Science.gov

Sample records for freshwater sediment downstream

  1. Impacts of Three Gorges Reservoir on the sedimentation regimes in the downstream-linked two largest Chinese freshwater lakes

    PubMed Central

    Zhou, Yongqiang; Jeppesen, Erik; Li, Jingbao; Zhang, Yunlin; Zhang, Xinping; Li, Xichun

    2016-01-01

    We studied the impacts of Three Gorges Reservoir (TGR) on the sedimentation regimes in the downstream-linked two largest Chinese freshwater lakes, Lake Dongting and Lake Poyang. Our results indicate that up to 1.73 × 109 t sediment was retained in TGR from June 2003 to December 2014. This resulted in a 145.9 × 106 t yr−1 decline in the suspended sediment load at Zhicheng and a 16.8 × 106 t yr−1 lower sediment flow from Yangtze River to Lake Dongting, which partially explains the 13.4 × 106 t yr−1 lower sedimentation in Lake Dongting during the post-TGR period. Furthermore, TGR resulted in a 0.5 ± 0.3 m reduction of the multi-year mean water level at the Lake Poyang outlet Hukou, accelerating the suspended sediment export discharge from the lake. The reduced sedimentation in Lake Poyang during the post-TGR period was estimated to 6.3 × 106 t yr−1. We estimate that a monthly mean concentration of sediment flow from TGR below 0.60 kg m−3 will lead to erosion in Lake Dongting and Lake Poyang. Better regulation of TGR may extend the life expectancy of the two vanishing large lakes. PMID:27748435

  2. Sulfur cycling in freshwater sediments

    NASA Technical Reports Server (NTRS)

    Klug, M. J.

    1985-01-01

    Organic sulfur containing compounds represent greater than 80% of the total sulfur in sediments of eutrophic freshwater lakes. Although sedimentary sulfur is predominantly in the form of organic compounds, more sulfur is transformed by sulfate reduction than by any other process. Rates of sulfate reduction in these sediments average 7 mmol/sq m/day. This rate is 19 times greater than the net rate of production of inorganic sulfur from organic compounds on an annual basis.

  3. Influence of sediment storage on downstream delivery of contaminated sediment

    USGS Publications Warehouse

    Malmon, D.V.; Reneau, S.L.; Dunne, T.; Katzman, D.; Drakos, P.G.

    2005-01-01

    Sediment storage in alluvial valleys can strongly modulate the downstream migration of sediment and associated contaminants through landscapes. Traditional methods for routing contaminated sediment through valleys focus on in-channel sediment transport but ignore the influence of sediment exchanges with temporary sediment storage reservoirs outside the channel, such as floodplains. In theory, probabilistic analysis of particle trajectories through valleys offers a useful strategy for quantifying the influence of sediment storage on the downstream movement of contaminated sediment. This paper describes a field application and test of this theory, using 137Cs as a sediment tracer over 45 years (1952-1997), downstream of a historical effluent outfall at the Los Alamos National Laboratory (LANL), New Mexico. The theory is parameterized using a sediment budget based on field data and an estimate of the 137Cs release history at the upstream boundary. The uncalibrated model reasonably replicates the approximate magnitude and spatial distribution of channel- and floodplain-stored 137Cs measured in an independent field study. Model runs quantify the role of sediment storage in the long-term migration of a pulse of contaminated sediment, quantify the downstream impact of upstream mitigation, and mathematically decompose the future 137Cs flux near the LANL property boundary to evaluate the relative contributions of various upstream contaminant sources. The fate of many sediment-bound contaminants is determined by the relative timescales of contaminant degradation and particle residence time in different types of sedimentary environments. The theory provides a viable approach for quantifying the long-term movement of contaminated sediment through valleys. Copyright 2005 by the American Geophysical Union.

  4. Sediment quality in freshwater impoundments at Savannah National Wildlife Refuge

    USGS Publications Warehouse

    Winger, P.V.; Lasier, P.J.

    2004-01-01

    Freshwater impoundments at Savannah National Wildlife Refuge (NWR), South Carolina, provide an important habitat for wildlife species, but degraded sediment quality in the Savannah River downstream of the discharge from two impoundments have caused concern about potential contaminant problems within the impoundments. The quality of sediments from five impoundments (impoundments no. 1, 2, 6, 7, and 17) on the NWR was evaluated using physical and chemical characterization, contaminant concentrations (metals, organochlorine pesticides, polychlorinated biphenyls, and polycyclic aromatic hydrocarbons), and toxicity testing. Survival of Hyalella azteca (freshwater amphipod) exposed for 28 days to solid-phase sediments was not significantly different from controls, but growth was significantly decreased at several sites. Survival in 96-hour exposures to sediment pore water was significantly decreased at most sites. Factors contributing to the toxic responses were low pH (3.7 to 4.1), ammonia (20 mg/L), and increased concentrations of cations in the pore water. The excess of simultaneously extracted metals over the acid volatile sulfides in the sediments was also typical of sites displaying decreased sediment quality. Elemental concentrations in pore water were negatively correlated with pH, and the highest concentrations were observed in impoundment no. 7. The acidic nature of the sediment in this impoundment was exacerbated by recent draining, burning, and disking, which allowed oxidation of the previously anoxic wetland sediment. Sediment disturbance and mixing of vegetation into the sediments by disking may also have contributed to the formation of ammonia caused by microbial decomposition of the fragmented organic matter. Contaminants were not detected in sediments from the impoundments, but releases of acidic water with increased levels of sediment cations from the impoundments may have contributed to the degraded sediment conditions previously observed in the river

  5. Downstream cumulative effects of land use on freshwater communities

    NASA Astrophysics Data System (ADS)

    Kuglerová, L.; Kielstra, B. W.; Moore, D.; Richardson, J. S.

    2015-12-01

    Many streams and rivers are subject to disturbance from intense land use such as urbanization and agriculture, and this is especially obvious for small headwaters. Streams are spatially organized into networks where headwaters represent the tributaries and provide water, nutrients, and organic material to the main stems. Therefore perturbations within the headwaters might be cumulatively carried on downstream. Although we know that the disturbance of headwaters in urban and agricultural landscapes poses threats to downstream river reaches, the magnitude and severity of these changes for ecological communities is less known. We studied stream networks along a gradient of disturbance connected to land use intensity, from urbanized watersheds to watersheds placed in agricultural settings in the Greater Toronto Area. Further, we compared the patterns and processes found in the modified watershed to a control watershed, situated in a forested, less impacted landscape. Preliminary results suggest that hydrological modifications (flash floods), habitat loss (drainage and sewer systems), and water quality issues of small streams in urbanized and agricultural watersheds represent major disturbances and threats for aquatic and riparian biota on local as well as larger spatial scales. For example, communities of riparian plants are dominated by species typical of the land use on adjacent uplands as well as the dominant land use on the upstream contributing area, instead of riparian obligates commonly found in forested watersheds. Further, riparian communities in disturbed environments are dominated by invasive species. The changes in riparian communities are vital for various functions of riparian vegetation. Bank erosion control is suppressed, leading to severe channel transformations and sediment loadings in urbanized watersheds. Food sources for instream biota and thermal regimes are also changed, which further triggers alterations of in-stream biological communities

  6. A bioaccumulation bioassay for freshwater sediments

    USGS Publications Warehouse

    Mac, Michael J.; Noguchi, George E.; Hesselberg, Robert J.; Edsall, Carol C.; Shoesmith, John A.; Bowker, James D.

    1990-01-01

    A laboratory bioassay is described for determining the bioavailability of contaminants from freshwater sediments. The bioassay consists of 10-d exposures to whole sediments under flow-through conditions. After testing five species, the fathead minnow (Pimephales promelas) and the earthworm (Lubricus terrestris) were recommended for use in the test. When the availability of polychlorinated biphenyls (PCBs), Hg and Zn from Great Lakes sediments was examined in laboratory exposures, only the PCBs were accumulated. A field validation study demonstrated that the magnitude of accumulation in laboratory exposures was similar to that in organisms caged in the field. A protocol is recommended for using the test as a standardized bioaccumulation bioassay.

  7. 7. SEDIMENTATION CHAMBER AT 520', CONSTRUCTED 19371938, VIEWED FROM DOWNSTREAM. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. SEDIMENTATION CHAMBER AT 520', CONSTRUCTED 1937-1938, VIEWED FROM DOWNSTREAM. DEBRIS REMOVED FROM TOP PLANKS FOR CLARITY. ONE OF TWO SPILLWAYS SEEN AT RIGHT. FLUSH VALVE SEEN AT LOWER LEFT AND WRENCH FOR VALVES IS PROPPED AGAINST CHAMBER. - Kalaupapa Water Supply System, Waikolu Valley to Kalaupapa Settlement, Island of Molokai, Kalaupapa, Kalawao County, HI

  8. Alkaline Phosphatase Assay for Freshwater Sediments: Application to Perturbed Sediment Systems

    PubMed Central

    Sayler, Gary S.; Puziss, Marla; Silver, Martin

    1979-01-01

    The p-nitrophenyl phosphate hydrolysis-phosphatase assay was modified for use in freshwater sediment. Laboratory studies indicated that the recovery of purified alkaline phosphatase activity was 100% efficient in sterile freshwater sediments when optimized incubation and sonication conditions were used. Field studies of diverse freshwater sediments demonstrated the potential use of this assay for determining stream perturbation. Significant correlations between phosphatase and total viable cell counts, as well as adenosine triphosphate biomass, suggested that alkaline phosphatase activity has utility as an indicator of microbial population density and biomass in freshwater sediments. PMID:16345464

  9. Sediment accretion in tidal freshwater forests and oligohaline marshes of the Waccamaw and Savannah Rivers, USA

    USGS Publications Warehouse

    Ensign, Scott H.; Hupp, Cliff R.; Noe, Gregory B.; Krauss, Ken W.; Stagg, Camille L.

    2014-01-01

    Sediment accretion was measured at four sites in varying stages of forest-to-marsh succession along a fresh-to-oligohaline gradient on the Waccamaw River and its tributary Turkey Creek (Coastal Plain watersheds, South Carolina) and the Savannah River (Piedmont watershed, South Carolina and Georgia). Sites included tidal freshwater forests, moderately salt-impacted forests at the freshwater–oligohaline transition, highly salt-impacted forests, and oligohaline marshes. Sediment accretion was measured by use of feldspar marker pads for 2.5 year; accessory information on wetland inundation, canopy litterfall, herbaceous production, and soil characteristics were also collected. Sediment accretion ranged from 4.5 mm year−1 at moderately salt-impacted forest on the Savannah River to 19.1 mm year−1 at its relict, highly salt-impacted forest downstream. Oligohaline marsh sediment accretion was 1.5–2.5 times greater than in tidal freshwater forests. Overall, there was no significant difference in accretion rate between rivers with contrasting sediment loads. Accretion was significantly higher in hollows than on hummocks in tidal freshwater forests. Organic sediment accretion was similar to autochthonous litter production at all sites, but inorganic sediment constituted the majority of accretion at both marshes and the Savannah River highly salt-impacted forest. A strong correlation between inorganic sediment accumulation and autochthonous litter production indicated a positive feedback between herbaceous plant production and allochthonous sediment deposition. The similarity in rates of sediment accretion and sea level rise in tidal freshwater forests indicates that these habitats may become permanently inundated if the rate of sea level rise increases.

  10. Escherichia coli and fecal coliforms in freshwater and estuarine sediments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It has been known for some time that substantial populations of fecal coliforms and E. coli are harbored in freshwater bottom sediments, bank soils, and beach sands. However, the relative importance of sediments as bacterial habitats and as a source of water-borne fecal coliforms and E. coli has not...

  11. Sediment, land use, and freshwater mussels: Prospects and problems

    USGS Publications Warehouse

    Brim-Box, J.; Mossa, J.

    1999-01-01

    The decline in freshwater mussel populations in many river basins throughout North America has been attributed, in part, to land-use modifications that cause changes in sediment regimes. However, the specific associations that mussels have with stream sediments are poorly understood, making it difficult to assess the impacts of changes in sedimentation rates on unionid mussels. Both bed and suspended materials, and concomitant changes in channel form associated with changes in sediment supply, may affect mussels in numerous ways at various stages in their life cycle. Considerable debate and uncertainty remains regarding the strength of associations between sediments and mussels, including whether increased sedimentation is a cause of recent mussel declines. It is important to be aware of appropriate procedures for sampling and analyzing fluvial sediments, and the nature of sediment sources, to adequately assess relationships between unionid mussels and fluvial sediments.

  12. Comparisons of Sediment Test Volumes for Freshwater Solid Phase Sediment Toxicity Tests

    EPA Science Inventory

    Laboratory tests with benthic macroinvertebrates are commonly used to assess the potential toxicity of contaminated sediments, and detailed standard test procedures have been developed for various species. For freshwater, two benthic organisms, Hyalella azteca and Chironomus dil...

  13. Formation of dimethyl sulfide and methanethiol in anoxic freshwater sediments.

    PubMed

    Lomans, B P; Smolders, A; Intven, L M; Pol, A; Op, D; Van Der Drift, C

    1997-12-01

    Concentrations of volatile organic sulfur compounds (VOSC) were measured in water and sediment columns of ditches in a minerotrophic peatland in The Netherlands. VOSC, with methanethiol (4 to 40 nM) as the major compound, appeared to be mainly of sediment origin. Both VOSC and hydrogen sulfide concentrations decreased dramatically towards the water surface. High methanethiol and high dimethyl sulfide concentrations in the sediment and just above the sediment surface coincided with high concentrations of hydrogen sulfide (correlation factors, r = 0.91 and r = 0.81, respectively). Production and degradation of VOSC were studied in 32 sediment slurries collected from various freshwater systems in The Netherlands. Maximal endogenous methanethiol production rates of the sediments tested (up to 1.44 (mu)mol per liter of sediment slurry (middot) day(sup-1)) were determined after inhibition of methanogenic and sulfate-reducing populations in order to stop VOSC degradation. These experiments showed that the production and degradation of VOSC in sediments are well balanced. Statistical analysis revealed multiple relationships of methanethiol production rates with the combination of methane production rates (indicative of total anaerobic mineralization) and hydrogen sulfide concentrations (r = 0.90) or with the combination of methane production rates and the sulfate/iron ratios in the sediment (r = 0.82). These findings and the observed stimulation of methanethiol formation in sediment slurry incubations in which the hydrogen sulfide concentrations were artificially increased provided strong evidence that the anaerobic methylation of hydrogen sulfide is the main mechanism for VOSC formation in most freshwater systems. Methoxylated aromatic compounds are likely a major source of methyl groups for this methylation of hydrogen sulfide, since they are important degradation products of the abundant biopolymer lignin. Increased sulfate concentrations in several freshwater

  14. Bioavailability of fluoranthene in freshwater sediment toxicity tests

    SciTech Connect

    Suedel, B.C.; Rodgers, J.H. Jr. ); Clifford, P.A. )

    1993-01-01

    To examine equilibrium-partitioning model predictions of interstitial water concentrations of fluoranthene as part of the equilibrium-partitioning (EqP) approach to sediment quality criteria development, the bioavailability (toxicity) of fluoranthene-amended sediment to Hyalella azteca, Daphnia magna, and Chironomus tentans was determined. Fluoranthene was added to three freshwater sediments with similar organic carbon content. Predicted interstitial water concentrations from the equilibrium-partitioning model were similar to measured interstitial water concentrations for WRFS and TR sediment, but the model underpredicted measured values for LF sediment by a factor of two. EC50s for Daphnia magna, Hyalella azteca, and Chironomus tentans in interstitial water were a factor of two to five greater for LF than for WRFS and TR sediments. Factors other than organic carbon content of sediments probably contributed to the variability in bioavailability of fluoranthene. Based on 10-d sediment toxicity tests with Hylella azteca, Daphnia magna, and Chironomus tentans, organic carbon-normalized sediment concentrations were better predictors of toxicity than interstitial water and bulk sediment fluoranthene concentrations. In 10-d aqueous-phase tests with fluoranthene, Chironomus tentans and Hyalella azteca were twice as sensitive as Daphnia magna.

  15. Occurrence of N-nitrosamines in U.S. freshwater sediments near wastewater treatment plants.

    PubMed

    Gushgari, Adam J; Halden, Rolf U; Venkatesan, Arjun K

    2017-02-05

    In the present study, 40 freshwater sediments collected near 14 wastewater treatment plants (WWTPs) across the United States were analyzed for eight N-nitrosamines by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Three N-nitrosamines were detected for the first time in freshwater sediments in units of ng/g dry weight at the specified detection frequency: N-nitrosodibutylamine (NDBA; 0.2-3.3; 58%), N-nitrosodiphenylamine (NDPhA; 0.2-4.7; 50%), and N-nitrosopyrrolidine (NPYR; 3.4-19.6; 18%). At least one N-nitrosamine was detected in 70% (28/40) of sediments analyzed. Non-detect values in units of ng/g dw were obtained for N-nitrosodimethylamine (NDMA; <10.2), N-nitrosomethylethylamine (NMEA; <1.7), N-nitrosodiethylamine (NDEA; <3.9), N-nitroso-di-n-propylamine (NDPA; <1.7), and N-nitrosopiperidine (NPIP; <3.6). Principal component analysis specifically points to two of multiple potential pathways explaining N-nitrosamine occurrences in sediment: NDBA and NDPhA were positively correlated with bulk water ammonia and pH levels, and NPYR with sediment content of organic carbon and iron. Interestingly, N-nitrosamine occurrences up- and downstream of WWTPs were statistically indistinguishable (p>0.05). This is the first report on the occurrence of the carcinogenic N-nitrosamines NDBA, NDPhA, and NPYR in U.S. freshwater sediments. Discovery of this phenomenon warrants further research on the compounds' origin, environmental persistence, aquatic toxicity, and risks posed.

  16. Remobilisation of uranium from contaminated freshwater sediments by bioturbation

    NASA Astrophysics Data System (ADS)

    Lagauzère, S.; Motelica-Heino, M.; Viollier, E.; Stora, G.; Bonzom, J. M.

    2014-06-01

    Benthic macro-invertebrate bioturbation can influence the remobilisation of uranium (U) initially associated with freshwater sediments, resulting in a high release of this pollutant through the overlying water column. Given the potential negative effects on aquatic biocenosis and the global ecological risk, it appears crucial to improve our current knowledge concerning the biogeochemical behaviour of U in sediments. The present study aimed to assess the biogeochemical modifications induced by Tubifex tubifex (Annelida, Clitellata, Tubificidae) bioturbation within the sediment in order to explain such a release of U. To reach this goal, U distribution between solid and solute phases of a reconstructed benthic system (i.e. in mesocosms) inhabited or not by T. tubifex worms was assessed in a 12-day laboratory experiment. Thanks notably to fine-resolution (mm-scale) measurements (e.g. "diffusive equilibrium in thin-films" DET gel probes for porewater, bioaccumulation in worms) of U and main chemical species (iron, sulfate, nitrate and nitrite), this work (i) confirmed that the removal of bottom sediment particles to the surface through the digestive tract of worms greatly favoured oxidative loss of U in the water column, and (ii) demonstrated that both U contamination and bioturbation of T. tubifex substantially influenced major microbial-driven biogeochemical reactions in sediments (e.g. stimulation of denitrification, sulfate reduction and iron dissolutive reduction). This study provides the first demonstration of biogeochemical modifications induced by bioturbation in freshwater U-contaminated sediments.

  17. Remobilisation of uranium from contaminated freshwater sediments by bioturbation

    NASA Astrophysics Data System (ADS)

    Lagauzère, S.; Motelica-Heino, M.; Viollier, E.; Stora, G.; Bonzom, J. M.

    2013-10-01

    Previous studies have demonstrated that benthic macro-invertebrate bioturbation can influence the remobilization of uranium initially associated with freshwater sediments resulting in a high release of this pollutant through the overlying water column. Giving the potential negative effects on aquatic biocenosis and the global ecological risk, it appeared crucial to improve our current knowledge concerning the uranium biogeochemical behaviour in sediments. The present study aimed to assess the biogeochemical modifications induced by Tubifex tubifex (Annelida, Clitellata, Tubificidae) bioturbation within the sediment permitting to explain such a release of uranium. To reach this goal, uranium distribution between solid and solute phases of a reconstructed benthic system (i.e. in mesocosms) inhabited or not by T. tubifex worms was assessed in a 12 day laboratory experiment. Thanks notably to fine resolution (mm-scale) measurements (e.g. DET gels probes for porewater, bioaccumulation in worms) of uranium and main chemical species (iron, sulfate, nitrate, nitrite), this work permitted (i) to confirm that the removal of bottom sediment particles to the surface through the digestive tract of worms greatly favours the oxidative loss of uranium in the water column, and (ii) to demonstrate that both uranium contamination and bioturbation of T. tubifex substantially influence major microbial-driven biogeochemical reactions in sediments (e.g. stimulation of denitrification, sulfate-reduction and iron dissolutive reduction). This study provides the first demonstration of biogeochemical modifications induced by bioturbation in freshwater uranium-contaminated sediments.

  18. Freshwater Sediment Characterization Factors of Copper Oxide Nanoparticles

    NASA Astrophysics Data System (ADS)

    Pu, Yubing; Laratte, Bertrand; Ionescu, Rodica Elena

    2017-01-01

    Wide use of engineered nanoparticles (ENPs) is likely to result in the eventually accumulation of ENPs in sediment. The benthic organisms living in sediments may suffer relatively high toxic effects of ENPs. This study has selected copper oxide nanoparticles (nano-CuO) as a research object. To consider the impacts of spatial heterogeneity on ENPs toxicity, the characterization factor (CF) derived from life cycle assessment (LCA) methodology is used as an indicator in this study. A nano-specific fate model has been used to calculate the freshwater sediment fate factor (FF) of nano-CuO. A literature survey of the nano-CuO toxicology values has been performed to calculate the effect factor (EF). Seventeen freshwater sediment CFs of nano-CuO are proposed as recommended values for subcontinental regions. The region most likely to be affected by nano-CuO is northern Australia (CF of 21.01·103 CTUe, comparative toxic units) and the least likely is northern Europe and northern Canada (CF of 8.55·103 CTUe). These sediment CFs for nano-CuO could be used in the future when evaluating the ecosystem impacts of products containing nano-CuO by LCA method.

  19. Biotransformation of tributyltin to tin in freshwater river-bed sediments contaminated by an organotin release

    USGS Publications Warehouse

    Landmeyer, J.E.; Tanner, T.L.; Watt, B.E.

    2004-01-01

    The largest documented release of organotin compounds to a freshwater river system in the United States occurred in early 2000 in central South Carolina. The release consisted of an unknown volume of various organotin compounds such tetrabutyltin (TTBT), tributyltin (TBT), tetraoctyltin (TTOT), and trioctyl tin (TOT) and resulted in a massive fish kill and the permanent closures of a municipal wastewater treatment plant and a local city's only drinking-water intake. Initial sampling events in 2000 and 2001 indicated that concentrations of the ecologically toxic TTBT and TBT were each greater than 10 000 ??g/kg in surface-water bed sediments in depositional areas, such as lakes and beaver ponds downstream of the release. Bed-sediment samples collected between 2001 and 2003, however, revealed a substantial decrease in bed-sediment organotin concentrations and an increase in concentrations of degradation intermediate compounds. For example, in bed sediments of a representative beaver pond located about 1.6 km downstream of the release, total organotin concentrations [the sum of TTBT, TBT, and the TBT degradation intermediates dibutyltin (DBT) and monobutyltin (MBT)] decreased from 38 670 to 298 ??g/kg. In Crystal Lake, a large lake about 0.4 km downstream from the beaver pond, total organotin concentrations decreased from 28 300 to less than 5 ??g/kg during the same time period. Moreover, bed-sediment inorganic tin concentrations increased from pre-release levels of less than 800 to 32 700 ??g/kg during this time. These field data suggest that the released organotin compounds, such as TBT, are being transformed into inorganic tin by bed-sediment microbial processes. Microcosms were created in the laboratory that contained bed sediment from the two sites and were amended with tributyltin (as tributyltin chloride) under an ambient air headspace and sacrificially analyzed periodically for TBT, the biodegradation intermediates DBT and MBT, and tin. TBT concentrations

  20. Development of formulated reference sediments for freshwater and estuarine sediment testing

    SciTech Connect

    Suedel, B.C.; Rodgers, J.H. Jr. . Dept. of Biology)

    1994-07-01

    Sediments collected at various field locations may have chemical and physical constituents that influence test results and may contain organisms that cannot be readily removed. Thus, reference sediments are needed that can be formulated to match diverse freshwater and estuarine sediments encountered in comprehensive testing programs. This research evaluated formulated reference sediments in terms of (a) their ability to match field-collected sediments both chemically and physically; (b) their suitability as habitant (survival and reproduction) for typical invertebrate toxicity testing species (Hyalella azteca Saussure, Chironomus tentans Fabricius, and Daphnia magna Straus) during chronic exposures; and (c) their suitability as a substrate for Hyalella azteca, Chironomus tentans, Daphnia magna, Ceriodaphnia dubia Richard, and Pimephales promelas Rafinesque in 14-d whole-sediment exposures. Formulated reference sediments were prepared to match naturally occurring sediments with respect to particle-size distribution, organic matter, organic carbon, pH, solids, CEC, but not redox potential. After preparation, a conditioning period of at least 7 d was required for pH stabilization of formulated reference sediments. In culture experiments, formulated reference sediments was suitable for Hyalella azteca, Chironomus tentans, and Daphnia magna survival and reproduction for 56,40, and 28 d, respectively. Hyalella azteca, Chironomus tentans, Daphnia magna, Ceriodaphnia dubia and Pimephales promelas survival was [>=] 88% in 14-d exposures to formulated reference sediment. Formulated reference sediments may reduce some unexplained physical, chemical, or biological toxicity'' of field-collected sediments (e.g., organic matter) that may influence toxicity testing results.

  1. Sediment conditions in the San Antonio River Basin downstream from San Antonio, Texas, 2000-13

    USGS Publications Warehouse

    Ockerman, Darwin J.; Banta, J. Ryan; Crow, Cassi L.; Opsahl, Stephen P.

    2015-01-01

    Sediment plays an important role in the ecological health of rivers and estuaries and consequently is an important issue for water-resource managers. To better understand sediment characteristics in the San Antonio River Basin, the U.S. Geological Survey, in cooperation with the San Antonio River Authority, completed a two-part study in the San Antonio River Basin downstream from San Antonio, Texas, to (1) collect and analyze sediment data to characterize sediment conditions and (2) develop and calibrate a watershed model to simulate hydrologic conditions and suspended-sediment loads during 2000–12.

  2. Influence of sediment presence on freshwater mussel thermal tolerance

    USGS Publications Warehouse

    Archambault, Jennifer M.; Cope, W. Gregory; Kwak, Thomas J.

    2014-01-01

    Median lethal temperature (LT50) data from water-only exposures with the early life stages of freshwater mussels suggest that some species may be living near their upper thermal tolerances. However, evaluation of thermal sensitivity has never been conducted in sediment. Mussels live most of their lives burrowed in sediment, so understanding the effect of sediment on thermal sensitivity is a necessary step in evaluating the effectiveness of the water-only standard method, on which the regulatory framework for potential thermal criteria currently is based, as a test of thermal sensitivity. We developed a method for testing thermal sensitivity of juvenile mussels in sediment and used the method to assess thermal tolerance of 4 species across a range of temperatures common during summer. Stream beds may provide a thermal refuge in the wild, but we hypothesized that the presence of sediment alone does not alter thermal sensitivity. We also evaluated the effects of 2 temperature acclimation levels (22 and 27°C) and 2 water levels (watered and dewatered treatments). We then compared results from the sediment tests to those conducted using the water-only standard methods. We also conducted water-only LT tests with mussel larvae (glochidia) for comparison with the juvenile life stage. We found few consistent differences in thermal tolerance between sediment and water-only treatments, between acclimation temperatures, between waterlevel treatments, among species, or between juvenile and glochidial life stages (LT50 range = 33.3-37.2°C; mean = 35.6°C), supporting our hypothesis that the presence of sediment alone does not alter thermal sensitivity. The method we developed has potential for evaluating the role of other stressors (e.g., contaminants) in a more natural and complex environment.

  3. Microbiological reduction of Sb(V) in anoxic freshwater sediments.

    PubMed

    Kulp, Thomas R; Miller, Laurence G; Braiotta, Franco; Webb, Samuel M; Kocar, Benjamin D; Blum, Jodi S; Oremland, Ronald S

    2014-01-01

    Microbiological reduction of millimolar concentrations of Sb(V) to Sb(III) was observed in anoxic sediments from two freshwater settings: (1) a Sb- and As-contaminated mine site (Stibnite Mine) in central Idaho and 2) an uncontaminated suburban lake (Searsville Lake) in the San Francisco Bay Area. Rates of Sb(V) reduction in anoxic sediment microcosms and enrichment cultures were enhanced by amendment with lactate or acetate as electron donors but not by H2, and no reduction occurred in sterilized controls. Addition of 2-(14)C-acetate to Stibnite Mine microcosms resulted in the production of (14)CO2 coupled to Sb(V) reduction, suggesting that this process proceeds by a dissimilatory respiratory pathway in those sediments. Antimony(V) reduction in Searsville Lake sediments was not coupled to acetate mineralization and may be associated with Sb-resistance. The microcosms and enrichment cultures also reduced sulfate, and the precipitation of insoluble Sb(III)-sulfide complexes was a major sink for reduced Sb. The reduction of Sb(V) by Stibnite Mine sediments was inhibited by As(V), suggesting that As(V) is a preferred electron acceptor for the indigenous community. These findings indicate a novel pathway for anaerobic microbiological respiration and suggest that communities capable of reducing high concentrations of Sb(V) commonly occur naturally in the environment.

  4. Microbiological reduction of Sb(V) in anoxic freshwater sediments

    USGS Publications Warehouse

    Oremland, Ronald S.; Kulp, Thomas R.; Miller, Laurence G.; Braiotta, Franco; Webb, Samuel M.; Kocar, Benjamin D; Blum, Jodi S.

    2013-01-01

    Microbiological reduction of millimolar concentrations of Sb(V) to Sb(III) was observed in anoxic sediments from two freshwater settings: (1) a Sb- and As-contaminated mine site (Stibnite Mine) in central Idaho and 2) an uncontaminated suburban lake (Searsville Lake) in the San Francisco Bay Area. Rates of Sb(V) reduction in anoxic sediment microcosms and enrichment cultures were enhanced by amendment with lactate or acetate as electron donors but not by H2, and no reduction occurred in sterilized controls. Addition of 2-14C-acetate to Stibnite Mine microcosms resulted in the production of 14CO2 coupled to Sb(V) reduction, suggesting that this process proceeds by a dissimilatory respiratory pathway in those sediments. Antimony(V) reduction in Searsville Lake sediments was not coupled to acetate mineralization and may be associated with Sb-resistance. The microcosms and enrichment cultures also reduced sulfate, and the precipitation of insoluble Sb(III)-sulfide complexes was a major sink for reduced Sb. The reduction of Sb(V) by Stibnite Mine sediments was inhibited by As(V), suggesting that As(V) is a preferred electron acceptor for the indigenous community. These findings indicate a novel pathway for anaerobic microbiological respiration and suggest that communities capable of reducing high concentrations of Sb(V) commonly occur naturally in the environment.

  5. HEAVY METAL ACCUMULATION IN SEDIMENT AND FRESHWATER FISH IN U.S. ARCTIC LAKES

    EPA Science Inventory

    Metal concentrations in sediment and two species of freshwater fish (lake trout [Salvelinus namaycush], and grayling [Thymallus arcticus]} were examined in four Arctic lakes in Alaska. Concentrations of several metals were naturally high in the sediment relative to uncontaminated...

  6. Occurrence of triclosan, triclocarban, and Its Lesser Chlorinated Congeners in Minnesota Freshwater Sediments Collected Near Wastewater Treatment Plants

    PubMed Central

    Venkatesan, Arjun K.; Pycke, Benny F.G.; Barber, Larry B.; Lee, Kathy E.; Halden, Rolf U.

    2012-01-01

    The antimicrobial agents triclosan (TCS), triclocarban (TCC) and their associated transformation products are of increasing concern as environmental pollutants due to their potential adverse effects on humans and wildlife, including bioaccumulation and endocrine-disrupting activity. Analysis by tandem mass spectrometry of 24 paired freshwater bed sediment samples (top 10 cm) collected by the U.S. Geological Survey near 12 wastewater treatment plants (WWTPs) in Minnesota revealed TCS and TCC concentrations of up to 85 and 822 ng/g dry weight (dw), respectively. Concentrations of TCS and TCC in bed sediments collected downstream of WWTPs were significantly greater than upstream concentrations in 58% and 42% of the sites, respectively. Dichloro- and non-chlorinated carbanilides (DCC and NCC) were detected in sediments collected at all sites at concentrations of up to 160 and 1.1 ng/g dw, respectively. Overall, antimicrobial concentrations were significantly higher in lakes than in rivers and creeks, with relative abundances decreasing from TCC > TCS > DCC > NCC. This is the first statewide report on the occurrence of TCS, TCC and TCC transformation products in freshwater sediments. Moreover, the results suggest biological or chemical TCC dechlorination products to be ubiquitous in freshwater environments of Minnesota, but whether this transformation occurs in the WWTP or bed sediment remains to be determined. PMID:22742731

  7. Occurrence of triclosan, triclocarban, and its lesser chlorinated congeners in Minnesota freshwater sediments collected near wastewater treatment plants

    USGS Publications Warehouse

    Venkatesan, Arjun K.; Pycke, Benny F.G.; Barber, Larry B.; Lee, Kathy E.; Halden, Rolf U.

    2012-01-01

    The antimicrobial agents triclosan (TCS), triclocarban (TCC) and their associated transformation products are of increasing concern as environmental pollutants due to their potential adverse effects on humans and wildlife, including bioaccumulation and endocrine-disrupting activity. Analysis by tandem mass spectrometry of 24 paired freshwater bed sediment samples (top 10 cm) collected by the U.S. Geological Survey near 12 wastewater treatment plants (WWTPs) in Minnesota revealed TCS and TCC concentrations of up to 85 and 822 ng/g dry weight (dw), respectively. Concentrations of TCS and TCC in bed sediments collected downstream of WWTPs were significantly greater than upstream concentrations in 58% and 42% of the sites, respectively. Dichloro- and non-chlorinated carbanilides (DCC and NCC) were detected in sediments collected at all sites at concentrations of up to 160 and 1.1 ng/g dw, respectively. Overall, antimicrobial concentrations were significantly higher in lakes than in rivers and creeks, with relative abundances decreasing from TCC > TCS > DCC > NCC. This is the first statewide report on the occurrence of TCS, TCC and TCC transformation products in freshwater sediments. Moreover, the results suggest biological or chemical TCC dechlorination products to be ubiquitous in freshwater environments of Minnesota, but whether this transformation occurs in the WWTP or bed sediment remains to be determined.

  8. Controlled sediment flushing at the Cancano Reservoir (Italian Alps): Management of the operation and downstream environmental impact.

    PubMed

    Espa, Paolo; Brignoli, Maria Laura; Crosa, Giuseppe; Gentili, Gaetano; Quadroni, Silvia

    2016-11-01

    Sediment flushing may be effective to preserve reservoir storage, but concerns arise about sustainability for downstream freshwater ecosystems. We report on the controlled flushing of approximately 110,000 tons of silt from a 120 Mm(3) reservoir on the Adda River, the main tributary of Lake Como, Italy. Technical constraints prevented flushing during high flows, and the operation had to be spread out over three consecutive years (2010-2012) and, for each year, over a rather long time span (40-50 days). To mitigate the downstream impact, the suspended sediment concentration (SSC) of the evacuated water was controlled by regulating the dislodging works inside the reservoir, increasing the streamflow in the regulated tributaries, and operating an instream settling basin. SSC and water flow as well as benthic macroinvertebrates and trout were monitored as far as 28 km below the reservoir. At the most upstream gauging station, SSC peaked up to 100 g/l and ranged from 3.5 to 8 g/l on average per each operation. Stream quality metrics based on macroinvertebrate data evidenced the impairment due to flushing; however, the benthic community showed high resilience, recovering to pre-flushing conditions in 6-9 months. Trout data were biased by stocking and sport fishing and were more difficult to be interpreted. The trout population wouldn't seem remarkably altered, even if a non-negligible impact could be deduced through pre/post-event sample comparison.

  9. Sediment Mobilization From Reservoirs Can Cause Short Term Oxygen Depletion In Downstream Receiving Waters

    NASA Astrophysics Data System (ADS)

    Anderson, C.; Schenk, L.; Bragg, H.; Singer, M.; Hume, N.

    2013-12-01

    Reservoir management can cause incidences of short-term sediment mobilization, e.g. during dam removal or drawdown for maintenance or habitat purposes. Much of the associated planning focuses on predicting, quantifying, and mitigating the physical impacts of sediment mobilization, transport, and deposition. Sediment pulses can cause multiple regulatory and management concerns, such as turbidity or suspended sediment concentrations that may exceed State standards, geomorphic change and effects on property or infrastructure, or wildlife impacts such as stress to fish via gill abrasion or burial of critical habitat. Water-quality issues associated with sediment mobilization, including nutrient and contaminant transport, are often given less attention, presumably because their effects are less immediate or because of resource constraints. Recent experience with large pulses of sediment from several western reservoirs involving dam removals and temporary drawdowns indicates that oxygen demand, leading to depletion of downstream dissolved oxygen (DO), can also be a significant short-term concern. During the October 2011 Condit Dam removal on the White Salmon River in Washington, DO in receiving waters about 4.5 km downstream of the dam dropped to less than 1 mg/L within 2 hours of the demolition; in response, salmonids were observed to be in distress, apparently gulping for air at the water surface. DO remained low for at least 24 hours in this reach, and dead fish were observed. In December 2012, during a drawdown designed to aid juvenile-salmonid migration through Fall Creek Reservoir in Oregon, DO dropped precipitously about 1.5 km downstream as turbidity peaked, and a muted DO decrease was also observed approximately 14 miles further downstream despite a large dilution from unaffected sources. Laboratory experiments and modeling using sediments from reservoirs proposed for removal on the Klamath River, California, demonstrated the likelihood for downstream DO

  10. Dissolved oxygen saturation controls PAH biodegradation in freshwater estuary sediments.

    PubMed

    Boyd, T J; Montgomery, M T; Steele, J K; Pohlman, J W; Reatherford, S R; Spargo, B J; Smith, D C

    2005-02-01

    Polycyclic aromatic hydrocarbons (PAHs) are common contaminants in terrestrial and aquatic environments and can represent a significant constituent of the carbon pool in coastal sediments. We report here the results of an 18-month seasonal study of PAH biodegradation and heterotrophic bacterial production and their controlling biogeochemical factors from 186 sediment samples taken in a tidally influenced freshwater estuary. For each sampling event, measurements were averaged from 25-45 stations covering approximately 250 km(2). There was a clear relationship between bacterial production and ambient temperature, but none between production and bottom water dissolved oxygen (DO) % saturation or PAH concentrations. In contrast with other studies, we found no effect of temperature on the biodegradation of naphthalene, phenanthrene, or fluoranthene. PAH mineralization correlated with bottom water DO saturation above 70% (r(2) > 0.99). These results suggest that the proportional utilization of PAH carbon to natural organic carbon is as much as three orders of magnitude higher during cooler months, when water temperatures are lower and DO % saturation is higher. Infusion of cooler, well-oxygenated water to the water column overlying contaminated sediments during the summer months may stimulate PAH metabolism preferentially over non-PAH organic matter.

  11. Enumeration, Isolation, and Characterization of Beggiatoa from Freshwater Sediments

    PubMed Central

    Strohl, William R.; Larkin, John M.

    1978-01-01

    An accurate most-probable-number enumeration method was developed for counting the number of Beggiatoa trichomes from various freshwater sediments. The medium consisted of extracted hay, diluted soil extract, 0.05% acetate, and 15 to 35 U of catalase per ml. The same enrichment medium, but without the acetate, was the best enrichment medium from which to obtain pure cultures because it supported good growth of the beggiatoas without allowing them to be overgrown by other bacteria. A total of 32 strains of Beggiatoa were isolated from seven different freshwater habitats and partially characterized. The strains were separated into five groups based on several preliminary characteristics. Four of the groups contained cells with trichomes of approximately the same diameter (1.5 to 2.7 μm) and may be Beggiatoa leptomitiformis or an unnamed species. The fifth group appeared to be Beggiatoa alba. With the exception of three strains, all of the strains deposited sulfur in the presence of hydrogen sulfide, and all strains grew heterotrophically and deposited poly-β-hydroxybutyrate and volutin when grown on acetate supplemented with low concentrations of other organic nutrients. Thin sections of sulfur-bearing trichomes indicated that the sulfur granules were external to the cytoplasmic membrane and that they were surrounded by an additional membrane. Images PMID:16345330

  12. Preliminary Experimental Results on the Technique of Artificial River Replenishment to Mitigate Sediment Loss Downstream Dams

    NASA Astrophysics Data System (ADS)

    Franca, M. J.; Battisacco, E.; Schleiss, A. J.

    2014-12-01

    The transport of sediments by water throughout the river basins, from the steep slopes of the upstream regions to the sea level, is recognizable important to keep the natural conditions of rivers with a role on their ecology processes. Over the last decades, a reduction on the supply of sand and gravel has been observed downstream dams existing in several alpine rivers. Many studies highlight that the presence of a dam strongly modifies the river behavior in the downstream reach, in terms of morphology and hydrodynamics, with consequences on local ecology. Sediment deficit, bed armoring, river incision and bank instability are the main effects which affect negatively the aquatic habitats and the water quality. One of the proposed techniques to solve the problem of sediment deficit downstream dams, already adopted in few Japanese and German rivers although on an unsatisfactory fashion, is the artificial replenishment of these. Generally, it was verified that the erosion of the replenishments was not satisfactory and the transport rate was not enough to move the sediments to sufficient downstream distances. In order to improve and to provide an engineering answer to make this technique more applicable, a series of laboratory tests are ran as preparatory study to understand the hydrodynamics of the river flow when the replenishment technique is applied. Erodible volumes, with different lengths and submergence conditions, reproducing sediment replenishments volumes, are positioned along a channel bank. Different geometrical combinations of erodible sediment volumes are tested as well on the experimental flume. The first results of the experimental research, concerning erosion time evolution, the influence of discharge and the distance travelled by the eroded sediments, will be presented and discussed.

  13. First-Year Downstream Sediment Budget Following the Marmot Dam Removal from the Sandy River, Oregon

    NASA Astrophysics Data System (ADS)

    Podolak, C. J.; Wilcock, P. R.; Pittman, A.

    2008-12-01

    The October 2007 removal of the Marmot Dam, from the Sandy River, OR, provides an opportunity to assess the impact of increased sediment flux on a river channel. The Sandy River drains the west flank of Mt Hood and typically carries a large load of sand and gravel. The 14-meter-tall dam impounded over 750,000 m3 of sediment, only a small amount of which was removed during the decommissioning. Using a one- dimensional modeling approach, it was assessed that the river could transport the accumulated sediment without large adverse impacts downstream of the dam (Cui et al, 2008 - abstract submitted). In order to observe the actual changes to the river due to the dam removal and to test the modeled predictions, a significant monitoring effort has be in place on the Sandy River including bedload and suspended load measurements, discharge measurements, high-fidelity topographic surveys, repeat photography, multiple airborne LIDAR flights, long profile surveys, as well as mapping and characterizing the grain sizes throughout several reaches downstream of the dam. A key step in the quest to describe and predict the spatial distribution of the sediment throughout the downstream reach is to first account for all the sediment (both stored in the reservoir and supplied from upstream). Here, we examine the transport and deposition downstream of the dam through a 2-fraction sediment budget approach using the former dam as the upstream limit of the reach and choosing a the mouth of a bedrock gorge 7 km below the dam site as the downstream limit. Suspended sediment and bedload measurements taken by the USGS just below the dam site (Major et al, 2008 - abstract submitted) are combined with suspended sediment and bedload measurements collected just below the mouth of the gorge and the annual hydrograph to define the sediment fluxes into and out of the reach. Repeat surveys in the reach below the dam (Wallick et al, 2008 - abstract submitted) provide the measure of change in storage

  14. Effect of zeolite on toxicity of ammonia in freshwater sediments: Implications for toxicity identification evaluation procedures

    USGS Publications Warehouse

    Besser, J.M.; Ingersoll, C.G.; Leonard, E.N.; Mount, D.R.

    1998-01-01

    Techniques for reducing ammonia toxicity in freshwater sediments were investigated as part of a project to develop toxicity identification and evaluation (TIE) procedures for whole sediments. Although ammonia is a natural constituent of freshwater sediments, pollution can lead to ammonia concentrations that are toxic to benthic invertebrates, and ammonia can also contribute to the toxicity of sediments that contain more persistent contaminants. We investigated the use of amendments of a natural zeolite mineral, clinoptilolite, to reduce concentrations of ammonia in sediment pore water. Zeolites have been widely used for removal of ammonia in water treatment and in aqueous TIE procedures. The addition of granulated zeolite to ammonia-spiked sediments reduced pore-water ammonia concentrations and reduced ammonia toxicity to invertebrates. Amendments of 20% zeolite (v/v) reduced ammonia concentrations in pore water by ???70% in spiked sediments with ammonia concentrations typical of contaminated freshwater sediments. Zeolite amendments reduced toxicity of ammonia-spiked sediments to three taxa of benthic invertebrates (Hyalella azteca, Lumbriculus variegatus, and Chironomus tentans), despite their widely differing sensitivity to ammonia toxicity. In contrast, zeolite amendments did not reduce acute toxicity of sediments containing high concentrations of cadmium or copper or reduce concentrations of these metals in pore waters. These studies suggest that zeolite amendments, used in conjunction with toxicity tests with sensitive taxa such as H. azteca, may be an effective technique for selective reduction of ammonia toxicity in freshwater sediments.

  15. Effect of zeolite on toxicity of ammonia in freshwater sediments: Implications for toxicity identification evaluation procedures

    SciTech Connect

    Besser, J.M.; Ingersoll, C.G.; Leonard, E.N.; Mount, D.R.

    1998-11-01

    Techniques for reducing ammonia toxicity in freshwater sediments were investigated as part of a project to develop toxicity identification and evaluation (TIE) procedures for whole sediments. Although ammonia is a natural constituent of freshwater sediments, pollution can lead to ammonia concentrations that are toxic to benthic invertebrates, and ammonia can also contribute to the toxicity of sediments that contain more persistent contaminants. The authors investigated the use of amendments of a natural zeolite mineral, clinoptilolite, to reduce concentrations of ammonia in sediment pore water. Zeolites have been widely used for removal of ammonia in water treatment and in aqueous TIE procedures. The addition of granulated zeolite to ammonia-spiked sediments reduced pore-water ammonia concentrations and reduced ammonia toxicity to invertebrates. Amendments of 20% zeolite (v/v) reduced ammonia concentrations in pore water by {ge}70% in spiked sediments with ammonia concentrations typical of contaminated freshwater sediments. Zeolite amendments reduced toxicity of ammonia-spiked sediments to three taxa of benthic invertebrates (Hyalella azteca, Lumbriculus variegatus, and Chironomus tentans), despite their widely differing sensitivity to ammonia toxicity. In contrast, zeolite amendments did not reduce acute toxicity of sediments containing high concentrations of cadmium or copper or reduce concentrations of these metals in pore waters. These studies suggest that zeolite amendments, used in conjunction with toxicity tests with sensitive taxa such as H. azteca, may be an effective technique for selective reduction of ammonia toxicity in freshwater sediments.

  16. Effects of Flaming Gorge Dam hydropower operations on downstream flow, stage, and sediment transport

    SciTech Connect

    Yin, S.C.L.; Tomasko, D.; Cho, H.E.; Williams, G.; McCoy, J.; Palmer, C.

    1996-11-01

    Hydropower operations at Flaming Gorge Dam, located on the Green River in Utah, can produce rapid downstream changes in flow and stage. These changes can in turn affect sediment transport and ecologic resources below the dam. To evaluate these effects, four hydropower operational scenarios with varying degrees of hydropower-release fluctuations were examined. This study demonstrates that the combined use of river-flow routing, water-surface profile, and sediment-transport models can provide useful information for evaluating the potential impacts of hydropower-operations on ecological and other resources downstream of the dam. Study results show that flow fluctuations may or may not persist for a long distance, depending on the initial magnitude of fluctuation and the duration of hydropower peaking. Stage fluctuations depend not only on flow fluctuations but also on river channel characteristics, such as channel width and longitudinal slope.

  17. Sequential degradation of chlorophenols in anaerobic freshwater sediments

    SciTech Connect

    Zhang, X.

    1993-01-01

    Anaerobic degradation of 2,4-dichlorophenol and 3-chloro-4-hydroxybenzoate in the freshwater sediment samples was investigated. Studies of the enrichment cultures and a pure culture, adaptation times, correlation of substrate degradation and product accumulation, maximal observed transformation rates, temperature and pH ranges for the transformation provided the bases for the proposed sequential pathway for degradation of 2,4-dichlorophenol. At least six different bacterial species were required to catalyze following reactions: (1) the dechlorination of 2,4-dichlorophenol; (2) the dechlorination of 4-chlorophenol; (3) the para-carboxylation of phenol; (4) the reductive dehydroxylation of para-hydroxybenzoate; (5) the degradation of benzoate to acetate, H[sub 2] and CO[sub 2]; and (6) the conversion of H[sub 2]/CO[sub 2] and acetate to methane. The rate limiting reaction in the pathway was the dechlorination of 4-chlorophenol. A new species, Clostridium [open quote]hydroxybenzoicum[close quote], isolated from the enrichment, catalyzed the carboxylation of phenol at the para-position to 4-hydroxybenzoate by a reversible decarboxylation/carboxylation enzyme. 3,4-Dihydroxybenzoate was decarboxylated by a second enzyme in this organism. The activities were biotin and ATP independent. The bacterium, in a pure culture, did not benefit from the decarboxylation reaction but apparently it benefited in the phenol-degrading enrichment culture. Of 46 strains (42 species) tested, only three exhibited hydroxybenzoate decarboxylation activities:Clostridium thermoaceticum, Clostridium thermoautotrophicum,Clostridium scatologenes. The history of the sediment determined the first step in the anaerobic degradation.

