerating vegetation. This study examined how interacting environments of CO2, water regime, and salinity affect seed germination and seedling biomass of floating freshwater marshes in the Mississippi River Delta, which are dominated by C3 grasses, sedges, and forbs. Germination density and seedling growth of the dominant species depended on multifactor interactions of CO2 (385 and 720 μl l-1) with flooding (drained, +8-cm depth, +8-cm depth-gradual) and salinity (0, 6% seawater) levels. Of the three factors tested, salinity was the most important determinant of seedling response patterns. Species richness (total = 19) was insensitive to CO2. Our findings suggest that for freshwater marsh communities, seedling response to CO2 is species-specific and secondary to salinity and flooding effects. Elevated CO2 did not ameliorate flooding or salinity stress. Consequently, climate-related changes in sea level or human-caused alterations in hydrology may override atmospheric CO2 concentrations in driving shifts in this plant community. The results of this study suggest caution in making extrapolations from species-specific responses to community-level predictions without detailed attention to the nuances of multifactor responses.

  19. Soil Carbon Stocks in a Shifting Ecosystem; Climate Induced Migration of Mangroves into Salt Marsh

    NASA Astrophysics Data System (ADS)

    Simpson, L.; Osborne, T.; Feller, I. C.

    2015-12-01

    Across the globe, coastal wetland vegetation distributions are changing in response to climate change. The increase in global average surface temperature has already caused shifts in the structure and distribution of many ecological communities. In parts of the southeastern United States, increased winter temperatures have resulted in the poleward range expansion of mangroves at the expense of salt marsh habitat. Our work aims to document carbon storage in the salt marsh - mangrove ecotone and any potential changes in this reservoir that may ensue due to the shifting range of this habitat. Differences in SOM and C stocks along a latitudinal gradient on the east coast of Florida will be presented. The gradient studied spans 342 km and includes pure mangrove habitat, the salt marsh - mangrove ecotone, and pure salt marsh habitat.This latitudinal gradient gives us an exceptional opportunity to document and investigate ecosystem soil C modifications as mangroves transgress into salt marsh habitat due to climatic change.

  20. Copper and lead levels in crops and soils of the Holland Marsh Area-Ontario

    SciTech Connect

    Czuba, M.; Hutchinson, T.C.

    1980-01-01

    A study was made of the occurrence, distribution, and concentrations of the heavy metals copper (Cu) and lead (Pb) in the soils and crops of the important horticultural area north of Toronto known as the Holland Marsh. The soils are deep organic mucks (> 85% organic matter), derived by the drainage of black marshland soils, which has been carried out over the past 40 years. A comparison is made between the Pb and Cu concentrations in undrained, uncultivated areas of the marsh and in the intensively used horticultural area. Analyses show a marked accumulation of Cu in surface layers of cultivated soils, with a mean surface concentration of 130 ppM, declining to 20 ppM at a 32-cm depth. Undrained (virgin) soils of the same marshes had < 20 ppM at all depths. Lead concentrations also declined through the profile, from concentrations of 22 to 10 ppM. In comparison, undrained areas had elevated Pb levels. Cultivation appeared to have increased Cu, but lowered Pb in the marsh. Copper and lead levels found in the crops were generally higher in the young spring vegetables than in the mature fall ones. Leafy crops, especially lettuce (Lactuca L.) and celery (Apium graveolens), accumulated higher Pb levels in their foliage compared with levels in root crops. Cultivation procedures, including past pesticide applications and fertilizer additions, appeared to be principal sources of Cu. Mobility from the soil and into the plant for these elements in the marsh muck soils is discussed.

  1. Below the disappearing marshes of an urban estuary: historic nitrogen trends and soil structure

    USGS Publications Warehouse

    Wigand, Cathleen; Roman, Charles T.; Davey, Earl; Stolt, Mark; Johnson, Roxanne; Hanson, Alana; Watson, Elizabeth B.; Moran, S. Bradley; Cahoon, Donald R.; Lynch, James C.; Rafferty, Patricia

    2014-01-01

    Marshes in the urban Jamaica Bay Estuary, New York, USA are disappearing at an average rate of 13 ha/yr, and multiple stressors (e.g., wastewater inputs, dredging activities, groundwater removal, and global warming) may be contributing to marsh losses. Among these stressors, wastewater nutrients are suspected to be an important contributing cause of marsh deterioration. We used census data, radiometric dating, stable nitrogen isotopes, and soil surveys to examine the temporal relationships between human population growth and soil nitrogen; and we evaluated soil structure with computer-aided tomography, surface elevation and sediment accretion trends, carbon dioxide emissions, and soil shear strength to examine differences among disappearing (Black Bank and Big Egg) and stable marshes (JoCo). Radiometric dating and nitrogen isotope analyses suggested a rapid increase in human wastewater nutrients beginning in the late 1840s, and a tapering off beginning in the 1930s when wastewater treatment plants (WWTPs) were first installed. Current WWTPs nutrient loads to Jamaica Bay are approximately 13 995 kg N/d and 2767 kg P/d. At Black Bank, the biomass and abundance of roots and rhizomes and percentage of organic matter on soil were significantly lower, rhizomes larger in diameter, carbon dioxide emission rates and peat particle density significantly greater, and soil strength significantly lower compared to the stable JoCo Marsh, suggesting Black Bank has elevated decomposition rates, more decomposed peat, and highly waterlogged peat. Despite these differences, the rates of accretion and surface elevation change were similar for both marshes, and the rates of elevation change approximated the long term relative rate of sea level rise estimated from tide gauge data at nearby Sandy Hook, New Jersey. We hypothesize that Black Bank marsh kept pace with sea level rise by the accretion of material on the marsh surface, and the maintenance of soil volume through production of

  2. Below the disappearing marshes of an urban estuary: historic nitrogen trends and soil structure.

    PubMed

    Wigand, Cathleen; Roman, Charles T; Davey, Earl; Stolt, Mark; Johnson, Roxanne; Hanson, Alana; Watson, Elizabeth B; Moran, S Bradley; Cahoon, Donald R; Lynch, James C; Rafferty, Patricia

    2014-06-01

    Marshes in the urban Jamaica Bay Estuary, New York, USA are disappearing at an average rate of 13 ha/yr, and multiple stressors (e.g., wastewater inputs, dredging activities, groundwater removal, and global warming) may be contributing to marsh losses. Among these stressors, wastewater nutrients are suspected to be an important contributing cause of marsh deterioration. We used census data, radiometric dating, stable nitrogen isotopes, and soil surveys to examine the temporal relationships between human population growth and soil nitrogen; and we evaluated soil structure with computer-aided tomography, surface elevation and sediment accretion trends, carbon dioxide emissions, and soil shear strength to examine differences among disappearing (Black Bank and Big Egg) and stable marshes (JoCo). Radiometric dating and nitrogen isotope analyses suggested a rapid increase in human wastewater nutrients beginning in the late 1840s, and a tapering off beginning in the 1930s when wastewater treatment plants (WWTPs) were first installed. Current WWTPs nutrient loads to Jamaica Bay are approximately 13 995 kg N/d and 2767 kg P/d. At Black Bank, the biomass and abundance of roots and rhizomes and percentage of organic matter on soil were significantly lower, rhizomes larger in diameter, carbon dioxide emission rates and peat particle density significantly greater, and soil strength significantly lower compared to the stable JoCo Marsh, suggesting Black Bank has elevated decomposition rates, more decomposed peat, and highly waterlogged peat. Despite these differences, the rates of accretion and surface elevation change were similar for both marshes, and the rates of elevation change approximated the long-term relative rate of sea level rise estimated from tide gauge data at nearby Sandy Hook, New Jersey. We hypothesize that Black Bank marsh kept pace with sea level rise by the accretion of material on the marsh surface, and the maintenance of soil volume through production of

  3. Below the disappearing marshes of an urban estuary: historic nitrogen trends and soil structure.

    PubMed

    Wigand, Cathleen; Roman, Charles T; Davey, Earl; Stolt, Mark; Johnson, Roxanne; Hanson, Alana; Watson, Elizabeth B; Moran, S Bradley; Cahoon, Donald R; Lynch, James C; Rafferty, Patricia

    2014-06-01

    Marshes in the urban Jamaica Bay Estuary, New York, USA are disappearing at an average rate of 13 ha/yr, and multiple stressors (e.g., wastewater inputs, dredging activities, groundwater removal, and global warming) may be contributing to marsh losses. Among these stressors, wastewater nutrients are suspected to be an important contributing cause of marsh deterioration. We used census data, radiometric dating, stable nitrogen isotopes, and soil surveys to examine the temporal relationships between human population growth and soil nitrogen; and we evaluated soil structure with computer-aided tomography, surface elevation and sediment accretion trends, carbon dioxide emissions, and soil shear strength to examine differences among disappearing (Black Bank and Big Egg) and stable marshes (JoCo). Radiometric dating and nitrogen isotope analyses suggested a rapid increase in human wastewater nutrients beginning in the late 1840s, and a tapering off beginning in the 1930s when wastewater treatment plants (WWTPs) were first installed. Current WWTPs nutrient loads to Jamaica Bay are approximately 13 995 kg N/d and 2767 kg P/d. At Black Bank, the biomass and abundance of roots and rhizomes and percentage of organic matter on soil were significantly lower, rhizomes larger in diameter, carbon dioxide emission rates and peat particle density significantly greater, and soil strength significantly lower compared to the stable JoCo Marsh, suggesting Black Bank has elevated decomposition rates, more decomposed peat, and highly waterlogged peat. Despite these differences, the rates of accretion and surface elevation change were similar for both marshes, and the rates of elevation change approximated the long-term relative rate of sea level rise estimated from tide gauge data at nearby Sandy Hook, New Jersey. We hypothesize that Black Bank marsh kept pace with sea level rise by the accretion of material on the marsh surface, and the maintenance of soil volume through production of

  4. Greenhouse gas emissions and carbon sequestration potential in restored freshwater marshes in the Sacramento San-Joaquin Delta, California

    NASA Astrophysics Data System (ADS)

    Knox, S. H.; Sturtevant, C. S.; Oikawa, P. Y.; Matthes, J. H.; Dronova, I.; Anderson, F. E.; Verfaillie, J. G.; Baldocchi, D. D.

    2015-12-01

    Wetlands can be effective carbon sinks due to limited decomposition rates in anaerobic soil. As such there is a growing interest in the use of restored wetlands as biological carbon sequestration projects for greenhouse gas (GHG) emission reduction programs. However, using wetlands to offset emissions requires accurate accounting of both carbon dioxide (CO2) and methane (CH4) exchange since wetlands are also sources of CH4. To date few studies have quantified CO2 and CH4 exchange from restored wetlands or assessed how these fluxes vary during ecosystem development. In this study, we report on multiple years of eddy covariance measurements of CO2 and CH4 fluxes from two restored freshwater marshes of differing ages (one restored in 1997 and the other in 2010) in the Sacramento-San Joaquin Delta, CA. Measurements at the younger restored wetland started in October 2010 and began in April 2011 at the older site. The younger restored wetland showed considerable year-to-year variability in the first 4 years following restoration, with CO2 uptake ranging from 12 to 420 g C-CO2 m-2 yr-1. Net CO2 uptake at the older wetland was overall greater than at the younger site, ranging from 292 to 585 g C-CO2 m-2 yr-1. Methane emissions were on average higher at the younger wetland (46 g C-CH4 m-2 yr-1) relative to the older one (33 g C-CH4 m-2 yr-1). In terms of the GHG budgets (assuming a global warming potential of 34), the younger wetland was consistently a GHG source, emitting on average 1439 g CO2 eq m-2 yr-1, while the older wetland was a GHG sink in two of the years of measurement (sequestering 651 and 780 g CO2 eq m-2 yr-1 in 2012 and 2013, respectively) and a source of 750 g CO2 eq m-2 yr-1 in 2014. This study highlights how dynamic CO2 and CH4 fluxes are in the first years following wetland restoration and suggests that restored wetlands have the potential to act as GHG sinks but this may depend on time since restoration.

  5. Variations in clay mineralogy and sediment texture of salt marsh soils on the Eastern Shore of Virginia

    SciTech Connect

    Robinson, S.E.; Furman, T. . Dept. of Environmental Sciences)

    1993-03-01

    On the Eastern Shore of VA, relative sea level rise has resulted in encroachment of marsh onto upland areas. The amount and type of sediment determines the morphologic environment of the system: lagoon, mudflat, low marsh, high marsh or upland. This research is part of a study to examine the relationship between marsh soil characteristics and the production of Spartina alterniflora. The productivity of marsh vegetation depends on the import and entrapment of sediments that maintain marsh elevation and control water and nutrient availability. This work focused on distribution patterns of sediment texture and mineralogy. One meter deep cores were taken at marsh sites with 10 cm intervals homogenized for analysis. In order to distinguish potential sediment sources, samples were also taken from upland soil pits on the mainland and dredged one-half mile seaward of the barrier islands. Samples have undergone size analysis with a hydrometer and the clay fraction has been analyzed by XRD. Results from the marsh surface indicate large variations in sediment texture, but only slight differences in clay mineralogy between marshes. Barrier island marshes contain a higher average sand content than mainland marshes because of their closer proximity to barrier island beaches and inputs from overwash deposits. The clay minerals found in all marsh surface deposits are illite and chlorite, indicative of oceanic clays. The clay mineralogy of upland soils (kaolinite, chlorite, illite, vermiculite mixed-layer clay) differs from marsh surface clays, indicating that recent sediment deposited on the marsh surface is no upland soil but rather material brought in through tidal inlets. The sediment texture and clay mineralogy at different depths varies as a function of the past geomorphic and depositional history of the site. These data will be used to determine the timing of marsh development on flooded upland sites and to determine the pre-Holocene source of inorganic sediment inputs.

  6. Dispersal potential of a tidal river and colonization of a created tidal freshwater marsh

    PubMed Central

    Leck, Mary Allessio

    2012-01-01

    Background and aims A created tidal freshwater wetland, with no extant seed bank, was monitored to evaluate the colonization potential of a tidal river, vegetation and seed bank changes, and also species persistence. Methodology The 32.3-ha mitigation, adjacent to the Delaware River, was completed in 1994. Three sites, with differing completion dates, and three locations (channel edge, midpoint, upland edge) were sampled. From 1995 to 1999, surveys permitted a view of initial dynamics involving soil seed bank density or field vegetation cover, as well as species composition. Vegetation was monitored through 2011, and in 2011 a seed bank survey was also undertaken. Principal results Between 1995 and 1999, 177 species emerged from soil samples, with a maximum of 32.3 ± 1.8 (SE)/sample. Eight species were added in 2011, indicating continuing dispersal and input. Comparing species richness across three sites for midpoint locations, 2011 totals and species/sample were lower (61–90 % and 53–72 %, respectively) than 1998 values. In vegetation plots during the first 5 years, 72 cover species were present. In 2011, there were 44; 14 were new and the majority (13) were woody and part of an overhanging edge canopy. Dispersal was primarily via water. Overall, the trend was towards lower seed bank densities, except for Mikania scandens and Phragmites australis which had higher densities, as well as cover values. Species richness also decreased. Species varied in persistence in the seed bank and vegetation, and among sites and with location. Initial site colonization differences were still apparent in 2011 seed bank samples. While present, Lythrum salicaria did not reduce species richness; Phragmites, in contrast, had substantial impact. Conclusions The single most important change was an increase in Phragmites in the vegetation. Vegetation dynamics are now determined by this species, and the persistent seed bank and continuing dispersal input have little obvious future in

  7. Six years of monitoring annual changes in a freshwater marsh with SPOT HRV data

    SciTech Connect

    Mackey, H.E. Jr.

    1992-01-01

    Fifteen dates of spring-time SPOT HRV data along with near-concurrent vertical aerial photographic and phenological data from spring 1987 through spring 1992 were analyzed to monitor annual changes in a 150-hectare, southeastern floodplain marsh. The marsh underwent rapid changes during the six years from a swamp dominated by non-persistent, thermally tolerant macrophytes to persistent macrophyte and shrub-scrub communities as reactor discharges declined to Pen Branch. Savannah River flooding was also important in the timing of the shift of these wetland communities. SPOT HRV data proved to be an efficient and effective method to monitor trends in these wetland community changes.

  8. Six years of monitoring annual changes in a freshwater marsh with SPOT HRV data

    SciTech Connect

    Mackey, H.E. Jr.

    1992-12-01

    Fifteen dates of spring-time SPOT HRV data along with near-concurrent vertical aerial photographic and phenological data from spring 1987 through spring 1992 were analyzed to monitor annual changes in a 150-hectare, southeastern floodplain marsh. The marsh underwent rapid changes during the six years from a swamp dominated by non-persistent, thermally tolerant macrophytes to persistent macrophyte and shrub-scrub communities as reactor discharges declined to Pen Branch. Savannah River flooding was also important in the timing of the shift of these wetland communities. SPOT HRV data proved to be an efficient and effective method to monitor trends in these wetland community changes.

  9. Recognition of extensive freshwater and brackish marshes and of multiple transgressions and regressions: The Holocene wetlands of the Delaware Bay and Atlantic Ocean coasts

    SciTech Connect

    Yi, H.I. . Dept. of Geology)

    1992-01-01

    Extensive and closely spaced cores (204) were analyzed to find detailed facies (microfacies) and paleoenvironments in the subsurface sediments along the Delaware Bay and Atlantic Ocean. To determine detailed facies and paleoenvironments, several composite methods were employed: traditional lithological analysis, botanical identification, macro- and micro-paleontological analysis, grain size analysis, organic and inorganic content, water content, mineral composition, particulate plant, and C-14 dating. Twenty-two sedimentary microfacies were identified in the surface and subsurface sediments of the study area. Most of the lower section of the Holocene sediments contained freshwater and brackish marsh microfacies which alternated or intercalated with fluvial microfacies or brackish tidal flat/tidal stream microfacies. After tides encroached upon the freshwater marshes and swamps, several events of transgression and regression were recorded in the stratigraphic section. Finally, saline paleoenvironments predominated at the top section of subsurface sediments. Within saline facies, three subgroups of salt marsh microfacies were identified: high salt marsh sub-microfacies, middle salt marsh sub-microfacies were identified: high salt marsh sub-microfacies, middle salt marsh sub-microfacies, and low salt marsh sub-microfacies. The major controlling factors of these paleoenvironmental changes were local relative sea-level fluctuations, sediment supply, pre-Holocene configuration, fluvial activity, groundwater influence, climatic change, sediment compaction, tectonics, isostasy and biological competition. Ten events of transgression and regression in some areas were found in about 2,000 years, but other areas apparently contained no evidence of multiple events of transgression and regression. Some other areas showed one or two distinctive events of transgression and regression. Therefore, further investigation is necessary to understand the details of these records.

  10. NATIVE AND INTRODUCED LARVAL FISHES IN SUISAN MARSH, CALIFORNIA,: THE EFFECTS OF FRESHWATER FLOW

    EPA Science Inventory

    We sampled ichthyoplankton weekly in Suisun Marsh in the San Francisco Estuary from February to June each year from 1994 to 1999. We collected approximately 227,900 fish, predominantly shimofuri goby Tridentiger bifasciatus (60%) and prickly sculpin Cottus asper (33%). Principal ...

  11. Modeling seasonal dynamics of the small fish cohorts in fluctuating freshwater marsh landscapes

    USGS Publications Warehouse

    Jopp, Fred; DeAngelis, Donald L.; Trexler, Joel C.

    2010-01-01

    Small-bodied fishes constitute an important assemblage in many wetlands. In wetlands that dry periodically except for small permanent waterbodies, these fishes are quick to respond to change and can undergo large fluctuations in numbers and biomasses. An important aspect of landscapes that are mixtures of marsh and permanent waterbodies is that high rates of biomass production occur in the marshes during flooding phases, while the permanent waterbodies serve as refuges for many biotic components during the dry phases. The temporal and spatial dynamics of the small fishes are ecologically important, as these fishes provide a crucial food base for higher trophic levels, such as wading birds. We develop a simple model that is analytically tractable, describing the main processes of the spatio-temporal dynamics of a population of small-bodied fish in a seasonal wetland environment, consisting of marsh and permanent waterbodies. The population expands into newly flooded areas during the wet season and contracts during declining water levels in the dry season. If the marsh dries completely during these times (a drydown), the fish need refuge in permanent waterbodies. At least three new and general conclusions arise from the model: (1) there is an optimal rate at which fish should expand into a newly flooding area to maximize population production; (2) there is also a fluctuation amplitude of water level that maximizes fish production, and (3) there is an upper limit on the number of fish that can reach a permanent waterbody during a drydown, no matter how large the marsh surface area is that drains into the waterbody. Because water levels can be manipulated in many wetlands, it is useful to have an understanding of the role of these fluctuations.

  12. Erosion and deposition in tidal marshes revisited by accounting for soil creep

    NASA Astrophysics Data System (ADS)

    Mariotti, G.

    2015-12-01

    Channels regulate the sediment dynamics of tidal marshes, affect the capacity of marsh platforms to keep pace with sea level rise and can contribute to the loss of the low marsh, a critical area for nutrient cycling and ecosystem services. A puzzling aspect of marsh dynamics is the occurrence of slumping on the channel banks despite the absence of channel widening and migration. An apparently unrelated conundrum is why vertical accretion rates on the low marsh adjacent to channels are often higher than the rate of relative sea level rise: this sedimentation excess should not occur in a regime of equilibrium or in a regime of accelerated sea level rise. Here I suggest that bank erosion and sedimentation surplus are linked and can be explained by soil creep, the process by which soil is moved downslope by gravity. A novel model for a channel-platform cross section predicts an equilibrium state where the sedimentation surplus on the channel banks is transferred by creep toward the channel, where an erosional surplus and a suspend load transport toward the bank close the sediment budget. This model predicts that bank slumping can occur even if marshes are in equilibrium with sea level rise. As a consequence slumping is not an unequivocal indicator of ongoing marsh loss. The model also predicts that, at equilibrium, sedimentation rates adjacent to channels are higher than the rate of sea level rise. This implies that a sedimentation surplus is not a sign of resilience to sea level rise acceleration. The framework proposed by the model will affect how erosion and deposition measurements adjacent to marsh channels are interpreted.

  13. Denitrification rates in marsh soils and hydrologic and water quality data for Northeast Creek and Bass Harbor Marsh watersheds, Mount Desert Island, Maine

    USGS Publications Warehouse

    Huntington, Thomas G.; Culbertson, Charles W.; Duff, John H.

    2011-01-01

    Nutrient enrichment from atmospheric deposition, agricultural activities, wildlife, and domestic sources is a concern at Acadia National Park because of the potential problem of water-quality degradation and eutrophication in estuaries. Water-quality degradation has been observed at the park's Bass Harbor Marsh estuary but minimal degradation is observed in Northeast Creek estuary. Previous studies at Acadia National Park have estimated nutrient inputs to estuaries from atmospheric deposition and surface-water runoff, and have identified shallow groundwater as an additional potential nutrient source. Previous studies at Acadia National Park have assumed that a certain fraction of the nitrogen input was removed through microbial denitrification, but rates of denitrification (natural or maximum potential) in marsh soils have not been determined. The U.S. Geological Survey, in cooperation with Acadia National Park, measured in situ denitrification rates in marsh soils in Northeast Creek and Bass Harbor Marsh watersheds during the summer seasons of 2008 and 2009. Denitrification was measured under ambient conditions and following inorganic nitrogen and glucose additions. Laboratory incubations of marsh soils with and without acetylene were conducted to determine average ratios of nitrous oxide (N2O) to nitrogen (N2) produced during denitrification. Surface water and groundwater samples were analyzed for nutrients, specific conductance, temperature, and dissolved oxygen. Water level was recorded continuously during the growing season in Fresh Meadow Marsh in the Northeast Creek Watershed.

  14. Effect of root metabolism on the post-depositional mobilization of mercury in salt marsh soils

    SciTech Connect

    Marins, R.V. |; Lacerda, L.D.; Goncalves, G.O.; Paiva, E.C. de

    1997-05-01

    Salt marsh soils are an efficient sink for trace metals associated with particulate material in tidal waters and have been proposed as monitors for trace metal contamination in coastal areas, on the basis that vertical profiles provide a record of loading rates. However, the complex nature of the biogeochemical processes occurring in these soils, may prevent this use, since post-depositional mobilization of some trace metals may occur, resulting in their release to pore water, vertical movement through the soil column and exchange with overlying waters. This paper presents and compares the vertical profiles of mercury in soil cores taken under a Spartina altermilflora marsh and in adjacent mod flats without plant cover to characterize the role played by this plant on the post-depositional movement of mercury through the soil and on the possibility of using such profiles as indicators of mercury loading rates in coastal areas. 19 refs., 1 fig., 1 tab.

  15. Depth-distribution patterns and control of soil organic carbon in coastal salt marshes with different plant covers

    PubMed Central

    Bai, Junhong; Zhang, Guangliang; Zhao, Qingqing; Lu, Qiongqiong; Jia, Jia; Cui, Baoshan; Liu, Xinhui

    2016-01-01

    This study was carried out in three kinds of salt marshes according to the vegetation covers, including Phragmites australis salt marsh (PSM), Suaeda salus salt marsh (SSM) and Tamarix chinensis-Suaeda salus salt marsh (TSSM). We applied allometric function, exponential function and logistic function to model the depth distribution of the SOCv and SOCc for each salt marsh, respectively. The results showed that the exponential function fits the depth distribution of the SOCv more well than other two functions. The SOCc can be fitted very well by all three functions for three salt marsh (Adj. R2 > 0.99), of which the allometric function was the best one. The mean topsoil concentration factors (TCFs) of three salt marshes were beyond 0.1, which means the SOC enrichment in surface soils due to plant cycling, but TCFs in PSM were significantly higher than those in SSM (P < 0.05). Nearly 30% of SOC was concentrated in the top 20 cm soils. The results of general linear model (GLM) suggested that four soil properties (soil water content, pH, soil salt content and silt+clay) and their interactive effects explained about 80% of the total variation of SOC stock in the top 20 cm soils and the 20–100 cm soil layers. PMID:27708421

  16. In situ burning of oil in coastal marshes. 1. Vegetation recovery and soil temperature as a function of water depth, oil type, and marsh type.

    PubMed

    Lin, Qianxin; Mendelssohn, Irving A; Bryner, Nelson P; Walton, William D

    2005-03-15

    In-situ burning of oiled wetlands potentially provides a cleanup technique that is generally consistent with present wetland management procedures. The effects of water depth (+10, +2, and -2 cm), oil type (crude and diesel), and oil penetration of sediment before the burn on the relationship between vegetation recovery and soil temperature for three coastal marsh types were investigated. The water depth over the soil surface during in-situ burning was a key factor controlling marsh plant recovery. Both the 10- and 2-cm water depths were sufficient to protect marsh vegetation from burning impacts, with surface soil temperatures of <35 and 48 degrees C, respectively. Plant survival rate and growth responses at these water depth burns were not significantly different from the unburned control. In contrast, a water table 2 cm below the soil surface during the burn resulted in high soil temperatures, with 90-200 degrees C at 0-0.5 cm soil depth and 55-75 degrees C at 1-2 cm soil depth. The 2-cm soil exposure to fire significantly impeded the post-burn recovery of Spartina alterniflora and Sagittaria lancifolia but did not detrimentally affect the recovery of Spartina patens and Distichlis spicata. Oil type (crude vs diesel) and oil applied to the marsh soil surface (0.5 L x m(-2)) before the burn did not significantly affect plant recovery. Thus, recovery is species-specific when no surface water exists. Even water at the soil surface will most likely protect wetland plants from burning impact.

  17. Accumulation and distribution of trace metals within soils and the austral cordgrass Spartina densiflora in a Patagonian salt marsh.

    PubMed

    Idaszkin, Yanina L; Lancelotti, Julio L; Bouza, Pablo J; Marcovecchio, Jorge E

    2015-12-15

    Concentrations of Cd, Cu, Fe, Pb, and Zn were determined in soils and in below- and above-ground structures of Spartina densiflora in a Patagonian salt marsh (San Antonio, Río Negro, Argentina). Also, the relationship between trace metal concentrations in soils and plants was investigated to improve our knowledge regarding the ability of this plant species to take up and accumulate trace metals from the soil. Our results indicate that, within the studied salt marsh, soil trace metal concentrations follow a decreasing concentration gradient toward the sea. They show moderate pollution and a potentially negative biological effect in one site of the salt marsh. While below-ground structures reflect the soil metal concentration pattern, this is not so evident in above-ground concentrations. Also, S. densiflora is able to absorb a limited amount of metals present in the soil, the soil bioaccumulation factor being lower in sites where soil metal concentration is higher.

  18. Accumulation and distribution of trace metals within soils and the austral cordgrass Spartina densiflora in a Patagonian salt marsh.

    PubMed

    Idaszkin, Yanina L; Lancelotti, Julio L; Bouza, Pablo J; Marcovecchio, Jorge E

    2015-12-15

    Concentrations of Cd, Cu, Fe, Pb, and Zn were determined in soils and in below- and above-ground structures of Spartina densiflora in a Patagonian salt marsh (San Antonio, Río Negro, Argentina). Also, the relationship between trace metal concentrations in soils and plants was investigated to improve our knowledge regarding the ability of this plant species to take up and accumulate trace metals from the soil. Our results indicate that, within the studied salt marsh, soil trace metal concentrations follow a decreasing concentration gradient toward the sea. They show moderate pollution and a potentially negative biological effect in one site of the salt marsh. While below-ground structures reflect the soil metal concentration pattern, this is not so evident in above-ground concentrations. Also, S. densiflora is able to absorb a limited amount of metals present in the soil, the soil bioaccumulation factor being lower in sites where soil metal concentration is higher. PMID:26481413

  19. Spatial variability of the properties of marsh soils and their impact on vegetation

    NASA Astrophysics Data System (ADS)

    Sidorova, V. A.; Svyatova, E. N.; Tseits, M. A.

    2015-03-01

    Spatial variability of the properties of soils and the character of vegetation was studied on seacoasts of the Velikii Island in the Kandalaksha Bay of the White Sea. It was found that the chemical and physicochemical properties of marsh soils (Tidalic Fluvisols) are largely dictated by the distance from the sea and elevation of the sampling point above sea level. The spatial distribution of the soil properties is described by a quadratic trend surface. With an increase in the distance from the sea, the concentration of ions in the soil solution decreases, and the organic carbon content and soil acidity become higher. The spatial dependence of the degree of variability in the soil properties is moderate. Regular changes in the soil properties along the sea-land gradient are accompanied by the presence of specific spatial patterns related to the system of temporary water streams, huge boulders, and beached heaps of sea algae and wood debris. The cluster analysis made it possible to distinguish between five soil classes corresponding to the following plant communities: barren surface (no permanent vegetation), clayey-sandy littoral with sparse halophytes, marsh with large rhizomatous grasses, and grass-forb-bunchberry vegetation of forest margins. The subdivision into classes is especially distinct with respect to the concentration of chloride ions. The following groups of factors affect the distribution of vegetation: the composition of the soil solution, the height above sea level, the pH of water suspensions, and the humus content.

  20. Carbon Sequestration in Tidal Salt Marshes of the Northeast United States.

    PubMed

    Drake, Katherine; Halifax, Holly; Adamowicz, Susan C; Craft, Christopher

    2015-10-01

    Tidal salt marshes provide important ecological services, habitat, disturbance regulation, water quality improvement, and biodiversity, as well as accumulation and sequestration of carbon dioxide (CO2) in vegetation and soil organic matter. Different management practices may alter their capacity to provide these ecosystem services. We examined soil properties (bulk density, percent organic C, percent N), C and N pools, C sequestration and N accumulation at four marshes managed with open marsh water management (OMWM) and four marshes that were not at U.S. Fish and Wildlife National Wildlife Refuges (NWRs) on the East Coast of the United States. Soil properties (bulk density, percent organic C, percent N) exhibited no consistent differences among managed and non-OMWM marshes. Soil organic carbon pools (0-60-cm depth) also did not differ. Managed marshes contained 15.9 kg C/m(2) compared to 16.2 kg C/m(2) in non-OMWM marshes. Proportionately, more C (per unit volume) was stored in surface than in subsurface soils. The rate of C sequestration, based on (137)Cs and (210)Pb dating of soil cores, ranged from 41 to 152 g/m(2)/year. Because of the low emissions of CH4 from salt marshes relative to freshwater wetlands and the ability to sequester C in soil, protection and restoration of salt marshes can be a vital tool for delivering key ecosystem services, while at the same time, reducing the C footprint associated with managing these wetlands.

  1. Carbon Sequestration in Tidal Salt Marshes of the Northeast United States.

    PubMed

    Drake, Katherine; Halifax, Holly; Adamowicz, Susan C; Craft, Christopher

    2015-10-01

    Tidal salt marshes provide important ecological services, habitat, disturbance regulation, water quality improvement, and biodiversity, as well as accumulation and sequestration of carbon dioxide (CO2) in vegetation and soil organic matter. Different management practices may alter their capacity to provide these ecosystem services. We examined soil properties (bulk density, percent organic C, percent N), C and N pools, C sequestration and N accumulation at four marshes managed with open marsh water management (OMWM) and four marshes that were not at U.S. Fish and Wildlife National Wildlife Refuges (NWRs) on the East Coast of the United States. Soil properties (bulk density, percent organic C, percent N) exhibited no consistent differences among managed and non-OMWM marshes. Soil organic carbon pools (0-60-cm depth) also did not differ. Managed marshes contained 15.9 kg C/m(2) compared to 16.2 kg C/m(2) in non-OMWM marshes. Proportionately, more C (per unit volume) was stored in surface than in subsurface soils. The rate of C sequestration, based on (137)Cs and (210)Pb dating of soil cores, ranged from 41 to 152 g/m(2)/year. Because of the low emissions of CH4 from salt marshes relative to freshwater wetlands and the ability to sequester C in soil, protection and restoration of salt marshes can be a vital tool for delivering key ecosystem services, while at the same time, reducing the C footprint associated with managing these wetlands. PMID:26108413

  2. Carbon Sequestration in Tidal Salt Marshes of the Northeast United States

    NASA Astrophysics Data System (ADS)

    Drake, Katherine; Halifax, Holly; Adamowicz, Susan C.; Craft, Christopher

    2015-10-01

    Tidal salt marshes provide important ecological services, habitat, disturbance regulation, water quality improvement, and biodiversity, as well as accumulation and sequestration of carbon dioxide (CO2) in vegetation and soil organic matter. Different management practices may alter their capacity to provide these ecosystem services. We examined soil properties (bulk density, percent organic C, percent N), C and N pools, C sequestration and N accumulation at four marshes managed with open marsh water management (OMWM) and four marshes that were not at U.S. Fish and Wildlife National Wildlife Refuges (NWRs) on the East Coast of the United States. Soil properties (bulk density, percent organic C, percent N) exhibited no consistent differences among managed and non-OMWM marshes. Soil organic carbon pools (0-60-cm depth) also did not differ. Managed marshes contained 15.9 kg C/m2 compared to 16.2 kg C/m2 in non-OMWM marshes. Proportionately, more C (per unit volume) was stored in surface than in subsurface soils. The rate of C sequestration, based on 137Cs and 210Pb dating of soil cores, ranged from 41 to 152 g/m2/year. Because of the low emissions of CH4 from salt marshes relative to freshwater wetlands and the ability to sequester C in soil, protection and restoration of salt marshes can be a vital tool for delivering key ecosystem services, while at the same time, reducing the C footprint associated with managing these wetlands.

  3. Fresh and weathered crude oil effects on potential denitrification rates of coastal marsh soil.

    PubMed

    Pietroski, Jason P; White, John R; DeLaune, Ronald D; Wang, Jim J; Dodla, Syam K

    2015-09-01

    On April 20, 2010, the Deepwater Horizon oil platform experienced an explosion which triggered the largest marine oil spill in US history, resulting in the release of ∼795 million L of crude oil into the Gulf of Mexico. Once oil reached the surface, changes in overall chemical composition occurred due to volatilization of the smaller carbon chain compounds as the oil was transported onshore by winds and currents. In this study, the toxic effects of both fresh and weathered crude oil on denitrification rates of coastal marsh soil were determined using soil samples collected from an unimpacted coastal marsh site proximal to areas that were oiled in Barataria Bay, LA. The 1:10 ratio of crude oil:field moist soil fully coated the soil surface mimicking a heavy oiling scenario. Potential denitrification rates at the 1:10 ratio, for weathered crude oil, were 46 ± 18.4% of the control immediately after exposure and 62 ± 8.0% of the control following a two week incubation period, suggesting some adaptation of the denitrifying microbial consortium over time. Denitrification rates of soil exposed to fresh crude oil were 51.5 ± 5.3% of the control after immediate exposure and significantly lower at 10.9 ± 1.1% after a 2 week exposure period. Results suggest that fresh crude oil has the potential to more severely impact the important marsh soil process of denitrification following longer term exposure. Future studies should focus on longer-term denitrification as well as changes in the microbial consortia in response to oil exposure. PMID:25929872

  4. On the relative roles of hydrology, salinity, temperature, and root productivity in controlling soil respiration from coastal swamps (freshwater)

    USGS Publications Warehouse

    Krauss, Ken W.; Whitbeck, Julie L.; Howard, Rebecca J.

    2012-01-01

    Background and aims Soil CO2 emissions can dominate gaseous carbon losses from forested wetlands (swamps), especially those positioned in coastal environments. Understanding the varied roles of hydroperiod, salinity, temperature, and root productivity on soil respiration is important in discerning how carbon balances may shift as freshwater swamps retreat inland with sea-level rise and salinity incursion, and convert to mixed communities with marsh plants. Methods We exposed soil mesocosms to combinations of permanent flooding, tide, and salinity, and tracked soil respiration over 2 1/2 growing seasons. We also related these measurements to rates from field sites along the lower Savannah River, Georgia, USA. Soil temperature and root productivity were assessed simultaneously for both experiments. Results Soil respiration from mesocosms (22.7-1678.2 mg CO2 m-2 h-1) differed significantly among treatments during four of the seven sampling intervals, where permanently flooded treatments contributed to low rates of soil respiration and tidally flooded treatments sometimes contributed to higher rates. Permanent flooding reduced the overall capacity for soil respiration as soils warmed. Salinity did reduce soil respiration at times in tidal treatments, indicating that salinity may affect the amount of CO2 respired with tide more strongly than under permanent flooding. However, soil respiration related greatest to root biomass (mesocosm) and standing root length (field); any stress reducing root productivity (incl. salinity and permanent flooding) therefore reduces soil respiration. Conclusions Overall, we hypothesized a stronger, direct role for salinity on soil respiration, and found that salinity effects were being masked by varied capacities for increases in respiration with soil warming as dictated by hydrology, and the indirect influence that salinity can have on plant productivity.

  5. Nutrient and hydrology effects on soil respiration in a northern Everglades marsh.

    PubMed

    DeBusk, W F; Reddy, K R

    2003-01-01

    Microbial respiration in peat and overlying plant litter, as influenced by water level and phosphorus enrichment, was evaluated for an Everglades (Florida, USA) marsh ecosystem by measuring CO2 and CH4 release from soil-water microcosms. Intact cores of peat, overlying plant litter, and surface water were collected at seven locations in cattail (Typha domingensis Pers.) and sawgrass (Cladium jamaicense Crantz) stands along a phosphorus (P) enrichment gradient in Water Conservation Area 2A (WCA-2A). Each soil-water microcosm was outfitted with a controlled air circulation system whereby outflow gas from the headspace could be analyzed for CO2 and CH4 to determine flux of C from the soil-water column to the atmosphere. Gaseous C flux was determined for flooded conditions (10-cm water depth) and for water levels of 0, 5, 10, and 15 cm below the peat surface. Overall, decreasing water level resulted in significantly increased C flux, although rates were significantly higher under flooded conditions than under nonflooded, saturated-soil conditions, presumably due to O2 availability associated with algal photosynthesis within the litter layer in the water column. Carbon flux decreased significantly for sites increasingly distant from the primary hydrologic and nutrient inflows to WCA-2A. The microcosm study demonstrated that the C turnover rate was significantly increased by accelerated nutrient loading to the marsh, and was further enhanced by decreasing water level under drained conditions. Our results also demonstrated that photosynthesis within the water column is a potentially important regulator of C mineralization rate in the litter layer of the marsh system.

  6. Degradation of fuel oil in salt marsh soils affected by the Prestige oil spill.

    PubMed

    Vega, Flora A; Covelo, Emma F; Reigosa, Manuel J; Andrade, María Luisa

    2009-07-30

    We assessed natural degradation of fuel oil in three marshes from Galicia (Spain) affected by the Prestige oil spill (Baldaio, Barizo, and Muxía). Soil samples collected from polluted and unpolluted areas on four different dates were used to determine total petroleum hydrocarbon content and fuel-oil components. Natural degradation was monitored by analysing changes in the proportion of saturated hydrocarbons, aromatics, asphaltenes and resins in the soils, and also by evaluating the degree of depletion of saturated hydrocarbons on each sampling date. We additionally assessed the phytoremediation potential of Lolium perenne, L., Convolvulus arvensis L. and Raphanus raphanistrum L. All marsh soils exhibited natural degradation of saturated and aromatic hydrocarbons to between 85 and 95% in most cases. In contrast, asphaltenes and resins were degraded to a lesser extent (viz. 64-76% in Barizo 1, Muxía and Traba; 39-44% in Baldaio; and only 12% in Barizo 2, where flooding by the river continues to introduce balls of fuel oil into the soil). Monitoring analyses revealed natural degradation to be dependent on the thickness of the pollutant layer. Field plots sown with L. perenne L. exhibited no significant differences in fuel-oil degradation from untreated plots.

  7. Changes in soils and vegetation in a Mediterranean coastal salt marsh impacted by human activities

    NASA Astrophysics Data System (ADS)

    Álvarez-Rogel, J.; Jiménez-Cárceles, F. J.; Roca, M. J.; Ortiz, R.

    2007-07-01

    This paper reports changes in vegetation distribution and species cover in relation to soil factors and hydrology in a semiarid Mediterranean salt marsh adjacent to the Mar Menor saline lagoon. Species cover, soil salinity, and the groundwater level were monitored between 1991 and 1993 and between 2002 and 2004, and total organic carbon, total nitrogen, total phosphorus, nitrates, ammonium and exchangeable phosphorus were measured in the soils in both study periods. In addition, three soil profiles were described in August 1992 and August 2004. The results indicate an elevation of the water table throughout the 13-year period, which was attributable to water flowing from areas with intensive agriculture. Flooding increased and soil salinity dropped in the most saline sites and increased in the least saline ones. The morphology of the soil profiles reflected the increase in flooding periods, due to the appearance of a greyer matrix in the deeper horizons and a more diffuse pattern of Fe mottles. Following these environmental changes, Sarcocornia fruticosa, Phragmites australis and Juncus maritimus strongly expanded at the wettest sites, which led to the disappearance of the original zonation pattern. The cover of Limonium delicatulum, in turn, decreased with the increase in moisture but increased following the increase in salinity. Changes in soil nutrients were only very evident in the sandy soils of the beach, probably due to the influence of organic debris deposited on the shoreline by the storms and due to the strong increase in the colonisation of this habitat by perennial species. According to the results obtained, control measures are needed in order to preserve habitat diversity in this and other salt marshes of this area. Monitoring of the vegetation distribution could be a useful tool to identify environmental impacts, in order to implement remedial actions.

  8. Freshwater Wetlands.

    ERIC Educational Resources Information Center

    Naturescope, 1986

    1986-01-01

    Provides descriptions about freshwater wetlands, such as marshes, swamps, and bogs. Contains three learning activities which deal with unusual wetland plants, the animals and plants in a typical marsh, and the effects of a draught on a swamp. Included are reproducible handouts and worksheets for two of the activities. (TW)

  9. Use of computed tomography imaging for quantifying coarse roots, rhizomes, peat, and particle densities in marsh soils.

    PubMed

    Davey, Earl; Wigand, Cathleen; Johnson, Roxanne; Sundberg, Karen; Morris, James; Roman, Charles T

    2011-09-01

    Computed tomography (CT) imaging has been used to describe and quantify subtidal, benthic animals such as polychaetes, amphipods, and shrimp. Here, for the first time, CT imaging is used to quantify wet mass of coarse roots, rhizomes, and peat in cores collected from organic-rich (Jamaica Bay, New York) and mineral (North Inlet, South Carolina) Spartina alterniflora soils. Image analysis software was coupled with the CT images to measure abundance and diameter of the coarse roots and rhizomes in marsh soils. Previously, examination of marsh roots and rhizomes was limited to various hand-sieving methods that were often time-consuming, tedious, and error prone. CT imaging can discern the coarse roots, rhizomes, and peat based on their varying particle densities. Calibration rods composed of materials with standard densities (i.e., air, water, colloidal silica, and glass) were used to operationally define the specific x-ray attenuations of the coarse roots, rhizomes, and peat in the marsh cores. Significant regression relationships were found between the CT-determined wet mass of the coarse roots and rhizomes and the hand-sieved dry mass of the coarse roots and rhizomes in both the organic-rich and mineral marsh soils. There was also a significant relationship between the soil percentage organic matter and the CT-determined peat particle density among organic-rich and mineral soils. In only the mineral soils, there was a significant relationship between the soil percentage organic matter and the CT-determined peat wet mass. Using CT imaging, significant positive nitrogen fertilization effects on the wet masses of the coarse roots, rhizomes, and peat, and the abundance and diameter of rhizomes were measured in the mineral soils. In contrast, a deteriorating salt marsh island in Jamaica Bay had significantly less mass of coarse roots and rhizomes at depth (10-20 cm), and a significantly lower abundance of roots and rhizomes compared with a stable marsh. However, the

  10. Use of computed tomography imaging for quantifying coarse roots, rhizomes, peat, and particle densities in marsh soils.

    PubMed

    Davey, Earl; Wigand, Cathleen; Johnson, Roxanne; Sundberg, Karen; Morris, James; Roman, Charles T

    2011-09-01

    Computed tomography (CT) imaging has been used to describe and quantify subtidal, benthic animals such as polychaetes, amphipods, and shrimp. Here, for the first time, CT imaging is used to quantify wet mass of coarse roots, rhizomes, and peat in cores collected from organic-rich (Jamaica Bay, New York) and mineral (North Inlet, South Carolina) Spartina alterniflora soils. Image analysis software was coupled with the CT images to measure abundance and diameter of the coarse roots and rhizomes in marsh soils. Previously, examination of marsh roots and rhizomes was limited to various hand-sieving methods that were often time-consuming, tedious, and error prone. CT imaging can discern the coarse roots, rhizomes, and peat based on their varying particle densities. Calibration rods composed of materials with standard densities (i.e., air, water, colloidal silica, and glass) were used to operationally define the specific x-ray attenuations of the coarse roots, rhizomes, and peat in the marsh cores. Significant regression relationships were found between the CT-determined wet mass of the coarse roots and rhizomes and the hand-sieved dry mass of the coarse roots and rhizomes in both the organic-rich and mineral marsh soils. There was also a significant relationship between the soil percentage organic matter and the CT-determined peat particle density among organic-rich and mineral soils. In only the mineral soils, there was a significant relationship between the soil percentage organic matter and the CT-determined peat wet mass. Using CT imaging, significant positive nitrogen fertilization effects on the wet masses of the coarse roots, rhizomes, and peat, and the abundance and diameter of rhizomes were measured in the mineral soils. In contrast, a deteriorating salt marsh island in Jamaica Bay had significantly less mass of coarse roots and rhizomes at depth (10-20 cm), and a significantly lower abundance of roots and rhizomes compared with a stable marsh. However, the

  11. Response of salt marshes to oiling from the Deepwater Horizon spill: Implications for plant growth, soil surface-erosion, and shoreline stability.

    PubMed

    Lin, Qianxin; Mendelssohn, Irving A; Graham, Sean A; Hou, Aixin; Fleeger, John W; Deis, Donald R

    2016-07-01

    We investigated the initial impacts and post spill recovery of salt marshes over a 3.5-year period along northern Barataria Bay, LA, USA exposed to varying degrees of Deepwater Horizon oiling to determine the effects on shoreline-stabilizing vegetation and soil processes. In moderately oiled marshes, surface soil total petroleum hydrocarbon concentrations were ~70mgg(-1) nine months after the spill. Though initial impacts of moderate oiling were evident, Spartina alterniflora and Juncus roemerianus aboveground biomass and total live belowground biomass were equivalent to reference marshes within 24-30months post spill. In contrast, heavily oiled marsh plants did not fully recover from oiling with surface soil total petroleum hydrocarbon concentrations that exceeded 500mgg(-1) nine months after oiling. Initially, heavy oiling resulted in near complete plant mortality, and subsequent recovery of live aboveground biomass was only 50% of reference marshes 42months after the spill. Heavy oiling also changed the vegetation structure of shoreline marshes from a mixed Spartina-Juncus community to predominantly Spartina; live Spartina aboveground biomass recovered within 2-3years, however, Juncus showed no recovery. In addition, live belowground biomass (0-12cm) in heavily oiled marshes was reduced by 76% three and a half years after the spill. Detrimental effects of heavy oiling on marsh plants also corresponded with significantly lower soil shear strength, lower sedimentation rates, and higher vertical soil-surface erosion rates, thus potentially affecting shoreline salt marsh stability. PMID:27016685

  12. Response of salt marshes to oiling from the Deepwater Horizon spill: Implications for plant growth, soil surface-erosion, and shoreline stability.

    PubMed

    Lin, Qianxin; Mendelssohn, Irving A; Graham, Sean A; Hou, Aixin; Fleeger, John W; Deis, Donald R

    2016-07-01

    We investigated the initial impacts and post spill recovery of salt marshes over a 3.5-year period along northern Barataria Bay, LA, USA exposed to varying degrees of Deepwater Horizon oiling to determine the effects on shoreline-stabilizing vegetation and soil processes. In moderately oiled marshes, surface soil total petroleum hydrocarbon concentrations were ~70mgg(-1) nine months after the spill. Though initial impacts of moderate oiling were evident, Spartina alterniflora and Juncus roemerianus aboveground biomass and total live belowground biomass were equivalent to reference marshes within 24-30months post spill. In contrast, heavily oiled marsh plants did not fully recover from oiling with surface soil total petroleum hydrocarbon concentrations that exceeded 500mgg(-1) nine months after oiling. Initially, heavy oiling resulted in near complete plant mortality, and subsequent recovery of live aboveground biomass was only 50% of reference marshes 42months after the spill. Heavy oiling also changed the vegetation structure of shoreline marshes from a mixed Spartina-Juncus community to predominantly Spartina; live Spartina aboveground biomass recovered within 2-3years, however, Juncus showed no recovery. In addition, live belowground biomass (0-12cm) in heavily oiled marshes was reduced by 76% three and a half years after the spill. Detrimental effects of heavy oiling on marsh plants also corresponded with significantly lower soil shear strength, lower sedimentation rates, and higher vertical soil-surface erosion rates, thus potentially affecting shoreline salt marsh stability.

  13. Microbial Abundances in Salt Marsh Soils: A Molecular Approach for Small Spatial Scales

    NASA Astrophysics Data System (ADS)

    Granse, Dirk; Mueller, Peter; Weingartner, Magdalena; Hoth, Stefan; Jensen, Kai

    2016-04-01

    The rate of biological decomposition greatly determines the carbon sequestration capacity of salt marshes. Microorganisms are involved in the decomposition of biomass and the rate of decomposition is supposed to be related to microbial abundance. Recent studies quantified microbial abundance by means of quantitative polymerase chain reaction (QPCR), a method that also allows determining the microbial community structure by applying specific primers. The main microbial community structure can be determined by using primers specific for 16S rRNA (Bacteria) and 18S rRNA (Fungi) of the microbial DNA. However, the investigation of microbial abundance pattern at small spatial scales, such as locally varying abiotic conditions within a salt-marsh system, requires high accuracy in DNA extraction and QPCR methods. Furthermore, there is evidence that a single extraction may not be sufficient to reliably quantify rRNA gene copies. The aim of this study was to establish a suitable DNA extraction method and stable QPCR conditions for the measurement of microbial abundances in semi-terrestrial environments. DNA was extracted from two soil samples (top WE{5}{cm}) by using the PowerSoil DNA Extraction Kit (Mo Bio Laboratories, Inc., Carlsbad, CA) and applying a modified extraction protocol. The DNA extraction was conducted in four consecutive DNA extraction loops from three biological replicates per soil sample by reusing the PowerSoil bead tube. The number of Fungi and Bacteria rRNA gene copies of each DNA extraction loop and a pooled DNA solution (extraction loop 1 - 4) was measured by using the QPCR method with taxa specific primer pairs (Bacteria: B341F, B805R; Fungi: FR1, FF390). The DNA yield of the replicates varied at DNA extraction loop 1 between WE{25 and 85}{ng

  14. Accumulation of soil carbon drives denitrification potential and lab-incubated gas production along a chronosequence of salt marsh development

    NASA Astrophysics Data System (ADS)

    He, Yanlong; Widney, Sarah; Ruan, Michelle; Herbert, Ellen; Li, Xiuzhen; Craft, Christopher

    2016-04-01

    We measured sediment organic carbon and nitrogen accumulation and rates of denitrification enzyme activity and greenhouse gas (CO2, CH4, N2O) production from slurries of sediments of a mudflat that formed in 2002, a young (8-year-old) natural Spartina alterniflora salt marsh that developed on part of the mudflat, and four mature (>200 years old) salt marshes in southeastern Georgia to examine microbial processes related to carbon (C) and nitrogen (N) cycling during succession from mudflat to mature marsh. Soil organic C and N and C: N ratio (0-30 cm) increased across the chronosequence from mudflat (791 ± 35 g C/m2, 125 ± 17 g N/m2) to young marsh (2520 ± 131 g C/m2, 190 ± 10 g N/m2) to mature marshes (5827 ± 250 g C/m2, 372 ± 20 g N/m2). After 8 years of colonization by S. alterniflora, sediment organic carbon increased 3.2 times, and nitrogen increased 1.5 times relative to the mudflat. The high rate of organic C and N accumulation based on time series measurements (188 g C/m2/yr, 7.8 g N/m2/yr) and feldspar marker layers (359 g C/m2/yr, 26.2 g N/m2/yr) was attributed to high accretion (3 cm/yr) in this low elevation (0.18 m NAVD88) emerging marsh. Carbon dioxide production increased with increasing sediment organic C from mudflat to mature marshes. Un-amended denitrification enzyme activity, measured in slurry incubations, ranged from an average of 0.020 ± 0.005 μg g-1 hr-1 in the mature marshes to 0.094 ± 0.03 μg g-1 hr-1 in the young marsh. We also measured denitrification potential in slurry incubations amended with C (glucose), N (nitrate), and C + N to assess the potential for substrate limitations. Denitrification potential in the mudflat did not show strong nutrient limitation. In the young marsh, denitrification potential was C-limited, and in the mature marsh, it was co-limited by C and N. In July samples, CO2 production showed a statistically significant increase with age from the mudflat to the mature marshes. However, in both months, CO2

  15. Hydrogeochemical zonation in intertidal salt marsh sediments: evidence of positive plant-soil feedback?

    NASA Astrophysics Data System (ADS)

    Moffett, K. B.; Dittmar, J.; Seyfferth, A.; Fendorf, S.; Gorelick, S.

    2012-12-01

    Surface and subsurface environments are linked by the biogeochemical activity in near-surface sediment and by the hydrological fluxes that mobilize its reagents and products. A particularly dynamic and interesting setting to study near-surface hydrogeochemistry is the intertidal zone. Here, the very strong tidal hydraulic forcing is often thought to dominate water and solute transport. However, we demonstrated the importance of two additional subsurface drivers: groundwater flow and plant root water uptake. A high-resolution, coupled surface water-groundwater model of an intertidal salt marsh in San Francisco Bay, CA showed that these three drivers vary over different spatial scales: tidal flooding varies over 10's of meters; groundwater flow varies over meters, particularly within channel banks; and plant root water uptake varies in 3D at the sub-meter scale. Expanding on this third driver, we investigated whether the spatial variations in soil-water-plant hydraulic interactions that occur due to vegetation zonation also cause distinct geochemical zonation in salt marsh sediment pore waters. The existence of such geochemical zonation was verified and mapped by detailed field observations of the chemical composition of sediments, pore waters, surface waters, and vegetation. The field data and the coupled hydrologic model were then further analyzed to evaluate potential causal mechanisms for the geochemical zonation, including testing the hypothesis that the vegetation affects pore water geochemistry via a positive feedback beneficial to itself. If further supported by future studies, this geochemical feedback may complement known physical ecosystem engineering mechanisms to help stabilize and organize intertidal wetlands.

  16. Impacts of Activated Carbon Amendment on Hg Methylation, Demethylation and Microbial Activity in Marsh Soils

    NASA Astrophysics Data System (ADS)

    Gilmour, C. C.; Ghosh, U.; Santillan, E. F. U.; Soren, A.; Bell, J. T.; Butera, D.; McBurney, A. W.; Brown, S.; Henry, E.; Vlassopoulos, D.

    2015-12-01

    In-situ sorbent amendments are a low-impact approach for remediation of contaminants in sediments, particular in habitats like wetlands that provide important ecosystem services. Laboratory microcosm trials (Gilmour et al. 2013) and early field trials show that activated carbon (AC) can effectively increase partitioning of both inorganic Hg and methylmercury to the solid phase. Sediment-water partitioning can serve as a proxy for Hg and MeHg bioavailability in soils. One consideration in using AC in remediation is its potential impact on organisms. For mercury, a critical consideration is the potential impact on net MeHg accumulation and bioavailability. In this study, we specifically evaluated the impact of AC on rates of methylmercury production and degradation, and on overall microbial activity, in 4 different Hg-contaminated salt marsh soils. The study was done over 28 days in anaerobic, sulfate-reducing slurries. A double label of enriched mercury isotopes (Me199Hg and inorganic 201Hg) was used to separately follow de novo Me201Hg production and Me199Hg degradation. AC amendments decreased both methylation and demethylation rate constants relative to un-amended controls, but the impact on demethylation was stronger. The addition of 5% (dry weight) regenerated AC to soil slurries drove demethylation rate constants to nearly zero; i.e. MeHg sorption to AC almost totally blocked its degradation. The net impact was increased solid phase MeHg concentrations in some of the soil slurries with the highest methylation rate constants. However, the net impact of AC amendments was to increase MeHg (and inorganic Hg) partitioning to the soil phase and decrease concentrations in the aqueous phase. AC significantly decreased aqueous phase inorganic Hg and MeHg concentrations after 28 days. Overall, the efficacy of AC in reducing aqueous MeHg was highest in the soils with the highest MeHg concentrations. The AC addition did not significantly impact microbial activity, as

  17. Plant-soil interactions in salt marsh environments: Experimental evidence from electrical resistivity tomography in the Venice Lagoon

    NASA Astrophysics Data System (ADS)

    Boaga, Jacopo; D'Alpaos, Andrea; Cassiani, Giorgio; Marani, Marco; Putti, Mario

    2014-09-01

    The role of root water uptake in regulating soil water saturation in salt marshes is controversial. Modeling studies suggest that soil aeration is improved by transpiration, with implications for the distribution of vegetation species and of the associated topographic features controlling the hydraulic regime of the marshland and eventually its survival. Marsh vegetation plays a key role in the preservation of such critical environment, which represents unique marker for climatic change and impact studies. However, the direct quantification of space-time aeration patterns has remained elusive, in part, because of the limitations posed by high salinity to conventional observation techniques such as time or frequency domain reflectometry. Here we show that time-lapse microscale electrical resistivity tomography, coupled with tensiometric observations, allows the identification of variably saturated zones and the characterization of space-time soil moisture dynamics in a salt marsh in the Venice Lagoon (Italy). This is the first quantitative observational experiment which confirms that periodically flooded plants are capable of producing a persistently aerated layer below the flooded surface when transpiration proceeds at a sufficiently high rate. The experimental results are compared against previously published model predictions.

  18. Effects of salinity variations on pore water flow in salt marshes

    NASA Astrophysics Data System (ADS)

    Shen, Chengji; Jin, Guangqiu; Xin, Pei; Kong, Jun; Li, Ling

    2015-06-01

    Spatial and temporal salinity variations in surface water and pore water commonly exist in salt marshes under the combined influence of tidal inundation, precipitation, evapotranspiration, and inland freshwater input. Laboratory experiments and numerical simulations were conducted to investigate how density gradients associated with salinity variations affect pore water flow in the salt marsh system. The results showed that upward salinity (density) gradients could lead to flow instability and the formation of salt fingers. These fingers, varying in size with the distance from the creek, modified significantly the pore water flow field, especially in the marsh interior. While the flow instability enhanced local salt transport and mixing considerably, the net effect was small, causing only a slight increase in the overall mass exchange across the marsh surface. In contrast, downward salinity gradients exerted less influence on the pore water flow in the marsh soil and slightly weakened the surface water and groundwater exchange across the marsh surface. Numerical simulations revealed similar density effects on pore water flow at the field scale under realistic conditions. These findings have important implications for studies of marsh soil conditions concerning plant growth as well as nutrient exchange between the marsh and coastal marine system.

  19. Below the Disappearing Marshes of an Urban Estuary: Historic Nitrogen Trends and Soil Structure

    EPA Science Inventory

    Marshes in the urban Jamaica Bay Estuary, New York, USA are disappearing at an average rate of 13 ha/yr, and multiple stressors (e.g., wastewater inputs, dredging activities, groundwater removal, and global warming) may be contributing to marsh losses. Among these stressors, wa...

  20. Long-term rice cultivation stabilizes soil organic carbon and promotes soil microbial activity in a salt marsh derived soil chronosequence

    PubMed Central

    Wang, Ping; Liu, Yalong; Li, Lianqing; Cheng, Kun; Zheng, Jufeng; Zhang, Xuhui; Zheng, Jinwei; Joseph, Stephen; Pan, Genxing

    2015-01-01

    Soil organic carbon (SOC) sequestration with enhanced stable carbon storage has been widely accepted as a very important ecosystem property. Yet, the link between carbon stability and bio-activity for ecosystem functioning with OC accumulation in field soils has not been characterized. We assessed the changes in microbial activity versus carbon stability along a paddy soil chronosequence shifting from salt marsh in East China. We used mean weight diameter, normalized enzyme activity (NEA) and carbon gain from straw amendment for addressing soil aggregation, microbial biochemical activity and potential C sequestration, respectively. In addition, a response ratio was employed to infer the changes in all analyzed parameters with prolonged rice cultivation. While stable carbon pools varied with total SOC accumulation, soil respiration and both bacterial and fungal diversity were relatively constant in the rice soils. Bacterial abundance and NEA were positively but highly correlated to total SOC accumulation, indicating an enhanced bio-activity with carbon stabilization. This could be linked to an enhancement of particulate organic carbon pool due to physical protection with enhanced soil aggregation in the rice soils under long-term rice cultivation. However, the mechanism underpinning these changes should be explored in future studies in rice soils where dynamic redox conditions exist. PMID:26503629

  1. Long-term rice cultivation stabilizes soil organic carbon and promotes soil microbial activity in a salt marsh derived soil chronosequence.

    PubMed

    Wang, Ping; Liu, Yalong; Li, Lianqing; Cheng, Kun; Zheng, Jufeng; Zhang, Xuhui; Zheng, Jinwei; Joseph, Stephen; Pan, Genxing

    2015-10-27

    Soil organic carbon (SOC) sequestration with enhanced stable carbon storage has been widely accepted as a very important ecosystem property. Yet, the link between carbon stability and bio-activity for ecosystem functioning with OC accumulation in field soils has not been characterized. We assessed the changes in microbial activity versus carbon stability along a paddy soil chronosequence shifting from salt marsh in East China. We used mean weight diameter, normalized enzyme activity (NEA) and carbon gain from straw amendment for addressing soil aggregation, microbial biochemical activity and potential C sequestration, respectively. In addition, a response ratio was employed to infer the changes in all analyzed parameters with prolonged rice cultivation. While stable carbon pools varied with total SOC accumulation, soil respiration and both bacterial and fungal diversity were relatively constant in the rice soils. Bacterial abundance and NEA were positively but highly correlated to total SOC accumulation, indicating an enhanced bio-activity with carbon stabilization. This could be linked to an enhancement of particulate organic carbon pool due to physical protection with enhanced soil aggregation in the rice soils under long-term rice cultivation. However, the mechanism underpinning these changes should be explored in future studies in rice soils where dynamic redox conditions exist.

  2. Long-term rice cultivation stabilizes soil organic carbon and promotes soil microbial activity in a salt marsh derived soil chronosequence.

    PubMed

    Wang, Ping; Liu, Yalong; Li, Lianqing; Cheng, Kun; Zheng, Jufeng; Zhang, Xuhui; Zheng, Jinwei; Joseph, Stephen; Pan, Genxing

    2015-01-01

    Soil organic carbon (SOC) sequestration with enhanced stable carbon storage has been widely accepted as a very important ecosystem property. Yet, the link between carbon stability and bio-activity for ecosystem functioning with OC accumulation in field soils has not been characterized. We assessed the changes in microbial activity versus carbon stability along a paddy soil chronosequence shifting from salt marsh in East China. We used mean weight diameter, normalized enzyme activity (NEA) and carbon gain from straw amendment for addressing soil aggregation, microbial biochemical activity and potential C sequestration, respectively. In addition, a response ratio was employed to infer the changes in all analyzed parameters with prolonged rice cultivation. While stable carbon pools varied with total SOC accumulation, soil respiration and both bacterial and fungal diversity were relatively constant in the rice soils. Bacterial abundance and NEA were positively but highly correlated to total SOC accumulation, indicating an enhanced bio-activity with carbon stabilization. This could be linked to an enhancement of particulate organic carbon pool due to physical protection with enhanced soil aggregation in the rice soils under long-term rice cultivation. However, the mechanism underpinning these changes should be explored in future studies in rice soils where dynamic redox conditions exist. PMID:26503629

  3. Long-term rice cultivation stabilizes soil organic carbon and promotes soil microbial activity in a salt marsh derived soil chronosequence

    NASA Astrophysics Data System (ADS)

    Wang, Ping; Liu, Yalong; Li, Lianqing; Cheng, Kun; Zheng, Jufeng; Zhang, Xuhui; Zheng, Jinwei; Joseph, Stephen; Pan, Genxing

    2015-10-01

    Soil organic carbon (SOC) sequestration with enhanced stable carbon storage has been widely accepted as a very important ecosystem property. Yet, the link between carbon stability and bio-activity for ecosystem functioning with OC accumulation in field soils has not been characterized. We assessed the changes in microbial activity versus carbon stability along a paddy soil chronosequence shifting from salt marsh in East China. We used mean weight diameter, normalized enzyme activity (NEA) and carbon gain from straw amendment for addressing soil aggregation, microbial biochemical activity and potential C sequestration, respectively. In addition, a response ratio was employed to infer the changes in all analyzed parameters with prolonged rice cultivation. While stable carbon pools varied with total SOC accumulation, soil respiration and both bacterial and fungal diversity were relatively constant in the rice soils. Bacterial abundance and NEA were positively but highly correlated to total SOC accumulation, indicating an enhanced bio-activity with carbon stabilization. This could be linked to an enhancement of particulate organic carbon pool due to physical protection with enhanced soil aggregation in the rice soils under long-term rice cultivation. However, the mechanism underpinning these changes should be explored in future studies in rice soils where dynamic redox conditions exist.

