Science.gov

Sample records for freshwater marsh soil

  1. Freshwater Marsh. Habitat Pac.

    ERIC Educational Resources Information Center

    Fish and Wildlife Service (Dept. of Interior), Washington, DC.

    The materials in this educational packet are designed for use with students in grades 4 through 7. They consist of an overview, three lesson plans and student data sheets, and a poster. The overview describes how the freshwater marsh is an important natural resource for plant, animal, and human populations and how the destruction of marshes causes…

  2. Effect of exogenous phosphorus addition on soil respiration in Calamagrostis angustifolia freshwater marshes of Northeast China

    NASA Astrophysics Data System (ADS)

    Song, Changchun; Liu, Deyan; Song, Yanyu; Yang, Guisheng; Wan, Zhongmei; Li, Yingchen; Xu, Xiaofeng

    2011-03-01

    Anthropogenic activities have increased phosphorus (P) inputs to wetland ecosystems. However, little is known about the effect of P enrichment on soil respiration in these ecosystems. To understand the effect of P enrichment on soil respiration, we conducted a field experiment in Calamagrostis angustifolia-dominated freshwater marshes, the Sanjiang Plain, Northeast China. We investigated soil respiration in the first growing season after P addition at four rates (0, 1.2, 4.8 and 9.6 g P m-2 year-1). In addition, we also examined aboveground biomass, soil labile C fractions (dissolved organic C, DOC; microbial biomass C, MBC; easily oxidizable C, EOC) and enzyme activities (invertase, urease and acid phosphatase activities) following one year of P addition. P addition decreased soil respiration during the growing season. Dissolved organic C in soil pore water increased after P addition at both 5 and 15 cm depths. Moreover, increased P input generally inhibited soil MBC and enzyme activities, and had no effects on aboveground biomass and soil EOC. Our results suggest that, in the short-term, soil respiration declines under P enrichment in C. angustifolia-dominated freshwater marshes of Northeast China, and its extent varies with P addition levels.

  3. High Temperature and Salinity Enhance Soil Nitrogen Mineralization in a Tidal Freshwater Marsh

    PubMed Central

    Gao, Haifeng; Bai, Junhong; He, Xinhua; Zhao, Qingqing; Lu, Qiongqiong; Wang, Junjing

    2014-01-01

    Soil nitrogen (N) mineralization in wetlands is sensitive to various environmental factors. To compare the effects of salinity and temperature on N mineralization, wetland soils from a tidal freshwater marsh locating in the Yellow River Delta was incubated over a 48-d anaerobic incubation period under four salinity concentrations (0, 10, 20 and 35‰) and four temperature levels (10, 20, 30 and 40°C). The results suggested that accumulated ammonium nitrogen (NH4+-N) increased with increasing incubation time under all salinity concentrations. Higher temperatures and salinities significantly enhanced soil N mineralization except for a short-term (≈10 days) inhibiting effect found under 35‰ salinity. The incubation time, temperature, salinity and their interactions exhibited significant effects on N mineralization (P<0.001) except the interactive effect of salinity and temperature (P>0.05), while temperature exhibited the greatest effect (P<0.001). Meanwhile, N mineralization processes were simulated using both an effective accumulated temperature model and a one-pool model. Both models fit well with the simulation of soil N mineralization process in the coastal freshwater wetlands under a range of 30 to 40°C (R2 = 0.88–0.99, P<0.01). Our results indicated that an enhanced NH4+-N release with increasing temperature and salinity deriving from the projected global warming could have profound effects on nutrient cycling in coastal wetland ecosystems. PMID:24733366

  4. Soil development and establishment of carbon-based properties in created freshwater marshes.

    PubMed

    Hossler, Katie; Bouchard, Virginie

    2010-03-01

    The current U.S. wetland mitigation policy of "no net loss" requires that a new wetland be created to replace any natural wetland destroyed under development pressures. This policy, however, may be resulting in a net loss of carbon-based wetland functions. We evaluated the ability of created wetlands to accumulate carbon and to mitigate loss of carbon-based functions in natural wetlands with variable hydrology. Potential limiting factors to carbon accumulation within created systems included soil aggregation, texture, and bulk density. Rates of soil development and the time required for created wetlands to accumulate the amount of carbon found in natural wetlands were estimated by an exponential model. Soils collected from five created (ages 3-8 years) and four natural freshwater marshes, located in central Ohio, USA, were analyzed for soil organic carbon (SOC), mineralizable soil carbon (Cmin), water-stable aggregates (WSA), particle-size fractions (PSD), and bulk density. Peak-standing aboveground plant biomass was also quantified. Created wetlands contained significantly less plant biomass, SOC, and Cmin than natural wetlands (c < 0.05; false discovery rate). Soil physical properties also differed significantly between created and natural wetlands, with fewer macroaggregates, more microaggregates, more silt-clay (0-5 cm only), and higher bulk density in created wetlands (a < 0.05; false discovery rate). Carbon content was positively correlated with macroaggregate content and negatively correlated with microaggregate content, silt-clay fraction, and bulk density. Fit of SOC data to the exponential model indicated that a newly created wetland would require 300 years to sequester the amount of SOC contained in a natural wetland. At this rate of carbon accumulation, a mitigation ratio of 2.7:1 (area) would be necessary for successful mitigation over a 50-year time period. However, other trajectories fit the data equally well and suggested area mitigation ratios of 2

  5. Effects of freshwater input on trace element pollution in salt marsh soils of a typical coastal estuary, China

    NASA Astrophysics Data System (ADS)

    Bai, Junhong; Zhao, Qingqing; Lu, Qiongqiong; Wang, Junjing; Reddy, K. Ramesh

    2015-01-01

    Freshwater input is an important pathway for the restoration of degraded coastal wetlands, however, little information is available on the negative effects of freshwater inputs on salt marsh soils in restored wetlands. Soil profile samples to a depth of 70 cm were collected in both degraded wetland (DW) and freshwater restored wetland (RW) in the Yellow River Delta of China to analyze the trace element pollution effects of freshwater input on coastal wetland soils. Heavy metals (i.e. Cd, Cr, Cu, Ni, Pb and Zn) and arsenic (As) concentrations were determined using the inductively coupled plasma atomic absorption spectrometry to investigate their distributions, sources and ecotoxicity in marsh soils from both wetlands. Our results showed that these trace elements had moderate spatial variability in both DW and RW soils. The concentrations of As, Cr, Pb and Cd in all soil layers were generally higher in RW soils than those in DW soils (p < 0.05), whereas the concentrations of Zn and Cu were higher in DW soils. Heavy metals had similar source in both wetlands, however, As and Zn in DW or As, Zn and Ni in RW might have another similar origin. The enrichment factor (EF) values for Cu, Ni and Pb in both wetlands indicated minimal enrichment levels, whereas both As and Cd were significantly enriched with EF values 3 or 6 times greater than 1.5, implying a significant natural or anthropogenic origin. As and Ni exceeded the effect range low (ERL) and threshold effect level (TEL) in both wetlands, even As exceeded the probable effect level (PEL) in RW soils. Cr, Cu and Cd were grouped into TELs-PELs, moreover, Cr concentrations in RW soils exceeded the ERL. However, both Pb and Zn concentrations were below the TELs in both wetlands. Generally, The toxic unit in more than 85% of DW or RW soil samples showed low toxicity with higher contribution of As and Ni. It is necessary to monitor and control trace elements in the freshwater supplied to restored wetlands in coastal wetland

  6. A new heterolobosean amoeba Solumitrus palustris n. g., n. sp. isolated from freshwater marsh soil.

    PubMed

    Anderson, O Roger; Wang, Wen; Faucher, Sebastien P; Bi, Keran; Shuman, Howard A

    2011-01-01

    During the course of research on the bacterial feeding behavior and resistance of amoebae to virulent pathogens, we isolated a new strain of amoeba from organic rich soil at the margin of freshwater swamp in the northeastern United States. Light microscopic morphology is characteristically heterolobosean, resembling vahlkampfiids, including a broadened, limax shape, and eruptive locomotion, but occasionally becoming more contracted and less elongated with lateral or anterior bulges and somewhat branching sparse, uroidal filaments. Electron microscopic evidence, including mitochondria with flattened cristae surrounded by rough endoplasmic reticulum, further indicates a heterolobosean affinity. The solitary nucleus contains a centrally located nucleolus. Cysts are rounded with occasionally an eccentrically located nucleus. The cyst walls are relatively thin, becoming crenated, and loosely enclosing the cyst when mature. Molecular genetic evidence places this isolate among the Heterolobosea, branching most closely in a clade including Allovahlkampfia spelaea and previously isolated, un-named strains of soil amoebae. Based on differentiated features, including morphology of the uroid, cyst wall structure, and molecular genetic evidence that distinguish it from A. spelaea, a new genus and species, Solumitrus palustris, is proposed for this new heterolobosean.

  7. Redox effects on release kinetics of arsenic, cadmium, cobalt, and vanadium in Wax Lake Deltaic freshwater marsh soils.

    PubMed

    Shaheen, Sabry M; Rinklebe, Jörg; Frohne, Tina; White, John R; DeLaune, Ron D

    2016-05-01

    The impact of redox potential (EH), pH, iron (Fe), manganese (Mn), chloride (Cl(-)), aliphatic and aromatic dissolved organic carbon (DOC), and sulfate ( [Formula: see text] ) on the release of dissolved arsenic (As), cadmium (Cd), cobalt (Co), and vanadium (V) were studied in Louisiana freshwater marsh Wax Lake Delta soil (Mississippi River) using an automated biogeochemical microcosm apparatus. The experiment was conducted from reducing (-60 mV) to stepwise oxidizing (+491 mV) conditions. The initial pH was 7.4 and decreased under reducing conditions to 4.9, and remained constant during the increase of EH. Concentrations of As (1.3-120.5 μg L(-1)), V (0.9-48.6 μg L(-1)), Fe, DOC, and the specific UV absorbance increased under reducing conditions and decreased with rising EH. Release of As and V appeared to be related to changes of EH/pH, co-precipitation with Fe oxides, and the release of dissolved aromatic carbon compounds. Concentrations of soluble Cd (4.8-11.2 μg L(-1)), Mn, [Formula: see text] , and Cl(-) increased under oxidizing conditions. Release of Co (166.6-258.2 μg L(-1)) was related to the chemistry of Fe, Mn and DOC. Phospholipid fatty acids analysis indicated the potential for the microbial community to be involved in biogeochemical processes such as the formation of sulfides, oxidation and reduction of compounds, and the bio-methylation of elements such as As. Overall, we measured a release of As and V under anoxic conditions, while oxic conditions favored the release of Cd. These results outline concern on the potential risk of mobilization of toxic elements in temporary waterlogged soils for agricultural purposes in deltaic ecosystems.

  8. Arsenic and heavy metal pollution in wetland soils from tidal freshwater and salt marshes before and after the flow-sediment regulation regime in the Yellow River Delta, China

    NASA Astrophysics Data System (ADS)

    Bai, Junhong; Xiao, Rong; Zhang, Kejiang; Gao, Haifeng

    2012-07-01

    SummarySoil samples were collected in tidal freshwater and salt marshes in the Yellow River Delta (YRD), northern China, before and after the flow-sediment regulation. Total concentrations of arsenic (As), cadmium (Cd), copper (Cu), lead (Pb) and zinc (Zn) were determined using inductively coupled plasma atomic absorption spectrometry to investigate the characteristics of heavy metal pollution in tidal wetlands before and after the regulation regime. The results demonstrated that marsh soils in both marshes had higher silt and total P contents, higher bulk density and lower sand contents after the flow-sediment regulation; moreover, soil salinity was significantly decreased in the tidal salt marsh. As and Cd concentrations were significantly higher in both marsh soils after the regulation than before, and there were no significant differences in the concentrations of Cu, Pb and Zn measured before and after the regulation. No significant differences in heavy metal concentrations were observed between freshwater and salt marsh soils, either before or after the regulation. Before the regulation regime, soil organic matter, pH and sulfer (S) were the main factors influencing heavy metal distribution in tidal freshwater marshes, whereas for tidal salt marshes, the main factors are soil salinity and moisture, pH and S. However, bulk density and total P became the main influencing factors after the regulation. The sediment quality guidelines and geoaccumulation indices showed moderately or strongly polluted levels of As and Cd and unpolluted or moderately polluted levels of Cu, Pb and Zn; As and Cd pollution became more serious after the regulation. Factor analysis indicated thatthese heavy metals including As were closely correlated and orginated from common pollution sources before the flow-sediment regulation; however, the sources of As and Cd separated from the sources of Cu, Pb and Zn after the regulation regime, implying that the flow-sediment regulation regime

  9. Spatial patterns of plant litter in a tidal freshwater marsh and implications for marsh persistence.

    PubMed

    Elmore, Andrew J; Engelhardt, Katharina A M; Cadol, Daniel; Palinkas, Cindy M

    2016-04-01

    The maintenance of marsh platform elevation under conditions of sea level rise is dependent on mineral sediment supply to marsh surfaces and conversion of above- and belowground plant biomass to soil organic material. These physical and biological processes interact within the tidal zone, resulting in elevation-dependent processes contributing to marsh accretion. Here, we explore spatial pattern in a variable related to aboveground biomass, plant litter, to reveal its role in the maintenance of marsh surfaces. Plant litter persisting through the dormant season represents the more recalcitrant portion of plant biomass, and as such has an extended period of influence on ecosystem processes. We conducted a field and remote sensing analysis of plant litter height, aboveground biomass, vertical cover, and stem density (collectively termed plant litter structure) at a tidal freshwater marsh located within the Potomac River estuary, USA. LiDAR and field observations show that plant litter structure becomes more prominent with increasing elevation. Spatial patterns in litter structure exhibit stability from year to year and correlate with patterns in soil organic matter content, revealed by measuring the loss on ignition of surface sediments. The amount of mineral material embedded within plant litter decreases with increasing elevation, representing an important tradeoff with litter structure. Therefore, at low elevations where litter structure is short and sparse, the role of plant litter is to capture sediment; at high elevations where litter structure is tall and dense, aboveground litter contributes organic matter to soil development. This organic matter contribution has the potential to eclipse that of belowground biomass as the root:shoot ratio of dominant species at high elevations is low compared to that of dominant species at low elevations. Because of these tradeoffs in mineral and organic matter incorporation into soil across elevation gradients, the rate of

  10. Simulated storm surge effects on freshwater coastal wetland soil porewater salinity and extractable ammonium levels: Implications for marsh recovery after storm surge

    NASA Astrophysics Data System (ADS)

    McKee, M.; White, J. R.; Putnam-Duhon, L. A.

    2016-11-01

    Coastal wetland systems experience both short-term changes in salinity, such as those caused by wind-driven tides and storm surge, and long-term shifts caused by sea level rise. Salinity increases associated with storm surge are known to have significant effects on soil porewater chemistry, but there is little research on the effect of flooding length on salt penetration depth into coastal marsh soils. A simulated storm surge was imposed on intact soil columns collected from a non-vegetated mudflat and a vegetated marsh site in the Wax Lake Delta, LA. Triplicate intact cores were continuously exposed to a 35 salinity water column (practical salinity scale) for 1, 2, and 4 weeks and destructively sampled in order to measure porewater salinity and extractable NH4sbnd N at two cm depth intervals. Salinity was significantly higher in the top 8 cm for both the marsh and mudflat cores after one week of flooding. After four weeks of flooding, salinity was significantly higher in marsh and mudflat cores compared to the control (no salinity) cores throughout the profile for both sites. Extractable ammonium levels increased significantly in the marsh cores throughout the experiment, but there was only a marginally (p < 0.1) significant increase seen in the mudflat cores. Results indicate that porewater salinity levels can become significantly elevated within a coastal marsh soil in just one week. This vertical intrusion of salt can potentially negatively impact macrophytes and associated microbial communities for significantly longer term post-storm surge.

  11. Seasonal comparison of aquatic macroinvertebrate assemblages in a flooded coastal freshwater marsh

    USGS Publications Warehouse

    Kang, Sung-Ryong; King, Sammy L.

    2013-01-01

    Marsh flooding and drying may be important factors affecting aquatic macroinvertebrate density and distribution in coastal freshwater marshes. Limited availability of water as a result of drying in emergent marsh may decrease density, taxonomic diversity, and taxa richness. The principal objectives of this study are to characterize the seasonal aquatic macroinvertebrate assemblage in a freshwater emergent marsh and compare aquatic macroinvertebrate species composition, density, and taxonomic diversity to that of freshwater marsh ponds. We hypothesize that 1) freshwater emergent marsh has lower seasonal density and taxonomic diversity compared to that of freshwater marsh ponds; and 2) freshwater emergent marsh has lower taxa richness than freshwater marsh ponds. Seasonal aquatic macroinvertebrate density in freshwater emergent marsh ranged from 0 organisms/m2 (summer 2009) to 91.1 ± 20.53 organisms/m2 (mean ± SE; spring 2009). Density in spring was higher than in all other seasons. Taxonomic diversity did not differ and there were no unique species in the freshwater emergent marsh. Our data only partially support our first hypothesis as aquatic macroinvertebrate density and taxonomic diversity between freshwater emergent marsh and ponds did not differ in spring, fall, and winter but ponds supported higher macroinvertebrate densities than freshwater emergent marsh during summer. However, our data did not support our second hypothesis as taxa richness between freshwater emergent marsh and ponds did not statistically differ.

  12. Comparative Geomorphology of Salt and Tidal Freshwater Marsh Environments

    NASA Astrophysics Data System (ADS)

    Pasternack, G. B.

    2002-05-01

    Temperate estuaries include a spectrum of coastal marshes ranging from highly saline near the ocean to fresh in tributaries with substantial watershed drainage. While the hydrologic, sedimentary, and geomorphic dynamics of salt marshes have been thoroughly investigated, those aspects of tidal freshwater marshes have only begun to be addressed. Based on a recent burst in research on tidal freshwater systems in Chesapeake Bay by different universities, an attempt is made here to provide comparative geomorphology. In terms of similarities, both have tidal channels whose hydraulic geometry is primarily controlled by the tidal prism. Both show decreasing sedimentation and increasing organics with elevation and distance from channels. At seasonal to interannual time scales, the morphodynamics of both show similarities in the interplay among hydroperiod, vegetation, and geomorphology. Rather than simply evolving from youth to maturity, both systems exhibit strong evidence for dynamic equilibrium between process and morphology. Despite these similarities, there are key differences that motivate further research of tidal freshwater marshes. First, whereas salt marshes are limited by sediment supply, tidal fresh ones may not be limited depending on upstream basin size. E.g., fringing marshes along Pumunkey River have very low sediment supply, while deltaic marshes in Bush River and Sassafras River are not supply-limited. Instead, the growth of deltaic fresh marshes is transport limited, as winds and tides can only generate low momentum and turbulence for sediment transport. As illustrated in multiple systems, a constant availability of sediment leads to higher sedimentation in fresh marshes. Second, in high latitude salt marshes where the tidal range is large and the climate cold, ice acts as a strong erosional agent. In fresh marshes, ice serves to sequester sediment and buffer the erosional impact of autumnal vegetation dieback. Third, the high spatial variation in plant

  13. [Influence of freshwater marsh tillage on microbial biomass and dissolved organic carbon and nitrogen].

    PubMed

    Huang, Jing-Yu; Song, Chang-Chun; Song, Yan-Yu; Liu, De-Yan; Wan, Zhong-Mei; Liao, Yu-Jing

    2008-05-01

    The changes in microbial biomass carbon (MBC), microbial biomass nitrogen (MBN), dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) were examined in order to assess the effect of surface layer soil (0 - 10 cm) under different land-use types after freshwater marshes tillage in the Sanjiang Plain Northeast China. Land uses were Deyeuxia angustifolia freshwater marshes ((DAM), cultivated land (CL), recovery freshwater marsh (RFM), constructed woodland (CW). After DAM soil tillage, MBC, MBN, DOC and DON declined strongly in agricultural surface soil layer, decreased 63.8%-80.5% (MBC), 56.3%-67.1% (MBN), 43.1%-44.3% (DOC) and 25.2%-56.1% (DON) respectively. In contrast, these C, N fraction had significant recovered in RFM and CW surface soil, increased 36.1%-59.9% (MBC), 46.7%-65.9% (MBN), 67.0%-69.3% (DOC)and 81.2%-88.3% (DON) respectively. Cultivation and land-use affected soil MBC, MBN, DOC and DON intensely. Therefore these labile C, N fractions have the significant relative under different land-use types. However DOC was more obvious controlled than DON by the land-use types. The relative between DOC and MBC, MBN have much difference than DON, the main reason of this distinction is the diverse source in available carbon and nitrogen that taken by microbial property under different land uses.

  14. Spatial Patterns of Plant Litter and Sedimentation in a Tidal Freshwater Marsh and Implications for Marsh Persistence

    NASA Astrophysics Data System (ADS)

    Elmore, A. J.; Cadol, D. D.; Palinkas, C. M.; Engelhardt, K. A.

    2014-12-01

    The maintenance of marsh platform elevation under sea level rise is dependent on sedimentation and biomass conversion to soil organic material. These physical and biological processes interact within the tidal zone, resulting in elevation-dependent processes contributing to marsh accretion. Here we explore spatial pattern in plant litter, a variable related to productivity, to understand its role in physical and biological interactions in a freshwater marsh. Plant litter that persists through the dormant season has an extended period of influence on ecosystem processes. We conducted a field and remote sensing analysis of plant litter height, biomass, vertical cover, and stem density (collectively termed plant litter structure) at a tidal freshwater marsh located along the Potomac River estuary. We completed two years of repeat RTK GPS surveys with corresponding measurements of litter height (over 2000 observations) to train a non-parametric random forest decision tree to predict litter height. LiDAR and field observations show that plant litter height increases with increasing elevation, although important deviations from this relationship are apparent. These spatial patterns exhibit stability from year to year and lead to corresponding patterns in soil organic matter content, revealed by loss on ignition of surface sediments. The amount of mineral material embedded within plant litter decreases with increasing elevation, representing an important trade-off with litter structure. Therefore, at low elevations where litter structure is short and sparse, the role of plant litter is to capture sediment; at high elevations where litter structure is tall and dense, litter contributes organic matter to soil development. Despite these tradeoffs, changes in elevation over time are consistent across elevation, with only small positive differences in elevation gain over time at elevations where the most sediment is deposited or where litter exhibits the most biomass.

  15. Influence of plant communities on denitrification in a tidal freshwater marsh of the Potomac River, United States.

    PubMed

    Hopfensperger, Kristine N; Kaushal, Sujay S; Findlay, Stuart E G; Cornwell, Jeffrey C

    2009-01-01

    We investigated whether marsh surface elevation, plant community composition (annuals vs. perennials), and organic matter quantity/quality were associated with differences in denitrification rates in an urban tidal freshwater marsh of the Potomac River, United States. We measured denitrification rates using both denitrification enzyme activity (DEA) with acetylene inhibition (June: n = 38, 3234 +/- 303; October: n = 38, 1557 +/- 368 ng N g dry soil(-1) h(-1)) and direct N(2) flux measurements with membrane inlet mass spectrometry (MIMS) (November: n = 6, 147 +/- 24 mumol m(-2) h(-1)). Organic carbon content and nitrate concentrations in soil, and plant community composition were correlated with elevation, but DEA rates did not differ across marsh surface elevation. Soil organic carbon was highest in plots dominated by perennial graminoids, but DEA rates did not differ across plant community types. The DEA rates increased with increasing soil ammonium concentrations and total N content, and DEA rates differed between summer and fall sampling. The MIMS rates did not differ across plant community types, but were correlated with soil organic N content. Denitrification rates suggest that potential N removal at the site could be substantial. In addition, denitrification rates measured in Dyke Marsh were higher than rates for sediments measured in the adjacent Potomac River. Tidal freshwater marshes can represent an important site for denitrification, and factors fostering denitrification should be considered when restoring urban tidal freshwater wetlands as they are faced with pressures from increasing land use change and sea level rise.

  16. Sediment accretion in tidal freshwater forests and oligohaline marshes of the Waccamaw and Savannah Rivers, USA

    USGS Publications Warehouse

    Ensign, Scott H.; Hupp, Cliff R.; Noe, Gregory B.; Krauss, Ken W.; Stagg, Camille L.

    2014-01-01

    Sediment accretion was measured at four sites in varying stages of forest-to-marsh succession along a fresh-to-oligohaline gradient on the Waccamaw River and its tributary Turkey Creek (Coastal Plain watersheds, South Carolina) and the Savannah River (Piedmont watershed, South Carolina and Georgia). Sites included tidal freshwater forests, moderately salt-impacted forests at the freshwater–oligohaline transition, highly salt-impacted forests, and oligohaline marshes. Sediment accretion was measured by use of feldspar marker pads for 2.5 year; accessory information on wetland inundation, canopy litterfall, herbaceous production, and soil characteristics were also collected. Sediment accretion ranged from 4.5 mm year−1 at moderately salt-impacted forest on the Savannah River to 19.1 mm year−1 at its relict, highly salt-impacted forest downstream. Oligohaline marsh sediment accretion was 1.5–2.5 times greater than in tidal freshwater forests. Overall, there was no significant difference in accretion rate between rivers with contrasting sediment loads. Accretion was significantly higher in hollows than on hummocks in tidal freshwater forests. Organic sediment accretion was similar to autochthonous litter production at all sites, but inorganic sediment constituted the majority of accretion at both marshes and the Savannah River highly salt-impacted forest. A strong correlation between inorganic sediment accumulation and autochthonous litter production indicated a positive feedback between herbaceous plant production and allochthonous sediment deposition. The similarity in rates of sediment accretion and sea level rise in tidal freshwater forests indicates that these habitats may become permanently inundated if the rate of sea level rise increases.

  17. Export of dissolved organic carbon from a ponded freshwater marsh receiving diverted Mississippi River water.

    PubMed

    DeLaune, R D; Johnson, C B; Gambrell, R P; Jugsujinda, A

    2008-12-14

    A series of diversion projects has been implemented to reintroduce Mississippi River water into Louisiana's coastal wetlands in order to reduce wetland loss. The export of dissolved organic carbon (DOC) was measured in a 3,700-ha ponded freshwater marsh that receives diverted Mississippi River water. Results show that highly organic marsh soil and plant material are a source of DOC. DOC, on average, was 3 mg/l greater in outlet water as compared to the concentration in river water entering the wetland. DOC in water leaving the marsh was higher in summer months, with a concentration up to 18 mg/l. Based on a discharge of 1,000 ft3/sec (28.3 m3/sec), it was estimated that the equivalent of 7,335 kg/day of DOC would be exported from the marsh into Lake Cataouatche, located in the northern portion of the Louisiana Barataria Basin estuary. Results suggest that river diversion would likely increase the export of DOC from the marsh as compared to normal transport associated with rainfall and tidal exchange.

  18. Controls on soil organic carbon stocks in tidal marshes along an estuarine salinity gradient

    NASA Astrophysics Data System (ADS)

    Van de Broek, Marijn; Temmerman, Stijn; Merckx, Roel; Govers, Gerard

    2016-12-01

    Tidal marshes are sedimentary environments and are among the most productive ecosystems on Earth. As a consequence they have the potential to reduce atmospheric greenhouse gas concentrations by sequestering organic carbon (OC). In the past decades, most research on soil organic carbon (SOC) storage in marsh environments has focused on salt marshes, leaving carbon dynamics in brackish and freshwater marshes largely understudied and neglecting the diversity among tidal marshes. We therefore conducted an extensive sampling campaign to quantify and characterize SOC stock in marshes along a salinity gradient in the Scheldt estuary (Belgium and the Netherlands). We find that SOC stocks vary significantly along the estuary, from 46 in freshwater marshes to 10 kg OC m-2 in salt marshes. Our data also show that most existing studies underestimate total SOC stocks due to shallow soil sampling, which also influences reported patterns in OC storage along estuaries. In all sampled tidal marsh sediments the SOC concentration is more or less constant from a certain depth downward. However, this concentration decreases with increasing salinity, indicating that the amount of stable SOC decreases from the upper estuary towards the coast. Although the net primary production of macrophytes differs along the estuary, our data suggest that the differences in OC storage are caused mainly by variations in suspended sediment concentration and stable particulate OC (POC) content in the water along the estuary. The fraction of terrestrial suspended sediments and POC that is transported downstream of the maximum turbidity zone is very limited, contributing to smaller amounts of long-term OC sequestration in brackish and salt marsh sediments. In addition, high rates of sediment deposition on freshwater tidal marshes in the maximum turbidity zone promote efficient burial of OC in these marsh sediments.

  19. Saltwater intrusion into tidal freshwater marshes alters the biogeochemical processing of organic carbon

    NASA Astrophysics Data System (ADS)

    Neubauer, S. C.; Franklin, R. B.; Berrier, D. J.

    2013-12-01

    Environmental perturbations in wetlands affect the integrated plant-microbial-soil system, causing biogeochemical responses that can manifest at local to global scales. The objective of this study was to determine how saltwater intrusion affects carbon mineralization and greenhouse gas production in coastal wetlands. Working with tidal freshwater marsh soils that had experienced ~ 3.5 yr of in situ saltwater additions, we quantified changes in soil properties, measured extracellular enzyme activity associated with organic matter breakdown, and determined potential rates of anaerobic carbon dioxide (CO2) and methane (CH4) production. Soils from the field plots treated with brackish water had lower carbon content and higher C : N ratios than soils from freshwater plots, indicating that saltwater intrusion reduced carbon availability and increased organic matter recalcitrance. This was reflected in reduced activities of enzymes associated with the hydrolysis of cellulose and the oxidation of lignin, leading to reduced rates of soil CO2 and CH4 production. The effects of long-term saltwater additions contrasted with the effects of short-term exposure to brackish water during three-day laboratory incubations, which increased rates of CO2 production but lowered rates of CH4 production. Collectively, our data suggest that the long-term effect of saltwater intrusion on soil CO2 production is indirect, mediated through the effects of elevated salinity on the quantity and quality of autochthonous organic matter inputs to the soil. In contrast, salinity, organic matter content, and enzyme activities directly influence CH4 production. Our analyses demonstrate that saltwater intrusion into tidal freshwater marshes affects the entire process of carbon mineralization, from the availability of organic carbon through its terminal metabolism to CO2 and/or CH4, and illustrate that long-term shifts in biogeochemical functioning are not necessarily consistent with short

  20. Saltwater intrusion into tidal freshwater marshes alters the biogeochemical processing of organic carbon

    NASA Astrophysics Data System (ADS)

    Neubauer, S. C.; Franklin, R. B.; Berrier, D. J.

    2013-07-01

    Environmental perturbations in wetlands affect the integrated plant-microbial-soil system, causing biogeochemical responses that can manifest at local to global scales. The objective of this study was to determine how saltwater intrusion affects carbon mineralization and greenhouse gas production in coastal wetlands. Working with tidal freshwater marsh soils that had experienced roughly 3.5 yr of in situ saltwater additions, we quantified changes in soil properties, measured extracellular enzyme activity associated with organic matter breakdown, and determined potential rates of anaerobic carbon dioxide (CO2) and methane (CH4) production. Soils from the field plots treated with brackish water had lower carbon content and higher C : N ratios than soils from freshwater plots, indicating that saltwater intrusion reduced carbon availability and increased organic matter recalcitrance. This was reflected in reduced activities of enzymes associated with the hydrolysis of cellulose and the oxidation of lignin, leading to reduced rates of soil CO2 and CH4 production. The effects of long-term saltwater additions contrasted with the effects of short-term exposure to brackish water during three-day laboratory incubations, which increased rates of CO2 production but lowered rates of CH4 production. Collectively, our data suggest that the long-term effect of saltwater intrusion on soil CO2 production is indirect, mediated through the effects of elevated salinity on the quantity and quality of autochthonous organic matter inputs to the soil. In contrast, salinity, organic matter content, and enzyme activities directly influence CH4 production. Our analyses demonstrate that saltwater intrusion into tidal freshwater marshes affects the entire process of carbon mineralization, from the availability of organic carbon through its terminal metabolism to CO2 and/or CH4, and illustrate that long-term shifts in biogeochemical functioning are not necessarily consistent with short

  1. Effects Of Five Years Of Nitrogen And Phosphorus Additions On A Zizaniopsis miliacea Tidal Freshwater Marsh

    EPA Science Inventory

    The purpose of this experiment was to determine if nitrogen (N) or phosphorus (P) acts as the limiting nutrient for tidal freshwater marsh vegetation. To answer this question, we added N, P, and N + P to a tidal freshwater marsh dominated by Zizaniopsis miliacea (Michx.) ...

  2. Ecology of tidal freshwater marshes of the United States east coast: a community profile

    SciTech Connect

    Odum, W.E.; Smith, T.J. III; Hoover, J.K.; McIvor, C.C.

    1984-01-01

    Tidal freshwater marshes are a distinctive type of estuarine ecosystem located upstream from tidal saline marshes and downstream from non-tidal freshwater marshes. They are characterized by freshwater or nearly freshwater conditions most of the time, flora and fauna dominated by freshwater species, and daily lunar tidal flushing. This report examines the ecology of this community as it occurs along the Atlantic seaboard from southern New England to northern Florida. This marsh community is heavily influenced by river flow, which maintains freshwater conditions and deposits sediments high in silt and clay. The plant assemblage in tidal freshwater marshes is diverse both in numbers of species and structural plant types. Plant community structure is markedly diverse spatially and seasonally, and reflects the dynamic processing of energy and biomass in the marsh through high productivity, rapid decomposition and seasonal nutrient cycling. The diverse niches in this heterogeneous environment are exploited by a very diverse animal community of as many as 125 species of fish, 102 species of amphibians and reptiles, 280 species of birds, and 46 species of mammals over the community's broad range. Although fewer species are permanent residents or marsh breeders, use of his community for food and cover is high. This use, coupled with the marshes' capacity to be natural buffers and water filters, argue for their high value as natural resources. 349 references, 31 figures, 24 tables.

  3. Carbon Stocks and Accretion in Shallow Marsh Soils of the Mississippi Delta Plain, Louisiana

    NASA Astrophysics Data System (ADS)

    Swarzenski, C.; Tweel, A.

    2012-12-01

    Within limits, soil elevations track long-term water level trends in coastal marshes, primarily through organic contributions. Soil organic matter (carbon) provides vertical elasticity. By virtue of their extent and because of generally rapid subsidence rates, Delta Plain marshes in coastal Louisiana accrete and store large amounts of organic carbon in short time periods. Local subsidence rates are highly variable but average around 1 cm per year or even more in some places. To avoid submergence, marshes must fill the void space, through direct deposition of mineral and organic matter, and/or through changes in pore size. We have profiled shallow soils (< 1 m) in different Delta Plain marsh types and in a variety of settings to understand how soil organic matter contributes to soil volume and accretion and ultimately, how these marshes respond to water level trends. Salt and freshwater marshes accreted similar amounts of carbon (170-260 g C m2 y-1). Carbon stocks in the upper 50 cm of soil were greater by about 15-20% in salt marshes with low rates of vertical accretion as measured by Cs-137 compared with salt marshes with faster rates of accretion and with the almost exclusively organic freshwater marshes. Density of organic carbon increased as dry bulk density increased both in salt and fresh marshes. In fresh marshes with high nutrient inputs, carbon stocks in the shallow soils were 5-10% greater than in comparable marshes with rain as their source of water. Loss of soil organic matter over time also was greater in high nutrient areas, indicating greater carbon turnover in nutrient- enriched waters. The organic matter was more sapric in nutrient-enriched waters. The long-term storage and burial rates of carbon in these coastal wetlands differ from the short-term dynamics of carbon cycling in shallow soils. The short-term carbon dynamics however are crucial to understanding how coastal wetlands may respond to predicted accelerated rates of sea-level rise. In this

  4. Marsh Soil Responses to Nutrients: Belowground Structural and Organic Properties

    EPA Science Inventory

    Coastal marsh responses to nutrient enrichment apparently depend upon soil matrix and whether the system is primarily biogenic or minerogenic. Deteriorating organic rich marshes (Jamaica Bay, NY) receiving wastewater effluent had lower belowground biomass, organic matter, and soi...

  5. Marsh Soil Responses to Nutrients: Belowground Structural and Organic Properties.

    EPA Science Inventory

    Coastal marsh responses to nutrient enrichment apparently depend upon soil matrix and whether the system is primarily biogenic or minerogenic. Deteriorating organic rich marshes (Jamaica Bay, NY) receiving wastewater effluent had lower belowground biomass, organic matter, and soi...

  6. Variability of soil organic carbon reservation capability between coastal salt marsh and riverside freshwater wetland in Chongming Dongtan and its microbial mechanism.

    PubMed

    Hu, Yu; Li, Yanli; Wang, Lei; Tang, Yushu; Chen, Jinhai; Fu, Xiaohua; Le, Yiquan; Wu, Jihua

    2012-01-01

    Two representative zones in Chongming Dongtan which faced the Yangtze River and East China Sea respectively were selected to study the variability of soil organic carbon (SOC) reservation capability between coastal wetland and riverside wetland in the Chongming Dongtan wetland as well as its mechanism by analyzing soil characteristics and plant biomass. The results showed the SOC content of riverside wetland was only 48.61% (P = 0.000 < 0.05) that of coastal wetland. As the organic matter inputs from plant litter of the coastal wetland and riverside wetland were approximately the same, the higher soil microbial respiration (SMR) of riverside wetland led to its lower SOC reservation capability. In the riverside wetland, the high soil microbial biomass, higher proportion of beta-Proteobacteria, which have strong carbon metabolism activity and the existence of some specific aerobic heterotrophic bacteria such as Bacilli and uncultured Lactococcus, were the important reasons for the higher SMR compared to the coastal wetland. There were additional differences in soil physical and chemical characteristics between the coastal wetland and riverside wetlands. Path analysis of predominant bacteria and microbial biomass showed that soil salinity influenced beta-Proteobacteria and microbial biomass most negatively among these physical and chemical factors. Therefore the low salinity of the riverside area was suitable for the growth of microorganisms, especially beta-Proteobacteria and some specific bacteria, which led to the high SMR and low SOC reservation capability when compared to the coastal area.

  7. Development of soil halinity classes for Connecticut tidal marshes

    NASA Astrophysics Data System (ADS)

    Theve, Marissa

    2014-08-01

    A soil's halinity, or ocean derived salinity, can determine much about its use, capabilities, and ecology. This paper uses measurements of electrical conductivity (in a 1 part soil and 5 parts deionized water by volume mixture, EC1:5vol) of estuarine soil samples stratified by ecological community to correlate soil halinity to vegetative community on the Connecticut River. The communities studied here are (in decreasing order of halinity): 1) Low salt marsh/Spartina alterniflora; 2) High salt marsh/Spartina patens, Distichlis spicata, and Juncus gerardii; 3) Back salt marsh/Bolboschoenus and Schoenoplectus species; 4) Brackish marsh/Iva frutescens and Panicum virgatum; and 5) Tidal fresh marsh/Typha and Phragmites species. Out of these, four distinct tidal marsh communities (low salt marsh, high salt marsh, back salt marsh, and tidal fresh) were found to have significantly different mean halinities. These results are a starting place for generating a regional and national soil halinity classification system, and the methods are recommended for use in other estuaries for purposes of ecological classification, soil mapping, and general land/habitat management.

  8. Biogeochemical response of organic-rich freshwater marshes in the Louisiana delta plain to chronic river water influx

    USGS Publications Warehouse

    Swarzenski, C.M.; Doyle, T.W.; Fry, B.; Hargis, T.G.

    2008-01-01

    To help evaluate effects of Mississippi River inputs to sustainability of coastal Louisiana ecosystems, we compared porewater and substrate quality of organic-rich Panicum hemitomon freshwater marshes inundated by river water annually for more than 30 years (Penchant basin, PB) or not during the same time (Barataria basin, BB). In the marshes receiving river water the soil environment was more reduced, the organic substrate was more decomposed and accumulated more sulfur. The porewater dissolved ammonium and orthophosphate concentrations were an order of magnitude higher and sulfide and alkalinity concentrations were more than twice as high in PB compared with BB marshes. The pH was higher and dissolved iron concentrations were more than an order of magnitude lower in PB marshes than in BB marshes. The influx of nutrient-rich river water did not enhance end-of-year above-ground standing biomass or vertical accretion rates of the shallow substrate. The differences in porewater chemistry and substrate quality are reasonably linked to the long-term influx of river water through biogeochemical processes and transformations involving alkalinity, nitrate and sulfate. The key factor is the continual replenishment of alkalinity, nitrate and sulfate via overland flow during high river stage each year for several weeks to more than 6 months. This leads to a reducing soil environment, pooling of the phytotoxin sulfide and inorganic nutrients in porewater, and internally generated alkalinity. Organic matter decomposition is enhanced under these conditions and root mats degraded. The more decomposed root mat makes these marshes more susceptible to erosion during infrequent high-energy events (for example hurricanes) and regular low-energy events, such as tides and the passage of weather fronts. Our findings were unexpected and, if generally applicable, suggest that river diversions may not be the beneficial mitigating agent of wetland restoration and conservation that they are

  9. Seed dispersal into wetlands: Techniques and results for a restored tidal freshwater marsh

    USGS Publications Warehouse

    Neff, K.P.; Baldwin, A.H.

    2005-01-01

    Although seed dispersal is assumed to be a major factor determining plant community development in restored wetlands, little research exists on density and species richness of seed available through dispersal in these systems. We measured composition and seed dispersal rates at a restored tidal freshwater marsh in Washington, DC, USA by collecting seed dispersing through water and wind. Seed dispersal by water was measured using two methods of seed collection: (1) stationary traps composed of coconut fiber mat along an elevation gradient bracketing the tidal range and (2) a floating surface trawl net attached to a boat. To estimate wind dispersal rates, we collected seed from stationary traps composed of coconut fiber mat positioned above marsh vegetation. We also collected a small number of samples of debris deposited along high tide lines (drift lines) and feces of Canada Goose to explore their seed content. We used the seedling emergence method to determine seed density in all samples, which involved placing the fiber mats or sample material on top of potting soil in a greenhouse misting room and enumerating emerging seedlings. Seedlings from a total of 125 plant species emerged during this study (including 82 in river trawls, 89 in stationary water traps, 21 in drift lines, 39 in wind traps, and 10 in goose feces). The most abundant taxa included Bidens frondosa, Boehmeria cylindrica, Cyperus spp., Eclipta prostrata, and Ludwigia palustris. Total seedling density was significantly greater for the stationary water traps (212 + 30.6 seeds/m2/month) than the equal-sized stationary wind traps (18 + 6.0 seeds/m(2)/month). Lower-bound estimates of total species richness based on the non-parametric Chao 2 asymptotic estimators were greater for seeds in water (106 + 1.4 for stationary water traps and 104 + 5.5 for trawl samples) than for wind (54 + 6.4). Our results indicate that water is the primary source of seeds dispersing to the site and that a species-rich pool

  10. Ecogeomorphology of Spartina patens-dominated tidal marshes: Soil organic matter accumulation, marsh elevation dynamics, and disturbance

    USGS Publications Warehouse

    Cahoon, D.R.; Ford, M.A.; Hensel, P.F.; Fagherazzi, Sergio; Marani, Marco; Blum, Linda K.

    2004-01-01

    Marsh soil development and vertical accretion in Spartina patens (Aiton) Muhl.-dominated tidal marshes is largely dependent on soil organic matter accumulation from root-rhizome production and litter deposition. Yet there are few quantitative data sets on belowground production and the relationship between soil organic matter accumulation and soil elevation dynamics for this marsh type. Spartina patens marshes are subject to numerous stressors, including sea-level rise, water level manipulations (i.e., flooding and draining) by impoundments, and prescribed burning. These stressors could influence long-term marsh sustainability by their effect on root production, soil organic matter accumulation, and soil elevation dynamics. In this review, we summarize current knowledge on the interactions among vegetative production, soil organic matter accumulation and marsh elevation dynamics, or the ecogeomorphology, of Spartina patens-dominated tidal marshes. Additional studies are needed of belowground production/decomposition and soil elevation change (measured simultaneously) to better understand the links among soil organic matter accumulation, soil elevation change, and disturbance in this marsh type. From a management perspective, we need to better understand the impacts of disturbance stressors, both lethal and sub-lethal, and the interactive effect of multiple stressors on soil elevation dynamics in order to develop better management practices to safeguard marsh sustainability as sea level rises.

  11. Effects of water level, shade and time on germination and growth of freshwater marsh plants along a simulated successional gradient

    USGS Publications Warehouse

    Kellogg, C.H.; Bridgham, S.D.; Leicht, S.A.

    2003-01-01

    1. We examined the effect of soil organic content (1.4, 3.6, 7.2% soil C), water level (+2, -1, -4 cm from soil surface) and duration (13 or 33 days) on 10 species that varied in abundance during succession in freshwater marshes. We also determined the effect of shade (0, 40, 80% shade) and soil organic content (1.4 and 7.2% soil C) on germination of six species over 62 days with water 0.5 cm below the soil surface. 2. Water level consistently affected species germination on both dates. Above-ground biomass was generally higher with increasing organic content of soil, but shade had little effect on germination or height. 3 The hydrologic zone in which species were found in the field was a good indicator of the response of germination to hydrology. Both early successional species and species wide-spread across the successional gradient show similar germination on all organic contents, while later successional species appear to germinate best at higher organic contents. 4. Successional changes in soils are capable of affecting plant community development, independent of disturbance.

  12. Changes in marsh soils for six months after a fire

    NASA Technical Reports Server (NTRS)

    Schmalzer, Paul A.; Hinkle, C. R.; Koller, Albert M., Jr.

    1991-01-01

    An examination is conducted of changes in soil-nutrient levels in marsh systems after a fire, in conjunction with studies of particulates and gases generated by such biomass combustion. Attention is given to data covering six months after the fire. It is noted that changes in soil property occur at different times after the fire, and persist for different intervals; this implies a need for long-term postfire observations. The marshes studied were representative of a variety of graminoid wetlands in the southeastern U.S. which periodically burn either naturally or upon prescription. Nitrogen transformations in flooded soils differ from those in well-drained ones.

  13. Benthic bacterial and fungal productivity and carbon turnover in a freshwater marsh.

    PubMed

    Buesing, Nanna; Gessner, Mark O

    2006-01-01

    Heterotrophic bacteria and fungi are widely recognized as crucial mediators of carbon, nutrient, and energy flow in ecosystems, yet information on their total annual production in benthic habitats is lacking. To assess the significance of annual microbial production in a structurally complex system, we measured production rates of bacteria and fungi over an annual cycle in four aerobic habitats of a littoral freshwater marsh. Production rates of fungi in plant litter were substantial (0.2 to 2.4 mg C g(-1) C) but were clearly outweighed by those of bacteria (2.6 to 18.8 mg C g(-1) C) throughout the year. This indicates that bacteria represent the most actively growing microorganisms on marsh plant litter in submerged conditions, a finding that contrasts strikingly with results from both standing dead shoots of marsh plants and submerged plant litter decaying in streams. Concomitant measurements of microbial respiration (1.5 to 15.3 mg C-CO2 g(-1) of plant litter C day(-1)) point to high microbial growth efficiencies on the plant litter, averaging 45.5%. The submerged plant litter layer together with the thin aerobic sediment layer underneath (average depth of 5 mm) contributed the bulk of microbial production per square meter of marsh surface (99%), whereas bacterial production in the marsh water column and epiphytic biofilms was negligible. The magnitude of the combined production in these compartments (approximately 1,490 g C m(-2) year(-1)) highlights the importance of carbon flows through microbial biomass, to the extent that even massive primary productivity of the marsh plants (603 g C m(-2) year(-1)) and subsidiary carbon sources (approximately 330 g C m(-2) year(-1)) were insufficient to meet the microbial carbon demand. These findings suggest that littoral freshwater marshes are genuine hot spots of aerobic microbial carbon transformations, which may act as net organic carbon importers from adjacent systems and, in turn, emit large amounts of CO2 (here

  14. Influence of salinity and prey presence on the survival of aquatic macroinvertebrates of a freshwater marsh

    USGS Publications Warehouse

    Kang, Sung-Ryong; King, Sammy L.

    2012-01-01

    Salinization of coastal freshwater environments is a global issue. Increased salinity from sea level rise, storm surges, or other mechanisms is common in coastal freshwater marshes of Louisiana, USA. The effects of salinity increases on aquatic macroinvertebrates in these systems have received little attention, despite the importance of aquatic macroinvertebrates for nutrient cycling, biodiversity, and as a food source for vertebrate species. We used microcosm experiments to evaluate the effects of salinity, duration of exposure, and prey availability on the relative survival of dominant aquatic macroinvertebrates (i.e., Procambarus clarkii Girard, Cambarellus puer Hobbs, Libellulidae, Dytiscidae cybister) in a freshwater marsh of southwestern Louisiana. We hypothesized that increased salinity, absence of prey, and increased duration of exposure would decrease survival of aquatic macroinvertebrates and that crustaceans would have higher survival than aquatic insect taxon. Our first hypothesis was only partially supported as only salinity increases combined with prolonged exposure duration affected aquatic macroinvertebrate survival. Furthermore, crustaceans had higher survival than aquatic insects. Salinity stress may cause mortality when acting together with other stressful conditions.

  15. Energy-based land use predictors of proximal factors and benthic diatom composition in Florida freshwater marshes.

    PubMed

    Lane, Charles R; Brown, Mark T

    2006-06-01

    The Landscape Development Intensity index (LDI), which is based on non-renewable energy use and integrates diverse land use activities, was compared to other measures of LU (e.g., %agriculture, %urban) to determine its ability for predicting benthic diatom composition in freshwater marshes of peninsular Florida. In this study, 70 small, isolated herbaceous marshes located along a human disturbance gradient (generally agricultural) throughout peninsular Florida were sampled for benthic diatoms and soil and water physical/chemical parameters (i.e., TP, TKN, pH, specific conductance, etc.). Landscape measures of percent agriculture, percent urban, percent natural, and LDI index values were calculated for a 100 m buffer around each site. The strongest relationships using Mantel's r statistic, which ranges from -1 to 1, were found between benthic diatom composition, the combined soil and water variables, and LDI scores (r=0.51, P<0.0001). Although similar, soil and water variables alone (r=0.45, P<0.0001) or with percent agriculture or percent natural were not as strongly correlated (both Mantel's r=0.46, P<0.0001). Little urban land use was found in the areas surrounding the study wetlands. Diatom data were clustered using flexible beta into 2 groups, and stepwise discriminant analysis identified specific conductance, followed by LDI score, soil pH, water total phosphorus, and ammonia, as cluster-separating variables. The LDI explained slightly more of the variation in species composition than either percent agriculture or percent natural, perhaps because the LDI can combine disparate land uses into a single quantitative value. However, the ecological significance of the difference between land use metrics and diatom composition is controvertible, and additional tests including more varied land uses appear warranted.

  16. Climatic variability, hydrologic anomaly, and methane emission can turn productive freshwater marshes into net carbon sources.

    PubMed

    Chu, Housen; Gottgens, Johan F; Chen, Jiquan; Sun, Ge; Desai, Ankur R; Ouyang, Zutao; Shao, Changliang; Czajkowski, Kevin

    2015-03-01

    Freshwater marshes are well-known for their ecological functions in carbon sequestration, but complete carbon budgets that include both methane (CH4 ) and lateral carbon fluxes for these ecosystems are rarely available. To the best of our knowledge, this is the first full carbon balance for a freshwater marsh where vertical gaseous [carbon dioxide (CO2 ) and CH4 ] and lateral hydrologic fluxes (dissolved and particulate organic carbon) have been simultaneously measured for multiple years (2011-2013). Carbon accumulation in the sediments suggested that the marsh was a long-term carbon sink and accumulated ~96.9 ± 10.3 (±95% CI) g C m(-2)  yr(-1) during the last ~50 years. However, abnormal climate conditions in the last 3 years turned the marsh to a source of carbon (42.7 ± 23.4 g C m(-2)  yr(-1) ). Gross ecosystem production and ecosystem respiration were the two largest fluxes in the annual carbon budget. Yet, these two fluxes compensated each other to a large extent and led to the marsh being a CO2 sink in 2011 (-78.8 ± 33.6 g C m(-2)  yr(-1) ), near CO2 -neutral in 2012 (29.7 ± 37.2 g C m(-2)  yr(-1) ), and a CO2 source in 2013 (92.9 ± 28.0 g C m(-2)  yr(-1) ). The CH4 emission was consistently high with a three-year average of 50.8 ± 1.0 g C m(-2)  yr(-1) . Considerable hydrologic carbon flowed laterally both into and out of the marsh (108.3 ± 5.4 and 86.2 ± 10.5 g C m(-2)  yr(-1) , respectively). In total, hydrologic carbon fluxes contributed ~23 ± 13 g C m(-2)  yr(-1) to the three-year carbon budget. Our findings highlight the importance of lateral hydrologic inflows/outflows in wetland carbon budgets, especially in those characterized by a flow-through hydrologic regime. In addition, different carbon fluxes responded unequally to climate variability/anomalies and, thus, the total carbon budgets may vary drastically among years.

  17. Carbon dioxide and methane exchange at a cool-temperate freshwater marsh

    NASA Astrophysics Data System (ADS)

    Strachan, Ian B.; Nugent, Kelly A.; Crombie, Stephanie; Bonneville, Marie-Claude

    2015-06-01

    Freshwater marshes have been shown to be strong sinks for carbon dioxide (CO2) on an annual basis relative to other wetland types; however it is likely that these ecosystems are also strong emitters of methane (CH4), reducing their carbon (C) sequestration potential. Multiyear C balances in these ecosystems are necessary therefore to determine their contribution to the global C cycle. Despite this, the number of multiyear studies in marshes is few, with, to the best of our knowledge, only one other Northern marsh C balance reported. This study presents five years of eddy covariance flux measurements of CO2, and four years of warm-season chamber measurements of CH4 at a cool-temperate Typha angustifolia marsh. Annual average cumulative net ecosystem exchange of CO2 (NEE) at the marsh was -224 ± 54 g C m-2 yr-1 (±SD) over the five-year period, ranging from -126 to -284 g C m-2 yr-1. Enhancement of the ecosystem respiration during warmer spring, autumn and winter periods appeared the strongest determinant of annual NEE totals. Warm season fluxes of CH4 from the Typha vegetation (avg. 1.0 ± 1.2 g C m-2 d-1) were significantly higher than fluxes from the water surface (0.5 ± 0.4 g C m-2 d-1) and unvegetated mats (0.2 ± 0.2 g C m-2 d-1). Air temperature was a primary driver of all CH4 fluxes, while water table was not a significant correlate as water levels were always at or above the vegetative mat surfaces. Weighting by the surface cover proportion of water and vegetation yielded a net ecosystem CH4 emission of 127 ± 19 g C m-2 yr-1. Combining CO2 and CH4, the annual C sink at the Mer Bleue marsh was reduced to -97 ± 57 g C m-2 yr-1, illustrating the importance of accounting for CH4 when generating marsh C budgets.

  18. Soil Dynamics Following Fire in Juncus and Spartina Marshes

    NASA Technical Reports Server (NTRS)

    Schmalzer, Paul A.; Hinkle, C. Ross

    1992-01-01

    We examined soil changes in the O-5 and 5-15 cm layers for one year after a fire in burned Juncus roemerianus and Spartina bakeri marshes and an unburned Juncus marsh. Each marsh was sampled (N = 25) preburn, immediately postburn, and 1, 3, 6, 9, and 12 months postburn. All marshes were flooded at the time of the fire; water levels declined below the surface by 6 months but reflooded at 12 months after the fire. Soil samples were analyzed for pH, conductivity, organic matter, exchangeable Ca, Mg, and K, available PO4-P, total Kjeldahl nitrogen (TKN), exchangeable NO3-N, NO2-N, and NH4-N. Changes due to burning were most pronounced in the surface (0-5 cm) layer. Soil pH increased 0.16-0.28 units immediately postburn but returned to preburn levels in 1 month. Organic matter increased by 1 month and remained elevated through 9 months after the fire. Calcium, Mg, K, and PO4-P all increased by 1 month after burning, and the increases persisted for 6 to 12 months. Conductivity increased in association with these cations. Burning released ions from organic matter as indicated by the increase in pH, conductivity, Ca, Mg, K, and PO4-P. NH4-N in burned marshes was elevated 6 months and NO3-N 12 months after burning. TKN showed seasonal variations but no clear fire-related changes. Nitrogen species were affected by the seasonally varying water levels as well as fire; these changes differed from those observed in many upland systems.

  19. The effect of increasing salinity and forest mortality on soil nitrogen and phosphorus mineralization in tidal freshwater forested wetlands

    USGS Publications Warehouse

    Noe, Gregory B.; Krauss, Ken W.; Lockaby, B. Graeme; Conner, William H.; Hupp, Cliff R.

    2013-01-01

    Tidal freshwater wetlands are sensitive to sea level rise and increased salinity, although little information is known about the impact of salinification on nutrient biogeochemistry in tidal freshwater forested wetlands. We quantified soil nitrogen (N) and phosphorus (P) mineralization using seasonal in situ incubations of modified resin cores along spatial gradients of chronic salinification (from continuously freshwater tidal forest to salt impacted tidal forest to oligohaline marsh) and in hummocks and hollows of the continuously freshwater tidal forest along the blackwater Waccamaw River and alluvial Savannah River. Salinification increased rates of net N and P mineralization fluxes and turnover in tidal freshwater forested wetland soils, most likely through tree stress and senescence (for N) and conversion to oligohaline marsh (for P). Stimulation of N and P mineralization by chronic salinification was apparently unrelated to inputs of sulfate (for N and P) or direct effects of increased soil conductivity (for N). In addition, the tidal wetland soils of the alluvial river mineralized more P relative to N than the blackwater river. Finally, hummocks had much greater nitrification fluxes than hollows at the continuously freshwater tidal forested wetland sites. These findings add to knowledge of the responses of tidal freshwater ecosystems to sea level rise and salinification that is necessary to predict the consequences of state changes in coastal ecosystem structure and function due to global change, including potential impacts on estuarine eutrophication.

  20. Marsh soils as potential sinks for Bacteroides fecal indicator bacteria, Waccamaw National Wildlife Refuge, Georgetown, SC, USA

    USGS Publications Warehouse

    Drexler, Judith Z.; Johnson, Heather E.; Duris, Joseph W.; Krauss, Ken W.

    2014-01-01

    A soil core collected in a tidal freshwater marsh in the Waccamaw National Wildlife Refuge (Georgetown, SC) exuded a particularly strong odor of cow manure upon extrusion. In order to test for manure and determine its provenance, we carried out microbial source tracking using DNA markers for Bacteroides, a noncoliform, anaerobic bacterial group that represents a broad group of the fecal population. Three core sections from 0-3 cm, 9-12 cm and 30-33 were analyzed for the presence of Bacteroides. The ages of core sediments were estimated using 210Pb and 137Cs dating. All three core sections tested positive for Bacteroides DNA markers related to cow or deer feces. Because cow manure is stockpiled, used as fertilizer, and a source of direct contamination in the Great Pee Dee River/Winyah Bay watershed, it is very likely the source of the Bacteroides that was deposited on the marsh. The mid-points of the core sections were dated as follows: 0-3 cm: 2009; 9-12 cm: 1999, and 30-33 cm: 1961. The presence of Bacteroides at different depths/ages in the soil profile indicates that soils in tidal freshwater marshes are, at the least, capable of being short-term sinks for Bacteroides and, may have the potential to be long-term sinks of stable, naturalized populations.

  1. Monitoring Everglades freshwater marsh water level using L-band synthetic aperture radar backscatter

    USGS Publications Warehouse

    Kim, Jin-Woo; Lu, Zhong; Jones, John W.; Shum, C.K.; Lee, Hyongki; Jia, Yuanyuan

    2014-01-01

    The Florida Everglades plays a significant role in controlling floods, improving water quality, supporting ecosystems, and maintaining biodiversity in south Florida. Adaptive restoration and management of the Everglades requires the best information possible regarding wetland hydrology. We developed a new and innovative approach to quantify spatial and temporal variations in wetland water levels within the Everglades, Florida. We observed high correlations between water level measured at in situ gages and L-band SAR backscatter coefficients in the freshwater marsh, though C-band SAR backscatter has no close relationship with water level. Here we illustrate the complementarity of SAR backscatter coefficient differencing and interferometry (InSAR) for improved estimation of high spatial resolution water level variations in the Everglades. This technique has a certain limitation in applying to swamp forests with dense vegetation cover, but we conclude that this new method is promising in future applications to wetland hydrology research.

  2. Study the spatial variability of organic soil layer thickness within Barataria Bay marshes, Louisiana

    SciTech Connect

    Hudnall, W.H.; Dharmasri, L.C.; Holladay, K.W.; Pelletier, R.

    1997-08-01

    Marshes convert to open water at a high rate in Louisiana. Organic layers degrade in eroding marshes. Organic accretion results in thick organic layers that help to maintain healthy marshes. Thin organic layers may be characteristic of erodible marshes that convert into open water. Thickness of the surface organic layer is a significant soil morphological feature that may indicate the status of the marsh. Soil morphology can show a significant spatial variability within marshes. Accretion rates and the landscape may be disturbed by hurricane activity, presence of channels, open water areas, and man made changes. Understanding spatial variability of organic layer thickness will enable one to delineate critical marsh areas and plan marsh management strategies. Study of multi-dimensional variability may help to understand the spatial variability of soil morphological characteristics and prominent pedogenic processes that can be related to a landscape-soil model. Thickness of surface organic layer (or depth to mineral horizon) was measured using grids at 200 m intervals established within one square mile area in saline and brackish marsh. The soils had a variable organic layer thickness over sandy or clayey alluvium. Data were used to generate thickness contour maps. Soil morphology indicated a considerable spatial variability within the saline and brackish marshes.

  3. Ecosystem level methane fluxes from tidal freshwater and brackish marshes of the Mississippi River Delta: Implications for coastal wetland carbon projects

    USGS Publications Warehouse

    Holm, Guerry O.; Perez, Brian C.; McWhorter, David E.; Krauss, Ken W.; Johnson, Darren J.; Raynie, Richard C.; Killebrew, Charles J.

    2016-01-01

    Sulfate from seawater inhibits methane production in tidal wetlands, and by extension, salinity has been used as a general predictor of methane emissions. With the need to reduce methane flux uncertainties from tidal wetlands, eddy covariance (EC) techniques provide an integrated methane budget. The goals of this study were to: 1) establish methane emissions from natural, freshwater and brackish wetlands in Louisiana based on EC; and 2) determine if EC estimates conform to a methane-salinity relationship derived from temperate tidal wetlands with chamber sampling. Annual estimates of methane emissions from this study were 62.3 g CH4/m2/yr and 13.8 g CH4/m2/yr for the freshwater and brackish (8–10 psu) sites, respectively. If it is assumed that long-term, annual soil carbon sequestration rates of natural marshes are ~200 g C/m2/yr (7.3 tCO2e/ha/yr), healthy brackish marshes could be expected to act as a net radiative sink, equivalent to less than one-half the soil carbon accumulation rate after subtracting methane emissions (4.1 tCO2e/ha/yr). Carbon sequestration rates would need case-by-case assessment, but the EC methane emissions estimates in this study conformed well to an existing salinity-methane model that should serve as a basis for establishing emission factors for wetland carbon offset projects.

  4. Monitoring seasonal and annual wetland changes in a freshwater marsh with SPOT HRV data

    SciTech Connect

    Mackey, H.E. Jr.

    1989-12-31

    Eleven dates of SPOT HRV data along with near-concurrent vertical aerial photographic and phenological data for 1987, 1988, and 1989 were evaluated to determine seasonal and annual changes in a 400-hectare, southeastern freshwater marsh. Early April through mid-May was the best time to discriminate among the cypress (Taxodium distichum)/water tupelo (Nyssa acquatica) swamp forest and the non-persistent (Ludwigia spp.) and persistent (Typha spp.) stands in this wetlands. Furthermore, a ten-fold decrease in flow rate from 11 cubic meters per sec (cms) in 1987 to one cms in 1988 was recorded in the marsh followed by a shift to drier wetland communities. The Savannah River Site (SRS), maintained by the US Department of Energy, is a 777 km{sup 2} area located in south central South Carolina. Five tributaries of the Savannah River run southwest through the SRS and into the floodplain swamp of the Savannah River. This paper describes the use of SPOT HRV data to monitor seasonal and annual trends in one of these swamp deltas, Pen Branch Delta, during a three-year period, 1987--1989.

  5. Monitoring seasonal and annual wetland changes in a freshwater marsh with SPOT HRV data

    SciTech Connect

    Mackey, H.E. Jr.

    1989-01-01

    Eleven dates of SPOT HRV data along with near-concurrent vertical aerial photographic and phenological data for 1987, 1988, and 1989 were evaluated to determine seasonal and annual changes in a 400-hectare, southeastern freshwater marsh. Early April through mid-May was the best time to discriminate among the cypress (Taxodium distichum)/water tupelo (Nyssa acquatica) swamp forest and the non-persistent (Ludwigia spp.) and persistent (Typha spp.) stands in this wetlands. Furthermore, a ten-fold decrease in flow rate from 11 cubic meters per sec (cms) in 1987 to one cms in 1988 was recorded in the marsh followed by a shift to drier wetland communities. The Savannah River Site (SRS), maintained by the US Department of Energy, is a 777 km{sup 2} area located in south central South Carolina. Five tributaries of the Savannah River run southwest through the SRS and into the floodplain swamp of the Savannah River. This paper describes the use of SPOT HRV data to monitor seasonal and annual trends in one of these swamp deltas, Pen Branch Delta, during a three-year period, 1987--1989.

  6. Effects of unstable flow on solute transport in the marsh soil and exchange with coastal water

    NASA Astrophysics Data System (ADS)

    Shen, Chengji; Zhang, Chenming; Jin, Guangqiu; Kong, Jun; Li, Ling

    2016-12-01

    Recent studies of marsh hydraulics have focused on tide-induced pore water circulation as the main drive for solute transport in the marsh soil and exchange with coastal water. Our study revealed another important mechanism provided by unstable fingering flow, which largely modified solute transport paths. In the marsh interior, downward penetration of salt fingers forced ambient pore water and solute plumes to move upward and exit the marsh soil through marsh platform at relatively high concentrations, up to 2 orders of magnitude higher than exit solute concentrations at the tidal creek bed. The mixing of solute with ambient pore water in the marsh interior was intensified greatly by fingering flow. A critical distance to the creek was determined based on a field-scale model simulation to distinguish tidal circulation-dominated and fingering flow-dominated solute transport zones. The new transport mechanism has implications for understanding the fate of solutes in particularly salt marshes of low creek densities.

  7. Responses of plant nutrient resorption to phosphorus addition in freshwater marsh of Northeast China

    NASA Astrophysics Data System (ADS)

    Mao, Rong; Zeng, De-Hui; Zhang, Xin-Hou; Song, Chang-Chun

    2015-01-01

    Anthropogenic activities have increased phosphorus (P) inputs to most aquatic and terrestrial ecosystems. However, the relationship between plant nutrient resorption and P availability is still unclear, and much less is known about the underlying mechanisms. Here, we used a multi-level P addition experiment (0, 1.2, 4.8, and 9.6 g P m-2 year-1) to assess the effect of P enrichment on nutrient resorption at plant organ, species, and community levels in a freshwater marsh of Northeast China. The response of nutrient resorption to P addition generally did not vary with addition rates. Moreover, nutrient resorption exhibited similar responses to P addition across the three hierarchical levels. Specifically, P addition decreased nitrogen (N) resorption proficiency, P resorption efficiency and proficiency, but did not impact N resorption efficiency. In addition, P resorption efficiency and proficiency were linearly related to the ratio of inorganic P to organic P and organic P fraction in mature plant organs, respectively. Our findings suggest that the allocation pattern of plant P between inorganic and organic P fractions is an underlying mechanism controlling P resorption processes, and that P enrichment could strongly influence plant-mediated biogeochemical cycles through altered nutrient resorption in the freshwater wetlands of Northeast China.

  8. Responses of plant nutrient resorption to phosphorus addition in freshwater marsh of Northeast China.

    PubMed

    Mao, Rong; Zeng, De-Hui; Zhang, Xin-Hou; Song, Chang-Chun

    2015-01-29

    Anthropogenic activities have increased phosphorus (P) inputs to most aquatic and terrestrial ecosystems. However, the relationship between plant nutrient resorption and P availability is still unclear, and much less is known about the underlying mechanisms. Here, we used a multi-level P addition experiment (0, 1.2, 4.8, and 9.6 g P m(-2) year(-1)) to assess the effect of P enrichment on nutrient resorption at plant organ, species, and community levels in a freshwater marsh of Northeast China. The response of nutrient resorption to P addition generally did not vary with addition rates. Moreover, nutrient resorption exhibited similar responses to P addition across the three hierarchical levels. Specifically, P addition decreased nitrogen (N) resorption proficiency, P resorption efficiency and proficiency, but did not impact N resorption efficiency. In addition, P resorption efficiency and proficiency were linearly related to the ratio of inorganic P to organic P and organic P fraction in mature plant organs, respectively. Our findings suggest that the allocation pattern of plant P between inorganic and organic P fractions is an underlying mechanism controlling P resorption processes, and that P enrichment could strongly influence plant-mediated biogeochemical cycles through altered nutrient resorption in the freshwater wetlands of Northeast China.

  9. The effect of Hurricane Katrina on nekton communities in the tidal freshwater marshes of Breton Sound, Louisiana, USA

    USGS Publications Warehouse

    Piazza, Bryan P.; La Peyre, M.K.

    2009-01-01

    Hurricanes are climatically-induced resource pulses that affect community structure through the combination of physical and chemical habitat change. Estuaries are susceptible to hurricane pulses and are thought to be resilient to habitat change, because biotic communities often return quickly to pre-hurricane conditions. Although several examples provide evidence of quick recovery of estuarine nekton communities following a hurricane, few studies take place in tidal freshwater habitat where physical habitat effects can be extensive and may not be readily mitigated. We examined nekton communities (density, biomass, ?? and ?? diversity, % occurrence by residence status) in tidal freshwater marshes in Breton Sound, Louisiana, before and after a direct hit by Hurricane Katrina (2005). Vegetative marsh loss in the study area was extensive, and elevated salinity persisted for almost 6 months. Post-Katrina nekton density and biomass increased significantly, and the nekton community shifted from one of tidal freshwater/resident species to one containing brackish/migrant species, many of which are characterized by pelagic and benthic life history strategies. By spring 2007, the nekton community had shifted back to tidal freshwater/resident species, despite the enduring loss of vegetated marsh habitat. ?? 2009 Elsevier Ltd.

  10. The effect of Hurricane Katrina on nekton communities in the tidal freshwater marshes of Breton Sound, Louisiana, USA

    NASA Astrophysics Data System (ADS)

    Piazza, Bryan P.; La Peyre, Megan K.

    2009-06-01

    Hurricanes are climatically-induced resource pulses that affect community structure through the combination of physical and chemical habitat change. Estuaries are susceptible to hurricane pulses and are thought to be resilient to habitat change, because biotic communities often return quickly to pre-hurricane conditions. Although several examples provide evidence of quick recovery of estuarine nekton communities following a hurricane, few studies take place in tidal freshwater habitat where physical habitat effects can be extensive and may not be readily mitigated. We examined nekton communities (density, biomass, α and β diversity, % occurrence by residence status) in tidal freshwater marshes in Breton Sound, Louisiana, before and after a direct hit by Hurricane Katrina (2005). Vegetative marsh loss in the study area was extensive, and elevated salinity persisted for almost 6 months. Post-Katrina nekton density and biomass increased significantly, and the nekton community shifted from one of tidal freshwater/resident species to one containing brackish/migrant species, many of which are characterized by pelagic and benthic life history strategies. By spring 2007, the nekton community had shifted back to tidal freshwater/resident species, despite the enduring loss of vegetated marsh habitat.

  11. Standing litter as a driver of interannual CO2 exchange variability in a freshwater marsh

    NASA Astrophysics Data System (ADS)

    Rocha, A. V.; Potts, D. L.; Goulden, M. L.

    2008-12-01

    The San Joaquin Freshwater Marsh (SJFM) is a seasonally flooded Typha wetland in Southern California that is characterized by high rates of Aboveground Net Primary Production (ANPP) and a large accumulation of standing leaf litter. The ANPP, Gross and Net Ecosystem CO2 Exchange (GEE and NEE), and Enhanced Vegetation Index (EVI) at the SJFM fluctuate by ˜40% from year to year, in ways that are not directly attributable to variation in weather or the maximum green Leaf Area Index (LAImax). We tested the hypothesis that this variation is caused by a negative feedback between ANPP, the buildup of leaf litter, shading of green leaves by litter, a reduction in GEE and NEE, and a subsequent reduction in ANPP. Litter manipulations on replicated plots demonstrated that the presence of standing litter decreased plot-level NEE by 17 to 47% and surface EVI by 25 to 48%, even as green Leaf Area Index (LAIgreen) was held constant. Plot level NEE and surface EVI remained tightly correlated, and largely decoupled from LAIgreen, as standing litter was varied. This pattern paralleled that observed for the entire marsh, where NEE and EVI remained tightly correlated, and largely decoupled from LAImax, from year to year. Correcting LAIgreen and LAImax for the amount of shading caused by standing litter improved the correlations between LAI and EVI and NEE, indicating that EVI and NEE are most sensitive to the amount of unshaded LAI. The accumulation of standing litter at the SJFM decouples the relationships between LAI and EVI and NEE, and appears to be important for controlling the interannual variability observed at the site.

  12. Seasonal patterns in energy partitioning of two freshwater marsh ecosystems in the Florida Everglades

    NASA Astrophysics Data System (ADS)

    Malone, Sparkle L.; Staudhammer, Christina L.; Loescher, Henry W.; Olivas, Paulo; Oberbauer, Steven F.; Ryan, Michael G.; Schedlbauer, Jessica; Starr, Gregory

    2014-08-01

    We analyzed energy partitioning in short- and long-hydroperiod freshwater marsh ecosystems in the Florida Everglades by examining energy balance components (eddy covariance derived latent energy (LE) and sensible heat (H) flux). The study period included several wet and dry seasons and variable water levels, allowing us to gain better mechanistic information about the control of and changes in marsh hydroperiods. The annual length of inundation is ~5 months at the short-hydroperiod site (25°26'16.5″N, 80°35'40.68″W), whereas the long-hydroperiod site (25°33'6.72″N, 80°46'57.36″W) is inundated for ~12 months annually due to differences in elevation and exposure to surface flow. In the Everglades, surface fluxes feed back to wet season precipitation and affect the magnitude of seasonal change in water levels through water loss as LE (evapotranspiration (ET)). At both sites, annual precipitation was higher than ET (1304 versus 1008 at the short-hydroperiod site and 1207 versus 1115 mm yr-1 at the long-hydroperiod site), though there were seasonal differences in the ratio of ET:precipitation. Results also show that energy balance closure was within the range found at other wetland sites (60 to 80%) and was lower when sites were inundated (60 to 70%). Patterns in energy partitioning covaried with hydroperiods and climate, suggesting that shifts in any of these components could disrupt current water and biogeochemical cycles throughout the Everglades region. These results suggest that the complex relationships between hydroperiods, energy exchange, and climate are important for creating conditions sufficient to maintain Everglades ecosystems.

  13. Copepod (Crustacea) emergence from soils from everglades marshes with different hydroperiods

    USGS Publications Warehouse

    Loftus, W.F.; Reid, J.W.

    2000-01-01

    During a severe drought period in the winter and spring of 1989, we made three collections of dried marsh soils from freshwater sloughs in Everglades National Park, Florida, at sites characterized by either long or intermediate annual periods of flooding (hydroperiod). After rehydrating the soils in aquaria, we documented the temporal patterns of copepod emergence over two-week periods. The species richness of copepods in the rehydrated soils was lower than in pre-drought samples from the same slough sites. Only six of the 16 species recorded from the Everglades emerged in the aquarium tests. The long hydroperiod site had a slightly different assemblage and higher numbers of most species than the intermediate-hydroperiod sites. More individuals and species emerged from the early dry-season samples compared with samples taken later in the dry season. The harpacticoid, Cletocamptus deitersi, and the cyclopoid, Microcyclops rubellus, were abundant at most sites. The cyclopoids - Ectocyclops phaleratus, Homocyclops ater, and Paracyclops chiltoni - are new records for the Everglades. We infer that 1) only a subset of Everglades copepod species can survive drought by resting in soils; and that 2) survival ability over time differs by species.

  14. Modeling tidal freshwater marsh sustainability in the Sacramento-San Joaquin Delta under a broad suite of potential future scenarios

    USGS Publications Warehouse

    Swanson, Kathleen M.; Drexler, Judith Z.; Fuller, Christopher C.; Schoellhamer, David H.