  18. Elevated sulfate reduction in metal-contaminated freshwater lake sediments

    SciTech Connect

    Gough, H.L.; Dahl, A.L.; Tribou, E.; Noble, P.A.; Gaillard, J.-F.; Stahl, D.A.

    2009-01-06

    Although sulfate-reducing prokaryotes have long been studied as agents of metals bioremediation, impacts of long-term metals exposure on biologically mediated sulfur cycling in natural systems remains poorly understood. The effects of long-term exposure to metal stress on the freshwater sulfur cycle were studied, with a focus on biologic sulfate reduction using a combination of microbial and chemical methods. To examine the effects after decades of adaptation time, a field-based experiment was conducted using multiple study sites in a natural system historically impacted by a nearby zinc smelter (Lake DePue, Illinois). Rates were highest at the most metals-contaminated sites (-35 {mu}mol/cm{sup 3}/day) and decreased with decreased pore water zinc and arsenic contamination levels, while other environmental characteristics (i.e., pH, nutrient concentrations and physical properties) showed little between-site variation. Correlations were established using an artificial neural network to evaluate potentially non-linear relationships between sulfate reduction rates (SRR) and measured environmental variables. SRR in Lake DePue were up to 50 times higher than rates previously reported for lake sediments and the chemical speciation of Zn was dominated by the presence of ZnS as shown by X-ray Absorption Spectroscopy (XAS). These results suggest that long-term metal stress of natural systems might alter the biogeochemical cycling of sulfur by contributing to higher rates of sulfate reduction.

  19. Suspended sediment transport in the freshwater reach of the Hudson river estuary in eastern New York

    USGS Publications Warehouse

    Wall, G.R.; Nystrom, E.A.; Litten, S.

    2008-01-01

    Deposition of Hudson River sediment into New York Harbor interferes with navigation lanes and requires continuous dredging. Sediment dynamics at the Hudson estuary turbidity maximum (ETM) have received considerable study, but delivery of sediment to the ETM through the freshwater reach of the estuary has received relatively little attention and few direct measurements. An acoustic Doppler current profiler was positioned at the approximate limit of continuous freshwater to develop a 4-year time series of water velocity, discharge, suspended sediment concentration, and suspended sediment discharge. This data set was compared with suspended sediment discharge data collected during the same period at two sites just above the Hudson head-of-tide (the Federal Dam at Troy) that together represent the single largest source of sediment entering the estuary. The mean annual suspended sediment-discharge from the freshwater reach of the estuary was 737,000 metric tons. Unexpectedly, the total suspended sediment discharge at the study site in November and December slightly exceeded that observed during March and April, the months during which rain and snowmelt typically result in the largest sediment discharge to the estuary. Suspended sediment discharge at the study site exceeded that from the Federal Dam, even though the intervening reach appears to store significant amounts of sediment, suggesting that 30-40% of sediment discharge observed at the study site is derived from tributaries to the estuary between the Federal Dam and study site. A simple model of sediment entering and passing through the freshwater reach on a timescale of weeks appears reasonable during normal hydrologic conditions in adjoining watersheds; however, this simple model may dramatically overestimate sediment delivery during extreme tributary high flows, especially those at the end of, or after, the "flushing season" (October through April). Previous estimates of annual or seasonal sediment delivery

  20. Heavy metals in sediments of Ganga River: up- and downstream urban influences

    NASA Astrophysics Data System (ADS)

    Pandey, Jitendra; Singh, Rachna

    2015-09-01

    Bottom sediment in a river often acts as a sink and indicator of changes in water column and magnitude of anthropogenic influences through air and watersheds. Heavy metal concentration in sediments of Ganga River was studied along a 37-km stretch to assess whether there is a significant difference between sites situated upstream and downstream of Varanasi urban core. Metal concentration increased consistently along the study gradient, indicating the influence of urban sources. Concentration in the river sediment was found highest for Fe followed by Mn, Zn, Cr, Cu, Ni, Pb, and Cd. Mann-Kendall trend analysis showed marked seasonality in the concentration with values being highest in summer and lowest in rainy season. Enrichment factor revealed severe enrichment of Cd and Pb at downstream sites, and principal component analysis segregated sites into four distinct groups indicating source relationships. Concentrations of Cd, Pb, Ni, Cu, and Cr did exceed WHO standards. The study has relevance designing control measures and action plans for reducing sediment contamination in anthropogenic impacted rivers.

  1. Experimental tsunami deposits: Linking hydrodynamics to sediment entrainment, advection lengths and downstream fining

    NASA Astrophysics Data System (ADS)

    Johnson, Joel P. L.; Delbecq, Katie; Kim, Wonsuck; Mohrig, David

    2016-01-01

    A goal of paleotsunami research is to quantitatively reconstruct wave hydraulics from sediment deposits in order to better understand coastal hazards. Simple models have been proposed to predict wave heights and velocities, based largely on deposit grain size distributions (GSDs). Although seemingly consistent with some recent tsunamis, little independent data exist to test these equations. We conducted laboratory experiments to evaluate inversion assumptions and uncertainties. A computer-controlled lift gate instantaneously released 6.5 m3 of water into a 32 m flume with shallow ponded water, creating a hydraulic bore that transported sand from an upstream source dune. Differences in initial GSDs and ponded water depths influenced entrainment, transport, and deposition. While the source dune sand was fully suspendable based on size alone, experimental tsunamis produced deposits dominated by bed load sand transport in the upstream 1/3 of the flume and suspension-dominated transport downstream. The suspension deposits exhibited downstream fining and thinning. At 95% confidence, a published advection-settling model predicts time-averaged flow depths to approximately a factor of two, and time-averaged downstream flow velocities to within a factor of 1.5. Finally, reasonable scaling is found between flume and field cases by comparing flow depths, inundation distances, Froude numbers, Rouse numbers and grain size trends in suspension-dominated tsunami deposits, justifying laboratory study of sediment transport and deposition by tsunamis.

  2. Downstream lightening and upward heavying, sorting of sediments of uniform grain size but differing in density

    NASA Astrophysics Data System (ADS)

    Viparelli, E.; Solari, L.; Hill, K. M.

    2014-12-01

    Downstream fining, i.e. the tendency for a gradual decrease in grain size in the downstream direction, has been observed and studied in alluvial rivers and in laboratory flumes. Laboratory experiments and field observations show that the vertical sorting pattern over a small Gilbert delta front is characterized by an upward fining profile, with preferential deposition of coarse particles in the lowermost part of the deposit. The present work is an attempt to answer the following questions. Are there analogous sorting patterns in mixtures of sediment particles having the same grain size but differing density? To investigate this, we performed experiments at the Hydrosystems Laboratory at the University of Illinois at Urbana-Champaign. During the experiments a Gilbert delta formed and migrated downstream allowing for the study of transport and sorting processes on the surface and within the deposit. The experimental results show 1) preferential deposition of heavy particles in the upstream part of the deposit associated with a pattern of "downstream lightening"; and 2) a vertical sorting pattern over the delta front characterized by a pattern of "upward heavying" with preferential deposition of light particles in the lowermost part of the deposit. The observed downstream lightening is analogous of the downstream fining with preferential deposition of heavy (coarse) particles in the upstream part of the deposit. The observed upward heavying was unexpected because, considering the particle mass alone, the heavy (coarse) particles should have been preferentially deposited in the lowermost part of the deposit. Further, the application of classical fractional bedload transport relations suggests that in the case of mixtures of particles of uniform size and different densities equal mobility is not approached. We hypothesize that granular physics mechanisms traditionally associated with sheared granular flows may be responsible for the observed upward heavying and for the

  3. Geomorphic analysis of the river response to sedimentation downstream of Mount Rainier, Washington

    USGS Publications Warehouse

    Czuba, Jonathan A.; Magirl, Christopher S.; Czuba, Christiana R.; Curran, Christopher A.; Johnson, Kenneth H.; Olsen, Theresa D.; Kimball, Halley K.; Gish, Casey C.

    2012-01-01

    A study of the geomorphology of rivers draining Mount Rainier, Washington, was completed to identify sources of sediment to the river network; to identify important processes in the sediment delivery system; to assess current sediment loads in rivers draining Mount Rainier; to evaluate if there were trends in streamflow or sediment load since the early 20th century; and to assess how rates of sedimentation might continue into the future using published climate-change scenarios. Rivers draining Mount Rainier carry heavy sediment loads sourced primarily from the volcano that cause acute aggradation in deposition reaches as far away as the Puget Lowland. Calculated yields ranged from 2,000 tonnes per square kilometer per year [(tonnes/km2)/yr] on the upper Nisqually River to 350 (tonnes/km2)/yr on the lower Puyallup River, notably larger than sediment yields of 50–200 (tonnes/km2)/yr typical for other Cascade Range rivers. These rivers can be assumed to be in a general state of sediment surplus. As a result, future aggradation rates will be largely influenced by the underlying hydrology carrying sediment downstream. The active-channel width of rivers directly draining Mount Rainier in 2009, used as a proxy for sediment released from Mount Rainier, changed little between 1965 and 1994 reflecting a climatic period that was relatively quiet hydrogeomorphically. From 1994 to 2009, a marked increase in geomorphic disturbance caused the active channels in many river reaches to widen. Comparing active-channel widths of glacier-draining rivers in 2009 to the distance of glacier retreat between 1913 and 1994 showed no correlation, suggesting that geomorphic disturbance in river reaches directly downstream of glaciers is not strongly governed by the degree of glacial retreat. In contrast, there was a correlation between active-channel width and the percentage of superglacier debris mantling the glacier, as measured in 1971. A conceptual model of sediment delivery processes

  4. IMPACTS OF IRON, NUTRIENTS, AND MINERAL FINES ON ANAEROBIC BIODEGRADATION OF CANOLA OIL IN FRESHWATER SEDIMENTS

    EPA Science Inventory

    Factors affecting anaerobic biodegradation kinetics of canola oil in freshwater sediments were investigated. An optimum dose of ferric hydroxide (10.5 g Fe(III)·kg-1 sediment) was found to stimulate anaerobic biodegradation of canola oil (18.6 g oil kg-1). ...

  5. Sediment transport patterns and climate change: the downstream Tuul River case study, Northern Mongolia.

    NASA Astrophysics Data System (ADS)

    Pietroń, Jan; Jarsjö, Jerker

    2014-05-01

    Ongoing changes in the Central Asian climate including increasing temperatures can influence the hydrological regimes of rivers and the waterborne transport of sediments. Changes in the latter, especially in combination with adverse human activities, may severely impact water quality and aquatic ecosystems. However, waterborne transport of sediments is a result of complex processes and varies considerably between, and even within, river systems. There is therefore a need to increase our general knowledge about sediment transport under changing climate conditions. The Tuul River, the case site of this study, is located in the upper part of the basin of the Selenga River that is the main tributary to Lake Baikal, a UNESCO World Heritage Site. Like many other rivers located in the steppes of Northern Mongolia, the Tuul River is characterized by a hydrological regime that is not disturbed by engineered structures such as reservoirs and dams. However, the water quality of the downstream Tuul River is increasingly affected by adverse human activities - including placer gold mining. The largest contribution to the annual river discharge occurs during the relatively warm period in May to August. Typically, there are numerous rainfall events during this period that cause considerable river flow peaks. Parallel work has furthermore shown that due to climate change, the daily variability of discharge and numbers of peak flow events in the Tuul River Basin has increased during the past 60 years. This trend is expected to continue. We here aim at increasing our understanding of future sediment transport patterns in the Tuul River, specifically considering the scenario that peak flow events may become more frequent due to climate change. We use a one-dimensional sediment transport model of the downstream reach of the river to simulate natural patterns of sediment transport for a recent hydrological year. In general, the results show that sediment transport varies considerably

  6. Persistence and Degradation Pathways of Tributyltin in Freshwater and Estuarine Sediments

    NASA Astrophysics Data System (ADS)

    Dowson, P. H.; Bubb, J. M.; Lester, J. N.

    1996-05-01

    The degradation of tributyltin (TBT) in contaminated freshwater and estuarine sediments was investigated for a 330-day period under controlled laboratory conditions. Rates of TBT degradation at different depths within various sediments were established, where possible, using regression modelling, and revealed TBT half-lives ranging from 360 to 775 days in surficial sediments. There appeared to be very little difference between degradation rates in freshwater and estuarine sediments, although a notable increase in TBT half-life was evident in spiked sediments containing elevated TBT concen-trations. Degradation trends suggest that TBT either debutylates to dibutyltin (DBT) and monobutyltin (MBT) in aerobic sediments or degrades to DBT which subsequently desorbs to the overlying water column. In anaerobic sediment, the half-life of TBT was not discernible and appears to be in the order of tens of years. Biotic processes were the most important mechanisms for the decomposition of TBT in freshwater and estuarine sediments. The results are reviewed in the context of concentrations of TBT determined in marina and boatyard sediments in U.K. east coast estuaries.

  7. Propagation of sediment pulses in flume experiments simulating gravel augmentation in armored channels downstream of dams

    NASA Astrophysics Data System (ADS)

    Fadde, J.; Venditti, J. G.; Sklar, L. S.; Wydzga, A.; Nelson, P. A.; Dietrich, W. E.

    2005-12-01

    Gravel augmentation is an increasingly common river restoration strategy for armored channels downstream of dams, however, few analytical tools are available to assist river managers in selecting the appropriate sediment volumes, grain sizes, and frequency of additions to achieve desired geomorphic and ecological outcomes. Coarse sediment additions are often intended to improve habitat for spawning salmonids by altering stream bed grain size distributions, and increasing the frequency of bed mobilization and the diversity of channel morphology. Here we report preliminary results of an ongoing laboratory investigation in which we simulate the gravel augmentation process and document the spatial and temporal evolution of the bed in response to pulses of elevated fine gravel supply. The experiments are conducted in a 30-m long, 0.86-m wide flume, with a calibrated sediment feed and a tipping bucket type sediment trap that provides a continuous record of sediment flux at the downstream end of the flume. We created an initial armored bed by first achieving an active transport equilibrium slope and then shutting off the sediment feed and allowing the bed to coarsen and degrade until the transport rate became negligible. We then introduced gravel pulses of various volumes and grain sizes, and mapped the propagation of the wave of added sediment as it moved through the flume. The sediments comprising each pulse are painted distinct colors to aid in mapping and to quantify the extent of exchange with the armored bed. Mapping techniques include planform maps of zones of active transport and temporal contours of width-averaged concentrations of added gravel. We also documented the changes in bed grain size distribution using manual pebble counts before and after each run and analysis of high resolution photographs of the bed taken during the run. We also collected frequent bedload samples at regular locations along the flume length to document the movement of the gravel pulse

  8. Methods for measuring the toxicity and bioaccumulation of sediment-associated contaminants with freshwater invertebrates

    SciTech Connect

    Not Available

    1994-06-01

    The procedures are described for testing freshwater organisms in the laboratory to evaluate the toxicity or bioaccumulation of contaminants associated with whole sediments. Sediments may be collected from the field or spiked with compounds in the laboratory. Toxicity methods are outlined for two organisms, the amphipod Hyalella azteca and the midge Chironomus tentans. The toxicity tests are conducted for 10 d in 300 ml chambers containing 100 ml of sediment and 175 ml of overlying water. Overlying water is renewed daily and test organisms are fed during the toxicity tests. The endpoint in the toxicity test with H. azteca is survival and the endpoints in the toxicity test with C. tentans are survival and growth. Procedures are primarily described for testing freshwater sediments; however, estaurine sediments (up to 15%) can also be tested with H. azteca. Guidance for conducting 28-d bioaccumulation tests with the oligochaete Lumbriculus variegatus is provided in the manual.

  9. The effect of manipulations of freshwater sediments on responses of benthic invertebrates in whole-sediment toxicity tests

    SciTech Connect

    Day, K.E.; Kirby, R.S.; Reynoldson, T.B.

    1995-08-01

    Manipulations of freshwater sediment were performed to remove indigenous organisms prior to conducting toxicity tests with three species of benthic invertebrates. The effects of these treatments on end points in bioassays were compared within and between two sediments, i.e., a ``clean`` sediment and a ``contaminated`` sediment. In addition, the effects of manipulations on the physicochemical structure of the two sediments and the presence of metals, PAHs, and PCBs in the contaminated sediment were examined. The amphipod Hyalella azteca was most sensitive to the manipulations and had low survival in sediment that was sterilized. Growth (milligrams dry weight per individual) was affected by the presence of contaminants. Survival of Chironomus riparius was not affected by any manipulation but was reduced by contaminants as well as indigenous organisms. Growth of C. riparius was higher in autoclaved sediment but lower in sediment containing endemic tubificid worms. Production of young by Tubifex tubifex increased in sediment that was irradiated, possibly due to increased detrital material. Particle size distribution, metals, nutrients, and PAHs varied little as a function of manipulation; however, sieving of sediment through 250-{micro}m mesh did reduce percent total organic carbon (TOC), percent loss on ignition (LOI), and concentrations of some PCBs in either clean or contaminated sediment. Manipulation of sediments to remove endemic species should be determined on a case-by-case basis and is specific to the organisms used in toxicity tests.

  10. Changes of freshwater-lens thickness in basaltic island aquifers overlain by thick coastal sediments

    USGS Publications Warehouse

    Rotzoll, Kolja; Oki, Delwyn S.; El-Kadi, Aly I.

    2010-01-01

    Freshwater-lens thickness and long-term changes in freshwater volume in coastal aquifers are commonly assessed through repeated measurement of salinity profiles from monitor wells that penetrate into underlying salt water. In Hawaii, the thickest measured freshwater lens is currently 262 m in dike-free, volcanic-rock aquifers that are overlain by thick coastal sediments. The midpoint depth (depth where salinity is 50% salt water) between freshwater and salt water can serve as an indicator for freshwater thickness. Most measured midpoints have risen over the past 40 years, indicating a shrinking lens. The mean rate of rise of the midpoint from 1999–2009 varied locally, with faster rates in highly developed areas (1.0 m/year) and slower rates in less developed areas (0.5 m/year). The thinning of the freshwater lenses is the result of long-term groundwater withdrawal and reduced recharge. Freshwater/salt-water interface locations predicted from measured water levels and the Ghyben-Herzberg principle may be deeper than measured midpoints during some periods and shallower during other periods, although depths may differ up to 100 m in some cases. Moreover, changes in the midpoint are slower than changes in water level. Thus, water levels may not be a reliable indicator of the amount of freshwater in a coastal aquifer.

  11. Sorption kinetics of TNT and RDX in anaerobic freshwater and marine sediments: Batch studies.

    PubMed

    Ariyarathna, Thivanka; Vlahos, Penny; Tobias, Craig; Smith, Richard

    2016-01-01

    Examination of the partitioning of explosives onto sediment in marine environments is critical to predict the toxicological impacts of worldwide explosive-contaminated sites adjacent to estuaries, wetlands, and the coastal ocean. Marine sediments have been identified as sites of enhanced munitions removal, yet most studies addressing these interactions focus on soils and freshwater sediments. The present study measured the kinetics of 2,4,6-trinitrotoluene (TNT) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) sorption onto 2 marine sediments of varying grain sizes (silt vs sand) and organic carbon (OC) content. Abiotic sediment sorption tests were performed at 23 °C, 15 °C, and 4 °C by spiking TNT and RDX solutions directly into anaerobic sediment slurries. Marine sediments showed significantly higher compound uptake rates (0.30-0.80 h(-1) ) than freshwater silt (0.0046-0.0065 h(-1) ) for both compounds, probably because of lower compound solubilities and a higher pH in marine systems. Equilibrium partition constants are on the same order of magnitude for marine silt (1.1-2.0 L kg(-1) sediment) and freshwater silt (1.4-3.1 L kg(-1) sediment) but lower for marine sand (0.72-0.92 L kg(-1) sediment). Total organic carbon content in marine sediments varied linearly with equilibrium partition constants for TNT and was moderately linear for RDX. Uptake rates and equilibrium constants of explosives are inversely correlated to temperature regardless of sediment type because of kinetic barriers associated with low temperatures.

  12. Vertical profiles of sediment methanogenic potential and communities in two plateau freshwater lakes

    NASA Astrophysics Data System (ADS)

    Yang, Yuyin; Li, Ningning; Wang, Wei; Li, Bingxin; Xie, Shuguang; Liu, Yong

    2017-01-01

    Microbial methanogenesis in sediment plays a crucial role in CH4 emission from freshwater lake ecosystems. However, knowledge of the layer-depth-related changes of methanogen community structure and activities in freshwater lake sediment is still limited. The present study was conducted to characterize the methanogenesis potential in different sediment-layer depths and the vertical distribution of microbial communities in two freshwater lakes of different trophic status on the Yunnan Plateau (China). Incubation experiments and inhibitor studies were carried out to determine the methanogenesis potential and pathways. 16S rRNA and mcrA genes were used to investigate the abundance and structure of methanogen and archaeal communities, respectively. Hydrogenotrophic methanogenesis was mainly responsible for methane production in sediments of both freshwater lakes. The layer-depth-related changes of methanogenesis potential and the abundance and community structure of methanogens were observed in both Dianchi Lake and Erhai Lake. Archaeal 16S rRNA and mcrA genes displayed a similar abundance change pattern in both lakes, and the relative abundance of methanogens decreased with increasing sediment-layer depth. Archaeal communities differed considerably in Dianchi Lake and Erhai Lake, but methanogen communities showed a slight difference between these two lakes. However, methanogen communities illustrated a remarkable layer-depth-related change. Order Methanomicrobiales was the dominant methanogen group in all sediments, while Methanobacteriales showed a high proportion only in upper layer sediments. The trophic status of the lake might have a notable influence on the depth-related change pattern of methanogenesis activity, while the methanogen community structure was mainly influenced by sediment depth.

  13. Predictions of sediment toxicity using consensus-based freshwater sediment quality guidelines

    USGS Publications Warehouse

    Ingersoll, C.G.; MacDonald, D.D.; Wang, N.; Crane, J.L.; Field, L.J.; Haverland, P.S.; Kemble, N.E.; Lindskoog, R.A.; Severn, C.; Smorong, D.E.

    2001-01-01

    The objectives of this study were to compare approaches for evaluating the combined effects of chemical mixtures on the toxicity in field-collected sediments and to evaluate the ability of consensus-based probable effect concentrations (PECs) to predict toxicity in a freshwater database on both a national and regional geographic basis. A database was developed from 92 published reports, which included a total of 1,657 samples with high-quality matching sediment toxicity and chemistry data from across North America. The database was comprised primarily of 10- to 14-day or 28- to 42-day toxicity tests with the amphipod Hyalella azteca (designated as the HA10 or HA28 tests) and 10- to 14-day toxicity tests with the midges Chironomus tentans or C. riparius (designated as the CS10 test). Mean PEC quotients were calculated to provide an overall measure of chemical contamination and to support an evaluation of the combined effects of multiple contaminants in sediments. There was an overall increase in the incidence of toxicity with an increase in the mean quotients in all three tests. A consistent increase in the toxicity in all three tests occurred at a mean quotient > 0.5, however, the overall incidence of toxicity was greater in the HA28 test compared to the short-term tests. The longer-term tests, in which survival and growth are measured, tend to be more sensitive than the shorter-term tests, with acute to chronic ratios on the order of six indicated for H. azteca. Different patterns were observed among the various procedures used to calculate mean quotients. For example, in the HA28 test, a relatively abrupt increase in toxicity was associated with elevated polychlorinated biphenyls (PCBs) alone or with elevated polycyclic aromatic hydrocarbons (PAHs) alone, compared to the pattern of a gradual increase in toxicity observed with quotients calculated using a combination of metals, PAHs, and PCBs. These analyses indicate that the different patterns in toxicity may be

  14. Pools, channel form, and sediment storage in wood-restored streams: Potential effects on downstream reservoirs

    NASA Astrophysics Data System (ADS)

    Elosegi, Arturo; Díez, José Ramón; Flores, Lorea; Molinero, Jon

    2017-02-01

    Large wood (LW, or pieces of dead wood longer than 1 m and thicker than 10 cm in diameter) is a key element in forested streams, but its abundance has decreased worldwide as a result of snagging and clearing of riparian forests. Therefore, many restoration projects introduce LW into stream channels to enhance geomorphology, biotic communities, and ecosystem functioning. Because LW enhances the retention of organic matter and sediments, its restoration can reduce siltation in receiving reservoirs, although so far little information on this subject is available. We studied the effects of restoring the natural loading of LW in four streams in the Aiako Harria Natural Park (the Basque Country, Spain) in pool abundance, channel form, and storage of organic matter and sediments. In all reaches log jams induced the formation of new geomorphic features and changes in physical habitat, especially an increase in the number and size of pools and in the formation of gravel bars and organic deposits. The storage of organic matter increased 5- to 88-fold and streambed level rose 7 ± 4 to 21 ± 4 cm on average, resulting in the storage of 35.2 ± 19.7 to 711 ± 375 m3 (733-1400 m3 ha- 1 y- 1) of sediment per reach. Extrapolation of these results to the entire drainage basin suggests that basinwide restoration of LW loading would enhance the retention potential of stream channels by 66,817 ± 27,804 m3 (1075 m3 ha- 1 y- 1) of sediment and by 361 t (5.32 T ha- 1 y- 1) of organic matter, which represents 60% of the estimated annual inputs of sediments to the downstream Añarbe Reservoir and almost twice as much as the annual input of organic matter to the entire river network. Therefore, basinwide restoration of LW loading is a potentially important tool to manage catchments that feed reservoirs, where retention of sediments and organic matter can be considered important ecosystem services as they reduce reservoir siltation.

  15. Anaerobic versus aerobic degradation of dimethyl sulfide and methanethiol in anoxic freshwater sediments.

    PubMed

    Lomans, B P; den Camp, H J; Pol, A; Vogels, G D

    1999-02-01

    Degradation of dimethyl sulfide and methanethiol in slurries prepared from sediments of minerotrophic peatland ditches were studied under various conditions. Maximal aerobic dimethyl sulfide-degrading capacities (4.95 nmol per ml of sediment slurry. h-1), measured in bottles shaken under an air atmosphere, were 10-fold higher than the maximal anaerobic degrading capacities determined from bottles shaken under N2 or H2 atmosphere (0.37 and 0. 32 nmol per ml of sediment slurry. h-1, respectively). Incubations under experimental conditions which mimic the in situ conditions (i. e., not shaken and with an air headspace), however, revealed that aerobic degradation of dimethyl sulfide and methanethiol in freshwater sediments is low due to oxygen limitation. Inhibition studies with bromoethanesulfonic acid and sodium tungstate demonstrated that the degradation of dimethyl sulfide and methanethiol in these incubations originated mainly from methanogenic activity. Prolonged incubation under a H2 atmosphere resulted in lower dimethyl sulfide degradation rates. Kinetic analysis of the data resulted in apparent Km values (6 to 8 microM) for aerobic dimethyl sulfide degradation which are comparable to those reported for Thiobacillus spp., Hyphomicrobium spp., and other methylotrophs. Apparent Km values determined for anaerobic degradation of dimethyl sulfide (3 to 8 microM) were of the same order of magnitude. The low apparent Km values obtained explain the low dimethyl sulfide and methanethiol concentrations in freshwater sediments that we reported previously. Our observations point to methanogenesis as the major mechanism of dimethyl sulfide and methanethiol consumption in freshwater sediments.

  16. AN ASSESSMENT OF PHTHALATE ESTER TOXICITY TO FRESHWATER BENTHOS: 2. SEDIMENT EXPOSURES

    EPA Science Inventory

    Seven phthalate esters were evaluated for their stability and 10-d acute toxicity to the freshwater invertebrates Hyalella azteca and Chironomus tentans following incorporation into sediment. The chemicals were diethyl (DEP), di-n-butyl (DBP), di-n-hyxyl (DHP), di-[2-ethylhexyl] ...

  17. COSOLVENT EFFECTS ON PHENANTHRENE SORPTION-DESORPTION ON A FRESH-WATER SEDIMENT

    EPA Science Inventory

    This study evaluated the effects of the water-miscible cosolvent methanol on the sorption-desorption of phenanthrene by the natural organic matter (NOM) of a fresh-water sediment. A biphasic pattern was observed in the relationship between the log of the carbon-normalized sorpti...

  18. ANAEROBIC BIODEGRADATION OF VEGETABLE OIL AND ITS METABOLIC INTERMEDIATES IN OIL-ENRICHED FRESHWATER SEDIMENTS

    EPA Science Inventory

    Anaerobic biodegradation of vegetable oil in freshwater sediments is strongly inhibited by high concentrations of oil, but the presence of ferric hydroxide relieves the inhibition. The effect of ferric hydroxide is not due to physical or chemical interactions with long-chain fatt...

  19. Tolerance of freshwater test organisms to formulated sediments for use as control materials in whole-sediment toxicity tests

    SciTech Connect

    Kemble, N.E.; Dwyer, F.J.; Ingersoll, C.G.; Dawson, T.D.; Norberg-King, T.J.

    1999-02-01

    A method is described for preparing formulated sediments for use in toxicity testing. Ingredients used to prepare formulated sediments included commercially available silt, clay, sand, humic acid, dolomite, and {alpha}-cellulose (as a source of organic carbon). {alpha}-Cellulose was selected as the source of organic carbon because it is commercially available, consistent from batch to batch, and low in contaminant concentrations. The tolerance of freshwater test organisms to formulated sediments for use as control materials in whole-sediment toxicity testing was evaluated. Sediment exposures were conducted for 10 d with the amphipod Hyalella azteca, the midges Chironomus riparius and C. tentans, and the oligochaete Lumbriculus variegatus and for 28 d with H. azteca. Responses of organisms in formulated sediments was compared with a field-collected control sediment that has routinely been used to determine test acceptability. Tolerance of organisms to formulated sediments was evaluated by determining responses to varying levels of {alpha}-cellulose, to varying levels of grain size, to evaluation of different food types, or to evaluation of different sources of overlying water. In the 10-d exposures, survival of organisms exposed to the formulated sediments routinely met or exceeded the responses of test organisms exposed to the control sediment and routinely met test acceptability criteria required in standard methods. Growth of amphipods and oligochaetes in 10-d exposures with formulated sediment was often less than growth of organisms in the field-collected control sediment. Additional research is needed, using the method employed to prepare formulated sediment, to determine if conditioning formulated sediments before starting 10-d tests would improve the growth of amphipods. In the 28-d exposures, survival of H. azteca was low when reconstituted water was used as the source of overlying water. However, when well water was used as the source of overlying water in

  20. Tolerance of freshwater test organisms to formulated sediments for use as control materials in whole-sediment toxicity tests

    USGS Publications Warehouse

    Kemble, N.E.; Dwyer, F.J.; Ingersoll, C.G.; Dawson, T.D.; Norberg-King, T. J.

    1999-01-01

    A method is described for preparing formulated sediments for use intoxicity testing. Ingredients used to prepare formulated sediments included commercially available silt, clay, sand, humic acid, dolomite, and α-cellulose (as a source of organic carbon). α-Cellulose was selected as the source of organic carbon because it is commercially available, consistent from batch to batch, and low in contaminant concentrations. The tolerance of freshwater test organisms to formulated sediments for use as control materials in whole-sediment toxicity testing was evaluated. Sediment exposures were conducted for 10 d with the amphipod Hyalella azteca, the midges Chironomus riparius and C. tentans, and the oligochaete Lumbriculus variegatus and for 28 d with H. azteca. Responses of organisms in formulated sediments was compared with a field-collected control sediment that has routinely been used to determine test acceptability. Tolerance of organisms to formulated sediments was evaluated by determining responses to varying levels of α-cellulose, to varying levels of grain size, to evaluation of different food types, or to evaluation of different sources of overlying water. In the 10-d exposures, survival of organisms exposed to the formulated sediments routinely met or exceeded the responses of test organisms exposed to the control sediment and routinely met test acceptability criteria required in standard methods. Growth of amphipods and oligochaetes in 10-d exposures with formulated sediment was often less than growth of organisms in the field-collected control sediment. Additional research is needed, using the method employed to prepare formulated sediment, to determine if conditioning formulated sediments before starting 10-d tests would improve the growth of amphipods. In the 28-d exposures, survival of H. azteca was low when reconstituted water was used as the source of overlying water. However, when well water was used as the source of overlying water in 28-d exposures

  1. Chronic toxicity of nickel-spiked freshwater sediments: variation in toxicity among eight invertebrate taxa and eight sediments

    USGS Publications Warehouse

    Besser, John M.; Brumbaugh, William G.; Ingersoll, Christopher G.; Ivey, Chris D.; Kunz, James L.; Kemble, Nile E.; Schlekat, Christian E.; Garman, Emily R.

    2013-01-01

    This study evaluated the chronic toxicity of Ni-spiked freshwater sediments to benthic invertebrates. A 2-step spiking procedure (spiking and sediment dilution) and a 2-stage equilibration period (10 wk anaerobic and 1 wk aerobic) were used to spike 8 freshwater sediments with wide ranges of acid-volatile sulfide (AVS; 0.94–38 µmol/g) and total organic carbon (TOC; 0.42–10%). Chronic sediment toxicity tests were conducted with 8 invertebrates (Hyalella azteca, Gammarus pseudolimnaeus, Chironomus riparius, Chironomus dilutus, Hexagenia sp., Lumbriculus variegatus, Tubifex tubifex, and Lampsilis siliquoidea) in 2 spiked sediments. Nickel toxicity thresholds estimated from species-sensitivity distributions were 97 µg/g and 752 µg/g (total recoverable Ni; dry wt basis) for sediments with low and high concentrations of AVS and TOC, respectively. Sensitive species were tested with 6 additional sediments. The 20% effect concentrations (EC20s) for Hyalella and Gammarus, but not Hexagenia, were consistent with US Environmental Protection Agency benchmarks based on Ni in porewater and in simultaneously extracted metals (SEM) normalized to AVS and TOC. For Hexagenia, sediment EC20s increased at less than an equimolar basis with increased AVS, and toxicity occurred in several sediments with Ni concentrations in SEM less than AVS. The authors hypothesize that circulation of oxygenated water by Hexagenia led to oxidation of AVS in burrows, creating microenvironments with high Ni exposure. Despite these unexpected results, a strong relationship between Hexagenia EC20s and AVS could provide a basis for conservative site-specific sediment quality guidelines for Ni.

  2. Sediment-phosphorus dynamics can shift aquatic ecology and cause downstream legacy effects after wildfire in large river systems.

    PubMed

    Emelko, Monica B; Stone, Micheal; Silins, Uldis; Allin, Don; Collins, Adrian L; Williams, Chris H S; Martens, Amanda M; Bladon, Kevin D

    2016-03-01

    Global increases in the occurrence of large, severe wildfires in forested watersheds threaten drinking water supplies and aquatic ecology. Wildfire effects on water quality, particularly nutrient levels and forms, can be significant. The longevity and downstream propagation of these effects as well as the geochemical mechanisms regulating them remain largely undocumented at larger river basin scales. Here, phosphorus (P) speciation and sorption behavior of suspended sediment were examined in two river basins impacted by a severe wildfire in southern Alberta, Canada. Fine-grained suspended sediments (<125 μm) were sampled continuously during ice-free conditions over a two-year period (2009-2010), 6 and 7 years after the wildfire. Suspended sediment samples were collected from upstream reference (unburned) river reaches, multiple tributaries within the burned areas, and from reaches downstream of the burned areas, in the Crowsnest and Castle River basins. Total particulate phosphorus (TPP) and particulate phosphorus forms (nonapatite inorganic P, apatite P, organic P), and the equilibrium phosphorus concentration (EPC0 ) of suspended sediment were assessed. Concentrations of TPP and the EPC0 were significantly higher downstream of wildfire-impacted areas compared to reference (unburned) upstream river reaches. Sediments from the burned tributary inputs contained higher levels of bioavailable particulate P (NAIP) - these effects were also observed downstream at larger river basin scales. The release of bioavailable P from postfire, P-enriched fine sediment is a key mechanism causing these effects in gravel-bed rivers at larger basin scales. Wildfire-associated increases in NAIP and the EPC0 persisted 6 and 7 years after wildfire. Accordingly, this work demonstrated that fine sediment in gravel-bed rivers is a significant, long-term source of in-stream bioavailable P that contributes to a legacy of wildfire impacts on downstream water quality, aquatic ecology, and

  3. Sediment Ammonia-Oxidizing Microorganisms in Two Plateau Freshwater Lakes at Different Trophic States.

    PubMed

    Yang, Yuyin; Zhang, Jingxu; Zhao, Qun; Zhou, Qiheng; Li, Ningning; Wang, Yilin; Xie, Shuguang; Liu, Yong

    2016-02-01

    Both ammonia-oxidizing archaea (AOA) and bacteria (AOB) can contribute to ammonia biotransformation in freshwater lake ecosystems. However, the factors shaping the distribution of sediment AOA and AOB in plateau freshwater lake remains unclear. The present study investigated sediment AOA and AOB communities in two freshwater lakes (hypertrophic Dianchi Lake and mesotrophic Erhai Lake) on the Yunnan Plateau (China). A remarkable difference in the abundance, diversity, and composition of sediment AOA and AOB communities was observed between Dianchi Lake and Erhai Lake. AOB usually outnumbered AOA in Dianchi Lake, but AOA showed the dominance in Erhai Lake. Organic matter (OM), total nitrogen (TN), and total phosphorus (TP) might be the key determinants of AOB abundance, while AOA abundance was likely influenced by the ration of OM to TN (C/N). AOA or AOB community structure was found to be relatively similar in the same lake. TN and TP might play important roles in shaping sediment AOA and AOB compositions in Dianchi Lake and Erhai Lake. Moreover, Nitrososphaera-like AOA were detected in Dianchi Lake. Nitrosospira- and Nitrosomonas-like AOB were dominant in Dianchi Lake and Erhai Lake, respectively. Sediment AOA and AOB communities in Dianchi Lake and Erhai Lake were generally regulated by trophic state.

  4. Butyltin sorption onto freshwater sediments: from batch experiments to the field values

    NASA Astrophysics Data System (ADS)

    Bancon-Montingy, C.; Aubert, G.; Chahinian, N.; Meyer, J.; Brunel, V.; Tournoud, M. G.

    2009-04-01

    Butyltins, and most particularly TBT were widely used by the industry in the 1970s and 1980s, namely as anti-fouling paints on ships. Although banned since 2003 in Europe, surveys still point out the presence of these compounds both in coastal and terrestrial environments. The resilience of organotin (OT) compounds can be explained by their high adsorption capacity. OTs can bond easily to particulate matter and "migrate" from the water column unto the sediments where their half-life can extend to a few decades. Consequently sediments can become important organotin stores and release OT compounds during dredging operations, storms, tides or floods. Studies on OT behavior in freshwater environments, mainly sediments, are scarce in the literature compared with marine sediments. However, it is known that sorption behaviour of organotin compounds on sediments is governed by the constituents of sediments, and the composition of interstitial water in the sediments and overlying water, i.e. grain size distribution, clay minerals, organic matter, iron, aluminium (hydr)oxides and carbonate in the sediments; salinity, ionic composition, and pH of interstitial water in the sediments and overlying water. The main objective of this work is to assess butyltin adsorption into the sediments of an intermittent river located in southern France: The Vène. Sediments were collected during high and low flow conditions and batch experiments were set up using "natural" and "crushed" sediments to assess the adsorption kinetics. Classical batch experiments and GC-ICP-MS analysis were carried out to measure the distribution coefficient (Kd). The influence of organic substances on sorption processes for organotin species was studied and the role of grain size distribution assessed by comparing natural and crushed sediments. The results indicated that organotin compounds are sorbed easily and quickly on freshwater sediments. The adsorption isotherm for butyltins follows the Freundlich equation

  5. Testing sediment biological effects with the freshwater amphipod Hyalella azteca: the gap between laboratory and nature.

    PubMed

    Wang, Feiyue; Goulet, Richard R; Chapman, Peter M

    2004-12-01

    The freshwater amphipod, Hyalella azteca, is widely used in laboratory sediment toxicity and bioaccumulation tests. However, its responses in the laboratory are probably very different from those in the field. A review of the literature indicates that in its natural habitat this species complex is primarily epibenthic, derives little nutrition from the sediments, and responds primarily to contaminants in the overlying water column (including water and food), not sediment or porewater. In laboratory sediment toxicity tests H. azteca is deprived of natural food sources such as algal communities on or above the sediments, and is subjected to constant light without any cover except that afforded by burial into the sediments. Under these constraining laboratory conditions, H. azteca has been reported to respond to sediment or porewater contamination. In nature, contamination of overlying water from sediment is less likely than in the laboratory because of the large, generally non-static sink of natural surface water. H. azteca does not appear to be the most appropriate test species for direct assessments of the bioavailability and toxicity of sediment contaminants, though it is probably appropriate for testing the toxicity of surface waters. Toxic and non-toxic responses will be highly conservative, though the latter are probably the most persuasive given the exposure constraints. Thus H. azteca is probably a suitable surrogate species for determining sediments that are likely not toxic to field populations; however, it is not suitable for determining sediments that are likely toxic to field populations.

  6. Patterns of short-term sedimentation in a freshwater created marsh.

    PubMed

    Harter, Sarah K; Mitsch, William J

    2003-01-01

    This study investigated different sedimentation measurement techniques and examined patterns of short-term sedimentation in two 1-ha replicate created freshwater marshes in central Ohio, USA. Short-term (one-year) sediment accumulation above feldspar, clay, glitter, and sand artificial marker horizons was compared at different water depths and distances from wetland inflow. A sediment budget was also constructed from turbidity and suspended sediment data for comparison with marker horizons. Glitter and sand marker horizons were the most successful for measuring sediment accumulation (81-100% marker recovery), while clay markers were completely unsuccessful. The sedimentation rate for both wetlands averaged 4.9 cm yr(-1) (36 kg m(-2) yr(-1)), and ranged from 1.82 to 9.23 cm yr(-1) (12.4 to 69.7 kg m(-2) yr(-1)). Sedimentation rates in deep, open water areas were significantly higher than in shallow, vegetated areas for both wetlands (t test, p < 0.05). However, observed sedimentation patterns may be attributed more to preferential flow through open water areas than to water depth or presence of vegetation. Contrary to the expected spatial distribution, sedimentation was highly variable within the wetlands, suggesting that bioturbation and turbulence may cause significant resuspension or that high hydrologic loads may distribute sediments throughout the basins. A sediment budget estimated sediment retention of approximately 740 g m(-2) yr(-1) per wetland (43% removal rate), yet gross sediment accumulation was 36,000 g m(-2) yr(-1) measured by marker horizons. These results suggest that erosive forces may have influenced sedimentation, but also may indicate problems with the sediment budget calculation methodology.

  7. Detecting Magnetosomes in Freshwater Lakes and Lake Sediments

    NASA Astrophysics Data System (ADS)

    Kodama, K. P.; Kim, B.; Kopp, B.; Chen, A. P.

    2008-05-01

    We will present a summary of the work done to date on detecting magnetosomes in the lake sediments and water column of Lake Ely, a small post-glacial lake in northeastern Pennsylvania. To establish that magnetosomes dominate the magnetic mineralogy of the Lake Ely sediments we sampled the water column every meter down to its maximum depth of 23 m and measured the dissolved oxygen, sulfide, and iron, as well as the ARM of the material filtered from the water. We examined the water samples for magnetotactic bacteria. These results established an increase in the ARM of the filtered material at the oxic-anoxic transition. They also showed that the ARM was carried by magnetosomes produced by magnetotactic bacteria living in the water column at depths from 15-19 m. TEM of magnetic separates collected from the lake sediments show that magnetosomes are transferred to the sediments from the water column and are a significant fraction of the magnetic minerals in the sediments. We used a variety of mineral magnetic techniques to magnetically characterize the magnetosomes in the lake sediments. The delta-delta ratio test of low temperature behavior at the Verwey transition (Moskowitz et al., 1993) gave values of 1.2 to 1.5, lower than the theoretically predicted level of 2 for magnetosomes, but a numeric unmixing technique could resolve higher delta-delta ratios in the dark organic-rich layers in the sediments where magnetosomes were more prevalent. ARM/SIRM ratios of 0.15 to 0.35 with Raf values (the crossover of an IRM acquisition curve versus its alternating field demagnetization curve) of 0.45 to 0.5 are consistent with the presence of magnetosomes in the sediments, the water column, and in a sediment trap located at the bottom of the lake. IRM and ARM acquisition modeling of samples collected from a 160 cm piston core revealed two components of magnetization with coercivities of about 25 mT and 65 mT that are identified as Egli's (2004) biogenic soft (BS) and biogenic

  8. Contemporary deposition and long-term accumulation of sediment and nutrients by tidal freshwater forested wetlands impacted by sea level rise

    USGS Publications Warehouse

    Noe, Gregory; Hupp, Cliff R.; Bernhardt, Christopher E.; Krauss, Ken W.

    2016-01-01

    Contemporary deposition (artificial marker horizon, 3.5 years) and long-term accumulation rates (210Pb profiles, ~150 years) of sediment and associated carbon (C), nitrogen (N), and phosphorus (P) were measured in wetlands along the tidal Savannah and Waccamaw rivers in the southeastern USA. Four sites along each river spanned an upstream-to-downstream salinification gradient, from upriver tidal freshwater forested wetland (TFFW), through moderately and highly salt-impacted forested wetlands, to oligohaline marsh downriver. Contemporary deposition rates (sediment, C, N, and P) were greatest in oligohaline marsh and lowest in TFFW along both rivers. Greater rates of deposition in oligohaline and salt-stressed forested wetlands were associated with a shift to greater clay and metal content that is likely associated with a change from low availability of watershed-derived sediment to TFFW and to greater availability of a coastal sediment source to oligohaline wetlands. Long-term accumulation rates along the Waccamaw River had the opposite spatial pattern compared to contemporary deposition, with greater rates in TFFW that declined to oligohaline marsh. Long-term sediment and elemental mass accumulation rates also were 3–9× lower than contemporary deposition rates. In comparison to other studies, sediment and associated nutrient accumulation in TFFW are lower than downriver/estuarine freshwater, oligohaline, and salt marshes, suggesting a reduced capacity for surface sedimentation (short-term) as well as shallow soil processes (long-term sedimentation) to offset sea level rise in TFFW. Nonetheless, their potentially large spatial extent suggests that TFFW have a large impact on the transport and fate of sediment and nutrients in tidal rivers and estuaries.

  9. A laboratory assay to assess avoidance of contaminated sediments by the freshwater oligochaete lumbriculus variegatus

    PubMed

    West; Ankley

    1998-07-01

    Responses of benthic organisms to contaminated sediments in the laboratory historically have been assessed as survival, growth, and reproduction. However, these responses do not include behavioral aspects of organisms, which also can influence species distribution and abundance in benthic communities. This study documents avoidance behavior of the freshwater oligochaete Lumbriculus variegatus to contaminated sediments in the laboratory, utilizing a chamber specifically built to facilitate the measurement of this response. A number of field-collected sediments from sites with known contamination, several of which exhibited little or no toxicity in standard tests examining growth and/or survival, were evaluated. The oligochaetes exhibited marked avoidance to many of the sediments, indicating the potential utility of this assay in identifying effects of contaminated sediments on benthic community structure.

  10. Anaerobic versus aerobic degradation of dimethyl sulfide and methanethiol in anoxic freshwater sediments

    SciTech Connect

    Lomans, B.P.; Op den Camp, H.J.M.; Pol, A.; Vogels, G.D.

    1999-02-01

    Degradation of dimethyl sulfide and methanethiol in slurries prepared from sediments of minerotrophic peatland ditches were studied under various conditions. Maximal aerobic dimethyl sulfide-degrading capacities, measured in bottles shaken under an air atmosphere, were 10-fold higher than the maximal anaerobic degrading capacities determined from bottles shaken under N{sub 2} or H{sub 2} atmosphere. Incubations under experimental conditions which mimic the in situ conditions, however, revealed that aerobic degradation of dimethyl sulfide and methanethiol in freshwater sediments is low due to oxygen limitation. Inhibition studies with bromoethanesulfonic acid and sodium tungstate demonstrated that the degradation of dimethyl sulfide and methanethiol in these incubations originated mainly from methanogenic activity. Prolonged incubation under a H{sub 2} atmosphere resulted in lower dimethyl sulfide degradation rates. Kinetic analysis of the data resulted in apparent K{sub m} values (6 to 8 {micro}M) for aerobic dimethyl sulfide degradation which are comparable to those reported for Thiobacillus spp., Hyphomicrobium spp., and other methylotrophs. Apparent K{sub m} values determined for anaerobic degradation of dimethyl sulfide were of the same order of magnitude. The low apparent K{sub m} values obtained explain the low dimethyl sulfide and methanethiol concentrations in freshwater sediments that they reported previously. The observations point to methanogenesis as the major mechanism of dimethyl sulfide and methanethiol consumption in freshwater sediments.