  4. What happens to soil organic carbon as coastal marsh ecosystems change in response to increasing salinity? An exploration using ramped pyrolysis

    NASA Astrophysics Data System (ADS)

    Williams, Elizabeth K.; Rosenheim, Brad E.

    2015-07-01

    Coastal wetlands store vast amounts of organic carbon, globally, and are becoming increasingly vulnerable to the effects of anthropogenic sea level rise. To understand the effect of sea level rise on organic carbon fate and preservation in this global sink, it is necessary to characterize differences in the biogeochemical stability of coastal wetland soil organic carbon (SOC). Here we use ramped pyrolysis/oxidation decomposition characteristics as proxies for SOC stability to understand the fate of carbon storage in coastal wetlands comprising the Mississippi River deltaic plain, undergoing rapid rates of local sea level rise. Soils from three wetland types (fresh, brackish, and salt marshes) along a salinity gradient were subjected to ramped pyrolysis analysis to evaluate decomposition characteristics related to thermochemical stability of SOC. At equivalent soil depths, we observed that fresh marsh SOC was more stable than brackish and salt marsh SOC. Depth, isotopic, elemental, and chemical compositions, bulk density, and water content of SOC all exhibited different relationships with SOC stability across the marsh salinity gradient, indicative of different controls on SOC stability within each marsh type. The differences in stability imply stronger preservation potential of fresh marsh soil carbon, compared to that of salt and brackish marshes. Considering projected marsh ecosystem responses to sea level rise, these observed stability differences are important in planning and implementing coastal wetland carbon-focused remediation and improving climate model feedbacks with the carbon cycle. Specifically, our results imply that ecosystem changes associated with sea level rise will initiate the accumulation of less stable carbon in coastal wetlands.

  5. Sulfate reduction in freshwater wetland soils and the effects of sulfate and substrate loading

    SciTech Connect

    Feng, J.; Hsieh, Y.P.

    1998-07-01

    Elevated sulfate and organic C loadings in freshwater wetlands could stimulate dissimilatory sulfate reduction that oxidizes organic C, produces hydrogen sulfide and alkalinity, and sequesters trace metals. The authors determined the extent of sulfate reduction in two freshwater wetland soils, that is black gum (Nyssa biflona) swamp soils and titi (Cliftonia monophylla) swamp soils, in northern Florida. They also investigated the potential of sulfate reduction in the wetland soils by adding sulfate, organic substrate, and lime. Sulfate reduction was found to be an active process in both swamp soils without any amendment, where the pore water pH was as low as 3.6 and sulfate concentration was as low as 5 mg L{sup {minus}1}. Without amendment, 11 to 14% of organic C was oxidized through sulfate reduction in the swamp soils. Sulfate loading, liming, and substrate addition significantly increased sulfate reduction in the black gum swamp soil, but none of those treatments increase sulfate reduction in the titi swamp soil. The limiting factor for sulfate reduction in the titi swamp soil were likely texture and soil aggregate related properties. The results suggested that wastewater loading may increase sulfate reduction in some freshwater wetlands such as the black swamps while it has no stimulating effect on other wetlands such as the titi swamps.

  6. Biosphere 2's Marsh Biome

    NASA Technical Reports Server (NTRS)

    Molnar, Jennifer; Goodridge, Kelven

    1997-01-01

    The Marsh Biome, which was modeled after the mangroves and marshes of southwest Florida, has an area of 441.2 sq m separated into three hydrologically independent sections: the Freshwater, Oligohaline and Salt Marshes. The divisions are made based on their salinity (approximately 0, 4, and 34 ppt. respectively), but they also contain different biological communities. The Freshwater and Oligohaline Marshes are mostly filled with various grasses and several trees, while the Salt Marsh houses regions of red, black, and white mangroves (Rhizophora mangle, Avicennia germinans, and Languncularia racemosa respectively). Overall, there are an estimated 80 species of plants within the biome. Water in the Salt Marsh follows a meandering stream from the algal turf scrubbers (apparatuses that clean the water of its nutrients and heavy metals while increasing dissolved oxygen levels) which have an outlet in the Salt Marsh section near sites 4 and 5 to the Fringing Red Mangrove section. The sections of the Salt Marsh are separated by walls of concrete with openings to allow the stream to flow through. Throughout this study, conducted through the months of June and July, many conditions within the biome remained fairly constant. The temperature was within a degree or two of 25 C, mostly depending on whether the sample site was in direct sunlight or shaded. The pH throughout the Salt Marsh was 8.0 +/- 0.2, and the lower salinity waters only dropped below this soon after rains. The water rdepth and dissolved oxygen varied, however, between sites.

  7. Fluoride pollution in a salt marsh: movement between soil, vegetation, and sheep

    SciTech Connect

    Baars, A.J.; van Beek, H.; Spierenburg, T.J.; de Graaf, G.J.; Beeftink, W.G.; Nieuwenhuize, J.; Boom, J.; Pekelder, J.J.

    1987-12-01

    The river Scheldt (southwestern part of The Netherlands) is responsible for a considerable pollution of its estuary with organic and inorganic waste, which becomes manifest particularly in the salt marshes. Of these marshes, the 3400 ha nature reserve of the Saeftinge sale marsh constitutes a representative example of such a valuable tidal brackish ecosystem. This marsh is partly grazed by sheep, thus contributing to its original character and assisting in the preservation of the local flora and fauna. Preceding reports indicated a significant degree of contamination with heavy metals, which were shown to enter food chains. The present study focuses on fluoride, an environmental contaminant known to be spread by water and air, and, although assumed to be beneficial in small quantities, a potential threat for plants and animals, particularly herbivores.

  8. Seasonal dynamics of trace elements in tidal salt marsh soils as affected by the flow-sediment regulation regime.

    PubMed

    Bai, Junhong; Xiao, Rong; Zhao, Qingqing; Lu, Qiongqiong; Wang, Junjing; Reddy, K Ramesh

    2014-01-01

    Soil profiles were collected in three salt marshes with different plant species (i.e. Phragmites australis, Tamarix chinensis and Suaeda salsa) in the Yellow River Delta (YRD) of China during three seasons (summer and fall of 2007 and the following spring of 2008) after the flow-sediment regulation regime. Total elemental contents of As, Cd, Cu, Pb and Zn were determined using inductively coupled plasma atomic absorption spectrometry to investigate temporal variations in trace elements in soil profiles of the three salt marshes, assess the enrichment levels and ecological risks of these trace elements in three sampling seasons and identify their influencing factors. Trace elements did not change significantly along soil profiles at each site in each sampling season. The highest value for each sampling site was observed in summer and the lowest one in fall. Soils in both P. australis and S. salsa wetlands tended to have higher trace element levels than those in T. chinensis wetland. Compared to other elements, both Cd and As had higher enrichment factors exceeding moderate enrichment levels. However, the toxic unit (TU) values of these trace elements did not exceed probable effect levels. Correlation analysis showed that these trace elements were closely linked to soil properties such as moisture, sulfur, salinity, soil organic matter, soil texture and pH values. Principal component analysis showed that the sampling season affected by the flow-sediment regulation regime was the dominant factor influencing the distribution patterns of these trace elements in soils, and plant community type was another important factor. The findings of this study could contribute to wetland conservation and management in coastal regions affected by the hydrological engineering. PMID:25216278

  9. Seasonal dynamics of trace elements in tidal salt marsh soils as affected by the flow-sediment regulation regime.

    PubMed

    Bai, Junhong; Xiao, Rong; Zhao, Qingqing; Lu, Qiongqiong; Wang, Junjing; Reddy, K Ramesh

    2014-01-01

    Soil profiles were collected in three salt marshes with different plant species (i.e. Phragmites australis, Tamarix chinensis and Suaeda salsa) in the Yellow River Delta (YRD) of China during three seasons (summer and fall of 2007 and the following spring of 2008) after the flow-sediment regulation regime. Total elemental contents of As, Cd, Cu, Pb and Zn were determined using inductively coupled plasma atomic absorption spectrometry to investigate temporal variations in trace elements in soil profiles of the three salt marshes, assess the enrichment levels and ecological risks of these trace elements in three sampling seasons and identify their influencing factors. Trace elements did not change significantly along soil profiles at each site in each sampling season. The highest value for each sampling site was observed in summer and the lowest one in fall. Soils in both P. australis and S. salsa wetlands tended to have higher trace element levels than those in T. chinensis wetland. Compared to other elements, both Cd and As had higher enrichment factors exceeding moderate enrichment levels. However, the toxic unit (TU) values of these trace elements did not exceed probable effect levels. Correlation analysis showed that these trace elements were closely linked to soil properties such as moisture, sulfur, salinity, soil organic matter, soil texture and pH values. Principal component analysis showed that the sampling season affected by the flow-sediment regulation regime was the dominant factor influencing the distribution patterns of these trace elements in soils, and plant community type was another important factor. The findings of this study could contribute to wetland conservation and management in coastal regions affected by the hydrological engineering.

  10. Seasonal Dynamics of Trace Elements in Tidal Salt Marsh Soils as Affected by the Flow-Sediment Regulation Regime

    PubMed Central

    Bai, Junhong; Xiao, Rong; Zhao, Qingqing; Lu, Qiongqiong; Wang, Junjing; Reddy, K. Ramesh

    2014-01-01

    Soil profiles were collected in three salt marshes with different plant species (i.e. Phragmites australis, Tamarix chinensis and Suaeda salsa) in the Yellow River Delta (YRD) of China during three seasons (summer and fall of 2007 and the following spring of 2008) after the flow-sediment regulation regime. Total elemental contents of As, Cd, Cu, Pb and Zn were determined using inductively coupled plasma atomic absorption spectrometry to investigate temporal variations in trace elements in soil profiles of the three salt marshes, assess the enrichment levels and ecological risks of these trace elements in three sampling seasons and identify their influencing factors. Trace elements did not change significantly along soil profiles at each site in each sampling season. The highest value for each sampling site was observed in summer and the lowest one in fall. Soils in both P. australis and S. salsa wetlands tended to have higher trace element levels than those in T. chinensis wetland. Compared to other elements, both Cd and As had higher enrichment factors exceeding moderate enrichment levels. However, the toxic unit (TU) values of these trace elements did not exceed probable effect levels. Correlation analysis showed that these trace elements were closely linked to soil properties such as moisture, sulfur, salinity, soil organic matter, soil texture and pH values. Principal component analysis showed that the sampling season affected by the flow-sediment regulation regime was the dominant factor influencing the distribution patterns of these trace elements in soils, and plant community type was another important factor. The findings of this study could contribute to wetland conservation and management in coastal regions affected by the hydrological engineering. PMID:25216278

  11. Marsh loss from 1984 - 2011 in the Breton Sound, Barataria and Terrebonne Basins, Louisiana, U.S.A.: Impacts of hurricanes and excess nutrients

    NASA Astrophysics Data System (ADS)

    Riter, J. C.; Kearney, M. S.; Turner, R.

    2012-12-01

    Twenty-four Landsat data sets (1984-2011), collected as close to peak vegetation growth as possible, were used to evaluate marsh vegetation health and marsh loss in Terrebonne, Barataria, and Breton Sound Basins. Marsh loss varies spatially and temporally in the basins: freshwater and most intermediate marshes located west of the Mississippi River and more than 40 km from the coast were determined to be more stable than marshes closer to the coast. In most areas of the three basins, vegetation health and marsh area from 1984-1992 were relatively stable with minor inter-annual fluctuations throughout each basin and only a few areas of localized marsh loss. By 1994, shoreline erosion, tidal creek erosion, and erosion of soil banks adjacent to canals had increased in marshes located <40 km from the Gulf of Mexico, although some sites suffered substantially greater erosion than most coastal areas. Wave erosion also increased around the shores of Lakes Salvador, Cataouatche, Levy and other large lakes by 1994. Marsh loss also occurred in marshes immediately west of the Mississippi River, especially in areas close to diversion inlets. Hurricane Ivan in 2004 produced little sustained widespread damage in the basin marshes. However, Hurricanes Katrina and Rita in 2005 and Gustav and Ike in 2008 caused extensive erosion of vegetation and the marsh substrate, especially near the inlet to Caernarvon diversion, but also near the Naomi and West Point a La Hache diversions inlets. We attribute the significant marsh damage from hurricanes to greater flooding, and greater wave and storm surge impacts due to diminished marsh soil strength from the effects of excess nutrients causing lower rhizome and root biomass and increased substrate decomposition rates.

  12. Sheetflow Effects and Canal Backfilling on Sediment Source and Transport in Everglades Freshwater Marshes: Analysis of Molecular Organic Biomarkers

    NASA Astrophysics Data System (ADS)

    Regier, P.; He, D.; Saunders, C.; Coronado-Molina, C.; Jara, B.; Jaffe, R.

    2014-12-01

    Historic freshwater sheetflow in the Florida Everglades distributed sediment to form a ridge-and-slough landscape. However, drainage along with reduction and obstruction of flow has resulted in degradation of this ridged topography. The DECOMP Physical Model is a landscape-scale project aiming to reestablish natural sheetflow to the central and southern Everglades by redesigning barriers to flow. To validate proof of concept that increased flow will rebuild ridge-slough microtopography, biomarker proxies were established for ridge and slough organic matter sources. In addition, partial and complete canal backfill options were assessed via sediment trap accumulation in each backfill treatment area. Flocculent matter (floc) and sediment samples were collected, solvent extracted, chromatographically separated, and analyzed on a GC/MS using internal standard for quantification. Four molecular organic biomarkers were evaluated: the aquatic proxy (Paq), highly-branched isoprenoids (C20 HBI), kaurenes and botyrococcenes. Paq, an aquatic proxy of mid to long-chain n-alkanes, was shown to clearly differentiate between ridge-derived and slough-derived organic matter with Paq values increasing along ridge-to-slough transects. Kaurenes indicated presence of ridge-derived organic matter while C20 HBI and botyrococcenes were indicative of periphyton-derived organic matter which is commonly more abundant in sloughs. Biomarker distributions during both low (present day) and high (managed) water flow through the DECOMP experimental parcel were determined and discussed comparatively.

  13. El Niño Southern Oscillation (ENSO) enhances CO2 exchange rates in freshwater Marsh ecosystems in the Florida everglades.

    PubMed

    Malone, Sparkle L; Staudhammer, Christina L; Oberbauer, Steven F; Olivas, Paulo; Ryan, Michael G; Schedlbauer, Jessica L; Loescher, Henry W; Starr, Gregory

    2014-01-01

    This research examines the relationships between El Niño Southern Oscillation (ENSO), water level, precipitation patterns and carbon dioxide (CO2) exchange rates in the freshwater wetland ecosystems of the Florida Everglades. Data was obtained over a 5-year study period (2009-2013) from two freshwater marsh sites located in Everglades National Park that differ in hydrology. At the short-hydroperiod site (Taylor Slough; TS) and the long-hydroperiod site (Shark River Slough; SRS) fluctuations in precipitation patterns occurred with changes in ENSO phase, suggesting that extreme ENSO phases alter Everglades hydrology which is known to have a substantial influence on ecosystem carbon dynamics. Variations in both ENSO phase and annual net CO2 exchange rates co-occurred with changes in wet and dry season length and intensity. Combined with site-specific seasonality in CO2 exchanges rates, El Niño and La Niña phases magnified season intensity and CO2 exchange rates at both sites. At TS, net CO2 uptake rates were higher in the dry season, whereas SRS had greater rates of carbon sequestration during the wet season. As La Niña phases were concurrent with drought years and extended dry seasons, TS became a greater sink for CO2 on an annual basis (-11 to -110 g CO2 m-2 yr-1) compared to El Niño and neutral years (-5 to -43.5 g CO2 m-2 yr-1). SRS was a small source for CO2 annually (1.81 to 80 g CO2 m-2 yr-1) except in one exceptionally wet year that was associated with an El Niño phase (-16 g CO2 m-2 yr-1). Considering that future climate predictions suggest a higher frequency and intensity in El Niño and La Niña phases, these results indicate that changes in extreme ENSO phases will significantly alter CO2 dynamics in the Florida Everglades.

  14. El Niño Southern Oscillation (ENSO) Enhances CO2 Exchange Rates in Freshwater Marsh Ecosystems in the Florida Everglades

    PubMed Central

    Malone, Sparkle L.; Staudhammer, Christina L.; Oberbauer, Steven F.; Olivas, Paulo; Ryan, Michael G.; Schedlbauer, Jessica L.; Loescher, Henry W.; Starr, Gregory

    2014-01-01

    This research examines the relationships between El Niño Southern Oscillation (ENSO), water level, precipitation patterns and carbon dioxide (CO2) exchange rates in the freshwater wetland ecosystems of the Florida Everglades. Data was obtained over a 5-year study period (2009–2013) from two freshwater marsh sites located in Everglades National Park that differ in hydrology. At the short-hydroperiod site (Taylor Slough; TS) and the long-hydroperiod site (Shark River Slough; SRS) fluctuations in precipitation patterns occurred with changes in ENSO phase, suggesting that extreme ENSO phases alter Everglades hydrology which is known to have a substantial influence on ecosystem carbon dynamics. Variations in both ENSO phase and annual net CO2 exchange rates co-occurred with changes in wet and dry season length and intensity. Combined with site-specific seasonality in CO2 exchanges rates, El Niño and La Niña phases magnified season intensity and CO2 exchange rates at both sites. At TS, net CO2 uptake rates were higher in the dry season, whereas SRS had greater rates of carbon sequestration during the wet season. As La Niña phases were concurrent with drought years and extended dry seasons, TS became a greater sink for CO2 on an annual basis (−11 to −110 g CO2 m−2 yr−1) compared to El Niño and neutral years (−5 to −43.5 g CO2 m−2 yr−1). SRS was a small source for CO2 annually (1.81 to 80 g CO2 m−2 yr−1) except in one exceptionally wet year that was associated with an El Niño phase (−16 g CO2 m−2 yr−1). Considering that future climate predictions suggest a higher frequency and intensity in El Niño and La Niña phases, these results indicate that changes in extreme ENSO phases will significantly alter CO2 dynamics in the Florida Everglades. PMID:25521299

  15. Variability of fresh- and salt-water marshes characteristics on the west coast of France: a spatio-temporal assessment.

    PubMed

    Tortajada, Sébastien; David, Valérie; Brahmia, Amel; Dupuy, Christine; Laniesse, Thomas; Parinet, Bernard; Pouget, Frederic; Rousseau, Frederic; Simon-Bouhet, Benoit; Robin, François-Xavier

    2011-08-01

    The degradation of water quality and the multiple conflicts of interest between users make marsh restoration very important. A Water Quality Evaluation System (WQES) was developed for river systems by the European Water Framework Directive (WFD). Some form of biologically-based, habitat-specific reference standard seems absolutely essential for wise management and stewardship of marsh ecosystems. The goal of this study was to develop a statistical method to define and to characterize a water body typology for drained marshes of the Charente-Maritime wetlands on the French Atlantic coast, placing particular emphasis on environmental factors as hydraulic functioning, human activities and pedological substratum. The Charente-Maritime marshes represent a good field study because of his high diversity of types of marshes and of anthropogenic activities in a restrictive area thus erasing spatial climatic effect (latitude effect). The statistical method developed here had permitted to define and characterize 12 different water bodies, 7 in freshwater (F1 to F7) and 5 in salt water marshes for the Charente-Maritime area. This typology demonstrated an important link between the size catchment area, nitrate concentrations, and leaching of precipitation from cultured soils. Even though the Charente-Maritime marshes are strongly impacted by humans, they may still retain the ability to remove nitrate. The increasing gradient of water renewal in the freshwater marshes from F1 to F7 explained the decreasing gradient of eutrophication. A better management of the hydrodynamic of the marshes can avoid eutrophication risk on the coastal sea area. Reliance on the WFD parameter set necessarily placed limits on the kinds of interpretations that could be made and on the study's potential contribution to the basic science of marshes. Ecologically-based insights regarding both external flows (links between ecosystems, meta-ecosystem theory) and internal flows (structure of the planktonic

  16. Variability of fresh- and salt-water marshes characteristics on the west coast of France: a spatio-temporal assessment.

    PubMed

    Tortajada, Sébastien; David, Valérie; Brahmia, Amel; Dupuy, Christine; Laniesse, Thomas; Parinet, Bernard; Pouget, Frederic; Rousseau, Frederic; Simon-Bouhet, Benoit; Robin, François-Xavier

    2011-08-01

    The degradation of water quality and the multiple conflicts of interest between users make marsh restoration very important. A Water Quality Evaluation System (WQES) was developed for river systems by the European Water Framework Directive (WFD). Some form of biologically-based, habitat-specific reference standard seems absolutely essential for wise management and stewardship of marsh ecosystems. The goal of this study was to develop a statistical method to define and to characterize a water body typology for drained marshes of the Charente-Maritime wetlands on the French Atlantic coast, placing particular emphasis on environmental factors as hydraulic functioning, human activities and pedological substratum. The Charente-Maritime marshes represent a good field study because of his high diversity of types of marshes and of anthropogenic activities in a restrictive area thus erasing spatial climatic effect (latitude effect). The statistical method developed here had permitted to define and characterize 12 different water bodies, 7 in freshwater (F1 to F7) and 5 in salt water marshes for the Charente-Maritime area. This typology demonstrated an important link between the size catchment area, nitrate concentrations, and leaching of precipitation from cultured soils. Even though the Charente-Maritime marshes are strongly impacted by humans, they may still retain the ability to remove nitrate. The increasing gradient of water renewal in the freshwater marshes from F1 to F7 explained the decreasing gradient of eutrophication. A better management of the hydrodynamic of the marshes can avoid eutrophication risk on the coastal sea area. Reliance on the WFD parameter set necessarily placed limits on the kinds of interpretations that could be made and on the study's potential contribution to the basic science of marshes. Ecologically-based insights regarding both external flows (links between ecosystems, meta-ecosystem theory) and internal flows (structure of the planktonic

  17. Intraspecific variation in growth of marsh macrophytes in response to salinity and soil type: Implications for wetland restoration

    USGS Publications Warehouse

    Howard, R.J.

    2010-01-01

    Genetic diversity within plant populations can influence plant community structure along environmental gradients. In wetland habitats, salinity and soil type are factors that can vary along gradients and therefore affect plant growth. To test for intraspecific growth variation in response to these factors, a greenhouse study was conducted using common plants that occur in northern Gulf of Mexico brackish and salt marshes. Individual plants of Distichlis spicata, Phragmites australis, Schoenoplectus californicus, and Schoenoplectus robustus were collected from several locations along the coast in Louisiana, USA. Plant identity, based on collection location, was used as a measure of intraspecific variability. Prepared soil mixtures were organic, silt, or clay, and salinity treatments were 0 or 18 psu. Significant intraspecific variation in stem number, total stem height, or biomass was found in all species. Within species, response to soil type varied, but increased salinity significantly decreased growth in all individuals. Findings indicate that inclusion of multiple genets within species is an important consideration for marsh restoration projects that include vegetation plantings. This strategy will facilitate establishment of plant communities that have the flexibility to adapt to changing environmental conditions and, therefore, are capable of persisting over time. ?? Coastal and Estuarine Research Federation 2009.

  18. Effects of dispersant used for oil spill remediation on nitrogen cycling in Louisiana coastal salt marsh soil.

    PubMed

    Pietroski, Jason P; White, John R; DeLaune, Ronald D

    2015-01-01

    On April 20, 2010, the BP Deepwater Horizon (DWH) offshore oil platform experienced an explosion which triggered the largest marine oil spill in US history. Approximately 7.9 million liters of dispersant, Corexit EC9500A, was used during the spill between May 15th and July 12th. Marsh soil samples were collected from an unimpacted marsh site proximal to coastal areas that suffered light to heavy oiling for a laboratory evaluation to determine the effect of Corexit on the wetland soil microbial biomass as well as N-mineralization and denitrification rates. Microbial biomass nitrogen (N) values were below detection for the 1:10, 1:100 and 1:1000 Corexit:wet soil treatments. The potentially mineralizable N (PMN) rate correlated with microbial biomass with significantly lower rates for the 1:10 and 1:100 Corexit:wet soil additions. Potential denitrification rates for Corexit:wet soil ratios after immediate dispersant exposure were below detection for the 1:10 treatment, while the 1:100 was 7.6±2.7% of the control and the 1:1000 was 33±4.3% of the control. The 1:10000 treatment was not significantly different from the control. Denitrification rates measured after 2 weeks exposure to the surfactant found the 1:10 treatment still below detection limit and the 1:100 ratio was 12±2.6% of the control. Results from this lab study suggest that chemical dispersants have the potential to negatively affect the wetland soil microbial biomass and resultant microbial activity. Consequences of exposure led to reductions in several important microbial-regulated ecosystem services including water quality improvement (denitrification) and ecosystem primary productivity (N-mineralization). Future studies should investigate the longer-term impacts of dispersant exposure on the microbial consortia to determine if microbial activity recovers over time. PMID:25123788

  19. Effects of dispersant used for oil spill remediation on nitrogen cycling in Louisiana coastal salt marsh soil.

    PubMed

    Pietroski, Jason P; White, John R; DeLaune, Ronald D

    2015-01-01

    On April 20, 2010, the BP Deepwater Horizon (DWH) offshore oil platform experienced an explosion which triggered the largest marine oil spill in US history. Approximately 7.9 million liters of dispersant, Corexit EC9500A, was used during the spill between May 15th and July 12th. Marsh soil samples were collected from an unimpacted marsh site proximal to coastal areas that suffered light to heavy oiling for a laboratory evaluation to determine the effect of Corexit on the wetland soil microbial biomass as well as N-mineralization and denitrification rates. Microbial biomass nitrogen (N) values were below detection for the 1:10, 1:100 and 1:1000 Corexit:wet soil treatments. The potentially mineralizable N (PMN) rate correlated with microbial biomass with significantly lower rates for the 1:10 and 1:100 Corexit:wet soil additions. Potential denitrification rates for Corexit:wet soil ratios after immediate dispersant exposure were below detection for the 1:10 treatment, while the 1:100 was 7.6±2.7% of the control and the 1:1000 was 33±4.3% of the control. The 1:10000 treatment was not significantly different from the control. Denitrification rates measured after 2 weeks exposure to the surfactant found the 1:10 treatment still below detection limit and the 1:100 ratio was 12±2.6% of the control. Results from this lab study suggest that chemical dispersants have the potential to negatively affect the wetland soil microbial biomass and resultant microbial activity. Consequences of exposure led to reductions in several important microbial-regulated ecosystem services including water quality improvement (denitrification) and ecosystem primary productivity (N-mineralization). Future studies should investigate the longer-term impacts of dispersant exposure on the microbial consortia to determine if microbial activity recovers over time.

  20. Carbon stocks and soil sequestration rates of riverine mangroves and freshwater wetlands

    NASA Astrophysics Data System (ADS)

    Adame, M. F.; Santini, N. S.; Tovilla, C.; Vázquez-Lule, A.; Castro, L.

    2015-01-01

    Deforestation and degradation of wetlands are important causes of carbon dioxide emissions to the atmosphere. Accurate measurements of carbon (C) stocks and sequestration rates are needed for incorporating wetlands into conservation and restoration programs with the aim for preventing carbon emissions. Here, we assessed whole ecosystem C stocks (trees, soil and downed wood) and soil N stocks of riverine wetlands (mangroves, marshes and peat swamps) within La Encrucijada Biosphere Reserve in the Pacific coast of Mexico. We also estimated soil C sequestration rates of mangroves on the basis of soil accumulation. We hypothesized that riverine wetlands have large C stocks, and that upland mangroves have larger C and soil N stocks compared to lowland mangroves. Riverine wetlands had large C stocks with a mean of 784.5 ± 73.5 Mg C ha-1 for mangroves, 722.2 ± 83.4 Mg C ha-1 for peat swamps, and 336.5 ± 38.3 Mg C ha-1 for marshes. C stocks and soil N stocks were in general larger for upland (833.0 ± 7.2 Mg C ha-1; 26.4 ± 0.5 Mg N ha-1) compared to lowland mangroves (659.5 ± 18.6 Mg C ha-1; 13.8 ± 2.0 Mg N ha-1). Soil C sequestration values were 1.3 ± 0.2 Mg C ha-1 yr-1. The Reserve stores 32.5 Mtons of C or 119.3 Mtons of CO2, with mangroves sequestering (via soil accumulation) 27 762 ± 0.5 Mg C ha-1 every year.

  1. Seasonal patterns in the soil water balance of a Spartina marsh site at North Inlet, South Carolina, USA

    USGS Publications Warehouse

    Gardner, L.R.; Reeves, H.W.

    2002-01-01

    Time series of ground-water head at a mid-marsh site near North Inlet, South Carolina, USA can be classified into five types of forcing signatures based on the dominant water flux governing water-level dynamics during a given time interval. The fluxes that can be recognized are recharge by tides and rain, evapotranspiration (ET), seepage into the near surface soil from below, and seepage across the soil surface to balance either ET losses or seepage influxes from below. Minimal estimates for each flux can be made by multiplying the head change induced by it by the measured specific yield of the soil. These flux estimates are provide minimal values because ET fluxes resulting from this method are about half as large as those estimated from calculated potential evapotranspiration (PET), which place an upper limit on the actual ET. As evapotranspiration is not moisture-limited at this regularly submerged site, the actual ET is probably nearly equal to PET. Thus, all of the other fluxes are probably twice as large as those given by this method. Application of this method shows that recharge by tides and rain only occurs during spring and summer when ET exceeds upward seepage from below and is thereby able to draw down the water table below the marsh surface occasionally. During fall and winter, seepage of fresh water from below is largely balanced by seepage out of the soil into overlying tidal water or into sheet flow during tidal exposure. The resulting reduction in soil water salinity may thereby enhance the growth of Spartina in the following spring. ?? 2002, The Society of Wetland Scientists.

  2. Removal of Fast Flowing Nitrogen from Marshes Restored in Sandy Soils

    PubMed Central

    Sparks, Eric L.; Cebrian, Just; Smith, Sara M.

    2014-01-01

    Groundwater flow rates and nitrate removal capacity from an introduced solution were examined for five marsh restoration designs and unvegetated plots shortly after planting and 1 year post-planting. The restoration site was a sandy beach with a wave-dampening fence 10 m offshore. Simulated groundwater flow into the marsh was introduced at a rate to mimic intense rainfall events. Restoration designs varied in initial planting density and corresponded to 25%, 50%, 75% and 100% of the plot area planted. In general, groundwater flow was slower with increasing planting density and decreased from year 0 to year 1 across all treatments. Nevertheless, removal of nitrate from the introduced solution was similar and low for all restoration designs (3–7%) and similar to the unvegetated plots. We suggest that the low NO3− removal was due to sandy sediments allowing rapid flow of groundwater through the marsh rhizosphere, thereby decreasing the contact time of the NO3− with the marsh biota. Our findings demonstrate that knowledge of the groundwater flow regime for restoration projects is essential when nutrient filtration is a target goal of the project. PMID:25353607

  3. Removal of fast flowing nitrogen from marshes restored in sandy soils.

    PubMed

    Sparks, Eric L; Cebrian, Just; Smith, Sara M

    2014-01-01

    Groundwater flow rates and nitrate removal capacity from an introduced solution were examined for five marsh restoration designs and unvegetated plots shortly after planting and 1 year post-planting. The restoration site was a sandy beach with a wave-dampening fence 10 m offshore. Simulated groundwater flow into the marsh was introduced at a rate to mimic intense rainfall events. Restoration designs varied in initial planting density and corresponded to 25%, 50%, 75% and 100% of the plot area planted. In general, groundwater flow was slower with increasing planting density and decreased from year 0 to year 1 across all treatments. Nevertheless, removal of nitrate from the introduced solution was similar and low for all restoration designs (3-7%) and similar to the unvegetated plots. We suggest that the low NO3(-) removal was due to sandy sediments allowing rapid flow of groundwater through the marsh rhizosphere, thereby decreasing the contact time of the NO3(-) with the marsh biota. Our findings demonstrate that knowledge of the groundwater flow regime for restoration projects is essential when nutrient filtration is a target goal of the project.

  4. A method for estimating pore water drainage from marsh soils using rainfall and well records

    NASA Astrophysics Data System (ADS)

    Gardner, Leonard Robert; Gaines, Emily F.

    2008-08-01

    Rainfall events during low tide exposure cause the water table in marshes to rise. If one has long time series of both rain events and water levels in wells along transects from creek bank to marsh interior, one can correlate well response with rain amount. In cases examined so far the well response is found to be a linear function of rain amount. As it is reasonable to assume that the amount of tidal infiltration required to restore the water table to the elevation of the marsh surface is equal to the amount of rain that would be required to do so, one can estimate the annual drainage of pore water from a well site by dividing the mean drawdown of the water table at low tide by the slope of the response versus rain regression and then multiplying the result by the number of tidal drawdowns in a year. Integration of such results along the transect then gives an estimate of the total annual drainage. An example of the use of this method is given for two well transects in a Typha and a Spartina marsh at the Plum Island Estuary Long Term Ecological Research (PIE-LTER) site in Massachusetts, USA. Both transects yielded pore water drainage rates of about 160 m 3 year -1 per meter of channel length. Although the annual volume of pore water drainage is small compared to the annual volume of the tidal prism, its impact on nutrient budgets in the estuary could be large because of the high concentrations of nutrients in marsh pore waters. We also discuss the possible effects of the capillary fringe, air entrapment and tidal forcing during rain events on these results.

  5. Effect of fertilization on Soil Respiration and Belowground Macro-organic Matter in Spartina alternatflora Marsh Soils

    EPA Science Inventory

    Human activities and rising populations increase watershed nutrient loads, which may alter the structure and function of coastal wetlands. In a long-term fertilization experiment in the North Inlet-Winyah Bay Reserve (NI-WB, NERR) (SC) Spartina marsh system, we used a 2 X 2 facto...

  6. Biotransformation of tetrabromobisphenol A (TBBPA) in anaerobic digester sludge, soils, and freshwater sediments.

    PubMed

    McAvoy, Drew C; Pittinger, Charles A; Willis, Alison M

    2016-09-01

    The biotransformation of tetrabromobisphenol A (TBBPA) was evaluated in anaerobic digester sludge, soils, and freshwater sediments. In anaerobic digester sludge, TBBPA biotransformed rapidly with a 50% disappearance time (DT50) of 19 days, though little mineralization (1.1%) was observed. In aerobic soils, mineralization of TBBPA ranged from 17.5% to 21.6% with 55.3-83.6% of the TBBPA incorporated into the soils as a non-extractable bound residue. The DT50 for TBBPA in aerobic soils ranged from 5.3 to 7.7 days. In anaerobic soils, 48.3-100% of the TBBPA was incorporated into the soils as non-extractable bound residue with <4% mineralized. The soil fate studies demonstrated extensive incorporation of TBBPA into the solid matrix and this association was related to the amount of organic carbon in the soils (i.e., greater association of TBBPA with soil at higher organic carbon content). In anaerobic sediments the DT50 for TBBPA ranged from 28 to 42 days, whereas in aerobic sediments the DT50 for TBBPA ranged from 48 to 84 days and depended on the initial dose concentration. Most of the TBBPA in the sediment studies was incorporated as a non-extractable bound residue with little mineralization observed. Sediment extracts revealed three unknown biotransformation products and bisphenol A (BPA). These results were consistent with previously published studies where TBBPA biotransformed in anaerobic environments (digester sludge and sediments) by debromination and slowly mineralized in the test environments (anaerobic digester sludge, soils, and freshwater sediments).

  7. Methane flux from coastal salt marshes

    NASA Astrophysics Data System (ADS)

    Bartlett, K. B.; Harriss, R. C.; Sebacher, D. I.

    1985-06-01

    It is thought that biological methanogenesis in natural and agricultural wetlands and enteric fermentation in animals are the dominant sources of global tropospheric methane. It is pointed out that the anaerobic soils and sediments, where methanogenesis occurs, predominate in coastal marine wetlands. Coastal marine wetlands are generally believed to be approximately equal in area to freshwater wetlands. For this reason, coastal marine wetlands may be a globally significant source of atmospheric methane. The present investigation is concerned with the results of a study of direct measurements of methane fluxes to the atmosphere from salt marsh soils and of indirect determinations of fluxes from tidal creek waters. In addition, measurements of methane distributions in coastal marine wetland sediments and water are presented. The results of the investigation suggest that marine wetlands provide only a minor contribution to atmospheric methane on a global scale.

  8. Methane flux from coastal salt marshes

    NASA Technical Reports Server (NTRS)

    Bartlett, K. B.; Harriss, R. C.; Sebacher, D. I.

    1985-01-01

    It is thought that biological methanogenesis in natural and agricultural wetlands and enteric fermentation in animals are the dominant sources of global tropospheric methane. It is pointed out that the anaerobic soils and sediments, where methanogenesis occurs, predominate in coastal marine wetlands. Coastal marine wetlands are generally believed to be approximately equal in area to freshwater wetlands. For this reason, coastal marine wetlands may be a globally significant source of atmospheric methane. The present investigation is concerned with the results of a study of direct measurements of methane fluxes to the atmosphere from salt marsh soils and of indirect determinations of fluxes from tidal creek waters. In addition, measurements of methane distributions in coastal marine wetland sediments and water are presented. The results of the investigation suggest that marine wetlands provide only a minor contribution to atmospheric methane on a global scale.

  9. Direction and magnitude of change in soil use for a wetland area in Chile: Puren marshes, a priority site for biodiversity conservation (stage 1).

    NASA Astrophysics Data System (ADS)

    Sepúlveda-Varas, Alejandra

    2014-05-01

    Land managers and policymakers need information about soil change caused by anthropogenic and non-anthropogenic factors to predict the effects of management on soil function, compare alternatives, and make decisions. This is particularly relevant in highly fragile ecosystems such as wetlands or humid systems. The wetlands require the presence of three key components: hydric soils, hydrophytic vegetation and wetland hydrology. Therefore, the presence of hydric soils in humid systems is essential for the existence of a wetland. In Chile, one of the geographic zones with the greatest diversity of humid systems is the coast of the Araucanía Region, which contains one of the largest and most threatened humid systems of the region, Puren Marshes, whose soils are only generically described as alluvial terraces and miscellaneous swamp. In this area, studies have reported a high intensity of anthropogenic activity, generating soil erosion, loss of wetland coverage and landscape alteration. For this first stage of a main investigation about the vulnerability of hydric soils to changes in patterns of soil use, the objective was to characterize the variables of soil use in the Puren Marshes and determinate the direction and magnitude of change in soil use in the study area for the period between 1994 and 2007 (the official reports indicate that until 1994, the total area of Puren Marshes was 1147 ha). For the analyses, were used official reports of soil use, the coverages were obtained from the project map databases "Catastro y Evaluación de los Recursos Vegetacionales Nativos de Chile" 1993 and its update for La Araucanía, Regional Government of La Araucanía 2011, DMF CONAF 2010 and IGM 2007. The map information was processed in ARCGIS 9.3.1 software under UTM coordinates, datum WGS 84 and 18 South Time extended. Was developed a multitemporal analysis by construction of transition matrix and confusion matrix. The results obtained show that for the period analysed, the

  10. Delayed recolonization of foraminifera in a suddenly flooded tidal (former freshwater) marsh in Oregon (USA): Implications for relative sea-level reconstructions

    NASA Astrophysics Data System (ADS)

    Milker, Yvonne; Horton, Benjamin P.; Khan, Nicole S.; Nelson, Alan R.; Witter, Robert C.; Engelhart, Simon E.; Ewald, Michael; Brophy, Laura; Bridgeland, William T.

    2016-04-01

    Stratigraphic sequences beneath salt marshes along the U.S. Pacific Northwest coast preserve 7000 years of plate-boundary earthquakes at the Cascadia subduction zone. The sequences record rapid rises in relative sea level during regional coseismic subsidence caused by great earthquakes and gradual falls in relative sea level during interseismic uplift between earthquakes. These relative sea-level changes are commonly quantified using foraminiferal transfer functions with the assumption that foraminifera rapidly recolonize salt marshes and adjacent tidal flats following coseismic subsidence. The restoration of tidal inundation in the Ni-les'tun unit (NM unit) of the Bandon Marsh National Wildlife Refuge (Oregon), following extensive dike removal in August 2011, allowed us to directly observe changes in foraminiferal assemblages that occur during rapid "coseismic" (simulated by dike removal with sudden tidal flooding) and "interseismic" (stabilization of the marsh following flooding) relative sea-level changes analogous to those of past earthquake cycles. We analyzed surface sediment samples from 10 tidal stations at the restoration site (NM unit) from mudflat to high marsh, and 10 unflooded stations in the Bandon Marsh control site. Samples were collected shortly before and at 1- to 6-month intervals for 3 years after tidal restoration of the NM unit. Although tide gauge and grain-size data show rapid restoration of tides during approximately the first 3 months after dike removal, recolonization of the NM unit by foraminifera was delayed at least 10 months. Re-establishment of typical tidal foraminiferal assemblages, as observed at the control site, required 31 months after tidal restoration, with Miliammina fusca being the dominant pioneering species. If typical of past recolonizations, this delayed foraminiferal recolonization affects the accuracy of coseismic subsidence estimates during past earthquakes because significant postseismic uplift may shortly follow

  11. Evaluating the accuracy of soil water sensors for irrigation scheduling to conserve freshwater

    NASA Astrophysics Data System (ADS)

    Ganjegunte, Girisha K.; Sheng, Zhuping; Clark, John A.

    2012-06-01

    In the Trans-Pecos area, pecan [ Carya illinoinensis (Wangenh) C. Koch] is a major irrigated cash crop. Pecan trees require large amounts of water for their growth and flood (border) irrigation is the most common method of irrigation. Pecan crop is often over irrigated using traditional method of irrigation scheduling by counting number of calendar days since the previous irrigation. Studies in other pecan growing areas have shown that the water use efficiency can be improved significantly and precious freshwater can be saved by scheduling irrigation based on soil moisture conditions. This study evaluated the accuracy of three recent low cost soil water sensors (ECH2O-5TE, Watermark 200SS and Tensiometer model R) to monitor volumetric soil water content (θv) to develop improved irrigation scheduling in a mature pecan orchard in El Paso, Texas. Results indicated that while all three sensors were successful in following the general trends of soil moisture conditions during the growing season, actual measurements differed significantly. Statistical analyses of results indicated that Tensiometer provided relatively accurate soil moisture data than ECH2O-5TE and Watermark without site-specific calibration. While ECH2O-5TE overestimated the soil water content, Watermark and Tensiometer underestimated. Results of this study suggested poor accuracy of all three sensors if factory calibration and reported soil water retention curve for study site soil texture were used. This indicated that sensors needed site-specific calibration to improve their accuracy in estimating soil water content data.

  12. The cumulative effect of three decades of phosphogypsum amendments in reclaimed marsh soils from SW Spain: (226)Ra, (238)U and Cd contents in soils and tomato fruit.

    PubMed

    Abril, José-María; García-Tenorio, Rafael; Enamorado, Santiago M; Hurtado, M Dolores; Andreu, Luis; Delgado, Antonio

    2008-09-15

    Phosphogypsum (PG), a by-product of the phosphate fertiliser industries, has been applied as soil amendment to reduce Na saturation in soils, as in the reclaimed marsh area from SW Spain, where available PG has a typical fingerprint of 710+/-40 Bq kg(-1) of (226)Ra, 165+/-15 Bq kg(-1) of (238)U and 2.8+/-0.4 mg kg(-1) of Cd. This work was focussed on the cumulative effects of PG amendments on the enrichment of these pollutants in cultivated soils and plants (Lycopersicum esculentum Mill L.) from the area studied, where PG has been applied since 1978 at recommended rates of 20-25 Mg ha(-1) every 2-3 years. A field experiment was conducted over three years to compare activity concentrations of (226)Ra ((214)Pb) and (238)U ((234)Th) in non-reclaimed soils, reclaimed soils with no additional PG application, and reclaimed soils with two additional PG applications. A non-significant effect of two PG amendments (in three years) was observed when compared with non-amended reclaimed plots. Nevertheless, a significant (p<0.05) enrichment of (226)Ra was observed in the surface horizon (0-30 cm) of reclaimed plots relative to deeper horizons and also when compared with the surface horizon of non-reclaimed soil (p<0.05), thereby revealing the cumulative effect of three decades of PG applications. Furthermore, the effect of a continuous application of PG was studied by analysing soils and tomato fruits from six commercial farms with different cumulative rates of PG applied. Cadmium concentrations in tomatoes, which were one order of magnitude higher than those found in tomatoes from other areas in South Spain, were positively correlated (r = 0.917) with (226)Ra-concentration in soils, which can be considered an accurate index of the cumulative PG rate of each farm.

  13. The cumulative effect of three decades of phosphogypsum amendments in reclaimed marsh soils from SW Spain: (226)Ra, (238)U and Cd contents in soils and tomato fruit.

    PubMed

    Abril, José-María; García-Tenorio, Rafael; Enamorado, Santiago M; Hurtado, M Dolores; Andreu, Luis; Delgado, Antonio

    2008-09-15

    Phosphogypsum (PG), a by-product of the phosphate fertiliser industries, has been applied as soil amendment to reduce Na saturation in soils, as in the reclaimed marsh area from SW Spain, where available PG has a typical fingerprint of 710+/-40 Bq kg(-1) of (226)Ra, 165+/-15 Bq kg(-1) of (238)U and 2.8+/-0.4 mg kg(-1) of Cd. This work was focussed on the cumulative effects of PG amendments on the enrichment of these pollutants in cultivated soils and plants (Lycopersicum esculentum Mill L.) from the area studied, where PG has been applied since 1978 at recommended rates of 20-25 Mg ha(-1) every 2-3 years. A field experiment was conducted over three years to compare activity concentrations of (226)Ra ((214)Pb) and (238)U ((234)Th) in non-reclaimed soils, reclaimed soils with no additional PG application, and reclaimed soils with two additional PG applications. A non-significant effect of two PG amendments (in three years) was observed when compared with non-amended reclaimed plots. Nevertheless, a significant (p<0.05) enrichment of (226)Ra was observed in the surface horizon (0-30 cm) of reclaimed plots relative to deeper horizons and also when compared with the surface horizon of non-reclaimed soil (p<0.05), thereby revealing the cumulative effect of three decades of PG applications. Furthermore, the effect of a continuous application of PG was studied by analysing soils and tomato fruits from six commercial farms with different cumulative rates of PG applied. Cadmium concentrations in tomatoes, which were one order of magnitude higher than those found in tomatoes from other areas in South Spain, were positively correlated (r = 0.917) with (226)Ra-concentration in soils, which can be considered an accurate index of the cumulative PG rate of each farm. PMID:18602676

  14. Substrate and/or substrate-driven changes in the abundance of methanogenic archaea cause seasonal variation of methane production potential in species-specific freshwater wetlands.

    PubMed

    Liu, Deyan; Ding, Weixin; Yuan, Junji; Xiang, Jian; Lin, Yongxin

    2014-05-01

    There are large temporal and spatial variations of methane (CH4) emissions from natural wetlands. To understand temporal changes of CH4 production potential (MPP), soil samples were collected from a permanently inundated Carex lasiocarpa marsh and a summer inundated Calamagrostis angustifolia marsh over the period from June to October of 2011. MPP, dissolved organic carbon (DOC) concentration, abundance and community structure of methanogenic archaea were assessed. In the C. lasiocarpa marsh, DOC concentration, MPP and the methanogen population showed similar seasonal variations and maximal values in September. MPP and DOC in the C. angustifolia marsh exhibited seasonal variations and values peaked during August, while the methanogen population decreased with plant growth. Methanogen abundance correlated significantly (P = 0.02) with DOC only for the C. lasiocarpa marsh. During the sampling period, the dominant methanogens were the Methanosaetaceae and Zoige cluster I (ZC-Ι) in the C. angustifolia marsh, and Methanomicrobiales and ZC-Ι in the C. lasiocarpa marsh. MPP correlated significantly (P = 0.04) with DOC and methanogen population in the C. lasiocarpa marsh but only with DOC in the C. angustifolia marsh. Addition of C. lasiocarpa litter enhanced MPP more effectively than addition of C. angustifolia litter, indicating that temporal variation of substrates is controlled by litter deposition in the C. lasiocarpa marsh while living plant matter is more important in the C. angustifolia marsh. This study indicated that there was no apparent shift in the dominant types of methanogen during the growth season in the species-specific freshwater wetlands. Temporal variation of MPP is controlled by substrates and substrate-driven changes in the abundance of methanogenic archaea in the C. lasiocarpa marsh, while MPP depends only on substrate availability derived from root exudates or soil organic matter in the C. angustifolia marsh.

  15. Nutrient Cycling in Piermont Marsh

    NASA Astrophysics Data System (ADS)

    Reyes, N.; Gribbin, S.; Newton, R.; Diaz, K.; Laporte, N.; Trivino, G.; Ortega, J.; McKee, K.; Sambrotto, R.

    2011-12-01

    We investigate the cycling of nutrients through a brackish tidal wetland about 40 km north of Manhattan in the Hudson River estuary. As part of a long-term ecological study of Piermont Marsh, a NOAA reference wetland managed by the NY State DEC, we are measuring dissolved inorganic nutrients on the Marsh surface and its drainage channels. The marsh occupies 400 acres along the southwest corner of Haverstraw Bay with approximately 2 km frontage to the estuary. It is supplied with nutrient-rich water and drained primarily along several tidal creeks and the hundreds of rivulets that feed them. During most tidal cycles the silty berm bounding the marsh is not topped. Human influence in the marsh's surrounding area has had profound effects, one of the most fundamental of which has been the shift from native grass species, predominantly Spartina alterniflora, to an invasive genotype of common reed, Phragmites australis. Along with this shift there have been changes in the root bed, the effective marsh interior and berm heights, the hydroperiod and, as a result, the ability of the marsh to be utilized by various types of Hudson estuary fish. The vegetative shift is believed to be anthropogenic, but the connection is not well understood, and it is not known what role biogeochemical perturbations are playing. We present two field seasons of nitrate, phosphate and silicate measurements from Sparkill Creek, a freshwater stream draining the surrounding highlands constitutes the northern boundary, two tidally driven creeks transect the Marsh from West to East: the Crumkill and an unnamed creek we have dubbed the "Tidal", Ludlow Ditch, a no-longer-maintained drainage channel grading gently from the northern part of the marsh to the South terminates in a wide tidal outlet that is its southern boundary. Net tidal cycle fluxes and fluxes resulting from runoff events are presented. Deviations from Redfield ratios and limiting nutrients are analyzed. Piermont Marsh data is compared

  16. Avian comparisons between Kingman and Kenilworth Marshes: Final report 2001-2004

    USGS Publications Warehouse

    Paul, M.; Krafft, C.; Hammerschlag, D.

    2006-01-01

    In 2001 avi-fauna was added as a parameter to be monitored as an indicator of the status and relative success of the two reconstructed freshwater tidal wetlands residing in the Anacostia River estuary in Washington, D.C. at that time. They were Kenilworth Marsh which was reconstructed in 1993 and Kingman Marsh seven years later in 2000. Other studies were already underway looking at vegetation, seeds, soils and contaminants. Even though these new wetlands were relatively small, together about 70 acres, it was felt this might be sufficient area to sustain and attract birds to the habitat. Birds have been used elsewhere as wetland indicators and we hoped they could prove useful here especially in terms of numbers and species richness. The study was conducted for almost four years (2001-2004) and was designed to ascertain if the recently reconstructed Kingman Marsh evolved similarly with respect to the avi fauna as Kenilworth which had the seven year head start. Twelve observation points were established, six at each marsh, which were to be used weekly so as to alternate the high and low tidal regimes and the observation start times. Additional notations were recorded for species while walking between observation points. The course of the study became interrupted with the incursion of resident Canada geese particularly upon the Kingman Marsh site. Goose herbivory coupled with lowered sediment elevations reduced vegetation cover at Kingman Marsh to less than one-third its intended scope while Kenilworth was barely affected. The result was actually much less impact on the bird populations than on the vegetation. In fact the additional mudflat area at Kingman may have actually helped attract some birds. Together 177 species were identified at the marshes comprising 14 taxonomic orders and 16 families, 137 species at Kingman and 164 at Kenilworth. However, Kingman actually attracted more birds than Kenilworth, whether or not Canada Geese were included. At both wetlands

  17. Dynamics of mangrove-marsh ecotones in subtropical coastal wetlands: fire, sea-level rise, and water levels

    USGS Publications Warehouse

    Smith, Thomas J.; Foster, Ann M.; Tiling-Range, Ginger; Jones, John W.

    2013-01-01

    Ecotones are areas of sharp environmental gradients between two or more homogeneous vegetation types. They are a dynamic aspect of all landscapes and are also responsive to climate change. Shifts in the position of an ecotone across a landscape can be an indication of a changing environment. In the coastal Everglades of Florida, USA, a dominant ecotone type is that of mangrove forest and marsh. However, there is a variety of plants that can form the marsh component, including sawgrass (Cladium mariscus [L.] Pohl), needlegrass rush (Juncus roemerianus Scheele), and spikerush (Eleocharis spp.). Environmental factors including water depth, soil type, and occurrence of fires vary across these ecotones, influencing their dynamics. Altered freshwater inflows from upstream and increasing sea level over the past 100 years may have also had an impact. We analyzed a time series of historical aerial photographs for a number of sites in the coastal Everglades and measured change in position of mangrove–marsh ecotones. For three sites, detailed maps were produced and the area of marsh, mangrove, and other habitats was determined for five periods spanning the years 1928 to 2004. Contrary to our initial hypothesis on fire, we found that fire did not prevent mangrove expansion into marsh areas but may in fact assist mangroves to invade some marsh habitats, especially sawgrass. Disparate patterns in mangrove–marsh change were measured at two downstream sites, both of which had multiple fires over from 1948 to 2004. No change in mangrove or marsh area was measured at one site. Mangrove area increased and marsh area decreased at the second of these fire-impacted sites. We measured a significant increase in mangrove area and a decline in marsh area at an upstream site that had little occurrence of fire. At this site, water levels have increased significantly as sea level has risen, and this has probably been a factor in the mangrove expansion.

  18. Distribution and activity of anaerobic ammonium-oxidising bacteria in natural freshwater wetland soils.

    PubMed

    Shen, Li-dong; Wu, Hong-sheng; Gao, Zhi-qiu; Cheng, Hai-xiang; Li, Ji; Liu, Xu; Ren, Qian-qi

    2016-04-01

    Anaerobic ammonium oxidation (anammox) process plays a significant role in the marine nitrogen cycle. However, the quantitative importance of this process in nitrogen removal in wetland systems, particularly in natural freshwater wetlands, is still not determined. In the present study, we provided the evidence of the distribution and activity of anammox bacteria in a natural freshwater wetland, located in southeastern China, by using (15)N stable isotope measurements, quantitative PCR assays and 16S rRNA gene clone library analysis. The potential anammox rates measured in this wetland system ranged between 2.5 and 25.5 nmol N2 g(-1) soil day(-1), and up to 20% soil dinitrogen gas production could be attributed to the anammox process. Phylogenetic analysis of 16S rRNA genes showed that anammox bacteria related to Candidatus Brocadia, Candidatus Kuenenia, Candidatus Anammoxoglobus and two novel anammox clusters coexisted in the collected soil cores, with Candidatus Brocadia and Candidatus Kuenenia being the dominant anammox genera. Quantitative PCR of hydrazine synthase genes showed that the abundance of anammox bacteria varied from 2.3 × 10(5) to 2.2 × 10(6) copies g(-1) soil in the examined soil cores. Correlation analyses suggested that the soil ammonium concentration had significant influence on the activity of anammox bacteria. On the basis of (15)N tracing technology, it is estimated that a total loss of 31.1 g N m(-2) per year could be linked the anammox process in the examined wetland. PMID:26621804

  19. Sediments in marsh ponds of the Gulf Coast Chenier Plain: Effects of structural marsh management and salinity

    USGS Publications Warehouse

    Bolduc, F.; Afton, A.D.

    2005-01-01

    Physical characteristics of sediments in coastal marsh ponds (flooded zones of marsh associated with little vegetation) have important ecological consequences because they determine compositions of benthic invertebrate communities, which in turn influence compositions of waterbird communities. Sediments in marsh ponds of the Gulf Coast Chenier Plain potentially are affected by (1) structural marsh management (levees, water control structures and impoundments; SMM), and (2) variation in salinity. Based on available literature concerning effects of SMM on sediments in emergent plant zones (zones of marsh occasionally flooded and associated with dense vegetation) of coastal marshes, we predicted that SMM would increase sediment carbon content and sediment hardness, and decrease oxygen penetration (O2 depth) and the silt-clay fraction in marsh pond sediments. Assuming that freshwater marshes are more productive than are saline marshes, we also predicted that sediments of impounded freshwater marsh ponds would contain more carbon than those of impounded oligohaline and mesohaline marsh ponds, whereas C:N ratio, sediment hardness, silt-clay fraction, and O2 depth would be similar among pond types. Accordingly, we measured sediment variables within ponds of impounded and unimpounded marshes on Rockefeller State Wildlife Refuge, near Grand Chenier, Louisiana. To test the above predictions, we compared sediment variables (1) between ponds of impounded (IM) and unimpounded mesohaline marshes (UM), and (2) among ponds of impounded freshwater (IF), oligohaline (IO), and mesohaline (IM) marshes. An a priori multivariate analysis of variance (MANOVA) contrast indicated that sediments differed between IM and UM marsh ponds. As predicted, the silt-clay fraction and O2 depth were lower and carbon content, C:N ratio, and sediment hardness were higher in IM than in UM marsh ponds. An a priori MANOVA contrast also indicated that sediments differed among IF, IO, and IM marsh ponds. As

  20. Radioactive influence of some phosphogypsum piles located at the SW Spain in their surrounding soils and salt-marshes

    NASA Astrophysics Data System (ADS)

    Bolivar, J. P.; Mosqueda, F.; Vaca, F.; Garcia-Tenorio, R.; Martinez-Sanchez, M. J.; Perez-Sirvent, C.; Martinez-Lopez, S.

    2012-04-01

    In the SW of Spain, just in the confluence of the mouths of the Tinto and Odiel River and in the vicinity of Huelva town, there is a big industrial complex which includes between others an industry devoted during more than 40 years to the production of phosphoric acid, by treating sedimentary phosphate rock by the so-called "wet acid method". As a by-product of the mentioned process it have been produced historically huge amounts of a compound called phosphogypsum, which composition is mostly di-hydrate calcium sulphate containing some of the impurities of heavy metals and natural radionuclides originally present in the raw material. Due to the lack of market for this by-product, it has been mostly piled over some salt-marshes located in the vicinity of the industry, on the bank of the Tinto River. About 100 million tons of phosphogypsum have been piled in an area covering more than 1000 hectares, constituting a clear environmental and radiological anomaly in the zone. The phosphogypsum piles set do not conform obviously a close system. They are interacting with the nearby environment mostly by leaching waters releases from the waters accumulated in them either for its previous use in transporting in suspension the PG from the factory or by rainfall. These waters leaks contain in solution enhanced amounts of heavy metals and radionuclides that can provoke the chemical and radioactive contamination in surroundings soil and salt-marshes areas. In this communication the radioactive influence by the phosphogypsum piles in the surrounding terrestrial environment is evaluated. This contamination is mostly due to radionuclides belonging to the uranium series, which are present originally in the raw material treated in the industry, and afterwards in the generated phosphogypsum, in enhanced amounts in relation to typical soils. In addition, the different dynamics and behavior of different radionuclides will be discussed and analyzed. The gained information in this study

  1. Salt marsh dieback in coastal Louisiana: survey of plant and soil conditions in Barataria and Terrebonne basins, June 2000-September 2001

    USGS Publications Warehouse

    McKee, Karen L.; Mendelssohn, Irving A.; Materne, Michael D.

    2006-01-01

    Sudden and extensive dieback of the perennial marsh grass, Spartina alterniflora Loisel (smooth cordgrass), which dominates regularly flooded salt marshes along the Gulf of Mexico and Atlantic coastlines, occurred in the coastal zone of Louisiana. The objectives of this study were to assess soil and plant conditions in dieback areas of the Barataria-Terrebonne estuarine system as well as vegetative recovery during and after this dieback event. Multiple dieback sites were examined along 100 km of shoreline from the Atchafalaya River to the Mississippi River during the period from June 2000 through September 2001. The species primarily affected was S. alterniflora; sympatric species such as Avicennia germinans (L.) Stearn (black mangrove) and Juncus roemerianus Scheele (needlegrass rush) showed no visible signs of stress. The pattern of marsh dieback was distinctive with greatest mortality in the marsh interior, suggesting a correlation with local patterns of soil chemistry and/or hydrology. Little or no expansion of dieback occurred subsequent to the initial event, and areas with 50 percent or less mortality in the fall of 2000 had completely recovered by April 2001. Recovery was slower in interior marshes with 90 percent or greater mortality initially. However, regenerating plants in dieback areas showing some recovery were robust, and reproductive output was high, indicating that the causative agent was no longer present and that post-dieback soil conditions were actually promoting plant growth. Stands of other species within or near some dieback sites remained largely unchanged or expanded (A. germinans) into the dead salt marsh. The cause of the dieback is currently unknown. Biotic agents and excessive soil waterlogging/high sulfide were ruled out as primary causes of this acute event, although they could have contributed to overall plant stress and/or interacted with the primary agent to cause plant mortality. Our observations over the 15 month study

  2. Thermophilic bacteria in Moroccan hot springs, salt marshes and desert soils.

    PubMed

    Aanniz, Tarik; Ouadghiri, Mouna; Melloul, Marouane; Swings, Jean; Elfahime, Elmostafa; Ibijbijen, Jamal; Ismaili, Mohamed; Amar, Mohamed

    2015-06-01

    The diversity of thermophilic bacteria was investigated in four hot springs, three salt marshes and 12 desert sites in Morocco. Two hundred and forty (240) thermophilic bacteria were recovered, identified and characterized. All isolates were Gram positive, rod-shaped, spore forming and halotolerant. Based on BOXA1R-PCR and 16S rRNA gene sequencing, the recovered isolates were dominated by the genus Bacillus (97.5%) represented by B. licheniformis (119), B. aerius (44), B. sonorensis (33), B. subtilis (subsp. spizizenii (2) and subsp. inaquosurum (6)), B. amyloliquefaciens (subsp. amyloliquefaciens (4) and subsp. plantarum (4)), B. tequilensis (3), B. pumilus (3) and Bacillus sp. (19). Only six isolates (2.5%) belonged to the genus Aeribacillus represented by A. pallidus (4) and Aeribacillus sp. (2). In this study, B. aerius and B. tequilensis are described for the first time as thermophilic bacteria. Moreover, 71.25%, 50.41% and 5.41% of total strains exhibited high amylolytic, proteolytic or cellulolytic activity respectively. PMID:26273259

  3. Thermophilic bacteria in Moroccan hot springs, salt marshes and desert soils.

    PubMed

    Aanniz, Tarik; Ouadghiri, Mouna; Melloul, Marouane; Swings, Jean; Elfahime, Elmostafa; Ibijbijen, Jamal; Ismaili, Mohamed; Amar, Mohamed

    2015-06-01

    The diversity of thermophilic bacteria was investigated in four hot springs, three salt marshes and 12 desert sites in Morocco. Two hundred and forty (240) thermophilic bacteria were recovered, identified and characterized. All isolates were Gram positive, rod-shaped, spore forming and halotolerant. Based on BOXA1R-PCR and 16S rRNA gene sequencing, the recovered isolates were dominated by the genus Bacillus (97.5%) represented by B. licheniformis (119), B. aerius (44), B. sonorensis (33), B. subtilis (subsp. spizizenii (2) and subsp. inaquosurum (6)), B. amyloliquefaciens (subsp. amyloliquefaciens (4) and subsp. plantarum (4)), B. tequilensis (3), B. pumilus (3) and Bacillus sp. (19). Only six isolates (2.5%) belonged to the genus Aeribacillus represented by A. pallidus (4) and Aeribacillus sp. (2). In this study, B. aerius and B. tequilensis are described for the first time as thermophilic bacteria. Moreover, 71.25%, 50.41% and 5.41% of total strains exhibited high amylolytic, proteolytic or cellulolytic activity respectively.

  4. Thermophilic bacteria in Moroccan hot springs, salt marshes and desert soils

    PubMed Central

    Aanniz, Tarik; Ouadghiri, Mouna; Melloul, Marouane; Swings, Jean; Elfahime, Elmostafa; Ibijbijen, Jamal; Ismaili, Mohamed; Amar, Mohamed

    2015-01-01

    The diversity of thermophilic bacteria was investigated in four hot springs, three salt marshes and 12 desert sites in Morocco. Two hundred and forty (240) thermophilic bacteria were recovered, identified and characterized. All isolates were Gram positive, rod-shaped, spore forming and halotolerant. Based on BOXA1R-PCR and 16S rRNA gene sequencing, the recovered isolates were dominated by the genus Bacillus (97.5%) represented by B. licheniformis (119), B. aerius (44), B. sonorensis (33), B. subtilis (subsp. spizizenii (2) and subsp. inaquosurum (6)), B. amyloliquefaciens (subsp. amyloliquefaciens (4) and subsp. plantarum (4)), B. tequilensis (3), B. pumilus (3) and Bacillus sp. (19). Only six isolates (2.5%) belonged to the genus Aeribacillus represented by A. pallidus (4) and Aeribacillus sp. (2). In this study, B. aerius and B. tequilensis are described for the first time as thermophilic bacteria. Moreover, 71.25%, 50.41% and 5.41% of total strains exhibited high amylolytic, proteolytic or cellulolytic activity respectively. PMID:26273259

  5. Salt marsh-mangrove ecotones: using structural gradients to investigate the effects of woody plant encroachment on plant-soil interactions and ecosystem carbon pools

    USGS Publications Warehouse

    Yando, Erik S.; Osland, Michael J.; Willis, Jonathan M; Day, Richard H.; Krauss, Ken W.; Hester, Mark W.

    2016-01-01

    Synthesis: Our results indicate that the ecological implications of woody plant encroachment in tidal saline wetlands are dependent upon precipitation controls of plant–soil interactions. Although the above-ground effects of mangrove expansion are consistently large, below-ground influences of mangrove expansion appear to be greatest along low-rainfall coasts where salinities are high and marshes being replaced are carbon poor and dominated by succulent plants. Collectively, these findings complement those from terrestrial ecosystems and reinforce the importance of considering rainfall and plant–soil interactions within predictions of the ecological effects of woody plant encroachment.

  6. Carbon accumulation in Bay of Fundy salt marshes: Implications for restoration of reclaimed marshes

    NASA Astrophysics Data System (ADS)

    Connor, Richard F.; Chmura, Gail L.; Beecher, C. Beth

    2001-12-01

    Transformation of agricultural land to natural terrestrial vegetation has been suggested as a means to increase soil carbon storage. However, the capacity for carbon storage in terrestrial soils is limited as compared to soils of tidal salt marshes, the original vegetation of many coastal agricultural lands. In a number of countries, tidal salt marshes have been "reclaimed," that is drained and diked to prevent tidal flooding and create suitable conditions for dry land agriculture. In this study we examine spatial and temporal patterns of carbon accumulation in tidal salt marshes of the Bay of Fundy and estimate the carbon storage potential of the bay's extensive area of reclaimed marsh. Rates of carbon accumulation vary from the upper to the outer Bay, over which there is a gradient of decreasing tidal range and suspended sediment supply. In the outer bay, high-marsh densities are highest (0.042 ± 0.009 g C cm-3), but carbon accumulation rates over the past 30 years are lowest (76 g C m-2 yr-1). The reverse pattern occurs in the upper bay where carbon densities in the high-marsh environment are lowest (0.036 ± 0.002 g C cm-3), but carbon accumulation rates over the past 30 years may be as high (184 g C m-2 yr-1). Compared to other ecosystems, the rates of carbon accumulation presented in this study were similar over timescales of years to centuries. Increases in relative sea level (over time) and suspended sediment supply (across the bay) positively affect the marsh soil accumulation rate and the rate of carbon sequestration. Parameters such as %C are not useful predictors of a marsh's potential for carbon sequestration. Soil carbon densities of functioning marshes and reclaimed marsh soils are similar, but marsh soils have a storage capacity that increases with rising sea level, while agricultural soils, such as those in reclaimed marshes, have a fixed (or possibly decreasing in reclaimed marshes) volume over time.