    2015-01-01

    In this paper, we report on the adaptation and application of a one-dimensional marsh surface elevation model, the Wetland Accretion Rate Model of Ecosystem Resilience (WARMER), to explore the conditions that lead to sustainable tidal freshwater marshes in the Sacramento–San Joaquin Delta. We defined marsh accretion parameters to encapsulate the range of observed values over historic and modern time-scales based on measurements from four marshes in high and low energy fluvial environments as well as possible future trends in sediment supply and mean sea level. A sensitivity analysis of 450 simulations was conducted encompassing a range of eScholarship provides open access, scholarly publishing services to the University of California and delivers a dynamic research platform to scholars worldwide. porosity values, initial elevations, organic and inorganic matter accumulation rates, and sea-level rise rates. For the range of inputs considered, the magnitude of SLR over the next century was the primary driver of marsh surface elevation change. Sediment supply was the secondary control. More than 84% of the scenarios resulted in sustainable marshes with 88 cm of SLR by 2100, but only 32% and 11% of the scenarios resulted in surviving marshes when SLR was increased to 133 cm and 179 cm, respectively. Marshes situated in high-energy zones were marginally more resilient than those in low-energy zones because of their higher inorganic sediment supply. Overall, the results from this modeling exercise suggest that marshes at the upstream reaches of the Delta—where SLR may be attenuated—and high energy marshes along major channels with high inorganic sediment accumulation rates will be more resilient to global SLR in excess of 88 cm over the next century than their downstream and low-energy counterparts. However, considerable uncertainties exist in the projected rates of sea-level rise and sediment avail-ability. In addition, more research is needed to constrain future

  15. Effects of exogenous nitrogen on freshwater marsh plant growth and N2O fluxes in Sanjiang Plain, Northeast China

    NASA Astrophysics Data System (ADS)

    Zhang, Lihua; Song, Changchun; Wang, Dexuan; Wang, Yiyong

    Field management strongly affected the emission of N2O and plant growth from freshwater marshes. Nitrous oxide ( N2O) fluxes, leaf area, plant height and above ground biomass were investigated under four N treatments (0, 6, 12 and 24 g NH4NO3- Nm-2) in the freshwater marshes of Sanjiang Plain, Northeast China. The average growing season N2O flux was 0.065±0.037, 0.086±0.111, 0.141±0.186, 0.445±0.491mgm-2h-1, respectively, the above-ground biomass was 201±49, 252±40, 290±47, 954±115gm-2, respectively, the plant height was 66.25±20.99, 71.91±16.18, 73.55±16.59, 84.14±27.07cm, respectively. Exogenous nitrogen had a significant impact on N2O fluxes and plant growth. Compared to the non-fertilization treatment, the average growing season N2O flux in fertilization increased by 32%, 113%, 581%, respectively, the above-ground biomass increased by 26%, 44%, 375%, respectively, while the plant height increased by 8.5%, 11% and 27%, respectively. A quadratic relationship between the nitrogen applied rate and N2O fluxes, and a non-linear positive correlation between the nitrogen and above-ground biomass were found, while the relationship between the N2O flux and the above-ground biomass was significantly linear positive correlated after nitrogen application, so was the plant height. It was proposed that the exogenous nitrogen gives rise to considerable N2O emissions from freshwater marshes and a large fraction of N2O was emitted to the atmosphere via the transpiration stream within the Deyeuxia angustifolia plants, which provides some quantificational data on the relationship between the nitrogen, N2O fluxes and marsh plant growth.

  16. A long-term comparison of carbon sequestration rates in impounded and naturally tidal freshwater marshes along the lower Waccamaw River, South Carolina

    USGS Publications Warehouse

    Drexler, Judith Z.; Krauss, Ken W.; Sasser, M. Craig; Fuller, Christopher C.; Swarzenski, Christopher M.; Powell, Amber; Swanson, Kathleen M.; Orlando, James

    2013-01-01

    Carbon storage was compared between impounded and naturally tidal freshwater marshes along the Lower Waccamaw River in South Carolina, USA. Soil cores were collected in (1) naturally tidal, (2) moist soil (impounded, seasonally drained since ~1970), and (3) deeply flooded “treatments” (impounded, flooded to ~90 cm since ~2002). Cores were analyzed for % organic carbon, % total carbon, bulk density, and 210Pb and 137Cs for dating purposes. Carbon sequestration rates ranged from 25 to 200 g C m−2 yr−1 (moist soil), 80–435 g C m−2 yr−1 (naturally tidal), and 100–250 g C m−2 yr−1 (deeply flooded). The moist soil and naturally tidal treatments were compared over a period of 40 years. The naturally tidal treatment had significantly higher carbon storage (mean = 219 g C m−2 yr−1 vs. mean = 91 g C m−2 yr−1) and four times the vertical accretion rate (mean = 0.84 cm yr−1 vs. mean = 0.21 cm yr−1) of the moist soil treatment. The results strongly suggest that the long drainage period in moist soil management limits carbon storage over time. Managers across the National Wildlife Refuge system have an opportunity to increase carbon storage by minimizing drainage in impoundments as much as practicable.

  17. Ambient and potential denitrification rates in marsh soils of Northeast Creek and Bass Harbor Marsh watersheds, Mount Desert Island, Maine

    USGS Publications Warehouse

    Huntington, Thomas G.; Culbertson, Charles W.; Duff, John H.

    2012-01-01

    Nutrient enrichment from atmospheric deposition, agricultural activities, wildlife, and domestic sources is a concern at Acadia National Park on Mount Desert Island, Maine, because of the potential problems of degradation of water quality and eutrophication in estuaries. Degradation of water quality has been observed at Bass Harbor Marsh estuary in the park but only minimally in Northeast Creek estuary. Previous studies at Acadia National Park have estimated nutrient inputs to estuaries from atmospheric deposition and surface-water runoff, and have identified shallow groundwater as an additional potential source of nutrients. Previous studies at Acadia National Park have assumed that a certain fraction of the nitrogen input was removed through microbial denitrification, but rates of denitrification (natural or maximum potential) in marsh soils have not been determined. The U.S. Geological Survey, in cooperation with Acadia National Park, measured in-place denitrification rates in marsh soils in Northeast Creek and in Bass Harbor Marsh watersheds during summer 2008 and summer 2009. Denitrification was measured under ambient conditions as well as after additions of inorganic nitrogen and glucose. In-place denitrification rates under ambient conditions were similar to those reported for other coastal wetlands, although they were generally lower than those reported for salt marshes having high ambient concentrations of nitrate (NO3). Denitrification rates generally increased by at least an order of magnitude following NO3 additions, with or without glucose (as the carbohydrate) additions, compared with the ambient treatments that received no nutrient additions. The treatment that added both glucose and NO3 resulted in a variety of denitrification responses when compared with the addition of NO3 alone. In most cases, the addition of glucose to a given rate of NO3 addition resulted in higher rates of denitrification. These variable responses indicate that the amount of

  18. Patterns of short-term sedimentation in a freshwater created marsh.

    PubMed

    Harter, Sarah K; Mitsch, William J

    2003-01-01

    This study investigated different sedimentation measurement techniques and examined patterns of short-term sedimentation in two 1-ha replicate created freshwater marshes in central Ohio, USA. Short-term (one-year) sediment accumulation above feldspar, clay, glitter, and sand artificial marker horizons was compared at different water depths and distances from wetland inflow. A sediment budget was also constructed from turbidity and suspended sediment data for comparison with marker horizons. Glitter and sand marker horizons were the most successful for measuring sediment accumulation (81-100% marker recovery), while clay markers were completely unsuccessful. The sedimentation rate for both wetlands averaged 4.9 cm yr(-1) (36 kg m(-2) yr(-1)), and ranged from 1.82 to 9.23 cm yr(-1) (12.4 to 69.7 kg m(-2) yr(-1)). Sedimentation rates in deep, open water areas were significantly higher than in shallow, vegetated areas for both wetlands (t test, p < 0.05). However, observed sedimentation patterns may be attributed more to preferential flow through open water areas than to water depth or presence of vegetation. Contrary to the expected spatial distribution, sedimentation was highly variable within the wetlands, suggesting that bioturbation and turbulence may cause significant resuspension or that high hydrologic loads may distribute sediments throughout the basins. A sediment budget estimated sediment retention of approximately 740 g m(-2) yr(-1) per wetland (43% removal rate), yet gross sediment accumulation was 36,000 g m(-2) yr(-1) measured by marker horizons. These results suggest that erosive forces may have influenced sedimentation, but also may indicate problems with the sediment budget calculation methodology.

  19. Distribution patterns of ammonia-oxidizing bacteria and anammox bacteria in the freshwater marsh of Honghe wetland in Northeast China.

    PubMed

    Lee, Kwok-Ho; Wang, Yong-Feng; Zhang, Guo-Xia; Gu, Ji-Dong

    2014-12-01

    Community characteristics of aerobic ammonia-oxidizing bacteria (AOB) and anaerobic ammonium-oxidizing (anammox) bacteria in Honghe freshwater marsh, a Ramsar-designated wetland in Northeast China, were analyzed in this study. Samples were collected from surface and low layers of sediments in the Experimental, Buffer, and Core Zones in the reserve. Community structures of AOB were investigated using both 16S rRNA and amoA (encoding for the α-subunit of the ammonia monooxygenase) genes. Majority of both 16S rRNA and amoA gene-PCR amplified sequences obtained from the samples in the three zones affiliated with Nitrosospira, which agreed with other wetland studies. A relatively high richness of β-AOB amoA gene detected in the freshwater marsh might suggest minimal external pressure was experienced, providing a suitable habitat for β-AOB communities. Anammox bacteria communities were assessed using both 16S rRNA and hzo (encoding for hydrazine oxidoreductase) genes. However, PCR amplification of the hzo gene in all samples failed, suggesting that the utilization of hzo biomarker for detecting anammox bacteria in freshwater marsh might have serious limitations. Results with 16S rRNA gene showed that Candidatus Kuenenia was detected in only the Experimental Zone, whereas Ca. Scalindua including different lineages was observed in both the Buffer and Experimental Zones but not the Core Zone. These results indicated that both AOB and anammox bacteria have specific distribution patterns in the ecosystem corresponding to the extent of anthropogenic impact.

  20. Effects of nitrogen on the ecosystem respiration, CH4 and N2O emissions to the atmosphere from the freshwater marshes in northeast China

    NASA Astrophysics Data System (ADS)

    Zhang, Lihua; Song, Changchun; Zheng, Xunhua; Wang, Dexuan; Wang, Yiyong

    2007-04-01

    Freshwater marshes could be a source of greenhouse gases emission because they contain large amounts of soil carbon and nitrogen. These emissions are strongly influenced by exogenous nitrogen. We investigate the effects of exogenous nitrogen on ecosystem respiration (CO2), CH4 and N2O emissions from freshwater marshes in situ in the Sanjiang Plain Northeast of China during the growing seasons of 2004 and 2005, using a field fertilizer experiment and the static opaque chamber/GC techniques. The results show that there were no significant differences in patterns of seasonal variations of CO2 and CH4 among the fertilizer and non-fertilizer treatments, but the seasonal patterns of N2O emission were significantly influenced by the exogenous nitrogen. Seasonal averages of the CO2 flux from non-fertilizer and fertilizer were 987.74 and 1,344.35 mg m -2 h -1, respectively, in 2004, and 898.59 and 2,154.17 mg m -2 h -1, respectively, in 2005. And the CH4 from the control and fertilizer treatments were 6.05 and 13.56 mg m -2 h -1 and 0.72 and 1.88 mg m -2 h -1, respectively, in 2004 and 2005. The difference of N2O flux between the fertilizer and non-fertilizer treatments is also significant either in 2004 and 2005. On the time scale of 20-, 100-, and 500-year periods, the integrated global warming potential (GWP) of CO2 +CH4 +N2O released during the two growing seasons for the treatment of fertilizer was 97, 94 and 89%, respectively, higher than that for the control, which suggested that the nitrogen fertilizer can enhance the GWP of the CH4 and N2O either in long time or short time scale.

  1. Soil Carbon Stocks in a Shifting Ecosystem; Climate Induced Migration of Mangroves into Salt Marsh

    NASA Astrophysics Data System (ADS)

    Simpson, L.; Osborne, T.; Feller, I. C.

    2015-12-01

    Across the globe, coastal wetland vegetation distributions are changing in response to climate change. The increase in global average surface temperature has already caused shifts in the structure and distribution of many ecological communities. In parts of the southeastern United States, increased winter temperatures have resulted in the poleward range expansion of mangroves at the expense of salt marsh habitat. Our work aims to document carbon storage in the salt marsh - mangrove ecotone and any potential changes in this reservoir that may ensue due to the shifting range of this habitat. Differences in SOM and C stocks along a latitudinal gradient on the east coast of Florida will be presented. The gradient studied spans 342 km and includes pure mangrove habitat, the salt marsh - mangrove ecotone, and pure salt marsh habitat.This latitudinal gradient gives us an exceptional opportunity to document and investigate ecosystem soil C modifications as mangroves transgress into salt marsh habitat due to climatic change.

  2. Copper and lead levels in crops and soils of the Holland Marsh Area-Ontario

    SciTech Connect

    Czuba, M.; Hutchinson, T.C.

    1980-01-01

    A study was made of the occurrence, distribution, and concentrations of the heavy metals copper (Cu) and lead (Pb) in the soils and crops of the important horticultural area north of Toronto known as the Holland Marsh. The soils are deep organic mucks (> 85% organic matter), derived by the drainage of black marshland soils, which has been carried out over the past 40 years. A comparison is made between the Pb and Cu concentrations in undrained, uncultivated areas of the marsh and in the intensively used horticultural area. Analyses show a marked accumulation of Cu in surface layers of cultivated soils, with a mean surface concentration of 130 ppM, declining to 20 ppM at a 32-cm depth. Undrained (virgin) soils of the same marshes had < 20 ppM at all depths. Lead concentrations also declined through the profile, from concentrations of 22 to 10 ppM. In comparison, undrained areas had elevated Pb levels. Cultivation appeared to have increased Cu, but lowered Pb in the marsh. Copper and lead levels found in the crops were generally higher in the young spring vegetables than in the mature fall ones. Leafy crops, especially lettuce (Lactuca L.) and celery (Apium graveolens), accumulated higher Pb levels in their foliage compared with levels in root crops. Cultivation procedures, including past pesticide applications and fertilizer additions, appeared to be principal sources of Cu. Mobility from the soil and into the plant for these elements in the marsh muck soils is discussed.

  3. Can elevated CO2 modify regeneration from seed banks of floating freshwater marshes subjected to rising sea-level?

    USGS Publications Warehouse

    Middleton, Beth A.; McKee, Karen L.

    2012-01-01

    Higher atmospheric concentrations of CO2 can offset the negative effects of flooding or salinity on plant species, but previous studies have focused on mature, rather than regenerating vegetation. This study examined how interacting environments of CO2, water regime, and salinity affect seed germination and seedling biomass of floating freshwater marshes in the Mississippi River Delta, which are dominated by C3 grasses, sedges, and forbs. Germination density and seedling growth of the dominant species depended on multifactor interactions of CO2 (385 and 720 μl l-1) with flooding (drained, +8-cm depth, +8-cm depth-gradual) and salinity (0, 6% seawater) levels. Of the three factors tested, salinity was the most important determinant of seedling response patterns. Species richness (total = 19) was insensitive to CO2. Our findings suggest that for freshwater marsh communities, seedling response to CO2 is species-specific and secondary to salinity and flooding effects. Elevated CO2 did not ameliorate flooding or salinity stress. Consequently, climate-related changes in sea level or human-caused alterations in hydrology may override atmospheric CO2 concentrations in driving shifts in this plant community. The results of this study suggest caution in making extrapolations from species-specific responses to community-level predictions without detailed attention to the nuances of multifactor responses.

  4. Below the disappearing marshes of an urban estuary: historic nitrogen trends and soil structure.

    PubMed

    Wigand, Cathleen; Roman, Charles T; Davey, Earl; Stolt, Mark; Johnson, Roxanne; Hanson, Alana; Watson, Elizabeth B; Moran, S Bradley; Cahoon, Donald R; Lynch, James C; Rafferty, Patricia

    2014-06-01

    Marshes in the urban Jamaica Bay Estuary, New York, USA are disappearing at an average rate of 13 ha/yr, and multiple stressors (e.g., wastewater inputs, dredging activities, groundwater removal, and global warming) may be contributing to marsh losses. Among these stressors, wastewater nutrients are suspected to be an important contributing cause of marsh deterioration. We used census data, radiometric dating, stable nitrogen isotopes, and soil surveys to examine the temporal relationships between human population growth and soil nitrogen; and we evaluated soil structure with computer-aided tomography, surface elevation and sediment accretion trends, carbon dioxide emissions, and soil shear strength to examine differences among disappearing (Black Bank and Big Egg) and stable marshes (JoCo). Radiometric dating and nitrogen isotope analyses suggested a rapid increase in human wastewater nutrients beginning in the late 1840s, and a tapering off beginning in the 1930s when wastewater treatment plants (WWTPs) were first installed. Current WWTPs nutrient loads to Jamaica Bay are approximately 13 995 kg N/d and 2767 kg P/d. At Black Bank, the biomass and abundance of roots and rhizomes and percentage of organic matter on soil were significantly lower, rhizomes larger in diameter, carbon dioxide emission rates and peat particle density significantly greater, and soil strength significantly lower compared to the stable JoCo Marsh, suggesting Black Bank has elevated decomposition rates, more decomposed peat, and highly waterlogged peat. Despite these differences, the rates of accretion and surface elevation change were similar for both marshes, and the rates of elevation change approximated the long-term relative rate of sea level rise estimated from tide gauge data at nearby Sandy Hook, New Jersey. We hypothesize that Black Bank marsh kept pace with sea level rise by the accretion of material on the marsh surface, and the maintenance of soil volume through production of

  5. Below the disappearing marshes of an urban estuary: historic nitrogen trends and soil structure

    USGS Publications Warehouse

    Wigand, Cathleen; Roman, Charles T.; Davey, Earl; Stolt, Mark; Johnson, Roxanne; Hanson, Alana; Watson, Elizabeth B.; Moran, S. Bradley; Cahoon, Donald R.; Lynch, James C.; Rafferty, Patricia

    2014-01-01

    Marshes in the urban Jamaica Bay Estuary, New York, USA are disappearing at an average rate of 13 ha/yr, and multiple stressors (e.g., wastewater inputs, dredging activities, groundwater removal, and global warming) may be contributing to marsh losses. Among these stressors, wastewater nutrients are suspected to be an important contributing cause of marsh deterioration. We used census data, radiometric dating, stable nitrogen isotopes, and soil surveys to examine the temporal relationships between human population growth and soil nitrogen; and we evaluated soil structure with computer-aided tomography, surface elevation and sediment accretion trends, carbon dioxide emissions, and soil shear strength to examine differences among disappearing (Black Bank and Big Egg) and stable marshes (JoCo). Radiometric dating and nitrogen isotope analyses suggested a rapid increase in human wastewater nutrients beginning in the late 1840s, and a tapering off beginning in the 1930s when wastewater treatment plants (WWTPs) were first installed. Current WWTPs nutrient loads to Jamaica Bay are approximately 13 995 kg N/d and 2767 kg P/d. At Black Bank, the biomass and abundance of roots and rhizomes and percentage of organic matter on soil were significantly lower, rhizomes larger in diameter, carbon dioxide emission rates and peat particle density significantly greater, and soil strength significantly lower compared to the stable JoCo Marsh, suggesting Black Bank has elevated decomposition rates, more decomposed peat, and highly waterlogged peat. Despite these differences, the rates of accretion and surface elevation change were similar for both marshes, and the rates of elevation change approximated the long term relative rate of sea level rise estimated from tide gauge data at nearby Sandy Hook, New Jersey. We hypothesize that Black Bank marsh kept pace with sea level rise by the accretion of material on the marsh surface, and the maintenance of soil volume through production of

  6. Greenhouse gas emissions and carbon sequestration potential in restored freshwater marshes in the Sacramento San-Joaquin Delta, California

    NASA Astrophysics Data System (ADS)

    Knox, S. H.; Sturtevant, C. S.; Oikawa, P. Y.; Matthes, J. H.; Dronova, I.; Anderson, F. E.; Verfaillie, J. G.; Baldocchi, D. D.

    2015-12-01

    Wetlands can be effective carbon sinks due to limited decomposition rates in anaerobic soil. As such there is a growing interest in the use of restored wetlands as biological carbon sequestration projects for greenhouse gas (GHG) emission reduction programs. However, using wetlands to offset emissions requires accurate accounting of both carbon dioxide (CO2) and methane (CH4) exchange since wetlands are also sources of CH4. To date few studies have quantified CO2 and CH4 exchange from restored wetlands or assessed how these fluxes vary during ecosystem development. In this study, we report on multiple years of eddy covariance measurements of CO2 and CH4 fluxes from two restored freshwater marshes of differing ages (one restored in 1997 and the other in 2010) in the Sacramento-San Joaquin Delta, CA. Measurements at the younger restored wetland started in October 2010 and began in April 2011 at the older site. The younger restored wetland showed considerable year-to-year variability in the first 4 years following restoration, with CO2 uptake ranging from 12 to 420 g C-CO2 m-2 yr-1. Net CO2 uptake at the older wetland was overall greater than at the younger site, ranging from 292 to 585 g C-CO2 m-2 yr-1. Methane emissions were on average higher at the younger wetland (46 g C-CH4 m-2 yr-1) relative to the older one (33 g C-CH4 m-2 yr-1). In terms of the GHG budgets (assuming a global warming potential of 34), the younger wetland was consistently a GHG source, emitting on average 1439 g CO2 eq m-2 yr-1, while the older wetland was a GHG sink in two of the years of measurement (sequestering 651 and 780 g CO2 eq m-2 yr-1 in 2012 and 2013, respectively) and a source of 750 g CO2 eq m-2 yr-1 in 2014. This study highlights how dynamic CO2 and CH4 fluxes are in the first years following wetland restoration and suggests that restored wetlands have the potential to act as GHG sinks but this may depend on time since restoration.

  7. Variations in clay mineralogy and sediment texture of salt marsh soils on the Eastern Shore of Virginia

    SciTech Connect

    Robinson, S.E.; Furman, T. . Dept. of Environmental Sciences)

    1993-03-01

    On the Eastern Shore of VA, relative sea level rise has resulted in encroachment of marsh onto upland areas. The amount and type of sediment determines the morphologic environment of the system: lagoon, mudflat, low marsh, high marsh or upland. This research is part of a study to examine the relationship between marsh soil characteristics and the production of Spartina alterniflora. The productivity of marsh vegetation depends on the import and entrapment of sediments that maintain marsh elevation and control water and nutrient availability. This work focused on distribution patterns of sediment texture and mineralogy. One meter deep cores were taken at marsh sites with 10 cm intervals homogenized for analysis. In order to distinguish potential sediment sources, samples were also taken from upland soil pits on the mainland and dredged one-half mile seaward of the barrier islands. Samples have undergone size analysis with a hydrometer and the clay fraction has been analyzed by XRD. Results from the marsh surface indicate large variations in sediment texture, but only slight differences in clay mineralogy between marshes. Barrier island marshes contain a higher average sand content than mainland marshes because of their closer proximity to barrier island beaches and inputs from overwash deposits. The clay minerals found in all marsh surface deposits are illite and chlorite, indicative of oceanic clays. The clay mineralogy of upland soils (kaolinite, chlorite, illite, vermiculite mixed-layer clay) differs from marsh surface clays, indicating that recent sediment deposited on the marsh surface is no upland soil but rather material brought in through tidal inlets. The sediment texture and clay mineralogy at different depths varies as a function of the past geomorphic and depositional history of the site. These data will be used to determine the timing of marsh development on flooded upland sites and to determine the pre-Holocene source of inorganic sediment inputs.

  8. Trace metal concentrations in Spartina densiflora and associated soil from a Patagonian salt marsh.

    PubMed

    Idaszkin, Yanina L; Bouza, Pablo J; Marinho, Carmen H; Gil, Mónica N

    2014-12-15

    The objectives of this study were to (i) assess in situ trace metal concentrations in soil and in Spartina densiflora in a Patagonian salt marsh (Rawson, Chubut, Argentina) and (ii) investigate the relationship between trace metal concentrations in soils and in plants to improve our knowledge regarding the ability of S. densiflora to take up and accumulate trace metals from the soil within its native region. Our results indicate that the soil and S. densiflora exhibit low metal concentrations in the Rawson salt marsh. S. densiflora accumulates Zn in below- and above-ground plant structures and Cr in below-ground parts. These results suggest at the time of this study there is scarce human impact associated with metals in the Rawson salt marsh.

  9. Dispersal potential of a tidal river and colonization of a created tidal freshwater marsh

    PubMed Central

    Leck, Mary Allessio

    2012-01-01

    Background and aims A created tidal freshwater wetland, with no extant seed bank, was monitored to evaluate the colonization potential of a tidal river, vegetation and seed bank changes, and also species persistence. Methodology The 32.3-ha mitigation, adjacent to the Delaware River, was completed in 1994. Three sites, with differing completion dates, and three locations (channel edge, midpoint, upland edge) were sampled. From 1995 to 1999, surveys permitted a view of initial dynamics involving soil seed bank density or field vegetation cover, as well as species composition. Vegetation was monitored through 2011, and in 2011 a seed bank survey was also undertaken. Principal results Between 1995 and 1999, 177 species emerged from soil samples, with a maximum of 32.3 ± 1.8 (SE)/sample. Eight species were added in 2011, indicating continuing dispersal and input. Comparing species richness across three sites for midpoint locations, 2011 totals and species/sample were lower (61–90 % and 53–72 %, respectively) than 1998 values. In vegetation plots during the first 5 years, 72 cover species were present. In 2011, there were 44; 14 were new and the majority (13) were woody and part of an overhanging edge canopy. Dispersal was primarily via water. Overall, the trend was towards lower seed bank densities, except for Mikania scandens and Phragmites australis which had higher densities, as well as cover values. Species richness also decreased. Species varied in persistence in the seed bank and vegetation, and among sites and with location. Initial site colonization differences were still apparent in 2011 seed bank samples. While present, Lythrum salicaria did not reduce species richness; Phragmites, in contrast, had substantial impact. Conclusions The single most important change was an increase in Phragmites in the vegetation. Vegetation dynamics are now determined by this species, and the persistent seed bank and continuing dispersal input have little obvious future in

  10. Six years of monitoring annual changes in a freshwater marsh with SPOT HRV data

    SciTech Connect

    Mackey, H.E. Jr.

    1992-12-01

    Fifteen dates of spring-time SPOT HRV data along with near-concurrent vertical aerial photographic and phenological data from spring 1987 through spring 1992 were analyzed to monitor annual changes in a 150-hectare, southeastern floodplain marsh. The marsh underwent rapid changes during the six years from a swamp dominated by non-persistent, thermally tolerant macrophytes to persistent macrophyte and shrub-scrub communities as reactor discharges declined to Pen Branch. Savannah River flooding was also important in the timing of the shift of these wetland communities. SPOT HRV data proved to be an efficient and effective method to monitor trends in these wetland community changes.

  11. Six years of monitoring annual changes in a freshwater marsh with SPOT HRV data

    SciTech Connect

    Mackey, H.E. Jr.

    1992-01-01

    Fifteen dates of spring-time SPOT HRV data along with near-concurrent vertical aerial photographic and phenological data from spring 1987 through spring 1992 were analyzed to monitor annual changes in a 150-hectare, southeastern floodplain marsh. The marsh underwent rapid changes during the six years from a swamp dominated by non-persistent, thermally tolerant macrophytes to persistent macrophyte and shrub-scrub communities as reactor discharges declined to Pen Branch. Savannah River flooding was also important in the timing of the shift of these wetland communities. SPOT HRV data proved to be an efficient and effective method to monitor trends in these wetland community changes.

  12. Recognition of extensive freshwater and brackish marshes and of multiple transgressions and regressions: The Holocene wetlands of the Delaware Bay and Atlantic Ocean coasts

    SciTech Connect

    Yi, H.I. . Dept. of Geology)

    1992-01-01

    Extensive and closely spaced cores (204) were analyzed to find detailed facies (microfacies) and paleoenvironments in the subsurface sediments along the Delaware Bay and Atlantic Ocean. To determine detailed facies and paleoenvironments, several composite methods were employed: traditional lithological analysis, botanical identification, macro- and micro-paleontological analysis, grain size analysis, organic and inorganic content, water content, mineral composition, particulate plant, and C-14 dating. Twenty-two sedimentary microfacies were identified in the surface and subsurface sediments of the study area. Most of the lower section of the Holocene sediments contained freshwater and brackish marsh microfacies which alternated or intercalated with fluvial microfacies or brackish tidal flat/tidal stream microfacies. After tides encroached upon the freshwater marshes and swamps, several events of transgression and regression were recorded in the stratigraphic section. Finally, saline paleoenvironments predominated at the top section of subsurface sediments. Within saline facies, three subgroups of salt marsh microfacies were identified: high salt marsh sub-microfacies, middle salt marsh sub-microfacies were identified: high salt marsh sub-microfacies, middle salt marsh sub-microfacies, and low salt marsh sub-microfacies. The major controlling factors of these paleoenvironmental changes were local relative sea-level fluctuations, sediment supply, pre-Holocene configuration, fluvial activity, groundwater influence, climatic change, sediment compaction, tectonics, isostasy and biological competition. Ten events of transgression and regression in some areas were found in about 2,000 years, but other areas apparently contained no evidence of multiple events of transgression and regression. Some other areas showed one or two distinctive events of transgression and regression. Therefore, further investigation is necessary to understand the details of these records.

  13. Erosion and deposition in tidal marshes revisited by accounting for soil creep

    NASA Astrophysics Data System (ADS)

    Mariotti, G.

    2015-12-01

    Channels regulate the sediment dynamics of tidal marshes, affect the capacity of marsh platforms to keep pace with sea level rise and can contribute to the loss of the low marsh, a critical area for nutrient cycling and ecosystem services. A puzzling aspect of marsh dynamics is the occurrence of slumping on the channel banks despite the absence of channel widening and migration. An apparently unrelated conundrum is why vertical accretion rates on the low marsh adjacent to channels are often higher than the rate of relative sea level rise: this sedimentation excess should not occur in a regime of equilibrium or in a regime of accelerated sea level rise. Here I suggest that bank erosion and sedimentation surplus are linked and can be explained by soil creep, the process by which soil is moved downslope by gravity. A novel model for a channel-platform cross section predicts an equilibrium state where the sedimentation surplus on the channel banks is transferred by creep toward the channel, where an erosional surplus and a suspend load transport toward the bank close the sediment budget. This model predicts that bank slumping can occur even if marshes are in equilibrium with sea level rise. As a consequence slumping is not an unequivocal indicator of ongoing marsh loss. The model also predicts that, at equilibrium, sedimentation rates adjacent to channels are higher than the rate of sea level rise. This implies that a sedimentation surplus is not a sign of resilience to sea level rise acceleration. The framework proposed by the model will affect how erosion and deposition measurements adjacent to marsh channels are interpreted.

  14. NATIVE AND INTRODUCED LARVAL FISHES IN SUISAN MARSH, CALIFORNIA,: THE EFFECTS OF FRESHWATER FLOW

    EPA Science Inventory

    We sampled ichthyoplankton weekly in Suisun Marsh in the San Francisco Estuary from February to June each year from 1994 to 1999. We collected approximately 227,900 fish, predominantly shimofuri goby Tridentiger bifasciatus (60%) and prickly sculpin Cottus asper (33%). Principal ...

  15. Linear and Weakly Nonlinear Stability Analyses of Turing Patterns for Diffusive Predator-Prey Systems in Freshwater Marsh Landscapes.

    PubMed

    Zhang, Li; Zhang, Fan; Ruan, Shigui

    2017-03-01

    We study a diffusive predator-prey model describing the interactions of small fishes and their resource base (small invertebrates) in the fluctuating freshwater marsh landscapes of the Florida Everglades. The spatial model is described by a reaction-diffusion system with Beddington-DeAngelis functional response. Uniform bound, local and global asymptotic stability of the steady state of the PDE model under the no-flux boundary conditions are discussed in details. Sufficient conditions on the Turing (diffusion-driven) instability which induces spatial patterns in the model are derived via linear analysis. Existence of one-dimensional and two-dimensional spatial Turing patterns, including rhombic and hexagonal patterns, are established by weakly nonlinear analyses. These results provide theoretical explanations and numerical simulations of spatial dynamical behaviors of the wetland ecosystems of the Florida Everglades.

  16. Denitrification of soil nitrogen in coastal and inland salt marshes with different flooding frequencies

    NASA Astrophysics Data System (ADS)

    Bai, Junhong; Wang, Xin; Jia, Jia; Zhang, Guangliang; Wang, Yuying; Zhang, Shuai

    2017-02-01

    Denitrification is an important process for removing nitrogen in wetlands, and it is influenced by many environmental factors. However, little information is available on the relationship between hydrologic conditions and denitrification. In this study three typical sampling sites with different flooding frequencies, including short-term flooding wetlands (STFW), seasonal-flooding wetlands (SFW) and tidal flooding wetlands (TFW) were chosen as the study sites in the Yellow River Delta. In contrast, five typical sampling sites with different flooding frequencies, including 100-year floodplain (H), 10-year floodplain (T), 5-year floodplain (F), 1-year floodplain (O) and permanently flooded floodplain (B) were chosen as the study sites in Xianghai wetlands. This study reflected that the denitrification rates decreased with depth along soil profiles in both inland and coastal salt marsh soils. Flooding periods, soil depth and their interaction showed significant effects on the denitrification processes. Generally, higher flooding frequencies will cause higher denitrification rates in salt marshes. Moreover, the denitrification rates were significantly positively correlated with soil moisture content in both wetlands. Additionally, the denitrification rates were significantly positively correlated with organic matter and NO3-_N content while negatively correlated with soil pH and salinity in inland salt marshes. Therefore, the changes in soil properties (e.g. SOM, TN, pH and salinity) can become an important way to control NO3- levels in inland salt marshes.

  17. Modeling seasonal dynamics of the small fish cohorts in fluctuating freshwater marsh landscapes

    USGS Publications Warehouse

    Jopp, Fred; DeAngelis, Donald L.; Trexler, Joel C.

    2010-01-01

    Small-bodied fishes constitute an important assemblage in many wetlands. In wetlands that dry periodically except for small permanent waterbodies, these fishes are quick to respond to change and can undergo large fluctuations in numbers and biomasses. An important aspect of landscapes that are mixtures of marsh and permanent waterbodies is that high rates of biomass production occur in the marshes during flooding phases, while the permanent waterbodies serve as refuges for many biotic components during the dry phases. The temporal and spatial dynamics of the small fishes are ecologically important, as these fishes provide a crucial food base for higher trophic levels, such as wading birds. We develop a simple model that is analytically tractable, describing the main processes of the spatio-temporal dynamics of a population of small-bodied fish in a seasonal wetland environment, consisting of marsh and permanent waterbodies. The population expands into newly flooded areas during the wet season and contracts during declining water levels in the dry season. If the marsh dries completely during these times (a drydown), the fish need refuge in permanent waterbodies. At least three new and general conclusions arise from the model: (1) there is an optimal rate at which fish should expand into a newly flooding area to maximize population production; (2) there is also a fluctuation amplitude of water level that maximizes fish production, and (3) there is an upper limit on the number of fish that can reach a permanent waterbody during a drydown, no matter how large the marsh surface area is that drains into the waterbody. Because water levels can be manipulated in many wetlands, it is useful to have an understanding of the role of these fluctuations.

  18. Denitrification rates in marsh soils and hydrologic and water quality data for Northeast Creek and Bass Harbor Marsh watersheds, Mount Desert Island, Maine

    USGS Publications Warehouse

    Huntington, Thomas G.; Culbertson, Charles W.; Duff, John H.

    2011-01-01

    Nutrient enrichment from atmospheric deposition, agricultural activities, wildlife, and domestic sources is a concern at Acadia National Park because of the potential problem of water-quality degradation and eutrophication in estuaries. Water-quality degradation has been observed at the park's Bass Harbor Marsh estuary but minimal degradation is observed in Northeast Creek estuary. Previous studies at Acadia National Park have estimated nutrient inputs to estuaries from atmospheric deposition and surface-water runoff, and have identified shallow groundwater as an additional potential nutrient source. Previous studies at Acadia National Park have assumed that a certain fraction of the nitrogen input was removed through microbial denitrification, but rates of denitrification (natural or maximum potential) in marsh soils have not been determined. The U.S. Geological Survey, in cooperation with Acadia National Park, measured in situ denitrification rates in marsh soils in Northeast Creek and Bass Harbor Marsh watersheds during the summer seasons of 2008 and 2009. Denitrification was measured under ambient conditions and following inorganic nitrogen and glucose additions. Laboratory incubations of marsh soils with and without acetylene were conducted to determine average ratios of nitrous oxide (N2O) to nitrogen (N2) produced during denitrification. Surface water and groundwater samples were analyzed for nutrients, specific conductance, temperature, and dissolved oxygen. Water level was recorded continuously during the growing season in Fresh Meadow Marsh in the Northeast Creek Watershed.

  19. Effect of root metabolism on the post-depositional mobilization of mercury in salt marsh soils

    SciTech Connect

    Marins, R.V. |; Lacerda, L.D.; Goncalves, G.O.; Paiva, E.C. de

    1997-05-01

    Salt marsh soils are an efficient sink for trace metals associated with particulate material in tidal waters and have been proposed as monitors for trace metal contamination in coastal areas, on the basis that vertical profiles provide a record of loading rates. However, the complex nature of the biogeochemical processes occurring in these soils, may prevent this use, since post-depositional mobilization of some trace metals may occur, resulting in their release to pore water, vertical movement through the soil column and exchange with overlying waters. This paper presents and compares the vertical profiles of mercury in soil cores taken under a Spartina altermilflora marsh and in adjacent mod flats without plant cover to characterize the role played by this plant on the post-depositional movement of mercury through the soil and on the possibility of using such profiles as indicators of mercury loading rates in coastal areas. 19 refs., 1 fig., 1 tab.

  20. Depth-distribution patterns and control of soil organic carbon in coastal salt marshes with different plant covers

    NASA Astrophysics Data System (ADS)

    Bai, Junhong; Zhang, Guangliang; Zhao, Qingqing; Lu, Qiongqiong; Jia, Jia; Cui, Baoshan; Liu, Xinhui

    2016-10-01

    This study was carried out in three kinds of salt marshes according to the vegetation covers, including Phragmites australis salt marsh (PSM), Suaeda salus salt marsh (SSM) and Tamarix chinensis-Suaeda salus salt marsh (TSSM). We applied allometric function, exponential function and logistic function to model the depth distribution of the SOCv and SOCc for each salt marsh, respectively. The results showed that the exponential function fits the depth distribution of the SOCv more well than other two functions. The SOCc can be fitted very well by all three functions for three salt marsh (Adj. R2 > 0.99), of which the allometric function was the best one. The mean topsoil concentration factors (TCFs) of three salt marshes were beyond 0.1, which means the SOC enrichment in surface soils due to plant cycling, but TCFs in PSM were significantly higher than those in SSM (P < 0.05). Nearly 30% of SOC was concentrated in the top 20 cm soils. The results of general linear model (GLM) suggested that four soil properties (soil water content, pH, soil salt content and silt+clay) and their interactive effects explained about 80% of the total variation of SOC stock in the top 20 cm soils and the 20–100 cm soil layers.

  1. Depth-distribution patterns and control of soil organic carbon in coastal salt marshes with different plant covers.

    PubMed

    Bai, Junhong; Zhang, Guangliang; Zhao, Qingqing; Lu, Qiongqiong; Jia, Jia; Cui, Baoshan; Liu, Xinhui

    2016-10-06

    This study was carried out in three kinds of salt marshes according to the vegetation covers, including Phragmites australis salt marsh (PSM), Suaeda salus salt marsh (SSM) and Tamarix chinensis-Suaeda salus salt marsh (TSSM). We applied allometric function, exponential function and logistic function to model the depth distribution of the SOCv and SOCc for each salt marsh, respectively. The results showed that the exponential function fits the depth distribution of the SOCv more well than other two functions. The SOCc can be fitted very well by all three functions for three salt marsh (Adj. R(2) > 0.99), of which the allometric function was the best one. The mean topsoil concentration factors (TCFs) of three salt marshes were beyond 0.1, which means the SOC enrichment in surface soils due to plant cycling, but TCFs in PSM were significantly higher than those in SSM (P < 0.05). Nearly 30% of SOC was concentrated in the top 20 cm soils. The results of general linear model (GLM) suggested that four soil properties (soil water content, pH, soil salt content and silt+clay) and their interactive effects explained about 80% of the total variation of SOC stock in the top 20 cm soils and the 20-100 cm soil layers.

  2. Depth-distribution patterns and control of soil organic carbon in coastal salt marshes with different plant covers

    PubMed Central

    Bai, Junhong; Zhang, Guangliang; Zhao, Qingqing; Lu, Qiongqiong; Jia, Jia; Cui, Baoshan; Liu, Xinhui

    2016-01-01

    This study was carried out in three kinds of salt marshes according to the vegetation covers, including Phragmites australis salt marsh (PSM), Suaeda salus salt marsh (SSM) and Tamarix chinensis-Suaeda salus salt marsh (TSSM). We applied allometric function, exponential function and logistic function to model the depth distribution of the SOCv and SOCc for each salt marsh, respectively. The results showed that the exponential function fits the depth distribution of the SOCv more well than other two functions. The SOCc can be fitted very well by all three functions for three salt marsh (Adj. R2 > 0.99), of which the allometric function was the best one. The mean topsoil concentration factors (TCFs) of three salt marshes were beyond 0.1, which means the SOC enrichment in surface soils due to plant cycling, but TCFs in PSM were significantly higher than those in SSM (P < 0.05). Nearly 30% of SOC was concentrated in the top 20 cm soils. The results of general linear model (GLM) suggested that four soil properties (soil water content, pH, soil salt content and silt+clay) and their interactive effects explained about 80% of the total variation of SOC stock in the top 20 cm soils and the 20–100 cm soil layers. PMID:27708421

  3. Study of the water transportation characteristics of marsh saline soil in the Yellow River Delta.

    PubMed

    He, Fuhong; Pan, Yinghua; Tan, Lili; Zhang, Zhenhua; Li, Peng; Liu, Jia; Ji, Shuxin; Qin, Zhaohua; Shao, Hongbo; Song, Xueyan

    2017-01-01

    One-dimensional soil column water infiltration and capillary adsorption water tests were conducted in the laboratory to study the water transportation characteristics of marsh saline soil in the Yellow River Delta, providing a theoretical basis for the improvement, utilization and conservation of marsh saline soil. The results indicated the following: (1) For soils with different vegetation covers, the cumulative infiltration capacity increased with the depth of the soil layers. The initial infiltration rate of soils covered by Suaeda and Tamarix chinensis increased with depth of the soil layers, but that of bare soil decreased with soil depth. (2) The initial rate of capillary rise of soils with different vegetation covers showed an increasing trend from the surface toward the deeper layers, but this pattern with respect to soil depth was relatively weak. (3) The initial rates of capillary rise were lower than the initial infiltration rates, but infiltration rate decreased more rapidly than capillary water adsorption rate. (4) The two-parameter Kostiakov model can very well-simulate the changes in the infiltration and capillary rise rates of wetland saline soil. The model simulated the capillary rise rate better than it simulated the infiltration rate. (5) There were strong linear relationships between accumulative infiltration capacity, wetting front, accumulative capillary adsorbed water volume and capillary height.

  4. Diversity in leaf anatomy, and stomatal distribution and conductance, between salt marsh and freshwater species in the C(4) genus Spartina (Poaceae).

    PubMed

    Maricle, Brian R; Koteyeva, Nuria K; Voznesenskaya, Elena V; Thomasson, Joseph R; Edwards, Gerald E

    2009-01-01

    Leaf anatomy, stomatal density, and leaf conductance were studied in 10 species of Spartina (Poaceae) from low versus high salt marsh, and freshwater habitats. Internal structure, external morphology, cuticle structure, and stomatal densities were studied with light and electron microscopy. Functional significance of leaf structure was examined by measures of CO(2) uptake and stomatal distributions. All species have Kranz anatomy and C(4)delta(13)C values. Freshwater species have thin leaves with small ridges on adaxial sides and stomata on both adaxial and abaxial sides. By contrast, salt marsh species have thick leaves with very pronounced ridges on the adaxial side and stomata located almost exclusively on adaxial leaf surfaces. Salt marsh species also have a thicker cuticle on the abaxial than on the adaxial side of leaves, and CO(2) uptake during photosynthesis is restricted to the adaxial leaf surface. Salt marsh species are adapted to controlling water loss by having stomata in leaf furrows on the adaxial side, which increases the boundary layer, and by having large leaf ridges that fit together as the leaf rolls during water stress. Differences in structural-functional features of photosynthesis in Spartina species are suggested to be related to adaptations to saline environments.

  5. The long-term nutrient accumulation with respect to anthropogenic impacts in the sediments from two freshwater marshes (Xianghai Wetlands, Northeast China).

    PubMed

    Wang, Guo-Ping; Liu, Jing-Shuang; Tang, Jie

    2004-12-01

    Sediment cores, representing a range of watershed characteristics and anthropogenic impacts, were collected from two freshwater marshes at the Xianghai wetlands (Ramsar site no. 548) in order to trace the historical variation of nutrient accumulation. Cores were (210)Pb- and (137)Cs-dated, and these data were used to calculate sedimentation rates and sediment accumulation rates. Ranges of dry mass accumulation rates and sedimentation rates were 0.27-0.96 g m(-2)yr(-1) and 0.27-0.90 cm yr(-1), respectively. The effect of human activities on increased sediment accumulation rates was observed. Nutrients (TOC, N, P, and S) in sediment were analyzed and nutrient concentration and accumulation were compared in two marshes with different hydrologic regime: an "open" marsh (E-0) and a partly "closed" marsh (F-0). Differences in physical and chemical characteristics between sediments of "open" and partly "closed" marsh were also observed. The "open" marsh sequestered much higher amounts of TOC (1.82%), N (981.1 mg kg(-1)), P (212.17 mg kg(-1)), and S (759.32 mg kg(-1)) than partly "closed" marsh (TOC: 0.32%, N: 415.35 mg kg(-1), P: 139.64 mg kg(-1), and S: 624.45 mg kg(-1)), and the "open" marsh indicated a rather large historical variability of TOC, N, P, and S inputs from alluvial deposits. Nutrient inputs (2.16-251.80 g TOC m(-2) yr(-1), 0.43-20.12 g N m(-2) yr(-1), 0.39-3.03 g P m(-2) yr(-1), 1.60-15.13 g S m(-2) yr(-1)) into the Xianghai wetlands of China are in the high range compared with reported nutrient accumulation rates for freshwater marshes in USA. The vertical variation, particularly for N, P, and S indicated the input history of the nutrients of the Xianghai wetlands developed in three periods--before 1950s, 1950-1980s, and after 1980s. The ratios between anthropogenic and natural inputs showed that the relative anthropogenic inputs of TOC, N, P, and S have been severalfold (TOC: 1.68-11.21, N: 0.47-3.67, P: 0.24-1.36, and S: 1.46-2.96) greater than values

  6. Spatial variability of the properties of marsh soils and their impact on vegetation

    NASA Astrophysics Data System (ADS)

    Sidorova, V. A.; Svyatova, E. N.; Tseits, M. A.

    2015-03-01

    Spatial variability of the properties of soils and the character of vegetation was studied on seacoasts of the Velikii Island in the Kandalaksha Bay of the White Sea. It was found that the chemical and physicochemical properties of marsh soils (Tidalic Fluvisols) are largely dictated by the distance from the sea and elevation of the sampling point above sea level. The spatial distribution of the soil properties is described by a quadratic trend surface. With an increase in the distance from the sea, the concentration of ions in the soil solution decreases, and the organic carbon content and soil acidity become higher. The spatial dependence of the degree of variability in the soil properties is moderate. Regular changes in the soil properties along the sea-land gradient are accompanied by the presence of specific spatial patterns related to the system of temporary water streams, huge boulders, and beached heaps of sea algae and wood debris. The cluster analysis made it possible to distinguish between five soil classes corresponding to the following plant communities: barren surface (no permanent vegetation), clayey-sandy littoral with sparse halophytes, marsh with large rhizomatous grasses, and grass-forb-bunchberry vegetation of forest margins. The subdivision into classes is especially distinct with respect to the concentration of chloride ions. The following groups of factors affect the distribution of vegetation: the composition of the soil solution, the height above sea level, the pH of water suspensions, and the humus content.

  7. Carbon Sequestration in Tidal Salt Marshes of the Northeast United States.

    PubMed

    Drake, Katherine; Halifax, Holly; Adamowicz, Susan C; Craft, Christopher

    2015-10-01

    Tidal salt marshes provide important ecological services, habitat, disturbance regulation, water quality improvement, and biodiversity, as well as accumulation and sequestration of carbon dioxide (CO2) in vegetation and soil organic matter. Different management practices may alter their capacity to provide these ecosystem services. We examined soil properties (bulk density, percent organic C, percent N), C and N pools, C sequestration and N accumulation at four marshes managed with open marsh water management (OMWM) and four marshes that were not at U.S. Fish and Wildlife National Wildlife Refuges (NWRs) on the East Coast of the United States. Soil properties (bulk density, percent organic C, percent N) exhibited no consistent differences among managed and non-OMWM marshes. Soil organic carbon pools (0-60-cm depth) also did not differ. Managed marshes contained 15.9 kg C/m(2) compared to 16.2 kg C/m(2) in non-OMWM marshes. Proportionately, more C (per unit volume) was stored in surface than in subsurface soils. The rate of C sequestration, based on (137)Cs and (210)Pb dating of soil cores, ranged from 41 to 152 g/m(2)/year. Because of the low emissions of CH4 from salt marshes relative to freshwater wetlands and the ability to sequester C in soil, protection and restoration of salt marshes can be a vital tool for delivering key ecosystem services, while at the same time, reducing the C footprint associated with managing these wetlands.

  8. Carbon Sequestration in Tidal Salt Marshes of the Northeast United States

    NASA Astrophysics Data System (ADS)

    Drake, Katherine; Halifax, Holly; Adamowicz, Susan C.; Craft, Christopher

    2015-10-01

    Tidal salt marshes provide important ecological services, habitat, disturbance regulation, water quality improvement, and biodiversity, as well as accumulation and sequestration of carbon dioxide (CO2) in vegetation and soil organic matter. Different management practices may alter their capacity to provide these ecosystem services. We examined soil properties (bulk density, percent organic C, percent N), C and N pools, C sequestration and N accumulation at four marshes managed with open marsh water management (OMWM) and four marshes that were not at U.S. Fish and Wildlife National Wildlife Refuges (NWRs) on the East Coast of the United States. Soil properties (bulk density, percent organic C, percent N) exhibited no consistent differences among managed and non-OMWM marshes. Soil organic carbon pools (0-60-cm depth) also did not differ. Managed marshes contained 15.9 kg C/m2 compared to 16.2 kg C/m2 in non-OMWM marshes. Proportionately, more C (per unit volume) was stored in surface than in subsurface soils. The rate of C sequestration, based on 137Cs and 210Pb dating of soil cores, ranged from 41 to 152 g/m2/year. Because of the low emissions of CH4 from salt marshes relative to freshwater wetlands and the ability to sequester C in soil, protection and restoration of salt marshes can be a vital tool for delivering key ecosystem services, while at the same time, reducing the C footprint associated with managing these wetlands.

  9. Fresh and weathered crude oil effects on potential denitrification rates of coastal marsh soil.

    PubMed

    Pietroski, Jason P; White, John R; DeLaune, Ronald D; Wang, Jim J; Dodla, Syam K

    2015-09-01

    On April 20, 2010, the Deepwater Horizon oil platform experienced an explosion which triggered the largest marine oil spill in US history, resulting in the release of ∼795 million L of crude oil into the Gulf of Mexico. Once oil reached the surface, changes in overall chemical composition occurred due to volatilization of the smaller carbon chain compounds as the oil was transported onshore by winds and currents. In this study, the toxic effects of both fresh and weathered crude oil on denitrification rates of coastal marsh soil were determined using soil samples collected from an unimpacted coastal marsh site proximal to areas that were oiled in Barataria Bay, LA. The 1:10 ratio of crude oil:field moist soil fully coated the soil surface mimicking a heavy oiling scenario. Potential denitrification rates at the 1:10 ratio, for weathered crude oil, were 46 ± 18.4% of the control immediately after exposure and 62 ± 8.0% of the control following a two week incubation period, suggesting some adaptation of the denitrifying microbial consortium over time. Denitrification rates of soil exposed to fresh crude oil were 51.5 ± 5.3% of the control after immediate exposure and significantly lower at 10.9 ± 1.1% after a 2 week exposure period. Results suggest that fresh crude oil has the potential to more severely impact the important marsh soil process of denitrification following longer term exposure. Future studies should focus on longer-term denitrification as well as changes in the microbial consortia in response to oil exposure.

  10. On the relative roles of hydrology, salinity, temperature, and root productivity in controlling soil respiration from coastal swamps (freshwater)

    USGS Publications Warehouse

    Krauss, Ken W.; Whitbeck, Julie L.; Howard, Rebecca J.

    2012-01-01

    Background and aims Soil CO2 emissions can dominate gaseous carbon losses from forested wetlands (swamps), especially those positioned in coastal environments. Understanding the varied roles of hydroperiod, salinity, temperature, and root productivity on soil respiration is important in discerning how carbon balances may shift as freshwater swamps retreat inland with sea-level rise and salinity incursion, and convert to mixed communities with marsh plants. Methods We exposed soil mesocosms to combinations of permanent flooding, tide, and salinity, and tracked soil respiration over 2 1/2 growing seasons. We also related these measurements to rates from field sites along the lower Savannah River, Georgia, USA. Soil temperature and root productivity were assessed simultaneously for both experiments. Results Soil respiration from mesocosms (22.7-1678.2 mg CO2 m-2 h-1) differed significantly among treatments during four of the seven sampling intervals, where permanently flooded treatments contributed to low rates of soil respiration and tidally flooded treatments sometimes contributed to higher rates. Permanent flooding reduced the overall capacity for soil respiration as soils warmed. Salinity did reduce soil respiration at times in tidal treatments, indicating that salinity may affect the amount of CO2 respired with tide more strongly than under permanent flooding. However, soil respiration related greatest to root biomass (mesocosm) and standing root length (field); any stress reducing root productivity (incl. salinity and permanent flooding) therefore reduces soil respiration. Conclusions Overall, we hypothesized a stronger, direct role for salinity on soil respiration, and found that salinity effects were being masked by varied capacities for increases in respiration with soil warming as dictated by hydrology, and the indirect influence that salinity can have on plant productivity.

  11. [Evolvement of soil quality in salt marshes and reclaimed farmlands in Yancheng coastal wetland].

    PubMed

    Mao, Zhi-Gang; Gu, Xiao-Hong; Liu, Jin-E; Ren, Li-Juan; Wang, Guo-Xiang

    2010-08-01

    Through vegetation investigation and soil analysis, this paper studied the evolvement of soil quality during natural vegetation succession and after farmland reclamation in the Yancheng coastal wetland of Jiangsu Province. Along with the process of vegetation succession, the soil physical, chemical, and biological properties in the wetland improved, which was manifested in the improvement of soil physical properties and the increase of soil nutrient contents, microbial biomass, and enzyme activities. Different vegetation type induced the differences in soil properties. Comparing with those in salt marshes, the soil salt content in reclaimed farmlands decreased to 0.01 - 0.04%, the soil microbial biomass and enzyme activities increased, and the soil quality improved obviously. The soil quality index (SQI) in the wetland was in the order of mudflat (0.194) < Suaeda salsa flat (0.233) < Imperata cylindrica flat (0.278) < Spartina alterniflora flat (0.446) < maize field (0.532) < cotton field (0.674) < soybean field (0.826), suggesting that positive vegetation succession would be an effective approach in improving soil quality.

  12. Effects of chemical additives on hydrocarbon disappearance and biodegradation in freshwater marsh microcosms.

    PubMed

    Nyman, J A; Klerks, P L; Bhattacharyya, S

    2007-09-01

    We determined how a cleaner and a dispersant affected hydrocarbon biodegradation in wetland soils dominated by the plant Panicum hemitomon, which occurs throughout North and South America. Microcosms received no hydrocarbons, South Louisiana crude, or diesel; and no additive, a dispersant, or a cleaner. We determined the concentration of four total petroleum hydrocarbon (TPH) measures and 43 target hydrocarbons in water and sediment fractions 1, 7, 31, and 186 days later. Disappearance was distinguished from biodegradation via hopane-normalization. After 186 days, TPH disappearance ranged from 24% to 97%. There was poor correlation among the four TPH measures, which indicated that each quantified a different suite of hydrocarbons. Hydrocarbon disappearance and biodegradation were unaltered by these additives under worse-case scenarios. Any use of these additives must generate benefits that outweigh the lack of effect on biodegradation demonstrated in this report, and the increase in toxicity that we reported earlier.

  13. Changes in soils and vegetation in a Mediterranean coastal salt marsh impacted by human activities

    NASA Astrophysics Data System (ADS)

    Álvarez-Rogel, J.; Jiménez-Cárceles, F. J.; Roca, M. J.; Ortiz, R.

    2007-07-01

    This paper reports changes in vegetation distribution and species cover in relation to soil factors and hydrology in a semiarid Mediterranean salt marsh adjacent to the Mar Menor saline lagoon. Species cover, soil salinity, and the groundwater level were monitored between 1991 and 1993 and between 2002 and 2004, and total organic carbon, total nitrogen, total phosphorus, nitrates, ammonium and exchangeable phosphorus were measured in the soils in both study periods. In addition, three soil profiles were described in August 1992 and August 2004. The results indicate an elevation of the water table throughout the 13-year period, which was attributable to water flowing from areas with intensive agriculture. Flooding increased and soil salinity dropped in the most saline sites and increased in the least saline ones. The morphology of the soil profiles reflected the increase in flooding periods, due to the appearance of a greyer matrix in the deeper horizons and a more diffuse pattern of Fe mottles. Following these environmental changes, Sarcocornia fruticosa, Phragmites australis and Juncus maritimus strongly expanded at the wettest sites, which led to the disappearance of the original zonation pattern. The cover of Limonium delicatulum, in turn, decreased with the increase in moisture but increased following the increase in salinity. Changes in soil nutrients were only very evident in the sandy soils of the beach, probably due to the influence of organic debris deposited on the shoreline by the storms and due to the strong increase in the colonisation of this habitat by perennial species. According to the results obtained, control measures are needed in order to preserve habitat diversity in this and other salt marshes of this area. Monitoring of the vegetation distribution could be a useful tool to identify environmental impacts, in order to implement remedial actions.

  14. Degradation of fuel oil in salt marsh soils affected by the Prestige oil spill.

    PubMed

    Vega, Flora A; Covelo, Emma F; Reigosa, Manuel J; Andrade, María Luisa

    2009-07-30

    We assessed natural degradation of fuel oil in three marshes from Galicia (Spain) affected by the Prestige oil spill (Baldaio, Barizo, and Muxía). Soil samples collected from polluted and unpolluted areas on four different dates were used to determine total petroleum hydrocarbon content and fuel-oil components. Natural degradation was monitored by analysing changes in the proportion of saturated hydrocarbons, aromatics, asphaltenes and resins in the soils, and also by evaluating the degree of depletion of saturated hydrocarbons on each sampling date. We additionally assessed the phytoremediation potential of Lolium perenne, L., Convolvulus arvensis L. and Raphanus raphanistrum L. All marsh soils exhibited natural degradation of saturated and aromatic hydrocarbons to between 85 and 95% in most cases. In contrast, asphaltenes and resins were degraded to a lesser extent (viz. 64-76% in Barizo 1, Muxía and Traba; 39-44% in Baldaio; and only 12% in Barizo 2, where flooding by the river continues to introduce balls of fuel oil into the soil). Monitoring analyses revealed natural degradation to be dependent on the thickness of the pollutant layer. Field plots sown with L. perenne L. exhibited no significant differences in fuel-oil degradation from untreated plots.

  15. Freshwater Wetlands.

    ERIC Educational Resources Information Center

    Naturescope, 1986

    1986-01-01

    Provides descriptions about freshwater wetlands, such as marshes, swamps, and bogs. Contains three learning activities which deal with unusual wetland plants, the animals and plants in a typical marsh, and the effects of a draught on a swamp. Included are reproducible handouts and worksheets for two of the activities. (TW)

  16. Use of computed tomography imaging for quantifying coarse roots, rhizomes, peat, and particle densities in marsh soils.

    PubMed

    Davey, Earl; Wigand, Cathleen; Johnson, Roxanne; Sundberg, Karen; Morris, James; Roman, Charles T

    2011-09-01

    Computed tomography (CT) imaging has been used to describe and quantify subtidal, benthic animals such as polychaetes, amphipods, and shrimp. Here, for the first time, CT imaging is used to quantify wet mass of coarse roots, rhizomes, and peat in cores collected from organic-rich (Jamaica Bay, New York) and mineral (North Inlet, South Carolina) Spartina alterniflora soils. Image analysis software was coupled with the CT images to measure abundance and diameter of the coarse roots and rhizomes in marsh soils. Previously, examination of marsh roots and rhizomes was limited to various hand-sieving methods that were often time-consuming, tedious, and error prone. CT imaging can discern the coarse roots, rhizomes, and peat based on their varying particle densities. Calibration rods composed of materials with standard densities (i.e., air, water, colloidal silica, and glass) were used to operationally define the specific x-ray attenuations of the coarse roots, rhizomes, and peat in the marsh cores. Significant regression relationships were found between the CT-determined wet mass of the coarse roots and rhizomes and the hand-sieved dry mass of the coarse roots and rhizomes in both the organic-rich and mineral marsh soils. There was also a significant relationship between the soil percentage organic matter and the CT-determined peat particle density among organic-rich and mineral soils. In only the mineral soils, there was a significant relationship between the soil percentage organic matter and the CT-determined peat wet mass. Using CT imaging, significant positive nitrogen fertilization effects on the wet masses of the coarse roots, rhizomes, and peat, and the abundance and diameter of rhizomes were measured in the mineral soils. In contrast, a deteriorating salt marsh island in Jamaica Bay had significantly less mass of coarse roots and rhizomes at depth (10-20 cm), and a significantly lower abundance of roots and rhizomes compared with a stable marsh. However, the

  17. Response of salt marshes to oiling from the Deepwater Horizon spill: Implications for plant growth, soil surface-erosion, and shoreline stability.

    PubMed

    Lin, Qianxin; Mendelssohn, Irving A; Graham, Sean A; Hou, Aixin; Fleeger, John W; Deis, Donald R

    2016-07-01

    We investigated the initial impacts and post spill recovery of salt marshes over a 3.5-year period along northern Barataria Bay, LA, USA exposed to varying degrees of Deepwater Horizon oiling to determine the effects on shoreline-stabilizing vegetation and soil processes. In moderately oiled marshes, surface soil total petroleum hydrocarbon concentrations were ~70mgg(-1) nine months after the spill. Though initial impacts of moderate oiling were evident, Spartina alterniflora and Juncus roemerianus aboveground biomass and total live belowground biomass were equivalent to reference marshes within 24-30months post spill. In contrast, heavily oiled marsh plants did not fully recover from oiling with surface soil total petroleum hydrocarbon concentrations that exceeded 500mgg(-1) nine months after oiling. Initially, heavy oiling resulted in near complete plant mortality, and subsequent recovery of live aboveground biomass was only 50% of reference marshes 42months after the spill. Heavy oiling also changed the vegetation structure of shoreline marshes from a mixed Spartina-Juncus community to predominantly Spartina; live Spartina aboveground biomass recovered within 2-3years, however, Juncus showed no recovery. In addition, live belowground biomass (0-12cm) in heavily oiled marshes was reduced by 76% three and a half years after the spill. Detrimental effects of heavy oiling on marsh plants also corresponded with significantly lower soil shear strength, lower sedimentation rates, and higher vertical soil-surface erosion rates, thus potentially affecting shoreline salt marsh stability.

  18. The combined use of liming and Sarcocornia fruticosa development for phytomanagement of salt marsh soils polluted by mine wastes.

    PubMed

    González-Alcaraz, María Nazaret; Conesa, Héctor Miguel; Tercero, María del Carmen; Schulin, Rainer; Alvarez-Rogel, José; Egea, Consuelo

    2011-02-15

    The aim of this study was to evaluate the combined effects of liming and behaviour of Sarcocornia fruticosa as a strategy of phytomanagement of metal polluted salt marsh soils. Soils were taken from two polluted salt marshes (one with fine texture and pH∼6.4 and the other one with sandy texture and pH∼3.1). A lime amendment derived from the marble industry was added to each soil at a rate of 20 g kg(-1), giving four treatments: neutral soil with/without liming and acidic soil with/without liming. Cuttings of S. fruticosa were planted in pots filled with these substrates and grown for 10 months. The pots were irrigated with eutrophicated water. As expected, lime amendment decreased the soluble metal concentrations. In both soils, liming favoured the growth of S. fruticosa and enhanced the capacity of the plants to phytostabilise metals in roots.

  19. Biodiversity of arbuscular mycorrhizal fungi in roots and soils of two salt marshes.

    PubMed

    Wilde, Petra; Manal, Astrid; Stodden, Marc; Sieverding, Ewald; Hildebrandt, Ulrich; Bothe, Hermann

    2009-06-01

    The occurrence of arbuscular mycorrhizal fungi (AMF) was assessed by both morphological and molecular criteria in two salt marshes: (i) a NaCl site of the island Terschelling, Atlantic Coast, the Netherlands and (ii) a K(2)CO(3) marsh at Schreyahn, Northern Germany. The overall biodiversity of AMF, based on sequence analysis, was comparably low in roots at both sites. However, the morphological spore analyses from soil samples of both sites exhibited a higher AMF biodiversity. Glomus geosporum was the only fungus of the Glomerales that was detected both as spores in soil samples and in roots of the AMF-colonized salt plants Aster tripolium and Puccinellia sp. at both saline sites and on all sampling dates (one exception). In roots, sequences of Glomus intraradices prevailed, but this fungus could not be identified unambiguously from DNA of soil spores. Likewise, Glomus sp. uncultured, only deposited as sequence in the database, was widely detected by DNA sequencing in root samples. All attempts to obtain the corresponding sequences from spores isolated from soil samples failed consistently. A small sized Archaeospora sp. was detected, either/or by morphological and molecular analyses, in roots or soil spores, in dead AMF spores or orobatid mites. The study noted inconsistencies between morphological characterization and identification by DNA sequencing of the 5.8S rDNA-ITS2 region or part of the 18S rDNA gene. The distribution of AMF unlikely followed the salt gradient at both sites, in contrast to the zone formation of plant species. Zygotes of the alga Vaucheria erythrospora (Xanthophyceae) were retrieved and should not be misidentified with AMF spores.

  20. Microbial Abundances in Salt Marsh Soils: A Molecular Approach for Small Spatial Scales

    NASA Astrophysics Data System (ADS)

    Granse, Dirk; Mueller, Peter; Weingartner, Magdalena; Hoth, Stefan; Jensen, Kai

    2016-04-01

    The rate of biological decomposition greatly determines the carbon sequestration capacity of salt marshes. Microorganisms are involved in the decomposition of biomass and the rate of decomposition is supposed to be related to microbial abundance. Recent studies quantified microbial abundance by means of quantitative polymerase chain reaction (QPCR), a method that also allows determining the microbial community structure by applying specific primers. The main microbial community structure can be determined by using primers specific for 16S rRNA (Bacteria) and 18S rRNA (Fungi) of the microbial DNA. However, the investigation of microbial abundance pattern at small spatial scales, such as locally varying abiotic conditions within a salt-marsh system, requires high accuracy in DNA extraction and QPCR methods. Furthermore, there is evidence that a single extraction may not be sufficient to reliably quantify rRNA gene copies. The aim of this study was to establish a suitable DNA extraction method and stable QPCR conditions for the measurement of microbial abundances in semi-terrestrial environments. DNA was extracted from two soil samples (top WE{5}{cm}) by using the PowerSoil DNA Extraction Kit (Mo Bio Laboratories, Inc., Carlsbad, CA) and applying a modified extraction protocol. The DNA extraction was conducted in four consecutive DNA extraction loops from three biological replicates per soil sample by reusing the PowerSoil bead tube. The number of Fungi and Bacteria rRNA gene copies of each DNA extraction loop and a pooled DNA solution (extraction loop 1 - 4) was measured by using the QPCR method with taxa specific primer pairs (Bacteria: B341F, B805R; Fungi: FR1, FF390). The DNA yield of the replicates varied at DNA extraction loop 1 between WE{25 and 85}{ng

  1. Accumulation of soil carbon drives denitrification potential and lab-incubated gas production along a chronosequence of salt marsh development

    NASA Astrophysics Data System (ADS)

    He, Yanlong; Widney, Sarah; Ruan, Michelle; Herbert, Ellen; Li, Xiuzhen; Craft, Christopher

    2016-04-01

    We measured sediment organic carbon and nitrogen accumulation and rates of denitrification enzyme activity and greenhouse gas (CO2, CH4, N2O) production from slurries of sediments of a mudflat that formed in 2002, a young (8-year-old) natural Spartina alterniflora salt marsh that developed on part of the mudflat, and four mature (>200 years old) salt marshes in southeastern Georgia to examine microbial processes related to carbon (C) and nitrogen (N) cycling during succession from mudflat to mature marsh. Soil organic C and N and C: N ratio (0-30 cm) increased across the chronosequence from mudflat (791 ± 35 g C/m2, 125 ± 17 g N/m2) to young marsh (2520 ± 131 g C/m2, 190 ± 10 g N/m2) to mature marshes (5827 ± 250 g C/m2, 372 ± 20 g N/m2). After 8 years of colonization by S. alterniflora, sediment organic carbon increased 3.2 times, and nitrogen increased 1.5 times relative to the mudflat. The high rate of organic C and N accumulation based on time series measurements (188 g C/m2/yr, 7.8 g N/m2/yr) and feldspar marker layers (359 g C/m2/yr, 26.2 g N/m2/yr) was attributed to high accretion (3 cm/yr) in this low elevation (0.18 m NAVD88) emerging marsh. Carbon dioxide production increased with increasing sediment organic C from mudflat to mature marshes. Un-amended denitrification enzyme activity, measured in slurry incubations, ranged from an average of 0.020 ± 0.005 μg g-1 hr-1 in the mature marshes to 0.094 ± 0.03 μg g-1 hr-1 in the young marsh. We also measured denitrification potential in slurry incubations amended with C (glucose), N (nitrate), and C + N to assess the potential for substrate limitations. Denitrification potential in the mudflat did not show strong nutrient limitation. In the young marsh, denitrification potential was C-limited, and in the mature marsh, it was co-limited by C and N. In July samples, CO2 production showed a statistically significant increase with age from the mudflat to the mature marshes. However, in both months, CO2

  2. High-resolution geophysical imaging of shallow-water, contaminated wetlands: A novel application to Kearny freshwater marsh, New Jersey Meadowlands

    NASA Astrophysics Data System (ADS)

    Mansoor, Nasser M.

    The study investigated the transfer of state-of-the-art, geophysical technologies to permit effective characterization and monitoring of shallow-water wetlands. The innovative application was implemented in Kearney Marsh, NJ Meadowlands through three phases. Phase I (chapter 2) included laboratory-scale, induced polarization (IP) measurements conducted on marsh soils that were subsequently analyzed for heavy metal and physical properties. Phase II (chapter 3) included reconnaissance geophysical survey using terrain conductivity, magnetic gradiometry and surface water chemistry data from a shallow-draft paddleboat. Phase III (chapter 4) included continuous marine, electrical resistivity imaging (ERI) supported with rainfall and surface water data. Phase I revealed a linear relationship between the normalized chargeability and the estimated surface area to pore volume when the iron content is accounted for as a polarizable element of the soil. As the Fe concentration of soils is a critical biogeochemical parameter, IP measurements may provide a hitherto unrecognized approach to probing soil geochemistry, iron cycling and anaerobic microbial activity. The inverted sediment conductivity obtained from phase II resolved a contamination pattern probably attributable to leachate from adjacent landfills and/or salt water ingress from a partial tidal connection that is not obvious in the surface water data. Magnetic gradiometry and the in-phase component of the EM31 response both primarily reflect the distribution of junk metal associated with a legacy of illegal dumping. Historic aerial photographs suggest that this distribution reflects land-use history, defining the maximum previous extent of an adjacent landfill and a pattern of dumping correlated with historic roadways. The continuous ERI conducted during phase III is found to be an effective method for determining the resistivity structure of wetland sediments due to the shallow surface water layer. Temperature

  3. Impacts of Activated Carbon Amendment on Hg Methylation, Demethylation and Microbial Activity in Marsh Soils

    NASA Astrophysics Data System (ADS)

    Gilmour, C. C.; Ghosh, U.; Santillan, E. F. U.; Soren, A.; Bell, J. T.; Butera, D.; McBurney, A. W.; Brown, S.; Henry, E.; Vlassopoulos, D.

    2015-12-01

    In-situ sorbent amendments are a low-impact approach for remediation of contaminants in sediments, particular in habitats like wetlands that provide important ecosystem services. Laboratory microcosm trials (Gilmour et al. 2013) and early field trials show that activated carbon (AC) can effectively increase partitioning of both inorganic Hg and methylmercury to the solid phase. Sediment-water partitioning can serve as a proxy for Hg and MeHg bioavailability in soils. One consideration in using AC in remediation is its potential impact on organisms. For mercury, a critical consideration is the potential impact on net MeHg accumulation and bioavailability. In this study, we specifically evaluated the impact of AC on rates of methylmercury production and degradation, and on overall microbial activity, in 4 different Hg-contaminated salt marsh soils. The study was done over 28 days in anaerobic, sulfate-reducing slurries. A double label of enriched mercury isotopes (Me199Hg and inorganic 201Hg) was used to separately follow de novo Me201Hg production and Me199Hg degradation. AC amendments decreased both methylation and demethylation rate constants relative to un-amended controls, but the impact on demethylation was stronger. The addition of 5% (dry weight) regenerated AC to soil slurries drove demethylation rate constants to nearly zero; i.e. MeHg sorption to AC almost totally blocked its degradation. The net impact was increased solid phase MeHg concentrations in some of the soil slurries with the highest methylation rate constants. However, the net impact of AC amendments was to increase MeHg (and inorganic Hg) partitioning to the soil phase and decrease concentrations in the aqueous phase. AC significantly decreased aqueous phase inorganic Hg and MeHg concentrations after 28 days. Overall, the efficacy of AC in reducing aqueous MeHg was highest in the soils with the highest MeHg concentrations. The AC addition did not significantly impact microbial activity, as

  4. Magnetic properties of salt-marsh soils contaminated by iron industry emissions (southeast France)

    NASA Astrophysics Data System (ADS)

    Lecoanet, Hélène; Lévêque, François; Ambrosi, Jean-Paul

    2001-09-01

    Detailed magnetic properties of salt-marsh soils exposed to intense atmospheric deposition of fly ashes from the iron industry (southeast France) are reported. An enhancement in the concentration of magnetic particles in topsoil through this area is observed. Low values of frequency-dependent susceptibility ( χFD) are characteristic of coarse multidomain (MD) grains and were observed in surface samples. Concentration of ferrimagnetic minerals in different soil horizons is linked to pollution sources and the prevailing wind direction. The anhysteretic remanent magnetisation/saturation anhysteretic remanent magnetisation (ARM 40 mT/SARM) ratio versus isothermal remanent magnetisation/saturation isothermal remanent magnetisation (IRM -100 mT/SIRM) ratio and the IRM -20 mT/SIRM ratio versus IRM -200 mT/SIRM ratio can differentiate two different contamination emission sources. Magnetic methods used reflect not only the concentration of ferrimagnetic minerals but also their grain size, thus enabling discrimination of metallurgical dusts and fine pedogenic particles created in situ. Our results suggest that pollution is not the only source and that pedogenesis also plays a role.

  5. Soil organic carbon of degraded wetlands treated with freshwater in the Yellow River Delta, China.

    PubMed

    Wang, Hui; Wang, Renqing; Yu, Yue; Mitchell, Myron J; Zhang, Lianjun

    2011-10-01

    Supplying freshwater is one of the important methods to help restore degraded wetlands. Changes in soil properties and plant community biomass were evaluated by comparing sites with freshwater treatment versus reference sites following freshwater addition to wetlands of the Yellow River Delta for 7 years. The results indicated that soil organic carbon (SOC) was significantly increased in all wetland sites that were treated with freshwater compared to the reference sites. The treatment wetlands had greater total nitrogen (TN), lower pH and electrical conductivity and higher water content in the soil compared to the reference wetlands. In general, the upper soil layer (0-20 cm) had greater SOC than the lower soil layer (20-40 cm). The increase of SOC in the freshwater reintroduction wetlands was higher in the Suaeda salsa plant community (mean ± standard error) (6.89 ± 0.63 g/kg) and Phragmites communis plant community (4.11 ± 0.12 g/kg) than in the Tamarix chinensis plant community (1.40 ± 0.31 g/kg) in the upper soil layer. The differences were especially marked between the treated and reference wetlands for SOC and TN in the P. communis plant communities. The C:N ratio of the soil was significantly greater in the treated compared to the reference wetlands for the S. salsa plant community. Although the C: N ratios increased after treatment, they were all <25 suggesting that N availability was not limiting soil organic matter decomposition. Our results indicate that freshwater addition and the concomitant increase in soil moisture content enhances the accumulation of SOC in the Yellow River Delta.

  6. Long-term rice cultivation stabilizes soil organic carbon and promotes soil microbial activity in a salt marsh derived soil chronosequence.