  11. Evidence for anaerobic ammonium oxidation process in freshwater sediments of aquaculture ponds.

    PubMed

    Shen, Li-dong; Wu, Hong-sheng; Gao, Zhi-qiu; Ruan, Yun-jie; Xu, Xiang-hua; Li, Ji; Ma, Shi-jie; Zheng, Pei-hui

    2016-01-01

    The anaerobic ammonium oxidation (anammox) process, which can simultaneously remove ammonium and nitrite, both toxic to aquatic animals, can be very important to the aquaculture industry. Here, the presence and activity of anammox bacteria in the sediments of four different freshwater aquaculture ponds were investigated by using Illumina-based 16S rRNA gene sequencing, quantitative PCR assays and (15)N stable isotope measurements. Different genera of anammox bacteria were detected in the examined pond sediments, including Candidatus Brocadia, Candidatus Kuenenia and Candidatus Anammoxoglobus, with Candidatus Brocadia being the dominant anammox genus. Quantitative PCR of hydrazine synthase genes showed that the abundance of anammox bacteria ranged from 5.6 × 10(4) to 2.1 × 10(5) copies g(-1) sediment in the examined ponds. The potential anammox rates ranged between 3.7 and 19.4 nmol N2 g(-1) sediment day(-1), and the potential denitrification rates varied from 107.1 to 300.3 nmol N2 g(-1) sediment day(-1). The anammox process contributed 1.2-15.3% to sediment dinitrogen gas production, while the remainder would be due to denitrification. It is estimated that a total loss of 2.1-10.9 g N m(-2) per year could be attributed to the anammox process in the examined ponds, suggesting that this process could contribute to nitrogen removal in freshwater aquaculture ponds.

  12. Sediment-Submersed Macrophyte Relationships in Freshwater Systems.

    DTIC Science & Technology

    1982-06-01

    to decay-related processes. The species examined, being representative of three dis- tinctly different taxonomic groups, included Bacopa caroliniana...Walt.) Robins, Myriophyllum braziliense Camb., Potamogeton ilinoensis Morong, and Proserpinacc paZustris L. Among these species, Bacopa , Myriophylum...Means and Standard Errors are Based on Four Replications Sediment Species Nutrient Branched Oak Keystone Pawnee Bacopa N 27.5 + 0.2 24.7 + 0.2 26.4 + 0.1

  13. Effect of bioturbation on metal-sulfide oxidation in surficial freshwater sediments

    SciTech Connect

    Peterson, G.S.; Ankley, G.T.; Leonard, E.N.

    1996-12-01

    Recent studies have demonstrated the role of acid-volatile sulfide (AVS) in controlling the bioavailability of several cationic metals in anoxic sediments. However, metal-sulfide complexes can be relatively labile with respect to oxidation associated with factors such as seasonal changes in rates of oxidation/production of AVS. Another potentially important mechanism of AVS oxidation in surficial sediments is bioturbation. The authors used different densities of the burrowing oligochaete Lumbriculus variegatus in a series of laboratory experiments to evaluate the effect of bioturbation on oxidation of AVS and subsequent bioavailability of cadmium and zinc spiked into freshwater sediments. Metal bioavailability was determined directly by bioaccumulation in the test organisms and indirectly through analysis of interstitial (pore) water metal concentrations. In the studies, horizon-specific sediment analyses were conducted to assess spatial differences in AVS and pore-water metal concentrations specifically related to organism activity. Burrowing activity of the oligochaete significantly reduced AVS concentrations in surficial sediments in a density-dependent manner and resulted in elevated interstitial water concentrations of cadmium but not zinc. Concentrations of cadmium in pore water from deeper horizons were consistently lower than those in the surficial sediments. The bioaccumulation of cadmium, but not zinc, but the oligochaetes. Overall, the results indicate that bioturbation can enhance the bioavailability of some cationic metals in surficial sediments, via oxidation of AVS, and demonstrate the importance of analyzing surficial sediments when assessing bioavailability of metals in sediments.

  14. VARIATIONS IN THE SPECTRAL PROPERTIES OF FRESHWATER AND ESTUARINE CDOM CAUSED BY PARTITIONING ONTO RIVER AND ESTUARINE SEDIMENTS

    EPA Science Inventory

    The optical properties and geochemical cycling of chromophoric dissolved organic matter (CDOM) are altered by its sorption to freshwater and estuarine sediments. Measured partition coefficients (Kp) of Satilla River (Georgia) and Cape Fear River estuary (North Carolina) CDOM ran...

  15. A preliminary evaluation of sediment quality assessment values for freshwater ecosystems

    USGS Publications Warehouse

    Smith, Sherri L.; MacDonald, Donald D.; Keenleyside, Karen A.; Ingersoll, Christopher G.; Field, L. Jay

    1996-01-01

    Sediment quality assessment values were developed using a weight of evidence approach in which matching biological and chemical data from numerous modelling, laboratory, and field studies performed on freshwater sediments were compiled and analyzed. Two assessment values (a threshold effect level (TEL) and a probable effect level(PEL)) were derived for 23 substances, including eight trace metals, six individual polycyclic aromatic hydrocarbons (PAHs), total polychlorinated biphenyls (PCBs), and eight pesticides. The two values defined three ranges of chemical concentrations; those that were (1) rarely, (2) occasionally, and (3) frequently associated with adverse biological effects. An evaluation of the percent incidence of adverse biological effects within the three concentration ranges indicated that the reliability of the TELs (i.e., the degree to which the TELs represent concentrations within the data set below which adverse effects rarely occur) was consistently good. However, this preliminary evaluation indicated that most of the PELs were less reliable (i.e., they did not adequately represent concentrations within the data set above which adverse effects frequently occur). Nonetheless, these values were often comparable to other biological effects-based assessment values (which were themselves reliable), which increased the level of confidence that could be placed in our values. This method is being used as a basis for developing national sediment quality guidelines for freshwater systems in Canada and sediment effect concentrations as part of the Assessment and Remediation of Contaminated Sediments (ARCS) program in the Great Lakes.

  16. Temporal and Spatial Dynamics of Sediment Anaerobic Ammonium Oxidation (Anammox) Bacteria in Freshwater Lakes.

    PubMed

    Yang, Yuyin; Dai, Yu; Li, Ningning; Li, Bingxin; Xie, Shuguang; Liu, Yong

    2017-02-01

    Anaerobic ammonium-oxidizing (anammox) process can play an important role in freshwater nitrogen cycle. However, the distribution of anammox bacteria in freshwater lake and the associated environmental factors remain essentially unclear. The present study investigated the temporal and spatial dynamics of sediment anammox bacterial populations in eutrotrophic Dianchi Lake and mesotrophic Erhai Lake on the Yunnan Plateau (southwestern China). The remarkable spatial change of anammox bacterial abundance was found in Dianchi Lake, while the relatively slight spatial shift occurred in Erhai Lake. Dianchi Lake had greater anammox bacterial abundance than Erhai Lake. In both Dianchi Lake and Erhai Lake, anammox bacteria were much more abundant in summer than in spring. Anammox bacterial community richness, diversity, and structure in these two freshwater lakes were subjected to temporal and spatial variations. Sediment anammox bacterial communities in Dianchi Lake and Erhai Lake were dominated by Candidatus Brocadia and a novel phylotype followed by Candidatus Kuenenia; however, these two lakes had distinct anammox bacterial community structure. In addition, trophic status determined sediment anammox bacterial community structure.

  17. Spatiotemporal variation of planktonic and sediment bacterial assemblages in two plateau freshwater lakes at different trophic status.

    PubMed

    Dai, Yu; Yang, Yuyin; Wu, Zhen; Feng, Qiuyuan; Xie, Shuguang; Liu, Yong

    2016-05-01

    Both planktonic and sediment bacterial assemblages are the important components of freshwater lake ecosystems. However, their spatiotemporal shift and the driving forces remain still elusive. Eutrotrophic Dianchi Lake and mesotrophic Erhai Lake are the largest two freshwater lakes on the Yunnan Plateau (southwestern China). The present study investigated the spatiotemporal shift in both planktonic and sediment bacterial populations in these two plateau freshwater lakes at different trophic status. For either lake, both water and sediment samples were collected from six sampling locations in spring and summer. Bacterioplankton community abundance in Dianchi Lake generally far outnumbered that in Erhai Lake. Sediment bacterial communities in Erhai Lake were found to have higher richness and diversity than those in Dianchi Lake. Sediments had higher bacterial community richness and diversity than waters. The change patterns for both planktonic and sediment bacterial communities were lake-specific and season-specific. Either planktonic or sediment bacterial community structure showed a distinct difference between in Dianchi Lake and in Erhai Lake, and an evident structure difference was also found between planktonic and sediment bacterial communities in either of these two lakes. Planktonic bacterial communities in both Dianchi Lake and Erhai Lake mainly included Proteobacteria (mainly Alpha-, Beta-, and Gammaproteobacteria), Bacteroidetes, Actinobacteria, Cyanobacteria, and Firmicutes, while sediment bacterial communities were mainly represented by Proteobacteria (mainly Beta- and Deltaproteobacteria), Bacteroidetes, Chlorobi, Nitrospirae, Acidobacteria, and Chloroflexi. Trophic status could play important roles in shaping both planktonic and sediment bacterial communities in freshwater lakes.

  18. Development and application of freshwater sediment-toxicity benchmarks for currently used pesticides

    USGS Publications Warehouse

    Nowell, Lisa H.; Norman, Julia E.; Ingersoll, Christopher G.; Moran, Patrick W.

    2016-01-01

    Sediment-toxicity benchmarks are needed to interpret the biological significance of currently used pesticides detected in whole sediments. Two types of freshwater sediment benchmarks for pesticides were developed using spiked-sediment bioassay (SSB) data from the literature. These benchmarks can be used to interpret sediment-toxicity data or to assess the potential toxicity of pesticides in whole sediment. The Likely Effect Benchmark (LEB) defines a pesticide concentration in whole sediment above which there is a high probability of adverse effects on benthic invertebrates, and the Threshold Effect Benchmark (TEB) defines a concentration below which adverse effects are unlikely. For compounds without available SSBs, benchmarks were estimated using equilibrium partitioning (EqP). When a sediment sample contains a pesticide mixture, benchmark quotients can be summed for all detected pesticides to produce an indicator of potential toxicity for that mixture. Benchmarks were developed for 48 pesticide compounds using SSB data and 81 compounds using the EqP approach. In an example application, data for pesticides measured in sediment from 197 streams across the United States were evaluated using these benchmarks, and compared to measured toxicity from whole-sediment toxicity tests conducted with the amphipod Hyalella azteca (28-d exposures) and the midge Chironomus dilutus (10-d exposures). Amphipod survival, weight, and biomass were significantly and inversely related to summed benchmark quotients, whereas midge survival, weight, and biomass showed no relationship to benchmarks. Samples with LEB exceedances were rare (n = 3), but all were toxic to amphipods (i.e., significantly different from control). Significant toxicity to amphipods was observed for 72% of samples exceeding one or more TEBs, compared to 18% of samples below all TEBs. Factors affecting toxicity below TEBs may include the presence of contaminants other than pesticides, physical

  19. Development and application of freshwater sediment-toxicity benchmarks for currently used pesticides.

    PubMed

    Nowell, Lisa H; Norman, Julia E; Ingersoll, Christopher G; Moran, Patrick W

    2016-04-15

    Sediment-toxicity benchmarks are needed to interpret the biological significance of currently used pesticides detected in whole sediments. Two types of freshwater sediment benchmarks for pesticides were developed using spiked-sediment bioassay (SSB) data from the literature. These benchmarks can be used to interpret sediment-toxicity data or to assess the potential toxicity of pesticides in whole sediment. The Likely Effect Benchmark (LEB) defines a pesticide concentration in whole sediment above which there is a high probability of adverse effects on benthic invertebrates, and the Threshold Effect Benchmark (TEB) defines a concentration below which adverse effects are unlikely. For compounds without available SSBs, benchmarks were estimated using equilibrium partitioning (EqP). When a sediment sample contains a pesticide mixture, benchmark quotients can be summed for all detected pesticides to produce an indicator of potential toxicity for that mixture. Benchmarks were developed for 48 pesticide compounds using SSB data and 81 compounds using the EqP approach. In an example application, data for pesticides measured in sediment from 197 streams across the United States were evaluated using these benchmarks, and compared to measured toxicity from whole-sediment toxicity tests conducted with the amphipod Hyalella azteca (28-d exposures) and the midge Chironomus dilutus (10-d exposures). Amphipod survival, weight, and biomass were significantly and inversely related to summed benchmark quotients, whereas midge survival, weight, and biomass showed no relationship to benchmarks. Samples with LEB exceedances were rare (n=3), but all were toxic to amphipods (i.e., significantly different from control). Significant toxicity to amphipods was observed for 72% of samples exceeding one or more TEBs, compared to 18% of samples below all TEBs. Factors affecting toxicity below TEBs may include the presence of contaminants other than pesticides, physical/chemical characteristics

  20. Distinguishing internal and external sediment sources in a tidal freshwater wetland, the Netherlands

    NASA Astrophysics Data System (ADS)

    van der Deijl, Eveline C.; van der Perk, Marcel; Kik, Nanda J.; Verschelling, Eelco; Middelkoop, Hans

    2015-04-01

    Many deltas across the globe suffer from drowning due to sea level rise or land subsidence in combination with sediment starvation. The process of drowning can be attenuated by enhancing sediment inputs or the sediment trapping efficiency of deltas. To examine the sediment budget of delta areas based on measurements of sediment deposition, it is essential to distinguish the sediment that has entered the area from upstream areas from sediment that has been redistributed within the area. This pilot study aims to explore the prospects to distinguish between external and internal sediment sources based on the geochemical composition of the sediment deposited. This study was carried out in the Kleine Noordwaard, which is part of the Brabantse Biesbosch, a former inland delta located in-between the Rhine and Meuse rivers in the south-western part of the Netherlands. A significant part of this area has been embanked and turned into polder areas in the early 19th century. In contrast to many tidal creeks and flats, the polder areas have not received inputs of severely contaminated river sediment between the 1930s and 1980s. A number of polders have recently or are currently being de-poldered again, i.e. converted from agricultural polder land into an inundated tidal freshwater wetland, in order to increase the conveyance capacity of the Rhine River during extreme discharge situations, thereby lowering the peak water levels upstream and to enhance the nature values of the area. The external and internal sediment sources of the sediment deposited in the Kleine Noordwaard could be discriminated based on the zinc (Zn) and rubidium (Rb) concentrations. These two elements exhibit a different linear relation for the more contaminated external sediment originating from the Rhine River and the less contaminated, internally redistributed sediment originating from the topsoil of the former polder area. The mixture proportion for each sediment sample could not be directly derived

  1. Different methods for extracting bacteria from freshwater sediment and a simple method to measure bacterial production in sediment samples.

    PubMed

    dos Santos Furtado, A L; Casper, P

    2000-08-01

    The efficiency of different treatments was tested to extract bacterial cells from freshwater sediment samples. The influence of sonication, density gradient centrifugation, fixation by formalin and centrifugation speed on bacterial recovery was investigated. The method developed by Smith and Azam [Mar. Microb. Food Webs 6 (1992) 107] to measure microbial activity on bacterioplankton (3H-leucine incorporation), was also evaluated in sediment samples. After 1 min of sonication bacterial abundance was reduced by about 47% in diluted sediments with tetrasodium pyrophosphate. With the addition of Percoll after sonication, bacterial counts were not significantly different (P<0.05). Fixation by formalin increased bacterial counts using sonication. However, higher bacterial abundance was estimated in non-sonicated samples. Bacterial abundance in samples centrifuged at 7000xg with and without Percoll was not significantly different (P<0.05). Highest bacterial abundance was obtained after centrifugation at low speed (750xg). Bacterial abundance decreased with higher centrifugation speed (750, 1500 and 3000xg), the difference, however, was not significant. Bacterial production ranged from 0.10 microg C cm(-3) d(-1) in autoclaved sediment to 0. 27 microg C cm(-3) d(-1) in untreated sediment. The radioactivity measured in controls of both untreated and autoclaved sediment was high (70 and 91%, respectively), indicating a high level of leucine adsorption in sediment particles. In contrast, radioactivity in control samples previously centrifuged was markedly lower (6%). Despite the high values of radioactivity in the controls, bacterial production in untreated sediment was significantly higher than in centrifuged sediment (P<0.05).

  2. Toxicity of nickel-spiked freshwater sediments to benthic invertebrates-Spiking methodology, species sensitivity, and nickel bioavailability

    USGS Publications Warehouse

    Besser, John M.; Brumbaugh, William G.; Kemble, Nile E.; Ivey, Chris D.; Kunz, James L.; Ingersoll, Christopher G.; Rudel, David

    2011-01-01

    This report summarizes data from studies of the toxicity and bioavailability of nickel in nickel-spiked freshwater sediments. The goal of these studies was to generate toxicity and chemistry data to support development of broadly applicable sediment quality guidelines for nickel. The studies were conducted as three tasks, which are presented here as three chapters: Task 1, Development of methods for preparation and toxicity testing of nickel-spiked freshwater sediments; Task 2, Sensitivity of benthic invertebrates to toxicity of nickel-spiked freshwater sediments; and Task 3, Effect of sediment characteristics on nickel bioavailability. Appendices with additional methodological details and raw chemistry and toxicity data for the three tasks are available online at http://pubs.usgs.gov/sir/2011/5225/downloads/.

  3. Impact of a large tropical reservoir on riverine transport of sediment, carbon, and nutrients to downstream wetlands

    NASA Astrophysics Data System (ADS)

    Kunz, Manuel J.; Wüest, Alfred; Wehrli, Bernhard; Landert, Jan; Senn, David B.

    2011-12-01

    Large dams can have major ecological and biogeochemical impacts on downstream ecosystems such as wetlands and riparian habitats. We examined sediment removal and carbon (C), nitrogen (N), and phosphorus (P) cycling in Itezhi-Tezhi Reservoir (ITT; area = 364 km2, hydraulic residence time = 0.7 yr), which is located directly upstream of a high ecological value floodplain ecosystem (Kafue Flats) in the Zambezi River Basin. Field investigations (sediment cores, sediment traps, water column samples), mass balance estimates, and a numerical biogeochemical reservoir model were combined to estimate N, P, C, and sediment removal, organic C mineralization, primary production, and N fixation. Since dam completion in 1978, 330 × 103 tons (t) of sediment and 16 × 103, 1.5 × 103, 200 t of C, N, and P, respectively, have accumulated annually in ITT sediments. Approximately 50% of N inputs and 60% of P inputs are removed by the reservoir, illustrating its potential in decreasing nutrients to the downstream Kafue Flats floodplain. The biogeochemical model predicted substantial primary production in ITT (˜280 g C m-2 yr-1), and significant N-fixation (˜30% for the total primary production) was required to support primary production due to marginal inputs of inorganic N. Model simulations indicate that future hydropower development in the reservoir, involving the installation of turbines driven by hypolimnetic water, will likely result in the delivery of low-oxygen waters to downstream ecosystems and increased outputs of dissolved inorganic N and P by a factor of ˜4 and ˜2 compared to current dam management, respectively.

  4. Toxicity assessment of reference and natural freshwater sediments with the LuminoTox assay.

    PubMed

    Dellamatrice, P M; Monteiro, R T R; Blaise, C; Slabbert, J L; Gagné, F; Alleau, S

    2006-08-01

    We examined the possibility of adapting the LuminoTox, a recently-commercialized bioanalytical testing procedure initially developed for aqueous samples, to assess the toxic potential of sediments. This portable fluorescent biosensor uses photosynthetic enzyme complexes (PECs) to rapidly measure photosynthetic efficiency. LuminoTox testing of 14 CRM (Certified Reference Material) sediments was first undertaken with (1) a "solid phase assay" (Lum-SPA) in which PECs are in intimate contact with sediment slurries for a 15 min exposure period and (2) an elutriate assay (Lum-ELU) in which PECs are exposed for 15 min to sediment water elutriates. CRM sediment toxicity data were then compared with those generated with the Microtox Solid Phase Assay (Mic-SPA). A significant correlation (P < 0.05) was shown to exist between Lum-SPA and Mic-SPA, indicating that both tests display a similar toxicity response pattern for CRM sediments having differing contaminant profiles. The sediment elutriate Lum-ELU assay displayed toxicity responses (i.e. measurable IC20s) for eight of the 14 CRM sediments, suggesting that it is capable of determining the presence of sediment contaminants that are readily soluble in an aqueous elutriate. Lum-SPA and Mic-SPA bioassays were further conducted on 12 natural freshwater sediments and their toxicity responses were more weakly, yet significantly, correlated. Finally, Lum-SPA testing undertaken with increasing mixtures of kaolin clay confirmed that its toxicity responses, in a manner similar to those reported for the Mic-SPA assay, are also subject to the influence of grain size. While further studies will be required to more fully understand the relationship between Lum-SPA assay responses and the physicochemical makeup of sediments (e.g., grain size, combined presence of natural and anthropogenic contaminants), these preliminary results suggest that LuminoTox testing could be a useful screen to assess the toxic potential of solid media.

  5. A vacuum-operated pore-water extractor for estuarine and freshwater sediments

    USGS Publications Warehouse

    Winger, Parley V.; Lasier, Peter J.

    1991-01-01

    A vacuum-operated pore-water extractor for estuarine and freshwater sediments was developed and constructed from a fused-glass air stone attached with aquarium airline tubing to a 30 or 60 cc polypropylene syringe. Pore water is extracted by inserting the air stone into the sediment and creating a vacuum by retracting and bracing the syringe plunger. A hand-operated vacuum pump attached to a filtration flask was also evaluated as an alternative vacuum source. The volume and time to extract pore water varies with the number of devices and the sediment particle size. Extraction time is longer for fine sediments than for sandy sediments. Four liters of sediment generally yield between 500 and 1,500 mL of pore water. The sediment that surrounds and accumulates on the air stone acts as a filter, and, except for the first few milliliters, the collected pore water is clear. Because there is no exposure to air or avenue for escape, volatile compounds andin situ characteristics are retained in the extracted pore water.

  6. Suspended-sediment loads, reservoir sediment trap efficiency, and upstream and downstream channel stability for Kanopolis and Tuttle Creek Lakes, Kansas, 2008-10

    USGS Publications Warehouse

    Juracek, Kyle E.

    2011-01-01

    Continuous streamflow and turbidity data collected from October 1, 2008, to September 30, 2010, at streamgage sites upstream and downstream from Kanopolis and Tuttle Creek Lakes, Kansas, were used to compute the total suspended-sediment load delivered to and released from each reservoir as well as the sediment trap efficiency for each reservoir. Ongoing sedimentation is decreasing the ability of the reservoirs to serve several purposes including flood control, water supply, and recreation. River channel stability upstream and downstream from the reservoirs was assessed using historical streamgage information. For Kanopolis Lake, the total 2-year inflow suspended-sediment load was computed to be 600 million pounds. Most of the suspended-sediment load was delivered during short-term, high-discharge periods. The total 2-year outflow suspended-sediment load was computed to be 31 million pounds. Sediment trap efficiency for the reservoir was estimated to be 95 percent. The mean annual suspended-sediment yield from the upstream basin was estimated to be 129,000 pounds per square mile per year. No pronounced changes in channel width were evident at five streamgage sites located upstream from the reservoir. At the Ellsworth streamgage site, located upstream from the reservoir, long-term channel-bed aggradation was followed by a period of stability. Current (2010) conditions at five streamgages located upstream from the reservoir were typified by channel-bed stability. At the Langley streamgage site, located immediately downstream from the reservoir, the channel bed degraded 6.15 feet from 1948 to 2010. For Tuttle Creek Lake, the total 2-year inflow suspended-sediment load was computed to be 13.3 billion pounds. Most of the suspended-sediment load was delivered during short-term, high-discharge periods. The total 2-year outflow suspended-sediment load was computed to be 327 million pounds. Sediment trap efficiency for the reservoir was estimated to be 98 percent. The mean

  7. Role of methanogens and other bacteria in degradation of dimethyl sulfide and methanethiol in anoxic freshwater sediments

    SciTech Connect

    Lomans, B.P.; Op den Camp, H.J.M.; Pol, A.; Drift, C. van der; Vogels, G.D.

    1999-05-01

    The roles of several trophic groups of organisms (methanogens and sulfate- and nitrate-reducing bacteria) in the microbial degradation of methanethiol (MT) and dimethyl sulfide (DMS) were studied in freshwater sediments. The incubation of DMS- and MT-amended slurries revealed that methanogens are the dominant DMS and MT utilizers in sulfate-poor freshwater systems. In sediment slurries, which were depleted of sulfate, 75 {micro}mol of DMS was stoichiometrically converted into 112 {micro}mol of methane. The addition of methanol or MT to DMS-degrading slurries at concentrations similar to that of DMS reduced DMS degradation rates. This indicates that the methanogens in freshwater sediments, which degrade DMS, are also consumers of methanol and MT. To verify whether a competition between sulfate-reducing and methanogenic bacteria for DMS or MT takes place in sulfate-rich freshwater systems, the effects of sulfate and inhibitors, like bromoethanesulfonic acid, molybdate, and tungstate, on the degradation of MT and DMS were studied. The results for these sulfate-rich and sulfate-amended slurry incubations clearly demonstrated that besides methanogens, sulfate-reducing bacteria take part in MT and DMS degradation in freshwater sediments, provided that sulfate is available. The possible involvement of an interspecies hydrogen transfer in these processes is discussed. In general, the study provides evidence for methanogenesis as a major sink for MT and DMS in freshwater sediments.

  8. Role of methanogens and other bacteria in degradation of dimethyl sulfide and methanethiol in anoxic freshwater sediments.

    PubMed

    Lomans, B P; Op den Camp, H J; Pol, A; van der Drift, C; Vogels, G D

    1999-05-01

    The roles of several trophic groups of organisms (methanogens and sulfate- and nitrate-reducing bacteria) in the microbial degradation of methanethiol (MT) and dimethyl sulfide (DMS) were studied in freshwater sediments. The incubation of DMS- and MT-amended slurries revealed that methanogens are the dominant DMS and MT utilizers in sulfate-poor freshwater systems. In sediment slurries, which were depleted of sulfate, 75 micromol of DMS was stoichiometrically converted into 112 micromol of methane. The addition of methanol or MT to DMS-degrading slurries at concentrations similar to that of DMS reduced DMS degradation rates. This indicates that the methanogens in freshwater sediments, which degrade DMS, are also consumers of methanol and MT. To verify whether a competition between sulfate-reducing and methanogenic bacteria for DMS or MT takes place in sulfate-rich freshwater systems, the effects of sulfate and inhibitors, like bromoethanesulfonic acid, molybdate, and tungstate, on the degradation of MT and DMS were studied. The results for these sulfate-rich and sulfate-amended slurry incubations clearly demonstrated that besides methanogens, sulfate-reducing bacteria take part in MT and DMS degradation in freshwater sediments, provided that sulfate is available. The possible involvement of an interspecies hydrogen transfer in these processes is discussed. In general, our study provides evidence for methanogenesis as a major sink for MT and DMS in freshwater sediments.

  9. The palaeoecologic and biostratigraphic evaluation of Middle Miocene freshwater sediments and microfossils near Denkendorf (Bavaria)

    NASA Astrophysics Data System (ADS)

    Pirkenseer, C.; Reichenbacher, B.

    2009-04-01

    Isolated freshwater sediments that partially cover the Jurassic limestones of the Swabian and Franconian Alb represent the northernmost expansion of the Molasse sediments. These sediments represent the analogue to the Brackish Molasse and part of the Upper Freshwater Molasse (Ottnangian to Badenian). Samples of six drillcores from the vicinity of Denkendorf (Franconian Alb, Bavaria) yielded ostracods of the superfamily Cypridoidea, frequent oogonia of charophytes, otoliths of the family Gobiidae, teeth of several taxa of micromammals as well as abundant material of amphibians, reptiles and gastropods. The sediments show a general trend from basal, more clastic influenced deposits to uniformly developed marly sediments with freshwater carbonate intercalations. The acme of microfossil occurrences is associated with the latter section. The palaeoecologic analysis characterises the environment as structured littoral zone (e.g. Pseudocandona steinheimensis, Gyraulus sp., Planorbarius sp., Rana ridibunda, Triturus sp.) of a larger oligo- to mesotrophic (Chara spp., Nitellopsis spp.) low-energy freshwater system under a warm subtropical to tropical climate (Diplocynodon cf. D. styriacus, Channa sp.). The cooccurrence of suboxia- and oligotrophy-tolerant species like Palaeocarassius sp. and Channa sp. may indicate short intervals of regional depletion of oxygene and raise of nutrient content. Mediocypris candonaeformis and Gobius latiformis represent relict species of the preceding Brackwassermolasse. Terrestrial elements include Proboscidea (phalanx), Cervidae (astragalus), land turtles (Testudo sp.) and gastropods (Clausiliidae, Pupillidae, Cepaea sp.). The occurrence of Jurassic xenoclasts and bean iron ore indicate the presence of a tributary system. The faunal and floral assemblages show close affinities to other localities of the Molasse Basin (e.g., Sandelzhausen). In accordance with the depositional history this indicates a palaeogeographic connection with the

  10. Toxicological effects of short-term resuspension of metal-contaminated freshwater and marine sediments.

    PubMed

    Fetters, Kyle J; Costello, David M; Hammerschmidt, Chad R; Burton, G Allen

    2016-03-01

    Sediments in navigation-dominated waterways frequently are contaminated with a variety of particle-associated pollutants and are subject to frequent short-term resuspension events. There is little information documenting whether resuspension of metal-contaminated sediments has adverse ecological effects on resident aquatic organisms. Using a novel laboratory approach, the authors examined the mobilization of Zn, Cu, Cd, Pb, Ni, and Cr during resuspension of 1 freshwater and 2 coastal marine sediments and whether resuspension and redeposition resulted in toxicity to model organisms. Sediment flux exposure chambers were used to resuspend metal-contaminated sediments from 1 site in Lake DePue, Illinois (USA), and 2 sites in Portsmouth Naval Shipyard, Maine (USA). Short-term (4-h) resuspension of sediment at environmentally relevant suspended particulate matter concentrations (<1 g/L) resulted in metal mobilization to water that was sediment and metal specific. Overall, the net release of metals from suspended particles was limited, likely because of scavenging by organic matter and Fe oxides that formed during sediment interaction with oxic water. Minimal toxicity to organisms (survival of Hyalella azteca and Daphnia magna; survival, growth, and tissue metal concentration of Neanthes arenaceodentata; bioluminescence of Pyrocystis lunula) was observed during 4-h exposure to resuspended sediments and during 4-d to 10-d post-exposure recovery periods in uncontaminated water. Redeposited suspended particles exhibited increased metal bioavailability and toxicity to H. azteca, highlighting the potential for adverse ecological impacts because of changes in metal speciation. It is important to consider interactions between organisms' life histories and sediment disturbance regimes when assessing risks to ecosystems.

  11. Distribution of sediment ammonia-oxidizing microorganisms in plateau freshwater lakes.

    PubMed

    Liu, Yong; Zhang, Jingxu; Zhao, Lei; Li, Yuzhao; Dai, Yu; Xie, Shuguang

    2015-05-01

    Both ammonia-oxidizing bacteria (AOB) and archaea (AOA) can play important roles in ammonia biotransformation in ecosystems. However, the factors regulating the distribution of these microorganisms in lacustrine ecosystems remain essentially unclear. The present study investigated the effects of geographic location on the distribution of sediment AOA and AOB in 13 freshwater lakes on the Yunnan Plateau (China). The spatial dissimilarity in the abundance and structure of sediment AOA and AOB communities was observed in these plateau lakes. AOA abundance was usually less than AOB abundance, and the AOA/AOB ratio was positively correlated with water depth. Nitrososphaera-like AOA occurred in most of the studied lakes and were dominant in two lakes. Nitrosospira was the dominant AOB species in most of the lakes, while Nitrosomonas showed high abundance only in three lakes. In addition, geographic location was found to affect lake sediment AOB community structure.

  12. Estimating of suspended sediment loads of rivers in the Seine downstream basin and coastal rivers in Southeastern Channel

    NASA Astrophysics Data System (ADS)

    Landemaine, Valentin; Cerdan, Olivier; Laignel, Benoit; Fournier, Matthieu; Copard, Yoann

    2014-05-01

    Sediment exports in rivers constitute the essential of materials transfer from the land surface to the ocean and contribute significantly to the transfer of nutrients, pesticides, heavy metals which can affect water quality. Such problems of water pollution are particularly present at the Norman loess plateaus because soil erosion is a frequent phenomena and mudslides are common. In this context, the quantification of sediment load, as well as the short and long term variability analysis are a key component for any sustainable management project of water resources. The quantification of sediment fluxes is based on turbidity, suspended sediment concentrations (SSC) and discharge measurements. These measurements must be made with sufficient high frequency for integrating temporal variability of SSC and flows. However, the cost of a high frequency monitoring limits their use at large scale. In France, discharges are monitored using daily frequency (Banque Hydro), while SSC are measured in monthly or bimonthly frequency under the national water quality survey system (RNB). With these low frequency measurements, an algorithm must be used to reconstruct SSC temporal variability and to estimate a sediment flux. Many estimation algorithms have been developed in recent decades, from the simplest to the most elaborate, but no consensus has been reached on the use of a particular algorithm because of the complexity of SSC-discharge relationship. In this study, the analysis focuses on eight Channel coastal watersheds and nine Seine watersheds in the downstream part. We have a several years of high-frequency measurements on nine watersheds with highly variable area (10 km² to 10,000 km²) and low-frequency measurements for all watersheds. From these data, we compared the statistical performance of eleven algorithms to estimate sediment fluxes conventionally used in the literature. These algorithms are: averaging estimator, ratio estimator, linear interpolation, rating curve

  13. Evaluating the provenance of fine sediment in degraded Freshwater Pearl Mussel habitats.

    NASA Astrophysics Data System (ADS)

    Blake, Will; Haley, Steve; Goddard, Rupert; Stone, Peter; Broadhead, Kat

    2015-04-01

    Freshwater Pearl Mussels (FWPM), Margaritifera margaritifera, are among the most critically threatened freshwater bivalves worldwide. In addition to their important roles in particle processing, nutrient release, and sediment mixing, they also serve as an ideal target species for evaluation of aquatic ecosystem functioning especially in the context of their symbiotic relationship with Atlantic salmon Salmo salar and brown or sea trout Salmo trutta. Poor water quality, particularly eutrophication, and siltation are considered major contributory factors in the decline of the species hence management of diffuse water pollution from agriculture (DWPA) is a key priority in catchments that host FWPM habitats. Against this background, this study adopted a combined monitoring, surveying and sediment fingerprinting approach to determine the principal sources of fine sediment impacting FWPM habitats in the River Clun, a Special area of Conservation (SAC) for FWPMs in central western UK. Potential sediment production hotspot areas in the ca 200 km2 catchment area upstream of FWPM habitats were initially evaluated using the SCIMAP risk mapping tool. Suspended sediment monitoring was undertaken on the main stem channel where FWPM habitats are located and wet weather catchment walkover surveys undertaken along the upstream river and stream network. Within this monitoring framework, sediment fingerprinting was undertaken at two levels. The first level aimed to link primary catchment sources (cultivated and uncultivated soil, channel bank erosion, and material transported via roads and tracks) to suspended sediment output from each main tributary upstream of the FWPM beds. The second level linked silt in the FWMP beds to the main tributaries, as integrated source end-members, with the inclusion of main channel bank erosion, a notable feature of walkover surveys as an additional source. Geochemical fingerprints, determined by XRF spectroscopy, were dominated by conservative mineral

  14. Endpoints for sediment toxicity tests with the freshwater bivalve Sphaerium corneum

    SciTech Connect

    Looise, B.A.S.; Holwerda, D.A.; Foekema, E.M.

    1994-12-31

    Being a participant in the EU project `Sediment toxicity tests for poorly water soluble substances` the authors examined toxicological endpoints with the freshwater bivalve Sphaerium corneum. These included induction of two biotransformation enzymes, glutathione S-transferase and catalase, and survival time under anoxic stress. Animals were taken from the field and exposed to sediments spiked with contaminants or to contaminants in a water-only system. Also a field sediment from a contaminated area was included. Spiking substances were lindane, dieldrin, benzo[a]pyrene, and PCB. After 1--5 weeks of exposure to contaminated sediments or water, animals were examined for induction of the biotransformation enzymes glutathione S-transferase (GST) and catalase. GST activity in whole body soft tissue was measured spectrophotometrically by the amount of conjugate formed, using 1-chloro-2,4-dinitrobenzene as a substrate and glutathione as a co-substrate. Catalase activity was also measured spectrophotometrically by the transformation rate of the substrate, hydrogen peroxide. None of the treatments resulted in a significant increase of GST or catalase activities. After 2--5 weeks of exposure to contaminated sediment, the animals were transferred to individual 10-mL bottles. Results show significant decrease of survival times of animals exposed to contaminated sediments.

  15. Dual radiotracer measurement of zoobenthos-mediated solute and particle transport in freshwater sediments

    SciTech Connect

    Krezoski, J.R.; Robbins, J.A.; White, D.S.

    1984-09-01

    ..gamma.. spectroscopy methods have been applied to determine the effects of two freshwater benthic macroinvertebrates, on reworking of sediments and the transfer of solutes across the sediment-water interface. Natural lake sediments and overlying water were contained in temperature-regulated rectangular plastic cells. After addition of Stylodrilus (oligochaete worms) and Pontoporeia (crustacean amphipods) to these microcosms, the vertical distribution of Cs-137 (a tracer of particle transport) and Na-22 (a tracer of solute transport) were determined. In cells with Stylodrilus, the Cs-137 layer moved downward at a rate that decreased exponentially with time. In cells with Pontoporeia, Cs-137 activity was smeared downward in time owing to eddy diffusive mixing of sediments over a small range (1-2 cm). In cells without worms, the veneer of Cs active material remained at the interface while the penetration of Na-22 into sediments was consistent with diffusion in free solution with small corrections for sediment porosity and sorption. In cells with live Stylodrilus, penetration of Na-22 within the feeding zone was considerably more rapid. Advective transport arises from the incorporation of Na-22 into pore fluids moved downward as a result of conveyor-belt feeding. In cells with Pontoporeia, De is approximately twice that in control cells. In these cells, Na-22 profiles may be treated theoretically without advection. 47 references, 6 figures, 2 tables.

  16. Accumulation and toxicokinetics of fluoranthene in sediment bioassays with freshwater amphipods

    SciTech Connect

    Driscoll, S.K.; Harkey, G.A.; Landrum, P.F.

    1997-04-01

    Two freshwater amphipods, Hyalella azteca and Diporeia sp., were exposed to sediment spiked with radiolabeled fluoranthene at nominal concentrations of 0.1 (trace) to 1,270 nmol fluoranthene/g dry weight. In two experiments, uptake kinetics and mortality were determined over 30-d exposures. Concentrations of fluoranthene in sediment and pore water were also measured. Mean survival of H. azteca was generally high, greater than 90% after 10 or 16 d, and greater than 74% after 30 d. Mean survival was lower for Diporeia, 14% after a 30-d exposure to the highest sediment concentration in experiment 1, and 53% in experiment 2. Tissue concentrations in Diporeia were as high as 2 to 4 {micro}mol/g wet weight, a body burden that could be expected to result in death by narcosis. Hyalella azteca did not typically accumulate more than 1 {micro}mol/g wet weight, which is consistent with the lower observed mortality. Apparent steady-state biota-sediment accumulation factors (BSAFs, lipid- and organic-carbon-normalized) for sediment concentrations other than trace level tended to be higher for Diporeia than for H. azteca. The BSAFs for trace levels tended to be lower for both species in comparison to higher sediment concentrations. For both organisms, the internal concentration based on body residue was a more reliable indicator of toxicity than were equilibrium partitioning predictions.

  17. Effects of storage time on the toxicity of sediments to freshwater benthic invertebrates

    SciTech Connect

    DeFoe, D.L.; Ankley, G.T.

    1995-12-31

    The objective of this study was to define the effects of storage time on the toxicity of a series of freshwater sediments. Sixteen sediments with varying types of contaminants (metals, pesticides, PCBs, ammonia) were collected, held at 4 C, and periodically tested for toxicity to the amphipod Hyalella azteca and the midge Chironomus tentans for storage times ranging from 8.5 to 25 months. The sediments ranged from nontoxic to extremely toxic (100% mortality) in 10-d assays with both species, with the majority of samples displaying an intermediate degree of toxicity (e.g., partial kills, reduced growth). Toxicity of sediments causing total mortality of organisms in 10-d was quantified through the determination of LT50 (lethal time to 50% mortality) assays, in addition to the standard 10-d tests. Toxicity of nearly all the samples did not vary significantly with storage time; in those instances when toxicity did change, the same relative conclusions concerning sample toxicity generally would have been made regardless of when they were tested (e.g., toxic samples did not become non-toxic). This data suggests that current guidelines concerning sediment storage times (e.g., 0--8 weeks) may be overly restrictive, at least with respect to toxicity testing. The results also suggested that some test variability inherent in whole sediment assays can actually be reduced by short term storage. That is, among replicates, variability appeared to decrease with increasing storage time.

  18. Downstream Patterns of Bed-material Grain Size in a Large, Lowland Alluvial River Subject to low Sediment Supply

    NASA Astrophysics Data System (ADS)

    Singer, M. B.

    2007-12-01

    Downstream patterns of bed-material grain size were investigated over ~380 km of the Sacramento River in northern California, USA. Representative subaqueous bed-material samples were collected from ~125 cross sections spaced ~2 km apart using the 8.2 liter Ponar dredge sampler (for fine beds) and the 23.2 liter Cooper Scooper drag bucket sampler (for mixed and coarse beds), both of which were deployed from a jet boat. Samples were extracted from crossing points in straight reaches that represent the integration of sediment transport through upstream bends. Single samples were collected at simple, narrow cross sections and up to three samples were collected at sections with variable cross-stream topography. Samples were aggregated for each cross section, dried, sieved through eleven phi-sized mesh sieves (0.063-128 mm), and weighed to compute grain size distributions. The largest grain in >95% of all aggregated samples made up <5% of the total sample dry weight, rendering them adequately representative. Sacramento River grain size data suggest departure from widely accepted notions of bed material sorting in rivers in three fundamental ways: 1) subaqueous grain size data differ systematically from nearby data collected from exposed bars; 2) the transition from gravel to sand is not abrupt, but instead extends for several hundred kilometers; and 3) tributaries tend to have a small impact on mainstem downstream grain size sorting. These findings either imply something unique about the Sacramento River dataset compared with prior published data or differences in data collection methods and both possibilities were investigated. The Sacramento River basin is subject to lower sediment supply compared with prior systematically surveyed basins. The impact of decreasing supply (associated with a declining glacial hangover and human impacts) is a decoupling between main channel sediment transport and bar deposition. Thus, in addition to the inherent processes of grain

  19. Application of a benthic euryhaline amphipod, Corophium sp., as a sediment toxicity testing organism for both freshwater and estuarine systems.

    PubMed

    Hyne, R V; Everett, D A

    1998-01-01

    The use of an as-yet-undescribed euryhaline Corophium sp. amphipod as a sediment toxicity testing organism was assessed. The species was found to be ubiquitous in many tidal areas of the Hawkesbury River catchment. The salinity of habitat sites ranged from 0.1 to 24 ppt, sediment total organic carbon (TOC) ranged from 0.4% to 3.5%, and the fines content (< 63 micron particle size) of the sediment ranged from 4.3% to 47.6%. Monitored populations ranged from a density of 59 to 6622 individuals per m2, with freshwater sites with a sediment fines content greater than 20% having the highest population densities. The sensitivity of the Corophium sp. was assessed by using copper chloride and ammonium chloride as reference toxicants in a 96-h static water-only test and a 10-day static sediment test. The LC50 for copper in freshwater-only exposures was 80 to 86 microg/L, using adult animals collected from the field. In contrast, the LC50 for copper in freshwater sediment and the sediment pore water were 840 mg/kg (dry weight) and 99 microg/L, respectively. The LC50 for ammonia (total) in freshwater-only at pH 7 was 5.5 mg/L. In contrast, the LC50 for ammonia (total) in freshwater sediment and the sediment pore water were 110 mg/kg (dry weight) and 6 mg/L, respectively. Laboratory cultures of 5 per thousand to 15 per thousand salinity were optimal for supporting the release of juveniles. Juveniles collected from laboratory cultures had a LC50 for copper in 5 per thousand and 10 per thousand salinity of 9 microg/L and 28.5 microg/L, respectively, in water-only exposures. The juveniles would be suitable for use in the development of a chronic sediment toxicity test with growth as the endpoint.

  20. Ultrasound-assisted extraction method for the simultaneous determination of emerging contaminants in freshwater sediments.

    PubMed

    de Sousa, Diana Nara Ribeiro; Grosseli, Guilherme Martins; Mozeto, Antonio Aparecido; Carneiro, Renato Lajarim; Fadini, Pedro Sergio

    2015-10-01

    Sediments are the fate of several emerging organic contaminants, such as pharmaceuticals, personal care products and hormones, and therefore an important subject in environmental monitoring studies. In the present work, a simple and sensitive method was developed, validated and applied for the simultaneous extraction of atenolol, caffeine, carbamazepine, diclofenac, ibuprofen, naproxen, propranolol, triclosan, estrone, 17-β-estradiol and 17-α-ethinylestradiol using ultrasound-assisted extraction from freshwater sediment samples followed by solid-phase extraction clean-up and liquid chromatography with tandem mass spectrometry detection. The solvent type and extraction pH were evaluated to obtain the highest recoveries of the compounds. The best method shows absolute recoveries between 54.0 and 94.4% at 50 ng/g concentration. The method exhibits good precision with relative standard deviation ranging from 1.0-16%. The detection and quantification limits ranged from 0.006-0.067 and 0.016-0.336 ng/g, respectively. The developed method was successfully applied to freshwater sediment samples collected from different sites in Jundiaí River basin of São Paulo State, Brazil. The compounds atenolol, caffeine, propranolol and triclosan were detected in all the sampling sites with concentrations of 13.8, 41.0, 28.5 and 176 ng/g, respectively.

  1. Microbial populations involved in cycling of dimethyl sulfide and methanethiol in freshwater sediments.

    PubMed

    Lomans, B P; Luderer, R; Steenbakkers, P; Pol, A; van Der Drift, C; Vogels, G D; Op den Camp, H J

    2001-03-01

    Although several microorganisms that produce and degrade methanethiol (MT) and dimethyl sulfide (DMS) have been isolated from various habitats, little is known about the numbers of these microorganisms in situ. This study reports on the identification and quantification of microorganisms involved in the cycling of MT and DMS in freshwater sediments. Sediment incubation studies revealed that the formation of MT and DMS is well balanced with their degradation. MT formation depends on the concentrations of both sulfide and methyl group-donating compounds. A most-probable number (MPN) dilution series with syringate as the growth substrate showed that methylation of sulfide with methyl groups derived from syringate is a commonly occurring process in situ. MT appeared to be primarily degraded by obligately methylotrophic methanogens, which were found in the highest positive dilutions on DMS and mixed substrates (methanol, trimethylamine [TMA], and DMS). Amplified ribosomal DNA restriction analysis (ARDRA) and 16S rRNA gene sequence analysis of the total DNA isolated from the sediments and of the DNA isolated from the highest positive dilutions of the MPN series (mixed substrates) revealed that the methanogens that are responsible for the degradation of MT, DMS, methanol, and TMA in situ are all phylogenetically closely related to Methanomethylovorans hollandica. This was confirmed by sequence analysis of the product obtained from a nested PCR developed for the selective amplification of the 16S rRNA gene from M. hollandica. The data from sediment incubation experiments, MPN series, and molecular-genetics detection correlated well and provide convincing evidence for the suggested mechanisms for MT and DMS cycling and the common presence of the DMS-degrading methanogen M. hollandica in freshwater sediments.

  2. Nematode species at risk--a metric to assess pollution in soft sediments of freshwaters.

    PubMed

    Höss, S; Claus, E; Von der Ohe, P C; Brinke, M; Güde, H; Heininger, P; Traunspurger, W

    2011-07-01

    Soft sediments are often highly polluted as many of the toxic chemicals introduced into surface waters bind to settling particles. The resulting accumulation of pollutants in the sediments poses a risk for benthic communities. However, pollution induced changes in benthic communities have been difficult to determine when using macro-invertebrates as bioindicators, as these organisms are often absent in soft sediment. The present study therefore examined the ability of meiofaunal organisms, specifically, nematodes, to assess the ecological status of soft sediments. Over a 9-year period, nematode communities present in sediments collected from large rivers and lake Constance in Germany were studied. These sediments showed a large range of physico-chemical properties and anthropogenic contamination. After the degree of metal and organic contamination was translated into ecotoxicologically more relevant toxic units (TUs), multivariate methods were used to classify nematode taxa in species at risk (NemaSPEAR) or not at risk (NemaSPE(not)AR). This approach clearly distinguished the influence of sediment texture from that of the toxic potential of the samples and thus allowed classification of the nematode species according to their sensitivity to or tolerance of toxic stress. Two indices, expressing the proportion of species at risk within a sample (NemaSPEAR[%](metal), NemaSPEAR[%](organic)), were calculated from independent data sets obtained in field and experimental studies and showed good correlations with the toxic potential (field data) or chemical concentrations (microcosm data). NemaSPEAR[%] indices for metal and organic pollution were therefore judged to be suitable for assessing the impact of chemical contamination of freshwater soft sediments.

  3. Microbial community structure in methane hydrate-bearing sediments of freshwater Lake Baikal.

    PubMed

    Kadnikov, Vitaly V; Mardanov, Andrey V; Beletsky, Alexey V; Shubenkova, Olga V; Pogodaeva, Tatiana V; Zemskaya, Tamara I; Ravin, Nikolai V; Skryabin, Konstantin G

    2012-02-01

    Gas hydrates in marine sediments have been known for many years but recently hydrates were found in the sediments of Lake Baikal, the largest freshwater basin in the world. Marine gas hydrates are associated with complex microbial communities involved in methanogenesis, methane oxidation, sulfate reduction and other biotransformations. However, the contribution of microorganisms to the formation of gas hydrates remains poorly understood. We examined the microbial communities in the hydrate-bearing sediments and water column of Lake Baikal using pyrosequencing of 16S rRNA genes. Aerobic methanotrophic bacteria dominated the water sample collected at the lake floor in the hydrate-bearing site. The shallow sediments were dominated by Archaea. Methanogens of the orders Methanomicrobiales and Methanosarcinales were abundant, whereas representatives of archaeal lineages known to perform anaerobic oxidation of methane, as well as sulfate-reducing bacteria, were not found. Affiliation of archaea to methanogenic rather than methane-oxidizing lineages was supported by analysis of the sequences of the methyl coenzyme M reductase gene. The deeper sediments located at 85-90 cm depth close to the hydrate were dominated by Bacteria, mostly assigned to Chloroflexi, candidate division JS1 and Caldiserica. Overall, our results are consistent with the biological origin of methane hydrates in Lake Baikal.