  7. Isolation of Gemmata-like and Isosphaera-like planctomycete bacteria from soil and freshwater.

    PubMed

    Wang, Jenny; Jenkins, Cheryl; Webb, Richard I; Fuerst, John A

    2002-01-01

    New cultured strains of the planctomycete division (order Planctomycetales) of the domain Bacteria related to species in the genera Gemmata and Isosphaera were isolated from soil, freshwater, and a laboratory ampicillin solution. Phylogenetic analysis of the 16S rRNA gene from eight representative isolates showed that all the isolates were members of the planctomycete division. Six isolates clustered with Gemmata obscuriglobus and related strains, while two isolates clustered with Isosphaera pallida. A double-membrane-bounded nucleoid was observed in Gemmata-related isolates but not in Isosphaera-related isolates, consistent with the ultrastructures of existing species of each genus. Two isolates from this study represent the first planctomycetes successfully cultivated from soil. PMID:11772655

  8. Isolation of Gemmata-Like and Isosphaera-Like Planctomycete Bacteria from Soil and Freshwater

    PubMed Central

    Wang, Jenny; Jenkins, Cheryl; Webb, Richard I.; Fuerst, John A.

    2002-01-01

    New cultured strains of the planctomycete division (order Planctomycetales) of the domain Bacteria related to species in the genera Gemmata and Isosphaera were isolated from soil, freshwater, and a laboratory ampicillin solution. Phylogenetic analysis of the 16S rRNA gene from eight representative isolates showed that all the isolates were members of the planctomycete division. Six isolates clustered with Gemmata obscuriglobus and related strains, while two isolates clustered with Isosphaera pallida. A double-membrane-bounded nucleoid was observed in Gemmata-related isolates but not in Isosphaera-related isolates, consistent with the ultrastructures of existing species of each genus. Two isolates from this study represent the first planctomycetes successfully cultivated from soil. PMID:11772655

  9. Habitat management affects soil chemistry and allochthonous organic inputs mediating microbial structure and exo-enzyme activity in Wadden Sea salt-marsh soils

    NASA Astrophysics Data System (ADS)

    Mueller, Peter; Granse, Dirk; Thi Do, Hai; Weingartner, Magdalena; Nolte, Stefanie; Hoth, Stefan; Jensen, Kai

    2016-04-01

    The Wadden Sea (WS) region is Europe's largest wetland and home to approximately 20% of its salt marsh area. Mainland salt marshes of the WS are anthropogenically influenced systems and have traditionally been used for livestock grazing in wide parts. After foundation of WS National Parks in the late 1980s and early 1990s, artificial drainage has been abandoned; however, livestock grazing is still common in many areas of the National Parks and is under ongoing discussion as a habitat-management practice. While studies so far focused on effects of livestock grazing on biodiversity, little is known about how biogeochemical processes, element cycling, and particularly carbon sequestration are affected. Here, we present data from a recent field study focusing on grazing effects on soil properties, microbial exo-enzyme activity, microbial abundance and structure. Exo-enzyme activity was studied conducting digestive enzyme assays for various enzymes involved in C- and N cycling. Microbial abundance and structure was assessed measuring specific gene abundance of fungi and bacteria using quantitative PCR. Soil compaction induced by grazing led to higher bulk density and decreases in soil redox (∆ >100 mV). Soil pH was significantly lower in grazed parts. Further, the proportion of allochthonous organic matter (marine input) was significantly smaller in grazed vs. ungrazed sites, likely caused by a higher sediment trapping capacity of the taller vegetation in the ungrazed sites. Grazing induced changes in bulk density, pH and redox resulted in reduced activity of enzymes involved in microbial C acquisition; however, there was no grazing effect on enzymes involved in N acquisition. While changes in pH, bulk density or redox did not affect microbial abundance and structure, the relative amount of marine organic matter significantly reduced the relative abundance of fungi (F:B ratio). We conclude that livestock grazing directly affects microbial exo-enzyme activity, thus

  10. Temporal and spatial development of surface soil conditions at two created riverine marshes.

    PubMed

    Anderson, Christopher J; Mitsch, William J; Nairn, Robert W

    2005-01-01

    The amount of time it takes for created wetlands to develop soils comparable to natural wetlands is relatively unknown. Surface soil changes over time were evaluated in two created wetlands (approximately 1 ha each) at the Olentangy River Wetland Research Park in Columbus, Ohio. The two wetlands were constructed in 1993 to be identical in size and geomorphology, and maintained to have the same hydrology. The only initial difference between the wetlands was that one was planted with native macrophytes while the other was not. In May 2004, soil samples were collected (10 yr and 2 mo after the wetlands were flooded) and compared to samples collected in 1993 (after the wetlands were excavated but before flooding) and 1995 (18 mo after the wetlands were flooded). In all three years, soils were split into surface (0-8 cm) and subsurface (8-16 cm) depths and analyzed for soil organic matter, total C, total P, available P, exchangeable cations, and pH. Soils in the two wetlands have changed substantially through sedimentation and organic accretion. Between 1993 and 1995, soils were most influenced by the deposition of senescent macroalgae, the mobilization of soluble nutrients, and the precipitation of CaCO(3). Between 1995 and 2004, soil parameters were influenced more by the deposition of organic matter from colonized macrophyte communities. Mean percent organic matter at the surface increased from 5.3 +/- 0.1% in 1993, 6.1 +/- 0.2% in 1995, to 9.5 +/- 0.2% in 2004. Mean total P increased from 493 +/- 18 microg g(-1) in 1993, 600 +/- 23 microg g(-1) in 1995, to 724 +/- 20 microg g(-1) in 2004. Spatial analyses of percent organic matter (a commonly used indicator of hydric soil condition) at both wetlands in 1993, 1995, and 2004 showed that soil conditions have become increasingly more variable. High spatial structure (autocorrelation) between data points was detected in 1993 and 2004, with data in 2004 exhibiting a much higher overall variance and narrower range of

  11. Temporal and spatial development of surface soil conditions at two created riverine marshes.

    PubMed

    Anderson, Christopher J; Mitsch, William J; Nairn, Robert W

    2005-01-01

    The amount of time it takes for created wetlands to develop soils comparable to natural wetlands is relatively unknown. Surface soil changes over time were evaluated in two created wetlands (approximately 1 ha each) at the Olentangy River Wetland Research Park in Columbus, Ohio. The two wetlands were constructed in 1993 to be identical in size and geomorphology, and maintained to have the same hydrology. The only initial difference between the wetlands was that one was planted with native macrophytes while the other was not. In May 2004, soil samples were collected (10 yr and 2 mo after the wetlands were flooded) and compared to samples collected in 1993 (after the wetlands were excavated but before flooding) and 1995 (18 mo after the wetlands were flooded). In all three years, soils were split into surface (0-8 cm) and subsurface (8-16 cm) depths and analyzed for soil organic matter, total C, total P, available P, exchangeable cations, and pH. Soils in the two wetlands have changed substantially through sedimentation and organic accretion. Between 1993 and 1995, soils were most influenced by the deposition of senescent macroalgae, the mobilization of soluble nutrients, and the precipitation of CaCO(3). Between 1995 and 2004, soil parameters were influenced more by the deposition of organic matter from colonized macrophyte communities. Mean percent organic matter at the surface increased from 5.3 +/- 0.1% in 1993, 6.1 +/- 0.2% in 1995, to 9.5 +/- 0.2% in 2004. Mean total P increased from 493 +/- 18 microg g(-1) in 1993, 600 +/- 23 microg g(-1) in 1995, to 724 +/- 20 microg g(-1) in 2004. Spatial analyses of percent organic matter (a commonly used indicator of hydric soil condition) at both wetlands in 1993, 1995, and 2004 showed that soil conditions have become increasingly more variable. High spatial structure (autocorrelation) between data points was detected in 1993 and 2004, with data in 2004 exhibiting a much higher overall variance and narrower range of

  12. Priming effects and enzymatic activity in Israeli soils under treated wastewater and freshwater irrigation

    NASA Astrophysics Data System (ADS)

    Anissimova, Marina; Heinze, Stefanie; Chen, Yona; Tarchitzky, Jorge; Marschner, Bernd

    2014-05-01

    Irrigation of soils with treated wastewater (TWW) directly influences microbial processes of soil. TWW contains easily decomposable organic material, which can stimulate the activity of soil microorganisms and, as a result, lead to the excessive consumption of soil organic carbon pool. We investigated the effects of irrigation with TWW relative to those of irrigation with freshwater (FW) on the microbial parameters in soils with low (7%) and medium (13%) clay content in a lysimeter experiment. The objectives of our study were to (i) determine the impact of water quality on soil respiration and enzymatic activity influenced by clay content and depth, and (ii) work out the changes in the turnover of soil organic matter (PE, priming effects). Samples were taken from three soil depths (0-10, 10-20, and 40-60 cm). Soil respiration and PE were determined in a 21-days incubation experiment after addition of uniformly 14C-labeled fructose. Activity of 10 extracellular enzymes (EEA, from C-, N-, P-, and S-cycle), phenol oxidase and peroxidase activity (PO+PE), and dehydrogenase activity (DHA) were assayed. Microbial Community-Level Physiological Profiles (CLPP) using four substrates, and microbial biomass were determined. The results showed that the clay content acted as the main determinative factor. In the soil with low clay content the water quality had a greater impact: the highest PE (56%) was observed in the upper layer (0-10cm) under FW irrigation; EEA of C-, P-, and S-cycles was significantly higher in the upper soil layer under TWW irrigation. Microbial biomass was higher in the soil under TWW irrigation and decreased with increasing of depth (50 μg/g soil in the upper layer, 15 μg/g soil in the lowest layer). This tendency was also observed for DHA. Contrary to the low clay content, in the soil with medium clay content both irrigation types caused the highest PE in the lowest layer (65% under FW irrigation, 48% under TWW irrigation); the higher substrate

  13. Microbial degradation of hydrochlorofluorocarbons (CHCl2F and CHCl2CF3) in soils and sediments.

    PubMed Central

    Oremland, R S; Lonergan, D J; Culbertson, C W; Lovley, D R

    1996-01-01

    The ability of microorganisms to degrade trace levels of the hydrochlorofluorocarbons HCFC-21 and HCFC-123 was investigated. Methanotroph-linked oxidation of HCFC-21 was observed in aerobic soils, and anaerobic degradation of HCFC-21 occurred in freshwater and salt marsh sediments. Microbial degradation of HCFC-123 was observed in anoxic freshwater and salt marsh sediments, and the recovery of 1,1,1-trifluoro-2-chloroethane indicated the involvement of reductive dechlorination. No degradation of HCFC-123 was observed in aerobic soils. In some experiments, HCFCs were degraded at low (parts per billion) concentrations, raising the possibility that bacteria in nature remove HCFCs from the atmosphere. PMID:8633881

  14. Spatial patterns in soil biogeochemical process rates along a Louisiana wetland salinity gradient in the Barataria Bay estuarine system

    NASA Astrophysics Data System (ADS)

    Roberts, B. J.; Rich, M. W.; Sullivan, H. L.; Bledsoe, R.; Dawson, M.; Donnelly, B.; Marton, J. M.

    2014-12-01

    Louisiana has the highest rates of coastal wetland loss in the United States. In addition to being lost, Louisiana wetlands experience numerous other environmental stressors including changes in salinity regime (both increases from salt water intrusion and decreases from the creation of river diversions) and climate change induced changes in vegetation (e.g. the northward expansion of Avicennia germinans (black mangrove) into salt marshes). In this study, we examined how these changes might influence biogeochemical process rates important in regulating carbon balance and the cycling, retention, and removal of nutrients in Louisiana wetlands. Specifically, we measured net soil greenhouse gas fluxes and collected cores for the determination of rates of greenhouse gas production, denitrification potential, nitrification potential, iron reduction, and phosphorus sorption from surface (0-5cm) and subsurface (10-15cm) depths for three plots in each of 4 sites along the salinity gradient: a freshwater marsh site, a brackish (7 ppt) marsh site, a salt marsh (17 ppt), and a Avicennia germinans stand (17 ppt; adjacent to salt marsh site) in the Barataria Bay estuarine system. Most biogeochemical processes displayed similar spatial patterns with salt marsh rates being lower than rates in freshwater and/or brackish marsh sites and not having significantly different rates than in Avicennia germinans stands. Rates in surface soils were generally higher than in subsurface soils. These patterns were generally consistent with spatial patterns in soil properties with soil water content, organic matter quantity and quality, and extractable nutrients generally being higher in freshwater and brackish marsh sites than salt marsh and Avicennia germinans sites, especially in surface soils. These spatial patterns suggest that the ability of coastal wetlands to retain and remove nutrients might change significantly in response to future climate changes in the region and that these

  15. Groundwater controls ecological zonation of salt marsh macrophytes.

    PubMed

    Wilson, Alicia M; Evans, Tyler; Moore, Willard; Schutte, Charles A; Joye, Samantha B; Hughes, Andrea H; Anderson, Joseph L

    2015-03-01

    below fine-grained marsh soils act as conduits for flow from uplands to tidal creeks. This hydrologic framework supports relatively good drainage near the creek, increased waterlogging in the mid-marsh, and the development of hypersalinity adjacent to the freshwater upland. These hydrologic differences in turn support distinct ecological zones. PMID:26236879

  16. Groundwater controls ecological zonation of salt marsh macrophytes.

    PubMed

    Wilson, Alicia M; Evans, Tyler; Moore, Willard; Schutte, Charles A; Joye, Samantha B; Hughes, Andrea H; Anderson, Joseph L

    2015-03-01

    below fine-grained marsh soils act as conduits for flow from uplands to tidal creeks. This hydrologic framework supports relatively good drainage near the creek, increased waterlogging in the mid-marsh, and the development of hypersalinity adjacent to the freshwater upland. These hydrologic differences in turn support distinct ecological zones.

  17. Industrial impact on marsh soils at the Bahia Blanca Ria, Argentina.

    PubMed

    Andrade, Maria Luisa; Reyzabal, Maria Luisa; Marcet, Purificacion; Montero, Maria Jose

    2002-01-01

    The Bahia Blanca Estuary is located in southern Buenos Aires province, Argentina. The area is linked to a petrochemical industrial complex, whose raw materials and final products contaminate the surrounding areas via atmospheric pollution and effluents, which are dumped in the estuary waters. To establish the effects of the industrial waste disposal on the nearest coastal soils, 17 samples were taken at different distances from the loading dock and the outfall pipes of the industrial complex. Later, the physicochemical characteristics of the soil samples, their hydrocarbon contents, sulfides, sulfates, Zn, Cu, and Pb were analyzed and a comparison was made to control samples, which were not affected by the industrial outfall. Hydrocarbons, Zn, Cu, and Pb contents were found at levels that modified the physical and chemical characteristics of the soils. The resistance to penetration shows that the thinner the film of water that surrounds the particles or aggregates, the smaller the migration of organic micelle, which settle on the surface of the contact material. This is demonstrated by the degree of cohesion reached by the particles and the strong influence on the index of hydrophobicity. The high porosity shows that the continuity of the porous space of the soil matrix is impeded by the presence of pollutants, which generate areas that are highly limiting to water flow. The oxidation-reduction potential and the low concentrations of soluble forms of Cu and Pb compared with their concentrations precipitated as sulfides confirm the action of the pollutants.

  18. Incidence of pharmaceuticals in soils, sediments and waters of Pego-Oliva Marsh by LC-MS/MS.

    NASA Astrophysics Data System (ADS)

    Vazquez-Roig, P.; Andreu, V.; Blasco, C.; Picó, Y.

    2012-04-01

    The presence of pharmaceutical residues in the environmental compartments is a growing problem that could have unexpected consequences. In recent years, the number of pharmaceuticals detected in the environment had increased spectacularly, reaching a broad number of the most consumed drugs and including virtually all the existing therapeutic classes. These compounds come mainly from human excretions, waste effluents of manufacturing processes and animal farms. In Spain, obsolete sewage treatment plants, and even the absence of those, are the main problem to be solved. Some pharmaceuticals have shown toxicity to bacteria, algae and invertebrates. Besides that reproductive problems in fishes have been observed in "in vitro" studies. By the other hand, synergistic effects of exposure to mixtures of drugs or toxic effects due to accumulation would be expected. A method developed in our laboratory was utilized to monitor the occurrence of 16 relevant pharmaceuticals in the Pego-Oliva Marsh Natural Reserve (Valencian Community, Spain). A total 46 samples of soils (at two different depths), 15 sediments and 34 waters were collected in June 2009. Solid samples were concentrated by pressurized liquid extraction (ASE® 200) using water at 90°C as extracting solvent and three cycles of extraction of 7 minutes. The aqueous extract obtained was passed through two cartridges connected in series: to an Isolute® SAX cartridge (strong anion exchange) on the top and an Oasis® HLB cartridge below. Extraction was carried out with 6mL of methanol. Quantification was performed by a Quattro Micro LC-MS/MS with an ESI interface working in both positive and negative mode. Two transitions were utilized for each compound to obtain an unequivocal confirmation, with the exception of ibuprofen which only gave one transition with adequate sensitivity. All water samples appeared contaminated with at least with two compounds. Ibuprofen and codeine were the compounds more frequently detected in

  19. Dynamics and fate of SOC in tidal marshes along a salinity gradient (Scheldt estuary, Belgium)

    NASA Astrophysics Data System (ADS)

    Van de Broek, Marijn; Temmermann, Stijn; Merckx, Roel; Wang, Zhengang; Govers, Gerard

    2016-04-01

    Coastal ecosystems have been attributed the potential to store large amounts of organic carbon (OC), often referred to as blue carbon, of which a considerable amount is stored in tidal marsh soils. Large uncertainties still exist with respect to the amount and controlling factors of soil organic carbon (SOC) stored in these ecosystems. Moreover, most research has focused on SOC dynamics of saltmarshes, while brackish and freshwater marshes are often even more productive and thus receive even larger organic carbon inputs. Therefore, in this study the OC dynamics of tidal marsh soils along an estuarine gradient are studied in order to contribute to our knowledge of 1) the stocks, 2) the controlling factors and 3) the fate of SOC in tidal marshes with different environmental characteristics. This research thus contributes to a better understanding of the potential of coastal environments to store organic carbon under future climatic changes. Soil and vegetation samples are collected in tidal salt-, brackish- and freshwater marshes in the Scheldt estuary (Belgium - The Netherlands). At each tidal marsh, three replicate soil cores up to 1.5m depth in 0.03m increments are collected at locations with both a low and a high elevation. These cores are analyzed for OC, stable C and N isotopes, bulk density and texture. Incubation experiments of topsoil samples were conducted and both aboveground and belowground biomass were collected. The results show that SOC stocks (range: 13,5 - 35,4 kg OC m-2), standing biomass (range: 2000 - 7930 g DW m-2) and potential soil respiration of CO2 (range: 0,03 - 0,12 % per unit OC per day) decrease with increasing salinity. This shows that both the amount of OC from local macrophytes and the quality of the organic matter are important factors controlling the SOC stocks. In addition, based on the analysis of stable C and N isotopes, it appears that when a significant fraction of SOC is derived from local macrophytes, higher SOC stocks are

  20. Vegetation, substrate and hydrology in floating marshes in the Mississippi river delta plain wetlands, USA

    USGS Publications Warehouse

    Sasser, C.E.; Gosselink, J.G.; Swenson, E.M.; Swarzenski, C.M.; Leibowitz, N.C.

    1996-01-01

    In the 1940s extensive floating marshes (locally called 'flotant') were reported and mapped in coastal wetlands of the Mississippi River Delta Plain. These floating marshes included large areas of Panicum hemitomon-dominated freshwater marshes, and Spartina patens/Scirpus olneyi brackish marshes. Today these marshes appear to be quite different in extent and type. We describe five floating habitats and one non-floating, quaking habitat based on differences in buoyancy dynamics (timing and degree of floating), substrate characteristics, and dominant vegetation. All floating marshes have low bulk density, organic substrates. Nearly all are fresh marshes. Panicum hemitomon floating marshes presently occur within the general regions that were reported in the 1940's by O'Neil, but are reduced in extent. Some of the former Panicum hemitomon marshes have been replaced by seasonally or variably floating marshes dominated, or co-dominated by Sagittaria lancifolia or Eleocharis baldwinii. ?? 1996 Kluwer Academic Publishers.

  1. Testate amoebae communities from some freshwater and soil habitats in China (Hubei and Shandong Provinces)

    NASA Astrophysics Data System (ADS)

    Bobrov, Anatoly; Mazei, Yuri; Chernyshov, Viktor; Gong, Yingchun; Feng, Weisong

    2012-03-01

    Seventy-eight species and forms of testate amoebae were identified from 29 freshwater and soil habitats in three territories of China (Shandong and Hubei Provinces). Most abundant species from the genera Plagiopyxis, Centropyxis and Trinema represent the globally-distributed and eurybiont group of testate amoebae. The species richness was observed to be the lowest (7-12 species per biotope) in sandy sediments of the Yangtze River, but considerably higher (20-30 taxa) in soil environment. In the range of terrestrial habitats, the most remote communities from Laoshan Mountain in Shandong Province, China manifested the highest difference from others. On the other hand, communities originated in the most distant from industrial center places (Guifeng Mountain in Hubei Province, China) possess the most peculiar species composition including specific Gondwanian taxa (e.g. Nebela bigibbosa). In sum, the results obtained provide the evidence that the community complexity and specificity reduce in the places located within areas that are highly populated and intensively visited by humans.

  2. Geomorphic and ecological effects of Hurricanes Katrina and Rita on coastal Louisiana marsh communities

    USGS Publications Warehouse

    Piazza, Sarai C.; Steyer, Gregory D.; Cretini, Kari F.; Sasser, Charles E.; Visser, Jenneke M.; Holm, Guerry O.; Sharp, Leigh Anne; Evers, D. Elaine; Meriwether, John R.

    2011-01-01

    fresh, brackish/ intermediate, and saline marshes. In fresh marshes, the mechanism of hurricane influence varied across the landscape. In the western region, saltwater storm surge inundated freshwater marshes and remained for weeks, effectively causing damage that reset the vegetation community. This is in contrast to the direct physical disturbance of the storm surge in the eastern region, which flipped and relocated marsh mats, thereby stressing the vegetation communities and providing an opportunity for disturbance species to colonize. In the brackish/intermediate marsh, disturbance species took advantage of the opportunity provided by shifting species composition caused by physical and saltwater-induced perturbations, although this shift is likely to be short lived. Saline marsh sites were not negatively impacted to a severe degree by the hurricanes. Species composition of vegetation in saline marshes was not affected, and sediment deposition appeared to increase vegetative productivity. The coastal landscape of Louisiana is experiencing high rates of land loss resulting from natural and anthropogenic causes and is experiencing subsidence rates greater than 10.0 millimeters per year (mm yr-1); therefore, it is important to understand how hurricanes influence sedimentation and soil properties. We document long-term vertical accretion rates and accumulation rates of organic matter, bulk density, carbon and nitrogen. Analyses using caesium-137 to calculate long-term vertical accretion rates suggest that accretion under impounded conditions is less than in nonimpounded conditions in the brackish marsh of the chenier plain. Our data also support previous studies indicating that accumulation rates of organic matter explain much of the variability associated with vertical accretion in brackish/intermediate and saline marshes. In fresh marshes, more of the variability associated with vertical accretion was explained by mineral accumulation than in the other mars

  3. Examination of Below-Ground Structure and Soil Respiration Rates of Stable and Deteriorating Salt Marshes in Jamaica Bay (NY)

    EPA Science Inventory

    CAT scan imaging is currently being used to examine below-ground peat and root structure in cores collected from salt marshes of Jamaica Bay, part of the Gateway National Recreation Area (NY). CAT scans or Computer-Aided Tomography scans use X-ray equipment to produce multiple i...

  4. Soil Respiration and Belowground Carbon Stores Among Salt Marshes Subjected to Increasing Watershed Nitrogen Loadings in Southern New England

    EPA Science Inventory

    Coastal salt marshes are ecosystems located between the uplands and sea, and because of their location are subject to increasing watershed nutrient loadings and rising sea levels. Residential development along the coast is intense, and there is a significant relationship between...

  5. [Porewater Dissolved Methane in Cyperus malaccensis Marshes Along Salinity Gradient in the Minjiang River Estuary].

    PubMed

    Yang, Ping; Zhang, Zi-chuan; Du, Wei-ning; Huang, Jia-fang; Tong, Chuan

    2015-10-01

    Physicochemical properties of soil and dissolved methane concentrations of porewater in the sediments of the Cyperus malaccensis marshes along a salinity gradient in the Minjiang River estuary were evaluated, and the spatial-temporal characteristics and main impact factors were discussed. The average concentrations of dissolved methane in porewater were 331.18, 299.94 and 638.58 μmol x L(-1), respectively in the Shanyutan, Bianfuzhou and Xiayangzhou wetlands in summer. In the winter, they were 9.04, 266.67 and 322.68 μmol x L(-1), respectively. The dissolved methane concentration in porewater was higher in summer than those in winter (P < 0.05). Overall, the concentrations of dissolved methane in porewatdr showed an increasing trend from brackish to freshwater marshes. Multivariate statistics analysis showed that the concentrations of dissolved methane in porewater was positively correlated with soils temperature and DOC (P < 0.05), but negatively correlated with soils pH, salinity, and the concentrations of porewater SO4(2-) and Cl-. Spatial-temporal distribution of porewater dissolved methane in estuarine marshes represents a final result of multiple factors, including soil physicochemical properties and hydrodynamic condition.

  6. [Porewater Dissolved Methane in Cyperus malaccensis Marshes Along Salinity Gradient in the Minjiang River Estuary].

    PubMed

    Yang, Ping; Zhang, Zi-chuan; Du, Wei-ning; Huang, Jia-fang; Tong, Chuan

    2015-10-01

    Physicochemical properties of soil and dissolved methane concentrations of porewater in the sediments of the Cyperus malaccensis marshes along a salinity gradient in the Minjiang River estuary were evaluated, and the spatial-temporal characteristics and main impact factors were discussed. The average concentrations of dissolved methane in porewater were 331.18, 299.94 and 638.58 μmol x L(-1), respectively in the Shanyutan, Bianfuzhou and Xiayangzhou wetlands in summer. In the winter, they were 9.04, 266.67 and 322.68 μmol x L(-1), respectively. The dissolved methane concentration in porewater was higher in summer than those in winter (P < 0.05). Overall, the concentrations of dissolved methane in porewatdr showed an increasing trend from brackish to freshwater marshes. Multivariate statistics analysis showed that the concentrations of dissolved methane in porewater was positively correlated with soils temperature and DOC (P < 0.05), but negatively correlated with soils pH, salinity, and the concentrations of porewater SO4(2-) and Cl-. Spatial-temporal distribution of porewater dissolved methane in estuarine marshes represents a final result of multiple factors, including soil physicochemical properties and hydrodynamic condition. PMID:26841594

  7. Application of disturbance theory to assess impacts associated with a three-dimensional seismic survey in a freshwater marsh in southwest Louisiana

    NASA Astrophysics Data System (ADS)

    Bass, Aaron Stuard

    This study examined various practical and theoretical aspects of disturbance in a coastal wetland marsh in southern Louisiana. A literature review approached disturbance ecology from both practical and theoretical perspectives and assessed its applicability to developing broad predictive models. However, specific knowledge of environmental variables, competitive relationships, and the interactive effects of multiple disturbances are required for meaningful usage of these models. The Lacassine National Wildlife Refuge (LNWR) proved to be an ideal laboratory to test various aspects of ecological disturbance theory. I found that the primary disturbances affecting the LNWR have been hurricanes, droughts, water-level manipulations, prescribed burning, oil and gas recovery activities, grazing by Myocastor coypus (nutria), and managed cattle grazing. The 1990's application of three-dimensional (3-D) seismic technology used in the oil and gas recovery business challenged landowners, government regulators, and industry to develop ways to recover these resources without damaging surface features. I developed a conservative estimate that an area exceeding 2.5 times the area of Louisiana's coastal wetlands was covered by overlapping seismic surveys in southern Louisiana from 1997 through 2002, equal to 22.5 km2/year. I provided a general overview of 3-D seismic survey programs, potential adverse impacts, and management and restoration strategies. I also conducted a field study at the LNWR on vegetation in control and treatment transects before, and for two years after, a 3-D survey. I found vegetative cover and the amount of dead plant biomass were significantly lower in treatment plots, but live biomass was not different in treatment and control plots. Species richness was higher in treatment plots compared to control plots, but the live biomass and cover of the dominant species ( Panicum hemitomon) was lower. The live biomass and cover of Eleocharis spp., a colonizing

  8. Genetic linkage of soil carbon pools and microbial functions in subtropical freshwater wetlands in response to experimental warming.

    PubMed

    Wang, Hang; He, Zhili; Lu, Zhenmei; Zhou, Jizhong; Van Nostrand, Joy D; Xu, Xinhua; Zhang, Zhijian

    2012-11-01

    Rising climate temperatures in the future are predicted to accelerate the microbial decomposition of soil organic matter. A field microcosm experiment was carried out to examine the impact of soil warming in freshwater wetlands on different organic carbon (C) pools and associated microbial functional responses. GeoChip 4.0, a functional gene microarray, was used to determine microbial gene diversity and functional potential for C degradation. Experimental warming significantly increased soil pore water dissolved organic C and phosphorus (P) concentrations, leading to a higher potential for C emission and P export. Such losses of total organic C stored in soil could be traced back to the decomposition of recalcitrant organic C. Warming preferentially stimulated genes for degrading recalcitrant C over labile C. This was especially true for genes encoding cellobiase and mnp for cellulose and lignin degradation, respectively. We confirmed this with warming-enhanced polyphenol oxidase and peroxidase activities for recalcitrant C acquisition and greater increases in recalcitrant C use efficiency than in labile C use efficiency (average percentage increases of 48% versus 28%, respectively). The relative abundance of lignin-degrading genes increased by 15% under warming; meanwhile, soil fungi, as the primary decomposers of lignin, were greater in abundance by 27%. This work suggests that future warming may enhance the potential for accelerated fungal decomposition of lignin-like compounds, leading to greater microbially mediated C losses than previously estimated in freshwater wetlands.

  9. Influences of Salinity Variations on Pore-water Flow in Salt Marshes

    NASA Astrophysics Data System (ADS)

    Shen, C.; Jin, G.; Xin, P.; Li, L.

    2013-12-01

    Salt marshes are important wetlands at the ocean-land interface with various ecological functions, serving as essential habitats for intertidal fauna, affecting the productivity of coastal waters through nutrient exchange, moderating the greenhouse gas emission and global warming. They are influenced by various physical and biogeochemical processes, among which the pore-water flow and associated solute transport processes play an important role in determining the material exchange between marsh soils and coastal water. Previous studies have examined such processes under the solo or combined effects of tidal fluctuation, evapotranspiration, stratigraphy, inland freshwater input, and topography. However, these investigations have neglected the spatial and temporal salinity variations in surface water and pore-water, which commonly exist in salt marshes due to the impacts of tidal inundation, precipitation and evapotranspiration. The density contrast between the surface water and pore-water may lead to significant modifications of the pore-water flow. Based on results from laboratory experiments and numerical simulations, we will demonstrate that: (1) under upward salinity gradients, flow instabilities in the form of fingers occur once the salinity contrast reaches a certain level, whereas under downward salinity gradients the system is stable; (2) because of the strong tidally-induced advective process occurring near the creek, both the number and size of fingers change gradually from the near-creek zone to the marsh interior; and (3) both upward and downward salinity gradients enhance the exchange between the surface water and pore-water in the marsh sediments. Keywords: Salt marshes; density effect; salinity gradient; pore-water flow; fingers. Instabilities under upward salinity gradient Stable system under downward salinity gradient

  10. Recent accretion in two managed marsh impoundments in coastal Louisiana

    USGS Publications Warehouse

    Cahoon, D.R.

    1994-01-01

    Recent accretion was measured by the feldspar marker horizon method in two gravity-drained, managed, marsh impoundments and unmanaged reference marshes located on the rapidly subsiding coast of Louisiana. Water level management was designed to limit hydrologic exchange to the managed marsh by regulating the direction and rate of water flows. During a drawdown-flooding water management cycle, the unmanaged reference marshes had significantly higher vertical accretion rates, higher soil bulk density and soil mineral matter content, lower soil organic matter content, and higher rates of organic matter accumulation than the managed marsh. The rate of mineral matter accumulation was higher in both reference marshes, but was significantly higher in only one. Spatial variability in accumulation rates was low when analyzed in one managed marsh site, suggesting a primarily autochthonous source of matter. In contrast, the associated reference marsh apparently received allochthonous material that settled out in a distinct spatial pattern as water velocity decreased. The impoundment marshes experienced an accretion deficit of one full order of magnitude (0.1 vs. 1.0 m/yr) based on comparison of accretion and sea level rise data, while the unmanaged reference marshes experienced a five-fold smaller deficit or no deficit. These data suggest that the gravity-drained impoundments likely have a shorter life expectancy than the reference marshes in the rapidly subsiding Louisiana coast.

  11. Scale and Seasonal Controls on Nitrate and Sediment Retention in Freshwater Tidal Wetlands

    NASA Astrophysics Data System (ADS)

    Prestegaard, K. L.; Seldomridge, E.; Statkiewicz, A.

    2013-12-01

    Channel networks in freshwater tidal wetlands convey water, sediment, and solutes into marsh interiors where sediment deposition and biogeochemical processes, such as denitrification and nitrogen uptake occur. Tidal inlets that connect these channel network systems to the main estuary define the initial solute or sediment load into these systems, but channel, soil, and vegetation characteristics influence nitrate and sediment retention. We used field measurements and remotely sensed images to determine marsh area, stream length, inlet morphology, and channel morphology for the 267 marshes in the freshwater tidal ecosystem. Discharge and water volume over high tidal cycles was measured at selected inlets representative of the range of inlet sizes in the ecosystem. Aquatic vegetation distribution and density was also measured at these inlets. These data were used to develop geomorphic-hydraulic relationships for the marshes for winter (no vegetation) and summer (vegetated) conditions. Nitrate and sediment retention were determined from field mass balance measurements based on water flux and concentration measurements taken over tidal cycle at inlets to selected marshes of varying size over a 3-year period. These mass balance data indicate that net nitrate retention is a simple function of tidal water volume for marshes of different sizes and for various vegetated conditions. These data suggest that nitrate retention is transport limited for the range of initial nitrate concentrations observed in this system. Although nitrate retention was a function of tidal water volume, it was also seasonally variable due to restrictions in water flow and volume caused by aquatic vegetation in summer months. Sediment retention is seasonally variable due to the strong controls exerted by emergent and submerged aquatic vegetation and decoupled from the water volume dependence observed for nitrate retention. Variations in sediment retention caused by vegetation resulted in channel

  12. Nutrient-enhanced decomposition of plant biomass in a freshwater wetland

    USGS Publications Warehouse

    Bodker, James E.; Turner, Robert Eugene; Tweel, Andrew; Schulz, Christopher; Swarzenski, Christopher M.

    2015-01-01

    We studied soil decomposition in a Panicum hemitomon (Schultes)-dominated freshwater marsh located in southeastern Louisiana that was unambiguously changed by secondarily-treated municipal wastewater effluent. We used four approaches to evaluate how belowground biomass decomposition rates vary under different nutrient regimes in this marsh. The results of laboratory experiments demonstrated how nutrient enrichment enhanced the loss of soil or plant organic matter by 50%, and increased gas production. An experiment demonstrated that nitrogen, not phosphorus, limited decomposition. Cellulose decomposition at the field site was higher in the flowfield of the introduced secondarily treated sewage water, and the quality of the substrate (% N or % P) was directly related to the decomposition rates. We therefore rejected the null hypothesis that nutrient enrichment had no effect on the decomposition rates of these organic soils. In response to nutrient enrichment, plants respond through biomechanical or structural adaptations that alter the labile characteristics of plant tissue. These adaptations eventually change litter type and quality (where the marsh survives) as the % N content of plant tissue rises and is followed by even higher decomposition rates of the litter produced, creating a positive feedback loop. Marsh fragmentation will increase as a result. The assumptions and conditions underlying the use of unconstrained wastewater flow within natural wetlands, rather than controlled treatment within the confines of constructed wetlands, are revealed in the loss of previously sequestered carbon, habitat, public use, and other societal benefits.

  13. Distribution of the fiddler crab (Uca minax) in relation to marsh plants within a Virginia estuary

    USGS Publications Warehouse

    Kerwin, J.A.

    1971-01-01

    The distribution and abundance of the red-jointed fiddler crab, Uca minax, was related to the distribution of marsh plants within a Virginia estuary. The crab was found in association with 15 species of marsh phanerogams, occurring with five plant species more than 20 percent of the time. These plants were Spartina alterniflora, Scirpus robustus, Distichlis spicata, Spartina patens, and Spartina cynosuroides. Densities ranged from 0-76 burrows per square meter, mean densities being 7.88 within the brackish-water marsh and 14.35 within the salt-water marsh. The crab was not obtained by sampling the freshwater marsh.

  14. Final Report: Five years of monitoring reconstructed freshwater tidal wetlands in the urban Anacostia River (2000-2004)

    USGS Publications Warehouse

    Hammerschlag, R.S.; Baldwin, A.H.; Krafft, C.C.; Neff, K.P.; Paul, M.M.; Brittingham, K.D.; Rusello, K.; Hatfield, J.S.

    2006-01-01

    The Anacostia River in Washington, D.C. USA consisted of over 809 hectares (2000 acres) of freshwater tidal wetlands before mandatory dredging removed most of them in the first half of the 20th century. Much of this13 kilometer (8 mile) reach was transferred to the National Park Service (NPS). Planning processes in the 1980?s envisioned a restoration (rejuvenation) of some wetlands for habitat, aesthetics, water quality and interpretative purposes. Subsequently, the U.S. Army Corps of Engineers in a cost share agreement with the District of Columbia reconstructed wetlands on NPS lands at Kenilworth - 12.5 hectares (1993), Kingman - 27 hectares (2000), a Fringe Marsh - 6.5 hectares (2003) and is currently constructing Heritage Marsh - 2.5 hectares (2005/2006). The USGS Patuxent Wildlife Research Center in conjunction with the University of Maryland Biological Engineering Department was contracted to conduct post-reconstruction monitoring (2000-2004) to document the relative success and progress of the Kingman Marsh reconstruction primarily based on vegetative response but also in conjunction with seed bank and soil characteristics. Results from Kingman were compared to Kenilworth Marsh (reconstructed 7 years prior), Dueling Creek Marsh (last best remaining freshwater tidal wetland bench in the urbanized Anacostia watershed) and Patuxent River Marsh (in a more natural adjacent watershed). Vegetation establishment was initially strong at Kingman, but declined rapidly as measured by cover, richness, diversity , etc. under grazing pressure from resident Canada geese and associated reduction in sediment levels. This decline did not occur at the other wetlands. The decline occurred despite a substantial seed bank that was sustained primarily be water born propagules. Soil development, as true for most juvenile wetlands, was slow with almost no organic matter accumulation. By 2004 only two of 7 planted species remained (mostly Peltandra virginica) at Kingman which did

  15. Uncertainty In Greenhouse Gas Emissions On Carbon Sequestration In Coastal and Freshwater Wetlands of the Mississippi River Delta: A Subsiding Coastline as a Proxy for Future Global Sea Level

    NASA Astrophysics Data System (ADS)

    White, J. R.; DeLaune, R. D.; Roy, E. D.; Corstanje, R.

    2014-12-01

    The highly visible phenomenon of wetland loss in coastal Louisiana (LA) is examined through the prism of carbon accumulation, wetland loss and greenhouse gas (GHG) emissions. The Mississippi River Deltaic region experiences higher relative sea level rise due to coupled subsidence and eustatic sea level rise allowing this region to serve as a proxy for future projected golbal sea level rise. Carbon storage or sequestration in rapidly subsiding LA coastal marsh soils is based on vertical marsh accretion and areal change data. While coastal marshes sequester significant amount of carbon through vertical accretion, large amounts of carbon, previously sequested in the soil profile is lost through annual deterioration of these coastal marshes as well as through GHG emissions. Efforts are underway in Louisiana to access the carbon credit market in order to provide significant funding for coastal restoration projects. However, there is very large uncertainty on GHG emission rates related to both marsh type and temporal (daily and seasonal) effects. Very little data currently exists which addresses this uncertainty which can significantly affect the carbon credit value of a particular wetland system. We provide an analysis of GHG emission rates for coastal freshwater, brackish and and salt marshes compared to the net soil carbon sequestration rate. Results demonstrate that there is very high uncertainty on GHG emissions which can substantially alter the carbon credit value of a particular wetland system.

  16. Birds of Swale Marshes on John F. Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Breininger, David R.

    1992-01-01

    Birds were surveyed in several isolated freshwater wetlands on John F. Kennedy Space Center to determine species composition and the importance of these wet- lands to birds. The Red-winged Blackbird and Green-backed Heron were the two most abundant breeders in the swale marshes. The Common Yellowthroat was the most common winter resident but was rare in summer. These marshes are important features within landscapes dominated by uplands particularly because of their significance to amphibians and reptiles.

  17. Evaluation of Operations Scenarios for Managing the Big Creek Marsh

    NASA Astrophysics Data System (ADS)

    Wilson, Ian; Rahman, Masihur; Wychreschuk, Jeremy; Lebedyk, Dan; Bolisetti, Tirupati

    2013-04-01

    Wetland management in changing climate is important for maintaining sustainable ecosystem as well as for reducing the impact of climate change on the environment as wetlands act as natural carbon sinks. The Big Creek Marsh within the Essex County is a Provincially Significant Wetland (PSW) in Ontario, Canada. The marsh is approximately 900 hectares in area and is primarily fed by streamflow from the Big Creek Watershed. The water level of this wetland has been managed by the stakeholders using a system of pumps, dykes and a controlled outlet to the Lake Erie. In order to adequately manage the Big Creek Marsh and conserve diverse aquatic plant species, Essex Region Conservation Authority (ERCA), Ontario has embarked on developing an Operations Plan to maintain desire water depths during different marsh phases, viz., Open water, Hemi and Overgrown marsh phases. The objective of the study is to evaluate the alternatives for managing water level of the Big Creek Marsh in different marsh phases. The Soil and Water Assessment Tool (SWAT), a continuous simulation model was used to simulate streamflow entering into the marsh from the Big Creek watershed. A Water Budget (WB) model was developed for the Big Creek Marsh to facilitate in operational management of the marsh. The WB model was applied to simulate the marsh level based on operations schedules, and available weather and hydrologic data aiming to attain the target water depths for the marsh phases. This paper presents the results of simulated and target water levels, streamflow entering into the marsh, water releasing from the marsh, and water pumping into and out of the marsh under different hydrologic conditions.

  18. Sea level driven marsh expansion in a coupled model of marsh erosion and migration

    NASA Astrophysics Data System (ADS)

    Kirwan, Matthew L.; Walters, David C.; Reay, William G.; Carr, Joel A.

    2016-05-01

    Coastal wetlands are among the most valuable ecosystems on Earth, where ecosystem services such as flood protection depend nonlinearly on wetland size and are threatened by sea level rise and coastal development. Here we propose a simple model of marsh migration into adjacent uplands and couple it with existing models of seaward edge erosion and vertical soil accretion to explore how ecosystem connectivity influences marsh size and response to sea level rise. We find that marsh loss is nearly inevitable where topographic and anthropogenic barriers limit migration. Where unconstrained by barriers, however, rates of marsh migration are much more sensitive to accelerated sea level rise than rates of edge erosion. This behavior suggests a counterintuitive, natural tendency for marsh expansion with sea level rise and emphasizes the disparity between coastal response to climate change with and without human intervention.

  19. Phenological Impacts of Hurricane Katrina (2005) and Gustav (2008) on Louisiana Coastal Marshes

    NASA Astrophysics Data System (ADS)

    Mo, Y.; Kearney, M.; Riter, A.

    2015-12-01

    Coastal marshes provide indispensable ecological functions, such as offering habitat for economic fish and wildlife, improving water quality, protecting inland areas from floods, and stabilizing the shoreline. Hurricanes—though helping to maintain the elevation of coastal wetlands by depositing large amounts of sediments—pose one of the largest threats for coastal marshes in terms of eroding shorelines, scouring marsh surfaces, and resuspending sediments. Coastal marshes phenologies can be important for understanding broad response of marshes to stressors, like hurricanes. We investigated the phenological impacts of Katrina and Gustav (Category 3 and 2 hurricanes at landfall in southeast Louisiana on 29 August, 2005, and 1 September, 2008, respectively) on freshwater, intermediate, brackish, and saline marshes in southeastern Louisiana. Landsat-derived Normalized Difference Vegetation Index data were processed using ENVI 4.8. Phenological patterns of the marshes were modeled using a nonlinear mixed model using SAS 9.4. We created and compared marsh phenologies of 1994 and 2014, the reference years, to those of 2005 and 2008, the hurricane years. Preliminary results show that in normal years: (1) the NDVI of four marsh types peaked in July; (2) freshwater marshes had the highest peak NDVI, followed by intermediate, brackish, and saline marshes; and (3) the growth durations of the marshes are around three to six months. In 2005, the major phenological change was shortening of growth duration, which was most obvious for intermediate and brackish marshes. The peak NDVI values of the four marsh types were not affected because the hurricane occurred at the end of August, one month after the peak NDVI time. By comparison, there was no obvious phenological impact on the marshes by Gustav (2008) with respect to peak NDVI, peak NDVI day, and growth duration.

  20. Long-term effect of agricultural reclamation on soil chemical properties of a coastal saline marsh in Bohai Rim, northern China.

    PubMed

    Wang, Yidong; Wang, Zhong-Liang; Feng, Xiaoping; Guo, Changcheng; Chen, Qing

    2014-01-01

    Over the past six decades, coastal wetlands in China have experienced rapid and extensive agricultural reclamation. In the context of saline conditions, long-term effect of cultivation after reclamation on soil chemical properties has not been well understood. We studied this issue using a case of approximately 60-years cultivation of a coastal saline marsh in Bohai Rim, northern China. The results showed that long-term reclamation significantly decreased soil organic carbon (SOC) (-42.2%) and total nitrogen (TN) (-25.8%) at surface layer (0-30 cm) as well as their stratification ratios (SRs) (0-5 cm:50-70 cm and 5-10 cm:50-70 cm). However, there was no significant change in total phosphorus (TP) as well as its SRs under cultivation. Cultivation markedly reduced ratios of SOC to TN, SOC to TP and TN to TP at surface layer (0-30 cm) and their SRs (0-5 cm:50-70 cm). After cultivation, electrical conductivity and salinity significantly decreased by 60.1% and 55.3% at 0-100 cm layer, respectively, suggesting a great desalinization. In contrast, soil pH at 20-70 cm horizons notably increased as an effect of reclamation. Cultivation also changed compositions of cations at 0-10 cm layer and anions at 5-100 cm layer, mainly decreasing the proportion of Na+, Cl- and SO4(2-). Furthermore, cultivation significantly reduced the sodium adsorption ratio and exchangeable sodium percentage in plow-layer (0-20 cm) but not residual sodium carbonate, suggesting a reduction in sodium harm.

  1. Long-Term Effect of Agricultural Reclamation on Soil Chemical Properties of a Coastal Saline Marsh in Bohai Rim, Northern China

    PubMed Central

    Wang, Yidong; Wang, Zhong-Liang; Feng, Xiaoping; Guo, Changcheng; Chen, Qing

    2014-01-01

    Over the past six decades, coastal wetlands in China have experienced rapid and extensive agricultural reclamation. In the context of saline conditions, long-term effect of cultivation after reclamation on soil chemical properties has not been well understood. We studied this issue using a case of approximately 60-years cultivation of a coastal saline marsh in Bohai Rim, northern China. The results showed that long-term reclamation significantly decreased soil organic carbon (SOC) (−42.2%) and total nitrogen (TN) (−25.8%) at surface layer (0–30 cm) as well as their stratification ratios (SRs) (0–5 cm:50–70 cm and 5–10 cm:50–70 cm). However, there was no significant change in total phosphorus (TP) as well as its SRs under cultivation. Cultivation markedly reduced ratios of SOC to TN, SOC to TP and TN to TP at surface layer (0–30 cm) and their SRs (0–5 cm:50–70 cm). After cultivation, electrical conductivity and salinity significantly decreased by 60.1% and 55.3% at 0–100 cm layer, respectively, suggesting a great desalinization. In contrast, soil pH at 20–70 cm horizons notably increased as an effect of reclamation. Cultivation also changed compositions of cations at 0–10 cm layer and anions at 5–100 cm layer, mainly decreasing the proportion of Na+, Cl− and SO42−. Furthermore, cultivation significantly reduced the sodium adsorption ratio and exchangeable sodium percentage in plow-layer (0–20 cm) but not residual sodium carbonate, suggesting a reduction in sodium harm. PMID:24695526

  2. Long-term effect of agricultural reclamation on soil chemical properties of a coastal saline marsh in Bohai Rim, northern China.

    PubMed

    Wang, Yidong; Wang, Zhong-Liang; Feng, Xiaoping; Guo, Changcheng; Chen, Qing

    2014-01-01

    Over the past six decades, coastal wetlands in China have experienced rapid and extensive agricultural reclamation. In the context of saline conditions, long-term effect of cultivation after reclamation on soil chemical properties has not been well understood. We studied this issue using a case of approximately 60-years cultivation of a coastal saline marsh in Bohai Rim, northern China. The results showed that long-term reclamation significantly decreased soil organic carbon (SOC) (-42.2%) and total nitrogen (TN) (-25.8%) at surface layer (0-30 cm) as well as their stratification ratios (SRs) (0-5 cm:50-70 cm and 5-10 cm:50-70 cm). However, there was no significant change in total phosphorus (TP) as well as its SRs under cultivation. Cultivation markedly reduced ratios of SOC to TN, SOC to TP and TN to TP at surface layer (0-30 cm) and their SRs (0-5 cm:50-70 cm). After cultivation, electrical conductivity and salinity significantly decreased by 60.1% and 55.3% at 0-100 cm layer, respectively, suggesting a great desalinization. In contrast, soil pH at 20-70 cm horizons notably increased as an effect of reclamation. Cultivation also changed compositions of cations at 0-10 cm layer and anions at 5-100 cm layer, mainly decreasing the proportion of Na+, Cl- and SO4(2-). Furthermore, cultivation significantly reduced the sodium adsorption ratio and exchangeable sodium percentage in plow-layer (0-20 cm) but not residual sodium carbonate, suggesting a reduction in sodium harm. PMID:24695526

  3. A combined field and modeling study of groundwater flow in a tidal marsh

    NASA Astrophysics Data System (ADS)

    Xia, Y. Q.; Li, H. L.

    2012-03-01

    Bald mud beaches were found among the mangrove marshes in Dongzhaigang National Nature Reserve, Hainan, China. To investigate the possible reasons for this phenomenon, the intertidal zones of a mangrove transect and a bald beach transect with similar topography and tidal actions were selected for comparison study. Along both transects, observed water table variations were significant in the high and low intertidal zones and negligible in the middle intertidal zones. Despite the same tidal actions and above-mentioned similarities, observed groundwater salinity was significantly smaller along the mangrove transect (average 23.0 ppt) than along the bald beach transect (average 28.5 ppt). These observations invite one hypothesis: the hydraulic structure of tidal marsh and freshwater availability may be the main hydrogeological factors critical to mangrove development. Two-dimensional numerical simulations corroborated the speculation and gave results in line with the observed water table. The two transects investigated were found to have a mud-sand two-layered structure: a surface zone of low-permeability mud and an underlying high-permeability zone that outcrops at the high and low tide lines. The freshwater recharge from inland is considerable along the mangrove transect but negligible along the bald beach transect. The high-permeability zone may provide opportunity for the plants in the mangrove marsh to uptake freshwater and oxygen through their roots extending downward into the high-permeability zone, which may help limit the buildup of salt in the root zone caused by evapotranspiration and enhance salt removal, which may further increase the production of marsh grasses and influence their spatial distribution. The bald beach is most probably due to the lack of enough freshwater for generating a brackish beach soil condition essential to mangrove growth. It is also indicated that seawater infiltrated the high-permeability zone through its outcrop near the high

  4. Responses of soil nitrogen fixation to Spartina alterniflora invasion and nitrogen addition in a Chinese salt marsh.

    PubMed

    Huang, Jingxin; Xu, Xiao; Wang, Min; Nie, Ming; Qiu, Shiyun; Wang, Qing; Quan, Zhexue; Xiao, Ming; Li, Bo

    2016-02-12

    Biological nitrogen fixation (BNF) is the major natural process of nitrogen (N) input to ecosystems. To understand how plant invasion and N enrichment affect BNF, we compared soil N-fixation rates and N-fixing microbes (NFM) of an invasive Spartina alterniflora community and a native Phragmites australis community in the Yangtze River estuary, with and without N addition. Our results indicated that plant invasion relative to N enrichment had a greater influence on BNF. At each N level, the S. alterniflora community had a higher soil N-fixation rate but a lower diversity of the nifH gene in comparison with the native community. The S. alterniflora community with N addition had the highest soil N-fixation rate and the nifH gene abundance across all treatments. Our results suggest that S. alterniflora invasion can increase soil N fixation in the high N-loading estuarine ecosystem, and thus may further mediate soil N availability.

  5. Responses of soil nitrogen fixation to Spartina alterniflora invasion and nitrogen addition in a Chinese salt marsh

    PubMed Central

    Huang, Jingxin; Xu, Xiao; Wang, Min; Nie, Ming; Qiu, Shiyun; Wang, Qing; Quan, Zhexue; Xiao, Ming; Li, Bo

    2016-01-01

    Biological nitrogen fixation (BNF) is the major natural process of nitrogen (N) input to ecosystems. To understand how plant invasion and N enrichment affect BNF, we compared soil N-fixation rates and N-fixing microbes (NFM) of an invasive Spartina alterniflora community and a native Phragmites australis community in the Yangtze River estuary, with and without N addition. Our results indicated that plant invasion relative to N enrichment had a greater influence on BNF. At each N level, the S. alterniflora community had a higher soil N-fixation rate but a lower diversity of the nifH gene in comparison with the native community. The S. alterniflora community with N addition had the highest soil N-fixation rate and the nifH gene abundance across all treatments. Our results suggest that S. alterniflora invasion can increase soil N fixation in the high N-loading estuarine ecosystem, and thus may further mediate soil N availability. PMID:26869197

  6. Hydrologic aspects of marsh ponds during winter on the Gulf Coast Chenier Plain, USA: Effects of structural marsh management

    USGS Publications Warehouse

    Bolduc, F.; Afton, A.D.

    2004-01-01

    The hydrology of marsh ponds influences aquatic invertebrate and waterbird communities. Hydrologic variables in marsh ponds of the Gulf Coast Chenier Plain are potentially affected by structural marsh management (SMM: levees, water control structures and impoundments) that has been implemented since the 1950s. Assuming that SMM restricts tidal flows and drainage of rainwater, we predicted that SMM would increase water depth, and concomitantly decrease salinity and transparency in impounded marsh ponds. We also predicted that SMM would increase seasonal variability in water depth in impounded marsh ponds because of the potential incapacity of water control structures to cope with large flooding events. In addition, we predicted that SMM would decrease spatial variability in water depth. Finally, we predicted that ponds of impounded freshwater (IF), oligohaline (IO), and mesohaline (IM) marshes would be similar in water depth, temperature, dissolved oxygen (O2), and transparency. Using a priori multivariate analysis of variance (MANOVA) contrast, we tested these predictions by comparing hydrologic variables within ponds of impounded and unimpounded marshes during winters 1997-1998 to 1999-2000 on Rockefeller State Wildlife Refuge, near Grand Chenier, Louisiana. Specifically, we compared hydrologic variables (1) between IM and unimpounded mesohaline marsh ponds (UM); and (2) among IF, IO, and IM marshes ponds. As predicted, water depth was higher and salinity and O2 were lower in IM than in UM marsh ponds. However, temperature and transparency did not differ between IM and UM marsh ponds. Water depth varied more among months in IM marsh ponds than within those of UM marshes, and variances among and within ponds were lower in IM than UM marshes. Finally, all hydrologic variables, except salinity, were similar among IF, IO, and IM marsh ponds. Hydrologic changes within marsh ponds due to SMM should (1) promote benthic invertebrate taxa that tolerate low levels of O2 and

  7. Structural classification of marshes with Polarimetric SAR highlighting the temporal mapping of marshes exposed to oil

    USGS Publications Warehouse

    Ramsey III, Elijah W.; Rangoonwala, Amina; Jones, Cathleen E.

    2015-01-01

    Empirical relationships between field-derived Leaf Area Index (LAI) and Leaf Angle Distribution (LAD) and polarimetric synthetic aperture radar (PolSAR) based biophysical indicators were created and applied to map S. alterniflora marsh canopy structure. PolSAR and field data were collected near concurrently in the summers of 2010, 2011, and 2012 in coastal marshes, and PolSAR data alone were acquired in 2009. Regression analyses showed that LAI correspondence with the PolSAR biophysical indicator variables equaled or exceeded those of vegetation water content (VWC) correspondences. In the final six regressor model, the ratio HV/VV explained 49% of the total 77% explained LAI variance, and the HH-VV coherence and phase information accounted for the remainder. HV/HH dominated the two regressor LAD relationship, and spatial heterogeneity and backscatter mechanism followed by coherence information dominated the final three regressor model that explained 74% of the LAD variance. Regression results applied to 2009 through 2012 PolSAR images showed substantial changes in marsh LAI and LAD. Although the direct cause was not substantiated, following a release of freshwater in response to the 2010 Deepwater Horizon oil spill, the fairly uniform interior marsh structure of 2009 was more vertical and dense shortly after the oil spill cessation. After 2010, marsh structure generally progressed back toward the 2009 uniformity; however, the trend was more disjointed in oil impact marshes.             

  8. Evaluation of marsh development processes at Fire Island National Seashore: Recent and historic perspectives

    USGS Publications Warehouse

    Roman, C.T.; King, D.R.; Cahoon, D.R.; Lynch, J.C.; Appleby, P.G.

    2007-01-01

    Purpose and significance of the study: Salt marshes are dynamic environments, increasing in vertical elevation and migrating, often landward, as sea level rises. With sea level rise greater than marsh elevation increase, marshes can be submerged, marsh soils become waterlogged, and plant growth becomes stressed, often resulting in conversion of vegetation-dominated marsh to mudflat or open water habitat. Given that the rate of sea level rise is expected to accelerate over the next century and that some marshes in the northeast are becoming submerged (e.g., Jamaica Bay, NY), it is important to understand the processes that control marsh development. More specifically, the objectives of this project were to quantify vertical marsh elevation change in relation to recent rates of sea-level rise and to investigate factors or processes that are most influential in controlling the development and maintenance of Fire Island salt marshes.

  9. Modeling tidal marsh distribution with sea-level rise: evaluating the role of vegetation, sediment, and upland habitat in marsh resiliency.

    PubMed

    Schile, Lisa M; Callaway, John C; Morris, James T; Stralberg, Diana; Parker, V Thomas; Kelly, Maggi

    2014-01-01

    Tidal marshes maintain elevation relative to sea level through accumulation of mineral and organic matter, yet this dynamic accumulation feedback mechanism has not been modeled widely in the context of accelerated sea-level rise. Uncertainties exist about tidal marsh resiliency to accelerated sea-level rise, reduced sediment supply, reduced plant productivity under increased inundation, and limited upland habitat for marsh migration. We examined marsh resiliency under these uncertainties using the Marsh Equilibrium Model, a mechanistic, elevation-based soil cohort model, using a rich data set of plant productivity and physical properties from sites across the estuarine salinity gradient. Four tidal marshes were chosen along this gradient: two islands and two with adjacent uplands. Varying century sea-level rise (52, 100, 165, 180 cm) and suspended sediment concentrations (100%, 50%, and 25% of current concentrations), we simulated marsh accretion across vegetated elevations for 100 years, applying the results to high spatial resolution digital elevation models to quantify potential changes in marsh distributions. At low rates of sea-level rise and mid-high sediment concentrations, all marshes maintained vegetated elevations indicative of mid/high marsh habitat. With century sea-level rise at 100 and 165 cm, marshes shifted to low marsh elevations; mid/high marsh elevations were found only in former uplands. At the highest century sea-level rise and lowest sediment concentrations, the island marshes became dominated by mudflat elevations. Under the same sediment concentrations, low salinity brackish marshes containing highly productive vegetation had slower elevation loss compared to more saline sites with lower productivity. A similar trend was documented when comparing against a marsh accretion model that did not model vegetation feedbacks. Elevation predictions using the Marsh Equilibrium Model highlight the importance of including vegetation responses to sea

  10. Modeling Tidal Marsh Distribution with Sea-Level Rise: Evaluating the Role of Vegetation, Sediment, and Upland Habitat in Marsh Resiliency

    PubMed Central

    Schile, Lisa M.; Callaway, John C.; Morris, James T.; Stralberg, Diana; Parker, V. Thomas; Kelly, Maggi

    2014-01-01

    Tidal marshes maintain elevation relative to sea level through accumulation of mineral and organic matter, yet this dynamic accumulation feedback mechanism has not been modeled widely in the context of accelerated sea-level rise. Uncertainties exist about tidal marsh resiliency to accelerated sea-level rise, reduced sediment supply, reduced plant productivity under increased inundation, and limited upland habitat for marsh migration. We examined marsh resiliency under these uncertainties using the Marsh Equilibrium Model, a mechanistic, elevation-based soil cohort model, using a rich data set of plant productivity and physical properties from sites across the estuarine salinity gradient. Four tidal marshes were chosen along this gradient: two islands and two with adjacent uplands. Varying century sea-level rise (52, 100, 165, 180 cm) and suspended sediment concentrations (100%, 50%, and 25% of current concentrations), we simulated marsh accretion across vegetated elevations for 100 years, applying the results to high spatial resolution digital elevation models to quantify potential changes in marsh distributions. At low rates of sea-level rise and mid-high sediment concentrations, all marshes maintained vegetated elevations indicative of mid/high marsh habitat. With century sea-level rise at 100 and 165 cm, marshes shifted to low marsh elevations; mid/high marsh elevations were found only in former uplands. At the highest century sea-level rise and lowest sediment concentrations, the island marshes became dominated by mudflat elevations. Under the same sediment concentrations, low salinity brackish marshes containing highly productive vegetation had slower elevation loss compared to more saline sites with lower productivity. A similar trend was documented when comparing against a marsh accretion model that did not model vegetation feedbacks. Elevation predictions using the Marsh Equilibrium Model highlight the importance of including vegetation responses to sea

  11. The Wonderful World of Wetlands (WWW): Bogs, fens, marshes and swamps and their global environmental significance

    NASA Astrophysics Data System (ADS)

    Shotyk, W.

    2012-04-01

    Bogs, fens, marshes, and swamps are waterlogged ecosystems where organic soils form and peat accumulates. These are remarkably diverse ecosystems and represent an important component of the biodiversity found on Earth. Their geochemical function is dominated by their predominately anoxic condition which has some important consequences. Best known as reservoirs and reactors for a significant part of our surface freshwater resources, and impacting their chemical composition in remarkable ways, they also have a significant influence on the atmosphere, removing CO2 and adding CH4. The contemporary view during the past centuries was that these were wastelands in need of improving by drainage. Today, however, in some circles at least, the remaining wetlands are valued ecosystems, and the soils they contain archives of climate change, human history and atmospheric pollution.

  12. Five years (2000-2004) of post-reconstruction monitoring of freshwater tidal wetlands in the urban Anacostia River, Washington, D.C. USA

    USGS Publications Warehouse

    Hammerschlag, D.; Krafft, C.

    2006-01-01

    The Anacostia River in Washington, D.C. USA consisted of over 809 hectares (2000 acres) of freshwater tidal wetlands before mandatory dredging removed most of them in the first half of the 20th century. Much of this13 kilometer (8 mile) reach was transferred to the National Park Service (NPS). Planning processes in the 1980's envisioned a restoration (rejuvenation) of some wetlands for habitat, aesthetics, water quality and interpretative purposes. Subsequently, the U.S. Army Corps of Engineers in a cost share agreement with the District of Columbia reconstructed wetlands on NPS lands at Kenilworth - 12.5 hectares (1993), Kingman 27 hectares (2000), a Fringe Marsh - 6.5 hectares (2003) and is currently constructing Heritage Marsh - 2.5 hectares (2005/2006). The USGS Patuxent Wildlife Research Center in conjunction with the University of Maryland Biological Engineering Department was contracted to conduct post-reconstruction monitoring (2000-2004) to document the relative success and progress of the Kingman Marsh reconstruction primarily based on vegetative response but also in conjunction with seed bank and soil characteristics. Results from Kingman were compared to Kenilworth Marsh (reconstructed 7 years prior), Dueling Creek Marsh (last best remaining freshwater tidal wetland bench in the urbanized Anacostia watershed) and Patuxent River Marsh (in a more natural adjacent watershed). Vegetation establishment was initially strong at Kingman, but declined rapidly as measured by cover, richness, diversity, etc. under grazing pressure from resident Canada geese and associated reduction in sediment levels. This decline did not occur at the other wetlands. The decline occurred despite a substantial seed bank that was sustained primarily be water born propagules. Soil development, as true for most juvenile wetlands, was slow with almost no organic matter accumulation. By 2004 only two of 7 planted species remained (mostly Peltandra virginica) at Kingman which did provide

  13. Soil pathogen communities associated with native and non-native Phragmites australis populations in freshwater wetlands.

    PubMed

    Nelson, Eric B; Karp, Mary Ann

    2013-12-01

    Soil pathogens are believed to be major contributors to negative plant-soil feedbacks that regulate plant community dynamics and plant invasions. While the theoretical basis for pathogen regulation of plant communities is well established within the plant-soil feedback framework, direct experimental evidence for pathogen community responses to plants has been limited, often relying largely on indirect evidence based on above-ground plant responses. As a result, specific soil pathogen responses accompanying above-ground plant community dynamics are largely unknown. Here, we examine the oomycete pathogens in soils conditioned by established populations of native noninvasive and non-native invasive haplotypes of Phragmites australis (European common reed). Our aim was to assess whether populations of invasive plants harbor unique communities of pathogens that differ from those associated with noninvasive populations and whether the distribution of taxa within these communities may help to explain invasive success. We compared the composition and abundance of pathogenic and saprobic oomycete species over a 2-year period. Despite a diversity of oomycete taxa detected in soils from both native and non-native populations, pathogen communities from both invaded and noninvaded soils were dominated by species of Pythium. Pathogen species that contributed the most to the differences observed between invaded and noninvaded soils were distributed between invaded and noninvaded soils. However, the specific taxa in invaded soils responsible for community differences were distinct from those in noninvaded soils that contributed to community differences. Our results indicate that, despite the phylogenetic relatedness of native and non-native P. australis haplotypes, pathogen communities associated with the dominant non-native haplotype are distinct from those of the rare native haplotype. Pathogen taxa that dominate either noninvaded or invaded soils suggest different potential

  14. Influence of soil properties on trace element availability and plant accumulation in a Mediterranean salt marsh polluted by mining wastes: implications for phytomanagement.