    PubMed

    Wang, Ping; Liu, Yalong; Li, Lianqing; Cheng, Kun; Zheng, Jufeng; Zhang, Xuhui; Zheng, Jinwei; Joseph, Stephen; Pan, Genxing

    2015-10-27

    Soil organic carbon (SOC) sequestration with enhanced stable carbon storage has been widely accepted as a very important ecosystem property. Yet, the link between carbon stability and bio-activity for ecosystem functioning with OC accumulation in field soils has not been characterized. We assessed the changes in microbial activity versus carbon stability along a paddy soil chronosequence shifting from salt marsh in East China. We used mean weight diameter, normalized enzyme activity (NEA) and carbon gain from straw amendment for addressing soil aggregation, microbial biochemical activity and potential C sequestration, respectively. In addition, a response ratio was employed to infer the changes in all analyzed parameters with prolonged rice cultivation. While stable carbon pools varied with total SOC accumulation, soil respiration and both bacterial and fungal diversity were relatively constant in the rice soils. Bacterial abundance and NEA were positively but highly correlated to total SOC accumulation, indicating an enhanced bio-activity with carbon stabilization. This could be linked to an enhancement of particulate organic carbon pool due to physical protection with enhanced soil aggregation in the rice soils under long-term rice cultivation. However, the mechanism underpinning these changes should be explored in future studies in rice soils where dynamic redox conditions exist.

  7. Long-term rice cultivation stabilizes soil organic carbon and promotes soil microbial activity in a salt marsh derived soil chronosequence

    PubMed Central

    Wang, Ping; Liu, Yalong; Li, Lianqing; Cheng, Kun; Zheng, Jufeng; Zhang, Xuhui; Zheng, Jinwei; Joseph, Stephen; Pan, Genxing

    2015-01-01

    Soil organic carbon (SOC) sequestration with enhanced stable carbon storage has been widely accepted as a very important ecosystem property. Yet, the link between carbon stability and bio-activity for ecosystem functioning with OC accumulation in field soils has not been characterized. We assessed the changes in microbial activity versus carbon stability along a paddy soil chronosequence shifting from salt marsh in East China. We used mean weight diameter, normalized enzyme activity (NEA) and carbon gain from straw amendment for addressing soil aggregation, microbial biochemical activity and potential C sequestration, respectively. In addition, a response ratio was employed to infer the changes in all analyzed parameters with prolonged rice cultivation. While stable carbon pools varied with total SOC accumulation, soil respiration and both bacterial and fungal diversity were relatively constant in the rice soils. Bacterial abundance and NEA were positively but highly correlated to total SOC accumulation, indicating an enhanced bio-activity with carbon stabilization. This could be linked to an enhancement of particulate organic carbon pool due to physical protection with enhanced soil aggregation in the rice soils under long-term rice cultivation. However, the mechanism underpinning these changes should be explored in future studies in rice soils where dynamic redox conditions exist. PMID:26503629

  8. Discordant 14C ages from buried tidal-marsh soils in the Cascadia subduction zone, southern Oregon coast

    USGS Publications Warehouse

    Nelson, A.R.

    1992-01-01

    Peaty, tidal-marsh soils interbedded with estuarine mud in late Holocene stratigraphic sequences near Coos Bay, Oregon, may have been submerged and buried during great (M > 8) subduction earthquakes, smaller localized earthquakes, or by nontectonic processes. Radiocarbon dating might help distinguish among these alternatives by showing that soils at different sites were submerged at different times along this part of the Cascadia subduction zone. But comparison of conventional 14C ages for different materials from the same buried soils shows that they contain materials that differ in age by many hundreds of years. Errors in calibrated soil ages represent about the same length of time as recurrence times for submergence events (150-500 yr)-this similarity precludes using conventional 14C ages to distinguish buried soils along the southern Oregon coast. Accelerator mass spectrometer 14C ages of carefully selected macrofossils from the tops of peaty soils should provide more precise estimates of the times of submergence events. ?? 1992.

  9. Sulfate reduction in freshwater wetland soils and the effects of sulfate and substrate loading

    SciTech Connect

    Feng, J.; Hsieh, Y.P.

    1998-07-01

    Elevated sulfate and organic C loadings in freshwater wetlands could stimulate dissimilatory sulfate reduction that oxidizes organic C, produces hydrogen sulfide and alkalinity, and sequesters trace metals. The authors determined the extent of sulfate reduction in two freshwater wetland soils, that is black gum (Nyssa biflona) swamp soils and titi (Cliftonia monophylla) swamp soils, in northern Florida. They also investigated the potential of sulfate reduction in the wetland soils by adding sulfate, organic substrate, and lime. Sulfate reduction was found to be an active process in both swamp soils without any amendment, where the pore water pH was as low as 3.6 and sulfate concentration was as low as 5 mg L{sup {minus}1}. Without amendment, 11 to 14% of organic C was oxidized through sulfate reduction in the swamp soils. Sulfate loading, liming, and substrate addition significantly increased sulfate reduction in the black gum swamp soil, but none of those treatments increase sulfate reduction in the titi swamp soil. The limiting factor for sulfate reduction in the titi swamp soil were likely texture and soil aggregate related properties. The results suggested that wastewater loading may increase sulfate reduction in some freshwater wetlands such as the black swamps while it has no stimulating effect on other wetlands such as the titi swamps.

  10. Below the Disappearing Marshes of an Urban Estuary: Historic Nitrogen Trends and Soil Structure

    EPA Science Inventory

    Marshes in the urban Jamaica Bay Estuary, New York, USA are disappearing at an average rate of 13 ha/yr, and multiple stressors (e.g., wastewater inputs, dredging activities, groundwater removal, and global warming) may be contributing to marsh losses. Among these stressors, wa...

  11. Bromine soil/sediment enrichment in tidal salt marshes as a potential indicator of climate changes driven by solar activity: New insights from W coast Portuguese estuaries.

    PubMed

    Moreno, J; Fatela, F; Leorri, E; Moreno, F; Freitas, M C; Valente, T; Araújo, M F; Gómez-Navarro, J J; Guise, L; Blake, W H

    2017-02-15

    This paper aims at providing insight about bromine (Br) cycle in four Portuguese estuaries: Minho, Lima (in the NW coast) and Sado, Mira (in the SW coast). The focus is on their tidal marsh environments, quite distinct with regard to key biophysicochemical attributes. Regardless of the primary bromide (Br(-)) common natural source, i.e., seawater, the NW marshes present relatively higher surface soil/sediment Br concentrations than the ones from SW coast. This happens in close connection with organic matter (OM) content, and is controlled by their main climatic contexts. Yet, the anthropogenic impact on Br concentrations cannot be discarded. Regarding [Br] spatial patterns across the marshes, the results show a general increase from tidal flat toward high marsh. Maxima [Br] occur in the upper driftline zone, at transition from highest low marsh to high marsh, recognized as a privileged setting for OM accumulation. Based on the discovery of OM ubiquitous bromination in marine and transitional environments, it is assumed that this Br occurs mainly as organobromine. Analysis of two dated sediment cores indicates that, despite having the same age (AD ~1300), the Caminha salt marsh (Minho estuary) evidences higher Br enrichment than the Casa Branca salt marsh (Mira estuary). This is related to a greater Br storage ability, which is linked to OM build-up and rate dynamics under different climate scenarios. Both cores evidence a fairly similar temporal Br enrichment pattern, and may be interpreted in light of the sun-climate coupling. Thereby, most of the well-known Grand Solar Minima during the Little Ice Age appear to have left an imprint on these marshes, supported by higher [Br] in soils/sediments. Besides climate changes driven by solar activity and impacting marsh Br biogeodynamics, those Br enrichment peaks might also reflect inputs of enhanced volcanic activity covarying with Grand Solar Minima.

  12. Effects of salinity variations on pore water flow in salt marshes

    NASA Astrophysics Data System (ADS)

    Shen, Chengji; Jin, Guangqiu; Xin, Pei; Kong, Jun; Li, Ling

    2015-06-01

    Spatial and temporal salinity variations in surface water and pore water commonly exist in salt marshes under the combined influence of tidal inundation, precipitation, evapotranspiration, and inland freshwater input. Laboratory experiments and numerical simulations were conducted to investigate how density gradients associated with salinity variations affect pore water flow in the salt marsh system. The results showed that upward salinity (density) gradients could lead to flow instability and the formation of salt fingers. These fingers, varying in size with the distance from the creek, modified significantly the pore water flow field, especially in the marsh interior. While the flow instability enhanced local salt transport and mixing considerably, the net effect was small, causing only a slight increase in the overall mass exchange across the marsh surface. In contrast, downward salinity gradients exerted less influence on the pore water flow in the marsh soil and slightly weakened the surface water and groundwater exchange across the marsh surface. Numerical simulations revealed similar density effects on pore water flow at the field scale under realistic conditions. These findings have important implications for studies of marsh soil conditions concerning plant growth as well as nutrient exchange between the marsh and coastal marine system.

  13. Threshhold for recovery in the marsh halophyte Spartina alterniflora grown under the combined effects of salinity and soil drying.

    PubMed

    Brown, Christopher E; Pezeshki, S Reza

    2007-03-01

    A study quantifying the physiological threshhold at which Spartina alterniflora plants are able to tolerate the interactive effects of salinity and soil drying was conducted in a climate controlled greenhouse. The experiment consisted of two levels of salinity (3-5 ppt, L and 35-38 ppt, H) as well as four dynamic water levels: flooding (water level maintained 3-5 cm above the soil surface at high tide and 10 cm below the soil surface at low tide for entire study duration, F), 8-day drought (water level maintained at least 20 cm below the soil surface at high tide for 8 days then flooded, 8 days), 16-day drought (water level maintained at least 20 cm below the soil surface at high tide for 16 days then flooded, 16 days), and 24-day drought (water level maintained at least 20 cm below the soil surface at high tide for 24 days then flooded, 24 days). Plant gas exchange and growth responses were measured along with soil conditions of redox potential and water potential. Significant decreases were seen in plant gas exchange and growth in response to increases in salinity and soil drying. Survival was 100% for all flooded treatments while increased salinity combined with soil drying decreased survival to 86% in both low salt/24-day drought plants (LD24) and high salt/16-day drought plants (HD16). The lowest survival rate was seen in the high salt/24-day drought treatment (HD24) at 29%. Therefore, it appears that the critical time for recovery from the combined effects of increased salinity and soil drying may greatly diminish after two weeks from the onset of stress conditions. Consequently, if salinity continues to increase along the MRDP, marshes dominated by S. alterniflora may be more susceptible to short-term drought and likewise large-scale marsh browning.

  14. [Effects of elevated atmospheric CO2 concentration and nitrogen addition on the growth of Calamagrostis angustifolia in Sanjiang Plain freshwater marsh].

    PubMed

    Zhao, Guang-Ying; Liu, Jing-Shuang; Wang, Yang

    2011-06-01

    By using open top chamber, an experiment with two levels of atmospheric CO2 concentration (350 and 700 micromol x mol(-1)) and three levels of nitrogen supply (0, 5, and 15 g N x m(-2)) was conducted to investigate the effects of elevated atmospheric CO2 and nitrogen supply on the growth of Calamagrostis angustifolia in the freshwater marsh of Sanjiang Plain. Under elevated atmospheric CO2 concentration, the phenophase of C. angustifolia advanced. Jointing stage was advanced by 1-2 d, and maturity stage was advanced by 3 d. Elevated atmospheric CO2 promoted the tillering of C. angustifolia, with the increment of tiller number under 0, 5, and 15 g x m(-2) of nitrogen supply being 8.2% (P < 0.05), 8.4% (P < 0.05), and 5.5% (P > 0.05), respectively. Elevated atmospheric CO2 also promoted the aboveground biomass at jointing and heading stages, the increment being 12.4% and 20.9% (P < 0.05), respectively, and increased the belowground biomass at later growth stages, with the increment at dough stage and maturity stage being 20.5% and 20.9% (P < 0.05), respectively. The responses of C. angustifolia biomass to elevated atmospheric CO2 concentration depended on nitrogen supply level. Under sufficient nitrogen supply, the promotion effect of elevated atmospheric CO2 concentration on the biomass of C. angustifolia was higher.

  15. What happens to soil organic carbon as coastal marsh ecosystems change in response to increasing salinity? An exploration using ramped pyrolysis

    NASA Astrophysics Data System (ADS)

    Williams, Elizabeth K.; Rosenheim, Brad E.

    2015-07-01

    Coastal wetlands store vast amounts of organic carbon, globally, and are becoming increasingly vulnerable to the effects of anthropogenic sea level rise. To understand the effect of sea level rise on organic carbon fate and preservation in this global sink, it is necessary to characterize differences in the biogeochemical stability of coastal wetland soil organic carbon (SOC). Here we use ramped pyrolysis/oxidation decomposition characteristics as proxies for SOC stability to understand the fate of carbon storage in coastal wetlands comprising the Mississippi River deltaic plain, undergoing rapid rates of local sea level rise. Soils from three wetland types (fresh, brackish, and salt marshes) along a salinity gradient were subjected to ramped pyrolysis analysis to evaluate decomposition characteristics related to thermochemical stability of SOC. At equivalent soil depths, we observed that fresh marsh SOC was more stable than brackish and salt marsh SOC. Depth, isotopic, elemental, and chemical compositions, bulk density, and water content of SOC all exhibited different relationships with SOC stability across the marsh salinity gradient, indicative of different controls on SOC stability within each marsh type. The differences in stability imply stronger preservation potential of fresh marsh soil carbon, compared to that of salt and brackish marshes. Considering projected marsh ecosystem responses to sea level rise, these observed stability differences are important in planning and implementing coastal wetland carbon-focused remediation and improving climate model feedbacks with the carbon cycle. Specifically, our results imply that ecosystem changes associated with sea level rise will initiate the accumulation of less stable carbon in coastal wetlands.

  16. Relationships between salinity and short-term soil carbon accumulation rates form marsh types across a landscape in the Mississippi River Delta

    USGS Publications Warehouse

    Baustian, Melissa M.; Stagg, Camille L.; Perry, Carey L; Moss, Leland C; Carruthers, Tim J.B.; Allison, Mead

    2017-01-01

    Salinity alterations will likely change the plant and environmental characteristics in coastal marshes thereby influencing soil carbon accumulation rates. Coastal Louisiana marshes have been historically classified as fresh, intermediate, brackish, or saline based on resident plant community and position along a salinity gradient. Short-term total carbon accumulation rates were assessed by collecting 10-cm deep soil cores at 24 sites located in marshes spanning the salinity gradient. Bulk density, total carbon content, and the short-term accretion rates obtained with feldspar horizon markers were measured to determine total carbon accumulation rates. Despite some significant differences in soil properties among marsh types, the mean total carbon accumulation rates among marsh types were not significantly different (mean ± std. err. of 190 ± 27 g TC m−2 year−1). However, regression analysis indicated that mean annual surface salinity had a significant negative relationship with total carbon accumulation rates. Based on both analyses, the coastal Louisiana total marsh area (1,433,700 ha) accumulates about 2.7 to 3.3 Tg C year−1. Changing salinities due to increasing relative sea level or resulting from restoration activities may alter carbon accumulation rates in the short term and significantly influence the global carbon cycle.

  17. Seasonal Dynamics of Trace Elements in Tidal Salt Marsh Soils as Affected by the Flow-Sediment Regulation Regime

    PubMed Central

    Bai, Junhong; Xiao, Rong; Zhao, Qingqing; Lu, Qiongqiong; Wang, Junjing; Reddy, K. Ramesh

    2014-01-01

    Soil profiles were collected in three salt marshes with different plant species (i.e. Phragmites australis, Tamarix chinensis and Suaeda salsa) in the Yellow River Delta (YRD) of China during three seasons (summer and fall of 2007 and the following spring of 2008) after the flow-sediment regulation regime. Total elemental contents of As, Cd, Cu, Pb and Zn were determined using inductively coupled plasma atomic absorption spectrometry to investigate temporal variations in trace elements in soil profiles of the three salt marshes, assess the enrichment levels and ecological risks of these trace elements in three sampling seasons and identify their influencing factors. Trace elements did not change significantly along soil profiles at each site in each sampling season. The highest value for each sampling site was observed in summer and the lowest one in fall. Soils in both P. australis and S. salsa wetlands tended to have higher trace element levels than those in T. chinensis wetland. Compared to other elements, both Cd and As had higher enrichment factors exceeding moderate enrichment levels. However, the toxic unit (TU) values of these trace elements did not exceed probable effect levels. Correlation analysis showed that these trace elements were closely linked to soil properties such as moisture, sulfur, salinity, soil organic matter, soil texture and pH values. Principal component analysis showed that the sampling season affected by the flow-sediment regulation regime was the dominant factor influencing the distribution patterns of these trace elements in soils, and plant community type was another important factor. The findings of this study could contribute to wetland conservation and management in coastal regions affected by the hydrological engineering. PMID:25216278

  18. Seasonal dynamics of trace elements in tidal salt marsh soils as affected by the flow-sediment regulation regime.

    PubMed

    Bai, Junhong; Xiao, Rong; Zhao, Qingqing; Lu, Qiongqiong; Wang, Junjing; Reddy, K Ramesh

    2014-01-01

    Soil profiles were collected in three salt marshes with different plant species (i.e. Phragmites australis, Tamarix chinensis and Suaeda salsa) in the Yellow River Delta (YRD) of China during three seasons (summer and fall of 2007 and the following spring of 2008) after the flow-sediment regulation regime. Total elemental contents of As, Cd, Cu, Pb and Zn were determined using inductively coupled plasma atomic absorption spectrometry to investigate temporal variations in trace elements in soil profiles of the three salt marshes, assess the enrichment levels and ecological risks of these trace elements in three sampling seasons and identify their influencing factors. Trace elements did not change significantly along soil profiles at each site in each sampling season. The highest value for each sampling site was observed in summer and the lowest one in fall. Soils in both P. australis and S. salsa wetlands tended to have higher trace element levels than those in T. chinensis wetland. Compared to other elements, both Cd and As had higher enrichment factors exceeding moderate enrichment levels. However, the toxic unit (TU) values of these trace elements did not exceed probable effect levels. Correlation analysis showed that these trace elements were closely linked to soil properties such as moisture, sulfur, salinity, soil organic matter, soil texture and pH values. Principal component analysis showed that the sampling season affected by the flow-sediment regulation regime was the dominant factor influencing the distribution patterns of these trace elements in soils, and plant community type was another important factor. The findings of this study could contribute to wetland conservation and management in coastal regions affected by the hydrological engineering.

  19. Fluoride pollution in a salt marsh: movement between soil, vegetation, and sheep

    SciTech Connect

    Baars, A.J.; van Beek, H.; Spierenburg, T.J.; de Graaf, G.J.; Beeftink, W.G.; Nieuwenhuize, J.; Boom, J.; Pekelder, J.J.

    1987-12-01

    The river Scheldt (southwestern part of The Netherlands) is responsible for a considerable pollution of its estuary with organic and inorganic waste, which becomes manifest particularly in the salt marshes. Of these marshes, the 3400 ha nature reserve of the Saeftinge sale marsh constitutes a representative example of such a valuable tidal brackish ecosystem. This marsh is partly grazed by sheep, thus contributing to its original character and assisting in the preservation of the local flora and fauna. Preceding reports indicated a significant degree of contamination with heavy metals, which were shown to enter food chains. The present study focuses on fluoride, an environmental contaminant known to be spread by water and air, and, although assumed to be beneficial in small quantities, a potential threat for plants and animals, particularly herbivores.

  20. Biosphere 2's Marsh Biome

    NASA Technical Reports Server (NTRS)

    Molnar, Jennifer; Goodridge, Kelven

    1997-01-01

    The Marsh Biome, which was modeled after the mangroves and marshes of southwest Florida, has an area of 441.2 sq m separated into three hydrologically independent sections: the Freshwater, Oligohaline and Salt Marshes. The divisions are made based on their salinity (approximately 0, 4, and 34 ppt. respectively), but they also contain different biological communities. The Freshwater and Oligohaline Marshes are mostly filled with various grasses and several trees, while the Salt Marsh houses regions of red, black, and white mangroves (Rhizophora mangle, Avicennia germinans, and Languncularia racemosa respectively). Overall, there are an estimated 80 species of plants within the biome. Water in the Salt Marsh follows a meandering stream from the algal turf scrubbers (apparatuses that clean the water of its nutrients and heavy metals while increasing dissolved oxygen levels) which have an outlet in the Salt Marsh section near sites 4 and 5 to the Fringing Red Mangrove section. The sections of the Salt Marsh are separated by walls of concrete with openings to allow the stream to flow through. Throughout this study, conducted through the months of June and July, many conditions within the biome remained fairly constant. The temperature was within a degree or two of 25 C, mostly depending on whether the sample site was in direct sunlight or shaded. The pH throughout the Salt Marsh was 8.0 +/- 0.2, and the lower salinity waters only dropped below this soon after rains. The water rdepth and dissolved oxygen varied, however, between sites.

  1. Marsh loss from 1984 - 2011 in the Breton Sound, Barataria and Terrebonne Basins, Louisiana, U.S.A.: Impacts of hurricanes and excess nutrients

    NASA Astrophysics Data System (ADS)

    Riter, J. C.; Kearney, M. S.; Turner, R.

    2012-12-01

    Twenty-four Landsat data sets (1984-2011), collected as close to peak vegetation growth as possible, were used to evaluate marsh vegetation health and marsh loss in Terrebonne, Barataria, and Breton Sound Basins. Marsh loss varies spatially and temporally in the basins: freshwater and most intermediate marshes located west of the Mississippi River and more than 40 km from the coast were determined to be more stable than marshes closer to the coast. In most areas of the three basins, vegetation health and marsh area from 1984-1992 were relatively stable with minor inter-annual fluctuations throughout each basin and only a few areas of localized marsh loss. By 1994, shoreline erosion, tidal creek erosion, and erosion of soil banks adjacent to canals had increased in marshes located <40 km from the Gulf of Mexico, although some sites suffered substantially greater erosion than most coastal areas. Wave erosion also increased around the shores of Lakes Salvador, Cataouatche, Levy and other large lakes by 1994. Marsh loss also occurred in marshes immediately west of the Mississippi River, especially in areas close to diversion inlets. Hurricane Ivan in 2004 produced little sustained widespread damage in the basin marshes. However, Hurricanes Katrina and Rita in 2005 and Gustav and Ike in 2008 caused extensive erosion of vegetation and the marsh substrate, especially near the inlet to Caernarvon diversion, but also near the Naomi and West Point a La Hache diversions inlets. We attribute the significant marsh damage from hurricanes to greater flooding, and greater wave and storm surge impacts due to diminished marsh soil strength from the effects of excess nutrients causing lower rhizome and root biomass and increased substrate decomposition rates.

  2. Carbon stocks and soil sequestration rates of riverine mangroves and freshwater wetlands

    NASA Astrophysics Data System (ADS)

    Adame, M. F.; Santini, N. S.; Tovilla, C.; Vázquez-Lule, A.; Castro, L.

    2015-01-01

    Deforestation and degradation of wetlands are important causes of carbon dioxide emissions to the atmosphere. Accurate measurements of carbon (C) stocks and sequestration rates are needed for incorporating wetlands into conservation and restoration programs with the aim for preventing carbon emissions. Here, we assessed whole ecosystem C stocks (trees, soil and downed wood) and soil N stocks of riverine wetlands (mangroves, marshes and peat swamps) within La Encrucijada Biosphere Reserve in the Pacific coast of Mexico. We also estimated soil C sequestration rates of mangroves on the basis of soil accumulation. We hypothesized that riverine wetlands have large C stocks, and that upland mangroves have larger C and soil N stocks compared to lowland mangroves. Riverine wetlands had large C stocks with a mean of 784.5 ± 73.5 Mg C ha-1 for mangroves, 722.2 ± 83.4 Mg C ha-1 for peat swamps, and 336.5 ± 38.3 Mg C ha-1 for marshes. C stocks and soil N stocks were in general larger for upland (833.0 ± 7.2 Mg C ha-1; 26.4 ± 0.5 Mg N ha-1) compared to lowland mangroves (659.5 ± 18.6 Mg C ha-1; 13.8 ± 2.0 Mg N ha-1). Soil C sequestration values were 1.3 ± 0.2 Mg C ha-1 yr-1. The Reserve stores 32.5 Mtons of C or 119.3 Mtons of CO2, with mangroves sequestering (via soil accumulation) 27 762 ± 0.5 Mg C ha-1 every year.

  3. Intraspecific variation in growth of marsh macrophytes in response to salinity and soil type: Implications for wetland restoration

    USGS Publications Warehouse

    Howard, R.J.

    2010-01-01

    Genetic diversity within plant populations can influence plant community structure along environmental gradients. In wetland habitats, salinity and soil type are factors that can vary along gradients and therefore affect plant growth. To test for intraspecific growth variation in response to these factors, a greenhouse study was conducted using common plants that occur in northern Gulf of Mexico brackish and salt marshes. Individual plants of Distichlis spicata, Phragmites australis, Schoenoplectus californicus, and Schoenoplectus robustus were collected from several locations along the coast in Louisiana, USA. Plant identity, based on collection location, was used as a measure of intraspecific variability. Prepared soil mixtures were organic, silt, or clay, and salinity treatments were 0 or 18 psu. Significant intraspecific variation in stem number, total stem height, or biomass was found in all species. Within species, response to soil type varied, but increased salinity significantly decreased growth in all individuals. Findings indicate that inclusion of multiple genets within species is an important consideration for marsh restoration projects that include vegetation plantings. This strategy will facilitate establishment of plant communities that have the flexibility to adapt to changing environmental conditions and, therefore, are capable of persisting over time. ?? Coastal and Estuarine Research Federation 2009.

  4. Sheetflow Effects and Canal Backfilling on Sediment Source and Transport in Everglades Freshwater Marshes: Analysis of Molecular Organic Biomarkers

    NASA Astrophysics Data System (ADS)

    Regier, P.; He, D.; Saunders, C.; Coronado-Molina, C.; Jara, B.; Jaffe, R.

    2014-12-01

    Historic freshwater sheetflow in the Florida Everglades distributed sediment to form a ridge-and-slough landscape. However, drainage along with reduction and obstruction of flow has resulted in degradation of this ridged topography. The DECOMP Physical Model is a landscape-scale project aiming to reestablish natural sheetflow to the central and southern Everglades by redesigning barriers to flow. To validate proof of concept that increased flow will rebuild ridge-slough microtopography, biomarker proxies were established for ridge and slough organic matter sources. In addition, partial and complete canal backfill options were assessed via sediment trap accumulation in each backfill treatment area. Flocculent matter (floc) and sediment samples were collected, solvent extracted, chromatographically separated, and analyzed on a GC/MS using internal standard for quantification. Four molecular organic biomarkers were evaluated: the aquatic proxy (Paq), highly-branched isoprenoids (C20 HBI), kaurenes and botyrococcenes. Paq, an aquatic proxy of mid to long-chain n-alkanes, was shown to clearly differentiate between ridge-derived and slough-derived organic matter with Paq values increasing along ridge-to-slough transects. Kaurenes indicated presence of ridge-derived organic matter while C20 HBI and botyrococcenes were indicative of periphyton-derived organic matter which is commonly more abundant in sloughs. Biomarker distributions during both low (present day) and high (managed) water flow through the DECOMP experimental parcel were determined and discussed comparatively.

  5. El Niño Southern Oscillation (ENSO) enhances CO2 exchange rates in freshwater Marsh ecosystems in the Florida everglades.

    PubMed

    Malone, Sparkle L; Staudhammer, Christina L; Oberbauer, Steven F; Olivas, Paulo; Ryan, Michael G; Schedlbauer, Jessica L; Loescher, Henry W; Starr, Gregory

    2014-01-01

    This research examines the relationships between El Niño Southern Oscillation (ENSO), water level, precipitation patterns and carbon dioxide (CO2) exchange rates in the freshwater wetland ecosystems of the Florida Everglades. Data was obtained over a 5-year study period (2009-2013) from two freshwater marsh sites located in Everglades National Park that differ in hydrology. At the short-hydroperiod site (Taylor Slough; TS) and the long-hydroperiod site (Shark River Slough; SRS) fluctuations in precipitation patterns occurred with changes in ENSO phase, suggesting that extreme ENSO phases alter Everglades hydrology which is known to have a substantial influence on ecosystem carbon dynamics. Variations in both ENSO phase and annual net CO2 exchange rates co-occurred with changes in wet and dry season length and intensity. Combined with site-specific seasonality in CO2 exchanges rates, El Niño and La Niña phases magnified season intensity and CO2 exchange rates at both sites. At TS, net CO2 uptake rates were higher in the dry season, whereas SRS had greater rates of carbon sequestration during the wet season. As La Niña phases were concurrent with drought years and extended dry seasons, TS became a greater sink for CO2 on an annual basis (-11 to -110 g CO2 m-2 yr-1) compared to El Niño and neutral years (-5 to -43.5 g CO2 m-2 yr-1). SRS was a small source for CO2 annually (1.81 to 80 g CO2 m-2 yr-1) except in one exceptionally wet year that was associated with an El Niño phase (-16 g CO2 m-2 yr-1). Considering that future climate predictions suggest a higher frequency and intensity in El Niño and La Niña phases, these results indicate that changes in extreme ENSO phases will significantly alter CO2 dynamics in the Florida Everglades.

  6. El Niño Southern Oscillation (ENSO) Enhances CO2 Exchange Rates in Freshwater Marsh Ecosystems in the Florida Everglades

    PubMed Central

    Malone, Sparkle L.; Staudhammer, Christina L.; Oberbauer, Steven F.; Olivas, Paulo; Ryan, Michael G.; Schedlbauer, Jessica L.; Loescher, Henry W.; Starr, Gregory

    2014-01-01

    This research examines the relationships between El Niño Southern Oscillation (ENSO), water level, precipitation patterns and carbon dioxide (CO2) exchange rates in the freshwater wetland ecosystems of the Florida Everglades. Data was obtained over a 5-year study period (2009–2013) from two freshwater marsh sites located in Everglades National Park that differ in hydrology. At the short-hydroperiod site (Taylor Slough; TS) and the long-hydroperiod site (Shark River Slough; SRS) fluctuations in precipitation patterns occurred with changes in ENSO phase, suggesting that extreme ENSO phases alter Everglades hydrology which is known to have a substantial influence on ecosystem carbon dynamics. Variations in both ENSO phase and annual net CO2 exchange rates co-occurred with changes in wet and dry season length and intensity. Combined with site-specific seasonality in CO2 exchanges rates, El Niño and La Niña phases magnified season intensity and CO2 exchange rates at both sites. At TS, net CO2 uptake rates were higher in the dry season, whereas SRS had greater rates of carbon sequestration during the wet season. As La Niña phases were concurrent with drought years and extended dry seasons, TS became a greater sink for CO2 on an annual basis (−11 to −110 g CO2 m−2 yr−1) compared to El Niño and neutral years (−5 to −43.5 g CO2 m−2 yr−1). SRS was a small source for CO2 annually (1.81 to 80 g CO2 m−2 yr−1) except in one exceptionally wet year that was associated with an El Niño phase (−16 g CO2 m−2 yr−1). Considering that future climate predictions suggest a higher frequency and intensity in El Niño and La Niña phases, these results indicate that changes in extreme ENSO phases will significantly alter CO2 dynamics in the Florida Everglades. PMID:25521299

  7. Effects of dispersant used for oil spill remediation on nitrogen cycling in Louisiana coastal salt marsh soil.

    PubMed

    Pietroski, Jason P; White, John R; DeLaune, Ronald D

    2015-01-01

    On April 20, 2010, the BP Deepwater Horizon (DWH) offshore oil platform experienced an explosion which triggered the largest marine oil spill in US history. Approximately 7.9 million liters of dispersant, Corexit EC9500A, was used during the spill between May 15th and July 12th. Marsh soil samples were collected from an unimpacted marsh site proximal to coastal areas that suffered light to heavy oiling for a laboratory evaluation to determine the effect of Corexit on the wetland soil microbial biomass as well as N-mineralization and denitrification rates. Microbial biomass nitrogen (N) values were below detection for the 1:10, 1:100 and 1:1000 Corexit:wet soil treatments. The potentially mineralizable N (PMN) rate correlated with microbial biomass with significantly lower rates for the 1:10 and 1:100 Corexit:wet soil additions. Potential denitrification rates for Corexit:wet soil ratios after immediate dispersant exposure were below detection for the 1:10 treatment, while the 1:100 was 7.6±2.7% of the control and the 1:1000 was 33±4.3% of the control. The 1:10000 treatment was not significantly different from the control. Denitrification rates measured after 2 weeks exposure to the surfactant found the 1:10 treatment still below detection limit and the 1:100 ratio was 12±2.6% of the control. Results from this lab study suggest that chemical dispersants have the potential to negatively affect the wetland soil microbial biomass and resultant microbial activity. Consequences of exposure led to reductions in several important microbial-regulated ecosystem services including water quality improvement (denitrification) and ecosystem primary productivity (N-mineralization). Future studies should investigate the longer-term impacts of dispersant exposure on the microbial consortia to determine if microbial activity recovers over time.

  8. Variability of fresh- and salt-water marshes characteristics on the west coast of France: a spatio-temporal assessment.

    PubMed

    Tortajada, Sébastien; David, Valérie; Brahmia, Amel; Dupuy, Christine; Laniesse, Thomas; Parinet, Bernard; Pouget, Frederic; Rousseau, Frederic; Simon-Bouhet, Benoit; Robin, François-Xavier

    2011-08-01

    The degradation of water quality and the multiple conflicts of interest between users make marsh restoration very important. A Water Quality Evaluation System (WQES) was developed for river systems by the European Water Framework Directive (WFD). Some form of biologically-based, habitat-specific reference standard seems absolutely essential for wise management and stewardship of marsh ecosystems. The goal of this study was to develop a statistical method to define and to characterize a water body typology for drained marshes of the Charente-Maritime wetlands on the French Atlantic coast, placing particular emphasis on environmental factors as hydraulic functioning, human activities and pedological substratum. The Charente-Maritime marshes represent a good field study because of his high diversity of types of marshes and of anthropogenic activities in a restrictive area thus erasing spatial climatic effect (latitude effect). The statistical method developed here had permitted to define and characterize 12 different water bodies, 7 in freshwater (F1 to F7) and 5 in salt water marshes for the Charente-Maritime area. This typology demonstrated an important link between the size catchment area, nitrate concentrations, and leaching of precipitation from cultured soils. Even though the Charente-Maritime marshes are strongly impacted by humans, they may still retain the ability to remove nitrate. The increasing gradient of water renewal in the freshwater marshes from F1 to F7 explained the decreasing gradient of eutrophication. A better management of the hydrodynamic of the marshes can avoid eutrophication risk on the coastal sea area. Reliance on the WFD parameter set necessarily placed limits on the kinds of interpretations that could be made and on the study's potential contribution to the basic science of marshes. Ecologically-based insights regarding both external flows (links between ecosystems, meta-ecosystem theory) and internal flows (structure of the planktonic

  9. Seasonal patterns in the soil water balance of a Spartina marsh site at North Inlet, South Carolina, USA

    USGS Publications Warehouse

    Gardner, L.R.; Reeves, H.W.

    2002-01-01

    Time series of ground-water head at a mid-marsh site near North Inlet, South Carolina, USA can be classified into five types of forcing signatures based on the dominant water flux governing water-level dynamics during a given time interval. The fluxes that can be recognized are recharge by tides and rain, evapotranspiration (ET), seepage into the near surface soil from below, and seepage across the soil surface to balance either ET losses or seepage influxes from below. Minimal estimates for each flux can be made by multiplying the head change induced by it by the measured specific yield of the soil. These flux estimates are provide minimal values because ET fluxes resulting from this method are about half as large as those estimated from calculated potential evapotranspiration (PET), which place an upper limit on the actual ET. As evapotranspiration is not moisture-limited at this regularly submerged site, the actual ET is probably nearly equal to PET. Thus, all of the other fluxes are probably twice as large as those given by this method. Application of this method shows that recharge by tides and rain only occurs during spring and summer when ET exceeds upward seepage from below and is thereby able to draw down the water table below the marsh surface occasionally. During fall and winter, seepage of fresh water from below is largely balanced by seepage out of the soil into overlying tidal water or into sheet flow during tidal exposure. The resulting reduction in soil water salinity may thereby enhance the growth of Spartina in the following spring. ?? 2002, The Society of Wetland Scientists.

  10. Removal of Fast Flowing Nitrogen from Marshes Restored in Sandy Soils

    PubMed Central

    Sparks, Eric L.; Cebrian, Just; Smith, Sara M.

    2014-01-01

    Groundwater flow rates and nitrate removal capacity from an introduced solution were examined for five marsh restoration designs and unvegetated plots shortly after planting and 1 year post-planting. The restoration site was a sandy beach with a wave-dampening fence 10 m offshore. Simulated groundwater flow into the marsh was introduced at a rate to mimic intense rainfall events. Restoration designs varied in initial planting density and corresponded to 25%, 50%, 75% and 100% of the plot area planted. In general, groundwater flow was slower with increasing planting density and decreased from year 0 to year 1 across all treatments. Nevertheless, removal of nitrate from the introduced solution was similar and low for all restoration designs (3–7%) and similar to the unvegetated plots. We suggest that the low NO3− removal was due to sandy sediments allowing rapid flow of groundwater through the marsh rhizosphere, thereby decreasing the contact time of the NO3− with the marsh biota. Our findings demonstrate that knowledge of the groundwater flow regime for restoration projects is essential when nutrient filtration is a target goal of the project. PMID:25353607

  11. Distribution and activity of anaerobic ammonium-oxidising bacteria in natural freshwater wetland soils.

    PubMed

    Shen, Li-dong; Wu, Hong-sheng; Gao, Zhi-qiu; Cheng, Hai-xiang; Li, Ji; Liu, Xu; Ren, Qian-qi

    2016-04-01

    Anaerobic ammonium oxidation (anammox) process plays a significant role in the marine nitrogen cycle. However, the quantitative importance of this process in nitrogen removal in wetland systems, particularly in natural freshwater wetlands, is still not determined. In the present study, we provided the evidence of the distribution and activity of anammox bacteria in a natural freshwater wetland, located in southeastern China, by using (15)N stable isotope measurements, quantitative PCR assays and 16S rRNA gene clone library analysis. The potential anammox rates measured in this wetland system ranged between 2.5 and 25.5 nmol N2 g(-1) soil day(-1), and up to 20% soil dinitrogen gas production could be attributed to the anammox process. Phylogenetic analysis of 16S rRNA genes showed that anammox bacteria related to Candidatus Brocadia, Candidatus Kuenenia, Candidatus Anammoxoglobus and two novel anammox clusters coexisted in the collected soil cores, with Candidatus Brocadia and Candidatus Kuenenia being the dominant anammox genera. Quantitative PCR of hydrazine synthase genes showed that the abundance of anammox bacteria varied from 2.3 × 10(5) to 2.2 × 10(6) copies g(-1) soil in the examined soil cores. Correlation analyses suggested that the soil ammonium concentration had significant influence on the activity of anammox bacteria. On the basis of (15)N tracing technology, it is estimated that a total loss of 31.1 g N m(-2) per year could be linked the anammox process in the examined wetland.

  12. Response of a hypersaline salt marsh to a large flood and rainfall event along the west coast of southern Africa

    NASA Astrophysics Data System (ADS)

    Bornman, T. G.; Adams, J. B.

    2010-04-01

    The Orange Estuary lost 27% (276 ha) of its wetland area near the mouth as a result of bad management practices during the 1980s. The salt marsh has been unable to recover over the last 20 years because of the persistently high soil and groundwater salinity. In 2006, a 1 in 5 year flood occurred that completely covered the desertified salt marsh and floodplain with freshwater. The flood was followed by an above average (>45 mm) winter rainfall. Soil and groundwater sampled in April and August 2004 were compared with 2006 data to quantify the impact of the flood and rainfall event. It was hypothesised that the two freshwater events would significantly reduce the soil and groundwater salinity. However, the results showed no significant difference in sediment electrical conductivity throughout the soil profile over the four sampling periods. Soil moisture and organic content however increased significantly after these events in the surface soil layer. The flood deposited silt and scoured sand from the surface layers in significant quantities. The depth to groundwater in the desertified marsh retained a similar pattern after the flood despite 15 cm changes in depth in places. In 2004 a clear groundwater electrical conductivity gradient was present extending from the less saline north part of the marsh (0-15 mS cm -1) to the central part (120-135 mS cm -1) and decreasing again towards the south (60-75 mS cm -1). The flood served to even out the groundwater salinity across the desertified marsh (60-90 mS cm -1). The flood and high rainfall had a limited impact on the soil and groundwater characteristics. The few significant changes that were recorded were mostly restricted to the surface soil layers and on a small spatial scale. The rainfall did however create numerous pools of low salinity (<60 mS cm -1) water on the marsh surface that provided a brief opportunity for salt marsh seeds to germinate. A further benefit of the flood was the increased tidal reach into the

  13. Response of gaseous carbon emissions to low-level salinity increase in tidal marsh ecosystem of the Min River estuary, southeastern China.

    PubMed

    Hu, Minjie; Ren, Hongchang; Ren, Peng; Li, Jiabing; Wilson, Benjamin J; Tong, Chuan

    2017-02-01

    Although estuarine tidal marshes are important contributors to the emission of greenhouse gases into the atmosphere, the relationship between carbon dioxide (CO2), methane (CH4) emission, and environmental factors, with respect to estuarine marshes, has not been clarified thoroughly. This study investigated the crucial factors controlling the emission of CO2 and CH4 from a freshwater marsh and a brackish marsh located in a subtropical estuary in southeastern China, as well as their magnitude. The duration of the study period was November 2013 to October 2014. Relevant to both the field and incubation experiments, the CO2 and CH4 emissions from the two marshes showed pronounced seasonal variations. The CO2 and CH4 emissions from both marshes demonstrated significant positive correlations with the air/soil temperature (p<0.01), but negative correlations with the soil electrical conductivity and the pore water/tide water Cl(-) and SO4(2-) (p<0.01). The results indicate no significant difference in the CO2 emissions between the freshwater and brackish marshes in the subtropical estuary, whereas there was a difference in the CH4 emissions between the two sites (p<0.01). Although future sea-level rise and saltwater intrusion could reduce the CH4 emissions from the estuarine freshwater marshes, these factors had little effect on the CO2 emissions with respect to an increase in salinity of less than 5‰. The findings of this study could have important implications for estimating the global warming contributions of estuarine marshes along differing salinity gradients.

  14. Effect of fertilization on Soil Respiration and Belowground Macro-organic Matter in Spartina alternatflora Marsh Soils

    EPA Science Inventory

    Human activities and rising populations increase watershed nutrient loads, which may alter the structure and function of coastal wetlands. In a long-term fertilization experiment in the North Inlet-Winyah Bay Reserve (NI-WB, NERR) (SC) Spartina marsh system, we used a 2 X 2 facto...

  15. Temporal changes and spatial variation of soil oxygen consumption, nitrification and denitrification rates in a tidal salt marsh of the Lagoon of Venice, Italy

    NASA Astrophysics Data System (ADS)

    Eriksson, P. G.; Svensson, J. M.; Carrer, G. M.

    2003-12-01

    The aim of the present study was to investigate seasonal and spatial patterns of soil oxygen consumption, nitrification, denitrification and fluxes of dissolved inorganic nitrogen (DIN) in a tidal salt marsh of the Lagoon of Venice, Italy. In the salt marsh, intact soil cores including overlying water were collected monthly at high tide from April to October in salt marsh creeks and in areas covered by the dominant vegetation, Limonium serotinum. In May, cores were also collected in areas with vegetation dominated by Juncus maritimus and Halimione portulacoides. In laboratory incubations at in situ temperature in the dark, flux rates of oxygen and DIN were monitored in the overlying water of the intact cores. 15N-nitrate was added to the overlying water and nitrification and denitrification were measured using isotope-dilution and -pairing techniques. The results show that highest soil oxygen consumption coincided with the highest water temperature in June and July. The highest denitrification rates were recorded in spring and autumn coinciding with the highest nitrate concentrations. Soil oxygen consumption and nitrification rates differed between sampling sites, but denitrification rates were similar among the different vegetation types. The highest rates were recorded in areas covered with L. serotinum. Burrowing soil macrofauna enhanced oxygen consumption, nitrification and denitrification in April and May. The data presented in this study indicate high temporal as well as spatial variations in the flux of oxygen and DIN, and nitrogen transformations in the tidal salt marshes of the Venice lagoon during the growth season. The results identify the salt marshes of the Venice lagoon as being metabolically very active ecosystems with a high capacity to process nitrogen.

  16. Evaluating the accuracy of soil water sensors for irrigation scheduling to conserve freshwater

    NASA Astrophysics Data System (ADS)

    Ganjegunte, Girisha K.; Sheng, Zhuping; Clark, John A.

    2012-06-01

    In the Trans-Pecos area, pecan [ Carya illinoinensis (Wangenh) C. Koch] is a major irrigated cash crop. Pecan trees require large amounts of water for their growth and flood (border) irrigation is the most common method of irrigation. Pecan crop is often over irrigated using traditional method of irrigation scheduling by counting number of calendar days since the previous irrigation. Studies in other pecan growing areas have shown that the water use efficiency can be improved significantly and precious freshwater can be saved by scheduling irrigation based on soil moisture conditions. This study evaluated the accuracy of three recent low cost soil water sensors (ECH2O-5TE, Watermark 200SS and Tensiometer model R) to monitor volumetric soil water content (θv) to develop improved irrigation scheduling in a mature pecan orchard in El Paso, Texas. Results indicated that while all three sensors were successful in following the general trends of soil moisture conditions during the growing season, actual measurements differed significantly. Statistical analyses of results indicated that Tensiometer provided relatively accurate soil moisture data than ECH2O-5TE and Watermark without site-specific calibration. While ECH2O-5TE overestimated the soil water content, Watermark and Tensiometer underestimated. Results of this study suggested poor accuracy of all three sensors if factory calibration and reported soil water retention curve for study site soil texture were used. This indicated that sensors needed site-specific calibration to improve their accuracy in estimating soil water content data.

  17. Direction and magnitude of change in soil use for a wetland area in Chile: Puren marshes, a priority site for biodiversity conservation (stage 1).

    NASA Astrophysics Data System (ADS)

    Sepúlveda-Varas, Alejandra

    2014-05-01

    Land managers and policymakers need information about soil change caused by anthropogenic and non-anthropogenic factors to predict the effects of management on soil function, compare alternatives, and make decisions. This is particularly relevant in highly fragile ecosystems such as wetlands or humid systems. The wetlands require the presence of three key components: hydric soils, hydrophytic vegetation and wetland hydrology. Therefore, the presence of hydric soils in humid systems is essential for the existence of a wetland. In Chile, one of the geographic zones with the greatest diversity of humid systems is the coast of the Araucanía Region, which contains one of the largest and most threatened humid systems of the region, Puren Marshes, whose soils are only generically described as alluvial terraces and miscellaneous swamp. In this area, studies have reported a high intensity of anthropogenic activity, generating soil erosion, loss of wetland coverage and landscape alteration. For this first stage of a main investigation about the vulnerability of hydric soils to changes in patterns of soil use, the objective was to characterize the variables of soil use in the Puren Marshes and determinate the direction and magnitude of change in soil use in the study area for the period between 1994 and 2007 (the official reports indicate that until 1994, the total area of Puren Marshes was 1147 ha). For the analyses, were used official reports of soil use, the coverages were obtained from the project map databases "Catastro y Evaluación de los Recursos Vegetacionales Nativos de Chile" 1993 and its update for La Araucanía, Regional Government of La Araucanía 2011, DMF CONAF 2010 and IGM 2007. The map information was processed in ARCGIS 9.3.1 software under UTM coordinates, datum WGS 84 and 18 South Time extended. Was developed a multitemporal analysis by construction of transition matrix and confusion matrix. The results obtained show that for the period analysed, the

  18. Methane flux from coastal salt marshes

    NASA Technical Reports Server (NTRS)

    Bartlett, K. B.; Harriss, R. C.; Sebacher, D. I.

    1985-01-01

    It is thought that biological methanogenesis in natural and agricultural wetlands and enteric fermentation in animals are the dominant sources of global tropospheric methane. It is pointed out that the anaerobic soils and sediments, where methanogenesis occurs, predominate in coastal marine wetlands. Coastal marine wetlands are generally believed to be approximately equal in area to freshwater wetlands. For this reason, coastal marine wetlands may be a globally significant source of atmospheric methane. The present investigation is concerned with the results of a study of direct measurements of methane fluxes to the atmosphere from salt marsh soils and of indirect determinations of fluxes from tidal creek waters. In addition, measurements of methane distributions in coastal marine wetland sediments and water are presented. The results of the investigation suggest that marine wetlands provide only a minor contribution to atmospheric methane on a global scale.

  19. Methane flux from coastal salt marshes

    NASA Astrophysics Data System (ADS)

    Bartlett, K. B.; Harriss, R. C.; Sebacher, D. I.

    1985-06-01

    It is thought that biological methanogenesis in natural and agricultural wetlands and enteric fermentation in animals are the dominant sources of global tropospheric methane. It is pointed out that the anaerobic soils and sediments, where methanogenesis occurs, predominate in coastal marine wetlands. Coastal marine wetlands are generally believed to be approximately equal in area to freshwater wetlands. For this reason, coastal marine wetlands may be a globally significant source of atmospheric methane. The present investigation is concerned with the results of a study of direct measurements of methane fluxes to the atmosphere from salt marsh soils and of indirect determinations of fluxes from tidal creek waters. In addition, measurements of methane distributions in coastal marine wetland sediments and water are presented. The results of the investigation suggest that marine wetlands provide only a minor contribution to atmospheric methane on a global scale.

  20. The cumulative effect of three decades of phosphogypsum amendments in reclaimed marsh soils from SW Spain: (226)Ra, (238)U and Cd contents in soils and tomato fruit.

    PubMed

    Abril, José-María; García-Tenorio, Rafael; Enamorado, Santiago M; Hurtado, M Dolores; Andreu, Luis; Delgado, Antonio

    2008-09-15

    Phosphogypsum (PG), a by-product of the phosphate fertiliser industries, has been applied as soil amendment to reduce Na saturation in soils, as in the reclaimed marsh area from SW Spain, where available PG has a typical fingerprint of 710+/-40 Bq kg(-1) of (226)Ra, 165+/-15 Bq kg(-1) of (238)U and 2.8+/-0.4 mg kg(-1) of Cd. This work was focussed on the cumulative effects of PG amendments on the enrichment of these pollutants in cultivated soils and plants (Lycopersicum esculentum Mill L.) from the area studied, where PG has been applied since 1978 at recommended rates of 20-25 Mg ha(-1) every 2-3 years. A field experiment was conducted over three years to compare activity concentrations of (226)Ra ((214)Pb) and (238)U ((234)Th) in non-reclaimed soils, reclaimed soils with no additional PG application, and reclaimed soils with two additional PG applications. A non-significant effect of two PG amendments (in three years) was observed when compared with non-amended reclaimed plots. Nevertheless, a significant (p<0.05) enrichment of (226)Ra was observed in the surface horizon (0-30 cm) of reclaimed plots relative to deeper horizons and also when compared with the surface horizon of non-reclaimed soil (p<0.05), thereby revealing the cumulative effect of three decades of PG applications. Furthermore, the effect of a continuous application of PG was studied by analysing soils and tomato fruits from six commercial farms with different cumulative rates of PG applied. Cadmium concentrations in tomatoes, which were one order of magnitude higher than those found in tomatoes from other areas in South Spain, were positively correlated (r = 0.917) with (226)Ra-concentration in soils, which can be considered an accurate index of the cumulative PG rate of each farm.

  1. Fifty-five years of soil development in restored freshwater depressional wetlands.

    PubMed

    Ballantine, Katherine; Schneider, Rebecca

    2009-09-01

    Wetland restoration is increasingly used as a strategy both to address historical wetland losses and to mitigate new wetland impacts. Research has examined the success of restored wetlands for avifaunal habitat, plant biodiversity, and plant cover; however, less is known about soil development in these systems. Soil processes are particularly important as soil organic matter (SOM), cation exchange capacity (CEC), and other properties are directly linked to wetland functions such as water quality improvement. This research compared soil development processes and properties of 30 palustrine depressional wetlands of four different age classes (approximately 5, 14, 35, and 55 years since restoration) located in central New York (USA). Five natural wetlands were used as references. This chronosequence included wetlands 27 years older than previously conducted studies, making it the longest reported database available. Replicated soil cores from each site were analyzed for SOM, bulk density (D(b)), CEC, and concentrations of nutrients and other chemical constituents. Decomposition rate and aboveground plant and litter biomass were measured as key contributors to soil development. The results indicate that some soil properties critical for water quality functions take decades or centuries to reach natural reference levels. Of particular importance, in the top five centimeters of soil, SOM, D(b), and CEC achieved <50% of reference levels 55 years after restoration. Soil development processes in these depressional wetlands appear to be driven by autochthonous inputs and by internal processes such as litter decomposition and are not accelerated in the initial phase of development by allochthonous inputs as has been documented in coastal salt marshes and riverine floodplains. While monitoring generally focuses on the initial establishment phase of restored ecosystems, our findings indicate that the later autogenic phase strongly influences development trajectories for

  2. Delayed recolonization of foraminifera in a suddenly flooded tidal (former freshwater) marsh in Oregon (USA): Implications for relative sea-level reconstructions

    NASA Astrophysics Data System (ADS)

    Milker, Yvonne; Horton, Benjamin P.; Khan, Nicole S.; Nelson, Alan R.; Witter, Robert C.; Engelhart, Simon E.; Ewald, Michael; Brophy, Laura; Bridgeland, William T.

    2016-04-01

    Stratigraphic sequences beneath salt marshes along the U.S. Pacific Northwest coast preserve 7000 years of plate-boundary earthquakes at the Cascadia subduction zone. The sequences record rapid rises in relative sea level during regional coseismic subsidence caused by great earthquakes and gradual falls in relative sea level during interseismic uplift between earthquakes. These relative sea-level changes are commonly quantified using foraminiferal transfer functions with the assumption that foraminifera rapidly recolonize salt marshes and adjacent tidal flats following coseismic subsidence. The restoration of tidal inundation in the Ni-les'tun unit (NM unit) of the Bandon Marsh National Wildlife Refuge (Oregon), following extensive dike removal in August 2011, allowed us to directly observe changes in foraminiferal assemblages that occur during rapid "coseismic" (simulated by dike removal with sudden tidal flooding) and "interseismic" (stabilization of the marsh following flooding) relative sea-level changes analogous to those of past earthquake cycles. We analyzed surface sediment samples from 10 tidal stations at the restoration site (NM unit) from mudflat to high marsh, and 10 unflooded stations in the Bandon Marsh control site. Samples were collected shortly before and at 1- to 6-month intervals for 3 years after tidal restoration of the NM unit. Although tide gauge and grain-size data show rapid restoration of tides during approximately the first 3 months after dike removal, recolonization of the NM unit by foraminifera was delayed at least 10 months. Re-establishment of typical tidal foraminiferal assemblages, as observed at the control site, required 31 months after tidal restoration, with Miliammina fusca being the dominant pioneering species. If typical of past recolonizations, this delayed foraminiferal recolonization affects the accuracy of coseismic subsidence estimates during past earthquakes because significant postseismic uplift may shortly follow

  3. High-resolution sequencing reveals unexplored archaeal diversity in freshwater wetland soils.

    PubMed

    Narrowe, Adrienne B; Angle, Jordan C; Daly, Rebecca A; Stefanik, Kay C; Wrighton, Kelly C; Miller, Christopher S

    2017-02-20

    Despite being key contributors to biogeochemical processes, archaea are frequently outnumbered by bacteria, and consequently are underrepresented in combined molecular surveys. Here, we demonstrate an approach to concurrently survey the archaea alongside the bacteria with high-resolution 16S rRNA gene sequencing, linking these community data to geochemical parameters. We applied this integrated analysis to hydric soils sampled across a model methane-emitting freshwater wetland. Geochemical profiles, archaeal communities, and bacterial communities were independently correlated with soil depth and water cover. Centimeters of soil depth and corresponding geochemical shifts consistently affected microbial community structure more than hundreds of meters of lateral distance. Methanogens with diverse metabolisms were detected across the wetland, but displayed surprising OTU-level partitioning by depth. Candidatus Methanoperedens spp. archaea thought to perform anaerobic oxidation of methane linked to iron reduction were abundant. Domain-specific sequencing also revealed unexpectedly diverse non-methane-cycling archaeal members. OTUs within the underexplored Woesearchaeota and Bathyarchaeota were prevalent across the wetland, with subgroups and individual OTUs exhibiting distinct occupancy and abundance distributions aligned with environmental gradients. This study adds to our understanding of ecological range for key archaeal taxa in a model freshwater wetland, and links these taxa and individual OTUs to hypotheses about processes governing biogeochemical cycling. This article is protected by copyright. All rights reserved.

  4. Preliminary report on the pathogenicity of Legionella pneumophila for freshwater and soil amoebae.

    PubMed Central

    Rowbotham, T J

    1980-01-01

    Legionella pneumophila, the causative organism of Legionnaires' disease, is pathogenic for free living, ubiquitous, freshwater, and soil amoebae of the genera Acanthamoeba and Naegleria. Some species support the growth of strains from serogroups 1 to 6, others only strains from certain serogroups. Initial studies with seeded material indicate that amoebal enrichment could be utilised for the isolation of legionellae from clinical specimens and natural habitats. It is suggested that a vacuole, or amoeba, full of legionellae, rather than free legionellae, could be the infective particle for man. Images Fig. 1 Fig. 2 PMID:7451664

  5. Diversity of Microbial Carbohydrate-Active enZYmes (CAZYmes) Associated with Freshwater and Soil Samples from Caatinga Biome.

    PubMed

    Andrade, Ana Camila; Fróes, Adriana; Lopes, Fabyano Álvares Cardoso; Thompson, Fabiano L; Krüger, Ricardo Henrique; Dinsdale, Elizabeth; Bruce, Thiago

    2017-01-09

    Semi-arid and arid areas occupy about 33% of terrestrial ecosystems. However, little information is available about microbial diversity in the semi-arid Caatinga, which represents a unique biome that extends to about 11% of the Brazilian territory and is home to extraordinary diversity and high endemism level of species. In this study, we characterized the diversity of microbial genes associated with biomass conversion (carbohydrate-active enzymes, or so-called CAZYmes) in soil and freshwater of the Caatinga. Our results showed distinct CAZYme profiles in the soil and freshwater samples. Glycoside hydrolases and glycosyltransferases were the most abundant CAZYme families, with glycoside hydrolases more dominant in soil (∼44%) and glycosyltransferases more abundant in freshwater (∼50%). The abundances of individual glycoside hydrolase, glycosyltransferase, and carbohydrate-binding module subfamilies varied widely between soil and water samples. A predominance of glycoside hydrolases was observed in soil, and a higher contribution of enzymes involved in carbohydrate biosynthesis was observed in freshwater. The main taxa associated with the CAZYme sequences were Planctomycetia (relative abundance in soil, 29%) and Alphaproteobacteria (relative abundance in freshwater, 27%). Approximately 5-7% of CAZYme sequences showed low similarity with sequences deposited in non-redundant databases, suggesting putative homologues. Our findings represent a first attempt to describe specific microbial CAZYme profiles for environmental samples. Characterizing these enzyme groups associated with the conversion of carbohydrates in nature will improve our understanding of the significant roles of enzymes in the carbon cycle. We identified a CAZYme signature that can be used to discriminate between soil and freshwater samples, and this signature may be related to the microbial species adapted to the habitat. The data show the potential ecological roles of the CAZYme repertoire and

  6. Substrate and/or substrate-driven changes in the abundance of methanogenic archaea cause seasonal variation of methane production potential in species-specific freshwater wetlands.

    PubMed

    Liu, Deyan; Ding, Weixin; Yuan, Junji; Xiang, Jian; Lin, Yongxin

    2014-05-01

    There are large temporal and spatial variations of methane (CH4) emissions from natural wetlands. To understand temporal changes of CH4 production potential (MPP), soil samples were collected from a permanently inundated Carex lasiocarpa marsh and a summer inundated Calamagrostis angustifolia marsh over the period from June to October of 2011. MPP, dissolved organic carbon (DOC) concentration, abundance and community structure of methanogenic archaea were assessed. In the C. lasiocarpa marsh, DOC concentration, MPP and the methanogen population showed similar seasonal variations and maximal values in September. MPP and DOC in the C. angustifolia marsh exhibited seasonal variations and values peaked during August, while the methanogen population decreased with plant growth. Methanogen abundance correlated significantly (P = 0.02) with DOC only for the C. lasiocarpa marsh. During the sampling period, the dominant methanogens were the Methanosaetaceae and Zoige cluster I (ZC-Ι) in the C. angustifolia marsh, and Methanomicrobiales and ZC-Ι in the C. lasiocarpa marsh. MPP correlated significantly (P = 0.04) with DOC and methanogen population in the C. lasiocarpa marsh but only with DOC in the C. angustifolia marsh. Addition of C. lasiocarpa litter enhanced MPP more effectively than addition of C. angustifolia litter, indicating that temporal variation of substrates is controlled by litter deposition in the C. lasiocarpa marsh while living plant matter is more important in the C. angustifolia marsh. This study indicated that there was no apparent shift in the dominant types of methanogen during the growth season in the species-specific freshwater wetlands. Temporal variation of MPP is controlled by substrates and substrate-driven changes in the abundance of methanogenic archaea in the C. lasiocarpa marsh, while MPP depends only on substrate availability derived from root exudates or soil organic matter in the C. angustifolia marsh.

  7. Avian comparisons between Kingman and Kenilworth Marshes: Final report 2001-2004

    USGS Publications Warehouse

    Paul, M.; Krafft, C.; Hammerschlag, D.

    2006-01-01

    In 2001 avi-fauna was added as a parameter to be monitored as an indicator of the status and relative success of the two reconstructed freshwater tidal wetlands residing in the Anacostia River estuary in Washington, D.C. at that time. They were Kenilworth Marsh which was reconstructed in 1993 and Kingman Marsh seven years later in 2000. Other studies were already underway looking at vegetation, seeds, soils and contaminants. Even though these new wetlands were relatively small, together about 70 acres, it was felt this might be sufficient area to sustain and attract birds to the habitat. Birds have been used elsewhere as wetland indicators and we hoped they could prove useful here especially in terms of numbers and species richness. The study was conducted for almost four years (2001-2004) and was designed to ascertain if the recently reconstructed Kingman Marsh evolved similarly with respect to the avi fauna as Kenilworth which had the seven year head start. Twelve observation points were established, six at each marsh, which were to be used weekly so as to alternate the high and low tidal regimes and the observation start times. Additional notations were recorded for species while walking between observation points. The course of the study became interrupted with the incursion of resident Canada geese particularly upon the Kingman Marsh site. Goose herbivory coupled with lowered sediment elevations reduced vegetation cover at Kingman Marsh to less than one-third its intended scope while Kenilworth was barely affected. The result was actually much less impact on the bird populations than on the vegetation. In fact the additional mudflat area at Kingman may have actually helped attract some birds. Together 177 species were identified at the marshes comprising 14 taxonomic orders and 16 families, 137 species at Kingman and 164 at Kenilworth. However, Kingman actually attracted more birds than Kenilworth, whether or not Canada Geese were included. At both wetlands

  8. Radioactive influence of some phosphogypsum piles located at the SW Spain in their surrounding soils and salt-marshes

    NASA Astrophysics Data System (ADS)

    Bolivar, J. P.; Mosqueda, F.; Vaca, F.; Garcia-Tenorio, R.; Martinez-Sanchez, M. J.; Perez-Sirvent, C.; Martinez-Lopez, S.

    2012-04-01

    In the SW of Spain, just in the confluence of the mouths of the Tinto and Odiel River and in the vicinity of Huelva town, there is a big industrial complex which includes between others an industry devoted during more than 40 years to the production of phosphoric acid, by treating sedimentary phosphate rock by the so-called "wet acid method". As a by-product of the mentioned process it have been produced historically huge amounts of a compound called phosphogypsum, which composition is mostly di-hydrate calcium sulphate containing some of the impurities of heavy metals and natural radionuclides originally present in the raw material. Due to the lack of market for this by-product, it has been mostly piled over some salt-marshes located in the vicinity of the industry, on the bank of the Tinto River. About 100 million tons of phosphogypsum have been piled in an area covering more than 1000 hectares, constituting a clear environmental and radiological anomaly in the zone. The phosphogypsum piles set do not conform obviously a close system. They are interacting with the nearby environment mostly by leaching waters releases from the waters accumulated in them either for its previous use in transporting in suspension the PG from the factory or by rainfall. These waters leaks contain in solution enhanced amounts of heavy metals and radionuclides that can provoke the chemical and radioactive contamination in surroundings soil and salt-marshes areas. In this communication the radioactive influence by the phosphogypsum piles in the surrounding terrestrial environment is evaluated. This contamination is mostly due to radionuclides belonging to the uranium series, which are present originally in the raw material treated in the industry, and afterwards in the generated phosphogypsum, in enhanced amounts in relation to typical soils. In addition, the different dynamics and behavior of different radionuclides will be discussed and analyzed. The gained information in this study

  9. Dynamics of mangrove-marsh ecotones in subtropical coastal wetlands: fire, sea-level rise, and water levels

    USGS Publications Warehouse

    Smith, Thomas J.; Foster, Ann M.; Tiling-Range, Ginger; Jones, John W.

    2013-01-01

    Ecotones are areas of sharp environmental gradients between two or more homogeneous vegetation types. They are a dynamic aspect of all landscapes and are also responsive to climate change. Shifts in the position of an ecotone across a landscape can be an indication of a changing environment. In the coastal Everglades of Florida, USA, a dominant ecotone type is that of mangrove forest and marsh. However, there is a variety of plants that can form the marsh component, including sawgrass (Cladium mariscus [L.] Pohl), needlegrass rush (Juncus roemerianus Scheele), and spikerush (Eleocharis spp.). Environmental factors including water depth, soil type, and occurrence of fires vary across these ecotones, influencing their dynamics. Altered freshwater inflows from upstream and increasing sea level over the past 100 years may have also had an impact. We analyzed a time series of historical aerial photographs for a number of sites in the coastal Everglades and measured change in position of mangrove–marsh ecotones. For three sites, detailed maps were produced and the area of marsh, mangrove, and other habitats was determined for five periods spanning the years 1928 to 2004. Contrary to our initial hypothesis on fire, we found that fire did not prevent mangrove expansion into marsh areas but may in fact assist mangroves to invade some marsh habitats, especially sawgrass. Disparate patterns in mangrove–marsh change were measured at two downstream sites, both of which had multiple fires over from 1948 to 2004. No change in mangrove or marsh area was measured at one site. Mangrove area increased and marsh area decreased at the second of these fire-impacted sites. We measured a significant increase in mangrove area and a decline in marsh area at an upstream site that had little occurrence of fire. At this site, water levels have increased significantly as sea level has risen, and this has probably been a factor in the mangrove expansion.

  10. Nutrient Cycling in Piermont Marsh

    NASA Astrophysics Data System (ADS)

    Diaz, K.; Reyes, N.; Gribbin, S.; Newton, R.; Laporte, N.; Trivino, G.; Ortega, J.; McKee, K.; Sambrotto, R.

    2011-12-01

    We investigate the cycling of nutrients through a brackish tidal wetland about 40 km north of Manhattan in the Hudson River estuary. As part of a long-term ecological study of Piermont Marsh, a NOAA reference wetland managed by the NY State DEC, we are measuring dissolved inorganic nutrients on the Marsh surface and its drainage channels. The marsh occupies 400 acres along the southwest corner of Haverstraw Bay with approximately 2 km frontage to the estuary. It is supplied with nutrient-rich water and drained primarily along several tidal creeks and the hundreds of rivulets that feed them. During most tidal cycles the silty berm bounding the marsh is not topped. Human influence in the marsh's surrounding area has had profound effects, one of the most fundamental of which has been the shift from native grass species, predominantly Spartina alterniflora, to an invasive genotype of common reed, Phragmites australis. Along with this shift there have been changes in the root bed, the effective marsh interior and berm heights, the hydroperiod and, as a result, the ability of the marsh to be utilized by various types of Hudson estuary fish. The vegetative shift is believed to be anthropogenic, but the connection is not well understood, and it is not known what role biogeochemical perturbations are playing. We present two field seasons of nitrate, phosphate and silicate measurements from Sparkill Creek, a freshwater stream draining the surrounding highlands constitutes the northern boundary, two tidally driven creeks transect the Marsh from West to East: the Crumkill and an unnamed creek we have dubbed the "Tidal", Ludlow Ditch, a no-longer-maintained drainage channel grading gently from the northern part of the marsh to the South terminates in a wide tidal outlet that is its southern boundary. Net tidal cycle fluxes and fluxes resulting from runoff events are presented. Deviations from Redfield ratios and limiting nutrients are analyzed. Piermont Marsh data is compared

  11. Salt marsh dieback in coastal Louisiana: survey of plant and soil conditions in Barataria and Terrebonne basins, June 2000-September 2001

    USGS Publications Warehouse

    McKee, Karen L.; Mendelssohn, Irving A.; Materne, Michael D.

    2006-01-01

    Sudden and extensive dieback of the perennial marsh grass, Spartina alterniflora Loisel (smooth cordgrass), which dominates regularly flooded salt marshes along the Gulf of Mexico and Atlantic coastlines, occurred in the coastal zone of Louisiana. The objectives of this study were to assess soil and plant conditions in dieback areas of the Barataria-Terrebonne estuarine system as well as vegetative recovery during and after this dieback event. Multiple dieback sites were examined along 100 km of shoreline from the Atchafalaya River to the Mississippi River during the period from June 2000 through September 2001. The species primarily affected was S. alterniflora; sympatric species such as Avicennia germinans (L.) Stearn (black mangrove) and Juncus roemerianus Scheele (needlegrass rush) showed no visible signs of stress. The pattern of marsh dieback was distinctive with greatest mortality in the marsh interior, suggesting a correlation with local patterns of soil chemistry and/or hydrology. Little or no expansion of dieback occurred subsequent to the initial event, and areas with 50 percent or less mortality in the fall of 2000 had completely recovered by April 2001. Recovery was slower in interior marshes with 90 percent or greater mortality initially. However, regenerating plants in dieback areas showing some recovery were robust, and reproductive output was high, indicating that the causative agent was no longer present and that post-dieback soil conditions were actually promoting plant growth. Stands of other species within or near some dieback sites remained largely unchanged or expanded (A. germinans) into the dead salt marsh. The cause of the dieback is currently unknown. Biotic agents and excessive soil waterlogging/high sulfide were ruled out as primary causes of this acute event, although they could have contributed to overall plant stress and/or interacted with the primary agent to cause plant mortality. Our observations over the 15 month study

  12. Priming effects and enzymatic activity in Israeli soils under treated wastewater and freshwater irrigation

    NASA Astrophysics Data System (ADS)

    Anissimova, Marina; Heinze, Stefanie; Chen, Yona; Tarchitzky, Jorge; Marschner, Bernd

    2014-05-01

    Irrigation of soils with treated wastewater (TWW) directly influences microbial processes of soil. TWW contains easily decomposable organic material, which can stimulate the activity of soil microorganisms and, as a result, lead to the excessive consumption of soil organic carbon pool. We investigated the effects of irrigation with TWW relative to those of irrigation with freshwater (FW) on the microbial parameters in soils with low (7%) and medium (13%) clay content in a lysimeter experiment. The objectives of our study were to (i) determine the impact of water quality on soil respiration and enzymatic activity influenced by clay content and depth, and (ii) work out the changes in the turnover of soil organic matter (PE, priming effects). Samples were taken from three soil depths (0-10, 10-20, and 40-60 cm). Soil respiration and PE were determined in a 21-days incubation experiment after addition of uniformly 14C-labeled fructose. Activity of 10 extracellular enzymes (EEA, from C-, N-, P-, and S-cycle), phenol oxidase and peroxidase activity (PO+PE), and dehydrogenase activity (DHA) were assayed. Microbial Community-Level Physiological Profiles (CLPP) using four substrates, and microbial biomass were determined. The results showed that the clay content acted as the main determinative factor. In the soil with low clay content the water quality had a greater impact: the highest PE (56%) was observed in the upper layer (0-10cm) under FW irrigation; EEA of C-, P-, and S-cycles was significantly higher in the upper soil layer under TWW irrigation. Microbial biomass was higher in the soil under TWW irrigation and decreased with increasing of depth (50 μg/g soil in the upper layer, 15 μg/g soil in the lowest layer). This tendency was also observed for DHA. Contrary to the low clay content, in the soil with medium clay content both irrigation types caused the highest PE in the lowest layer (65% under FW irrigation, 48% under TWW irrigation); the higher substrate

  13. Thermophilic bacteria in Moroccan hot springs, salt marshes and desert soils.

    PubMed

    Aanniz, Tarik; Ouadghiri, Mouna; Melloul, Marouane; Swings, Jean; Elfahime, Elmostafa; Ibijbijen, Jamal; Ismaili, Mohamed; Amar, Mohamed

    2015-06-01

    The diversity of thermophilic bacteria was investigated in four hot springs, three salt marshes and 12 desert sites in Morocco. Two hundred and forty (240) thermophilic bacteria were recovered, identified and characterized. All isolates were Gram positive, rod-shaped, spore forming and halotolerant. Based on BOXA1R-PCR and 16S rRNA gene sequencing, the recovered isolates were dominated by the genus Bacillus (97.5%) represented by B. licheniformis (119), B. aerius (44), B. sonorensis (33), B. subtilis (subsp. spizizenii (2) and subsp. inaquosurum (6)), B. amyloliquefaciens (subsp. amyloliquefaciens (4) and subsp. plantarum (4)), B. tequilensis (3), B. pumilus (3) and Bacillus sp. (19). Only six isolates (2.5%) belonged to the genus Aeribacillus represented by A. pallidus (4) and Aeribacillus sp. (2). In this study, B. aerius and B. tequilensis are described for the first time as thermophilic bacteria. Moreover, 71.25%, 50.41% and 5.41% of total strains exhibited high amylolytic, proteolytic or cellulolytic activity respectively.

  14. Thermophilic bacteria in Moroccan hot springs, salt marshes and desert soils

    PubMed Central

    Aanniz, Tarik; Ouadghiri, Mouna; Melloul, Marouane; Swings, Jean; Elfahime, Elmostafa; Ibijbijen, Jamal; Ismaili, Mohamed; Amar, Mohamed

    2015-01-01

    The diversity of thermophilic bacteria was investigated in four hot springs, three salt marshes and 12 desert sites in Morocco. Two hundred and forty (240) thermophilic bacteria were recovered, identified and characterized. All isolates were Gram positive, rod-shaped, spore forming and halotolerant. Based on BOXA1R-PCR and 16S rRNA gene sequencing, the recovered isolates were dominated by the genus Bacillus (97.5%) represented by B. licheniformis (119), B. aerius (44), B. sonorensis (33), B. subtilis (subsp. spizizenii (2) and subsp. inaquosurum (6)), B. amyloliquefaciens (subsp. amyloliquefaciens (4) and subsp. plantarum (4)), B. tequilensis (3), B. pumilus (3) and Bacillus sp. (19). Only six isolates (2.5%) belonged to the genus Aeribacillus represented by A. pallidus (4) and Aeribacillus sp. (2). In this study, B. aerius and B. tequilensis are described for the first time as thermophilic bacteria. Moreover, 71.25%, 50.41% and 5.41% of total strains exhibited high amylolytic, proteolytic or cellulolytic activity respectively. PMID:26273259

  15. Effect of cyclic redox oscillations on water quality in freshwater acid sulfate soil wetlands.

    PubMed

    Karimian, Niloofar; Johnston, Scott G; Burton, Edward D

    2017-03-01

    Restoration of acid sulfate soil (ASS) wetlands by freshwater re-flooding can lead to the reformation of various Fe(II) and reduced inorganic sulfur (RIS) species in surface soil layers. However, in many locations, wetland water levels undergo large seasonal fluctuations that drive extreme redox oscillations. Newly formed RIS species [e.g. greigite, mackinawite, nano-pyrite and S(0)] and Fe(II) are vulnerable to rapid oxidation during dry periods and may generate substantial acidity. Rainfall following a dry period may then mobilise acidity and metal cations in surface waters prior to eventual recovery in pH by re-establishment of reducing conditions. We explore this dry-wet transition by subjecting soil samples from two freshwater re-flooded ASS wetlands to oxidative incubation for up to 130days followed by re-flooding simulation for 84days. During very early stages of re-flooding (up to 7days) there was an initial pulse-release of acidity, and trace metals/metalloids (Al, Mn, Zn and As). This was followed by a rapid reversion to anoxia, and Fe(III) and SO4 reducing conditions which generated alkalinity, ameliorated acidity and sequestered Fe, S, Zn, Mn and As. Field-observations of surface water quality in an ASS wetland at a sub-catchment scale also confirms re-establishment of SO4 reducing conditions and recovery of pH within ~4-8weeks of re-flooding after dry periods. These observations suggest that retaining surface water in ASS wetlands for ~8weeks after a dry-wet transition will allow sufficient time for alkalinity producing reductive processes to ameliorate most surface water acidity. Although management of freshwater re-flooded ASS wetlands in a highly dynamic climate will remain challenging over the long term and the post-remediation effectiveness of the method depends on initial soil characteristics, knowledge of the timing of redox oscillations and the associated changes in water geochemistry can be helpful for mitigating the risks to downstream

  16. Sediments in marsh ponds of the Gulf Coast Chenier Plain: Effects of structural marsh management and salinity

    USGS Publications Warehouse

    Bolduc, F.; Afton, A.D.