  4. Vertical distribution profiles and diagenetic fate of synthetic surfactants in marine and freshwater sediments.

    PubMed

    Corada-Fernández, Carmen; Lara-Martín, Pablo A; Candela, Lucila; González-Mazo, Eduardo

    2013-09-01

    This manuscript deals with the presence and degradation of the most commonly-used surfactants, including anionic (linear alkylbenzene sulfonates, LAS, and alkyl ethoxysulfates, AES) and non-ionic (alcohol polyethoxylates, AEOs, and nonylphenol polyethoxylates, NPEOs) compounds, in sediments and pore water from several aquatic environments (Southwest, Spain). Different vertical distributions were observed according to the respective sources, uses, production volumes and physicochemical properties of each surfactant. Levels of nonionics (up to 10 mg kg(-1)) were twice as high as anionics in industrial areas and harbors, whereas the opposite was found near urban wastewater discharge outlets. Sulfophenyl carboxylic acids (SPCs), LAS degradation products, were identified at anoxic depths at some sampling stations. Their presence was related to in situ anaerobic degradation of LAS in marine sediments, whereas the occurrence of these metabolites in freshwater sediments was attributed to the existence of wastewater sources nearby. No significant changes in the average length of AEO and NPEO ethoxylated chains were observed along the sediment cores, suggesting that their biodegradation was very limited in the sampling area. This may be directly related to their lower bioavailability, as their calculated sediment-pore water distribution coefficients (log K(sw)), which showed that non-ionic surfactants examined in this study had greater sorption affinity than the anionic surfactants (e.g., 2.3±0.3 for NPEOs).

  5. A monotonically declining elevational pattern of bacterial diversity in freshwater lake sediments.

    PubMed

    Zeng, Jin; Zhao, Dayong; Li, Huabing; Huang, Rui; Wang, Jianjun; Wu, Qinglong L

    2016-12-01

    The distribution patterns of bacterial communities along elevational gradients remain unexplored in aquatic ecosystems. This study investigated the diversity and community composition of bacteria in the sediments of lakes along a mountainside elevational gradient from 525 to 4 490 m in western China. The bacterial alpha diversity (taxonomic richness and phylogenetic diversity) at different sediment depths decreased monotonically with the increasing elevation, and the beta diversity (dissimilarity between lakes) increased significantly with the increasing elevation distance. Both elevation and chemical variables including pH and carbon/nitrogen ratio were identified as major factors affecting the bacterial diversity. Especially, bacterial alpha/beta diversity was significantly related to both chemical and elevational gradients in the surface sediments, whereas elevation overwhelmed chemical factors in influencing the bacterial alpha/beta diversity in the subsurface sediments. Phylogenetic structure analysis demonstrated that environmental filtering was the most important process affecting the bacterial community assembly along the elevational gradient, and the strength of environmental filtering increased towards high elevations. In summary, we observed for the first time a monotonically decreasing elevational pattern in bacterial diversity of freshwater lake sediments, which is mainly driven by elevation associated environmental factors.

  6. Effects of storage time on the toxicity of sediments to freshwater benthic invertebrates

    SciTech Connect

    DeFoe, D.L.; Ankley, G.T.

    1994-12-31

    Current guidance concerning recommended storage times for sediments to be subjected to toxicity tests has been based largely on limited studies with a small number of samples. The objective of this study was to better define the effects of storage time on the toxicity of a series of freshwater sediments. Eighteen sediments with varying types of contaminants (metals, pesticides, PCBs, ammonia) were collected, held at 4 C, and periodically tested for toxicity to the amphipod Hyalella azteca and the midge Chironomus tentans for storage times ranging from 4 to 16 months. The sediments ranged from non-toxic to, extremely toxic (100% mortality) in 10-d assays with both species, with the majority of samples displaying an intermediate degree of toxicity. Toxicity of most of the samples did not vary significantly with storage time; in those instances when toxicity did change, the same relative conclusions concerning sample toxicity generally would have been made regardless of when they were tested. Their data suggest that current guidelines concerning sediment storage times may be overly restrictive, at least with respect toxicity testing.

  7. Derivation and selection of freshwater sediment quality values in Washington state

    SciTech Connect

    Cubbage, J.; Breidenbach, S.; Batts, D.

    1995-12-31

    To derive chemical-based Freshwater Sediment Quality Values (FSQV), bioassay data (Hyalella azteca, Microtox, Chironomus tentans, Daphnia magna, Ceriodaphnia dubia, and Hexagenia limbata) and chemistry data (metals, PAH, pesticide/PCBs, and phenols) were merged from 33 studies and 245 sites in Washington and Oregon into a single database. Apparent Effects Thresholds (AET) and Probable AETs (PAET: 95th percentile of no effects sites) were calculated for Hyalella azteca (n = 228) and Microtox. The efficiency and sensitivity of these values in predicting biological response from chemical concentrations were compared with Ontario`s Severe Effects Level (SEL), Environment Canada`s Probable Effects Level (PEL) and Threshold Effects Level (TEL), EPA`s Equilibrium Partitioning (EQP), and Washington`s marine Sediment management Standards (SMS). For PAH, dry weight normalized values for AETs and PAETs were significantly more sensitive and efficient than organic carbon normalized values. TEL was always the most sensitive and least efficient.

  8. Copper-binding characteristics of exopolymers from a freshwater-sediment bacterium

    SciTech Connect

    Mittelman, M.W.; Geesey, G.G.

    1985-04-01

    Copper-binding activity by exopolymers from adherent cells of freshwater-sediment bacterium was demonstrated by a combination of equilibrium dialysis and flameless atomic absorption spectrometry. Crude, cell-free exopolymer preparations containing protein and polysaccharide components bound up to 37 nmol of Cu per mg (dry weight). A highly purified exopolysaccharide preparation bound up to 253 nmol of Cu per mg of carbohydrate. The conditional stability constant for the crude exopolymer-Cu complex was 7.3 x 10/sup 8/. This value was similar to those obtained for Cu complexes formed with humic acids and xanthan, an exopolysaccharide produced by Xanthomonas campestris. Studies conducted at copper concentrations, pHs, and temperatures found in sediments from which the bacterium was isolated indicated that the exopolymers were capable of binding copper under natural conditions.

  9. A field investigation of the relationship between zinc and acid volatile sulfide concentrations in freshwater sediments

    USGS Publications Warehouse

    Ankley, Gerald T.; Liber, Karsten; Call, Daniel J.; Markee, Thomas P.; Canfield, Timothy J.; Ingersoll, Christopher G.

    1996-01-01

    Understanding relationships between cationic metals such as cadmium, copper, nickel, lead and zinc, and amorphous iron sulfides, measured as acid volatile sulfide (AVS), is key to predicting metal bioavailability and toxicity insediments. The objective of the present study was to assess seasonal and spatial variations of AVS in freshwater sediments contaminated with zinc. Sediments were sampled from three streams with varying levels of zinc contamination at two different times, March and June of 1995, representing cold- and warm-weather situations. Interstitial (pore) water concentrations of zinc, and solid phase concentrations of AVS and zinc were measured in surficial and deep sediment horizons. Toxicity tests (10-d) with the amphipodHyalella azteca were conducted using intact cores. Sediment zinc concentrations from six sites within the primary test stream differed by about five-fold, and also varied seasonally. Acid volatile sulfide concentrations were generally lower than those of zinc, and pore water zinc concentrations typically were elevated. There was a positive correlation between solid-phase AVS and zinc concentrations, suggesting that the system was dominated by zinc, as opposed to iron sulfides. In contrast to expectations arising from some studies of seasonal variations of AVS in iron-dominated systems, AVS concentrations were smaller in June than in March. However, this was likely due to a major storm event and associated sediment scouring before the June sampling, rather than to seasonal processes related to variations in temperature and dissolved oxygen. Based upon an indirect analysis of depth variations in AVS, there was some indication that zinc sulfide might be less prone to oxidation than iron sulfide. There was a strong correlation between toxicity of the sediment samples toH. azteca and interstitial water concentrations of zinc; however, the possible contribution of other contaminants to sediment toxicity cannot be dismissed.

  10. Equilibrium or indeterminate? Where sediment budgets fail: Sediment mass balance and adjustment of channel form, Green River downstream from Flaming Gorge Dam, Utah and Colorado

    NASA Astrophysics Data System (ADS)

    Grams, Paul E.; Schmidt, John C.

    2005-10-01

    This study examines bed and bank adjustment in the 105-km reach of the Green River immediately downstream from Flaming Gorge Dam by the use of historical aerial and oblique photographs, analysis of current and abandoned stream-gaging records, and field observations. Although this segment has been previously characterized as sediment deficient, these data show that sediment is accumulating in all reaches and that the bed has not degraded at any location where historical data are available. Adjustment is occurring through a combination of deposition of post-dam sediment and stabilization of pre-dam deposits, resulting in a 10-30% reduction in average width of the channel. All post-dam surfaces are colonized by woody riparian vegetation. The style of channel adjustment varies between geomorphically defined reaches. In canyons dominated by debris fans and gravel-bedded restricted meandering reaches, gravel bars have become inactive and accumulated fine sediment. In the sand-bedded meandering reaches, existing islands have increased in size and new mid-channel islands have formed. In all of these types of reaches, post-dam deposits line the banks and sediment has accumulated in side-channels that previously separated islands from the bank. These findings demonstrate that sediment budgets that show a balance between inputs and outputs cannot necessarily be interpreted to indicate channel equilibrium. A sediment mass balance for 150-km reach between the dam and the first long-term gage indicates approximate balance of inputs and outputs for the pre- and post-dam periods. When uncertainty in budget components is considered, the mass balance is indeterminate. Although the Green River may have been in approximate equilibrium in the pre-dam period, we have shown that channel width is decreasing in the post-dam period. The post-dam deposits constitute a small but a significant component of the sediment budget upstream from the first major tributary. Sediment is supplied to

  11. The Distribution Pattern of Sediment Archaea Community of the Poyang Lake, the Largest Freshwater Lake in China

    PubMed Central

    Ma, Yantian; Liu, Fangpeng; Kong, Zhaoyu; Kou, Wenbo

    2016-01-01

    Archaea plays an important role in the global geobiochemical circulation of various environments. However, much less is known about the ecological role of archaea in freshwater lake sediments. Thus, investigating the structure and diversity of archaea community is vital to understand the metabolic processes in freshwater lake ecosystems. In this study, sediment physicochemical properties were combined with the results from 16S rRNA clone library-sequencing to examine the sediment archaea diversity and the environmental factors driving the sediment archaea community structures. Seven sites were chosen from Poyang Lake, including two sites from the main lake body and five sites from the inflow river estuaries. Our results revealed high diverse archaea community in the sediment of Poyang Lake, including Bathyarchaeota (45.5%), Euryarchaeota (43.1%), Woesearchaeota (3.6%), Pacearchaeota (1.7%), Thaumarchaeota (1.4%), suspended Lokiarchaeota (0.7%), Aigarchaeota (0.2%), and Unclassified Archaea (3.8%). The archaea community compositions differed among sites, and sediment property had considerable influence on archaea community structures and distribution, especially total organic carbon (TOC) and metal lead (Pb) (p < 0.05). This study provides primary profile of sediment archaea distribution in freshwater lakes and helps to deepen our understanding of lake sediment microbes. PMID:28070167

  12. The Distribution Pattern of Sediment Archaea Community of the Poyang Lake, the Largest Freshwater Lake in China.

    PubMed

    Ma, Yantian; Liu, Fangpeng; Kong, Zhaoyu; Yin, Jianhua; Kou, Wenbo; Wu, Lan; Ge, Gang

    2016-01-01

    Archaea plays an important role in the global geobiochemical circulation of various environments. However, much less is known about the ecological role of archaea in freshwater lake sediments. Thus, investigating the structure and diversity of archaea community is vital to understand the metabolic processes in freshwater lake ecosystems. In this study, sediment physicochemical properties were combined with the results from 16S rRNA clone library-sequencing to examine the sediment archaea diversity and the environmental factors driving the sediment archaea community structures. Seven sites were chosen from Poyang Lake, including two sites from the main lake body and five sites from the inflow river estuaries. Our results revealed high diverse archaea community in the sediment of Poyang Lake, including Bathyarchaeota (45.5%), Euryarchaeota (43.1%), Woesearchaeota (3.6%), Pacearchaeota (1.7%), Thaumarchaeota (1.4%), suspended Lokiarchaeota (0.7%), Aigarchaeota (0.2%), and Unclassified Archaea (3.8%). The archaea community compositions differed among sites, and sediment property had considerable influence on archaea community structures and distribution, especially total organic carbon (TOC) and metal lead (Pb) (p < 0.05). This study provides primary profile of sediment archaea distribution in freshwater lakes and helps to deepen our understanding of lake sediment microbes.

  13. Freshwater sediments and sludges: two important terrestrial sinks for emissions from damaged NPPs

    NASA Astrophysics Data System (ADS)

    Fischer, Helmut W.; Evangelia Souti, Maria; Ulbrich, Susanne; Hormann, Volker

    2013-04-01

    Surface deposition of radionuclides released from the damaged Fukushima NPPs is well documented and emissions to the Pacific Ocean and their distribution with time and space are also subject to monitoring and research. In both cases, solid matter (soil and sea sediment, respectively) acts as a sink for radioisotopes after their transport through air and water. The possible hazards from direct irradiation of workers and public and from entry of radionuclides into food chains are well recognized. Apart from direct deposition onto soil, plants, building roofs etc., aerosols and contaminated rainwater will reach surface waters, leading to long-term deposition in freshwater sediments (and possibly to interim contamination of drinking water). In populated and industrial areas, drained rainwater will enter the wastewater collection and treatment chain if a combined rain and wastewater sewer is used. Depending on the processes in the wastewater treatment plant and chemical element and speciation, the isotopes will either concentrate in treatment sludge or be released with the effluent to rivers and lakes and their sediments. The mentioned media may act as long-term storage for radioisotopes when disposed of properly, but can also contribute to direct irradiation of workers or public, lead to continuous releases to the environment and possibly enter the food chain in the same way as soil and sea sediments. It appears therefore essential to monitor these environmental compartments as well. However, very few data on Fukushima-related radioisotope concentration in sludges and freshwater sediments have been published to date. We will therefore compare data for regional surface deposition and related concentrations in surface water, river sediments and sewage sludge obtained in Europe during 1986 to published data from Japan in 2011 for the most important common short-lived (I-131, half-life = 8.02 d) and long-lived (Cs-137, half-life = 30.17 yr) isotopes. As in central Europe

  14. Response of bacteria and meiofauna to iron oxide colloids in sediments of freshwater microcosms.

    PubMed

    Höss, Sebastian; Frank-Fahle, Béatrice; Lueders, Tillmann; Traunspurger, Walter

    2015-11-01

    The use of colloidal iron oxide (FeOx) in the bioremediation of groundwater contamination implies its increasing release into the environment and requires an assessment of its ecotoxicological risk. Therefore, microcosm experiments were carried out to investigate the impact of ferrihydrite colloids on the bacterial and meiofaunal communities of pristine freshwater sediments. The effects of ferrihydrite colloids were compared with those of ferrihydrite macroaggregates to discriminate between colloid-specific and general FeOx impacts. The influence of ferrihydrite colloids on the toxicity of sediment-bound fluoranthene was also considered. At high concentrations (496 mg Fe kg(-1) sediment dry wt), ferrihydrite colloids had a significant, but transient impact on bacterial and meiofaunal communities. Although bacterial community composition specifically responded to ferrihydrite colloids, a more general FeOx effect was observed for meiofauna. Bacterial activity responded most sensitively (already at 55 mg Fe kg(-1) dry wt) without the potential of recovery. Ferrihydrite colloids did not influence the toxicity of sediment-bound fluoranthene. Significant correlations between bacterial activity and meiofaunal abundances were indicative of trophic interactions between bacteria and meiofauna and therefore of the contribution of indirect food web effects to the observed impacts. The results suggest that the application of ferrihydrite colloids for remediation purposes in the field poses no risk for benthic communities, given that, with the exception of generic bacterial activity, any negative effects on communities were reversible.

  15. Temporal variation of nitrification rates in experimental freshwater sediments enriched with ammonia or nitrite.

    PubMed

    Stief, Peter; Schramm, Andreas; Altmann, Dörte; Beer, Dirk

    2003-10-01

    Abstract Two freshwater sediments (organic-poor and organic-rich) that contained their distinct natural microbial communities were incubated in experimental microcosms with either NH(4) (+) or NO(2) (-) in the overlying water. Microsensor measurements revealed the thin oxic surface layer as a site of initially high rates of nitrification, i.e. O(2), NH(4) (+), and NO(2) (-) consumption, and NO(3) (-) production. Unexpectedly, during the subsequent 4-week incubation NH(4) (+) consumption decreased in both sediment types and NO(2) (-) consumption decreased in the organic-rich sediment. In the organic-rich sediment O(2) consumption and NO(3) (-) production paralleled these decreases, i.e. the reduced NH(4) (+) and NO(2) (-) consumption rates were most probably due to reduced activity of nitrifiers. These microsensor data imply factors other than frequently suggested competition between nitrifiers and heterotrophs for NH(4) (+), NO(2) (-) or O(2) as causes for the loss of nitrification activity. We hypothesize that experimental manipulations (e.g. removal of macrofauna, redistribution of particulate organic matter, permanent nutrient enrichment) rendered the performance of the microbial community unstable. It is thus recommendable to restrict experiments in such commonly used model systems to the period of highest stability.

  16. A comparison of the response of Simocephalus mixtus (Cladocera) and Daphnia magna to contaminated freshwater sediments.

    PubMed

    Martínez-Jerónimo, Fernando; Cruz-Cisneros, Jade Lizette; García-Hernández, Leonardo

    2008-09-01

    The southeast region of Mexico is characterized by intensive oil industry activities carried out by the national public enterprise Petróleos Mexicanos (PEMEX). The freshwater lagoon "El Limón", located in the municipality of Macuspana, state of Tabasco, Mexico, has received over 40 years discharges of untreated waste waters from the Petrochemical Complex "Ciudad PEMEX", located on the border of the lagoon. To assess the toxicity of the sediments and, hence, to obtain information on the biological effects of these contaminating discharges, the cladoceran Simocephalus mixtus was used as a test organism in acute (48h) and chronic (12d) toxicity assays. For comparison purposes, bioassays were also conducted with the reference cladoceran Daphnia magna. The sediments of this lagoon contain important amounts of metals and hydrocarbons that have been accumulated over time; however, the acute tests only registered reduced lethal effects on the test organisms (maxima of 10% and 17% mortality for D. magna and S. mixtus, respectively). This may be due to low bioavailability of the pollutants present in the sediments. On the other hand, partial or total inhibition and delay in the start of reproduction, reduction in clutch sizes, reduced survival, as well as reduction in the size of adults and offspring were recorded in the chronic assays. The most evident chronic effects were found in S. mixtus; in this species, reproduction was inhibited up to 72%, whereas D. magna was only affected by 24%. We determined that S. mixtus is a more sensitive test organism than D. magna to assess whole-sediment toxicity in tropical environments, and that chronic exposure bioassays are required for an integrated sediment evaluation. The sediments from "El Limón" lagoon induced chronic intoxication responses and, therefore, remediation measures are urgently needed to recover environmental conditions suitable for the development of its aquatic biota.

  17. Microbial Fe(III) oxide reduction and Fe cycling in iron-rich freshwater wetland sediments

    SciTech Connect

    Roden, E.E.

    1995-12-31

    The dynamics of Fe cycling and the interaction between microbial Fe(III) oxide reduction and other anaerobic microbial respiratory processes were examined in Fe-rich, sulfate-poor freshwater wetland sediments. Sediment incubation experiments demonstrated that reduction of Fe(III) oxides (amorphous, soluble in dilute HCl) dominated anaerobic carbon mineralization at Fe(III) concentrations in excess of 10 mmol per liter wet sediment. The kinetics of Fe(III) reduction were found to be first-order with respect to the concentration of Fe(III) oxide, although estimated first-order rate constants varied in relation to the absolute rates of Fe(III) reduction, suggesting a co-dependency on the concentration of easily degradable organic carbon. High concentrations of amorphous Fe(III) oxides (10-100 mmol L wet sed {sup -1}) were found in surface sediments (0-3 cm) of unvegetated zones of the wetland and in the rhizosphere (0-10 cm) of emergent aquatic plants, sufficient (based on sediment incubation experiments) to allow Fe(III)-reducing bacteria (FeRB) to dominate anaerobic carbon mineralization. A rapid redox cycling of Fe is apparent in these localized zones based on observed rates of Fe(III) reduction and the abundance/depth distribution of Fe(Ill) oxides. Preliminary culture enrichment studies indicate that FeRB present in these sediments are capable of metabolizing a range of both natural and contaminant aromatic hydrocarbons, which suggests a potential for utilization of natural and/or artificial Fe-rich wetland systems for organic contaminant bioremediation.

  18. The filter feeder Dreissena polymorpha affects nutrient, silicon, and metal(loid) mobilization from freshwater sediments.

    PubMed

    Schaller, Jörg; Planer-Friedrich, Britta

    2017-05-01

    Organic sediments in aquatic ecosystems are well known sinks for nutrients, silicon, and metal(loid)s. Organic matter-consuming organisms like invertebrate shredders, grazers, and bioturbators significantly affect element fixation or remobilization by changing redox conditions or binding properties of organic sediments. Little is known about the effect of filter feeders, like the zebra mussel Dreissena polymorpha, an invasive organism in North American and European freshwater ecosystems. A laboratory batch experiment exposing D. polymorpha (∼1200 organisms per m(2)) to organic sediment from a site contaminated with arsenic, copper, lead, and uranium revealed a significant uptake and accumulation of arsenic, copper, iron, and especially uranium both into the soft body tissues and the seashell. This is in line with previous observations of metal(loid) accumulation from biomonitoring studies. Regarding its environmental impact, D. polymorpha significantly contributed to mobilization of silicon, iron, phosphorus, arsenic, and copper and to immobilization of uranium (p < 0.001), probably driven by redox conditions, microbial activity within the gut system, or active control of element homeostasis. No net mobilization or immobilization was observed for zinc and lead, because of their low mobility at the prevailing pH of 7.5-8.5. The present results suggest that D. polymorpha can both ameliorate (nutrient mobilization, immobilization of toxicants mobile under oxic conditions) or aggravate negative effects (mobilization of toxicants mobile under reducing conditions) in ecosystems. Relating the results of the present study to observed population densities in natural freshwater ecosystems suggests a significant influence of D. polymorpha on element cycling and needs to be considered in future studies.

  19. Sediment concentrations, flow conditions, and downstream evolution of two turbidity currents, Monterey Canyon, USA

    USGS Publications Warehouse

    Xu, Jingping; Octavio E. Sequeiros,; Noble, Marlene A.

    2014-01-01

    The capacity of turbidity currents to carry sand and coarser sediment from shallow to deep regions in the submarine environment has attracted the attention of researchers from different disciplines. Yet not only are field measurements of oceanic turbidity currents a rare achievement, but also the data that have been collected consist mostly of velocity records with very limited or no suspended sediment concentration or grain size distribution data. This work focuses on two turbidity currents measured in Monterey Canyon in 2002 with emphasis on suspended sediment from unique samples collected within the body of these currents. It is shown that concentration and grain size of the suspended material, primarily controlled by the source of the gravity flows and their interaction with bed material, play a significant role in shaping the characteristics of the turbidity currents as they travel down the canyon. Before the flows reach their normal or quasi-steady state, which is defined by bed slope, bed roughness, and suspended grain size, they might pass through a preliminary adjustment stage where they are subject to capacity-driven deposition, and release heavy material in excess. Flows composed of fine (silt/clay) sediments tend to be thicker than those with sands. The measured velocity and concentration data confirm that flow patterns differ between the front and body of turbidity currents and that, even after reaching normal state, the flow regime can be radically disrupted by abrupt changes in canyon morphology.

  20. Review of samples of tailings, soils and stream sediment adjacent to and downstream from the Ruth Mine, Inyo County, California

    USGS Publications Warehouse

    Rytuba, James J.; Kim, Christopher S.; Goldstein, Daniel N.

    2011-01-01

    The Ruth Mine and mill are located in the western Mojave Desert in Inyo County, California (fig. 1). The mill processed gold-silver (Au-Ag) ores mined from the Ruth Au-Ag deposit, which is adjacent to the mill site. The Ruth Au-Ag deposit is hosted in Mesozoic intrusive rocks and is similar to other Au-Ag deposits in the western Mojave Desert that are associated with Miocene volcanic centers that formed on a basement of Mesozoic granitic rocks (Bateman, 1907; Gardner, 1954; Rytuba, 1996). The volcanic rocks consist of silicic domes and associated flows, pyroclastic rocks, and subvolcanic intrusions (fig. 2) that were emplaced into Mesozoic silicic intrusive rocks (Troxel and Morton, 1962). The Ruth Mine is on Federal land managed by the U.S. Bureau of Land Management (BLM). Tailings from the mine have been eroded and transported downstream into Homewood Canyon and then into Searles Valley (figs. 3, 4, 5, and 6). The BLM provided recreational facilities at the mine site for day-use hikers and restored and maintained the original mine buildings in collaboration with local citizen groups for use by visitors (fig. 7). The BLM requested that the U.S. Geological Survey (USGS), in collaboration with Chapman University, measure arsenic (As) and other geochemical constituents in soils and tailings at the mine site and in stream sediments downstream from the mine in Homewood Canyon and in Searles Valley (fig. 3). The request was made because initial sampling of the site by BLM staff indicated high concentrations of As in tailings and soils adjacent to the Ruth Mine. This report summarizes data obtained from field sampling of mine tailings and soils adjacent to the Ruth Mine and stream sediments downstream from the mine on June 7, 2009. Our results permit a preliminary assessment of the sources of As and associated chemical constituents that could potentially impact humans and biota.

  1. Availability of Ferric Iron for Microbial Reduction in Bottom Sediments of the Freshwater Tidal Potomac River

    PubMed Central

    Lovley, Derek R.; Phillips, Elizabeth J. P.

    1986-01-01

    The distribution of Fe(III), its availability for microbial reduction, and factors controlling Fe(III) availability were investigated in sediments from a freshwater site in the Potomac River Estuary. Fe(III) reduction in sediments incubated under anaerobic conditions and depth profiles of oxalate-extractable Fe(III) indicated that Fe(III) reduction was limited to depths of 4 cm or less, with the most intense Fe(III) reduction in the top 1 cm. In incubations of the upper 4 cm of the sediments, Fe(III) reduction was as important as methane production as a pathway for anaerobic electron flow because of the high rates of Fe(III) reduction in the 0- to 0.5-cm interval. Most of the oxalate-extractable Fe(III) in the sediments was not reduced and persisted to a depth of at least 20 cm. The incomplete reduction was not the result of a lack of suitable electron donors. The oxalate-extractable Fe(III) that was preserved in the sediments was considered to be in a form other than amorphous Fe(III) oxyhydroxide, since synthetic amorphous Fe(III) oxyhydroxide, amorphous Fe(III) oxyhydroxide adsorbed onto clay, and amorphous Fe(III) oxyhydroxide saturated with adsorbed phosphate or fulvic acids were all readily reduced. Fe3O4 and the mixed Fe(III)-Fe(II) compound(s) that were produced during the reduction of amorphous Fe(III) oxyhydroxide in an enrichment culture were oxalate extractable but were not reduced, suggesting that mixed Fe(III)-Fe(II) compounds might account for the persistence of oxalate-extractable Fe(III) in the sediments. The availability of microbially reducible Fe(III) in surficial sediments demonstrates that microbial Fe(III) reduction can be important to organic matter decomposition and iron geochemistry. However, the overall extent of microbial Fe(III) reduction is governed by the inability of microorganisms to reduce most of the Fe(III) in the sediment. PMID:16347168

  2. Toxicity of triphenyltin and tributyltin to the freshwater mudsnail Potamopyrgus antipodarum in a new sediment biotest.

    PubMed

    Duft, Martina; Schulte-Oehlmann, Ulrike; Tillmann, Michaela; Markert, Bernd; Oehlmann, Jörg

    2003-01-01

    The effects of two suspected endocrine-disrupting chemicals, the xeno-androgens triphenyltin (TPT) and tributyltin (TBT), were investigated in a new whole-sediment biotest with the freshwater mudsnail Potamopyrgus antipodarum (Gastropoda, Prosobranchia). Artificial sediments were spiked with seven concentrations, ranging from 10 to 500 microg nominal TPT-Sn/kg dry weight and TBT-Sn/kg dry weight, respectively. We analyzed the responses of the test species after two, four, and eight weeks exposure. For both compounds, P. antipodarum exhibited a sharp decline in the number of embryos sheltered in its brood pouch in a time- and concentration-dependent manner in comparison to the control sediment. The number of new, still unshelled embryos turned out to be the most sensitive parameter. The lowest-observed-effect concentration (LOEC) was equivalent to the lowest administered concentration (10 microg/kg of each test compound) for most parameters and thus no no-observed-effect concentration (NOEC) could be established. The calculation of effect concentrations (EC10) resulted in even lower values for both substances (EC10 after eight weeks for unshelled embryos: 0.03 microg TPT-Sn/kg, EC10 after four weeks for unshelled embryos: 0.98 microg TBT-Sn/kg). Our results indicate that P. antipodarum is highly sensitive to both endocrine disruptors TPT and TBT at environmentally relevant concentrations.

  3. Metagenomic analysis reveals potential biodegradation pathways of persistent pesticides in freshwater and marine sediments.

    PubMed

    Fang, Hua; Cai, Lin; Yang, Ying; Ju, Feng; Li, Xiangdong; Yu, Yunlong; Zhang, Tong

    2014-02-01

    The abundance and diversity of biodegradation genes (BDGs) and potential degradation pathways of dichlorodiphenyltrichloroethane (DDT), hexachlorocyclohexane (HCH), and atrazine (ATZ) in freshwater and marine sediments were investigated by metagenomic analysis using 6 datasets (16Gb in total). The datasets were derived using Illumina high-throughput sequencing and were based on BLAST against self-established databases of BDGs, DDT degradation genes (DDGs), HCH degradation genes (HDGs), and ATZ degradation genes (ADGs). The results showed that the abundance and diversity of BDGs, DDGs, HDGs, and ADGs varied with sample source and locations. The lip and mnp genes, which encode for peroxidase, and the carA gene, which encodes for laccase, were detected as the dominant genes for degradation of organic pollutants. The hdt, hdg, and atzB genes, which encode for hydratase, dehalogenase, and ethylaminohydrolase, were found to be the most abundant genes involved in DDT, HCH, and ATZ degradation, respectively. The identified 69 genera capable of degrading organic pollutants were mostly affiliated with Proteobacteria (49.3%) and Actinobacteria (21.7%). Four genera, including Plesiocystis, Anaerolinea, Jannaschia, and Mycobacterium, were the major biodegradation populations in all sediments. In this study, the nearly complete biodegradation pathways of DDT and ATZ were found, and the partial degradation pathway of HCH was detected in all sediments.

  4. Comparison of the 10-day freshwater sediment toxicity tests using Hyalella azteca and Chironomus tentans

    SciTech Connect

    Becker, D.S.; Bigham, G.N.; Rose, C.D.

    1995-12-01

    Comparisons were made of the performance of the 10-d freshwater sediment toxicity tests using the amphipod Hyalella azteca and midge Chironomus tentans. Sediments were collected from eight stations in Onondaga Lake, New York, and represented a wide range of toxicity. The biological end points were survival, biomass, and body length. The two tests were compared on the basis of correspondence among relative values of the end points and ability to statistically discriminate adverse effects relative to control responses (i.e., discriminatory ability). Minimum detectable differences (MDDs) and adverse response ranges of the end points were used to further evaluate the discriminatory ability of the end points. Relative responses and discriminatory abilities of the end points of both tests were similar, despite numerous differences that exist among characteristics of the test species and end points. Significant concordance was found among all end points with respect to relative toxicity of sediments from the eight stations. Although MDDs and adverse response ranges of the various end points differed substantially, the observed positive correlation between those two variables resulted in all end points having similar discriminatory ability. Although amphipod biomass and body length have rarely been used as end points in 10-d tests, both end points provided results comparable to those of the other end points evaluated in the present study.

  5. Abundant iron and sulfur oxidizers in the stratified sediment of a eutrophic freshwater reservoir with annual cyanobacterial blooms

    PubMed Central

    Jin, Long; Lee, Chang Soo; Ahn, Chi-Yong; Lee, Hyung-Gwan; Lee, Sanghyup; Shin, Hyeon Ho; Lim, Dhongil; Oh, Hee-Mock

    2017-01-01

    The microbial community in eutrophic freshwater sediment was investigated from a 67-cm-deep sediment core collected from the Daechung Reservoir in South Korea, where cyanobacterial blooms have occurred annually for the past 30 years. The majority of core sediments were characterized by dark-grayish, fine-grained mud with abundant gas-escaped and thinly laminated layers. Intervals of summer and winter seasons were represented by periodic peaks of geochemical profiles of parameters such as grain size and relative carbon mass ratios to various nutrients such as nitrogen, sulfur, and phosphorus. In bacteria, Proteobacteria (66.6%) was the most prevalent phylum, followed by Chloroflexi (8.9%), Bacteroidetes (5.1%), and Spirochaetes (2.6%). Archaea were also abundant, representing approximately half of the total prokaryotes in the sediments. Notably, three Bacteria (Sulfuricurvum, Sideroxydans, and Gallionella) and one Archaea (Thermoplasmata) accounted for 43.4% and 38.4% of the total bacteria and archaea, respectively, implying that iron and sulfur oxidizing microorganisms dominate in this eutrophic freshwater sediment. These results indicate that 1) eutrophic freshwater lakes in monsoon climates undergo a stratified sedimentary process with seasonal and annual variations in geochemical and microbial profiles, and 2) the microbial oxidative metabolism of iron and sulfur is notably active in sediments from a eutrophic lake. PMID:28266642

  6. Abundant iron and sulfur oxidizers in the stratified sediment of a eutrophic freshwater reservoir with annual cyanobacterial blooms.

    PubMed

    Jin, Long; Lee, Chang Soo; Ahn, Chi-Yong; Lee, Hyung-Gwan; Lee, Sanghyup; Shin, Hyeon Ho; Lim, Dhongil; Oh, Hee-Mock

    2017-03-07

    The microbial community in eutrophic freshwater sediment was investigated from a 67-cm-deep sediment core collected from the Daechung Reservoir in South Korea, where cyanobacterial blooms have occurred annually for the past 30 years. The majority of core sediments were characterized by dark-grayish, fine-grained mud with abundant gas-escaped and thinly laminated layers. Intervals of summer and winter seasons were represented by periodic peaks of geochemical profiles of parameters such as grain size and relative carbon mass ratios to various nutrients such as nitrogen, sulfur, and phosphorus. In bacteria, Proteobacteria (66.6%) was the most prevalent phylum, followed by Chloroflexi (8.9%), Bacteroidetes (5.1%), and Spirochaetes (2.6%). Archaea were also abundant, representing approximately half of the total prokaryotes in the sediments. Notably, three Bacteria (Sulfuricurvum, Sideroxydans, and Gallionella) and one Archaea (Thermoplasmata) accounted for 43.4% and 38.4% of the total bacteria and archaea, respectively, implying that iron and sulfur oxidizing microorganisms dominate in this eutrophic freshwater sediment. These results indicate that 1) eutrophic freshwater lakes in monsoon climates undergo a stratified sedimentary process with seasonal and annual variations in geochemical and microbial profiles, and 2) the microbial oxidative metabolism of iron and sulfur is notably active in sediments from a eutrophic lake.

  7. Abundant iron and sulfur oxidizers in the stratified sediment of a eutrophic freshwater reservoir with annual cyanobacterial blooms

    NASA Astrophysics Data System (ADS)

    Jin, Long; Lee, Chang Soo; Ahn, Chi-Yong; Lee, Hyung-Gwan; Lee, Sanghyup; Shin, Hyeon Ho; Lim, Dhongil; Oh, Hee-Mock

    2017-03-01

    The microbial community in eutrophic freshwater sediment was investigated from a 67-cm-deep sediment core collected from the Daechung Reservoir in South Korea, where cyanobacterial blooms have occurred annually for the past 30 years. The majority of core sediments were characterized by dark-grayish, fine-grained mud with abundant gas-escaped and thinly laminated layers. Intervals of summer and winter seasons were represented by periodic peaks of geochemical profiles of parameters such as grain size and relative carbon mass ratios to various nutrients such as nitrogen, sulfur, and phosphorus. In bacteria, Proteobacteria (66.6%) was the most prevalent phylum, followed by Chloroflexi (8.9%), Bacteroidetes (5.1%), and Spirochaetes (2.6%). Archaea were also abundant, representing approximately half of the total prokaryotes in the sediments. Notably, three Bacteria (Sulfuricurvum, Sideroxydans, and Gallionella) and one Archaea (Thermoplasmata) accounted for 43.4% and 38.4% of the total bacteria and archaea, respectively, implying that iron and sulfur oxidizing microorganisms dominate in this eutrophic freshwater sediment. These results indicate that 1) eutrophic freshwater lakes in monsoon climates undergo a stratified sedimentary process with seasonal and annual variations in geochemical and microbial profiles, and 2) the microbial oxidative metabolism of iron and sulfur is notably active in sediments from a eutrophic lake.

  8. Vertical Segregation and Phylogenetic Characterization of Ammonia-Oxidizing Bacteria and Archaea in the Sediment of a Freshwater Aquaculture Pond

    PubMed Central

    Lu, Shimin; Liu, Xingguo; Ma, Zhuojun; Liu, Qigen; Wu, Zongfan; Zeng, Xianlei; Shi, Xu; Gu, Zhaojun

    2016-01-01

    Pond aquaculture is the major freshwater aquaculture method in China. Ammonia-oxidizing communities inhabiting pond sediments play an important role in controlling culture water quality. However, the distribution and activities of ammonia-oxidizing microbial communities along sediment profiles are poorly understood in this specific environment. Vertical variations in the abundance, transcription, potential ammonia oxidizing rate, and community composition of ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) in sediment samples (0–50 cm depth) collected from a freshwater aquaculture pond were investigated. The concentrations of the AOA amoA gene were higher than those of the AOB by an order of magnitude, which suggested that AOA, as opposed to AOB, were the numerically predominant ammonia-oxidizing organisms in the surface sediment. This could be attributed to the fact that AOA are more resistant to low levels of dissolved oxygen. However, the concentrations of the AOB amoA mRNA were higher than those of the AOA by 2.5- to 39.9-fold in surface sediments (0–10 cm depth), which suggests that the oxidation of ammonia was mainly performed by AOB in the surface sediments, and by AOA in the deeper sediments, where only AOA could be detected. Clone libraries of AOA and AOB amoA sequences indicated that the diversity of AOA and AOB decreased with increasing depth. The AOB community consisted of two groups: the Nitrosospira and Nitrosomonas clusters, and Nitrosomonas were predominant in the freshwater pond sediment. All AOA amoA gene sequences in the 0–2 cm deep sediment were grouped into the Nitrososphaera cluster, while other AOA sequences in deeper sediments (10–15 and 20–25 cm depths) were grouped into the Nitrosopumilus cluster. PMID:26834709

  9. The relationship of mineral and geochemical composition to artificial radionuclide partitioning in Yenisei river sediments downstream from Krasnoyarsk.

    PubMed

    Bondareva, Lydia

    2012-06-01

    Discharges from the Mining-and-Chemical Combine (MCC) of Rosatom, downstream from Krasnoyarsk, resulted in radioactive contamination of sediments of the River Yenisei. The concentration of artificial gamma-emitting radionuclides ((137)Cs, (60)Co, (152)Eu, and (241)Am) was determined with the objective to analyze the migration processes leading to the transport of these radionuclides. The content of artificial radionuclides in the surface layers of the study area varied in wide ranges: (137)Cs-318-1,800 Bq/kg, (60)Co-87-720 Bq/kg, (152)Eu-12-287 Bq/kg and (241)Am-6-76 Bq/kg. There was a sequence of migration of radionuclides investigated in the surface layer of sediments that were collected in the near zone of influence of the MCC: (241)Am ≈ (152)Eu > (60)Co > (137)Cs. Radionuclide species have been found to be directly related to sediment structure and composition.

  10. Dominance of sulfur-fueled iron oxide reduction in low-sulfate freshwater sediments

    PubMed Central

    Hansel, Colleen M; Lentini, Chris J; Tang, Yuanzhi; Johnston, David T; Wankel, Scott D; Jardine, Philip M

    2015-01-01

    A central tenant in microbial biogeochemistry is that microbial metabolisms follow a predictable sequence of terminal electron acceptors based on the energetic yield for the reaction. It is thereby oftentimes assumed that microbial respiration of ferric iron outcompetes sulfate in all but high-sulfate systems, and thus sulfide has little influence on freshwater or terrestrial iron cycling. Observations of sulfate reduction in low-sulfate environments have been attributed to the presumed presence of highly crystalline iron oxides allowing sulfate reduction to be more energetically favored. Here we identified the iron-reducing processes under low-sulfate conditions within columns containing freshwater sediments amended with structurally diverse iron oxides and fermentation products that fuel anaerobic respiration. We show that despite low sulfate concentrations and regardless of iron oxide substrate (ferrihydrite, Al-ferrihydrite, goethite, hematite), sulfidization was a dominant pathway in iron reduction. This process was mediated by (re)cycling of sulfur upon reaction of sulfide and iron oxides to support continued sulfur-based respiration—a cryptic sulfur cycle involving generation and consumption of sulfur intermediates. Although canonical iron respiration was not observed in the sediments amended with the more crystalline iron oxides, iron respiration did become dominant in the presence of ferrihydrite once sulfate was consumed. Thus, despite more favorable energetics, ferrihydrite reduction did not precede sulfate reduction and instead an inverse redox zonation was observed. These findings indicate that sulfur (re)cycling is a dominant force in iron cycling even in low-sulfate systems and in a manner difficult to predict using the classical thermodynamic ladder. PMID:25871933

  11. Cytotoxicity of TiO{sub 2} nanoparticles towards freshwater sediment microorganisms at low exposure concentrations

    SciTech Connect

    Kumari, Jyoti; Kumar, Deepak; Mathur, Ankita; Naseer, Arif; Kumar, Ravi Ranjan; Thanjavur Chandrasekaran, Prathna; Chaudhuri, Gouri; Pulimi, Mrudula; Raichur, Ashok M.; Babu, S.; Chandrasekaran, Natarajan; Nagarajan, R.; Mukherjee, Amitava

    2014-11-15

    There is a persistent need to assess the effects of TiO{sub 2} nanoparticles on the aquatic ecosystem owing to their increasing usage in consumer products and risk of environmental release. The current study is focused on TiO{sub 2} nanoparticle-induced acute toxicity at sub-ppm level (≤1 ppm) on the three different freshwater sediment bacterial isolates and their consortium under two different irradiation (visible light and dark) conditions. The consortium of the bacterial isolates was found to be less affected by the exposure to the nanoparticles compared to the individual cells. The oxidative stress contributed considerably towards the cytotoxicity under both light and dark conditions. A statistically significant increase in membrane permeability was noted under the dark conditions as compared to the light conditions. The optical and fluorescence microscopic images showed aggregation and chain formation of the bacterial cells, when exposed to the nanoparticles. The electron microscopic (SEM, TEM) observations suggested considerable damage of cells and bio-uptake of nanoparticles. The exopolysaccrides (EPS) production and biofilm formation were noted to increase in the presence of the nanoparticles, and expression of the key genes involved in biofilm formation was studied by RT-PCR. - Highlights: • Toxicity of NPs towards freshwater sediment bacteria at sub-ppm concentrations. • Decreased toxicity of the nanoparticles in the consortium of microorganisms. • Enhanced bacterial resistance through EPS and biofilm formation in the presence of NPs. • Considerable surface damage of cells and internalization of NPs. • Gene expression analyses related to biofilm formation in the presence of NPs.

  12. Ecotoxicity of fluvial sediments downstream of the Ajka red mud spill, Hungary.

    PubMed

    Klebercz, Orsolya; Mayes, William M; Ánton, Aron Dániel; Feigl, Viktória; Jarvis, Adam P; Gruiz, Katalin

    2012-08-01

    An integrated assessment of biological activity and ecotoxicity of fluvial sediments in the Marcal river catchment (3078 km(2)), western Hungary, is presented following the accidental spill of bauxite processing residue (red mud) in Ajka. Red mud contaminated sediments are characterised by elevated pH, elevated trace element concentrations (e.g. As, Co, Cr, V), high exchangeable Na, and induce an adverse effect on test species across a range of trophic levels. While background contamination of the river system is highlighted by adverse effects on some test species at sites unaffected by red mud, the most pronounced toxic effects apparent in Vibrio fischeri bioluminescence inhibition, Lemna minor bioassay and Sinapis alba root and shoot growth occur at red mud depositional hotspots in the lower Torna Creek and upper Marcal. Heterocypris incongruens bioassays show no clear patterns, although the most red mud-rich sites do exert an adverse effect. Red mud does however appear to induce an increase in the density of aerobic and facultative anaerobic bacterial communities when compared with unaffected sediments and reference sites. Given the volume of material released in the spill, it is encouraging that the signal of the red mud on aquatic biota is visible at a relatively small number of sites. Gypsum-affected samples appear to induce an adverse effect in some bioassays (Sinapis alba and Heterocypris incongruens), which may be a feature of fine grain size, limited nutrient supply and greater availability of trace contaminants in the channel reaches that are subject to intense gypsum dosing. Implications for monitoring and management of the spill are discussed.

  13. Predicting the acute toxicity of copper in freshwater sediments: Evaluation of the role of acid-volatile sulfide

    SciTech Connect

    Ankley, G.T.; Mattson, V.R.; Leonard, E.N.; West, C.W.; Bennett, J.L.

    1993-01-01

    Acid-volatile sulfide (AVS) has been proposed as an important partitioning phase determining the bioavailability of cationic metals in sediments. The objective of this research was to evaluate the role of AVS in determining copper toxicity in sediments from two sites heavily contaminated with copper: Steilacoom Lake, Washington, and the Keweenaw Watershed, Michigan. Sediments from the two sites were used in 10-d toxicity tests with the amphipod Hyalella azteca and results of the toxicity tests were compared to bioavailability predictions based on copper and AVS concentrations in the test sediments, as well as copper concentrations in the sediment interstitial (pore) water. These results indicate that AVS alone is not an appropriate partitioning phase for prediting copper bioavailability in freshwater sediments.

  14. Distribution and bioaccumulation of endocrine disrupting chemicals in water, sediment and fishes in a shallow Chinese freshwater lake: Implications for ecological and human health risks.

    PubMed

    Dan Liu; Wu, Shengmin; Xu, Huaizhou; Zhang, Qin; Zhang, Shenghu; Shi, Lili; Yao, Cheng; Liu, Yanhua; Cheng, Jie

    2017-06-01

    The occurrence, distribution and bioaccumulation of six endocrine disrupting compounds (EDCs) were investigated in water, sediment and biota samples from Luoma Lake, a shallow Chinese freshwater lake. Total concentrations of ∑phenolic EDCs were much higher than ∑estrogens EDCs in both waters and sediments. There were not obvious differences on the concentrations of target compounds [except nonylphenol (NP)] in upstream, lake and downstream locations, these may be suggested that they were mainly affected by non-point discharges in this area. However, the high concentration of NP in water may be associated with the discharge of rural domestic wastewater without thorough treatment. Furthermore, concentrations of NP were about 2-3 order magnitude higher than those of OP in both water and sediment compartments. Relatively higher bioaccumulation factors (BAF) were obtained for DES and EE2. Ecological risk assessment revealed greater risk of NP in surface water, which may pose a serious threat to aquatic ecosystems. The estrogen equivalent concentration (EEQ) of male were higher than those in female, and occurred in the order of city >rural-urban>countryside.

  15. Effect of indigenous animals on chronic end points in freshwater sediment toxicity tests

    SciTech Connect

    Reynoldson, T.B.; Day, K.E.; Clarke, C.; Milani, D. )

    1994-06-01

    Sediment toxicity tests were conducted using three species of benthic invertebrates, Chironomus riparius, Hyalella azteca, and Hexagenia limbata, with various densities of the oligochaete worm Tubifex tubifex. It was shown that indigenous animals, simulated by the presence of Tubifex tubifex, did not affect survival of the test species (P [>=] 0.05) but did reduce growth in all three test species and in two species at the lowest tested densities, equivalent to 1,460 worms per square meter. At densities of Tubifex tubifex equivalent to 20,000 m[sup [minus]2], the growth of Chironomus riparius was reduced by >90%, Hyalella azteca by >60%, and Hexagenia limbata by almost 50%. The densities of oligochaetes are equivalent to those found in many contaminated sites. Therefore, it is concluded that the presence of indigenous organisms can confound the interpretation of toxicity test results, based on chronic end points. It is recommended that removal of organisms by considered before toxicity tests are conducted with freshwater sediments from sites with large populations of benthic invertebrates, especially oligochaete worms.