    PubMed

    Conesa, H M; María-Cervantes, A; Alvarez-Rogel, J; González-Alcaraz, M N

    2011-09-15

    The aims of this study were to determine the factors which control metal and As phytoavailability in the different microenvironments (Sand Dunes, Salt Flat, Dry River and Shrubs) present at a Mediterranean salt marsh polluted by mining wastes. We performed a field study following a plot sampling survey. The analyses of soil parameters (pH, electrical conductivity (EC), organic carbon contents, etc.), total metal and As concentrations and their phytoavailability assessed with EDTA were related to each microenvironment and the corresponding plant species uptake. The averages of pH and EC were slightly alkaline (pH ≈ 7.5) and saline (≈ 2.2 to 17.1 dS m(-1)) respectively. The soil samples from the Salt Flat subzone showed the highest metal concentrations (e.g. 51 mg kg(-1) Cd, 11,600 mg kg(-1) Pb) while for As, the highest concentrations occurred in the Dry River (380 mg kg(-1) As). The total metal and EDTA-extractable concentrations occurred as it follows: Salt Flat>Dry River>Degraded Dunes>Shrubs. In relation to plant metal and As accumulation, the highest root concentrations were obtained in the species from the Salt Flat subzone: ~17 mg kg(-1) As, ~620 mg kg(-1) Pb, for both, Juncus maritimus and Arthrocnemum macrostachyum. However the highest metal and As shoot concentrations occurred in species from the Sand Dunes: ~23 mg kg(-1) As ~270 mg kg(-1) Pb for Dittrichia viscosa; ~23 mg kg(-1) As, ~390 mg kg(-1) Zn for Crucianella maritima. The occurrence of edaphic gradients including salinity and texture determined the vegetation distribution. However, it cannot be concluded that there was a disturbance due to metal(loid)s soil concentrations in terms of vegetation composition except in the Degraded Dunes and Dry River. The higher EDTA-extractable concentrations were coincidental with the most saline soils but this did not result in higher metal(loid)s plant accumulation.

  15. Comparison of wetland structural characteristics between created and natural salt marshes in southwest Louisiana, USA

    USGS Publications Warehouse

    Edwards, K.R.; Proffitt, C.E.

    2003-01-01

    The use of dredge material is a well-known technique for creating or restoring salt marshes that is expected to become more common along the Gulf of Mexico coast in the future. However, the effectiveness of this restoration method is still questioned. Wetland structural characteristics were compared between four created and three natural salt marshes in southwest Louisiana, USA. The created marshes, formed by the pumping of dredge material into formerly open water areas, represent a chronosequence, ranging in age from 3 to 19 years. Vegetation and soil structural factors were compared to determine whether the created marshes become more similar over time to the natural salt marshes. Vegetation surveys were conducted in 1997, 2000, and 2002 using the line-intercept technique. Site elevations were measured in 2000. Organic matter (OM) was measured in 1996 and 2002, while bulk density and soil particle-size distribution were determined in 2002 only. The natural marshes were dominated by Spartina alterniflora, as were the oldest created marshes; these marshes had the lowest mean site elevations ( 35 cm NGVD) and became dominated by high marsh (S. patens, Distichlis spicata) and shrub (Baccharis halimifolia, Iva frutescens) species. The higher elevation marsh seems to be following a different plant successional trajectory than the other marshes, indicating a relationship between marsh elevation and species composition. The soils in both the created and natural marshes contain high levels of clays (30-65 %), with sand comprising < 1 % of the soil distribution. OM was significantly greater and bulk density significantly lower in two of the natural marshes when compared to the created marshes. The oldest created marsh had significantly greater OM than the younger created marshes, but it may still take several decades before equivalency is reached with the natural marshes. Vegetation structural characteristics in the created marshes take only a few years to become similar

  16. Use of Computer-Aided Tomography (CT) Imaging for Quantifying Coarse Roots, Rhizomes, Peat, and Particle Densities in Marsh Soils

    EPA Science Inventory

    Computer-aided Tomography (CT) imaging was utilized to quantify wet mass of coarse roots, rhizomes, and peat in cores collected from organic-rich (Jamaica Bay, NY) and mineral (North Inlet, SC) Spartina alterniflora soils. Calibration rods composed of materials with standard dens...

  17. Impacts of marsh management on coastal-marsh bird habitats

    USGS Publications Warehouse

    Mitchell, L.R.; Gabrey, S.; Marra, P.P.; Erwin, R.M.; ,

    2006-01-01

    The effects of habitat-management practices in coastal marshes have been poorly evaluated. We summarize the extant literature concerning whether these manipulations achieve their goals and the effects of these manipulations on target (i.e., waterfowl and waterfowl food plants) and non-target organisms (particularly coastal-marsh endemics). Although we focus on the effects of marsh management on birds, we also summarize the scant literature concerning the impacts of marsh manipulations on wildlife such as small mammals and invertebrates. We address three common forms of anthropogenic marsh disturbance: prescribed fire, structural marsh management, and open-marsh water management. We also address marsh perturbations by native and introduced vertebrates.

  18. Mycorrhizal colonization across hydrologic gradients in restored and reference freshwater wetlands

    USGS Publications Warehouse

    Bauer, C.R.; Kellogg, C.H.; Bridgham, S.D.; Lamberti, G.A.

    2003-01-01

    Arbuscular mycorrhizae, which are plant root-fungal symbioses, are common associates of vascular plants. Such relationships, however, are thought to be rare in wetland plant roots, although several recent studies suggest that arbuscular mycorrhizae may be important in wetland ecosystems. Our objectives were to determine (1) the level of arbuscular mycorrhizal colonization of plant roots in three freshwater marshes and (2) the effect of restoration status, hydrologic zone, and plant species identity on mycorrhizal colonization. We quantified the percentage of plant roots colonized by mycorrhizal fungi in one reference and two restored freshwater marshes in northern Indiana, USA during summer 1999. Roots were collected from soil cores taken around dominant plant species present in each of three hydrologic zones and then stained for microscopic examination of mycorrhizal colonization. Mycorrhizae were present in each wetland, in all hydrologic zones and in all sampled plants, including Carex and Scirpus species previously thought to be non-mycorrhizal. Both restored and reference wetlands had moderate levels of mycorrhizal colonization, but no clear trends in colonization were seen with hydrologic zone, which has been hypothesized to regulate the formation of mycorrhizae in wetlands. Mycorrhizal colonization levels in the roots of individual species ranged from 3 to 90% and were particularly large in members of the Poaceae (grass) family. Our results suggest that arbuscular mycorrhizae may be widely distributed across plant species and hydrologic zones in both restored and reference freshwater marshes. Thus, future research should examine the functional role of mycorrhizal fungi in freshwater wetlands. ?? 2003, The Society of Wetland Scientists.

  19. The restoration potential of the Mesopotamian marshes of Iraq.

    PubMed

    Richardson, Curtis J; Reiss, Peter; Hussain, Najah A; Alwash, Azzam J; Pool, Douglas J

    2005-02-25

    Uncontrolled releases of Tigris and Euphrates River waters after the 2003 war have partially restored some former marsh areas in southern Iraq, but restoration is failing in others because of high soil and water salinities. Nearly 20% of the original 15,000-square-kilometer marsh area was reflooded by March 2004, but the extent of marsh restoration is unknown. High-quality water, nonsaline soils, and the densest native vegetation were found in the only remaining natural marsh, the Al-Hawizeh, located on the Iranian border. Although substantially reduced in area and under current threat of an Iranian dike, it has the potential to be a native repopulation center for the region. Rapid reestablishment, high productivity, and reproduction of native flora and fauna in reflooded former marsh areas indicate a high probability for successful restoration, provided the restored wetlands are hydraulically designed to allow sufficient flow of noncontaminated water and flushing of salts through the ecosystem.

  20. Conservation of tidal marshes

    SciTech Connect

    Daiber, F.C.

    1986-01-01

    This book is the first attempt to examine collectively the various uses and the consequences of marsh conservation efforts. Author Franklin Daiber emphasizes tidal marsh conservation from a holistic perspective rather than from the perspective of a single purpose or special economic interest. He addresses a topic receiving increasing attention, namely the concept of open marsh management as a means of controlling mosquito production without harmful effects on other marsh organisms. Topics considered include: water management; dikes, impoundments, ponds and ditches; reclaimed land and impoundments; ditching and ponding for mosquito control; sewage disposal and waste treatment; dredge material for wetland restoration; insecticides; oil pollution; and petroleum hydrocarbon interactions.

  1. The influence of soil-site factors on sugar maple (Acer saccharum Marsh.) growth response to climatic change in central Ontario

    NASA Astrophysics Data System (ADS)

    Schutten, K.; Gedalof, Z.

    2010-12-01

    Over the past several decades, concerns about climatic change and its potential impacts on Canada’s various geographical regions and associated ecological processes have grown steadily, especially among land and resource managers. As these risks transition into tangible outcomes in the field, it will be important for resource managers to understand historical climatic variability and natural ecological trends in order to effectively respond to a changing climate. Sugar maple (Acer saccharum Marsh.) is considered a stable endpoint for mature forests in the northern hardwood community of central Ontario, and it tends to be the dominant species, in a beech-ironwood-yellow birch matrix. In North America, this species is used for both hardwood lumber and for maple sugar (syrup) products; where it dominates, large recreational opportunities also exist. There are many biotic and abiotic factors that play a large role in the growth and productivity of sugar maple stands, such as soil pH, moisture regime, and site slope and aspect. This research undertaking aims to add to the body of literature addressing the following question: how do site factors influence the sensitivity of sugar maple growth to climatic change? The overall objective of the research is to evaluate how biotic and abiotic factors influence the sensitivity of sugar maple annual radial growth to climatic variability. This research will focus on sugar maple growth and productivity in Algonquin Provincial Park, and the impact that climatic variability has had in the past on these stands based on site-specific characteristics. In order to complete this goal, 20 sites were identified in Algonquin Provincial Park based on variability of known soil and site properties. These sites were visited in order to collect biotic and abiotic site data, and to measure annual radial growth increment of trees. Using regional climate records and standard dendrochronological methods, the collected increment growth data will be

  2. Marshes to mudflats—Effects of sea-level rise on tidal marshes along a latitudinal gradient in the Pacific Northwest

    USGS Publications Warehouse

    Thorne, Karen M.; Dugger, Bruce D.; Buffington, Kevin J.; Freeman, Chase M.; Janousek, Christopher N.; Powelson, Katherine W.; Gutenspergen, Glenn R.; Takekawa, John Y.

    2015-11-17

    In the Pacific Northwest, coastal wetlands support a wealth of ecosystem services including habitat provision for wildlife and fisheries and flood protection. The tidal marshes, mudflats, and shallow bays of coastal estuaries link marine, freshwater, and terrestrial habitats, and provide economic and recreational benefits to local communities. Climate change effects such as sea-level rise are altering these habitats, but we know little about how these areas will change over the next 50–100 years. Our study examined the effects of sea-level rise on nine tidal marshes in Washington and Oregon between 2012 and 2015, with the goal of providing scientific data to support future coastal planning and conservation. We compiled physical and biological data, including coastal topography, tidal inundation, vegetation structure, as well as recent and historical sediment accretion rates, to assess and model how sea-level rise may alter these ecosystems in the future. Multiple factors, including initial elevation, marsh productivity, sediment availability, and rates of sea-level rise, affected marsh persistence. Under a low sea-level rise scenario, all marshes remained vegetated with little change in the present configuration of communities of marsh plants or gradually increased proportions of middle-, high-, or transition-elevation zones of marsh vegetation. However, at most sites, mid sea-level rise projections led to loss of habitat of middle and high marshes and a gain of low marshes. Under a high sea-level rise scenario, marshes at most sites eventually converted to intertidal mudflats. Two sites (Grays Harbor and Willapa) seemed to have the most resilience to a high rate of rise in sea-level, persisting as low marsh until at least 2110. Our main model finding is that most tidal marsh study sites are resilient to sea-level rise over the next 50–70 years, but that sea-level rise will eventually outpace marsh accretion and drown most habitats of high and middle marshes by

  3. Potential risk of acute toxicity induced by AgI cloud seeding on soil and freshwater biota.

    PubMed

    Fajardo, C; Costa, G; Ortiz, L T; Nande, M; Rodríguez-Membibre, M L; Martín, M; Sánchez-Fortún, S

    2016-11-01

    Silver iodide is one of the most common nucleating materials used in cloud seeding. Previous cloud seeding studies have concluded that AgI is not practically bioavailable in the environment but instead remains in soils and sediments such that the free Ag amounts are likely too low to induce a toxicological effect. However, none of these studies has considered the continued use of this practice on the same geographical areas and thus the potential cumulative effect of environmental AgI. The aim of this study is to assess the risk of acute toxicity caused by AgI exposure under laboratory conditions at the concentration expected in the environment after repeated treatments on selected soil and aquatic biota. To achieve the aims, the viability of soil bacteria Bacillus cereus and Pseudomonas stutzeri and the survival of the nematode Caenorhabditis elegans exposed to different silver iodide concentrations have been evaluated. Freshwater green algae Dictyosphaerium chlorelloides and cyanobacteria Microcystis aeruginosa were exposed to silver iodide in culture medium, and their cell viability and photosynthetic activity were evaluated. Additionally, BOD5 exertion and the Microtox® toxicity test were included in the battery of toxicological assays. Both tests exhibited a moderate AgI adverse effect at the highest concentration (12.5µM) tested. However, AgI concentrations below 2.5µM increased BOD5. Although no impact on the growth and survival endpoints in the soil worm C. elegans was recorded after AgI exposures, a moderate decrease in cell viability was found for both of the assessed soil bacterial strains at the studied concentrations. Comparison between the studied species showed that the cyanobacteria were more sensitive than green algae. Exposure to AgI at 0.43μM, the reference value used in monitoring environmental impact, induced a significant decrease in photosynthetic activity that is primarily associated with the respiration (80% inhibition) and, to a lesser

  4. Potential risk of acute toxicity induced by AgI cloud seeding on soil and freshwater biota.

    PubMed

    Fajardo, C; Costa, G; Ortiz, L T; Nande, M; Rodríguez-Membibre, M L; Martín, M; Sánchez-Fortún, S

    2016-11-01

    Silver iodide is one of the most common nucleating materials used in cloud seeding. Previous cloud seeding studies have concluded that AgI is not practically bioavailable in the environment but instead remains in soils and sediments such that the free Ag amounts are likely too low to induce a toxicological effect. However, none of these studies has considered the continued use of this practice on the same geographical areas and thus the potential cumulative effect of environmental AgI. The aim of this study is to assess the risk of acute toxicity caused by AgI exposure under laboratory conditions at the concentration expected in the environment after repeated treatments on selected soil and aquatic biota. To achieve the aims, the viability of soil bacteria Bacillus cereus and Pseudomonas stutzeri and the survival of the nematode Caenorhabditis elegans exposed to different silver iodide concentrations have been evaluated. Freshwater green algae Dictyosphaerium chlorelloides and cyanobacteria Microcystis aeruginosa were exposed to silver iodide in culture medium, and their cell viability and photosynthetic activity were evaluated. Additionally, BOD5 exertion and the Microtox® toxicity test were included in the battery of toxicological assays. Both tests exhibited a moderate AgI adverse effect at the highest concentration (12.5µM) tested. However, AgI concentrations below 2.5µM increased BOD5. Although no impact on the growth and survival endpoints in the soil worm C. elegans was recorded after AgI exposures, a moderate decrease in cell viability was found for both of the assessed soil bacterial strains at the studied concentrations. Comparison between the studied species showed that the cyanobacteria were more sensitive than green algae. Exposure to AgI at 0.43μM, the reference value used in monitoring environmental impact, induced a significant decrease in photosynthetic activity that is primarily associated with the respiration (80% inhibition) and, to a lesser

  5. Endophytic Cultivable Bacteria of the Metal Bioaccumulator Spartina maritima Improve Plant Growth but Not Metal Uptake in Polluted Marshes Soils.

    PubMed

    Mesa, Jennifer; Mateos-Naranjo, Enrique; Caviedes, Miguel A; Redondo-Gómez, Susana; Pajuelo, Eloisa; Rodríguez-Llorente, Ignacio D

    2015-01-01

    Endophytic bacterial population was isolated from Spartina maritima tissues, a heavy metal bioaccumulator cordgrass growing in the estuaries of Tinto, Odiel, and Piedras River (south west Spain), one of the most polluted areas in the world. Strains were identified and ability to tolerate salt and heavy metals along with plant growth promoting and enzymatic properties were analyzed. A high proportion of these bacteria were resistant toward one or several heavy metals and metalloids including As, Cu, and Zn, the most abundant in plant tissues and soil. These strains also exhibited multiple enzymatic properties as amylase, cellulase, chitinase, protease and lipase, as well as plant growth promoting properties, including nitrogen fixation, phosphates solubilization, and production of indole-3-acetic acid (IAA), siderophores and 1-aminocyclopropane-1-carboxylate (ACC) deaminase. The best performing strains (Micrococcus yunnanensis SMJ12, Vibrio sagamiensis SMJ18, and Salinicola peritrichatus SMJ30) were selected and tested as a consortium by inoculating S. maritima wild plantlets in greenhouse conditions along with wild polluted soil. After 30 days, bacterial inoculation improved plant photosynthetic traits and favored intrinsic water use efficiency. However, far from stimulating plant metal uptake, endophytic inoculation lessened metal accumulation in above and belowground tissues. These results suggest that inoculation of S. maritima with indigenous metal-resistant endophytes could mean a useful approach in order to accelerate both adaption and growth of this indigenous cordgrass in polluted estuaries in restorative operations, but may not be suitable for rhizoaccumulation purposes. PMID:26733985

  6. Endophytic Cultivable Bacteria of the Metal Bioaccumulator Spartina maritima Improve Plant Growth but Not Metal Uptake in Polluted Marshes Soils

    PubMed Central

    Mesa, Jennifer; Mateos-Naranjo, Enrique; Caviedes, Miguel A.; Redondo-Gómez, Susana; Pajuelo, Eloisa; Rodríguez-Llorente, Ignacio D.

    2015-01-01

    Endophytic bacterial population was isolated from Spartina maritima tissues, a heavy metal bioaccumulator cordgrass growing in the estuaries of Tinto, Odiel, and Piedras River (south west Spain), one of the most polluted areas in the world. Strains were identified and ability to tolerate salt and heavy metals along with plant growth promoting and enzymatic properties were analyzed. A high proportion of these bacteria were resistant toward one or several heavy metals and metalloids including As, Cu, and Zn, the most abundant in plant tissues and soil. These strains also exhibited multiple enzymatic properties as amylase, cellulase, chitinase, protease and lipase, as well as plant growth promoting properties, including nitrogen fixation, phosphates solubilization, and production of indole-3-acetic acid (IAA), siderophores and 1-aminocyclopropane-1-carboxylate (ACC) deaminase. The best performing strains (Micrococcus yunnanensis SMJ12, Vibrio sagamiensis SMJ18, and Salinicola peritrichatus SMJ30) were selected and tested as a consortium by inoculating S. maritima wild plantlets in greenhouse conditions along with wild polluted soil. After 30 days, bacterial inoculation improved plant photosynthetic traits and favored intrinsic water use efficiency. However, far from stimulating plant metal uptake, endophytic inoculation lessened metal accumulation in above and belowground tissues. These results suggest that inoculation of S. maritima with indigenous metal-resistant endophytes could mean a useful approach in order to accelerate both adaption and growth of this indigenous cordgrass in polluted estuaries in restorative operations, but may not be suitable for rhizoaccumulation purposes. PMID:26733985

  7. Spatial response of coastal marshes to increased atmospheric CO2.

    PubMed

    Ratliff, Katherine M; Braswell, Anna E; Marani, Marco

    2015-12-22

    The elevation and extent of coastal marshes are dictated by the interplay between the rate of relative sea-level rise (RRSLR), surface accretion by inorganic sediment deposition, and organic soil production by plants. These accretion processes respond to changes in local and global forcings, such as sediment delivery to the coast, nutrient concentrations, and atmospheric CO2, but their relative importance for marsh resilience to increasing RRSLR remains unclear. In particular, marshes up-take atmospheric CO2 at high rates, thereby playing a major role in the global carbon cycle, but the morphologic expression of increasing atmospheric CO2 concentration, an imminent aspect of climate change, has not yet been isolated and quantified. Using the available observational literature and a spatially explicit ecomorphodynamic model, we explore marsh responses to increased atmospheric CO2, relative to changes in inorganic sediment availability and elevated nitrogen levels. We find that marsh vegetation response to foreseen elevated atmospheric CO2 is similar in magnitude to the response induced by a varying inorganic sediment concentration, and that it increases the threshold RRSLR initiating marsh submergence by up to 60% in the range of forcings explored. Furthermore, we find that marsh responses are inherently spatially dependent, and cannot be adequately captured through 0-dimensional representations of marsh dynamics. Our results imply that coastal marshes, and the major carbon sink they represent, are significantly more resilient to foreseen climatic changes than previously thought.

  8. Spatial response of coastal marshes to increased atmospheric CO2

    PubMed Central

    Ratliff, Katherine M.; Braswell, Anna E.; Marani, Marco

    2015-01-01

    The elevation and extent of coastal marshes are dictated by the interplay between the rate of relative sea-level rise (RRSLR), surface accretion by inorganic sediment deposition, and organic soil production by plants. These accretion processes respond to changes in local and global forcings, such as sediment delivery to the coast, nutrient concentrations, and atmospheric CO2, but their relative importance for marsh resilience to increasing RRSLR remains unclear. In particular, marshes up-take atmospheric CO2 at high rates, thereby playing a major role in the global carbon cycle, but the morphologic expression of increasing atmospheric CO2 concentration, an imminent aspect of climate change, has not yet been isolated and quantified. Using the available observational literature and a spatially explicit ecomorphodynamic model, we explore marsh responses to increased atmospheric CO2, relative to changes in inorganic sediment availability and elevated nitrogen levels. We find that marsh vegetation response to foreseen elevated atmospheric CO2 is similar in magnitude to the response induced by a varying inorganic sediment concentration, and that it increases the threshold RRSLR initiating marsh submergence by up to 60% in the range of forcings explored. Furthermore, we find that marsh responses are inherently spatially dependent, and cannot be adequately captured through 0-dimensional representations of marsh dynamics. Our results imply that coastal marshes, and the major carbon sink they represent, are significantly more resilient to foreseen climatic changes than previously thought. PMID:26644577

  9. Spatial response of coastal marshes to increased atmospheric CO2.

    PubMed

    Ratliff, Katherine M; Braswell, Anna E; Marani, Marco

    2015-12-22

    The elevation and extent of coastal marshes are dictated by the interplay between the rate of relative sea-level rise (RRSLR), surface accretion by inorganic sediment deposition, and organic soil production by plants. These accretion processes respond to changes in local and global forcings, such as sediment delivery to the coast, nutrient concentrations, and atmospheric CO2, but their relative importance for marsh resilience to increasing RRSLR remains unclear. In particular, marshes up-take atmospheric CO2 at high rates, thereby playing a major role in the global carbon cycle, but the morphologic expression of increasing atmospheric CO2 concentration, an imminent aspect of climate change, has not yet been isolated and quantified. Using the available observational literature and a spatially explicit ecomorphodynamic model, we explore marsh responses to increased atmospheric CO2, relative to changes in inorganic sediment availability and elevated nitrogen levels. We find that marsh vegetation response to foreseen elevated atmospheric CO2 is similar in magnitude to the response induced by a varying inorganic sediment concentration, and that it increases the threshold RRSLR initiating marsh submergence by up to 60% in the range of forcings explored. Furthermore, we find that marsh responses are inherently spatially dependent, and cannot be adequately captured through 0-dimensional representations of marsh dynamics. Our results imply that coastal marshes, and the major carbon sink they represent, are significantly more resilient to foreseen climatic changes than previously thought. PMID:26644577

  10. Alterations to Tidal Marsh Carbon Cycling and Greenhouse Gas Exchange in Response to Sea-Level and Salt-Water Intrusion (Invited)

    NASA Astrophysics Data System (ADS)

    Weston, N. B.

    2013-12-01

    Tidal marshes are highly productive ecosystems with the potential to sequester large amounts of carbon. However, tidal wetlands may be sources of the powerful greenhouse gases (GHGs) methane (CH4) and nitrous oxide (N2O), which are produced via microbial metabolic processes. As global climate changes it is increasingly important to understand the factors that control ecosystem productivity, GHG fluxes, and potential feedbacks between global change factors, C cycling, and marsh resilience to sea-level rise (SLR). Field measurements were undertaken to quantify rates of GHG (CO2 and CH4) exchange rates, plant biomass, microbial sulfate reduction and methanogenesis rates, and soil biogeochemistry at three tidal wetland sites along the salinity gradient in the Delaware River Estuary over four years. Despite similar plant productivity between marsh types, differences in microbial processes largely determined the GHG source/sink status of the wetland types. Mesohaline salt-marshes consistently sequestered C (~300 g C m-2 yr-1), and due to negligible CH4 release, were also a GHG sink (~1350 g CO2-eq m-2 yr-1). In contrast, the TFM sequestered C (~350 g C m-2 yr-1) but because of appreciable release of CH4 from freshwater wetland soils was GHG neutral. The oligohaline marsh site experienced significant seasonal salt-water intrusion (SWI) in the late summer during the four year study period, resulting in major alterations to marsh C cycling. The oligohaline marsh did not sequester C (loss of ~45 g C m-2 yr-1) in part due to surprisingly high rates of CH4 release (190 g CH4 m-2 yr-1). The oligohaline marsh undergoing SWI was therefore a significant source of GHG to the atmosphere (~4000 g CO2-eq m-2 yr-1). These results indicate that SWI alters C cycling and GHG exchange in marsh systems, and may accelerate the decomposition of organic matter limiting the ability of marshes to accrete material and keep pace with SLR. The impacts of SWI on TFM soil C cycling were further

  11. Overestimation of marsh vulnerability to sea level rise

    NASA Astrophysics Data System (ADS)

    Kirwan, Matthew L.; Temmerman, Stijn; Skeehan, Emily E.; Guntenspergen, Glenn R.; Fagherazzi, Sergio

    2016-03-01

    Coastal marshes are considered to be among the most valuable and vulnerable ecosystems on Earth, where the imminent loss of ecosystem services is a feared consequence of sea level rise. However, we show with a meta-analysis that global measurements of marsh elevation change indicate that marshes are generally building at rates similar to or exceeding historical sea level rise, and that process-based models predict survival under a wide range of future sea level scenarios. We argue that marsh vulnerability tends to be overstated because assessment methods often fail to consider biophysical feedback processes known to accelerate soil building with sea level rise, and the potential for marshes to migrate inland.

  12. Overestimation of marsh vulnerability to sea level rise

    USGS Publications Warehouse

    Kirwan, Matthew L.; Temmerman, Stijn; Skeehan, Emily E.; Guntenspergen, Glenn R.; Fagherazzi, Sergio

    2016-01-01

    Coastal marshes are considered to be among the most valuable and vulnerable ecosystems on Earth, where the imminent loss of ecosystem services is a feared consequence of sea level rise. However, we show with a meta-analysis that global measurements of marsh elevation change indicate that marshes are generally building at rates similar to or exceeding historical sea level rise, and that process-based models predict survival under a wide range of future sea level scenarios. We argue that marsh vulnerability tends to be overstated because assessment methods often fail to consider biophysical feedback processes known to accelerate soil building with sea level rise, and the potential for marshes to migrate inland.

  13. A combined field and modeling study of groundwater flow in a tidal marsh

    NASA Astrophysics Data System (ADS)

    Xia, Yuqiang; Li, Hailong

    2011-05-01

    Bald mud beaches were found among the mangrove marshes in Dongzhaigang National Nature Reserve, Hainan, China. To investigate the possible reasons for this phenomenon, the intertidal zones of a mangrove transect and a bald beach transect with similar topography and same tidal actions were selected for comparison study. Along both transects, observed water table variations were significant in the high and low intertidal zones and negligible in the middle intertidal zones. Field investigations and observations invite two speculations: (1) existence of a high-permeability zone on each transect which underlies the low-permeability surface mud sediments and outcrops in the high intertidal zone, and (2) considerable inland freshwater recharge along the mangrove transect but negligible freshwater recharge along the bald beach transect. Two-dimensional numerical simulations based on these speculations gave results in line with the observed water table. The bald beach is most probably due to the lack of enough freshwater for generating a brackish beach soil condition essential to mangrove growth. It is also indicated that seawater infiltrated the high-permeability zone through its outcrop near the high intertidal zone, and discharged from the tidal river bank in the vicinity of the low tide line, thereby forming a tide-induced seawater-groundwater circulation which may provide considerable contribution to the total submarine groundwater discharge.

  14. A comparison of a new centrifuge sugar flotation technique with the agar method for the extraction of immature Culicoides (Diptera: Ceratopogonidae) life stages from salt marsh soils.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two sampling techniques, agar extraction (AE) and centrifuge sugar flotation extraction (CSFE) were compared to determine their relative efficacy to recover immature stages of Culicoides spp from salt marsh substrates. Three types of samples (seeded with known numbers of larvae, homogenized field s...

  15. Acidification of freshwaters

    SciTech Connect

    Cresser, M.S.; Edwards, A.C.

    1987-01-01

    This volume gives an account that draws not only on the main branches of chemistry but also on soil physics, chemistry, hydrology, meteorology, geography, geology, plant physiology, soil microbiology and zoology. The author examine the numerous interacting physical, chemical, and biological, processes that regulate the acidity of freshwaters, a phenomenon that has various causes, including precipitation; acidifying pollutions; and the interaction of plants, soils and water. The relative importance of the different processes is examined.

  16. Insights into lateral marsh retreat mechanism through localized field measurements

    NASA Astrophysics Data System (ADS)

    Bendoni, M.; Mel, R.; Solari, L.; Lanzoni, S.; Francalanci, S.; Oumeraci, H.

    2016-02-01

    Deterioration of salt marshes may be due to several factors related to increased anthropic pressure, sea level rise, and erosive processes. While salt marshes can reach equilibrium in the vertical direction, adapting to sea level rise, they are inherently unstable in the horizontal direction. Marsh boundaries are characterized by scarps with bare sediment below the vegetated surface layer that can be easily removed by wave-induced erosion. In this work, we explore the different mechanisms involved in the erosion of marsh borders through the interpretation of field data. The analysis is based on a systematic field monitoring of a salt marsh in the Venice Lagoon subject to lateral erosion. Measurements included horizontal retreat of the scarp at various locations and wave height in front of the marsh during three storm surges. Continuous erosion and mass failures alternated during the observed period, leading to an average retreat up to 80 cm/yr. The data, collected roughly every month for 1.5 year, indicate that the linear relation that links the observed erosion rate to the impinging wave power exhibits a larger slope than that already estimated in literature on the basis of long-term surveys. Moreover, an increase in the gradient of erodibility is detected along the marsh scarp, due to the combined action of soil strengthening by vegetation on the marsh surface and the impact of wave breaking at the bank toe, which promote cantilever failures and increase the lateral erosion rate.

  17. Effects of hydrologic connectivity on aquatic macroinvertebrate assemblages in different marsh types

    USGS Publications Warehouse

    Kang, Sung-Ryong; King, Sammy L.

    2013-01-01

    Hydrologic connectivity can be an important driver of aquatic macroinvertebrate assemblages. Its effects on aquatic macroinvertebrate assemblages in coastal marshes, however, are relatively poorly studied. We evaluated the effects of lateral hydrologic connectivity (permanently connected ponds: PCPs; temporary connected ponds: TCPs), and other environmental variables on aquatic macroinvertebrate assemblages and functional feeding groups (FFGs) in freshwater, brackish, and saline marshes in Louisiana, USA. We hypothesized that (1) aquatic macroinvertebrate assemblages in PCPs would have higher assemblage metric values (density, biomass, Shannon-Wiener diversity) than TCPs and (2) the density and proportional abundance of certain FFGs (i.e. scrapers, shredders, and collectors) would be greater in freshwater marsh than brackish and saline marshes. The data in our study only partially supported our first hypothesis: while freshwater marsh PCPs had higher density and biomass than TCPs, assemblage metric values in saline TCPs were greater than saline PCPs. In freshwater TCPs, long duration of isolation limited access of macroinvertebrates from adjacent water bodies, which may have reduced assemblage metric values. However, the relatively short duration of isolation in saline TCPs provided more stable or similar habitat conditions, facilitating higher assemblage metric values. As predicted by our second hypothesis, freshwater PCPs and TCPs supported a greater density of scrapers, shredders, and collectors than brackish and saline ponds. Aquatic macroinvertebrate assemblages seem to be structured by individual taxa responses to salinity as well as pond habitat attributes.

  18. Effects of freshwater leaching on potential bioavailability of heavy metals in tidal flat soils.

    PubMed

    Li, Hui; Lu, Jun; Li, Qu-Sheng; He, Bao-Yan; Mei, Xiu-Qin; Yu, Dan-Ping; Xu, Zhi-Min; Guo, Shi-Hong; Chen, Hui-Jun

    2016-02-01

    Leaching experiments were conducted to investigate the effects of desalination levels and sediment depths on potential bioavailability of heavy metal (Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) in tidal flat soils. The data showed that both the desalination levels (p < 0.001) and soil depths (p < 0.001) had significant effects on the concentrations of acid-volatile sulfide (AVS). AVS concentrations generally exhibited increasing trends with an increase in depth and decreasing trends with enhanced desalination levels. The desalination levels had significant (p < 0.05) effects on the concentrations of simultaneously extracted metal (SEM; Cd, Cr, Cu, Fe, Mn, Pb, and Zn). Moreover, the concentrations of SEM (Cd, Cr, Cu, Fe, Mn, Pb, and Zn) generally tended to decrease with an increase in the desalination level. The desalination treatment significantly reduced the ratios of SEM/AVS compared with control. However, the ratios of SEM/AVS increased with enhanced desalination levels in treatments. Results reveal that low desalination treatment is better for reducing toxicity to benthic organisms than high desalination treatment. Since these reclaimed tidal flats with low desalinisation are suitable for saline water aquaculture, transforming the present land use of reclaimed tidal flats from fresh water aquaculture into saline water aquaculture may reduce health risk of heavy metals remained in sediments. These results will also contribute to our understanding of the dynamic behavior of heavy metals in the reclamation of tidal flats during leaching and the role of the ratio of SEM/AVS predictions on assessing the ecological risks of reclaimed tidal flats.

  19. Global carbon sequestration in tidal, saline wetland soils

    USGS Publications Warehouse

    Chmura, G.L.; Anisfeld, S.C.; Cahoon, D.R.; Lynch, J.C.

    2003-01-01

    Wetlands represent the largest component of the terrestrial biological carbon pool and thus play an important role in global carbon cycles. Most global carbon budgets, however, have focused on dry land ecosystems that extend over large areas and have not accounted for the many small, scattered carbon-storing ecosystems such as tidal saline wetlands. We compiled data for 154 sites in mangroves and salt marshes from the western and eastern Atlantic and Pacific coasts, as well as the Indian Ocean, Mediterranean Ocean, and Gulf of Mexico. The set of sites spans a latitudinal range from 22.4??S in the Indian Ocean to 55.5??N in the northeastern Atlantic. The average soil carbon density of mangrove swamps (0.055 ?? 0.004 g cm-3) is significantly higher than the salt marsh average (0.039 ?? 0.003 g cm-3). Soil carbon density in mangrove swamps and Spartina patens marshes declines with increasing average annual temperature, probably due to increased decay rates at higher temperatures. In contrast, carbon sequestration rates were not significantly different between mangrove swamps and salt marshes. Variability in sediment accumulation rates within marshes is a major control of carbon sequestration rates masking any relationship with climatic parameters. Globally, these combined wetlands store at least 44.6 Tg C yr-1 and probably more, as detailed areal inventories are not available for salt marshes in China and South America. Much attention has been given to the role of freshwater wetlands, particularly northern peatlands, as carbon sinks. In contrast to peatlands, salt marshes and mangroves release negligible amounts of greenhouse gases and store more carbon per unit area. Copyright 2003 by the American Geophysical Union.

  20. Global carbon sequestration in tidal, saline wetland soils

    NASA Astrophysics Data System (ADS)

    Chmura, Gail L.; Anisfeld, Shimon C.; Cahoon, Donald R.; Lynch, James C.

    2003-12-01

    Wetlands represent the largest component of the terrestrial biological carbon pool and thus play an important role in global carbon cycles. Most global carbon budgets, however, have focused on dry land ecosystems that extend over large areas and have not accounted for the many small, scattered carbon-storing ecosystems such as tidal saline wetlands. We compiled data for 154 sites in mangroves and salt marshes from the western and eastern Atlantic and Pacific coasts, as well as the Indian Ocean, Mediterranean Ocean, and Gulf of Mexico. The set of sites spans a latitudinal range from 22.4°S in the Indian Ocean to 55.5°N in the northeastern Atlantic. The average soil carbon density of mangrove swamps (0.055 ± 0.004 g cm-3) is significantly higher than the salt marsh average (0.039 ± 0.003 g cm-3). Soil carbon density in mangrove swamps and Spartina patens marshes declines with increasing average annual temperature, probably due to increased decay rates at higher temperatures. In contrast, carbon sequestration rates were not significantly different between mangrove swamps and salt marshes. Variability in sediment accumulation rates within marshes is a major control of carbon sequestration rates masking any relationship with climatic parameters. Globally, these combined wetlands store at least 44.6 Tg C yr-1 and probably more, as detailed areal inventories are not available for salt marshes in China and South America. Much attention has been given to the role of freshwater wetlands, particularly northern peatlands, as carbon sinks. In contrast to peatlands, salt marshes and mangroves release negligible amounts of greenhouse gases and store more carbon per unit area.

  1. Methane flux from coastal salt marshes

    SciTech Connect

    Bartlett, K.B.; Harriss, R.C.; Sebacher, D.I.

    1985-06-20

    The seasonal flux of methane to the atmosphere from salt marsh soils was examined in three different vegetation zones within a single marsh near Yorktown, Virginia. A total of 100 measurements were made over a 2-year period, with maximum rates occurring during summer and fall. Spatial and temporal variability in fluxes was high; rates ranged from -2.4 to 21.3 x 10/sup -3/ g CH/sub 4//m/sup 2//d. Estimates of annual methane losses to the atmosphere were 0.43 g CH/sub 4//m/sup 2/ for a salt meadow zone, 1.3 g CH/sub 4//m/sup 2/ for short Spartina alterniflora, and 1.2 g CH/sub 4//m/sup 2/ for tall creek-bank S. alterniflora. A total of 63 flux measurements, made in a variety of other coastal salt marshes along the east coast of the US, suggest that the Virginia site may be fairly typical for this region. In addition to diffusional losses across the air-soil interface, methane can be lost from the marsh system to the atmosphere through the lateral movement of pore waters supersaturated with methane into tidal creeks, with subsequent degassing across the water-air interface. Estimates of the magnitude of methane input to the atmosphere by this mechanism indicate it may be as important as diffusional losses across the air-soil interface. These data suggest that salt marshes of this type make only a minor contribution to global atmospheric methane.

  2. Nekton assemblage structure in natural and created marsh-edge habitats of the Guadalupe Estuary, Texas, USA

    NASA Astrophysics Data System (ADS)

    Zeug, Steven C.; Shervette, Virginia R.; Hoeinghaus, David J.; Davis, Stephen E., III

    2007-02-01

    Natural and created Spartina brackish marsh habitats in the Guadalupe Estuary, adjacent to the Aransas National Wildlife Refuge, Texas, USA were surveyed during spring, summer, and fall 2004 to evaluate the equivalence of nekton assemblages in an old (>30 years) created marsh. During each season, six replicate samples were collected in each marsh type using a 1-m 2 drop sampler. Multivariate analysis revealed significant differences in nekton assemblage structure among marsh type, both within and across seasons. Species richness was significantly higher in the natural marsh in spring and summer but not in fall. Several species that were dominant in the natural marsh but rare or absent in the created marsh had strong correlations with the presence of oyster substrate that was only encountered in natural marsh samples. Although cumulative richness was greater in the natural marsh, eight species were collected only from the created marsh. Shrimp and fish biomass was significantly higher in natural marsh. Analysis of the density, biomass and size structure of three commercially important crustaceans indicated that the created marsh supported similar biomass of some species (white shrimp, blue crab); however, the size structure of some populations was variable among marshes (blue crab, brown shrimp). We conclude that lower substrate complexity (specifically oyster) and soil organic content in the created marsh reduced measures of nekton similarity and recommend that these features be addressed in future restoration efforts.

  3. Sedimentation, accretion, and subsidence in marshes of Barataria Basin, Louisiana

    SciTech Connect

    Hatton, R.S.; DeLaune, R.D.; Patrick, W.H. Jr.

    1983-05-01

    Vertical accretion and sediment accumulation rates were determined from the distribution of /sup 137/Cs in cores collected from fresh water, intermediate, brackish, and salt marshes in the Barataria Basin, Louisiana. Vertical accretion rates vary from about 1.3 cm.yr/sup -1/ in levee areas to 0.7 in backmarshes. Mineral sediment content of the marsh soil profile decreased with distance from the coast. Except in natural levee areas, marsh accretion rates are less than subsidence measured by water level data, however this alone cannot account for observed land-loss patterns in the basin area.

  4. Freshwater Macroinvertebrates.

    ERIC Educational Resources Information Center

    Nalepa, T. F.

    1978-01-01

    Presents a literature review of freshwater biology particularly freshwater macroinvertebrates and their effect on water pollution, covering publications of 1976-77. A list of 158 references is also presented. (HM)

  5. Recent Advances in Studies of Coastal Marsh Sedimentation

    NASA Astrophysics Data System (ADS)

    Pasternack, G. B.; Leonard, L. A.

    2001-05-01

    controlling marsh morphology and ecology. Amazingly, some tidal freshwater deltas are only 50-100 years old due to rapid sedimentation caused by upland land use, but show the widest diversity of plants among all coastal marsh types. These systems often serve as seed banks that protect estuaries from loss of their important SAV beds. Given the central role of marsh sedimentation in the underlying dynamics of marsh evolution, research in this area will continue to play a vital role in management of an increasingly stressed coastal zone.

  6. Salt Marsh Formation in the Lower Hudson River Estuary

    NASA Technical Reports Server (NTRS)

    Merley, Michael; Peteet, Dorothy; Hansen, James E. (Technical Monitor)

    2001-01-01

    Salt marshes are constant depositional environments and as a result contain accurate indicators of past relative sea level rise and salinity. The Hudson River marshes are at least twice as deep when compared to coastal marshes on either side of the mouth of the Hudson. The reason for this difference in sedimentation is unclear. This study uses macrofossil data as well as sediment stratigraphy in order to understand the formation and evolution of these marshes. The composition of seeds, roots, shoots and foraminifera, are used to indicate past sea levels. The four sites involved in this study are, from south to north, the Arthur Kill Marsh in Staten Island (40 36 N, 74 77W), Piermont marsh (N 4100; 73 55W) Croton Point (41 14 N; 73 50W) and Iona Island (41 18N, 73 58W). These are all tidally influenced but with increasing distances from the New York Bight, which gives a good spectrum of tidal influence. AMS-C14 dates on basal macrofossils will document the time of each marsh formation. Basal material from Arthur Kill (8 m) includes freshwater seeds such as Viola, Potomageton and Alnus along with Salix buds. Basal material from Croton Point (10 m) includes fibrous woody material, foraminifera and Zanichellia seeds and other brackish vegetational components. The basal material from Piermont (13.77 m) is lacking any identifiable macrofossils between 150 and 500 microns. The basal material from Iona Island (10 m) has vegetation such as Scirpus and Cyperus seeds, probably implying a brackish environment. The freshwater origin of the Arthur Kill marsh in Staten Island is significant because it predates either sea level rise or the western channel incision. Additional implications for this study include evidence for changes in river channel geomorphology. Reasons for the relatively deeper river marshes include possible basal clay compaction, high production due to river and marine nutrients as well as tectonic activity. This study provides the groundwork for more high

  7. Salt Marsh Formation in the Lower Hudson River Estuary

    NASA Astrophysics Data System (ADS)

    Merley, M. M.; Peteet, D. M.; Peteet, D. M.

    2001-05-01

    Salt marshes are constant depositional environments and as a result contain accurate indicators of past relative sea level rise and salinity. The Hudson River marshes are at least twice as deep when compared to coastal marshes on either side of the mouth of the Hudson. The reason for this difference in sedimentation is unclear. This study uses macrofossil data as well as sediment stratigraphy in order to understand the formation and evolution of these marshes. The composition of seeds, roots, shoots and foraminifera, are used to indicate past sea levels. The four sites involved in this study are, from south to north, the Arthur Kill Marsh in Staten Island ( 40 36 N, 74 77W), Piermont marsh (N 41 00; 73 55W) Croton Point ( 41 14 N; 73 50W) and Iona Island( 41 18N, 73 58W). These are all tidally influenced but with increasing distances from the New York Bight, which gives a good spectrum of tidal influence. AMS-C14 dates on basal macrofossils will document the time of each marsh formation. Basal material from Arthur Kill (8m) includes freshwater seeds such as Viola, Potomageton and Alnus along with Salix buds. Basal material from Croton Point (10m) includes fibrous woody material, foraminifera and Zanichellia seeds and other brackish vegetational components. The basal material from Piermont (13.77m) is lacking any identifyable macrofossils between 150 and 500 microns. The basal material from Iona Island (10m) has vegetation such as Scirpus and Cyperus seeds, probably implying a brackish environment. The freshwater origin of the Arthur Kill marsh in Staten Island is significant because it predates either sea level rise or the western channel incision. Additional implications for this study include evidence for changes in river channel geomorphology. Reasons for the relatively deeper river marshes include possible basal clay compaction, high production due to river and marine nutrients as well as tectonic activity. This study provides the groundwork for more high

  8. Vegetation community response to tidal marsh restoration of a large river estuary

    USGS Publications Warehouse

    Belleveau, Lisa J.; Takekawa, John Y.; Woo, Isa; Turner, Kelley L.; Barham, Jesse B.; Takekawa, Jean E.; Ellings, Christopher S.; Chin-Leo, Gerardo

    2015-01-01

    Estuaries are biologically productive and diverse ecosystems that provide ecosystem services including protection of inland areas from flooding, filtering freshwater outflows, and providing habitats for fish and wildlife. Alteration of historic habitats, including diking for agriculture, has decreased the function of many estuarine systems, and recent conservation efforts have been directed at restoring these degraded areas to reestablish their natural resource function. The Nisqually Delta in southern Puget Sound is an estuary that has been highly modified by restricting tidal flow, and recent restoration of the delta contributed to one of the largest tidal salt marsh restorations in the Pacific Northwest. We correlated the response of nine major tidal marsh species to salinities at different elevation zones. Our results indicated that wetland species richness was not related to soil pore-water salinity (R2 = 0.03), but were stratified into different elevation zones (R2 = 0.47). Thus, restoration that fosters a wide range of elevations will provide the most diverse plant habitat, and potentially, the greatest resilience to environmental change.

  9. Restoring Ecological Function to a Submerged Salt Marsh

    USGS Publications Warehouse

    Stagg, C.L.; Mendelssohn, I.A.

    2010-01-01

    Impacts of global climate change, such as sea level rise and severe drought, have altered the hydrology of coastal salt marshes resulting in submergence and subsequent degradation of ecosystem function. A potential method of rehabilitating these systems is the addition of sediment-slurries to increase marsh surface elevation, thus ameliorating effects of excessive inundation. Although this technique is growing in popularity, the restoration of ecological function after sediment addition has received little attention. To determine if sediment subsidized salt marshes are functionally equivalent to natural marshes, we examined above- and belowground primary production in replicated restored marshes receiving four levels of sediment addition (29-42 cm North American Vertical Datum of 1988 [NAVD 88]) and in degraded and natural ambient marshes (4-22 cm NAVD 88). Moderate intensities of sediment-slurry addition, resulting in elevations at the mid to high intertidal zone (29-36 cm NAVD 88), restored ecological function to degraded salt marshes. Sediment additions significantly decreased flood duration and frequency and increased bulk density, resulting in greater soil drainage and redox potential and significantly lower phytotoxic sulfide concentrations. However, ecological function in the restored salt marsh showed a sediment addition threshold that was characterized by a decline in primary productivity in areas of excessive sediment addition and high elevation (>36 cm NAVD 88). Hence, the addition of intermediate levels of sediment to submerging salt marshes increased marsh surface elevation, ameliorated impacts of prolonged inundation, and increased primary productivity. However, too much sediment resulted in diminished ecological function that was equivalent to the submerged or degraded system. ?? 2010 Society for Ecological Restoration International.

  10. Marsh plant response to metals: Exudation of aliphatic low molecular weight organic acids (ALMWOAs)

    NASA Astrophysics Data System (ADS)

    Rocha, A. Cristina S.; Almeida, C. Marisa R.; Basto, M. Clara P.; Vasconcelos, M. Teresa S. D.

    2016-03-01

    Metal exposure is known to induce the production and secretion of substances, such as aliphatic low molecular weight organic acids (ALMWOAs), into the rhizosphere by plant roots. Knowledge on this matter is extensive for soil plants but still considerably scarce regarding marsh plants roots adapted to high salinity media. Phragmites australis and Halimione portulacoides, two marsh plants commonly distributed in European estuarine salt marshes, were used to assess the response of roots of both species, in terms of ALMWOAs exudation, to Cu, Ni and Cd exposure (isolated and in mixture since in natural environment, they are exposed to mixture of metals). As previous studies were carried out in unrealistic and synthetic media, here a more natural medium was selected. Therefore, in vitro experiments were carried out, with specimens of both marsh plants, and in freshwater contaminated with two different Cu, Ni and Cd concentrations (individual metal and in mixture). Both marsh plants were capable of liberating ALMWOAs into the surrounding medium. Oxalic, citric and maleic acids were found in P. australis root exudate solutions and oxalic and maleic acids in H. portulacoides root exudate solutions. ALMWOA liberation by both plants was plant species and metal-dependent. For instance, Cu affected the exudation of oxalic acid by H. portulacoides and of oxalic and citric acids by P. australis roots. In contrast, Ni and Cd did not stimulate any specific response. Regarding the combination of all metals, H. portulacoides showed a similar response to that observed for Cu individually. However, in the P. australis case, at high metal concentration mixture, a synergetic effect led to the increase of oxalic acid levels in root exudate solution and to a decrease of citric acid liberation. A correlation between ALMWOAs exudation and metal accumulation could not be established. P. australis and H. portulacoides are considered suitable metal phytoremediators of estuarine impacted areas

  11. Effects of hydrologic connectivity and environmental nariables on nekton assemblage in a coastal marsh system

    USGS Publications Warehouse

    Kang, Sung-Ryong; King, Sammy L.

    2013-01-01

    Hydrologic connectivity and environmental variation can influence nekton assemblages in coastal ecosystems. We evaluated the effects of hydrologic connectivity (permanently connected pond: PCP; temporary connected pond: TCP), salinity, vegetation coverage, water depth and other environmental variables on seasonal nekton assemblages in freshwater, brackish, and saline marshes of the Chenier Plain, Louisiana, USA. We hypothesize that 1) nekton assemblages in PCPs have higher metrics (density, biomass, assemblage similarity) than TCPs within all marsh types and 2) no nekton species would be dominant across all marsh types. In throw traps, freshwater PCPs in Fall (36.0 ± 1.90) and Winter 2009 (43.2 ± 22.36) supported greater biomass than freshwater TCPs (Fall 2009: 9.1 ± 4.65; Winter 2009: 8.3 ± 3.42). In minnow traps, saline TCPs (5.9 ± 0.85) in Spring 2009 had higher catch per unit effort than saline PCPs (0.7 ± 0.67). Our data only partially support our first hypothesis as freshwater marsh PCPs had greater assemblage similarity than TCPs. As predicted by our second hypothesis, no nekton species dominated across all marsh types. Nekton assemblages were structured by individual species responses to the salinity gradient as well as pond habitat attributes (submerged aquatic vegetation coverage, dissolved oxygen, hydrologic connectivity).

  12. Marsh nesting by mallards

    USGS Publications Warehouse

    Krapu, G.L.; Talent, L.G.; Dwyer, T.J.

    1979-01-01

    Nest-site selection by mallard (Anas platyrhynchos) hens was studied on a 52-km2, privately owned area in the Missouri Coteau of south-central North Dakota during 1974-77. Sixty-six percent of 53 nests initiated by radio-marked and unmarked hens were in wetlands in dense stands of emergent vegetation and usually within 50 m of the wetland edge. These findings and other sources of information suggest that significant numbers of mallards breeding in the Prairie Pothole Region nest in marsh habitat. Potential factors contributing to mallard use of marsh habitat for nesting purposes are discussed. Management considerations associated with marsh nesting by mallards are described and research needs are identified.

  13. Restoring marsh elevation in a rapidly subsiding salt marsh by thin-layer deposition of dredged material

    USGS Publications Warehouse

    Ford, M.A.; Cahoon, D.R.; Lynch, J.C.

    1999-01-01

    Thin-layer deposition of dredged material on coastal marsh by means of high-pressure spray dredging (Jet-Spray??2) technology has been proposed as a mechanism to minimize wetland impacts associated with traditional bucket dredging technologies and to restore soil elevations in deteriorated marshes of the Mississippi River delta. The impact of spray dredging on vegetated marsh and adjacent shallow-water habitat (formerly vegetated marsh that deteriorated to open water) was evaluated in a 0.5-ha Spartina alterniflora-dominated salt marsh in coastal Louisiana. The thickness of dredged sediment deposits was determined from artificial soil marker horizons and soil elevation change was determined from sedimentation-erosion tables (SET) established prior to spraying in both sprayed and reference marshes. The vertical accretion and elevation change measurements were made simultaneously to allow for calculation of shallow (~5 m depth) subsidence (accretion minus elevation change). Measurements made immediately following spraying in July 1996 revealed that stems of S. alterniflora were knocked down by the force of the spray and covered with 23 mm of dredged material. Stems of S. alterniflora soon recovered, and by July 1997 the percent cover of S. alterniflora had increased three-fold over pre-project conditions. Thus, the layer of dredged material was thin enough to allow for survival of the S. alterniflora plants, with no subsequent colonization by plant species typical of higher marsh zones. By February 1998, 62 mm of vertical accretion accumulated at this site, and little indication of disturbance was noted. Although not statistically significant, soil elevation change was greater than accretion on average at both the spray and reference marshes, suggesting that subsurface expansion caused by increased root biomass production and/or pore water storage influence elevation in this marsh region. In the adjacent shallow water pond, 129 mm of sediment was deposited in July

  14. Vertical Accretion in Microtidal Regularly and Irregularly Flooded Estuarine Marshes

    NASA Astrophysics Data System (ADS)

    Craft, C. B.; Seneca, E. D.; Broome, S. W.

    1993-10-01

    Vertical accretion rates were measured in microtidal (tidal amplitude less than 0·3 m) regularly (flooded twice daily by the astronomical tides), and irregularly flooded (inundated only during spring and storm tides) estuarine marshes in North Carolina to determine whether these marshes are keeping pace with rising sea-level and to quantify the relative contribution of organic matter and mineral sediment to vertical growth. Accretion rates in streamside and backmarsh locations of each marsh were determined by measuring the Cesium-137 ( 137Cs) activity in 2 cm soil depth increments. Soil bulk density, organic carbon (C), total nitrogen (N) and particle density also were measured to estimate rates of accumulation of organic matter (OM), mineral sediment and nutrients. With the exception of the backmarsh location of the regularly flooded marsh, vertical accretion rates in the marshes studied matched or exceeded the recent (1940-80) rate of sea-level rise (1·9 mm year -1) along the North Carolina coast. Accretion rates in the irregularly flooded marsh averaged 3·6 ± 0·5 mm year -1 along the streamside and 2·4 ± 0·2 mm year -1 in the backmarsh. The regularly flooded marsh had lower accretion rates, averaging 2·7 ± 0·3 mm year -1 along the streamside and 0·9 ± 0·2 mm year -1 in the backmarsh. Vertical accretion in the irregularly flooded marsh occurred via in situ production and accumulation of organic matter. Rates of soil OM (196-280 g m -2 year -1), organic C (106-146 g m -2 year -1) and total N (6·9-10·3 g m -2 year -1) accumulation were much higher in the irregularly flooded marsh as compared to the regularly flooded marsh (OM = 51-137 g m -2 year -1, C = 21-59 g m -2 year -1, N = 1·3-4·1 g m -2 year -1). In contrast, vertical accretion in the regularly flooded marsh was sustained by allochthonous inputs of mineral sediment. Inorganic sediment deposition contributed 677-1139 g m -2 year -1 mineral matter to the regularly flooded marsh as compared

  15. Biogeochemical effects of seawater restoration to diked salt marshes

    USGS Publications Warehouse

    Portnoy, J.W.; Giblin, A.E.

    1997-01-01

    We conducted greenhouse microcosm experiments to examine the biogeochemical effects of restoring seawater to historically diked Cape Cod salt marshes. Peat cores from both seasonally flooded and drained diked marshes were waterlogged with seawater, and porewater chemistry was subsequently monitored for 21 mo. The addition of seawater to highly organic, seasonally flooded peat caused the death of freshwater wetland plants, 6-8 cm of sediment subsidence, and increased N and P mineralization. Also, sulfides and alkalinity increased 10-fold, suggesting accelerated decomposition by sulfate reduction. Addition of seawater to the low-organic-content acidic peat from the drained marsh increased porewater pH, alkalinity, PO4-P, and Fe(II), which we attribute to the reestablishment of SO4 and Fe(III) mineral reduction. Increased cation exchange contributed to 6-fold increases in dissolved Fe(II) and Al and 60-fold increases in NH4-N within 6 mo of sail-nation. Seawater reintroductions to seasonally flooded diked marshes will cause porewater sulfides to increase, likely reducing the success of revegetation efforts. Sulfide toxicity is of less concern in resalinated drained peats because of the abundance of Fe(II) to precipitate sulfides, and of NH4-N to offset sulfide inhibition of N uptake. Restoration of either seasonally flooded or drained diked marshes could stimulate potentially large nutrient and Fe(II) releases, which could in turn increase primary production and lower oxygen in receiving waters. These findings suggest that tidal restoration be gradual and carefully monitored.

  16. Long term (>100 years) Carbon Sequestration in California Coastal Salt Marshes

    NASA Astrophysics Data System (ADS)

    Brown, L. N.; MacDonald, G. M.; Holmquist, J. R.

    2014-12-01

    Coastal salt marsh ecosystems rank as one of the ecosystems which sequester the most carbon (C) in the world (Chmura, 2003; Mcleod et al., 2011). California hosts multiple small marsh ecosystems outside of the San Francisco Bay that are limited in geographic extent but still contribute significantly to global soil C. This study evaluates 11 marsh sites along the California coast for annual soil C sequestration rates using 14C, 137Cs, and 210Pb chronologies. Estimates of carbon sequestration for California over the past 100 years from this study average at 49 g C m-2 yr-1. Long term estimates of soil C generally are lower because of natural decomposition of organic C, but this study indicates a persistence of high C storage capacity for coastal marsh systems. These estimates provide valuable insight into the long term capacity for coastal salt marshes to mitigate climate change through sequestration of C.

  17. Tides and Marshes.

    ERIC Educational Resources Information Center

    Pouler, Chris

    The Maryland Marine Science Education Project has produced a series of mini-units in marine science education for the junior high/middle school classroom. This unit focuses on tides and marshes. Although the unit specifically treats the Chesapeake Bay, it may be adapted for use with similar estuarine systems. In addition, the unit may be…

  18. Variation in freshwater input to the Eastern US coastal ecosystem

    NASA Astrophysics Data System (ADS)

    Feng, D.; Yoon, Y.; Beighley, E., II; Hughes, R.; Kimbro, D.

    2014-12-01

    Phragmites is one of the most invasive plants in North American wetlands. Although its spread in coastal marshes has been linked by independent studies to urbanization, eutrophication, and salinity change, there is good evidence that these factors may interactively determine invasion success and in turn, the ecosystem services provided by marshes. We hypothesize that the invasion of Phragmites is linked to changes in freshwater inputs due to climate and/or land use change. El Nino/Southern Oscillation (ENSO), originating in the sea surface temperature anomalies (warm or cold) in the eastern tropical Pacific Ocean, is a notable and prominent signal in inter-annual climatic variation. Recent studies shows that the probability of strong El Nino events may increase in the future. In this study, we will investigate the teleconnections between freshwater inputs to the coastal zone along the eastern U.S. and ENSO indices, and attempt to explore the predictability of temporal and spatial variation of freshwater inputs based on ENSO conditions. To quantify changes in freshwater input in this region, hydrologic modeling, remote sensing and field measurements are combined. The Hillslope River Routing (HRR) model is used to simulate hourly streamflow from all watersheds from southern Florida to northern Maine draining into the Atlantic Ocean. The modeling effort utilizes satellite precipitation (Tropical Rainfall Measuring Mission Product 3B42v7: 2001-current with a 3-hr temporal resolution and 0.25 degree spatial resolution), land surface temperature and vegetation measures (Moderate Resolution Imaging Spectroradiometer, MODIS, products: 2001-current with a monthly temporal resolution and 0.05 degree spatial resolution). To account for land cover change, annual MODIS land cover data and time varying population statics are merged to estimate annual land cover characteristics for each sub-catchment within the study region. Static datasets for soils and ground elevations are

  19. Assessment of factors enabling halite formation in a marsh in a humid temperate climate (Ajó Marsh, Argentina).

    PubMed

    Carol, Eleonora S; Alvarez, María Del Pilar; Borzi, Guido E

    2016-05-15

    The formation of evaporites associated with the final stages of the precipitation sequence, such as the case of halite, is frequent in marshes in arid areas, but it is not to be expected in those humid climates. This work, by means of the study of the hydrological, climatic and land use conditions, identifies the factors that allow the formation of saline precipitations in a marsh located in a humid climate area. The results obtained show that the exclusion of the marsh as a result of the embankment is the main reason for the presence of halite. It is to be expected that in the future the growth of the embanked marsh areas, together with the climatic and tidal condition tendencies recorded, will favour a higher rate of formation of evaporite salts. The identification of these factors makes it possible to set basic sustainable management guidelines to avoid soil salinisation. PMID:27021624

  20. Assessment of factors enabling halite formation in a marsh in a humid temperate climate (Ajó Marsh, Argentina).

    PubMed

    Carol, Eleonora S; Alvarez, María Del Pilar; Borzi, Guido E

    2016-05-15

    The formation of evaporites associated with the final stages of the precipitation sequence, such as the case of halite, is frequent in marshes in arid areas, but it is not to be expected in those humid climates. This work, by means of the study of the hydrological, climatic and land use conditions, identifies the factors that allow the formation of saline precipitations in a marsh located in a humid climate area. The results obtained show that the exclusion of the marsh as a result of the embankment is the main reason for the presence of halite. It is to be expected that in the future the growth of the embanked marsh areas, together with the climatic and tidal condition tendencies recorded, will favour a higher rate of formation of evaporite salts. The identification of these factors makes it possible to set basic sustainable management guidelines to avoid soil salinisation.

  1. Nonlinear responses of coastal salt marshes to nutrient additions and sea level rise

    EPA Science Inventory

    Increasing nutrients and accelerated sea level rise (SLR) can cause marsh loss in some coastal systems. Responses to nutrients and SLR are complex and vary with soil matrix, marsh elevation, sediment inputs, and hydroperiod. We describe field and greenhouse studies examining sing...

  2. Diatom zonation in southern Oregon tidal marshes relative to vascular plants, foraminifera, and sea level

    USGS Publications Warehouse

    Nelson, A.R.; Kashima, K.

    1993-01-01

    Diatom assemblages across estuarine marshes show a three-part vertical ecologic zonation of the intertidal zone similar to zonations of foraminiferal and vascular plant assemblages. Gradual changes in the compositions of all three types of assemblages reflect gradational zone boundaries, 5-40m wide. Modern mudflat, low marsh, and high marsh zones can be distinguished from one another with diatom assemblage data at three silty marshes in the middle parts of two river-dominated estuaries. The compositions of vascular plant and diatom assemblages on a transect at a sandy site near the mouth of a third estuary differ from those of the silty transects. A particularly distinct diatom subzone (the marsh border subzone) is marked by a dominance of fresh-to-brackish-water diatoms in a few samples from the upper part of the high marsh and lowest part of the upland zone on all four transects, but the vertical range of the marsh border subzone is large (c0.7m) and its range may vary from site to site depending on the amount of freshwater seepage and runoff into marshes. -from Authors

  3. Biodiversity of Saline and Brakish Marshes of the Indian River Lagoon: Historic and Current Patterns

    NASA Technical Reports Server (NTRS)

    Schmalzer, Paul A.

    1995-01-01

    The Indian River Lagoon (IRL) crosses a zone of climatic transition. Historically, marshes dominated saline and brackish environments in the north of the lagoon, while mangroves became important to the south. Distribution of marsh communities was influenced by hydrology, salinity, soil characteristics, and fire, as well as periodic freezes. Marshes of the IRL have been greatly modified since the 1940s. Despite significant modifications, marsh plant species have not been lost from the region, but community and landscape patterns have been greatly modified and ecosystem processes altered.

  4. Gross nitrous oxide production drives net nitrous oxide fluxes across a salt marsh landscape.

    PubMed

    Yang, Wendy H; Silver, Whendee L

    2016-06-01

    Sea level rise will change inundation regimes in salt marshes, altering redox dynamics that control nitrification - a potential source of the potent greenhouse gas, nitrous oxide (N2 O) - and denitrification, a major nitrogen (N) loss pathway in coastal ecosystems and both a source and sink of N2 O. Measurements of net N2 O fluxes alone yield little insight into the different effects of redox conditions on N2 O production and consumption. We used in situ measurements of gross N2 O fluxes across a salt marsh elevation gradient to determine how soil N2 O emissions in coastal ecosystems may respond to future sea level rise. Soil redox declined as marsh elevation decreased, with lower soil nitrate and higher ferrous iron in the low marsh compared to the mid and high marshes (P < 0.001 for both). In addition, soil oxygen concentrations were lower in the low and mid-marshes relative to the high marsh (P < 0.001). Net N2 O fluxes differed significantly among marsh zones (P = 0.009), averaging 9.8 ± 5.4 μg N m(-2)  h(-1) , -2.2 ± 0.9 μg N m(-2)  h(-1) , and 0.67 ± 0.57 μg N m(-2)  h(-1) in the low, mid, and high marshes, respectively. Both net N2 O release and uptake were observed in the low and high marshes, but the mid-marsh was consistently a net N2 O sink. Gross N2 O production was highest in the low marsh and lowest in the mid-marsh (P = 0.02), whereas gross N2 O consumption did not differ among marsh zones. Thus, variability in gross N2 O production rates drove the differences in net N2 O flux among marsh zones. Our results suggest that future studies should focus on elucidating controls on the processes producing, rather than consuming, N2 O in salt marshes to improve our predictions of changes in net N2 O fluxes caused by future sea level rise.