    2005-01-01

    Physical characteristics of sediments in coastal marsh ponds (flooded zones of marsh associated with little vegetation) have important ecological consequences because they determine compositions of benthic invertebrate communities, which in turn influence compositions of waterbird communities. Sediments in marsh ponds of the Gulf Coast Chenier Plain potentially are affected by (1) structural marsh management (levees, water control structures and impoundments; SMM), and (2) variation in salinity. Based on available literature concerning effects of SMM on sediments in emergent plant zones (zones of marsh occasionally flooded and associated with dense vegetation) of coastal marshes, we predicted that SMM would increase sediment carbon content and sediment hardness, and decrease oxygen penetration (O2 depth) and the silt-clay fraction in marsh pond sediments. Assuming that freshwater marshes are more productive than are saline marshes, we also predicted that sediments of impounded freshwater marsh ponds would contain more carbon than those of impounded oligohaline and mesohaline marsh ponds, whereas C:N ratio, sediment hardness, silt-clay fraction, and O2 depth would be similar among pond types. Accordingly, we measured sediment variables within ponds of impounded and unimpounded marshes on Rockefeller State Wildlife Refuge, near Grand Chenier, Louisiana. To test the above predictions, we compared sediment variables (1) between ponds of impounded (IM) and unimpounded mesohaline marshes (UM), and (2) among ponds of impounded freshwater (IF), oligohaline (IO), and mesohaline (IM) marshes. An a priori multivariate analysis of variance (MANOVA) contrast indicated that sediments differed between IM and UM marsh ponds. As predicted, the silt-clay fraction and O2 depth were lower and carbon content, C:N ratio, and sediment hardness were higher in IM than in UM marsh ponds. An a priori MANOVA contrast also indicated that sediments differed among IF, IO, and IM marsh ponds. As

  17. Habitat management affects soil chemistry and allochthonous organic inputs mediating microbial structure and exo-enzyme activity in Wadden Sea salt-marsh soils

    NASA Astrophysics Data System (ADS)

    Mueller, Peter; Granse, Dirk; Thi Do, Hai; Weingartner, Magdalena; Nolte, Stefanie; Hoth, Stefan; Jensen, Kai

    2016-04-01

    The Wadden Sea (WS) region is Europe's largest wetland and home to approximately 20% of its salt marsh area. Mainland salt marshes of the WS are anthropogenically influenced systems and have traditionally been used for livestock grazing in wide parts. After foundation of WS National Parks in the late 1980s and early 1990s, artificial drainage has been abandoned; however, livestock grazing is still common in many areas of the National Parks and is under ongoing discussion as a habitat-management practice. While studies so far focused on effects of livestock grazing on biodiversity, little is known about how biogeochemical processes, element cycling, and particularly carbon sequestration are affected. Here, we present data from a recent field study focusing on grazing effects on soil properties, microbial exo-enzyme activity, microbial abundance and structure. Exo-enzyme activity was studied conducting digestive enzyme assays for various enzymes involved in C- and N cycling. Microbial abundance and structure was assessed measuring specific gene abundance of fungi and bacteria using quantitative PCR. Soil compaction induced by grazing led to higher bulk density and decreases in soil redox (∆ >100 mV). Soil pH was significantly lower in grazed parts. Further, the proportion of allochthonous organic matter (marine input) was significantly smaller in grazed vs. ungrazed sites, likely caused by a higher sediment trapping capacity of the taller vegetation in the ungrazed sites. Grazing induced changes in bulk density, pH and redox resulted in reduced activity of enzymes involved in microbial C acquisition; however, there was no grazing effect on enzymes involved in N acquisition. While changes in pH, bulk density or redox did not affect microbial abundance and structure, the relative amount of marine organic matter significantly reduced the relative abundance of fungi (F:B ratio). We conclude that livestock grazing directly affects microbial exo-enzyme activity, thus

  18. Salt marsh-mangrove ecotones: using structural gradients to investigate the effects of woody plant encroachment on plant-soil interactions and ecosystem carbon pools

    USGS Publications Warehouse

    Yando, Erik S.; Osland, Michael J.; Willis, Jonathan M; Day, Richard H.; Krauss, Ken W.; Hester, Mark W.

    2016-01-01

    Synthesis: Our results indicate that the ecological implications of woody plant encroachment in tidal saline wetlands are dependent upon precipitation controls of plant–soil interactions. Although the above-ground effects of mangrove expansion are consistently large, below-ground influences of mangrove expansion appear to be greatest along low-rainfall coasts where salinities are high and marshes being replaced are carbon poor and dominated by succulent plants. Collectively, these findings complement those from terrestrial ecosystems and reinforce the importance of considering rainfall and plant–soil interactions within predictions of the ecological effects of woody plant encroachment.

  19. Microbial degradation of hydrochlorofluorocarbons (CHCl2F and CHCl2CF3) in soils and sediments

    USGS Publications Warehouse

    Oremland, R.S.; Lonergan, D.J.; Culbertson, C.W.; Lovley, D.R.

    1996-01-01

    The ability of microorganisms to degrade trace levels of the hydrochlorofluorocarbons HCFC-21 and HCFC-123 was investigated. Methanotroph- linked oxidation of HCFC-21 was observed in aerobic soils, and anaerobic degradation of HCFC-21 occurred in freshwater and salt marsh sediments. Microbial degradation of HCFC-123 was observed in anoxic freshwater and salt marsh sediments, and the recovery of 1,1,1-trifluoro-2-chloroethane indicated the involvement of reductive dechlorination. No degradation of HCFC-123 was observed in aerobic soils. In same experiments, HCFCs were degraded at low (parts per billion) concentrations, raising the possibility that bacteria in nature remove HCFCs from the atmosphere.

  20. Porewater geochemistry of inland Acid sulfate soils with sulfuric horizons following postdrought reflooding with freshwater.

    PubMed

    Creeper, Nathan L; Shand, Paul; Hicks, Warren; Fitzpatrick, Rob W

    2015-05-01

    Following the break of a severe drought in the Murray-Darling Basin, rising water levels restored subaqueous conditions to dried inland acid sulfate soils with sulfuric horizons (pH <3.5). Equilibrium dialysis membrane samplers were used to investigate in situ changes to soil acidity and abundance of metals and metalloids following the first 24 mo of restored subaqueous conditions. The rewetted sulfuric horizons remained severely acidified (pH ∼4) or had retained acidity with jarosite visibly present after 5 mo of continuous subaqueous conditions. A further 19 mo of subaqueous conditions resulted in only small additional increases in pH (∼0.5-1 pH units), with the largest increases occurring within the uppermost 10 cm of the soil profile. Substantial decreases in concentrations of some metal(loid)s were observed with time most likely owing to lower solubility and sorption as a consequence of the increase in pH. In deeper parts of the profiles, porewater remained strongly buffered at low pH values (pH <4.5) and experienced little progression toward anoxic circumneutral pH conditions over the 24 mo of subaqueous conditions. It is proposed that low pH conditions inhibited the activity of SO-reducing bacteria and, in turn, the in situ generation of alkalinity through pyrite production. The limited supply of alkalinity in freshwater systems and the initial highly buffered low pH conditions were also thought to be slowing recovery. The timescales involved for a sulfuric horizon rewetted by a freshwater body to recover from acidic conditions could therefore be in the order of several years.

  1. Temporal and spatial development of surface soil conditions at two created riverine marshes.

    PubMed

    Anderson, Christopher J; Mitsch, William J; Nairn, Robert W

    2005-01-01

    The amount of time it takes for created wetlands to develop soils comparable to natural wetlands is relatively unknown. Surface soil changes over time were evaluated in two created wetlands (approximately 1 ha each) at the Olentangy River Wetland Research Park in Columbus, Ohio. The two wetlands were constructed in 1993 to be identical in size and geomorphology, and maintained to have the same hydrology. The only initial difference between the wetlands was that one was planted with native macrophytes while the other was not. In May 2004, soil samples were collected (10 yr and 2 mo after the wetlands were flooded) and compared to samples collected in 1993 (after the wetlands were excavated but before flooding) and 1995 (18 mo after the wetlands were flooded). In all three years, soils were split into surface (0-8 cm) and subsurface (8-16 cm) depths and analyzed for soil organic matter, total C, total P, available P, exchangeable cations, and pH. Soils in the two wetlands have changed substantially through sedimentation and organic accretion. Between 1993 and 1995, soils were most influenced by the deposition of senescent macroalgae, the mobilization of soluble nutrients, and the precipitation of CaCO(3). Between 1995 and 2004, soil parameters were influenced more by the deposition of organic matter from colonized macrophyte communities. Mean percent organic matter at the surface increased from 5.3 +/- 0.1% in 1993, 6.1 +/- 0.2% in 1995, to 9.5 +/- 0.2% in 2004. Mean total P increased from 493 +/- 18 microg g(-1) in 1993, 600 +/- 23 microg g(-1) in 1995, to 724 +/- 20 microg g(-1) in 2004. Spatial analyses of percent organic matter (a commonly used indicator of hydric soil condition) at both wetlands in 1993, 1995, and 2004 showed that soil conditions have become increasingly more variable. High spatial structure (autocorrelation) between data points was detected in 1993 and 2004, with data in 2004 exhibiting a much higher overall variance and narrower range of

  2. Spatial patterns in soil biogeochemical process rates along a Louisiana wetland salinity gradient in the Barataria Bay estuarine system

    NASA Astrophysics Data System (ADS)

    Roberts, B. J.; Rich, M. W.; Sullivan, H. L.; Bledsoe, R.; Dawson, M.; Donnelly, B.; Marton, J. M.

    2014-12-01

    Louisiana has the highest rates of coastal wetland loss in the United States. In addition to being lost, Louisiana wetlands experience numerous other environmental stressors including changes in salinity regime (both increases from salt water intrusion and decreases from the creation of river diversions) and climate change induced changes in vegetation (e.g. the northward expansion of Avicennia germinans (black mangrove) into salt marshes). In this study, we examined how these changes might influence biogeochemical process rates important in regulating carbon balance and the cycling, retention, and removal of nutrients in Louisiana wetlands. Specifically, we measured net soil greenhouse gas fluxes and collected cores for the determination of rates of greenhouse gas production, denitrification potential, nitrification potential, iron reduction, and phosphorus sorption from surface (0-5cm) and subsurface (10-15cm) depths for three plots in each of 4 sites along the salinity gradient: a freshwater marsh site, a brackish (7 ppt) marsh site, a salt marsh (17 ppt), and a Avicennia germinans stand (17 ppt; adjacent to salt marsh site) in the Barataria Bay estuarine system. Most biogeochemical processes displayed similar spatial patterns with salt marsh rates being lower than rates in freshwater and/or brackish marsh sites and not having significantly different rates than in Avicennia germinans stands. Rates in surface soils were generally higher than in subsurface soils. These patterns were generally consistent with spatial patterns in soil properties with soil water content, organic matter quantity and quality, and extractable nutrients generally being higher in freshwater and brackish marsh sites than salt marsh and Avicennia germinans sites, especially in surface soils. These spatial patterns suggest that the ability of coastal wetlands to retain and remove nutrients might change significantly in response to future climate changes in the region and that these

  3. Groundwater controls ecological zonation of salt marsh macrophytes.

    PubMed

    Wilson, Alicia M; Evans, Tyler; Moore, Willard; Schutte, Charles A; Joye, Samantha B; Hughes, Andrea H; Anderson, Joseph L

    2015-03-01

    below fine-grained marsh soils act as conduits for flow from uplands to tidal creeks. This hydrologic framework supports relatively good drainage near the creek, increased waterlogging in the mid-marsh, and the development of hypersalinity adjacent to the freshwater upland. These hydrologic differences in turn support distinct ecological zones.

  4. Incidence of pharmaceuticals in soils, sediments and waters of Pego-Oliva Marsh by LC-MS/MS.

    NASA Astrophysics Data System (ADS)

    Vazquez-Roig, P.; Andreu, V.; Blasco, C.; Picó, Y.

    2012-04-01

    The presence of pharmaceutical residues in the environmental compartments is a growing problem that could have unexpected consequences. In recent years, the number of pharmaceuticals detected in the environment had increased spectacularly, reaching a broad number of the most consumed drugs and including virtually all the existing therapeutic classes. These compounds come mainly from human excretions, waste effluents of manufacturing processes and animal farms. In Spain, obsolete sewage treatment plants, and even the absence of those, are the main problem to be solved. Some pharmaceuticals have shown toxicity to bacteria, algae and invertebrates. Besides that reproductive problems in fishes have been observed in "in vitro" studies. By the other hand, synergistic effects of exposure to mixtures of drugs or toxic effects due to accumulation would be expected. A method developed in our laboratory was utilized to monitor the occurrence of 16 relevant pharmaceuticals in the Pego-Oliva Marsh Natural Reserve (Valencian Community, Spain). A total 46 samples of soils (at two different depths), 15 sediments and 34 waters were collected in June 2009. Solid samples were concentrated by pressurized liquid extraction (ASE® 200) using water at 90°C as extracting solvent and three cycles of extraction of 7 minutes. The aqueous extract obtained was passed through two cartridges connected in series: to an Isolute® SAX cartridge (strong anion exchange) on the top and an Oasis® HLB cartridge below. Extraction was carried out with 6mL of methanol. Quantification was performed by a Quattro Micro LC-MS/MS with an ESI interface working in both positive and negative mode. Two transitions were utilized for each compound to obtain an unequivocal confirmation, with the exception of ibuprofen which only gave one transition with adequate sensitivity. All water samples appeared contaminated with at least with two compounds. Ibuprofen and codeine were the compounds more frequently detected in

  5. Resource effects on denitrification are mediated by community composition in tidal freshwater wetlands soils.

    PubMed

    Morrissey, Ember M; Franklin, Rima B

    2015-05-01

    Accurate prediction of denitrification rates remains difficult, potentially owing to complex uncharacterized interactions between resource conditions and denitrifier communities. To better understand how the availability of organic matter (OM) and nitrate (NO3 (-) ), two of the resources most fundamental to denitrifiers, affect these populations and their activity, we performed an in situ resource manipulation in tidal freshwater wetland soils. Soils were augmented with OM to double ambient concentrations, using either compost or plant litter, and fertilized with KNO3 at two levels (low: ∼ 5 mg l(-1)  NO3 (-) -N and high: ∼ 50 mg l(-1)  NO3 (-) -N) in a full factorial design. Community composition of nirS-denitrifers (assessed using terminal restriction fragment length polymorphism) was interactively regulated by both NO3 (-) concentration and OM type, and the associated shifts in community composition were relatively consistent across sampling dates (6, 9 and 12 months of incubation). Denitrification potential (pDNF) rates were also strongly affected by NO3 (-) fertilization and increased by ∼ 10-100-fold. Path analysis revealed that the influence of resource availability on pDNF rates was largely mediated through changes in nirS-denitrifier community composition. These results suggest that a greater understanding of denitrifier community ecology may enable more accurate prediction of denitrification rates.

  6. Dynamics and fate of SOC in tidal marshes along a salinity gradient (Scheldt estuary, Belgium)

    NASA Astrophysics Data System (ADS)

    Van de Broek, Marijn; Temmermann, Stijn; Merckx, Roel; Wang, Zhengang; Govers, Gerard

    2016-04-01

    Coastal ecosystems have been attributed the potential to store large amounts of organic carbon (OC), often referred to as blue carbon, of which a considerable amount is stored in tidal marsh soils. Large uncertainties still exist with respect to the amount and controlling factors of soil organic carbon (SOC) stored in these ecosystems. Moreover, most research has focused on SOC dynamics of saltmarshes, while brackish and freshwater marshes are often even more productive and thus receive even larger organic carbon inputs. Therefore, in this study the OC dynamics of tidal marsh soils along an estuarine gradient are studied in order to contribute to our knowledge of 1) the stocks, 2) the controlling factors and 3) the fate of SOC in tidal marshes with different environmental characteristics. This research thus contributes to a better understanding of the potential of coastal environments to store organic carbon under future climatic changes. Soil and vegetation samples are collected in tidal salt-, brackish- and freshwater marshes in the Scheldt estuary (Belgium - The Netherlands). At each tidal marsh, three replicate soil cores up to 1.5m depth in 0.03m increments are collected at locations with both a low and a high elevation. These cores are analyzed for OC, stable C and N isotopes, bulk density and texture. Incubation experiments of topsoil samples were conducted and both aboveground and belowground biomass were collected. The results show that SOC stocks (range: 13,5 - 35,4 kg OC m-2), standing biomass (range: 2000 - 7930 g DW m-2) and potential soil respiration of CO2 (range: 0,03 - 0,12 % per unit OC per day) decrease with increasing salinity. This shows that both the amount of OC from local macrophytes and the quality of the organic matter are important factors controlling the SOC stocks. In addition, based on the analysis of stable C and N isotopes, it appears that when a significant fraction of SOC is derived from local macrophytes, higher SOC stocks are

  7. Vegetation, substrate and hydrology in floating marshes in the Mississippi river delta plain wetlands, USA

    USGS Publications Warehouse

    Sasser, C.E.; Gosselink, J.G.; Swenson, E.M.; Swarzenski, C.M.; Leibowitz, N.C.

    1996-01-01

    In the 1940s extensive floating marshes (locally called 'flotant') were reported and mapped in coastal wetlands of the Mississippi River Delta Plain. These floating marshes included large areas of Panicum hemitomon-dominated freshwater marshes, and Spartina patens/Scirpus olneyi brackish marshes. Today these marshes appear to be quite different in extent and type. We describe five floating habitats and one non-floating, quaking habitat based on differences in buoyancy dynamics (timing and degree of floating), substrate characteristics, and dominant vegetation. All floating marshes have low bulk density, organic substrates. Nearly all are fresh marshes. Panicum hemitomon floating marshes presently occur within the general regions that were reported in the 1940's by O'Neil, but are reduced in extent. Some of the former Panicum hemitomon marshes have been replaced by seasonally or variably floating marshes dominated, or co-dominated by Sagittaria lancifolia or Eleocharis baldwinii. ?? 1996 Kluwer Academic Publishers.

  8. Soil Respiration and Belowground Carbon Stores Among Salt Marshes Subjected to Increasing Watershed Nitrogen Loadings in Southern New England

    EPA Science Inventory

    Coastal salt marshes are ecosystems located between the uplands and sea, and because of their location are subject to increasing watershed nutrient loadings and rising sea levels. Residential development along the coast is intense, and there is a significant relationship between...

  9. Examination of Below-Ground Structure and Soil Respiration Rates of Stable and Deteriorating Salt Marshes in Jamaica Bay (NY)

    EPA Science Inventory

    CAT scan imaging is currently being used to examine below-ground peat and root structure in cores collected from salt marshes of Jamaica Bay, part of the Gateway National Recreation Area (NY). CAT scans or Computer-Aided Tomography scans use X-ray equipment to produce multiple i...

  10. [Porewater Dissolved Methane in Cyperus malaccensis Marshes Along Salinity Gradient in the Minjiang River Estuary].

    PubMed

    Yang, Ping; Zhang, Zi-chuan; Du, Wei-ning; Huang, Jia-fang; Tong, Chuan

    2015-10-01

    Physicochemical properties of soil and dissolved methane concentrations of porewater in the sediments of the Cyperus malaccensis marshes along a salinity gradient in the Minjiang River estuary were evaluated, and the spatial-temporal characteristics and main impact factors were discussed. The average concentrations of dissolved methane in porewater were 331.18, 299.94 and 638.58 μmol x L(-1), respectively in the Shanyutan, Bianfuzhou and Xiayangzhou wetlands in summer. In the winter, they were 9.04, 266.67 and 322.68 μmol x L(-1), respectively. The dissolved methane concentration in porewater was higher in summer than those in winter (P < 0.05). Overall, the concentrations of dissolved methane in porewatdr showed an increasing trend from brackish to freshwater marshes. Multivariate statistics analysis showed that the concentrations of dissolved methane in porewater was positively correlated with soils temperature and DOC (P < 0.05), but negatively correlated with soils pH, salinity, and the concentrations of porewater SO4(2-) and Cl-. Spatial-temporal distribution of porewater dissolved methane in estuarine marshes represents a final result of multiple factors, including soil physicochemical properties and hydrodynamic condition.

  11. Genetic Linkage of Soil Carbon Pools and Microbial Functions in Subtropical Freshwater Wetlands in Response to Experimental Warming

    PubMed Central

    Wang, Hang; He, Zhili; Lu, Zhenmei; Zhou, Jizhong; Van Nostrand, Joy D.; Xu, Xinhua

    2012-01-01

    Rising climate temperatures in the future are predicted to accelerate the microbial decomposition of soil organic matter. A field microcosm experiment was carried out to examine the impact of soil warming in freshwater wetlands on different organic carbon (C) pools and associated microbial functional responses. GeoChip 4.0, a functional gene microarray, was used to determine microbial gene diversity and functional potential for C degradation. Experimental warming significantly increased soil pore water dissolved organic C and phosphorus (P) concentrations, leading to a higher potential for C emission and P export. Such losses of total organic C stored in soil could be traced back to the decomposition of recalcitrant organic C. Warming preferentially stimulated genes for degrading recalcitrant C over labile C. This was especially true for genes encoding cellobiase and mnp for cellulose and lignin degradation, respectively. We confirmed this with warming-enhanced polyphenol oxidase and peroxidase activities for recalcitrant C acquisition and greater increases in recalcitrant C use efficiency than in labile C use efficiency (average percentage increases of 48% versus 28%, respectively). The relative abundance of lignin-degrading genes increased by 15% under warming; meanwhile, soil fungi, as the primary decomposers of lignin, were greater in abundance by 27%. This work suggests that future warming may enhance the potential for accelerated fungal decomposition of lignin-like compounds, leading to greater microbially mediated C losses than previously estimated in freshwater wetlands. PMID:22923398

  12. Genetic linkage of soil carbon pools and microbial functions in subtropical freshwater wetlands in response to experimental warming.

    PubMed

    Wang, Hang; He, Zhili; Lu, Zhenmei; Zhou, Jizhong; Van Nostrand, Joy D; Xu, Xinhua; Zhang, Zhijian

    2012-11-01

    Rising climate temperatures in the future are predicted to accelerate the microbial decomposition of soil organic matter. A field microcosm experiment was carried out to examine the impact of soil warming in freshwater wetlands on different organic carbon (C) pools and associated microbial functional responses. GeoChip 4.0, a functional gene microarray, was used to determine microbial gene diversity and functional potential for C degradation. Experimental warming significantly increased soil pore water dissolved organic C and phosphorus (P) concentrations, leading to a higher potential for C emission and P export. Such losses of total organic C stored in soil could be traced back to the decomposition of recalcitrant organic C. Warming preferentially stimulated genes for degrading recalcitrant C over labile C. This was especially true for genes encoding cellobiase and mnp for cellulose and lignin degradation, respectively. We confirmed this with warming-enhanced polyphenol oxidase and peroxidase activities for recalcitrant C acquisition and greater increases in recalcitrant C use efficiency than in labile C use efficiency (average percentage increases of 48% versus 28%, respectively). The relative abundance of lignin-degrading genes increased by 15% under warming; meanwhile, soil fungi, as the primary decomposers of lignin, were greater in abundance by 27%. This work suggests that future warming may enhance the potential for accelerated fungal decomposition of lignin-like compounds, leading to greater microbially mediated C losses than previously estimated in freshwater wetlands.

  13. Geomorphic and ecological effects of Hurricanes Katrina and Rita on coastal Louisiana marsh communities

    USGS Publications Warehouse

    Piazza, Sarai C.; Steyer, Gregory D.; Cretini, Kari F.; Sasser, Charles E.; Visser, Jenneke M.; Holm, Guerry O.; Sharp, Leigh A.; Evers, D. Elaine; Meriwether, John R.

    2011-01-01

    fresh, brackish/ intermediate, and saline marshes. In fresh marshes, the mechanism of hurricane influence varied across the landscape. In the western region, saltwater storm surge inundated freshwater marshes and remained for weeks, effectively causing damage that reset the vegetation community. This is in contrast to the direct physical disturbance of the storm surge in the eastern region, which flipped and relocated marsh mats, thereby stressing the vegetation communities and providing an opportunity for disturbance species to colonize. In the brackish/intermediate marsh, disturbance species took advantage of the opportunity provided by shifting species composition caused by physical and saltwater-induced perturbations, although this shift is likely to be short lived. Saline marsh sites were not negatively impacted to a severe degree by the hurricanes. Species composition of vegetation in saline marshes was not affected, and sediment deposition appeared to increase vegetative productivity. The coastal landscape of Louisiana is experiencing high rates of land loss resulting from natural and anthropogenic causes and is experiencing subsidence rates greater than 10.0 millimeters per year (mm yr-1); therefore, it is important to understand how hurricanes influence sedimentation and soil properties. We document long-term vertical accretion rates and accumulation rates of organic matter, bulk density, carbon and nitrogen. Analyses using caesium-137 to calculate long-term vertical accretion rates suggest that accretion under impounded conditions is less than in nonimpounded conditions in the brackish marsh of the chenier plain. Our data also support previous studies indicating that accumulation rates of organic matter explain much of the variability associated with vertical accretion in brackish/intermediate and saline marshes. In fresh marshes, more of the variability associated with vertical accretion was explained by mineral accumulation than in the other mars

  14. Application of disturbance theory to assess impacts associated with a three-dimensional seismic survey in a freshwater marsh in southwest Louisiana

    NASA Astrophysics Data System (ADS)

    Bass, Aaron Stuard

    This study examined various practical and theoretical aspects of disturbance in a coastal wetland marsh in southern Louisiana. A literature review approached disturbance ecology from both practical and theoretical perspectives and assessed its applicability to developing broad predictive models. However, specific knowledge of environmental variables, competitive relationships, and the interactive effects of multiple disturbances are required for meaningful usage of these models. The Lacassine National Wildlife Refuge (LNWR) proved to be an ideal laboratory to test various aspects of ecological disturbance theory. I found that the primary disturbances affecting the LNWR have been hurricanes, droughts, water-level manipulations, prescribed burning, oil and gas recovery activities, grazing by Myocastor coypus (nutria), and managed cattle grazing. The 1990's application of three-dimensional (3-D) seismic technology used in the oil and gas recovery business challenged landowners, government regulators, and industry to develop ways to recover these resources without damaging surface features. I developed a conservative estimate that an area exceeding 2.5 times the area of Louisiana's coastal wetlands was covered by overlapping seismic surveys in southern Louisiana from 1997 through 2002, equal to 22.5 km2/year. I provided a general overview of 3-D seismic survey programs, potential adverse impacts, and management and restoration strategies. I also conducted a field study at the LNWR on vegetation in control and treatment transects before, and for two years after, a 3-D survey. I found vegetative cover and the amount of dead plant biomass were significantly lower in treatment plots, but live biomass was not different in treatment and control plots. Species richness was higher in treatment plots compared to control plots, but the live biomass and cover of the dominant species ( Panicum hemitomon) was lower. The live biomass and cover of Eleocharis spp., a colonizing

  15. Influences of Salinity Variations on Pore-water Flow in Salt Marshes

    NASA Astrophysics Data System (ADS)

    Shen, C.; Jin, G.; Xin, P.; Li, L.

    2013-12-01

    Salt marshes are important wetlands at the ocean-land interface with various ecological functions, serving as essential habitats for intertidal fauna, affecting the productivity of coastal waters through nutrient exchange, moderating the greenhouse gas emission and global warming. They are influenced by various physical and biogeochemical processes, among which the pore-water flow and associated solute transport processes play an important role in determining the material exchange between marsh soils and coastal water. Previous studies have examined such processes under the solo or combined effects of tidal fluctuation, evapotranspiration, stratigraphy, inland freshwater input, and topography. However, these investigations have neglected the spatial and temporal salinity variations in surface water and pore-water, which commonly exist in salt marshes due to the impacts of tidal inundation, precipitation and evapotranspiration. The density contrast between the surface water and pore-water may lead to significant modifications of the pore-water flow. Based on results from laboratory experiments and numerical simulations, we will demonstrate that: (1) under upward salinity gradients, flow instabilities in the form of fingers occur once the salinity contrast reaches a certain level, whereas under downward salinity gradients the system is stable; (2) because of the strong tidally-induced advective process occurring near the creek, both the number and size of fingers change gradually from the near-creek zone to the marsh interior; and (3) both upward and downward salinity gradients enhance the exchange between the surface water and pore-water in the marsh sediments. Keywords: Salt marshes; density effect; salinity gradient; pore-water flow; fingers. Instabilities under upward salinity gradient Stable system under downward salinity gradient

  16. Recent accretion in two managed marsh impoundments in coastal Louisiana

    USGS Publications Warehouse

    Cahoon, D.R.

    1994-01-01

    Recent accretion was measured by the feldspar marker horizon method in two gravity-drained, managed, marsh impoundments and unmanaged reference marshes located on the rapidly subsiding coast of Louisiana. Water level management was designed to limit hydrologic exchange to the managed marsh by regulating the direction and rate of water flows. During a drawdown-flooding water management cycle, the unmanaged reference marshes had significantly higher vertical accretion rates, higher soil bulk density and soil mineral matter content, lower soil organic matter content, and higher rates of organic matter accumulation than the managed marsh. The rate of mineral matter accumulation was higher in both reference marshes, but was significantly higher in only one. Spatial variability in accumulation rates was low when analyzed in one managed marsh site, suggesting a primarily autochthonous source of matter. In contrast, the associated reference marsh apparently received allochthonous material that settled out in a distinct spatial pattern as water velocity decreased. The impoundment marshes experienced an accretion deficit of one full order of magnitude (0.1 vs. 1.0 m/yr) based on comparison of accretion and sea level rise data, while the unmanaged reference marshes experienced a five-fold smaller deficit or no deficit. These data suggest that the gravity-drained impoundments likely have a shorter life expectancy than the reference marshes in the rapidly subsiding Louisiana coast.

  17. Nutrient-enhanced decomposition of plant biomass in a freshwater wetland

    USGS Publications Warehouse

    Bodker, James E.; Turner, Robert Eugene; Tweel, Andrew; Schulz, Christopher; Swarzenski, Christopher M.

    2015-01-01

    We studied soil decomposition in a Panicum hemitomon (Schultes)-dominated freshwater marsh located in southeastern Louisiana that was unambiguously changed by secondarily-treated municipal wastewater effluent. We used four approaches to evaluate how belowground biomass decomposition rates vary under different nutrient regimes in this marsh. The results of laboratory experiments demonstrated how nutrient enrichment enhanced the loss of soil or plant organic matter by 50%, and increased gas production. An experiment demonstrated that nitrogen, not phosphorus, limited decomposition. Cellulose decomposition at the field site was higher in the flowfield of the introduced secondarily treated sewage water, and the quality of the substrate (% N or % P) was directly related to the decomposition rates. We therefore rejected the null hypothesis that nutrient enrichment had no effect on the decomposition rates of these organic soils. In response to nutrient enrichment, plants respond through biomechanical or structural adaptations that alter the labile characteristics of plant tissue. These adaptations eventually change litter type and quality (where the marsh survives) as the % N content of plant tissue rises and is followed by even higher decomposition rates of the litter produced, creating a positive feedback loop. Marsh fragmentation will increase as a result. The assumptions and conditions underlying the use of unconstrained wastewater flow within natural wetlands, rather than controlled treatment within the confines of constructed wetlands, are revealed in the loss of previously sequestered carbon, habitat, public use, and other societal benefits.

  18. Final Report: Five years of monitoring reconstructed freshwater tidal wetlands in the urban Anacostia River (2000-2004)

    USGS Publications Warehouse

    Hammerschlag, R.S.; Baldwin, A.H.; Krafft, C.C.; Neff, K.P.; Paul, M.M.; Brittingham, K.D.; Rusello, K.; Hatfield, J.S.

    2006-01-01

    The Anacostia River in Washington, D.C. USA consisted of over 809 hectares (2000 acres) of freshwater tidal wetlands before mandatory dredging removed most of them in the first half of the 20th century. Much of this13 kilometer (8 mile) reach was transferred to the National Park Service (NPS). Planning processes in the 1980?s envisioned a restoration (rejuvenation) of some wetlands for habitat, aesthetics, water quality and interpretative purposes. Subsequently, the U.S. Army Corps of Engineers in a cost share agreement with the District of Columbia reconstructed wetlands on NPS lands at Kenilworth - 12.5 hectares (1993), Kingman - 27 hectares (2000), a Fringe Marsh - 6.5 hectares (2003) and is currently constructing Heritage Marsh - 2.5 hectares (2005/2006). The USGS Patuxent Wildlife Research Center in conjunction with the University of Maryland Biological Engineering Department was contracted to conduct post-reconstruction monitoring (2000-2004) to document the relative success and progress of the Kingman Marsh reconstruction primarily based on vegetative response but also in conjunction with seed bank and soil characteristics. Results from Kingman were compared to Kenilworth Marsh (reconstructed 7 years prior), Dueling Creek Marsh (last best remaining freshwater tidal wetland bench in the urbanized Anacostia watershed) and Patuxent River Marsh (in a more natural adjacent watershed). Vegetation establishment was initially strong at Kingman, but declined rapidly as measured by cover, richness, diversity , etc. under grazing pressure from resident Canada geese and associated reduction in sediment levels. This decline did not occur at the other wetlands. The decline occurred despite a substantial seed bank that was sustained primarily be water born propagules. Soil development, as true for most juvenile wetlands, was slow with almost no organic matter accumulation. By 2004 only two of 7 planted species remained (mostly Peltandra virginica) at Kingman which did

  19. Uncertainty In Greenhouse Gas Emissions On Carbon Sequestration In Coastal and Freshwater Wetlands of the Mississippi River Delta: A Subsiding Coastline as a Proxy for Future Global Sea Level

    NASA Astrophysics Data System (ADS)

    White, J. R.; DeLaune, R. D.; Roy, E. D.; Corstanje, R.

    2014-12-01

    The highly visible phenomenon of wetland loss in coastal Louisiana (LA) is examined through the prism of carbon accumulation, wetland loss and greenhouse gas (GHG) emissions. The Mississippi River Deltaic region experiences higher relative sea level rise due to coupled subsidence and eustatic sea level rise allowing this region to serve as a proxy for future projected golbal sea level rise. Carbon storage or sequestration in rapidly subsiding LA coastal marsh soils is based on vertical marsh accretion and areal change data. While coastal marshes sequester significant amount of carbon through vertical accretion, large amounts of carbon, previously sequested in the soil profile is lost through annual deterioration of these coastal marshes as well as through GHG emissions. Efforts are underway in Louisiana to access the carbon credit market in order to provide significant funding for coastal restoration projects. However, there is very large uncertainty on GHG emission rates related to both marsh type and temporal (daily and seasonal) effects. Very little data currently exists which addresses this uncertainty which can significantly affect the carbon credit value of a particular wetland system. We provide an analysis of GHG emission rates for coastal freshwater, brackish and and salt marshes compared to the net soil carbon sequestration rate. Results demonstrate that there is very high uncertainty on GHG emissions which can substantially alter the carbon credit value of a particular wetland system.

  20. Distribution of the fiddler crab (Uca minax) in relation to marsh plants within a Virginia estuary

    USGS Publications Warehouse

    Kerwin, J.A.

    1971-01-01

    The distribution and abundance of the red-jointed fiddler crab, Uca minax, was related to the distribution of marsh plants within a Virginia estuary. The crab was found in association with 15 species of marsh phanerogams, occurring with five plant species more than 20 percent of the time. These plants were Spartina alterniflora, Scirpus robustus, Distichlis spicata, Spartina patens, and Spartina cynosuroides. Densities ranged from 0-76 burrows per square meter, mean densities being 7.88 within the brackish-water marsh and 14.35 within the salt-water marsh. The crab was not obtained by sampling the freshwater marsh.

  1. Effect of the Prestige oil spill on salt marsh soils on the coast of Galicia (northwestern Spain).

    PubMed

    Andrade, M L; Covelo, E F; Vega, F A; Marcet, P

    2004-01-01

    At four estuarine sites on the coast of Galicia (northwestern Spain), all of which were affected by the Prestige oil spill, soil samples were taken from polluted and unpolluted areas and their petroleum hydrocarbon contents, heavy metal contents, and other chemical and physical characteristics were measured. Oil pollution altered both chemical and physical soil properties, aggregating soil particles in plaques, lowering porosity, and increasing resistance to penetration and hydrophobicity. The chromium, nickel, copper, iron, lead, and vanadium contents of polluted soils were between 2 and 2500 times higher than those of their unpolluted counterparts and the background concentrations in Galician coastal sediments. In the cases of Cr, Cu, Ni, Pb, and V, their origin in the polluting oil was corroborated by the high correlation (r >/= 0.74) between the concentrations of these metals and the total petroleum hydrocarbon (TPH) content of the polluted soils. Soil redox potentials ranged from -19 to -114 mV in polluted soils and 112 to 164 mV in unpolluted soils, and were negatively correlated with TPH content (p < 0.01). The low values in the polluted soils explain why the soluble fractions of their total heavy metal contents were very small (generally less than 3%, and in many cases undetectable).

  2. Birds of Swale Marshes on John F. Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Breininger, David R.

    1992-01-01

    Birds were surveyed in several isolated freshwater wetlands on John F. Kennedy Space Center to determine species composition and the importance of these wet- lands to birds. The Red-winged Blackbird and Green-backed Heron were the two most abundant breeders in the swale marshes. The Common Yellowthroat was the most common winter resident but was rare in summer. These marshes are important features within landscapes dominated by uplands particularly because of their significance to amphibians and reptiles.

  3. Long-term effect of agricultural reclamation on soil chemical properties of a coastal saline marsh in Bohai Rim, northern China.

    PubMed

    Wang, Yidong; Wang, Zhong-Liang; Feng, Xiaoping; Guo, Changcheng; Chen, Qing

    2014-01-01

    Over the past six decades, coastal wetlands in China have experienced rapid and extensive agricultural reclamation. In the context of saline conditions, long-term effect of cultivation after reclamation on soil chemical properties has not been well understood. We studied this issue using a case of approximately 60-years cultivation of a coastal saline marsh in Bohai Rim, northern China. The results showed that long-term reclamation significantly decreased soil organic carbon (SOC) (-42.2%) and total nitrogen (TN) (-25.8%) at surface layer (0-30 cm) as well as their stratification ratios (SRs) (0-5 cm:50-70 cm and 5-10 cm:50-70 cm). However, there was no significant change in total phosphorus (TP) as well as its SRs under cultivation. Cultivation markedly reduced ratios of SOC to TN, SOC to TP and TN to TP at surface layer (0-30 cm) and their SRs (0-5 cm:50-70 cm). After cultivation, electrical conductivity and salinity significantly decreased by 60.1% and 55.3% at 0-100 cm layer, respectively, suggesting a great desalinization. In contrast, soil pH at 20-70 cm horizons notably increased as an effect of reclamation. Cultivation also changed compositions of cations at 0-10 cm layer and anions at 5-100 cm layer, mainly decreasing the proportion of Na+, Cl- and SO4(2-). Furthermore, cultivation significantly reduced the sodium adsorption ratio and exchangeable sodium percentage in plow-layer (0-20 cm) but not residual sodium carbonate, suggesting a reduction in sodium harm.

  4. Long-Term Effect of Agricultural Reclamation on Soil Chemical Properties of a Coastal Saline Marsh in Bohai Rim, Northern China

    PubMed Central

    Wang, Yidong; Wang, Zhong-Liang; Feng, Xiaoping; Guo, Changcheng; Chen, Qing

    2014-01-01

    Over the past six decades, coastal wetlands in China have experienced rapid and extensive agricultural reclamation. In the context of saline conditions, long-term effect of cultivation after reclamation on soil chemical properties has not been well understood. We studied this issue using a case of approximately 60-years cultivation of a coastal saline marsh in Bohai Rim, northern China. The results showed that long-term reclamation significantly decreased soil organic carbon (SOC) (−42.2%) and total nitrogen (TN) (−25.8%) at surface layer (0–30 cm) as well as their stratification ratios (SRs) (0–5 cm:50–70 cm and 5–10 cm:50–70 cm). However, there was no significant change in total phosphorus (TP) as well as its SRs under cultivation. Cultivation markedly reduced ratios of SOC to TN, SOC to TP and TN to TP at surface layer (0–30 cm) and their SRs (0–5 cm:50–70 cm). After cultivation, electrical conductivity and salinity significantly decreased by 60.1% and 55.3% at 0–100 cm layer, respectively, suggesting a great desalinization. In contrast, soil pH at 20–70 cm horizons notably increased as an effect of reclamation. Cultivation also changed compositions of cations at 0–10 cm layer and anions at 5–100 cm layer, mainly decreasing the proportion of Na+, Cl− and SO42−. Furthermore, cultivation significantly reduced the sodium adsorption ratio and exchangeable sodium percentage in plow-layer (0–20 cm) but not residual sodium carbonate, suggesting a reduction in sodium harm. PMID:24695526

  5. Fasciolosis in cattle in Louisiana. II. Development of a system to use soil maps in a geographic information system to estimate disease risk on Louisiana coastal marsh rangeland.

    PubMed

    Zukowski, S H; Wilkerson, G W; Malone, J B

    1993-03-01

    A geographic information system (GIS) model of habitat for Lymnaea bulimoides, the snail intermediate host of Fasciola hepatica and the rumen fluke, Calicophoron microbothrioides, on the Chenier Plain of southwest Louisiana was revised to incorporate broad (greater than 100 m) chenier (relict beaches) along with adjacent marsh and transitional soils associated with spatial distribution of L. bulimoides habitat. The proportion of farmland comprised of soils of the GIS model coincided with actual habitat from a previous survey with a sensitivity of 91.3% and a specificity of 80.1%, and regressed significantly against the proportion of farmland comprised of L. bulimoides habitat (n = 12, P = 0.01, r2 = 0.50, slope = 0.015). A soil model index was calculated to incorporate (1) the proportion of farmland comprised of soils of the GIS model and (2) stocking rate. Fluke egg shedding indices (mean egg count multiplied by prevalence) were calculated for each fluke species on nine farms at four sampling times over a 2-year period. The maximum egg shedding indices for each farm, taken to indicate potential fluke transmission intensity, were correlated for the two fluke species on herds not recently treated for fasciolosis (n = 9, P = 0.004, r2 = 0.72, slope = 0.2), although at no one sampling period were shedding indices of the two fluke species significantly correlated. Egg shedding of C. microbothrioides by cattle correlated with the proportion of farmland comprised of soils included in the GIS model (n = 9, Spearman's rank coefficient was 0.7, P = 0.05). We conclude that (1) the maximum of several observations of the C. microbothrioides egg shedding index may be useful as a surrogate for F. hepatica in estimating risk from snail habitat on a farm when regular flukicide treatment interferes with F. hepatica egg shedding, and (2) the GIS model may estimate site-specific differences in fasciolosis risk to cattle operations in the Chenier Plain based on the association of

  6. Responses of soil nitrogen fixation to Spartina alterniflora invasion and nitrogen addition in a Chinese salt marsh.

    PubMed

    Huang, Jingxin; Xu, Xiao; Wang, Min; Nie, Ming; Qiu, Shiyun; Wang, Qing; Quan, Zhexue; Xiao, Ming; Li, Bo

    2016-02-12

    Biological nitrogen fixation (BNF) is the major natural process of nitrogen (N) input to ecosystems. To understand how plant invasion and N enrichment affect BNF, we compared soil N-fixation rates and N-fixing microbes (NFM) of an invasive Spartina alterniflora community and a native Phragmites australis community in the Yangtze River estuary, with and without N addition. Our results indicated that plant invasion relative to N enrichment had a greater influence on BNF. At each N level, the S. alterniflora community had a higher soil N-fixation rate but a lower diversity of the nifH gene in comparison with the native community. The S. alterniflora community with N addition had the highest soil N-fixation rate and the nifH gene abundance across all treatments. Our results suggest that S. alterniflora invasion can increase soil N fixation in the high N-loading estuarine ecosystem, and thus may further mediate soil N availability.

  7. Responses of soil nitrogen fixation to Spartina alterniflora invasion and nitrogen addition in a Chinese salt marsh

    PubMed Central

    Huang, Jingxin; Xu, Xiao; Wang, Min; Nie, Ming; Qiu, Shiyun; Wang, Qing; Quan, Zhexue; Xiao, Ming; Li, Bo

    2016-01-01

    Biological nitrogen fixation (BNF) is the major natural process of nitrogen (N) input to ecosystems. To understand how plant invasion and N enrichment affect BNF, we compared soil N-fixation rates and N-fixing microbes (NFM) of an invasive Spartina alterniflora community and a native Phragmites australis community in the Yangtze River estuary, with and without N addition. Our results indicated that plant invasion relative to N enrichment had a greater influence on BNF. At each N level, the S. alterniflora community had a higher soil N-fixation rate but a lower diversity of the nifH gene in comparison with the native community. The S. alterniflora community with N addition had the highest soil N-fixation rate and the nifH gene abundance across all treatments. Our results suggest that S. alterniflora invasion can increase soil N fixation in the high N-loading estuarine ecosystem, and thus may further mediate soil N availability. PMID:26869197

  8. Sea level driven marsh expansion in a coupled model of marsh erosion and migration

    USGS Publications Warehouse

    Kirwan, Matthew L.; Walters, David C.; Reay, William G.; Carr, Joel

    2016-01-01

    Coastal wetlands are among the most valuable ecosystems on Earth, where ecosystem services such as flood protection depend nonlinearly on wetland size and are threatened by sea level rise and coastal development. Here we propose a simple model of marsh migration into adjacent uplands and couple it with existing models of seaward edge erosion and vertical soil accretion to explore how ecosystem connectivity influences marsh size and response to sea level rise. We find that marsh loss is nearly inevitable where topographic and anthropogenic barriers limit migration. Where unconstrained by barriers, however, rates of marsh migration are much more sensitive to accelerated sea level rise than rates of edge erosion. This behavior suggests a counterintuitive, natural tendency for marsh expansion with sea level rise and emphasizes the disparity between coastal response to climate change with and without human intervention.

  9. Sea level driven marsh expansion in a coupled model of marsh erosion and migration

    NASA Astrophysics Data System (ADS)

    Kirwan, Matthew L.; Walters, David C.; Reay, William G.; Carr, Joel A.

    2016-05-01

    Coastal wetlands are among the most valuable ecosystems on Earth, where ecosystem services such as flood protection depend nonlinearly on wetland size and are threatened by sea level rise and coastal development. Here we propose a simple model of marsh migration into adjacent uplands and couple it with existing models of seaward edge erosion and vertical soil accretion to explore how ecosystem connectivity influences marsh size and response to sea level rise. We find that marsh loss is nearly inevitable where topographic and anthropogenic barriers limit migration. Where unconstrained by barriers, however, rates of marsh migration are much more sensitive to accelerated sea level rise than rates of edge erosion. This behavior suggests a counterintuitive, natural tendency for marsh expansion with sea level rise and emphasizes the disparity between coastal response to climate change with and without human intervention.

  10. A combined field and modeling study of groundwater flow in a tidal marsh

    NASA Astrophysics Data System (ADS)

    Xia, Y. Q.; Li, H. L.

    2012-03-01

    Bald mud beaches were found among the mangrove marshes in Dongzhaigang National Nature Reserve, Hainan, China. To investigate the possible reasons for this phenomenon, the intertidal zones of a mangrove transect and a bald beach transect with similar topography and tidal actions were selected for comparison study. Along both transects, observed water table variations were significant in the high and low intertidal zones and negligible in the middle intertidal zones. Despite the same tidal actions and above-mentioned similarities, observed groundwater salinity was significantly smaller along the mangrove transect (average 23.0 ppt) than along the bald beach transect (average 28.5 ppt). These observations invite one hypothesis: the hydraulic structure of tidal marsh and freshwater availability may be the main hydrogeological factors critical to mangrove development. Two-dimensional numerical simulations corroborated the speculation and gave results in line with the observed water table. The two transects investigated were found to have a mud-sand two-layered structure: a surface zone of low-permeability mud and an underlying high-permeability zone that outcrops at the high and low tide lines. The freshwater recharge from inland is considerable along the mangrove transect but negligible along the bald beach transect. The high-permeability zone may provide opportunity for the plants in the mangrove marsh to uptake freshwater and oxygen through their roots extending downward into the high-permeability zone, which may help limit the buildup of salt in the root zone caused by evapotranspiration and enhance salt removal, which may further increase the production of marsh grasses and influence their spatial distribution. The bald beach is most probably due to the lack of enough freshwater for generating a brackish beach soil condition essential to mangrove growth. It is also indicated that seawater infiltrated the high-permeability zone through its outcrop near the high

  11. Applicability of diffusive gradients in thin films for measuring Mn in soils and freshwater sediments.

    PubMed

    Mundus, Simon; Tandy, Susan; Cheng, Hao; Lombi, Enzo; Husted, Søren; Holm, Peter E; Zhang, Hao

    2011-12-01

    Manganese (Mn) is an essential plant nutrient, receiving increased attention due to significant deficiency problems in modern crop production. In aquatic sediments, Mn plays an important role in controlling the mobility of other elements due to its high redox sensitivity. Diffusive gradients in thin films (DGT) is recognized as one of the most promising techniques to assess plant availability of nutrients in soils and mobility in sediments. However, the appropriate conditions where DGT can be used to measure Mn in soils and sediments have not been thoroughly investigated. We deployed DGTs in soil, sediment, and solution to investigate the effect of pH and competition from Ca and Fe ions. We found that by using DGT it is possible to accurately measure Mn in soils at pH levels and Ca and Fe concentrations resembling those of normal and fertile agricultural soils. However, in acid soils at pH below 5.5, Mn measurements might be biased due to potential competition effects caused by Ca. Soil deployments showed that changes in soil redox conditions were closely reflected by the DGT based Mn measurements. This might enable a novel approach of using DGT to predict Mn mobility and plant availability in soils. In reducing aquatic sediments, high concentrations of ferrous ions can displace Mn from the resin-gel of the DGT device. We found this to be a significant problem with longer deployment times.

  12. Phenological Impacts of Hurricane Katrina (2005) and Gustav (2008) on Louisiana Coastal Marshes

    NASA Astrophysics Data System (ADS)

    Mo, Y.; Kearney, M.; Riter, A.

    2015-12-01

    Coastal marshes provide indispensable ecological functions, such as offering habitat for economic fish and wildlife, improving water quality, protecting inland areas from floods, and stabilizing the shoreline. Hurricanes—though helping to maintain the elevation of coastal wetlands by depositing large amounts of sediments—pose one of the largest threats for coastal marshes in terms of eroding shorelines, scouring marsh surfaces, and resuspending sediments. Coastal marshes phenologies can be important for understanding broad response of marshes to stressors, like hurricanes. We investigated the phenological impacts of Katrina and Gustav (Category 3 and 2 hurricanes at landfall in southeast Louisiana on 29 August, 2005, and 1 September, 2008, respectively) on freshwater, intermediate, brackish, and saline marshes in southeastern Louisiana. Landsat-derived Normalized Difference Vegetation Index data were processed using ENVI 4.8. Phenological patterns of the marshes were modeled using a nonlinear mixed model using SAS 9.4. We created and compared marsh phenologies of 1994 and 2014, the reference years, to those of 2005 and 2008, the hurricane years. Preliminary results show that in normal years: (1) the NDVI of four marsh types peaked in July; (2) freshwater marshes had the highest peak NDVI, followed by intermediate, brackish, and saline marshes; and (3) the growth durations of the marshes are around three to six months. In 2005, the major phenological change was shortening of growth duration, which was most obvious for intermediate and brackish marshes. The peak NDVI values of the four marsh types were not affected because the hurricane occurred at the end of August, one month after the peak NDVI time. By comparison, there was no obvious phenological impact on the marshes by Gustav (2008) with respect to peak NDVI, peak NDVI day, and growth duration.

  13. Hydrologic aspects of marsh ponds during winter on the Gulf Coast Chenier Plain, USA: Effects of structural marsh management

    USGS Publications Warehouse

    Bolduc, F.; Afton, A.D.

    2004-01-01

    The hydrology of marsh ponds influences aquatic invertebrate and waterbird communities. Hydrologic variables in marsh ponds of the Gulf Coast Chenier Plain are potentially affected by structural marsh management (SMM: levees, water control structures and impoundments) that has been implemented since the 1950s. Assuming that SMM restricts tidal flows and drainage of rainwater, we predicted that SMM would increase water depth, and concomitantly decrease salinity and transparency in impounded marsh ponds. We also predicted that SMM would increase seasonal variability in water depth in impounded marsh ponds because of the potential incapacity of water control structures to cope with large flooding events. In addition, we predicted that SMM would decrease spatial variability in water depth. Finally, we predicted that ponds of impounded freshwater (IF), oligohaline (IO), and mesohaline (IM) marshes would be similar in water depth, temperature, dissolved oxygen (O2), and transparency. Using a priori multivariate analysis of variance (MANOVA) contrast, we tested these predictions by comparing hydrologic variables within ponds of impounded and unimpounded marshes during winters 1997-1998 to 1999-2000 on Rockefeller State Wildlife Refuge, near Grand Chenier, Louisiana. Specifically, we compared hydrologic variables (1) between IM and unimpounded mesohaline marsh ponds (UM); and (2) among IF, IO, and IM marshes ponds. As predicted, water depth was higher and salinity and O2 were lower in IM than in UM marsh ponds. However, temperature and transparency did not differ between IM and UM marsh ponds. Water depth varied more among months in IM marsh ponds than within those of UM marshes, and variances among and within ponds were lower in IM than UM marshes. Finally, all hydrologic variables, except salinity, were similar among IF, IO, and IM marsh ponds. Hydrologic changes within marsh ponds due to SMM should (1) promote benthic invertebrate taxa that tolerate low levels of O2 and

  14. Structural classification of marshes with Polarimetric SAR highlighting the temporal mapping of marshes exposed to oil

    USGS Publications Warehouse

    Ramsey III, Elijah W.; Rangoonwala, Amina; Jones, Cathleen E.

    2015-01-01

    Empirical relationships between field-derived Leaf Area Index (LAI) and Leaf Angle Distribution (LAD) and polarimetric synthetic aperture radar (PolSAR) based biophysical indicators were created and applied to map S. alterniflora marsh canopy structure. PolSAR and field data were collected near concurrently in the summers of 2010, 2011, and 2012 in coastal marshes, and PolSAR data alone were acquired in 2009. Regression analyses showed that LAI correspondence with the PolSAR biophysical indicator variables equaled or exceeded those of vegetation water content (VWC) correspondences. In the final six regressor model, the ratio HV/VV explained 49% of the total 77% explained LAI variance, and the HH-VV coherence and phase information accounted for the remainder. HV/HH dominated the two regressor LAD relationship, and spatial heterogeneity and backscatter mechanism followed by coherence information dominated the final three regressor model that explained 74% of the LAD variance. Regression results applied to 2009 through 2012 PolSAR images showed substantial changes in marsh LAI and LAD. Although the direct cause was not substantiated, following a release of freshwater in response to the 2010 Deepwater Horizon oil spill, the fairly uniform interior marsh structure of 2009 was more vertical and dense shortly after the oil spill cessation. After 2010, marsh structure generally progressed back toward the 2009 uniformity; however, the trend was more disjointed in oil impact marshes.             

  15. Five years (2000-2004) of post-reconstruction monitoring of freshwater tidal wetlands in the urban Anacostia River, Washington, D.C. USA

    USGS Publications Warehouse

    Hammerschlag, D.; Krafft, C.

    2006-01-01

    The Anacostia River in Washington, D.C. USA consisted of over 809 hectares (2000 acres) of freshwater tidal wetlands before mandatory dredging removed most of them in the first half of the 20th century. Much of this13 kilometer (8 mile) reach was transferred to the National Park Service (NPS). Planning processes in the 1980's envisioned a restoration (rejuvenation) of some wetlands for habitat, aesthetics, water quality and interpretative purposes. Subsequently, the U.S. Army Corps of Engineers in a cost share agreement with the District of Columbia reconstructed wetlands on NPS lands at Kenilworth - 12.5 hectares (1993), Kingman 27 hectares (2000), a Fringe Marsh - 6.5 hectares (2003) and is currently constructing Heritage Marsh - 2.5 hectares (2005/2006). The USGS Patuxent Wildlife Research Center in conjunction with the University of Maryland Biological Engineering Department was contracted to conduct post-reconstruction monitoring (2000-2004) to document the relative success and progress of the Kingman Marsh reconstruction primarily based on vegetative response but also in conjunction with seed bank and soil characteristics. Results from Kingman were compared to Kenilworth Marsh (reconstructed 7 years prior), Dueling Creek Marsh (last best remaining freshwater tidal wetland bench in the urbanized Anacostia watershed) and Patuxent River Marsh (in a more natural adjacent watershed). Vegetation establishment was initially strong at Kingman, but declined rapidly as measured by cover, richness, diversity, etc. under grazing pressure from resident Canada geese and associated reduction in sediment levels. This decline did not occur at the other wetlands. The decline occurred despite a substantial seed bank that was sustained primarily be water born propagules. Soil development, as true for most juvenile wetlands, was slow with almost no organic matter accumulation. By 2004 only two of 7 planted species remained (mostly Peltandra virginica) at Kingman which did provide

  16. The Wonderful World of Wetlands (WWW): Bogs, fens, marshes and swamps and their global environmental significance

    NASA Astrophysics Data System (ADS)

    Shotyk, W.

    2012-04-01

    Bogs, fens, marshes, and swamps are waterlogged ecosystems where organic soils form and peat accumulates. These are remarkably diverse ecosystems and represent an important component of the biodiversity found on Earth. Their geochemical function is dominated by their predominately anoxic condition which has some important consequences. Best known as reservoirs and reactors for a significant part of our surface freshwater resources, and impacting their chemical composition in remarkable ways, they also have a significant influence on the atmosphere, removing CO2 and adding CH4. The contemporary view during the past centuries was that these were wastelands in need of improving by drainage. Today, however, in some circles at least, the remaining wetlands are valued ecosystems, and the soils they contain archives of climate change, human history and atmospheric pollution.

  17. Influence of soil properties on trace element availability and plant accumulation in a Mediterranean salt marsh polluted by mining wastes: implications for phytomanagement.

    PubMed

    Conesa, H M; María-Cervantes, A; Alvarez-Rogel, J; González-Alcaraz, M N

    2011-09-15

    The aims of this study were to determine the factors which control metal and As phytoavailability in the different microenvironments (Sand Dunes, Salt Flat, Dry River and Shrubs) present at a Mediterranean salt marsh polluted by mining wastes. We performed a field study following a plot sampling survey. The analyses of soil parameters (pH, electrical conductivity (EC), organic carbon contents, etc.), total metal and As concentrations and their phytoavailability assessed with EDTA were related to each microenvironment and the corresponding plant species uptake. The averages of pH and EC were slightly alkaline (pH ≈ 7.5) and saline (≈ 2.2 to 17.1 dS m(-1)) respectively. The soil samples from the Salt Flat subzone showed the highest metal concentrations (e.g. 51 mg kg(-1) Cd, 11,600 mg kg(-1) Pb) while for As, the highest concentrations occurred in the Dry River (380 mg kg(-1) As). The total metal and EDTA-extractable concentrations occurred as it follows: Salt Flat>Dry River>Degraded Dunes>Shrubs. In relation to plant metal and As accumulation, the highest root concentrations were obtained in the species from the Salt Flat subzone: ~17 mg kg(-1) As, ~620 mg kg(-1) Pb, for both, Juncus maritimus and Arthrocnemum macrostachyum. However the highest metal and As shoot concentrations occurred in species from the Sand Dunes: ~23 mg kg(-1) As ~270 mg kg(-1) Pb for Dittrichia viscosa; ~23 mg kg(-1) As, ~390 mg kg(-1) Zn for Crucianella maritima. The occurrence of edaphic gradients including salinity and texture determined the vegetation distribution. However, it cannot be concluded that there was a disturbance due to metal(loid)s soil concentrations in terms of vegetation composition except in the Degraded Dunes and Dry River. The higher EDTA-extractable concentrations were coincidental with the most saline soils but this did not result in higher metal(loid)s plant accumulation.

  18. Evaluation of marsh development processes at Fire Island National Seashore: Recent and historic perspectives

    USGS Publications Warehouse

    Roman, C.T.; King, D.R.; Cahoon, D.R.; Lynch, J.C.; Appleby, P.G.

    2007-01-01

    Purpose and significance of the study: Salt marshes are dynamic environments, increasing in vertical elevation and migrating, often landward, as sea level rises. With sea level rise greater than marsh elevation increase, marshes can be submerged, marsh soils become waterlogged, and plant growth becomes stressed, often resulting in conversion of vegetation-dominated marsh to mudflat or open water habitat. Given that the rate of sea level rise is expected to accelerate over the next century and that some marshes in the northeast are becoming submerged (e.g., Jamaica Bay, NY), it is important to understand the processes that control marsh development. More specifically, the objectives of this project were to quantify vertical marsh elevation change in relation to recent rates of sea-level rise and to investigate factors or processes that are most influential in controlling the development and maintenance of Fire Island salt marshes.

  19. Spatial variability of phosphorus sorption dynamics in Louisiana salt marshes

    NASA Astrophysics Data System (ADS)

    Marton, John M.; Roberts, Brian J.

    2014-03-01

    Phosphorus (P) biogeochemistry has been studied in multiple wetland ecosystems, though few data exist on P sorption in U.S. Gulf Coast marshes. There also is a limited understanding of how oil spills in coastal zones can influence P dynamics in wetland soils. In this study, we measured P sorption potential, using the P sorption index (PSI), soil properties, and P saturation at increasing distances from the marsh edge in oiled and unoiled marshes in three regions along the southeastern Louisiana coast (Terrebonne Bay, western, and eastern Barataria Bay). Individual PSI values were highly variable, ranging from 19.5 to 175.6 mg P 100 g-1 and varying by at least a factor of five within each of the three regions, and did not significantly differ between regions or between oiled and unoiled marshes. Soil pH, organic matter, total N, N:P ratio, moisture content, cation exchange capacity, and P saturation differed between regions, and all soil parameters showed great variability between and within individual marshes. Extractable iron was the strongest predictor of PSI across all regions, explaining between 51 and 95% of the variability in individual regions. PSI increased with distance from marsh edge in Terrebonne Bay where other soil properties exhibited similar trends. Results suggest mineral composition of marsh soils, influenced by elevation-inundation gradients, are critical in dictating P loading to estuaries and open waters, and overall marsh functioning. Further, within 2 years of the Deepwater Horizon oil spill, oiled marshes are able to sorb phosphorus at comparable levels as unoiled marshes.

  20. Use of Computer-Aided Tomography (CT) Imaging for Quantifying Coarse Roots, Rhizomes, Peat, and Particle Densities in Marsh Soils

    EPA Science Inventory

    Computer-aided Tomography (CT) imaging was utilized to quantify wet mass of coarse roots, rhizomes, and peat in cores collected from organic-rich (Jamaica Bay, NY) and mineral (North Inlet, SC) Spartina alterniflora soils. Calibration rods composed of materials with standard dens...

  1. Modeling tidal marsh distribution with sea-level rise: evaluating the role of vegetation, sediment, and upland habitat in marsh resiliency.

    PubMed

    Schile, Lisa M; Callaway, John C; Morris, James T; Stralberg, Diana; Parker, V Thomas; Kelly, Maggi

    2014-01-01

    Tidal marshes maintain elevation relative to sea level through accumulation of mineral and organic matter, yet this dynamic accumulation feedback mechanism has not been modeled widely in the context of accelerated sea-level rise. Uncertainties exist about tidal marsh resiliency to accelerated sea-level rise, reduced sediment supply, reduced plant productivity under increased inundation, and limited upland habitat for marsh migration. We examined marsh resiliency under these uncertainties using the Marsh Equilibrium Model, a mechanistic, elevation-based soil cohort model, using a rich data set of plant productivity and physical properties from sites across the estuarine salinity gradient. Four tidal marshes were chosen along this gradient: two islands and two with adjacent uplands. Varying century sea-level rise (52, 100, 165, 180 cm) and suspended sediment concentrations (100%, 50%, and 25% of current concentrations), we simulated marsh accretion across vegetated elevations for 100 years, applying the results to high spatial resolution digital elevation models to quantify potential changes in marsh distributions. At low rates of sea-level rise and mid-high sediment concentrations, all marshes maintained vegetated elevations indicative of mid/high marsh habitat. With century sea-level rise at 100 and 165 cm, marshes shifted to low marsh elevations; mid/high marsh elevations were found only in former uplands. At the highest century sea-level rise and lowest sediment concentrations, the island marshes became dominated by mudflat elevations. Under the same sediment concentrations, low salinity brackish marshes containing highly productive vegetation had slower elevation loss compared to more saline sites with lower productivity. A similar trend was documented when comparing against a marsh accretion model that did not model vegetation feedbacks. Elevation predictions using the Marsh Equilibrium Model highlight the importance of including vegetation responses to sea

  2. Potential risk of acute toxicity induced by AgI cloud seeding on soil and freshwater biota.

    PubMed

    Fajardo, C; Costa, G; Ortiz, L T; Nande, M; Rodríguez-Membibre, M L; Martín, M; Sánchez-Fortún, S

    2016-11-01

    Silver iodide is one of the most common nucleating materials used in cloud seeding. Previous cloud seeding studies have concluded that AgI is not practically bioavailable in the environment but instead remains in soils and sediments such that the free Ag amounts are likely too low to induce a toxicological effect. However, none of these studies has considered the continued use of this practice on the same geographical areas and thus the potential cumulative effect of environmental AgI. The aim of this study is to assess the risk of acute toxicity caused by AgI exposure under laboratory conditions at the concentration expected in the environment after repeated treatments on selected soil and aquatic biota. To achieve the aims, the viability of soil bacteria Bacillus cereus and Pseudomonas stutzeri and the survival of the nematode Caenorhabditis elegans exposed to different silver iodide concentrations have been evaluated. Freshwater green algae Dictyosphaerium chlorelloides and cyanobacteria Microcystis aeruginosa were exposed to silver iodide in culture medium, and their cell viability and photosynthetic activity were evaluated. Additionally, BOD5 exertion and the Microtox® toxicity test were included in the battery of toxicological assays. Both tests exhibited a moderate AgI adverse effect at the highest concentration (12.5µM) tested. However, AgI concentrations below 2.5µM increased BOD5. Although no impact on the growth and survival endpoints in the soil worm C. elegans was recorded after AgI exposures, a moderate decrease in cell viability was found for both of the assessed soil bacterial strains at the studied concentrations. Comparison between the studied species showed that the cyanobacteria were more sensitive than green algae. Exposure to AgI at 0.43μM, the reference value used in monitoring environmental impact, induced a significant decrease in photosynthetic activity that is primarily associated with the respiration (80% inhibition) and, to a lesser

  3. Ecohydrology of drought in a tide-dominated salt marsh island

    NASA Astrophysics Data System (ADS)

    Hughes, A. L.; Wilson, A. M.; Morris, J. T.

    2010-12-01

    The importance of groundwater flow for wetland zonation and productivity is particularly striking in salt marsh ecosystems, where tidally-influenced groundwater flow controls salinity in addition to saturation state and nutrient transport. Here we describe complex interactions between groundwater, rainfall, evapotranspiration and surface water in an ostensibly simple salt marsh island that was affected by acute marsh dieback in 2001-2002, during a period of severe drought. Two mechanisms by which drought may cause dieback have been hypothesized: (1) soil drying leads to changes in chemistry (pH and/or redox state) and (2) drought leads to high porewater salinities. In addition to assessing these two hypotheses, a further question at our site is how a dearth of rainfall could affect an island that lacks a freshwater lens and is typically inundated by saline surface water twice a day. We instrumented the marsh with a network of piezometers and diffusion samplers in 2006. Hydrologic monitoring revealed rare periods when the marsh was not inundated for several consecutive tidal cycles, but no periods with similar low water levels were found in the tidal record prior to the dieback. Thus, soil drying appears unlikely to have been the cause of dieback at our site. Porewater salinity was monitored via a combination of piezometers and diffusion samplers. We found striking variations in salinity (14 - 40 ppt) in the upper 1 m of the marsh mud, but nearly constant salinity (36 ppt) at depths greater than 1 m. These results suggest significant infiltration of fresh rainwater, despite frequent inundation by surface water, with subsequent increases in salinity via transpiration as water moves downward through the root zone. Simple statistical models suggest that porewater salinity is correlated with surface water salinity and rainfall over periods of 30-60 days, but these models fail to capture the full range of variability in this complex system. Results also suggest that

  4. Mycorrhizal colonization across hydrologic gradients in restored and reference freshwater wetlands

    USGS Publications Warehouse

    Bauer, C.R.; Kellogg, C.H.; Bridgham, S.D.; Lamberti, G.A.

    2003-01-01

    Arbuscular mycorrhizae, which are plant root-fungal symbioses, are common associates of vascular plants. Such relationships, however, are thought to be rare in wetland plant roots, although several recent studies suggest that arbuscular mycorrhizae may be important in wetland ecosystems. Our objectives were to determine (1) the level of arbuscular mycorrhizal colonization of plant roots in three freshwater marshes and (2) the effect of restoration status, hydrologic zone, and plant species identity on mycorrhizal colonization. We quantified the percentage of plant roots colonized by mycorrhizal fungi in one reference and two restored freshwater marshes in northern Indiana, USA during summer 1999. Roots were collected from soil cores taken around dominant plant species present in each of three hydrologic zones and then stained for microscopic examination of mycorrhizal colonization. Mycorrhizae were present in each wetland, in all hydrologic zones and in all sampled plants, including Carex and Scirpus species previously thought to be non-mycorrhizal. Both restored and reference wetlands had moderate levels of mycorrhizal colonization, but no clear trends in colonization were seen with hydrologic zone, which has been hypothesized to regulate the formation of mycorrhizae in wetlands. Mycorrhizal colonization levels in the roots of individual species ranged from 3 to 90% and were particularly large in members of the Poaceae (grass) family. Our results suggest that arbuscular mycorrhizae may be widely distributed across plant species and hydrologic zones in both restored and reference freshwater marshes. Thus, future research should examine the functional role of mycorrhizal fungi in freshwater wetlands. ?? 2003, The Society of Wetland Scientists.

  5. The influence of soil-site factors on sugar maple (Acer saccharum Marsh.) growth response to climatic change in central Ontario

    NASA Astrophysics Data System (ADS)

    Schutten, K.; Gedalof, Z.

    2010-12-01

    Over the past several decades, concerns about climatic change and its potential impacts on Canada’s various geographical regions and associated ecological processes have grown steadily, especially among land and resource managers. As these risks transition into tangible outcomes in the field, it will be important for resource managers to understand historical climatic variability and natural ecological trends in order to effectively respond to a changing climate. Sugar maple (Acer saccharum Marsh.) is considered a stable endpoint for mature forests in the northern hardwood community of central Ontario, and it tends to be the dominant species, in a beech-ironwood-yellow birch matrix. In North America, this species is used for both hardwood lumber and for maple sugar (syrup) products; where it dominates, large recreational opportunities also exist. There are many biotic and abiotic factors that play a large role in the growth and productivity of sugar maple stands, such as soil pH, moisture regime, and site slope and aspect. This research undertaking aims to add to the body of literature addressing the following question: how do site factors influence the sensitivity of sugar maple growth to climatic change? The overall objective of the research is to evaluate how biotic and abiotic factors influence the sensitivity of sugar maple annual radial growth to climatic variability. This research will focus on sugar maple growth and productivity in Algonquin Provincial Park, and the impact that climatic variability has had in the past on these stands based on site-specific characteristics. In order to complete this goal, 20 sites were identified in Algonquin Provincial Park based on variability of known soil and site properties. These sites were visited in order to collect biotic and abiotic site data, and to measure annual radial growth increment of trees. Using regional climate records and standard dendrochronological methods, the collected increment growth data will be

  6. Comparison of wetland structural characteristics between created and natural salt marshes in southwest Louisiana, USA

    USGS Publications Warehouse

    Edwards, K.R.; Proffitt, C.E.

    2003-01-01

    The use of dredge material is a well-known technique for creating or restoring salt marshes that is expected to become more common along the Gulf of Mexico coast in the future. However, the effectiveness of this restoration method is still questioned. Wetland structural characteristics were compared between four created and three natural salt marshes in southwest Louisiana, USA. The created marshes, formed by the pumping of dredge material into formerly open water areas, represent a chronosequence, ranging in age from 3 to 19 years. Vegetation and soil structural factors were compared to determine whether the created marshes become more similar over time to the natural salt marshes. Vegetation surveys were conducted in 1997, 2000, and 2002 using the line-intercept technique. Site elevations were measured in 2000. Organic matter (OM) was measured in 1996 and 2002, while bulk density and soil particle-size distribution were determined in 2002 only. The natural marshes were dominated by Spartina alterniflora, as were the oldest created marshes; these marshes had the lowest mean site elevations ( 35 cm NGVD) and became dominated by high marsh (S. patens, Distichlis spicata) and shrub (Baccharis halimifolia, Iva frutescens) species. The higher elevation marsh seems to be following a different plant successional trajectory than the other marshes, indicating a relationship between marsh elevation and species composition. The soils in both the created and natural marshes contain high levels of clays (30-65 %), with sand comprising < 1 % of the soil distribution. OM was significantly greater and bulk density significantly lower in two of the natural marshes when compared to the created marshes. The oldest created marsh had significantly greater OM than the younger created marshes, but it may still take several decades before equivalency is reached with the natural marshes. Vegetation structural characteristics in the created marshes take only a few years to become similar

  7. 14. View of Sterling Creek Marsh east across the marsh, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. View of Sterling Creek Marsh east across the marsh, with canal in foreground - Richmond Hill Plantation, Sterling Creek Marsh, East of Richmond Hill on Ford Neck Road, Richmond Hill, Bryan County, GA

  8. 12. View of Sterling Creek Marsh looking southeast across marsh, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. View of Sterling Creek Marsh looking southeast across marsh, with canal in foreground - Richmond Hill Plantation, Sterling Creek Marsh, East of Richmond Hill on Ford Neck Road, Richmond Hill, Bryan County, GA

  9. Endophytic Cultivable Bacteria of the Metal Bioaccumulator Spartina maritima Improve Plant Growth but Not Metal Uptake in Polluted Marshes Soils

    PubMed Central

    Mesa, Jennifer; Mateos-Naranjo, Enrique; Caviedes, Miguel A.; Redondo-Gómez, Susana; Pajuelo, Eloisa; Rodríguez-Llorente, Ignacio D.

    2015-01-01

    Endophytic bacterial population was isolated from Spartina maritima tissues, a heavy metal bioaccumulator cordgrass growing in the estuaries of Tinto, Odiel, and Piedras River (south west Spain), one of the most polluted areas in the world. Strains were identified and ability to tolerate salt and heavy metals along with plant growth promoting and enzymatic properties were analyzed. A high proportion of these bacteria were resistant toward one or several heavy metals and metalloids including As, Cu, and Zn, the most abundant in plant tissues and soil. These strains also exhibited multiple enzymatic properties as amylase, cellulase, chitinase, protease and lipase, as well as plant growth promoting properties, including nitrogen fixation, phosphates solubilization, and production of indole-3-acetic acid (IAA), siderophores and 1-aminocyclopropane-1-carboxylate (ACC) deaminase. The best performing strains (Micrococcus yunnanensis SMJ12, Vibrio sagamiensis SMJ18, and Salinicola peritrichatus SMJ30) were selected and tested as a consortium by inoculating S. maritima wild plantlets in greenhouse conditions along with wild polluted soil. After 30 days, bacterial inoculation improved plant photosynthetic traits and favored intrinsic water use efficiency. However, far from stimulating plant metal uptake, endophytic inoculation lessened metal accumulation in above and belowground tissues. These results suggest that inoculation of S. maritima with indigenous metal-resistant endophytes could mean a useful approach in order to accelerate both adaption and growth of this indigenous cordgrass in polluted estuaries in restorative operations, but may not be suitable for rhizoaccumulation purposes. PMID:26733985

  10. Vertical distribution of nitrite-dependent anaerobic methane-oxidising bacteria in natural freshwater wetland soils.

    PubMed

    Shen, Li-dong; Huang, Qian; He, Zhan-fei; Lian, Xu; Liu, Shuai; He, Yun-feng; Lou, Li-ping; Xu, Xiang-yang; Zheng, Ping; Hu, Bao-lan

    2015-01-01

    Nitrite-dependent anaerobic methane oxidation (n-damo) is a recently discovered process that is catalysed by "Candidatus Methylomirabilis oxyfera". In the present study, the vertical distribution (0-10, 20-30, 50-60 and 90-100 cm) of M. oxyfera-like bacteria was investigated in Xiazhuhu wetland, the largest natural wetland on the southern Yangtze River (China). Phylogenetic analyses showed that group A of M. oxyfera-like bacteria and pmoA genes occurred primarily at depths of 50-60 and 90-100 cm. Quantitative PCR further confirmed the presence of M. oxyfera-like bacteria in soil cores from different depths, with the highest abundance of 5.1 × 10(7) copies g(-1) dry soil at depth of 50-60 cm. Stable isotope experiments demonstrated that the n-damo process occurred primarily at depths of 50-60 and 90-100 cm, with the potential rates ranging from 0.2 to 14.5 nmol CO2 g(-1) dry soil d(-1). It was estimated that the methane flux may increase by approximately 2.7-4.3% in the examined wetland in the absence of n-damo. This study shows that the deep wetland soils (50-60 and 90-100 cm) are the preferred habitats for M. oxyfera-like bacteria. The study also highlights the potential importance of these bacteria in the methane and nitrogen cycles in deep wetland soils.