  16. Biodegradation of trichloroethylene and its anaerobic daughter products in freshwater wetland sediments

    USGS Publications Warehouse

    Lorah, M.M.; Olsen, L.D.

    2001-01-01

    Laboratory microcosms were prepared under methanogenic, sulfate-reducing, and aerobic conditions using sediment and groundwater from a freshwater wetland that is a discharge area for a trichloroethylene (TCE) to evaluate potential biodegradation rates of TCE and its anaerobic daughter products (cis-1,2-dichloroethylene, trans-1,2-dichloroethylene, and vinyl chloride (VC)). Anaerobic degradation of TCE was about an order of magnitude faster under methanogenic conditions than under sulfate-reducing conditions. Both 12DCE and VC were found under sulfate-reducing conditions in the microcosms containing the wetland sediment, but their production, especially for VC, was substantially slower than under methanogenic conditions. Methane concentrations remained approximately constant (when losses in the formalin-amended controls are considered) in the microcosms amended with TCE and increased in the microcosms amended with the 12DCE isomers and VC during the first 18-25 days of incubation. The most rapid decrease in concentrations of TCE, cis-12DCE, trans-12DCE, and VC was found after aerobic methane-oxidizing conditions were definitely established.

  17. Ammonia-oxidizing archaea and bacteria in water columns and sediments of a highly eutrophic plateau freshwater lake.

    PubMed

    Yang, Yuyin; Li, Ningning; Zhao, Qun; Yang, Mengxi; Wu, Zhen; Xie, Shuguang; Liu, Yong

    2016-08-01

    Both ammonia-oxidizing archaea (AOA) and bacteria (AOB) can play important roles in the microbial oxidation of ammonia nitrogen in freshwater lake, but information on spatiotemporal variation in water column and sediment community structure is still limited. Additionally, the drivers of the differences between sediment and water assemblages are still unclear. The present study investigated the variation of AOA and AOB communities in both water columns and sediments of eutrophic freshwater Dianchi Lake. The abundance, diversity, and structure of both planktonic and sediment ammonia-oxidizing microorganisms in Dianchi Lake showed the evident changes with sampling site and time. In both water columns and sediments, AOB amoA gene generally outnumbered AOA, and the AOB/AOA ratio was much higher in summer than in autumn. The total AOA amoA abundance was relatively great in autumn, while sediment AOB was relatively abundant in summer. Sediment AOA amoA abundance was likely correlated with ammonia nitrogen (rs = 0.963). The AOB/AOA ratio in lake sediment was positively correlated with total phosphorus (rs = 0.835), while pH, dissolved organic carbon, and ammonia nitrogen might be the key driving forces for the AOB/AOA ratio in lake water. Sediment AOA and AOB diversity was correlated with nitrate nitrogen (rs = -0.786) and total organic carbon (rs = 0.769), respectively, while planktonic AOB diversity was correlated with ammonia nitrogen (rs = 0.854). Surface water and sediment in the same location had a distinctively different microbial community structure. In addition, sediment AOB community structure was influenced by total phosphorus, while total phosphorus might be a key determinant of planktonic AOB community structure.

  18. Microbial community structures in anoxic freshwater lake sediment along a metal contamination gradient.

    PubMed

    Gough, Heidi L; Stahl, David A

    2011-03-01

    Contamination, such as by heavy metals, has frequently been implicated in altering microbial community structure. However, this association has not been extensively studied for anaerobic communities, or in freshwater lake sediments. We investigated microbial community structure in the metal-contaminated anoxic sediments of a eutrophic lake that were impacted over the course of 80 years by nearby zinc-smelting activities. Microbial community structure was inferred for bacterial, archaeal and eukaryotic populations by evaluating terminal restriction fragment length polymorphism (TRFLP) patterns in near-surface sediments collected in triplicate from five areas of the lake that had differing levels of metal contamination. The majority of the fragments in the bacterial and eukaryotic profiles showed no evidence of variation in association with metal contamination levels, and diversity revealed by these profiles remained consistent even as metal concentrations varied from 3000 to 27,000 mg kg(-1) total Zn, 0.125 to 11.2 μ pore water Zn and 0.023 to 5.40 μM pore water As. Although most archaeal fragments also showed no evidence of variation, the prevalence of a fragment associated with mesophilic Crenarchaeota showed significant positive correlation with total Zn concentrations. This Crenarchaeota fragment dominated the archaeal TRFLP profiles, representing between 35% and 79% of the total measured peak areas. Lake DePue 16S rRNA gene sequences corresponding to this TRFLP fragment clustered with anaerobic and soil mesophilic Crenarchaeota sequences. Although Crenarchaeota have been associated with metal-contaminated groundwater and soils, this is a first report (to our knowledge) documenting potential increased prevalence of Crenarchaeota associated with elevated levels of metal contamination.

  19. Field validation of 10-day freshwater sediment toxicity tests using Hyalella azteca and Chironomus tentans

    SciTech Connect

    Becker, D.S.; Bigham, G.N.

    1995-12-31

    Two of the toxicity tests commonly used to evaluate freshwater sediments are the 10-day amphipod (Hyalella azteca) and chironomid (Chironomus tentans) tests. EPA and ASTM have recently developed standardized protocols for these tests. Although both tests are considered sensitive indicators of sediment toxicity, little information exists on how well test results correspond to adverse biological effects in the field. In this study, the lethal and sublethal (i.e., biomass) responses of the two toxicity tests were compared with alterations of benthic macroinvertebrate assemblages (i.e., benthic effects) at 56 stations in Onondaga Lake, New York. The lake has received municipal and industrial discharges for more than 100 years, and sediment chemical concentrations range widely throughout the lake. Toxicity results for Onondaga Lake were compared with reference conditions using the t-test, and benthic effects were determined using classification analysis of log-transformed taxa abundances. In general, a relatively high level of agreement was found between results of the toxicity tests and alterations of benthic assemblages. Significant (P < 0.05) correlations were found between all toxicity test endpoints and taxa richness of benthic assemblages. In addition, significant concordance (P {le} 0.01, binomial test) was found between toxicity designations for the 56 stations based on toxicity tests and toxicity designations based on benthic effects. Despite the general level of agreement among the various biological indicators, chironomid biomass and benthic effects were found to be the most sensitive indicators of toxicity, whereas amphipod survival and biomass were the least sensitive indicators. This study suggests that results of the 10-day amphipod and chironomid toxicity tests are highly predictive of adverse biological effects in the field.

  20. An assessment of the toxicity of phthalate esters to freshwater benthos. 2. Sediment exposures.

    PubMed

    Call, D J; Cox, D A; Geiger, D L; Genisot, K I; Markee, T P; Brooke, L T; Polkinghorne, C N; VandeVenter, F A; Gorsuch, J W; Robillard, K A; Parkerton, T F; Reiley, M C; Ankley, G T; Mount, D R

    2001-08-01

    Seven phthalate esters were evaluated for their 10-d toxicity to the freshwater invertebrates Hyalella azteca and Chironomus tentans in sediment. The esters were diethyl phthalate (DEP), di-n-butyl phthalate (DBP), di-n-hexyl phthalate (DHP), di-(2-ethylhexyl) phthalate (DEHP), diisononyl phthalate (DINP), diisodecyl phthalate (DIDP), and a commercial mixture of C7, C9, and C11 isophthalate esters (711P). All seven esters were tested in a sediment containing 4.80% total organic carbon (TOC), and DBP alone was tested in two additional sediments with 2.45 and 14.1% TOC. Sediment spiking concentrations for DEP and DBP were based on LC50 (lethal concentration for 50% of the population) values from water-only toxicity tests, sediment organic carbon concentration, and equilibrium partitioning (EqP) theory. The five higher molecular weight phthalate esters (DHP, DEHP, DINP, DIDP, 711P), two of which were tested and found to be nontoxic in water-only tests (i.e., DHP and DEHP), were tested at single concentrations between 2,100 and 3,200 mg/kg dry weight. Preliminary spiking studies were performed to assess phthalate ester stability under test conditions. The five higher molecular weight phthalate esters in sediment had no effect on survival or growth of either C. tentans or H. azteca, consistent with predictions based on water-only tests and EqP theory. The 10-d LC50 values for DBP and H. azteca were >17,400, >29,500, and >71,900 mg/kg dry weight for the low, medium, and high TOC sediments, respectively. These values are more than 30x greater than predicted by EqP theory and may reflect the fact that H. azteca is an epibenthic species and not an obligative burrower. The 10-d LC50 values for DBP and C. tentans were 826, 1,664, and 4.730 mg/kg dry weight for the low, medium, and high TOC sediments, respectively. These values are within a factor of two of the values predicted by EqP theory. Pore-water 10-d LC50 values for DBP (dissolved fraction) and C. tentans in the three

  1. Medium term modelling of coupled hydrodynamics, turbulence and sediment pathways in a region of freshwater influence.

    NASA Astrophysics Data System (ADS)

    Amoudry, Laurent; Brown, Jenny; Souza, Alex; Norman, Danielle; Olsen, Karine

    2014-05-01

    Liverpool Bay, in the northwest of the UK, is a shallow, hypertidal region of freshwater influence. In this region, baroclinic processes significantly affect the residual circulation, which in turn influences the long term transport of sediment. A nested modelling system is implemented to simulate the coupled hydro and sediment dynamics in the bay. We use the Proudman Oceanographic Laboratory Coastal Ocean Modelling System (POLCOMS), which is based on a three-dimensional baroclinic numerical model formulated in spherical polar terrain-following coordinates. The hydrodynamic model solves the three-dimensional, hydrostatic, Boussinesq equations of motion separated into depth-varying and depth-independent parts to allow time splitting between barotropic and baroclinic components. This model is coupled to the General Ocean Turbulence Model (GOTM), to the WAve Model (WAM), and includes state-of-the-art Eulerian and Lagrangian sediment transport models. We implement POLCOMS to Liverpool Bay at a horizontal resolution of approximately 180 m. The bathymetry consists of digitized hydrographic charts combined with LIDAR and multibeam data. Three-dimensional baroclinic effects, river inputs, surface heating and offshore density structure are all considered. Liverpool Bay is subjected to a spring tidal range in excess of 10 m and thus intertidal areas are significant. Wetting and drying algorithms are therefore also implemented. A nesting approach is employed to prescribe offshore boundary conditions for elevations, currents, temperature and salinity. Boundary values are obtained from numerical simulations for the entire Irish and are then used to force the three-dimensional hydrodynamics in the Liverpool Bay domain. Atmospheric forcing consists of hourly wind velocity and atmospheric pressure, and three-hourly cloud cover, humidity and air temperature. We focus here on numerical simulations for a full year, 2008, which is considered to be a typical year for atmospheric

  2. Eruption-related lahars and sedimentation response downstream of Mount Hood: Field guide to volcaniclastic deposits along the Sandy River, Oregon

    USGS Publications Warehouse

    Pierson, Tom C.; Scott, William E.; Vallance, James W.; Pringle, Patrick T.; O'Connor, Jim; Dorsey, Rebecca; Madin, Ian

    2009-01-01

    Late Holocene dome-building eruptions at Mount Hood during the Timberline and Old Maid eruptive periods resulted in numerous dome-collapse pyroclastic flows and lahars that moved large volumes of volcaniclastic sediment into temporary storage in headwater canyons of the Sandy River. During each eruptive period, accelerated sediment loading to the river through erosion and remobilization of volcanic fragmental debris resulted in very high sediment-transport rates in the Sandy River during rain- and snowmelt-induced floods. Large sediment loads in excess of the river's transport capacity led to channel aggradation, channel widening, and change to a braided channel form in the lowermost reach of the river, between 61 and 87 km downstream from the volcano. The post-eruption sediment load moved as a broad bed-material wave, which in the case of the Old Maid eruption took ~2 decades to crest 83 km downstream. Maximum post-eruption aggradation levels of at least 28 and 23 m were achieved in response to Timberline and Old Maid eruptions. In each case, downstream aggradation cycles were initiated by lahars, but the bulk of the aggradation was achieved by fluvial sediment transport and deposition. When the high rates of sediment supply began to diminish, the river degraded, incising the channel fills and forming progressively lower sets of degradational terraces. A variety of debris-flow, hyperconcentrated-flow, and fluvial (upper and lower flow regime) deposits record the downstream passage of the sediment waves that were initiated by these eruptions. The deposits also presage a hazard that may be faced by communities along the Sandy River when volcanic activity at Mount Hood resumes.

  3. Sediment characteristics in the San Antonio River Basin downstream from San Antonio, Texas, and at a site on the Guadalupe River downstream from the San Antonio River Basin, 1966-2013

    USGS Publications Warehouse

    Crow, Cassi L.; Banta, J. Ryan; Opsahl, Stephen P.

    2014-01-01

    San Antonio and surrounding municipalities in Bexar County, Texas, are in a rapidly urbanizing region in the San Antonio River Basin. The U.S. Geological Survey, in cooperation with the San Antonio River Authority and the Texas Water Development Board, compiled historical sediment data collected between 1996 and 2004 and collected suspended-sediment and bedload samples over a range of hydrologic conditions in the San Antonio River Basin downstream from San Antonio, Tex., and at a site on the Guadalupe River downstream from the San Antonio River Basin during 2011–13. In the suspended-sediment samples collected during 2011–13, an average of about 94 percent of the particles was less than 0.0625 millimeter (silt and clay sized particles); the 50 samples for which a complete sediment-size analysis was performed indicated that an average of about 69 percent of the particles was less than 0.002 millimeter. In the bedload samples collected during 2011–13, an average of 51 percent of sediment particles was sand-sized particles in the 0.25–0.5 millimeter-size range. In general, the loads calculated from the samples indicated that bedload typically composed less than 1 percent of the total sediment load. A least-squares log-linear regression was developed between suspended-sediment concentration and instantaneous streamflow and was used to estimate daily mean suspended-sediment loads based on daily mean streamflow. The daily mean suspended-sediment loads computed for each of the sites indicated that during 2011–12, the majority of the suspended-sediment loads originated upstream from the streamflow-gaging station on the San Antonio River near Elmendorf, Tex. A linear regression relation was developed between turbidity and suspended-sediment concentration data collected at the San Antonio River near Elmendorf site because the high-resolution data can facilitate understanding of the complex suspended-sediment dynamics over time and throughout the river basin.

  4. Assimilation of remote sensing observations into a sediment transport model of China's largest freshwater lake: spatial and temporal effects.

    PubMed

    Zhang, Peng; Chen, Xiaoling; Lu, Jianzhong; Zhang, Wei

    2015-12-01

    Numerical models are important tools that are used in studies of sediment dynamics in inland and coastal waters, and these models can now benefit from the use of integrated remote sensing observations. This study explores a scheme for assimilating remotely sensed suspended sediment (from charge-coupled device (CCD) images obtained from the Huanjing (HJ) satellite) into a two-dimensional sediment transport model of Poyang Lake, the largest freshwater lake in China. Optimal interpolation is used as the assimilation method, and model predictions are obtained by combining four remote sensing images. The parameters for optimal interpolation are determined through a series of assimilation experiments evaluating the sediment predictions based on field measurements. The model with assimilation of remotely sensed sediment reduces the root-mean-square error of the predicted sediment concentrations by 39.4% relative to the model without assimilation, demonstrating the effectiveness of the assimilation scheme. The spatial effect of assimilation is explored by comparing model predictions with remotely sensed sediment, revealing that the model with assimilation generates reasonable spatial distribution patterns of suspended sediment. The temporal effect of assimilation on the model's predictive capabilities varies spatially, with an average temporal effect of approximately 10.8 days. The current velocities which dominate the rate and direction of sediment transport most likely result in spatial differences in the temporal effect of assimilation on model predictions.

  5. Predicting the acute toxicity of copper in freshwater sediments: Evaluation of the role of acid-volatile sulfide

    SciTech Connect

    Ankley, G.T.; Mattson, V.R.; Leonard, E.N.; West, C.W. ); Bennett, J.L. )

    1993-02-01

    Acid-volatile sulfide (AVS) has been proposed as an important partitioning phase determining the bioavailability of cationic metals in sediments. The objective of this research was to evaluate the role of AVS in determining copper toxicity in sediments from two sites heavily contaminated with copper: Steilacoom Lake, Washington, and the Keweenaw Watershed, Michigan. Sediments from the two sites were used in 10-d toxicity tests with the amphipod Hyalella azteca, and results of the toxicity tests were compared to bioavailability predictions based on copper and AVS concentrations in the test sediments, as well as copper concentrations in the sediment interstitial (pore) water. Normalization of sediment copper concentrations to AVS accurately predicted sediments that were nontoxic when molar copper-to-AVS ratios were less than one; however, toxicity also was frequently not observed in samples with molar copper-to-AVS ratios significantly greater than one. In contrast, measurement of pore-water copper concentrations and subsequent comparison of these concentrations to water-only copper toxicity data for Hyalella azteca resulted in accurate predictions of the presence and extent of copper toxicity in the test sediments. These results indicate that AVS alone is not an appropriate partitioning phase for predicting copper bioavailability in freshwater sediments.

  6. Validation and sensitivity comparisons of micro-scale toxicity tests for the evaluation of freshwater sediment toxicity

    SciTech Connect

    Riebel, P.; Bureau, J.; Blaise, C.; Michaud, J.R.

    1995-12-31

    A three-year study is currently underway to develop a representative and cost-effective battery of toxicity tests for evaluating freshwater sediment and porewater toxicity. Among the tests currently being evaluated are the following: Microtox{trademark} chronic test, Microtox{trademark} solid-phase test, Microtox{trademark} liquid phase test, Thamnotoxkit F{trademark}, Rotoxkit F{trademark}, Daphnia magna IQ test{trademark}, Sediment Toxkit, SOS Chromotest, a Selenastrum capricornutum short exposure assay, and trout hepatocyte assays. Conventional sediment tests with Chironomus tentans, Hyalella azteca and Lumbriculus variegatus, as well as benthic macroinvertebrate community assessments and sediment chemical characterizations are being conducted at two contaminated sites. Toxicity test reproducibility, sensitivity, practicality, cost and ecological relevance are discussed.

  7. Effects of clay minerals and organic matter in formulated sediments on the bioavailability of sediment-associated uranium to the freshwater midge, Chironomus dilutus.

    PubMed

    Crawford, Sarah E; Liber, Karsten

    2015-11-01

    It is well established that bioavailability influences metal toxicity in aquatic ecosystems. However, the factors and mechanisms that influence uranium (U) bioavailability and toxicity in sediment have not been thoroughly evaluated, despite evidence that suggests different sediment components can influence the sorption and interaction of some metals. Given that dissolved U is generally accepted as being the primary bioavailable fraction of U, it is hypothesized that adsorption and interaction of U with different sediment components will influence the bioavailability of U in sediment. We investigated the effects of key sediment physicochemical properties on the bioavailability of U to a model freshwater benthic invertebrate, Chironomus dilutus. Several 10-day spiked sediment bioaccumulation experiments were performed, exposing C. dilutus larvae to a variety of formulated sediments spiked with different concentrations of U (5, 50 and/or 200 mg U/kg d.w.). Mean accumulation of U in C. dilutus larvae decreased significantly from 1195 to 10 mg U/kg d.w. as kaolin clay content increased from 0% to 60% in sediment spiked with 50 mg U/kg d.w. Similarly, higher organic matter content also resulted in a significant reduction of U bioaccumulation in C. dilutus larvae, indicating a reduction in U bioavailability. Concentrations of U in both the overlying water and sediment pore water displayed a strong positive relationship to U bioaccumulation in C. dilutus larvae (r(2) = 0.77, p<0.001 and r(2) = 0.57, p < 0.001, respectively) for all experiments, while total U concentrations in the sediment had a poor relationship to U bioaccumulation (r(2) = 0.10, p = 0.028). Results from this research confirm that sediment clay and organic matter content play a significant role in altering U bioavailability, which is important in informing risk assessments of U contaminated sites and in the development of site-specific sediment quality guidelines for U.

  8. Thiobaca trueperi gen. nov., sp. nov., a phototrophic purple sulfur bacterium isolated from freshwater lake sediment.

    PubMed

    Rees, Gavin N; Harfoot, Christopher G; Janssen, Peter H; Schoenborn, Liesbeth; Kuever, Jan; Lünsdorf, Heinrich

    2002-03-01

    Two strains of a novel species of phototrophic micro-organism were isolated from the sediments of a shallow, freshwater, eutrophic lake. Both strains grew photolithoheterotrophically with sulfide as an electron donor, transiently accumulating intracellular sulfur globules. Photolithoautotrophic growth was not observed. One strain was designated BCH(T) (the type strain) and was studied in most detail. Cells contained bacteriochlorophyll a, and the dominant carotenoid was lycopene. Cell suspensions were brown. The photosynthetic membranes had a vesicular arrangement. Acetate, propionate, pyruvate, succinate and fumarate were each used as electron donors and carbon sources in the presence of sulfide and bicarbonate. In the presence of light, growth did not occur with hydrogen, thiosulfate or iron(II). The optimum temperature for growth was between 25 and 30 degrees C, the maximum being 36 degrees C. The G+C content of the genomic DNA of strain BCH(T) was 63 mol%. Analysis of the 16S RNA genes showed that both strains belonged to the gamma-subclass of the Proteobacteria but were phylogenetically distinct from any described phototrophic organisms within the Chromatiaceae. On the basis of phylogenetic and physiological differences from other phototrophic microorganisms, strain BCH(T) is described as a novel species of a new genus, Thiobaca trueperi gen. nov., sp. nov.

  9. Toxicity of sediments from lead-zinc mining areas to juvenile freshwater mussels (Lampsilis siliquoidea) compared to standard test organisms.

    PubMed

    Besser, John M; Ingersoll, Christopher G; Brumbaugh, William G; Kemble, Nile E; May, Thomas W; Wang, Ning; MacDonald, Donald D; Roberts, Andrew D

    2015-03-01

    Sediment toxicity tests compared chronic effects on survival, growth, and biomass of juvenile freshwater mussels (28-d exposures with Lampsilis siliquoidea) to the responses of standard test organisms-amphipods (28-d exposures with Hyalella azteca) and midges (10-d exposures with Chironomus dilutus)-in sediments from 2 lead-zinc mining areas: the Tri-State Mining District and Southeast Missouri Mining District. Mussel tests were conducted in sediments sieved to <0.25 mm to facilitate recovery of juvenile mussels (2-4 mo old). Sediments were contaminated primarily with lead, zinc, and cadmium, with greater zinc and cadmium concentrations in Tri-State sediments and greater lead concentrations in southeast Missouri sediments. The frequency of highly toxic responses (reduced 10% or more relative to reference sites) in Tri-State sediments was greatest for amphipod survival (25% of samples), midge biomass (20%), and mussel survival (14%). In southeast Missouri sediments, the frequency of highly toxic samples was greatest for mussel biomass (25%) and amphipod biomass (13%). Thresholds for metal toxicity to mussels, expressed as hazard quotients based on probable effect concentrations, were lower for southeast Missouri sediments than for Tri-State sediments. Southeast Missouri sites with toxic sediments had 2 or fewer live mussel taxa in a concurrent mussel population survey, compared with 7 to 26 taxa at reference sites. These results demonstrate that sediment toxicity tests with juvenile mussels can be conducted reliably by modifying existing standard methods; that the sensitivity of mussels to metals can be similar to or greater than standard test organisms; and that responses of mussels in laboratory toxicity tests are consistent with effects on wild mussel populations.

  10. Toxicity of sediments from lead-zinc mining areas to juvenile freshwater mussels (Lampsilis siliquoidea) compared to standard test organisms

    USGS Publications Warehouse

    Besser, John M.; Ingersoll, Christopher G.; Brumbaugh, William G.; Kemble, Nile E.; May, Thomas W.; Wang, Ning; MacDonald, Donald D.; Roberts, Andrew D.

    2015-01-01

    Sediment toxicity tests compared chronic effects on survival, growth, and biomass of juvenile freshwater mussels (28-d exposures with Lampsilis siliquoidea) to the responses of standard test organisms—amphipods (28-d exposures with Hyalella azteca) and midges (10-d exposures with Chironomus dilutus)—in sediments from 2 lead–zinc mining areas: the Tri-State Mining District and Southeast Missouri Mining District. Mussel tests were conducted in sediments sieved to <0.25 mm to facilitate recovery of juvenile mussels (2–4 mo old). Sediments were contaminated primarily with lead, zinc, and cadmium, with greater zinc and cadmium concentrations in Tri-State sediments and greater lead concentrations in southeast Missouri sediments. The frequency of highly toxic responses (reduced 10% or more relative to reference sites) in Tri-State sediments was greatest for amphipod survival (25% of samples), midge biomass (20%), and mussel survival (14%). In southeast Missouri sediments, the frequency of highly toxic samples was greatest for mussel biomass (25%) and amphipod biomass (13%). Thresholds for metal toxicity to mussels, expressed as hazard quotients based on probable effect concentrations, were lower for southeast Missouri sediments than for Tri-State sediments. Southeast Missouri sites with toxic sediments had 2 or fewer live mussel taxa in a concurrent mussel population survey, compared with 7 to 26 taxa at reference sites. These results demonstrate that sediment toxicity tests with juvenile mussels can be conducted reliably by modifying existing standard methods; that the sensitivity of mussels to metals can be similar to or greater than standard test organisms; and that responses of mussels in laboratory toxicity tests are consistent with effects on wild mussel populations.

  11. Determination of premining geochemical background and delineation of extent of sediment contamination in Blue Creek downstream from Midnite Mine, Stevens County, Washington

    USGS Publications Warehouse

    Church, Stanley E.; Kirschner, Frederick E.; Choate, LaDonna M.; Lamothe, Paul J.; Budahn, James R.; Brown, Zoe Ann

    2008-01-01

    Geochemical and radionuclide studies of sediment recovered from eight core sites in the Blue Creek flood plain and Blue Creek delta downstream in Lake Roosevelt provided a stratigraphic geochemical record of the contamination from uranium mining at the Midnite Mine. Sediment recovered from cores in a wetland immediately downstream from the mine site as well as from sediment catchments in Blue Creek and from cores in the delta in Blue Creek cove provided sufficient data to determine the premining geochemical background for the Midnite Mine tributary drainage. These data provide a geochemical background that includes material eroded from the Midnite Mine site prior to mine development. Premining geochemical background for the Blue Creek basin has also been determined using stream-sediment samples from parts of the Blue Creek, Oyachen Creek, and Sand Creek drainage basins not immediately impacted by mining. Sediment geochemistry showed that premining uranium concentrations in the Midnite Mine tributary immediately downstream of the mine site were strongly elevated relative to the crustal abundance of uranium (2.3 ppm). Cesium-137 (137Cs) data and public records of production at the Midnite Mine site provided age control to document timelines in the sediment from the core immediately downstream from the mine site. Mining at the Midnite Mine site on the Spokane Indian Reservation between 1956 and 1981 resulted in production of more than 10 million pounds of U3O8. Contamination of the sediment by uranium during the mining period is documented from the Midnite Mine along a small tributary to the confluence of Blue Creek, in Blue Creek, and into the Blue Creek delta. During the period of active mining (1956?1981), enrichment of base metals in the sediment of Blue Creek delta was elevated by as much as 4 times the concentration of those same metals prior to mining. Cadmium concentrations were elevated by a factor of 10 and uranium by factors of 16 to 55 times premining

  12. Evaluation of freshwater sediment quality values including apparent effects thresholds of Hyalella azteca and Microtox{reg_sign}

    SciTech Connect

    Cubbage, J.; Batts, D.

    1995-12-31

    Data from 36 studies in Washington State were merged into a single database to derive Apparent Effects Thresholds (AETS) for freshwater sediments and to evaluate other sediment quality values. Sediments from 235 sites were analyzed for several contaminants, Bioassays tested at 30 or more of these sites included Hyalella azteca, Daphnia magna and Chironomus tentans mortality, Ceriodaphnia dubia reproduction and growth, and Microtox{reg_sign} luminescence reduction. Adequate sample size (n > 50) and wide range of response were available for Hyalella (n = 235) and Microtox{reg_sign} (n = 61) to determine AETs for organic carbon normalized PAHs, pesticides, and PCBs, and dry weight normalized metals, phenols and chlorinated phenols. The ability of these AETs to predict response in any bioassay at the sites in the database was compared with Ontario Ministry Environment and Energy (OMEE) Sediment Quality Guidelines and the Environment Canada (EC) Interim Sediment Quality Values. Measures of sensitivity (number correctly predicted/number impacted) and efficiency (number correctly predicted/number predicted) were compared. The EC Threshold Effects Level (TEL) was the most sensitive (fewest Type 2 errors) at 92%, but the least efficient (most Type 1 errors) at 35%. The lowest AET (LAET) of Hyalella and Microtox{reg_sign}, derived from the current study, was the next most sensitive (77%) and more efficient (44%). The OMEE Severe Effects Level was the least sensitive (59%) and the most efficient (53%). The EC Probable Effects Level (PEL) was 50% efficient and 72% sensitive. Of the four sets of sediment quality values, the OMEE Severe Effects Level had the highest overall reliability (number of correct predictions of effects and non-effects/number of sites examined) in predicting bioassay effects in the Washington State freshwater sediment database.

  13. Accelerated removal of pyrene and benzo[a]pyrene in freshwater sediments with amendment of cyanobacteria-derived organic matter.

    PubMed

    Yan, Zaisheng; Jiang, Helong; Li, Xiaohong; Shi, Yuan

    2014-05-15

    The removal of pyrene and benzo[a]pyrene (BaP) were investigated in freshwater sediments with amendment of seven different organic matters including cyanobacteria-derived organic matter (COM), plant-derived organic matter (POM), and humic substances (HS). During the 210 days of experiments, the amendment of COM or HS enhanced significantly the removal of pyrene and BaP in sediments, especially with fresh COM (FCOM) treatment much superior to HS. On the contrary, degradation of these polycyclic aromatic hydrocarbons (PAHs) was not significantly improved and even inhibited in POM-amended sediments. The first-order rate constants of pyrene and BaP degradation in the FCOM-amended sediments reached 0.00540±0.00017d(-1) and 0.00517±0.00057d(-1), respectively, and were about three and five folds of those in the control treatment. The enhanced PAHs degradation in FCOM-amended sediments was related to higher PAH-degrading bacteria number and bioavailability with a result of biostimulation and priming effect by labile carbon and high-value nutrition in FCOM. Thus, this study improved our understanding about effects of settled biomass from cyanobacterial blooms, which occurred frequently in eutrophic aquatic ecosystems, on the natural attenuation of PAHs in sediments. Furthermore, this study would also help develop a new promising approach to remediate PAH-contaminated sediments through utilization of cyanobacterial bloom biomass.

  14. Ecophysiological Evidence that Achromatium oxaliferum Is Responsible for the Oxidation of Reduced Sulfur Species to Sulfate in a Freshwater Sediment

    PubMed Central

    Gray, N. D.; Pickup, R. W.; Jones, J. G.; Head, I. M.

    1997-01-01

    Achromatium oxaliferum is a large, morphologically conspicuous, sediment-dwelling bacterium. The organism has yet to be cultured in the laboratory, and very little is known about its physiology. The presence of intracellular inclusions of calcite and sulfur have given rise to speculation that the bacterium is involved in the carbon and sulfur cycles in the sediments where it is found. Depth profiles of oxygen concentration and A. oxaliferum cell numbers in a freshwater sediment revealed that the A. oxaliferum population spanned the oxic-anoxic boundary in the top 3 to 4 cm of sediments. Some of the A. oxaliferum cells resided at depths where no oxygen was detectable, suggesting that these cells may be capable of anaerobic metabolism. The distributions of solid-phase and dissolved inorganic sulfur species in the sediment revealed that A. oxaliferum was most abundant where sulfur cycling was most intense. The sediment was characterized by low concentrations of free sulfide. However, a comparison of sulfate reduction rates in sediment cores incubated with either oxic or anoxic overlying water indicated that the oxidative and reductive components of the sulfur cycle were tightly coupled in the A. oxaliferum-bearing sediment. A positive correlation between pore water sulfate concentration and A. oxaliferum numbers was observed in field data collected over an 18-month period, suggesting a possible link between A. oxaliferum numbers and the oxidation of reduced sulfur species to sulfate. The field data were supported by laboratory incubation experiments in which sodium molybdate-treated sediment cores were augmented with highly purified suspensions of A. oxaliferum cells. Under oxic conditions, rates of sulfate production in the presence of sodium molybdate were found to correlate strongly with the number of cells added to sediment cores, providing further evidence for a role for A. oxaliferum in the oxidation of reduced sulfur. PMID:16535604

  15. MINIATURIZED SEDIMENT PROCEDURES FOR ASESSING TOXICITY USING MARINE AND FRESHWATER AMPHIPODS AND EMBRYO/LARVAL FISH

    EPA Science Inventory

    Sediment toxicity tests are needed that can be conducted with less sediment volume and fewer organisms. Bench scale remediation techniques often produce less sediment than is required to perform the standardized sediment methods and the excess sediments that are generated present...

  16. Water and sediment toxicity of freshwater mussels from population crashes of Asiatic clams

    SciTech Connect

    Scheller, J.L.; Cherry, D.S.; Yeager, M.M.; Lynde, S.R.; Shepard, N.D.

    1994-12-31

    The Clinch River watershed in Virginia contains one of the most diverse communities of freshwater bivalves or unionids in North America. These communities are becoming depleted over the past few decades due to various point (industrial, municipal) and nonpoint (roadside and agricultural runoff) discharges. By the latter 1980`s, the Asiatic clam (Corbicula fluminea) had invaded most reaches of this system and may be becoming a contributing factor to the demise of native mussels by the natural release of toxic ammonia from dense population crashes during late summer, low flow conditions. When densities surpassed 1,500 clams/m{sup 2}, crashes resulting in >99% mortality have been observed in various areas of the river. Total ammonia release from dying clams reached and sustained 70 mg/L for several days in laboratory artificial stream experiments. These ammonia levels resulted in acute toxicity and reproductive chronic impairment to Daphnia magna in 10-day sediment toxicity tests. Pediveliger larvae of Corbicula were acutely sensitive (48 hr LC{sub 50}) to 1.72 mg/L total ammonia (O.05 mg/L unionized), mortality was 100% to juvenile and adult clams in 9 to 13 days at 16.1 mg/L total (0.74 mg/L unionized ammonia). Mussel glochidia were sensitive to 24-hr ammonia exposures (LC{sub 50} = 3.29 and 0.11 mg/L as total and unionized ammonia, respectively). Juvenile and adult mussels are predicted to be less sensitive members of the unionid life cycle as observed from earlier studies involving copper toxicity in the Clinch River.

  17. Isolation and Characterization of Acetate-Utilizing Anaerobes from a Freshwater Sediment.

    PubMed

    Scholten, J.C.M.; Stams, A.J.M.

    2000-12-01

    Acetate-degrading anaerobic microorganisms in freshwater sediment were quantified by the most probable number technique. From the highest dilutions a methanogenic, a sulfate-reducing, and a nitrate-reducing microorganism were isolated with acetate as substrate. The methanogen (culture AMPB-Zg) was non-motile and rod-shaped with blunted ends (0.5-1 mm x 3-4 mm long). Doubling times with acetate at 30-35 degrees C were 5.6-8.1 days. The methanogen grew only on acetate. Analysis of the 16S rRNA sequence showed that AMPB-Zg is closely related to Methanosaeta concilii. The isolated sulfate-reducing bacterium (strain ASRB-Zg) was rod-shaped with pointed ends (0.5-0.7 mm x 1.5-3.5 mm long), weakly motile, spore forming, and gram positive. At the optimum growth temperature of 30 degrees C the doubling times with acetate were 3.9-5.3 days. The bacterium grew on a range of organic acids, such as acetate, butyrate, fumarate, and benzoate, but did not grow autotrophically with H2, CO2, and sulfate. The closest relative of strain ASRB-Zg is Desulfotomaculum acetoxidans. The nitrate-reducing bacterium (strain ANRB-Zg) was rod-shaped (0.5-0.7 mm x 0.7-1 mm long), weakly motile, and gram negative. Optimum growth with acetate occurred at 20-25 degrees C. The bacterium grew on a range of organic substrates, such as acetate, butyrate, lactate, and glucose, and did grow autotrophically with H2, CO2, and oxygen but not with nitrate. In the presence of acetate and nitrate, thiosulfate was oxidized to sulfate. Phylogenetically, the closest relative of strain ANRB-Zg is Variovorax paradoxus.

  18. Seed dormancy and persistent sediment seed banks of ephemeral freshwater rock pools in the Australian monsoon tropics

    PubMed Central

    Cross, Adam T.; Turner, Shane R.; Renton, Michael; Baskin, Jerry M.; Dixon, Kingsley W.; Merritt, David J.

    2015-01-01

    Background and Aims Rock pools are small, geologically stable freshwater ecosystems that are both hydrologically and biologically isolated. They harbour high levels of plant endemism and experience environmental unpredictability driven by the presence of water over variable temporal scales. This study examined the hypothesis that the sediment seed bank in monsoon tropical freshwater rock pools would persist through one or more periods of desiccation, with seed dormancy regulating germination timing in response to rock pool inundation and drying events. Methods Seeds were collected from seven dominant rock pool species, and germination biology and seed dormancy were assessed under laboratory conditions in response to light, temperature and germination stimulators (gibberellic acid, karrikinolide and ethylene). Field surveys of seedling emergence from freshwater rock pools in the Kimberley region of Western Australia were undertaken, and sediment samples were collected from 41 vegetated rock pools. Seedling emergence and seed bank persistence in response to multiple wetting and drying cycles were determined. Key Results The sediment seed bank of individual rock pools was large (13 824 ± 307 to 218 320 ± 42 412 seeds m−2 for the five species investigated) and spatially variable. Seedling density for these same species in the field ranged from 13 696 to 87 232 seedlings m−2. Seeds of rock pool taxa were physiologically dormant, with germination promoted by after-ripening and exposure to ethylene or karrikinolide. Patterns of seedling emergence varied between species and were finely tuned to seasonal temperature and moisture conditions, with the proportions of emergent seedlings differing between species through multiple inundation events. A viable seed bank persisted after ten consecutive laboratory inundation events, and seeds retained viability in dry sediments for at least 3 years. Conclusions The persistent seed bank in freshwater rock pools is likely to

  19. Assessment of the use of the AVS concept for the routine toxicity monitoring of contaminated freshwater sediments

    SciTech Connect

    Vangheluwe, M.L.; Janssen, C.R.; Goyvaerts, M.P.; Cooman, P.

    1995-12-31

    Acid volatile sulfides (AVS) have been shown to be an important factor mediating the bioavailability of heavy metals in sediments and have consequently been suggested as a possible predictive tool for toxicity assessment of these matrices. The potential use and limitations of the AVS method for predictive toxicity screening and priority setting was assessed in a large scale sediment monitoring study (Flanders, Belgium). The acute toxicity of 50 metal contaminated freshwater sediments, with varying metal concentrations and sediment characteristics, were tested using the Microtox{reg_sign} Solid Phase test and the 10 day test with Chironomus riparius and Hyalella azteca. Uni and multivariate statistical techniques were used to asses the relations between acute toxicity and SEM/AVS ratio`s and to evaluate the influence of sediment characteristics on metal bioavailability and toxicity. In general, the results of this study indicate that the AVS-toxicity relationship proposed in literature does have certain limitations. Finally, the potential use of a concentration-addition model for predicting metal-mixture toxicity in sediments will be presented and discussed.

  20. Seasonal variation and controlling factors of anaerobic ammonium oxidation in freshwater river sediments in the Taihu Lake region of China.

    PubMed

    Zhao, Yongqiang; Xia, Yongqiu; Kana, Todd M; Wu, Yucheng; Li, Xiaobo; Yan, Xiaoyuan

    2013-11-01

    Anaerobic ammonium oxidation (anammox) has been recently recognized as an important pathway for the removal of fixed nitrogen (N) from aquatic systems. However, the functions of anammox in freshwater river systems remain uncertain. In this study, we evaluated the occurrence of anammox activity in two rivers in the Taihu Lake region in China during a seasonal survey. Homogenized sediments were incubated with (15)N-labeled NO3(-) and NH4(+) amendments to determine the potential importance of the anammox process relative to canonical denitrification. Production of (29)N2 and (30)N2 in slurries was determined using membrane inlet mass spectrometry. Potential anammox rates in the two river sediments ranged from 0.11±0.07 to 6.79±1.28 μmol N m(-2) h(-1) and the remove of N by anammox accounted for 0.8±0.00% to 10.7±0.03% of total N2 production. Potential anammox rates varied spatially and temporally in the two rivers, with the highest and lowest mean anammox rates appearing during summer and early autumn and during winter, respectively. The variation of the percentage of anammox to total N2 production displayed the same trend with potential anammox rates. Water temperature and NO3(-) content in sediments were the main factors affecting anammox activity. Anammox bacteria were detected in sediment samples using barcode pyrosequencing. The 16S rRNA anammox gene sequences in the river sediments were affiliated with Candidatus Kuenenia, Candidatus Jettenia, and Candidatus Scalindua, among which C. Kuenenia dominated the anammox bacterial communities. Our results confirmed the presence of anammox bacteria but their role is relatively small in removing fixed N from freshwater river systems.

  1. The role of river sediments in contamination storage downstream of a waste water treatment plant in low flow conditions: Organotins, faecal indicator bacteria and nutrients

    NASA Astrophysics Data System (ADS)

    Chahinian, N.; Bancon-Montigny, C.; Caro, A.; Got, P.; Perrin, J. L.; Rosain, D.; Rodier, C.; Picot, B.; Tournoud, M. G.

    2012-12-01

    In intermittent rivers, characterised by a specific hydrological behaviour, sediment-water column interactions may influence water quality during low flows. The main objective of this work was to assess the extent of anthropogenic pollution (organotins, faecal indicator bacteria and nutrients) in the river sediment of an intermittent river and its impact on the downstream water bodies: The Vène River, main tributary of the Thau lagoon. We first investigated anthropogenic pollution from water and sediment samples collected in situ along the river course (1.5 km); then, during laboratory experiments, we assessed the survival of faecal bacteria and quantified the degradation rates of organotins on the same sediments. The results indicate the presence of anthropogenic pollution all along the study reach. The waste water treatment plant effluent is a direct pollution input source for anthropogenic pollution. The sediment data points to an urban drainage ditch as a secondary point pollution source while the organotins data highlights the presence of other diffuse sources, specific to this substance. The results of the laboratory experiments show that both faecal bacteria and organotins may persist in the river sediments for up to two months in summer and even longer in winter. This indicates that sediments may, under favourable conditions, become important pollutant stores which may later be released and transported to the Thau lagoon during floods.

  2. Unexpected and novel putative viruses in the sediments of a deep-dark permanently anoxic freshwater habitat.

    PubMed

    Borrel, Guillaume; Colombet, Jonathan; Robin, Agnès; Lehours, Anne-Catherine; Prangishvili, David; Sime-Ngando, Télesphore

    2012-11-01

    Morphological diversity, abundance and community structure of viruses were examined in the deep and anoxic sediments of the volcanic Lake Pavin (France). The sediment core, encompassing 130 years of sedimentation, was subsampled every centimeter. High viral abundances were recorded and correlated to prokaryotic densities. Abundances of viruses and prokaryotes decreased with the depth, contrasting the pattern of virus-to-prokaryote ratio. According to fingerprint analyses, the community structure of viruses, bacteria and archaea gradually changed, and communities of the surface (0-10 cm) could be discriminated from those of the intermediate (11-27 cm) and deep (28-40 cm) sediment layers. Viral morphotypes similar to virions of ubiquitous dsDNA viruses of bacteria were observed. Exceptional morphotypes, previously never reported in freshwater systems, were also detected. Some of these resembled dsDNA viruses of hyperthermophilic and hyperhalophilic archaea. Moreover, unusual types of spherical and cubic virus-like particles (VLPs) were observed. Infected prokaryotic cells were detected in the whole sediment core, and their vertical distribution correlated with both viral and prokaryotic abundances. Pleomorphic ellipsoid VLPs were visible in filamentous cells tentatively identified as representatives of the archaeal genus Methanosaeta, a major group of methane producers on earth.

  3. Combining natural experiments in source lithology with laboratory tumbling to quantify sediment resistance to comminution and its role in downstream fining

    NASA Astrophysics Data System (ADS)

    Beyeler, J. D.; Sklar, L. S.; Riebe, C. S.

    2012-12-01

    Mountain rivers convey sediment from alpine headwaters through valleys to basins, providing both erosive tools for fluvial incision and protective alluvial cover depending on sediment supply. It is widely observed that particles reduce in size during fluvial transport, directly influencing bed sediment grain size distributions and thus channel morphology, habitat quality, and the sedimentary record of climatic and tectonic effects on landscapes. However it is difficult to quantify the contribution of comminution to downstream fining of bed material due to the confounding effects of sediment resupply from hillslopes and sorting by size selective transport. Here we take advantage of natural experiments where lithologic contacts create discrete upstream source areas of particular rock types, such that downstream of the contact we can exclude hillslope resupply and isolate the evolution of grain size distributions due to particle breakdown. Where the upstream source area supplies two or more rock types of differing durability, we can use the relationship between lab measurements of size reduction and tensile strength to distinguish in the field between sorting and particle comminution. We are applying this approach in the Sierra Nevada of California, where plutonic and metamorphic bedrock vary in durability and outcrop in favorable configurations for this natural experiment. For all rock types in this study, we measure rock tensile strength in the laboratory with Brazilian tensile splitting tests and quantify comminution as exponential mass loss coefficients from barrel tumbling experiments. In the field we measure size reduction of bed material through pebble counts by rock type, which are combined with downstream travel distances for a field estimate of sediment fining rates. We then compare field results with laboratory strength measurements and tumbling abrasion coefficients to estimate field size reduction due solely to comminution. Our field and lab results will

  4. Influence of Hydrologic Regime and Biogeochemistry on Sediment Phosphorus Retention and Release Processes in Shallow Freshwater Ecosystems

    NASA Astrophysics Data System (ADS)

    Kinsman, L. E.; O'Brien, J.; Robbins, S.; Hamilton, S. K.

    2010-12-01

    Phosphorus (P) binding and release in aquatic sediments is controlled by many factors including redox, iron, sulfur, and organic matter, and the relative importance of these varies. In contrast to deeper lakes and marine waters where most sediment-water P exchange studies have been conducted, natural and human-induced water level fluctuations in shallow freshwater wetlands may flood and dry extensive areas of sediment. These hydrologic perturbations may alter sediment P dynamics, most importantly by controlling redox potential at the sediment-water interface. In many P-limited shallow ecosystems, P flux between the sediment and surface water can control rates of aquatic primary production, and enhanced P export can contribute to “internal eutrophication” of water bodies. Working in shallow wetlands of Michigan, we combined laboratory sediment wetting and drying experiments with in-situ ecosystem monitoring to assess the interactive effects of hydrologic variability and sediment biogeochemistry on P retention and release processes. In experimental manipulations, most sediment types (14 out of 16) that were dried and rewetted released more P into surface water than constantly flooded controls. In addition, field observations showed that surface water P may increase by as much as 700% in wetlands that were reflooded after a period of drying due to natural processes (e.g., large precipitation events) and/or human activities (e.g., reflooding wetlands historically drained for agricultural use). However, the magnitude, and sometimes direction, of sediment-surface water P flux in response to hydrologic perturbation is contingent on sediment biogeochemistry. In particular, iron and sulfur play important roles: oxidized iron by binding phosphate, and reduced sulfur (as free hydrogen sulfide) by reacting with iron in sediments and forming insoluble FeS, effectively removing binding sites for phosphate, which is then released to surface water. Because of this reaction

  5. Spatial Patterns of Plant Litter and Sedimentation in a Tidal Freshwater Marsh and Implications for Marsh Persistence

    NASA Astrophysics Data System (ADS)

    Elmore, A. J.; Cadol, D. D.; Palinkas, C. M.; Engelhardt, K. A.

    2014-12-01

    The maintenance of marsh platform elevation under sea level rise is dependent on sedimentation and biomass conversion to soil organic material. These physical and biological processes interact within the tidal zone, resulting in elevation-dependent processes contributing to marsh accretion. Here we explore spatial pattern in plant litter, a variable related to productivity, to understand its role in physical and biological interactions in a freshwater marsh. Plant litter that persists through the dormant season has an extended period of influence on ecosystem processes. We conducted a field and remote sensing analysis of plant litter height, biomass, vertical cover, and stem density (collectively termed plant litter structure) at a tidal freshwater marsh located along the Potomac River estuary. We completed two years of repeat RTK GPS surveys with corresponding measurements of litter height (over 2000 observations) to train a non-parametric random forest decision tree to predict litter height. LiDAR and field observations show that plant litter height increases with increasing elevation, although important deviations from this relationship are apparent. These spatial patterns exhibit stability from year to year and lead to corresponding patterns in soil organic matter content, revealed by loss on ignition of surface sediments. The amount of mineral material embedded within plant litter decreases with increasing elevation, representing an important trade-off with litter structure. Therefore, at low elevations where litter structure is short and sparse, the role of plant litter is to capture sediment; at high elevations where litter structure is tall and dense, litter contributes organic matter to soil development. Despite these tradeoffs, changes in elevation over time are consistent across elevation, with only small positive differences in elevation gain over time at elevations where the most sediment is deposited or where litter exhibits the most biomass.

  6. Superfund record of decision (EPA Region 1): New London Submarine Base, soil and sediment at Area A Downstream Water Courses/Overbank Disposal Area, Groton, CT, March 31, 1998

    SciTech Connect

    1998-09-01

    Area A Downstream Water Courses/Overbank Disposal Area (Area A Downstream/OBDA) is located on the Naval Submarine Base New London (NSB-NLON), Groton, Connecticut. This Record of Decision (ROD) addresses the contaminated soil and sediment at this site. This ROD presents the following final remedy for soil and sediment at Area A Downstream/OBDA: Removal of surface water followed by treatment and discharge to Thames River; and Excavation of contaminated soil and sediment, followed by onsite dewatering and disposal at an offsite landfill.