  5. Gross nitrous oxide production drives net nitrous oxide fluxes across a salt marsh landscape.

    PubMed

    Yang, Wendy H; Silver, Whendee L

    2016-06-01

    Sea level rise will change inundation regimes in salt marshes, altering redox dynamics that control nitrification - a potential source of the potent greenhouse gas, nitrous oxide (N2 O) - and denitrification, a major nitrogen (N) loss pathway in coastal ecosystems and both a source and sink of N2 O. Measurements of net N2 O fluxes alone yield little insight into the different effects of redox conditions on N2 O production and consumption. We used in situ measurements of gross N2 O fluxes across a salt marsh elevation gradient to determine how soil N2 O emissions in coastal ecosystems may respond to future sea level rise. Soil redox declined as marsh elevation decreased, with lower soil nitrate and higher ferrous iron in the low marsh compared to the mid and high marshes (P < 0.001 for both). In addition, soil oxygen concentrations were lower in the low and mid-marshes relative to the high marsh (P < 0.001). Net N2 O fluxes differed significantly among marsh zones (P = 0.009), averaging 9.8 ± 5.4 μg N m(-2)  h(-1) , -2.2 ± 0.9 μg N m(-2)  h(-1) , and 0.67 ± 0.57 μg N m(-2)  h(-1) in the low, mid, and high marshes, respectively. Both net N2 O release and uptake were observed in the low and high marshes, but the mid-marsh was consistently a net N2 O sink. Gross N2 O production was highest in the low marsh and lowest in the mid-marsh (P = 0.02), whereas gross N2 O consumption did not differ among marsh zones. Thus, variability in gross N2 O production rates drove the differences in net N2 O flux among marsh zones. Our results suggest that future studies should focus on elucidating controls on the processes producing, rather than consuming, N2 O in salt marshes to improve our predictions of changes in net N2 O fluxes caused by future sea level rise. PMID:26718748

  6. Restoration of a Freshwater Wetland on Subsided Peat Soils: Potential Effects on Release of Dissolved Organic Carbon and Disinfection Byproduct Precursors

    NASA Astrophysics Data System (ADS)

    Fleck, J.; Fujii, R.; Bossio, D.

    2002-12-01

    In 1997, a wetland restoration demonstration project began on Twitchell Island in the Sacramento-San Joaquin Delta (Delta), California, to examine the effects of a permanently flooded, freshwater wetland on peat soil subsidence. Conversion from agriculture to wetland has changed many of the biogeochemical processes controlling dissolved organic carbon (DOC) production, release, and transport from the peat soils, relative to the previous agricultural land uses. This study explores the effects of agricultural and wetland management on peat soil biogeochemistry of DOC and disinfection byproduct (DBP) precursor release. DBPs [e.g. trihalomethanes (THMs)] form when chlorine reacts with the natural organic matter present in source drinking water. Many DBPs are carcinogenic and mutagenic and pose a potential threat to more than 22 million Californians whose drinking water is diverted from the Delta. Results indicate that previous drainage practices substantially affected the quantity of water-soluble DOC currently extractable from Delta peat soils and ranged from 0.40 mg C (carbon)/g soil for well-drained soils to 0.76 mg C/g soil for poorly drained soils. Present management also affects the propensity of this DOC to form DBPs. The following values for DBP formation were measured for a variety of soil types and depths (all values are medians in mmole THMs produced/mole C): well-drained agricultural field (7.7 plow layer, 7.9 below plow layer), poorly drained agricultural field (7.0 plow layer, 8.7 below plow layer), open-water wetland (12.8 sediment, 10.1 underlying soil), and vegetated wetland (11.3 sediment, 7.7 underlying soil). Sources of organic matter inputs and decomposition pathways seem to be important factors in DBP precursor formation and release when DOC loadings are of similar magnitude. These results indicate that soil conditions have a greater effect on DOC and DBP loadings than any differences caused by conversion from agriculture to wetland, which is of

  7. Responses of salt marsh ecosystems to mosquito control management practices along the Atlantic Coast (U.S.A.)

    USGS Publications Warehouse

    James-Pirri, Mary-Jane; Erwin, R. Michael; Prosser, Diann J.; Taylor, Janith D.

    2012-01-01

    Open marsh water management (OMWM) of salt marshes modifies grid-ditched marshes by creating permanent ponds and radial ditches in the high marsh that reduce mosquito production and enhance fish predation on mosquitoes. It is preferable to using pesticides to control salt marsh mosquito production and is commonly presented as a restoration or habitat enhancement tool for grid-ditched salt marshes. Monitoring of nekton, vegetation, groundwater level, soil salinity, and bird communities before and after OMWM at 11 (six treatment and five reference sites) Atlantic Coast (U.S.A.) salt marshes revealed high variability within and among differing OMWM techniques (ditch-plugging, reengineering of sill ditches, and the creation of ponds and radial ditches). At three marshes, the dominant nekton shifted from fish (primarily Fundulidae species) to shrimp (Palaemonidae species) after manipulations and shrimp density increased at other treatment sites. Vegetation changed at only two sites, one with construction equipment impacts (not desired) and one with a decrease in woody vegetation along existing ditches (desired). One marsh had lower groundwater level and soil salinity, and bird use, although variable, was often unrelated to OMWM manipulations. The potential effects of OMWM manipulations on non-target salt marsh resources need to be carefully considered by resource planners when managing marshes for mosquito control.

  8. The link between water quality and tidal marshes in a highly impacted estuary.

    NASA Astrophysics Data System (ADS)

    Meire, Patrick; Maris, Tom; van Damme, Stefan; Jacobs, Sander; Cox, Tom; Struyf, Eric

    2010-05-01

    The Schelde estuary is one of the most heavily impacted estuaries in Europe. During several decades, untreated waste water from large cities (e.g. Brussels, Antwerp, Valenciennes, Lille) and industries was discharged in the river. As a result, the Schelde estuary has the reputation of being one of the most polluted estuaries in Europe. For a long time (approx. 1950 - 1995) all forms of higher life (macro-invertebrates and fish) were absent in the fresh and brackish parts of the estuary. Due to European legislation, a large part of the sewage water is now treated resulting in a significant recovery of water quality in the estuary. However, next to water quality, the estuary also suffered serious habitat losses during the last decades, mostly due to economic development and changing hydrological conditions causing more erosion. Over the last fifteen years, the management of the estuary has changed fundamentally. It is now more and more focused on the restoration of ecosystem services. In this presentation we will document the changes in water quality over the last 50 years and summarize recent work on the role of tidal marshes on water quality within the freshwater part of the Schelde estuary. Our results stress the important of taking into account ecosystem services and habitat restoration for long-term estuarine management. .After decades of high inorganic nutrient concentrations and recurring anoxia and hypoxia, we observed a paradoxical increase in chlorophyll-a concentrations with decreasing nutrient inputs, indicating a regime shift. Our results indicate that the recovery of a hypereutrophied systems towards a classical eutrophied state, needs the reduction of waste loads below certain thresholds. Paradoxically, phytoplankton production was inhibited by high ammonia or low oxygen concentrations. The system state change is accompanied by large fluctuations in oxygen concentrations. The improved water quality resulted in a remarkable recovery of different groups

  9. Re-establishing marshes can return carbon sink functions to a current carbon source in the Sacramento-San Joaquin Delta of California, USA

    USGS Publications Warehouse

    Miller, Robin L.; Fujii, Roger; Schmidt, Paul E.

    2011-01-01

    The Sacramento-San Joaquin Delta in California was an historic, vast inland freshwater wetland, where organic soils almost 20 meters deep formed over the last several millennia as the land surface elevation of marshes kept pace with sea level rise. A system of levees and pumps were installed in the late 1800s and early 1900s to drain the land for agricultural use. Since then, land surface has subsided more than 7 meters below sea level in some areas as organic soils have been lost to aerobic decomposition. As land surface elevations decrease, costs for levee maintenance and repair increase, as do the risks of flooding. Wetland restoration can be a way to mitigate subsidence by re-creating the environment in which the organic soils developed. A preliminary study of the effect of hydrologic regime on carbon cycling conducted on Twitchell Island during the mid-1990s showed that continuous, shallow flooding allowing for the growth of emergent marsh vegetation re-created a wetland environment where carbon preservation occurred. Under these conditions annual plant biomass carbon inputs were high, and microbial decomposition was reduced. Based on this preliminary study, the U.S. Geological Survey re-established permanently flooded wetlands in fall 1997, with shallow water depths of 25 and 55 centimeters, to investigate the potential to reverse subsidence of delta islands by preserving and accumulating organic substrates over time. Ten years after flooding, elevation gains from organic matter accumulation in areas of emergent marsh vegetation ranged from almost 30 to 60 centimeters, with average annual carbon storage rates approximating 1 kg/m2, while areas without emergent vegetation cover showed no significant change in elevation. Differences in accretion rates within areas of emergent marsh vegetation appeared to result from temporal and spatial variability in hydrologic factors and decomposition rates in the wetlands rather than variability in primary production

  10. Application of Sequential Extractions and X-ray Absorption Spectroscopy to Determine the Speciation of Chromium in Northern New Jersey Marsh Soils Developed in Chromite ore Processing Residue (COPR)

    SciTech Connect

    Elzinga, E.; Cirmo, A

    2010-01-01

    The Cr speciation in marsh soils developed in weathering chromite ore processing residue (COPR) was characterized using sequential extractions and synchrotron microbeam and bulk X-ray absorption spectroscopic (XAS) analyses. The sequential extractions suggested substantial Cr associated with reducible and oxidizable soil components, and significant non-extractable residual Cr. Notable differences in Cr speciation estimates from three extraction schemes underscore the operationally defined nature of Cr speciation provided by these methods. Micro X-ray fluorescence maps and {mu}-XAS data indicated the presence of {micro}m-sized chromite particles scattered throughout the weathered COPR matrix. These particles derive from the original COPR material, and have relatively high resistance towards weathering, and therefore persist even after prolonged leaching. Bulk XAS data further indicated Cr(III) incorporated in Fe(OH){sub 3}, and Cr(III) associated with organic matter. The low Cr contents of the weathered material (200-850 ppm) compared to unweathered COPR (20,000-60,000 ppm) point to substantial Cr leaching during COPR weathering, with partial repartitioning of released Cr into secondary Fe(OH){sub 3} phases and organics. The effects of anoxia on Cr speciation, and the potential of active COPR weathering releasing Cr(VI) deeper in the profile require further study.

  11. Biomass of freshwater turtles: a geographic comparison

    SciTech Connect

    Congdon, J.D.; Greene, J.L.; Gibbons, J.W.

    1986-01-01

    Standing crop biomass of freshwater turtles and minimum annual biomass of egg production were calculated for marsh and farm pond habitats in South Caroling and in Michigan. The species in South Carolina included Chelydra serpentina, Deirochelys reticularia, Kinosternon subrubrum, Pseudemys floridana, P. scripta and Sternotherus odoratus. The species in Michigan were Chelydra serpentina, Chrysemys picta and Emydoidea blandingi. Biomass was also determined for a single species population of P. scripta on a barrier island near Charleston, South Carolina. Population density and biomass of Pseudemys scripta in Green Pond on Capers Island were higher than densities and biomass of the entire six-species community studied on the mainland. In both the farm pond and marsh habitat in South Carolina P. scripta was the numerically dominant species and had the highest biomass. In Michigan, Chrysemys picta was the numerically dominant species; however, the biomass of Chelydra serpentina was higher. The three-species community in Michigan in two marshes (58 kg ha/sup -1/ and 46 kg ha/sup -1/) and farm ponds (23 kg ha/sup -1/) had lower biomasses than did the six-species community in a South Carolina marsh (73 kg/sup -1/). Minimum annual egg production by all species in South Carolina averaged 1.93 kg ha/sup -1/ and in Michigan averaged 2.89 kg ha/sup -1/ of marsh.

  12. Aeration for plant root respiration in a tidal marsh

    NASA Astrophysics Data System (ADS)

    Li, Hailong; Li, Ling; Lockington, David

    2005-06-01

    This paper investigates the tidal effects on aeration conditions for plant root respiration in a tidal marsh. We extend the work of Ursino et al. (2004) by using a two-phase model for air and water flows in the marsh. Simulations have been conducted to examine directly the link between the airflow dynamics and the aeration condition in the marsh soil. The results show that the effects of entrapped air on water movement in the vadose zone are significant in certain circumstances. Single-phase models based on Richards' equation, which neglect such effects, may not be adequate for quantifying the aeration condition in tidal marsh. The optimal aeration condition, represented by the maximum of the integral magnitude of tidally advected air mass (TAAM) flux, is found to occur near the tidal creek for the four soil textures simulated. This may explain the observation that some salt marsh plant species grow better near tidal creeks than in the inner marsh areas. Our analyses, based on the two-phase model and predicted TAAM flux magnitude, provide further insight into the "positive feedback" mechanism proposed by Ursino et al. (2004). That is, pioneer plants may grow successfully near the creek where the root aeration condition is optimal. The roots of the pioneer plants can soften and loosen the rhizosphere soil, which increases the evapotranspiration rate, the soil porosity, and absolute permeability and weakens the capillary effects. These, in turn, improve further the root aeration conditions and may lead to colonization by plants less resistant to anaerobic conditions.

  13. Aeration for plant root respiration in a tidal marsh

    NASA Astrophysics Data System (ADS)

    Li, Hailong; Li, Ling; Lockington, David

    2005-06-01

    This paper investigates the tidal effects on aeration conditions for plant root respiration in a tidal marsh. We extend the work of Ursino et al. (2004) by using a two-phase model for air and water flows in the marsh. Simulations have been conducted to examine directly the link between the airflow dynamics and the aeration condition in the marsh soil. The results show that the effects of entrapped air on water movement in the vadose zone are significant in certain circumstances. Single-phase models based on Richards' equation, which neglect such effects, may not be adequate for quantifying the aeration condition in tidal marsh. The optimal aeration condition, represented by the maximum of the integral magnitude of tidally advected air mass (TAAM) flux, is found to occur near the tidal creek for the four soil textures simulated. This may explain the observation that some salt marsh plant species grow better near tidal creeks than in the inner marsh areas. Our analyses, based on the two-phase model and predicted TAAM flux magnitude, provide further insight into the ``positive feedback'' mechanism proposed by Ursino et al. (2004). That is, pioneer plants may grow successfully near the creek where the root aeration condition is optimal. The roots of the pioneer plants can soften and loosen the rhizosphere soil, which increases the evapotranspiration rate, the soil porosity, and absolute permeability and weakens the capillary effects. These, in turn, improve further the root aeration conditions and may lead to colonization by plants less resistant to anaerobic conditions.

  14. BIOREMEDIATION OF OIL-CONTAMINATED COASTAL FRESHWATER AND SALTWATER WETLANDS

    EPA Science Inventory

    Two field studies involving intentional releases of crude oil onto a freshwater wetland and a salt marsh were conducted in Canada in the summers of 1999 and 2000, respectively. The objective of both studies was to determine the role of nutrients in enhancing wetland restoration ...

  15. BIOREMEDIATION OF OIL-CONTAMINATED COASTAL FRESHWATER AND SALTWATER WETLANDS

    EPA Science Inventory

    Two field studies involving intentional releases of crude oil onto a freshwater wetland and a salt marsh were conducted in Canada in the summers of 1999 and 2000, respectively. The objective of both studies was to determine the role of nutrients in enhancing wetland restoration i...

  16. Geographic variation in salt marsh structure and function.

    PubMed

    McCall, Brittany D; Pennings, Steven C

    2012-11-01

    We examined geographic variation in the structure and function of salt marsh communities along the Atlantic and Gulf coasts of the United States. Focusing on the arthropod community in the dominant salt marsh plant Spartina alterniflora, we tested two hypotheses: first, that marsh community structure varies geographically, and second, that two aspects of marsh function (response to eutrophication and addition of dead plant material) also vary geographically. We worked at eleven sites on the Gulf Coast and eleven sites on the Atlantic Coast, dividing each coast up into two geographic areas. Abiotic conditions (tidal range, soil organic content, and water content, but not soil salinity), plant variables (Spartina nitrogen content, height, cover of dead plant material, but not live Spartina percent cover or light interception), and arthropod variables (proportional abundances of predators, sucking herbivores, stem-boring herbivores, parasitoids, and detritivores, but not total arthropod numbers) varied among the four geographic regions. Latitude and mean tidal range explained much of this geographic variation. Nutrient enrichment increased all arthropod functional groups in the community, consistent with previous experimental results, and had similar effects in all geographic regions, contrary to our hypothesis, suggesting widespread consistency in this aspect of ecosystem function. The addition of dead plant material had surprisingly little effect on the arthropod community. Our results caution against the uncritical extrapolation of work done in one geographic region to another, but indicate that some aspects of marsh function may operate in similar ways in different geographic regions, despite spatial variation in community structure. PMID:22614261

  17. Tidal circulation alteration for salt marsh mosquito control

    NASA Astrophysics Data System (ADS)

    Resh, Vincent H.; Balling, Steven S.

    1983-01-01

    Mosquito control ditches designed to increase tidal circulation are widely used as a physical control alternative to insecticidal applications The impact of such ditching on Pacific Coast marshlands was largely unknown before this five-year study of impact in two types of San Francisco Bay salt marshes, a Salicornia virginica (pickleweed) monoculure and a mixed vegetation marsh Results of our studies suggest that ditches cause less environmental disturbance than insecticidal applications The article describes the following environmental consequences of ditching for mosquito control: increased tidal flushing of soils occurs adjacent to ditches compared with that in the open marsh, thereby reducing ground water and soil surface salinities and water table height; primary productivity of S. virginica, as determined by both the harvest method and infrared photographic analysis, is higher directly adjacent to ditches than in the open marsh, distribution of selected arthropod populations is similar at ditches and natural channels, although arthropod community response differs seasonally; aquatic invertebrate biomass is similar within ditched and natural ponds, but diversity is lower in ditched habitats, ditching increases fish diversity and density by improving fish access from tidal channels; ditches provide additional salt marsh song sparrow habitat, although ditches are less preferred than natural channels or sloughs. Management criteria can be used to design ditches that provide effective mosquito control and reduced environmental impact

  18. Contemporary deposition and long-term accumulation of sediment and nutrients by tidal freshwater forested wetlands impacted by sea level rise

    USGS Publications Warehouse

    Noe, Gregory; Hupp, Cliff R.; Bernhardt, Christopher E.; Krauss, Ken W.

    2016-01-01

    Contemporary deposition (artificial marker horizon, 3.5 years) and long-term accumulation rates (210Pb profiles, ~150 years) of sediment and associated carbon (C), nitrogen (N), and phosphorus (P) were measured in wetlands along the tidal Savannah and Waccamaw rivers in the southeastern USA. Four sites along each river spanned an upstream-to-downstream salinification gradient, from upriver tidal freshwater forested wetland (TFFW), through moderately and highly salt-impacted forested wetlands, to oligohaline marsh downriver. Contemporary deposition rates (sediment, C, N, and P) were greatest in oligohaline marsh and lowest in TFFW along both rivers. Greater rates of deposition in oligohaline and salt-stressed forested wetlands were associated with a shift to greater clay and metal content that is likely associated with a change from low availability of watershed-derived sediment to TFFW and to greater availability of a coastal sediment source to oligohaline wetlands. Long-term accumulation rates along the Waccamaw River had the opposite spatial pattern compared to contemporary deposition, with greater rates in TFFW that declined to oligohaline marsh. Long-term sediment and elemental mass accumulation rates also were 3–9× lower than contemporary deposition rates. In comparison to other studies, sediment and associated nutrient accumulation in TFFW are lower than downriver/estuarine freshwater, oligohaline, and salt marshes, suggesting a reduced capacity for surface sedimentation (short-term) as well as shallow soil processes (long-term sedimentation) to offset sea level rise in TFFW. Nonetheless, their potentially large spatial extent suggests that TFFW have a large impact on the transport and fate of sediment and nutrients in tidal rivers and estuaries.

  19. Suitability of Coastal Marshes as Whooping Crane Foraging Habitat in Southwest Louisiana, USA

    USGS Publications Warehouse

    King, Sammy L.; Kang, Sung-Ryong

    2014-01-01

    Foraging habitat conditions (i.e., water depth, prey biomass, digestible energy density) can be a significant predictor of foraging habitat selection by wading birds. Potential foraging habitats of Whooping Cranes (Grus americana) using marshes include ponds and emergent marsh, but the potential prey and energy availability in these habitat types have rarely been studied. In this study, we estimated daily digestible energy density for Whooping Cranes in different marsh and microhabitat types (i.e., pond, flooded emergent marsh). Also, indicator metrics of foraging habitat suitability for Whooping Cranes were developed based on seasonal water depth, prey biomass, and digestible energy density. Seasonal water depth (cm), prey biomass (g wet weight m-2), and digestible energy density (kcal g-1m-2) ranged from 0.0 to 50.2 ± 2.8, 0.0 to 44.8 ± 22.3, and 0.0 to 31.0 ± 15.3, respectively. With the exception of freshwater emergent marsh in summer, all available habitats were capable of supporting one Whooping Crane per 0.1 ha per day. All habitat types in the marshes had relatively higher suitability in spring and summer than in fall and winter. Our study indicates that based on general energy availability, freshwater marshes in the region can support Whooping Cranes in a relatively small area, particularly in spring and summer. In actuality, the spatial density of ponds, the flood depth of the emergent marsh, and the habitat conditions (e.g., vegetation density) between adjacent suitable habitats will constrain suitable habitat and Whooping Crane numbers.

  20. Regeneration of coastal marsh vegetation impacted by hurricanes Katrina and Rita

    USGS Publications Warehouse

    Middleton, B.A.

    2009-01-01

    as salt water species (e.g., Avicennia germinans, Salicornia bigelovii). Nevertheless, the species richness of seeds germinating from the seed bank of freshwater marshes was reduced more than in salt marshes, indicating that freshwater marsh regeneration may be more affected by hurricanes and/or sea level rise than salt marshes. From the perspective of short-term seed germination and recruitment following hurricanes, species recruitment is dependent on the post-disturbance conditions of water and salinity. ?? 2009 The Society of Wetland Scientists.

  1. In situ burning restores the ecological function and structure of an oil-impacted coastal marsh.

    PubMed

    Baustian, Joseph; Mendelssohn, Irving; Lin, Qianxin; Rapp, John

    2010-11-01

    As the use of in situ burning for oil spill remediation in coastal wetlands accelerates, the capacity of this procedure to restore the ecological structure and function of oil-impacted wetlands becomes increasingly important. Thus, our research focused on evaluating the functional and structural recovery of a coastal marsh in South Louisiana to an in situ burn following a Hurricane Katrina-induced oil spill. Permanent sampling plots were set up to monitor marsh recovery in the oiled and burned areas as well as non-oiled and non-burned (reference) marshes. Plots were monitored for species composition, stem density, above- and belowground productivity, marsh resiliency, soil chemistry, soil residual oil, and organic matter decomposition. The burn removed the majority of the oil from the marsh, and structurally the marsh recovered rapidly. Plant biomass and species composition returned to control levels within 9 months; however, species richness remained somewhat lower in the oiled and burned areas compared to the reference areas. Recovery of ecological function was also rapid following the in situ burn. Aboveground and belowground plant productivity recovered within one growing season, and although decomposition rates were initially higher in the oiled areas, over time they became equivalent to those in reference sites. Also, marsh resiliency, i.e., the rate of recovery from our applied disturbances, was not affected by the in situ burn. We conclude that in situ burning is an effective way to remove oil and allow ecosystem recovery in coastal marshes. PMID:20821009

  2. Effects of long-term grazing on sediment deposition and salt-marsh accretion rates

    NASA Astrophysics Data System (ADS)

    Elschot, Kelly; Bouma, Tjeerd J.; Temmerman, Stijn; Bakker, Jan P.

    2013-11-01

    Many studies have attempted to predict whether coastal marshes will be able to keep up with future acceleration of sea-level rise by estimating marsh accretion rates. However, there are few studies focussing on the long-term effects of herbivores on vegetation structure and subsequent effects on marsh accretion. Deposition of fine-grained, mineral sediment during tidal inundations, together with organic matter accumulation from the local vegetation, positively affects accretion rates of marsh surfaces. Tall vegetation can enhance sediment deposition by reducing current flow and wave action. Herbivores shorten vegetation height and this could potentially reduce sediment deposition. This study estimated the effects of herbivores on 1) vegetation height, 2) sediment deposition and 3) resulting marsh accretion after long-term (at least 16 years) herbivore exclusion of both small (i.e. hare and goose) and large grazers (i.e. cattle) for marshes of different ages. Our results firstly showed that both small and large herbivores can have a major impact on vegetation height. Secondly, grazing processes did not affect sediment deposition. Finally, trampling by large grazers affected marsh accretion rates by compacting the soil. In many European marshes, grazing is used as a tool in nature management as well as for agricultural purposes. Thus, we propose that soil compaction by large grazers should be taken in account when estimating the ability of coastal systems to cope with an accelerating sea-level rise.

  3. In Situ Burning Restores the Ecological Function and Structure of an Oil-Impacted Coastal Marsh

    NASA Astrophysics Data System (ADS)

    Baustian, Joseph; Mendelssohn, Irving; Lin, Qianxin; Rapp, John

    2010-11-01

    As the use of in situ burning for oil spill remediation in coastal wetlands accelerates, the capacity of this procedure to restore the ecological structure and function of oil-impacted wetlands becomes increasingly important. Thus, our research focused on evaluating the functional and structural recovery of a coastal marsh in South Louisiana to an in situ burn following a Hurricane Katrina-induced oil spill. Permanent sampling plots were set up to monitor marsh recovery in the oiled and burned areas as well as non-oiled and non-burned (reference) marshes. Plots were monitored for species composition, stem density, above- and belowground productivity, marsh resiliency, soil chemistry, soil residual oil, and organic matter decomposition. The burn removed the majority of the oil from the marsh, and structurally the marsh recovered rapidly. Plant biomass and species composition returned to control levels within 9 months; however, species richness remained somewhat lower in the oiled and burned areas compared to the reference areas. Recovery of ecological function was also rapid following the in situ burn. Aboveground and belowground plant productivity recovered within one growing season, and although decomposition rates were initially higher in the oiled areas, over time they became equivalent to those in reference sites. Also, marsh resiliency, i.e., the rate of recovery from our applied disturbances, was not affected by the in situ burn. We conclude that in situ burning is an effective way to remove oil and allow ecosystem recovery in coastal marshes.

  4. Oil spill response in freshwater: Assessment of the impact of cleanup as a management tool

    SciTech Connect

    Vandermeulen, J.H.; Ross, C.W.

    1995-08-01

    A wide variety of cleanup methods has been used following oil spillage in freshwater environments, but in few cases has there been rigorous follow-up assessment of the possible environmental impact of these methods per se. Where impact of cleanup has been considered, it was largely in the context of effectiveness of oil removal, and rarely to determine any negative environmental impact that the cleanup itself might have. A review of a number of documented oil spill incidents in freshwater environments revealed the following. (1) Follow-up monitoring of spill cleanup has not been seen as a formal or integral part of the cleanup procedure, nor as a regular part of either federal or local governmental spill response. (2) Spill response in the freshwater environment has been guided largely by knowledge gained from marine spill response, and from other environmental fields, despite significant differences between freshwater and marine conditions. (3) Cleanup activities do cause environmental impacts, over and above the impact of the oiling. These include impacts on regrowth of shoreline vegetation, entrainment and enhanced persistence of oil into river and marsh sediments, long-term oiling of creek and river beds resulting from certain methodologies, and impacts from disposal of oiled soils. (4) The {open_quotes}no-action{close_quotes} (i.e. self-clean) option does not appear as a formal response in freshwater spill situations, although there are situations where no cleanup may be considered a valid response option (for example, lightly oiled wetlands). (5) {open_quotes}Habitat rarity{close_quotes} as a separate factor in determining spill response, has had little discussion or application. 57 refs., 2 tabs.

  5. Assessing wildlife benefits and carbon storage from restored and natural coastal marshes in the Nisqually River Delta: Determining marsh net ecosystem carbon balance

    USGS Publications Warehouse

    Anderson, Frank; Bergamaschi, Brian; Windham-Myers, Lisamarie; Woo, Isa; De La Cruz, Susan; Drexler, Judith; Byrd, Kristin; Thorne, Karen M.

    2016-01-01

    Working in partnership since 1996, the U.S. Fish and Wildlife Service and the Nisqually Indian Tribe have restored 902 acres of tidally influenced coastal marsh in the Nisqually River Delta (NRD), making it the largest estuary-restoration project in the Pacific Northwest to date. Marsh restoration increases the capacity of the estuary to support a diversity of wildlife species. Restoration also increases carbon (C) production of marsh plant communities that support food webs for wildlife and can help mitigate climate change through long-term C storage in marsh soils.In 2015, an interdisciplinary team of U.S. Geological Survey (USGS) researchers began to study the benefits of carbon for wetland wildlife and storage in the NRD. Our primary goals are (1) to identify the relative importance of the different carbon sources that support juvenile chinook (Oncorhynchus tshawytscha) food webs and contribute to current and historic peat formation, (2) to determine the net ecosystem carbon balance (NECB) in a reference marsh and a restoration marsh site, and (3) to model the sustainability of the reference and restoration marshes under projected sea-level rise conditions along with historical vegetation change. In this fact sheet, we focus on the main C sources and exchanges to determine NECB, including carbon dioxide (CO2) uptake through plant photosynthesis, the loss of CO2 through plant and soil respiration, emissions of methane (CH4), and the lateral movement or leaching loss of C in tidal waters.

  6. Assessing wildlife benefits and carbon storage from restored and natural coastal marshes in the Nisqually River Delta: Determining marsh net ecosystem carbon balance

    USGS Publications Warehouse

    Anderson, Frank; Bergamaschi, Brian; Windham-Myers, Lisamarie; Woo, Isa; De La Cruz, Susan; Drexler, Judith; Byrd, Kristin; Thorne, Karen M.

    2016-06-24

    Working in partnership since 1996, the U.S. Fish and Wildlife Service and the Nisqually Indian Tribe have restored 902 acres of tidally influenced coastal marsh in the Nisqually River Delta (NRD), making it the largest estuary-restoration project in the Pacific Northwest to date. Marsh restoration increases the capacity of the estuary to support a diversity of wildlife species. Restoration also increases carbon (C) production of marsh plant communities that support food webs for wildlife and can help mitigate climate change through long-term C storage in marsh soils.In 2015, an interdisciplinary team of U.S. Geological Survey (USGS) researchers began to study the benefits of carbon for wetland wildlife and storage in the NRD. Our primary goals are (1) to identify the relative importance of the different carbon sources that support juvenile chinook (Oncorhynchus tshawytscha) food webs and contribute to current and historic peat formation, (2) to determine the net ecosystem carbon balance (NECB) in a reference marsh and a restoration marsh site, and (3) to model the sustainability of the reference and restoration marshes under projected sea-level rise conditions along with historical vegetation change. In this fact sheet, we focus on the main C sources and exchanges to determine NECB, including carbon dioxide (CO2) uptake through plant photosynthesis, the loss of CO2 through plant and soil respiration, emissions of methane (CH4), and the lateral movement or leaching loss of C in tidal waters.

  7. Joint Geophysical and Hydrologic Constraints on Shallow Groundwater Flow Systems in Clastic Salt Marshes of the South Atlantic Bight

    NASA Astrophysics Data System (ADS)

    Ruppel, C.; Fulton, P.; Schultz, G. M.; Castillo, L.; Bartlett, J.; Sibley, S.

    2005-12-01

    Salt marsh systems play a critical role in buffering upland coastal areas from the influence of open saltwater bodies and in filtering contaminants that originate offshore or are flushed from uplands. For these reasons, it is important to understand the salt marsh hydrologic cycle, especially the interaction of groundwater and surface water across low-lying coastal fringes and the changes in physical, chemical, and ecological parameters across salinity gradients extending from upland to tidal creek to open water. For the past 5 years, we have conducted hydrogeophysical surveys (inductive EM and DC resistivity) and collected limited, coincident groundwater hydrologic data in clastic salt marshes throughout the South Atlantic Bight (SAB), stretching from South Carolina on the north to the Georgia-Florida border on the south. All of the marshes are dominated by Spartina and Juncus grasses and are cut by tidally-influenced creeks, but both the lithology and age of the marshes vary widely. For example, one highly homogeneous marsh study site has formed only within the past century, while most sites have existed for thousands of years and have laterally and vertically heterogeneous lithology. Geophysical images of the marsh subsurface and coincident monitoring of groundwater temperature, water level, and/or chemistry consistently show that marshes in the mixed energy environment of the middle part of the SAB (GCE LTER) tend to be dominated by submarsh discharge of freshwater to adjacent tidal creeks. In the South Carolina part of the SAB, we have greater evidence for seepage, particularly through biologically-created macropore networks and permeable sediment bodies that intersect tidal creeks. It is possible though that the South Carolina results are not so much 'universal' as reflective of local lithology. In a very young marsh near the Florida border, geophysical imaging implies a mixture of seepage and submarsh flow, and hydrologic data provide unequivocal proof that

  8. Greenhouse gas emissions from a created brackish marsh in eastern North Carolina

    USGS Publications Warehouse

    Shiau, Yo-Jin; Burchell, Michael R.; Krauss, Ken W.; Birgand, Francois; Broome, Stephen W.

    2016-01-01

    Tidal marsh creation helps remediate global warming because tidal wetlands are especially proficient at sequestering carbon (C) in soils. However, greenhouse gas (GHG) losses can offset the climatic benefits gained from C storage depending on how these tidal marshes are constructed and managed. This study attempts to determine the GHG emissions from a 4–6 year old created brackish marsh, what environmental factors governed these emissions, and how the magnitude of the fluxes relates to other wetland ecosystems. The static flux chamber method was used to measure GHG fluxes across three distinct plant zones segregated by elevation. The major of soil GHG fluxes from the marsh were from CO2 (−48–192 mg C m-2 h-1), although it was near the lower end of values reported from other wetland types having lower salinities, and would mostly be offset by photosynthetic uptake in this created brackish marsh. Methane flux was also low (−0.33–0.86 mg C m-2 h-1), likely inhibited by the high soil SO42−and soil redox potentials poised above −150 mV in this in this created brackish marsh environment. Low N2O flux (−0.11–0.10 mg N m-2 h-1) was due to low soil NO3− and soil redox conditions favoring complete denitrification. GHG fluxes from this created brackish marsh were generally lower than those recorded from natural marshes, suggesting that C sequestration may not be offset by the radiative forcing from soil GHG emissions if projects are designed properly.

  9. Hydrologic restoration in a dynamic subtropical mangrove-to-marsh ecotone

    USGS Publications Warehouse

    Howard, Rebecca J.; Day, Richard H.; Krauss, Ken W.; From, Andrew S.; Allain, Larry K.; Cormier, Nicole

    2016-01-01

    Extensive hydrologic modifications in coastal regions across the world have occurred to support infrastructure development, altering the function of many coastal wetlands. Wetland restoration success is dependent on the existence of hydrologic regimes that support development of appropriate soils and the growth and persistence of wetland vegetation. In Florida, United States, the Comprehensive Everglades Restoration Program (CERP) seeks to restore, protect, and preserve water resources of the greater Everglades region. Herein we describe vegetation dynamics in a mangrove-to-marsh ecotone within the impact area of a CERP hydrologic restoration project currently under development. Vegetation communities are also described for a similar area outside the project area. We found that vegetation shifts within the impact area occurred over a 7-year period; cover of herbaceous species varied by location, and an 88% increase in the total number of mangrove seedlings was documented. We attribute these shifts to the existing modified hydrologic regime, which is characterized by a low volume of freshwater sheet flow compared with historical conditions (i.e. before modification), as well as increased tidal influence. We also identified a significant trend of decreasing soil surface elevation at the impact area. The CERP restoration project is designed to increase freshwater sheet flow to the impact area. Information from our study characterizing existing vegetation dynamics prior to implementation of the restoration project is required to allow documentation of long-term project effects on plant community composition and structure within a framework of background variation, thereby allowing assessment of the project's success in restoring critical ecosystem functions.

  10. Methylmercury production in a Chesapeake Bay salt marsh

    NASA Astrophysics Data System (ADS)

    Mitchell, Carl P. J.; Gilmour, Cynthia C.

    2008-06-01

    In a detailed study of the biogeochemical factors affecting the methylation of mercury in a Chesapeake Bay salt marsh, we examined relationships between mercury methylation and numerous variables, including sulfate reduction rates, organic carbon mineralization rates, iron and sulfur chemistry, and the character of dissolved organic matter (DOM). Our data show that salt marshes are important sites of de novo methylmercury (MeHg) production in coastal ecosystems. Some of the controls on MeHg production that have been well-described in other ecosystems also impacted MeHg production in this salt marsh, specifically the effect of sulfide accumulation on mercury bioavailability. We observed some novel biogeochemical relationships with Hg(II)-methylation and MeHg accumulation, particularly the positive association of Hg(II)-methylation with zones of microbial iron reduction. On the basis of this relationship, we suggest caution in wetland and groundwater remediation approaches involving iron additions. Aqueous phase Hg complexation appeared to be the dominant control on Hg bioavailability across the marsh sites examined, rather than Hg partitioning behavior. A detailed examination of DOM character in the marsh suggested a strong positive association between Hg(II)-methylation rate constants and increasing DOM molecular weight. Overall, our results indicate that net MeHg production is controlled by a balance between microbial activity and geochemical effects on mercury bioavailability, but that a significant zone of MeHg production can persist in near surface salt marsh soils. Production of MeHg in coastal marshes may negatively impact ecosystems via export to adjacent estuaries or through direct bioaccumulation in birds, fish and amphibians that feed in these highly productive ecosystems.

  11. Testing two potential fates for coastal marshes: Greenhouse gas emissions from native, Phragmites australis-invaded, and permanently inundated zones

    NASA Astrophysics Data System (ADS)

    Moseman-Valtierra, S.; Martin, R.; Tang, J.; Morkeski, K.; China, I.; Brannon, E.; Watson, E. B.

    2014-12-01

    Global changes such as biological invasions and sea level rise can significantly affect GHG emissions from coastal wetlands by changing plant community composition and/or environmental conditions. To first characterize GHG fluxes across major plant-defined marsh zones, CO2, N2O, and CH4 fluxes were compared between S. patens- dominated high marsh and S. alterniflora low marsh during 2012 and 2013 growing seasons in 3 New England marshes. To test how these fluxes may change in response to biological invasions and sea level rise, GHG fluxes were then compared between native, P.australis- invaded, and permanently inundated marsh zones at these sites in 2013 and 2014. GHG emissions were analyzed simultaneously from marsh ecosystems using infrared-based spectrometers connected to static flux chambers. Daytime CO2 uptake rates (ranging on average between -2 and -21 μmol CO2 m-2s-1) were generally greater in S. alterniflora low marsh zones than in S. patens high marsh among all 3 sites. Methane fluxes were generally low in both native marsh zones (< 50 μmol CH4 m-2 h-1) and N2O emissions were rare. However, CO2 uptake and CH4 emissions from P. australis zones were typically more than an order of magnitude greater than those of either native marsh zone. In contrast, permanently inundated marsh soils had similar GHG emissions to native marsh zones. . Though large, the P. australis CH4 emissions are estimated to offset less than 5% of observed CO2 uptake rates based on a global warming potential of 25 (100 years). These results suggest that two alternative fates for coastal marshes in the future- conversion to P. australis marshes or to standing water with sea level rise- will substantially affect CO2 and CH4 emissions. Net impacts on climatic forcing of these ecosystems will depend on how long term C sequestration is affected as these emissions shift.

  12. Temperature sensitivity of organic-matter decay in tidal marshes

    USGS Publications Warehouse

    Kirwan, Matthew L.; Guntenspergen, Glenn R.; Langley, J.A.

    2014-01-01

    Approximately half of marine carbon sequestration takes place in coastal wetlands, including tidal marshes, where organic matter contributes to soil elevation and ecosystem persistence in the face of sea-level rise. The long-term viability of marshes and their carbon pools depends, in part, on how the balance between productivity and decay responds to climate change. Here, we report the sensitivity of labile soil organic-matter decay in tidal marshes to seasonal and latitudinal variations in temperature measured over a 3-year period. We find a moderate increase in decay rate at warmer temperatures (3-6% per °C, Q10 = 1.3-1.5). Despite the profound differences between microbial metabolism in wetlands and uplands, our results indicate a strong conservation of temperature sensitivity. Moreover, simple comparisons with organic-matter production suggest that elevated atmospheric CO2 and warmer temperatures will accelerate carbon accumulation in marsh soils, and potentially enhance their ability to survive sea-level rise.

  13. Vegetation death and rapid loss of surface elevation in two contrasting Mississippi delta salt marshes: The role of sedimentation, autocompaction and sea-level rise

    USGS Publications Warehouse

    Day, J.W.; Kemp, G.P.; Reed, D.J.; Cahoon, D.R.; Boumans, R.M.; Suhayda, J.M.; Gambrell, R.

    2011-01-01

    From 1990 to 2004, we carried out a study on accretionary dynamics and wetland loss in salt marshes surrounding two small ponds in the Mississippi delta; Old Oyster Bayou (OB), a sediment-rich area near the mouth of the Atchafalaya River and Bayou Chitigue (BC), a sediment-poor area about 70. km to the east. The OB site was stable, while most of the marsh at BC disappeared within a few years. Measurements were made of short-term sedimentation, vertical accretion, change in marsh surface elevation, pond wave activity, and marsh soil characteristics. The OB marsh was about 10. cm higher than BC; the extremes of the elevation range for Spartina alterniflora in Louisiana. Vertical accretion and short-term sedimentation were about twice as high at BC than at OB, but the OB marsh captured nearly all sediments deposited, while the BC marsh captured <30%. The OB and BC sites flooded about 15% and 85% of the time, respectively. Marsh loss at BC was not due to wave erosion. The mineral content of deposited sediments was higher at OB. Exposure and desiccation of the marsh surface at OB increased the efficiency that deposited sediments were incorporated into the marsh soil, and displaced the marsh surface upward by biological processes like root growth, while also reducing shallow compaction. Once vegetation dies, there is a loss of soil volume due to loss of root turgor and oxidation of root organic matter, which leads to elevation collapse. Revegetation cannot occur because of the low elevation and weak soil strength. The changes in elevation at both marsh sites are punctuated, occurring in steps that can either increase or decrease elevation. When a marsh is low as at BC, a step down can result in an irreversible change. At this point, the option is not restoration but creating a new marsh with massive sediment input either from the river or via dredging. ?? 2010 Elsevier B.V.

  14. Methane Emissions from a Hydrologically Altered Region of the Sprague River Salt Marsh, Phippsburg, ME

    NASA Astrophysics Data System (ADS)

    Cohen-Kaplan, Dana; Johnson, Beverly; Dostie, Phil; Carey, Joanna

    2016-04-01

    Humans have been altering salt marshes for 200 years, by ditching, or excavating channels to drain pools to reduce mosquito habitat and to make the marsh platform suitable for agriculture. The presence of these ditches has had a negative impact on the marsh hydrology. The Sprague River Salt Marsh, located in Phippsburg, ME, has been ditched for centuries. In 2002, the United States Fish and Wildlife Service installed several ditch-plugs in the marsh in and attempt to restore pool habitat and marsh hydrology. This study seeks to examine the effects of one ditch-plug in particular, and the impact it has had on methane emissions, soil salinity, and soil carbon densities. Three sites above and three sites below the ditch-plug were analyzed in these three areas. Methane emissions were slightly elevated above the ditch-plug relative to below the ditch-plug, with average fluxes of 12.9 +/- 4.83 umol/hr/m2 and 3.5 +/- 0.66 umol/hr/m^2, respectively. Soil salinities were higher above the ditch-plug, and soil carbon densities were higher below the ditch-plug. These results suggest that the hydrologic regime of the study area has been degraded, resulting in methane emissions, interrupted accretion, decreased marsh self-maintenance processes, stagnation and saturation of seawater in the pores of the sediment. Though salt marshes are generally considered effective carbon sinks, methane emissions may play a role on hydrologically altered marshes in terms of their net contribution to greenhouse gas sequestration.

  15. Final report (2002-2004): Benthic macroinvertebrate communities of reconstructed freshwater tidal wetlands in the Anacostia River, Washington, D.C

    USGS Publications Warehouse

    Brittingham, K.D.; Hammerschlag, R.S.

    2006-01-01

    Considerable work has been conducted on the benthic communities of inland aquatic systems, but there remains a paucity of effort on freshwater tidal wetlands. This study characterized the benthic macroinvertebrate communities of recently reconstructed urban freshwater tidal wetlands along the Anacostia River in Washington, D.C. The focus of the study was on the two main areas of Kingman Marsh, which were reconstructed by the U.S. Army Corps of Engineers in 2000 using Anacostia dredge material. Populations from this 'new' marsh were compared to those of similarly reconstructed Kenilworth Marsh (1993) just one half mile upstream, the relic reference Dueling Creek Marsh in the upper Anacostia estuary and the outside reference Patuxent freshwater tidal marsh in an adjacent watershed. Benthic macro invertebrate organisms were collected using selected techniques for evaluation including the Ekman bottom grab sampler, sediment corer, D-net and Hester-Dendy sampler. Samples were collected at least seasonally from tidal channels, tidal mudflats, three vegetation/sediment zones (low, middle and high marsh), and pools over a 3-year period (late 2001-2004). The macroinvertebrate communities present at the marsh sites proved to be good indicators of disturbance and stress (Kingman Marsh), pollution, urban vs. rural location (Kenilworth and Patuxent), and similarities between reconstructed and remnant wetlands (Kenilworth and Dueling Creek). Macroinvertebrate density was significantly greater at Kingman Marsh than Kenilworth Marsh due to more numerous chironomids and oligochaetes. This may reflect an increase in unvegetated sediments at Kingman (even at elevations above natural mudflat) due to grazing pressure from over-abundant resident Canada geese. Unvegetated sediments yielded greater macroinvertebrate abundance but lower richness than vegetated marsh sites. Data collected from this study provides information on the extent that benthic macroinvertebrate communities can serve

  16. Freshwater macroinvertebrates

    SciTech Connect

    Quigley, M.A.

    1982-06-01

    Major aspects of the biology of freshwater macroinvertebrates with emphasis on man-induced environmental changes were reviewed in this report with 183 references. The effects of both chemical and physical environmental alteration are examined. The population dynamics of the macroinvertebrates are controlled by factors such as food and feeding habits, periodicity and drift, productivity and animal-sediment interactions.(KRM)

  17. Storm surges and climate change implications for tidal marshes: Insight from the San Francisco Bay Estuary, California, USA

    USGS Publications Warehouse

    Thorne, Karen M.; Buffington, Kevin J.; Swanson, Kathleen; Takekawa, John Y.

    2013-01-01

    Tidal marshes are dynamic ecosystems, which are influenced by oceanic and freshwater processes and daily changes in sea level. Projected sea-level rise and changes in storm frequency and intensity will affect tidal marshes by altering suspended sediment supply, plant communities, and the inundation duration and depth of the marsh platform. The objective of this research was to evaluate if regional weather conditions resulting in low-pressure storms changed tidal conditions locally within three tidal marshes. We hypothesized that regional storms will increase sea level heights locally, resulting in increased inundation of the tidal marsh platform and plant communities. Using site-level measurements of elevation, plant communities, and water levels, we present results from two storm events in 2010 and 2011 from the San Francisco Bay Estuary (SFBE), California, USA. The January 2010 storm had the lowest recorded sea level pressure in the last 30 years for this region. During the storm episodes, the duration of tidal marsh inundation was 1.8 and 3.1 times greater than average for that time of year, respectively. At peak storm surges, over 65% in 2010 and 93% in 2011 of the plant community was under water. We also discuss the implications of these types of storms and projected sea-level rise on the structure and function of the tidal marshes and how that will impact the hydro-geomorphic processes and marsh biotic communities.

  18. Effects of Nutrient Enrichment on Microbial Communities and Carbon Cycling in Wetland Soils

    NASA Astrophysics Data System (ADS)

    Hartman, W.; Neubauer, S. C.; Richardson, C. J.

    2013-12-01

    Soil microbial communities are responsible for catalyzing biogeochemical transformations underlying critical wetland functions, including cycling of carbon (C) and nutrients, and emissions of greenhouse gasses (GHG). Alteration of nutrient availability in wetland soils may commonly occur as the result of anthropogenic impacts including runoff from human land uses in uplands, alteration of hydrology, and atmospheric deposition. However, the impacts of altered nutrient availability on microbial communities and carbon cycling in wetland soils are poorly understood. To assess these impacts, soil microbial communities and carbon cycling were determined in replicate experimental nutrient addition plots (control, +N, +P, +NP) across several wetland types, including pocosin peat bogs (NC), freshwater tidal marshes (GA), and tidal salt marshes (SC). Microbial communities were determined by pyrosequencing (Roche 454) extracted soil DNA, targeting both bacteria (16S rDNA) and fungi (LSU) at a depth of ca. 1000 sequences per plot. Wetland carbon cycling was evaluated using static chambers to determine soil GHG fluxes, and plant inclusion chambers were used to determine ecosystem C cycling. Soil bacterial communities responded to nutrient addition treatments in freshwater and tidal marshes, while fungal communities did not respond to treatments in any of our sites. We also compared microbial communities to continuous biogeochemical variables in soil, and found that bacterial community composition was correlated only with the content and availability of soil phosphorus, while fungi responded to phosphorus stoichiometry and soil pH. Surprisingly, we did not find a significant effect of our nutrient addition treatments on most metrics of carbon cycling. However, we did find that several metrics of soil carbon cycling appeared much more related to soil phosphorus than to nitrogen or soil carbon pools. Finally, while overall microbial community composition was weakly correlated with

  19. Assessment of metal and trace element contamination in water, sediment, plants, macroinvertebrates, and fish in Tavasci Marsh, Tuzigoot National Monument, Arizona

    USGS Publications Warehouse

    Beisner, Kimberly R.; Paretti, Nicholas V.; Brasher, Anne M.D.; Fuller, Christopher C.; Miller, Matthew P.

    2014-01-01

    Tavasci Marsh is a large freshwater marsh within the Tuzigoot National Monument in central Arizona. It is the largest freshwater marsh in Arizona that is unconnected to the Colorado River and is designated as an Important Bird Area by the Audubon Society. The marsh has been altered significantly by previous land use and the monument’s managers are evaluating the restoration of the marsh. In light of historical mining activities located near the marsh from the first half of the 20th century, evaluations of water, sediment, plant, and aquatic biota in the marsh were conducted. The evaluations were focused on nine metals and trace elements commonly associated with mining and other anthropogenic activities (As, Cd, Cr, Cu, Hg, Ni, Pb, Se, and Zn) together with isotopic analyses to understand the presence, sources and timing of water and sediment contaminants to the marsh and the occurrence in aquatic plants, dragonfly larvae, and fish. Results of water analyses indicate that there were two distinct sources of water contributing to the marsh during the study: one from older high elevation recharge entering the marsh at Shea Spring (as well as a number of unnamed seeps and springs on the northeastern edge of the marsh) and the other from younger low elevation recharge or from Pecks Lake. Water concentrations for arsenic exceeded the U.S. Environmental Protection Agency primary drinking water standard of 10 μg/L at all sampling sites. Surface waters at Tavasci Marsh may contain conditions favorable for methylmercury production. All surficial and core sediment samples exceeded or were within sample concentration variability of at least one threshold sediment quality guideline for As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn. Several sediment sites were also above or were within sample concentration variability of severe or probable effect sediment quality guidelines for As, Cd, and Cu. Three sediment cores collected in the marsh have greater metal and trace element concentrations

  20. Tidal Marshes across a Chesapeake Bay Subestuary Are Not Keeping up with Sea-Level Rise.

    PubMed

    Beckett, Leah H; Baldwin, Andrew H; Kearney, Michael S

    2016-01-01

    Sea-level rise is a major factor in wetland loss worldwide, and in much of Chesapeake Bay (USA) the rate of sea-level rise is higher than the current global rate of 3.2 mm yr-1 due to regional subsidence. Marshes along estuarine salinity gradients differ in vegetation composition, productivity, decomposition pathways, and sediment dynamics, and may exhibit different responses to sea-level rise. Coastal marshes persist by building vertically at rates at or exceeding regional sea-level rise. In one of the first studies to examine elevation dynamics across an estuarine salinity gradient, we installed 15 surface elevation tables (SET) and accretion marker-horizon plots (MH) in tidal freshwater, oligohaline, and brackish marshes across a Chesapeake Bay subestuary. Over the course of four years, wetlands across the subestuary decreased 1.8 ± 2.7 mm yr-1 in elevation on average, at least 5 mm yr-1 below that needed to keep pace with global sea-level rise. Elevation change rates did not significantly differ among the marshes studied, and ranged from -9.8 ± 6.9 to 4.5 ± 4.3 mm yr-1. Surface accretion of deposited mineral and organic matter was uniformly high across the estuary (~9-15 mm yr-1), indicating that elevation loss was not due to lack of accretionary input. Position in the estuary and associated salinity regime were not related to elevation change or surface matter accretion. Previous studies have focused on surface elevation change in marshes of uniform salinity (e.g., salt marshes); however, our findings highlight the need for elevation studies in marshes of all salinity regimes and different geomorphic positions, and warn that brackish, oligohaline, and freshwater tidal wetlands may be at similarly high risk of submergence in some estuaries.

  1. Tidal Marshes across a Chesapeake Bay Subestuary Are Not Keeping up with Sea-Level Rise

    PubMed Central

    Beckett, Leah H.; Baldwin, Andrew H.; Kearney, Michael S.

    2016-01-01

    Sea-level rise is a major factor in wetland loss worldwide, and in much of Chesapeake Bay (USA) the rate of sea-level rise is higher than the current global rate of 3.2 mm yr-1 due to regional subsidence. Marshes along estuarine salinity gradients differ in vegetation composition, productivity, decomposition pathways, and sediment dynamics, and may exhibit different responses to sea-level rise. Coastal marshes persist by building vertically at rates at or exceeding regional sea-level rise. In one of the first studies to examine elevation dynamics across an estuarine salinity gradient, we installed 15 surface elevation tables (SET) and accretion marker-horizon plots (MH) in tidal freshwater, oligohaline, and brackish marshes across a Chesapeake Bay subestuary. Over the course of four years, wetlands across the subestuary decreased 1.8 ± 2.7 mm yr-1 in elevation on average, at least 5 mm yr-1 below that needed to keep pace with global sea-level rise. Elevation change rates did not significantly differ among the marshes studied, and ranged from -9.8 ± 6.9 to 4.5 ± 4.3 mm yr-1. Surface accretion of deposited mineral and organic matter was uniformly high across the estuary (~9–15 mm yr-1), indicating that elevation loss was not due to lack of accretionary input. Position in the estuary and associated salinity regime were not related to elevation change or surface matter accretion. Previous studies have focused on surface elevation change in marshes of uniform salinity (e.g., salt marshes); however, our findings highlight the need for elevation studies in marshes of all salinity regimes and different geomorphic positions, and warn that brackish, oligohaline, and freshwater tidal wetlands may be at similarly high risk of submergence in some estuaries. PMID:27467784

  2. Tidal Marshes across a Chesapeake Bay Subestuary Are Not Keeping up with Sea-Level Rise.

    PubMed

    Beckett, Leah H; Baldwin, Andrew H; Kearney, Michael S

    2016-01-01

    Sea-level rise is a major factor in wetland loss worldwide, and in much of Chesapeake Bay (USA) the rate of sea-level rise is higher than the current global rate of 3.2 mm yr-1 due to regional subsidence. Marshes along estuarine salinity gradients differ in vegetation composition, productivity, decomposition pathways, and sediment dynamics, and may exhibit different responses to sea-level rise. Coastal marshes persist by building vertically at rates at or exceeding regional sea-level rise. In one of the first studies to examine elevation dynamics across an estuarine salinity gradient, we installed 15 surface elevation tables (SET) and accretion marker-horizon plots (MH) in tidal freshwater, oligohaline, and brackish marshes across a Chesapeake Bay subestuary. Over the course of four years, wetlands across the subestuary decreased 1.8 ± 2.7 mm yr-1 in elevation on average, at least 5 mm yr-1 below that needed to keep pace with global sea-level rise. Elevation change rates did not significantly differ among the marshes studied, and ranged from -9.8 ± 6.9 to 4.5 ± 4.3 mm yr-1. Surface accretion of deposited mineral and organic matter was uniformly high across the estuary (~9-15 mm yr-1), indicating that elevation loss was not due to lack of accretionary input. Position in the estuary and associated salinity regime were not related to elevation change or surface matter accretion. Previous studies have focused on surface elevation change in marshes of uniform salinity (e.g., salt marshes); however, our findings highlight the need for elevation studies in marshes of all salinity regimes and different geomorphic positions, and warn that brackish, oligohaline, and freshwater tidal wetlands may be at similarly high risk of submergence in some estuaries. PMID:27467784

  3. Marsh vertical accretion in a Southern California Estuary, U.S.A

    USGS Publications Warehouse

    Cahoon, D.R.; Lynch, J.C.; Powell, A.N.

    1996-01-01

    Vertical accretion was measured between October 1992 and March 1994 in low and high saltmarsh zones in the north arm of Tijuana estuary from feldspar market horizons and soil corings. Accretion in the Spartina foliosa low marsh (2-8.5 cm) was related almost entirely to episodic storm-induced river flows between January and March 1993, with daily tidal flooding contributing little or no sediment during the subsequent 12 month period of no river flow. Accretion in the Salicornia subterminalis high marsh was low (~1-2 mm) throughout the 17-month measuring period. High water levels in the salt marsh associated with the storm flows were enhanced in early January 1993 by the monthly extreme high sea level, when the low and high marshes were flooded about 0.5 m above normal high tide levels. Storm flows in January-March 1993 mobilized about 5 million tons of sediment, of which the low salt marsh trapped an estimated 31,941 tonnes, including 971 tonnes of carbon and 77 tonnes of nitrogen. Sediment trapping by the salt marsh during episodic winter floods plays an important role in the long-term maintenance of productivity of Tijuana estuary through nutrient retention and maintenance of marsh surface elevation. The potential exists, however, for predicted accelerated rates of sea-level rise to out-pace marsh surface elevation gain during extended periods of drought (i.e. low sediment inputs) which are not uncommon for this arid region.

  4. Marsh Vertical Accretion in a Southern California Estuary, U.S.A.

    NASA Astrophysics Data System (ADS)

    Cahoon, Donald R.; Lynch, James C.; Powell, Abby N.

    1996-07-01

    Vertical accretion was measured between October 1992 and March 1994 in low and high saltmarsh zones in the north arm of Tijuana estuary from feldspar market horizons and soil corings. Accretion in the Spartina foliosalow marsh (2-8·5 cm) was related almost entirely to episodic storm-induced river flows between January and March 1993, with daily tidal flooding contributing little or no sediment during the subsequent 12-month period of no river flow. Accretion in the Salicornia subterminalishigh marsh was low (≈1-2 mm) throughout the 17-month measuring period. High water levels in the salt marsh associated with the storm flows were enhanced in early January 1993 by the monthly extreme high sea level, when the low and high marshes were flooded about 0·5 m above normal high tide levels. Storm flows in January-March 1993 mobilized about 5 million tonnes of sediment, of which the low salt marsh trapped an estimated 31 941 tonnes, including 971 tonnes of carbon and 77 tonnes of nitrogen. Sediment trapping by the salt marsh during episodic winter floods plays an important role in the long-term maintenance of productivity of Tijuana estuary through nutrient retention and maintenance of marsh surface elevation. The potential exists, however, for predicted accelerated rates of sea-level rise to out-pace marsh surface elevation gain during extended periods of drought (i.e. low sediment inputs) which are not uncommon for this arid region.

  5. Methane fluxes along a salinity gradient on a restored salt marsh, Harpswell, ME

    NASA Astrophysics Data System (ADS)

    Gunn, Cailene; Johnson, Beverly, ,, Dr.; Dostie, Phil; Bohlen, Curtis; Craig, Matthew

    2016-04-01

    This study functions as a pilot project to understand the relationship between salinity and methane emissions on a recently restored salt marsh in Casco Bay, Maine. Salt marshes are dynamic and highly productive ecosystems that provide a multitude of ecosystem services including nutrient filtration, storm-water buffering and carbon sequestration. These ecosystems are highly susceptible to anthropogenic alteration. The emplacement of causeways and narrow culverts, restricts tidal flow and leads to loss of healthy salinity gradients. Consequently, numerous salt marshes have experienced increases in freshwater vegetation growth as a result of coastal population expansion. Recent restoration efforts on Long Marsh, Harpswell, ME replaced a severely undersized culvert with a larger one in February, 2014. The salinity gradient has since been restored along much of the marsh, and freshwater vegetation that encroached on the marsh platform has died back. Vegetation and salinity are key indicators and drivers of CH4 emissions on salt marshes. Using static gas chambers, we quantified CH4 fluxes along two transects at five diverse sites ranging from healthy marsh (salinity of 27 to 31 psu) with Spartina vegetation, to regions invaded by Typha and other freshwater vegetation (salinity of 0 to 4 psu). Sampling was executed in the months of July, August and October. CH4 concentrations were determined using a gas chromatograph with a flame-ionization detector. Preliminary findings suggest reintroduction of healthy tidal flows into the marsh inhibits CH4 production, where the lowest fluxes with least variability were observed at the most saline sites with Spartina vegetation. The largest range of CH4 fluxes exhibited emissions from 0.75 μmol CH4/m2/hr to 518.4 μmol CH4/m2/hr at the Typha dominated sites from July to October. Fluxes at the saltwater and brackish regions were far less variable with ranges from 0.94 μmol CH4/m2/hr to 8.2 μmol CH4/m2/hr and 2.6 to 9.5 μmol CH4/m2

  6. Characteristics of adsorption interactions of cadmium(II) onto humin from peat soil in freshwater and seawater media.

    PubMed

    Andreas, Roy; Zhang, Jing

    2014-03-01

    The present study examined Cd solubility in pH 2-12 fresh and seawater media with and without humin to determine Cd species composition. The study, based on the Langmuir-Hinshelwood kinetics model, was conducted to determine the kinetic parameters of Cd(II) adsorption onto humin. We employed the Langmuir and Freundlich models to derive thermodynamic parameters. Aquo (Cd(H2O) 6 (2+) ) and chloro- (CdCl(+) and CdCl2) complexes were responsible for Cd(II) adsorption onto humin. Results showed Cd as Cd(II) and Cd(H2O) 6 (+2) was water soluble at 2 < pH < 7; with a portion of the soluble Cd precipitating as Cd(OH)2. The Cd(II) rate constant (k) in freshwater was 0.5 × 10(-3) (min(-1)), occurring in a single phase, while in seawater fast and slow phase values for k were 31.88 × 10(-3) and 6.2 × 10(-3) (min(-1)), respectively. The adsorption curves showed a better fit with the Langmuir than the Freundlich model.

  7. Effects of oil on the rate and trajectory of Louisiana marsh shoreline erosion

    NASA Astrophysics Data System (ADS)

    McClenachan, Giovanna; Turner, R. Eugene; Tweel, Andrew W.

    2013-12-01

    Oil can have long-term detrimental effects on marsh plant health, both above- and belowground. However, there are few data available that quantify the accelerated rate of erosion that oil may cause to marshes and the trajectory of change. Between November 2010 and August 2012, we collected data on shoreline erosion, soil strength, per cent cover of Spartina alterniflora, and marsh edge overhang at 30 closely spaced low oil and high oil sites in Bay Batiste, Louisiana. Surface oil samples were taken one meter into the marsh in February 2011. All high oiled sites in Bay Batiste were contaminated with Macondo 252 oil (oil from the Deepwater Horizon oil spill, 20 April-15 July 2010). The results suggest that there is a threshold where soil parameters change dramatically with a relatively small increase in oil concentration in the soil. Heavy oiling weakens the soil, creating a deeper undercut of the upper 50 cm of the marsh edge, and causing an accelerated rate of erosion that cascades along the shoreline. Our results demonstrate that it could take at least 2 yr to document the effects heavy oiling has had on the marsh shoreline. The presence of aboveground vegetation alone may not be an appropriate indicator of recovery.

  8. The role of tidal marsh restoration in fish management in the San Francisco Estuary

    USGS Publications Warehouse

    Herbold, Bruce; Baltz, Donald; Brown, Larry R.; Grossinger, Robin; Kimmerer, Wim J.; Lehman, Peggy W.; Moyle, Peter B.; Nobriga, Matthew L.; Simenstad, Charles A.

    2015-01-01

    Tidal marsh restoration is an important management issue in the San Francisco Estuary (estuary). Restoration of large areas of tidal marsh is ongoing or planned in the lower estuary (up to 6,000 ha, Callaway et al. 2011). Large areas are proposed for restoration in the upper estuary under the Endangered Species Act biological opinions (3,237 ha) and the Bay Delta Conservation Plan (26,305 ha). In the lower estuary, tidal marsh has proven its value to a wide array of species that live within it (Palaima 2012). In the Sacramento–San Joaquin Delta (Delta), one important function ascribed to restoration of freshwater tidal marshes is that they make large contributions to the food web of fish in open waters (BDCP 2013). The Ecosystem Restoration Program ascribed a suite of ecological functions to tidal marsh restoration, including habitat and food web benefits to native fish (CDFW 2010). This background was the basis for a symposium, Tidal Marshes and Native Fishes in the Delta: Will Restoration Make a Difference? held at the University of California, Davis, on June 10, 2013. This paper summarizes conclusions the authors drew from the symposium.

  9. PEAT ACCRETION HISTORIES DURING THE PAST 6000 YEARS IN MARSHES OF THE SACRAMENTO - SAN JOAQUIN DELTA, CALIFORNIA, USA

    SciTech Connect

    Drexler, J Z; de Fontaine, C S; Brown, T A

    2009-07-20

    Peat cores were collected in 4 remnant marsh islands and 4 drained, farmed islands throughout the Sacramento - San Joaquin Delta of California in order to characterize the peat accretion history of this region. Radiocarbon age determination of marsh macrofossils at both marsh and farmed islands showed that marshes in the central and western Delta started forming between 6030 and 6790 cal yr BP. Age-depth models for three marshes were constructed using cubic smooth spline regression models. The resulting spline fit models were used to estimate peat accretion histories for the marshes. Estimated accretion rates range from 0.03 to 0.49 cm yr{sup -1} for the marsh sites. The highest accretion rates are at Browns Island, a marsh at the confluence of the Sacramento and San Joaquin rivers. Porosity was examined in the peat core from Franks Wetland, one of the remnant marsh sites. Porosity was greater than 90% and changed little with depth indicating that autocompaction was not an important process in the peat column. The mean contribution of organic matter to soil volume at the marsh sites ranges from 6.15 to 9.25% with little variability. In contrast, the mean contribution of inorganic matter to soil volume ranges from 1.40 to 8.45% with much greater variability, especially in sites situated in main channels. These results suggest that marshes in the Delta can be viewed as largely autochthonous vs. allochthonous in character. Autochthonous sites are largely removed from watershed processes, such as sediment deposition and scour, and are dominated by organic production. Allochthonous sites have greater fluctuations in accretion rates due to the variability of inorganic inputs from the watershed. A comparison of estimated vertical accretion rates with 20th century rates of global sea-level rise shows that currently marshes are maintaining their positions in the tidal frame, yet this offers little assurance of sustainability under scenarios of increased sea-level rise in

  10. The mapping of marsh vegetation using aircraft multispectral scanner data. [in Louisiana

    NASA Technical Reports Server (NTRS)

    Butera, M. K.