  11. Impacts of marsh management on coastal-marsh bird habitats

    USGS Publications Warehouse

    Mitchell, L.R.; Gabrey, S.; Marra, P.P.; Erwin, R.M.; ,

    2006-01-01

    The effects of habitat-management practices in coastal marshes have been poorly evaluated. We summarize the extant literature concerning whether these manipulations achieve their goals and the effects of these manipulations on target (i.e., waterfowl and waterfowl food plants) and non-target organisms (particularly coastal-marsh endemics). Although we focus on the effects of marsh management on birds, we also summarize the scant literature concerning the impacts of marsh manipulations on wildlife such as small mammals and invertebrates. We address three common forms of anthropogenic marsh disturbance: prescribed fire, structural marsh management, and open-marsh water management. We also address marsh perturbations by native and introduced vertebrates.

  12. Glacial age marsh, Lafayette Park, Washington, D.C.

    USGS Publications Warehouse

    Knox, A.S.

    1969-01-01

    Organic sediments beneath historic Lafayette Park mark the site of a freshwater marsh which bordered the Potomac River when it was 15 meters above its present level. Plant microfossils and ice-rafted boulders indicate a climate much colder than now. The carbon-14 age of more than 45,000 years and palynological studies suggest an early Wisconsin age.

  13. Conservation of tidal marshes

    SciTech Connect

    Daiber, F.C.

    1986-01-01

    This book is the first attempt to examine collectively the various uses and the consequences of marsh conservation efforts. Author Franklin Daiber emphasizes tidal marsh conservation from a holistic perspective rather than from the perspective of a single purpose or special economic interest. He addresses a topic receiving increasing attention, namely the concept of open marsh management as a means of controlling mosquito production without harmful effects on other marsh organisms. Topics considered include: water management; dikes, impoundments, ponds and ditches; reclaimed land and impoundments; ditching and ponding for mosquito control; sewage disposal and waste treatment; dredge material for wetland restoration; insecticides; oil pollution; and petroleum hydrocarbon interactions.

  14. Marshes to mudflats—Effects of sea-level rise on tidal marshes along a latitudinal gradient in the Pacific Northwest

    USGS Publications Warehouse

    Thorne, Karen M.; Dugger, Bruce D.; Buffington, Kevin J.; Freeman, Chase M.; Janousek, Christopher N.; Powelson, Katherine W.; Gutenspergen, Glenn R.; Takekawa, John Y.

    2015-11-17

    In the Pacific Northwest, coastal wetlands support a wealth of ecosystem services including habitat provision for wildlife and fisheries and flood protection. The tidal marshes, mudflats, and shallow bays of coastal estuaries link marine, freshwater, and terrestrial habitats, and provide economic and recreational benefits to local communities. Climate change effects such as sea-level rise are altering these habitats, but we know little about how these areas will change over the next 50–100 years. Our study examined the effects of sea-level rise on nine tidal marshes in Washington and Oregon between 2012 and 2015, with the goal of providing scientific data to support future coastal planning and conservation. We compiled physical and biological data, including coastal topography, tidal inundation, vegetation structure, as well as recent and historical sediment accretion rates, to assess and model how sea-level rise may alter these ecosystems in the future. Multiple factors, including initial elevation, marsh productivity, sediment availability, and rates of sea-level rise, affected marsh persistence. Under a low sea-level rise scenario, all marshes remained vegetated with little change in the present configuration of communities of marsh plants or gradually increased proportions of middle-, high-, or transition-elevation zones of marsh vegetation. However, at most sites, mid sea-level rise projections led to loss of habitat of middle and high marshes and a gain of low marshes. Under a high sea-level rise scenario, marshes at most sites eventually converted to intertidal mudflats. Two sites (Grays Harbor and Willapa) seemed to have the most resilience to a high rate of rise in sea-level, persisting as low marsh until at least 2110. Our main model finding is that most tidal marsh study sites are resilient to sea-level rise over the next 50–70 years, but that sea-level rise will eventually outpace marsh accretion and drown most habitats of high and middle marshes by

  15. Arbuscular mycorrhizal fungal propagules in a salt marsh.

    PubMed

    Carvalho, Luís M; Correia, Patrícia M; Martins-Loução, M Amélia

    2004-07-01

    The tolerance of indigenous arbuscular mycorrhizal fungi (AMF) to stressful soil conditions and the relative contribution of spores of these fungi to plant colonization were examined in a Portuguese salt marsh. Glomus geosporum is dominant in this salt marsh. Using tetrazolium as a vital stain, a high proportion of field-collected spores were found to be metabolically active at all sampling dates. Spore germination tests showed that salt marsh spores were not affected by increasing levels of salinity, in contrast to two non-marsh spore isolates, and had a significantly higher ability to germinate under increased levels of salinity (20 per thousand) than in the absence of or at low salinity (10 per thousand). Germination of salt marsh spores was not affected by soil water levels above field capacity, in contrast to one of the two non-marsh spore isolates. For the evaluation of infectivity, a bioassay was established with undisturbed soil cores (containing all types of AM fungal propagules) and soil cores containing only spores as AM fungal propagules. Different types of propagules were able to initiate and to expand the root colonization of a native plant species, but spores were slower than mycelium and/or root fragments in colonizing host roots. The AM fungal adaptation shown by this study may explain the maintenance of AMF in salt marshes.

  16. Top-down control of carbon sequestration: grazing affects microbial structure and function in salt marsh soils.

    PubMed

    Mueller, Peter; Granse, Dirk; Nolte, Stefanie; Do, Hai Thi; Weingartner, Magdalena; Hoth, Stefan; Jensen, Kai

    2017-03-20

    Tidal wetlands have been increasingly recognized as long-term carbon sinks in recent years. Work on carbon sequestration and decomposition processes in tidal wetlands focused so far mainly on effects of global-change factors such as sea-level rise and increasing temperatures. However, little is known about effects of land use, such as livestock grazing, on organic matter decomposition and ultimately carbon sequestration. The present work aims at understanding the mechanisms by which large herbivores can affect organic matter decomposition in tidal wetlands. This was achieved by studying both direct animal-microbe interactions and indirect animal-plant-microbe interactions in grazed and ungrazed areas of two long-term experimental field sites at the German North Sea coast. We assessed bacterial and fungal gene abundance using quantitative PCR, as well as the activity of microbial exo-enzymes by conducting fluorometric assays. We demonstrate that grazing can have a profound impact on the microbial community structure of tidal wetland soils, by consistently increasing the fungi-to-bacteria ratio by 38-42%, and therefore potentially exerts important control over carbon turnover and sequestration. The observed shift in the microbial community was primarily driven by organic matter source, with higher contributions of recalcitrant autochthonous (terrestrial) vs. easily degradable allochthonous (marine) sources in grazed areas favoring relative fungal abundance. We propose a novel and indirect form of animal-plant-microbe interaction: top-down control of aboveground vegetation structure determines the capacity of allochthonous organic matter trapping during flooding and thus the structure of the microbial community. Furthermore, our data provide the first evidence that grazing slows down microbial exo-enzyme activity and thus decomposition through changes in soil redox chemistry. Activities of enzymes involved in C cycling were reduced by 28-40%, while activities of

  17. Spatial response of coastal marshes to increased atmospheric CO2.

    PubMed

    Ratliff, Katherine M; Braswell, Anna E; Marani, Marco

    2015-12-22

    The elevation and extent of coastal marshes are dictated by the interplay between the rate of relative sea-level rise (RRSLR), surface accretion by inorganic sediment deposition, and organic soil production by plants. These accretion processes respond to changes in local and global forcings, such as sediment delivery to the coast, nutrient concentrations, and atmospheric CO2, but their relative importance for marsh resilience to increasing RRSLR remains unclear. In particular, marshes up-take atmospheric CO2 at high rates, thereby playing a major role in the global carbon cycle, but the morphologic expression of increasing atmospheric CO2 concentration, an imminent aspect of climate change, has not yet been isolated and quantified. Using the available observational literature and a spatially explicit ecomorphodynamic model, we explore marsh responses to increased atmospheric CO2, relative to changes in inorganic sediment availability and elevated nitrogen levels. We find that marsh vegetation response to foreseen elevated atmospheric CO2 is similar in magnitude to the response induced by a varying inorganic sediment concentration, and that it increases the threshold RRSLR initiating marsh submergence by up to 60% in the range of forcings explored. Furthermore, we find that marsh responses are inherently spatially dependent, and cannot be adequately captured through 0-dimensional representations of marsh dynamics. Our results imply that coastal marshes, and the major carbon sink they represent, are significantly more resilient to foreseen climatic changes than previously thought.

  18. Spatial response of coastal marshes to increased atmospheric CO2

    PubMed Central

    Ratliff, Katherine M.; Braswell, Anna E.; Marani, Marco

    2015-01-01

    The elevation and extent of coastal marshes are dictated by the interplay between the rate of relative sea-level rise (RRSLR), surface accretion by inorganic sediment deposition, and organic soil production by plants. These accretion processes respond to changes in local and global forcings, such as sediment delivery to the coast, nutrient concentrations, and atmospheric CO2, but their relative importance for marsh resilience to increasing RRSLR remains unclear. In particular, marshes up-take atmospheric CO2 at high rates, thereby playing a major role in the global carbon cycle, but the morphologic expression of increasing atmospheric CO2 concentration, an imminent aspect of climate change, has not yet been isolated and quantified. Using the available observational literature and a spatially explicit ecomorphodynamic model, we explore marsh responses to increased atmospheric CO2, relative to changes in inorganic sediment availability and elevated nitrogen levels. We find that marsh vegetation response to foreseen elevated atmospheric CO2 is similar in magnitude to the response induced by a varying inorganic sediment concentration, and that it increases the threshold RRSLR initiating marsh submergence by up to 60% in the range of forcings explored. Furthermore, we find that marsh responses are inherently spatially dependent, and cannot be adequately captured through 0-dimensional representations of marsh dynamics. Our results imply that coastal marshes, and the major carbon sink they represent, are significantly more resilient to foreseen climatic changes than previously thought. PMID:26644577

  19. Toxicity to freshwater organisms from oils and oil spill chemical treatments in laboratory microcosms.

    PubMed

    Bhattacharyya, S; Klerks, P L; Nyman, J A

    2003-01-01

    Toxicity and temporal changes in toxicity of freshwater-marsh-microcosms containing South Louisiana Crude (SLC) or diesel fuel and treated with a cleaner or dispersant, were investigated using Chironomus tentans, Daphnia pulex, and Oryzias latipes. Bioassays used microcosm water (for D. pulex and O. latipes) or soil slurry (for C. tentans) taken 1,7, 31, and 186 days after treatment. SLC was less toxic than diesel, chemical additives enhanced oil toxicity, the dispersant was more toxic than the cleaner, and toxicities were greatly reduced by day 186. Toxicities were higher in the bioassay with the benthic species than in those with the two water-column species. A separate experiment showed that C. tentans' sensitivity was intermediate to that of Tubifex tubifex and Hyallela azteca. Freshwater organisms, especially benthic invertebrates, thus appear seriously effected by oil under the worst-case-scenario of our microcosms. Moreover, the cleaner and dispersant tested were poor response options under those conditions.

  20. Influence of Watershed Runoff on Nutrient Dynamics in a Southern California Salt Marsh

    NASA Astrophysics Data System (ADS)

    Page, Henry M.; Petty, Robert L.; Meade, Daniel E.

    1995-08-01

    The effect of freshwater runoff on nutrient loading and dynamics was studied in Carpinteria Salt Marsh, a typically small (93 ha) southern California, U.S.A., estuary adjoining a watershed supporting extensive agricultural and urban development. Concentrations of dissolved nitrate, but not ammonium or phosphate, were elevated in stream flow and perched groundwater in the watershed, relative to marsh surface waters. Loading of nitrate and particulate organic nitrogen (PON) from the watershed, but not ammonium or phosphate, increased as a function of stream discharge. Estimates of net nutrient exchange over selected tidal cycles suggested that the marsh exported nitrate, ammonium and PON to the Santa Barbara Channel. Nitrate and PON were advected from the watershed through the marsh while ammonium was produced within the marsh and exported. The availability of imported nitrogen for primary production may be limited by marsh tidal elevation as most nitrogen inputs are throughput to the Santa Barbara Channel.

  1. Acidification of freshwaters

    SciTech Connect

    Cresser, M.S.; Edwards, A.C.

    1987-01-01

    This volume gives an account that draws not only on the main branches of chemistry but also on soil physics, chemistry, hydrology, meteorology, geography, geology, plant physiology, soil microbiology and zoology. The author examine the numerous interacting physical, chemical, and biological, processes that regulate the acidity of freshwaters, a phenomenon that has various causes, including precipitation; acidifying pollutions; and the interaction of plants, soils and water. The relative importance of the different processes is examined.

  2. The temperature sensitivity of organic matter decay in tidal marshes

    NASA Astrophysics Data System (ADS)

    Kirwan, M. L.; Guntenspergen, G. R.; Langley, J. A.

    2014-04-01

    Approximately half of marine carbon sequestration takes place in coastal wetlands, including tidal marshes, where ecosystems accumulate organic matter to build soil elevation and survive sea level rise. The long-term viability of marshes, and their carbon pools, depends in part on how the balance between productivity and decay responds to climate change. Here, we report the sensitivity of soil organic matter decay in tidal marshes to seasonal and latitudinal variations in temperature measured over a 3 year period. We find a moderate increase in decay rate at warmer temperatures (3-6% °C-1, Q10 = 1.3-1.5). Despite the profound differences between microbial metabolism in wetlands and uplands, our results indicate a strong conservation of temperature sensitivity. Moreover, simple comparisons with organic matter production suggest that elevated atmospheric CO2 and warmer temperatures will accelerate carbon accumulation in marsh soils, and enhance their ability to survive sea level rise.

  3. A combined field and modeling study of groundwater flow in a tidal marsh

    NASA Astrophysics Data System (ADS)

    Xia, Yuqiang; Li, Hailong

    2011-05-01

    Bald mud beaches were found among the mangrove marshes in Dongzhaigang National Nature Reserve, Hainan, China. To investigate the possible reasons for this phenomenon, the intertidal zones of a mangrove transect and a bald beach transect with similar topography and same tidal actions were selected for comparison study. Along both transects, observed water table variations were significant in the high and low intertidal zones and negligible in the middle intertidal zones. Field investigations and observations invite two speculations: (1) existence of a high-permeability zone on each transect which underlies the low-permeability surface mud sediments and outcrops in the high intertidal zone, and (2) considerable inland freshwater recharge along the mangrove transect but negligible freshwater recharge along the bald beach transect. Two-dimensional numerical simulations based on these speculations gave results in line with the observed water table. The bald beach is most probably due to the lack of enough freshwater for generating a brackish beach soil condition essential to mangrove growth. It is also indicated that seawater infiltrated the high-permeability zone through its outcrop near the high intertidal zone, and discharged from the tidal river bank in the vicinity of the low tide line, thereby forming a tide-induced seawater-groundwater circulation which may provide considerable contribution to the total submarine groundwater discharge.

  4. Mercury volatilization from salt marsh sediments

    NASA Astrophysics Data System (ADS)

    Smith, Lora M.; Reinfelder, John R.

    2009-06-01

    In situ volatilization fluxes of gaseous elemental mercury, Hg(0), were estimated for tidally exposed salt marsh sediments in the summer at the urban/industrial Secaucus High School Marsh, New Jersey Meadowlands (Secaucus, New Jersey) and in the early autumn at a regional background site in the Great Bay estuary (Tuckerton, New Jersey). Estimated daytime sediment-air mercury volatilization fluxes at the Secaucus High School Marsh ranged from -375 to +677 ng m-2 h-1 and were positive (land to air flux) in 16 out of 20 measurement events. At the Great Bay estuary, mercury fluxes measured continuously over a 48-h period ranged from -34 to +81 ng m-2 h-1 and were positive during the day and negative at night. At both sites, mercury volatilization fluxes peaked at midday, and cumulative mercury fluxes exhibited strong positive correlations with cumulative solar radiation (r2 = 0.97, p < 0.01) consistent with a light-driven mercury volatilization efficiency of about 15 ng Hg mol PAR-1 or about 0.06 ng Hg kJ-1. No significant correlations were found between mercury fluxes and wind speed, air temperature, or tide height at either site. Thus despite a tenfold difference in sediment mercury concentration, photochemistry appears to be the dominant factor controlling mercury volatilization from these salt marsh sediments. The average mercury volatilization flux estimated for the Great Bay salt marsh in this study (17 ng m-2 h-1) compares well with other micrometeorological mercury fluxes for nonpoint source contaminated salt marsh and forest soils (8-18 ng m-2 h-1) and is more than 10 times higher than the average mercury emission flux from land (˜1 ng m-2 h-1). Annual mercury emissions from salt marsh wetlands may be comparable to individual industrial emissions sources in coastal states of the eastern United States.

  5. A comparison of a new centrifuge sugar flotation technique with the agar method for the extraction of immature Culicoides (Diptera: Ceratopogonidae) life stages from salt marsh soils.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two sampling techniques, agar extraction (AE) and centrifuge sugar flotation extraction (CSFE) were compared to determine their relative efficacy to recover immature stages of Culicoides spp from salt marsh substrates. Three types of samples (seeded with known numbers of larvae, homogenized field s...

  6. Global carbon sequestration in tidal, saline wetland soils

    USGS Publications Warehouse

    Chmura, G.L.; Anisfeld, S.C.; Cahoon, D.R.; Lynch, J.C.

    2003-01-01

    Wetlands represent the largest component of the terrestrial biological carbon pool and thus play an important role in global carbon cycles. Most global carbon budgets, however, have focused on dry land ecosystems that extend over large areas and have not accounted for the many small, scattered carbon-storing ecosystems such as tidal saline wetlands. We compiled data for 154 sites in mangroves and salt marshes from the western and eastern Atlantic and Pacific coasts, as well as the Indian Ocean, Mediterranean Ocean, and Gulf of Mexico. The set of sites spans a latitudinal range from 22.4??S in the Indian Ocean to 55.5??N in the northeastern Atlantic. The average soil carbon density of mangrove swamps (0.055 ?? 0.004 g cm-3) is significantly higher than the salt marsh average (0.039 ?? 0.003 g cm-3). Soil carbon density in mangrove swamps and Spartina patens marshes declines with increasing average annual temperature, probably due to increased decay rates at higher temperatures. In contrast, carbon sequestration rates were not significantly different between mangrove swamps and salt marshes. Variability in sediment accumulation rates within marshes is a major control of carbon sequestration rates masking any relationship with climatic parameters. Globally, these combined wetlands store at least 44.6 Tg C yr-1 and probably more, as detailed areal inventories are not available for salt marshes in China and South America. Much attention has been given to the role of freshwater wetlands, particularly northern peatlands, as carbon sinks. In contrast to peatlands, salt marshes and mangroves release negligible amounts of greenhouse gases and store more carbon per unit area. Copyright 2003 by the American Geophysical Union.

  7. Overestimation of marsh vulnerability to sea level rise

    NASA Astrophysics Data System (ADS)

    Kirwan, Matthew L.; Temmerman, Stijn; Skeehan, Emily E.; Guntenspergen, Glenn R.; Fagherazzi, Sergio

    2016-03-01

    Coastal marshes are considered to be among the most valuable and vulnerable ecosystems on Earth, where the imminent loss of ecosystem services is a feared consequence of sea level rise. However, we show with a meta-analysis that global measurements of marsh elevation change indicate that marshes are generally building at rates similar to or exceeding historical sea level rise, and that process-based models predict survival under a wide range of future sea level scenarios. We argue that marsh vulnerability tends to be overstated because assessment methods often fail to consider biophysical feedback processes known to accelerate soil building with sea level rise, and the potential for marshes to migrate inland.

  8. Overestimation of marsh vulnerability to sea level rise

    USGS Publications Warehouse

    Kirwan, Matthew L.; Temmerman, Stijn; Skeehan, Emily E.; Guntenspergen, Glenn R.; Fagherazzi, Sergio

    2016-01-01

    Coastal marshes are considered to be among the most valuable and vulnerable ecosystems on Earth, where the imminent loss of ecosystem services is a feared consequence of sea level rise. However, we show with a meta-analysis that global measurements of marsh elevation change indicate that marshes are generally building at rates similar to or exceeding historical sea level rise, and that process-based models predict survival under a wide range of future sea level scenarios. We argue that marsh vulnerability tends to be overstated because assessment methods often fail to consider biophysical feedback processes known to accelerate soil building with sea level rise, and the potential for marshes to migrate inland.

  9. Marsh canopy structure changes and the Deepwater Horizon oil spill

    USGS Publications Warehouse

    Ramsey III, Elijah W.; Rangoonwala, Amina; Jones, Cathleen E.

    2016-01-01

    Marsh canopy structure was mapped yearly from 2009 to 2012 in the Barataria Bay, Louisiana coastal region that was impacted by the 2010 Deepwater Horizon (DWH) oil spill. Based on the previously demonstrated capability of NASA's UAVSAR polarimetric synthetic aperture radar (PolSAR) image data to map Spartina alterniflora marsh canopy structure, structure maps combining the leaf area index (LAI) and leaf angle distribution (LAD, orientation) were constructed for yearly intervals that were directly relatable to the 2010 LAI-LAD classification. The yearly LAI-LAD and LAI difference maps were used to investigate causes for the previously revealed dramatic change in marsh structure from prespill (2009) to postspill (2010, spill cessation), and the occurrence of structure features that exhibited abnormal spatial and temporal patterns. Water level and salinity records showed that freshwater releases used to keep the oil offshore did not cause the rapid growth from 2009 to 2010 in marsh surrounding the inner Bay. Photointerpretation of optical image data determined that interior marsh patches exhibiting rapid change were caused by burns and burn recovery, and that the pattern of 2010 to 2011 LAI decreases in backshore marsh and extending along some tidal channels into the interior marsh were not associated with burns. Instead, the majority of 2010 to 2011 shoreline features aligned with vectors displaying the severity of 2010 shoreline oiling from the DWH spill. Although the association is not conclusive of a causal oil impact, the coexistent pattern is a significant discovery. PolSAR marsh structure mapping provided a unique perspective of marsh biophysical status that enhanced detection of change and monitoring of trends important to management effectiveness.

  10. Carbon sequestration by Australian tidal marshes

    PubMed Central

    Macreadie, Peter I.; Ollivier, Q. R.; Kelleway, J. J.; Serrano, O.; Carnell, P. E.; Ewers Lewis, C. J.; Atwood, T. B.; Sanderman, J.; Baldock, J.; Connolly, R. M.; Duarte, C. M.; Lavery, P. S.; Steven, A.; Lovelock, C. E.

    2017-01-01

    Australia’s tidal marshes have suffered significant losses but their recently recognised importance in CO2 sequestration is creating opportunities for their protection and restoration. We compiled all available data on soil organic carbon (OC) storage in Australia’s tidal marshes (323 cores). OC stocks in the surface 1 m averaged 165.41 (SE 6.96) Mg OC ha−1 (range 14–963 Mg OC ha−1). The mean OC accumulation rate was 0.55 ± 0.02 Mg OC ha−1 yr−1. Geomorphology was the most important predictor of OC stocks, with fluvial sites having twice the stock of OC as seaward sites. Australia’s 1.4 million hectares of tidal marshes contain an estimated 212 million tonnes of OC in the surface 1 m, with a potential CO2-equivalent value of $USD7.19 billion. Annual sequestration is 0.75 Tg OC yr−1, with a CO2-equivalent value of $USD28.02 million per annum. This study provides the most comprehensive estimates of tidal marsh blue carbon in Australia, and illustrates their importance in climate change mitigation and adaptation, acting as CO2 sinks and buffering the impacts of rising sea level. We outline potential further development of carbon offset schemes to restore the sequestration capacity and other ecosystem services provided by Australia tidal marshes. PMID:28281574

  11. Carbon sequestration by Australian tidal marshes.

    PubMed

    Macreadie, Peter I; Ollivier, Q R; Kelleway, J J; Serrano, O; Carnell, P E; Ewers Lewis, C J; Atwood, T B; Sanderman, J; Baldock, J; Connolly, R M; Duarte, C M; Lavery, P S; Steven, A; Lovelock, C E

    2017-03-10

    Australia's tidal marshes have suffered significant losses but their recently recognised importance in CO2 sequestration is creating opportunities for their protection and restoration. We compiled all available data on soil organic carbon (OC) storage in Australia's tidal marshes (323 cores). OC stocks in the surface 1 m averaged 165.41 (SE 6.96) Mg OC ha(-1) (range 14-963 Mg OC ha(-1)). The mean OC accumulation rate was 0.55 ± 0.02 Mg OC ha(-1) yr(-1). Geomorphology was the most important predictor of OC stocks, with fluvial sites having twice the stock of OC as seaward sites. Australia's 1.4 million hectares of tidal marshes contain an estimated 212 million tonnes of OC in the surface 1 m, with a potential CO2-equivalent value of $USD7.19 billion. Annual sequestration is 0.75 Tg OC yr(-1), with a CO2-equivalent value of $USD28.02 million per annum. This study provides the most comprehensive estimates of tidal marsh blue carbon in Australia, and illustrates their importance in climate change mitigation and adaptation, acting as CO2 sinks and buffering the impacts of rising sea level. We outline potential further development of carbon offset schemes to restore the sequestration capacity and other ecosystem services provided by Australia tidal marshes.

  12. Carbon sequestration by Australian tidal marshes

    NASA Astrophysics Data System (ADS)

    Macreadie, Peter I.; Ollivier, Q. R.; Kelleway, J. J.; Serrano, O.; Carnell, P. E.; Ewers Lewis, C. J.; Atwood, T. B.; Sanderman, J.; Baldock, J.; Connolly, R. M.; Duarte, C. M.; Lavery, P. S.; Steven, A.; Lovelock, C. E.

    2017-03-01

    Australia’s tidal marshes have suffered significant losses but their recently recognised importance in CO2 sequestration is creating opportunities for their protection and restoration. We compiled all available data on soil organic carbon (OC) storage in Australia’s tidal marshes (323 cores). OC stocks in the surface 1 m averaged 165.41 (SE 6.96) Mg OC ha‑1 (range 14–963 Mg OC ha‑1). The mean OC accumulation rate was 0.55 ± 0.02 Mg OC ha‑1 yr‑1. Geomorphology was the most important predictor of OC stocks, with fluvial sites having twice the stock of OC as seaward sites. Australia’s 1.4 million hectares of tidal marshes contain an estimated 212 million tonnes of OC in the surface 1 m, with a potential CO2-equivalent value of $USD7.19 billion. Annual sequestration is 0.75 Tg OC yr‑1, with a CO2-equivalent value of $USD28.02 million per annum. This study provides the most comprehensive estimates of tidal marsh blue carbon in Australia, and illustrates their importance in climate change mitigation and adaptation, acting as CO2 sinks and buffering the impacts of rising sea level. We outline potential further development of carbon offset schemes to restore the sequestration capacity and other ecosystem services provided by Australia tidal marshes.

  13. Freshwater Macroinvertebrates.

    ERIC Educational Resources Information Center

    Nalepa, T. F.

    1978-01-01

    Presents a literature review of freshwater biology particularly freshwater macroinvertebrates and their effect on water pollution, covering publications of 1976-77. A list of 158 references is also presented. (HM)

  14. Effects of hydrologic connectivity on aquatic macroinvertebrate assemblages in different marsh types

    USGS Publications Warehouse

    Kang, Sung-Ryong; King, Sammy L.

    2013-01-01

    Hydrologic connectivity can be an important driver of aquatic macroinvertebrate assemblages. Its effects on aquatic macroinvertebrate assemblages in coastal marshes, however, are relatively poorly studied. We evaluated the effects of lateral hydrologic connectivity (permanently connected ponds: PCPs; temporary connected ponds: TCPs), and other environmental variables on aquatic macroinvertebrate assemblages and functional feeding groups (FFGs) in freshwater, brackish, and saline marshes in Louisiana, USA. We hypothesized that (1) aquatic macroinvertebrate assemblages in PCPs would have higher assemblage metric values (density, biomass, Shannon-Wiener diversity) than TCPs and (2) the density and proportional abundance of certain FFGs (i.e. scrapers, shredders, and collectors) would be greater in freshwater marsh than brackish and saline marshes. The data in our study only partially supported our first hypothesis: while freshwater marsh PCPs had higher density and biomass than TCPs, assemblage metric values in saline TCPs were greater than saline PCPs. In freshwater TCPs, long duration of isolation limited access of macroinvertebrates from adjacent water bodies, which may have reduced assemblage metric values. However, the relatively short duration of isolation in saline TCPs provided more stable or similar habitat conditions, facilitating higher assemblage metric values. As predicted by our second hypothesis, freshwater PCPs and TCPs supported a greater density of scrapers, shredders, and collectors than brackish and saline ponds. Aquatic macroinvertebrate assemblages seem to be structured by individual taxa responses to salinity as well as pond habitat attributes.

  15. Insights into lateral marsh retreat mechanism through localized field measurements

    NASA Astrophysics Data System (ADS)

    Bendoni, M.; Mel, R.; Solari, L.; Lanzoni, S.; Francalanci, S.; Oumeraci, H.

    2016-02-01

    Deterioration of salt marshes may be due to several factors related to increased anthropic pressure, sea level rise, and erosive processes. While salt marshes can reach equilibrium in the vertical direction, adapting to sea level rise, they are inherently unstable in the horizontal direction. Marsh boundaries are characterized by scarps with bare sediment below the vegetated surface layer that can be easily removed by wave-induced erosion. In this work, we explore the different mechanisms involved in the erosion of marsh borders through the interpretation of field data. The analysis is based on a systematic field monitoring of a salt marsh in the Venice Lagoon subject to lateral erosion. Measurements included horizontal retreat of the scarp at various locations and wave height in front of the marsh during three storm surges. Continuous erosion and mass failures alternated during the observed period, leading to an average retreat up to 80 cm/yr. The data, collected roughly every month for 1.5 year, indicate that the linear relation that links the observed erosion rate to the impinging wave power exhibits a larger slope than that already estimated in literature on the basis of long-term surveys. Moreover, an increase in the gradient of erodibility is detected along the marsh scarp, due to the combined action of soil strengthening by vegetation on the marsh surface and the impact of wave breaking at the bank toe, which promote cantilever failures and increase the lateral erosion rate.

  16. Breuner Marsh Restoration Project

    EPA Pesticide Factsheets

    Information about the San Francisco Bay Water Quality Project (SFBWQP) Breuner Marsh Restoration Project, part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resources.

  17. Methane flux from coastal salt marshes

    SciTech Connect

    Bartlett, K.B.; Harriss, R.C.; Sebacher, D.I.

    1985-06-20

    The seasonal flux of methane to the atmosphere from salt marsh soils was examined in three different vegetation zones within a single marsh near Yorktown, Virginia. A total of 100 measurements were made over a 2-year period, with maximum rates occurring during summer and fall. Spatial and temporal variability in fluxes was high; rates ranged from -2.4 to 21.3 x 10/sup -3/ g CH/sub 4//m/sup 2//d. Estimates of annual methane losses to the atmosphere were 0.43 g CH/sub 4//m/sup 2/ for a salt meadow zone, 1.3 g CH/sub 4//m/sup 2/ for short Spartina alterniflora, and 1.2 g CH/sub 4//m/sup 2/ for tall creek-bank S. alterniflora. A total of 63 flux measurements, made in a variety of other coastal salt marshes along the east coast of the US, suggest that the Virginia site may be fairly typical for this region. In addition to diffusional losses across the air-soil interface, methane can be lost from the marsh system to the atmosphere through the lateral movement of pore waters supersaturated with methane into tidal creeks, with subsequent degassing across the water-air interface. Estimates of the magnitude of methane input to the atmosphere by this mechanism indicate it may be as important as diffusional losses across the air-soil interface. These data suggest that salt marshes of this type make only a minor contribution to global atmospheric methane.

  18. Sedimentation, accretion, and subsidence in marshes of Barataria Basin, Louisiana

    SciTech Connect

    Hatton, R.S.; DeLaune, R.D.; Patrick, W.H. Jr.

    1983-05-01

    Vertical accretion and sediment accumulation rates were determined from the distribution of /sup 137/Cs in cores collected from fresh water, intermediate, brackish, and salt marshes in the Barataria Basin, Louisiana. Vertical accretion rates vary from about 1.3 cm.yr/sup -1/ in levee areas to 0.7 in backmarshes. Mineral sediment content of the marsh soil profile decreased with distance from the coast. Except in natural levee areas, marsh accretion rates are less than subsidence measured by water level data, however this alone cannot account for observed land-loss patterns in the basin area.

  19. Below the Disappearing Marshes of an Urban Estuary ...

    EPA Pesticide Factsheets

    Marshes in the urban Jamaica Bay Estuary, New York, USA are disappearing at an average rate of 13 ha/yr, and multiple stressors (e.g., wastewater inputs, dredging activities, groundwater removal, and global warming) may be contributing to marsh losses. Among these stressors, wastewater nutrients are suspected to be an important contributing cause of marsh deterioration. We used census data, radiometric dating, stable nitrogen isotopes, and soil surveys to examine the temporal relationships between human population growth and soil nitrogen; and we evaluated soil structure with computer-aided tomography, surface elevation and sediment accretion trends, carbon dioxide emissions, and soil shear strength to examine differences among disappearing (Black Bank and Big Egg) and stable marshes (JoCo). Radiometric dating and nitrogen isotope analyses suggested a rapid increase in human wastewater nutrients beginning in the late 1840s, and a tapering off beginning in the 1930s when wastewater treatment plants (WWTPs) were first installed. Current WWTPs nutrient loads to Jamaica Bay are approximately 13 995 kg N/d and 2767 kg P/d. At Black Bank, the biomass and abundance of roots and rhizomes and percentage of organic matter on soil were significantly lower, rhizomes larger in diameter, carbon dioxide emission rates and peat particle density significantly greater, and soil strength significantly lower compared to the stable JoCo Marsh, suggesting Black Bank has elevated d

  20. Nekton assemblage structure in natural and created marsh-edge habitats of the Guadalupe Estuary, Texas, USA

    NASA Astrophysics Data System (ADS)

    Zeug, Steven C.; Shervette, Virginia R.; Hoeinghaus, David J.; Davis, Stephen E., III

    2007-02-01

    Natural and created Spartina brackish marsh habitats in the Guadalupe Estuary, adjacent to the Aransas National Wildlife Refuge, Texas, USA were surveyed during spring, summer, and fall 2004 to evaluate the equivalence of nekton assemblages in an old (>30 years) created marsh. During each season, six replicate samples were collected in each marsh type using a 1-m 2 drop sampler. Multivariate analysis revealed significant differences in nekton assemblage structure among marsh type, both within and across seasons. Species richness was significantly higher in the natural marsh in spring and summer but not in fall. Several species that were dominant in the natural marsh but rare or absent in the created marsh had strong correlations with the presence of oyster substrate that was only encountered in natural marsh samples. Although cumulative richness was greater in the natural marsh, eight species were collected only from the created marsh. Shrimp and fish biomass was significantly higher in natural marsh. Analysis of the density, biomass and size structure of three commercially important crustaceans indicated that the created marsh supported similar biomass of some species (white shrimp, blue crab); however, the size structure of some populations was variable among marshes (blue crab, brown shrimp). We conclude that lower substrate complexity (specifically oyster) and soil organic content in the created marsh reduced measures of nekton similarity and recommend that these features be addressed in future restoration efforts.

  1. Salt Marsh Formation in the Lower Hudson River Estuary

    NASA Astrophysics Data System (ADS)

    Merley, M. M.; Peteet, D. M.; Peteet, D. M.

    2001-05-01

    Salt marshes are constant depositional environments and as a result contain accurate indicators of past relative sea level rise and salinity. The Hudson River marshes are at least twice as deep when compared to coastal marshes on either side of the mouth of the Hudson. The reason for this difference in sedimentation is unclear. This study uses macrofossil data as well as sediment stratigraphy in order to understand the formation and evolution of these marshes. The composition of seeds, roots, shoots and foraminifera, are used to indicate past sea levels. The four sites involved in this study are, from south to north, the Arthur Kill Marsh in Staten Island ( 40 36 N, 74 77W), Piermont marsh (N 41 00; 73 55W) Croton Point ( 41 14 N; 73 50W) and Iona Island( 41 18N, 73 58W). These are all tidally influenced but with increasing distances from the New York Bight, which gives a good spectrum of tidal influence. AMS-C14 dates on basal macrofossils will document the time of each marsh formation. Basal material from Arthur Kill (8m) includes freshwater seeds such as Viola, Potomageton and Alnus along with Salix buds. Basal material from Croton Point (10m) includes fibrous woody material, foraminifera and Zanichellia seeds and other brackish vegetational components. The basal material from Piermont (13.77m) is lacking any identifyable macrofossils between 150 and 500 microns. The basal material from Iona Island (10m) has vegetation such as Scirpus and Cyperus seeds, probably implying a brackish environment. The freshwater origin of the Arthur Kill marsh in Staten Island is significant because it predates either sea level rise or the western channel incision. Additional implications for this study include evidence for changes in river channel geomorphology. Reasons for the relatively deeper river marshes include possible basal clay compaction, high production due to river and marine nutrients as well as tectonic activity. This study provides the groundwork for more high

  2. Salt Marsh Formation in the Lower Hudson River Estuary

    NASA Technical Reports Server (NTRS)

    Merley, Michael; Peteet, Dorothy; Hansen, James E. (Technical Monitor)

    2001-01-01

    Salt marshes are constant depositional environments and as a result contain accurate indicators of past relative sea level rise and salinity. The Hudson River marshes are at least twice as deep when compared to coastal marshes on either side of the mouth of the Hudson. The reason for this difference in sedimentation is unclear. This study uses macrofossil data as well as sediment stratigraphy in order to understand the formation and evolution of these marshes. The composition of seeds, roots, shoots and foraminifera, are used to indicate past sea levels. The four sites involved in this study are, from south to north, the Arthur Kill Marsh in Staten Island (40 36 N, 74 77W), Piermont marsh (N 4100; 73 55W) Croton Point (41 14 N; 73 50W) and Iona Island (41 18N, 73 58W). These are all tidally influenced but with increasing distances from the New York Bight, which gives a good spectrum of tidal influence. AMS-C14 dates on basal macrofossils will document the time of each marsh formation. Basal material from Arthur Kill (8 m) includes freshwater seeds such as Viola, Potomageton and Alnus along with Salix buds. Basal material from Croton Point (10 m) includes fibrous woody material, foraminifera and Zanichellia seeds and other brackish vegetational components. The basal material from Piermont (13.77 m) is lacking any identifiable macrofossils between 150 and 500 microns. The basal material from Iona Island (10 m) has vegetation such as Scirpus and Cyperus seeds, probably implying a brackish environment. The freshwater origin of the Arthur Kill marsh in Staten Island is significant because it predates either sea level rise or the western channel incision. Additional implications for this study include evidence for changes in river channel geomorphology. Reasons for the relatively deeper river marshes include possible basal clay compaction, high production due to river and marine nutrients as well as tectonic activity. This study provides the groundwork for more high

  3. Vegetation community response to tidal marsh restoration of a large river estuary

    USGS Publications Warehouse

    Belleveau, Lisa J.; Takekawa, John Y.; Woo, Isa; Turner, Kelley L.; Barham, Jesse B.; Takekawa, Jean E.; Ellings, Christopher S.; Chin-Leo, Gerardo

    2015-01-01

    Estuaries are biologically productive and diverse ecosystems that provide ecosystem services including protection of inland areas from flooding, filtering freshwater outflows, and providing habitats for fish and wildlife. Alteration of historic habitats, including diking for agriculture, has decreased the function of many estuarine systems, and recent conservation efforts have been directed at restoring these degraded areas to reestablish their natural resource function. The Nisqually Delta in southern Puget Sound is an estuary that has been highly modified by restricting tidal flow, and recent restoration of the delta contributed to one of the largest tidal salt marsh restorations in the Pacific Northwest. We correlated the response of nine major tidal marsh species to salinities at different elevation zones. Our results indicated that wetland species richness was not related to soil pore-water salinity (R2 = 0.03), but were stratified into different elevation zones (R2 = 0.47). Thus, restoration that fosters a wide range of elevations will provide the most diverse plant habitat, and potentially, the greatest resilience to environmental change.

  4. Marsh plant response to metals: Exudation of aliphatic low molecular weight organic acids (ALMWOAs)

    NASA Astrophysics Data System (ADS)

    Rocha, A. Cristina S.; Almeida, C. Marisa R.; Basto, M. Clara P.; Vasconcelos, M. Teresa S. D.

    2016-03-01

    Metal exposure is known to induce the production and secretion of substances, such as aliphatic low molecular weight organic acids (ALMWOAs), into the rhizosphere by plant roots. Knowledge on this matter is extensive for soil plants but still considerably scarce regarding marsh plants roots adapted to high salinity media. Phragmites australis and Halimione portulacoides, two marsh plants commonly distributed in European estuarine salt marshes, were used to assess the response of roots of both species, in terms of ALMWOAs exudation, to Cu, Ni and Cd exposure (isolated and in mixture since in natural environment, they are exposed to mixture of metals). As previous studies were carried out in unrealistic and synthetic media, here a more natural medium was selected. Therefore, in vitro experiments were carried out, with specimens of both marsh plants, and in freshwater contaminated with two different Cu, Ni and Cd concentrations (individual metal and in mixture). Both marsh plants were capable of liberating ALMWOAs into the surrounding medium. Oxalic, citric and maleic acids were found in P. australis root exudate solutions and oxalic and maleic acids in H. portulacoides root exudate solutions. ALMWOA liberation by both plants was plant species and metal-dependent. For instance, Cu affected the exudation of oxalic acid by H. portulacoides and of oxalic and citric acids by P. australis roots. In contrast, Ni and Cd did not stimulate any specific response. Regarding the combination of all metals, H. portulacoides showed a similar response to that observed for Cu individually. However, in the P. australis case, at high metal concentration mixture, a synergetic effect led to the increase of oxalic acid levels in root exudate solution and to a decrease of citric acid liberation. A correlation between ALMWOAs exudation and metal accumulation could not be established. P. australis and H. portulacoides are considered suitable metal phytoremediators of estuarine impacted areas

  5. Restoring Ecological Function to a Submerged Salt Marsh

    USGS Publications Warehouse

    Stagg, C.L.; Mendelssohn, I.A.

    2010-01-01

    Impacts of global climate change, such as sea level rise and severe drought, have altered the hydrology of coastal salt marshes resulting in submergence and subsequent degradation of ecosystem function. A potential method of rehabilitating these systems is the addition of sediment-slurries to increase marsh surface elevation, thus ameliorating effects of excessive inundation. Although this technique is growing in popularity, the restoration of ecological function after sediment addition has received little attention. To determine if sediment subsidized salt marshes are functionally equivalent to natural marshes, we examined above- and belowground primary production in replicated restored marshes receiving four levels of sediment addition (29-42 cm North American Vertical Datum of 1988 [NAVD 88]) and in degraded and natural ambient marshes (4-22 cm NAVD 88). Moderate intensities of sediment-slurry addition, resulting in elevations at the mid to high intertidal zone (29-36 cm NAVD 88), restored ecological function to degraded salt marshes. Sediment additions significantly decreased flood duration and frequency and increased bulk density, resulting in greater soil drainage and redox potential and significantly lower phytotoxic sulfide concentrations. However, ecological function in the restored salt marsh showed a sediment addition threshold that was characterized by a decline in primary productivity in areas of excessive sediment addition and high elevation (>36 cm NAVD 88). Hence, the addition of intermediate levels of sediment to submerging salt marshes increased marsh surface elevation, ameliorated impacts of prolonged inundation, and increased primary productivity. However, too much sediment resulted in diminished ecological function that was equivalent to the submerged or degraded system. ?? 2010 Society for Ecological Restoration International.

  6. Effects of the addition of nitrogen and sulfate on CH4 and CO2 emissions, soil, and pore water chemistry in a high marsh of the Min River estuary in southeastern China.

    PubMed

    Hu, Minjie; Wilson, Benjamin J; Sun, Zhigao; Ren, Peng; Tong, Chuan

    2017-02-01

    Exogenous nitrogen (N) and sulfate (SO4(2-)), resulting from human activity, can strongly influence the emission of CH4 and CO2 from soil ecosystems. Studies have reported the effects of N and SO4(2-) on CH4 and CO2 emissions from inland peatlands and paddies. However, very few studies have presented year-round data on the effects of the addition of N and SO4(2-) on CH4 and CO2 emissions in estuarine marshes. The effects of the addition of N and SO4(2-) on the emission of CH4 and CO2 were investigated in a Cyperus malaccensis marsh in the high tidal flat of the Min River estuary of southeastern China from September 2014 to August 2015. Dissolved NH4Cl, KNO3, and K2SO4 were applied every month, in doses of 24gN/SO4(2-)m(-2)·yr(-1). The emission of CH4 and CO2 showed distinct monthly and seasonal variations. Compared with the control, the addition of NH4Cl and NH4NO3+K2SO4 showed increases in CH4 fluxes (p<0.05), while the effects of the addition of KNO3 and K2SO4 on CH4 were minor (p>0.05). NH4Cl had a positive impact on CO2 emissions (p<0.01), while the addition of KNO3, K2SO4, and NH4NO3+K2SO4 had minor positive impacts, compared to the control (p>0.05). Correlation analysis found that soil sulfate concentration, nitrogen availability and enzyme activity were the dominant factors influencing CH4 and CO2 variation. Our findings suggest that CH4 and CO2 emissions were influenced more by ammonium than by nitrate. We propose that the suppressive effect of additional sulfate on CH4 production is insignificant, due to which the inhibition may be overestimated in the estuarine brackish marsh.

  7. Groundwater Nitrate Removal Capacity of Filled Salt Marshes

    NASA Astrophysics Data System (ADS)

    Addy, K.; Gold, A. J.; Stolt, M. H.; Groffman, P. M.

    2006-05-01

    Undisturbed salt marshes can serve as sinks for groundwater nitrate flowing through sandy soils underlying salt marsh peat deposits. Many salt marshes have been destroyed by covering the original marsh with fill material to create level, dry surfaces suitable for urban and suburban developments. These alterations may alter groundwater hydrology and nitrate transformations or these buried, organically enriched deposits below the fill could serve as "relic" zones of microbial activity. We measured in situ groundwater denitrification capacity of saturated, sandy soils below buried salt marsh deposits at four filled sites with the 15N-nitrate push-pull method. 15N-enriched nitrate was injected into wells (5 per site) and denitrification rates were obtained by tracking the evolution of 15N-enriched denitrification gases. Three sites were managed lawns and one site had unmanaged scrubby vegetation. The former salt marshes were covered with 60-150 cm of fill material 30-65 years ago. Fill ranged from silt loam to very gravelly sands with 2-75% coarse fragments. At all sites, we observed a buried horizon of enriched carbon material representative of the former salt marsh. One site showed consistently elevated groundwater denitrification capacity at all replicate wells (mean: 60 μg N kg-1 soil d-1). At the remaining sites, groundwater denitrification capacity was spotty with high intrasite variability. Only one or two of the replicate wells displayed elevated denitrification (>22 μg N kg-1 soil d-1), but no denitrification was measured in the other wells at those sites. We found no significant correlation between groundwater denitrification and groundwater dissolved oxygen, dissolved organic carbon, temperature, salinity, pH, ambient nitrate concentration, depth below the water table, fill thickness, depth below fill, or fill age. The extreme intrasite variability of groundwater denitrification capacity at these filled salt marsh settings constrasts with our observations

  8. Effects of hydrologic connectivity and environmental nariables on nekton assemblage in a coastal marsh system

    USGS Publications Warehouse

    Kang, Sung-Ryong; King, Sammy L.

    2013-01-01

    Hydrologic connectivity and environmental variation can influence nekton assemblages in coastal ecosystems. We evaluated the effects of hydrologic connectivity (permanently connected pond: PCP; temporary connected pond: TCP), salinity, vegetation coverage, water depth and other environmental variables on seasonal nekton assemblages in freshwater, brackish, and saline marshes of the Chenier Plain, Louisiana, USA. We hypothesize that 1) nekton assemblages in PCPs have higher metrics (density, biomass, assemblage similarity) than TCPs within all marsh types and 2) no nekton species would be dominant across all marsh types. In throw traps, freshwater PCPs in Fall (36.0 ± 1.90) and Winter 2009 (43.2 ± 22.36) supported greater biomass than freshwater TCPs (Fall 2009: 9.1 ± 4.65; Winter 2009: 8.3 ± 3.42). In minnow traps, saline TCPs (5.9 ± 0.85) in Spring 2009 had higher catch per unit effort than saline PCPs (0.7 ± 0.67). Our data only partially support our first hypothesis as freshwater marsh PCPs had greater assemblage similarity than TCPs. As predicted by our second hypothesis, no nekton species dominated across all marsh types. Nekton assemblages were structured by individual species responses to the salinity gradient as well as pond habitat attributes (submerged aquatic vegetation coverage, dissolved oxygen, hydrologic connectivity).

  9. Restoring marsh elevation in a rapidly subsiding salt marsh by thin-layer deposition of dredged material

    USGS Publications Warehouse

    Ford, M.A.; Cahoon, D.R.; Lynch, J.C.

    1999-01-01

    Thin-layer deposition of dredged material on coastal marsh by means of high-pressure spray dredging (Jet-Spray??2) technology has been proposed as a mechanism to minimize wetland impacts associated with traditional bucket dredging technologies and to restore soil elevations in deteriorated marshes of the Mississippi River delta. The impact of spray dredging on vegetated marsh and adjacent shallow-water habitat (formerly vegetated marsh that deteriorated to open water) was evaluated in a 0.5-ha Spartina alterniflora-dominated salt marsh in coastal Louisiana. The thickness of dredged sediment deposits was determined from artificial soil marker horizons and soil elevation change was determined from sedimentation-erosion tables (SET) established prior to spraying in both sprayed and reference marshes. The vertical accretion and elevation change measurements were made simultaneously to allow for calculation of shallow (~5 m depth) subsidence (accretion minus elevation change). Measurements made immediately following spraying in July 1996 revealed that stems of S. alterniflora were knocked down by the force of the spray and covered with 23 mm of dredged material. Stems of S. alterniflora soon recovered, and by July 1997 the percent cover of S. alterniflora had increased three-fold over pre-project conditions. Thus, the layer of dredged material was thin enough to allow for survival of the S. alterniflora plants, with no subsequent colonization by plant species typical of higher marsh zones. By February 1998, 62 mm of vertical accretion accumulated at this site, and little indication of disturbance was noted. Although not statistically significant, soil elevation change was greater than accretion on average at both the spray and reference marshes, suggesting that subsurface expansion caused by increased root biomass production and/or pore water storage influence elevation in this marsh region. In the adjacent shallow water pond, 129 mm of sediment was deposited in July

  10. Variation in freshwater input to the Eastern US coastal ecosystem

    NASA Astrophysics Data System (ADS)

    Feng, D.; Yoon, Y.; Beighley, E., II; Hughes, R.; Kimbro, D.

    2014-12-01

    Phragmites is one of the most invasive plants in North American wetlands. Although its spread in coastal marshes has been linked by independent studies to urbanization, eutrophication, and salinity change, there is good evidence that these factors may interactively determine invasion success and in turn, the ecosystem services provided by marshes. We hypothesize that the invasion of Phragmites is linked to changes in freshwater inputs due to climate and/or land use change. El Nino/Southern Oscillation (ENSO), originating in the sea surface temperature anomalies (warm or cold) in the eastern tropical Pacific Ocean, is a notable and prominent signal in inter-annual climatic variation. Recent studies shows that the probability of strong El Nino events may increase in the future. In this study, we will investigate the teleconnections between freshwater inputs to the coastal zone along the eastern U.S. and ENSO indices, and attempt to explore the predictability of temporal and spatial variation of freshwater inputs based on ENSO conditions. To quantify changes in freshwater input in this region, hydrologic modeling, remote sensing and field measurements are combined. The Hillslope River Routing (HRR) model is used to simulate hourly streamflow from all watersheds from southern Florida to northern Maine draining into the Atlantic Ocean. The modeling effort utilizes satellite precipitation (Tropical Rainfall Measuring Mission Product 3B42v7: 2001-current with a 3-hr temporal resolution and 0.25 degree spatial resolution), land surface temperature and vegetation measures (Moderate Resolution Imaging Spectroradiometer, MODIS, products: 2001-current with a monthly temporal resolution and 0.05 degree spatial resolution). To account for land cover change, annual MODIS land cover data and time varying population statics are merged to estimate annual land cover characteristics for each sub-catchment within the study region. Static datasets for soils and ground elevations are

  11. Marsh nesting by mallards

    USGS Publications Warehouse

    Krapu, G.L.; Talent, L.G.; Dwyer, T.J.

    1979-01-01

    Nest-site selection by mallard (Anas platyrhynchos) hens was studied on a 52-km2, privately owned area in the Missouri Coteau of south-central North Dakota during 1974-77. Sixty-six percent of 53 nests initiated by radio-marked and unmarked hens were in wetlands in dense stands of emergent vegetation and usually within 50 m of the wetland edge. These findings and other sources of information suggest that significant numbers of mallards breeding in the Prairie Pothole Region nest in marsh habitat. Potential factors contributing to mallard use of marsh habitat for nesting purposes are discussed. Management considerations associated with marsh nesting by mallards are described and research needs are identified.

  12. Does vegetation prevent wave erosion of salt marsh edges?

    PubMed

    Feagin, R A; Lozada-Bernard, S M; Ravens, T M; Möller, I; Yeager, K M; Baird, A H

    2009-06-23

    This study challenges the paradigm that salt marsh plants prevent lateral wave-induced erosion along wetland edges by binding soil with live roots and clarifies the role of vegetation in protecting the coast. In both laboratory flume studies and controlled field experiments, we show that common salt marsh plants do not significantly mitigate the total amount of erosion along a wetland edge. We found that the soil type is the primary variable that influences the lateral erosion rate and although plants do not directly reduce wetland edge erosion, they may do so indirectly via modification of soil parameters. We conclude that coastal vegetation is best-suited to modify and control sedimentary dynamics in response to gradual phenomena like sea-level rise or tidal forces, but is less well-suited to resist punctuated disturbances at the seaward margin of salt marshes, specifically breaking waves.

  13. Does vegetation prevent wave erosion of salt marsh edges?

    PubMed Central

    Feagin, R. A.; Lozada-Bernard, S. M.; Ravens, T. M.; Möller, I.; Yeager, K. M.; Baird, A. H.

    2009-01-01

    This study challenges the paradigm that salt marsh plants prevent lateral wave-induced erosion along wetland edges by binding soil with live roots and clarifies the role of vegetation in protecting the coast. In both laboratory flume studies and controlled field experiments, we show that common salt marsh plants do not significantly mitigate the total amount of erosion along a wetland edge. We found that the soil type is the primary variable that influences the lateral erosion rate and although plants do not directly reduce wetland edge erosion, they may do so indirectly via modification of soil parameters. We conclude that coastal vegetation is best-suited to modify and control sedimentary dynamics in response to gradual phenomena like sea-level rise or tidal forces, but is less well-suited to resist punctuated disturbances at the seaward margin of salt marshes, specifically breaking waves. PMID:19509340

  14. Biogeochemical effects of seawater restoration to diked salt marshes

    USGS Publications Warehouse

    Portnoy, J.W.; Giblin, A.E.

    1997-01-01

    We conducted greenhouse microcosm experiments to examine the biogeochemical effects of restoring seawater to historically diked Cape Cod salt marshes. Peat cores from both seasonally flooded and drained diked marshes were waterlogged with seawater, and porewater chemistry was subsequently monitored for 21 mo. The addition of seawater to highly organic, seasonally flooded peat caused the death of freshwater wetland plants, 6-8 cm of sediment subsidence, and increased N and P mineralization. Also, sulfides and alkalinity increased 10-fold, suggesting accelerated decomposition by sulfate reduction. Addition of seawater to the low-organic-content acidic peat from the drained marsh increased porewater pH, alkalinity, PO4-P, and Fe(II), which we attribute to the reestablishment of SO4 and Fe(III) mineral reduction. Increased cation exchange contributed to 6-fold increases in dissolved Fe(II) and Al and 60-fold increases in NH4-N within 6 mo of sail-nation. Seawater reintroductions to seasonally flooded diked marshes will cause porewater sulfides to increase, likely reducing the success of revegetation efforts. Sulfide toxicity is of less concern in resalinated drained peats because of the abundance of Fe(II) to precipitate sulfides, and of NH4-N to offset sulfide inhibition of N uptake. Restoration of either seasonally flooded or drained diked marshes could stimulate potentially large nutrient and Fe(II) releases, which could in turn increase primary production and lower oxygen in receiving waters. These findings suggest that tidal restoration be gradual and carefully monitored.

  15. Ecosystem engineers drive creek formation in salt marshes.

    PubMed

    Vu, Huy D; Wie Ski, Kazimierz; Pennings, Steven C

    2017-01-01

    Ecosystem engineers affect different organisms and processes in multiple ways at different spatial scales. Moreover, similar species may differ in their engineering effects for reasons that are not always clear. We examined the role of four species of burrowing crabs (Sesarma reticulatum, Eurytium limosum, Panopeus herbstii, Uca pugnax) in engineering tidal creek networks in salt marshes experiencing sea level rise. In the field, crab burrows were associated with heads of eroding creeks and the loss of plant (Spartina alterniflora) stems. S. reticulatum was closely associated with creek heads, but densities of the other crab species did not vary across marsh zones. In mesocosm experiments, S. reticulatum excavated the most soil and strongly reduced S. alterniflora biomass. The other three species excavated less and did not affect S. alterniflora. Creek heads with vegetation removed to simulate crab herbivory grew significantly faster than controls. Percolation rates of water into marsh sediments were 10 times faster at creek heads than on the marsh platform. Biomass decomposed two times faster at creek heads than on the marsh platform. Our results indicate that S. reticulatum increases creek growth by excavating sediments and by consuming plants, thereby increasing water flow and erosion at creek heads. Moreover, it is possible that S. reticulatum burrows also increase creek growth by increasing surface and subsurface erosion, and by increasing decomposition of organic matter at creek heads. Our results show that the interaction between crab and plant ecosystem engineers can have both positive and negative effects. At a small scale, in contrast to other marsh crabs, S. reticulatum harms rather than benefits plants, and increases erosion rather than marsh growth. At a large scale, however, S. reticulatum facilitates the drainage efficiency of the marsh through the expansion of tidal creek networks, and promotes marsh health.

  16. Nonlinear responses of coastal salt marshes to nutrient additions and sea level rise

    EPA Science Inventory

    Increasing nutrients and accelerated sea level rise (SLR) can cause marsh loss in some coastal systems. Responses to nutrients and SLR are complex and vary with soil matrix, marsh elevation, sediment inputs, and hydroperiod. We describe field and greenhouse studies examining sing...

  17. Assessment of factors enabling halite formation in a marsh in a humid temperate climate (Ajó Marsh, Argentina).

    PubMed

    Carol, Eleonora S; Alvarez, María Del Pilar; Borzi, Guido E

    2016-05-15

    The formation of evaporites associated with the final stages of the precipitation sequence, such as the case of halite, is frequent in marshes in arid areas, but it is not to be expected in those humid climates. This work, by means of the study of the hydrological, climatic and land use conditions, identifies the factors that allow the formation of saline precipitations in a marsh located in a humid climate area. The results obtained show that the exclusion of the marsh as a result of the embankment is the main reason for the presence of halite. It is to be expected that in the future the growth of the embanked marsh areas, together with the climatic and tidal condition tendencies recorded, will favour a higher rate of formation of evaporite salts. The identification of these factors makes it possible to set basic sustainable management guidelines to avoid soil salinisation.

  18. Effect of fluoride on the cell viability, cell organelle potential, and photosynthetic capacity of freshwater and soil algae.

    PubMed

    Chae, Yooeun; Kim, Dokyung; An, Youn-Joo

    2016-12-01

    Although fluoride occurs naturally in the environment, excessive amounts of fluoride in freshwater and terrestrial ecosystems can be harmful. We evaluated the toxicity of fluoride compounds on the growth, viability, and photosynthetic capacity of freshwater (Chlamydomonas reinhardtii and Pseudokirchneriella subcapitata) and terrestrial (Chlorococcum infusionum) algae. To measure algal growth inhibition, a flow cytometric method was adopted (i.e., cell size, granularity, and auto-fluorescence measurements), and algal yield was calculated to assess cell viability. Rhodamine123 and fluorescein diacetate were used to evaluate mitochondrial membrane potential (MMA, ΔΨm) and cell permeability. Nine parameters related to the photosynthetic capacity of algae were also evaluated. The results indicated that high concentrations of fluoride compounds affected cell viability, cell organelle potential, and photosynthetic functions. The cell viability measurements of the three algal species decreased, but apoptosis was only observed in C. infusionum. The MMA (ΔΨm) of cells exposed to fluoride varied among species, and the cell permeability of the three species generally decreased. The decrease in the photosynthetic activity of algae may be attributable to the combination of fluoride ions (F(-)) with magnesium ions (Mg(2+)) in chlorophyll. Our results therefore provide strong evidence for the potential risks of fluoride compounds to microflora and microfauna in freshwater and terrestrial ecosystems.

  19. Gross nitrous oxide production drives net nitrous oxide fluxes across a salt marsh landscape.

    PubMed

    Yang, Wendy H; Silver, Whendee L

    2016-06-01

    Sea level rise will change inundation regimes in salt marshes, altering redox dynamics that control nitrification - a potential source of the potent greenhouse gas, nitrous oxide (N2 O) - and denitrification, a major nitrogen (N) loss pathway in coastal ecosystems and both a source and sink of N2 O. Measurements of net N2 O fluxes alone yield little insight into the different effects of redox conditions on N2 O production and consumption. We used in situ measurements of gross N2 O fluxes across a salt marsh elevation gradient to determine how soil N2 O emissions in coastal ecosystems may respond to future sea level rise. Soil redox declined as marsh elevation decreased, with lower soil nitrate and higher ferrous iron in the low marsh compared to the mid and high marshes (P < 0.001 for both). In addition, soil oxygen concentrations were lower in the low and mid-marshes relative to the high marsh (P < 0.001). Net N2 O fluxes differed significantly among marsh zones (P = 0.009), averaging 9.8 ± 5.4 μg N m(-2)  h(-1) , -2.2 ± 0.9 μg N m(-2)  h(-1) , and 0.67 ± 0.57 μg N m(-2)  h(-1) in the low, mid, and high marshes, respectively. Both net N2 O release and uptake were observed in the low and high marshes, but the mid-marsh was consistently a net N2 O sink. Gross N2 O production was highest in the low marsh and lowest in the mid-marsh (P = 0.02), whereas gross N2 O consumption did not differ among marsh zones. Thus, variability in gross N2 O production rates drove the differences in net N2 O flux among marsh zones. Our results suggest that future studies should focus on elucidating controls on the processes producing, rather than consuming, N2 O in salt marshes to improve our predictions of changes in net N2 O fluxes caused by future sea level rise.

  20. Biodiversity of Saline and Brakish Marshes of the Indian River Lagoon: Historic and Current Patterns

    NASA Technical Reports Server (NTRS)

    Schmalzer, Paul A.

    1995-01-01

    The Indian River Lagoon (IRL) crosses a zone of climatic transition. Historically, marshes dominated saline and brackish environments in the north of the lagoon, while mangroves became important to the south. Distribution of marsh communities was influenced by hydrology, salinity, soil characteristics, and fire, as well as periodic freezes. Marshes of the IRL have been greatly modified since the 1940s. Despite significant modifications, marsh plant species have not been lost from the region, but community and landscape patterns have been greatly modified and ecosystem processes altered.

  1. Re-establishing marshes can return carbon sink functions to a current carbon source in the Sacramento-San Joaquin Delta of California, USA

    USGS Publications Warehouse

    Miller, Robin L.; Fujii, Roger; Schmidt, Paul E.

    2011-01-01

    The Sacramento-San Joaquin Delta in California was an historic, vast inland freshwater wetland, where organic soils almost 20 meters deep formed over the last several millennia as the land surface elevation of marshes kept pace with sea level rise. A system of levees and pumps were installed in the late 1800s and early 1900s to drain the land for agricultural use. Since then, land surface has subsided more than 7 meters below sea level in some areas as organic soils have been lost to aerobic decomposition. As land surface elevations decrease, costs for levee maintenance and repair increase, as do the risks of flooding. Wetland restoration can be a way to mitigate subsidence by re-creating the environment in which the organic soils developed. A preliminary study of the effect of hydrologic regime on carbon cycling conducted on Twitchell Island during the mid-1990s showed that continuous, shallow flooding allowing for the growth of emergent marsh vegetation re-created a wetland environment where carbon preservation occurred. Under these conditions annual plant biomass carbon inputs were high, and microbial decomposition was reduced. Based on this preliminary study, the U.S. Geological Survey re-established permanently flooded wetlands in fall 1997, with shallow water depths of 25 and 55 centimeters, to investigate the potential to reverse subsidence of delta islands by preserving and accumulating organic substrates over time. Ten years after flooding, elevation gains from organic matter accumulation in areas of emergent marsh vegetation ranged from almost 30 to 60 centimeters, with average annual carbon storage rates approximating 1 kg/m2, while areas without emergent vegetation cover showed no significant change in elevation. Differences in accretion rates within areas of emergent marsh vegetation appeared to result from temporal and spatial variability in hydrologic factors and decomposition rates in the wetlands rather than variability in primary production

  2. Application of Sequential Extractions and X-ray Absorption Spectroscopy to Determine the Speciation of Chromium in Northern New Jersey Marsh Soils Developed in Chromite ore Processing Residue (COPR)

    SciTech Connect

    Elzinga, E.; Cirmo, A

    2010-01-01

    The Cr speciation in marsh soils developed in weathering chromite ore processing residue (COPR) was characterized using sequential extractions and synchrotron microbeam and bulk X-ray absorption spectroscopic (XAS) analyses. The sequential extractions suggested substantial Cr associated with reducible and oxidizable soil components, and significant non-extractable residual Cr. Notable differences in Cr speciation estimates from three extraction schemes underscore the operationally defined nature of Cr speciation provided by these methods. Micro X-ray fluorescence maps and {mu}-XAS data indicated the presence of {micro}m-sized chromite particles scattered throughout the weathered COPR matrix. These particles derive from the original COPR material, and have relatively high resistance towards weathering, and therefore persist even after prolonged leaching. Bulk XAS data further indicated Cr(III) incorporated in Fe(OH){sub 3}, and Cr(III) associated with organic matter. The low Cr contents of the weathered material (200-850 ppm) compared to unweathered COPR (20,000-60,000 ppm) point to substantial Cr leaching during COPR weathering, with partial repartitioning of released Cr into secondary Fe(OH){sub 3} phases and organics. The effects of anoxia on Cr speciation, and the potential of active COPR weathering releasing Cr(VI) deeper in the profile require further study.

  3. Application of sequential extractions and X-ray absorption spectroscopy to determine the speciation of chromium in Northern New Jersey marsh soils developed in chromite ore processing residue (COPR).

    PubMed

    Elzinga, Evert J; Cirmo, Ashley

    2010-11-15

    The Cr speciation in marsh soils developed in weathering chromite ore processing residue (COPR) was characterized using sequential extractions and synchrotron microbeam and bulk X-ray absorption spectroscopic (XAS) analyses. The sequential extractions suggested substantial Cr associated with reducible and oxidizable soil components, and significant non-extractable residual Cr. Notable differences in Cr speciation estimates from three extraction schemes underscore the operationally defined nature of Cr speciation provided by these methods. Micro X-ray fluorescence maps and μ-XAS data indicated the presence of μm-sized chromite particles scattered throughout the weathered COPR matrix. These particles derive from the original COPR material, and have relatively high resistance towards weathering, and therefore persist even after prolonged leaching. Bulk XAS data further indicated Cr(III) incorporated in Fe(OH)(3), and Cr(III) associated with organic matter. The low Cr contents of the weathered material (200-850 ppm) compared to unweathered COPR (20,000-60,000 ppm) point to substantial Cr leaching during COPR weathering, with partial repartitioning of released Cr into secondary Fe(OH)(3) phases and organics. The effects of anoxia on Cr speciation, and the potential of active COPR weathering releasing Cr(VI) deeper in the profile require further study.

  4. Responses of salt marsh ecosystems to mosquito control management practices along the Atlantic Coast (U.S.A.)

    USGS Publications Warehouse

    James-Pirri, Mary-Jane; Erwin, R. Michael; Prosser, Diann J.; Taylor, Janith D.

    2012-01-01

    Open marsh water management (OMWM) of salt marshes modifies grid-ditched marshes by creating permanent ponds and radial ditches in the high marsh that reduce mosquito production and enhance fish predation on mosquitoes. It is preferable to using pesticides to control salt marsh mosquito production and is commonly presented as a restoration or habitat enhancement tool for grid-ditched salt marshes. Monitoring of nekton, vegetation, groundwater level, soil salinity, and bird communities before and after OMWM at 11 (six treatment and five reference sites) Atlantic Coast (U.S.A.) salt marshes revealed high variability within and among differing OMWM techniques (ditch-plugging, reengineering of sill ditches, and the creation of ponds and radial ditches). At three marshes, the dominant nekton shifted from fish (primarily Fundulidae species) to shrimp (Palaemonidae species) after manipulations and shrimp density increased at other treatment sites. Vegetation changed at only two sites, one with construction equipment impacts (not desired) and one with a decrease in woody vegetation along existing ditches (desired). One marsh had lower groundwater level and soil salinity, and bird use, although variable, was often unrelated to OMWM manipulations. The potential effects of OMWM manipulations on non-target salt marsh resources need to be carefully considered by resource planners when managing marshes for mosquito control.

  5. The link between water quality and tidal marshes in a highly impacted estuary.

    NASA Astrophysics Data System (ADS)

    Meire, Patrick; Maris, Tom; van Damme, Stefan; Jacobs, Sander; Cox, Tom; Struyf, Eric

    2010-05-01

    The Schelde estuary is one of the most heavily impacted estuaries in Europe. During several decades, untreated waste water from large cities (e.g. Brussels, Antwerp, Valenciennes, Lille) and industries was discharged in the river. As a result, the Schelde estuary has the reputation of being one of the most polluted estuaries in Europe. For a long time (approx. 1950 - 1995) all forms of higher life (macro-invertebrates and fish) were absent in the fresh and brackish parts of the estuary. Due to European legislation, a large part of the sewage water is now treated resulting in a significant recovery of water quality in the estuary. However, next to water quality, the estuary also suffered serious habitat losses during the last decades, mostly due to economic development and changing hydrological conditions causing more erosion. Over the last fifteen years, the management of the estuary has changed fundamentally. It is now more and more focused on the restoration of ecosystem services. In this presentation we will document the changes in water quality over the last 50 years and summarize recent work on the role of tidal marshes on water quality within the freshwater part of the Schelde estuary. Our results stress the important of taking into account ecosystem services and habitat restoration for long-term estuarine management. .After decades of high inorganic nutrient concentrations and recurring anoxia and hypoxia, we observed a paradoxical increase in chlorophyll-a concentrations with decreasing nutrient inputs, indicating a regime shift. Our results indicate that the recovery of a hypereutrophied systems towards a classical eutrophied state, needs the reduction of waste loads below certain thresholds. Paradoxically, phytoplankton production was inhibited by high ammonia or low oxygen concentrations. The system state change is accompanied by large fluctuations in oxygen concentrations. The improved water quality resulted in a remarkable recovery of different groups

  6. [Deposition and burial of organic carbon in coastal salt marsh: research progress].

    PubMed

    Cao, Lei; Song, Jin-Ming; Li, Xue-Gang; Yuan, Hua-Mao; Li, Ning; Duan, Li-Qin

    2013-07-01

    Coastal salt marsh has higher potential of carbon sequestration, playing an important role in mitigating global warming, while coastal saline soil is the largest organic carbon pool in the coastal salt marsh carbon budget. To study the carbon deposition and burial in this soil is of significance for clearly understanding the carbon budget of coastal salt marsh. This paper summarized the research progress on the deposition and burial of organic carbon in coastal salt marsh from the aspects of the sources of coastal salt marsh soil organic carbon, soil organic carbon storage and deposition rate, burial mechanisms of soil organic carbon, and the relationships between the carbon sequestration in coastal salt marsh and the global climate change. Some suggestions for the future related researches were put forward: 1) to further study the underlying factors that control the variability of carbon storage in coastal salt marsh, 2) to standardize the methods for measuring the carbon storage and the deposition and burial rates of organic carbon in coastal salt marsh, 3) to quantify the lateral exchange of carbon flux between coastal salt marsh and adjacent ecosystems under the effects of tide, and 4) to approach whether the effects of global warming and the increased productivity could compensate for the increase of the organic carbon decomposition rate resulted from sediment respiration. To make clear the driving factors determining the variability of carbon sequestration rate and how the organic carbon storage is affected by climate change and anthropogenic activities would be helpful to improve the carbon sequestration capacity of coastal salt marshes in China.

  7. Biomass of freshwater turtles: a geographic comparison

    SciTech Connect

    Congdon, J.D.; Greene, J.L.; Gibbons, J.W.

    1986-01-01

    Standing crop biomass of freshwater turtles and minimum annual biomass of egg production were calculated for marsh and farm pond habitats in South Caroling and in Michigan. The species in South Carolina included Chelydra serpentina, Deirochelys reticularia, Kinosternon subrubrum, Pseudemys floridana, P. scripta and Sternotherus odoratus. The species in Michigan were Chelydra serpentina, Chrysemys picta and Emydoidea blandingi. Biomass was also determined for a single species population of P. scripta on a barrier island near Charleston, South Carolina. Population density and biomass of Pseudemys scripta in Green Pond on Capers Island were higher than densities and biomass of the entire six-species community studied on the mainland. In both the farm pond and marsh habitat in South Carolina P. scripta was the numerically dominant species and had the highest biomass. In Michigan, Chrysemys picta was the numerically dominant species; however, the biomass of Chelydra serpentina was higher. The three-species community in Michigan in two marshes (58 kg ha/sup -1/ and 46 kg ha/sup -1/) and farm ponds (23 kg ha/sup -1/) had lower biomasses than did the six-species community in a South Carolina marsh (73 kg/sup -1/). Minimum annual egg production by all species in South Carolina averaged 1.93 kg ha/sup -1/ and in Michigan averaged 2.89 kg ha/sup -1/ of marsh.

  8. Salt marsh vegetation change in response to tidal restriction

    NASA Astrophysics Data System (ADS)

    Roman, Charles T.; Niering, William A.; Warren, R. Scott

    1984-03-01

    Vegetation change in response to restriction of the normal tidal prism of six Connecticut salt marshes is documented. Tidal flow at the study sites was restricted with tide gates and associated causeways and dikes for purposes of flood protection, mosquito control, and/or salt hay farming. One study site has been under a regime of reduced tidal flow since colonial times, while the duration of restriction at the other sites ranges from less than ten years to several decades. The data indicate that with tidal restriction there is a substantial reduction in soil water salinity, lowering of the water table level, as well as a relative drop in the marsh surface elevation. These factors are considered to favor the establishment and spread of Phragmites australis (common reed grass) and other less salt-tolerant species, with an attendant loss of Spartina-dominated marsh. Based on detailed vegetation mapping of the study sites, a generalized scheme is presented to describe the sequence of vegetation change from typical Spartina- to Phragmites-dominated marshes. The restoration of these Phragmites systems is feasible following the reintroduction of tidal flow. At several sites dominated by Phragmites, tidal flow was reintroduced after two decades of continuous restriction, resulting in a marked reduction in Phragmites height and the reestablishment of typical salt marsh vegetation along creekbanks. It is suggested that large-scale restoration efforts be initiated in order that these degraded systems once again assume their roles within the salt marsh-estuarine ecosystem.

  9. BIOREMEDIATION OF OIL-CONTAMINATED COASTAL FRESHWATER AND SALTWATER WETLANDS

    EPA Science Inventory

    Two field studies involving intentional releases of crude oil onto a freshwater wetland and a salt marsh were conducted in Canada in the summers of 1999 and 2000, respectively. The objective of both studies was to determine the role of nutrients in enhancing wetland restoration ...

  10. BIOREMEDIATION OF OIL-CONTAMINATED COASTAL FRESHWATER AND SALTWATER WETLANDS

    EPA Science Inventory

    Two field studies involving intentional releases of crude oil onto a freshwater wetland and a salt marsh were conducted in Canada in the summers of 1999 and 2000, respectively. The objective of both studies was to determine the role of nutrients in enhancing wetland restoration i...

  11. Aeration for plant root respiration in a tidal marsh

    NASA Astrophysics Data System (ADS)

    Li, Hailong; Li, Ling; Lockington, David

    2005-06-01

    This paper investigates the tidal effects on aeration conditions for plant root respiration in a tidal marsh. We extend the work of Ursino et al. (2004) by using a two-phase model for air and water flows in the marsh. Simulations have been conducted to examine directly the link between the airflow dynamics and the aeration condition in the marsh soil. The results show that the effects of entrapped air on water movement in the vadose zone are significant in certain circumstances. Single-phase models based on Richards' equation, which neglect such effects, may not be adequate for quantifying the aeration condition in tidal marsh. The optimal aeration condition, represented by the maximum of the integral magnitude of tidally advected air mass (TAAM) flux, is found to occur near the tidal creek for the four soil textures simulated. This may explain the observation that some salt marsh plant species grow better near tidal creeks than in the inner marsh areas. Our analyses, based on the two-phase model and predicted TAAM flux magnitude, provide further insight into the "positive feedback" mechanism proposed by Ursino et al. (2004). That is, pioneer plants may grow successfully near the creek where the root aeration condition is optimal. The roots of the pioneer plants can soften and loosen the rhizosphere soil, which increases the evapotranspiration rate, the soil porosity, and absolute permeability and weakens the capillary effects. These, in turn, improve further the root aeration conditions and may lead to colonization by plants less resistant to anaerobic conditions.