  7. Evaluation of the Reference Envelope Approach for Assessing Toxicity in Contaminated Surficial Urban Freshwater Sediments

    EPA Science Inventory

    The reference envelope (RE) has been proposed as an alternative approach to assess sediment toxicity to overcome limitations imposed by the use of control sediments including differences in non-contaminant characteristics and low statistical power when many test sediments are com...

  8. Glacial freshwater discharge events recorded by authigenic neodymium isotopes in sediments from the Mendeleev Ridge, western Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Jang, Kwangchul; Han, Yeongcheol; Huh, Youngsook; Nam, Seung-Il; Stein, Ruediger; Mackensen, Andreas; Matthiessen, Jens

    2013-05-01

    The freshwater budget of the Arctic Ocean is a key component governing the deep water formation in the North Atlantic and the global climate system. We analyzed the isotopic composition of neodymium (ɛNd) in authigenic phases of marine sediments on the Mendeleev Ridge in the western Arctic Ocean spanning an estimated time interval from present to about 75 ka BP. This continuous record was used to reconstruct the ɛNd of the polar deep water (PDW) and changes in freshwater sources to the PDW through time. Three deviations in ɛNd from a long term average of -10.2 were identified at estimated 46-51, 35-39 and 13-21 ka BP. The estimated 46-51 ka BP event can be traced to bursting of ice-dammed lakes accompanying the collapse of the Barents-Kara Ice Sheet, which would have released radiogenic Nd to the eastern Arctic Ocean. The cyclonic surface circulation in the eastern Arctic Ocean must have been stronger than at present for the event to be recorded on the Mendeleev Ridge. For the 35-39 and 13-21 ka BP events, it is likely that the Laurentide Ice Sheet (LIS) supplied the unradiogenic freshwater. The configuration of the anticyclonic circulation in the western Arctic was probably similar to today or expanded eastward. Our simple mass balance calculations suggest that large amounts of freshwater were released but due to significant deep water formation within the Arctic Ocean, the effect on the formation of NADW was probably minor.

  9. Responses of Hyalella azteca and Chironomus tentans to particle-size distribution and organic matter content of formulated and natural freshwater sediments

    SciTech Connect

    Suedel, B.C.; Rodgers, J.H. Jr. . Dept. of Biology)

    1994-10-01

    The freshwater amphipod, Hyalella azteca (Saussure), and midge, Chironomus tentans (Fabricius), were exposed to formulated sediments and nontoxic field-collected sediments for 10 d to determine their responses to varying sediment particle sizes and organic matter content of freshwater sediments. In experiments with formulated sediments, H. azteca survival was >80% when exposed for 10 d to all particle-size regimes examined. Subsequent exposures of H. azteca to field-collected sediments resulted in >80% H. azteca survival in all sediments. Field-collected sediments with organic matter content ranging from 0.12 to 7.8% yielded no observed effects on amphipod survival, which ranged from 84 to 100%. Survival of C. tentans ranged from 4 to 56% when exposed to formulated sediments for 10 d with 0% particulate organic matter content. A threshold organic matter content between 0.76 and 0.91% was observed for C. tentans exposed to formulated and field-collected sediments. Chironomus tentans survival was >80% in all cases when exposed to various particle-size regimes in formulated sediments containing 2.5% particulate organic matter. Formulated sediments were suitable for determining H. azteca and C. tentans responses to particle-size regimes and organic matter content of sediments, as test results using formulated and natural sediments were in agreement. Except for C. tentans observed intolerance of <0.76 to 0.91% organic matter content of sediments, C. tentans and H. azteca are suitable benthic toxicity testing organisms for determining the potential toxicity of sediments with a wide range of particle-size regimes and organic matter content.

  10. Development of a 14-d test for growth and survival in sediment using the freshwater amphipod, Hyalella azteca

    SciTech Connect

    Day, K.E.; Kirby, R.S.; McLeay, D.J.; Milani, D.

    1995-12-31

    A biological test method is being developed by Environment Canada for a 14-d freshwater sediment toxicity test using 2 to 9 day old amphipods which uses survival and growth as endpoints. The test may be undertaken as either an intermittent renewal assay with twice-daily renewal of the overlying water, or as a static assay with aeration of the overlying water. The performance of the test method using each of these two test options was compared with two types of food and several feeding regimes (ie., a suspension of YCT versus fish food flakes fed daily or thrice weekly). Three field-collected sediments with low, moderate, and high organic carbon content (0.2%, 4% and 12%) were also used as part of the test method developmental studies in order to discern a minimal acceptable level of growth for clean sediments according to each test option. Additionally, the ability of the test to discriminate the effects of contaminants on growth over the 14-day period was determined in dose-response experiments with contaminant-spiked sediment, using tributyltin and copper as contaminants.

  11. Selective pressure of antibiotics on ARGs and bacterial communities in manure-polluted freshwater-sediment microcosms

    PubMed Central

    Xiong, Wenguang; Sun, Yongxue; Ding, Xueyao; Wang, Mianzhi; Zeng, Zhenling

    2015-01-01

    The aim of this study was to investigate selective pressure of antibiotics on antibiotic resistance genes (ARGs) and bacterial communities in manure-polluted aquatic environment. Three treatment groups were set up in freshwater-sediment microcosms: tetracyclines group, sulfonamides group and fluoroquinolones group. Sediment and water samples were collected on day 14 after treatment. Antibiotic concentrations, ARGs abundances and bacterial community composition were analyzed. Antibiotic concentrations were determined by ultra-performance liquid chromatography-electrospray tandem mass spectrometry. ARGs abundances were quantified by real time quantitative PCR. Bacterial community composition was analyzed based on amplicon sequencing. Of the three classes of antibiotics analyzed in the treatment groups, accumulation amounts were tetracyclines> fluoroquinolone> sulfonamides in the sediment samples, while they were sulfonamides> fluoroquinolone> tetracyclines in the water samples. In the treatment groups, the relative abundances of some tet resistance genes [tet(W) and tet(X)] and plasmid-mediated quinolone resistance (PMQR) genes [oqx(B) and aac(6′)-Ib] in sediment samples were significantly higher than those in the paired water samples. Tetracyclines significantly selected the bacterial classes including Gammaproteobacteria, Clostridia, and the genera including Salmonella, Escherichia/Shigella, Clostridium, Stenotrophomonas in sediment samples. The significant selection on bacterial communities posed by sulfonamides and fluoroquinolones was also observed. The results indicated that sediment may supply an ideal setting for maintenance and persistence of tet resistance genes [tet(W) and tet(X)] and PMQR genes [oqx(B) and aac(6′)-Ib] under antibiotic pollution. The results also highlighted that antibiotics significantly selected specific bacterial communities including the taxa associated with opportunistic pathogens. PMID:25814986

  12. Sharing the rivers: Balancing the needs of people and fish against the backdrop of heavy sediment loads downstream from Mount Rainier, Washington

    NASA Astrophysics Data System (ADS)

    Magirl, C. S.; Czuba, J. A.; Czuba, C. R.; Curran, C. A.

    2012-12-01

    Despite heavy sediment loads, large winter floods, and floodplain development, the rivers draining Mount Rainier, a 4,392-m glaciated stratovolcano within 85 km of sea level at Puget Sound, Washington, support important populations of anadromous salmonids, including Chinook salmon and steelhead trout, both listed as threatened under the Endangered Species Act. Aggressive river-management approaches of the early 20th century, such as bank armoring and gravel dredging, are being replaced by more ecologically sensitive approaches including setback levees. However, ongoing aggradation rates of up to 8 cm/yr in lowland reaches present acute challenges for resource managers tasked with ensuring flood protection without deleterious impacts to aquatic ecology. Using historical sediment-load data and a recent reservoir survey of sediment accumulation, rivers draining Mount Rainer were found to carry total sediment yields of 350 to 2,000 tonnes/km2/yr, notably larger than sediment yields of 50 to 200 tonnes/km2/yr typical for other Cascade Range rivers. An estimated 70 to 94% of the total sediment load in lowland reaches originates from the volcano. Looking toward the future, transport-capacity analyses and sediment-transport modeling suggest that large increases in bedload and associated aggradation will result from modest increases in rainfall and runoff that are predicted under future climate conditions. If large sediment loads and associated aggradation continue, creative solutions and long-term management strategies are required to protect people and structures in the floodplain downstream of Mount Rainier while preserving aquatic ecosystems.

  13. Downstream patterns of suspended sediment transport in a High Arctic river influenced by permafrost disturbance and recent climate change

    NASA Astrophysics Data System (ADS)

    Favaro, Elena A.; Lamoureux, Scott F.

    2015-10-01

    Spatially and temporally variable suspended sediment transport from upstream sources was investigated in the West River (unofficial name) at the Cape Bounty Arctic Watershed Observatory (CBAWO) on Melville Island, Nunavut (74°55‧ N, 109°35‧ W), a river with nearly a decade of hydrological and sediment transport research in the Canadian Arctic and subject to recent permafrost disturbances, such as soil skin flows on slopes, massive ground ice melt in the channel, and substantial climate change. During the 2012 season, a survey was undertaken during the nival period to identify areas of the river where the flow was isolated from the channel bed by snow and where it progressively reached the bed. During the nival period, and throughout the rest of the season, suspended sediment transport data were collected from a primary outlet station and six upstream locations to identify the sources and sinks of sediment in the various reaches of the West River. An inferred sediment budget approach was used to identify the storage and release dynamics in each reach. Nival event-scale hysteresis and seasonal diurnal hysteresis patterns for 2012 were primarily anticlockwise, suggesting that sources of sediment were not readily available for transport during peak flows but became available as discharge waned. Analysis of diurnal hysteresis relationships for the years 2004-2012 (excluding 2011) signals a shift in daily sediment-discharge hysteresis from primarily clockwise to anticlockwise following an episode of permafrost disturbance and enhanced erosion in 2007. Consistent sediment storage in the upper catchment from this disturbance is interpreted to have contributed to the shift to anticlockwise daily hysteresis. Results provide insights into the fluvial and geomorphological response to changes in sediment availability in Arctic rivers and how these changes in turn affect sediment transport in these environments.

  14. Selenium sediment toxicity thresholds and derivation of water quality criteria for freshwater biota of western streams

    SciTech Connect

    Van Derveer, W.D.; Canton, S.P.

    1997-06-01

    Waterborne and sediment selenium (Se) data, in conjunction with selected physicochemical parameters, were collected from streams of the middle Arkansas River basin, Colorado, USA, to examine the factors affecting sediment Se accumulation in a lotic environment. An empirical model of dissolved-to-sediment Se transfer in western streams, as an interactive function of sediment organic carbon content, was developed and validated. Sediment Se and associated biological effects data were compiled from the literature, to provide an estimate of sediment Se concentration thresholds that have biological effects. Based on this preliminary analysis, sediment Se concentrations of 2.5 {micro}g/g would be a threshold based on predicted effects and concentrations of 4.0 {micro}g/g would be the observed threshold for dish and wildlife toxicity. The dissolved-to-sediment Se transfer model can be used to translate this type of sediment Se toxicity threshold to a site-specific chronic water-quality standard for western streams based on empirically derived sediment total organic carbon values.

  15. Factors influencing mercury in freshwater surface sediments of northeastern North America

    USGS Publications Warehouse

    Kamman, N.C.; Chalmers, A.; Clair, T.A.; Major, A.; Moore, R.B.; Norton, S.A.; Shanley, J.B.

    2005-01-01

    We report on an inventory and analysis of sediment mercury (Hg) concentrations from 579 sites across northeastern North America. Sediment Hg concentrations ranged from the limit of detection ca. 0.01-3.7 ??g g -1 (dry weight, d.w.), and the average concentration was 0.19 ??g g-1 (d.w.) Sediment methylmercury concentrations ranged from 0.15 to 21 ng g-1 (d.w.) and the mean concentration was 3.83 ng g -1 (d.w.). Total Hg concentrations (HgT) were greatest in lakes > reservoirs > rivers, although the proportion of Hg as methylmercury showed an inverse pattern. Total Hg was weakly and positively correlated with the sediment organic matter and percent of watershed as forested land, and weakly and negatively correlated with sediment solids content, drainage area, and agricultural land. Sediment methylmercury concentrations were weakly and positively correlated to wetland area, and weakly and negatively correlated to drainage area. Methylmercury, expressed as a percentage of HgT was positively correlated to agricultural land area. For sites with co-located sediment and fish-tissue sampling results, there was no relationship between sediment Hg and fish-tissue Hg. Finally, our data indicate that at least 44% of waters across the region have sediment HgT concentrations in excess of Canadian and United States minimum sediment contaminant guidelines for the protection of aquatic biota. ?? 2005 Springer Science+Business Media, Inc.

  16. Factors influencing mercury in freshwater surface sediments of northeastern North America.

    PubMed

    Kamman, Neil C; Chalmers, Ann; Clair, Thomas A; Major, Andrew; Moore, Richard B; Norton, Stephen A; Shanley, James B

    2005-03-01

    We report on an inventory and analysis of sediment mercury (Hg) concentrations from 579 sites across northeastern North America. Sediment Hg concentrations ranged from the limit of detection ca. 0.01-3.7 microg g(-1) (dry weight, d.w.), and the average concentration was 0.19 microg g(-1) (d.w.) Sediment methylmercury concentrations ranged from 0.15 to 21 ng g(-1) (d.w.) and the mean concentration was 3.83 ng g(-1) (d.w.). Total Hg concentrations (HgT) were greatest in lakes > reservoirs > rivers, although the proportion of Hg as methylmercury showed an inverse pattern. Total Hg was weakly and positively correlated with the sediment organic matter and percent of watershed as forested land, and weakly and negatively correlated with sediment solids content, drainage area, and agricultural land. Sediment methylmercury concentrations were weakly and positively correlated to wetland area, and weakly and negatively correlated to drainage area. Methylmercury, expressed as a percentage of HgT was positively correlated to agricultural land area. For sites with co-located sediment and fish-tissue sampling results, there was no relationship between sediment Hg and fish-tissue Hg. Finally, our data indicate that at least 44% of waters across the region have sediment HgT concentrations in excess of Canadian and United States minimum sediment contaminant guidelines for the protection of aquatic biota.

  17. Nontarget analysis of polar contaminants in freshwater sediments influenced by pharmaceutical industry using ultra-high-pressure liquid chromatography-quadrupole time-of-flight mass spectrometry.

    PubMed

    Terzic, Senka; Ahel, Marijan

    2011-02-01

    A comprehensive analytical procedure for a reliable identification of nontarget polar contaminants in aquatic sediments was developed, based on the application of ultra-high-pressure liquid chromatography (UHPLC) coupled to hybrid quadrupole time-of-flight mass spectrometry (QTOFMS). The procedure was applied for the analysis of freshwater sediment that was highly impacted by wastewater discharges from the pharmaceutical industry. A number of different contaminants were successfully identified owing to the high mass accuracy of the QTOFMS system, used in combination with high chromatographic resolution of UHPLC. The major compounds, identified in investigated sediment, included a series of polypropylene glycols (n=3-16), alkylbenzene sulfonate and benzalkonium surfactants as well as a number of various pharmaceuticals (chlorthalidone, warfarin, terbinafine, torsemide, zolpidem and macrolide antibiotics). The particular advantage of the applied technique is its capability to detect less known pharmaceutical intermediates and/or transformation products, which have not been previously reported in freshwater sediments.

  18. Depositional Influences on Porewater Arsenic in Sediments of a Mining-Contaminated Freshwater Lake

    SciTech Connect

    Toevs, G.; Morra, M.J.; Winowiecki, L.; Strawn, D.; Polizzotto, M.L.; Fendorf, S.

    2009-05-26

    Arsenic-containing minerals mobilized during mining activities and deposited to Lake Coeur d'Alene (CDA), Idaho sediments represent a potential source of soluble As to the overlying water. Our objective was to delineate the processes controlling porewater As concentrations within Lake CDA sediments. Sediment and porewater As concentrations were determined, and solid-phase As associations were probed using X-ray absorption near-edge structure (XANES) spectroscopy. Although maximum As in the sediment porewaters varied from 8.4 to 16.2 microM, As sorption on iron oxyhydroxides at the oxic sediment-water interface prevented flux to overlying water. Floods deposit sediment containing variable amounts of arsenopyrite (FeAsS), with majorfloods depositing large amounts of sediment that bury and preserve reduced minerals. Periods of lower deposition increase sediment residence times in the oxic zone, promoting oxidation of reduced minerals, SO4(2-) efflux, and formation of oxide precipitates. Depositional events bury oxides containing sorbed As, transitioning them into anoxic environments where they undergo dissolution, releasing As to the porewater. High Fe:S ratios limit the formation of arsenic sulfides in the anoxic zone. As a result of As sequestration at the sediment-water interface and its release upon burial, decreased concentrations of porewater As will not occur unless As-bearing erosional inputs are eliminated.

  19. Microbial diversity and community respiration in freshwater sediments influenced by artificial light at night.

    PubMed

    Hölker, Franz; Wurzbacher, Christian; Weißenborn, Carsten; Monaghan, Michael T; Holzhauer, Stephanie I J; Premke, Katrin

    2015-05-05

    An increasing proportion of the Earth's surface is illuminated at night. In aquatic ecosystems, artificial light at night (ALAN) may influence microbial communities living in the sediments. These communities are highly diverse and play an important role in the global carbon cycle. We combined field and laboratory experiments using sediments from an agricultural drainage system to examine how ALAN affects communities and alters carbon mineralization. Two identical light infrastructures were installed parallel to a drainage ditch before the start of the experiment. DNA metabarcoding indicated that both sediment communities were similar. After one was lit for five months (July-December 2012) we observed an increase in photoautotroph abundance (diatoms, Cyanobacteria) in ALAN-exposed sediments. In laboratory incubations mimicking summer and winter (six weeks each), communities in sediments that were exposed to ALAN for 1 year (July 2012-June 2013) showed less overall seasonal change compared with ALAN-naive sediments. Nocturnal community respiration was reduced in ALAN-exposed sediments. In long-term exposed summer-sediments, we observed a shift from negative to positive net ecosystem production. Our results indicate ALAN may alter sediment microbial communities over time, with implications for ecosystem-level functions. It may thus have the potential to transform inland waters to nocturnal carbon sinks.

  20. Microbial diversity and community respiration in freshwater sediments influenced by artificial light at night

    PubMed Central

    Hölker, Franz; Wurzbacher, Christian; Weißenborn, Carsten; Monaghan, Michael T.; Holzhauer, Stephanie I. J.; Premke, Katrin

    2015-01-01

    An increasing proportion of the Earth's surface is illuminated at night. In aquatic ecosystems, artificial light at night (ALAN) may influence microbial communities living in the sediments. These communities are highly diverse and play an important role in the global carbon cycle. We combined field and laboratory experiments using sediments from an agricultural drainage system to examine how ALAN affects communities and alters carbon mineralization. Two identical light infrastructures were installed parallel to a drainage ditch before the start of the experiment. DNA metabarcoding indicated that both sediment communities were similar. After one was lit for five months (July–December 2012) we observed an increase in photoautotroph abundance (diatoms, Cyanobacteria) in ALAN-exposed sediments. In laboratory incubations mimicking summer and winter (six weeks each), communities in sediments that were exposed to ALAN for 1 year (July 2012–June 2013) showed less overall seasonal change compared with ALAN-naive sediments. Nocturnal community respiration was reduced in ALAN-exposed sediments. In long-term exposed summer-sediments, we observed a shift from negative to positive net ecosystem production. Our results indicate ALAN may alter sediment microbial communities over time, with implications for ecosystem-level functions. It may thus have the potential to transform inland waters to nocturnal carbon sinks. PMID:25780242

  1. Effect of presence of cellulose in the freshwater sediment on the performance of sediment microbial fuel cell.

    PubMed

    Sajana, T K; Ghangrekar, M M; Mitra, A

    2014-03-01

    The performance of sediment microbial fuel cells (SMFCs) was evaluated in the presence of cellulose in the aquaculture pond sediment as 2% (w/w) in SMFC-2, 4% in SMFC-3 and without adding cellulose in SMFC-1. From aquaculture water, average chemical oxygen demand (COD) and total nitrogen (TN) removal efficiencies of 80.6±0.3% and 83.0±0.01% were obtained in SMFC-1, 88.2±0.5% and 89.6±0.8% in SMFC-2 and 83.1±0.3% and 64.5±1.6% in SMFC-3, respectively. During the complete experimental period, acetic acid was the only short chain fatty acid detected in all three SMFCs. Sediment organic matter removal in SMFC-1, SMFC-2 and SMFC-3 were 16%, 22% and 18.6%, respectively. SMFCs demonstrated effective cellulose degradation from aquaculture pond sediment and maintained the oxidized sediment top layer favourable for aquaculture.

  2. Dissolved organic matter in pore water of freshwater sediments: effects of separation procedure on quantity, quality and functionality.

    PubMed

    Akkanen, Jarkko; Lyytikäinen, Merja; Tuikka, Anita; Kukkonen, Jussi V K

    2005-09-01

    Pore water was separated either with or without water extraction prior to centrifugation (7600 or 20,000 x g) in order to investigate the effects of separation procedure on the amount and properties of dissolved organic matter (DOM i.e. the material passing through a 0.45-microm filter) in three freshwater sediments. On the basis of solubility in alkaline, organic matter was concluded to compose of humic substances in two (S1 and S3) and of humin (S2) in one of the sediments. DOM in the samples was quantified by total organic carbon measurement. Specific UV-absorption (SUVA) and high performance size exclusion chromatography (HPSEC) analyses were used to characterize DOM. Sorption of pyrene was used as a measure for functionality of DOM. Both water extraction and centrifugation speed were shown to affect the properties of DOM; however, the effects were sediment dependent. Water extraction increased the amount of DOM separated from the two sediments that had humic character (S1 and S3). In most cases water extraction increased SUVA and shifted the molecular size distribution of DOM towards larger sizes. The separation procedure had also an effect on the functionality of DOM. In water extracted samples of S2 and S3 the sorption of pyrene was higher than in the corresponding samples separated without water extraction, whereas in S1 similar effect was not found. Generally, centrifugation speed had smaller effects on the properties of DOM than water extraction. The fact that the effects of separation procedure on DOM depend on the sediment characteristics complicates the comparison between samples and evaluation of functionality in field conditions.

  3. Stimulated embryo production as a parameter of estrogenic exposure via sediments in the freshwater mudsnail Potamopyrgus antipodarum.

    PubMed

    Duft, Martina; Schulte-Oehlmann, Ulrike; Weltje, Lennart; Tillmann, Michaela; Oehlmann, Jörg

    2003-09-10

    The effects of three suspected endocrine disrupting chemicals, the xeno-estrogens bisphenol A (BPA), 4-tert-octylphenol (OP) and 4-n-nonylphenol (NP), were investigated in a whole-sediment biotest with the freshwater mudsnail Potamopyrgus antipodarum (Gastropoda, Prosobranchia). Artificial sediments were spiked with five nominal concentrations (six for NP), ranging from 1-300 microg/kg dry weight (1-1000 microg/kg for NP). After 2, 4 and 8 weeks of exposure, the responses of the test species were analysed. P. antipodarum exhibited a distinct increase in the number of embryos sheltered in its brood pouch in a time- and concentration-dependent manner in comparison to the solvent control sediment for BPA and OP. The number of "new", still unshelled embryos turned out to be the most sensitive parameter. The lowest observed effect concentration (LOEC) was equivalent to the lowest administered concentration (1 microg/kg for each test compound) for most parameters after 8 weeks of exposure. The calculation of effect concentrations resulted in even lower values for BPA (unshelled embryos after 2 weeks: EC(10) 0.22 microg BPA/kg, EC(50) 24.5 microg BPA/kg; after 4 weeks: EC(10) 0.19 microg BPA/kg, EC(50) 5.67 microg BPA/kg) and OP (unshelled embryos after 4 weeks: EC(10) 4 ng OP/kg, EC(50) 0.07 microg OP/kg). For NP, there was no clear concentration-dependent response, and therefore, no EC(10) or EC(50) could be estimated, but the data suggest an inverted u-shape type of curve. The LOEC in the experiments with NP was 10 microg/kg. Our results indicate that P. antipodarum is highly sensitive to the tested endocrine disruptors at environmentally relevant concentrations. Furthermore, the biotest with P. antipodarum is a useful tool for the identification of sediment-bound pollutants and for the assessment of sediment quality.

  4. Relative contribution of iron reduction to sediments organic matter mineralization in contrasting habitats of a shallow eutrophic freshwater lake.

    PubMed

    Chen, Mo; Jiang, He-Long

    2016-06-01

    Iron reduction is one of the important organic matter (OM) mineralization pathway in sediments. Here we investigated the rates and the relative contribution of iron reduction to OM mineralization in Zhushan bay (ZSB, cyanobacterial bloom biomass (CBB)-dominated habitats) and East Taihu Lake (ETL, submerged macrophypes (SM)-dominated habitats) of Lake Taihu, China. Anaerobic microcosm incubation revealed that the rate of iron reduction at ZSB (4.42 μmol cm(-3) d(-1)) in summer was almost 1.5 times higher than at ETL (3.13 μmol cm(-3) d(-1)). Iron reduction accounted for 66.5% (ZSB) and 31.8% (ETL) of total anaerobic carbon mineralization, respectively. No detectable methanogenesis was found at ZSB, while methanogenesis was responsible for 16.7% of total anaerobic respiration in sediments of ETL. Geochemical analysis of solid phase constituents indicated that ZSB surface sediments experienced highly oxidizing conditions with much higher amorphous Fe(III) (71 mmol m(-2)) than ETL (11 mmol m(-2)). Conversely, AVS inventories at ETL (38 mmol m(-2)) were up to 30 times higher than at ZSB (1.27 mmol m(-2)), indicating significant sulfate reduction in sediments of ETL. Overall results suggested that varying carbon sources and distinct geochemical characterizations of the sediments in contrasting habitats significantly influenced the rate of iron reduction and the pathway of C mineralization in a large freshwater lake.

  5. A multi-factorial study of the effect of collection, storage and extraction techniques on the toxicity of freshwater sediments

    SciTech Connect

    Janssen, C.R.; Vangheluwe, M.L.; Persoone, G.

    1995-12-31

    Numerous authors have examined the influence of collection, transport, storage and extraction methods on the composition and toxicity of contaminated sediments and have shown that all factors may individually affect sediment toxicity. The relative importance and possible interactions of these toxicity altering factors has not yet been studied. In this study replicate samples were collected from a small area (5 m{sup 2}) of metal-contaminated sediment using a grab (Van Veen) and a (hand) core sampler. An equal number of replicates of each type of sample was immediately stored (in the field) under a N{sub 2} or aerobic atmosphere at 4 C. For each of the 4 subgroups the influence of the following pore water extraction procedures on sample toxicity were assessed: squeezing versus centrifugation, extraction at 4 C versus 25 C and filtered (0.45--2.7 {micro}m) versus non-filtered. The toxicity of each of the resulting pore waters was evaluated with the 24h Thamnotoxkit{trademark} F test (Thamnocephalus platyurus) and/or the 10 day Hyalella azteca assay. A total of 84 toxicity tests were performed. The relative importance of each of the factors on the toxicity of the sediment pore waters was assessed using multivariate ordination and classification techniques. In general, sample storage (i.e. N{sub 2} or aerobic conditions) was the most important factor changing the toxicity of the pore waters up to 5-fold. The sampling procedure affected the toxicity with a factor 2--3 and the influence of the extraction techniques was shown to be minimal. The results of this multifactoral study will be discussed in the context of existing guidelines for the toxicity assessment of freshwater sediments.

  6. Sheetflow Effects and Canal Backfilling on Sediment Source and Transport in Everglades Freshwater Marshes: Analysis of Molecular Organic Biomarkers

    NASA Astrophysics Data System (ADS)

    Regier, P.; He, D.; Saunders, C.; Coronado-Molina, C.; Jara, B.; Jaffe, R.

    2014-12-01

    Historic freshwater sheetflow in the Florida Everglades distributed sediment to form a ridge-and-slough landscape. However, drainage along with reduction and obstruction of flow has resulted in degradation of this ridged topography. The DECOMP Physical Model is a landscape-scale project aiming to reestablish natural sheetflow to the central and southern Everglades by redesigning barriers to flow. To validate proof of concept that increased flow will rebuild ridge-slough microtopography, biomarker proxies were established for ridge and slough organic matter sources. In addition, partial and complete canal backfill options were assessed via sediment trap accumulation in each backfill treatment area. Flocculent matter (floc) and sediment samples were collected, solvent extracted, chromatographically separated, and analyzed on a GC/MS using internal standard for quantification. Four molecular organic biomarkers were evaluated: the aquatic proxy (Paq), highly-branched isoprenoids (C20 HBI), kaurenes and botyrococcenes. Paq, an aquatic proxy of mid to long-chain n-alkanes, was shown to clearly differentiate between ridge-derived and slough-derived organic matter with Paq values increasing along ridge-to-slough transects. Kaurenes indicated presence of ridge-derived organic matter while C20 HBI and botyrococcenes were indicative of periphyton-derived organic matter which is commonly more abundant in sloughs. Biomarker distributions during both low (present day) and high (managed) water flow through the DECOMP experimental parcel were determined and discussed comparatively.

  7. Toxicity and bioaccumulation of sediment-associated contaminants using freshwater invertebrates: A review of methods and applications

    SciTech Connect

    Ingersoll, C.G.; Ankley, G.T.; Benoit, D.A.

    1995-11-01

    This paper reviews recent developments in methods for evaluating the toxicity and bioaccumulation of contaminants associated with freshwater sediments and summarizes example case studies demonstrating the application of these methods. Over the past decade, research has emphasized development of more specific testing procedures for conducting 10-d toxicity tests with the amphipod Hyalella azteca and the midge Chironomus tentans. Toxicity endpoints measured in these tests are survival for H. azteca and survival and growth for C. tentans. Guidance has also been developed for conducting 28-d bioaccumulation tests with the oligochaete Lumbriculus variegatus, including determination of bioaccumulation kinetics for different compound classes. These methods have been applied to a variety of sediments to address issues ranging from site assessments to bioavailability of organic and inorganic contaminants using field-collected and laboratory-spiked samples. Survival and growth of controls routinely meet or exceed test acceptability criteria. Results of laboratory bioaccumulation studies with L. variegatus have been confirmed with comparisons to residues (PCBs, PAHs, DDT) present from synoptically collected field populations of oligochaetes. Additional method development is currently underway to develop chronic toxicity tests and to provide additional data-confirming responses observed in laboratory sediment tests with natural benthic populations.

  8. Toxicity and bioaccumulation of sediment-associated contaminants using freshwater invertebrates: A review of methods and applications

    USGS Publications Warehouse

    Ingersoll, C.G.; Ankley, G.T.; Benoit, D.A.; Brunson, E.L.; Burton, G.A.; Dwyer, F.J.; Hoke, R.A.; Landrum, P.F.; Norberg-King, T. J.; Winger, P.V.

    1995-01-01

    This paper reviews recent developments in methods for evaluating the toxicity and bioaccumulation of contaminants associated with freshwater sediments and summarizes example case studies demonstrating the application of these methods. Over the past decade, research has emphasized development of more specific testing procedures for conducting 10-d toxicity tests with the amphipod Hyalella azteca and the midge Chironomus tentans. Toxicity endpoints measured in these tests are survival for H. azteca and survival and growth for C. tentans. Guidance has also been developed for conducting 28-d bioaccumulation tests with the oligochaete Lumbriculus variegatus, including determination of bioaccumulation kinetics for different compound classes. These methods have been applied to a variety of sediments to address issues ranging from site assessments to bioavailability of organic and inorganic contaminants using field-collected and laboratory-spiked samples. Survival and growth of controls routinely meet or exceed test acceptability criteria. Results of laboratory bioaccumulation studies with L. variegatus have been confirmed with comparisons to residues (PCBs, PAHs, DDT) present from synoptically collected field populations of oligochaetes. Additional method development is currently underway to develop chronic toxicity tests and to provide additional data-confirming responses observed in laboratory sediment tests with natural benthic populations.

  9. MODIFICATION OF METAL PARTITIONING BY SUPPLEMENTING ACID VOLATILE SULFIDE IN FRESHWATER SEDIMENTS

    EPA Science Inventory

    Acid volatile sulfide is a component of sediments which complexes some cationic metals and thereby influences the toxicity of these metals to benthic organisms. EPA has proposed AVS as a key normalization phase for the development of sediment quality criteria for metals. Experime...

  10. The relationship between epilithic periphyton (biofilm) bound metals and metals bound to sediments in freshwater systems.

    PubMed

    Holding, K L; Gill, R A; Carter, J

    2003-03-01

    Surficial sediments and epilithic periphyton (biofilm) were sampled from six sites on the River Churnet and five sites on the River Manifold in Staffordshire and analysed for cadmium (Cd), copper (Cu), lead (Pb) and zinc (Zn). The sites demonstrated a wide range of sediment trace metal concentrations determined by inductively coupled plasma optical emission spectrometry (ICP-OES) and atomic absorbtion spectroscopy (AAS). Biofilm was removed from the substrate using physical abrasion and 0.005 M ethylenediaminoethanetetra-acetic acid (EDTA) extractant. The European Standards, Measurements and Testing Programmes (BCR) operationally defined geochemical speciation scheme was used to determine the exchangeable, acid soluble fraction of the sediments. Significant positive correlations were determined between the EDTA extractable biofilm and the exchangeable sediment fraction for Cd, Cu and Zn but not for Pb. Natural epilithic periphyton may be a potential metal biomonitor particularly of Cu, Cd and Zn in aquatic systems and provide supporting information in relation to potential sediment toxicity.

  11. Short-term effect of capping on microbial communities in freshwater sediments.

    PubMed

    Wang, Qi; Kassem, Issmat I; Sigler, Von; Gruden, Cyndee

    2009-04-01

    Because biogas bubbles can influence cap integrity, the effect of capping and cap material on the ebullition potential in sediments must be studied. The goal of this comprehensive study was to determine the short-term effect of capping regime on the activity, metabolic potential, and community structure of sediment microorganisms. To evaluate the effect of capping (sand, synthetic aggregate, and no cap) on microbial communities (i.e., nitrifiers and methanogens), sediments were collected from the Anacostia River (Washington, D.C.). Microbial communities in sand-capped sediments exhibited the highest activity (tetrazolium redox dye, fluorescein diacetate hydrolysis assay, and biogas production), while communities in uncapped sediments exhibited the highest metabolic diversity. Substantial changes in microbial community structure (denaturing gradient gel electrophoresis) did not occur as a result of capping. Our data showed that the nature and magnitude of the effect that capping can have on microbial activity (biogas production) will likely be dependent on the capping materials chosen.

  12. Toxicity of silver in water and sediment to the freshwater amphipod Hyalella azteca.

    PubMed

    Call, Daniel J; Polkinghorne, Christine N; Markee, Thomas P; Brooke, Larry T; Geiger, Dianne L; Gorsuch, Joseph W; Robillard, Kenneth A

    2006-07-01

    Hyalella azteca was exposed to Ag as AgNO3 over a 10-d period in water and two lake sediments that were selected on the basis of their differences in metal-binding properties. The median lethal concentrations (LC50s) for waterborne exposures were 5.4 and 4.9 microg/L for total and dissolved Ag, respectively. In the sediment containing a lesser quantity of total Ag-binding ligands (i.e., Bond Lake, Douglas County, WI, USA, sediment), an Ag-amended sediment toxicity test resulted in a 10-d LC50 of 0.084 g (i.e., 84,000 microg) Ag/kg dry sediment or 8.6 microg Ag/L of pore water (PW). The no-observed-effect concentration (NOEC) to lowest-observed-effect concentration (LOEC) range was 0.012 to 0.031 g Ag/kg dry sediment, or less than 5.0 to 6.0 microg Ag/L of PW. In the sediment with a greater quantity of total Ag-binding ligands (i.e., West Bearskin Lake, Cook County, MN, USA, sediment), the 10-d LC50 was 2.98 g Ag/kg dry sediment, and the NOEC to LOEC range was 2.15 to 4.31 g Ag/kg dry sediment. Because "dissolved" concentrations of Ag in PW were less than 5.0 microg/L at the critical exposures in the latter test, the bioavailable and toxic form of Ag may have been a weakly associated coprecipitate or colloidal complex with hydrous iron oxides that competitively partitioned to the surface of the gills.

  13. Effect Of Iron On The Sensitivity Of Hydrogen, Acetate, And Butyrate Metabolism To Inhibition By Long-Chain Fatty Acids In Vegetable-Oil-Enriched Freshwater Sediments

    EPA Science Inventory

    Freshwater sediment microbial communities enriched by growth on vegetable oil in the presence of a substoichiometric amount of ferric hydroxide (sufficient to accept about 12% of the vegetable-oil-derived electrons) degrade vegetable oil to methane faster than similar microbial c...

  14. Use of the multispecies freshwater biomonitor to assess behavioral changes of Corophium volutator (Pallas, 1766) (Crustacea, Amphipoda) in response to toxicant exposure in sediment.

    PubMed

    Kirkpatrick, Anita J; Gerhardt, Almut; Dick, Jaimie T A; McKenna, Maria; Berges, John A

    2006-07-01

    Automated sediment toxicity testing and biomonitoring has grown rapidly. This study tested the suitability of the marine amphipod Corophium volutator (Pallas, 1766) for sediment biomonitoring using the Multispecies Freshwater Biomonitor (MFB). Two experiments were undertaken to (1) characterize individual behaviors of C. volutator using the MFB and (2) examine behavioral changes in response to sediment spiked with the pesticide Bioban. Four behaviors were visually identified (walking, swimming, grooming and falling) and characterized in the MFB as different patterns of locomotor activity (0-2 Hz range). Ventilation was not visually observed but was detected by the MFB (2-8 Hz). No clear diel activity patterns were detected. The MFB detected an overall increase in C. volutator locomotor activity after Bioban addition to the sediments (56, 100, 121 mg kg(-1)). C. volutator was more active (both locomotion and ventilation) in the water column than the spiked sediment. C. volutator appears a sensitive and appropriate species for behavioral sediment toxicity assessment and biomonitoring.

  15. Water Velocity and Bioturbation Alter Sediment Resuspension and Biogeochemistry in an Experimental Freshwater Mesocosm System

    NASA Astrophysics Data System (ADS)

    Spivak, A.; Vanni, M. J.

    2010-12-01

    Processes such as bioturbation and resuspension can affect organic matter decomposition by altering sediment redox conditions. Increased oxygen availability may, in turn, affect remineralization rates and larger scale processes such as benthic-pelagic coupling. However, relatively few studies have explicitly tested the simultaneous effects of bioturbation and water velocity on benthic biogeochemistry and sediment resuspension. Using a mesocosm system we conducted two experiments testing the effects of bioturbator identity on particulate and dissolved nutrient dynamics before and after a resuspension event (i.e. water velocity held constant at 0.12 m s-1 for 2 hr; Expt. 1) and rates of sediment resuspension with increasing water velocity (0.00 - 0.20 m s-1; Expt. 2). We manipulated bioturbator identity across four levels as sediments were undisturbed (control), manually punctured (2% of surface area), or disturbed by one of two fish species, either bluegill or catfish. For Expt. 1, the bioturbation treatments were applied for several days and measurements were made before and after the resuspension event. Initially, water column chlorophyll and total suspended sediment (TSS) concentrations were highest in the catfish treatments. Bioturbator identity did not affect the stoichiometry of TSS as strongly; C:N was unaffected by our treatments while N:P was lowest in the disturbed treatments. After the resuspension event, there was no difference in TSS concentrations or stoichiometric ratios across the bioturbation treatments. Dissolved nutrient flux rates were insensitive to the bioturbation treatments and were more strongly influenced by the resuspension event. For instance, sediment NO3- fluxes were negative (i.e. net flux into sediments) until after the resuspension event when they became positive. In Expt. 2, we gradually increased water velocity from 0.00 - 0.20 m s-1 and measured TSS concentrations only. TSS was initially highest in catfish treatments and lowest in

  16. Interlaboratory study of precision: Hyalella azteca and Chironomus tentans freshwater sediment toxicity assays

    USGS Publications Warehouse

    Burton, G.A.; Norberg-King, T. J.; Ingersoll, C.G.; Benoit, D.A.; Ankley, G.T.; Winger, P.V.; Kubitz, J.; Lazorchak, J.M.; Smith, M.E.; Greer, E.; Dwyer, F.J.; Call, D.J.; Day, K.E.; Kennedy, P.; Stinson, M.

    1996-01-01

    Standard 10-d whole-sediment toxicity test methods have recently been developed by the U.S. Environmental Protection Agency (EPA) for the amphipod Hyalella azteca and the midge Chironomus tentans. An interlaboratory evaluation of method precision was performed using a group of seven to 10 laboratories, representing government, academia, and environmental consulting firms. The test methods followed the EPA protocols for 4-d water-only reference toxicant (KCl) testing (static exposure) and for 10-d whole-sediment testing. Test sediments included control sediment, two copper-containing sediments, and a sediment contaminated primarily with polycyclic aromatic hydrocarbons. Reference toxicant tests resulted in H. azteca and C. tentans median lethal concentration (LC50) values with coefficents of variation (CVs) of 15.8 and 19.6%, respectively. Whole sediments which were moderately contaminated provided the best estimates of precision using CVs. Hyalella azteca and C. tentans tests in moderately contaminated sediments exhibited LC50 CVs of 38.9 and 13.5%, respectively. The CV for C. tentans growth was 31.9%. Only 3% (1 of 28) of samples exceeded acceptable interlaboratory precision limits for the H. azteca survival tests. No samples exceeded the intralaboratory precision limit for H. azteca or C. tentans survival tests. However, intralaboratory variability limits for C. tentans growth were exceeded by 80 and 100% of the laboratories for a moderately toxic and control sample, respectively. Interlaboratory variability limits for C. tentans survival were not exceeded by any laboratory. The results showed these test methods to have relatively low variance and acceptable levels of precision in interlaboratory comparisons.

  17. Contribution of coexisting sulfate and iron reducing bacteria to methylmercury production in freshwater river sediments.

    PubMed

    Yu, Ri-Qing; Flanders, J R; Mack, E Erin; Turner, Ralph; Mirza, M Bilal; Barkay, Tamar

    2012-03-06

    We investigated microbial methylmercury (CH(3)Hg) production in sediments from the South River (SR), VA, an ecosystem contaminated with industrial mercury (Hg). Potential Hg methylation rates in samples collected at nine sites were low in late spring and significantly higher in late summer. Demethylation of (14)CH(3)Hg was dominated by (14)CH(4) production in spring, but switched to producing mostly (14)CO(2) in the summer. Fine-grained sediments originating from the erosion of river banks had the highest CH(3)Hg concentrations and were potential hot spots for both methylation and demethylation activities. Sequencing of 16S rRNA genes of cDNA recovered from sediment RNA extracts indicated that at least three groups of sulfate-reducing bacteria (SRB) and one group of iron-reducing bacteria (IRB), potential Hg methylators, were active in SR sediments. SRB were confirmed as a methylating guild by amendment experiments showing significant sulfate stimulation and molybdate inhibition of methylation in SR sediments. The addition of low levels of amorphous iron(III) oxyhydroxide significantly stimulated methylation rates, suggesting a role for IRB in CH(3)Hg synthesis. Overall, our studies suggest that coexisting SRB and IRB populations in river sediments contribute to Hg methylation, possibly by temporally and spatially separated processes.

  18. Influence of Reservoir Water Level Fluctuations on Sediment Methylmercury Concentrations Downstream of the Historical Black Butte Mercury Mine, OR

    EPA Science Inventory

    Mercury (Hg) is a pollutant of global concern due to its ability to accumulate as methylmercury (MeHg) in biota. Mercury is methylated by anaerobic microorganisms such as sulfate reducing bacteria (SRB) in water and sediment. Throughout North America, reservoirs tend to have e...

  19. Potential ecological risk of heavy metal contamination in sediments and macrobenthos in coastal wetlands induced by freshwater releases: A case study in the Yellow River Delta, China.

    PubMed

    Li, Ming; Yang, Wei; Sun, Tao; Jin, Yuwan

    2016-02-15

    We investigated the nine heavy metal contents in the sediments and macrobenthos of the Yellow River Delta Wetlands using three experimental areas that received freshwater releases and one reference area that did not. Heavy metal contents, the single-factor contamination index (SFCI), the metal contamination index (MCI), and the biota-sediment accumulation factor (BSAF) were used to evaluate the potential ecological risk and bioaccumulation. We found that As exceeded the national standard value by more than 50%, and that the ranges of SFCI for each metal were generally larger in autumn than in spring. MCI showed no clear pattern, but the BSAF results suggest that Cd bioaccumulates from sediments to macrobenthos. Pollution-resistant species such as Corophium sinense, Chironomus sp., and Einfeldia sp. became dominant in the areas receiving freshwater releases, and provide direct evidence of ecological risk in the wetlands. Our results provide preliminary information to guide managers for ecological risk assessments.

  20. Applicability of diffusive gradients in thin films for measuring Mn in soils and freshwater sediments.

    PubMed

    Mundus, Simon; Tandy, Susan; Cheng, Hao; Lombi, Enzo; Husted, Søren; Holm, Peter E; Zhang, Hao

    2011-12-01

    Manganese (Mn) is an essential plant nutrient, receiving increased attention due to significant deficiency problems in modern crop production. In aquatic sediments, Mn plays an important role in controlling the mobility of other elements due to its high redox sensitivity. Diffusive gradients in thin films (DGT) is recognized as one of the most promising techniques to assess plant availability of nutrients in soils and mobility in sediments. However, the appropriate conditions where DGT can be used to measure Mn in soils and sediments have not been thoroughly investigated. We deployed DGTs in soil, sediment, and solution to investigate the effect of pH and competition from Ca and Fe ions. We found that by using DGT it is possible to accurately measure Mn in soils at pH levels and Ca and Fe concentrations resembling those of normal and fertile agricultural soils. However, in acid soils at pH below 5.5, Mn measurements might be biased due to potential competition effects caused by Ca. Soil deployments showed that changes in soil redox conditions were closely reflected by the DGT based Mn measurements. This might enable a novel approach of using DGT to predict Mn mobility and plant availability in soils. In reducing aquatic sediments, high concentrations of ferrous ions can displace Mn from the resin-gel of the DGT device. We found this to be a significant problem with longer deployment times.

  1. The influence of six pharmaceuticals on freshwater sediment microbial growth incubated at different temperatures and UV exposures.

    PubMed

    Veach, Allison; Bernot, Melody J; Mitchell, James K

    2012-07-01

    Pharmaceutical compounds have been detected in freshwater for several decades. Once they enter the aquatic ecosystem, they may be transformed abiotically (i.e., photolysis) or biotically (i.e., microbial activity). To assess the influence of pharmaceuticals on microbial growth, basal salt media amended with seven pharmaceutical treatments (acetaminophen, caffeine, carbamazepine, cotinine, ibuprofen, sulfamethoxazole, and a no pharmaceutical control) were inoculated with stream sediment. The seven pharmaceutical treatments were then placed in five different culture environments that included both temperature treatments of 4, 25, 37°C and light treatments of continuous UV-A or UV-B exposure. Microbial growth in the basal salt media was quantified as absorbance (OD(550)) at 7, 14, 21, 31, and 48d following inoculation. Microbial growth was significantly influenced by pharmaceutical treatments (P < 0.01) and incubation treatments (P < 0.01). Colonial morphology of the microbial communities post-incubation identified selection of microbial and fungal species with exposure to caffeine, cotinine, and ibuprofen at 37°C; acetaminophen, caffeine, and cotinine at 25°C; and carbamazepine exposed to continuous UV-A. Bacillus and coccus cellular arrangements (1000X magnification) were consistently observed across incubation treatments for each pharmaceutical treatment although carbamazepine and ibuprofen exposures incubated at 25°C also selected spiral-shaped bacteria. These data indicate stream sediment microbial communities are influenced by pharmaceuticals though physiochemical characteristics of the environment may dictate microbial response.

  2. Sediment Surface Elevation Changes in Relation to Groundwater Hydrologic Variation in the Coastal Florida Everglades

    NASA Astrophysics Data System (ADS)

    Smith III, T. J.; Cahoon, D.

    2002-05-01

    Mangrove forests dominate the downstream end of the Greater Florida Everglades. Restoration of the Everglades has concentrated on surface water flow. We measured rates of sediment (surface) elevation change and soil accretion in relation to both surface and groundwater elevation at six sites in the lower Everglades, including freshwater marsh and mangrove habitats. Three sites were located along the two major distributaries of the Everglades: Shark River and Lostmans River. Accretion was negligible in upstream, freshwater marsh sites and greatest in downstream mangrove forest sites. Sediment elevation changes were substantial at all sites. More importantly, the pattern of sediment elevation change differed from upstream to downstream, and was different between downstream sites on each river. The rate of sediment elevation change was related to the rate of groundwater elevation change at many, but not all, sites. For freshwater sites, as groundwater elevation increased, sediment elevation decreased, an unexpected finding. For downstream, mangrove sites, a weak positive relationship was found whereby increasing groundwater elevations lead to increasing sediment surface elevation. Important seasonal patterns also appear to be present indicating that subsurface processes (root growth, decomposition, water storage) may play important roles in marsh / mangrove surface elevation. If restoration of freshwater sheetflow in the upstream Everglades leads to increased groundwater elevations in the downstream system, mangrove forests may be able to keep even with current rates of sea level rise.