    1975-01-01

    A test was conducted to determine if salinity regimes in coastal marshland could be mapped and monitored by the identification and classification of marsh vegetative species from aircraft multispectral scanner data. The data was acquired at 6.1 km (20,000 ft.) on October 2, 1974, over a test area in the coastal marshland of southern Louisiana including fresh, intermediate, brackish, and saline zones. The data was classified by vegetational species using a supervised, spectral pattern recognition procedure. Accuracies of training sites ranged from 67% to 96%. Marsh zones based on free soil water salinity were determined from the species classification to demonstrate a practical use for mapping marsh vegetation.

  11. [Profile nutrient distribution and sedimentary characteristics in typical marshes of Sanjiang Plain].

    PubMed

    Li, Rui-Li; Chai, Min-Wei; Qiu, Guo-Yu; Shi, Fu-Chen; Sasa, Kaichiro

    2014-08-01

    Profile distribution characteristics of organic carbon (C), total nitrogen (N), total phosphorus (P) and total sulfur (S) were studied in two typical marshes including Carex lasiocarpa marsh and Phragmites australis marsh in the Sanjiang Plain. Sedimentary characteristics of typical mashes were analyzed. The results showed that vertically these soil chemical elements also varied, showing obvious stratification and enrichment. In a soil profile, soil organic C under both vegetation communities gradually decreased; soil total N first increased and then decreased under both; total P under Carex lasiocarpa first decreased and then increased, whereas it decreased with the increasing depth under Carex lasiocarpa; total S was reduced with increasing depth under both marshes. Total N, total P and total S were all strongly correlated with soil organic C (P < 0.01); soil organic C was strongly correlated with bulk density (P < 0.01). Our study also illustrated that the vegetation types had different influences for organic C, total N, total P and total S of the marsh profiles. Environmental 137Cs and 210Pb dating techniques were applied to determine recent sedimentation rates, and the constant rate of supply (CRS) was applied to deduce the age of sediment core, and the results showed that the mean sedimentation rate was 0.33 cm x a(-1), and the sedimentation fluxes ranged 0.03-0.48 g x (cm2 x a)(-1) [Mean = 0.29 g x (cm2 x a) -1].

  12. Ecogeomorphic Heterogeneity Sculpts Salt Marshes

    NASA Astrophysics Data System (ADS)

    Leonardi, N.; Fagherazzi, S.

    2014-12-01

    We present cellular automata simulations and high-resolution field measurements of five sites along the United States Atlantic Coast, to investigate the erosion of marsh boundaries by wave action. For several years, we tracked marsh contours of three sites in Plum Island Sound and two sites in the Virginia Coastal Reserve using a Real-Time-Kinematic GPS, and measurements were collected up to 20 cm apart. The cellular automata model consists of a 2D square lattice, whose elements have randomly distributed resistance. Randomly distributed resistance values are meant to take into account the variety of biological and geomorphologic processes affecting each portion of the marsh. Among others, seepage erosion, crab burrowing, vegetation and sediment cohesion make difficult to predict which portion of the marsh will collapse first. In case of high wave power, erosion proceeds uniformly because each marsh portion has similar resistance if compared to the main external driver. On the contrary, when wind waves are weak and the local marsh resistance is strong, jagged marsh boundaries form. From a statistical viewpoint, the system behaves differently for the two extreme conditions of very low and very high wave power. The frequency magnitude distribution of erosion events approaches a Gaussian distribution in case of high wave power. In case of low wave power, the frequency magnitude distribution is characterized by a long-tailed power-law distribution. For the low wave power case, a long time is required to erode very resistant cells. However, once the most resistant cells are eliminated, several weak sites remain exposed and can be rapidly removed, with consequent generation of large-scale failures. Field data confirm model results, and show the passage from a logarithmic frequency magnitude distribution of erosion events to a Gaussian distribution for increasing wave power exposure. The logarithmic frequency magnitude distribution suggests the emergence of a critical

  13. Macrofaunal communities in the habitats of intertidal marshes along the salinity gradient of the Schelde estuary

    NASA Astrophysics Data System (ADS)

    Hampel, Henrietta; Elliott, M.; Cattrijsse, A.

    2009-08-01

    The macrobenthos is important in benthic remineralization processes; it represents a trophic link and is also often used as a bio-indicator in monitoring programs. Variations of the environmental parameters strongly influence the structure of the macrobenthic communities in the marshes and since macrobenthos is the most important food item for marsh-visiting fish species in the Schelde, the variation in food resources can have a strong effect on the higher trophic level. The present study deals with the variation in macrobenthic communities in different habitats of intertidal marshes along the salinity gradient and the differences between the marsh creeks and the intertidal part of the estuary. The study measured density and species richness together with the biomass, and sampled a large intertidal channel and a smaller creek within five marshes along the salinity gradient of the Schelde estuary every six weeks between May and October in 2000. The small creeks had a smaller grain size and higher organic matter content than those in the large channel although the differences in the environmental parameters did not explain the different communities in the two habitats. Marshes had distinct macrobenthic communities but the abundance of macrofauna fluctuated along the estuary without an identifiable spatial trend. In contrast, the total biomass increased towards the euhaline area due to the domination of Nereis diversicolor. Diversity showed a significant positive correlation with the salinity. Comparison of the macrofaunal communities in the marsh with those on the intertidal flats of the estuary indicated similar trends in density, biomass and diversity along the salinity gradient. The density was similar in both habitats whereas biomass was much higher in the intertidal habitats of the estuary, partly due to the higher biomass of molluscs and annelids. Diversity indices were higher in the marsh, and the freshwater area had more species than in the estuary.

  14. Component greenhouse gas fluxes and radiative balance from two deltaic marshes in Louisiana: Pairing chamber techniques and eddy covariance

    NASA Astrophysics Data System (ADS)

    Krauss, Ken W.; Holm, Guerry O.; Perez, Brian C.; McWhorter, David E.; Cormier, Nicole; Moss, Rebecca F.; Johnson, Darren J.; Neubauer, Scott C.; Raynie, Richard C.

    2016-06-01

    Coastal marshes take up atmospheric CO2 while emitting CO2, CH4, and N2O. This ability to sequester carbon (C) is much greater for wetlands on a per area basis than from most ecosystems, facilitating scientific, political, and economic interest in their value as greenhouse gas sinks. However, the greenhouse gas balance of Gulf of Mexico wetlands is particularly understudied. We describe the net ecosystem exchange (NEEc) of CO2 and CH4 using eddy covariance (EC) in comparison with fluxes of CO2, CH4, and N2O using chambers from brackish and freshwater marshes in Louisiana, USA. From EC, we found that 182 g C m-2 yr-1 was lost through NEEc from the brackish marsh. Of this, 11 g C m-2 yr-1 resulted from net CH4 emissions and the remaining 171 g C m-2 yr-1 resulted from net CO2 emissions. In contrast, -290 g C m2 yr-1 was taken up through NEEc by the freshwater marsh, with 47 g C m-2 yr-1 emitted as CH4 and -337 g C m-2 yr-1 taken up as CO2. From chambers, we discovered that neither site had large fluxes of N2O. Sustained-flux greenhouse gas accounting metrics indicated that both marshes had a positive (warming) radiative balance, with the brackish marsh having a substantially greater warming effect than the freshwater marsh. That net respiratory emissions of CO2 and CH4 as estimated through chamber techniques were 2-4 times different from emissions estimated through EC requires additional understanding of the artifacts created by different spatial and temporal sampling footprints between techniques.

  15. Radar and optical mapping of surge persistence and marsh dieback along the New Jersey Mid-Atlantic coast after Hurricane Sandy

    USGS Publications Warehouse

    Rangoonwala, Amina; Enwright, Nicholas M.; Ramsey III, Elijah W.; Spruce, Joseph P.

    2016-01-01

    This study combined a radar-based time series of Hurricane Sandy surge and estimated persistence with optical sensor-based marsh condition change to assess potential causal linkages of surge persistence and marsh condition change along the New Jersey Atlantic Ocean coast. Results based on processed TerraSAR-X and COSMO-SkyMed synthetic aperture radar (SAR) images indicated that surge flooding persisted for 12 h past landfall in marshes from Great Bay to Great Egg Harbor Bay and up to 59 h after landfall in many back-barrier lagoon marshes. Marsh condition change (i.e. loss of green marsh vegetation) was assessed from optical satellite images (Satellite Pour l’Observation de la Terre and Moderate Resolution Imaging Spectroradiometer) collected before and after Hurricane Sandy. High change in condition often showed spatial correspondence, with high surge persistence in marsh surrounding the lagoon portion of Great Bay, while in contrast, low change and high persistence spatial correspondence dominated the interior marshes of the Great Bay and Great Egg Harbor Bay estuaries. Salinity measurements suggest that these areas were influenced by freshwater discharges after landfall possibly mitigating damage. Back-barrier marshes outside these regions exhibited mixed correspondences. In some cases, topographic features supporting longer surge persistence suggested that non-correspondence between radar and optical data-based results may be due to differential resilience; however, in many cases, reference information was lacking to determine a reason for non-correspondence.

  16. Peat accretion histories during the past 6,000 years in marshes of the Sacramento-San Joaquin delta, CA, USA

    USGS Publications Warehouse

    Drexler, Judith Z.; de Fontaine, Christian S.; Brown, Thomas A.

    2009-01-01

    The purpose of this study was to determine how vertical accretion rates in marshes vary through the millennia. Peat cores were collected in remnant and drained marshes in the Sacramento-San Joaquin Delta of California. Cubic smooth spline regression models were used to construct age-depth models and accretion histories for three remnant marshes. Estimated vertical accretion rates at these sites range from 0.03 to 0.49 cm year-1. The mean contribution of organic matter to soil volume at the remnant marsh sites is generally stable (4.73% to 6.94%), whereas the mean contribution of inorganic matter to soil volume has greater temporal variability (1.40% to 7.92%). The hydrogeomorphic position of each marsh largely determines the inorganic content of peat. Currently, the remnant marshes are keeping pace with sea level rise, but this balance may shift for at least one of the sites under future sea level rise scenarios.

  17. Threats to Marsh Resources and Mitigation

    EPA Science Inventory

    Salt marshes inhabit low-energy, intertidal shorelines worldwide and are among the most abundant and productive coastal ecosystems. Salt-marsh ecosystems provide a wide array of benefits to coastal populations, including shoreline protection, fishery support, water quality impr...

  18. Plant Zonation in a Salt Marsh.

    ERIC Educational Resources Information Center

    Etri, Lawrence R.

    1978-01-01

    The zonation of plants within a salt marsh environment is detailed via illustrations and scientific nomeclature for purposes of encouraging outdoor educators to use the salt marsh environment as a learning laboratory. (JC)

  19. Relationships between wintering waterbirds and invertebrates, sediments and hydrology of coastal marsh ponds

    USGS Publications Warehouse

    Bolduc, F.; Afton, A.D.

    2004-01-01

    We studied relationships among sediment variables (carbon content, C:N, hardness, oxygen penetration, silt-clay fraction), hydrologic variables (dissolved oxygen, salinity, temperature, transparency, water depth), sizes and biomass of common invertebrate classes, and densities of 15 common waterbird species in ponds of impounded freshwater, oligohaline, mesohaline, and unimpounded mesohaline marshes during winters 1997-98 to 1999-2000 on Rockefeller State Wildlife Refuge, Louisiana, USA. Canonical correspondence analysis and forward selection was used to analyze the above variables. Water depth and oxygen penetration were the variables that best segregated habitat characteristics that resulted in maximum densities of common waterbird species. Most common waterbird species were associated with specific marsh types, except Green-winged Teal (Anas crecca) and Northern Shoveler (Anas clypeata). We concluded that hydrologic manipulation of marsh ponds is the best way to manage habitats for these birds, if the hydrology can be controlled adequately.

  20. Effects of structural marsh management and salinity on invertebrate prey of waterbirds in marsh ponds during winter on the Gulf Coast Chenier Plain

    USGS Publications Warehouse

    Bolduc, F.; Afton, A.D.

    2003-01-01

    Aquatic invertebrates are important food resources for wintering waterbirds, and prey selection generally is limited by prey size. Aquatic invertebrate communities are influenced by sediments and hydrologic characteristics of wetlands, which were affected by structural marsh management (levees, water-control structures and impoundments; SMM) and salinity on the Gulf Coast Chenier Plain of North America. Based on previous research, we tested general predictions that SMM reduces biomass of infaunal invertebrates and increases that of epifaunal invertebrates and those that tolerate low levels of dissolved oxygen (O2) and salinity. We also tested the general prediction that invertebrate biomass in freshwater, oligohaline, and mesohaline marshes are similar, except for taxa adapted to specific ranges of salinity. Finally, we investigated relationships among invertebrate biomass and sizes, sediment and hydrologic variables, and marsh types. Accordingly, we measured biomass of common invertebrate by three size classes (63 to 199 ??m, 200 to 999 ??m, and ???1000 ??m), sediment variables (carbon content, C:N ratio, hardness, particle size, and O, penetration), and hydrologic variables (salinity, water depth,temperature, 02, and turbidity) in ponds of impounded freshwater (IF), oligohaline (IO), mesohaline (IM), and unimpounded mesohaline (UM) marshes during winters 1997-1998 to 1999-2000 on Rockefeller State Wildlife Refuge, near Grand Chenier, Louisiana, USA. As predicted, an a priori multivariate analysis of variance (MANOVA) contrast indicated that biomass of an infaunal class of invertebrates (Nematoda, 63 to 199 ??m) was greater in UM marsh ponds than in those of IM marshes, and biomass of an epifaunal class of invertebrates (Ostracoda, 200 to 999 ??m) was greater in IM marsh ponds than in those of UM marshes. The observed reduction in Nematoda due to SMM also was consistent with the prediction that SMM reduces invertebrates that do not tolerate low salinity

  1. Floristic Development Patterns in a Restored Elk River Estuarine Marsh, Grays Harbor, Washington

    SciTech Connect

    Thom, Ronald M. ); Zeigler, Robert; Borde, Amy B. )

    2002-09-15

    We describe the changes in the floral assemblage in a salt marsh after reconnection to estuarine tidal inundation. The Elk River marsh in Grays Harbor, Washington, was opened to tidal flushing in 1987 after being diked for approximately 70 years. The freshwater pasture assemblage dominated by Phalarais arundinacea (reed canary grass) converted to low salt marsh vegetation within 5 years, with the major flux in species occurring between years 1 and 4. The system continued to develop through the 11-year post-breach monitoring period, although change after year 6 was slower than in previous years. The assemblage resembles a low salt marsh community dominated by Distichlis spicata (salt grass) and Salicornia virginica (pickleweed). Because of subsidence of the system during the period of breaching, the restored system remains substantially different from the Deschamsia cespitosa (tufted hairgrass)-dominated reference march. Use of a similarity index to compare between years and also between reference and restored marshes in the same year revealed that similarity in floral composition between year 0 and subsequent years decreased with time. However, there was a period of dramatic dissimilarity during years 1 to 3 when the system was rapidly changing from a freshwater to estuarine condition. Similarity values between the reference and restored system generally increased with time. Somewhat surprisingly, the reference marsh showed considerable between-year variation in similarity, which indicated substantial year-to-year variability in species composition. Based on accretion rate date from previous studies we predict that full recovery of the system would take between 75 and 150 years.

  2. Calcite-accumulating large sulfur bacteria of the genus Achromatium in Sippewissett Salt Marsh.

    PubMed

    Salman, Verena; Yang, Tingting; Berben, Tom; Klein, Frieder; Angert, Esther; Teske, Andreas

    2015-11-01

    Large sulfur bacteria of the genus Achromatium are exceptional among Bacteria and Archaea as they can accumulate high amounts of internal calcite. Although known for more than 100 years, they remain uncultured, and only freshwater populations have been studied so far. Here we investigate a marine population of calcite-accumulating bacteria that is primarily found at the sediment surface of tide pools in a salt marsh, where high sulfide concentrations meet oversaturated oxygen concentrations during the day. Dynamic sulfur cycling by phototrophic sulfide-oxidizing and heterotrophic sulfate-reducing bacteria co-occurring in these sediments creates a highly sulfidic environment that we propose induces behavioral differences in the Achromatium population compared with reported migration patterns in a low-sulfide environment. Fluctuating intracellular calcium/sulfur ratios at different depths and times of day indicate a biochemical reaction of the salt marsh Achromatium to diurnal changes in sedimentary redox conditions. We correlate this calcite dynamic with new evidence regarding its formation/mobilization and suggest general implications as well as a possible biological function of calcite accumulation in large bacteria in the sediment environment that is governed by gradients. Finally, we propose a new taxonomic classification of the salt marsh Achromatium based on their adaptation to a significantly different habitat than their freshwater relatives, as indicated by their differential behavior as well as phylogenetic distance on 16S ribosomal RNA gene level. In future studies, whole-genome characterization and additional ecophysiological factors could further support the distinctive position of salt marsh Achromatium.

  3. Hydrology and Ecology of Freshwater Wetlands in Central Florida - A Primer

    USGS Publications Warehouse

    Haag, Kim H.; Lee, Terrie M.

    2010-01-01

    how wetlands are affected by human activities. Freshwater wetlands are unique and complex ecosystems defined by characteristic properties. Wetlands usually have standing water during at least part of the year, although water depths can vary from a few inches to as much as several feet from one wetland to another. The hydrologic behavior of wetlands is influenced by drainage basin characteristics, as well as by natural variations in climate. Wetlands in central Florida (especially forested wetlands) often have acidic waters that are darkly stained from organic substances released by decomposing leaves and other plant material. Wetlands are characterized by biogeochemical cycles in which vital elements such as carbon, nitrogen, phosphorus, and others are transformed as they move between wetland soils and sediments, the open water, and the atmosphere. Wetlands are populated with plants that can thrive under conditions of saturated soils and low dissolved-oxygen concentrations. The bottoms of many wetlands, especially marshes, are covered with decayed plant material that can accumulate over time to form brown peat or black muck soils. Wetlands are inhabited by animals that need standing water to complete some or all of their life cycles, and they also provide periodic food, water, and shelter for many other animals that spend most of their lives on dry land. The complex and interrelated components of wetlands directly affect one another and there are numerous feedback mechanisms.

  4. Decomposition of saltmeadow cordgrass (Spartina patens) in Louisiana coastal marshes

    USGS Publications Warehouse

    Foote, A.L.; Reynolds, K.A.

    1997-01-01

    In Louisiana, plant production rates and associated decomposition rates may be important in offsetting high rates of land loss and subsidence in organic marsh soils. Decomposition of Spartina patens shoot and leaf material was studied by using litter bags in mesohaline marshes in the Barataria and Terrebonne basins of coastal Louisiana. Spartina patens decomposed very slowly with an average decay constant of 0.0007, and approximately 50% of the material remained after 2 years in the field. Material at the Barataria site decomposed faster than did Terrebonne material with trend differences apparent during the first 150 days. This difference might be explained by the higher content of phosphorus in the Barataria material or a flooding period experienced by the Barataria bags during their first 10 days of deployment. Nitrogen and carbon content of the plant material studied did not differ between the two basins. We detected no consistent significant differences in decomposition above, at, or below sediment/water level. Because S. patens is the dominant plant in these marshes, and because it is so slow to decompose, we believe that S. patens shoots are an important addition to vertical accretion and, therefore, marsh elevation.

  5. Information to help reduce environmental impacts from freshwater oil spills

    SciTech Connect

    Fritz, D.E.; Steen, A.E.

    1995-12-31

    The American Petroleum Institute (API) has been working since 1990 to provide information to help the response community minimize the impact of spills to pared jointly with the US inland freshwater. Projects have included a manual, pre National Oceanic and Atmospheric Administration (NOAA), to give guidance on the cleanup techniques that will minimize environmental impacts on spills in freshwater habitats. Nearing completion are a literature review and annotated bibliography of the environmental and human health effects of oil spilled in freshwater habitats. The use of chemical treating agents for freshwater spill applications is being studied with input from other industry and government groups. A project has begun, with funding from API, the Louisiana Applied Oil Spill Research and Development Program, NOAA, the Marine Spill Response Corporation (MSRC), and the US Department of Energy, to evaluate in situ burning of oil spilled in marshes.

  6. Factors controlling dimethylsulfide emission from salt marshes

    NASA Technical Reports Server (NTRS)

    Dacey, John W. H.; Wakeham, S. G.; Howes, B. L.

    1985-01-01

    The factors that control the emission of methylated gases from salt marshes are being studied. Research focusses on dimethylsulfide (DMS) formation and the mechanism of DMS and CH4 emission to the atmosphere. The approach is to consider the plants as valves regulating the emission of methylated gases to the atmosphere with the goal of developing appropriate methods for emission measurement. In the case of CH4, the sediment is the source and transport to the atmosphere occurs primarily through the internal gas spaces in the plants. The source of DMS appears to be dimethyl sulfoniopropionate (DMSP) which may play a role in osmoregulation in plant tissues. Concentrations of DMSP in leaves are typically several-fold higher than in roots and rhizomes. Even so, the large below ground biomass of this plant means that 2/3 of the DMSP in the ecosystem is below ground on the aerial basis. Upon introduction to sediment water, DMSP rapidly decomposes to DMS and acrylic acid. The solubility of a gas (its equilibrium vapor pressure) is a fundamental aspect of gas exchange kinetics. The first comprehensive study was conducted of DMS solubility in freshwater and seawater. Data suggest that the Setchenow relation holds for H at intermediate salinities collected. These data support the concept that the concentration of DMS in the atmosphere is far from equilibrium with seawater.

  7. Effects of simulated drought on the carbon balance of Everglades short-hydroperiod marsh.

    PubMed

    Malone, Sparkle L; Starr, Gregory; Staudhammer, Christina L; Ryan, Michael G

    2013-08-01

    Hydrology drives the carbon balance of wetlands by controlling the uptake and release of CO2 and CH4 . Longer dry periods in between heavier precipitation events predicted for the Everglades region, may alter the stability of large carbon pools in this wetland's ecosystems. To determine the effects of drought on CO2 fluxes and CH4 emissions, we simulated changes in hydroperiod with three scenarios that differed in the onset rate of drought (gradual, intermediate, and rapid transition into drought) on 18 freshwater wetland monoliths collected from an Everglades short-hydroperiod marsh. Simulated drought, regardless of the onset rate, resulted in higher net CO2 losses net ecosystem exchange (NEE) over the 22-week manipulation. Drought caused extensive vegetation dieback, increased ecosystem respiration (Reco ), and reduced carbon uptake gross ecosystem exchange (GEE). Photosynthetic potential measured by reflective indices (photochemical reflectance index, water index, normalized phaeophytinization index, and the normalized difference vegetation index) indicated that water stress limited GEE and inhibited Reco . As a result of drought-induced dieback, NEE did not offset methane production during periods of inundation. The average ratio of net CH4 to NEE over the study period was 0.06, surpassing the 100-year greenhouse warming compensation point for CH4 (0.04). Drought-induced diebacks of sawgrass (C3 ) led to the establishment of the invasive species torpedograss (C4 ) when water was resupplied. These changes in the structure and function indicate that freshwater marsh ecosystems can become a net source of CO2 and CH4 to the atmosphere, even following an extended drought. Future changes in precipitation patterns and drought occurrence/duration can change the carbon storage capacity of freshwater marshes from sinks to sources of carbon to the atmosphere. Therefore, climate change will impact the carbon storage capacity of freshwater marshes by influencing water

  8. Substrate sources regulate spatial variation of metabolically active methanogens from two contrasting freshwater wetlands.

    PubMed

    Lin, Yongxin; Liu, Deyan; Ding, Weixin; Kang, Hojeong; Freeman, Chris; Yuan, Junji; Xiang, Jian

    2015-12-01

    There is ample evidence that methane (CH4) emissions from natural wetlands exhibit large spatial variations at a field scale. However, little is known about the metabolically active methanogens mediating these differences. We explored the spatial patterns in active methanogens of summer inundated Calamagrostis angustifolia marsh with low CH4 emissions and permanently inundated Carex lasiocarpa marsh with high CH4 emissions in Sanjiang Plain, China. In C. angustifolia marsh, the addition of (13)C-acetate significantly increased the CH4 production rate, and Methanosarcinaceae methanogens were found to participate in the consumption of acetate. In C. lasiocarpa marsh, there was no apparent increase in the CH4 production rate and no methanogen species were labeled with (13)C. When (13)CO2-H2 was added, however, CH4 production was found to be due to Fen Cluster (Methanomicrobiales) in C. angustifolia marsh and Methanobacterium Cluster B (Methanobacteriaceae) together with Fen Cluster in C. lasiocarpa marsh. These results suggested that CH4 was produced primarily by hydrogenotrophic methanogens using substrates mainly derived from plant litter in C. lasiocarpa marsh and by both hydrogenotrophic and acetoclastic methanogens using substrates mainly derived from root exudate in C. angustifolia marsh. The significantly lower CH4 emissions measured in situ in C. angustifolia marsh was primarily due to a deficiency of substrates compared to C. lasiocarpa marsh. Therefore, we speculate that the substrate source regulates both the type of active methanogens and the CH4 production pathway and consequently contributes to the spatial variations in CH4 productions observed in these freshwater marshes. PMID:26286511

  9. Plant-plant interactions in a subtropical mangrove-to-marsh transition zone: effects of environmental drivers

    USGS Publications Warehouse

    Howard, Rebecca J.; Krauss, Ken W.; Cormier, Nicole; Day, Richard H.; Biagas, Janelda M.; Allain, Larry K.

    2015-01-01

    Questions Does the presence of herbaceous vegetation affect the establishment success of mangrove tree species in the transition zone between subtropical coastal mangrove forests and marshes? How do plant–plant interactions in this transition zone respond to variation in two primary coastal environmental drivers? Location Subtropical coastal region of the southern United States. Methods We conducted a greenhouse study to better understand how abiotic factors affect plant species interactions in the mangrove-to-marsh transition zone, or ecotone. We manipulated salinity (fresh, brackish or salt water) and hydrologic conditions (continuously saturated or 20-cm tidal range) to simulate ecotonal environments. Propagules of the mangroves Avicennia germinans and Laguncularia racemosa were introduced to mesocosms containing an established marsh community. Both mangrove species were also introduced to containers lacking other vegetation. We monitored mangrove establishment success and survival over 22 mo. Mangrove growth was measured as stem height and above-ground biomass. Stem height, stem density and above-ground biomass of the dominant marsh species were documented. Results Establishment success of A. germinans was reduced under saturated saltwater conditions, but establishment of L. racemosa was not affected by experimental treatments. There was complete mortality of A. germinans in mesocosms under freshwater conditions, and very low survival of L. racemosa. In contrast, survival of both species in monoculture under freshwater conditions exceeded 62%. The marsh species Distichlis spicata and Eleocharis cellulosa suppressed growth of both mangroves throughout the experiment, whereas the mangroves did not affect herbaceous species growth. The magnitude of growth suppression by marsh species varied with environmental conditions; suppression was often higher in saturated compared to tidal conditions, and higher in fresh and salt water compared to

  10. Synecology of a Virginia salt marsh

    USGS Publications Warehouse

    Kerwin, J.A.; Pedigo, R.

    1971-01-01

    In the spring and summer of 1964 a salt marsh in Gloucester County, Virginia, was analyzed using random quadrat sampling. Synthetic treatments were employed to evaluate data and were correlated with observed differences in elevation. Floristic data indicate the Virginia salt marshes show closer similarity to marshes north of Chesapeake Bay than those south of Chesapeake Bay. Correlation of floristic data with observed differences in elevation indicates that zonation in the marsh is dependent upon differences in elevation or some environmental factor correlated with elevation differences. Observations of sedimentation and erosion in localized areas indicate that the marsh is in a constant state of change, with extensive areas undergoing both succession and regression.

  11. Periodicity in stem growth and litterfall in tidal freshwater forested wetlands: influence of salinity and drought on nitrogen recycling

    USGS Publications Warehouse

    Cormier, Nicole; Krauss, Ken W.; Conner, William H.

    2013-01-01

    Many tidally influenced freshwater forested wetlands (tidal swamps) along the south Atlantic coast of the USA are currently undergoing dieback and decline. Salinity often drives conversion of tidal swamps to marsh, especially under conditions of regional drought. During this change, alterations in nitrogen (N) uptake from dominant vegetation or timing of N recycling from the canopy during annual litter senescence may help to facilitate marsh encroachment by providing for greater bioavailable N with small increases in salinity. To monitor these changes along with shifts in stand productivity, we established sites along two tidal swamp landscape transects on the lower reaches of the Waccamaw River (South Carolina) and Savannah River (Georgia) representing freshwater (≤0.1 psu), low oligohaline (1.1–1.6 psu), and high oligohaline (2.6–4.1 psu) stands; the latter stands have active marsh encroachment. Aboveground tree productivity was monitored on all sites through monthly litterfall collection and dendrometer band measurements from 2005 to 2009. Litterfall samples were pooled by season and analyzed for total N and carbon (C). On average between the two rivers, freshwater, low oligohaline, and high oligohaline tidal swamps returned 8,126, 3,831, and 1,471 mg N m−2 year−1, respectively, to the forest floor through litterfall, with differences related to total litterfall volume rather than foliar N concentrations. High oligohaline sites were most inconsistent in patterns of foliar N concentrations and N loading from the canopy. Leaf N content generally decreased and foliar C/N generally increased with salinization (excepting one site), with all sites being fairly inefficient in resorbing N from leaves prior to senescence. Stands with higher salinity also had greater flood frequency and duration, lower basal area increments, lower tree densities, higher numbers of dead or dying trees, and much reduced leaf litter fall (103 vs. 624 g m−2 year−1) over the

  12. Tampa Bay coastal wetlands: nineteenth to twentieth century tidal marsh-to-mangrove conversion

    USGS Publications Warehouse

    Raabe, Ellen A.; Roy, Laura C.; McIvor, Carole C.

    2012-01-01

    Currently, mangroves dominate the tidal wetlands of Tampa Bay, Florida, but an examination of historic navigation charts revealed dominance of tidal marshes with a mangrove fringe in the 1870s. This study's objective was to conduct a new assessment of wetland change in Tampa Bay by digitizing nineteenth century topographic and public land surveys and comparing these to modern coastal features at four locations. We differentiate between wetland loss, wetland gain through marine transgression, and a wetland conversion from marsh to mangrove. Wetland loss was greatest at study sites to the east and north. Expansion of the intertidal zone through marine transgression, across adjacent low-lying land, was documented primarily near the mouth of the bay. Generally, the bay-wide marsh-to-mangrove ratio reversed from 86:14 to 25:75 in 125 years. Conversion of marsh to mangrove wetlands averaged 72 % at the four sites, ranging from 52 % at Old Tampa Bay to 95 % at Feather Sound. In addition to latitudinal influences, intact wetlands and areas with greater freshwater influence exhibited a lower rate of marsh-to-mangrove conversion. Two sources for nineteenth century coastal landscape were in close agreement, providing an unprecedented view of historic conditions in Tampa Bay.

  13. Effects of climate change on tidal marshes along a latitudinal gradient in California

    USGS Publications Warehouse

    Thorne, Karen M.; MacDonald, Glen M.; Ambrose, Rich F.; Buffington, Kevin J.; Freeman, Chase M.; Janousek, Christopher N.; Brown, Lauren N.; Holmquist, James R.; Guntenspergen, Glenn R.; Powelson, Katherine W.; Barnard, Patrick L.; Takekawa, John Y.

    2016-08-05

    Public SummaryThe coastal region of California supports a wealth of ecosystem services including habitat provision for wildlife and fisheries. Tidal marshes, mudflats, and shallow bays within coastal estuaries link marine, freshwater and terrestrial habitats, and provide economic and recreational benefits to local communities. Climate change effects such as sea-level rise (SLR) are altering these habitats, but we know little about how these areas will change over the next 50–100 years. Our study examined the projected effects of three recent SLR scenarios produced for the West Coast of North America on tidal marshes in California. We compiled physical and biological data, including coastal topography, tidal inundation, plant composition, and sediment accretion to project how SLR may alter these ecosystems in the future. The goal of our research was to provide results that support coastal management and conservation efforts across California. Under a low SLR scenario, all study sites remained vegetated tidal wetlands, with most sites showing little elevation and vegetation change relative to sea level. At most sites, mid SLR projections led to increases in low marsh habitat at the expense of middle and high marsh habitat. Marshes at Morro Bay and Tijuana River Estuary were the most vulnerable to mid SLR with many areas becoming intertidal mudflat. Under a high SLR scenario, most sites were projected to lose vegetated habitat, eventually converting to intertidal mudflats. Our results suggest that California marshes are vulnerable to major habitat shifts under mid or high rates of SLR, especially in the latter part of the century. Loss of vegetated tidal marshes in California due to SLR is expected to impact ecosystem services that are dependent on coastal wetlands such as wildlife habitat, carbon sequestration, improved water quality, and coastal protection from storms.

  14. Effects of climate change on tidal marshes along a latitudinal gradient in California

    USGS Publications Warehouse

    Thorne, Karen M.; MacDonald, Glen M.; Ambrose, Rich F.; Buffington, Kevin J.; Freeman, Chase M.; Janousek, Christopher N.; Brown, Lauren N.; Holmquist, James R.; Guntenspergen, Glenn R.; Powelson, Katherine W.; Barnard, Patrick L.; Takekawa, John Y.

    2016-01-01

    Public SummaryThe coastal region of California supports a wealth of ecosystem services including habitat provision for wildlife and fisheries. Tidal marshes, mudflats, and shallow bays within coastal estuaries link marine, freshwater and terrestrial habitats, and provide economic and recreational benefits to local communities. Climate change effects such as sea-level rise (SLR) are altering these habitats, but we know little about how these areas will change over the next 50–100 years. Our study examined the projected effects of three recent SLR scenarios produced for the West Coast of North America on tidal marshes in California. We compiled physical and biological data, including coastal topography, tidal inundation, plant composition, and sediment accretion to project how SLR may alter these ecosystems in the future. The goal of our research was to provide results that support coastal management and conservation efforts across California. Under a low SLR scenario, all study sites remained vegetated tidal wetlands, with most sites showing little elevation and vegetation change relative to sea level. At most sites, mid SLR projections led to increases in low marsh habitat at the expense of middle and high marsh habitat. Marshes at Morro Bay and Tijuana River Estuary were the most vulnerable to mid SLR with many areas becoming intertidal mudflat. Under a high SLR scenario, most sites were projected to lose vegetated habitat, eventually converting to intertidal mudflats. Our results suggest that California marshes are vulnerable to major habitat shifts under mid or high rates of SLR, especially in the latter part of the century. Loss of vegetated tidal marshes in California due to SLR is expected to impact ecosystem services that are dependent on coastal wetlands such as wildlife habitat, carbon sequestration, improved water quality, and coastal protection from storms.

  15. The Great Newbury Marsh Hike.

    ERIC Educational Resources Information Center

    Blais, Heidi; And Others

    Designed to acquaint students at Triton Regional High School (Massachusetts) with the importance of the salt marshes and marine environment around Triton, this outdoor education curriculum guide includes three sections emphasizing an interdisciplinary approach to physics, ecology, and history. The unit is designed for 50 students and 5 teachers…

  16. Hydraulic Consequences of Hydrilla, an Invasive Submerged Aquatic Plant, in Freshwater Tidal Channels

    NASA Astrophysics Data System (ADS)

    Jenner, B. A.; Prestegaard, K. L.

    2010-12-01

    Hydrilla is a non-indigenous submerged aquatic plant that has become common in the southeast and mid-Atlantic regions of the United States. The purpose of this research is to evaluate the effects of Hydrilla on flow resistance, velocity, and discharge in freshwater tidal channels along the Patuxent River, MD. Hydrilla height is limited by the level of average low tide in tidal channels; therefore, it has preferentially invaded larger, deeper channels. Geomorphic and hydraulic measurements were made at 6 sites in the channel network of a large, freshwater tidal marsh in the spring, prior to Hydrilla regrowth, and in late summer when vegetation height was at a maximum. Field measurements of vegetation height (Zo), gauge height, energy gradient, velocity profiles, and maximum velocity were used to calculate mean channel velocity, shear velocity, and flow resistance (u/u* and Manning’s n) for the two vegetative conditions. “At-a-station” and “Downstream” hydraulic geometry relationships (the power function relationships of discharge to width, depth, and velocity) were also determined for maximum and minimum vegetation conditions. Results indicate that flow resistance increased and velocity decreased by an order of magnitude between Hydrilla minima and maxima heights. Tidal marsh channels typically exhibit rapid decreases in channel width and cross sectional area in the up-marsh direction. These decreases in width serve to maintain channel velocities and bring sediment, organic matter, and other materials into tidal marshes. Therefore, the downstream hydraulic geometry exponents for width are large and exponents are near zero for velocity, in most measured tidal marsh systems. Our measurements indicate that mean channel velocity decreases significantly in the up-marsh direction during maximum vegetation. This generates an exponent for velocity in the downstream hydraulic geometry relationships that is significantly larger than observed in other tidal systems

  17. Freshwater Flow Charts - 1995

    SciTech Connect

    Kaiper, G V

    2003-11-21

    This report covers the following: (1) Explanation of Charts Showing Freshwater Flow in 1995; (2) Estimated U.S. Freshwater Flow in 1995 (chart); (3) Estimated California Freshwater Flow in 1995 (chart); (4) Estimated New Mexico Freshwater Flow in 1995 (chart); and (5) Web locations and credits.

  18. Bedrock controls of sedimentation along a marsh-dominated, open-marine, low energy coastline: west-central Florida

    SciTech Connect

    Hine, A.C.; Belknap, D.F.; Osking, E.B.; Hutton, J,G.; Evans, M.R.

    1985-01-01

    The northwestern peninsular Florida coast is microtidal, low wave energy. Topographic complexity is due to karstified Tertiary limestone, actively discharging freshwater springs, and lack of pre-Holocene sediment veneer. This complexity helps control local sedimentary processes. In the southern part of the field area a near continuous, thin Pleistocene quartz sand allows a marsh-fronting berm and simpler shoreline morphology. To the north, freshwater springs have formed shallow estuarine embayments containing linear oyster bioherms, nucleated upon local bedrock highs. These molluscan reefs enclose interbiothermal basins, segmenting the embayments. Between the embayments are archipelagoes of marsh islands and tidal creeks. Their complex topography was formed from selective dissolution along rectilinear fractures, creating linear lows which when drowned by rising sea level formed the largest tidal creeks. Marsh islands formed on intervening low-relief knobs. These commonly support oases of less salt tolerant shrubs and trees, surrounded by Juncus roemerianus marsh. Landward to seaward changes in rock/sedimentation relationships suggest an evolutionary pattern during sea-level rise. Upland forests become hammocks surrounded by marsh. Hammocks become islands surrounded by tidal creeks. Submerged hammocks finally become highs supporting oyster reefs. Preservation potential during the present slow transgression is low, due primarily to the low relief.

  19. Long-Term Sediment Dynamics in a Tidal Salt Marsh, North Inlet, South Carolina

    NASA Astrophysics Data System (ADS)

    Murphy, S.; Voulgaris, G.

    2001-05-01

    The salt marshes along the southeastern U.S. coast are in a delicate balance between rates of sediment accretion and relative sea level rise. Short-term sediment flux studies in the region indicate a net export of suspended sediment out of salt marsh systems despite the necessity for these marshes to import sediment in order to keep pace with relative sea level rise. Long-term suspended sediment concentration data collected daily through the Long-Term Ecological Research Program (LTER) are utilized in this study. The objective of this study is to identify the relative importance of different processes including tidal range, rainfall, winds, water temperature and river discharge in effecting suspended sediment concentrations in salt marsh channels. The study area is a small {\\Spartina}- and {\\Juncus}-dominated salt marsh located at North Inlet, South Carolina. Suspended sediment concentrations were collected daily at 3 sites in the marsh basin at approximately 1000 hrs EST for a period of 10 to 15 years. The determination of how suspended sediment concentrations vary with respect to the tidal cycle required identification of the phase within the cycle that the sample was collected. This was achieved predicting tidal phases using sea surface elevation data. Suspended sediment concentrations collected during periods of different rainfall, tidal ranges, wind conditions, water temperatures and freshwater discharge were used to develop "representative" tidal cycles for each of the aforementioned forcings. Mean suspended sediment concentrations were found to be highest during the ebb tide while the lowest concentrations were found following high and low slack water. These concentrations vary spatially throughout the marsh with the highest concentrations located at the most landward site and lowest at the site nearest the inlet. A seasonal bias of suspended sediment concentrations was observed with highest concentrations in the summer months. Import of sediment in the

  20. THE EFFECT OF NITROGEN OVER-ENRICHMENT ON SOME PLANT-SOIL RELATIONSHIPS AND MICROBIAL PROCESSES

    EPA Science Inventory

    Salt marshes of similar geomorphology and hydrology with varying watershed nitrogen loads were examined for differences in plant structure, soil characteristics, and
    denitrification. We observed landward encroachment of the low marsh Spartina alterniflora, and the displacement...

  1. N2O Flux from Salt Marshes in Estuaries along the Gulf of St. Lawrence

    NASA Astrophysics Data System (ADS)

    Roughan, B.; Kellman, L. M.; Chmura, G. L.

    2013-12-01

    Wetlands are widely noted as filters for nutrient-laden waters. However, soils in tidal salt marshes emit nitrous oxide (N2O) when experimentally fertilized, which suggests that improved water quality comes at the expense of increased atmospheric concentrations of this potent greenhouse gas. Here we report on N2O emissions from four salt marshes located in estuaries along the Gulf of St. Lawrence. Our control site is located in a National Park on the coast of New Brunswick, which is in a region of low population density and limited agriculture, whereas the other estuaries have watersheds characterized by intensive agriculture activities on Prince Edward Island (PEI). N2O gas was collected during low tide, using opaque, static-chambers (17 L, 25 cm diameter) placed over marsh vegetation in the Spartina patens-dominated high marsh, which is typical of salt marshes along the northwest Atlantic coast, from New York north to Atlantic Canada. Preliminary analysis of gas samples collected in June revealed that the average N2O flux from the marshes located in agriculturally intensive watersheds (6.17 ×1.82 μg N2O m-2 hr-1) was significantly higher than the flux from the control marsh, which was negligible (-2.63 ×2.22 μg N2O m-2 hr-1). Assuming this elevated N2O flux is typical of the growing season (May-October), these marshes emit an average of 27 ×8 mg N2O m-2 yr-1 (or 8 g CO2e m-2 yr-1), 8.4% of the annual soil C accumulation rate reported for PEI. These results suggest that unintentional N fertilization of salt marshes located in agriculturally dominated watersheds may be fueling significant anthropogenic greenhouse gas emissions in some marshes. Further work during the 2013 growing season will provide insight into the environmental variables that affect the flux of N2O from these tidal salt marshes.

  2. Dynamics of pore-water and salt in estuarine marshes subjected to tide and evaporation

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Shen, C.; Li, L.; Lockington, D. A.

    2015-12-01

    Salt dynamics in estuarine tidal marshes are strongly associated with their intrinsic hydrological processes and ecological behaviors, which are not well understood. Numerical simulations were carried out to investigate the transport and distribution of pore water and salt in a vertical cross section perpendicular to the tidal creek that subjects to spring-neap tide and evaporation. Vaporizing pore water from unsaturated soil surface with salt left in soils, the time-variant actual evaporation is affected by aerodynamic factors as well as soil conditions, including pore-water saturation, solute concentration and the thickness of salt precipitation above the soil surface (efflorescence). Different simulation cases were performed by adjusting the tidal signal, marsh platform slope and soil properties. The simulation analysis indicates that, the tide-averaged soil salinity increases with the reduction of inundation period in a spring-neap tide cycle. As the salt accumulated by evaporation could leave soil from seepage back to seawater during ebbtide, the pore-water salinity at the surface within the tidal range remains close to that of seawater. With the presence of hyper-saline soil and efflorescence, salt flat develops only in the area where capillary connection between evaporating surface and water-saturated soil is maintained while tidal inundation absent. On the contrary, the sandy supratidal marsh where hydrological connections are disrupted keeps a relatively low soil salinity (40-60 ppt) and pore-water saturation as evaporation remains low throughout the tidal cycles.

  3. Are freshwater diversion projects in Louisiana wetlands doing more harm than good?

    NASA Astrophysics Data System (ADS)

    Schulz, C. J.; Childers, G. W.

    2009-12-01

    Several freshwater diversion projects are online and many more are proposed, drastically altering the hydrology and nutrient flux in Louisiana wetlands. The intention of these massive projects is to prevent saltwater intrusion and provide sediments and nutrients to combat coastal erosion and subsidence. A proposed mechanism that such diversions decrease land loss is through the increase in vegetative biomass accumulation, leading to net gains in organic sediments. Although freshwater and nutrients can enhance primary production, it is unclear what impact these waters will have on existing sediment organic reservoirs. There are a limited, but growing number of studies suggesting that nutrient additions to wetland systems can lead to enhanced soil decomposition; thus, freshwater diversion projects may actually enhance wetland deterioration. A wetland restoration project delivering five million gallons per day of treated domestic effluent to the Joyce Wildlife Management Area (JWMA) marsh began in 2006. The treated effluent is similar to Mississippi River water with respect to alkalinity and reactive nitrogen concentrations. Sediment carbon and nitrogen content was monitored pre and post restoration project commencement and decreased significantly over a two year period from 2006 to 2008. The change in water chemistry (alkalinity/pH and reactive nitrogen) was expected to have an impact on microbial activities in these sediments. The microbial community composition of methanogens and archaeal ammonia oxidizers (as monitored by mcrA and amoA gene clone libraries, respectively) also shifted during this time period. Microcosm experiments using relatively un-impacted JWMA sediments with cellulose amendments showed increased methane production (i.e. enhanced organic matter / plant matter decomposition) corresponding to increasing alkalinity. Possible mechanisms accounting for these observations can be explained by thermodynamic constraints in anaerobic degradation pathways.

  4. Does livestock grazing affect sediment deposition and accretion rates in salt marshes?

    NASA Astrophysics Data System (ADS)

    Nolte, Stefanie; Müller, Frauke; Schuerch, Mark; Wanner, Antonia; Esselink, Peter; Bakker, Jan P.; Jensen, Kai

    2013-12-01

    Accretion rates, defined as the vertical growth of salt marshes measured in mm per year, may be influenced by grazing livestock in two ways: directly, by increasing soil compaction through trampling, and indirectly, by reducing aboveground biomass and thus decreasing sediment deposition rates measured in g/m² per year. Although accretion rates and the resulting surface elevation change largely determine the resilience of salt marshes to sea-level rise (SLR), the effect of livestock grazing on accretion rates has been little studied. Therefore, this study aimed to investigate the effect of livestock grazing on salt-marsh accretion rates. We hypothesise that accretion will be lower in grazed compared to ungrazed salt marshes. In four study sites along the mainland coast of the Wadden Sea (in the south-eastern North Sea), accretion rates, sediment deposition rates, and soil compaction of grazed and ungrazed marshes were analysed using the 137Cs radionuclide dating method. Accretion rates were on average 11.6 mm yr-1 during recent decades and thus higher than current and projected rates of SLR. Neither accretion nor sediment deposition rates were significantly different between grazing treatments. Meanwhile, soil compaction was clearly affected by grazing with significantly higher dry bulk density on grazed compared to ungrazed parts. Based on these results, we conclude that other factors influence whether grazing has an effect on accretion and sediment deposition rates and that the effect of grazing on marsh growth does not follow a direct causal chain. It may have a great importance when interacting with other biotic and abiotic processes on the marsh.

  5. Evaluating ecological equivalence of created marshes: comparing structural indicators with stable isotope indicators of blue crab trophic support

    USGS Publications Warehouse

    Llewellyn, Chris; LaPeyre, Megan K.

    2010-01-01

    This study sought to examine ecological equivalence of created marshes of different ages using traditional structural measures of equivalence, and tested a relatively novel approach using stable isotopes as a measure of functional equivalence. We compared soil properties, vegetation, nekton communities, and δ13C and δ15N isotope values of blue crab muscle and hepatopancreas tissue and primary producers at created (5-24 years old) and paired reference marshes in SW Louisiana. Paired contrasts indicated that created and reference marshes supported equivalent plant and nekton communities, but differed in soil characteristics. Stable isotope indicators examining blue crab food web support found that the older marshes (8 years+) were characterized by comparable trophic diversity and breadth compared to their reference marshes. Interpretation of results for the youngest site was confounded by the fact that the paired reference, which represented the desired end goal of restoration, contained a greater diversity of basal resources. Stable isotope techniques may give coastal managers an additional tool to assess functional equivalency of created marshes, as measured by trophic support, but may be limited to comparisons of marshes with similar vegetative communities and basal resources, or require the development of robust standardization techniques.

  6. Methane production correlates positively with methanogens, sulfate-reducing bacteria and pore water acetate at an estuarine brackish-marsh landscape scale

    NASA Astrophysics Data System (ADS)

    Tong, C.; She, C. X.; Jin, Y. F.; Yang, P.; Huang, J. F.

    2013-11-01

    Methane production is influenced by the abundance of methanogens and the availability of terminal substrates. Sulfate-reducing bacteria (SRB) also play an important role in the anaerobic decomposition of organic matter. However, the relationships between methane production and methanogen populations, pore water terminal substrates in estuarine brackish marshes are poorly characterized, and even to our knowledge, no published research has explored the relationship between methane production rate and abundance of SRB and pore water dimethyl sulfide (DMS) concentration. We investigated methane production rate, abundances of methanogens and SRB, concentrations of pore water terminal substrates and electron acceptors at a brackish marsh landscape dominated by Phragmites australis, Cyperus malaccensis and Spatina alterniflora marshes zones in the Min River estuary. The average rates of methane production at a soil depth of 30 cm in the three marsh zones were 0.142, 0.058 and 0.067 μg g-1 d-1, respectively. The abundance of both methanogens and SRB in the soil of the P. australis marsh with highest soil organic carbon content was higher than in the C. malaccensis and S. alterniflora marshes. The abundance of methanogens and SRB in the three soil layers was statistically indistinguishable. Mean pore water DMS concentrations at a soil depth of 30 cm under the S. alterniflora marsh were higher than those in the C. malaccensis and P. australis marshes. Methane production rate increased with the abundance of both methanogens and SRB across three marsh zones together at the landscape scale, and also increased with the concentration of pore water acetate, but did not correlate with concentrations of pore water DMS and dissolved CO2. Our results suggest that, provided that substrates are available in ample supply, methanogens can continue to produce methane regardless of whether SRB are prevalent in estuarine brackish marshes.

  7. Position of the freshwater-saltwater interface in a coastal confined aquifer

    NASA Astrophysics Data System (ADS)

    Evans, T. B.; White, S. M.; Wilson, A. M.

    2014-12-01

    Delineating the position of the freshwater-saltwater interface is necessary for understanding submarine groundwater discharge and for assessing risks associated with saltwater intrusion, but most studies of the freshwater-saltwater interface focus on shallow surficial aquifers. Groundwater dynamics in coastal aquifers at depths greater than 5 m below land surface have rarely been assessed. The freshwater-saltwater interface in deeper confined aquifers is frequently positioned offshore, where it is difficult to locate or study. Our investigation was located at North Inlet, a wide, intertidal wetland southeast of Georgetown, SC. This site was ideal for studying the freshwater-saltwater interface at the embayment scale because the first major confined aquifer under the wetlands was accessible. Using electrical resistivity tomography, we were able to image the upper 20 to 30 m of sediment, including the first major confined aquifer. At North Inlet a 75 km2 island is bounded by extensive marsh and relict and modern barrier islands extending ~10 km seaward to the Atlantic Ocean. Surface and groundwater salinity throughout the marsh is 35 ppt. In order to get maximum depth penetration, surveys were conducted along dry land on the island and marsh surface with 10 m electrode spacing. Measured apparent resistivity varied in all surveys. A 20 Ohm-m resistivity layer at 25 m depth suggests that freshwater extends 335 m from the mainland. The presence of this freshwater indicates regional groundwater flow under the marsh or high rates of infiltration during precipitation events. Groundwater was saline to brackish (~10 Ohm-m) 1 km further out into the marsh at the next relict beach ridge at depths of 20 to 30 m. These results indicate that embayment scale groundwater flow plays an important role in providing low salinity pore-water to the marsh from beneath. The presence of fresh/brackish groundwater hundreds of meters from the mainland suggests that coastal confined aquifers

  8. Building a Probabilistic Denitrification Model for an Oregon Salt Marsh

    NASA Astrophysics Data System (ADS)

    Moon, J. B.; Stecher, H. A.; DeWitt, T.; Nahlik, A.; Regutti, R.; Michael, L.; Fennessy, M. S.; Brown, L.; Mckane, R.; Naithani, K. J.

    2015-12-01

    Despite abundant work starting in the 1950s on the drivers of denitrification (DeN), mechanistic complexity and methodological challenges of direct DeN measurements have resulted in a lack of reliable rate estimates across landscapes, and a lack of operationally valid, robust models. Measuring and modeling DeN are particularly challenging in tidal systems, which play a vital role in buffering adjacent coastal waters from nitrogen inputs. These systems are hydrologically and biogeochemically complex, varying on fine temporal and spatial scales. We assessed the spatial and temporal variability of soil nitrate (NO3-) levels and O2 availability, two primary drivers of DeN, in surface soils of Winant salt marsh located in Yaquina estuary, OR during the summers of 2013 and 2014. We found low temporal variability in soil NO3- concentrations across years, tide series, and tide cycles, but high spatial variability linked to elevation gradients (i.e., habitat types); spatial variability within the high marsh habitat (0 - 68 μg N g-1 dry soil) was correlated with distance to major tide creek channels and connectivity to upslope N-fixing red alder. Soil O2 measurements collected at 5 cm below ground across three locations on two spring tide series showed that O2 drawdown rates were also spatially variable. Depending on the marsh location, O2 draw down ranged from sub-optimal for DeN (> 80 % O2 saturation) across an entire tide series (i.e., across days) to optimum (i.e., ~ 0 % O2 saturation) within one overtopping tide event (i.e., within hours). We are using these results, along with empirical relationships created between DeN and soil NO3- concentrations for Winant to improve on a pre-existing tidal DeN model. We will develop the first version of a fully probabilistic hierarchical Bayesian tidal DeN model to quantify parameter and prediction uncertainties, which are as important as determining mean predictions in order to distinguish measurable differences across the marsh.

  9. Salt Marsh Diking and Restoration: Biogeochemical Implications of Altered Wetland Hydrology.

    PubMed

    Portnoy

    1999-07-01

    / In salt marshes, most biomass plus large reserves of biologically important N, P, Fe, and S are sequestered below ground under saline, waterlogged, and anaerobic conditions. Thus, hydrologic alterations such as diking and ditch drainage that reduce salinity and increase peat aeration can cause radical changes in the composition of salt marsh soils.Experimental short-term desalination and drainage of salt marsh cores in greenhouse microcosms caused Spartina production to increase after one growing season, reflecting decreased salt stress and sulfide toxicity. However, production thereafter declined, likely due to pyrite oxidation and acidification in drained treatments and sulfide accumulation in waterlogged treatments.A survey of longer-term (decadal) effects of diking on peat composition of Cape Cod, Massachusetts, USA, marshes revealed acidification, Fe(II) mobilization, and decreased organic content in drained sites. Despite the aerobic decomposition of organic matter, abundant nutrients remained as sorbed NH4 and mineral-bound PO4. In diked, seasonally waterlogged sites, porewater alkalinity, sulfide, ammonium and orthophosphate were much lower, and organic solids higher, than in adjacent natural marsh.Seawater was added to cores from diked marshes to study the effects of tidal restoration. Salination of the drained peat increased porewater pH, alkalinity, ammonium, orthophosphate, Fe, and Al; copious ammonium N, and Fe(II) for sulfide precipitation favored Spartina growth. Salination of diked-waterlogged peat increased sulfate reduction and caused 6-8 cm of sediment subsidence. The resulting increase in porewater sulfides and waterlogging decreased vigor of transplanted Spartina alterniflora. Results indicate that seawater restoration should proceed cautiously to avoid nutrient loading of surface waters in drained sites or sulfide toxicity in diked-waterlogged marshes.KEY WORDS: Salt marsh; Diking; Biogeochemical cycling; Restoration; Massachusettshttp

  10. Hydrology of Fritchie Marsh, coastal Louisiana

    USGS Publications Warehouse

    Kuniansky, E.L.

    1985-01-01

    Fritchie Marsh, near Slidell, Louisiana, is being considered as a disposal site for sewage effluent. A two-dimensional, finite element, surface water modeling systems was used to solve the shallow water equations for flow. Factors affecting flow patterns are channel locations, inlets, outlets, islands, marsh vegetation, marsh geometry, stage of the West Pearl River, flooding over the lower Pearl River basin, gravity tides, wind-induced currents, and sewage discharge to the marsh. Four steady-state simulations were performed for two hydrologic events at two rates of sewage discharge. The events, near tide with no wind or rain and neap tide with a tide differential across the marsh, were selected as worst-case events for sewage effluent dispersion and were assumed as steady state events. Because inflows and outflows to the marsh are tidally affected, steady state simulations cannot fully define the hydraulic characteristics of the marsh for all hydrologic events. Model results and field data indicate that, during near tide with little or no rain, large parts of the marsh are stagnant; and sewage effluent, at existing and projected flows, has minimal effect on marsh flows. (USGS)

  11. Estimates of future inundation of salt marshes in response to sea-level rise in and around Acadia National Park, Maine

    USGS Publications Warehouse

    Nielsen, Martha G.; Dudley, Robert W.

    2013-01-01

    size of 1.0 ha. Inundation contours were mapped at 110 salt marshes. Approximately 350 ha of low-lying upland areas adjacent to these marshes will be inundated with 60 cm of sea-level rise. Many of these areas are currently freshwater wetlands. There are potential barriers to marsh migration at 27 of the 114 marshes. Although only 23 percent of the salt marshes in the study are on ANP property, about half of the upland areas that will be inundated are within ANP; most of the predicted inundated uplands (approximately 170 ha) include freshwater wetlands in the Northeast Creek and Bass Harbor Marsh areas. Most of the salt marshes analyzed do not have a significant amount of upland area available for migration. Seventy-five percent of the salt marshes have 20 meters or less of adjacent upland that would be inundated along most of their edges. All inundation contours, salt marsh locations, potential barriers, and survey data are stored in geospatial files for use in a geographic information system and are a part of this report.

  12. Storm surges and climate change implications for tidal marshes: Insight from the San Francisco Bay Estuary, California, USA

    USGS Publications Warehouse

    Thorne, Karen M.; Buffington, Kevin J.; Swanson, Kathleen; Takekawa, John Y.

    2013-01-01

    Tidal marshes are dynamic ecosystems that are influenced by oceanic and freshwater processes and daily changes in sea level. Projected sea-level rise and changes in storm frequency and intensity will affect tidal marshes by altering suspended sediment supply, plant and wildlife communities, and the inundation duration and depth of the marsh platform. The objective of this research was to evaluate how regional weather conditions resulting in low-pressure storms changed tidal conditions locally within three tidal marshes. We hypothesized that regional storms will increase sea level heights locally, resulting in increased inundation of the tidal marsh platform and plant communities. Using site-level measurements of elevation, plant communities, and water levels, we present results from two storm events in 2010 and 2011 from the San Francisco Bay Estuary (SFBE), California, USA. The January 2010 storm had the lowest recorded sea level pressure in the last 30 years for this region. During the storm episodes, the duration of tidal marsh inundation was 1.8 and 3.1 times greater than average for that time of year in 2010 and 2011, respectively. At peak storm surges, over 65% in 2010 and 93% in 2011 of the plant community was under water. We also discuss the implications of these types of storms and projected sea-level rise on the structure and function of tidal marshes and how that may affect the hydrogeomorphic processes and marsh biotic communities. This type of information is useful to managers for incorporating local climate change into developing their monitoring, management, and adaptation strategies.

  13. Effects of Disturbance Associated With Seismic Exploration for Oil and Gas Reserves in Coastal Marshes

    NASA Astrophysics Data System (ADS)

    Howard, Rebecca J.; Wells, Christopher J.; Michot, Thomas C.; Johnson, Darren J.

    2014-07-01

    Anthropogenic disturbances in wetland ecosystems can alter the composition and structure of plant assemblages and affect system functions. Extensive oil and gas extraction has occurred in wetland habitats along the northern Gulf of Mexico coast since the early 1900s. Activities involved with three-dimensional (3D) seismic exploration for these resources cause various disturbances to vegetation and soils. We documented the impact of a 3D seismic survey in coastal marshes in Louisiana, USA, along transects established before exploration began. Two semi-impounded marshes dominated by Spartina patens were in the area surveyed. Vegetation, soil, and water physicochemical data were collected before the survey, about 6 weeks following its completion, and every 3 months thereafter for 2 years. Soil cores for seed bank emergence experiments were also collected. Maximum vegetation height at impact sites was reduced in both marshes 6 weeks following the survey. In one marsh, total vegetation cover was also reduced, and dead vegetation cover increased, at impact sites 6 weeks after the survey. These effects, however, did not persist 3 months later. No effects on soil or water properties were identified. The total number of seeds that germinated during greenhouse studies increased at impact sites 5 months following the survey in both marshes. Although some seed bank effects persisted 1 year, these effects were not reflected in standing vegetation. The marshes studied were therefore resilient to the impacts resulting from 3D seismic exploration because vegetation responses were short term in that they could not be identified a few months following survey completion.

  14. Effects of disturbance associated with seismic exploration for oil and gas reserves in coastal marshes

    USGS Publications Warehouse

    Howard, Rebecca J.; Wells, Christopher J.; Michot, Thomas C.; Johnson, Darren J.

    2014-01-01

    Anthropogenic disturbances in wetland ecosystems can alter the composition and structure of plant assemblages and affect system functions. Extensive oil and gas extraction has occurred in wetland habitats along the northern Gulf of Mexico coast since the early 1900s. Activities involved with three-dimensional (3D) seismic exploration for these resources cause various disturbances to vegetation and soils. We documented the impact of a 3D seismic survey in coastal marshes in Louisiana, USA, along transects established before exploration began. Two semi-impounded marshes dominated by Spartina patens were in the area surveyed. Vegetation, soil, and water physicochemical data were collected before the survey, about 6 weeks following its completion, and every 3 months thereafter for 2 years. Soil cores for seed bank emergence experiments were also collected. Maximum vegetation height at impact sites was reduced in both marshes 6 weeks following the survey. In one marsh, total vegetation cover was also reduced, and dead vegetation cover increased, at impact sites 6 weeks after the survey. These effects, however, did not persist 3 months later. No effects on soil or water properties were identified. The total number of seeds that germinated during greenhouse studies increased at impact sites 5 months following the survey in both marshes. Although some seed bank effects persisted 1 year, these effects were not reflected in standing vegetation. The marshes studied were therefore resilient to the impacts resulting from 3D seismic exploration because vegetation responses were short term in that they could not be identified a few months following survey completion.

  15. Effects of disturbance associated with seismic exploration for oil and gas reserves in coastal marshes.

    PubMed

    Howard, Rebecca J; Wells, Christopher J; Michot, Thomas C; Johnson, Darren J

    2014-07-01

    Anthropogenic disturbances in wetland ecosystems can alter the composition and structure of plant assemblages and affect system functions. Extensive oil and gas extraction has occurred in wetland habitats along the northern Gulf of Mexico coast since the early 1900s. Activities involved with three-dimensional (3D) seismic exploration for these resources cause various disturbances to vegetation and soils. We documented the impact of a 3D seismic survey in coastal marshes in Louisiana, USA, along transects established before exploration began. Two semi-impounded marshes dominated by Spartina patens were in the area surveyed. Vegetation, soil, and water physicochemical data were collected before the survey, about 6 weeks following its completion, and every 3 months thereafter for 2 years. Soil cores for seed bank emergence experiments were also collected. Maximum vegetation height at impact sites was reduced in both marshes 6 weeks following the survey. In one marsh, total vegetation cover was also reduced, and dead vegetation cover increased, at impact sites 6 weeks after the survey. These effects, however, did not persist 3 months later. No effects on soil or water properties were identified. The total number of seeds that germinated during greenhouse studies increased at impact sites 5 months following the survey in both marshes. Although some seed bank effects persisted 1 year, these effects were not reflected in standing vegetation. The marshes studied were therefore resilient to the impacts resulting from 3D seismic exploration because vegetation responses were short term in that they could not be identified a few months following survey completion.

  16. Influence of the Wax Lake Delta sediment diversion on aboveground plant productivity and carbon storage in deltaic island and mainland coastal marshes

    NASA Astrophysics Data System (ADS)

    DeLaune, R. D.; Sasser, C. E.; Evers-Hebert, E.; White, J. R.; Roberts, H. H.

    2016-08-01

    Coastal Louisiana is experiencing a significant loss of coastal wetland area due to increasing sea level rise, subsidence, sediment starvation and marsh collapse. The construction of large scale Mississippi River sediment diversions is currently being planned in an effort to help combat coastal wetlands losses at a rate of >50 km-2 y-1. The Wax Lake Delta (WLD) is currently being used as a model for evaluating potential land gain from large scale diversions of Mississippi River water and sediment. In this study, we determine the impact of the WLD diversion on plant production at newly formed islands within the delta and adjacent, mainland freshwater marshes. Plant aboveground productivity, sediment nutrient status and short term accretion were measured at three locations on a transect at each of three fresh water marsh sites along Hog Bayou and at six newly formed emerging island sites in the delta. Spring flooding has resulted in a greater increase in plant production and consequently, greater carbon sequestration potential in adjacent mainland marshes compared to the newly formed island sites, which contain less total carbon (C), nitrogen (N), and phosphorus (P) in the sediment. While sediment diversions are predicted to create land, as seen in island formation in the WLD, the greatest benefit of river sediment diversions from a carbon credit perspective might be to the adjacent freshwater mainland marshes for several reasons. Both greater plant production and sediment C accumulation are two important factors for marsh stability, while perhaps even more critical, is the prevention of the loss of stored sediment C in the marsh profile. This stored C would be lost without the introduction of freshwater, nutrients and sediment through river sediment diversion efforts.

  17. Annual net ecosystem exchanges of carbon dioxide and methane from a temperate brackish marsh: should the focus of marsh restoration be on brackish environments?

    NASA Astrophysics Data System (ADS)

    Windham-Myers, L.; Anderson, F. E.; Bergamaschi, B. A.; Ferner, M. C.; Schile, L. M.; Spinelli, G.