  12. Aeration for plant root respiration in a tidal marsh

    NASA Astrophysics Data System (ADS)

    Li, Hailong; Li, Ling; Lockington, David

    2005-06-01

    This paper investigates the tidal effects on aeration conditions for plant root respiration in a tidal marsh. We extend the work of Ursino et al. (2004) by using a two-phase model for air and water flows in the marsh. Simulations have been conducted to examine directly the link between the airflow dynamics and the aeration condition in the marsh soil. The results show that the effects of entrapped air on water movement in the vadose zone are significant in certain circumstances. Single-phase models based on Richards' equation, which neglect such effects, may not be adequate for quantifying the aeration condition in tidal marsh. The optimal aeration condition, represented by the maximum of the integral magnitude of tidally advected air mass (TAAM) flux, is found to occur near the tidal creek for the four soil textures simulated. This may explain the observation that some salt marsh plant species grow better near tidal creeks than in the inner marsh areas. Our analyses, based on the two-phase model and predicted TAAM flux magnitude, provide further insight into the ``positive feedback'' mechanism proposed by Ursino et al. (2004). That is, pioneer plants may grow successfully near the creek where the root aeration condition is optimal. The roots of the pioneer plants can soften and loosen the rhizosphere soil, which increases the evapotranspiration rate, the soil porosity, and absolute permeability and weakens the capillary effects. These, in turn, improve further the root aeration conditions and may lead to colonization by plants less resistant to anaerobic conditions.

  13. Contemporary deposition and long-term accumulation of sediment and nutrients by tidal freshwater forested wetlands impacted by sea level rise

    USGS Publications Warehouse

    Noe, Gregory; Hupp, Cliff R.; Bernhardt, Christopher E.; Krauss, Ken W.

    2016-01-01

    Contemporary deposition (artificial marker horizon, 3.5 years) and long-term accumulation rates (210Pb profiles, ~150 years) of sediment and associated carbon (C), nitrogen (N), and phosphorus (P) were measured in wetlands along the tidal Savannah and Waccamaw rivers in the southeastern USA. Four sites along each river spanned an upstream-to-downstream salinification gradient, from upriver tidal freshwater forested wetland (TFFW), through moderately and highly salt-impacted forested wetlands, to oligohaline marsh downriver. Contemporary deposition rates (sediment, C, N, and P) were greatest in oligohaline marsh and lowest in TFFW along both rivers. Greater rates of deposition in oligohaline and salt-stressed forested wetlands were associated with a shift to greater clay and metal content that is likely associated with a change from low availability of watershed-derived sediment to TFFW and to greater availability of a coastal sediment source to oligohaline wetlands. Long-term accumulation rates along the Waccamaw River had the opposite spatial pattern compared to contemporary deposition, with greater rates in TFFW that declined to oligohaline marsh. Long-term sediment and elemental mass accumulation rates also were 3–9× lower than contemporary deposition rates. In comparison to other studies, sediment and associated nutrient accumulation in TFFW are lower than downriver/estuarine freshwater, oligohaline, and salt marshes, suggesting a reduced capacity for surface sedimentation (short-term) as well as shallow soil processes (long-term sedimentation) to offset sea level rise in TFFW. Nonetheless, their potentially large spatial extent suggests that TFFW have a large impact on the transport and fate of sediment and nutrients in tidal rivers and estuaries.

  14. Application of Phospholipid Fatty Acids in the Evaluation of Post-Katrina Wetland Soils

    NASA Astrophysics Data System (ADS)

    Holloway, J. M.; Swarzenski, C. M.; Krauss, K. W.; Doyle, T. W.

    2008-12-01

    The combined effects of Hurricanes Katrina (landfall Aug. 29, 2005) and Rita (landfall Sept. 24, 2005) resulted in a catastrophic loss of wetlands, with an estimated decrease of 562 km2 of land area (Barras, 2006) along the Gulf Coast of Louisiana. A study was initiated following the 2005 hurricane season to characterize storm impacts on coastal marsh soils, measuring soil organic carbon, biogeochemistry of soil pore waters, and soil microbial communities using phospholipids fatty acids (PLFA). Areas selected for study include Caernarvon, which had the greatest land loss through Katrina, and the Barataria Preserve, a unit within the Jean Lafitte National Historic Park. Marshes ranged from fresh water to saline. PLFA concentrations were generally greater in surface soils (28-144 nmol PLFA/g dry soil at 0-5 cm) than deeper soil (27-77 nmol/g at 10-15 cm; 18-20 nmol/g at 35-45 cm) for soils collected in March 2006. There was a notable exception to this trend. The concentration of PLFAs was greater at 15cm (51 nmol/g) than 5cm (28 nmol/g) in a remnant salt marsh soil from Caernarvon. The ratio of 17:0cy/17:0, a stress indicator, was greater in the 5 and 15 cm depths for this soil (6.4 and 7.3, respectively) than in other soils collected at this date (1.9-6.4 at 5 cm; 1.2-5.4 at 15 cm). The inverted PLFA biomass and elevated 17:0cy/17:0 at this location may reflect disturbance from Katrina 6 months after the storm. Differences in microbial community structure were noted between fresh-water and salt marshes, with a general decrease in PLFA concentrations with increasing salinity. A resampling of surface soil in September, 2007 showed an increase in PLFA concentration (64-148 nmol/g) and decreased 17:0cy/17:0 ratio (1.5-3.8). In addition, there were shifts in surface microbial communities, including an increase in a16:0 in fresh water marsh soils and in overall increase in 18:1ωc, a biomarker for eukaryotic microorganisms, including algae and fungi. These shifts may

  15. Effects of wetland recovery on soil labile carbon and nitrogen in the Sanjiang Plain.

    PubMed

    Huang, Jingyu; Song, Changchun; Nkrumah, Philip Nti

    2013-07-01

    Soil management significantly affects the soil labile organic factors. Understanding carbon and nitrogen dynamics is extremely helpful in conducting research on active carbon and nitrogen components for different kinds of soil management. In this paper, we examined the changes in microbial biomass carbon (MBC), microbial biomass nitrogen (MBN), dissolved organic carbon (DOC), and dissolved organic nitrogen (DON) to assess the effect and mechanisms of land types, organic input, soil respiration, microbial species, and vegetation recovery under Deyeuxia angustifolia freshwater marshes (DAMs) and recovered freshwater marsh (RFM) in the Sanjiang Plain, Northeast China. Identifying the relationship among the dynamics of labile carbon, nitrogen, and soil qualification mechanism using different land management practices is therefore important. Cultivation and land use affect intensely the DOC, DON, MBC, and MBN in the soil. After DAM soil tillage, the DOC, DON, MBC, and MBN at the surface of the agricultural soil layer declined significantly. In contrast, their recovery was significant in the RFM surface soil. A long time was needed for the concentration of cultivated soil total organic carbon and total nitrogen to be restored to the wetland level. The labile carbon and nitrogen fractions can reach a level similar to that of the wetland within a short time. Typical wetland ecosystem signs, such as vegetation, microbes, and animals, can be recovered by soil labile carbon and nitrogen fraction restoration. In this paper, the D. angustifolia biomass attained natural wetland level after 8 years, indicating that wetland soil labile fractions can support wetland eco-function in a short period of time (4 to 8 years) for reconstructed wetland under suitable environmental conditions.

  16. Geographic variation in salt marsh structure and function.

    PubMed

    McCall, Brittany D; Pennings, Steven C

    2012-11-01

    We examined geographic variation in the structure and function of salt marsh communities along the Atlantic and Gulf coasts of the United States. Focusing on the arthropod community in the dominant salt marsh plant Spartina alterniflora, we tested two hypotheses: first, that marsh community structure varies geographically, and second, that two aspects of marsh function (response to eutrophication and addition of dead plant material) also vary geographically. We worked at eleven sites on the Gulf Coast and eleven sites on the Atlantic Coast, dividing each coast up into two geographic areas. Abiotic conditions (tidal range, soil organic content, and water content, but not soil salinity), plant variables (Spartina nitrogen content, height, cover of dead plant material, but not live Spartina percent cover or light interception), and arthropod variables (proportional abundances of predators, sucking herbivores, stem-boring herbivores, parasitoids, and detritivores, but not total arthropod numbers) varied among the four geographic regions. Latitude and mean tidal range explained much of this geographic variation. Nutrient enrichment increased all arthropod functional groups in the community, consistent with previous experimental results, and had similar effects in all geographic regions, contrary to our hypothesis, suggesting widespread consistency in this aspect of ecosystem function. The addition of dead plant material had surprisingly little effect on the arthropod community. Our results caution against the uncritical extrapolation of work done in one geographic region to another, but indicate that some aspects of marsh function may operate in similar ways in different geographic regions, despite spatial variation in community structure.

  17. Tidal circulation alteration for salt marsh mosquito control

    NASA Astrophysics Data System (ADS)

    Resh, Vincent H.; Balling, Steven S.

    1983-01-01

    Mosquito control ditches designed to increase tidal circulation are widely used as a physical control alternative to insecticidal applications The impact of such ditching on Pacific Coast marshlands was largely unknown before this five-year study of impact in two types of San Francisco Bay salt marshes, a Salicornia virginica (pickleweed) monoculure and a mixed vegetation marsh Results of our studies suggest that ditches cause less environmental disturbance than insecticidal applications The article describes the following environmental consequences of ditching for mosquito control: increased tidal flushing of soils occurs adjacent to ditches compared with that in the open marsh, thereby reducing ground water and soil surface salinities and water table height; primary productivity of S. virginica, as determined by both the harvest method and infrared photographic analysis, is higher directly adjacent to ditches than in the open marsh, distribution of selected arthropod populations is similar at ditches and natural channels, although arthropod community response differs seasonally; aquatic invertebrate biomass is similar within ditched and natural ponds, but diversity is lower in ditched habitats, ditching increases fish diversity and density by improving fish access from tidal channels; ditches provide additional salt marsh song sparrow habitat, although ditches are less preferred than natural channels or sloughs. Management criteria can be used to design ditches that provide effective mosquito control and reduced environmental impact

  18. Effects of Nutrient Enrichment on Microbial Communities and Carbon Cycling in Wetland Soils

    NASA Astrophysics Data System (ADS)

    Hartman, W.; Neubauer, S. C.; Richardson, C. J.

    2013-12-01

    Soil microbial communities are responsible for catalyzing biogeochemical transformations underlying critical wetland functions, including cycling of carbon (C) and nutrients, and emissions of greenhouse gasses (GHG). Alteration of nutrient availability in wetland soils may commonly occur as the result of anthropogenic impacts including runoff from human land uses in uplands, alteration of hydrology, and atmospheric deposition. However, the impacts of altered nutrient availability on microbial communities and carbon cycling in wetland soils are poorly understood. To assess these impacts, soil microbial communities and carbon cycling were determined in replicate experimental nutrient addition plots (control, +N, +P, +NP) across several wetland types, including pocosin peat bogs (NC), freshwater tidal marshes (GA), and tidal salt marshes (SC). Microbial communities were determined by pyrosequencing (Roche 454) extracted soil DNA, targeting both bacteria (16S rDNA) and fungi (LSU) at a depth of ca. 1000 sequences per plot. Wetland carbon cycling was evaluated using static chambers to determine soil GHG fluxes, and plant inclusion chambers were used to determine ecosystem C cycling. Soil bacterial communities responded to nutrient addition treatments in freshwater and tidal marshes, while fungal communities did not respond to treatments in any of our sites. We also compared microbial communities to continuous biogeochemical variables in soil, and found that bacterial community composition was correlated only with the content and availability of soil phosphorus, while fungi responded to phosphorus stoichiometry and soil pH. Surprisingly, we did not find a significant effect of our nutrient addition treatments on most metrics of carbon cycling. However, we did find that several metrics of soil carbon cycling appeared much more related to soil phosphorus than to nitrogen or soil carbon pools. Finally, while overall microbial community composition was weakly correlated with

  19. Suitability of Coastal Marshes as Whooping Crane Foraging Habitat in Southwest Louisiana, USA

    USGS Publications Warehouse

    King, Sammy L.; Kang, Sung-Ryong

    2014-01-01

    Foraging habitat conditions (i.e., water depth, prey biomass, digestible energy density) can be a significant predictor of foraging habitat selection by wading birds. Potential foraging habitats of Whooping Cranes (Grus americana) using marshes include ponds and emergent marsh, but the potential prey and energy availability in these habitat types have rarely been studied. In this study, we estimated daily digestible energy density for Whooping Cranes in different marsh and microhabitat types (i.e., pond, flooded emergent marsh). Also, indicator metrics of foraging habitat suitability for Whooping Cranes were developed based on seasonal water depth, prey biomass, and digestible energy density. Seasonal water depth (cm), prey biomass (g wet weight m-2), and digestible energy density (kcal g-1m-2) ranged from 0.0 to 50.2 ± 2.8, 0.0 to 44.8 ± 22.3, and 0.0 to 31.0 ± 15.3, respectively. With the exception of freshwater emergent marsh in summer, all available habitats were capable of supporting one Whooping Crane per 0.1 ha per day. All habitat types in the marshes had relatively higher suitability in spring and summer than in fall and winter. Our study indicates that based on general energy availability, freshwater marshes in the region can support Whooping Cranes in a relatively small area, particularly in spring and summer. In actuality, the spatial density of ponds, the flood depth of the emergent marsh, and the habitat conditions (e.g., vegetation density) between adjacent suitable habitats will constrain suitable habitat and Whooping Crane numbers.

  20. Relationship between anthropogenic sewage discharge, marsh structure and bird assemblages in an SW Atlantic saltmarsh.

    PubMed

    Cardoni, D A; Isacch, J P; Fanjul, M E; Escapa, M; Iribarne, O O

    2011-03-01

    One of the main effects of urbanization on coastal areas is through the discharge of sewage, which increases nutrient concentrations in the receiving environment. Salt marshes, like other coastal marine environments, are limited by nutrients, mainly nitrogen, and thus increasing nutrient loadings to a marsh may have consequences on marsh characteristics. We evaluated how the effects of nutrient enrichment in the form of sewage input, affected the vegetation structure and bird assemblages in a Spartina alterniflora salt marsh system near Bahía Blanca, Argentina (39° 01' S - 56° 25' W). Surveys of nutrient concentration, vegetation and birds were made at three different distances from the sewage discharge source. The concentration of ammonium, phosphate, and nitrate and the percent organic matter was higher in marshes nearest to the sewage discharge source. Bird composition and abundance, and vegetation physiognomy changed along a gradient of nutrient concentration. The increased habitat complexity found near the areas of higher nutrient concentration was exploited by birds that use neighboring interior and coastal habitats, including Spartina densiflora marshes, freshwater marshes and upland shrubby habitats. Our results show that local increases of nutrient inputs directly changed the vegetation physiognomy, and indirectly the composition and abundance of bird assemblages.

  1. Upslope development of a tidal marsh as a function of upland land use.

    PubMed

    Anisfeld, Shimon C; Cooper, Katharine R; Kemp, Andrew C

    2017-02-01

    To thrive in a time of rapid sea-level rise, tidal marshes will need to migrate upslope into adjacent uplands. Yet little is known about the mechanics of this process, especially in urbanized estuaries, where the adjacent upland is likely to be a mowed lawn rather than a wooded natural area. We studied marsh migration in a Long Island Sound salt marsh using detailed hydrologic, edaphic, and biotic sampling along marsh-to-upland transects in both wooded and lawn environments. We found that the overall pace of marsh development was largely unaffected by whether the upland being invaded was lawn or wooded, but the marsh-edge plant communities that developed in these two environments were quite different, and some indicators (soil salinity, foraminifera) appeared to migrate more easily into lawns. In addition, we found that different aspects of marsh structure and function migrated at different rates: Wetland vegetation appeared to be a leading indicator of marsh migration, while soil characteristics such as redox potential and surface salinity developed later in the process. We defined a 'hydrologic migration zone', consisting of elevations that experience tidal inundation with frequencies ranging from 20% to 0.5% of high tides. This hydrologically defined zone - which extended to an elevation higher than the highest astronomical tide datum - captured the biotic and edaphic marsh-upland ecotone. Tidal inundation at the upper border of this migration zone is highly variable over time and may be rising more rapidly than mean sea level. Our results indicate that land management practices at the upland periphery of tidal marshes can facilitate or impede ecosystem migration in response to rising sea level. These findings are applicable to large areas of tidal marsh along the U.S. Atlantic coast and in other urbanized coastal settings.

  2. Regeneration of coastal marsh vegetation impacted by hurricanes Katrina and Rita

    USGS Publications Warehouse

    Middleton, B.A.

    2009-01-01

    as salt water species (e.g., Avicennia germinans, Salicornia bigelovii). Nevertheless, the species richness of seeds germinating from the seed bank of freshwater marshes was reduced more than in salt marshes, indicating that freshwater marsh regeneration may be more affected by hurricanes and/or sea level rise than salt marshes. From the perspective of short-term seed germination and recruitment following hurricanes, species recruitment is dependent on the post-disturbance conditions of water and salinity. ?? 2009 The Society of Wetland Scientists.

  3. In situ burning restores the ecological function and structure of an oil-impacted coastal marsh.

    PubMed

    Baustian, Joseph; Mendelssohn, Irving; Lin, Qianxin; Rapp, John

    2010-11-01

    As the use of in situ burning for oil spill remediation in coastal wetlands accelerates, the capacity of this procedure to restore the ecological structure and function of oil-impacted wetlands becomes increasingly important. Thus, our research focused on evaluating the functional and structural recovery of a coastal marsh in South Louisiana to an in situ burn following a Hurricane Katrina-induced oil spill. Permanent sampling plots were set up to monitor marsh recovery in the oiled and burned areas as well as non-oiled and non-burned (reference) marshes. Plots were monitored for species composition, stem density, above- and belowground productivity, marsh resiliency, soil chemistry, soil residual oil, and organic matter decomposition. The burn removed the majority of the oil from the marsh, and structurally the marsh recovered rapidly. Plant biomass and species composition returned to control levels within 9 months; however, species richness remained somewhat lower in the oiled and burned areas compared to the reference areas. Recovery of ecological function was also rapid following the in situ burn. Aboveground and belowground plant productivity recovered within one growing season, and although decomposition rates were initially higher in the oiled areas, over time they became equivalent to those in reference sites. Also, marsh resiliency, i.e., the rate of recovery from our applied disturbances, was not affected by the in situ burn. We conclude that in situ burning is an effective way to remove oil and allow ecosystem recovery in coastal marshes.

  4. In Situ Burning Restores the Ecological Function and Structure of an Oil-Impacted Coastal Marsh

    NASA Astrophysics Data System (ADS)

    Baustian, Joseph; Mendelssohn, Irving; Lin, Qianxin; Rapp, John

    2010-11-01

    As the use of in situ burning for oil spill remediation in coastal wetlands accelerates, the capacity of this procedure to restore the ecological structure and function of oil-impacted wetlands becomes increasingly important. Thus, our research focused on evaluating the functional and structural recovery of a coastal marsh in South Louisiana to an in situ burn following a Hurricane Katrina-induced oil spill. Permanent sampling plots were set up to monitor marsh recovery in the oiled and burned areas as well as non-oiled and non-burned (reference) marshes. Plots were monitored for species composition, stem density, above- and belowground productivity, marsh resiliency, soil chemistry, soil residual oil, and organic matter decomposition. The burn removed the majority of the oil from the marsh, and structurally the marsh recovered rapidly. Plant biomass and species composition returned to control levels within 9 months; however, species richness remained somewhat lower in the oiled and burned areas compared to the reference areas. Recovery of ecological function was also rapid following the in situ burn. Aboveground and belowground plant productivity recovered within one growing season, and although decomposition rates were initially higher in the oiled areas, over time they became equivalent to those in reference sites. Also, marsh resiliency, i.e., the rate of recovery from our applied disturbances, was not affected by the in situ burn. We conclude that in situ burning is an effective way to remove oil and allow ecosystem recovery in coastal marshes.

  5. Effects of long-term grazing on sediment deposition and salt-marsh accretion rates

    NASA Astrophysics Data System (ADS)

    Elschot, Kelly; Bouma, Tjeerd J.; Temmerman, Stijn; Bakker, Jan P.

    2013-11-01

    Many studies have attempted to predict whether coastal marshes will be able to keep up with future acceleration of sea-level rise by estimating marsh accretion rates. However, there are few studies focussing on the long-term effects of herbivores on vegetation structure and subsequent effects on marsh accretion. Deposition of fine-grained, mineral sediment during tidal inundations, together with organic matter accumulation from the local vegetation, positively affects accretion rates of marsh surfaces. Tall vegetation can enhance sediment deposition by reducing current flow and wave action. Herbivores shorten vegetation height and this could potentially reduce sediment deposition. This study estimated the effects of herbivores on 1) vegetation height, 2) sediment deposition and 3) resulting marsh accretion after long-term (at least 16 years) herbivore exclusion of both small (i.e. hare and goose) and large grazers (i.e. cattle) for marshes of different ages. Our results firstly showed that both small and large herbivores can have a major impact on vegetation height. Secondly, grazing processes did not affect sediment deposition. Finally, trampling by large grazers affected marsh accretion rates by compacting the soil. In many European marshes, grazing is used as a tool in nature management as well as for agricultural purposes. Thus, we propose that soil compaction by large grazers should be taken in account when estimating the ability of coastal systems to cope with an accelerating sea-level rise.

  6. Controls on resilience and stability in a sediment-subsidized salt marsh.

    PubMed

    Stagg, Camille L; Mendelssohn, Irving A

    2011-07-01

    Although the concept of self-design is frequently employed in restoration, reestablishment of primary physical drivers does not always result in a restored ecosystem having the desired ecological functions that support system resilience and stability. We investigated the use of a primary environmental driver in coastal salt marshes, sediment availability, as a means of promoting the resilience and stability of submerging deltaic salt marshes, which are rapidly subsiding due to natural and human-induced processes. We conducted a disturbance-recovery experiment across a gradient of sediment slurry addition to assess the roles of sediment elevation and soil physico-chemical characteristics on vegetation resilience and stability in two restored salt marshes of differing age (a 15-year-old site and a 5-year-old site). Salt marshes that received moderate intensities of sediment slurry addition with elevations at the mid to high intertidal zone (2-11 cm above local mean sea level; MSL) were more resilient than natural marshes. The primary regulator of enhanced resilience and stability in the restored marshes was the alleviation of flooding stress observed in the natural, unsubsidized marsh. However, stability reached a sediment addition threshold, at an elevation of 11 cm above MSL, with decreasing stability in marshes above this elevation. Declines in resilience and stability above the sediment addition threshold were principally influenced by relatively dry conditions that resulted from insufficient and infrequent flooding at high elevations. Although the older restored marsh has subsided over time, areas receiving too much sediment still had limited stability 15 years later, emphasizing the importance of applying the appropriate amount of sediment to the marsh. In contrast, treated marshes with elevations 2-11 cm above MSL were still more resilient than the natural marsh 15 years after restoration, illustrating that when performed correctly, sediment slurry addition

  7. Hydrologic restoration in a dynamic subtropical mangrove-to-marsh ecotone

    USGS Publications Warehouse

    Howard, Rebecca J.; Day, Richard H.; Krauss, Ken W.; From, Andrew S.; Allain, Larry K.; Cormier, Nicole

    2016-01-01

    Extensive hydrologic modifications in coastal regions across the world have occurred to support infrastructure development, altering the function of many coastal wetlands. Wetland restoration success is dependent on the existence of hydrologic regimes that support development of appropriate soils and the growth and persistence of wetland vegetation. In Florida, United States, the Comprehensive Everglades Restoration Program (CERP) seeks to restore, protect, and preserve water resources of the greater Everglades region. Herein we describe vegetation dynamics in a mangrove-to-marsh ecotone within the impact area of a CERP hydrologic restoration project currently under development. Vegetation communities are also described for a similar area outside the project area. We found that vegetation shifts within the impact area occurred over a 7-year period; cover of herbaceous species varied by location, and an 88% increase in the total number of mangrove seedlings was documented. We attribute these shifts to the existing modified hydrologic regime, which is characterized by a low volume of freshwater sheet flow compared with historical conditions (i.e. before modification), as well as increased tidal influence. We also identified a significant trend of decreasing soil surface elevation at the impact area. The CERP restoration project is designed to increase freshwater sheet flow to the impact area. Information from our study characterizing existing vegetation dynamics prior to implementation of the restoration project is required to allow documentation of long-term project effects on plant community composition and structure within a framework of background variation, thereby allowing assessment of the project's success in restoring critical ecosystem functions.

  8. Greenhouse gas emissions from a created brackish marsh in eastern North Carolina

    USGS Publications Warehouse

    Shiau, Yo-Jin; Burchell, Michael R.; Krauss, Ken W.; Birgand, Francois; Broome, Stephen W.

    2016-01-01

    Tidal marsh creation helps remediate global warming because tidal wetlands are especially proficient at sequestering carbon (C) in soils. However, greenhouse gas (GHG) losses can offset the climatic benefits gained from C storage depending on how these tidal marshes are constructed and managed. This study attempts to determine the GHG emissions from a 4–6 year old created brackish marsh, what environmental factors governed these emissions, and how the magnitude of the fluxes relates to other wetland ecosystems. The static flux chamber method was used to measure GHG fluxes across three distinct plant zones segregated by elevation. The major of soil GHG fluxes from the marsh were from CO2 (−48–192 mg C m-2 h-1), although it was near the lower end of values reported from other wetland types having lower salinities, and would mostly be offset by photosynthetic uptake in this created brackish marsh. Methane flux was also low (−0.33–0.86 mg C m-2 h-1), likely inhibited by the high soil SO42−and soil redox potentials poised above −150 mV in this in this created brackish marsh environment. Low N2O flux (−0.11–0.10 mg N m-2 h-1) was due to low soil NO3− and soil redox conditions favoring complete denitrification. GHG fluxes from this created brackish marsh were generally lower than those recorded from natural marshes, suggesting that C sequestration may not be offset by the radiative forcing from soil GHG emissions if projects are designed properly.

  9. Assessing wildlife benefits and carbon storage from restored and natural coastal marshes in the Nisqually River Delta: Determining marsh net ecosystem carbon balance

    USGS Publications Warehouse

    Anderson, Frank; Bergamaschi, Brian; Windham-Myers, Lisamarie; Woo, Isa; De La Cruz, Susan; Drexler, Judith; Byrd, Kristin; Thorne, Karen M.

    2016-06-24

    Working in partnership since 1996, the U.S. Fish and Wildlife Service and the Nisqually Indian Tribe have restored 902 acres of tidally influenced coastal marsh in the Nisqually River Delta (NRD), making it the largest estuary-restoration project in the Pacific Northwest to date. Marsh restoration increases the capacity of the estuary to support a diversity of wildlife species. Restoration also increases carbon (C) production of marsh plant communities that support food webs for wildlife and can help mitigate climate change through long-term C storage in marsh soils.In 2015, an interdisciplinary team of U.S. Geological Survey (USGS) researchers began to study the benefits of carbon for wetland wildlife and storage in the NRD. Our primary goals are (1) to identify the relative importance of the different carbon sources that support juvenile chinook (Oncorhynchus tshawytscha) food webs and contribute to current and historic peat formation, (2) to determine the net ecosystem carbon balance (NECB) in a reference marsh and a restoration marsh site, and (3) to model the sustainability of the reference and restoration marshes under projected sea-level rise conditions along with historical vegetation change. In this fact sheet, we focus on the main C sources and exchanges to determine NECB, including carbon dioxide (CO2) uptake through plant photosynthesis, the loss of CO2 through plant and soil respiration, emissions of methane (CH4), and the lateral movement or leaching loss of C in tidal waters.

  10. Joint Geophysical and Hydrologic Constraints on Shallow Groundwater Flow Systems in Clastic Salt Marshes of the South Atlantic Bight

    NASA Astrophysics Data System (ADS)

    Ruppel, C.; Fulton, P.; Schultz, G. M.; Castillo, L.; Bartlett, J.; Sibley, S.

    2005-12-01

    Salt marsh systems play a critical role in buffering upland coastal areas from the influence of open saltwater bodies and in filtering contaminants that originate offshore or are flushed from uplands. For these reasons, it is important to understand the salt marsh hydrologic cycle, especially the interaction of groundwater and surface water across low-lying coastal fringes and the changes in physical, chemical, and ecological parameters across salinity gradients extending from upland to tidal creek to open water. For the past 5 years, we have conducted hydrogeophysical surveys (inductive EM and DC resistivity) and collected limited, coincident groundwater hydrologic data in clastic salt marshes throughout the South Atlantic Bight (SAB), stretching from South Carolina on the north to the Georgia-Florida border on the south. All of the marshes are dominated by Spartina and Juncus grasses and are cut by tidally-influenced creeks, but both the lithology and age of the marshes vary widely. For example, one highly homogeneous marsh study site has formed only within the past century, while most sites have existed for thousands of years and have laterally and vertically heterogeneous lithology. Geophysical images of the marsh subsurface and coincident monitoring of groundwater temperature, water level, and/or chemistry consistently show that marshes in the mixed energy environment of the middle part of the SAB (GCE LTER) tend to be dominated by submarsh discharge of freshwater to adjacent tidal creeks. In the South Carolina part of the SAB, we have greater evidence for seepage, particularly through biologically-created macropore networks and permeable sediment bodies that intersect tidal creeks. It is possible though that the South Carolina results are not so much 'universal' as reflective of local lithology. In a very young marsh near the Florida border, geophysical imaging implies a mixture of seepage and submarsh flow, and hydrologic data provide unequivocal proof that

  11. Impact of freshwater diversion projects on diversity and activity of methanotrophic communities in freshwater wetlands

    NASA Astrophysics Data System (ADS)

    Isaac, J.; Schulz, C. J.; Childers, G. W.

    2009-12-01

    Methanotrophic bacteria are key players in the carbon cycle capable of using methane as a sole carbon and energy source. Methanotrophs are ubiquitous in soil environments and play a key role in decreasing methane flux from anaerobic environments to the atmosphere, reducing the concentration of this greenhouse gas. Wetlands are a particularly important source of methane to the atmosphere, even though methanotrophs can consume the majority of the methane produced. Decreases in methanotrophic activity in wetland environments due to disturbance can have negative impacts with regard to greenhouse gas emissions, especially if the impact is widespread. Currently, several freshwater diversion projects are active and/or scheduled to come online in south Louisiana, delivering freshwater, sediments, and nutrients to coastal wetlands en masse to help combat subsidence and coastal erosion. Along with freshwater, these diversions also deliver other components of the Mississippi River including substantial bicarbonate alkalinity, reactive nitrogen, and sulfate. Analogous to the large scale diversion projects are smaller restoration projects that deliver treated wastewater effluent to wetlands. In particular, the Joyce Wildlife Management Area (JWMA) in southeast Louisiana has been the recipient of ~5 million gallons of treated domestic effluent per day since 2006. Both the composition of the marsh receiving the effluent and the effluent itself have similarities to Mississippi River diversions. We collected pre and post JWMA sediment microbial community DNA and created cloned libraries of genes encoding particulate methane monooxygenase (pmoA) as a proxy for methanotrophic community composition. Water chemistry data was also collected. Shifts in methanotrophic community composition were apparent as well as shifts in water chemistry. The most notable shift in water chemistry was pH, which changed from mildly acidic to slightly alkaline conditions, due to the increased alkalinity of

  12. Characteristics of adsorption interactions of cadmium(II) onto humin from peat soil in freshwater and seawater media.

    PubMed

    Andreas, Roy; Zhang, Jing

    2014-03-01

    The present study examined Cd solubility in pH 2-12 fresh and seawater media with and without humin to determine Cd species composition. The study, based on the Langmuir-Hinshelwood kinetics model, was conducted to determine the kinetic parameters of Cd(II) adsorption onto humin. We employed the Langmuir and Freundlich models to derive thermodynamic parameters. Aquo (Cd(H2O) 6 (2+) ) and chloro- (CdCl(+) and CdCl2) complexes were responsible for Cd(II) adsorption onto humin. Results showed Cd as Cd(II) and Cd(H2O) 6 (+2) was water soluble at 2 < pH < 7; with a portion of the soluble Cd precipitating as Cd(OH)2. The Cd(II) rate constant (k) in freshwater was 0.5 × 10(-3) (min(-1)), occurring in a single phase, while in seawater fast and slow phase values for k were 31.88 × 10(-3) and 6.2 × 10(-3) (min(-1)), respectively. The adsorption curves showed a better fit with the Langmuir than the Freundlich model.

  13. Temperature sensitivity of organic-matter decay in tidal marshes

    USGS Publications Warehouse

    Kirwan, Matthew L.; Guntenspergen, Glenn R.; Langley, J.A.

    2014-01-01

    Approximately half of marine carbon sequestration takes place in coastal wetlands, including tidal marshes, where organic matter contributes to soil elevation and ecosystem persistence in the face of sea-level rise. The long-term viability of marshes and their carbon pools depends, in part, on how the balance between productivity and decay responds to climate change. Here, we report the sensitivity of labile soil organic-matter decay in tidal marshes to seasonal and latitudinal variations in temperature measured over a 3-year period. We find a moderate increase in decay rate at warmer temperatures (3-6% per °C, Q10 = 1.3-1.5). Despite the profound differences between microbial metabolism in wetlands and uplands, our results indicate a strong conservation of temperature sensitivity. Moreover, simple comparisons with organic-matter production suggest that elevated atmospheric CO2 and warmer temperatures will accelerate carbon accumulation in marsh soils, and potentially enhance their ability to survive sea-level rise.

  14. Temperature sensitivity of organic-matter decay in tidal marshes

    NASA Astrophysics Data System (ADS)

    Kirwan, M. L.; Guntenspergen, G. R.; Langley, J. A.

    2014-09-01

    Approximately half of marine carbon sequestration takes place in coastal wetlands, including tidal marshes, where organic matter contributes to soil elevation and ecosystem persistence in the face of sea-level rise. The long-term viability of marshes and their carbon pools depends, in part, on how the balance between productivity and decay responds to climate change. Here, we report the sensitivity of labile soil organic-matter decay in tidal marshes to seasonal and latitudinal variations in temperature measured over a 3-year period. We find a moderate increase in decay rate at warmer temperatures (3-6% per °C, Q10 = 1.3-1.5). Despite the profound differences between microbial metabolism in wetlands and uplands, our results indicate a strong conservation of temperature sensitivity. Moreover, simple comparisons with organic-matter production suggest that elevated atmospheric CO2 and warmer temperatures will accelerate carbon accumulation in marsh soils, and potentially enhance their ability to survive sea-level rise.

  15. Vegetation death and rapid loss of surface elevation in two contrasting Mississippi delta salt marshes: The role of sedimentation, autocompaction and sea-level rise

    USGS Publications Warehouse

    Day, J.W.; Kemp, G.P.; Reed, D.J.; Cahoon, D.R.; Boumans, R.M.; Suhayda, J.M.; Gambrell, R.

    2011-01-01

    From 1990 to 2004, we carried out a study on accretionary dynamics and wetland loss in salt marshes surrounding two small ponds in the Mississippi delta; Old Oyster Bayou (OB), a sediment-rich area near the mouth of the Atchafalaya River and Bayou Chitigue (BC), a sediment-poor area about 70. km to the east. The OB site was stable, while most of the marsh at BC disappeared within a few years. Measurements were made of short-term sedimentation, vertical accretion, change in marsh surface elevation, pond wave activity, and marsh soil characteristics. The OB marsh was about 10. cm higher than BC; the extremes of the elevation range for Spartina alterniflora in Louisiana. Vertical accretion and short-term sedimentation were about twice as high at BC than at OB, but the OB marsh captured nearly all sediments deposited, while the BC marsh captured <30%. The OB and BC sites flooded about 15% and 85% of the time, respectively. Marsh loss at BC was not due to wave erosion. The mineral content of deposited sediments was higher at OB. Exposure and desiccation of the marsh surface at OB increased the efficiency that deposited sediments were incorporated into the marsh soil, and displaced the marsh surface upward by biological processes like root growth, while also reducing shallow compaction. Once vegetation dies, there is a loss of soil volume due to loss of root turgor and oxidation of root organic matter, which leads to elevation collapse. Revegetation cannot occur because of the low elevation and weak soil strength. The changes in elevation at both marsh sites are punctuated, occurring in steps that can either increase or decrease elevation. When a marsh is low as at BC, a step down can result in an irreversible change. At this point, the option is not restoration but creating a new marsh with massive sediment input either from the river or via dredging. ?? 2010 Elsevier B.V.

  16. Methane Emissions from a Hydrologically Altered Region of the Sprague River Salt Marsh, Phippsburg, ME

    NASA Astrophysics Data System (ADS)

    Cohen-Kaplan, Dana; Johnson, Beverly; Dostie, Phil; Carey, Joanna

    2016-04-01

    Humans have been altering salt marshes for 200 years, by ditching, or excavating channels to drain pools to reduce mosquito habitat and to make the marsh platform suitable for agriculture. The presence of these ditches has had a negative impact on the marsh hydrology. The Sprague River Salt Marsh, located in Phippsburg, ME, has been ditched for centuries. In 2002, the United States Fish and Wildlife Service installed several ditch-plugs in the marsh in and attempt to restore pool habitat and marsh hydrology. This study seeks to examine the effects of one ditch-plug in particular, and the impact it has had on methane emissions, soil salinity, and soil carbon densities. Three sites above and three sites below the ditch-plug were analyzed in these three areas. Methane emissions were slightly elevated above the ditch-plug relative to below the ditch-plug, with average fluxes of 12.9 +/- 4.83 umol/hr/m2 and 3.5 +/- 0.66 umol/hr/m^2, respectively. Soil salinities were higher above the ditch-plug, and soil carbon densities were higher below the ditch-plug. These results suggest that the hydrologic regime of the study area has been degraded, resulting in methane emissions, interrupted accretion, decreased marsh self-maintenance processes, stagnation and saturation of seawater in the pores of the sediment. Though salt marshes are generally considered effective carbon sinks, methane emissions may play a role on hydrologically altered marshes in terms of their net contribution to greenhouse gas sequestration.

  17. Testing two potential fates for coastal marshes: Greenhouse gas emissions from native, Phragmites australis-invaded, and permanently inundated zones

    NASA Astrophysics Data System (ADS)

    Moseman-Valtierra, S.; Martin, R.; Tang, J.; Morkeski, K.; China, I.; Brannon, E.; Watson, E. B.

    2014-12-01

    Global changes such as biological invasions and sea level rise can significantly affect GHG emissions from coastal wetlands by changing plant community composition and/or environmental conditions. To first characterize GHG fluxes across major plant-defined marsh zones, CO2, N2O, and CH4 fluxes were compared between S. patens- dominated high marsh and S. alterniflora low marsh during 2012 and 2013 growing seasons in 3 New England marshes. To test how these fluxes may change in response to biological invasions and sea level rise, GHG fluxes were then compared between native, P.australis- invaded, and permanently inundated marsh zones at these sites in 2013 and 2014. GHG emissions were analyzed simultaneously from marsh ecosystems using infrared-based spectrometers connected to static flux chambers. Daytime CO2 uptake rates (ranging on average between -2 and -21 μmol CO2 m-2s-1) were generally greater in S. alterniflora low marsh zones than in S. patens high marsh among all 3 sites. Methane fluxes were generally low in both native marsh zones (< 50 μmol CH4 m-2 h-1) and N2O emissions were rare. However, CO2 uptake and CH4 emissions from P. australis zones were typically more than an order of magnitude greater than those of either native marsh zone. In contrast, permanently inundated marsh soils had similar GHG emissions to native marsh zones. . Though large, the P. australis CH4 emissions are estimated to offset less than 5% of observed CO2 uptake rates based on a global warming potential of 25 (100 years). These results suggest that two alternative fates for coastal marshes in the future- conversion to P. australis marshes or to standing water with sea level rise- will substantially affect CO2 and CH4 emissions. Net impacts on climatic forcing of these ecosystems will depend on how long term C sequestration is affected as these emissions shift.

  18. Final report (2002-2004): Benthic macroinvertebrate communities of reconstructed freshwater tidal wetlands in the Anacostia River, Washington, D.C

    USGS Publications Warehouse

    Brittingham, K.D.; Hammerschlag, R.S.

    2006-01-01

    Considerable work has been conducted on the benthic communities of inland aquatic systems, but there remains a paucity of effort on freshwater tidal wetlands. This study characterized the benthic macroinvertebrate communities of recently reconstructed urban freshwater tidal wetlands along the Anacostia River in Washington, D.C. The focus of the study was on the two main areas of Kingman Marsh, which were reconstructed by the U.S. Army Corps of Engineers in 2000 using Anacostia dredge material. Populations from this 'new' marsh were compared to those of similarly reconstructed Kenilworth Marsh (1993) just one half mile upstream, the relic reference Dueling Creek Marsh in the upper Anacostia estuary and the outside reference Patuxent freshwater tidal marsh in an adjacent watershed. Benthic macro invertebrate organisms were collected using selected techniques for evaluation including the Ekman bottom grab sampler, sediment corer, D-net and Hester-Dendy sampler. Samples were collected at least seasonally from tidal channels, tidal mudflats, three vegetation/sediment zones (low, middle and high marsh), and pools over a 3-year period (late 2001-2004). The macroinvertebrate communities present at the marsh sites proved to be good indicators of disturbance and stress (Kingman Marsh), pollution, urban vs. rural location (Kenilworth and Patuxent), and similarities between reconstructed and remnant wetlands (Kenilworth and Dueling Creek). Macroinvertebrate density was significantly greater at Kingman Marsh than Kenilworth Marsh due to more numerous chironomids and oligochaetes. This may reflect an increase in unvegetated sediments at Kingman (even at elevations above natural mudflat) due to grazing pressure from over-abundant resident Canada geese. Unvegetated sediments yielded greater macroinvertebrate abundance but lower richness than vegetated marsh sites. Data collected from this study provides information on the extent that benthic macroinvertebrate communities can serve

  19. Tree-grass coexistence in the Everglades freshwater system

    NASA Astrophysics Data System (ADS)

    D'Odorico, P.; Carr, J. A.; Engel, V.

    2009-12-01

    The Everglades freshwater system exhibits a heterogeneous landscape with marshes punctuated by patches of woody vegetation (tree islands) that are typically more elevated than the surrounding marshes. Despite the diversity and spatial organization of vegetation within the tree and grass plant communities, the landscape of the Everglades exhibits the features of a two-phase system with a distinct contrast between tree islands and marshes: tree islands are more elevated, dominated by woody vegetation and relatively phosphorus rich, while marshes are grass dominated and phosphorus-poor. A parallel can be drawn between these tree-grass mosaics and the patchy vegetation typical of dryland ecosystems, particularly savannas. The coexistence of trees and grasses in patchy freshwater landscapes calls for an explanation of the underlying processes and of their susceptibility to changes in environmental conditions. We argue that the stable coexistence of sawgrass meadows and tree islands in the Everglades is the result of positive feedback mechanisms, which induce bistability in landscape dynamics. We develop a process-based zero-dimensional model to explain the coexistence of the alternative stable states of “marsh” and “tree island” in the Everglades’ freshwater landscape. This zero-dimensional model shows how alternative stable states may arise as an effect of the positive feedbacks.

  20. Coatal salt marshes and mangrove swamps in China

    NASA Astrophysics Data System (ADS)

    Yang, Shi-Lun; Chen, Ji-Yu

    1995-12-01

    Based on plant specimen data, sediment samples, photos, and sketches from 45 coastal crosssections, and materials from two recent countrywide comprehensive investigations on Chinese coasts and islands, this paper deals with China’s vegetative tidal-flats: salt marshes and mangrove swamps. There are now 141700 acres of salt marshes and 51000 acres of mangrove swamps which together cover about 30% of the mud-coast area of the country and distribute between 18°N (Southern Hainan Island) and 41 °N (Liaodong Bay). Over the past 45 years, about 1750000 acres of salt marshes and 49400 acres of mangrove swamps have been reclaimed. The 2.0×109 tons of fine sediments input by rivers into the Chinese seas form extensive tidal flats, the soil basis of coastal helophytes. Different climates result in the diversity of vegetation. The 3˜8 m tidal range favors intertidal zone development. Of over 20 plant species in the salt marshes, native Suaeda salsa, Phragmites australis, Aeluropus littoralis, Zoysia maerostachys, Imperata cylindrica and introduced Spartina anglica are the most extensive in distribution. Of the 41 mangrove swamps species, Kandelia candel, Bruguiera gymnorrhiza, Excoecaria agallocha and Avicennia marina are much wider in latitudinal distribution than the others. Developing stages of marshes originally relevant to the evolution of tidal flats are given out. The roles of pioneer plants in decreasing flood water energy and increasing accretion rate in the Changjiang River delta are discussed.

  1. Long-term recovery of a Louisiana brackish marsh plant community from oil-spill impact: vegetation response and mitigating effects of marsh surface elevation.

    PubMed

    Hester, M W; Mendelssohn, I A

    2000-04-01

    Oil spills can have significant, short-term, negative impacts on coastal marshes, but the long-term effects and eventual recovery are not well documented, particularly in brackish marshes. The goals of this investigation were to: (1) document the long-term recovery of a Louisiana brackish marsh plant community impacted by a 1985 oil spill; (2) separate the effect of the oil spill on marsh deterioration from ambient rates of marsh deterioration; and (3) assess the relative importance of residual oil in the sediment and decreased marsh surface elevation in the failure of certain areas to recover. A total of 68 permanent plots previously established in 1985 were re-surveyed for plant and soil recovery in the fall of 1989. Although substantial (and near total) vegetative recovery was evident by significant increases in live and total vegetative cover, many of the plots that were initially heavily impacted by oil still displayed elevated levels of total saturated hydrocarbons in the soil. August 1990 measurements of plant photosynthetic response and edaphic variables revealed no significant differences between control plots and plots heavily impacted by oil that displayed vegetative regrowth. Rates of wetland land loss in the oiled marsh during an 8-year period that bracketed the time of the spill were within the historical range measured for this site and similar to the land loss rates of adjacent reference marshes. Results from a manipulative field transplant experiment indicated that the long-term failure of certain small areas to revegetate was primarily due to a decrease of marsh surface elevation (increased flooding stress), not a residual oil effect.

  2. Storm surges and climate change implications for tidal marshes: Insight from the San Francisco Bay Estuary, California, USA

    USGS Publications Warehouse

    Thorne, Karen M.; Buffington, Kevin J.; Swanson, Kathleen; Takekawa, John Y.

    2013-01-01

    Tidal marshes are dynamic ecosystems, which are influenced by oceanic and freshwater processes and daily changes in sea level. Projected sea-level rise and changes in storm frequency and intensity will affect tidal marshes by altering suspended sediment supply, plant communities, and the inundation duration and depth of the marsh platform. The objective of this research was to evaluate if regional weather conditions resulting in low-pressure storms changed tidal conditions locally within three tidal marshes. We hypothesized that regional storms will increase sea level heights locally, resulting in increased inundation of the tidal marsh platform and plant communities. Using site-level measurements of elevation, plant communities, and water levels, we present results from two storm events in 2010 and 2011 from the San Francisco Bay Estuary (SFBE), California, USA. The January 2010 storm had the lowest recorded sea level pressure in the last 30 years for this region. During the storm episodes, the duration of tidal marsh inundation was 1.8 and 3.1 times greater than average for that time of year, respectively. At peak storm surges, over 65% in 2010 and 93% in 2011 of the plant community was under water. We also discuss the implications of these types of storms and projected sea-level rise on the structure and function of the tidal marshes and how that will impact the hydro-geomorphic processes and marsh biotic communities.

  3. Assessment of metal and trace element contamination in water, sediment, plants, macroinvertebrates, and fish in Tavasci Marsh, Tuzigoot National Monument, Arizona

    USGS Publications Warehouse

    Beisner, Kimberly R.; Paretti, Nicholas V.; Brasher, Anne M.D.; Fuller, Christopher C.; Miller, Matthew P.

    2014-01-01

    Tavasci Marsh is a large freshwater marsh within the Tuzigoot National Monument in central Arizona. It is the largest freshwater marsh in Arizona that is unconnected to the Colorado River and is designated as an Important Bird Area by the Audubon Society. The marsh has been altered significantly by previous land use and the monument’s managers are evaluating the restoration of the marsh. In light of historical mining activities located near the marsh from the first half of the 20th century, evaluations of water, sediment, plant, and aquatic biota in the marsh were conducted. The evaluations were focused on nine metals and trace elements commonly associated with mining and other anthropogenic activities (As, Cd, Cr, Cu, Hg, Ni, Pb, Se, and Zn) together with isotopic analyses to understand the presence, sources and timing of water and sediment contaminants to the marsh and the occurrence in aquatic plants, dragonfly larvae, and fish. Results of water analyses indicate that there were two distinct sources of water contributing to the marsh during the study: one from older high elevation recharge entering the marsh at Shea Spring (as well as a number of unnamed seeps and springs on the northeastern edge of the marsh) and the other from younger low elevation recharge or from Pecks Lake. Water concentrations for arsenic exceeded the U.S. Environmental Protection Agency primary drinking water standard of 10 μg/L at all sampling sites. Surface waters at Tavasci Marsh may contain conditions favorable for methylmercury production. All surficial and core sediment samples exceeded or were within sample concentration variability of at least one threshold sediment quality guideline for As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn. Several sediment sites were also above or were within sample concentration variability of severe or probable effect sediment quality guidelines for As, Cd, and Cu. Three sediment cores collected in the marsh have greater metal and trace element concentrations

  4. Tidal Marshes across a Chesapeake Bay Subestuary Are Not Keeping up with Sea-Level Rise

    PubMed Central

    Beckett, Leah H.; Baldwin, Andrew H.; Kearney, Michael S.

    2016-01-01

    Sea-level rise is a major factor in wetland loss worldwide, and in much of Chesapeake Bay (USA) the rate of sea-level rise is higher than the current global rate of 3.2 mm yr-1 due to regional subsidence. Marshes along estuarine salinity gradients differ in vegetation composition, productivity, decomposition pathways, and sediment dynamics, and may exhibit different responses to sea-level rise. Coastal marshes persist by building vertically at rates at or exceeding regional sea-level rise. In one of the first studies to examine elevation dynamics across an estuarine salinity gradient, we installed 15 surface elevation tables (SET) and accretion marker-horizon plots (MH) in tidal freshwater, oligohaline, and brackish marshes across a Chesapeake Bay subestuary. Over the course of four years, wetlands across the subestuary decreased 1.8 ± 2.7 mm yr-1 in elevation on average, at least 5 mm yr-1 below that needed to keep pace with global sea-level rise. Elevation change rates did not significantly differ among the marshes studied, and ranged from -9.8 ± 6.9 to 4.5 ± 4.3 mm yr-1. Surface accretion of deposited mineral and organic matter was uniformly high across the estuary (~9–15 mm yr-1), indicating that elevation loss was not due to lack of accretionary input. Position in the estuary and associated salinity regime were not related to elevation change or surface matter accretion. Previous studies have focused on surface elevation change in marshes of uniform salinity (e.g., salt marshes); however, our findings highlight the need for elevation studies in marshes of all salinity regimes and different geomorphic positions, and warn that brackish, oligohaline, and freshwater tidal wetlands may be at similarly high risk of submergence in some estuaries. PMID:27467784

  5. Tidal Marshes across a Chesapeake Bay Subestuary Are Not Keeping up with Sea-Level Rise.

    PubMed

    Beckett, Leah H; Baldwin, Andrew H; Kearney, Michael S

    2016-01-01

    Sea-level rise is a major factor in wetland loss worldwide, and in much of Chesapeake Bay (USA) the rate of sea-level rise is higher than the current global rate of 3.2 mm yr-1 due to regional subsidence. Marshes along estuarine salinity gradients differ in vegetation composition, productivity, decomposition pathways, and sediment dynamics, and may exhibit different responses to sea-level rise. Coastal marshes persist by building vertically at rates at or exceeding regional sea-level rise. In one of the first studies to examine elevation dynamics across an estuarine salinity gradient, we installed 15 surface elevation tables (SET) and accretion marker-horizon plots (MH) in tidal freshwater, oligohaline, and brackish marshes across a Chesapeake Bay subestuary. Over the course of four years, wetlands across the subestuary decreased 1.8 ± 2.7 mm yr-1 in elevation on average, at least 5 mm yr-1 below that needed to keep pace with global sea-level rise. Elevation change rates did not significantly differ among the marshes studied, and ranged from -9.8 ± 6.9 to 4.5 ± 4.3 mm yr-1. Surface accretion of deposited mineral and organic matter was uniformly high across the estuary (~9-15 mm yr-1), indicating that elevation loss was not due to lack of accretionary input. Position in the estuary and associated salinity regime were not related to elevation change or surface matter accretion. Previous studies have focused on surface elevation change in marshes of uniform salinity (e.g., salt marshes); however, our findings highlight the need for elevation studies in marshes of all salinity regimes and different geomorphic positions, and warn that brackish, oligohaline, and freshwater tidal wetlands may be at similarly high risk of submergence in some estuaries.

  6. Marsh vertical accretion in a Southern California Estuary, U.S.A

    USGS Publications Warehouse

    Cahoon, D.R.; Lynch, J.C.; Powell, A.N.

    1996-01-01

    Vertical accretion was measured between October 1992 and March 1994 in low and high saltmarsh zones in the north arm of Tijuana estuary from feldspar market horizons and soil corings. Accretion in the Spartina foliosa low marsh (2-8.5 cm) was related almost entirely to episodic storm-induced river flows between January and March 1993, with daily tidal flooding contributing little or no sediment during the subsequent 12 month period of no river flow. Accretion in the Salicornia subterminalis high marsh was low (~1-2 mm) throughout the 17-month measuring period. High water levels in the salt marsh associated with the storm flows were enhanced in early January 1993 by the monthly extreme high sea level, when the low and high marshes were flooded about 0.5 m above normal high tide levels. Storm flows in January-March 1993 mobilized about 5 million tons of sediment, of which the low salt marsh trapped an estimated 31,941 tonnes, including 971 tonnes of carbon and 77 tonnes of nitrogen. Sediment trapping by the salt marsh during episodic winter floods plays an important role in the long-term maintenance of productivity of Tijuana estuary through nutrient retention and maintenance of marsh surface elevation. The potential exists, however, for predicted accelerated rates of sea-level rise to out-pace marsh surface elevation gain during extended periods of drought (i.e. low sediment inputs) which are not uncommon for this arid region.

  7. Marsh Vertical Accretion in a Southern California Estuary, U.S.A.

    NASA Astrophysics Data System (ADS)

    Cahoon, Donald R.; Lynch, James C.; Powell, Abby N.

    1996-07-01

    Vertical accretion was measured between October 1992 and March 1994 in low and high saltmarsh zones in the north arm of Tijuana estuary from feldspar market horizons and soil corings. Accretion in the Spartina foliosalow marsh (2-8·5 cm) was related almost entirely to episodic storm-induced river flows between January and March 1993, with daily tidal flooding contributing little or no sediment during the subsequent 12-month period of no river flow. Accretion in the Salicornia subterminalishigh marsh was low (≈1-2 mm) throughout the 17-month measuring period. High water levels in the salt marsh associated with the storm flows were enhanced in early January 1993 by the monthly extreme high sea level, when the low and high marshes were flooded about 0·5 m above normal high tide levels. Storm flows in January-March 1993 mobilized about 5 million tonnes of sediment, of which the low salt marsh trapped an estimated 31 941 tonnes, including 971 tonnes of carbon and 77 tonnes of nitrogen. Sediment trapping by the salt marsh during episodic winter floods plays an important role in the long-term maintenance of productivity of Tijuana estuary through nutrient retention and maintenance of marsh surface elevation. The potential exists, however, for predicted accelerated rates of sea-level rise to out-pace marsh surface elevation gain during extended periods of drought (i.e. low sediment inputs) which are not uncommon for this arid region.

  8. Effects of oil on the rate and trajectory of Louisiana marsh shoreline erosion

    NASA Astrophysics Data System (ADS)

    McClenachan, Giovanna; Turner, R. Eugene; Tweel, Andrew W.

    2013-12-01

    Oil can have long-term detrimental effects on marsh plant health, both above- and belowground. However, there are few data available that quantify the accelerated rate of erosion that oil may cause to marshes and the trajectory of change. Between November 2010 and August 2012, we collected data on shoreline erosion, soil strength, per cent cover of Spartina alterniflora, and marsh edge overhang at 30 closely spaced low oil and high oil sites in Bay Batiste, Louisiana. Surface oil samples were taken one meter into the marsh in February 2011. All high oiled sites in Bay Batiste were contaminated with Macondo 252 oil (oil from the Deepwater Horizon oil spill, 20 April-15 July 2010). The results suggest that there is a threshold where soil parameters change dramatically with a relatively small increase in oil concentration in the soil. Heavy oiling weakens the soil, creating a deeper undercut of the upper 50 cm of the marsh edge, and causing an accelerated rate of erosion that cascades along the shoreline. Our results demonstrate that it could take at least 2 yr to document the effects heavy oiling has had on the marsh shoreline. The presence of aboveground vegetation alone may not be an appropriate indicator of recovery.

  9. Methane fluxes along a salinity gradient on a restored salt marsh, Harpswell, ME

    NASA Astrophysics Data System (ADS)

    Gunn, Cailene; Johnson, Beverly, ,, Dr.; Dostie, Phil; Bohlen, Curtis; Craig, Matthew

    2016-04-01

    This study functions as a pilot project to understand the relationship between salinity and methane emissions on a recently restored salt marsh in Casco Bay, Maine. Salt marshes are dynamic and highly productive ecosystems that provide a multitude of ecosystem services including nutrient filtration, storm-water buffering and carbon sequestration. These ecosystems are highly susceptible to anthropogenic alteration. The emplacement of causeways and narrow culverts, restricts tidal flow and leads to loss of healthy salinity gradients. Consequently, numerous salt marshes have experienced increases in freshwater vegetation growth as a result of coastal population expansion. Recent restoration efforts on Long Marsh, Harpswell, ME replaced a severely undersized culvert with a larger one in February, 2014. The salinity gradient has since been restored along much of the marsh, and freshwater vegetation that encroached on the marsh platform has died back. Vegetation and salinity are key indicators and drivers of CH4 emissions on salt marshes. Using static gas chambers, we quantified CH4 fluxes along two transects at five diverse sites ranging from healthy marsh (salinity of 27 to 31 psu) with Spartina vegetation, to regions invaded by Typha and other freshwater vegetation (salinity of 0 to 4 psu). Sampling was executed in the months of July, August and October. CH4 concentrations were determined using a gas chromatograph with a flame-ionization detector. Preliminary findings suggest reintroduction of healthy tidal flows into the marsh inhibits CH4 production, where the lowest fluxes with least variability were observed at the most saline sites with Spartina vegetation. The largest range of CH4 fluxes exhibited emissions from 0.75 μmol CH4/m2/hr to 518.4 μmol CH4/m2/hr at the Typha dominated sites from July to October. Fluxes at the saltwater and brackish regions were far less variable with ranges from 0.94 μmol CH4/m2/hr to 8.2 μmol CH4/m2/hr and 2.6 to 9.5 μmol CH4/m2

  10. Biogeochemical functioning of grazed estuarine tidal marshes along a salinity gradient

    NASA Astrophysics Data System (ADS)

    Dausse, Armel; Garbutt, Angus; Norman, Louiza; Papadimitriou, Stathys; Jones, Laurence M.; Robins, Peter E.; Thomas, David N.

    2012-03-01

    Depending on their location along an estuarine salinity gradient, tidal marshes are thought to have different impacts on the chemical composition of the water during flooding. However, there is a lack of direct measurements of fluxes occurring between the marsh surface and the water column to corroborate this hypothesis. This study compared fluxes of nutrient and dissolved organic carbon (DOC) between the water column and the marsh surface and the emission of greenhouse gases, at four sites located along the salinity gradient of an estuary of north-western Wales (UK). The exchanges of dissolved organic carbon and nitrogen (DON), dissolved inorganic nitrogen (DIN), soluble reactive phosphorus and silicic acid, carbon dioxide, methane and nitrous oxide were measured during tidal inundation in May and September 2008 using in situ incubation chambers. There was no linear pattern along the salinity gradient and the concentration of nutrients and DOC in the flood water did not appear to control the biogeochemical processes driving the marsh surface/water column exchanges in the studied marshes. Multivariate analysis showed a clear discrimination in functioning between sites with the fresh and brackish marshes having a more similar functioning compared to low and middle marshes. The main differences between these two groupings were in the fluxes of DOC and nitrate. The phenology of plant species, soil organic matter content and soil oxygenation appear be the dominant factors explaining the observed fluxes.

  11. PEAT ACCRETION HISTORIES DURING THE PAST 6000 YEARS IN MARSHES OF THE SACRAMENTO - SAN JOAQUIN DELTA, CALIFORNIA, USA

    SciTech Connect

    Drexler, J Z; de Fontaine, C S; Brown, T A

    2009-07-20

    Peat cores were collected in 4 remnant marsh islands and 4 drained, farmed islands throughout the Sacramento - San Joaquin Delta of California in order to characterize the peat accretion history of this region. Radiocarbon age determination of marsh macrofossils at both marsh and farmed islands showed that marshes in the central and western Delta started forming between 6030 and 6790 cal yr BP. Age-depth models for three marshes were constructed using cubic smooth spline regression models. The resulting spline fit models were used to estimate peat accretion histories for the marshes. Estimated accretion rates range from 0.03 to 0.49 cm yr{sup -1} for the marsh sites. The highest accretion rates are at Browns Island, a marsh at the confluence of the Sacramento and San Joaquin rivers. Porosity was examined in the peat core from Franks Wetland, one of the remnant marsh sites. Porosity was greater than 90% and changed little with depth indicating that autocompaction was not an important process in the peat column. The mean contribution of organic matter to soil volume at the marsh sites ranges from 6.15 to 9.25% with little variability. In contrast, the mean contribution of inorganic matter to soil volume ranges from 1.40 to 8.45% with much greater variability, especially in sites situated in main channels. These results suggest that marshes in the Delta can be viewed as largely autochthonous vs. allochthonous in character. Autochthonous sites are largely removed from watershed processes, such as sediment deposition and scour, and are dominated by organic production. Allochthonous sites have greater fluctuations in accretion rates due to the variability of inorganic inputs from the watershed. A comparison of estimated vertical accretion rates with 20th century rates of global sea-level rise shows that currently marshes are maintaining their positions in the tidal frame, yet this offers little assurance of sustainability under scenarios of increased sea-level rise in

  12. The role of tidal marsh restoration in fish management in the San Francisco Estuary

    USGS Publications Warehouse

    Herbold, Bruce; Baltz, Donald; Brown, Larry R.; Grossinger, Robin; Kimmerer, Wim J.; Lehman, Peggy W.; Moyle, Peter B.; Nobriga, Matthew L.; Simenstad, Charles A.

    2015-01-01

    Tidal marsh restoration is an important management issue in the San Francisco Estuary (estuary). Restoration of large areas of tidal marsh is ongoing or planned in the lower estuary (up to 6,000 ha, Callaway et al. 2011). Large areas are proposed for restoration in the upper estuary under the Endangered Species Act biological opinions (3,237 ha) and the Bay Delta Conservation Plan (26,305 ha). In the lower estuary, tidal marsh has proven its value to a wide array of species that live within it (Palaima 2012). In the Sacramento–San Joaquin Delta (Delta), one important function ascribed to restoration of freshwater tidal marshes is that they make large contributions to the food web of fish in open waters (BDCP 2013). The Ecosystem Restoration Program ascribed a suite of ecological functions to tidal marsh restoration, including habitat and food web benefits to native fish (CDFW 2010). This background was the basis for a symposium, Tidal Marshes and Native Fishes in the Delta: Will Restoration Make a Difference? held at the University of California, Davis, on June 10, 2013. This paper summarizes conclusions the authors drew from the symposium.

  13. Salt marsh as Culex salinarius larval habitat in coastal New York.

    PubMed

    Rochlin, Ilia; Dempsey, Mary E; Campbell, Scott R; Ninivaggi, Dominick V

    2008-09-01

    Culex salinarius is considered one of the most likely bridge vectors involved in the human transmission cycle of West Nile virus (WNV) and eastern equine encephalomyelitis virus (EEEV) in the northeastern USA. The larval habitats of this species in the coastal region of New York State are currently poorly known. Between 2005 and 2007, a larval survey was carried out to identify and characterize possible larval habitats in Suffolk County, encompassing natural and man-made freshwater wetlands, artificial containers, and salt marshes. Only relatively undisturbed salt marsh yielded Cx. salinarius larvae in considerable numbers from several sites over a period of 2 years. The immature stages of this species were found associated with Spartina patens and S. alterniflora of the upper marsh at salinities ranging from 4.3 to 18.8 parts per thousand. Both heavily impacted and relatively undisturbed salt marshes produced several hundreds of adult Cx. salinarius per Centers for Disease Control and Prevention (CDC) light trap per night, an order of magnitude higher than CDC light traps deployed at upland sites. The ability of Cx. salinarius to use both heavily impacted and relatively undisturbed salt marshes for reproduction has significant repercussions for marsh restoration and vector control practices.

  14. The mapping of marsh vegetation using aircraft multispectral scanner data. [in Louisiana

    NASA Technical Reports Server (NTRS)

    Butera, M. K.

    1975-01-01

    A test was conducted to determine if salinity regimes in coastal marshland could be mapped and monitored by the identification and classification of marsh vegetative species from aircraft multispectral scanner data. The data was acquired at 6.1 km (20,000 ft.) on October 2, 1974, over a test area in the coastal marshland of southern Louisiana including fresh, intermediate, brackish, and saline zones. The data was classified by vegetational species using a supervised, spectral pattern recognition procedure. Accuracies of training sites ranged from 67% to 96%. Marsh zones based on free soil water salinity were determined from the species classification to demonstrate a practical use for mapping marsh vegetation.

  15. Benthic macroinvertebrate populations of urban freshwater tidal wetlands in the Anacostia River, Washington D.C.

    NASA Astrophysics Data System (ADS)

    Brittingham, K. D.

    2005-05-01

    This study characterizes the benthic communities establishing themselves on recently reconstructed urban freshwater tidal wetlands along the Anacostia River in Washington, D.C. in comparison to a similar relic wetland as well as to a reference wetland in the adjacent Patuxent River watershed. The study's focus is the two main areas of Kingman Marsh, which were reconstructed from Anacostia dredge material by the U.S. Army Corps of Engineers in 2000. Populations from this 'new' marsh are compared to those of similarly reconstructed Kenilworth Marsh (1993), as well as to the relic Dueling Creek Marsh on the Anacostia and the outside reference Patuxent Marsh in an adjacent watershed. Benthic organisms were collected using selected techniques including the Ekman bottom grab sampler, sediment corer, D-net and Hester-Dendy sampler. Samples were collected seasonally from tidal channels, tidal mudflats, three vegetation zones (low, middle and high marsh), and pools. Data collected from this study can provide valuable information on the extent that benthic macroinvertebrate communities can serve as an indicator of the relative success of freshwater tidal marsh reconstruction.

  16. [Profile nutrient distribution and sedimentary characteristics in typical marshes of Sanjiang Plain].

    PubMed

    Li, Rui-Li; Chai, Min-Wei; Qiu, Guo-Yu; Shi, Fu-Chen; Sasa, Kaichiro

    2014-08-01

    Profile distribution characteristics of organic carbon (C), total nitrogen (N), total phosphorus (P) and total sulfur (S) were studied in two typical marshes including Carex lasiocarpa marsh and Phragmites australis marsh in the Sanjiang Plain. Sedimentary characteristics of typical mashes were analyzed. The results showed that vertically these soil chemical elements also varied, showing obvious stratification and enrichment. In a soil profile, soil organic C under both vegetation communities gradually decreased; soil total N first increased and then decreased under both; total P under Carex lasiocarpa first decreased and then increased, whereas it decreased with the increasing depth under Carex lasiocarpa; total S was reduced with increasing depth under both marshes. Total N, total P and total S were all strongly correlated with soil organic C (P < 0.01); soil organic C was strongly correlated with bulk density (P < 0.01). Our study also illustrated that the vegetation types had different influences for organic C, total N, total P and total S of the marsh profiles. Environmental 137Cs and 210Pb dating techniques were applied to determine recent sedimentation rates, and the constant rate of supply (CRS) was applied to deduce the age of sediment core, and the results showed that the mean sedimentation rate was 0.33 cm x a(-1), and the sedimentation fluxes ranged 0.03-0.48 g x (cm2 x a)(-1) [Mean = 0.29 g x (cm2 x a) -1].

  17. Ecogeomorphic Heterogeneity Sculpts Salt Marshes

    NASA Astrophysics Data System (ADS)

    Leonardi, N.; Fagherazzi, S.

    2014-12-01

    We present cellular automata simulations and high-resolution field measurements of five sites along the United States Atlantic Coast, to investigate the erosion of marsh boundaries by wave action. For several years, we tracked marsh contours of three sites in Plum Island Sound and two sites in the Virginia Coastal Reserve using a Real-Time-Kinematic GPS, and measurements were collected up to 20 cm apart. The cellular automata model consists of a 2D square lattice, whose elements have randomly distributed resistance. Randomly distributed resistance values are meant to take into account the variety of biological and geomorphologic processes affecting each portion of the marsh. Among others, seepage erosion, crab burrowing, vegetation and sediment cohesion make difficult to predict which portion of the marsh will collapse first. In case of high wave power, erosion proceeds uniformly because each marsh portion has similar resistance if compared to the main external driver. On the contrary, when wind waves are weak and the local marsh resistance is strong, jagged marsh boundaries form. From a statistical viewpoint, the system behaves differently for the two extreme conditions of very low and very high wave power. The frequency magnitude distribution of erosion events approaches a Gaussian distribution in case of high wave power. In case of low wave power, the frequency magnitude distribution is characterized by a long-tailed power-law distribution. For the low wave power case, a long time is required to erode very resistant cells. However, once the most resistant cells are eliminated, several weak sites remain exposed and can be rapidly removed, with consequent generation of large-scale failures. Field data confirm model results, and show the passage from a logarithmic frequency magnitude distribution of erosion events to a Gaussian distribution for increasing wave power exposure. The logarithmic frequency magnitude distribution suggests the emergence of a critical

  18. Effects of Freshwater Inflow on CO2 Exchange in a Coastal Wetland

    NASA Astrophysics Data System (ADS)

    Heinsch, F.; Heilman, J. L.; McInnes, K. J.

    2001-05-01

    The freshwater supply to the Nueces River Delta near Corpus Christi, Texas, and its marshes is limited by extensive channelization of the Nueces River. As a result, marsh salinity is high, productivity is low, and the area frequently dries out during the summer. Diversion channels have been constructed between the Nueces River and its former delta to allow floodwaters to move into the delta, increasing both freshwater and nutrient inputs. Studies are being conducted to determine how daily and seasonal changes in CO2 exchange are affected by the availability of water. A tower-based conditional sampling system is being used to provide long-term measurements of the CO2 exchange of a salt marsh in the upper Nueces Delta. Measurements reveal that freshwater inflow increases the CO2 exchange rate (CER) by increasing CO2 assimilation and decreasing CO2 efflux. Rainfall and flooding of the Nueces River temporarily increase the productivity of the system by supplying nutrients and freshwater. The salt marsh ecosystem is a CO2 sink when freshwater is available and a CO2 source when water is limiting.

  19. Hydrology and Ecology of Freshwater Wetlands in Central Florida - A Primer

    USGS Publications Warehouse

    Haag, Kim H.; Lee, Terrie M.

    2010-01-01

    how wetlands are affected by human activities. Freshwater wetlands are unique and complex ecosystems defined by characteristic properties. Wetlands usually have standing water during at least part of the year, although water depths can vary from a few inches to as much as several feet from one wetland to another. The hydrologic behavior of wetlands is influenced by drainage basin characteristics, as well as by natural variations in climate. Wetlands in central Florida (especially forested wetlands) often have acidic waters that are darkly stained from organic substances released by decomposing leaves and other plant material. Wetlands are characterized by biogeochemical cycles in which vital elements such as carbon, nitrogen, phosphorus, and others are transformed as they move between wetland soils and sediments, the open water, and the atmosphere. Wetlands are populated with plants that can thrive under conditions of saturated soils and low dissolved-oxygen concentrations. The bottoms of many wetlands, especially marshes, are covered with decayed plant material that can accumulate over time to form brown peat or black muck soils. Wetlands are inhabited by animals that need standing water to complete some or all of their life cycles, and they also provide periodic food, water, and shelter for many other animals that spend most of their lives on dry land. The complex and interrelated components of wetlands directly affect one another and there are numerous feedback mechanisms.

  20. Component greenhouse gas fluxes and radiative balance from two deltaic marshes in Louisiana: Pairing chamber techniques and eddy covariance

    NASA Astrophysics Data System (ADS)

    Krauss, Ken W.; Holm, Guerry O.; Perez, Brian C.; McWhorter, David E.; Cormier, Nicole; Moss, Rebecca F.; Johnson, Darren J.; Neubauer, Scott C.; Raynie, Richard C.

    2016-06-01

    Coastal marshes take up atmospheric CO2 while emitting CO2, CH4, and N2O. This ability to sequester carbon (C) is much greater for wetlands on a per area basis than from most ecosystems, facilitating scientific, political, and economic interest in their value as greenhouse gas sinks. However, the greenhouse gas balance of Gulf of Mexico wetlands is particularly understudied. We describe the net ecosystem exchange (NEEc) of CO2 and CH4 using eddy covariance (EC) in comparison with fluxes of CO2, CH4, and N2O using chambers from brackish and freshwater marshes in Louisiana, USA. From EC, we found that 182 g C m-2 yr-1 was lost through NEEc from the brackish marsh. Of this, 11 g C m-2 yr-1 resulted from net CH4 emissions and the remaining 171 g C m-2 yr-1 resulted from net CO2 emissions. In contrast, -290 g C m2 yr-1 was taken up through NEEc by the freshwater marsh, with 47 g C m-2 yr-1 emitted as CH4 and -337 g C m-2 yr-1 taken up as CO2. From chambers, we discovered that neither site had large fluxes of N2O. Sustained-flux greenhouse gas accounting metrics indicated that both marshes had a positive (warming) radiative balance, with the brackish marsh having a substantially greater warming effect than the freshwater marsh. That net respiratory emissions of CO2 and CH4 as estimated through chamber techniques were 2-4 times different from emissions estimated through EC requires additional understanding of the artifacts created by different spatial and temporal sampling footprints between techniques.

  1. New Agar Technique Compared with Sand Flotation for Obtaining Salt Marsh Culicoides mississippiensis Hoffman (Diptera: Ceratopogonidae) Larvae,

    DTIC Science & Technology

    1979-12-26

    compared with 1% and 2% (wt/v) agar formulations for extracting Culicoides ndisaiooippiensis Hoffman larvae from marsh soil samples. The 1% agar formula...been used to recover larvae of biting midges (CuZ.,o;1aa spp .) from salt marsh substrate (soil) samples. They are: (1) sieve-flotation (Kettle and Lawson...Kettle et al., (1975) in which tabanid and culicoid larvae were successfully reared in agar media, we decided that one possibility was to replace the

  2. Peat accretion histories during the past 6,000 years in marshes of the Sacramento-San Joaquin delta, CA, USA

    USGS Publications Warehouse

    Drexler, Judith Z.; de Fontaine, Christian S.; Brown, Thomas A.

    2009-01-01

    The purpose of this study was to determine how vertical accretion rates in marshes vary through the millennia. Peat cores were collected in remnant and drained marshes in the Sacramento-San Joaquin Delta of California. Cubic smooth spline regression models were used to construct age-depth models and accretion histories for three remnant marshes. Estimated vertical accretion rates at these sites range from 0.03 to 0.49 cm year-1. The mean contribution of organic matter to soil volume at the remnant marsh sites is generally stable (4.73% to 6.94%), whereas the mean contribution of inorganic matter to soil volume has greater temporal variability (1.40% to 7.92%). The hydrogeomorphic position of each marsh largely determines the inorganic content of peat. Currently, the remnant marshes are keeping pace with sea level rise, but this balance may shift for at least one of the sites under future sea level rise scenarios.

  3. Radar and optical mapping of surge persistence and marsh dieback along the New Jersey Mid-Atlantic coast after Hurricane Sandy

    USGS Publications Warehouse

    Rangoonwala, Amina; Enwright, Nicholas M.; Ramsey III, Elijah W.; Spruce, Joseph P.

    2016-01-01

    This study combined a radar-based time series of Hurricane Sandy surge and estimated persistence with optical sensor-based marsh condition change to assess potential causal linkages of surge persistence and marsh condition change along the New Jersey Atlantic Ocean coast. Results based on processed TerraSAR-X and COSMO-SkyMed synthetic aperture radar (SAR) images indicated that surge flooding persisted for 12 h past landfall in marshes from Great Bay to Great Egg Harbor Bay and up to 59 h after landfall in many back-barrier lagoon marshes. Marsh condition change (i.e. loss of green marsh vegetation) was assessed from optical satellite images (Satellite Pour l’Observation de la Terre and Moderate Resolution Imaging Spectroradiometer) collected before and after Hurricane Sandy. High change in condition often showed spatial correspondence, with high surge persistence in marsh surrounding the lagoon portion of Great Bay, while in contrast, low change and high persistence spatial correspondence dominated the interior marshes of the Great Bay and Great Egg Harbor Bay estuaries. Salinity measurements suggest that these areas were influenced by freshwater discharges after landfall possibly mitigating damage. Back-barrier marshes outside these regions exhibited mixed correspondences. In some cases, topographic features supporting longer surge persistence suggested that non-correspondence between radar and optical data-based results may be due to differential resilience; however, in many cases, reference information was lacking to determine a reason for non-correspondence.