  3. Evaluation of potential confounding factors in sediment toxicity tests with three freshwater benthic invertebrates

    SciTech Connect

    Ankley, G.T.; Benoit, D.A. ); Balogh, J.C. ); Reynoldson, T.B.; Day, K.E. ); Hoke, R.A. )

    1994-04-01

    The authors examined the effects of natural sediment physicochemical properties on the results of lab tests with the amphipod Hyalella azteca, the midge Chironomus tentans, and the oligochaete Lumbriculus variegatus. Ten-day exposures with the three species were conducted with 50 uncontaminated sediment samples from Lakes Erie, Huron, Superior, and Ontario, which differed markedly with regard to characteristics such as grain-size distribution, organic carbon content, and mineralogical composition. Tests were conducted both with and without the addition of exogenous food. Survival of Hyalella azteca, survival and growth of Chironomus tentans, and survival/reproduction and growth of Lumbriculus variegatus were significantly greater in tests in which the animals were fed vs, those in which they were not. Approximately 10% of the tests in which Hyalella azteca was not fed and 80% of tests in which the amphipods were fed resulted in >80% survival, a common criterion for defining the acceptability of tests with Hyalella azteca in clean control sediments. Similarly, a relatively high percentage of the tests in which Chironomus tentans was not fed would have failed a control survival criterion of 70% for the midge. Hence, there is significant potential for false positive results if Hyalella azteca or Chironomus tentans is not fed during sediment tests. Predictive modeling of the assay results in relationship to sediment physicochemical characteristics failed to reveal any additional factors that influenced survival of Hyalella azteca and Chrionomus tentans, or reproduction and growth of Lumbriculus variegatus in tests in which the organisms were fed. However, linear modeling did suggest that growth of fed as well as unfed Chironomus tentans may have been influenced by grain-size distribution of the test sediments.

  4. Bioavailability and preservation of organic phosphorus in freshwater sediments and its role in lake eutrophication

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lake eutrophication in China is a serious environmental concern, especially in lakes from the middle and lower reaches of Yangtze River region and Southwestern China Plateau. The dissolution of organic matter can result in release of phosphorus (P) from lake sediments and organic phosphate (Po) itse...

  5. INTERLABORATORY STUDY OF PRECISION: HYALELLA AZTECA AND CHIRONOMUS TENTANS FRESHWATER SEDIMENT TOXICITY ASSAYS

    EPA Science Inventory

    Standard 10-d whole sediment toxicity test methods have recently been developed by the U.S. Environmental Protection Agency (EPA) for the amphipod Hyalella azteca and the midge Chironomus tentans. An interlaboratory evaluation of method precision was performed using a group of se...

  6. Effects of Low Dissolved Oxygen on Organisms Used in Freshwater Sediment Toxicity Tests

    EPA Science Inventory

    This manuscript describes the results of tests to determine the tolerance of three benthic organisms to reduced dissolved oxygen (DO). These three organisms are those recommended by EPA for use in toxicity testing of contaminated sediments. The results of the exposures indicate ...

  7. Detecting Magnetosomes in Freshwater Lakes and Lake Sediments: A comparison of techniques

    NASA Astrophysics Data System (ADS)

    Kodama, K. P.; Kim, B.; Kopp, R.; Chen, A. P.

    2008-12-01

    We will present a summary of the work done to date on detecting magnetosomes in the lake sediments and water column of Lake Ely, a small post-glacial lake in northeastern Pennsylvania. To establish that magnetosomes dominate the magnetic mineralogy of the Lake Ely sediments we sampled the water column every meter down to its maximum depth of 23 m and measured the dissolved oxygen, sulfide, and iron, as well as the ARM of the material filtered from the water. We examined the water samples for magnetotactic bacteria. These results established an increase in the ARM of the filtered material at the oxic-anoxic transition. They also showed that the ARM was carried by magnetosomes produced by magnetotactic bacteria living in the water column at depths from 15-19 m. TEM of magnetic separates collected from the lake sediments show that magnetosomes are transferred to the sediments from the water column and are a significant fraction of the magnetic minerals in the sediments. We used a variety of mineral magnetic techniques to magnetically characterize the magnetosomes in the lake sediments. The delta-delta ratio test of low temperature behavior at the Verwey transition (Moskowitz et al., 1993) gave values of 1.2 to 1.5, lower than the theoretically predicted level of 2 for magnetosomes, but a numeric unmixing technique could resolve higher delta-delta ratios in the dark organic-rich layers in the sediments where magnetosomes were more prevalent. ARM/SIRM ratios of 0.15 to 0.35 with Raf values (the crossover of an IRM acquisition curve versus its alternating field demagnetization curve) of 0.45 to 0.5 are consistent with the presence of magnetosomes in the sediments, the water column, and in a sediment trap located at the bottom of the lake. IRM and ARM acquisition modeling of samples collected from a 160 cm piston core revealed two components of magnetization with coercivities of about 25 mT and 65 mT that are identified as Egli's (2004) biogenic soft (BS) and biogenic

  8. EXAFS analysis of iron cycling in mangrove sediments downstream a lateritized ultramafic watershed (Vavouto Bay, New Caledonia)

    NASA Astrophysics Data System (ADS)

    Noël, Vincent; Marchand, Cyril; Juillot, Farid; Ona-Nguema, Georges; Viollier, Eric; Marakovic, Gregory; Olivi, Luca; Delbes, Ludovic; Gelebart, Frédéric; Morin, Guillaume

    2014-07-01

    Mangrove forests are the dominant intertidal ecosystem of tropical coastlines. In New Caledonia, mangroves act as a buffer zone between massive Fe lateritic deposits and a lagoon partly registered by UNESCO as a World Heritage site. The New Caledonian mangroves are characterized by a botanical gradient composed of three main vegetal stands (i.e., Rhizophora spp., Avicennia marina and salt flat), which relies on the duration of tidal immersion that imposes gradients of pore-water salinity, oxygenation, and organic content in the sediment. In the present study, we have determined the distribution and speciation of Fe in mangrove sediments along this botanical gradient by using X-ray absorption spectroscopy (XAS) at the Fe K-edge. Both XANES and EXAFS results show that iron speciation strongly follows the redox boundaries marking the intertidal and depth zonations. Fe-bearing minerals eroded from lateritic outcrops, mainly goethite (α-FeOOH) and phyllosilicates (serpentine and talc), are the major Fe hosts in the upward horizons. These mineral species progressively disappear with increasing depth where pyrite (FeS2) forms, in the hydromorphic Rhizophora and Avicennia zones. Sulfate reduction is not observed in the drier salt flat zone. In addition to these reduction processes, intense re-oxidation of aqueous Fe(II) and pyrite leads to the formation of poorly ordered ferrihydrite, lepidocrocite (γ-FeOOH) and likely goethite in the upper sediments beneath Avicennia and Rhizophora stands. The relative proportion of the newly formed poorly ordered ferrihydrite and lepidocrocite is found to be higher in the Rhizophora mangrove stand, which is the closest to the shore. Tidal fluctuations may thus be a major cause for continuous Fe reduction-oxidation cycles in the vegetated mangrove stands, which could significantly affect the iron mass balance in mangrove systems.

  9. Coupling geochemical and biological approaches to assess the availability of cadmium in freshwater sediment.

    PubMed

    Dabrin, Aymeric; Durand, Cyrielle L; Garric, Jeanne; Geffard, Olivier; Ferrari, Benoit J D; Coquery, Marina

    2012-05-01

    Sediments are considered as a sink for metals, and the assessment of metal bioavailability for benthic organisms represents a great challenge. Diffusive Gradient in Thin films (DGT), developed to measure labile metals in aquatic media, have more recently been applied to sediment. Nevertheless, few studies have determined the relation between measurements from DGT and bioaccumulation in different benthic organisms. The aim of our work was to determine if labile metal measured by DGT in sediment is representative of bioavailable metal for benthic organisms. We focused our work on Cd and chose to use the diversity of ecological traits from different organisms to better understand the measurement given by DGT. We exposed simultaneously DGT and 3 macroinvertebrates species (the chironomid, Chironomus riparius; the amphipod, Gammarus fossarum; the mudsnail, Potamopyrgus antipodarum) to a natural sediment Cd-spiked at environmental relevant concentrations. The nature of sediment-bound Cd was also determined by means of sequential extractions in order to better interpret DGT measurements. Cadmium concentrations were determined in DGT and in the 3 organisms after one week of exposure. Results provided by DGT indicated that Cd was poorly released from particulate phase to pore water, suggesting that Cd measured by DGT was representative of the pore water labile fraction. Sequential extractions showed that the percentage of Cd bound to carbonate fraction increased simultaneously with Cd-spiking level; hence, this Cd fraction was poorly reactive to supply DGT demand. Cadmium accumulation rates were similar between DGT measurements and P. antipodarum, suggesting that labile Cd in pore waters was representative of bioavailable Cd for this species. Cadmium accumulation rates in C. riparius were higher than in DGT, demonstrating that C. riparius can mobilize Cd bound to carbonate phase. G. fossarum showed the lowest Cd accumulation rates, suggesting that they were mainly exposed

  10. Controls on the stable carbon isotopic composition of biogenic methane produced in a tidal freshwater estaurine sediment

    SciTech Connect

    Avery, G.B. Jr.; Martens, C.S.

    1999-04-01

    The {delta}{sup 13}C value of methane in sediments from a tidal freshwater site in the White Oak River Estuary, North Carolina, exhibited a relatively small, but consistent, seasonal variation ({approximately}3{per_thousand}) with isotopically heavier values occurring during the warmer months ({minus}66.1{per_thousand} summer, {minus}69.2{per_thousand} winter). These isotopic shifts could have resulted from changes in: (1) isotopic compositions of precursor molecules; (2) kinetic isotope effects associated with methane production; or (3) pathways of methane production. Methane production rate and isotopic data from sediment incubation experiments and field measurements were used to determine the relative contributions of these factors to the observed seasonal variations. Although changes in {delta}{sup 13}C values of biogenic methane are typically thought to result from changes in pathways of methane production, this study showed that a significant amount (36 {+-} 22%) of the seasonal variations between the {delta}{sup 13}C value of methane produced in sediment incubation experiments could be attributed to changes in the {delta}{sup 13}C value of the {Sigma}CO{sub 2} pool. This was due to increased methane production rates and removal of {sup 12}CO{sub 2} with increasing temperature, a prevalent feature of methanogenic systems that may account for some of the frequently observed {sup 13}C enrichment in methane during warmer months. Combining the change in the {delta}{sup 13}C value of the {Sigma}CO{sub 2} pool with temperature-controlled changes in fractionation ({alpha}) resulting from kinetic isotope effects accounted for (53 {+-} 22%) of the {sup 13}C enrichment observed during summer sediment incubation experiments. Although large pathway changes were not observed in sediment incubation experiments, the remaining differences in {delta}{sup 13}C values could have resulted from smaller, undetectable changes in the percentage of methane production from acetate

  11. Effects of spatial and temporal variation of acid-volatile sulfide on the bioavailability of copper and zinc in freshwater sediments

    SciTech Connect

    Besser, J.M.; Ingersoll, C.G.; Giesy, J.P.

    1996-03-01

    Variation in concentrations of acid-volatile sulfide (AVS) in sediments from the upper Clark Fork River of Montana, USA, was associated with differences in bioaccumulation of Cu and Zn and growth of larvae of the midge, Chironomus tentans. Growth of midge larvae was significantly greater and bioaccumulation of Cu was significantly less in surface sections (0--3 cm depth) of sediment cores, which had greater concentrations of AVS and lesser ratios of simultaneously extracted metals to AVS (SEM:AVS ratios) than in subsurface sediments (6--9 cm). Concentrations of AVS were significantly less in sediments incubated with oxic overlying water for 9 weeks than in the same sediments incubated under anoxic conditions. Bioaccumulation of Cu differed significantly between incubation treatments, corresponding to differences in concentrations of AVS and SEM:AVS ratios, although midge growth did not. Bioaccumulation of Zn did not differ significantly between depth strata of sediment cores or between incubation treatments. When results from the two sets of bioassays were combined, bioaccumulation of Cu and Zn, but not growth, was significantly correlated with SEM:AVS ratios and other estimates of bioavailable metal fractions in sediments. Growth of midge larvae was significantly correlated with bioaccumulation of Zn, but not Cu, suggesting that Zn was the greater contributor to the toxicity of these sediments. Assessments of the toxicity of metal-contaminated freshwater sediments should consider the effects of spatial and temporal variation in AVS concentrations on metal bioavailability.

  12. Source areas and transport mechanisms for freshwater and Brackish-water diatoms deposited in pelagic sediments of the equatorial atlantic*1

    NASA Astrophysics Data System (ADS)

    Pokras, Edward M.

    1991-01-01

    Distributions of freshwater and brackish-water diatoms from dust samples and modern sediments of the equatorial Atlantic demonstrate different transport mechanisms and source areas. Both Melosira spp. and Stephanodiscus spp. are transported via winds from the southern Sahara and Sahel in Northern Hemisphere winter. The core-top distribution of Cyclotella striata delineates the extent of the low-salinity plume formed by runoff from the Zaire River into the extreme eastern Atlantic. The transport mechanism and source areas for Melosira spp. during arid phases have not changed appreciably in the last 130,000 yr. There is no evidence for long-distance transport of freshwater diatoms by the southeast trade winds. This study confirms the validity of paleoclimatic research which inferred eolian transport of Melosira spp. in the winter dust plume from source regions north of the equator, although fluviatile input of Melosira valves into nearshore sediments cannot be ruled out.

  13. Desulfuromonas thiophila sp. nov., a new obligately sulfur-reducing bacterium from anoxic freshwater sediment

    USGS Publications Warehouse

    Finster, K.; Coates, J.D.; Liesack, W.; Pfennig, N.

    1997-01-01

    A mesophilic, acetate-oxidizing, sulfur-reducing bacterium, strain NZ27(T), was isolated from anoxic mud from a freshwater sulfur spring. The cells were ovoid, motile, and gram negative. In addition to acetate, the strain oxidized pyruvate, succinate, and fumarate. Sulfur flower could be replaced by polysulfide as an electron acceptor. Ferric nitrilotriacetic acid was reduced in the presence of pyruvate; however, this reduction did not sustain growth. These phenotypic characteristics suggested that strain NZ27(T) is affiliated with the genus Desulfuromonas. A phylogenetic analysis based on the results of comparative 16S ribosomal DNA sequencing confirmed that strain NZ27(T) belongs to the Desulfuromonas cluster in the recently proposed family 'Geobacteraceae' in the delta subgroup of the Proteobacteria. In addition, the results of DNA-DNA hybridization studies confirmed that strain NZ27(T) represents a novel species. Desulfuromonas thiophila, a name tentatively used in previous publications, is the name proposed for strain NZ27(T) in this paper.

  14. Rotenone persistence in freshwater ponds: Effects of temperature and sediment adsorption

    USGS Publications Warehouse

    Dawson, V.K.; Gingerich, W.H.; Davis, R.A.; Gilderhus, P.A.

    1991-01-01

    The persistence of rotenone was compared between a cement-lined pond (0.04 hectare) and an earthen-bottom pond (0.02 hectare) treated with 5 I?L Noxfish/L (250 I?g rotenone/L) during spring, summer, and fall. Water temperatures on the days of treatment in each season were 8, 22, and 15A?C, respectively. Both ponds were filled with pond water from a common source 1 week before each of the three treatments. Water samples (filtered and unfiltered) and sediment samples were analyzed by high-performance liquid chromatography to monitor the decrease of rotenone until residues were at or below the detection limit (<2.0 I?g/L for water and < 25 ng/g for sediments). The loss of rotenone from water generally followed a first-order rate ofdecay. Rotenone disappeared two to three times faster in the earthen pond than in the concrete pond. The rotenone half-life times in the spring, summer, and fall treatments were 3.7, 1.3, and 5.2 d, respectively, in the concrete pond, and 1.8, 0.7, and 1.8 d in the earthen pond. Rates of decay in both ponds were directly correlated with water temperature. Filtered water samples from both ponds contained less rotenone than unfiltered water, indicating that some rotenone was bound to suspended material. The highest concentration of rotenone in sediment samples was 102 ng/g; residues decreased to below the detection limit within 14 d in the spring treatment and within 3 d in the summer and fall treatments.

  15. Illumina sequencing-based analysis of sediment bacteria community in different trophic status freshwater lakes.

    PubMed

    Wan, Yu; Ruan, Xiaohong; Zhang, Yaping; Li, Rongfu

    2017-02-07

    Sediment bacterial community is the main driving force for nutrient cycling and energy transfer in aquatic ecosystem. A thorough understanding of the community's spatiotemporal variation is critical for us to understand the mechanisms of cycling and transfer. Here, we investigated the sediment bacterial community structures and their relations with environmental factors, using Lake Taihu as a model system to explore the dependence of biodiversity upon trophic level and seasonality. To combat the limitations of conventional techniques, we employed Illumina MiSeq Sequencing and LeFSe cladogram to obtain a more comprehensive view of the bacterial taxonomy and their variations of spatiotemporal distribution. The results uncovered a 1,000-fold increase in the total amount of sequences harvested and a reverse relationship between trophic level and the bacterial diversity in most seasons of a year. A total of 65 phyla, 221 classes, 436 orders, 624 families, and 864 genera were identified in the study area. Delta-proteobacteria and gamma-proteobacteria prevailed in spring/summer and winter, respectively, regardless trophic conditions; meanwhile, the two classes dominated in the eutrophication and mesotrophication lake regions, respectively, but exclusively in the Fall. For LEfSe analysis, bacterial taxon that showed the strongest seasonal or spatial variation, majority had the highest abundance in spring/summer or medium eutrophication region, respectively. Pearson's correlation analysis indicated that 5 major phyla and 18 sub-phylogenetic groups showed significant correlation with trophic status. Canonical correspondence analysis further revealed that porewater NH4(+) -N as well as sediment TOM and NOx -N are likely the dominant environmental factors affecting bacterial community compositions.

  16. Impact of micro- and macroelement content on potential use of freshwater sediments (gyttja) derived from lakes of eastern Latvia.

    PubMed

    Vincevica-Gaile, Zane; Stankevica, Karina

    2017-01-27

    Organic-rich freshwater sediments formed from the remains of water plants, plankton and benthic organisms, which are transformed by microorganisms, and mixed with mineral components supplied from the lake basin, are known as gyttja (sapropel or dy). Gyttja is a valuable natural resource that can be used in various fields such as agriculture, forestry, construction, chemical industry, balneology and the latter ones are especially interested in chemical composition and safety of natural materials. The aim of the study was to investigate micro- and macro-element content of gyttja derived from lakes of eastern Latvia (north-east of Europe). Depending on composition, sediment samples were identified as peaty, various algae, green algae, diatom, carbonate and organic-silicate types of gyttja. Dried samples were wet-digested by heating in HNO3/H2O2 solution until complete mineralization. Sample solutions were analysed by atomic absorption spectrometry (AAS) to detect concentration of Ca, Fe, K, Mg, Mn, Na and Zn, but inductively coupled plasma mass spectrometry (ICP-MS) was applied for As, Ba, Cd, Co, Cr, Cu, Li, Ni, Pb, Rb, Se, Sr and V concentration measurements. Total content of elements was variable; higher macroelement concentration was detected for gyttja of carbonate type, but higher microelement concentration-for organic-silicate gyttja. As concentration of several elements was much lower than permitted by the European Union legislation, gyttja is not only safe, but also highly valuable resource applicable in organic agriculture. There is a potential to use gyttja as a peloid in health care, but element bioavailability should be estimated likewise.

  17. Sedimentation patterns of toxin-producing Microcystis morphospecies in freshwater reservoirs.

    PubMed

    Cirés, Samuel; Wörmer, Lars; Carrasco, David; Quesada, Antonio

    2013-05-03

    Understanding the annual cycle of Microcystis is essential for managing the blooms of this toxic cyanobacterium. The current work investigated the sedimentation of microcystin-producing Microcystis spp. in three reservoirs from Central Spain during the summer and autumn of 2006 and 2007. We confirmed remarkable settling fluxes during and after blooms ranging 10(6)-10(9) cells m(-2) d(-1), which might represent 0.1%-7.6% of the organic matter settled. A comprehensive analysis of the Valmayor reservoir showed average Microcystis settling rates (0.04 d(-1)) and velocities (0.7 m d(-1)) that resembled toxin settling in the same reservoir and were above most reported elsewhere. M. aeruginosa settling rate was significantly higher than that of M. novacekii and M. flos-aquae. Despite the fact that colony sizes did not differ significantly in their average settling rates, we observed extremely high and low rates in large colonies (>5000 cells) and a greater influence of a drop in temperature on small colonies (<1000 cells). We found a 4-14 fold decrease in microcystin cell quota in settling Microcystis of the Cogotas and Valmayor reservoirs compared with pelagic populations, and the hypothetical causes of this are discussed. Our study provides novel data on Microcystis settling patterns in Mediterranean Europe and highlights the need for including morphological, chemotypical and physiological criteria to address the sedimentation of complex Microcystis populations.

  18. Influence of sulfate input on freshwater sediments: Insights from incubation experiments

    USGS Publications Warehouse

    Szynkiewicz, Anna; Jedrysek, Mariusz Orion; Kurasiewicz, M.; Mastalerz, Maria

    2008-01-01

    Incubation experiments were carried out under high and low SO42 - conditions to investigate the buffering capacity of lake sediments. Increased SO42 - content in the water column enhanced microbial SO42 - reduction, causing a continuous decrease of SO42 - content from 1086 to 83 mg/L paralleled by an increase of pH in the water column from 3.76 to 7.20. These changes were accompanied by decreased methanogenesis in the incubated sediments. The results demonstrate that the buffering capacity resulted from a variety of biodegradation pathways controlled to a large extent by SO42 - reduction, rather than by direct anaerobic oxidation of CH4. This is documented by distinctly lower ??13C values (from -73.99 to -65.24???) of the CH4 generated under higher SO42 - conditions compared to higher ??13C values (from -68.98 to -61.37???) of the CH4 generated under lower SO42 - conditions. ?? 2008 Elsevier Ltd. All rights reserved.

  19. Chemometrical assessment of the electrical parameters obtained by long-term operating freshwater sediment microbial fuel cells.

    PubMed

    Mitov, Mario; Bardarov, Ivo; Mandjukov, Petko; Hubenova, Yolina

    2015-12-01

    The electrical parameters of nine freshwater sediment microbial fuel cells (SMFCs) were monitored for a period of over 20 months. The developed SMFCs, divided into three groups, were started up and continuously operated under different constant loads (100, 510 and 1100 Ω) for 2.5 months. At this stage of the experiment, the highest power density values, reaching 1.2 ± 0.2 mW/m(2), were achieved by the SMFCs loaded with 510 Ω. The maximum power obtained at periodical polarization during the rest period, however, ranged between 26.2 ± 2.8 and 35.3 ± 2.8 mW/m(2), strongly depending on the internal cell resistance. The statistical evaluation of data derived from the polarization curves shows that after 300 days of operation all examined SMFCs reached a steady-state and the system might be assumed as homoscedastic. The estimated values of standard and expanded uncertainties of the electric parameters indicate a high repeatability and reproducibility of the SMFCs' performance. Results obtained in subsequent discharge-recovery cycles reveal the opportunity for practical application of studied SMFCs as autonomous power sources.

  20. Problems with the dating of sediment core using excess (210)Pb in a freshwater system impacted by large scale watershed changes.

    PubMed

    Baskaran, Mark; Nix, Joe; Kuyper, Clark; Karunakara, N

    2014-12-01

    Pb-210 dating of freshwater and coastal sediments have been extensively conducted over the past 40 years for historical pollution reconstruction studies, sediment focusing, sediment accumulation and mixing rate determination. In areas where there is large scale disturbance of sediments and the watershed, the vertical profiles of excess (210)Pb ((210)Pbxs) could provide erroneous or less reliable information on sediment accumulation rates. We analyzed one sediment core from Hendrix Lake in southwestern Arkansas for excess (210)Pb and (137)Cs. There is no decrease in excess (210)Pb activity with depth while the (137)Cs profile indicates sharp peak corresponding to 1963 and the (137)Cs penetration depth of (137)Cs corresponds to 1952. The historical data on the accelerated mercury mining during 1931-1944 resulted in large-scale Hg input to this watershed. Using the peak Hg activity as a time marker, the obtained sediment accumulation rates agree well with the (137)Cs-based rates. Four independent evidences (two-marker events based on (137)Cs and two marker events based on Hg mining activity) result in about the same sedimentation rates and thus, we endorse earlier suggestion that (210)Pb profile always needs to be validated with at least one another independent method. We also present a concise discussion on what important factors that can affect the vertical profiles of (210)Pbxs in relatively smaller lakes.

  1. Isolation and characterization of Methanomethylovorans hollandica gen. nov., sp. nov., isolated from freshwater sediment, a methylotrophic methanogen able to grow on dimethyl sulfide and methanethiol.

    PubMed

    Lomans, B P; Maas, R; Luderer, R; Op den Camp, H J; Pol, A; van der Drift, C; Vogels, G D

    1999-08-01

    A newly isolated methanogen, strain DMS1(T), is the first obligately anaerobic archaeon which was directly enriched and isolated from a freshwater sediment in defined minimal medium containing dimethyl sulfide (DMS) as the sole carbon and energy source. The use of a chemostat with a continuous DMS-containing gas stream as a method of enrichment, followed by cultivation in deep agar tubes, resulted in a pure culture. Since the only substrates utilized by strain DMS1(T) are methanol, methylamines, methanethiol (MT), and DMS, this organism is considered an obligately methylotrophic methanogen like most other DMS-degrading methanogens. Strain DMS1(T) differs from all other DMS-degrading methanogens, since it was isolated from a freshwater pond and requires NaCl concentrations (0 to 0.04 M) typical of the NaCl concentrations required by freshwater microorganisms for growth. DMS was degraded effectively only in a chemostat culture in the presence of low hydrogen sulfide and MT concentrations. Addition of MT or sulfide to the chemostat significantly decreased degradation of DMS. Transient accumulation of DMS in MT-amended cultures indicated that transfer of the first methyl group during DMS degradation is a reversible process. On the basis of its low level of homology with the most closely related methanogen, Methanococcoides burtonii (94.5%), its position on the phylogenetic tree, its morphology (which is different from that of members of the genera Methanolobus, Methanococcoides, and Methanohalophilus), and its salt tolerance and optimum (which are characteristic of freshwater bacteria), we propose that strain DMS1(T) is a representative of a novel genus. This isolate was named Methanomethylovorans hollandica. Analysis of DMS-amended sediment slurries with a fluorescence microscope revealed the presence of methanogens which were morphologically identical to M. hollandica, as described in this study. Considering its physiological properties, M. hollandica DMS1(T) is

  2. Effect of submerged, freshwater aquatic macrophytes and littoral sediments on pan evaporation in the Lake Balaton region, Hungary

    NASA Astrophysics Data System (ADS)

    Anda, A.; Simon, B.; Soos, G.; Teixeira da Silva, J. A.; Kucserka, T.

    2016-11-01

    The evaporation (Ep) of a US Class A pan (C) with submerged, freshwater aquatic macrophytes (Potamogeton perfoliatus, Myriophyllum spicatum and Najas marina), hereafter macrophytes (Ps) and a sediment-covered bottom (S) was measured in Hungary during 2014-2015 using reference E of Shuttleworth (Eo) and Penman-Monteith crop reference evapotranspiration (crop ETo). There were two main climatic controls affecting variation in E: direct (air and water temperature) and indirect (wind-mediated change affecting the penetration of sunlight; precipitation inflow, impacting plant emergence). Lower seasonal mean Ep rates of 2.75 ± 0.89, 2.83 ± 0.91 and 3.06 ± 1.14 mm day-1 were observed in C, S and Ps, respectively, during the wet 2014. In the 2015 season, higher overall daily mean Ep rates for C, S and Ps were 3.76 ± 1.3, 4.19 ± 1.34 and 4.65 ± 1.52 mm day-1, respectively. A comparison of US Class A pan Ep containing macrophytes/sediments with that of a standard US Class A pan showed that pan coefficients (Kap and Kas) might allow for more accurate on-site lake E estimates. In 2014, seasonal mean Kas and Kap were 1.04 ± 0.14 and 1.09 ± 0.18, respectively. Slightly higher Ka values were observed during the warm and dry 2015 (Kas: 1.15 ± 0.22; Kap: 1.26 ± 0.23). A Ka value greater than 1 indicates that the Ep of a US Class A pan containing macrophytes and sediment is always higher than that of C. The calculated Eo overestimated measured Ep of Ps during the course of this study. During the warm-dry growing season, crop ETo was closest to Ep of Ps. Empirical coefficients can be useful for estimating E of lakes with submerged macrophytes more precisely. The accuracy of the estimate of Keszthely Bay's E improved by 9.85% when Ka was determined on site.

  3. Flavobacterium limnosediminis sp. nov., isolated from sediment of a freshwater lake.

    PubMed

    Lee, Kihyun; Park, Sang-Cheol; Yi, Hana; Chun, Jongsik

    2013-12-01

    A Gram-stain-negative, rod-shaped, pale yellow, aerobic bacterial strain, JC2902(T), was isolated from a sediment sample of Ungok Lake in Gochang, Republic of Korea. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain JC2902(T) belongs to the genus Flavobacterium and forms a distinct phyletic line within a clade containing four recognized species of the genus Flavobacterium. The genomic relatedness between strain JC2902(T) and closely related strains was calculated using average nucleotide identity values of whole genome sequences, which indicated that the new isolate represents a novel genomic species. Through comparison of chemotaxonomic and other phenotypic characteristics between strain JC2902(T) and the type strains of the four phylogenetically related species, a number of characteristics differentiated strain JC2902(T) from the previously described type strains. Differential characteristics of strain JC2902(T) include fatty acid profiles, cellular motility, inability to grow on Luria-Bertani and tripticase soy agar media, and absence of N-acetyl-β-glucosaminidase and flexirubin-type pigments. Based on data from this polyphasic taxonomic study, strain JC2902(T) is considered to represent a novel species of the genus Flavobacterium, for which the name Flavobacterium limnosediminis sp. nov. is proposed. The type strain is JC2902(T) ( = KACC 16937(T) = JCM 18661(T)).

  4. Distribution and diversity of fungi in freshwater sediments on a river catchment scale

    PubMed Central

    Liu, Jie; Wang, Jianan; Gao, Guanghai; Bartlam, Mark G.; Wang, Yingying

    2015-01-01

    Fungal communities perform essential functions in biogeochemical cycles. However, knowledge of fungal community structural changes in river ecosystems is still very limited. In the present study, we combined culture-dependent and culture-independent methods to investigate fungal distribution and diversity in sediment on a regional scale in the Songhua River catchment, located in North-East Asia. A total of 147 samples over the whole river catchment were analyzed. The results showed that compared to the mainstream, the tributaries have a higher fungal community organization and culturable fungal concentration, but possess lower community dynamics as assessed by denaturing gradient gel electrophoresis (DGGE). Furthermore, phylogenetic analysis of DGGE bands showed that Ascomycota and Basidiomycota were the predominant community in the Songhua River catchment. Redundancy analysis revealed that longitude was the primary factor determining the variation of fungal community structure, and fungal biomass was mainly related to the total nutrient content. Our findings provide new insights into the characteristics of fungal community distribution in a temperate zone river at a regional scale, and demonstrate that fungal dispersal is restricted by geographical barriers in a whole river catchment. PMID:25954259

  5. Unexpected Diversity of pepA Genes Encoding Leucine Aminopeptidases in Sediments from a Freshwater Lake

    PubMed Central

    Tsuboi, Shun; Yamamura, Shigeki; Imai, Akio; Iwasaki, Kazuhiro

    2016-01-01

    We herein designed novel PCR primers for universal detection of the pepA gene, which encodes the representative leucine aminopeptidase gene, and investigated the genetic characteristics and diversity of pepA genes in sediments of hypereutrophic Lake Kasumigaura, Japan. Most of the amino acid sequences deduced from the obtained clones (369 out of 370) were related to PepA-like protein sequences in the M17 family of proteins. The developed primers broadly detected pepA-like clones associated with diverse bacterial phyla—Alpha-, Beta-, Gamma-, and Deltaproteobacteria, Acidobacteria, Actinobacteria, Aquificae, Chlamydiae, Chloroflexi, Cyanobacteria, Firmicutes, Nitrospirae, Planctomycetes, and Spirochetes as well as the archaeal phylum Thaumarchaeota, indicating that prokaryotes in aquatic environments possessing leucine aminopeptidase are more diverse than previously reported. Moreover, prokaryotes related to the obtained pepA-like clones appeared to be r- and K-strategists, which was in contrast to our previous findings showing that the neutral metalloprotease gene clones obtained were related to the r-strategist genus Bacillus. Our results suggest that an unprecedented diversity of prokaryotes with a combination of different proteases participate in sedimentary proteolysis. PMID:26936797

  6. Unexpected Diversity of pepA Genes Encoding Leucine Aminopeptidases in Sediments from a Freshwater Lake.

    PubMed

    Tsuboi, Shun; Yamamura, Shigeki; Imai, Akio; Iwasaki, Kazuhiro

    2016-01-01

    We herein designed novel PCR primers for universal detection of the pepA gene, which encodes the representative leucine aminopeptidase gene, and investigated the genetic characteristics and diversity of pepA genes in sediments of hypereutrophic Lake Kasumigaura, Japan. Most of the amino acid sequences deduced from the obtained clones (369 out of 370) were related to PepA-like protein sequences in the M17 family of proteins. The developed primers broadly detected pepA-like clones associated with diverse bacterial phyla-Alpha-, Beta-, Gamma-, and Deltaproteobacteria, Acidobacteria, Actinobacteria, Aquificae, Chlamydiae, Chloroflexi, Cyanobacteria, Firmicutes, Nitrospirae, Planctomycetes, and Spirochetes as well as the archaeal phylum Thaumarchaeota, indicating that prokaryotes in aquatic environments possessing leucine aminopeptidase are more diverse than previously reported. Moreover, prokaryotes related to the obtained pepA-like clones appeared to be r- and K-strategists, which was in contrast to our previous findings showing that the neutral metalloprotease gene clones obtained were related to the r-strategist genus Bacillus. Our results suggest that an unprecedented diversity of prokaryotes with a combination of different proteases participate in sedimentary proteolysis.

  7. Effects of adaptation on biodegradation rates in sediment/water cores from estuarine and freshwater environments

    SciTech Connect

    Spain, J.C.; Pritchard, P.H.; Bourquin, A.W.

    1980-10-01

    Experiments were devised to determine whether exposure to xenobiotics would cause microbial populations to degrade the compounds more rapidly during subsequent exposures. Studies were done with water/sediment systems (ecocores) taken from a salt marsh and a river. Systems were tested for adaptation to the model compounds methyl parathion and p-nitrophenol. /sup 14/CO/sub 2/ released from radioactive parent compounds was used as a measure of mineralization. River populations preexposed to p-nitrophenol at concentrations as low as 60 ..mu..g/liter degraded the nitrophenol much faster than did control populations. River populations preexposed to methyl parathion also adapted to degrade the pesticide more rapidly, but higher concentrations were required. Salt marsh populations did not adapt to degrade methyl parathion. p-nitrophenol-degrading bacteria were isolated from river samples but not from salt marsh samples. Numbers of nitrophenol-degrading bacteria increased 4 to 5 orders of magnitude during adaptation. Results indicate that the ability of populations to adapt depends on the presence of specific microorganisms. Biodegradation rates in laboratory systems can be affected by concentration and prior exposure; therefore, adaptation must be considered when such systems are used to predict the fate of xenobiotics in the environment.

  8. Obligate sulfide-dependent degradation of methoxylated aromatic compounds and formation of methanethiol and dimethyl sulfide by a freshwater sediment isolate, Parasporobacterium paucivorans gen. nov., sp. nov.

    PubMed

    Lomans, B P; Leijdekkers, P; Wesselink, J J; Bakkes, P; Pol, A; van der Drift, C; den Camp, H J

    2001-09-01

    Methanethiol (MT) and dimethyl sulfide (DMS) have been shown to be the dominant volatile organic sulfur compounds in freshwater sediments. Previous research demonstrated that in these habitats MT and DMS are derived mainly from the methylation of sulfide. In order to identify the microorganisms that are responsible for this type of MT and DMS formation, several sulfide-rich freshwater sediments were amended with two potential methyl group-donating compounds, syringate and 3,4,5-trimethoxybenzoate (0.5 mM). The addition of these methoxylated aromatic compounds resulted in excess accumulation of MT and DMS in all sediment slurries even though methanogenic consumption of MT and DMS occurred. From one of the sediment slurries tested, a novel anaerobic bacterium was isolated with syringate as the sole carbon source. The strain, designated Parasporobacterium paucivorans, produced MT and DMS from the methoxy groups of syringate. The hydroxylated aromatic residue (gallate) was converted to acetate and butyrate. Like Sporobacterium olearium, another methoxylated aromatic compound-degrading bacterium, the isolate is a member of the XIVa cluster of the low-GC-content Clostridiales group. However, the new isolate differs from all other known methoxylated aromatic compound-degrading bacteria because it was able to degrade syringate in significant amounts only in the presence of sulfide.

  9. Methanobacterium lacus sp. nov., isolated from the profundal sediment of a freshwater meromictic lake.

    PubMed

    Borrel, Guillaume; Joblin, Keith; Guedon, Annie; Colombet, Jonathan; Tardy, Vincent; Lehours, Anne-Catherine; Fonty, Gérard

    2012-07-01

    An autotrophic, hydrogenotrophic methanogen, designated strain 17A1(T), was isolated from the profundal sediment of the meromictic Lake Pavin, France. The cells of the novel strain, which were non-motile, Gram-staining-negative rods that measured 2-15 µm in length and 0.2-0.4 µm in width, grew as filaments. Strain 17A1(T) grew in a mineral medium and its growth was stimulated by the addition of yeast extract, vitamins, acetate or rumen fluid. Penicillin, vancomycin and kanamycin reduced growth but did not completely inhibit it. Growth occurred at 14-41 °C (optimum 30 °C), at pH 5.0-8.5 (optimum pH 6.5) and with 0-0.4 M NaCl (optimum 0.1 M). The novel strain utilized H(2)/CO(2) and methanol/H(2) as substrates but not formate, acetate, methylamine/H(2), isobutanol or 2-propanol. Its genomic DNA G+C content was 37.0 mol%. In phylogenetic analyses based on 16S rRNA gene sequences, strain 17A1(T) appeared to be a member of the genus Methanobacterium, with Methanobacterium beijingense 8-2(T) (96.3% sequence similarity) identified as the most closely related established species. Based on phenotypic and phylogenetic data, strain 17A1(T) represents a novel species of methanogen within the genus Methanobacterium, for which the name Methanobacterium lacus sp. nov. is proposed. The type strain is 17A1(T) (=DSM 24406(T)=JCM 17760(T)).

  10. Toxicokinetics of sediment-sorbed benzo[a]pyrene and hexachlorobiphenyl using the freshwater invertebrates Hyalella azteca, Chironomus tentans, and Lumbriculus variegatus.

    PubMed

    Schuler, Lance J; Wheeler, Matthew; Bailer, A John; Lydy, Michael J

    2003-02-01

    This study investigated the effect of long-term sediment aging on the toxicokinetics of benzo[a]pyrene (BaP) and hexachlorobiphenyl (HCBP) using three freshwater benthic invertebrates. Hyalella azteca, Chironomus tentans, and Lumbriculus variegatus were exposed to BaP- and HCBP-spiked sediments that were aged for 7 d or 1.5 years. The toxicokinetics of the two compounds were determined for each test organism using a two-compartment model. The modeling of BaP was more complex because biotransformation was included within the model. The results of this study showed that the HCBP uptake clearance rates (k(s)) for each species were generally an order of magnitude greater than those determined for BaP and this difference was most likely due to preferential and rapid binding of BaP to sediment particles. Overall, the bioavailability of HCBP in spiked sediments tended to decrease with duration of aging, based on k(s) values and bioaccumulation factors (BAFs). However, the decreases in bioavailability appear to be species specific. Benzo[a]pyrene did not decline in bioavailability for the species tested because it may resist movement into the micropores of the sediment due to its large size. In addition to the bioassays, this article outlines a method for toxicokinetic modeling of biotransformed compounds and methods for statistical comparisons of kinetic parameters (i.e., k(s), k(d)...) and BAF values.

  11. The long-term nutrient accumulation with respect to anthropogenic impacts in the sediments from two freshwater marshes (Xianghai Wetlands, Northeast China).

    PubMed

    Wang, Guo-Ping; Liu, Jing-Shuang; Tang, Jie

    2004-12-01

    Sediment cores, representing a range of watershed characteristics and anthropogenic impacts, were collected from two freshwater marshes at the Xianghai wetlands (Ramsar site no. 548) in order to trace the historical variation of nutrient accumulation. Cores were (210)Pb- and (137)Cs-dated, and these data were used to calculate sedimentation rates and sediment accumulation rates. Ranges of dry mass accumulation rates and sedimentation rates were 0.27-0.96 g m(-2)yr(-1) and 0.27-0.90 cm yr(-1), respectively. The effect of human activities on increased sediment accumulation rates was observed. Nutrients (TOC, N, P, and S) in sediment were analyzed and nutrient concentration and accumulation were compared in two marshes with different hydrologic regime: an "open" marsh (E-0) and a partly "closed" marsh (F-0). Differences in physical and chemical characteristics between sediments of "open" and partly "closed" marsh were also observed. The "open" marsh sequestered much higher amounts of TOC (1.82%), N (981.1 mg kg(-1)), P (212.17 mg kg(-1)), and S (759.32 mg kg(-1)) than partly "closed" marsh (TOC: 0.32%, N: 415.35 mg kg(-1), P: 139.64 mg kg(-1), and S: 624.45 mg kg(-1)), and the "open" marsh indicated a rather large historical variability of TOC, N, P, and S inputs from alluvial deposits. Nutrient inputs (2.16-251.80 g TOC m(-2) yr(-1), 0.43-20.12 g N m(-2) yr(-1), 0.39-3.03 g P m(-2) yr(-1), 1.60-15.13 g S m(-2) yr(-1)) into the Xianghai wetlands of China are in the high range compared with reported nutrient accumulation rates for freshwater marshes in USA. The vertical variation, particularly for N, P, and S indicated the input history of the nutrients of the Xianghai wetlands developed in three periods--before 1950s, 1950-1980s, and after 1980s. The ratios between anthropogenic and natural inputs showed that the relative anthropogenic inputs of TOC, N, P, and S have been severalfold (TOC: 1.68-11.21, N: 0.47-3.67, P: 0.24-1.36, and S: 1.46-2.96) greater than values

  12. Assessment of heavy metals and arsenic contamination in the sediments of the Moulouya River and the Hassan II Dam downstream of the abandoned mine Zeïda (High Moulouya, Morocco)

    NASA Astrophysics Data System (ADS)

    El Azhari, Abdellah; Rhoujjati, Ali; EL Hachimi, Moulay Laârabi

    2016-07-01

    To evaluate the sediment contamination level near the abandoned (PbZn) mine Zeïda, heavy metal concentrations were determined in sediment samples from the Moulouya River, the Ansegmir tributary and the Hassan II Dam located downstream of the abandoned mine. These samples were analysed for their geochemical properties: mineralogy by XRD, carbonate content, pH, particle size and the total concentrations of Pb, Zn, As and Cu elements by ICP-AES. The assessment of the sediment pollution extent was performed by using the multiple pollution indices: contamination factor (CF), pollution load index (PLI) and the geoaccumulation index (Igeo). The Highest CF values (>6) of Pb that have been observed downstream of the tailings promote a high Pb contamination in that specific area. The PLIs results showed that all stations, except for those upstream of the tailings and on the Hassan II Dam, have been found moderately to highly contaminated. The Igeo results confirmed the Pb high contamination but also the extreme As contamination. The potential ecological risk factor results and the comparison with the sediment quality guidelines revealed that the Pb and As levels are potentially toxic to the sediment-dwelling organisms. Based on the multivariate statistical analysis results and the spatial distribution of the sediment contamination level, the pollution of Pb and As have different sources. Pb contamination is located exclusively near and downstream of the tailings. These latter's may be considered as an important point source of Pb into the Moulouya River. The As contamination is derived from a larger scale input sources which can be related to anthropogenic and/or lithogenic effects.

  13. Uptake and metabolism of benzo(a)pyrene absorbed to sediment by the freshwater invertebrate species Chironomus riparius and Sphaerium corneum

    SciTech Connect

    Borchert, J.; Karbe, L.; Westendorf, J.

    1997-01-01

    The polyaromatic hydrocarbon (PAH) Benzo(a)pyrene (BP) is a widespread contaminant, which is known to be carcinogenic in mammals after ic activation. BP is released into the environment and the water as a by-product of combustion of fossil and recent material (fuel, wood) in industry, traffic and households and is also released by natural sources. Most of the PAHs are highly lipophilic and therefore bound to humic substances, dissolved macromolecules and particulate matter which are at least deposited in the aquatic sediments. The BP concentrations in sediments of pristine waters do normally not exceed 1 {mu}g/g dry weight (dw). In polluted waters of industrial areas, the BP concentration may increase up to 100 {mu}g/g dw. The risk for environmental health caused by such sediment bound PAHs can be assessed by using BP as a model substance. One aim of this study was to investigate if the sediment bound BP is bioavailable to sediment dwelling organisms. For this purpose we examined the uptake of sediment bound BP. The metabolism of PAHs in insects has been investigated, however, only little is known about the Phase I and Phase II metabolism in clams, especially in freshwater species. The organisms choosen were two sediment inhabiting invertebrates, the larvae of the midge Chironomus riparius and the European fingernail clam Sphaerium corneum. Also investigated was the question of whether the BP taken up by the test organisms undergoes metabolic activation, since the toxicity of BP is modulated by metabolism. 11 refs., 3 figs., 4 tabs.

  14. Validation of a new standardized test method for the freshwater amphipod Hyalella azteca: Determining the chronic effects of silver in sediment.

    PubMed

    Taylor, Lisa N; Novak, Lesley; Rendas, Martina; Antunes, Paula M C; Scroggins, Rick P

    2016-10-01

    Environment Canada has developed a new 42-d sediment toxicity test method that includes a reproduction test endpoint with the freshwater amphipod Hyalella azteca. Because of concerns that existing standard methodologies, whereby adults are transferred to a water-only exposure before release of their first brood at day 28, will lead to internal contaminant depuration and loss of sensitivity, the Environment Canada methodology conducts the entire exposure in sediment. To demonstrate applicability of the method for assessing the toxicity of chemical-spiked sediment, H. azteca were exposed for 42 d to sediment amended with silver nitrate (AgNO3 ). Mortality was significantly higher at the highest sediment concentration of Ag (2088 mg/kg dry wt); however, there was no significant reduction in biomass or reproduction as a result of Ag exposure despite significant bioaccumulation. Based on Ag measurements and speciation modeling, the principle route of Ag exposure was likely through the ingestion of complexed colloidal or particulate Ag. The techniques used to recover young amphipods from sediment were critical, and although this effort can be labor intensive (20-45 min/replicate), the technicians demonstrated 91% recovery in blind trials. For the first time, Environment Canada will require laboratories to report their recovery proficiency for the 42-d test-without this information, data will not be accepted. Overall, the reproduction test will be more applicable when only a few chemical concentrations need to be evaluated in laboratory-amended sediments or for field-collected contaminated site assessments (i.e., contaminated site vs reference site comparisons). Environ Toxicol Chem 2016;35:2430-2438. © 2016 SETAC.

  15. Methymercury Formation in Marine and Freshwater Systems: Sediment Characteristics, Microbial Activity and SRB Phylogeny Control Formation Rates and Food-Chain Exposure

    NASA Astrophysics Data System (ADS)

    King, J. K.; Saunders, F. M.

    2004-05-01

    Mercury research in freshwater and marine systems suggests that sediment characteristics such as organic substrate, mercury speciation, and sulfate/sulfide concentrations influence availability of inorganic mercury for methylation. Similarly, sediment characteristics also influence sulfate-reducing bacterial (SRB) respiration as well as the presence/distribution of phylogenetic groups responsible for mercury methylation. Our work illustrates that the process of methylmercury formation in freshwater and marine systems are not dissimilar. Rather, the same geochemical parameters and SRB phylogenetic groups determine the propensity for methylmercury formation and are applicable in both fresh- and marine-water systems. The presentation will include our integration of sediment geochemical and microbial parameters affecting mercury methylation in specific freshwater and marine systems. Constructed wetlands planted with Schoenoplectus californicus and amended with gypsum (CaSO4) have demonstrated a capacity to remove inorganic mercury from industrial outfalls. However, bioaccumulation studies of periphyton, eastern mosquitofish (Gambusia holbrooki) and lake chubsucker (Erimyzon sucetta) were conducted in order to ascertain the availability of wetland-generated methylmercury to biota. Total mercury concentrations in mosquitofish from non-sulfate treated controls and the reference location were significantly lower than those from the low and high sulfate treatments while mean total mercury concentrations in lake chubsuckers were also significantly elevated in the high sulfate treatment compared to the low sulfate, control and reference populations. Methylmercury concentrations in periphyton also corresponded with mercury levels found in the tissue of the lake chubsuckers, and these findings fit well given the trophic levels identified for both species of fish. Overall, data from this study suggest that the initial use of gypsum to accelerate the maturity of a constructed

  16. Abundance of Dioxygenase Genes Similar to Ralstonia sp. Strain U2 nagAc Is Correlated with Naphthalene Concentrations in Coal Tar-Contaminated Freshwater Sediments

    PubMed Central

    Dionisi, Hebe M.; Chewning, Christopher S.; Morgan, Katherine H.; Menn, Fu-Min; Easter, James P.; Sayler, Gary S.