    2015-12-01

    The exchange and transport of carbon in tidally driven, saline marsh ecosystems provide habitat and trophic support for coastal wildlife and fisheries, while potentially accumulating and storing carbon at some of the highest rates compared to other ecosystems. However, due to the predicted rise in sea level over the next century, the preservation and restoration of estuarine habitats is necessary to compensate for their expected decline. In addition, restoration of these marsh systems can also reduce the impacts of global climate change as they assimilate as much carbon as their freshwater counterparts, while emitting less methane due to the higher concentrations of sulfate in seawater. Unfortunately, in brackish marshes, with salinity concentrations less than 18 parts per thousand (ppt), simple relationships between methane production, salinity and sulfate concentrations are not well known. Here we present the net ecosystem exchange (NEE) of carbon dioxide and methane, as calculated by the eddy covariance method, from a brackish marsh ecosystem in the San Francisco Estuary where salinity ranges from oligohaline (0.5-5 ppt) to mesohaline (5-18 ppt) conditions. Daily rates of carbon dioxide and methane NEE ranged from approximately 10 gC-CO2 m-2 d-1 and 0 mgC-CH4 m-2 d-1, during the winter to -15 gC-CO2 m-2 d-1 and 30 mgC-CH4 m-2 d-1, in the summer growing season. A comparison between similar measurements made from freshwater wetlands in the Sacramento-San Joaquin Delta found that the daily rates of carbon dioxide NEE were similar, but daily rates of methane NEE were just a small fraction (0-15%). Our research also shows that the daily fluxes of carbon dioxide and methane at the brackish marsh were highly variable and may be influenced by the tidal exchanges of seawater. Furthermore, the observed decline in methane production from summer to fall may have resulted from a rise in salinity and/or a seasonal decline in water and air temperatures. Our research goals are

  18. A Review of Tidal Salt Marsh Morphodynamics

    NASA Astrophysics Data System (ADS)

    Friedrichs, C. T.; Perry, J. E.

    2001-05-01

    We now understand that, morphologically, natural tidal marshes are generally near or progressing rapidly toward dynamic equilibrium with sediment supply, vegetative growth and relative sea level, rather than far out of equilibrium on a slow evolution toward geologic maturity. The last fifteen years have been marked by major advances in the observation of sedimentation and accretion patterns in tidal salt marshes which reinforce the above interpretation. This paper reviews and synthesizes advances since the late 1980s in our understanding of tidal salt marsh morphodynamics. Recent work has shown that allochthonous deposition patterns on the marsh are controlled primarily by source concentration, distance from that source, and duration of inundation (in turn determined by marsh elevation). Because deposition is proportional to inundation period, inorganic accretion tends to increase or decrease with accelerated or decelerated sea level rise, allowing the accretion rate to similarly fluctuate. Feedback between proximity to sediment source and duration of inundation causes relatively uniform accretion to be characterized by highest marsh elevations adjacent to tidal creeks. Since physical stress on vegetation increases with inundation, plant density and accretion of organic matter is reduced as inundation period increases, a pattern opposite to allochthonous deposition. Among systems dominated by allochthonous sediment, microtidal marshes are more reliant on storm and flood sedimentation and horizontally expand and retreat more quickly than macrotidal marshes, while the latter are more likely to persist during periods of accelerated sea level rise. The density, width and depth of salt marsh creeks all increase with increased tidal prism. Along barrier coastlines, greater tidal range is associated with more frequent inlet spacing, shallower channels, flood-dominance, and higher marsh elevation at equilibrium. Smaller tidal range results in greater inlet spacing, deeper

  19. Vegetation engineers marsh morphology through multiple competing stable states

    NASA Astrophysics Data System (ADS)

    Marani, Marco; Da Lio, Cristina; D'Alpaos, Andrea

    2013-02-01

    Marshes display impressive biogeomorphic features, such as zonation, a mosaic of extensive vegetation patches of rather uniform composition, exhibiting sharp transitions in the presence of extremely small topographic gradients. Although generally associated with the accretion processes necessary for marshes to keep up with relative sea level rise, competing environmental constraints, and ecologic controls, zonation is still poorly understood in terms of the underlying biogeomorphic mechanisms. Here we find, through observations and modeling interpretation, that zonation is the result of coupled geomorphological-biological dynamics and that it stems from the ability of vegetation to actively engineer the landscape by tuning soil elevation within preferential ranges of optimal adaptation. We find multiple peaks in the frequency distribution of observed topographic elevation and identify them as the signature of biologic controls on geomorphodynamics through competing stable states modulated by the interplay of inorganic and organic deposition. Interestingly, the stable biogeomorphic equilibria correspond to suboptimal rates of biomass production, a result coherent with recent observations. The emerging biogeomorphic structures may display varying degrees of robustness to changes in the rate of sea level rise and sediment availability, with implications for the overall resilience of marsh ecosystems to climatic changes.

  20. Adaptation as a potential response to sea-level rise: a genetic basis for salinity tolerance in populations of a coastal marsh fish

    PubMed Central

    Purcell, Kevin M; Hitch, Alan T; Klerks, Paul L; Leberg, Paul L

    2008-01-01

    Abstract Relative sea-level rise is resulting in the intrusion of saline waters into marshes historically dominated by fresh water. Saltwater intrusions can potentially affect resident marsh species, especially when storm-related tidal surges cause rapid changes in salinity. We examined the role of historical salinity exposure on the survival of Gambusia affinis from two locations in coastal Louisiana. At each location, we sampled fish populations from fresh, intermediate and brackish marshes. Individuals were then exposed to a salinity of 25‰ and survival time was measured. We found that fish from brackish and intermediate marshes had an increased tolerance to salinity stress relative to fish from freshwater environments. We then tested the descendents of fish from the fresh and brackish marshes, reared for two generation in fresh water, to determine if there was a genetic basis for differential survival. We found that descendents of individuals from brackish marshes showed elevated survivals relative to the descendents of fish with no historical exposure to salinity. The most reasonable mechanism to account for the differences in survival relative to historical exposure is genetic adaptation, suggesting that natural selection may play a role in the responses of resident marsh fishes to future increases in salinity. PMID:25567498

  1. Stable isotopes, Sr/Ca, and Mg/Ca in biogenic carbonates from Petaluma Marsh, northern California, USA

    SciTech Connect

    Ingram, B.L.; De Deckker, P.; Chivas, A.R.; Conrad, M.E.; Byrne, A.R.

    2004-10-19

    Stable isotope ({sup 18}O/{sup 16}O and {sup 13}C/{sup 12}C) and minor-element compositions (Sr/Ca and Mg/Ca ratios) of ostracodes and gastropods separated from marsh sediments from San Francisco Bay, Northern California, were used to reconstruct paleoenvironmental changes in Petaluma Marsh over the past 700 yr. The value of {delta}{sup 18}O in the marsh carbonates reflects changes in freshwater inflow, evaporation, and temperature. Mg/Ca and Sr/Ca in ostracode calcite reflect changes in both freshwater inflow and temperature, although primarily reflect temperature changes in the salinity range of about 10-35 {per_thousand}. Ostracode {delta}{sup 18}O values show a gradual increase by 5 {per_thousand} between 500 yr BR and the present, probably reflecting rising sea level and increased evaporation in the marsh. Superimposed on this trend are higher frequency Mg/Ca and {delta}{sup 18}O variations (3-4 {per_thousand}), probably reflecting changes in freshwater inflow and evaporation. A period of low Mg/Ca occurred between about 100-300 cal yr BP, suggesting wetter and cooler conditions during the Little Ice Age. Higher Mg/Ca ratios occurred 600-700 cal yr BP, indicating drier and warmer conditions during the end of the Medieval Warm Period. Both ostracode and gastropod {delta}{sup 13}C values decrease up-core, reflecting decomposition of marsh vegetation, which changes from C{sub 4} ({delta}{sup 13}C {approx} -12{per_thousand}) to CAM ({delta}{sup 13}C = -26 {per_thousand})-type vegetation over time.

  2. Species occurrence of marsh birds at Cape Cod National Seashore, Massachusetts

    USGS Publications Warehouse

    Erwin, R.M.; Conway, C.J.; Hadden, S.W.

    2002-01-01

    We initiated an inventory and a field test of a protocol that could be used for monitoring marsh birds at the Cape Cod National Seashore in eastern Massachusetts during 1999 and 2000, as part of a more comprehensive national effort. Using cassette tapes during call broadcast surveys, we visited a total of 78 survey points at freshwater, brackish, and salt marsh sites three times on the ground or in canoes during the breeding season (May-June), fall migration (September to November), and twice during winter (December-January). Observer bias on our marsh bird surveys appeared negligible. Although both auditory and visual detection of most species was low (mean ( 0.3 birds per replicate-survey point), we confirmed the presence of seven marsh species, including American Bittern (Botaurus lentiginosus), Least Bittern (Ixobrychus exilis), American Coot (Fulica americana), King Rail (Rallus elegans), Pied-billed Grebe (Podilymbus podiceps), Sora (Porzana carolina), and Virginia Rail (Railus limicola). We suspected breeding of Least Bitterns and Soras at Great Pond in Provincetown, and for Virginia Rails at Hatches Harbor, Provincetown. The most frequently detected species were Soras, Pied-billed Grebes, and Virginia Rails. We recommend using call broadcast surveys for these cryptic species to enhance their probabilities of detection.

  3. Long-term hydrologic effects on marsh plant community structure in the southern Everglades

    USGS Publications Warehouse

    Busch, David E.; Loftus, W.F.; Bass, O.L.

    1998-01-01

    Although large-scale transformation of Everglades landscapes has occurred during the past century, the patterns of association among hydrologic factors and southern Everglades freshwater marsh vegetation have not been well-defined. We used a 10-year data base on the aquatic biota of Shark Slough to classify vegetation and describe plant community change in intermediate- to long-hydroperiod Everglades marshes. Study area marsh vegetation was quantitatively grouped into associations dominated by 1) Cladium jamaicense, 2) a group of emergents including Eleocharis cellulosa, Sagittaria lancifolia, and Rhyncospora tracyi, 3) taxa associated with algal mats (Utricularia spp. and Bacopa caroliniana), and 4) the grasses Panicum hemitomon and Paspalidium geminatum. During the decade evaluated, the range of water depths that characterized our study sites approached both extremes depicted in the 40-year hydrologic record for the region. Water depths were near the long-term average during the mid-1980s, declined sharply during a late 1980s drought, and underwent a prolonged increase from 1991 through 1995. Overall macrophyte cover varied inversely with water depth, while the response of periphyton was more complex. An ordination analysis, based on plant species abundance, revealed that study area vegetation structure was associated with hydrologic patterns. Marsh plant community structure showed evidence of cyclic interannual variation corresponding to hydrologic change over the decade evaluated. Lower water depths, the occurrence of marl substrates, and high periphyton cover were correlated. These factors contributed to reduced macrophyte cover in portions of the study area from which water had been diverted.

  4. Great Lakes clams find refuge from zebra mussels in restored, lake-connected marsh (Ohio)

    USGS Publications Warehouse

    Nichols, S. Jerrine; Wilcox, Douglas A.

    2004-01-01

    Since the early 1990s, more than 95 percent of the freshwater clams once found in Lake Erie have died due to the exotic zebara mussel (Dreissena polymorpha). Zebra mussels attach themselves to native clams in large numbers, impeding the ability of the clams to eat and burrow. However, in 1996, we discovered a population of native clams in Metzger Marsh in western Lake Erie (about 50 miles [80 km] east of Toledo) that were thriving despite the longtime presence of zebra mussel in surrounding waters. At that time, Metzger Marsh was undergoing extensive restoration, including construction of a dike to replace the eroded barrier beach and of a water-control structure to maintain hydrologic connections with the lake (Wilcox and Whillans 1999). The restoration plan called for a drawdown of water levels to promote plant growth from the seedbank -- a process that would also destroy most of the clam population. State and federal resource managers recommended removing as many clams as possible to a site that was isolated from zebra mussels, and then returning them to the marsh after it was restored. We removed about 7,000 native clams in 1996 and moved them back to Metzger Marsh in 1999.

  5. DEVELOPING INDICATORS OF SALT MARSH HEALTH

    EPA Science Inventory

    We relate plant zonation in salt marshes to key ecosystem services such as erosion control and wildlife habitat. Ten salt marshes in Narragansett Bay, with similar geological bedrock and sea exchange, were identified to examine plant zonation. Sub-watersheds adjacent to the salt ...

  6. Estuaries and Tidal Marshes. Habitat Pac.

    ERIC Educational Resources Information Center

    Fish and Wildlife Service (Dept. of Interior), Washington, DC.

    This educational packet consists of an overview, three lesson plans, student data sheets, and a poster. The overview examines estuaries and tidal or salt marshes by discussing the plants and animals in these habitats, marsh productivity, benefits and management of the habitats, historical aspects, and development and pollution. A glossary and list…

  7. Spatial variation of salt-marsh organic and inorganic deposition and organic carbon accumulation: Inferences from the Venice lagoon, Italy

    NASA Astrophysics Data System (ADS)

    Roner, M.; D'Alpaos, A.; Ghinassi, M.; Marani, M.; Silvestri, S.; Franceschinis, E.; Realdon, N.

    2016-07-01

    Salt marshes are ubiquitous features of the tidal landscape governed by mutual feedbacks among processes of physical and biological nature. Improving our understanding of these feedbacks and of their effects on tidal geomorphological and ecological dynamics is a critical step to address issues related to salt-marsh conservation and response to changes in the environmental forcing. In particular, the spatial variation of organic and inorganic soil production processes at the marsh scale, a key piece of information to understand marsh responses to a changing climate, remains virtually unexplored. In order to characterize the relative importance of organic vs. inorganic deposition as a function of space, we collected 33 shallow soil sediment samples along three transects in the San Felice and Rigà salt marshes located in the Venice lagoon, Italy. The amount of organic matter in each sample was evaluated using Loss On Ignition (LOI), a hydrogen peroxide (H2O2) treatment, and a sodium hypochlorite (NaClO) treatment following the H2O2 treatment. The grain size distribution of the inorganic fraction was determined using laser diffraction techniques. Our study marshes exhibit a weakly concave-up profile, with maximum elevations and coarser inorganic grains along their edges. The amount of organic and inorganic matter content in the samples varies with the distance from the marsh edge and is very sensitive to the specific analysis method adopted. The use of a H2O2+NaClO treatment yields an organic matter density value which is more than double the value obtained from LOI. Overall, inorganic contributions to soil formation are greatest near the marsh edges, whereas organic soil production is the main contributor to soil accretion in the inner marsh. We interpret this pattern by considering that while plant biomass productivity is generally lower in the inner part of the marsh, organic soil decomposition rates are highest in the better aerated edge soils. Hence the higher

  8. Toxicity tests of effluents with marsh plants in water and sediment

    SciTech Connect

    Walsh, G.E.; Weber, D.E.; Simon, T.L.; Brashers, L.K.

    1991-01-01

    Methods are described for toxicity testing of water and sediment with two varieties of the freshwater marsh plant Echinochloa crusgalli (Linneaus) Palisot de Beauvois (Poaceae), and complex effluents. Two tests are described: a seed germination and early seedling growth test in water, and a survival and seedling growth test in natural and synthetic sediments. Effects of effluents from a sewage treatment plant, tannery, textile mill, pulp and paper mill, coking plant and sewage treatment plant included inhibition of germination, chlorophyll synthesis and growth. The tests with rooted marsh plants were sensitive to pollutants and detected toxicity of a range of pollutants in water and sediment. Synthetic sediments similar to natural sediments allowed toxicity tests to be done under carefully controlled conditions of particle size distribution, organic content, pH, electrode potential (Eh) and cation exchange capacity (CEC).

  9. Davis Pond Freshwater Prediversion Biomonitoring Study: Freshwater Fisheries and Eagles

    USGS Publications Warehouse

    Jenkins, Jill A.; Bourgeois, E. Beth; Jeske, Clint W.

    2008-01-01

    In January 2001, the construction of the Davis Pond freshwater diversion structure was completed by the U.S. Army Corps of Engineers. The diversion of freshwater from the Mississippi River is intended to mitigate saltwater intrusion from the Gulf of Mexico and to lessen the concomitant loss of wetland areas. In addition to the freshwater inflow, Barataria Bay basin would receive nutrients, increased flows of sediments, and water-borne and sediment-bound compounds. The purpose of this biomonitoring study was, therefore, to serve as a baseline for prediversion concentrations of selected contaminants in bald eagle (Haliaeetus leucocephalus) nestlings (hereafter referred to as eaglets), representative freshwater fish, and bivalves. Samples were collected from January through June 2001. Two similarly designed postdiversion studies, as described in the biological monitoring program, are planned. Active bald eagle nests targeted for sampling eaglet blood (n = 6) were generally located southwest and south of the diversion structure. The designated sites for aquatic animal sampling were at Lake Salvador, at Lake Cataouatche, at Bayou Couba, and along the Mississippi River. Aquatic animals representative of eagle prey were collected. Fish were from three different trophic levels and have varying feeding strategies and life histories. These included herbivorous striped mullet (Mugil cephalus), omnivorous blue catfish (Ictalurus furcatus), and carnivorous largemouth bass (Micropterus salmoides). Three individuals per species were collected at each of the four sampling sites. Freshwater Atlantic rangia clams (Rangia cuneata) were collected at the downstream marsh sites, and zebra mussels (Dreissena spp.) were collected on the Mississippi River. The U.S. Geological Survey (USGS) Biomonitoring of Environmental Status and Trends (BEST) protocols served as guides for fish sampling and health assessments. Fish are useful for monitoring aquatic ecosystems because they accumulate

  10. Relationships between watershed emergy flow and coastal New England salt marsh structure, function, and condition.

    PubMed

    Brandt-Williams, Sherry; Wigand, Cathleen; Campbell, Daniel E

    2013-02-01

    This study evaluated the link between watershed activities and salt marsh structure, function, and condition using spatial emergy flow density (areal empower density) in the watershed and field data from 10 tidal salt marshes in Narragansett Bay, RI, USA. The field-collected data were obtained during several years of vegetation, invertebrate, soil, and water quality sampling. The use of emergy as an accounting mechanism allowed disparate factors (e.g., the amount of building construction and the consumption of electricity) to be combined into a single landscape index while retaining a uniform quantitative definition of the intensity of landscape development. It expanded upon typical land use percentage studies by weighting each category for the intensity of development. At the RI salt marsh sites, an impact index (watershed emergy flow normalized for marsh area) showed significant correlations with mudflat infauna species richness, mussel density, plant species richness, the extent and density of dominant plant species, and denitrification potential within the high salt marsh. Over the 4-year period examined, a loading index (watershed emergy flow normalized for watershed area) showed significant correlations with nitrite and nitrate concentrations, as well as with the nitrogen to phosphorus ratios in stream discharge into the marshes. Both the emergy impact and loading indices were significantly correlated with a salt marsh condition index derived from intensive field-based assessments. Comparison of the emergy indices to calculated nitrogen loading estimates for each watershed also produced significant positive correlations. These results suggest that watershed emergy flow is a robust index of human disturbance and a potential tool for rapid assessment of coastal wetland condition.

  11. Abstracts from "Coastal Marsh Dieback in the Northern Gulf of Mexico: Extent, Causes, Consequences, and Remedies

    USGS Publications Warehouse

    Stewart, Robert E.; Proffitt, C. Edward; Charron, Tammy Michelle

    2001-01-01

    In the spring of 2000, scientists discovered a new and unprecedented loss of salt marsh vegetation in coastal Louisiana and other areas along the northern coast of the Gulf of Mexico. This dieback of salt marsh vegetation, sometimes called the brown marsh phenomenon', primarily involved the rapid browning and dieback of smooth cordgrass (Spanina alterniflora). Coastal Louisiana has already undergone huge, historical losses of coastal marsh due to both human-induced and natural factors, and the current overall rate of wetland loss (25-35 sq mi 65-91 SQ KM each year) stands to threaten Louisiana's coastal ecosystem, infrastructure, and economy. On January 11-12, 2001, individuals from Federal and State agencies, universities, and the private sector met at the conference 'Coastal Marsh Dieback in the Northern Gulf of Mexico: Extent, Causes, Consequences, and Remedies' to discuss and share information shout the marsh dieback. Presentations discussed trends in the progress of dieback during the summer of 2000 and in environmental conditions occurring at field study sites, possible causes including drought and Mississippi low flow' conditions, changes in soil conditions (salinity, the bioavailability of metals, pathogens, etc.), the potential for wetland loss that could occur if above and below normality occurs and is sustained over an extended period, advanced techniques for tracking the dieback via aerial photography and remote sensing, linkages of marsh hydrology to the dieback, and mechanisms of modeling dieback and recovery. In addition, presentations were made regarding development of a web site to facilitate information sharing and progress in preparation for requests for proposals based on an emergency appropriation by the U.S. Congress. All findings tended to support the idea that the dieback constituted a continuing environmental emergency and research and natural resource management efforts should be expended accordingly.

  12. Calcite-accumulating large sulfur bacteria of the genus Achromatium in Sippewissett Salt Marsh

    PubMed Central

    Salman, Verena; Yang, Tingting; Berben, Tom; Klein, Frieder; Angert, Esther; Teske, Andreas

    2015-01-01

    Large sulfur bacteria of the genus Achromatium are exceptional among Bacteria and Archaea as they can accumulate high amounts of internal calcite. Although known for more than 100 years, they remain uncultured, and only freshwater populations have been studied so far. Here we investigate a marine population of calcite-accumulating bacteria that is primarily found at the sediment surface of tide pools in a salt marsh, where high sulfide concentrations meet oversaturated oxygen concentrations during the day. Dynamic sulfur cycling by phototrophic sulfide-oxidizing and heterotrophic sulfate-reducing bacteria co-occurring in these sediments creates a highly sulfidic environment that we propose induces behavioral differences in the Achromatium population compared with reported migration patterns in a low-sulfide environment. Fluctuating intracellular calcium/sulfur ratios at different depths and times of day indicate a biochemical reaction of the salt marsh Achromatium to diurnal changes in sedimentary redox conditions. We correlate this calcite dynamic with new evidence regarding its formation/mobilization and suggest general implications as well as a possible biological function of calcite accumulation in large bacteria in the sediment environment that is governed by gradients. Finally, we propose a new taxonomic classification of the salt marsh Achromatium based on their adaptation to a significantly different habitat than their freshwater relatives, as indicated by their differential behavior as well as phylogenetic distance on 16S ribosomal RNA gene level. In future studies, whole-genome characterization and additional ecophysiological factors could further support the distinctive position of salt marsh Achromatium. PMID:25909974

  13. Hurricane Katrina sediment slowed elevation loss in subsiding brackish marshes of the Mississippi River delta

    USGS Publications Warehouse

    McKee, K.L.; Cherry, J.A.

    2009-01-01

    Although hurricanes can damage or destroy coastal wetlands, they may play a beneficial role in reinvigorating marshes by delivering sediments that raise soil elevations and stimulate organic matter production. Hurricane Katrina altered elevation dynamics of two subsiding brackish marshes in the Mississippi River deltaic plain by adding 3 to 8 cm of sediment to the soil surface in August 2005. Soil elevations at both sites subsequently declined due to continued subsidence, but net elevation gain was still positive at both Pearl River (+1.7 cm) and Big Branch (+0.7 cm) marshes two years after the hurricane. At Big Branch where storm sediments had higher organic matter and water contents, post-storm elevation loss was more rapid due to initial compaction of the storm layer in combination with root-zone collapse. In contrast, elevation loss was slower at Pearl River where the storm deposit (high sand content) did not compact and the root zone did not collapse. Vegetation at both sites fully recovered within one year, and accumulation of root matter at Big Branch increased 10-fold from 2005 to 2006, suggesting that the hurricane stimulated belowground productivity. Results of this study imply that hurricane sediment may benefit subsiding marshes by slowing elevation loss. However, long-term effects of hurricane sediment on elevation dynamics will depend not only on the amount of sediment deposited, but on sediment texture and resistance to compaction as well as on changes in organic matter accumulation in the years following the hurricane.

  14. Heavily Oiled Salt Marsh following the Deepwater Horizon Oil Spill, Ecological Comparisons of Shoreline Cleanup Treatments and Recovery.

    PubMed

    Zengel, Scott; Bernik, Brittany M; Rutherford, Nicolle; Nixon, Zachary; Michel, Jacqueline

    2015-01-01

    The Deepwater Horizon oil spill affected hundreds of kilometers of coastal wetland shorelines, including salt marshes with persistent heavy oiling that required intensive shoreline "cleanup" treatment. Oiled marsh treatment involves a delicate balance among: removing oil, speeding the degradation of remaining oil, protecting wildlife, fostering habitat recovery, and not causing further ecological damage with treatment. To examine the effectiveness and ecological effects of treatment during the emergency response, oiling characteristics and ecological parameters were compared over two years among heavily oiled test plots subject to: manual treatment, mechanical treatment, natural recovery (no treatment, oiled control), as well as adjacent reference conditions. An additional experiment compared areas with and without vegetation planting following treatment. Negative effects of persistent heavy oiling on marsh vegetation, intertidal invertebrates, and shoreline erosion were observed. In areas without treatment, oiling conditions and negative effects for most marsh parameters did not considerably improve over two years. Both manual and mechanical treatment were effective at improving oiling conditions and vegetation characteristics, beginning the recovery process, though recovery was not complete by two years. Mechanical treatment had additional negative effects of mixing oil into the marsh soils and further accelerating erosion. Manual treatment appeared to strike the right balance between improving oiling and habitat conditions while not causing additional detrimental effects. However, even with these improvements, marsh periwinkle snails showed minimal signs of recovery through two years, suggesting that some ecosystem components may lag vegetation recovery. Planting following treatment quickened vegetation recovery and reduced shoreline erosion. Faced with comparable marsh oiling in the future, we would recommend manual treatment followed by planting. We caution

  15. Heavily Oiled Salt Marsh following the Deepwater Horizon Oil Spill, Ecological Comparisons of Shoreline Cleanup Treatments and Recovery.

    PubMed

    Zengel, Scott; Bernik, Brittany M; Rutherford, Nicolle; Nixon, Zachary; Michel, Jacqueline

    2015-01-01

    The Deepwater Horizon oil spill affected hundreds of kilometers of coastal wetland shorelines, including salt marshes with persistent heavy oiling that required intensive shoreline "cleanup" treatment. Oiled marsh treatment involves a delicate balance among: removing oil, speeding the degradation of remaining oil, protecting wildlife, fostering habitat recovery, and not causing further ecological damage with treatment. To examine the effectiveness and ecological effects of treatment during the emergency response, oiling characteristics and ecological parameters were compared over two years among heavily oiled test plots subject to: manual treatment, mechanical treatment, natural recovery (no treatment, oiled control), as well as adjacent reference conditions. An additional experiment compared areas with and without vegetation planting following treatment. Negative effects of persistent heavy oiling on marsh vegetation, intertidal invertebrates, and shoreline erosion were observed. In areas without treatment, oiling conditions and negative effects for most marsh parameters did not considerably improve over two years. Both manual and mechanical treatment were effective at improving oiling conditions and vegetation characteristics, beginning the recovery process, though recovery was not complete by two years. Mechanical treatment had additional negative effects of mixing oil into the marsh soils and further accelerating erosion. Manual treatment appeared to strike the right balance between improving oiling and habitat conditions while not causing additional detrimental effects. However, even with these improvements, marsh periwinkle snails showed minimal signs of recovery through two years, suggesting that some ecosystem components may lag vegetation recovery. Planting following treatment quickened vegetation recovery and reduced shoreline erosion. Faced with comparable marsh oiling in the future, we would recommend manual treatment followed by planting. We caution

  16. Heavily Oiled Salt Marsh following the Deepwater Horizon Oil Spill, Ecological Comparisons of Shoreline Cleanup Treatments and Recovery

    PubMed Central

    Zengel, Scott; Bernik, Brittany M.; Rutherford, Nicolle; Nixon, Zachary; Michel, Jacqueline

    2015-01-01

    The Deepwater Horizon oil spill affected hundreds of kilometers of coastal wetland shorelines, including salt marshes with persistent heavy oiling that required intensive shoreline “cleanup” treatment. Oiled marsh treatment involves a delicate balance among: removing oil, speeding the degradation of remaining oil, protecting wildlife, fostering habitat recovery, and not causing further ecological damage with treatment. To examine the effectiveness and ecological effects of treatment during the emergency response, oiling characteristics and ecological parameters were compared over two years among heavily oiled test plots subject to: manual treatment, mechanical treatment, natural recovery (no treatment, oiled control), as well as adjacent reference conditions. An additional experiment compared areas with and without vegetation planting following treatment. Negative effects of persistent heavy oiling on marsh vegetation, intertidal invertebrates, and shoreline erosion were observed. In areas without treatment, oiling conditions and negative effects for most marsh parameters did not considerably improve over two years. Both manual and mechanical treatment were effective at improving oiling conditions and vegetation characteristics, beginning the recovery process, though recovery was not complete by two years. Mechanical treatment had additional negative effects of mixing oil into the marsh soils and further accelerating erosion. Manual treatment appeared to strike the right balance between improving oiling and habitat conditions while not causing additional detrimental effects. However, even with these improvements, marsh periwinkle snails showed minimal signs of recovery through two years, suggesting that some ecosystem components may lag vegetation recovery. Planting following treatment quickened vegetation recovery and reduced shoreline erosion. Faced with comparable marsh oiling in the future, we would recommend manual treatment followed by planting. We

  17. South San Francisco Bay tidal marsh vegetation and elevation surveys-Corkscrew Marsh, Bird Island, and Palo Alto Baylands, California, 1983

    USGS Publications Warehouse

    Orlando, James L.; Drexler, Judy Z.; Dedrick, Kent G.

    2005-01-01

    Changes in the topography and ecology of the San Francisco Bay Estuary ('Estuary') during the past 200 years have resulted in the loss of nearly 80 percent of the historical salt marsh in the region. Currently, numerous projects are being undertaken by federal, state, and local governments in an attempt to restore wetland habitat and ecosystem function at a number of locations within the Estuary. Much information is needed concerning the historical topographic and ecologic characteristics of the Estuary to facilitate these restoration efforts. This report presents previously unpublished vegetation and elevation data collected in 1983 by the California State Lands Commission at Corkscrew marsh, Bird Island, and Palo Alto Baylands, all located in South San Francisco Bay. These precise and detailed elevation and plant surveys represent a snapshot of South Bay flora before invasion by the Atlantic smooth cordgrass, Spartina alterniflora. Such precise elevation data are rare for relatively undisturbed marshes in the San Francisco Bay; publication of these historical data may facilitate wetland restoration efforts. Marsh-surface and tidal-channel elevations were determined at a total of 962 stations by differential leveling to established tidal benchmark stations at each site and referenced to Mean Lower Low Water (MLLW) relative to the National Tidal Datum Epoch (1960-78). In addition, presence or absence of nine salt marsh species, percentage plant cover, and percentage bare soil were recorded for 1-square meter quadrats at 648 stations where elevations were determined. Collectively, over the three sites, salt marsh vegetation ranged in elevation from 0.98 to 2.94 m above MLLW. S. foliosa and Salicornia virginica were the most frequently observed plant species. Atriplex patula, Deschampsia cespitosa, and Limonium californicum were each recorded at only one of the three sites.

  18. Standardized North American marsh bird monitoring protocol

    USGS Publications Warehouse

    Conway, Courtney J.

    2011-01-01

    Little is known about the population status of many marsh-dependent birds in North America but recent efforts have focused on collecting more reliable information and estimates of population trends. As part of that effort, a standardized survey protocol was developed in 1999 that provided guidance for conducting marsh bird surveys throughout North America such that data would be consistent among locations. The original survey protocol has been revised to provide greater clarification on many issues as the number of individuals using the protocol has grown. The Standardized North American Marsh Bird Monitoring Protocol instructs surveyors to conduct an initial 5-minute passive point-count survey followed by a series of 1-minute segments during which marsh bird calls are broadcast into the marsh following a standardized approach. Surveyors are instructed to record each individual bird from the suite of 26 focal species that are present in their local area on separate lines of a datasheet and estimate the distance to each bird. Also, surveyors are required to record whether each individual bird was detected within each 1-minute subsegment of the survey. These data allow analysts to use several different approaches for estimating detection probability. The Standardized North American Marsh Bird Monitoring Protocol provides detailed instructions that explain the field methods used to monitor marsh birds in North America.

  19. Chinese mitten crab surveys of San Joaquin River basin and Suisun Marsh, California, 2000

    USGS Publications Warehouse

    May, Jason T.; Brown, Larry R.

    2001-01-01

    Juvenile Chinese mitten crabs (Eriocheir sinensis) are known to use both brackish and freshwater habitats as rearing areas. The objectives of this study were to examine the habitat use and potential effects of mitten crabs in the freshwater habitats of the San Joaquin River drainage up-stream of the Sacramento-San Joaquin Delta. After several unsuccessful attempts to catch or observe mitten crabs by trapping, electrofishing, and visual observations, the study was redirected to determine the presence of crabs in the San Joaquin River (in the vicinity of Mossdale) and Suisun Marsh. Monthly surveys using baited traps in the San Joaquin River were done from June through November 2000 and in the Suisun Marsh from August through October 2000. No mitten crabs were caught in the San Joaquin River Basin and only one mitten crab was caught in Suisun Marsh. Surveys were conducted at 92 locations in the San Joaquin River Basin by deploying 352 traps for 10,752 hours of trapping effort; in Suisun Marsh, 34 locations were investigated by deploying 150 traps for 3,600 hours of trapping effort. The baited traps captured a variety of organisms, including catfishes (Ictularidae), yellowfin gobies (Acantho-gobius flavimanus), and crayfish (Decapoda). It is unclear whether the failure to capture mitten crabs in the San Joaquin River Basin and Suisun Marsh was due to ineffective trapping methods, or repre-sents a general downward trend in populations of juvenile mitten crabs in these potential rearing areas or a temporary decline related to year-class strength. Available data (since 1998) on the number of mitten crabs entrained at federal and state fish salvage facilities indicate a downward trend in the number of crabs, which may indicate a declining trend in use of the San Joaquin River Basin by juvenile mitten crabs. Continued monitoring for juvenile Chinese mitten crabs in brackish and freshwater portions of the Sacramento-San Joaquin River Basins is needed to better assess the

  20. Vegetative community control of freshwater availability: Phoenix Islands case study

    NASA Astrophysics Data System (ADS)

    Engels, M.; Heinse, R.

    2014-12-01

    On small low islands with limited freshwater resources, terrestrial plant communities play a large role in moderating freshwater availability. Freshwater demands of vegetative communities are variable depending on the composition of the community. Hence, changes to community structure from production crop introductions, non-native species invasions, and climate change, may have significant implications for freshwater availability. Understanding how vegetative community changes impact freshwater availability will allow for better management and forecasting of limited freshwater supplies. To better understand these dynamics, we investigated three small tropical atolls in the Phoenix Island Protected Area, Kiribati. Despite their close proximity, these islands receive varying amounts of rainfall, are host to different plant communities and two of the islands have abandoned coconut plantations. Using electromagnetic induction, ground penetrating radar, soil samples, climate and satellite data, we present preliminary estimates of vegetative water demand for different tropical plant communities.

  1. Marsh canopy leaf area and orientation calculated for improved marsh structure mapping

    USGS Publications Warehouse

    Ramsey III, Elijah W.; Rangoonwala, Amina; Jones, Cathleen E.; Bannister, Terri

    2015-01-01

    An approach is presented for producing the spatiotemporal estimation of leaf area index (LAI) of a highly heterogeneous coastal marsh without reliance on user estimates of marsh leaf-stem orientation. The canopy LAI profile derivation used three years of field measured photosynthetically active radiation (PAR) vertical profiles at seven S. alterniflora marsh sites and iterative transform of those PAR attenuation profiles to best-fit light extinction coefficients (KM). KM sun zenith dependency was removed obtaining the leaf angle distribution (LAD) representing the average marsh orientation and the LAD used to calculate the LAI canopy profile. LAI and LAD reproduced measured PAR profiles with 99% accuracy and corresponded to field documented structures. LAI and LAD better reflect marsh structure and results substantiate the need to account for marsh orientation. The structure indexes are directly amenable to remote sensing spatiotemporal mapping and offer a more meaningful representation of wetland systems promoting biophysical function understanding.

  2. Response of plant productivity to experimental flooding in a stable and a submerging marsh

    USGS Publications Warehouse

    Kirwan, Matthew L.; Guntenspergen, Glenn R.

    2015-01-01

    Recent models of tidal marsh evolution rely largely on the premise that plants are most productive at an optimal flooding regime that occurs when soil elevations are somewhere between mean sea level and mean high tide. Here, we use 4 years of manipulative “marsh organ” flooding experiments to test the generality of this conceptual framework and to examine how the optimal flooding frequency may change between years and locations. In our experiments, above and belowground growth of Schoenoplectus americanus was most rapid when flooded about 40% of the time in a rapidly submerging marsh and when flooded about 25% of the time in a historically stable marsh. Optimum flooding durations were nearly identical in each year of the experiment and did not differ for above and belowground growth. In contrast, above and belowground growth of Spartina patensdecreased monotonically with increased flooding in all years and at both sites, indicating no optimal flooding frequency or elevation relative to sea level. Growth patterns in both species suggest a wider tolerance to flooding, and greater biomass for a given flooding duration, in the rapidly deteriorating marsh.

  3. Classification of salt marsh vegetation using edaphic and remote sensing-derived variables

    NASA Astrophysics Data System (ADS)

    Hladik, Christine; Alber, Merryl

    2014-03-01

    Salt marsh plant communities are known for their striking patterns of vertical zonation. Two of the most important edaphic parameters that affect species distribution patterns are soil salinity and waterlogging, both of which are related to topographical variations and distance to the water. The primary objective of this study was to evaluate whether information on elevation and distance derived through remote sensing could be used to predict plant distributions in a southeastern United States salt marsh. We classified four marsh vegetation classes (tall Spartina alterniflora, medium S. alterniflora/short S. alterniflora, marsh meadow, and Borrichia frutescens/Juncus roemerianus) based on landscape metrics obtained from a light detection and ranging (LIDAR)-derived digital elevation model (DEM) and compared results to a classification based on field-collected edaphic variables. Our secondary objective was to compare the performance of linear discriminant analysis (LDA) with non-parametric classification and regression trees (CART) for these classifications. Models based on the edaphic variables soil water content, salinity, and redox potential attained accuracies of 0.62 and 0.71 with LDA and CART, respectively. When the remote sensing-derived variables DEM elevation, slope, distance to the mean high water line, and distance to upland area were used, classification accuracies improved to 0.78 for LDA and 0.79 for CART. Our results suggest that remote sensing-derived metrics can capture edaphic gradients effectively, which makes them especially suited to landscape level analyses of salt marsh plant habitats, with potential application for predicting the effects of sea level rise on salt marsh plant distribution.

  4. Post-mortem ecosystem engineering by oysters creates habitat for a rare marsh plant.

    PubMed

    Guo, Hongyu; Pennings, Steven C

    2012-11-01

    Oysters are ecosystem engineers in marine ecosystems, but the functions of oyster shell deposits in intertidal salt marshes are not well understood. The annual plant Suaeda linearis is associated with oyster shell deposits in Georgia salt marshes. We hypothesized that oyster shell deposits promoted the distribution of Suaeda linearis by engineering soil conditions unfavorable to dominant salt marsh plants of the region (the shrub Borrichia frutescens, the rush Juncus roemerianus, and the grass Spartina alterniflora). We tested this hypothesis using common garden pot experiments and field transplant experiments. Suaeda linearis thrived in Borrichia frutescens stands in the absence of neighbors, but was suppressed by Borrichia frutescens in the with-neighbor treatment, suggesting that Suaeda linearis was excluded from Borrichia frutescens stands by interspecific competition. Suaeda linearis plants all died in Juncus roemerianus and Spartina alterniflora stands, regardless of neighbor treatments, indicating that Suaeda linearis is excluded from these habitats by physical stress (likely water-logging). In contrast, Borrichia frutescens, Juncus roemerianus, and Spartina alterniflora all performed poorly in Suaeda linearis stands regardless of neighbor treatments, probably due to physical stresses such as low soil water content and low organic matter content. Thus, oyster shell deposits play an important ecosystem engineering role in influencing salt marsh plant communities by providing a unique niche for Suaeda linearis, which otherwise would be rare or absent in salt marshes in the southeastern US. Since the success of Suaeda linearis is linked to the success of oysters, efforts to protect and restore oyster reefs may also benefit salt marsh plant communities.

  5. Component greenhouse gas fluxes and radiative balance from two deltaic marshes in Louisiana: Pairing chamber techniques and eddy covariance

    USGS Publications Warehouse

    Krauss, Ken W.; Holm, Guerry O.; Perez, Brian C.; McWhorter, David E.; Cormier, Nicole; Moss, Rebecca; Johnson, Darren; Neubauer, Scott C; Raynie, Richard C

    2016-01-01

    Coastal marshes take up atmospheric CO2 while emitting CO2, CH4, and N2O. This ability to sequester carbon (C) is much greater for wetlands on a per-area basis than from most ecosystems, facilitating scientific, political, and economic interest in their value as greenhouse gas sinks. However, the greenhouse gas balance of Gulf of Mexico wetlands is particularly understudied. We describe the net ecosystem exchange (NEEc) of CO2 and CH4 using eddy covariance (EC) in comparison with fluxes of CO2, CH4, and N2O using chambers from brackish and freshwater marshes in Louisiana, USA. From EC, we found that 182 g C m-2 y-1 was lost through NEEc from the brackish marsh. Of this, 11 g C m-2 y-1 resulted from net CH4 emissions and the remaining 171 g C m-2 y-1 resulted from net CO2 emissions. In contrast, -290 g C m2 y-1 was taken up through NEEc by the freshwater marsh, with 47 g C m-2 y-1 emitted as CH4 and -337 g C m-2 y-1 taken up as CO2. From chambers, we discovered that neither site had large fluxes of N2O. Sustained-flux greenhouse gas accounting metrics indicated that both marshes had a positive (warming) radiative balance, with the brackish marsh having a substantially greater warming effect than the freshwater marsh. That net respiratory emissions of CO2 and CH4 as estimated through chamber techniques were 2-4 times different from emissions estimated through EC requires additional understanding of the artifacts created by different spatial and temporal sampling footprints between techniques.

  6. Acetate concentrations and oxidation in salt marsh sediments

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Acetate concentrations and rates of acetate oxidation and sulfate reduction were measured in S. alterniflora sediments in New Hampshire and Massachusetts. Pore water extracted from cores by squeezing or centrifugation contained in greater than 0.1 mM acetate and, in some instances, greater than 1.0 mM. Pore water sampled nondestructively contained much less acetate, often less than 0.01 mM. Acetate was associated with roots, and concentrations varied with changes in plant physiology. Acetate turnover was very low whether whole core or slurry incubations were used. Radiotracers injected directly into soils yielded rates of sulfate reduction and acetate oxidation not significantly different from core incubation techniques. Regardless of incubation method, acetate oxidation did not account for a substantial percentage of sulfate reduction. These results differ markedly from data for unvegetated coastal sediments where acetate levels are low, oxidation rate constants are high, and acetate oxication rates greatly exceed rates of sulfate reduction. The discrepancy between rates of acetate oxidation and sulfate reduction in these marsh soils may be due either to the utilization of substrates other than acetate by sulfate reducers or artifacts associated with measurements of organic utilization by rhizosphere bacteria. Care must be taken when interpreting data from salt marsh sediments since the release of material from roots during coring may affect the concentrations of certain compounds as well as influencing results obtained when sediment incubations are employed.

  7. Salt marsh recovery and oil spill remediation after in-situ burning: effects of water depth and burn duration.

    PubMed

    Lin, Qianxin; Mendelssohn, Irving A; Carney, Kenneth; Bryner, Nelson P; Walton, William D

    2002-02-15

    Effects of water depth, burn duration, and diesel fuel concentration on the relationship between recovery of marsh vegetation, soil temperature, and oil remediation during in-situ burning of oiled mesocosms were investigated. The water depth over the soil surface during in-situ burning was a major factor controlling recovery of the salt marsh grass, Spartina alterniflora. Ten centimeters of water overlying the soil surface was sufficient to protect the marsh soil from burn impacts with soil temperatures <37 degrees C and high plant survival rate. In contrast, a water table 10 cm below the soil surface resulted in mean soil temperatures > 100 degrees C at the 2-cm soil depth, which completely inhibited the post-burn recovery of S. alterniflora. Although poor plant recovery was also apparent in the treatments with 0 and 2 cm of water over the soil surface, this result was likely due to the chemical stress of the diesel fuel used to create the fire rather than the heat, per se, which never reached the estimated lethal temperature of 60 degrees C. In-situ burning effectively removed more than 95% of floating oil from the water surface. Thus, in-situ burning prevented the oil from potentially contaminating adjacent habitats. However, in-situ burning did not effectively remediate the oil that had penetrated the soil.

  8. The greenhouse gas flux and potential global warming feedbacks of a northern macrotidal and microtidal salt marsh

    USGS Publications Warehouse

    Chmura, Gail L.; Kellman, Lisa; Guntenspergen, Glenn R.

    2011-01-01

    Conversion of wetlands by drainage for agriculture or other anthropogenic activities could have a negative or positive feedback to global warming (GWF). We suggest that a major predictor of the GWF is salinity of the wetland soil (a proxy for available sulfate), a factor often ignored in other studies. We assess the radiative balance of two northern salt marshes with average soil salinities > 20 ppt, but with high (macro-) and low (micro-) tidal amplitudes. The flux of greenhouse gases from soils at the end of the growing season averaged 485 ± 253 mg m-2 h-1, 13 ± 30 μg m-2 h-1, and 19 ± 58 μg m-2 h-1 in the microtidal marsh and 398 ± 201 mg m-2 h-1, 2 ± 26 μg m-2 h-1, and 35 ± 77 μg m-2 h-1 in the macrotidal marsh for CO2, N2O, and CH4, respectively. High rates of C sequestration mean that loss of these marshes would have a radiative balance of - 981 CO2_eq. m-2 yr-1 in the microtidal and - 567 CO2_eq. m-2 yr-1 in the macrotidal marsh.

  9. What's the Use of a Salt Marsh?

    ERIC Educational Resources Information Center

    Van Raalte, Charlene

    1977-01-01

    Summarizes information about salt marshes, including descriptions of their development and structure, details of their values in terms of commercial fishing, stabilization of coastal zones, "reclamation" for grazing and cropfields, recreation and aesthetics. (CS)

  10. TOWARDS DEVELOPING INDICATORS OF SALT MARSH CONDITION

    EPA Science Inventory

    Five ecosystem services: water quality maintenance, erosion and flood control, recreation and cultural use, wildlife habitat, and food production were identified from the literature as key services to characterize salt marshes of high integrity. We describe a systems approach to ...

  11. Oregon Salt Marshes: How Blue are They?

    EPA Science Inventory

    Two important ecosystem services of wetlands are carbon sequestration and filtration of nutrients and particulates. We quantified the carbon and nitrogen accumulation rates in salt marshes at 135 plots distributed across eight estuaries located in Oregon, USA. Net carbon and ...

  12. Effects of prescribed burning on marsh-elevation change and the risk of wetland loss

    USGS Publications Warehouse

    McKee, Karen L.; Grace, James B.

    2012-01-01

    Marsh-elevation change is the net effect of biophysical processes controlling inputs versus losses of soil volume. In many marshes, accumulation of organic matter is an important contributor to soil volume and vertical land building. In this study, we examined how prescribed burning, a common marsh-management practice, may affect elevation dynamics in the McFaddin National Wildlife Refuge, Texas by altering organic-matter accumulation. Experimental plots were established in a brackish marsh dominated by Spartina patens, a grass found throughout the Gulf of Mexico and Atlantic marshes. Experimental plots were subjected to burning and nutrient-addition treatments and monitored for 3.5 years (April 2005 – November 2008). Half of the plots were burned once in 2006; half of the plots were fertilized seasonally with nitrogen, phosphorus, and potassium. Before and after the burns, seasonal measurements were made of soil physicochemistry, vegetation structure, standing and fallen plant biomass, aboveground and belowground production, decomposition, and accretion and elevation change (measured with Surface Elevation Tables (SET)). Movements in different soil strata (surface, root zone, subroot zone) were evaluated to identify which processes were contributing to elevation change. Because several hurricanes occurred during the study period, we also assessed how these storms affected elevation change rates. The main findings of this study were as follows: 1. The main drivers of elevation change were accretion on the marsh surface and subsurface movement below the root zone, but the relative influence of these processes varied temporally. Prior to Hurricanes Gustav and Ike (September 2008), the main driver was subsurface movement; after the hurricane, both accretion and subsurface movement were important. 2. Prior to Hurricanes Gustav and Ike, rates of elevation gain and accretion above a marker horizon were higher in burned plots compared to nonburned plots, whereas

  13. Performance of wetland forbs transplanted into marshes amended with oil sands processed water.

    PubMed

    Mollard, Federico P O; Roy, Marie-Claude; Foote, A Lee

    2015-03-01

    Companies mining oil sands in Alberta (Canada) face the challenge of reclaiming wetlands under water use restrictions. Wetland reclamation after mining will generate marshes characterized by elevated salinity and residual hydrocarbons. Oil sands wetlands are also impoverished in forbs, suggesting that their establishment may be constrained by water chemistry. We transplanted skullcap, mint, and smartweed plants into experimental trenches that simulated two possible reclamation scenarios: wetlands amended with on-site freshwater or with oil sands processed water (OSPW). The main scientific question was is OSPW a suitable water amendment as freshwater for reclaiming wetland forb habitat? As a surrogate of plant health, we studied plant ecophysiology (gas exchange, leaf fluorescence), leaf chemistry, and plant growth. Results showed that there were no differences in skullcap mineral contents under either treatment; however, mint and smartweed plants subjected to OSPW had a significantly higher Na content than those under freshwater. Smartweed dark-adapted leaf fluorescence showed a reduced photochemistry in OSPW relative to plants in freshwater. Mint leaves exhibited lower stomatal conductance in OSPW than in freshwater, a condition that negatively affected transpiration and carboxylation. Skullcap plants grown in OSPW had lower net CO2 assimilation rates than those in freshwater but did not show any other ecophysiological difference between treatments. Mint plants experienced growth reductions (i.e., shoot height) in OSPW. Our results show, for the first time in the literature, that plants photosynthetic capacity was negatively affected by OSPW. Conditions in OSPW proved to be suitable for establishment as transplanted forbs showed 100 % survival after the first growing season. However, impaired physiological functions in plants subjected to OSPW indicated that OSPW amendment created a less hospitable habitat for wetland forbs than freshwater. PMID:25697311

  14. Consequences of climate change, eutrophication, and other anthropogenic impacts to coastal salt marshes: multiple stressors reduce resiliency and sustainability

    NASA Astrophysics Data System (ADS)

    Watson, E. B.; Wigand, C.; Nelson, J.; Davey, E.; Van Dyke, E.; Wasson, K.

    2011-12-01

    Coastal salt marshes provide a wide variety of ecosystem services, including habitat for protected vertebrates and ecologically valuable invertebrate fauna, flood protection, and improvements in water quality for adjacent marine and estuarine environments. Here, we consider the impacts of future sea level rise combined with other anthropogenic stressors to salt marsh sustainability through the implementation of field and laboratory mesocosms, manipulative experiments, correlative studies, and predictive modeling conducted in central California and southern New England salt marshes. We report on measurements of soil respiration, decomposition, sediment accumulation, and marsh elevation, which considered jointly suggest an association between nitrate input and marsh elevation loss resulting from mineralization of soil organic matter. Furthermore, use of imaging techniques (CT scans) has shown differences in belowground root and rhizome structure associated with fertilization, resulting in a loss of sediment cohesion promoted by fine root structure. Additionally, field and greenhouse mesocosm experiments have provided insight into the specific biogeochemical processes responsible for plant mortality at high immersion or salinity levels. In conclusion, we have found that poor water quality (i.e. eutrophication) leads to enhanced respiration and decomposition of soil organic matter, which ultimately contributes to a loss of salt marsh sustainability. However, marsh deterioration studied at field sites (Jamaica Bay, NY and Elkhorn Slough, CA) is associated not only with enhanced nutrient loads, but also increased immersion due to tidal range increases resulting from dredging. To ensure the continuation of the ecosystem services provided by tidal wetlands and to develop sustainable management strategies that provide favorable outcomes under a variety of future sea level rise and land use scenarios, we need to develop a better understanding of the relative impacts of the

  15. Marsh Sediment and Species Composition in Hudson River Tidal Marshes: Change over the Last Millennium

    NASA Astrophysics Data System (ADS)

    Peteet, D. M.; Pederson, D. C.; Kurdyla, D.; Guilderson, T.; Kleinstein, D.; Higgiston, P.

    2004-05-01

    Understanding the signature of the Hudson River watershed to changes in the hydrological cycle is possible using marsh archives downriver. A suite of lower Hudson River tidal marshes is examined to identify changes in organic vs. inorganic content in the context of environmental change. Complex vegetational changes in the various marshes, identified by pollen and macrofossil studies, demonstrate the response to natural climate variability as well as human-induced changes of the last four centuries. While Piermont Marsh shows high inorganic content related to drought during the Medieval Warm Period, the subsequent Little Ice Age that followed shows a drop in this input. However, the nineteenth century of landscape disturbance reveals an increase again in upland watershed inorganics, followed by decline in the twentieth century. Jamaica Bay and Staten Island marshes to date show reduced inorganic input to these wetlands from the watershed up to the twentieth century. Jamaica Bay, NY marsh cores indicate increases in organic content in the twentieth century which may be related to dramatic land use changes in the surrounding New York area. An increase in the sand-sized fraction of organics may be attributed to the changes in local marsh plant production, but multiple hypotheses are being tested. Comparisons with adjacent Hackensack Meadowlands marshes demonstrate that local marsh plant production can dramatically alter the organic content and thus the carbon sequestration in the marshes. Species compositional changes in most of the marshes in the twentieth century resulted in a loss of biodiversity with the invasive increase of Typha (cattail) and Phragmites. This loss is linked to eutrophication of the estuary.

  16. Are historical pollution events on the Delaware River recorded as geochemical marker horizons in adjacent marsh sediments

    SciTech Connect

    Walsh, R.; Yemane, K. . Dept. of Geology Bryn Mawr Coll., PA . Geology Dept.)

    1993-03-01

    In the last two hundred years of massive population and industrial growth, the Delaware River has been subjected to several minor and major pollutions. For example, as recently as June 1989 the tanker Presidente Rivera spilled an estimated hundred thousand to million gallons of oil into the river. In the Lower Delaware Basin tides affect the river and its tributaries up to a hundred kilometers inland. The freshwater marshes adjacent to the creeks that empty into the Delaware River experience diurnal tidal sedimentation. It is thus expected that the pollutants in the waterway would be transported via the tidal channels into the adjacent wetlands. The high sedimentation rate, clay-rich sediments, accumulation of terrestrial organic matter, and the low energy environments in these marshes should ensure rapid burial which may preserve some of the contaminants transported into the marshes. To test this hypothesis the authors selected a freshwater marsh along the Raccoon Creek just south of Philadelphia in New Jersey, and collected a 2 m core from a relatively undisturbed portion of the marsh, about 15 m away from the tidal channels. The pH averages around 6.2, ranges from 5.5--6.8, but, is slightly higher in the middle part of the core. The bulk mineralogy comprises chlorite, illite, kaolinite, feldspars and quartz. Vivianite and vermiculite were observed at places lower in the core. Graminae dominates the pollen/spore taxa. The organic debris is unaltered throughout the core. The authors will measure heavy metals and toxic chemicals on < 2[mu]m clay fractions. Also pristane/phytane ratios, indicative of hydrocarbons (crude oils), will be determined on organic matter extracts. The authors will compare and correlate the results to historically documented events of chemical and petroleum spills on the Delaware River.

  17. Effect of spring-neap tide and evaporation on the salt dynamics in estuarine marshes

    NASA Astrophysics Data System (ADS)

    Zhang, Chenming; Shen, Chengji; Xin, Pei; Li, Ling

    2016-04-01

    Salt dynamics in estuarine tidal marshes are strongly associated with their intrinsic hydrological processes and ecological behaviors, which are not well understood. Numerical simulations were carried out to investigate the transport and distribution of pore-water and salt in a vertical cross section perpendicular to a tidal creek that subjects to spring-neap tide and evaporation. Vaporizing pore-water from the unsaturated soil surface with salt left in, the time-variant actual evaporation is affected by aerodynamic factors as well as soil conditions, including pore-water saturation, salinity and the thickness of salt precipitation above the soil surface (efflorescence). Different simulation cases were performed by adjusting the potential evaporation rate, tidal signals, marsh platform slope and soil properties. The simulation analysis indicates that, the tide-averaged soil salinity increases with the reduction of inundation period under a spring-neap tide cycle. As the salt accumulated by evaporation could leave soil from seepage back to seawater during ebbtide, the pore-water salinity at the surface within the tidal range remains below solubility. Coarse soils tend to have more intensified seepage flow and hence less pore-water salinity than fine soils. With the presence of hyper-saline soil and efflorescence, salt flat develops only in the area where capillary connection between evaporating surface and water table is maintained while tidal inundation absent. On the contrary, the supratidal marsh where hydrological connections are disrupted keeps a relatively low soil salinity (40-60 ppt) and pore-water saturation as evaporation remains low throughout the tidal cycles.

  18. Forms and accumulation of soil P in natural and recently restored peatlands - Upper Klamath Lake, Oregon, USA

    USGS Publications Warehouse

    Graham, S.A.; Craft, C.B.; McCormick, P.V.; Aldous, A.

    2005-01-01

    Forms, amounts, and accumulation of soil phosphorus (P) were measured in natural and recently restored marshes surrounding Upper Klamath Lake located in south-central Oregon, USA to determine rates of P accumulation in natural marshes and to assess changes in P pools caused by long-term drainage in recently restored marshes. Soil cores were collected from three natural marshes and radiometrically dated to determine recent (l37Cs-based) and long-term (210Pb-based) rates of peat accretion and P accumulation. A second set of soil cores collected from the three natural marshes and from three recently restored marshes was analyzed using a modification of the Hedley procedure to determine the forms and amounts of soil P. Total P in the recently restored marshes (222 to 311 ??g cm-3) was 2-3 times greater than in the natural marshes (103 to 117 ??g cm-3), primarily due to greater bulk density caused by soil subsidence, a consequence of long-term marsh drainage. Occluded Fe- and Al-bound Pi, calcium-bound Pi and residual P were 4 times, 22 times, and 5 times greater, respectively, in the recently restored marshes. More than 67% of the P pool in both the natural and recently restored marshes was present in recalcitrant forms (humic-acid P o and residual P) that provide long-term P storage in peat. Phosphorus accumulation in the natural marshes averaged 0.45 g m-2 yr-1 (137Cs) and 0.40 g m-2 yr-1 (210Pb), providing a benchmark for optimizing P sequestration in the recently restored marshes. Effective P sequestration in the recently restored marshes, however, will depend on re-establishing equilibrium between the P-enriched soils and the P concentration of floodwaters and a hydrologie regime similar to the natural marshes. ?? 2005, The Society of Wetland Scientists.

  19. Physical Stress, Not Biotic Interactions, Preclude an Invasive Grass from Establishing in Forb-Dominated Salt Marshes

    PubMed Central

    He, Qiang; Cui, Baoshan; An, Yuan

    2012-01-01

    Background Biological invasions have become the focus of considerable concern and ecological research, yet the relative importance of abiotic and biotic factors in controlling the invasibility of habitats to exotic species is not well understood. Spartina species are highly invasive plants in coastal wetlands; however, studies on the factors that control the success or failure of Spartina invasions across multiple habitat types are rare and inconclusive. Methodology and Principal Findings We examined the roles of physical stress and plant interactions in mediating the establishment of the smooth cordgrass, Spartina alterniflora, in a variety of coastal habitats in northern China. Field transplant experiments showed that cordgrass can invade mudflats and low estuarine marshes with low salinity and frequent flooding, but cannot survive in salt marshes and high estuarine marshes with hypersaline soils and infrequent flooding. The dominant native plant Suaeda salsa had neither competitive nor facilitative effects on cordgrass. A common garden experiment revealed that cordgrass performed significantly better when flooded every other day than when flooded weekly. These results suggest that physical stress rather than plant interactions limits cordgrass invasions in northern China. Conclusions and Significance We conclude that Spartina invasions are likely to be constrained to tidal flats and low estuarine marshes in the Yellow River Delta. Due to harsh physical conditions, salt marshes and high estuarine marshes are unlikely to be invaded. These findings have implications for understanding Spartina invasions in northern China and on other coasts with similar biotic and abiotic environments. PMID:22432003

  20. TYPES OF SALT MARSH EDGE AND EXPORT OF TROPHIC ENERGY FROM MARSHES TO DEEPER HABITATS

    EPA Science Inventory

    We quantified nekton and estimated trophic export at salt marshes with both erosional and depositional edges at the Goodwin Islands (York River, Virginia, USA). At depositional-edge marshes, we examined trophic flows through quantitative sampling with 1.75 m2 drop rings, and thro...

  1. Salt marsh monitoring from remote sensing: vegetation and morphology

    NASA Astrophysics Data System (ADS)

    Belluco, E.; Camuffo, M.; D`Alpaos, A.; Silvestri, S.; Marani, A.; Marani, M.

    2003-04-01

    Lagoons are very sensitive components of coastal areas with high environmental value and a key buffer role between land and sea. In the present work we use remote sensing to study and monitor the Lagoon of Venice (Italy), an environment of great historical, environmental and socio-economic importance. The current state of the lagoon is the result of invasive human interventions during at least four centuries and many of the most recent interventions (e.g. artificial channel dredging and the construction/extensions of jetties at the lagoon mouths) showed the sensitivity and the importance of salt marshes as indicators of the trends of the entire tidal environment. Salt marshes, vegetated surfaces periodically flooded by the tide, were in fact deeply affected by such changes, and have virtually disappeared in some areas of the lagoon. We show that remote sensing is the ideal instrument for the monitoring, over large scales and with high resolutions, of these areas of difficult accessibility. We study vegetation and morphological changes of salt marshes at different spatial and temporal scales using accurately georeferenced field observations coupled to aerial (ROSIS, MIVIS, CASI, and LiDar) and satellite (IKONOS and QuickBird) remotely sensed data. We then analyze the spatial distribution and variability of some vegetation indicators (e.g. NDVI) and the typical patterns of vegetation clusters obtained through classification and unmixing techniques. Finally, we study the relationships between vegetation species and organisation and various topographic/geomorphic parameters (e.g. soil elevation, proximity to the channel network, etc.).

  2. Seasonal Variation in the Quality of Dissolved and Particulate Organic Matter Exchanged Between a Salt Marsh and Its Adjacent Estuary

    NASA Astrophysics Data System (ADS)

    Osburn, C. L.; Mikan, M.; Etheridge, J. R.; Burchell, M. R.; Birgand, F.

    2015-12-01

    Salt marshes are transitional ecosystems between terrestrial and marine environments. Along with mangroves and other vegetated coastal habitats, salt marshes rank among the most productive ecosystems on Earth, with critical global importance for the planet's carbon cycle. Fluorescence was used to examine the quality of dissolved and particulate organic matter (DOM and POM) exchanging between a tidal creek in a created salt marsh and its adjacent estuary in eastern North Carolina, USA. Samples from the creek were collected hourly over four tidal cycles in May, July, August, and October of 2011. Absorbance and fluorescence of chromophoric DOM (CDOM) and of base-extracted POM (BEPOM) served as the tracers for organic matter quality while dissolved organic carbon (DOC) and base-extracted particulate organic carbon (BEPOC) were used to compute fluxes. Fluorescence was modeled using parallel factor analysis (PARAFAC) and principle components analysis (PCA) of the PARAFAC results. Of nine PARAFAC components modeled, we used multiple linear regression to identify tracers for recalcitrant DOM; labile soil-derived source DOM; detrital POM; and planktonic POM. Based on mass balance, recalcitrant DOC export was 86 g C m-2 yr-1 and labile DOC export was 49 g C m-2 yr-1. The marsh also exported 41 g C m-2 yr-1 of detrital terrestrial POC, which likely originated from lands adjacent to the North River estuary. Planktonic POC export from the marsh was 6 g C m-2 yr-1. Using the DOM and POM quality results obtained via fluorescence measurements and scaling up to global salt marsh area, we estimated that the potential release of CO2 from the respiration of salt marsh DOC and POC transported to estuaries could be 11 Tg C yr-1, roughly 4% of the recently estimated CO2 release for marshes and estuaries globally.

  3. Spatial and Temporal Variability in Carbon Dioxide Fluxes at Three Coastal Marshes Along a Salinity Gradient in the Northern Gulf of Mexico: how Susceptible are Coastal Marshes in the Region to Future Wariming?

    NASA Astrophysics Data System (ADS)

    Mortazavi, B.; Wilson, B.; Kiene, R. P.

    2014-12-01

    Carbon gas fluxes in tidal marshes vary spatially and temporally because of vegetation cover, subsurface biogeochemical processes, and environmental forcing and predicting the impact of climate change on greenhouse gas fluxes from wetlands remains challenging. We examined how ecosystem carbon gas exchange varies along a salinity gradient (0-32 ppt) in three marshes along an estuary in the northern Gulf of Mexico, USA. Midday net ecosystem exchange (where a negative rate indicates net carbon assimilated through photosynthesis) was greatest at the most freshwater site (4.8 ± 0.3 μmol CO2 m-2 s-1), followed by the saline (2.8 ± 1.0 μmol CO2 m-2 s-1) and brackish (1.4 ± 0.6 μmol CO2 m-2 s-1) sites. However, net ecosystem exchange integrated diurnally revealed each marsh to be a net CO2 source to the atmosphere as a result of high ecosystem respiration with no significant difference across the fresh (105.5 ± 28.9 mmol CO2 m-2 d-1), brackish (100.1 ± 36.5 mmol CO2 m-2 d-1), and salt marsh (78.3 ± 28.6 mmol CO2 m-2 d-1) sites. The large loss of carbon from these ecosystems is suggested to be a contributing factor to the disappearances of marshes in the region. Fifty percent of coastal Alabama wetlands, for examples, have disappeared from 1780 to 1980, and between 1955 and 1979 the percent loss (29%) in the region has exceeded the national average by a factor of three. While future warming is not expected to impact carbon assimilation significantly, our warming simulations suggest that carbon loss in these ecosystems can be enhanced by 12 to 26%, potentially exasperating the loss of marshes in the region.