  4. Relationships between wintering waterbirds and invertebrates, sediments and hydrology of coastal marsh ponds

    USGS Publications Warehouse

    Bolduc, F.; Afton, A.D.

    2004-01-01

    We studied relationships among sediment variables (carbon content, C:N, hardness, oxygen penetration, silt-clay fraction), hydrologic variables (dissolved oxygen, salinity, temperature, transparency, water depth), sizes and biomass of common invertebrate classes, and densities of 15 common waterbird species in ponds of impounded freshwater, oligohaline, mesohaline, and unimpounded mesohaline marshes during winters 1997-98 to 1999-2000 on Rockefeller State Wildlife Refuge, Louisiana, USA. Canonical correspondence analysis and forward selection was used to analyze the above variables. Water depth and oxygen penetration were the variables that best segregated habitat characteristics that resulted in maximum densities of common waterbird species. Most common waterbird species were associated with specific marsh types, except Green-winged Teal (Anas crecca) and Northern Shoveler (Anas clypeata). We concluded that hydrologic manipulation of marsh ponds is the best way to manage habitats for these birds, if the hydrology can be controlled adequately.

  5. Effects of weir management on marsh loss, Marsh Island, Louisiana, USA

    NASA Astrophysics Data System (ADS)

    Nyman, John A.; Chabreck, Robert H.; Linscombe, R. G.

    1990-11-01

    Weirs are low-level dams traditionally used in Louisiana's coastal marshes to improve habitat for ducks and furbearers. Currently, some workers hope that weirs may reduce marsh loss, whereas others fear that weirs may accelerate marsh loss. Parts of Marsh Island, Louisiana, have been weir-managed since 1958 to improve duck and furbearer habitat. Using aerial photographs, marsh loss that occurred between 1957 and 1983 in a 2922-ha weir-managed area was compared to that in a 2365-ha unmanaged area. Marsh loss was 0.38%/yr in the weir-managed area, and 0.35%/yr in the unmanaged area. Because marsh loss in the two areas differed less than 0.19%/yr, it was concluded that weirs did not affect marsh loss. The increase in open water between 1957 and 1983 did not result from the expansion of lakes or bayous. Rather, solid marsh converted to broken marsh, and the amount of vegetation within previously existing broken marsh decreased. Solid marsh farthest from large lakes and bayous, and adjacent to existing broken marsh, seemed more likely to break up. Marsh Island has few canals; therefore, marsh loss resulted primarily from natural processes. Weirs may have different effects under different hydrological conditions; additional studies are needed before generalizations regarding weirs and marsh loss can be made.

  6. Threats to Marsh Resources and Mitigation

    EPA Science Inventory

    Salt marshes inhabit low-energy, intertidal shorelines worldwide and are among the most abundant and productive coastal ecosystems. Salt-marsh ecosystems provide a wide array of benefits to coastal populations, including shoreline protection, fishery support, water quality impr...

  7. Effects of structural marsh management and salinity on invertebrate prey of waterbirds in marsh ponds during winter on the Gulf Coast Chenier Plain

    USGS Publications Warehouse

    Bolduc, F.; Afton, A.D.

    2003-01-01

    Aquatic invertebrates are important food resources for wintering waterbirds, and prey selection generally is limited by prey size. Aquatic invertebrate communities are influenced by sediments and hydrologic characteristics of wetlands, which were affected by structural marsh management (levees, water-control structures and impoundments; SMM) and salinity on the Gulf Coast Chenier Plain of North America. Based on previous research, we tested general predictions that SMM reduces biomass of infaunal invertebrates and increases that of epifaunal invertebrates and those that tolerate low levels of dissolved oxygen (O2) and salinity. We also tested the general prediction that invertebrate biomass in freshwater, oligohaline, and mesohaline marshes are similar, except for taxa adapted to specific ranges of salinity. Finally, we investigated relationships among invertebrate biomass and sizes, sediment and hydrologic variables, and marsh types. Accordingly, we measured biomass of common invertebrate by three size classes (63 to 199 ??m, 200 to 999 ??m, and ???1000 ??m), sediment variables (carbon content, C:N ratio, hardness, particle size, and O, penetration), and hydrologic variables (salinity, water depth,temperature, 02, and turbidity) in ponds of impounded freshwater (IF), oligohaline (IO), mesohaline (IM), and unimpounded mesohaline (UM) marshes during winters 1997-1998 to 1999-2000 on Rockefeller State Wildlife Refuge, near Grand Chenier, Louisiana, USA. As predicted, an a priori multivariate analysis of variance (MANOVA) contrast indicated that biomass of an infaunal class of invertebrates (Nematoda, 63 to 199 ??m) was greater in UM marsh ponds than in those of IM marshes, and biomass of an epifaunal class of invertebrates (Ostracoda, 200 to 999 ??m) was greater in IM marsh ponds than in those of UM marshes. The observed reduction in Nematoda due to SMM also was consistent with the prediction that SMM reduces invertebrates that do not tolerate low salinity

  8. Gross nitrous oxide production and consumption along a salt marsh redox gradient

    NASA Astrophysics Data System (ADS)

    Yang, W. H.; Silver, W. L.

    2012-12-01

    Coastal wetlands denitrify nitrate (NO3-)-rich urban and agricultural runoff, and thus decrease anthropogenic nitrogen loading on downslope aquatic ecosystems. Elevation gradients in coastal wetlands likely create redox gradients that result in a range of denitrification dynamics. Our objective was to determine if this redox gradient could elucidate the controls on nitrous oxide (N2O) production and consumption in a salt marsh bordering Tomales Bay, CA. We installed soil equilibration chambers to measure soil oxygen (O2) at 10 cm depth along a transect in each of three marsh zones: high, mid, and low (n=4 per zone). We used the stable isotope trace gas pool dilution technique to measure gross rates of N2O production and consumption over three hour sampling periods at low tide when the surface soils were not saturated. Intact soil cores (0-10 cm depth) taken from the flux chamber footprints were extracted for ammonium, NO3-, and ferric and ferrous iron (Fe(III) and Fe(II)) concentrations as well as assayed for denitrifying enzyme activity (DEA). We sampled on four dates to characterize N2O dynamics across a range of environmental conditions. Bulk soil O2 concentrations in the soil equilibration chambers were higher in the high marsh than in the mid and low marshes (p<0.001, n=44). Soil NO3- concentrations were significantly lower and HCl-extractable Fe(II) concentrations were significantly higher in the low marsh compared to the high and mid marshes (NO3- p<0.001, Fe(II) p<0.001, n=44). Despite differences in redox among the marsh zones, neither gross rates of N2O production (Figure 1a) nor consumption (Figure 1b) varied significantly among the zones. DEA also did not differ among marsh zones, with averages ranging from 136 ± 30 ng-N g-1 h-1 in the mid marsh to 550 ± 121 ng-N g-1 h-1 in the low marsh. Overall, this salt marsh was neither an N2O source nor sink, with net N2O fluxes averaging 51 ± 40 μg-N m-2 d-1 across all marsh zones and sampling dates. However

  9. Floristic Development Patterns in a Restored Elk River Estuarine Marsh, Grays Harbor, Washington

    SciTech Connect

    Thom, Ronald M. ); Zeigler, Robert; Borde, Amy B. )

    2002-09-15

    We describe the changes in the floral assemblage in a salt marsh after reconnection to estuarine tidal inundation. The Elk River marsh in Grays Harbor, Washington, was opened to tidal flushing in 1987 after being diked for approximately 70 years. The freshwater pasture assemblage dominated by Phalarais arundinacea (reed canary grass) converted to low salt marsh vegetation within 5 years, with the major flux in species occurring between years 1 and 4. The system continued to develop through the 11-year post-breach monitoring period, although change after year 6 was slower than in previous years. The assemblage resembles a low salt marsh community dominated by Distichlis spicata (salt grass) and Salicornia virginica (pickleweed). Because of subsidence of the system during the period of breaching, the restored system remains substantially different from the Deschamsia cespitosa (tufted hairgrass)-dominated reference march. Use of a similarity index to compare between years and also between reference and restored marshes in the same year revealed that similarity in floral composition between year 0 and subsequent years decreased with time. However, there was a period of dramatic dissimilarity during years 1 to 3 when the system was rapidly changing from a freshwater to estuarine condition. Similarity values between the reference and restored system generally increased with time. Somewhat surprisingly, the reference marsh showed considerable between-year variation in similarity, which indicated substantial year-to-year variability in species composition. Based on accretion rate date from previous studies we predict that full recovery of the system would take between 75 and 150 years.

  10. Substrate sources regulate spatial variation of metabolically active methanogens from two contrasting freshwater wetlands.

    PubMed

    Lin, Yongxin; Liu, Deyan; Ding, Weixin; Kang, Hojeong; Freeman, Chris; Yuan, Junji; Xiang, Jian

    2015-12-01

    There is ample evidence that methane (CH4) emissions from natural wetlands exhibit large spatial variations at a field scale. However, little is known about the metabolically active methanogens mediating these differences. We explored the spatial patterns in active methanogens of summer inundated Calamagrostis angustifolia marsh with low CH4 emissions and permanently inundated Carex lasiocarpa marsh with high CH4 emissions in Sanjiang Plain, China. In C. angustifolia marsh, the addition of (13)C-acetate significantly increased the CH4 production rate, and Methanosarcinaceae methanogens were found to participate in the consumption of acetate. In C. lasiocarpa marsh, there was no apparent increase in the CH4 production rate and no methanogen species were labeled with (13)C. When (13)CO2-H2 was added, however, CH4 production was found to be due to Fen Cluster (Methanomicrobiales) in C. angustifolia marsh and Methanobacterium Cluster B (Methanobacteriaceae) together with Fen Cluster in C. lasiocarpa marsh. These results suggested that CH4 was produced primarily by hydrogenotrophic methanogens using substrates mainly derived from plant litter in C. lasiocarpa marsh and by both hydrogenotrophic and acetoclastic methanogens using substrates mainly derived from root exudate in C. angustifolia marsh. The significantly lower CH4 emissions measured in situ in C. angustifolia marsh was primarily due to a deficiency of substrates compared to C. lasiocarpa marsh. Therefore, we speculate that the substrate source regulates both the type of active methanogens and the CH4 production pathway and consequently contributes to the spatial variations in CH4 productions observed in these freshwater marshes.

  11. Calcite-accumulating large sulfur bacteria of the genus Achromatium in Sippewissett Salt Marsh.

    PubMed

    Salman, Verena; Yang, Tingting; Berben, Tom; Klein, Frieder; Angert, Esther; Teske, Andreas

    2015-11-01

    Large sulfur bacteria of the genus Achromatium are exceptional among Bacteria and Archaea as they can accumulate high amounts of internal calcite. Although known for more than 100 years, they remain uncultured, and only freshwater populations have been studied so far. Here we investigate a marine population of calcite-accumulating bacteria that is primarily found at the sediment surface of tide pools in a salt marsh, where high sulfide concentrations meet oversaturated oxygen concentrations during the day. Dynamic sulfur cycling by phototrophic sulfide-oxidizing and heterotrophic sulfate-reducing bacteria co-occurring in these sediments creates a highly sulfidic environment that we propose induces behavioral differences in the Achromatium population compared with reported migration patterns in a low-sulfide environment. Fluctuating intracellular calcium/sulfur ratios at different depths and times of day indicate a biochemical reaction of the salt marsh Achromatium to diurnal changes in sedimentary redox conditions. We correlate this calcite dynamic with new evidence regarding its formation/mobilization and suggest general implications as well as a possible biological function of calcite accumulation in large bacteria in the sediment environment that is governed by gradients. Finally, we propose a new taxonomic classification of the salt marsh Achromatium based on their adaptation to a significantly different habitat than their freshwater relatives, as indicated by their differential behavior as well as phylogenetic distance on 16S ribosomal RNA gene level. In future studies, whole-genome characterization and additional ecophysiological factors could further support the distinctive position of salt marsh Achromatium.

  12. Decomposition of saltmeadow cordgrass (Spartina patens) in Louisiana coastal marshes

    USGS Publications Warehouse

    Foote, A.L.; Reynolds, K.A.

    1997-01-01

    In Louisiana, plant production rates and associated decomposition rates may be important in offsetting high rates of land loss and subsidence in organic marsh soils. Decomposition of Spartina patens shoot and leaf material was studied by using litter bags in mesohaline marshes in the Barataria and Terrebonne basins of coastal Louisiana. Spartina patens decomposed very slowly with an average decay constant of 0.0007, and approximately 50% of the material remained after 2 years in the field. Material at the Barataria site decomposed faster than did Terrebonne material with trend differences apparent during the first 150 days. This difference might be explained by the higher content of phosphorus in the Barataria material or a flooding period experienced by the Barataria bags during their first 10 days of deployment. Nitrogen and carbon content of the plant material studied did not differ between the two basins. We detected no consistent significant differences in decomposition above, at, or below sediment/water level. Because S. patens is the dominant plant in these marshes, and because it is so slow to decompose, we believe that S. patens shoots are an important addition to vertical accretion and, therefore, marsh elevation.

  13. Periodicity in stem growth and litterfall in tidal freshwater forested wetlands: influence of salinity and drought on nitrogen recycling

    USGS Publications Warehouse

    Cormier, Nicole; Krauss, Ken W.; Conner, William H.

    2013-01-01

    Many tidally influenced freshwater forested wetlands (tidal swamps) along the south Atlantic coast of the USA are currently undergoing dieback and decline. Salinity often drives conversion of tidal swamps to marsh, especially under conditions of regional drought. During this change, alterations in nitrogen (N) uptake from dominant vegetation or timing of N recycling from the canopy during annual litter senescence may help to facilitate marsh encroachment by providing for greater bioavailable N with small increases in salinity. To monitor these changes along with shifts in stand productivity, we established sites along two tidal swamp landscape transects on the lower reaches of the Waccamaw River (South Carolina) and Savannah River (Georgia) representing freshwater (≤0.1 psu), low oligohaline (1.1–1.6 psu), and high oligohaline (2.6–4.1 psu) stands; the latter stands have active marsh encroachment. Aboveground tree productivity was monitored on all sites through monthly litterfall collection and dendrometer band measurements from 2005 to 2009. Litterfall samples were pooled by season and analyzed for total N and carbon (C). On average between the two rivers, freshwater, low oligohaline, and high oligohaline tidal swamps returned 8,126, 3,831, and 1,471 mg N m−2 year−1, respectively, to the forest floor through litterfall, with differences related to total litterfall volume rather than foliar N concentrations. High oligohaline sites were most inconsistent in patterns of foliar N concentrations and N loading from the canopy. Leaf N content generally decreased and foliar C/N generally increased with salinization (excepting one site), with all sites being fairly inefficient in resorbing N from leaves prior to senescence. Stands with higher salinity also had greater flood frequency and duration, lower basal area increments, lower tree densities, higher numbers of dead or dying trees, and much reduced leaf litter fall (103 vs. 624 g m−2 year−1) over the

  14. Factors controlling dimethylsulfide emission from salt marshes

    NASA Technical Reports Server (NTRS)

    Dacey, John W. H.; Wakeham, S. G.; Howes, B. L.

    1985-01-01

    The factors that control the emission of methylated gases from salt marshes are being studied. Research focusses on dimethylsulfide (DMS) formation and the mechanism of DMS and CH4 emission to the atmosphere. The approach is to consider the plants as valves regulating the emission of methylated gases to the atmosphere with the goal of developing appropriate methods for emission measurement. In the case of CH4, the sediment is the source and transport to the atmosphere occurs primarily through the internal gas spaces in the plants. The source of DMS appears to be dimethyl sulfoniopropionate (DMSP) which may play a role in osmoregulation in plant tissues. Concentrations of DMSP in leaves are typically several-fold higher than in roots and rhizomes. Even so, the large below ground biomass of this plant means that 2/3 of the DMSP in the ecosystem is below ground on the aerial basis. Upon introduction to sediment water, DMSP rapidly decomposes to DMS and acrylic acid. The solubility of a gas (its equilibrium vapor pressure) is a fundamental aspect of gas exchange kinetics. The first comprehensive study was conducted of DMS solubility in freshwater and seawater. Data suggest that the Setchenow relation holds for H at intermediate salinities collected. These data support the concept that the concentration of DMS in the atmosphere is far from equilibrium with seawater.

  15. THE EFFECT OF NITROGEN OVER-ENRICHMENT ON SOME PLANT-SOIL RELATIONSHIPS AND MICROBIAL PROCESSES

    EPA Science Inventory

    Salt marshes of similar geomorphology and hydrology with varying watershed nitrogen loads were examined for differences in plant structure, soil characteristics, and
    denitrification. We observed landward encroachment of the low marsh Spartina alterniflora, and the displacement...

  16. Plant-plant interactions in a subtropical mangrove-to-marsh transition zone: effects of environmental drivers

    USGS Publications Warehouse

    Howard, Rebecca J.; Krauss, Ken W.; Cormier, Nicole; Day, Richard H.; Biagas, Janelda M.; Allain, Larry K.

    2015-01-01

    Questions Does the presence of herbaceous vegetation affect the establishment success of mangrove tree species in the transition zone between subtropical coastal mangrove forests and marshes? How do plant–plant interactions in this transition zone respond to variation in two primary coastal environmental drivers? Location Subtropical coastal region of the southern United States. Methods We conducted a greenhouse study to better understand how abiotic factors affect plant species interactions in the mangrove-to-marsh transition zone, or ecotone. We manipulated salinity (fresh, brackish or salt water) and hydrologic conditions (continuously saturated or 20-cm tidal range) to simulate ecotonal environments. Propagules of the mangroves Avicennia germinans and Laguncularia racemosa were introduced to mesocosms containing an established marsh community. Both mangrove species were also introduced to containers lacking other vegetation. We monitored mangrove establishment success and survival over 22 mo. Mangrove growth was measured as stem height and above-ground biomass. Stem height, stem density and above-ground biomass of the dominant marsh species were documented. Results Establishment success of A. germinans was reduced under saturated saltwater conditions, but establishment of L. racemosa was not affected by experimental treatments. There was complete mortality of A. germinans in mesocosms under freshwater conditions, and very low survival of L. racemosa. In contrast, survival of both species in monoculture under freshwater conditions exceeded 62%. The marsh species Distichlis spicata and Eleocharis cellulosa suppressed growth of both mangroves throughout the experiment, whereas the mangroves did not affect herbaceous species growth. The magnitude of growth suppression by marsh species varied with environmental conditions; suppression was often higher in saturated compared to tidal conditions, and higher in fresh and salt water compared to

  17. Tampa Bay coastal wetlands: nineteenth to twentieth century tidal marsh-to-mangrove conversion

    USGS Publications Warehouse

    Raabe, Ellen A.; Roy, Laura C.; McIvor, Carole C.

    2012-01-01

    Currently, mangroves dominate the tidal wetlands of Tampa Bay, Florida, but an examination of historic navigation charts revealed dominance of tidal marshes with a mangrove fringe in the 1870s. This study's objective was to conduct a new assessment of wetland change in Tampa Bay by digitizing nineteenth century topographic and public land surveys and comparing these to modern coastal features at four locations. We differentiate between wetland loss, wetland gain through marine transgression, and a wetland conversion from marsh to mangrove. Wetland loss was greatest at study sites to the east and north. Expansion of the intertidal zone through marine transgression, across adjacent low-lying land, was documented primarily near the mouth of the bay. Generally, the bay-wide marsh-to-mangrove ratio reversed from 86:14 to 25:75 in 125 years. Conversion of marsh to mangrove wetlands averaged 72 % at the four sites, ranging from 52 % at Old Tampa Bay to 95 % at Feather Sound. In addition to latitudinal influences, intact wetlands and areas with greater freshwater influence exhibited a lower rate of marsh-to-mangrove conversion. Two sources for nineteenth century coastal landscape were in close agreement, providing an unprecedented view of historic conditions in Tampa Bay.

  18. Effects of climate change on tidal marshes along a latitudinal gradient in California

    USGS Publications Warehouse

    Thorne, Karen M.; MacDonald, Glen M.; Ambrose, Rich F.; Buffington, Kevin J.; Freeman, Chase M.; Janousek, Christopher N.; Brown, Lauren N.; Holmquist, James R.; Guntenspergen, Glenn R.; Powelson, Katherine W.; Barnard, Patrick L.; Takekawa, John Y.

    2016-08-05

    Public SummaryThe coastal region of California supports a wealth of ecosystem services including habitat provision for wildlife and fisheries. Tidal marshes, mudflats, and shallow bays within coastal estuaries link marine, freshwater and terrestrial habitats, and provide economic and recreational benefits to local communities. Climate change effects such as sea-level rise (SLR) are altering these habitats, but we know little about how these areas will change over the next 50–100 years. Our study examined the projected effects of three recent SLR scenarios produced for the West Coast of North America on tidal marshes in California. We compiled physical and biological data, including coastal topography, tidal inundation, plant composition, and sediment accretion to project how SLR may alter these ecosystems in the future. The goal of our research was to provide results that support coastal management and conservation efforts across California. Under a low SLR scenario, all study sites remained vegetated tidal wetlands, with most sites showing little elevation and vegetation change relative to sea level. At most sites, mid SLR projections led to increases in low marsh habitat at the expense of middle and high marsh habitat. Marshes at Morro Bay and Tijuana River Estuary were the most vulnerable to mid SLR with many areas becoming intertidal mudflat. Under a high SLR scenario, most sites were projected to lose vegetated habitat, eventually converting to intertidal mudflats. Our results suggest that California marshes are vulnerable to major habitat shifts under mid or high rates of SLR, especially in the latter part of the century. Loss of vegetated tidal marshes in California due to SLR is expected to impact ecosystem services that are dependent on coastal wetlands such as wildlife habitat, carbon sequestration, improved water quality, and coastal protection from storms.

  19. Are freshwater diversion projects in Louisiana wetlands doing more harm than good?

    NASA Astrophysics Data System (ADS)

    Schulz, C. J.; Childers, G. W.

    2009-12-01

    Several freshwater diversion projects are online and many more are proposed, drastically altering the hydrology and nutrient flux in Louisiana wetlands. The intention of these massive projects is to prevent saltwater intrusion and provide sediments and nutrients to combat coastal erosion and subsidence. A proposed mechanism that such diversions decrease land loss is through the increase in vegetative biomass accumulation, leading to net gains in organic sediments. Although freshwater and nutrients can enhance primary production, it is unclear what impact these waters will have on existing sediment organic reservoirs. There are a limited, but growing number of studies suggesting that nutrient additions to wetland systems can lead to enhanced soil decomposition; thus, freshwater diversion projects may actually enhance wetland deterioration. A wetland restoration project delivering five million gallons per day of treated domestic effluent to the Joyce Wildlife Management Area (JWMA) marsh began in 2006. The treated effluent is similar to Mississippi River water with respect to alkalinity and reactive nitrogen concentrations. Sediment carbon and nitrogen content was monitored pre and post restoration project commencement and decreased significantly over a two year period from 2006 to 2008. The change in water chemistry (alkalinity/pH and reactive nitrogen) was expected to have an impact on microbial activities in these sediments. The microbial community composition of methanogens and archaeal ammonia oxidizers (as monitored by mcrA and amoA gene clone libraries, respectively) also shifted during this time period. Microcosm experiments using relatively un-impacted JWMA sediments with cellulose amendments showed increased methane production (i.e. enhanced organic matter / plant matter decomposition) corresponding to increasing alkalinity. Possible mechanisms accounting for these observations can be explained by thermodynamic constraints in anaerobic degradation pathways.

  20. Bedrock controls of sedimentation along a marsh-dominated, open-marine, low energy coastline: west-central Florida

    SciTech Connect

    Hine, A.C.; Belknap, D.F.; Osking, E.B.; Hutton, J,G.; Evans, M.R.

    1985-01-01

    The northwestern peninsular Florida coast is microtidal, low wave energy. Topographic complexity is due to karstified Tertiary limestone, actively discharging freshwater springs, and lack of pre-Holocene sediment veneer. This complexity helps control local sedimentary processes. In the southern part of the field area a near continuous, thin Pleistocene quartz sand allows a marsh-fronting berm and simpler shoreline morphology. To the north, freshwater springs have formed shallow estuarine embayments containing linear oyster bioherms, nucleated upon local bedrock highs. These molluscan reefs enclose interbiothermal basins, segmenting the embayments. Between the embayments are archipelagoes of marsh islands and tidal creeks. Their complex topography was formed from selective dissolution along rectilinear fractures, creating linear lows which when drowned by rising sea level formed the largest tidal creeks. Marsh islands formed on intervening low-relief knobs. These commonly support oases of less salt tolerant shrubs and trees, surrounded by Juncus roemerianus marsh. Landward to seaward changes in rock/sedimentation relationships suggest an evolutionary pattern during sea-level rise. Upland forests become hammocks surrounded by marsh. Hammocks become islands surrounded by tidal creeks. Submerged hammocks finally become highs supporting oyster reefs. Preservation potential during the present slow transgression is low, due primarily to the low relief.

  1. The Great Newbury Marsh Hike.

    ERIC Educational Resources Information Center

    Blais, Heidi; And Others

    Designed to acquaint students at Triton Regional High School (Massachusetts) with the importance of the salt marshes and marine environment around Triton, this outdoor education curriculum guide includes three sections emphasizing an interdisciplinary approach to physics, ecology, and history. The unit is designed for 50 students and 5 teachers…

  2. Dynamics of pore-water and salt in estuarine marshes subjected to tide and evaporation

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Shen, C.; Li, L.; Lockington, D. A.

    2015-12-01

    Salt dynamics in estuarine tidal marshes are strongly associated with their intrinsic hydrological processes and ecological behaviors, which are not well understood. Numerical simulations were carried out to investigate the transport and distribution of pore water and salt in a vertical cross section perpendicular to the tidal creek that subjects to spring-neap tide and evaporation. Vaporizing pore water from unsaturated soil surface with salt left in soils, the time-variant actual evaporation is affected by aerodynamic factors as well as soil conditions, including pore-water saturation, solute concentration and the thickness of salt precipitation above the soil surface (efflorescence). Different simulation cases were performed by adjusting the tidal signal, marsh platform slope and soil properties. The simulation analysis indicates that, the tide-averaged soil salinity increases with the reduction of inundation period in a spring-neap tide cycle. As the salt accumulated by evaporation could leave soil from seepage back to seawater during ebbtide, the pore-water salinity at the surface within the tidal range remains close to that of seawater. With the presence of hyper-saline soil and efflorescence, salt flat develops only in the area where capillary connection between evaporating surface and water-saturated soil is maintained while tidal inundation absent. On the contrary, the sandy supratidal marsh where hydrological connections are disrupted keeps a relatively low soil salinity (40-60 ppt) and pore-water saturation as evaporation remains low throughout the tidal cycles.

  3. N2O Flux from Salt Marshes in Estuaries along the Gulf of St. Lawrence

    NASA Astrophysics Data System (ADS)

    Roughan, B.; Kellman, L. M.; Chmura, G. L.

    2013-12-01

    Wetlands are widely noted as filters for nutrient-laden waters. However, soils in tidal salt marshes emit nitrous oxide (N2O) when experimentally fertilized, which suggests that improved water quality comes at the expense of increased atmospheric concentrations of this potent greenhouse gas. Here we report on N2O emissions from four salt marshes located in estuaries along the Gulf of St. Lawrence. Our control site is located in a National Park on the coast of New Brunswick, which is in a region of low population density and limited agriculture, whereas the other estuaries have watersheds characterized by intensive agriculture activities on Prince Edward Island (PEI). N2O gas was collected during low tide, using opaque, static-chambers (17 L, 25 cm diameter) placed over marsh vegetation in the Spartina patens-dominated high marsh, which is typical of salt marshes along the northwest Atlantic coast, from New York north to Atlantic Canada. Preliminary analysis of gas samples collected in June revealed that the average N2O flux from the marshes located in agriculturally intensive watersheds (6.17 ×1.82 μg N2O m-2 hr-1) was significantly higher than the flux from the control marsh, which was negligible (-2.63 ×2.22 μg N2O m-2 hr-1). Assuming this elevated N2O flux is typical of the growing season (May-October), these marshes emit an average of 27 ×8 mg N2O m-2 yr-1 (or 8 g CO2e m-2 yr-1), 8.4% of the annual soil C accumulation rate reported for PEI. These results suggest that unintentional N fertilization of salt marshes located in agriculturally dominated watersheds may be fueling significant anthropogenic greenhouse gas emissions in some marshes. Further work during the 2013 growing season will provide insight into the environmental variables that affect the flux of N2O from these tidal salt marshes.

  4. Stability of organic carbon accumulating in Spartina alterniflora-dominated salt marshes of the Mid-Atlantic U.S.

    NASA Astrophysics Data System (ADS)

    Unger, Viktoria; Elsey-Quirk, Tracy; Sommerfield, Christopher; Velinsky, David

    2016-12-01

    Organic carbon sequestration in salt marsh soils is a function of factors that influence both spatial variability and chemical stability of accumulating carbon. Refractory carbon (slowly decomposed) may be the most important in terms of long-term sequestration and is widely referred to in models of carbon storage; however, little information exists about the quantity and variability of refractory carbon accumulation in marshes. In this study, total (CT), labile (CL) and refractory (CR) organic carbon accumulation rates were measured for Spartina alterniflora-dominated marshes representing different geomorphological settings with a range of vertical accretion rates. Three 50-cm long cores were collected in each of three marshes in Barnegat Bay and three marshes in Delaware Estuary, USA. Rates of C accumulation were calculated using Cesium-137 dating and the relative stability of soil organic carbon was quantified using acid-hydrolysis. CT accumulation ranged over fourfold among marshes from 72 to 346 g m-2 yr-1. CT and CL accumulation increased with increasing mineral sediment accumulation, while CR accumulation was uniform across cores averaging 78 ± 5 g m-2 yr-1. Similar rates of CR accumulation across marsh areas with different accretion and mineral sediment accumulation rates was associated with a decline in the CR:CL density ratio as mineral volume increased. Our results suggest that carbon accumulation is higher in salt marshes with higher mineral sedimentation due, primarily, to the burial of labile carbon, and that there is a limit on the rate of chemically recalcitrant carbon accumulation in marsh soils.

  5. Position of the freshwater-saltwater interface in a coastal confined aquifer

    NASA Astrophysics Data System (ADS)

    Evans, T. B.; White, S. M.; Wilson, A. M.

    2014-12-01

    Delineating the position of the freshwater-saltwater interface is necessary for understanding submarine groundwater discharge and for assessing risks associated with saltwater intrusion, but most studies of the freshwater-saltwater interface focus on shallow surficial aquifers. Groundwater dynamics in coastal aquifers at depths greater than 5 m below land surface have rarely been assessed. The freshwater-saltwater interface in deeper confined aquifers is frequently positioned offshore, where it is difficult to locate or study. Our investigation was located at North Inlet, a wide, intertidal wetland southeast of Georgetown, SC. This site was ideal for studying the freshwater-saltwater interface at the embayment scale because the first major confined aquifer under the wetlands was accessible. Using electrical resistivity tomography, we were able to image the upper 20 to 30 m of sediment, including the first major confined aquifer. At North Inlet a 75 km2 island is bounded by extensive marsh and relict and modern barrier islands extending ~10 km seaward to the Atlantic Ocean. Surface and groundwater salinity throughout the marsh is 35 ppt. In order to get maximum depth penetration, surveys were conducted along dry land on the island and marsh surface with 10 m electrode spacing. Measured apparent resistivity varied in all surveys. A 20 Ohm-m resistivity layer at 25 m depth suggests that freshwater extends 335 m from the mainland. The presence of this freshwater indicates regional groundwater flow under the marsh or high rates of infiltration during precipitation events. Groundwater was saline to brackish (~10 Ohm-m) 1 km further out into the marsh at the next relict beach ridge at depths of 20 to 30 m. These results indicate that embayment scale groundwater flow plays an important role in providing low salinity pore-water to the marsh from beneath. The presence of fresh/brackish groundwater hundreds of meters from the mainland suggests that coastal confined aquifers

  6. Methane production correlates positively with methanogens, sulfate-reducing bacteria and pore water acetate at an estuarine brackish-marsh landscape scale

    NASA Astrophysics Data System (ADS)

    Tong, C.; She, C. X.; Jin, Y. F.; Yang, P.; Huang, J. F.

    2013-11-01

    Methane production is influenced by the abundance of methanogens and the availability of terminal substrates. Sulfate-reducing bacteria (SRB) also play an important role in the anaerobic decomposition of organic matter. However, the relationships between methane production and methanogen populations, pore water terminal substrates in estuarine brackish marshes are poorly characterized, and even to our knowledge, no published research has explored the relationship between methane production rate and abundance of SRB and pore water dimethyl sulfide (DMS) concentration. We investigated methane production rate, abundances of methanogens and SRB, concentrations of pore water terminal substrates and electron acceptors at a brackish marsh landscape dominated by Phragmites australis, Cyperus malaccensis and Spatina alterniflora marshes zones in the Min River estuary. The average rates of methane production at a soil depth of 30 cm in the three marsh zones were 0.142, 0.058 and 0.067 μg g-1 d-1, respectively. The abundance of both methanogens and SRB in the soil of the P. australis marsh with highest soil organic carbon content was higher than in the C. malaccensis and S. alterniflora marshes. The abundance of methanogens and SRB in the three soil layers was statistically indistinguishable. Mean pore water DMS concentrations at a soil depth of 30 cm under the S. alterniflora marsh were higher than those in the C. malaccensis and P. australis marshes. Methane production rate increased with the abundance of both methanogens and SRB across three marsh zones together at the landscape scale, and also increased with the concentration of pore water acetate, but did not correlate with concentrations of pore water DMS and dissolved CO2. Our results suggest that, provided that substrates are available in ample supply, methanogens can continue to produce methane regardless of whether SRB are prevalent in estuarine brackish marshes.

  7. Evaluating ecological equivalence of created marshes: comparing structural indicators with stable isotope indicators of blue crab trophic support

    USGS Publications Warehouse

    Llewellyn, Chris; LaPeyre, Megan K.

    2010-01-01

    This study sought to examine ecological equivalence of created marshes of different ages using traditional structural measures of equivalence, and tested a relatively novel approach using stable isotopes as a measure of functional equivalence. We compared soil properties, vegetation, nekton communities, and δ13C and δ15N isotope values of blue crab muscle and hepatopancreas tissue and primary producers at created (5-24 years old) and paired reference marshes in SW Louisiana. Paired contrasts indicated that created and reference marshes supported equivalent plant and nekton communities, but differed in soil characteristics. Stable isotope indicators examining blue crab food web support found that the older marshes (8 years+) were characterized by comparable trophic diversity and breadth compared to their reference marshes. Interpretation of results for the youngest site was confounded by the fact that the paired reference, which represented the desired end goal of restoration, contained a greater diversity of basal resources. Stable isotope techniques may give coastal managers an additional tool to assess functional equivalency of created marshes, as measured by trophic support, but may be limited to comparisons of marshes with similar vegetative communities and basal resources, or require the development of robust standardization techniques.

  8. The Influence of Tidal Forcing and Groundwater Flow on Nutrient Exchange Between Salt Marsh Sediments and Adjacent Estuaries

    NASA Astrophysics Data System (ADS)

    Wilson, A. M.; Morris, J. T.

    2008-12-01

    Unlike freshwater wetlands, tidal salt marshes export significant dissolved reactive phosphorus (DRP) and ammonium to adjacent surface waters. Here we used long-term nutrient and salinity records from porewaters and tidal creeks collected at North Inlet, SC and numerical models of tidally-driven groundwater flow to investigate the role of tidal forcing in nutrient export. Long-term nutrient and salinity records were found to be highly correlated with variations in the tidal signal over a wide range of time scales. Numerical models of tidally-driven groundwater flow were then developed to independently estimate the impact of variations in mean water level (MWL) and tidal amplitude on porewater discharge to tidal creeks. Simulation results are consistent with observed trends and suggest that an increase in MWL of as little as 5 cm can increase groundwater flushing, and hence nutrient export, by more than 40 percent when marsh platforms are equilibrated near mean high water. Should MWL continue to increase faster than the marsh surface can accrete, however, the rate of flushing decreases steadily with increasing MWL. Increases in tidal amplitude also increase groundwater flushing, particularly when increasing the tidal amplitude causes the marsh platform to be inundated at high tide. Mass balance calculations based on these simulations suggest that the total DRP and ammonium discharged from salt marsh sediments at North Inlet are in excess of that needed to support observed exports to the coastal ocean. Results have important implications for marsh restoration, estuarine nutrient budgets, and sea level rise.

  9. 8. View of Sterling Creek Marsh looking northeast across the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. View of Sterling Creek Marsh looking northeast across the berm with the marsh to the left - Richmond Hill Plantation, Sterling Creek Marsh, East of Richmond Hill on Ford Neck Road, Richmond Hill, Bryan County, GA

  10. 10. View of Sterling Creek Marsh looking south with house ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. View of Sterling Creek Marsh looking south with house in the background and marsh in foreground - Richmond Hill Plantation, Sterling Creek Marsh, East of Richmond Hill on Ford Neck Road, Richmond Hill, Bryan County, GA

  11. 9. View of Sterling Creek Marsh looking southwest, with the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. View of Sterling Creek Marsh looking southwest, with the marsh in the background and the berm in the foreground - Richmond Hill Plantation, Sterling Creek Marsh, East of Richmond Hill on Ford Neck Road, Richmond Hill, Bryan County, GA

  12. Effects of disturbance associated with seismic exploration for oil and gas reserves in coastal marshes.

    PubMed

    Howard, Rebecca J; Wells, Christopher J; Michot, Thomas C; Johnson, Darren J

    2014-07-01

    Anthropogenic disturbances in wetland ecosystems can alter the composition and structure of plant assemblages and affect system functions. Extensive oil and gas extraction has occurred in wetland habitats along the northern Gulf of Mexico coast since the early 1900s. Activities involved with three-dimensional (3D) seismic exploration for these resources cause various disturbances to vegetation and soils. We documented the impact of a 3D seismic survey in coastal marshes in Louisiana, USA, along transects established before exploration began. Two semi-impounded marshes dominated by Spartina patens were in the area surveyed. Vegetation, soil, and water physicochemical data were collected before the survey, about 6 weeks following its completion, and every 3 months thereafter for 2 years. Soil cores for seed bank emergence experiments were also collected. Maximum vegetation height at impact sites was reduced in both marshes 6 weeks following the survey. In one marsh, total vegetation cover was also reduced, and dead vegetation cover increased, at impact sites 6 weeks after the survey. These effects, however, did not persist 3 months later. No effects on soil or water properties were identified. The total number of seeds that germinated during greenhouse studies increased at impact sites 5 months following the survey in both marshes. Although some seed bank effects persisted 1 year, these effects were not reflected in standing vegetation. The marshes studied were therefore resilient to the impacts resulting from 3D seismic exploration because vegetation responses were short term in that they could not be identified a few months following survey completion.

  13. Effects of disturbance associated with seismic exploration for oil and gas reserves in coastal marshes

    USGS Publications Warehouse

    Howard, Rebecca J.; Wells, Christopher J.; Michot, Thomas C.; Johnson, Darren J.

    2014-01-01

    Anthropogenic disturbances in wetland ecosystems can alter the composition and structure of plant assemblages and affect system functions. Extensive oil and gas extraction has occurred in wetland habitats along the northern Gulf of Mexico coast since the early 1900s. Activities involved with three-dimensional (3D) seismic exploration for these resources cause various disturbances to vegetation and soils. We documented the impact of a 3D seismic survey in coastal marshes in Louisiana, USA, along transects established before exploration began. Two semi-impounded marshes dominated by Spartina patens were in the area surveyed. Vegetation, soil, and water physicochemical data were collected before the survey, about 6 weeks following its completion, and every 3 months thereafter for 2 years. Soil cores for seed bank emergence experiments were also collected. Maximum vegetation height at impact sites was reduced in both marshes 6 weeks following the survey. In one marsh, total vegetation cover was also reduced, and dead vegetation cover increased, at impact sites 6 weeks after the survey. These effects, however, did not persist 3 months later. No effects on soil or water properties were identified. The total number of seeds that germinated during greenhouse studies increased at impact sites 5 months following the survey in both marshes. Although some seed bank effects persisted 1 year, these effects were not reflected in standing vegetation. The marshes studied were therefore resilient to the impacts resulting from 3D seismic exploration because vegetation responses were short term in that they could not be identified a few months following survey completion.

  14. Effects of Disturbance Associated With Seismic Exploration for Oil and Gas Reserves in Coastal Marshes

    NASA Astrophysics Data System (ADS)

    Howard, Rebecca J.; Wells, Christopher J.; Michot, Thomas C.; Johnson, Darren J.

    2014-07-01

    Anthropogenic disturbances in wetland ecosystems can alter the composition and structure of plant assemblages and affect system functions. Extensive oil and gas extraction has occurred in wetland habitats along the northern Gulf of Mexico coast since the early 1900s. Activities involved with three-dimensional (3D) seismic exploration for these resources cause various disturbances to vegetation and soils. We documented the impact of a 3D seismic survey in coastal marshes in Louisiana, USA, along transects established before exploration began. Two semi-impounded marshes dominated by Spartina patens were in the area surveyed. Vegetation, soil, and water physicochemical data were collected before the survey, about 6 weeks following its completion, and every 3 months thereafter for 2 years. Soil cores for seed bank emergence experiments were also collected. Maximum vegetation height at impact sites was reduced in both marshes 6 weeks following the survey. In one marsh, total vegetation cover was also reduced, and dead vegetation cover increased, at impact sites 6 weeks after the survey. These effects, however, did not persist 3 months later. No effects on soil or water properties were identified. The total number of seeds that germinated during greenhouse studies increased at impact sites 5 months following the survey in both marshes. Although some seed bank effects persisted 1 year, these effects were not reflected in standing vegetation. The marshes studied were therefore resilient to the impacts resulting from 3D seismic exploration because vegetation responses were short term in that they could not be identified a few months following survey completion.

  15. Estimates of future inundation of salt marshes in response to sea-level rise in and around Acadia National Park, Maine

    USGS Publications Warehouse

    Nielsen, Martha G.; Dudley, Robert W.

    2013-01-01

    size of 1.0 ha. Inundation contours were mapped at 110 salt marshes. Approximately 350 ha of low-lying upland areas adjacent to these marshes will be inundated with 60 cm of sea-level rise. Many of these areas are currently freshwater wetlands. There are potential barriers to marsh migration at 27 of the 114 marshes. Although only 23 percent of the salt marshes in the study are on ANP property, about half of the upland areas that will be inundated are within ANP; most of the predicted inundated uplands (approximately 170 ha) include freshwater wetlands in the Northeast Creek and Bass Harbor Marsh areas. Most of the salt marshes analyzed do not have a significant amount of upland area available for migration. Seventy-five percent of the salt marshes have 20 meters or less of adjacent upland that would be inundated along most of their edges. All inundation contours, salt marsh locations, potential barriers, and survey data are stored in geospatial files for use in a geographic information system and are a part of this report.

  16. Hydrology of Fritchie Marsh, coastal Louisiana

    USGS Publications Warehouse

    Kuniansky, E.L.

    1985-01-01

    Fritchie Marsh, near Slidell, Louisiana, is being considered as a disposal site for sewage effluent. A two-dimensional, finite element, surface water modeling systems was used to solve the shallow water equations for flow. Factors affecting flow patterns are channel locations, inlets, outlets, islands, marsh vegetation, marsh geometry, stage of the West Pearl River, flooding over the lower Pearl River basin, gravity tides, wind-induced currents, and sewage discharge to the marsh. Four steady-state simulations were performed for two hydrologic events at two rates of sewage discharge. The events, near tide with no wind or rain and neap tide with a tide differential across the marsh, were selected as worst-case events for sewage effluent dispersion and were assumed as steady state events. Because inflows and outflows to the marsh are tidally affected, steady state simulations cannot fully define the hydraulic characteristics of the marsh for all hydrologic events. Model results and field data indicate that, during near tide with little or no rain, large parts of the marsh are stagnant; and sewage effluent, at existing and projected flows, has minimal effect on marsh flows. (USGS)

  17. Influence of the Wax Lake Delta sediment diversion on aboveground plant productivity and carbon storage in deltaic island and mainland coastal marshes

    NASA Astrophysics Data System (ADS)

    DeLaune, R. D.; Sasser, C. E.; Evers-Hebert, E.; White, J. R.; Roberts, H. H.

    2016-08-01

    Coastal Louisiana is experiencing a significant loss of coastal wetland area due to increasing sea level rise, subsidence, sediment starvation and marsh collapse. The construction of large scale Mississippi River sediment diversions is currently being planned in an effort to help combat coastal wetlands losses at a rate of >50 km-2 y-1. The Wax Lake Delta (WLD) is currently being used as a model for evaluating potential land gain from large scale diversions of Mississippi River water and sediment. In this study, we determine the impact of the WLD diversion on plant production at newly formed islands within the delta and adjacent, mainland freshwater marshes. Plant aboveground productivity, sediment nutrient status and short term accretion were measured at three locations on a transect at each of three fresh water marsh sites along Hog Bayou and at six newly formed emerging island sites in the delta. Spring flooding has resulted in a greater increase in plant production and consequently, greater carbon sequestration potential in adjacent mainland marshes compared to the newly formed island sites, which contain less total carbon (C), nitrogen (N), and phosphorus (P) in the sediment. While sediment diversions are predicted to create land, as seen in island formation in the WLD, the greatest benefit of river sediment diversions from a carbon credit perspective might be to the adjacent freshwater mainland marshes for several reasons. Both greater plant production and sediment C accumulation are two important factors for marsh stability, while perhaps even more critical, is the prevention of the loss of stored sediment C in the marsh profile. This stored C would be lost without the introduction of freshwater, nutrients and sediment through river sediment diversion efforts.

  18. Using multispectral videography to distinguish the pattern of zonation and plant species composition in brackish water marshes of the Rio Grande Delta

    SciTech Connect

    Judd, F.W.; Lonard, R.I.; Everitt, J.H.

    1997-08-01

    Cyclical flooding of the Rio Grande and movement of floodwater into distributary channels formerly constituted significant freshwater input into the marshes of the Rio Grande Delta, but dams and flood control projects have eliminated this source of freshwater. The marshes are now dependent on rainfall alone for freshwater input and may be experiencing significant change in species of vegetation, abundance and patterns of distribution. Unfortunately, little is known of the ecology of these marshes. As a first step in providing needed information, multispectral videography was used to distinguish species composition and patterns of zonation in a brackish water marsh at Laguna Atascosa National Wildlife Refuge, Cameron County, Texas. The line intercept method of vegetation analysis provided ground truth and quantified species distribution and abundance. The vegetation of a typical brackish water marsh is organized into three zones along an elevation gradient. At the lowest elevations there is a distinct zone dominated by maritime saltwort, Batis maritime. At the lowest elevations in this zone where rainwater remains the longest, stands of California bulrush, Scirpus californicus, occur. An intermediate zone supports shoregrass, Monanthochloe littoralis, as the dominant species. A third (highest) zone is dominated by Gulf cordgrass, Spartina spartinae. The upper margin of this zone grades gradually into a shrub-grassland community that occurs on lomas (clay dunes). Each of the zones is distinguished by a distinctive signature in the multispectral videography. The Batis maritime community has a bright pink to red image response. Monanthochloe littoralis has a dark brown color and Spartina spartinae has a light gray to pinkish-tan color. Brackish water marshes may be distinguished from saltwater marshes by the relative positions of the Monanthochloe littoralis and Spartina spartinae communities, but additional data are needed before this possibility is confirmed.

  19. Annual net ecosystem exchanges of carbon dioxide and methane from a temperate brackish marsh: should the focus of marsh restoration be on brackish environments?

    NASA Astrophysics Data System (ADS)

    Windham-Myers, L.; Anderson, F. E.; Bergamaschi, B. A.; Ferner, M. C.; Schile, L. M.; Spinelli, G.

    2015-12-01

    The exchange and transport of carbon in tidally driven, saline marsh ecosystems provide habitat and trophic support for coastal wildlife and fisheries, while potentially accumulating and storing carbon at some of the highest rates compared to other ecosystems. However, due to the predicted rise in sea level over the next century, the preservation and restoration of estuarine habitats is necessary to compensate for their expected decline. In addition, restoration of these marsh systems can also reduce the impacts of global climate change as they assimilate as much carbon as their freshwater counterparts, while emitting less methane due to the higher concentrations of sulfate in seawater. Unfortunately, in brackish marshes, with salinity concentrations less than 18 parts per thousand (ppt), simple relationships between methane production, salinity and sulfate concentrations are not well known. Here we present the net ecosystem exchange (NEE) of carbon dioxide and methane, as calculated by the eddy covariance method, from a brackish marsh ecosystem in the San Francisco Estuary where salinity ranges from oligohaline (0.5-5 ppt) to mesohaline (5-18 ppt) conditions. Daily rates of carbon dioxide and methane NEE ranged from approximately 10 gC-CO2 m-2 d-1 and 0 mgC-CH4 m-2 d-1, during the winter to -15 gC-CO2 m-2 d-1 and 30 mgC-CH4 m-2 d-1, in the summer growing season. A comparison between similar measurements made from freshwater wetlands in the Sacramento-San Joaquin Delta found that the daily rates of carbon dioxide NEE were similar, but daily rates of methane NEE were just a small fraction (0-15%). Our research also shows that the daily fluxes of carbon dioxide and methane at the brackish marsh were highly variable and may be influenced by the tidal exchanges of seawater. Furthermore, the observed decline in methane production from summer to fall may have resulted from a rise in salinity and/or a seasonal decline in water and air temperatures. Our research goals are

  20. Vegetation engineers marsh morphology through multiple competing stable states

    NASA Astrophysics Data System (ADS)

    Marani, Marco; Da Lio, Cristina; D'Alpaos, Andrea

    2013-02-01

    Marshes display impressive biogeomorphic features, such as zonation, a mosaic of extensive vegetation patches of rather uniform composition, exhibiting sharp transitions in the presence of extremely small topographic gradients. Although generally associated with the accretion processes necessary for marshes to keep up with relative sea level rise, competing environmental constraints, and ecologic controls, zonation is still poorly understood in terms of the underlying biogeomorphic mechanisms. Here we find, through observations and modeling interpretation, that zonation is the result of coupled geomorphological-biological dynamics and that it stems from the ability of vegetation to actively engineer the landscape by tuning soil elevation within preferential ranges of optimal adaptation. We find multiple peaks in the frequency distribution of observed topographic elevation and identify them as the signature of biologic controls on geomorphodynamics through competing stable states modulated by the interplay of inorganic and organic deposition. Interestingly, the stable biogeomorphic equilibria correspond to suboptimal rates of biomass production, a result coherent with recent observations. The emerging biogeomorphic structures may display varying degrees of robustness to changes in the rate of sea level rise and sediment availability, with implications for the overall resilience of marsh ecosystems to climatic changes.

  1. Methyl and Total Mercury Budget of a Mid-Atlantic Estuarine Salt Marsh

    NASA Astrophysics Data System (ADS)

    Mitchell, C. P.; Gilmour, C. C.

    2007-12-01

    Coastal and estuarine salt marshes are both efficient accumulators of particulate-bound inorganic mercury (Hg) and transformers of inorganic Hg to methylmercury (MeHg). As part of continuing studies on the biogeochemical controls, sources, and fate of Hg and MeHg in the Chesapeake Bay region, we have recently expanded our research to examine Hg and MeHg cycling in Chesapeake tidal marshes. Our main study site is the Kirkpatrick Marsh, a salt marsh at the Smithsonian Environmental Research Center (SERC) on the shores of a Chesapeake Bay sub-estuary, the Rhode River. Kirkpatrick Marsh is dominated by Spartina patens, Scirpus olneyi, Phragmites australis, and several other species and is influenced by a mean tidal range of approximately 30 cm. The marsh is currently and has previously been the subject of various biogeochemical studies, thus basic biogeochemistry, carbon, and nutrient cycling for this system is well understood. Research goals for our study include an estimation of the contribution of salt marshes to MeHg budgets in the Chesapeake specifically and in coastal zones more generally; a first look at the sources of Hg for methylmercury production in tidal marshes; and an improved understanding of the biogeochemical controls on net MeHg production and flux in these wetlands. The research study has two major components. One is a spatially-distributed investigation of the geochemical and microbial controls on MeHg production in this high sulfate/high sulfide wetland system. Detailed biogeochemical measurements were made across three marsh zones distinguished by vegetation/elevation characteristics. Microbial activity in the three zones peaks at depths approximately equal to the mean water table depth, but always in the upper 5-10 cm of soil. Pore water sulfide concentrations increase substantially with depth in marsh soil cores, with highest sulfide concentrations (up to 1.5 M) found deeper in the least frequently flooded site. Initial data show that Me

  2. Stable isotopes, Sr/Ca, and Mg/Ca in biogenic carbonates from Petaluma Marsh, northern California, USA

    SciTech Connect

    Ingram, B.L.; De Deckker, P.; Chivas, A.R.; Conrad, M.E.; Byrne, A.R.

    2004-10-19

    Stable isotope ({sup 18}O/{sup 16}O and {sup 13}C/{sup 12}C) and minor-element compositions (Sr/Ca and Mg/Ca ratios) of ostracodes and gastropods separated from marsh sediments from San Francisco Bay, Northern California, were used to reconstruct paleoenvironmental changes in Petaluma Marsh over the past 700 yr. The value of {delta}{sup 18}O in the marsh carbonates reflects changes in freshwater inflow, evaporation, and temperature. Mg/Ca and Sr/Ca in ostracode calcite reflect changes in both freshwater inflow and temperature, although primarily reflect temperature changes in the salinity range of about 10-35 {per_thousand}. Ostracode {delta}{sup 18}O values show a gradual increase by 5 {per_thousand} between 500 yr BR and the present, probably reflecting rising sea level and increased evaporation in the marsh. Superimposed on this trend are higher frequency Mg/Ca and {delta}{sup 18}O variations (3-4 {per_thousand}), probably reflecting changes in freshwater inflow and evaporation. A period of low Mg/Ca occurred between about 100-300 cal yr BP, suggesting wetter and cooler conditions during the Little Ice Age. Higher Mg/Ca ratios occurred 600-700 cal yr BP, indicating drier and warmer conditions during the end of the Medieval Warm Period. Both ostracode and gastropod {delta}{sup 13}C values decrease up-core, reflecting decomposition of marsh vegetation, which changes from C{sub 4} ({delta}{sup 13}C {approx} -12{per_thousand}) to CAM ({delta}{sup 13}C = -26 {per_thousand})-type vegetation over time.

  3. Spatial variation of salt-marsh organic and inorganic deposition and organic carbon accumulation: Inferences from the Venice lagoon, Italy

    NASA Astrophysics Data System (ADS)

    Roner, M.; D'Alpaos, A.; Ghinassi, M.; Marani, M.; Silvestri, S.; Franceschinis, E.; Realdon, N.

    2016-07-01

    Salt marshes are ubiquitous features of the tidal landscape governed by mutual feedbacks among processes of physical and biological nature. Improving our understanding of these feedbacks and of their effects on tidal geomorphological and ecological dynamics is a critical step to address issues related to salt-marsh conservation and response to changes in the environmental forcing. In particular, the spatial variation of organic and inorganic soil production processes at the marsh scale, a key piece of information to understand marsh responses to a changing climate, remains virtually unexplored. In order to characterize the relative importance of organic vs. inorganic deposition as a function of space, we collected 33 shallow soil sediment samples along three transects in the San Felice and Rigà salt marshes located in the Venice lagoon, Italy. The amount of organic matter in each sample was evaluated using Loss On Ignition (LOI), a hydrogen peroxide (H2O2) treatment, and a sodium hypochlorite (NaClO) treatment following the H2O2 treatment. The grain size distribution of the inorganic fraction was determined using laser diffraction techniques. Our study marshes exhibit a weakly concave-up profile, with maximum elevations and coarser inorganic grains along their edges. The amount of organic and inorganic matter content in the samples varies with the distance from the marsh edge and is very sensitive to the specific analysis method adopted. The use of a H2O2+NaClO treatment yields an organic matter density value which is more than double the value obtained from LOI. Overall, inorganic contributions to soil formation are greatest near the marsh edges, whereas organic soil production is the main contributor to soil accretion in the inner marsh. We interpret this pattern by considering that while plant biomass productivity is generally lower in the inner part of the marsh, organic soil decomposition rates are highest in the better aerated edge soils. Hence the higher

  4. Energy balance of a high marsh on the Texas Gulf Coast: Effect of water availability

    NASA Astrophysics Data System (ADS)

    Heilman, J. L.; Heinsch, F. A.; Cobos, D. R.; McInnes, K. J.

    2000-09-01

    The supply of water to the Nueces River Delta near Corpus Christi, Texas, and its estuarine marshes is limited by low tidal ranges in the Gulf of Mexico and by channelization of the Nueces River which restricts freshwater inflow. Micrometeorological measurements were made at the upper end (high marsh) of the delta to determine how daily and seasonal changes in the surface energy balance were affected by availability of water. The marsh consists of shallow ponds interconnected by narrow channels, and elevated areas containing emergent vegetation. During the spring and fall when ponds were flooded, latent and sensible heat flux averaged 67% and 30%, respectively, of net radiation. In the summer when ponds dried, energy partitioning was reversed with sensible heat flux accounting for 65% of net radiation and latent heat accounting for 27%. When ponds were flooded, heat storage in the water column was the major component of storage heat flux. When ponds dried, storage heat flux was controlled by sediment water content, largely through its effect on thermal diffusivity. The ratio of actual to equilibrium evaporation averaged 0.7 in the spring and fall, and 0.3 in the summer, indicating that the marsh behaved more like a dryland ecosystem than a wetland.

  5. Great Lakes clams find refuge from zebra mussels in restored, lake-connected marsh (Ohio)

    USGS Publications Warehouse

    Nichols, S. Jerrine; Wilcox, Douglas A.

    2004-01-01

    Since the early 1990s, more than 95 percent of the freshwater clams once found in Lake Erie have died due to the exotic zebara mussel (Dreissena polymorpha). Zebra mussels attach themselves to native clams in large numbers, impeding the ability of the clams to eat and burrow. However, in 1996, we discovered a population of native clams in Metzger Marsh in western Lake Erie (about 50 miles [80 km] east of Toledo) that were thriving despite the longtime presence of zebra mussel in surrounding waters. At that time, Metzger Marsh was undergoing extensive restoration, including construction of a dike to replace the eroded barrier beach and of a water-control structure to maintain hydrologic connections with the lake (Wilcox and Whillans 1999). The restoration plan called for a drawdown of water levels to promote plant growth from the seedbank -- a process that would also destroy most of the clam population. State and federal resource managers recommended removing as many clams as possible to a site that was isolated from zebra mussels, and then returning them to the marsh after it was restored. We removed about 7,000 native clams in 1996 and moved them back to Metzger Marsh in 1999.

  6. Species occurrence of marsh birds at Cape Cod National Seashore, Massachusetts

    USGS Publications Warehouse

    Erwin, R.M.; Conway, C.J.; Hadden, S.W.

    2002-01-01

    We initiated an inventory and a field test of a protocol that could be used for monitoring marsh birds at the Cape Cod National Seashore in eastern Massachusetts during 1999 and 2000, as part of a more comprehensive national effort. Using cassette tapes during call broadcast surveys, we visited a total of 78 survey points at freshwater, brackish, and salt marsh sites three times on the ground or in canoes during the breeding season (May-June), fall migration (September to November), and twice during winter (December-January). Observer bias on our marsh bird surveys appeared negligible. Although both auditory and visual detection of most species was low (mean ( 0.3 birds per replicate-survey point), we confirmed the presence of seven marsh species, including American Bittern (Botaurus lentiginosus), Least Bittern (Ixobrychus exilis), American Coot (Fulica americana), King Rail (Rallus elegans), Pied-billed Grebe (Podilymbus podiceps), Sora (Porzana carolina), and Virginia Rail (Railus limicola). We suspected breeding of Least Bitterns and Soras at Great Pond in Provincetown, and for Virginia Rails at Hatches Harbor, Provincetown. The most frequently detected species were Soras, Pied-billed Grebes, and Virginia Rails. We recommend using call broadcast surveys for these cryptic species to enhance their probabilities of detection.

  7. Long-term hydrologic effects on marsh plant community structure in the southern Everglades

    USGS Publications Warehouse

    Busch, David E.; Loftus, W.F.; Bass, O.L.

    1998-01-01

    Although large-scale transformation of Everglades landscapes has occurred during the past century, the patterns of association among hydrologic factors and southern Everglades freshwater marsh vegetation have not been well-defined. We used a 10-year data base on the aquatic biota of Shark Slough to classify vegetation and describe plant community change in intermediate- to long-hydroperiod Everglades marshes. Study area marsh vegetation was quantitatively grouped into associations dominated by 1) Cladium jamaicense, 2) a group of emergents including Eleocharis cellulosa, Sagittaria lancifolia, and Rhyncospora tracyi, 3) taxa associated with algal mats (Utricularia spp. and Bacopa caroliniana), and 4) the grasses Panicum hemitomon and Paspalidium geminatum. During the decade evaluated, the range of water depths that characterized our study sites approached both extremes depicted in the 40-year hydrologic record for the region. Water depths were near the long-term average during the mid-1980s, declined sharply during a late 1980s drought, and underwent a prolonged increase from 1991 through 1995. Overall macrophyte cover varied inversely with water depth, while the response of periphyton was more complex. An ordination analysis, based on plant species abundance, revealed that study area vegetation structure was associated with hydrologic patterns. Marsh plant community structure showed evidence of cyclic interannual variation corresponding to hydrologic change over the decade evaluated. Lower water depths, the occurrence of marl substrates, and high periphyton cover were correlated. These factors contributed to reduced macrophyte cover in portions of the study area from which water had been diverted.

  8. Davis Pond Freshwater Prediversion Biomonitoring Study: Freshwater Fisheries and Eagles

    USGS Publications Warehouse

    Jenkins, Jill A.; Bourgeois, E. Beth; Jeske, Clint W.

    2008-01-01

    In January 2001, the construction of the Davis Pond freshwater diversion structure was completed by the U.S. Army Corps of Engineers. The diversion of freshwater from the Mississippi River is intended to mitigate saltwater intrusion from the Gulf of Mexico and to lessen the concomitant loss of wetland areas. In addition to the freshwater inflow, Barataria Bay basin would receive nutrients, increased flows of sediments, and water-borne and sediment-bound compounds. The purpose of this biomonitoring study was, therefore, to serve as a baseline for prediversion concentrations of selected contaminants in bald eagle (Haliaeetus leucocephalus) nestlings (hereafter referred to as eaglets), representative freshwater fish, and bivalves. Samples were collected from January through June 2001. Two similarly designed postdiversion studies, as described in the biological monitoring program, are planned. Active bald eagle nests targeted for sampling eaglet blood (n = 6) were generally located southwest and south of the diversion structure. The designated sites for aquatic animal sampling were at Lake Salvador, at Lake Cataouatche, at Bayou Couba, and along the Mississippi River. Aquatic animals representative of eagle prey were collected. Fish were from three different trophic levels and have varying feeding strategies and life histories. These included herbivorous striped mullet (Mugil cephalus), omnivorous blue catfish (Ictalurus furcatus), and carnivorous largemouth bass (Micropterus salmoides). Three individuals per species were collected at each of the four sampling sites. Freshwater Atlantic rangia clams (Rangia cuneata) were collected at the downstream marsh sites, and zebra mussels (Dreissena spp.) were collected on the Mississippi River. The U.S. Geological Survey (USGS) Biomonitoring of Environmental Status and Trends (BEST) protocols served as guides for fish sampling and health assessments. Fish are useful for monitoring aquatic ecosystems because they accumulate

  9. DEVELOPING INDICATORS OF SALT MARSH HEALTH

    EPA Science Inventory

    We relate plant zonation in salt marshes to key ecosystem services such as erosion control and wildlife habitat. Ten salt marshes in Narragansett Bay, with similar geological bedrock and sea exchange, were identified to examine plant zonation. Sub-watersheds adjacent to the salt ...

  10. Estuaries and Tidal Marshes. Habitat Pac.

    ERIC Educational Resources Information Center

    Fish and Wildlife Service (Dept. of Interior), Washington, DC.

    This educational packet consists of an overview, three lesson plans, student data sheets, and a poster. The overview examines estuaries and tidal or salt marshes by discussing the plants and animals in these habitats, marsh productivity, benefits and management of the habitats, historical aspects, and development and pollution. A glossary and list…

  11. Improving Water Quality in Suisun Marsh

    EPA Pesticide Factsheets

    Suisun Marsh, the largest contiguous brackish marsh remaining on the west coast of North America, is a critical part of the SF Bay-Delta estuary ecosystem, but is impaired by mercury, nutrients, and organic enrichment/low dissolved oxygen (DO).

  12. Vegetative community control of freshwater availability: Phoenix Islands case study

    NASA Astrophysics Data System (ADS)

    Engels, M.; Heinse, R.

    2014-12-01

    On small low islands with limited freshwater resources, terrestrial plant communities play a large role in moderating freshwater availability. Freshwater demands of vegetative communities are variable depending on the composition of the community. Hence, changes to community structure from production crop introductions, non-native species invasions, and climate change, may have significant implications for freshwater availability. Understanding how vegetative community changes impact freshwater availability will allow for better management and forecasting of limited freshwater supplies. To better understand these dynamics, we investigated three small tropical atolls in the Phoenix Island Protected Area, Kiribati. Despite their close proximity, these islands receive varying amounts of rainfall, are host to different plant communities and two of the islands have abandoned coconut plantations. Using electromagnetic induction, ground penetrating radar, soil samples, climate and satellite data, we present preliminary estimates of vegetative water demand for different tropical plant communities.

  13. Carpinteria salt marsh habitat polygons

    USGS Publications Warehouse

    Lafferty, Kevin D.; Dunham, Eleca J.; Mancini, Frank T.; Stewart, Tara E.; Hechinger, Ryan F.

    2017-01-01

    We identified five common habitat types in Carpinteria Salt Marsh: channels, pans (flats), marsh, salt flat and upland.  We then drew polygons around each habitat type identified from a registered and orthorectified aerial photograph and created a GIS shapefile. Polygons were ground-truthed in the field. From these habitat polygons, one can use GIS applications to estimate the area of each habitat type in this estuary. These data support the following publications: Kuris, Armand M., et al. "Ecosystem energetic implications of parasite and free-living biomass in three estuaries." Nature 454.7203 (2008): 515-518.Hechinger, Ryan F., Kevin D. Lafferty, Andy P. Dobson, James H. Brown, and Armand M. Kuris. "A common scaling rule for abundance, energetics, and production of parasitic and free-living species." Science 333, no. 6041 (2011): 445-448.Hechinger, Ryan F., Kevin D. Lafferty, John P. McLaughlin, Brian L. Fredensborg, Todd C. Huspeni, Julio Lorda, Parwant K. Sandhu et al. "Food webs including parasites, biomass, body sizes, and life stages for three California/Baja California estuaries." Ecology 92, no. 3 (2011): 791-791.Buck, J.C., Hechinger, R.F., Wood, A.C., Stewart, T.E., Kuris, A.M., and Lafferty, K.D., "Host density increases parasite recruitment but decreases host risk in a snail-trematode system." Manuscript submitted for publication. Lafferty, K.D., Stewart, T.E., and Hechinger, R.F. (in press). Bird distribution surveys at Carpinteria Salt Marsh, California USA, January 2012 to March 2013: U.S. Geological Survey data release, http://dx.doi.org/10.5066/F7F47M95. 

  14. Hurricane Katrina sediment slowed elevation loss in subsiding brackish marshes of the Mississippi River delta

    USGS Publications Warehouse

    McKee, K.L.; Cherry, J.A.

    2009-01-01

    Although hurricanes can damage or destroy coastal wetlands, they may play a beneficial role in reinvigorating marshes by delivering sediments that raise soil elevations and stimulate organic matter production. Hurricane Katrina altered elevation dynamics of two subsiding brackish marshes in the Mississippi River deltaic plain by adding 3 to 8 cm of sediment to the soil surface in August 2005. Soil elevations at both sites subsequently declined due to continued subsidence, but net elevation gain was still positive at both Pearl River (+1.7 cm) and Big Branch (+0.7 cm) marshes two years after the hurricane. At Big Branch where storm sediments had higher organic matter and water contents, post-storm elevation loss was more rapid due to initial compaction of the storm layer in combination with root-zone collapse. In contrast, elevation loss was slower at Pearl River where the storm deposit (high sand content) did not compact and the root zone did not collapse. Vegetation at both sites fully recovered within one year, and accumulation of root matter at Big Branch increased 10-fold from 2005 to 2006, suggesting that the hurricane stimulated belowground productivity. Results of this study imply that hurricane sediment may benefit subsiding marshes by slowing elevation loss. However, long-term effects of hurricane sediment on elevation dynamics will depend not only on the amount of sediment deposited, but on sediment texture and resistance to compaction as well as on changes in organic matter accumulation in the years following the hurricane.

  15. Calcite-accumulating large sulfur bacteria of the genus Achromatium in Sippewissett Salt Marsh

    PubMed Central

    Salman, Verena; Yang, Tingting; Berben, Tom; Klein, Frieder; Angert, Esther; Teske, Andreas

    2015-01-01

    Large sulfur bacteria of the genus Achromatium are exceptional among Bacteria and Archaea as they can accumulate high amounts of internal calcite. Although known for more than 100 years, they remain uncultured, and only freshwater populations have been studied so far. Here we investigate a marine population of calcite-accumulating bacteria that is primarily found at the sediment surface of tide pools in a salt marsh, where high sulfide concentrations meet oversaturated oxygen concentrations during the day. Dynamic sulfur cycling by phototrophic sulfide-oxidizing and heterotrophic sulfate-reducing bacteria co-occurring in these sediments creates a highly sulfidic environment that we propose induces behavioral differences in the Achromatium population compared with reported migration patterns in a low-sulfide environment. Fluctuating intracellular calcium/sulfur ratios at different depths and times of day indicate a biochemical reaction of the salt marsh Achromatium to diurnal changes in sedimentary redox conditions. We correlate this calcite dynamic with new evidence regarding its formation/mobilization and suggest general implications as well as a possible biological function of calcite accumulation in large bacteria in the sediment environment that is governed by gradients. Finally, we propose a new taxonomic classification of the salt marsh Achromatium based on their adaptation to a significantly different habitat than their freshwater relatives, as indicated by their differential behavior as well as phylogenetic distance on 16S ribosomal RNA gene level. In future studies, whole-genome characterization and additional ecophysiological factors could further support the distinctive position of salt marsh Achromatium. PMID:25909974

  16. Relationships between watershed emergy flow and coastal New England salt marsh structure, function, and condition.

    PubMed

    Brandt-Williams, Sherry; Wigand, Cathleen; Campbell, Daniel E

    2013-02-01

    This study evaluated the link between watershed activities and salt marsh structure, function, and condition using spatial emergy flow density (areal empower density) in the watershed and field data from 10 tidal salt marshes in Narragansett Bay, RI, USA. The field-collected data were obtained during several years of vegetation, invertebrate, soil, and water quality sampling. The use of emergy as an accounting mechanism allowed disparate factors (e.g., the amount of building construction and the consumption of electricity) to be combined into a single landscape index while retaining a uniform quantitative definition of the intensity of landscape development. It expanded upon typical land use percentage studies by weighting each category for the intensity of development. At the RI salt marsh sites, an impact index (watershed emergy flow normalized for marsh area) showed significant correlations with mudflat infauna species richness, mussel density, plant species richness, the extent and density of dominant plant species, and denitrification potential within the high salt marsh. Over the 4-year period examined, a loading index (watershed emergy flow normalized for watershed area) showed significant correlations with nitrite and nitrate concentrations, as well as with the nitrogen to phosphorus ratios in stream discharge into the marshes. Both the emergy impact and loading indices were significantly correlated with a salt marsh condition index derived from intensive field-based assessments. Comparison of the emergy indices to calculated nitrogen loading estimates for each watershed also produced significant positive correlations. These results suggest that watershed emergy flow is a robust index of human disturbance and a potential tool for rapid assessment of coastal wetland condition.

  17. Abstracts from "Coastal Marsh Dieback in the Northern Gulf of Mexico: Extent, Causes, Consequences, and Remedies

    USGS Publications Warehouse

    Stewart, Robert E.; Proffitt, C. Edward; Charron, Tammy Michelle

    2001-01-01

    In the spring of 2000, scientists discovered a new and unprecedented loss of salt marsh vegetation in coastal Louisiana and other areas along the northern coast of the Gulf of Mexico. This dieback of salt marsh vegetation, sometimes called the brown marsh phenomenon', primarily involved the rapid browning and dieback of smooth cordgrass (Spanina alterniflora). Coastal Louisiana has already undergone huge, historical losses of coastal marsh due to both human-induced and natural factors, and the current overall rate of wetland loss (25-35 sq mi 65-91 SQ KM each year) stands to threaten Louisiana's coastal ecosystem, infrastructure, and economy. On January 11-12, 2001, individuals from Federal and State agencies, universities, and the private sector met at the conference 'Coastal Marsh Dieback in the Northern Gulf of Mexico: Extent, Causes, Consequences, and Remedies' to discuss and share information shout the marsh dieback. Presentations discussed trends in the progress of dieback during the summer of 2000 and in environmental conditions occurring at field study sites, possible causes including drought and Mississippi low flow' conditions, changes in soil conditions (salinity, the bioavailability of metals, pathogens, etc.), the potential for wetland loss that could occur if above and below normality occurs and is sustained over an extended period, advanced techniques for tracking the dieback via aerial photography and remote sensing, linkages of marsh hydrology to the dieback, and mechanisms of modeling dieback and recovery. In addition, presentations were made regarding development of a web site to facilitate information sharing and progress in preparation for requests for proposals based on an emergency appropriation by the U.S. Congress. All findings tended to support the idea that the dieback constituted a continuing environmental emergency and research and natural resource management efforts should be expended accordingly.

  18. Classification and Monitoring of Salt Marsh Habitats with Multi-Polarimetric and Multi-Frequency SAR

    NASA Astrophysics Data System (ADS)

    van Beijma, Sybrand; Comber, Alexis; Lamb, Alistair; Brown, Sarah

    2013-08-01

    Within GMES there is much interest in the ability of remote sensing technology to deliver operational solutions to many areas of life including environmental management. This paper describes research focused on the application for Earth Observation for Integrated Coastal Zone Management. The main topic of this research is to explore to which extent salt marsh habitats from can be identified from SAR remotely sensed data. Multi-frequency, multi-polarimetric SAR images from airborne (S- and X-Band quad-polarimetric from the Astrium airborne SAR Demonstrator) is used to examine salt marsh habitat classification potential in the Llanrhidian salt marshes in South Wales, UK. This is achieved by characterizing their botanical and structural composition, flooding regimes as well as fluctuations in soil moisture. Different SAR features as backscatter coefficient, band ratios and polarimetric decomposition are extracted.

  19. Heavily Oiled Salt Marsh following the Deepwater Horizon Oil Spill, Ecological Comparisons of Shoreline Cleanup Treatments and Recovery

    PubMed Central

    Zengel, Scott; Bernik, Brittany M.; Rutherford, Nicolle; Nixon, Zachary; Michel, Jacqueline

    2015-01-01

    The Deepwater Horizon oil spill affected hundreds of kilometers of coastal wetland shorelines, including salt marshes with persistent heavy oiling that required intensive shoreline “cleanup” treatment. Oiled marsh treatment involves a delicate balance among: removing oil, speeding the degradation of remaining oil, protecting wildlife, fostering habitat recovery, and not causing further ecological damage with treatment. To examine the effectiveness and ecological effects of treatment during the emergency response, oiling characteristics and ecological parameters were compared over two years among heavily oiled test plots subject to: manual treatment, mechanical treatment, natural recovery (no treatment, oiled control), as well as adjacent reference conditions. An additional experiment compared areas with and without vegetation planting following treatment. Negative effects of persistent heavy oiling on marsh vegetation, intertidal invertebrates, and shoreline erosion were observed. In areas without treatment, oiling conditions and negative effects for most marsh parameters did not considerably improve over two years. Both manual and mechanical treatment were effective at improving oiling conditions and vegetation characteristics, beginning the recovery process, though recovery was not complete by two years. Mechanical treatment had additional negative effects of mixing oil into the marsh soils and further accelerating erosion. Manual treatment appeared to strike the right balance between improving oiling and habitat conditions while not causing additional detrimental effects. However, even with these improvements, marsh periwinkle snails showed minimal signs of recovery through two years, suggesting that some ecosystem components may lag vegetation recovery. Planting following treatment quickened vegetation recovery and reduced shoreline erosion. Faced with comparable marsh oiling in the future, we would recommend manual treatment followed by planting. We

  20. Heavily Oiled Salt Marsh following the Deepwater Horizon Oil Spill, Ecological Comparisons of Shoreline Cleanup Treatments and Recovery.

    PubMed

    Zengel, Scott; Bernik, Brittany M; Rutherford, Nicolle; Nixon, Zachary; Michel, Jacqueline

    2015-01-01

    The Deepwater Horizon oil spill affected hundreds of kilometers of coastal wetland shorelines, including salt marshes with persistent heavy oiling that required intensive shoreline "cleanup" treatment. Oiled marsh treatment involves a delicate balance among: removing oil, speeding the degradation of remaining oil, protecting wildlife, fostering habitat recovery, and not causing further ecological damage with treatment. To examine the effectiveness and ecological effects of treatment during the emergency response, oiling characteristics and ecological parameters were compared over two years among heavily oiled test plots subject to: manual treatment, mechanical treatment, natural recovery (no treatment, oiled control), as well as adjacent reference conditions. An additional experiment compared areas with and without vegetation planting following treatment. Negative effects of persistent heavy oiling on marsh vegetation, intertidal invertebrates, and shoreline erosion were observed. In areas without treatment, oiling conditions and negative effects for most marsh parameters did not considerably improve over two years. Both manual and mechanical treatment were effective at improving oiling conditions and vegetation characteristics, beginning the recovery process, though recovery was not complete by two years. Mechanical treatment had additional negative effects of mixing oil into the marsh soils and further accelerating erosion. Manual treatment appeared to strike the right balance between improving oiling and habitat conditions while not causing additional detrimental effects. However, even with these improvements, marsh periwinkle snails showed minimal signs of recovery through two years, suggesting that some ecosystem components may lag vegetation recovery. Planting following treatment quickened vegetation recovery and reduced shoreline erosion. Faced with comparable marsh oiling in the future, we would recommend manual treatment followed by planting. We caution

  1. South San Francisco Bay tidal marsh vegetation and elevation surveys-Corkscrew Marsh, Bird Island, and Palo Alto Baylands, California, 1983

    USGS Publications Warehouse

    Orlando, James L.; Drexler, Judy Z.; Dedrick, Kent G.

    2005-01-01

    Changes in the topography and ecology of the San Francisco Bay Estuary ('Estuary') during the past 200 years have resulted in the loss of nearly 80 percent of the historical salt marsh in the region. Currently, numerous projects are being undertaken by federal, state, and local governments in an attempt to restore wetland habitat and ecosystem function at a number of locations within the Estuary. Much information is needed concerning the historical topographic and ecologic characteristics of the Estuary to facilitate these restoration efforts. This report presents previously unpublished vegetation and elevation data collected in 1983 by the California State Lands Commission at Corkscrew marsh, Bird Island, and Palo Alto Baylands, all located in South San Francisco Bay. These precise and detailed elevation and plant surveys represent a snapshot of South Bay flora before invasion by the Atlantic smooth cordgrass, Spartina alterniflora. Such precise elevation data are rare for relatively undisturbed marshes in the San Francisco Bay; publication of these historical data may facilitate wetland restoration efforts. Marsh-surface and tidal-channel elevations were determined at a total of 962 stations by differential leveling to established tidal benchmark stations at each site and referenced to Mean Lower Low Water (MLLW) relative to the National Tidal Datum Epoch (1960-78). In addition, presence or absence of nine salt marsh species, percentage plant cover, and percentage bare soil were recorded for 1-square meter quadrats at 648 stations where elevations were determined. Collectively, over the three sites, salt marsh vegetation ranged in elevation from 0.98 to 2.94 m above MLLW. S. foliosa and Salicornia virginica were the most frequently observed plant species. Atriplex patula, Deschampsia cespitosa, and Limonium californicum were each recorded at only one of the three sites.

  2. Chinese mitten crab surveys of San Joaquin River basin and Suisun Marsh, California, 2000

    USGS Publications Warehouse

    May, Jason T.; Brown, Larry R.

    2001-01-01

    Juvenile Chinese mitten crabs (Eriocheir sinensis) are known to use both brackish and freshwater habitats as rearing areas. The objectives of this study were to examine the habitat use and potential effects of mitten crabs in the freshwater habitats of the San Joaquin River drainage up-stream of the Sacramento-San Joaquin Delta. After several unsuccessful attempts to catch or observe mitten crabs by trapping, electrofishing, and visual observations, the study was redirected to determine the presence of crabs in the San Joaquin River (in the vicinity of Mossdale) and Suisun Marsh. Monthly surveys using baited traps in the San Joaquin River were done from June through November 2000 and in the Suisun Marsh from August through October 2000. No mitten crabs were caught in the San Joaquin River Basin and only one mitten crab was caught in Suisun Marsh. Surveys were conducted at 92 locations in the San Joaquin River Basin by deploying 352 traps for 10,752 hours of trapping effort; in Suisun Marsh, 34 locations were investigated by deploying 150 traps for 3,600 hours of trapping effort. The baited traps captured a variety of organisms, including catfishes (Ictularidae), yellowfin gobies (Acantho-gobius flavimanus), and crayfish (Decapoda). It is unclear whether the failure to capture mitten crabs in the San Joaquin River Basin and Suisun Marsh was due to ineffective trapping methods, or repre-sents a general downward trend in populations of juvenile mitten crabs in these potential rearing areas or a temporary decline related to year-class strength. Available data (since 1998) on the number of mitten crabs entrained at federal and state fish salvage facilities indicate a downward trend in the number of crabs, which may indicate a declining trend in use of the San Joaquin River Basin by juvenile mitten crabs. Continued monitoring for juvenile Chinese mitten crabs in brackish and freshwater portions of the Sacramento-San Joaquin River Basins is needed to better assess the

  3. Response of plant productivity to experimental flooding in a stable and a submerging marsh

    USGS Publications Warehouse

    Kirwan, Matthew L.; Guntenspergen, Glenn R.

    2015-01-01

    Recent models of tidal marsh evolution rely largely on the premise that plants are most productive at an optimal flooding regime that occurs when soil elevations are somewhere between mean sea level and mean high tide. Here, we use 4 years of manipulative “marsh organ” flooding experiments to test the generality of this conceptual framework and to examine how the optimal flooding frequency may change between years and locations. In our experiments, above and belowground growth of Schoenoplectus americanus was most rapid when flooded about 40% of the time in a rapidly submerging marsh and when flooded about 25% of the time in a historically stable marsh. Optimum flooding durations were nearly identical in each year of the experiment and did not differ for above and belowground growth. In contrast, above and belowground growth of Spartina patensdecreased monotonically with increased flooding in all years and at both sites, indicating no optimal flooding frequency or elevation relative to sea level. Growth patterns in both species suggest a wider tolerance to flooding, and greater biomass for a given flooding duration, in the rapidly deteriorating marsh.

  4. Classification of salt marsh vegetation using edaphic and remote sensing-derived variables

    NASA Astrophysics Data System (ADS)

    Hladik, Christine; Alber, Merryl

    2014-03-01

    Salt marsh plant communities are known for their striking patterns of vertical zonation. Two of the most important edaphic parameters that affect species distribution patterns are soil salinity and waterlogging, both of which are related to topographical variations and distance to the water. The primary objective of this study was to evaluate whether information on elevation and distance derived through remote sensing could be used to predict plant distributions in a southeastern United States salt marsh. We classified four marsh vegetation classes (tall Spartina alterniflora, medium S. alterniflora/short S. alterniflora, marsh meadow, and Borrichia frutescens/Juncus roemerianus) based on landscape metrics obtained from a light detection and ranging (LIDAR)-derived digital elevation model (DEM) and compared results to a classification based on field-collected edaphic variables. Our secondary objective was to compare the performance of linear discriminant analysis (LDA) with non-parametric classification and regression trees (CART) for these classifications. Models based on the edaphic variables soil water content, salinity, and redox potential attained accuracies of 0.62 and 0.71 with LDA and CART, respectively. When the remote sensing-derived variables DEM elevation, slope, distance to the mean high water line, and distance to upland area were used, classification accuracies improved to 0.78 for LDA and 0.79 for CART. Our results suggest that remote sensing-derived metrics can capture edaphic gradients effectively, which makes them especially suited to landscape level analyses of salt marsh plant habitats, with potential application for predicting the effects of sea level rise on salt marsh plant distribution.

  5. Post-mortem ecosystem engineering by oysters creates habitat for a rare marsh plant.

    PubMed

    Guo, Hongyu; Pennings, Steven C

    2012-11-01

    Oysters are ecosystem engineers in marine ecosystems, but the functions of oyster shell deposits in intertidal salt marshes are not well understood. The annual plant Suaeda linearis is associated with oyster shell deposits in Georgia salt marshes. We hypothesized that oyster shell deposits promoted the distribution of Suaeda linearis by engineering soil conditions unfavorable to dominant salt marsh plants of the region (the shrub Borrichia frutescens, the rush Juncus roemerianus, and the grass Spartina alterniflora). We tested this hypothesis using common garden pot experiments and field transplant experiments. Suaeda linearis thrived in Borrichia frutescens stands in the absence of neighbors, but was suppressed by Borrichia frutescens in the with-neighbor treatment, suggesting that Suaeda linearis was excluded from Borrichia frutescens stands by interspecific competition. Suaeda linearis plants all died in Juncus roemerianus and Spartina alterniflora stands, regardless of neighbor treatments, indicating that Suaeda linearis is excluded from these habitats by physical stress (likely water-logging). In contrast, Borrichia frutescens, Juncus roemerianus, and Spartina alterniflora all performed poorly in Suaeda linearis stands regardless of neighbor treatments, probably due to physical stresses such as low soil water content and low organic matter content. Thus, oyster shell deposits play an important ecosystem engineering role in influencing salt marsh plant communities by providing a unique niche for Suaeda linearis, which otherwise would be rare or absent in salt marshes in the southeastern US. Since the success of Suaeda linearis is linked to the success of oysters, efforts to protect and restore oyster reefs may also benefit salt marsh plant communities.

  6. A Hydro-marsh equilibrium model for marsh system response to Sea Level Rise

    NASA Astrophysics Data System (ADS)

    Alizad, K.; Hagen, S. C.; Morris, J. T.; Bacopoulos, P.

    2013-12-01

    In this study, an integrated model to assess the effect of sea level rise on salt marsh systems is presented. It is based on a coupled two-dimensional hydrodynamic model and a parametric marsh model. The model shows marsh productivity as a function of mean high water (MHW), mean low water (MLW), and the elevation of the marsh platform. MHW and MLW are the mean high and low water levels over a tidal record and the marsh platform elevation is the elevation of the thick and smooth piled up sediments and biomass that support the productivity of the marsh. MHW and MLW throughout a river and tidal creeks are determined by time varying tides resulting from the two-dimensional hydrodynamic model. In order to calculate accurate biomass productivity, and MHW and MLW elevations, a digital elevation model (DEM) representing the marsh table elevation and tidal creeks with high accuracy is necessary (Hagen et al., 2013). There are optimum ranges for relative sea level rise (RSLR), mean sea level (MSL), and depth of inundation for salt marshes to increase productivity. Because of the constantly changing MSL, the marsh always adjusts itself to a new equilibrium (Morris, et al., 2002). In the marsh model, the sediment accretion rate, which is a function of the marsh productivity, is considered. The tidal record is calculated by the hydrodynamic model and the DEM is adjusted by incorporating the accretion rate over a period of time, provided by the marsh model. Then, the new tidal record is assessed by running the hydrodynamic model, considering sea level rise with the new marsh table elevations. Using the new tidal record, the marsh productivity is simulated. This process can be divided into short time steps to capture changes in the rate of sea level rise. For example, a 68 cm sea level rise over 63 years can be split into five- or ten- year periods to have a linear trend for sea level rise in each period. The model is examined for the lower St. Johns River and Apalachicola River

  7. Standardized North American marsh bird monitoring protocol

    USGS Publications Warehouse

    Conway, Courtney J.

    2011-01-01

    Little is known about the population status of many marsh-dependent birds in North America but recent efforts have focused on collecting more reliable information and estimates of population trends. As part of that effort, a standardized survey protocol was developed in 1999 that provided guidance for conducting marsh bird surveys throughout North America such that data would be consistent among locations. The original survey protocol has been revised to provide greater clarification on many issues as the number of individuals using the protocol has grown. The Standardized North American Marsh Bird Monitoring Protocol instructs surveyors to conduct an initial 5-minute passive point-count survey followed by a series of 1-minute segments during which marsh bird calls are broadcast into the marsh following a standardized approach. Surveyors are instructed to record each individual bird from the suite of 26 focal species that are present in their local area on separate lines of a datasheet and estimate the distance to each bird. Also, surveyors are required to record whether each individual bird was detected within each 1-minute subsegment of the survey. These data allow analysts to use several different approaches for estimating detection probability. The Standardized North American Marsh Bird Monitoring Protocol provides detailed instructions that explain the field methods used to monitor marsh birds in North America.

  8. Component greenhouse gas fluxes and radiative balance from two deltaic marshes in Louisiana: Pairing chamber techniques and eddy covariance

    USGS Publications Warehouse

    Krauss, Ken W.; Holm, Guerry O.; Perez, Brian C.; McWhorter, David E.; Cormier, Nicole; Moss, Rebecca; Johnson, Darren; Neubauer, Scott C; Raynie, Richard C

    2016-01-01

    Coastal marshes take up atmospheric CO2 while emitting CO2, CH4, and N2O. This ability to sequester carbon (C) is much greater for wetlands on a per-area basis than from most ecosystems, facilitating scientific, political, and economic interest in their value as greenhouse gas sinks. However, the greenhouse gas balance of Gulf of Mexico wetlands is particularly understudied. We describe the net ecosystem exchange (NEEc) of CO2 and CH4 using eddy covariance (EC) in comparison with fluxes of CO2, CH4, and N2O using chambers from brackish and freshwater marshes in Louisiana, USA. From EC, we found that 182 g C m-2 y-1 was lost through NEEc from the brackish marsh. Of this, 11 g C m-2 y-1 resulted from net CH4 emissions and the remaining 171 g C m-2 y-1 resulted from net CO2 emissions. In contrast, -290 g C m2 y-1 was taken up through NEEc by the freshwater marsh, with 47 g C m-2 y-1 emitted as CH4 and -337 g C m-2 y-1 taken up as CO2. From chambers, we discovered that neither site had large fluxes of N2O. Sustained-flux greenhouse gas accounting metrics indicated that both marshes had a positive (warming) radiative balance, with the brackish marsh having a substantially greater warming effect than the freshwater marsh. That net respiratory emissions of CO2 and CH4 as estimated through chamber techniques were 2-4 times different from emissions estimated through EC requires additional understanding of the artifacts created by different spatial and temporal sampling footprints between techniques.

  9. Marsh canopy leaf area and orientation calculated for improved marsh structure mapping

    USGS Publications Warehouse

    Ramsey III, Elijah W.; Rangoonwala, Amina; Jones, Cathleen E.; Bannister, Terri

    2015-01-01

    An approach is presented for producing the spatiotemporal estimation of leaf area index (LAI) of a highly heterogeneous coastal marsh without reliance on user estimates of marsh leaf-stem orientation. The canopy LAI profile derivation used three years of field measured photosynthetically active radiation (PAR) vertical profiles at seven S. alterniflora marsh sites and iterative transform of those PAR attenuation profiles to best-fit light extinction coefficients (KM). KM sun zenith dependency was removed obtaining the leaf angle distribution (LAD) representing the average marsh orientation and the LAD used to calculate the LAI canopy profile. LAI and LAD reproduced measured PAR profiles with 99% accuracy and corresponded to field documented structures. LAI and LAD better reflect marsh structure and results substantiate the need to account for marsh orientation. The structure indexes are directly amenable to remote sensing spatiotemporal mapping and offer a more meaningful representation of wetland systems promoting biophysical function understanding.

  10. Acetate concentrations and oxidation in salt marsh sediments

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Acetate concentrations and rates of acetate oxidation and sulfate reduction were measured in S. alterniflora sediments in New Hampshire and Massachusetts. Pore water extracted from cores by squeezing or centrifugation contained in greater than 0.1 mM acetate and, in some instances, greater than 1.0 mM. Pore water sampled nondestructively contained much less acetate, often less than 0.01 mM. Acetate was associated with roots, and concentrations varied with changes in plant physiology. Acetate turnover was very low whether whole core or slurry incubations were used. Radiotracers injected directly into soils yielded rates of sulfate reduction and acetate oxidation not significantly different from core incubation techniques. Regardless of incubation method, acetate oxidation did not account for a substantial percentage of sulfate reduction. These results differ markedly from data for unvegetated coastal sediments where acetate levels are low, oxidation rate constants are high, and acetate oxication rates greatly exceed rates of sulfate reduction. The discrepancy between rates of acetate oxidation and sulfate reduction in these marsh soils may be due either to the utilization of substrates other than acetate by sulfate reducers or artifacts associated with measurements of organic utilization by rhizosphere bacteria. Care must be taken when interpreting data from salt marsh sediments since the release of material from roots during coring may affect the concentrations of certain compounds as well as influencing results obtained when sediment incubations are employed.

  11. The flux of methyl chloride along an elevational gradient of a coastal salt marsh, Eastern China

    NASA Astrophysics Data System (ADS)

    Wang, Jinxin; Li, Rongjin; Guo, Yingyan; Qin, Pei; Sun, Shucun

    Salt marshes have been suggested to be a large potential source for methyl chloride (CH 3Cl) that is the major natural carrier of chlorine to the stratosphere. However, the global budget of this trace gas is uncertain, and the empirical field data are still lacking. In this study, CH 3Cl fluxes were measured seasonally using static flux chambers from April 2004 to January 2005, along an elevational gradient of a coastal salt marsh in eastern China. To estimate the contribution of higher plants to the flux, plant aboveground biomass was experimentally removed and the flux difference between the treatment and the intact was examined. In addition, the flux was analyzed in relation to soil and weather conditions. Along the elevational gradient, the salt marsh generally functioned as a net sink in the growing season (from April to October 2004). The flux of CH 3Cl ranged between -1.27 and -29.33 μmol m -2 d -1 (positive for emission and negative for consumption), and the maximum negative rates occurred at the mudflat and the cordgrass ( Spartina alterniflora) marsh. However, the measurements made during inundation indicated that the mudflat was a net source of the gas. In the non-growing season (from November to March), the vegetated flat, when frozen, was a minor source of methyl chloride, with an emission rate ranging from 0.27 to 9.13 μmol m -2 d -1. However, the measurements made during non-frozen periods indicate that the mudflat was a minor sink of methyl chloride. Overall, the study marsh was a large net sink for the gas because the magnitude of the consumption rates was lager than that of emission, and because the duration of the growing season was longer than that of the non-growing season. Plant aboveground biomass had a great effect on the flux. Comparative analyses showed that higher plants were present as an important source of CH 3Cl, and it could balance 17.26-67.66% of the soil consumption. The net CH 3Cl consumption rate was negatively correlated to

  12. Forms and accumulation of soil P in natural and recently restored peatlands - Upper Klamath Lake, Oregon, USA

    USGS Publications Warehouse

    Graham, S.A.; Craft, C.B.; McCormick, P.V.; Aldous, A.

    2005-01-01

    Forms, amounts, and accumulation of soil phosphorus (P) were measured in natural and recently restored marshes surrounding Upper Klamath Lake located in south-central Oregon, USA to determine rates of P accumulation in natural marshes and to assess changes in P pools caused by long-term drainage in recently restored marshes. Soil cores were collected from three natural marshes and radiometrically dated to determine recent (l37Cs-based) and long-term (210Pb-based) rates of peat accretion and P accumulation. A second set of soil cores collected from the three natural marshes and from three recently restored marshes was analyzed using a modification of the Hedley procedure to determine the forms and amounts of soil P. Total P in the recently restored marshes (222 to 311 ??g cm-3) was 2-3 times greater than in the natural marshes (103 to 117 ??g cm-3), primarily due to greater bulk density caused by soil subsidence, a consequence of long-term marsh drainage. Occluded Fe- and Al-bound Pi, calcium-bound Pi and residual P were 4 times, 22 times, and 5 times greater, respectively, in the recently restored marshes. More than 67% of the P pool in both the natural and recently restored marshes was present in recalcitrant forms (humic-acid P o and residual P) that provide long-term P storage in peat. Phosphorus accumulation in the natural marshes averaged 0.45 g m-2 yr-1 (137Cs) and 0.40 g m-2 yr-1 (210Pb), providing a benchmark for optimizing P sequestration in the recently restored marshes. Effective P sequestration in the recently restored marshes, however, will depend on re-establishing equilibrium between the P-enriched soils and the P concentration of floodwaters and a hydrologie regime similar to the natural marshes. ?? 2005, The Society of Wetland Scientists.

  13. The greenhouse gas flux and potential global warming feedbacks of a northern macrotidal and microtidal salt marsh

    USGS Publications Warehouse

    Chmura, Gail L.; Kellman, Lisa; Guntenspergen, Glenn R.

    2011-01-01

    Conversion of wetlands by drainage for agriculture or other anthropogenic activities could have a negative or positive feedback to global warming (GWF). We suggest that a major predictor of the GWF is salinity of the wetland soil (a proxy for available sulfate), a factor often ignored in other studies. We assess the radiative balance of two northern salt marshes with average soil salinities > 20 ppt, but with high (macro-) and low (micro-) tidal amplitudes. The flux of greenhouse gases from soils at the end of the growing season averaged 485 ± 253 mg m-2 h-1, 13 ± 30 μg m-2 h-1, and 19 ± 58 μg m-2 h-1 in the microtidal marsh and 398 ± 201 mg m-2 h-1, 2 ± 26 μg m-2 h-1, and 35 ± 77 μg m-2 h-1 in the macrotidal marsh for CO2, N2O, and CH4, respectively. High rates of C sequestration mean that loss of these marshes would have a radiative balance of - 981 CO2_eq. m-2 yr-1 in the microtidal and - 567 CO2_eq. m-2 yr-1 in the macrotidal marsh.

  14. Effect of spring-neap tide and evaporation on the salt dynamics in estuarine marshes

    NASA Astrophysics Data System (ADS)

    Zhang, Chenming; Shen, Chengji; Xin, Pei; Li, Ling

    2016-04-01

    Salt dynamics in estuarine tidal marshes are strongly associated with their intrinsic hydrological processes and ecological behaviors, which are not well understood. Numerical simulations were carried out to investigate the transport and distribution of pore-water and salt in a vertical cross section perpendicular to a tidal creek that subjects to spring-neap tide and evaporation. Vaporizing pore-water from the unsaturated soil surface with salt left in, the time-variant actual evaporation is affected by aerodynamic factors as well as soil conditions, including pore-water saturation, salinity and the thickness of salt precipitation above the soil surface (efflorescence). Different simulation cases were performed by adjusting the potential evaporation rate, tidal signals, marsh platform slope and soil properties. The simulation analysis indicates that, the tide-averaged soil salinity increases with the reduction of inundation period under a spring-neap tide cycle. As the salt accumulated by evaporation could leave soil from seepage back to seawater during ebbtide, the pore-water salinity at the surface within the tidal range remains below solubility. Coarse soils tend to have more intensified seepage flow and hence less pore-water salinity than fine soils. With the presence of hyper-saline soil and efflorescence, salt flat develops only in the area where capillary connection between evaporating surface and water table is maintained while tidal inundation absent. On the contrary, the supratidal marsh where hydrological connections are disrupted keeps a relatively low soil salinity (40-60 ppt) and pore-water saturation as evaporation remains low throughout the tidal cycles.

  15. Performance of wetland forbs transplanted into marshes amended with oil sands processed water.

    PubMed

    Mollard, Federico P O; Roy, Marie-Claude; Foote, A Lee

    2015-03-01

    Companies mining oil sands in Alberta (Canada) face the challenge of reclaiming wetlands under water use restrictions. Wetland reclamation after mining will generate marshes characterized by elevated salinity and residual hydrocarbons. Oil sands wetlands are also impoverished in forbs, suggesting that their establishment may be constrained by water chemistry. We transplanted skullcap, mint, and smartweed plants into experimental trenches that simulated two possible reclamation scenarios: wetlands amended with on-site freshwater or with oil sands processed water (OSPW). The main scientific question was is OSPW a suitable water amendment as freshwater for reclaiming wetland forb habitat? As a surrogate of plant health, we studied plant ecophysiology (gas exchange, leaf fluorescence), leaf chemistry, and plant growth. Results showed that there were no differences in skullcap mineral contents under either treatment; however, mint and smartweed plants subjected to OSPW had a significantly higher Na content than those under freshwater. Smartweed dark-adapted leaf fluorescence showed a reduced photochemistry in OSPW relative to plants in freshwater. Mint leaves exhibited lower stomatal conductance in OSPW than in freshwater, a condition that negatively affected transpiration and carboxylation. Skullcap plants grown in OSPW had lower net CO2 assimilation rates than those in freshwater but did not show any other ecophysiological difference between treatments. Mint plants experienced growth reductions (i.e., shoot height) in OSPW. Our results show, for the first time in the literature, that plants photosynthetic capacity was negatively affected by OSPW. Conditions in OSPW proved to be suitable for establishment as transplanted forbs showed 100 % survival after the first growing season. However, impaired physiological functions in plants subjected to OSPW indicated that OSPW amendment created a less hospitable habitat for wetland forbs than freshwater.

  16. Consequences of climate change, eutrophication, and other anthropogenic impacts to coastal salt marshes: multiple stressors reduce resiliency and sustainability

    NASA Astrophysics Data System (ADS)

    Watson, E. B.; Wigand, C.; Nelson, J.; Davey, E.; Van Dyke, E.; Wasson, K.

    2011-12-01

    Coastal salt marshes provide a wide variety of ecosystem services, including habitat for protected vertebrates and ecologically valuable invertebrate fauna, flood protection, and improvements in water quality for adjacent marine and estuarine environments. Here, we consider the impacts of future sea level rise combined with other anthropogenic stressors to salt marsh sustainability through the implementation of field and laboratory mesocosms, manipulative experiments, correlative studies, and predictive modeling conducted in central California and southern New England salt marshes. We report on measurements of soil respiration, decomposition, sediment accumulation, and marsh elevation, which considered jointly suggest an association between nitrate input and marsh elevation loss resulting from mineralization of soil organic matter. Furthermore, use of imaging techniques (CT scans) has shown differences in belowground root and rhizome structure associated with fertilization, resulting in a loss of sediment cohesion promoted by fine root structure. Additionally, field and greenhouse mesocosm experiments have provided insight into the specific biogeochemical processes responsible for plant mortality at high immersion or salinity levels. In conclusion, we have found that poor water quality (i.e. eutrophication) leads to enhanced respiration and decomposition of soil organic matter, which ultimately contributes to a loss of salt marsh sustainability. However, marsh deterioration studied at field sites (Jamaica Bay, NY and Elkhorn Slough, CA) is associated not only with enhanced nutrient loads, but also increased immersion due to tidal range increases resulting from dredging. To ensure the continuation of the ecosystem services provided by tidal wetlands and to develop sustainable management strategies that provide favorable outcomes under a variety of future sea level rise and land use scenarios, we need to develop a better understanding of the relative impacts of the

  17. TOWARDS DEVELOPING INDICATORS OF SALT MARSH CONDITION

    EPA Science Inventory

    Five ecosystem services: water quality maintenance, erosion and flood control, recreation and cultural use, wildlife habitat, and food production were identified from the literature as key services to characterize salt marshes of high integrity. We describe a systems approach to ...

  18. What's the Use of a Salt Marsh?

    ERIC Educational Resources Information Center

    Van Raalte, Charlene

    1977-01-01

    Summarizes information about salt marshes, including descriptions of their development and structure, details of their values in terms of commercial fishing, stabilization of coastal zones, "reclamation" for grazing and cropfields, recreation and aesthetics. (CS)

  19. Oregon Salt Marshes: How Blue are They?

    EPA Science Inventory

    Two important ecosystem services of wetlands are carbon sequestration and filtration of nutrients and particulates. We quantified the carbon and nitrogen accumulation rates in salt marshes at 135 plots distributed across eight estuaries located in Oregon, USA. Net carbon and ...

  20. Cullinan Ranch Tidal Marsh Restoration Project

    EPA Pesticide Factsheets

    Information about the SFBWQP Cullinan Ranch Tidal Marsh Restoration Project, part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resources.

  1. Hemiparasites generate environmental heterogeneity and enhance species coexistence in salt marshes.

    PubMed

    Grewell, Brenda J

    2008-07-01

    Tidal inundation and salinity are considered to be controlling factors in salt marsh species distributions. Parasitic plants may also influence community organization as parasite-host interactions may play a functional role in stress amelioration due to physiological mechanisms for salinity tolerance and resource acquisition. Endangered root hemiparasites (Cordylanthus maritimus ssp. palustris and Cordylanthus mollis ssp. mollis) occupy unique habitat within fragmented northern California tidal wetlands. My objective was to examine the effects of these root hemiparasites on soil salinity, aeration, and community composition. I compared experimentally established bare patches, shaded and unshaded, and parasite removal patches to controls with hemiparasites across intertidal elevation gradients. Plant community composition, soil salinity, and redox potential were measured as response variables. In this field removal experiment, I demonstrated that parasite-host associations can enhance the amelioration of physical stress conditions in the salt marsh exceeding the passive role of shading by vegetation. Consumer-driven reduction of physical stress resulted in increased plant species richness, and the effect was most pronounced with elevated salinity and hypoxia stress. Although previous studies have demonstrated that removal of dominant plant biomass by herbivores can increase physical stress in salt marshes, this is one of the first examples of a positive indirect effect of a consumer on community diversity through physical stress relief. Greater understanding of biological interactions coupled with abiotic factors may improve rare plant conservation and salt marsh restoration success.

  2. Are historical pollution events on the Delaware River recorded as geochemical marker horizons in adjacent marsh sediments

    SciTech Connect

    Walsh, R.; Yemane, K. . Dept. of Geology Bryn Mawr Coll., PA . Geology Dept.)

    1993-03-01

    In the last two hundred years of massive population and industrial growth, the Delaware River has been subjected to several minor and major pollutions. For example, as recently as June 1989 the tanker Presidente Rivera spilled an estimated hundred thousand to million gallons of oil into the river. In the Lower Delaware Basin tides affect the river and its tributaries up to a hundred kilometers inland. The freshwater marshes adjacent to the creeks that empty into the Delaware River experience diurnal tidal sedimentation. It is thus expected that the pollutants in the waterway would be transported via the tidal channels into the adjacent wetlands. The high sedimentation rate, clay-rich sediments, accumulation of terrestrial organic matter, and the low energy environments in these marshes should ensure rapid burial which may preserve some of the contaminants transported into the marshes. To test this hypothesis the authors selected a freshwater marsh along the Raccoon Creek just south of Philadelphia in New Jersey, and collected a 2 m core from a relatively undisturbed portion of the marsh, about 15 m away from the tidal channels. The pH averages around 6.2, ranges from 5.5--6.8, but, is slightly higher in the middle part of the core. The bulk mineralogy comprises chlorite, illite, kaolinite, feldspars and quartz. Vivianite and vermiculite were observed at places lower in the core. Graminae dominates the pollen/spore taxa. The organic debris is unaltered throughout the core. The authors will measure heavy metals and toxic chemicals on < 2[mu]m clay fractions. Also pristane/phytane ratios, indicative of hydrocarbons (crude oils), will be determined on organic matter extracts. The authors will compare and correlate the results to historically documented events of chemical and petroleum spills on the Delaware River.

  3. Shore Stabilization with Salt Marsh Vegetation.

    DTIC Science & Technology

    1983-01-01

    sunken, and the "liplike" guard cells which surround the stomata are accompanied by subsidiary cells equipped with branched papilla (tiny fingerlike...detrital food chain. Dead grass is broken down by bacteria in theIsurrounding waters and on the surface of the marsh. This process greatly decreases...103-118. KNUTSON, P.L., "Planting Guidelines for Marsh Development and Bank Stabl- lisation ," CETA 77-3, U.S. Army, Corps of Engineers, Coastal

  4. Physical Stress, Not Biotic Interactions, Preclude an Invasive Grass from Establishing in Forb-Dominated Salt Marshes

    PubMed Central

    He, Qiang; Cui, Baoshan; An, Yuan

    2012-01-01

    Background Biological invasions have become the focus of considerable concern and ecological research, yet the relative importance of abiotic and biotic factors in controlling the invasibility of habitats to exotic species is not well understood. Spartina species are highly invasive plants in coastal wetlands; however, studies on the factors that control the success or failure of Spartina invasions across multiple habitat types are rare and inconclusive. Methodology and Principal Findings We examined the roles of physical stress and plant interactions in mediating the establishment of the smooth cordgrass, Spartina alterniflora, in a variety of coastal habitats in northern China. Field transplant experiments showed that cordgrass can invade mudflats and low estuarine marshes with low salinity and frequent flooding, but cannot survive in salt marshes and high estuarine marshes with hypersaline soils and infrequent flooding. The dominant native plant Suaeda salsa had neither competitive nor facilitative effects on cordgrass. A common garden experiment revealed that cordgrass performed significantly better when flooded every other day than when flooded weekly. These results suggest that physical stress rather than plant interactions limits cordgrass invasions in northern China. Conclusions and Significance We conclude that Spartina invasions are likely to be constrained to tidal flats and low estuarine marshes in the Yellow River Delta. Due to harsh physical conditions, salt marshes and high estuarine marshes are unlikely to be invaded. These findings have implications for understanding Spartina invasions in northern China and on other coasts with similar biotic and abiotic environments. PMID:22432003

  5. Spatial Variability of Soil Carbon Stocks in a Subtropical Mangrove in Hong Kong

    NASA Astrophysics Data System (ADS)

    Lai, D. Y. F.; Neogi, S.; Law, M. S. M.; Xu, J.; Glatzel, S.; Buczko, U.; Karstens, S.

    2015-12-01

    "Blue carbon", a term used for carbon (C) sequestered in vegetated coastal wetlands, has received increasing attention recently as a potential option for mitigating future climate change. While coastal mangrove is considered as one of the most carbon-rich ecosystems of the world, there is a need to better characterize and compare the magnitude of carbon storage among mangroves in different geographical regions. In this study, we quantified the spatial variability of soil carbon stocks in a subtropical mangrove wetland in Hong Kong, and examined the effects of land cover change on soil carbon storage. Bare mudflats contained significantly lower amount of carbon than mangroves in the top 1 m soils (94.7 vs. 130.7-163.8 Mg C ha-1), indicating the importance of vegetation in enhancing C sequestration. Moreover, we observed higher soil C storage in sites dominated by Avicennia marina than those dominated by Kandelia obovata. Conversion of natural mangroves into freshwater marshes and brackish ponds with shallow islands significantly reduced the amount of C stored in the top 30 cm soils by 24-58%, when compared to sites dominated by mangrove trees. Our findings suggest that consideration should be given to plant species and land cover type in determining the overall magnitude of carbon stocks in subtropical mangrove soils.

  6. Freshwater mussels of Florida

    USGS Publications Warehouse

    Williams, James D.; Butler, Robert S.; Warren, Gary L.; Johnson, Nathan A.

    2014-01-01

    An exhaustive guide to all aspects of the freshwater mussel fauna in Florida,Freshwater Mussels of Florida covers the ecology, biology, distribution, and conservation of the many species of bivalve mollusks in the Sunshine State. In the past three decades, researchers, the public, businesses that depend on wildlife, and policy makers have given more attention to the threatened natural diversity of the Southeast, including freshwater mussels. This compendium meets the increasingly urgent need to catalog this imperiled group of aquatic organisms in the United States.

  7. Microbial Aldicarb Transformation in Aquifer, Lake, and Salt Marsh Sediments

    PubMed Central

    Kazumi, J.; Capone, D. G.

    1995-01-01

    The microbial transformation of [N-methyl-(sup14)C]aldicarb, a carbamate pesticide, occurred in aquifer, lake, and salt marsh sediments. Microbial degradation of aldicarb took place within 21 days in aquifer sediments from sites previously exposed to aldicarb (Jamesport, Long Island, N.Y.) but did not occur in sediments which were not previously exposed (Connetquot State Park, Long Island, N.Y.). At the Jamesport sites, higher aldicarb transformation rates occurred in deep, anoxic sediments than in shallow, oxic sediments. There was a significant negative relationship (P < 0.05) between transformation rates and ambient dissolved O(inf2) levels. Aldicarb hydrolysis rates in Jamesport sediments were 10- to 1,000-fold lower than rates previously reported for soils. In addition, aldicarb degradation rates were not significantly correlated with measurements of bacterial activity and density previously determined in the same sediments. Substantially higher aldicarb degradation rates were found in anoxic lake and salt marsh than in aquifer sediments. Furthermore, we investigated the anaerobic microbial processes involved in aldicarb transformation by adding organic substrates (acetate, glucose), an alternative electron acceptor (nitrate), and microbial inhibitors (molybdate, 2-bromoethanesulfonic acid) to anoxic aquifer, lake, and salt marsh sediments. The results suggest that a methanogenic consortium was important in aldicarb transformation or in the use of aldicarb-derived products such as methylamine. In addition, microbial aldicarb transformation proceeded via different pathways under oxic and anoxic conditions. In the presence of O(inf2), aldicarb transformation was mainly via an oxidation pathway, while in the absence of O(inf2), degradation took place through a hydrolytic pathway (including the formation of methylamine precursors). Under anoxic conditions, therefore, aldicarb can be transformed by microbial consortia to yield products which can be of direct

  8. Salt marsh vegetation as a carbonyl sulfide (COS) source to the atmosphere

    NASA Astrophysics Data System (ADS)

    Whelan, Mary E.; Min, Dong-Ha; Rhew, Robert C.

    2013-07-01

    Carbonyl sulfide (COS) is the most abundant and longest-lived reduced sulfur compound in the atmosphere; changes in its atmospheric concentration could significantly affect global climate and the biogeochemical sulfur cycle. The largest sink of COS in the troposphere is its destruction in plant leaves by the enzymes involved in photosynthesis. In this study, net fluxes of COS were measured from a coastal salt marsh on a subtropical barrier island on the Texas shore of the Gulf of Mexico. We find net emissions from sites with the common salt marsh plant Batis maritima compared to the net uptake from vegetated plots of most previously investigated biomes. The magnitude of the COS production from vegetated plots in this study was twice the emissions of soil-only salt marsh plots. This is the first time that emissions of COS have been found to be significantly enhanced by the presence of vegetation compared to soil alone. COS fluxes exceeded +110 pmol m-2 s-1 for non-inundated plots during daytime hours and were correlated with soil temperature at the depth of 5 cm. Tidal flooding inhibited soil COS exchange; however, we found continued net emissions from emergent B. maritima. This study suggests that emissions of COS resulted from interactions with the plants themselves, which would mean that B. maritima can mediate the production of atmospheric COS.

  9. Seasonal Variation in the Quality of Dissolved and Particulate Organic Matter Exchanged Between a Salt Marsh and Its Adjacent Estuary

    NASA Astrophysics Data System (ADS)

    Osburn, C. L.; Mikan, M.; Etheridge, J. R.; Burchell, M. R.; Birgand, F.

    2015-12-01

    Salt marshes are transitional ecosystems between terrestrial and marine environments. Along with mangroves and other vegetated coastal habitats, salt marshes rank among the most productive ecosystems on Earth, with critical global importance for the planet's carbon cycle. Fluorescence was used to examine the quality of dissolved and particulate organic matter (DOM and POM) exchanging between a tidal creek in a created salt marsh and its adjacent estuary in eastern North Carolina, USA. Samples from the creek were collected hourly over four tidal cycles in May, July, August, and October of 2011. Absorbance and fluorescence of chromophoric DOM (CDOM) and of base-extracted POM (BEPOM) served as the tracers for organic matter quality while dissolved organic carbon (DOC) and base-extracted particulate organic carbon (BEPOC) were used to compute fluxes. Fluorescence was modeled using parallel factor analysis (PARAFAC) and principle components analysis (PCA) of the PARAFAC results. Of nine PARAFAC components modeled, we used multiple linear regression to identify tracers for recalcitrant DOM; labile soil-derived source DOM; detrital POM; and planktonic POM. Based on mass balance, recalcitrant DOC export was 86 g C m-2 yr-1 and labile DOC export was 49 g C m-2 yr-1. The marsh also exported 41 g C m-2 yr-1 of detrital terrestrial POC, which likely originated from lands adjacent to the North River estuary. Planktonic POC export from the marsh was 6 g C m-2 yr-1. Using the DOM and POM quality results obtained via fluorescence measurements and scaling up to global salt marsh area, we estimated that the potential release of CO2 from the respiration of salt marsh DOC and POC transported to estuaries could be 11 Tg C yr-1, roughly 4% of the recently estimated CO2 release for marshes and estuaries globally.

  10. Oxygen transfer in marsh-pond-marsh constructed wetlands treating swine wastewater

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Marsh-pond-marsh (M-P-M) constructed wetlands have been used to treat wastewater from swine anaerobic lagoons. To mitigate undesired ammonia emission from M-P-M, ponds were covered with floating wetlands (M-FB-M). The pond sections of the M-FB-M were covered with floating wetlands consisted of recyc...

  11. TYPES OF SALT MARSH EDGE AND EXPORT OF TROPHIC ENERGY FROM MARSHES TO DEEPER HABITATS

    EPA Science Inventory

    We quantified nekton and estimated trophic export at salt marshes with both erosional and depositional edges at the Goodwin Islands (York River, Virginia, USA). At depositional-edge marshes, we examined trophic flows through quantitative sampling with 1.75 m2 drop rings, and thro...

  12. Fiddler crabs facilitate Spartina alterniflora growth, mitigating periwinkle overgrazing of marsh habitat.

    PubMed

    Gittman, Rachel K; Keller, Danielle A

    2013-12-01

    Ecologists have long been interested in identifying and testing factors that drive top-down or bottom-up regulation of communities. Most studies have focused on factors that directly exert top-down (e.g., grazing) or bottom-up (e.g., nutrient availability) control on primary production. For example, recent studies in salt marshes have demonstrated that fronts of Littoraria irrorata periwinkles can overgraze Spartina alterniflora and convert marsh to mudflat. The importance of indirect, bottom-up effects, particularly facilitation, in enhancing primary production has also recently been explored. Previous field studies separately revealed that fiddler crabs, which burrow to depths of more than 30 cm, can oxygenate marsh sediments and redistribute nutrients, thereby relieving the stress of anoxia and enhancing S. alterniflora growth. However, to our knowledge, no studies to date have explored how nontrophic facilitators can mediate top-down effects (i.e., grazing) on primary-producer biomass. We conducted a field study testing whether fiddler crabs can facilitate S. alterniflora growth sufficiently to mitigate overgrazing by periwinkles and thus sustain S. alterniflora marsh. As inferred from contrasts to experimental plots lacking periwinkles and fiddler crabs, periwinkles alone exerted top-down control of total aboveground biomass and net growth of S. alterniflora. When fiddler crabs were included, they counteracted the effects of periwinkles on net S. alterniflora growth. Sediment oxygen levels were greater and S. alterniflora belowground biomass was lower where fiddler crabs were present, implying that fiddler crab burrowing enhanced S. alterniflora growth. Consequently, in the stressful interior S. alterniflora marsh, where subsurface soil anoxia is widespread, fiddler crab facilitation can mitigate top-down control by periwinkles and can limit and possibly prevent loss of biogenically structured marsh habitat and its ecosystem services.

  13. Modeling the Effects of Changes to Physical, Hydrological, and Biological Processes on Porewater Salinity Distributions in a Southeastern Salt Marsh

    NASA Astrophysics Data System (ADS)

    Miklesh, D.; Meile, C. D.

    2014-12-01

    Coastal wetlands provide many important ecosystem services, which include carbon and nitrogen sequestration and transformations, the provision of habitats, and the reduction of erosion by the vegetation. Coastal wetlands will be affected by projected climate change and sea level rise and may fail to provide such services, prompting a need to understand the environmental controls on marsh and vegetation distribution. Therefore, as part of the Georgia Coastal Ecosystems Long Term Ecological Research project, an integrated modeling approach is being developed to simulate how changes in salinity and inundation may change marsh ecosystem services, by coupling a hydrodynamic with a soil and a plant model. In coastal marsh ecosystems, porewater salinity strongly determines vegetation distribution and productivity. We will present the development of the soil model, which is based on mass conservation for water and salt and links physical, hydrological, and biological processes that determine porewater salinity, including precipitation, evapotranspiration, salt exchange between surface and subsurface, drainage, groundwater exchange, tidal inundation, and surface runoff, with the lateral exchange controlled by marsh topography. The model is applied to the Duplin River marsh, Sapelo Island, Georgia. Model validation is performed by comparing model-estimated salinities to porewater salinity measurements taken in different vegetation classes and over a range of marsh elevations. Modeled variability in porewater salinities will be presented over spring-neap, seasonal, and annual time scales. To discuss potential impacts of climate change and sea level rise, a sensitivity analysis will be presented that demonstrates the effect precipitation intensity, evapotranspiration, permeability, and marsh elevation have on porewater salinities.

  14. Freshwater Harmful Algal Blooms

    EPA Pesticide Factsheets

    EPA is seeking regular and early career applications proposing innovative research on the prediction, prevention, control and mitigation of freshwater HABs as well as the drivers, life cycle patterns, and fate of and effects from from less-common, less

  15. A geohydrologic continuum theory for the spatial and temporal evolution of marsh-estuarine ecosystems

    NASA Astrophysics Data System (ADS)

    Dame, R.; Childers, D.; Koepfler, E.

    Using ecosystem development theory and the River Continuum Concept as starting points, we present a new holistic theory to explain the spatial and temporal behaviour of marsh-estuarine ecosystems Along the marine-estuarine-freshwater gradient in response to sea-level rise. In this theory, a geohydrologic continuum represented by tidal channel provides a predictable physical model of how the marsh-estuarine ecosystem adapts until there is a change of state. North Inlet, South Carolina is used as an example of this marsh-estuarine continuum. Mature creeks are at the ocean-estuary interface and are strongly influenced by marine factors. Further into the estuary, less and less mature creeks are encountered which are dominated by smaller scale spatial and temporal controls such as oyster reefs. Immature or ephemeral creeks import both particulate and dissolved materials, while mature creeks export both forms of nutrients. Mid-aged creeks appear to take up particulate materials and release dissolved constituents. Ultimately, the continuum reaches the fresh-saltwater interface where a very young estuarine ecosystem invades a more mature type, under the influence of disturbance. Our new explanation satisfies most criteria for a good theory by being internally consistent to the location specified, generating testable hypothesis, not blindly adapting existing theories, agreeing with known properties of the ecosystem described and by generating new invigorating discussion within the scientific community.

  16. Measurement and Partitioning of Net Carbon Exchange in a Coastal Salt Marsh

    NASA Astrophysics Data System (ADS)

    Heinsch, F.; Heilman, J. L.; McInnes, K. J.

    2001-12-01

    A tower-based conditional sampling system was used from July 1997 through July 2000 to provide measurements of the carbon dioxide exchange of a salt marsh in the upper Nueces Delta near Corpus Christi, TX. Extensive channelization of the Nueces River has limited the water supply to the high marsh, resulting in high salinity, low productivity, and dry conditions. Studies were conducted to determine the effects of water availability on the CO2 flux of the site. Measurements have shown freshwater inflow increases the net carbon exchange (NCE) of the marsh by increasing CO2 assimilation and decreasing CO2 efflux. In addition, the effects of water availability on the partitioning of NCE are being studied by extrapolation of nighttime respiration measurements to determine total photosynthesis. While the average annual respiration rate does not appear to be affected by water availability, daily ecosystem respiration tends to increase during periods of drought. In addition, chamber measurements have been made to partition ecosystem respiration into its above- and belowground components. Results reveal that belowground respiration is approximately 20% of total ecosystem respiration, while aboveground respiration accounts for the remaining 80%. Thus, ecosystem respiration appears to be dominated by aboveground respiration, which could account for the stability in average annual ecosystem respiration.

  17. Vegetation change on a northeast tidal marsh: Interaction of sea-level rise and marsh accretion

    SciTech Connect

    Warren, R.S.; Niering, W.A. )

    1993-01-01

    Increasing rates of relative sea-level rise (RSL) have been linked to coastal wetland losses along the Gulf of Mexico and elsewhere. Rapidly rising RSL may be affecting New England tidal marshes. Studies of the Wequetequock-Pawcatuck tidal marshes over four decades have documented dramatic changes in vegetation apparently related primarily to differential rates of marsh accretion and sea-level rise though sediment supply and anthropogenic modifications of the system may also be involved. When initially studied in 1947-1948 the high marsh supported a Juncus gerardi-Spartina patens belting pattern typical of many New England salt marshes. On most of the marsh complex the former Juncus belt has now been replaced by forbs, primarily Triglochin maritima, while the former S. patens high marsh is now a complex of vegetation types-stunted Spartina alterniflora, Distichlis spicata, forbs, and relic stands of S. patens. The mean surface elevation of areas where the vegetation has changed is significantly lower than that of areas still supporting the earlier pattern (4.6 vs. 13.9 cm above mean tide level). The differences in surface elevation reflect differences in accretion of marsh peat. Stable areas have been accreting at the rate of local sea-level rise, 2.0-2.5 mm/yr at least since 1938; changed areas have accreted at about one half that rate. Lower surface elevations result in greater frequency and duration of tidal flooding, and thus in increased peat saturation, salinity, and sulfide concentrations, and in decreased redox potential, as directly measured over the growing season at both changed and stable sites. These edaphic changes may have combined to favor establishment of a wetter, more open vegetation type. Similar changes have been observed on other Long Island Sound marshes and may be a model for the potential effects of sea-level rise on New England tidal salt marshes. 39 refs., 4 figs., 1 tab.

  18. Experimentally simulated global warming and nitrogen enrichment effects on microbial litter decomposers in a marsh.

    PubMed

    Flury, Sabine; Gessner, Mark O

    2011-02-01

    Atmospheric warming and increased nitrogen deposition can lead to changes of microbial communities with possible consequences for biogeochemical processes. We used an enclosure facility in a freshwater marsh to assess the effects on microbes associated with decomposing plant litter under conditions of simulated climate warming and pulsed nitrogen supply. Standard batches of litter were placed in coarse-mesh and fine-mesh bags and submerged in a series of heated, nitrogen-enriched, and control enclosures. They were retrieved later and analyzed for a range of microbial parameters. Fingerprinting profiles obtained by denaturing gradient gel electrophoresis (DGGE) indicated that simulated global warming induced a shift in bacterial community structure. In addition, warming reduced fungal biomass, whereas bacterial biomass was unaffected. The mesh size of the litter bags and sampling date also had an influence on bacterial community structure, with the apparent number of dominant genotypes increasing from spring to summer. Microbial respiration was unaffected by any treatment, and nitrogen enrichment had no clear effect on any of the microbial parameters considered. Overall, these results suggest that microbes associated with decomposing plant litter in nutrient-rich freshwater marshes are resistant to extra nitrogen supplies but are likely to respond to temperature increases projected for this century.

  19. Dielectric properties of marsh vegetation

    NASA Astrophysics Data System (ADS)

    Kochetkova, Tatiana D.; Suslyaev, Valentin I.; Shcheglova, Anna S.

    2015-10-01

    The present work is devoted to the measurement of the dielectric properties of mosses and lichens in the frequency range from 500 MHz to 18 GHz. Subjects of this research were three species of march vegetation - moss (Dicranum polysetum Michx), groundcedar (Diphasiastrum complanatum (L.) Holub) and lichen (Cladonia stellaris). Samples of vegetation were collected in Tomsk region, Western Siberia, Russia. Complex dielectric permittivity was measured in coaxial section by Agilent Technologies vector network analyzer E8363B. Green samples was measured for some moisture contents from 100% to 3-5 % during a natural drying. The measurements were performed at room temperature, which remained within 21 ÷ 23 ° C. The frequency dependence of the dielectric constant for the three species of marsh vegetation differ markedly. Different parts of the complex permittivity dependency on moisture were fitted by line for all frequency points. Two break point were observed corresponding to the transition of water in the vegetation in various phase states. The complex permittivity spectra of water in the vegetation allow determining the most likely corresponding dielectric model of water in the vegetation by the method of hypothesis testing. It is the Debye's model. Parameters of Debye's model were obtained by numerical methods for all of three states of water. This enables to calculate the dielectric constant of water at any frequency range from 500 MHz to 18 GHz and to find the parameters of the dielectric model of the vegetation.

  20. A Holistic Approach to the Conservation and Propagation of Freshwater, Brackish and Estuarine Bivalves for Ecosystem Services.

    NASA Astrophysics Data System (ADS)

    Kreeger, D.

    2005-05-01

    Shellfish restoration is increasingly valued in estuaries such as Chesapeake Bay where oyster populations are known to function as living biofilters, performing critical ecosystem services. Less studied are the services rendered by other suspension-feeding bivalves that reside in fringing marshes around these estuaries, in brackish and freshwater tidal portions, and in freshwater tributaries. The potential benefits contributed by other native bivalves will be discussed with two case studies from the Delaware basin. These are the ribbed mussel (Geukensia demissa ), which is abundant in brackish and marine tidal marshes, and the unionid mussel (Elliptio complanata ), which is abundant in many rivers of the system. Ribbed mussels are abundant enough to filter a large portion of the tidal prism flushing marshes, facilitating the role that these systems play as a sink for suspended solids and nutrients. Similarly, data from the lower Brandywine River suggests that a vestigial community of freshwater unionids remains sufficiently abundant to have a measurable beneficial effect on water quality by removing more than 25 metric tons of suspended particulates per year. Hence, the conservation and propagation of freshwater unionids can yield benefits that extend beyond current interest that is focused on protecting their biodiversity. Future efforts to protect or reclaim water quality and ecosystem integrity may benefit by a basin-wide, holistic approach that promotes integrated "biofiltration services" by native bivalves living from the headwaters to the coastal shelf.

  1. Spatially integrative metrics reveal hidden vulnerability of microtidal salt marshes

    USGS Publications Warehouse

    Ganju, Neil K.; Defne, Zafer; Kirwan, Matthew L.; Fagherazzi, Sergio; D'Alpaos, Andrea; Carniello, Luca

    2017-01-01

    Salt marshes are valued for their ecosystem services, and their vulnerability is typically assessed through biotic and abiotic measurements at individual points on the landscape. However, lateral erosion can lead to rapid marsh loss as marshes build vertically. Marsh sediment budgets represent a spatially integrated measure of competing constructive and destructive forces: a sediment surplus may result in vertical growth and/or lateral expansion, while a sediment deficit may result in drowning and/or lateral contraction. Here we show that sediment budgets of eight microtidal marsh complexes consistently scale with areal unvegetated/vegetated marsh ratios (UVVR) suggesting these metrics are broadly applicable indicators of microtidal marsh vulnerability. All sites are exhibiting a sediment deficit, with half the sites having projected lifespans of less than 350 years at current rates of sea-level rise and sediment availability. These results demonstrate that open-water conversion and sediment deficits are holistic and sensitive indicators of salt marsh vulnerability.

  2. Spatially integrative metrics reveal hidden vulnerability of microtidal salt marshes

    PubMed Central

    Ganju, Neil K.; Defne, Zafer; Kirwan, Matthew L.; Fagherazzi, Sergio; D'Alpaos, Andrea; Carniello, Luca

    2017-01-01

    Salt marshes are valued for their ecosystem services, and their vulnerability is typically assessed through biotic and abiotic measurements at individual points on the landscape. However, lateral erosion can lead to rapid marsh loss as marshes build vertically. Marsh sediment budgets represent a spatially integrated measure of competing constructive and destructive forces: a sediment surplus may result in vertical growth and/or lateral expansion, while a sediment deficit may result in drowning and/or lateral contraction. Here we show that sediment budgets of eight microtidal marsh complexes consistently scale with areal unvegetated/vegetated marsh ratios (UVVR) suggesting these metrics are broadly applicable indicators of microtidal marsh vulnerability. All sites are exhibiting a sediment deficit, with half the sites having projected lifespans of less than 350 years at current rates of sea-level rise and sediment availability. These results demonstrate that open-water conversion and sediment deficits are holistic and sensitive indicators of salt marsh vulnerability. PMID:28112167

  3. Spatially integrative metrics reveal hidden vulnerability of microtidal salt marshes

    NASA Astrophysics Data System (ADS)

    Ganju, Neil K.; Defne, Zafer; Kirwan, Matthew L.; Fagherazzi, Sergio; D'Alpaos, Andrea; Carniello, Luca

    2017-01-01

    Salt marshes are valued for their ecosystem services, and their vulnerability is typically assessed through biotic and abiotic measurements at individual points on the landscape. However, lateral erosion can lead to rapid marsh loss as marshes build vertically. Marsh sediment budgets represent a spatially integrated measure of competing constructive and destructive forces: a sediment surplus may result in vertical growth and/or lateral expansion, while a sediment deficit may result in drowning and/or lateral contraction. Here we show that sediment budgets of eight microtidal marsh complexes consistently scale with areal unvegetated/vegetated marsh ratios (UVVR) suggesting these metrics are broadly applicable indicators of microtidal marsh vulnerability. All sites are exhibiting a sediment deficit, with half the sites having projected lifespans of less than 350 years at current rates of sea-level rise and sediment availability. These results demonstrate that open-water conversion and sediment deficits are holistic and sensitive indicators of salt marsh vulnerability.

  4. 17. View from Sterling Creek Marsh looking west, with berm ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. View from Sterling Creek Marsh looking west, with berm to the left and Henry Ford Mansion in the far background - Richmond Hill Plantation, Sterling Creek Marsh, East of Richmond Hill on Ford Neck Road, Richmond Hill, Bryan County, GA

  5. 20. View of Sterling Creek Marsh looking southwest with oyster ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. View of Sterling Creek Marsh looking southwest with oyster house in the tree line - Richmond Hill Plantation, Sterling Creek Marsh, East of Richmond Hill on Ford Neck Road, Richmond Hill, Bryan County, GA

  6. 3. View of Sterling Creek Marsh at low tide showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. View of Sterling Creek Marsh at low tide showing rubble at the entrance of dam/bridge looking southwest - Richmond Hill Plantation, Sterling Creek Marsh, East of Richmond Hill on Ford Neck Road, Richmond Hill, Bryan County, GA

  7. 4. View of Sterling Creek Marsh at low tide showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. View of Sterling Creek Marsh at low tide showing rubble at the entrance of the dam/bridge looking east - Richmond Hill Plantation, Sterling Creek Marsh, East of Richmond Hill on Ford Neck Road, Richmond Hill, Bryan County, GA

  8. 13. View of Sterling Creek Marsh looking southeast; looking at ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. View of Sterling Creek Marsh looking southeast; looking at canal going to the tree line - Richmond Hill Plantation, Sterling Creek Marsh, East of Richmond Hill on Ford Neck Road, Richmond Hill, Bryan County, GA

  9. Remote sensing as an aid for marsh management

    NASA Technical Reports Server (NTRS)

    Ragan, J. G.; Green, J. H.

    1973-01-01

    NASA aerial photography, primarily color infrared and color positive transparencies, is used in a study of marsh management practices and in comparing managed and unmanaged marsh areas. Weir locations for tidal control are recommended.

  10. A New Approach to Monitoring Coastal Marshes for Persistent Flooding

    NASA Technical Reports Server (NTRS)

    Kalcic, M. T.; Undersood, Lauren W.; Fletcher, Rose

    2012-01-01

    compute the NDWI indices and also the Normalized Difference Soil Index (NDSI). Coastwide Reference Monitoring System (CRMS) water levels from various hydrologic monitoring stations and aerial photography were used to optimize thresholds for MODIS-derived time series of NDWI and to validate resulting flood maps. In most of the profiles produced for post-hurricane assessment, the increase in the NDWI index (from storm surge) is accompanied by a decrease in the vegetation index (NDVI) and then a period of declining water. The NDSI index represents non-green or dead vegetation and increases after the hurricane s destruction of the marsh vegetation. Behavior of these indices over time is indicative of which areas remain flooded, which areas recover to their former levels of vegetative vigor, and which areas are stressed or in transition. Tracking these indices over time shows the recovery rate of vegetation and the relative behavior to inundation persistence. The results from this study demonstrated that identification of persistent marsh flooding, utilizing the tools developed in this study, provided an approximate 70-80 percent accuracy rate when compared to the actual days flooded at the CRMS stations.

  11. A New Approach to Monitoring Coastal Marshes for Persistent Flooding

    NASA Astrophysics Data System (ADS)

    Kalcic, M. T.; Underwood, L. W.; Fletcher, R. M.

    2012-12-01

    compute the NDWI indices and also the Normalized Difference Soil Index (NDSI). Coastwide Reference Monitoring System (CRMS) water levels from various hydrologic monitoring stations and aerial photography were used to optimize thresholds for MODIS-derived time series of NDWI and to validate resulting flood maps. In most of the profiles produced for post-hurricane assessment, the increase in the NDWI index (from storm surge) is accompanied by a decrease in the vegetation index (NDVI) and then a period of declining water. The NDSI index represents non-green or dead vegetation and increases after the hurricane's destruction of the marsh vegetation. Behavior of these indices over time is indicative of which areas remain flooded, which areas recover to their former levels of vegetative vigor, and which areas are stressed or in transition. Tracking these indices over time shows the recovery rate of vegetation and the relative behavior to inundation persistence. The results from this study demonstrated that identification of persistent marsh flooding, utilizing the tools developed in this study, provided an approximate 70-80 percent accuracy rate when compared to the actual days flooded at the CRMS stations.

  12. Greenhouse Gas Fluxes from Salt Marshes Exposed to Chronic Nutrient Enrichment.

    PubMed

    Chmura, Gail L; Kellman, Lisa; van Ardenne, Lee; Guntenspergen, Glenn R

    2016-01-01

    We assessed the impact of nutrient additions on greenhouse gas fluxes using dark static chambers in a microtidal and a macrotidal marsh along the coast of New Brunswick, Canada approximately monthly over a year. Both were experimentally fertilized for six years with varying levels of N and P. For unfertilized, N and NPK treatments, average yearly CO2 emissions (which represent only respiration) at the microtidal marsh (13, 19, and 28 mmoles CO2 m(-2) hr(-1), respectively) were higher than at the macrotidal marsh (12, 15, and 19 mmoles m(-2) hr(-1), respectively, with a flux under the additional high N/low P treatment of 21 mmoles m(-2) hr(-1)). Response of CH4 to fertilization was more variable. At the macrotidal marsh average yearly fluxes were 1.29, 1.26, and 0.77 μmol CH4 m(-2) hr(-1) with control, N, and NPK treatments, respectively and 1.21 μmol m(-2) hr(-1) under high N/low P treatment. At the microtidal marsh CH4 fluxes were 0.23, 0.16, and -0.24 μmol CH4 m(-2) hr(-1) in control, N, and NPK and treatments, respectively. Fertilization changed soils from sinks to sources of N2O. Average yearly N2O fluxes at the macrotidal marsh were -0.07, 0.08, and 1.70, μmol N2O m(-2) hr(-1) in control, N, NPK and treatments, respectively and 0.35 μmol m(-2) hr(-1) under high N/low P treatment. For the control, N, and NPK treatments at the microtidal marsh N2O fluxes were -0.05, 0.30, and 0.52 μmol N2O m(-2) hr(-1), respectively. Our results indicate that N2O fluxes are likely to vary with the source of pollutant nutrients but emissions will be lower if N is not accompanied by an adequate supply of P (e.g., atmospheric deposition vs sewage or agricultural runoff). With chronic fertilization the global warming potential of the increased N2O emissions may be enough to offset the global cooling potential of the C sequestered by salt marshes.

  13. Greenhouse Gas Fluxes from Salt Marshes Exposed to Chronic Nutrient Enrichment

    PubMed Central

    Chmura, Gail L.; Kellman, Lisa

    2016-01-01

    We assessed the impact of nutrient additions on greenhouse gas fluxes using dark static chambers in a microtidal and a macrotidal marsh along the coast of New Brunswick, Canada approximately monthly over a year. Both were experimentally fertilized for six years with varying levels of N and P. For unfertilized, N and NPK treatments, average yearly CO2 emissions (which represent only respiration) at the microtidal marsh (13, 19, and 28 mmoles CO2 m-2 hr-1, respectively) were higher than at the macrotidal marsh (12, 15, and 19 mmoles m-2 hr-1, respectively, with a flux under the additional high N/low P treatment of 21 mmoles m-2 hr-1). Response of CH4 to fertilization was more variable. At the macrotidal marsh average yearly fluxes were 1.29, 1.26, and 0.77 μmol CH4 m-2 hr-1 with control, N, and NPK treatments, respectively and 1.21 μmol m-2 hr-1 under high N/low P treatment. At the microtidal marsh CH4 fluxes were 0.23, 0.16, and -0.24 μmol CH4 m-2 hr-1 in control, N, and NPK and treatments, respectively. Fertilization changed soils from sinks to sources of N2O. Average yearly N2O fluxes at the macrotidal marsh were -0.07, 0.08, and 1.70, μmol N2O m-2 hr-1 in control, N, NPK and treatments, respectively and 0.35 μmol m-2 hr-1 under high N/low P treatment. For the control, N, and NPK treatments at the microtidal marsh N2O fluxes were -0.05, 0.30, and 0.52 μmol N2O m-2 hr-1, respectively. Our results indicate that N2O fluxes are likely to vary with the source of pollutant nutrients but emissions will be lower if N is not accompanied by an adequate supply of P (e.g., atmospheric deposition vs sewage or agricultural runoff). With chronic fertilization the global warming potential of the increased N2O emissions may be enough to offset the global cooling potential of the C sequestered by salt marshes. PMID:26914333

  14. Greenhouse gas fluxes from salt marshes exposed to chronic nutrient enrichment

    USGS Publications Warehouse

    Chmura, Gail L.; Kellman, Lisa; van Ardenne, Lee; Guntenspergen, Glenn R.

    2016-01-01

    We assessed the impact of nutrient additions on greenhouse gas fluxes using dark static chambers in a microtidal and a macrotidal marsh along the coast of New Brunswick, Canada approximately monthly over a year. Both were experimentally fertilized for six years with varying levels of N and P. For unfertilized, N and NPK treatments, average yearly CO2 emissions (which represent only respiration) at the microtidal marsh (13, 19, and 28 mmoles CO2 m-2 hr-1, respectively) were higher than at the macrotidal marsh (12, 15, and 19 mmoles m-2 hr-1, respectively, with a flux under the additional high N/low P treatment of 21 mmoles m-2 hr-1). Response of CH4 to fertilization was more variable. At the macrotidal marsh average yearly fluxes were 1.29, 1.26, and 0.77 μmol CH4 m-2 hr-1 with control, N, and NPK treatments, respectively and 1.21 μmol m-2 hr-1 under high N/low P treatment. At the microtidal marsh CH4fluxes were 0.23, 0.16, and -0.24 μmol CH4 m-2 hr-1 in control, N, and NPK and treatments, respectively. Fertilization changed soils from sinks to sources of N2O. Average yearly N2O fluxes at the macrotidal marsh were -0.07, 0.08, and 1.70, μmol N2O m-2 hr-1 in control, N, NPK and treatments, respectively and 0.35 μmol m-2 hr-1 under high N/low P treatment. For the control, N, and NPK treatments at the microtidal marsh N2O fluxes were -0.05, 0.30, and 0.52 μmol N2O m-2 hr-1, respectively. Our results indicate that N2O fluxes are likely to vary with the source of pollutant nutrients but emissions will be lower if N is not accompanied by an adequate supply of P (e.g., atmospheric deposition vs sewage or agricultural runoff). With chronic fertilization the global warming potential of the increased N2O emissions may be enough to offset the global cooling potential of the C sequestered by salt marshes.

  15. Species profiles: Life histories and environmental requirements of coastal fishes and invertebrates (Mid-Atlantic): Atlantic marsh fiddler

    SciTech Connect

    Grimes, B.H.; Huish, M.T.; Kerby, J.H.; Moran, D.; National Wetlands Research Center, Slidell, LA )

    1989-09-01

    The Atlantic marsh fiddler is the only endemic species of Uca in the Mid-Atlantic region. Males display a series of visual and acoustical displays during mating, with a weak waving and bleaching of the larger claw. Egg clutch size in female varies. Larvae are released in phase with nocturnal high tides. The 5 zoeal and 1 megalops stages compose much of the estuarine plankton. First and second crab stages are weak and unable to burrow. Adult lifespan is 1--1.5 years with 1--2 molts per year. Molting is temperature dependent and ceases below 20{degree}C. Crabs feed by scrubbing the preferred muddy substratum for diatoms, fungi, vascular plants, and debris, bioturbating and recycling the marsh surface. This crab is eaten regularly by estuarine birds, fish, crabs, and some mammals. This fiddler can acclimate to lower temperatures, but dies below 2-3{degree}C or above 40{degree}C. It prefers seawater, lacking freshwater tolerance. Oxygen uptake correlates with activity. Preferred habitats are muddy substrata and short smooth cordgrass. Burrow density decreases from low to high marsh. The Atlantic marsh fiddler has the highest radiation LD-50 of sympatric species of fiddler crabs. Insecticides Temefos, DDT, DDF, Aldrin, and Dieldrin, and contaminant PCB's, mercury, and cadmium reduce populations of fiddlers, some being concentrated in their tissues. 90 refs., 4 figs.

  16. Astronomical Forcing of Salt Marsh Biogeochemical Cascades

    NASA Astrophysics Data System (ADS)

    Morris, J. T.; Sundberg, K.

    2008-12-01

    Astronomically forced changes in the hydroperiod of a salt marsh affect the rate of marsh primary production leading to a biogeochemical cascade. For example, salt marsh primary production and biogeochemical cycles in coastal salt marshes are sensitive to the 18.6-year lunar nodal cycle, which alters the tidal amplitude by about 5 cm. For marshes that are perched high in the tidal frame, a relatively small increase in tidal amplitude and flooding lowers sediment salinity and stimulates primary production. Porewater sulfide concentrations are positively correlated with tidal amplitude and vary on the same cycle as primary production. Soluble reactive phosphate and ammonium concentrations in pore water also vary on this 18.6- year cycle. Phosphate likely responds to variation in the reaction of sulfide with iron-phosphate compounds, while the production of ammonium in sediments is coupled to the activity of diazotrophs that are carbon- limited and, therefore, are regulated by primary productivity. Ammonium also would accumulate when sulfides block nitrification. These dependencies work as a positive feedback between primary production and nutrient supply and are predictive of the near-term effects of sea-level rise.

  17. Sea-level rise and landscape change influence mangrove encroachment onto marsh in the Ten Thousand Islands region of Florida, USA

    USGS Publications Warehouse

    Krauss, Ken W.; From, Andrew S.; Doyle, Thomas W.; Doyle, Terry J.; Barry, Michael J.

    2011-01-01

    The Ten Thousand Islands region of southwestern Florida, USA is a major feeding and resting destination for breeding, migrating, and wintering birds. Many species of waterbirds rely specifically on marshes as foraging habitat, making mangrove encroachment a concern for wildlife managers. With the alteration of freshwater flow and sea-level rise trends for the region, mangroves have migrated upstream into traditionally salt and brackish marshes, mirroring similar descriptions around the world. Aside from localized freezes in some years, very little seems to be preventing mangrove encroachment. We mapped changes in mangrove stand boundaries from the Gulf of Mexico inland to the northern boundary of Ten Thousand Islands National Wildlife Refuge (TTINWR) from 1927 to 2005, and determined the area of mangroves to be approximately 7,281 hectares in 2005, representing an 1,878 hectare increase since 1927. Overall change represents an approximately 35% increase in mangrove coverage on TTINWR over 78 years. Sea-level rise is likely the primary driver of this change; however, the construction of new waterways facilitates the dispersal of mangrove propagules into new areas by extending tidal influence, exacerbating encroachment. Reduced volume of freshwater delivery to TTINWR via overland flow and localized rainfall may influence the balance between marsh and mangrove as well, potentially offering some options to managers interested in conserving marsh over mangrove.

  18. Gaseous mercury flux from salt marshes is mediated by solar radiation and temperature

    NASA Astrophysics Data System (ADS)

    Sizmur, Tom; McArthur, Gordon; Risk, David; Tordon, Robert; O'Driscoll, Nelson J.

    2017-03-01

    Salt marshes are ecologically sensitive ecosystems where mercury (Hg) methylation and biomagnification can occur. Understanding the mechanisms controlling gaseous Hg flux from salt marshes is important to predict the retention of Hg in coastal wetlands and project the impact of environmental change on the global Hg cycle. We monitored Hg flux from a remote salt marsh over 9 days which included three cloudless days and a 4 mm rainfall event. We observed a cyclical diel relationship between Hg flux and solar radiation. When measurements at the same irradiance intensity are considered, Hg flux was greater in the evening when the sediment was warm than in the morning when the sediment was cool. This is evidence to suggest that both solar radiation and sediment temperature directly influence the rate of Hg(II) photoreduction in salt marshes. Hg flux could be predicted from solar radiation and sediment temperature in sub-datasets collected during cloudless days (R2 = 0.99), and before (R2 = 0.97) and after (R2 = 0.95) the rainfall event, but the combined dataset could not account for the lower Hg flux after the rainfall event that is in contrast to greater Hg flux observed from soils after rainfall events.

  19. Impacts of the Deepwater Horizon oil spill on the salt marsh vegetation of Louisiana.

    PubMed

    Hester, Mark W; Willis, Jonathan M; Rouhani, Shahrokh; Steinhoff, Marla A; Baker, Mary C

    2016-09-01

    The coastal wetland vegetation component of the Deepwater Horizon oil spill Natural Resource Damage Assessment documented significant injury to the plant production and health of Louisiana salt marshes exposed to oiling. Specifically, marsh sites experiencing trace or greater vertical oiling of plant tissues displayed reductions in cover and peak standing crop relative to reference (no oiling), particularly in the marsh edge zone, for the majority of this four year study. Similarly, elevated chlorosis of plant tissue, as estimated by a vegetation health index, was detected for marsh sites with trace or greater vertical oiling in the first two years of the study. Key environmental factors, such as hydrologic regime, elevation, and soil characteristics, were generally similar across plant oiling classes (including reference), indicating that the observed injury to plant production and health was the result of plant oiling and not potential differences in environmental setting. Although fewer significant impacts to plant production and health were detected in the latter years of the study, this is due in part to decreased sample size occurring as a result of erosion (shoreline retreat) and resultant loss of plots, and should not be misconstrued as indicating full recovery of the ecosystem.

  20. Estimating Carbon Stocks and Atmospheric Exchange of Depressional Marshes on the Central Florida Landscape

    NASA Astrophysics Data System (ADS)

    Benscoter, B.; McClellan, M. D.; Benavides, V.; Harshbarger, D.; Comas, X.

    2014-12-01

    Depressional marshes are ubiquitous throughout central and south Florida. Often distributed within a matrix of sandy pine flatwoods and hammocks, these wetlands have a seasonally variable water table, alternating between inundation and complete drydown. Though these landforms are typically small individually, they comprise a substantial component of the landscape and provide vital habitat for an array of flora and fauna. Given their fluctuating hydrology, conditions for soil and plant carbon (C) exchange mechanisms can vary greatly both spatially and temporally. In this study, we are developing a C budget for depressional marsh landforms by assessing ecosystem carbon exchange along an ecotone gradient and quantifying belowground C stocks using non-invasive geophysical methods (ground penetrating radar, GPR) at the Disney Wilderness Preserve (DWP) in Kissimmee, FL, USA. Using a series of closed chambers transecting the marsh from the center outward into the surrounding flatwoods, we are quantifying the effects of seasonal water table change on the magnitude of C exchange. Three dimensional GPR surveys were used to quantify peat layer thickness, and were constrained with direct core sampling to verify subsurface lithology and to assess peat C content. Using the relationship between landform surface area and belowground C volume, we assessed the cumulative C storage in depressional marshes across the DWP landscape. In conjunction with a nearby eddy covariance tower and seasonal hydrologic data, these response functions will help to evaluate the contribution of these small but widespread landscape features on regional C cycling.

  1. Consumer control of salt marshes driven by human disturbance.

    PubMed

    Bertness, Mark D; Silliman, Brian R

    2008-06-01

    Salt marsh ecosystems are widely considered to be controlled exclusively by bottom-up forces, but there is mounting evidence that human disturbances are triggering consumer control in western Atlantic salt marshes, often with catastrophic consequences. In other marine ecosystems, human disturbances routinely dampen (e.g., coral reefs, sea grass beds) and strengthen (e.g., kelps) consumer control, but current marsh theory predicts little potential interaction between humans and marsh consumers. Thus, human modification of top-down control in salt marshes was not anticipated and was even discounted in current marsh theory, despite loud warnings about the potential for cascading human impacts from work in other marine ecosystems. In spite of recent experiments that have challenged established marsh dogma and demonstrated consumer-driven die-off of salt marsh ecosystems, government agencies and nongovernmental organizations continue to manage marsh die-offs under the old theoretical framework and only consider bottom-up forces as causal agents. This intellectual dependency of many coastal ecologists and managers on system-specific theory (i.e., marsh bottom-up theory) has the potential to have grave repercussions for coastal ecosystem management and conservation in the face of increasing human threats. We stress that marine vascular plant communities (salt marshes, sea grass beds, mangroves) are likely more vulnerable to runaway grazing and consumer-driven collapse than is currently recognized by theory, particularly in low-diversity ecosystems like Atlantic salt marshes.

  2. Marshes on the Move: Testing effects of seawater intrusion on ...

    EPA Pesticide Factsheets

    The Northeastern United States is a hotspot for sea level rise (SLR), subjecting coastal salt marshes to erosive loss, shifts in vegetation communities, and altered biogeochemistry due to seawater intrusion. Salt marsh plant commu