  4. Fiddler crabs facilitate Spartina alterniflora growth, mitigating periwinkle overgrazing of marsh habitat.

    PubMed

    Gittman, Rachel K; Keller, Danielle A

    2013-12-01

    Ecologists have long been interested in identifying and testing factors that drive top-down or bottom-up regulation of communities. Most studies have focused on factors that directly exert top-down (e.g., grazing) or bottom-up (e.g., nutrient availability) control on primary production. For example, recent studies in salt marshes have demonstrated that fronts of Littoraria irrorata periwinkles can overgraze Spartina alterniflora and convert marsh to mudflat. The importance of indirect, bottom-up effects, particularly facilitation, in enhancing primary production has also recently been explored. Previous field studies separately revealed that fiddler crabs, which burrow to depths of more than 30 cm, can oxygenate marsh sediments and redistribute nutrients, thereby relieving the stress of anoxia and enhancing S. alterniflora growth. However, to our knowledge, no studies to date have explored how nontrophic facilitators can mediate top-down effects (i.e., grazing) on primary-producer biomass. We conducted a field study testing whether fiddler crabs can facilitate S. alterniflora growth sufficiently to mitigate overgrazing by periwinkles and thus sustain S. alterniflora marsh. As inferred from contrasts to experimental plots lacking periwinkles and fiddler crabs, periwinkles alone exerted top-down control of total aboveground biomass and net growth of S. alterniflora. When fiddler crabs were included, they counteracted the effects of periwinkles on net S. alterniflora growth. Sediment oxygen levels were greater and S. alterniflora belowground biomass was lower where fiddler crabs were present, implying that fiddler crab burrowing enhanced S. alterniflora growth. Consequently, in the stressful interior S. alterniflora marsh, where subsurface soil anoxia is widespread, fiddler crab facilitation can mitigate top-down control by periwinkles and can limit and possibly prevent loss of biogenically structured marsh habitat and its ecosystem services. PMID:24597218

  5. Fiddler crabs facilitate Spartina alterniflora growth, mitigating periwinkle overgrazing of marsh habitat.

    PubMed

    Gittman, Rachel K; Keller, Danielle A

    2013-12-01

    Ecologists have long been interested in identifying and testing factors that drive top-down or bottom-up regulation of communities. Most studies have focused on factors that directly exert top-down (e.g., grazing) or bottom-up (e.g., nutrient availability) control on primary production. For example, recent studies in salt marshes have demonstrated that fronts of Littoraria irrorata periwinkles can overgraze Spartina alterniflora and convert marsh to mudflat. The importance of indirect, bottom-up effects, particularly facilitation, in enhancing primary production has also recently been explored. Previous field studies separately revealed that fiddler crabs, which burrow to depths of more than 30 cm, can oxygenate marsh sediments and redistribute nutrients, thereby relieving the stress of anoxia and enhancing S. alterniflora growth. However, to our knowledge, no studies to date have explored how nontrophic facilitators can mediate top-down effects (i.e., grazing) on primary-producer biomass. We conducted a field study testing whether fiddler crabs can facilitate S. alterniflora growth sufficiently to mitigate overgrazing by periwinkles and thus sustain S. alterniflora marsh. As inferred from contrasts to experimental plots lacking periwinkles and fiddler crabs, periwinkles alone exerted top-down control of total aboveground biomass and net growth of S. alterniflora. When fiddler crabs were included, they counteracted the effects of periwinkles on net S. alterniflora growth. Sediment oxygen levels were greater and S. alterniflora belowground biomass was lower where fiddler crabs were present, implying that fiddler crab burrowing enhanced S. alterniflora growth. Consequently, in the stressful interior S. alterniflora marsh, where subsurface soil anoxia is widespread, fiddler crab facilitation can mitigate top-down control by periwinkles and can limit and possibly prevent loss of biogenically structured marsh habitat and its ecosystem services.

  6. Vegetation change on a northeast tidal marsh: Interaction of sea-level rise and marsh accretion

    SciTech Connect

    Warren, R.S.; Niering, W.A. )

    1993-01-01

    Increasing rates of relative sea-level rise (RSL) have been linked to coastal wetland losses along the Gulf of Mexico and elsewhere. Rapidly rising RSL may be affecting New England tidal marshes. Studies of the Wequetequock-Pawcatuck tidal marshes over four decades have documented dramatic changes in vegetation apparently related primarily to differential rates of marsh accretion and sea-level rise though sediment supply and anthropogenic modifications of the system may also be involved. When initially studied in 1947-1948 the high marsh supported a Juncus gerardi-Spartina patens belting pattern typical of many New England salt marshes. On most of the marsh complex the former Juncus belt has now been replaced by forbs, primarily Triglochin maritima, while the former S. patens high marsh is now a complex of vegetation types-stunted Spartina alterniflora, Distichlis spicata, forbs, and relic stands of S. patens. The mean surface elevation of areas where the vegetation has changed is significantly lower than that of areas still supporting the earlier pattern (4.6 vs. 13.9 cm above mean tide level). The differences in surface elevation reflect differences in accretion of marsh peat. Stable areas have been accreting at the rate of local sea-level rise, 2.0-2.5 mm/yr at least since 1938; changed areas have accreted at about one half that rate. Lower surface elevations result in greater frequency and duration of tidal flooding, and thus in increased peat saturation, salinity, and sulfide concentrations, and in decreased redox potential, as directly measured over the growing season at both changed and stable sites. These edaphic changes may have combined to favor establishment of a wetter, more open vegetation type. Similar changes have been observed on other Long Island Sound marshes and may be a model for the potential effects of sea-level rise on New England tidal salt marshes. 39 refs., 4 figs., 1 tab.

  7. Marsh Edge Erosion Effects in Coupled Barrier Island-Marsh Systems

    NASA Astrophysics Data System (ADS)

    Lauzon, R.; Moore, L. J.; Murray, A. B.; Walters, D.; Fagherazzi, S.; Mariotti, G.

    2014-12-01

    While until recently marsh loss was largely thought to be due to an inability for vertical accretion rates to match rates of sea level rise, marsh edge erosion by wind waves is now thought to be the leading cause of marsh loss worldwide. To better understand the response of coastal ecosystems to future changes in sea level and storm intensity, we further develop the coupled barrier-island marsh evolution model GEOMBEST+. We use the relationship between wave height (and therefore energy) and fetch and wind speed to add marsh edge erosion to the model, as well as to provide a more physical formulation for bay bottom erosion. Previous research addressing marshes in isolation from barrier islands (Mariotti and Fagherazzi, 2013) suggests that the existence of a backbarrier marsh is an unstable state, tending to either grow laterally to completely fill an adjacent basin or to erode away completely. Previous results of GEOMBEST+ experiments (Walters et al., in review) suggest that couplings with an adjacent barrier island can add an additional alternate long-lasting state: a narrow marsh supported by sediment influx from overwash. Here we present the results of new GEOMBEST+ model experiments that address how the addition of lateral erosion by wind waves affects the existence and characteristics of the narrow marsh state. Specifically, we seek to address how the frequency and characteristic time and space scales of the narrow march state are affected. Model experiments also explore more broadly the importance of wind wave effects in understanding the coupled dynamics of marsh-barrier island systems.

  8. A geohydrologic continuum theory for the spatial and temporal evolution of marsh-estuarine ecosystems

    NASA Astrophysics Data System (ADS)

    Dame, R.; Childers, D.; Koepfler, E.

    Using ecosystem development theory and the River Continuum Concept as starting points, we present a new holistic theory to explain the spatial and temporal behaviour of marsh-estuarine ecosystems Along the marine-estuarine-freshwater gradient in response to sea-level rise. In this theory, a geohydrologic continuum represented by tidal channel provides a predictable physical model of how the marsh-estuarine ecosystem adapts until there is a change of state. North Inlet, South Carolina is used as an example of this marsh-estuarine continuum. Mature creeks are at the ocean-estuary interface and are strongly influenced by marine factors. Further into the estuary, less and less mature creeks are encountered which are dominated by smaller scale spatial and temporal controls such as oyster reefs. Immature or ephemeral creeks import both particulate and dissolved materials, while mature creeks export both forms of nutrients. Mid-aged creeks appear to take up particulate materials and release dissolved constituents. Ultimately, the continuum reaches the fresh-saltwater interface where a very young estuarine ecosystem invades a more mature type, under the influence of disturbance. Our new explanation satisfies most criteria for a good theory by being internally consistent to the location specified, generating testable hypothesis, not blindly adapting existing theories, agreeing with known properties of the ecosystem described and by generating new invigorating discussion within the scientific community.

  9. Modeling the Effects of Changes to Physical, Hydrological, and Biological Processes on Porewater Salinity Distributions in a Southeastern Salt Marsh

    NASA Astrophysics Data System (ADS)

    Miklesh, D.; Meile, C. D.

    2014-12-01

    Coastal wetlands provide many important ecosystem services, which include carbon and nitrogen sequestration and transformations, the provision of habitats, and the reduction of erosion by the vegetation. Coastal wetlands will be affected by projected climate change and sea level rise and may fail to provide such services, prompting a need to understand the environmental controls on marsh and vegetation distribution. Therefore, as part of the Georgia Coastal Ecosystems Long Term Ecological Research project, an integrated modeling approach is being developed to simulate how changes in salinity and inundation may change marsh ecosystem services, by coupling a hydrodynamic with a soil and a plant model. In coastal marsh ecosystems, porewater salinity strongly determines vegetation distribution and productivity. We will present the development of the soil model, which is based on mass conservation for water and salt and links physical, hydrological, and biological processes that determine porewater salinity, including precipitation, evapotranspiration, salt exchange between surface and subsurface, drainage, groundwater exchange, tidal inundation, and surface runoff, with the lateral exchange controlled by marsh topography. The model is applied to the Duplin River marsh, Sapelo Island, Georgia. Model validation is performed by comparing model-estimated salinities to porewater salinity measurements taken in different vegetation classes and over a range of marsh elevations. Modeled variability in porewater salinities will be presented over spring-neap, seasonal, and annual time scales. To discuss potential impacts of climate change and sea level rise, a sensitivity analysis will be presented that demonstrates the effect precipitation intensity, evapotranspiration, permeability, and marsh elevation have on porewater salinities.

  10. Dielectric properties of marsh vegetation

    NASA Astrophysics Data System (ADS)

    Kochetkova, Tatiana D.; Suslyaev, Valentin I.; Shcheglova, Anna S.

    2015-10-01

    The present work is devoted to the measurement of the dielectric properties of mosses and lichens in the frequency range from 500 MHz to 18 GHz. Subjects of this research were three species of march vegetation - moss (Dicranum polysetum Michx), groundcedar (Diphasiastrum complanatum (L.) Holub) and lichen (Cladonia stellaris). Samples of vegetation were collected in Tomsk region, Western Siberia, Russia. Complex dielectric permittivity was measured in coaxial section by Agilent Technologies vector network analyzer E8363B. Green samples was measured for some moisture contents from 100% to 3-5 % during a natural drying. The measurements were performed at room temperature, which remained within 21 ÷ 23 ° C. The frequency dependence of the dielectric constant for the three species of marsh vegetation differ markedly. Different parts of the complex permittivity dependency on moisture were fitted by line for all frequency points. Two break point were observed corresponding to the transition of water in the vegetation in various phase states. The complex permittivity spectra of water in the vegetation allow determining the most likely corresponding dielectric model of water in the vegetation by the method of hypothesis testing. It is the Debye's model. Parameters of Debye's model were obtained by numerical methods for all of three states of water. This enables to calculate the dielectric constant of water at any frequency range from 500 MHz to 18 GHz and to find the parameters of the dielectric model of the vegetation.

  11. Freshwater mussels of Florida

    USGS Publications Warehouse

    Williams, James D.; Butler, Robert S.; Warren, Gary L.; Johnson, Nathan A.

    2014-01-01

    An exhaustive guide to all aspects of the freshwater mussel fauna in Florida,Freshwater Mussels of Florida covers the ecology, biology, distribution, and conservation of the many species of bivalve mollusks in the Sunshine State. In the past three decades, researchers, the public, businesses that depend on wildlife, and policy makers have given more attention to the threatened natural diversity of the Southeast, including freshwater mussels. This compendium meets the increasingly urgent need to catalog this imperiled group of aquatic organisms in the United States.

  12. Experimentally simulated global warming and nitrogen enrichment effects on microbial litter decomposers in a marsh.

    PubMed

    Flury, Sabine; Gessner, Mark O

    2011-02-01

    Atmospheric warming and increased nitrogen deposition can lead to changes of microbial communities with possible consequences for biogeochemical processes. We used an enclosure facility in a freshwater marsh to assess the effects on microbes associated with decomposing plant litter under conditions of simulated climate warming and pulsed nitrogen supply. Standard batches of litter were placed in coarse-mesh and fine-mesh bags and submerged in a series of heated, nitrogen-enriched, and control enclosures. They were retrieved later and analyzed for a range of microbial parameters. Fingerprinting profiles obtained by denaturing gradient gel electrophoresis (DGGE) indicated that simulated global warming induced a shift in bacterial community structure. In addition, warming reduced fungal biomass, whereas bacterial biomass was unaffected. The mesh size of the litter bags and sampling date also had an influence on bacterial community structure, with the apparent number of dominant genotypes increasing from spring to summer. Microbial respiration was unaffected by any treatment, and nitrogen enrichment had no clear effect on any of the microbial parameters considered. Overall, these results suggest that microbes associated with decomposing plant litter in nutrient-rich freshwater marshes are resistant to extra nitrogen supplies but are likely to respond to temperature increases projected for this century.

  13. INDICATORS OF ANTHROPOGENIC DISTURBANCE IN STREAMS AND RECEIVING SALT MARSHES

    EPA Science Inventory

    Land use and anthropogenic activities in watersheds affect biological, chemical, and physical conditions in streams and receiving coastal salt marshes. Our objective was to compare indicators of stream and riparian condition with analogous indicators of the coastal salt marshes i...

  14. INDICATORS OF ANTHROPOGENIC DISTURBANCE IN STREAMS AND RECEINVING SALT MARSHES

    EPA Science Inventory

    Land use and anthropogenic activities in watersheds affect biological, chemical, and physical conditions in streams and receiving coastal salt marshes. Our objective was to compare indicators of stream and riparian condition with analogous indicators of the coastal salt marshes...

  15. INDICATORS OF ANTHROPOGENIC DISTURBANCES IN STREAMS AND RECEIVING SALT MARSHES

    EPA Science Inventory

    Land use and anthropogenic activities in watersheds affect biological, chemical, and physical conditions in streams and receiving coastal salt marshes. Our objective was to compare indicators of stream and riparian condition with analogous indicators of the coastal salt marshes i...

  16. Remote sensing as an aid for marsh management

    NASA Technical Reports Server (NTRS)

    Ragan, J. G.; Green, J. H.

    1973-01-01

    NASA aerial photography, primarily color infrared and color positive transparencies, is used in a study of marsh management practices and in comparing managed and unmanaged marsh areas. Weir locations for tidal control are recommended.

  17. Astronomical Forcing of Salt Marsh Biogeochemical Cascades

    NASA Astrophysics Data System (ADS)

    Morris, J. T.; Sundberg, K.

    2008-12-01

    Astronomically forced changes in the hydroperiod of a salt marsh affect the rate of marsh primary production leading to a biogeochemical cascade. For example, salt marsh primary production and biogeochemical cycles in coastal salt marshes are sensitive to the 18.6-year lunar nodal cycle, which alters the tidal amplitude by about 5 cm. For marshes that are perched high in the tidal frame, a relatively small increase in tidal amplitude and flooding lowers sediment salinity and stimulates primary production. Porewater sulfide concentrations are positively correlated with tidal amplitude and vary on the same cycle as primary production. Soluble reactive phosphate and ammonium concentrations in pore water also vary on this 18.6- year cycle. Phosphate likely responds to variation in the reaction of sulfide with iron-phosphate compounds, while the production of ammonium in sediments is coupled to the activity of diazotrophs that are carbon- limited and, therefore, are regulated by primary productivity. Ammonium also would accumulate when sulfides block nitrification. These dependencies work as a positive feedback between primary production and nutrient supply and are predictive of the near-term effects of sea-level rise.

  18. A New Approach to Monitoring Coastal Marshes for Persistent Flooding

    NASA Astrophysics Data System (ADS)

    Kalcic, M. T.; Underwood, L. W.; Fletcher, R. M.

    2012-12-01

    compute the NDWI indices and also the Normalized Difference Soil Index (NDSI). Coastwide Reference Monitoring System (CRMS) water levels from various hydrologic monitoring stations and aerial photography were used to optimize thresholds for MODIS-derived time series of NDWI and to validate resulting flood maps. In most of the profiles produced for post-hurricane assessment, the increase in the NDWI index (from storm surge) is accompanied by a decrease in the vegetation index (NDVI) and then a period of declining water. The NDSI index represents non-green or dead vegetation and increases after the hurricane's destruction of the marsh vegetation. Behavior of these indices over time is indicative of which areas remain flooded, which areas recover to their former levels of vegetative vigor, and which areas are stressed or in transition. Tracking these indices over time shows the recovery rate of vegetation and the relative behavior to inundation persistence. The results from this study demonstrated that identification of persistent marsh flooding, utilizing the tools developed in this study, provided an approximate 70-80 percent accuracy rate when compared to the actual days flooded at the CRMS stations.

  19. A New Approach to Monitoring Coastal Marshes for Persistent Flooding

    NASA Technical Reports Server (NTRS)

    Kalcic, M. T.; Undersood, Lauren W.; Fletcher, Rose

    2012-01-01

    compute the NDWI indices and also the Normalized Difference Soil Index (NDSI). Coastwide Reference Monitoring System (CRMS) water levels from various hydrologic monitoring stations and aerial photography were used to optimize thresholds for MODIS-derived time series of NDWI and to validate resulting flood maps. In most of the profiles produced for post-hurricane assessment, the increase in the NDWI index (from storm surge) is accompanied by a decrease in the vegetation index (NDVI) and then a period of declining water. The NDSI index represents non-green or dead vegetation and increases after the hurricane s destruction of the marsh vegetation. Behavior of these indices over time is indicative of which areas remain flooded, which areas recover to their former levels of vegetative vigor, and which areas are stressed or in transition. Tracking these indices over time shows the recovery rate of vegetation and the relative behavior to inundation persistence. The results from this study demonstrated that identification of persistent marsh flooding, utilizing the tools developed in this study, provided an approximate 70-80 percent accuracy rate when compared to the actual days flooded at the CRMS stations.

  20. Greenhouse Gas Fluxes from Salt Marshes Exposed to Chronic Nutrient Enrichment.

    PubMed

    Chmura, Gail L; Kellman, Lisa; van Ardenne, Lee; Guntenspergen, Glenn R

    2016-01-01

    We assessed the impact of nutrient additions on greenhouse gas fluxes using dark static chambers in a microtidal and a macrotidal marsh along the coast of New Brunswick, Canada approximately monthly over a year. Both were experimentally fertilized for six years with varying levels of N and P. For unfertilized, N and NPK treatments, average yearly CO2 emissions (which represent only respiration) at the microtidal marsh (13, 19, and 28 mmoles CO2 m(-2) hr(-1), respectively) were higher than at the macrotidal marsh (12, 15, and 19 mmoles m(-2) hr(-1), respectively, with a flux under the additional high N/low P treatment of 21 mmoles m(-2) hr(-1)). Response of CH4 to fertilization was more variable. At the macrotidal marsh average yearly fluxes were 1.29, 1.26, and 0.77 μmol CH4 m(-2) hr(-1) with control, N, and NPK treatments, respectively and 1.21 μmol m(-2) hr(-1) under high N/low P treatment. At the microtidal marsh CH4 fluxes were 0.23, 0.16, and -0.24 μmol CH4 m(-2) hr(-1) in control, N, and NPK and treatments, respectively. Fertilization changed soils from sinks to sources of N2O. Average yearly N2O fluxes at the macrotidal marsh were -0.07, 0.08, and 1.70, μmol N2O m(-2) hr(-1) in control, N, NPK and treatments, respectively and 0.35 μmol m(-2) hr(-1) under high N/low P treatment. For the control, N, and NPK treatments at the microtidal marsh N2O fluxes were -0.05, 0.30, and 0.52 μmol N2O m(-2) hr(-1), respectively. Our results indicate that N2O fluxes are likely to vary with the source of pollutant nutrients but emissions will be lower if N is not accompanied by an adequate supply of P (e.g., atmospheric deposition vs sewage or agricultural runoff). With chronic fertilization the global warming potential of the increased N2O emissions may be enough to offset the global cooling potential of the C sequestered by salt marshes.

  1. Greenhouse gas fluxes from salt marshes exposed to chronic nutrient enrichment

    USGS Publications Warehouse

    Chmura, Gail L.; Kellman, Lisa; van Ardenne, Lee; Guntenspergen, Glenn R.

    2016-01-01

    We assessed the impact of nutrient additions on greenhouse gas fluxes using dark static chambers in a microtidal and a macrotidal marsh along the coast of New Brunswick, Canada approximately monthly over a year. Both were experimentally fertilized for six years with varying levels of N and P. For unfertilized, N and NPK treatments, average yearly CO2 emissions (which represent only respiration) at the microtidal marsh (13, 19, and 28 mmoles CO2 m-2 hr-1, respectively) were higher than at the macrotidal marsh (12, 15, and 19 mmoles m-2 hr-1, respectively, with a flux under the additional high N/low P treatment of 21 mmoles m-2 hr-1). Response of CH4 to fertilization was more variable. At the macrotidal marsh average yearly fluxes were 1.29, 1.26, and 0.77 μmol CH4 m-2 hr-1 with control, N, and NPK treatments, respectively and 1.21 μmol m-2 hr-1 under high N/low P treatment. At the microtidal marsh CH4fluxes were 0.23, 0.16, and -0.24 μmol CH4 m-2 hr-1 in control, N, and NPK and treatments, respectively. Fertilization changed soils from sinks to sources of N2O. Average yearly N2O fluxes at the macrotidal marsh were -0.07, 0.08, and 1.70, μmol N2O m-2 hr-1 in control, N, NPK and treatments, respectively and 0.35 μmol m-2 hr-1 under high N/low P treatment. For the control, N, and NPK treatments at the microtidal marsh N2O fluxes were -0.05, 0.30, and 0.52 μmol N2O m-2 hr-1, respectively. Our results indicate that N2O fluxes are likely to vary with the source of pollutant nutrients but emissions will be lower if N is not accompanied by an adequate supply of P (e.g., atmospheric deposition vs sewage or agricultural runoff). With chronic fertilization the global warming potential of the increased N2O emissions may be enough to offset the global cooling potential of the C sequestered by salt marshes.

  2. Greenhouse Gas Fluxes from Salt Marshes Exposed to Chronic Nutrient Enrichment.

    PubMed

    Chmura, Gail L; Kellman, Lisa; van Ardenne, Lee; Guntenspergen, Glenn R

    2016-01-01

    We assessed the impact of nutrient additions on greenhouse gas fluxes using dark static chambers in a microtidal and a macrotidal marsh along the coast of New Brunswick, Canada approximately monthly over a year. Both were experimentally fertilized for six years with varying levels of N and P. For unfertilized, N and NPK treatments, average yearly CO2 emissions (which represent only respiration) at the microtidal marsh (13, 19, and 28 mmoles CO2 m(-2) hr(-1), respectively) were higher than at the macrotidal marsh (12, 15, and 19 mmoles m(-2) hr(-1), respectively, with a flux under the additional high N/low P treatment of 21 mmoles m(-2) hr(-1)). Response of CH4 to fertilization was more variable. At the macrotidal marsh average yearly fluxes were 1.29, 1.26, and 0.77 μmol CH4 m(-2) hr(-1) with control, N, and NPK treatments, respectively and 1.21 μmol m(-2) hr(-1) under high N/low P treatment. At the microtidal marsh CH4 fluxes were 0.23, 0.16, and -0.24 μmol CH4 m(-2) hr(-1) in control, N, and NPK and treatments, respectively. Fertilization changed soils from sinks to sources of N2O. Average yearly N2O fluxes at the macrotidal marsh were -0.07, 0.08, and 1.70, μmol N2O m(-2) hr(-1) in control, N, NPK and treatments, respectively and 0.35 μmol m(-2) hr(-1) under high N/low P treatment. For the control, N, and NPK treatments at the microtidal marsh N2O fluxes were -0.05, 0.30, and 0.52 μmol N2O m(-2) hr(-1), respectively. Our results indicate that N2O fluxes are likely to vary with the source of pollutant nutrients but emissions will be lower if N is not accompanied by an adequate supply of P (e.g., atmospheric deposition vs sewage or agricultural runoff). With chronic fertilization the global warming potential of the increased N2O emissions may be enough to offset the global cooling potential of the C sequestered by salt marshes. PMID:26914333

  3. Greenhouse Gas Fluxes from Salt Marshes Exposed to Chronic Nutrient Enrichment

    PubMed Central

    Chmura, Gail L.; Kellman, Lisa

    2016-01-01

    We assessed the impact of nutrient additions on greenhouse gas fluxes using dark static chambers in a microtidal and a macrotidal marsh along the coast of New Brunswick, Canada approximately monthly over a year. Both were experimentally fertilized for six years with varying levels of N and P. For unfertilized, N and NPK treatments, average yearly CO2 emissions (which represent only respiration) at the microtidal marsh (13, 19, and 28 mmoles CO2 m-2 hr-1, respectively) were higher than at the macrotidal marsh (12, 15, and 19 mmoles m-2 hr-1, respectively, with a flux under the additional high N/low P treatment of 21 mmoles m-2 hr-1). Response of CH4 to fertilization was more variable. At the macrotidal marsh average yearly fluxes were 1.29, 1.26, and 0.77 μmol CH4 m-2 hr-1 with control, N, and NPK treatments, respectively and 1.21 μmol m-2 hr-1 under high N/low P treatment. At the microtidal marsh CH4 fluxes were 0.23, 0.16, and -0.24 μmol CH4 m-2 hr-1 in control, N, and NPK and treatments, respectively. Fertilization changed soils from sinks to sources of N2O. Average yearly N2O fluxes at the macrotidal marsh were -0.07, 0.08, and 1.70, μmol N2O m-2 hr-1 in control, N, NPK and treatments, respectively and 0.35 μmol m-2 hr-1 under high N/low P treatment. For the control, N, and NPK treatments at the microtidal marsh N2O fluxes were -0.05, 0.30, and 0.52 μmol N2O m-2 hr-1, respectively. Our results indicate that N2O fluxes are likely to vary with the source of pollutant nutrients but emissions will be lower if N is not accompanied by an adequate supply of P (e.g., atmospheric deposition vs sewage or agricultural runoff). With chronic fertilization the global warming potential of the increased N2O emissions may be enough to offset the global cooling potential of the C sequestered by salt marshes. PMID:26914333

  4. Laboratory and field investigations of marsh edge erosion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter presents the laboratory experiments and field observations of marsh edge erosion. The marsh retreat rate in a field study site in Terrebonne Bay, Louisiana, was measured using GPS systems and aerial photographs. The wave environment was also measured in order to correlate the marsh edge...

  5. VALUING AN INTERVENTION: MARSH MIGRATION AND ECOSYSTEM SERVICES

    EPA Science Inventory

    There is growing interest in valuing ecosystem services provided by marsh systems. Ecosystem services represent a flow of benefits to society from the existence or functioning of the marsh. Therefore, to “put a value on” the marsh itself, or estimate a value of the na...

  6. Tidal Marshes: The Boundary between Land and Ocean.

    ERIC Educational Resources Information Center

    Gosselink, James

    An overview of the ecology of the tidal marshes along the gulf coast of the United States is presented. The following topics are included: (1) the human impact on tidal marshes; (2) the geologic origins of tidal marshes; (3) a description of the physical characteristics and ecosystem of the marshlands; (4) a description of the marshland food chain…

  7. Salt marshes. (Latest citations from Oceanic abstracts). Published Search

    SciTech Connect

    Not Available

    1993-03-01

    The bibliography contains citations concerning the environmental protection of coastal marshes. The citations explore the fauna and flora of the marshes, geological and ecological processes, and the effects of marine pollution. Seasonal and environmental variations, the effects of erosion, and stabilization techniques of marshes are also considered. (Contains 250 citations and includes a subject term index and title list.)

  8. Consumer control of salt marshes driven by human disturbance.

    PubMed

    Bertness, Mark D; Silliman, Brian R

    2008-06-01

    Salt marsh ecosystems are widely considered to be controlled exclusively by bottom-up forces, but there is mounting evidence that human disturbances are triggering consumer control in western Atlantic salt marshes, often with catastrophic consequences. In other marine ecosystems, human disturbances routinely dampen (e.g., coral reefs, sea grass beds) and strengthen (e.g., kelps) consumer control, but current marsh theory predicts little potential interaction between humans and marsh consumers. Thus, human modification of top-down control in salt marshes was not anticipated and was even discounted in current marsh theory, despite loud warnings about the potential for cascading human impacts from work in other marine ecosystems. In spite of recent experiments that have challenged established marsh dogma and demonstrated consumer-driven die-off of salt marsh ecosystems, government agencies and nongovernmental organizations continue to manage marsh die-offs under the old theoretical framework and only consider bottom-up forces as causal agents. This intellectual dependency of many coastal ecologists and managers on system-specific theory (i.e., marsh bottom-up theory) has the potential to have grave repercussions for coastal ecosystem management and conservation in the face of increasing human threats. We stress that marine vascular plant communities (salt marshes, sea grass beds, mangroves) are likely more vulnerable to runaway grazing and consumer-driven collapse than is currently recognized by theory, particularly in low-diversity ecosystems like Atlantic salt marshes. PMID:18577090

  9. Consumer control of salt marshes driven by human disturbance.

    PubMed

    Bertness, Mark D; Silliman, Brian R

    2008-06-01

    Salt marsh ecosystems are widely considered to be controlled exclusively by bottom-up forces, but there is mounting evidence that human disturbances are triggering consumer control in western Atlantic salt marshes, often with catastrophic consequences. In other marine ecosystems, human disturbances routinely dampen (e.g., coral reefs, sea grass beds) and strengthen (e.g., kelps) consumer control, but current marsh theory predicts little potential interaction between humans and marsh consumers. Thus, human modification of top-down control in salt marshes was not anticipated and was even discounted in current marsh theory, despite loud warnings about the potential for cascading human impacts from work in other marine ecosystems. In spite of recent experiments that have challenged established marsh dogma and demonstrated consumer-driven die-off of salt marsh ecosystems, government agencies and nongovernmental organizations continue to manage marsh die-offs under the old theoretical framework and only consider bottom-up forces as causal agents. This intellectual dependency of many coastal ecologists and managers on system-specific theory (i.e., marsh bottom-up theory) has the potential to have grave repercussions for coastal ecosystem management and conservation in the face of increasing human threats. We stress that marine vascular plant communities (salt marshes, sea grass beds, mangroves) are likely more vulnerable to runaway grazing and consumer-driven collapse than is currently recognized by theory, particularly in low-diversity ecosystems like Atlantic salt marshes.

  10. Recent Trends in Bird Abundance on Rhode Island Salt Marshes

    EPA Science Inventory

    Salt marsh habitat is under pressure from development on the landward side, and sea level rise from the seaward side. The resulting loss of habitat is potentially disastrous for salt marsh dependent species. To assess the population status of three species of salt marsh dependent...

  11. A Holistic Approach to the Conservation and Propagation of Freshwater, Brackish and Estuarine Bivalves for Ecosystem Services.

    NASA Astrophysics Data System (ADS)

    Kreeger, D.

    2005-05-01

    Shellfish restoration is increasingly valued in estuaries such as Chesapeake Bay where oyster populations are known to function as living biofilters, performing critical ecosystem services. Less studied are the services rendered by other suspension-feeding bivalves that reside in fringing marshes around these estuaries, in brackish and freshwater tidal portions, and in freshwater tributaries. The potential benefits contributed by other native bivalves will be discussed with two case studies from the Delaware basin. These are the ribbed mussel (Geukensia demissa ), which is abundant in brackish and marine tidal marshes, and the unionid mussel (Elliptio complanata ), which is abundant in many rivers of the system. Ribbed mussels are abundant enough to filter a large portion of the tidal prism flushing marshes, facilitating the role that these systems play as a sink for suspended solids and nutrients. Similarly, data from the lower Brandywine River suggests that a vestigial community of freshwater unionids remains sufficiently abundant to have a measurable beneficial effect on water quality by removing more than 25 metric tons of suspended particulates per year. Hence, the conservation and propagation of freshwater unionids can yield benefits that extend beyond current interest that is focused on protecting their biodiversity. Future efforts to protect or reclaim water quality and ecosystem integrity may benefit by a basin-wide, holistic approach that promotes integrated "biofiltration services" by native bivalves living from the headwaters to the coastal shelf.

  12. Sea-level rise and landscape change influence mangrove encroachment onto marsh in the Ten Thousand Islands region of Florida, USA

    USGS Publications Warehouse

    Krauss, Ken W.; From, Andrew S.; Doyle, Thomas W.; Doyle, Terry J.; Barry, Michael J.

    2011-01-01

    The Ten Thousand Islands region of southwestern Florida, USA is a major feeding and resting destination for breeding, migrating, and wintering birds. Many species of waterbirds rely specifically on marshes as foraging habitat, making mangrove encroachment a concern for wildlife managers. With the alteration of freshwater flow and sea-level rise trends for the region, mangroves have migrated upstream into traditionally salt and brackish marshes, mirroring similar descriptions around the world. Aside from localized freezes in some years, very little seems to be preventing mangrove encroachment. We mapped changes in mangrove stand boundaries from the Gulf of Mexico inland to the northern boundary of Ten Thousand Islands National Wildlife Refuge (TTINWR) from 1927 to 2005, and determined the area of mangroves to be approximately 7,281 hectares in 2005, representing an 1,878 hectare increase since 1927. Overall change represents an approximately 35% increase in mangrove coverage on TTINWR over 78 years. Sea-level rise is likely the primary driver of this change; however, the construction of new waterways facilitates the dispersal of mangrove propagules into new areas by extending tidal influence, exacerbating encroachment. Reduced volume of freshwater delivery to TTINWR via overland flow and localized rainfall may influence the balance between marsh and mangrove as well, potentially offering some options to managers interested in conserving marsh over mangrove.

  13. Impacts of the Deepwater Horizon oil spill on the salt marsh vegetation of Louisiana.

    PubMed

    Hester, Mark W; Willis, Jonathan M; Rouhani, Shahrokh; Steinhoff, Marla A; Baker, Mary C

    2016-09-01

    The coastal wetland vegetation component of the Deepwater Horizon oil spill Natural Resource Damage Assessment documented significant injury to the plant production and health of Louisiana salt marshes exposed to oiling. Specifically, marsh sites experiencing trace or greater vertical oiling of plant tissues displayed reductions in cover and peak standing crop relative to reference (no oiling), particularly in the marsh edge zone, for the majority of this four year study. Similarly, elevated chlorosis of plant tissue, as estimated by a vegetation health index, was detected for marsh sites with trace or greater vertical oiling in the first two years of the study. Key environmental factors, such as hydrologic regime, elevation, and soil characteristics, were generally similar across plant oiling classes (including reference), indicating that the observed injury to plant production and health was the result of plant oiling and not potential differences in environmental setting. Although fewer significant impacts to plant production and health were detected in the latter years of the study, this is due in part to decreased sample size occurring as a result of erosion (shoreline retreat) and resultant loss of plots, and should not be misconstrued as indicating full recovery of the ecosystem. PMID:27299994

  14. Spatial Variability of Soil Carbon Stocks in a Subtropical Mangrove in Hong Kong

    NASA Astrophysics Data System (ADS)

    Lai, D. Y. F.; Neogi, S.; Law, M. S. M.; Xu, J.; Glatzel, S.; Buczko, U.; Karstens, S.

    2015-12-01

    "Blue carbon", a term used for carbon (C) sequestered in vegetated coastal wetlands, has received increasing attention recently as a potential option for mitigating future climate change. While coastal mangrove is considered as one of the most carbon-rich ecosystems of the world, there is a need to better characterize and compare the magnitude of carbon storage among mangroves in different geographical regions. In this study, we quantified the spatial variability of soil carbon stocks in a subtropical mangrove wetland in Hong Kong, and examined the effects of land cover change on soil carbon storage. Bare mudflats contained significantly lower amount of carbon than mangroves in the top 1 m soils (94.7 vs. 130.7-163.8 Mg C ha-1), indicating the importance of vegetation in enhancing C sequestration. Moreover, we observed higher soil C storage in sites dominated by Avicennia marina than those dominated by Kandelia obovata. Conversion of natural mangroves into freshwater marshes and brackish ponds with shallow islands significantly reduced the amount of C stored in the top 30 cm soils by 24-58%, when compared to sites dominated by mangrove trees. Our findings suggest that consideration should be given to plant species and land cover type in determining the overall magnitude of carbon stocks in subtropical mangrove soils.

  15. Elevated CO2, nitrogen availability and marsh tolerance for sea-level rise

    NASA Astrophysics Data System (ADS)

    Langley, J. A.; Cahoon, D. R.; Megonigal, J. P.

    2008-12-01

    Tidal wetlands experiencing increased rates of sea-level rise must increase rates of soil elevation gain to avoid permanent conversion to open water. The maximal rate of sea-level rise that these ecosystems can tolerate depends partly on mineral sediment deposition, but the accumulation of organic matter is equally important for many wetlands. Plant productivity drives organic matter dynamics and is sensitive to global change factors such as elevated atmospheric CO2 and nitrogen eutrophication. It remains unknown how global change will influence organic mechanisms that determine future tidal wetland viability. We manipulated atmospheric CO2 concentration and nitrogen availability (2 x 2 factorial) in a highly organic tidal marsh. Elevated CO2 (ambient + 340 ppm) accelerated soil elevation gain by 3.9 mm yr-1, an effect caused primarily by stimulating belowground plant productivity. Nitrogen additions, despite increasing aboveground productivity, tended to reverse elevation gains, perhaps by reducing root productivity and stimulating soil decomposition. Therefore, increases in the greenhouse gas, CO2, may paradoxically aid some coastal wetlands in counterbalancing rising seas, but nitrogen pollution may negate this effect regionally. These effects on the organic mechanisms of marsh elevation gain may help explain patterns marsh formation and disappearance worldwide.

  16. Food habits of redheads at the Horicon marsh, Wisconsin

    USGS Publications Warehouse

    Kenow, K.P.; Rusch, D.H.

    1996-01-01

    Food habits of Redheads (Aythya americana) investigated at the Horicon National Wildlife Refuge, Wisconsin, during 1983-1985. Prelaying females consumed plant material almost exclusively, primarily seeds of moist-soil plant species. The diet of laying and incubating females was dominated by seeds but also contained 16-17% animal matter. Consumption of animal matter during egg production was substantially lower than reported in other studies of food habits of Redheads. The diet of Juvenile Redheads changed with age. Animal foods were nearly half of the diet of ducklings <4 wk of age, whereas older ducklings consumed primarily plant material. A diversity of flooding regimes may promote plant communities that produce importance food resources for Redheads on the Horicon Marsh.

  17. Exotic Spartina alterniflora invasion alters ecosystem-atmosphere exchange of CH4 and N2O and carbon sequestration in a coastal salt marsh in China.

    PubMed

    Yuan, Junji; Ding, Weixin; Liu, Deyan; Kang, Hojeong; Freeman, Chris; Xiang, Jian; Lin, Yongxin

    2015-04-01

    Coastal salt marshes are sensitive to global climate change and may play an important role in mitigating global warming. To evaluate the impacts of Spartina alterniflora invasion on global warming potential (GWP) in Chinese coastal areas, we measured CH4 and N2O fluxes and soil organic carbon sequestration rates along a transect of coastal wetlands in Jiangsu province, China, including open water; bare tidal flat; and invasive S. alterniflora, native Suaeda salsa, and Phragmites australis marshes. Annual CH4 emissions were estimated as 2.81, 4.16, 4.88, 10.79, and 16.98 kg CH4 ha(-1) for open water, bare tidal flat, and P. australis, S. salsa, and S. alterniflora marshes, respectively, indicating that S. alterniflora invasion increased CH4 emissions by 57-505%. In contrast, negative N2O fluxes were found to be significantly and negatively correlated (P < 0.001) with net ecosystem CO2 exchange during the growing season in S. alterniflora and P. australis marshes. Annual N2O emissions were 0.24, 0.38, and 0.56 kg N2O ha(-1) in open water, bare tidal flat and S. salsa marsh, respectively, compared with -0.51 kg N2O ha(-1) for S. alterniflora marsh and -0.25 kg N2O ha(-1) for P. australis marsh. The carbon sequestration rate of S. alterniflora marsh amounted to 3.16 Mg C ha(-1) yr(-1) in the top 100 cm soil profile, a value that was 2.63- to 8.78-fold higher than in native plant marshes. The estimated GWP was 1.78, -0.60, -4.09, and -1.14 Mg CO2 eq ha(-1) yr(-1) in open water, bare tidal flat, P. australis marsh and S. salsa marsh, respectively, but dropped to -11.30 Mg CO2 eq ha(-1) yr(-1) in S. alterniflora marsh. Our results indicate that although S. alterniflora invasion stimulates CH4 emissions, it can efficiently mitigate increases in atmospheric CO2 and N2O along the coast of China.

  18. Exotic Spartina alterniflora invasion alters ecosystem-atmosphere exchange of CH4 and N2O and carbon sequestration in a coastal salt marsh in China.

    PubMed

    Yuan, Junji; Ding, Weixin; Liu, Deyan; Kang, Hojeong; Freeman, Chris; Xiang, Jian; Lin, Yongxin

    2015-04-01

    Coastal salt marshes are sensitive to global climate change and may play an important role in mitigating global warming. To evaluate the impacts of Spartina alterniflora invasion on global warming potential (GWP) in Chinese coastal areas, we measured CH4 and N2O fluxes and soil organic carbon sequestration rates along a transect of coastal wetlands in Jiangsu province, China, including open water; bare tidal flat; and invasive S. alterniflora, native Suaeda salsa, and Phragmites australis marshes. Annual CH4 emissions were estimated as 2.81, 4.16, 4.88, 10.79, and 16.98 kg CH4 ha(-1) for open water, bare tidal flat, and P. australis, S. salsa, and S. alterniflora marshes, respectively, indicating that S. alterniflora invasion increased CH4 emissions by 57-505%. In contrast, negative N2O fluxes were found to be significantly and negatively correlated (P < 0.001) with net ecosystem CO2 exchange during the growing season in S. alterniflora and P. australis marshes. Annual N2O emissions were 0.24, 0.38, and 0.56 kg N2O ha(-1) in open water, bare tidal flat and S. salsa marsh, respectively, compared with -0.51 kg N2O ha(-1) for S. alterniflora marsh and -0.25 kg N2O ha(-1) for P. australis marsh. The carbon sequestration rate of S. alterniflora marsh amounted to 3.16 Mg C ha(-1) yr(-1) in the top 100 cm soil profile, a value that was 2.63- to 8.78-fold higher than in native plant marshes. The estimated GWP was 1.78, -0.60, -4.09, and -1.14 Mg CO2 eq ha(-1) yr(-1) in open water, bare tidal flat, P. australis marsh and S. salsa marsh, respectively, but dropped to -11.30 Mg CO2 eq ha(-1) yr(-1) in S. alterniflora marsh. Our results indicate that although S. alterniflora invasion stimulates CH4 emissions, it can efficiently mitigate increases in atmospheric CO2 and N2O along the coast of China. PMID:25367159

  19. Structure and composition of oligohaline marsh plant communities exposed to salinity pulses

    USGS Publications Warehouse

    Howard, R.J.; Mendelssohn, I.A.

    2000-01-01

    The response of two oligohaline marsh macrophyte communities to pulses of increased salinity was studied over a single growing season in a greenhouse experiment. The plant communities were allowed a recovery period in freshwater following the pulse events. The experimental treatments included: (1) salinity influx rate (rate of salinity increase from 0 to 12 gl-1); (2) duration of exposure to elevated salinity; and (3) water depth. The communities both included Sagittaria lancifolia L.; the codominant species were Eleocharis palustris (L.) Roemer and J.A. Schultes in community 1 and Schoenoplectus americanus (Pers.) Volk. ex Schinz and R. Keller in community 2. Effects of the treatments on sediment chemical characteristics (salinity, pH, redox potential, and sulfide and ammonium concentrations) and plant community attributes (aboveground and belowground biomass, stem density, leaf tissue nutrients, and species richness) were examined. The treatment effects often interacted to influence sediment and plant communities characteristics following recovery in fresh water. Salinity influx rate per se, however, had little effect on the abiotic or biotic response variables; significant influx effects were found when the 0 gl-1 (zero influx) treatment was compared to the 12 gl-1 treatments, regardless of the rate salinity was raised. A salinity level of 12 gl-1 had negative effects on plant community structure and composition; these effects were usually associated with 3 months of salinity exposure. Water depth often interacted with exposure duration, but increased water depth did independently decrease the values of some community response measures. Community 1 was affected more than community 2 in the most extreme salinity treatment (3 months exposure/15-cm water depth). Although species richness in both communities was reduced, structural changes were more dramatic in community 1. Biomass and stem density were reduced in community 1 overall and in both dominant species

  20. Tidal freshwater wetland herbivory in Anacostia Park

    USGS Publications Warehouse

    Krafft, Cairn; Hatfield, Jeff S.; Hammerschlag, Richard S.

    2010-01-01

    Herbivory has played a major role in dictating vegetation abundance and species composition at Kingman Marsh in Anacostia Park, Washington, D.C., since restoration of this tidal freshwater wetland was initiated in 2000. In June 2009 an herbivory study was established to document the impacts of resident Canada goose (Branta canadensis maxima) herbivory to vegetation at Kingman Marsh. Sixteen modules consisting of paired exclosed plots and unfenced control plots were constructed. Eight of the modules were installed in vegetated portions of the restoration site that had been protected over time by fencing, while the remaining eight modules were placed in portions of the site that had not been protected over time and were basically unvegetated at the start of the experiment. Since the experiment was designed to determine the impacts of herbivory by resident Canada geese as opposed to other herbivores, exclosure fencing was elevated 0.2 m to permit access by herbivores such as fish and turtles while excluding mature Canada geese. Repeated measures analysis of variance (ANOVA) was used to analyze the differences between paired exclosure and control plots for a number of variables including total vegetative cover. Differences in total vegetative cover were not significant for the baseline data collected in June. By contrast, two months after the old protective fencing was removed from the initially-vegetated areas to allow Canada geese access to the control plots, total vegetative cover had declined dramatically in the initially-vegetated control plots, and differences between paired exclosed and control plots were significant (P = 0.0026). No herbivory by Canada geese or other herbivores such as fish or turtles was observed in the exclosures. These results show that Canada goose herbivory has inflicted significant damage to the native wetland vegetation in the portions of Kingman Marsh that had been refenced and replanted. Significant differences in total vegetative

  1. Season changes of cadmium and copper levels in stem-boring larvae of Agapanthia villosoviridescens (coleoptera) on salt marshes of the Westerschelde estuary

    SciTech Connect

    Hemminga, M.A.; Nieuwenhuize, J.; Poley-Vos, C.H.; van Soelen, J. )

    1989-11-01

    Analyses of heavy metals in insects, including their developmental stages, have been widely used to monitor the penetration of these pollutants in various ecosystems. There are few reports dealing with seasonal changes in heavy metal content of insects. The seasonal pattern found in one herbivorous insect closely followed seasonal trends in metal contamination levels in the local vegetation. No data are available on season changes in insect larvae. To obtain more detailed information on seasonal changes of heavy metal levels in insects and their relation with the seasonally changing conditions in the habitat, the authors studied the time course of cadmium and copper concentrations in larvae of the longhorn beetle Agapanthia villosoviridescens. These live as stem-borers in the salt marsh halophyte Aster tripolium. The authors collected larvae from three salt marshes along the Westerschelde estuary. This estuary is severely polluted by heavy metals originating mainly from upstream sources; a large fraction of these metals is retained within the estuary. The fringing salt marsh soils, which are a sink for trace metals, show a gradient in pollution, with levels of heavy metals generally increasing in upstream direction. Salt marsh halophytes growing on these marshes show uptake of metals from the soil. Further transfers of heavy metals through the natural food chains on these salt marshes have not been investigated sofar.

  2. Short- and long-term response of deteriorating brackish marshes and open-water ponds to sediment enhancement by thin-layer dredge disposal

    USGS Publications Warehouse

    La Peyre, M.K.; Gossman, B.; Piazza, Bryan P.

    2009-01-01

    Artificial sediment enhancement using a thin layer of dredged material has been suggested as a means to increase elevation and create soil conditions conducive to increased marsh structure and function in deteriorating marshes. Using a chronosequence approach, we examined the effects of sediment enhancement in deteriorating marsh and open-water pond habitats located in six brackish marshes. Sediment enhancement of both marsh and interior pond sites had significant, immediate, and long-lasting effects on physical soil properties and nutrient status with increased bulk density and inorganic nitrogen. Vegetative cover and productivity response were minimal for deteriorating vegetated marshes with the short-term response data showing no significant impact of sediment enhancement and long-term trends indicating decreasing productivity over time. In contrast, trajectory models of vegetative cover and productivity in interior pond sites showed increases over time indicating that, for restoration of interior ponds, sediment enhancement may prove valuable. The use of trajectory models emphasizes the need for long-term monitoring to determine restoration success of projects. ?? 2008 U.S. Government.

  3. Topsoil morphology indicates bio-effective redox conditions in Venice salt marshes

    NASA Astrophysics Data System (ADS)

    Lang, Friederike; von der Lippe, Moritz; Schimpel, Susanne; Scozzafava-Jaeger, Tiberio; Straub, Wolfgang

    2010-03-01

    Visual traces of iron reduction and oxidation are linked to the redox status of soils and have been used to characterise the quality of agricultural soils. We tested whether this feature could also be used to explain the spatial pattern of the natural vegetation of tidal habitats. If so, an easy assessment of the effect of rising sea level on tidal ecosystems would be possible. Our study was conducted at the salt marshes of the northern lagoon of Venice, which are strongly threatened by erosion and rising sea level and are part of the world heritage "Venice and its lagoon". We analysed the abundance of plant species at 255 sampling points along a land-sea gradient. In addition, we surveyed the redox morphology (presence/absence of red iron oxide mottles in the greyish topsoil horizons) of the soils and the presence of disturbances. We used indicator species analysis, correlation trees and multivariate regression trees to analyse relations between soil properties and plant species distribution. Plant species with known sensitivity to anaerobic conditions (e.g. Halimione portulacoides) were identified as indicators for oxic soils (showing iron oxide mottles within a greyish soil matrix). Plant species that tolerate a low redox potential (e.g. Spartina maritima) were identified as indicators for anoxic soils (greyish matrix without oxide mottles). Correlation trees and multivariate regression trees indicate the dominant role of the redox morphology of the soils in plant species distribution. In addition, the distance from the mainland and the presence of disturbances were identified as tree-splitting variables. The small-scale variation of oxygen availability plays a key role for the biodiversity of salt marsh ecosystems. Our results suggest that the redox morphology of salt marsh soils indicates the plant availability of oxygen. Thus, the consideration of this indicator may enable an understanding of the heterogeneity of biological processes in oxygen-limited systems

  4. Hydrology of two tidal marshes in North Carolina where open-marsh water management modifications have been implemented

    USGS Publications Warehouse

    Pope, B.F.

    1993-01-01

    In 1988 and 1989, open-marsh water management modifications were implemented at tidal marshes near West Onslow Beach and Hobucken, North Carolina, as part of a pilot program to evaluate the effectiveness of ditching techniques as a mosquito-control method in open marshes. In 1984, before implementation of the modifications, a study was initiated to allow definition of the effects of those modifications on the hydrology of the marshes. Water levels in canals near the West Onslow Beach study marsh are controlled by periodic, gravitational tides. Daily maximum tides exceeded the elevation of the upper marsh surface 30% of the time before and 18% of the time after open-marsh water management. Daily maximum tides at this marsh exceeded the upper marsh surface 34% of the time before and 24% of the time after open-marsh water management. Variation in tidal conditions resulted in varying numbers and duration of floods at the study marshes. Duration analyses indicated relations between tide levels and marsh surface-water levels were unchanged after modifications. Groundwater movement through the marshes varies seasonally and is primarily vertical. Withdrawals are by evapotranspiration and recharge is by infiltration. During nongrowing months saturated conditions prevail. Groundwater flow to the marsh interior from the surrounding tidal canals was not detected during these declines. Changes in the natural variation in withdrawals from and recharge to groundwater were not indicated by the data collected during this study. Water levels in canals adjacent to the Hobucken study marsh are primarily controlled by wind-driven tides.

  5. Bathymetry and vegetation in isolated marsh and cypress wetlands in the northern Tampa Bay Area, 2000-2004

    USGS Publications Warehouse

    Haag, Kim H.; Lee, Terrie M.; Herndon, Donald C.

    2005-01-01

    Wetland bathymetry and vegetation mapping are two commonly used lines of evidence for assessing the hydrologic and ecologic status of expansive coastal and riverine wetlands. For small isolated freshwater wetlands, however, bathymetric data coupled with vegetation assessments are generally scarce, despite the prevalence of isolated wetlands in many regions of the United States and the recognized importance of topography as a control on inundation patterns and vegetation distribution. In the northern Tampa Bay area of west-central Florida, bathymetry was mapped and vegetation was assessed in five marsh and five cypress wetlands. These 10 isolated wetlands were grouped into three categories based on the effects of ground-water withdrawals from regional municipal well fields: natural (no effect), impaired (drier than natural), and augmented (wetlands with artificially augmented water levels). Delineation of the wetland perimeter was a critical component for estimating wetland-surface area and stored water volume. The wetland perimeter was delineated by the presence of Serenoa repens (the 'palmetto fringe') at 9 of the 10 sites. At the 10th site, where the palmetto fringe was absent, hydric-soils indicators were used to delineate the perimeter. Bathymetric data were collected using one or more techniques, depending on the physical characteristics of each wetland. Wetland stage was measured hourly using continuous stage recorders. Wetland vegetation was assessed semiannually for 2 1/2 years in fixed plots located at three distinct elevations. Vegetation assessments were used to determine the community composition and the relative abundance of obligate, facultative wet, and facultative species at each elevation. Bathymetry maps were generated, and stage-area and stage-volume relations were developed for all 10 wetlands. Bathymetric data sets containing a high density of data points collected at frequent and regular spatial intervals provided the most useful stage

  6. Population Dynamics and Community Composition of Ammonia Oxidizers in Salt Marshes after the Deepwater Horizon Oil Spill.

    PubMed

    Bernhard, Anne E; Sheffer, Roberta; Giblin, Anne E; Marton, John M; Roberts, Brian J

    2016-01-01

    The recent oil spill in the Gulf of Mexico had significant effects on microbial communities in the Gulf, but impacts on nitrifying communities in adjacent salt marshes have not been investigated. We studied persistent effects of oil on ammonia-oxidizing archaeal (AOA) and bacterial (AOB) communities and their relationship to nitrification rates and soil properties in Louisiana marshes impacted by the Deepwater Horizon oil spill. Soils were collected at oiled and unoiled sites from Louisiana coastal marshes in July 2012, 2 years after the spill, and analyzed for community differences based on ammonia monooxygenase genes (amoA). Terminal Restriction Fragment Polymorphism and DNA sequence analyses revealed significantly different AOA and AOB communities between the three regions, but few differences were found between oiled and unoiled sites. Community composition of nitrifiers was best explained by differences in soil moisture and nitrogen content. Despite the lack of significant oil effects on overall community composition, we identified differences in correlations of individual populations with potential nitrification rates between oiled and unoiled sites that help explain previously published correlation patterns. Our results suggest that exposure to oil, even 2 years post-spill, led to subtle changes in population dynamics. How, or if, these changes may impact ecosystem function in the marshes, however, remains uncertain. PMID:27375576

  7. Population Dynamics and Community Composition of Ammonia Oxidizers in Salt Marshes after the Deepwater Horizon Oil Spill.

    PubMed

    Bernhard, Anne E; Sheffer, Roberta; Giblin, Anne E; Marton, John M; Roberts, Brian J

    2016-01-01

    The recent oil spill in the Gulf of Mexico had significant effects on microbial communities in the Gulf, but impacts on nitrifying communities in adjacent salt marshes have not been investigated. We studied persistent effects of oil on ammonia-oxidizing archaeal (AOA) and bacterial (AOB) communities and their relationship to nitrification rates and soil properties in Louisiana marshes impacted by the Deepwater Horizon oil spill. Soils were collected at oiled and unoiled sites from Louisiana coastal marshes in July 2012, 2 years after the spill, and analyzed for community differences based on ammonia monooxygenase genes (amoA). Terminal Restriction Fragment Polymorphism and DNA sequence analyses revealed significantly different AOA and AOB communities between the three regions, but few differences were found between oiled and unoiled sites. Community composition of nitrifiers was best explained by differences in soil moisture and nitrogen content. Despite the lack of significant oil effects on overall community composition, we identified differences in correlations of individual populations with potential nitrification rates between oiled and unoiled sites that help explain previously published correlation patterns. Our results suggest that exposure to oil, even 2 years post-spill, led to subtle changes in population dynamics. How, or if, these changes may impact ecosystem function in the marshes, however, remains uncertain.

  8. Population Dynamics and Community Composition of Ammonia Oxidizers in Salt Marshes after the Deepwater Horizon Oil Spill

    PubMed Central

    Bernhard, Anne E.; Sheffer, Roberta; Giblin, Anne E.; Marton, John M.; Roberts, Brian J.

    2016-01-01

    The recent oil spill in the Gulf of Mexico had significant effects on microbial communities in the Gulf, but impacts on nitrifying communities in adjacent salt marshes have not been investigated. We studied persistent effects of oil on ammonia-oxidizing archaeal (AOA) and bacterial (AOB) communities and their relationship to nitrification rates and soil properties in Louisiana marshes impacted by the Deepwater Horizon oil spill. Soils were collected at oiled and unoiled sites from Louisiana coastal marshes in July 2012, 2 years after the spill, and analyzed for community differences based on ammonia monooxygenase genes (amoA). Terminal Restriction Fragment Polymorphism and DNA sequence analyses revealed significantly different AOA and AOB communities between the three regions, but few differences were found between oiled and unoiled sites. Community composition of nitrifiers was best explained by differences in soil moisture and nitrogen content. Despite the lack of significant oil effects on overall community composition, we identified differences in correlations of individual populations with potential nitrification rates between oiled and unoiled sites that help explain previously published correlation patterns. Our results suggest that exposure to oil, even 2 years post-spill, led to subtle changes in population dynamics. How, or if, these changes may impact ecosystem function in the marshes, however, remains uncertain. PMID:27375576

  9. Nitrogen cycle of a typical Suaeda salsa marsh ecosystem in the Yellow River estuary.

    PubMed

    Mou, Xiaojie; Sun, Zhigao; Wang, Lingling; Wang, Chuanyuan

    2011-01-01

    The nitrogen (N) biological cycle of the Suaeda salsa marsh ecosystem in the Yellow River estuary was studied during 2008 to 2009. Results showed that soil N had significant seasonal fluctuations and vertical distribution. The N/P ratio (15.73 +/- 1.77) of S. salsa was less than 16, indicating that plant growth was limited by both N and P. The N absorption coefficient of S. salsa was very low (0.007), while the N utilization and cycle coefficients were high (0.824 and 0.331, respectively). The N turnover among compartments of S. salsa marsh showed that N uptake from aboveground parts and roots were 2.539 and 0.622 g/m2, respectively. The N translocation from aboveground parts to roots and from roots to soil were 2.042 and 0.076 g/m2, respectively. The N translocation from aboveground living bodies to litter was 0.497 g/m2, the annual N return from litter to soil was far less than 0.368 g/m2, and the net N mineralization in topsoil during the growing season was 0.033 g/m2. N was an important limiting factor in S. salsa marsh, and the ecosystem was classified as unstable and vulnerable. S. salsa was seemingly well adapted to the low-nutrient status and vulnerable habitat, and the nutrient enrichment due to N import from the Yellow River estuary would be a potential threat to the S. salsa marsh. Excessive nutrient loading might favor invasive species and induce severe long-term degradation of the ecosystem if human intervention measures were not taken. The N quantitative relationships determined in our study might provide a scientific basis for the establishment of effective measures.

  10. Uptake of polycyclic aromatic hydrocarbons (PAHs) in salt marsh plants Spartina alterniflora grown in contaminated sediments.

    PubMed

    Watts, Alison Weatherly; Ballestero, Thomas P; Gardner, Kevin H

    2006-03-01

    Polycyclic aromatic hydrocarbon (PAH) concentrations were measured in Spartina alterniflora plants grown in pots of contaminated sediment, plants grown in native sediment at a marsh contaminated with up to 900 microg/g total PAHs, and from plants grown in uncontaminated control sediment. The roots and leaves of the plants were separated, cleaned, and analyzed for PAHs. PAH compounds were detected at up to 43 microg/g dry weight in the root tissue of plants grown in pots of contaminated soil. PAH compounds were detected at up to 0.2 microg/g in the leaves of plants grown in pots of contaminated soil. Concentrations less than 0.004 microg/g were detected in the leaves of plants grown at a reference site. Root concentration factor (RCF) values ranged from 0.009 to 0.97 in the potted plants, and from 0.004 to 0.31 at the contaminated marsh site. Stem concentration factor (SCF) values ranged from 0.00004 to 0.03 in the potted plants and 0.0002 to 0.04 at the contaminated marsh. No correlation was found between the RCF value and PAH compound or chemical properties such as logKOW. SCF values were higher for the lighter PAHs in the potted plants, but not in the plants collected from the contaminated marsh. PAH concentrations in the roots of the potted plants are strongly correlated with soil concentrations, but there is less correlation for the roots grown in natural sediments. Additional plants were grown directly in PAH-contaminated water and analyzed for alkylated PAH homologs. No difference was found in leaf PAH concentrations between plants grown in contaminated water and control plants.

  11. Effects of open marsh water management on numbers of larval salt marsh mosquitoes.

    PubMed

    James-Pirri, Mary-Jane; Ginsberg, Howard S; Erwin, R Michael; Taylor, Janith

    2009-11-01

    Open marsh water management (OMWM) is a commonly used approach to manage salt marsh mosquitoes than can obviate the need for pesticide application and at the same time, partially restore natural functions of grid-ditched marshes. OMWM includes a variety of hydrologic manipulations, often tailored to the specific conditions on individual marshes, so the overall effectiveness of this approach is difficult to assess. Here, we report the results of controlled field trials to assess the effects of two approaches to OMWM on larval mosquito production at National Wildlife Refuges (NWR). A traditional OMWM approach, using pond construction and radial ditches was used at Edwin B. Forsythe NWR in New Jersey, and a ditch-plugging approach was used at Parker River NWR in Massachusetts. Mosquito larvae were sampled from randomly placed stations on paired treatment and control marshes at each refuge. The proportion of sampling stations that were wet declined after OMWM at the Forsythe site, but not at the Parker River site. The proportion of samples with larvae present and mean larval densities, declined significantly at the treatment sites on both refuges relative to the control marshes. Percentage of control for the 2 yr posttreatment, compared with the 2 yr pretreatment, was >90% at both treatment sites. PMID:19960686

  12. Effects of open marsh water management on numbers of larval salt marsh mosquitoes.

    PubMed

    James-Pirri, Mary-Jane; Ginsberg, Howard S; Erwin, R Michael; Taylor, Janith

    2009-11-01

    Open marsh water management (OMWM) is a commonly used approach to manage salt marsh mosquitoes than can obviate the need for pesticide application and at the same time, partially restore natural functions of grid-ditched marshes. OMWM includes a variety of hydrologic manipulations, often tailored to the specific conditions on individual marshes, so the overall effectiveness of this approach is difficult to assess. Here, we report the results of controlled field trials to assess the effects of two approaches to OMWM on larval mosquito production at National Wildlife Refuges (NWR). A traditional OMWM approach, using pond construction and radial ditches was used at Edwin B. Forsythe NWR in New Jersey, and a ditch-plugging approach was used at Parker River NWR in Massachusetts. Mosquito larvae were sampled from randomly placed stations on paired treatment and control marshes at each refuge. The proportion of sampling stations that were wet declined after OMWM at the Forsythe site, but not at the Parker River site. The proportion of samples with larvae present and mean larval densities, declined significantly at the treatment sites on both refuges relative to the control marshes. Percentage of control for the 2 yr posttreatment, compared with the 2 yr pretreatment, was >90% at both treatment sites.

  13. Effects of open marsh water management on numbers of larval salt marsh mosquitoes

    USGS Publications Warehouse

    James-Pirri, Mary-Jane; Ginsberg, Howard S.; Erwin, R. Michael; Taylor, Janith

    2009-01-01

    Open marsh water management (OMWM) is a commonly used approach to manage salt marsh mosquitoes than can obviate the need for pesticide application and at the same time, partially restore natural functions of grid-ditched marshes. OMWM includes a variety of hydrologic manipulations, often tailored to the specific conditions on individual marshes, so the overall effectiveness of this approach is difficult to assess. Here, we report the results of controlled field trials to assess the effects of two approaches to OMWM on larval mosquito production at National Wildlife Refuges (NWR). A traditional OMWM approach, using pond construction and radial ditches was used at Edwin B. Forsythe NWR in New Jersey, and a ditch-plugging approach was used at Parker River NWR in Massachusetts. Mosquito larvae were sampled from randomly placed stations on paired treatment and control marshes at each refuge. The proportion of sampling stations that were wet declined after OMWM at the Forsythe site, but not at the Parker River site. The proportion of samples with larvae present and mean larval densities, declined significantly at the treatment sites on both refuges relative to the control marshes. Percentage of control for the 2 yr posttreatment, compared with the 2 yr pretreatment, was >90% at both treatment sites.

  14. Mercury bioaccumulation in Hayward Marsh, California

    SciTech Connect

    Ohlendorf, H.; Byron, E.; Taylor, L.; Cortes, R.

    1995-12-31

    Hayward Marsh was created in 1988 to provide wildlife habitat using treated wastewater from Union Sanitary District, which is located in the San Francisco Bay area. Mercury has been identified as one of the major contaminants of concern for San Francisco Bay sediment and biota. This study was conducted to determine whether mercury bioaccumulation in the Marsh occurred at ecologically significant levels. Sediment, benthic and free-swimming aquatic invertebrates, fish, bird eggs, and muskrat livers were analyzed. Mercury concentrations in the various media were compared to regional background levels and potential adverse effect levels. The findings indicated that mercury concentrations were generally similar to background levels and that there was a low probability of adverse effects to wildlife feeding in the Marsh. An important aspect of the study was inclusion of three bird species, along with their potential food organisms, in the sampling, one of the species had elevated mercury levels in its eggs but those birds probably were exposed outside the Marsh because the two other species and common food-chain organisms did not show elevated mercury levels.

  15. An Imaginary Trip Through the Marsh.

    ERIC Educational Resources Information Center

    Sullivan, N. A.

    This autoinstructional lesson deals with lessons in marine biology. A student will have experiences with both animal and plant life living in a salt water marsh environment. The student guide states the objectives to be attained and general directions for using the equipment and materials as well as a script. Approximately 30 minutes, including…

  16. Interpreter's Guide to Blackbird Marsh Nature Trail.

    ERIC Educational Resources Information Center

    Environmental Studies Center, Pensacola, FL.

    This booklet was prepared to help the user interpret the natural history of Blackbird Marsh Nature Trail in Escambia County, Florida, and serves as a guide to the animal and plant life. The publication is part of a series of illustrated guides designed for use by teachers and students of all levels in conjunction with field trips to the 1200-acre…

  17. JGI's Carbon Cycling Studies on Restored Marshes

    SciTech Connect

    Tringe, Susannah; Theroux, Susanna

    2015-06-02

    DOE Joint Genome Institute Metagenome Program Head, Susannah Tringe, and postdoc, Susie Theroux, discuss the lessons to be learned from studying the microbial diversity of marshes that have been converted to other uses, and are now being restored, as well as the potential impacts on the global carbon cycle.

  18. Shifts in methanogen community structure and function across a coastal marsh transect: effects of exotic Spartina alterniflora invasion

    PubMed Central

    Yuan, Junji; Ding, Weixin; Liu, Deyan; Kang, Hojeong; Xiang, Jian; Lin, Yongxin

    2016-01-01

    Invasion of Spartina alterniflora in coastal areas of China increased methane (CH4) emissions. To elucidate the underlying mechanisms, we measured CH4 production potential, methanogen community structure and biogeochemical factors along a coastal wetland transect comprised of five habitat regions: open water, bare tidal flat, invasive S. alterniflora marsh and native Suaeda salsa and Phragmites australis marshes. CH4 production potential in S. alterniflora marsh was 10 times higher than that in other regions, and it was significantly correlated with soil organic carbon, dissolved organic carbon and trimethylamine concentrations, but was not correlated with acetate or formate concentrations. Although the diversity of methanogens was lowest in S. alterniflora mars