    2004-01-01

    We designed a real-time PCR assay able to recognize dioxygenase large-subunit gene sequences with more than 90% similarity to the Ralstonia sp. strain U2 nagAc gene (nagAc-like gene sequences) in order to study the importance of organisms carrying these genes in the biodegradation of naphthalene. Sequencing of PCR products indicated that this real-time PCR assay was specific and able to detect a variety of nagAc-like gene sequences. One to 100 ng of contaminated-sediment total DNA in 25-μl reaction mixtures produced an amplification efficiency of 0.97 without evident PCR inhibition. The assay was applied to surficial freshwater sediment samples obtained in or in close proximity to a coal tar-contaminated Superfund site. Naphthalene concentrations in the analyzed samples varied between 0.18 and 106 mg/kg of dry weight sediment. The assay for nagAc-like sequences indicated the presence of (4.1 ± 0.7) × 103 to (2.9 ± 0.3) × 105 copies of nagAc-like dioxygenase genes per μg of DNA extracted from sediment samples. These values corresponded to (1.2 ± 0.6) × 105 to (5.4 ± 0.4) × 107 copies of this target per g of dry weight sediment when losses of DNA during extraction were taken into account. There was a positive correlation between naphthalene concentrations and nagAc-like gene copies per microgram of DNA (r = 0.89) and per gram of dry weight sediment (r = 0.77). These results provide evidence of the ecological significance of organisms carrying nagAc-like genes in the biodegradation of naphthalene. PMID:15240274

  17. Influence of blooms of phytoplankton on concentrations of hydrophobic organic chemicals in sediments and snails in a hyper-eutrophic, freshwater lake.

    PubMed

    Shi, Wei; Yu, Nanyang; Jiang, Xia; Han, Zhihua; Wang, Shuhang; Zhang, Xiaowei; Wei, Si; Giesy, John P; Yu, Hongxia

    2017-01-31

    Blooms of phytoplankton, which are common in freshwater ecosystems, might not only affect quality of water but also influence biogeochemical processing of pollutants. Based on three years of field observations in sediments of Tai Lake, China, concentrations of organochlorine (OC) pesticides and polycyclic aromatic hydrocarbons (PAHs) in areas where blooms occurred were 2.4 and 3.4 times greater than concentrations in areas without blooms. Concentrations of octylphenol (OP), nonylphenol (NP) and bisphenol A (BPA) in areas where blooms did not occur were 3.8, 4.4 and 2.6 times greater than concentrations in areas where blooms did occur. To explain the differences, simultaneous, seasonally determinations of the water-sediment-phytoplankton-snails disequilibria were determined empirically. Greater sinking and lesser diffusion were shown to be probable drivers of the burial of δ-HCH, 4-ring and 5-ring PAHs in surface sediments of areas in which blooms occurred, being as much as 0.58, 38 and 45 g month(-1). Large biodegradation and low burial was shown to be the probable reason of the inverse proportion of NP, OP and BPA in both water and sediment to biomass which might be due to the enhanced metabolic capacity of bacterial community associated with algae blooms. These phenomena further influence the persistent hydrophobic organic chemicals in the snail species (Bellamya quadrata) being greater in winter but lesser in summer, which is probably due to the positive relationship with the concentrations in sediment when snails were dormant and with the concentrations in water after dormancy. Thus, in Tai Lake, the fate and distribution of persistent and biodegradable contaminants in sediments and snails is influenced by blooms of phytoplankton, which should be included in models of environmental fates of contaminants.

  18. The effect of sediment characteristics on bioturbation-mediated transfer of lead, in freshwater laboratory microcosms with Lumbriculus variegatus.

    PubMed

    Blankson, Emmanuel R; Klerks, Paul L

    2017-03-01

    While it has been well established that sediment bioturbators can affect the fate of metals in aquatic systems and that the fate of metals there can depend on sediment characteristics, the interaction between these influences is not well known. The present study therefore investigated whether the influence of a sediment bioturbator on the fate of metals is affected by sediment characteristics. This was investigated using two laboratory microcosm experiments with lead-contaminated sediment and the oligochaete Lumbriculus variegatus. The first experiment used sediment collected from five Toledo Bend reservoir sites that differed in sediment characteristics, and analyses looked at the influence of sediment organic matter, sediment silt/clay content, sediment pH, and pore-water pH. In the second experiment, organic matter and silt/clay content of Toledo Bend reservoir sediment were varied experimentally using alpha-cellulose and clay, and Pb transfer to the water column and bioaccumulation were again quantified. Both experiments were conducted with sediment spiked with Pb to a concentration of 100 µg/g, at an oligochaete density of 6279 ind./m². In the first experiment, the Pb concentrations in the water column and those in the worms at the end of the 14-day experiment differed among sediment-collection sites. Silt/clay content and sediment pH were the two most important variables influencing Pb transfer from sediment to the water column. A multiple regression model with these variables explained 58% of the variability in this lead transfer. For Pb accumulation by the worms, sediment organic matter and pore-water pH were the two most important variables. This regression model explained 85% of the variability in tissue Pb levels. In the second experiment, where the individual effects of the organic matter and silt/clay content on Pb transport and distribution were assessed, the use of sediment with more organic matter resulted in a reduction in both the Pb

  19. Suspended-sediment and fresh-water discharges in the Ob and Yenisey rivers, 1960-1988

    USGS Publications Warehouse

    Meade, R.H.; Bobrovitskaya, N.N.; Babkin, V.I.

    2000-01-01

    Of the world's great rivers, the Ob and Yenisey rank among the largest suppliers of fresh water and among the smallest suppliers of suspended sediment to the coastal ocean. Sediment in the middle reaches of the rivers is mobilized from bordering terraces and exchanged between channels and flood plains. Sediment in the lower reaches of these great rivers is deposited and stored (permanently, on a millennial time scale) in flood plains. Sediment discharges, already small under natural conditions, are diminished further by large manmade reservoirs that trap significant proportions of the moving solids. The long winter freeze and sudden spring breakup impose a peakedness in seasonal water runoff and sediment discharge that contrasts markedly with that in rivers of the tropics and more temperate climates. Very little sediment from the Ob and Yenisey rivers is being transported to the open waters of the Arctic Ocean under present conditions.

  20. Uptake and accumulation of sediment-associated 4-nonylphenol in a benthic invertebrate (Lumbriculus variegatus, freshwater oligochaete).

    PubMed

    Croce, Valeria; De Angelis, Silvia; Patrolecco, Luisa; Polesello, Stefano; Valsecchi, Sara

    2005-05-01

    In the present work, the oligochaete Lumbriculus variegatus was exposed for 56 d to lake sediment spiked with 4-nonylphenol (4-NP), which is a breakdown product of alkylphenol polyethoxylates, an important class of nonionic surfactants. During the exposure period, the content of 4-NP was determined in the oligochaetes, sediment, overlying water, and pore water in order to monitor the distribution of the 4-NP in the compartments of the test system. Concentration of 4-NP in L. variegatus increased linearly over the course of the test, with an uptake rate coefficient of 1.9 x 10(-2) (+/- 0.2 x 10(-2); [g carbon/(g lipid x h)]). No steady state was reached at the end of the exposure period, suggesting that the elimination of 4-NP by the organism was negligible. Ingested sediments played an important role in the accumulation of 4-NP in L. variegatus, which may achieve very high 4-NP body concentrations. The 56-d biota sediment accumulation factor (BSAF) was 24 +/- 7 g carbon/g lipid. L. variegatus also was exposed to 4-NP-contaminated field sediment, and field oligochaetes and sediments were collected for 4-NP pollution assessment in aquatic ecosystem. The 4-NP uptake with natural sediment was in accordance with that measured with spiked sediments, suggesting that the bioavailability of sediment-associated 4-NP for L. variegatus was not affected by 4-NP sediment concentration and abiotic sediment characteristics. The BSAFs measured in field oligochaetes, ranging from 39 to 55 g carbon/g lipid, was relatively higher than the bioaccumulation factor measured in laboratory tests. The results suggest that 4-NP concentration can reach high levels in benthic oligochaetes; this can be an important way of exposure for their pelagic predators.

  1. A comparison of equilibrium partitioning and critical body residue approaches for predicting toxicity of sediment-associated fluoranthene to freshwater amphipods

    SciTech Connect

    Driscoll, S.K.; Landrum, P.F.

    1997-10-01

    Equilibrium partitioning (EqP) theory predicts that the effects of organic compounds in sediments can be assessed by comparison of organic carbon-normalized sediment concentrations and estimated pore-water concentrations to effects determined in water-only exposures. A complementary approach, the critical body residue (CBR) theory, examines actual body burdens in relation to toxic effects. Critical body residue theory predicts that the narcotic effects of nonpolar compounds should be essentially constant for similar organisms, and narcosis should be observed at body burdens of 2 to 8 {micro}mol/g tissue. This study compares these two approaches for predicting toxicity of the polycyclic aromatic hydrocarbon (PAH) fluoranthene. The freshwater amphipods Hyalella azteca and Diporeia spp. were exposed for up to 30 d to sediment spiked with radiolabeled fluoranthene at concentrations of 0.1 (trace) to 3.940 nmol/g dry weight (= 346 {micro}mol/g organic carbon). Mean survival of Diporeia was generally high (>70%) and not significantly different from that of control animals. This result agrees with EqP predictions, because little mortality was observed for Diporeia in 10-d water-only exposures to fluoranthene in previous studies. After 10-d exposures, mortality of H. azteca was not significantly different from that of controls, even though measured interstitial water concentrations exceeded the previously determined 10-d water-only median lethal concentration (LC50). Equilibrium partitioning overpredicted fluoranthene sediment toxicity in this species. More mortality was observed for H. azteca at later time points, and a 16-d LC50 of 3.550 nmol/g dry weight sediment (291 {micro}mol/g organic carbon) was determined. A body burden of 1.10 {micro}mol fluoranthene-equivalents/g wet weight in H. azteca was associated with 50% mortality after 16-d exposures. Body burdens as high as 5.9 {micro}mol/g wet weight resulted in little mortality in Diporeia.

  2. Fate of N,N-Bis-(2,4,6-Trichlorophenyl)-Urea in a Freshwater Sediment

    DTIC Science & Technology

    1990-05-01

    sediments of Canal Creek, an estuarine system within the U.S. Army Aberdeen Proving Grounds, Maryland. Initial gas-chromatographic studies by Hydroponics ...33, Hydroponics Corporation, 1983. Courtney, W.A., and Langston, W.J., "Uptake of Polychlorinated Biphenyl (Aroclor 1254) from Sediment and from

  3. Bioaccumulation of PAHs from creosote-contaminated sediment in a laboratory-exposed freshwater oligochaete, Lumbriculus variegatus.

    PubMed

    Hyötyläinen, Tarja; Oikari, Aimo

    2004-10-01

    The oligochaete, Lumbriculus variegatus, was used for a bioaccumulation assay in the creosote-contaminated sediment of Lake Jämsänvesi in a 28-day experiment. The PAH concentrations of the whole body tissue of worms, sediments and water samples were determinated by GC-MS. Chemical analyses showed that benzo(k)fluoranthene, anthracene and fluorene were the main PAH compounds present in the tissue of oligochaetes, just as in the sediment. The biota-sediment accumulation factors (BSAFs) of the individual PAHs varied from 1.2 to 5.7. It is concluded that oligochaetes have a marked ability to accumulate and retain PAHs from creosote-contaminated sediment.

  4. Sources of suspended-sediment loads in the lower Nueces River watershed, downstream from Lake Corpus Christi to the Nueces Estuary, south Texas, 1958–2010

    USGS Publications Warehouse

    Ockerman, Darwin J.; Heitmuller, Franklin T.; Wehmeyer, Loren L.

    2013-01-01

    During 2010, additional suspended-sediment data were collected during selected runoff events to provide new data for model testing and to help better understand the sources of suspended-sediment loads. The model was updated and used to estimate and compare sediment yields from each of 64 subwatersheds comprising the lower Nueces River watershed study area for three selected runoff events: November 20-21, 2009, September 7-8, 2010, and September 20-21, 2010. These three runoff events were characterized by heavy rainfall centered near the study area and during which minimal streamflow and suspended-sediment load entered the lower Nueces River upstream from Wesley E. Seale Dam. During all three runoff events, model simulations showed that the greatest sediment yields originated from the subwatersheds, which were largely cropland. In particular, the Bayou Creek subwatersheds were major contributors of suspended-sediment load to the lower Nueces River during the selected runoff events. During the November 2009 runoff event, high suspended-sediment concentrations in the Nueces River water withdrawn for the City of Corpus Christi public-water supply caused problems during the water-treatment process, resulting in failure to meet State water-treatment standards for turbidity in drinking water. Model simulations of the November 2009 runoff event showed that the Bayou Creek subwatersheds were the primary source of suspended-sediment loads during that runoff event.

  5. Endocrine effects of contaminated sediments on the freshwater snail Potamopyrgus antipodarum in vivo and in the cell bioassays in vitro.

    PubMed

    Mazurová, E; Hilscherová, K; Jálová, V; Köhler, H-R; Triebskorn, R; Giesy, J P; Bláha, L

    2008-09-17

    Lake Pilnok located in the black coal-mining region Ostrava-Karvina, Czech Republic, contains sediments highly contaminated with powdered waste coal. Moreover, population of the endangered species of narrow-clawed crayfish Pontastacus leptodactylus with high proportion of intersex individuals (18%) was observed at this site. These findings motivated our work that aimed to evaluate contamination, endocrine disruptive potency using in vitro assays and in vivo effects of contaminated sediments on reproduction of sediment-dwelling invertebrates. Chemical analyses revealed low concentrations of persistent chlorinated compounds and heavy metals but concentrations of polycyclic aromatic hydrocarbons (PAH) were high (sum of 16 PAHs 10 microg/g dw). Organic extracts from sediments caused significant in vitro AhR-mediated activity in the bioassay with H4IIE-luc cells, estrogenicity in MVLN cells and anti-androgenicity in recombinant yeast assay, and these effects could be attributed to non-persistent compounds derived from the waste coal. We have also observed significant in vivo effects of the sediments in laboratory experiments with the Prosobranchian euryhaline mud snail Potamopyrgus antipodarum. Sediments from Lake Pilnok as well as organic extracts of the sediments (externally added to the control sediment) significantly affected fecundity during 8 weeks of exposure. The effects were stimulations of fecundity at lower concentrations at the beginning of the experiment followed by inhibitions of fecundity and general toxicity. Our study indicates presence of chemicals that affected endocrine balance in invertebrates, and emphasizes the need for integrated approaches combining in vitro and in vivo bioassays with identification of chemicals to elucidate ecotoxicogical impacts of contaminated sediment samples.

  6. Simulation of streamflow and suspended-sediment concentrations and loads in the lower Nueces River watershed, downstream from Lake Corpus Christi to the Nueces Estuary, South Texas, 1958-2008

    USGS Publications Warehouse

    Ockerman, Darwin J.; Heitmuller, Franklin T.

    2010-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Army Corps of Engineers-Fort Worth District, City of Corpus Christi, Guadalupe-Blanco River Authority, San Antonio River Authority, and San Antonio Water System, developed, calibrated, and tested a Hydrological Simulation Program ? FORTRAN (HSPF) watershed model to simulate streamflow and suspended-sediment concentrations and loads during 1958-2008 in the lower Nueces River watershed, downstream from Lake Corpus Christi to the Nueces Estuary in South Texas. Data available to simulate suspended-sediment concentrations and loads consisted of historical sediment data collected during 1942-82 in the study area and suspended-sediment concentration data collected periodically by the USGS during 2006-07 at three USGS streamflow-gaging stations, Nueces River near Mathis, Nueces River at Bluntzer, and Nueces River at Calallen. The Nueces River near Mathis station is downstream from Wesley E. Seale Dam, completed in 1958 to impound Lake Corpus Christi. Suspended-sediment data collected before and after completion of Wesley E. Seale Dam provide insights to the effects of the dam and reservoir on suspended-sediment loads transported by the lower Nueces River from downstream of the dam to the Nueces Estuary. Annual suspended-sediment loads at a site near the Nueces River at Mathis station were considerably lower, for a given annual mean discharge, after the dam was completed than before the dam was completed. Most of the suspended sediment transported by the Nueces River downstream from Wesley E. Seale Dam occurred during high-flow releases from the dam or during floods. During October 1964-September 1971, about 532,000 tons of suspended sediment were transported by the Nueces River near Mathis. Of this amount, about 473,000 tons, or about 89 percent, were transported by large runoff events (mean streamflow exceeding 1,000 cubic feet per second). To develop the watershed model to simulate suspended-sediment

  7. A Sediment Budget Case Study: Comparing Watershed Scale Erosion Estimates to Modeled and Empirical Sediment Loads

    NASA Astrophysics Data System (ADS)

    McDavitt, B.; O'Connor, M.

    2003-12-01

    The Pacific Lumber Company Habitat Conservation Plan requires watershed analyses to be conducted on their property. This paper summarizes a portion of that analysis focusing on erosion and sedimentation processes and rates coupled with downstream sediment routing in the Freshwater Creek watershed in northwest California. Watershed scale erosion sources from hillslopes, roads, and channel banks were quantified using field surveys, aerial photo interpretation, and empirical modeling approaches for different elements of the study. Sediment transport rates for bedload were modeled, and sediment transport rates for suspended sediment were estimated based on size distribution of sediment inputs in relation to sizes transported in suspension. Recent short-term, high-quality estimates of suspended sediment yield that a community watershed group collected with technical assistance from the US Forest Service were used to validate the resulting sediment budget. Bedload yield data from an adjacent watershed, Jacoby Creek, provided another check on the sediment budget. The sediment budget techniques and bedload routing models used for this study generated sediment yield estimates that are in good agreement with available data. These results suggest that sediment budget techniques that require moderate levels of fieldwork can be used to provide relatively accurate technical assessments. Ongoing monitoring of sediment sources coupled with sediment routing models and reach scale field data allows for predictions to be made regarding in-channel sediment storage.

  8. Inventories of 239+240Pu, 137Cs, and excess 210Pb in sediments from freshwater and brackish lakes in Rokkasho, Japan, adjacent to a spent nuclear fuel reprocessing plant.

    PubMed

    Ueda, Shinji; Ohtsuka, Yoshihito; Kondo, Kunio; Hisamatsu, Shun'ichi

    2009-10-01

    We investigated the vertical profiles of (239+240)Pu, (137)Cs, and excess (210)Pb ((210)Pb(ex)) in sediment core samples obtained from two freshwater lakes and two brackish lakes situated near the first commercial spent nuclear fuel reprocessing plant in Rokkasho, Japan, before the final test of the plant using actual spent nuclear fuel. The inventory of (239+240)Pu in those lakes was larger than that in soil in Rokkasho, which indicated the inflow of (239+240)Pu from the catchment area in addition to direct deposition on the lake surfaces. The (137)Cs inventory in sediments of the brackish lakes was lower than that in the soil, which showed that part of the (137)Cs was removed from the sediments by the brackish water or that it was not deposited into the sediments, because of the high solubility of Cs in brackish water. The (137)Cs inventory in sediments of the freshwater lakes was higher than that of the brackish lakes, and comparable with that in soil except for one core sample out of four. The (239+240)Pu/(137)Cs ratio in freshwater lake sediments was higher than that in soil, and that indicated that part of the (137)Cs was lost from the sediments. The low inventory of (137)Cs may be attributable to competition for absorption sites in sediments with ammonium ions formed in the reducing environment which occurs from summer to fall in the sediments. Those data will be used as background data on the artificial radionuclides in the lakes to assess the effect of released radionuclides on their concentrations.

  9. Local to regional scale industrial heavy metal pollution recorded in sediments of large freshwater lakes in central Europe (lakes Geneva and Lucerne) over the last centuries.

    PubMed

    Thevenon, Florian; Graham, Neil D; Chiaradia, Massimo; Arpagaus, Philippe; Wildi, Walter; Poté, John

    2011-12-15

    This research first focuses on the spatial and temporal patterns of heavy metals from contrasting environments (highly polluted to deepwater sites) of Lake Geneva. The mercury (Hg) and lead (Pb) records from two deepwater sites show that the heavy metal variations before the industrial period are primarily linked to natural weathering input of trace elements. By opposition, the discharge of industrial treated wastewaters into Vidy Bay of Lake Geneva during the second part of the 20th century, involved the sedimentation of highly metal-contaminated sediments in the area surrounding the WWTP outlet pipe discharge. Eventually, a new Pb isotope record of sediments from Lake Lucerne identifies the long-term increasing anthropogenic lead pollution after ca. 1500, probably due to the development of metallurgical activities during the High Middle Ages. These data furthermore allows to compare the recent anthropogenic sources of water pollution from three of the largest freshwater lakes of Western Europe (lakes Geneva, Lucerne, and Constance). High increases in Pb and Hg highlight the regional impact of industrial pollution after ca. 1750-1850, and the decrease of metal pollution in the 1980s due to the effects of remediation strategies such as the implementation of wastewater treatment plants (WWTPs). However, at all the studied sites, the recent metal concentrations remain higher than pre-industrial levels. Moreover, the local scale pollution data reveal two highly contaminated sites (>100 μg Pb/g dry weight sediment) by industrial activities, during the late-19th and early-20th centuries (Lake Lucerne) and during the second part of the 20th century (Vidy Bay of Lake Geneva). Overall, the regional scale pollution history inferred from the three large and deep perialpine lakes points out at the pollution of water systems by heavy metals during the last two centuries due to the discharge of industrial effluents.

  10. Accumulation of clinically relevant antibiotic-resistance genes, bacterial load, and metals in freshwater lake sediments in Central Europe.

    PubMed

    Devarajan, Naresh; Laffite, Amandine; Graham, Neil D; Meijer, Maria; Prabakar, Kandasamy; Mubedi, Josué I; Elongo, Vicky; Mpiana, Pius T; Ibelings, Bastiaan Willem; Wildi, Walter; Poté, John

    2015-06-02

    Wastewater treatment plants (WWTP) receive the effluents from various sources (communities, industrial, and hospital effluents) and are recognized as reservoir for antibiotic-resistance genes (ARGs) that are associated with clinical pathogens. The aquatic environment is considered a hot-spot for horizontal gene transfer, and lake sediments offer the opportunity for reconstructing the pollution history and evaluating the impacts. In this context, variation with depth and time of the total bacterial load, the abundance of faecal indicator bacteria (FIB; E. coli and Enterococcus spp. (ENT)), Pseudomonas spp., and ARGs (blaTEM, blaSHV, blaCTX-M, blaNDM, and aadA) were quantified in sediment profiles of different parts of Lake Geneva using quantitative PCR. The abundance of bacterial marker genes was identified in sediments contaminated by WWTP following eutrophication of the lake. Additionally, ARGs, including the extended-spectrum ß-lactam- and aminoglycoside-resistance genes, were identified in the surface sediments. The ARG and FIB abundance strongly correlated (r ≥ 0.403, p < 0.05, n = 34) with organic matter and metal concentrations in the sediments, indicating a common and contemporary source of contamination. The contamination of sediments by untreated or partially treated effluent water can affect the quality of ecosystem. Therefore, the reduction of contaminants from the source is recommended for further improvement of water quality.

  11. Improving sediment-quality guidelines for nickel: development and application of predictive bioavailability models to assess chronic toxicity of nickel in freshwater sediments

    USGS Publications Warehouse

    Vangheluwe, Marnix L. U.; Verdonck, Frederik A. M.; Besser, John M.; Brumbaugh, William G.; Ingersoll, Christopher G.; Schlekat, Christan E.; Rogevich Garman, Emily

    2013-01-01

    Within the framework of European Union chemical legislations an extensive data set on the chronic toxicity of sediment nickel has been generated. In the initial phase of testing, tests were conducted with 8 taxa of benthic invertebrates in 2 nickel-spiked sediments, including 1 reasonable worst-case sediment with low concentrations of acid-volatile sulfide (AVS) and total organic carbon. The following species were tested: amphipods (Hyalella azteca, Gammarus pseudolimnaeus), mayflies (Hexagenia sp.), oligochaetes (Tubifex tubifex, Lumbriculus variegatus), mussels (Lampsilis siliquoidea), and midges (Chironomus dilutus, Chironomus riparius). In the second phase, tests were conducted with the most sensitive species in 6 additional spiked sediments, thus generating chronic toxicity data for a total of 8 nickel-spiked sediments. A species sensitivity distribution was elaborated based on 10% effective concentrations yielding a threshold value of 94 mg Ni/kg dry weight under reasonable worst-case conditions. Data from all sediments were used to model predictive bioavailability relationships between chronic toxicity thresholds (20% effective concentrations) and AVS and Fe, and these models were used to derive site-specific sediment-quality criteria. Normalization of toxicity values reduced the intersediment variability in toxicity values significantly for the amphipod species Hyalella azteca and G. pseudolimnaeus, but these relationships were less clearly defined for the mayfly Hexagenia sp. Application of the models to prevailing local conditions resulted in threshold values ranging from 126 mg to 281 mg Ni/kg dry weight, based on the AVS model, and 143 mg to 265 mg Ni/kg dry weight, based on the Fe model

  12. A comparison of the bioaccumulation potential of three freshwater organisms exposed to sediment-associated contaminants under laboratory conditions.

    PubMed

    Van Geest, Jordana L; Poirier, David G; Solomon, Keith R; Sibley, Paul K

    2011-04-01

    In the field of sediment quality assessment, increased support has been expressed for using multiple species that represent different taxa, trophic levels, and potential routes of exposure. However, few studies have compared the bioaccumulation potential of various test species over a range of sediment contaminants (hydrophobic organics and metals). As part of the development and standardization of a laboratory bioaccumulation method for the Ontario Ministry of the Environment, the oligochaete Lumbriculus variegatus, mayfly nymph Hexagenia spp., and juvenile fathead minnow Pimephales promelas were exposed to a variety of field-contaminated sediments (n = 10) to evaluate their relative effectiveness for accumulating different contaminants (e.g., dichlorodiphenyltrichloroethane [DDT] and metabolites, polychlorinated biphenyls [PCBs), polycyclic aromatic hydrocarbons [PAHs), polychlorinated dibenzo-p-dioxins and dibenzofurans [PCDD/Fs), and heavy metals). Bioaccumulation was usually highest in L. variegatus but also most variable within and (relative measures) between sediments. Bioaccumulation was similar between L. variegatus and Hexagenia spp. in most of the sediments tested. Significant differences in bioaccumulation between species were observed for DDT, dichlorodiphenyldichloroethane (DDD), PAHs, and PCDD/Fs. The present study indicates that species-specific differences in bioaccumulation may, but do not always, exist and can vary with contaminant and sediment type. The choice of test species or combination to use in a standard test method may depend on the objectives of the sediment quality assessment and data requirements of an ecological risk assessment. The results of the present study provide insight for selection of test species and validation of laboratory methods for assessing bioaccumulation with these species, as well as valuable information for interpreting results of bioaccumulation tests.

  13. Diversity of Miscellaneous Crenarchaeotic Group archaea in freshwater karstic lakes and their segregation between planktonic and sediment habitats.

    PubMed

    Fillol, Mireia; Sànchez-Melsió, Alexandre; Gich, Frederic; Borrego, Carles M

    2015-04-01

    The Miscellaneous Crenarchaeotic Group (MCG) is an archaeal lineage whose members are widespread and abundant in marine sediments. MCG archaea have also been consistently found in stratified euxinic lakes. In this work, we have studied archaeal communities in three karstic lakes to reveal potential habitat segregation of MCG subgroups between planktonic and sediment compartments. In the studied lakes, archaeal assemblages were strikingly similar to those of the marine subsurface with predominance of uncultured Halobacteria in the plankton and Thermoplasmata and MCG in anoxic, organic-rich sediments. Multivariate analyses identified sulphide and dissolved organic carbon as predictor variables of archaeal community composition. Quantification of MCG using a newly designed qPCR primer pair that improves coverage for MCG subgroups prevalent in the studied lakes revealed conspicuous populations in both the plankton and the sediment. Subgroups MCG-5a and -5b appear as planktonic specialists thriving in euxinic bottom waters, while subgroup MCG-6 emerges as a generalist group able to cope with varying reducing conditions. Besides, comparison of DNA- and cDNA-based pyrotag libraries revealed that rare subgroups in DNA libraries, i.e. MCG-15, were prevalent in cDNA-based datasets, suggesting that euxinic, organic-rich sediments of karstic lakes provide optimal niches for the activity of some specialized MCG subgroups.

  14. Simulation of hydrologic conditions and suspended-sediment loads in the San Antonio River Basin downstream from San Antonio, Texas, 2000-12

    USGS Publications Warehouse

    Banta, J. Ryan; Ockerman, Darwin J.

    2014-01-01

    Suspended sediment in rivers and streams can play an important role in ecological health of rivers and estuaries and consequently is an important issue for water-resource managers. To better understand suspended-sediment loads and transport in a watershed, the U.S. Geological Survey (USGS), in cooperation with the San Antonio River Authority, developed a Hydrological Simulation Program—FORTRAN model to simulate hydrologic conditions and suspended-sediment loads during 2000–12 for four watersheds, which comprise the overall study area in the San Antonio River Basin (hereinafter referred to as the “USGS–2014 model”). The study area consists of approximately 2,150 square miles encompassing parts of Bexar, Guadalupe, Wilson, Karnes, DeWitt, Goliad, Victoria, and Refugio Counties. The USGS–2014 model was calibrated for hydrology and suspended sediment for 2006–12. Overall, model-fit statistics and graphic evaluations from the calibration and testing periods provided multiple lines of evidence indicating that the USGS–2014 model simulations of hydrologic and suspended-sediment conditions were mostly “good” to “very good.” Model simulation results indicated that approximately 1,230 tons per day of suspended sediment exited the study area and were delivered to the Guadalupe River during 2006–12, of which approximately 62 percent originated upstream from the study area. Sample data and simulated model results indicate that most of the suspended-sediment load in the study area consisted of silt- and clay-sized particles (less than 0.0625 millimeters). The Cibolo Creek watershed was the largest contributor of suspended sediment from the study area. For the entire study area, open/developed land and cropland exhibited the highest simulated soil erosion rates; however, the largest contributions of sediment (by land-cover type) were pasture and forest/rangeland/shrubland, which together composed approximately 80 percent of the land cover of the

  15. Biogeochemical factors influencing net mercury methylation in contaminated freshwater sediments from the St. Lawrence River in Cornwall, Ontario, Canada.

    PubMed

    Avramescu, Mary-Luyza; Yumvihoze, Emmanuel; Hintelmann, Holger; Ridal, Jeff; Fortin, Danielle; Lean, David R S

    2011-02-01

    The activity of various anaerobic microbes, including sulfate reducers (SRB), iron reducers (FeRP) and methanogens (MPA) has been linked to mercury methylation in aquatic systems, although the relative importance of each microbial group in the overall process is poorly understood in natural sediments. The present study focused on the biogeochemical factors (i.e. the relative importance of various groups of anaerobic microbes (FeRP, SRB, and MPA) that affect net monomethylmercury (MMHg) formation in contaminated sediments of the St. Lawrence River (SRL) near Cornwall (Zone 1), Ontario, Canada. Methylation and demethylation potentials were measured separately by using isotope-enriched mercury species ((200)Hg(2+) and MM(199)Hg(+)) in sediment microcosms treated with specific microbial inhibitors. Sediments were sampled and incubated in the dark at room temperature in an anaerobic chamber for 96h. The potential methylation rate constants (K(m)) and demethylation rates (K(d)) were found to differ significantly between microcosms. The MPA-inhibited microcosm had the highest potential methylation rate constant (0.016d(-1)), whereas the two SRB-inhibited microcosms had comparable potential methylation rate constants (0.003d(-1) and 0.002d(-1), respectively). The inhibition of methanogens stimulated net methylation by inhibiting demethylationand by stimulating methylation along with SRB activity. The inhibition of both methanogens and SRB was found to enhance the iron reduction rates but did not completely stop MMHg production. The strong positive correlation between K(m) and Sulfate Reduction Rates (SRR) and between K(d) and Methane Production Rates (MPR) supports the involvement of SRB in Hg methylation and MPA in MMHg demethylation in the sediments. In contrast, the strong negative correlation between K(d) and Iron Reduction Rates (FeRR) shows that the increase in FeRR corresponds to a decrease in demethylation, indicating that iron reduction may influence net

  16. CRITICAL BODY RESIDUES FOR FRESHWATER AND SALTWATER AMPHIPODS EXPOSED TO SEDIMENT CONTAINING A MIXTURE OF HIGH KOW PAHS

    EPA Science Inventory

    Sediments were spiked with a mixture of 13 high log Kow (5.4-6.8) PAH compounds to determine critical body residues (CBR) in Hyalella azteca and Leptocheirus plumulosus. Hyalella were exposed for 28 d in a intermittent flow test and for 10 d in a static test to compare PAH uptake...

  17. Characterization of fecal indicator bacteria in sediments cores from the largest freshwater lake of Western Europe (Lake Geneva, Switzerland).

    PubMed

    Thevenon, Florian; Regier, Nicole; Benagli, Cinzia; Tonolla, Mauro; Adatte, Thierry; Wildi, Walter; Poté, John

    2012-04-01

    This study characterized the fecal indicator bacteria (FIB), including Escherichia coli (E. coli) and Enteroccocus (ENT), disseminated over time in the Bay of Vidy, which is the most contaminated area of Lake Geneva. Sediments were collected from a site located at ∼500 m from the present waste water treatment plant (WWTP) outlet pipe, in front of the former WWTP outlet pipe, which was located at only 300 m from the coastal recreational area (before 2001). E. coli and ENT were enumerated in sediment suspension using the membrane filter method. The FIB characterization was performed for human Enterococcus faecalis (E. faecalis) and Enterococcus faecium (E. faecium) and human specific bacteroides by PCR using specific primers and a matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Bacterial cultures revealed that maximum values of 35.2 × 10(8) and 6.6 × 10(6)CFU g(-1) dry sediment for E. coli and ENT, respectively, were found in the sediments deposited following eutrophication of Lake Geneva in the 1970s, whereas the WWTP started operating in 1964. The same tendency was observed for the presence of human fecal pollution: the percentage of PCR amplification with primers ESP-1/ESP-2 for E. faecalis and E. faecium indicated that more than 90% of these bacteria were from human origin. Interestingly, the PCR assays for specific-human bacteroides HF183/HF134 were positive for DNA extracted from all isolated strains of sediment surrounding WWPT outlet pipe discharge. The MALDI-TOF MS confirmed the presence of general E. coli and predominance E. faecium in isolated strains. Our results demonstrated that human fecal bacteria highly increased in the sediments contaminated with WWTP effluent following the eutrophication of Lake Geneva. Additionally, other FIB cultivable strains from animals or adapted environmental strains were detected in the sediment of the bay. The approaches used in this research are valuable to assess the

  18. Development and application of an innovative expert decision support system to manage sediments and to assess environmental risk in freshwater ecosystems.

    PubMed

    Dagnino, Alessandro; Bo, Tiziano; Copetta, Andrea; Fenoglio, Stefano; Oliveri, Caterina; Bencivenga, Mauro; Felli, Angelo; Viarengo, Aldo

    2013-10-01

    With the aim of supporting decision makers to manage contamination in freshwater environments, an innovative expert decision support system (EDSS) was developed. The EDSS was applied in a sediment quality assessment along the Bormida river (NW, Italy) which has been heavily contaminated by an upstream industrial site for more than a century. Sampling sites were classified by means of comparing chemical concentrations with effect-based target values (threshold and probable effect concentrations). The level of each contaminant and the combined toxic pressure were used to rank sites into three categories: (i) uncontaminated (8 sites), (ii) mildly contaminated (4) and (iii) heavily contaminated (19). In heavily contaminated sediments, an environmental risk index (EnvRI) was determined by means of integrating chemical data with ecotoxicological and ecological parameters (triad approach). In addition a sediment risk index (SedRI) was computed from combining chemical and ecotoxicological data. Eight sites exhibited EnvRI values ≥0.25, the safety threshold level (range of EnvRI values: 0.14-0.31) whereas SedRI exceeded the safety threshold level at 6 sites (range of SedRI values: 0.16-0.36). At sites classified as mildly contaminated, sublethal biomarkers were integrated with chemical data into a biological vulnerability index (BVI), which exceeded the safety threshold level at one site (BVI value: 0.28). Finally, potential human risk was assessed in selected stations (11 sites) by integrating genotoxicity biomarkers (GTI index falling in the range 0.00-0.53). General conclusions drawn from the EDSS data include: (i) in sites classified as heavily contaminated, only a few exhibited some significant, yet limited, effects on biodiversity; (ii) restrictions in re-using sediments from heavily contaminated sites found little support in ecotoxicological data; (iii) in the majority of the sites classified as mildly contaminated, tested organisms exhibited low response levels

  19. Ecology of tidal freshwater marshes of the United States east coast: a community profile

    SciTech Connect

    Odum, W.E.; Smith, T.J. III; Hoover, J.K.; McIvor, C.C.

    1984-01-01

    Tidal freshwater marshes are a distinctive type of estuarine ecosystem located upstream from tidal saline marshes and downstream from non-tidal freshwater marshes. They are characterized by freshwater or nearly freshwater conditions most of the time, flora and fauna dominated by freshwater species, and daily lunar tidal flushing. This report examines the ecology of this community as it occurs along the Atlantic seaboard from southern New England to northern Florida. This marsh community is heavily influenced by river flow, which maintains freshwater conditions and deposits sediments high in silt and clay. The plant assemblage in tidal freshwater marshes is diverse both in numbers of species and structural plant types. Plant community structure is markedly diverse spatially and seasonally, and reflects the dynamic processing of energy and biomass in the marsh through high productivity, rapid decomposition and seasonal nutrient cycling. The diverse niches in this heterogeneous environment are exploited by a very diverse animal community of as many as 125 species of fish, 102 species of amphibians and reptiles, 280 species of birds, and 46 species of mammals over the community's broad range. Although fewer species are permanent residents or marsh breeders, use of his community for food and cover is high. This use, coupled with the marshes' capacity to be natural buffers and water filters, argue for their high value as natural resources. 349 references, 31 figures, 24 tables.

  20. Sediment Transport During Three Controlled-Flood Experiments on the Colorado River Downstream from Glen Canyon Dam, with Implications for Eddy-Sandbar Deposition in Grand Canyon National Park

    USGS Publications Warehouse

    Topping, David J.; Rubin, David M.; Grams, Paul E.; Griffiths, Ronald E.; Sabol, Thomas A.; Voichick, Nicholas; Tusso, Robert B.; Vanaman, Karen M.; McDonald, Richard R.

    2010-01-01

    Three large-scale field experiments were conducted on the Colorado River downstream from Glen Canyon Dam in 1996, 2004, and 2008 to evaluate whether artificial (that is, controlled) floods released from the dam could be used in conjunction with the sand supplied by downstream tributaries to rebuild and sustainably maintain eddy sandbars in the river in Grand Canyon National Park. Higher suspended-sand concentrations during a controlled flood will lead to greater eddy-sandbar deposition rates. During each controlled flood experiment, sediment-transport and bed-sediment data were collected to evaluate sediment-supply effects on sandbar deposition. Data collection substantially increased in spatial and temporal density with each subsequent experiment. The suspended- and bed-sediment data collected during all three controlled-flood experiments are presented and analyzed in this report. Analysis of these data indicate that in designing the hydrograph of a controlled flood that is optimized for sandbar deposition in a given reach of the Colorado River, both the magnitude and the grain size of the sand supply must be considered. Because of the opposing physical effects of bed-sand area and bed-sand grain size in regulating suspended-sand concentration, larger amounts of coarser sand on the bed can lead to lower suspended-sand concentrations, and thus lower rates of sandbar deposition, during a controlled flood than can lesser amounts of finer sand on the bed. Although suspended-sand concentrations were higher at all study sites during the 2008 controlled-flood experiment (CFE) than during either the 1996 or 2004 CFEs, these higher concentrations were likely associated with more sand on the bed of the Colorado River in only lower Glen Canyon. More sand was likely present on the bed of the river in Grand Canyon during the 1996 CFE than during either the 2004 or 2008 CFEs. The question still remains as to whether sandbars can be sustained in the Colorado River in Grand

  1. Detection of tetrabromobisphenol A and its mono- and dimethyl derivatives in fish, sediment and suspended particulate matter from European freshwaters and estuaries.

    PubMed

    Kotthoff, Matthias; Rüdel, Heinz; Jürling, Heinrich

    2017-03-21

    An analytical method was developed for the determination of tetrabromobisphenol A (TBBPA), 3,3',5,5'-tetrabromobisphenol-A-monomethyl ether (MM-TBBPA) and 3,3',5,5'-tetrabromobisphenol-A-dimethyl ether (DM-TBBPA), and its valid application on fish muscle matrix (bream and sole), suspended particulate matter (SPM) and surface sediment layer samples, using only 0.5 g sample material, is demonstrated. Here, for the first time, DM-TBBPA could be determined by an LC-MS/MS-based method applying atmospheric pressure photoionization (APPI), using the same sample extracts for all three analytes. Samplings covered freshwater fish (bream; annually, period 2007-2013) and SPM or sediment (every second year in the period 2008-2014) at selected European sites (rivers: Tees/UK, Mersey/UK, Western Scheldt/NL, Götaälv/SE, Rhône/FR; Lake Belau/DE). TBBPA could be quantified in 13 of 36 bream samples (range about 0.5-1.2 μg kg(-1) ww) and 7 of 7 sole muscle samples (range about 0.5-0.7 μg kg(-1) ww). Further, it could be quantified in 11 of the 14 SPM samples (range about 0.5-9.4 μg kg(-1) dw) and in both of the surface sediment layer samples (2.3-2.6 μg kg(-1) dw). MM-TBBPA could be quantified in 12 of 36 bream and 4 of 7 sole muscle samples (range about 0.8-1.8 μg kg(-1) ww). Further, it could be quantified in 10 of the 14 river SPM samples (range about 2.3-4.5 μg kg(-1) dw) and in both lake surface sediment layer samples (5.2-5.5 μg kg(-1) dw). DM-TBBPA was rarely detectable and could not be quantified above the limit of quantification in any sample.

  2. On the apparent failure of silt fences to protect freshwater ecosystems from sedimentation: A call for improvements in science, technology, training and compliance monitoring.

    PubMed

    Cooke, S J; Chapman, J M; Vermaire, J C

    2015-12-01

    Excessive sedimentation derived from anthropogenic activities is a main factor in habitat and biodiversity loss in freshwater ecosystems. To prevent offsite movement of soil particles, many environmental regulatory agencies mandate the use of perimeter silt fences. However, research regarding the efficiency of these devices in applied settings is lacking, and fences are often ineffective due to poor installation and maintenance. Here, we provide an overview of the current state of research regarding silt fences, address the current culture surrounding silt fence installation and maintenance, and provide several recommendations for improving the knowledge base related to silt fence effectiveness. It is clear that there is a need for integrated long-term (i.e., extending from prior to fence installation to well after fence removal) multi-disciplinary research with appropriate controls that evaluates the effectiveness of silt control fences. Through laboratory experiments, in silico modelling and field studies there are many factors that can be experimentally manipulated such as soil types (and sediment feed rate), precipitation regimes (and flow rate), season, slope, level of site disturbance, fence installation method, type of fence material, depth of toe, type and spacing of support structures, time since installation, level of inspection and maintenance, among others, that all require systematic evaluation. Doing so will inform the practice, as well as identify specific technical research needs, related to silt fence design and use. Moreover, what constitutes "proper" installation and maintenance is unclear, especially given regional- and site-level variation in precipitation, slope, and soil characteristics. Educating and empowering construction crews to be proactive in maintenance of silt fencing is needed given an apparent lack of compliance monitoring by regulatory agencies and the realities that the damage is almost instantaneous when silt fences fail. Our

  3. Freshwater Macroinvertebrates.

    ERIC Educational Resources Information Center

    Nalepa, T. F.

    1978-01-01

    Presents a literature review of freshwater biology particularly freshwater macroinvertebrates and their effect on water pollution, covering publications of 1976-77. A list of 158 references is also presented. (HM)

  4. Bacillus stamsii sp. nov., a facultatively anaerobic sugar degrader that is numerically dominant in freshwater lake sediment.

    PubMed

    Müller, Nicolai; Scherag, Frank D; Pester, Michael; Schink, Bernhard

    2015-09-01

    A novel type of anaerobic bacteria was previously isolated from profundal lake sediment by direct dilution of the sediment in mineral agar medium containing glucose and a background lawn of Methanospirillum hungatei as a syntrophic partner. The isolated bacteria grouped with aerobic Bacillus spp. according to their 16S rRNA gene sequence, and the most closely related species is Bacillus thioparans. Fermentative growth of the novel strain with glucose was possible only in the presence of syntrophic partners, and cocultures produced acetate and methane, in some cases also lactate and traces of succinate as fermentation products. In contrast, the closely related strains Bacillus jeotgali and Bacillus sp. strain PeC11 are able to grow with glucose axenically by mixed acid fermentation yielding lactate, acetate, formate, succinate, and ethanol as fermentation products. Alternatively, the isolated strain grew anaerobically in pure culture if pyruvate was added to glucose-containing media, and lactate, acetate and formate were the major fermentation products, but the strain never produced ethanol. Aerobic growth was found with a variety of organic substrates in the presence of partly reduced sulfur compounds. In the absence of sulfide and oxygen, nitrate served as an electron acceptor. Strain BoGlc83 was characterized as the type strain of a new species for which the name Bacillus stamsii sp. nov. (DSM 19598=JCM 30025) is proposed.

  5. Historical Associations of Molecular Measurements of Escherichia coli and Enterococci to Anthropogenic Activities and Climate Variables in Freshwater Sediment Cores.

    PubMed

    Brooks, Yolanda M; Baustian, Melissa M; Baskaran, Mark; Ostrom, Nathaniel E; Rose, Joan B

    2016-07-05

    This study investigated the long-term associations of anthropogenic (sedimentary P, C, and N concentrations, and human population in the watershed), and climatic variables (air temperature, and river discharge) with Escherichia coli uidA and enterococci 23S rRNA concentrations in sediment cores from Anchor Bay (AB) in Lake St. Clair, and near the mouth of the Clinton River (CR), Michigan. Calendar year was estimated from vertical abundances of (137)Cs. The AB and CR cores spanned c.1760-2012 and c.1895-2012, respectively. There were steady state concentrations of enterococci in AB during c.1760-c.1860 and c.1910-c.2003 at ∼0.1 × 10(5) and ∼2.0 × 10(5) cell equivalents (CE) per g-dry wt, respectively. Enterococci concentrations in CR increased toward present day, and ranged from ∼0.03 × 10(5) to 9.9 × 10(5) CE/g-dry wt. The E. coli concentrations in CR and AB increased toward present day, and ranged from 0.14 × 10(7) to 1.7 × 10(7) CE/g-dry wt, and 1.8 × 10(6) to 8.5 × 10(6) CE/g-dry wt, respectively. Enterococci was associated with population and river discharge, while E. coli was associated with population, air temperature, and N and C concentrations (p < 0.05). Sediments retain records of the abundance of fecal indicator bacteria, and offer a way to evaluate responses to increased population, nutrient loading, and environmental policies.

  6. Arsenic and heavy metal pollution in wetland soils from tidal freshwater and salt marshes before and after the flow-sediment regulation regime in the Yellow River Delta, China

    NASA Astrophysics Data System (ADS)

    Bai, Junhong; Xiao, Rong; Zhang, Kejiang; Gao, Haifeng

    2012-07-01

    SummarySoil samples were collected in tidal freshwater and salt marshes in the Yellow River Delta (YRD), northern China, before and after the flow-sediment regulation. Total concentrations of arsenic (As), cadmium (Cd), copper (Cu), lead (Pb) and zinc (Zn) were determined using inductively coupled plasma atomic absorption spectrometry to investigate the characteristics of heavy metal pollution in tidal wetlands before and after the regulation regime. The results demonstrated that marsh soils in both marshes had higher silt and total P contents, higher bulk density and lower sand contents after the flow-sediment regulation; moreover, soil salinity was significantly decreased in the tidal salt marsh. As and Cd concentrations were significantly higher in both marsh soils after the regulation than before, and there were no significant differences in the concentrations of Cu, Pb and Zn measured before and after the regulation. No significant differences in heavy metal concentrations were observed between freshwater and salt marsh soils, either before or after the regulation. Before the regulation regime, soil organic matter, pH and sulfer (S) were the main factors influencing heavy metal distribution in tidal freshwater marshes, whereas for tidal salt marshes, the main factors are soil salinity and moisture, pH and S. However, bulk density and total P became the main influencing factors after the regulation. The sediment quality guidelines and geoaccumulation indices showed moderately or strongly polluted levels of As and Cd and unpolluted or moderately polluted levels of Cu, Pb and Zn; As and Cd pollution became more serious after the regulation. Factor analysis indicated thatthese heavy metals including As were closely correlated and orginated from common pollution sources before the flow-sediment regulation; however, the sources of As and Cd separated from the sources of Cu, Pb and Zn after the regulation regime, implying that the flow-sediment regulation regime

  7. Davis Pond Freshwater Prediversion Biomonitoring Study: Freshwater Fisheries and Eagles

    USGS Publications Warehouse

    Jenkins, Jill A.; Bourgeois, E. Beth; Jeske, Clint W.

    2008-01-01

    In January 2001, the construction of the Davis Pond freshwater diversion structure was completed by the U.S. Army Corps of Engineers. The diversion of freshwater from the Mississippi River is intended to mitigate saltwater intrusion from the Gulf of Mexico and to lessen the concomitant loss of wetland areas. In addition to the freshwater inflow, Barataria Bay basin would receive nutrients, increased flows of sediments, and water-borne and sediment-bound compounds. The purpose of this biomonitoring study was, therefore, to serve as a baseline for prediversion concentrations of selected contaminants in bald eagle (Haliaeetus leucocephalus) nestlings (hereafter referred to as eaglets), representative freshwater fish, and bivalves. Samples were collected from January through June 2001. Two similarly designed postdiversion studies, as described in the biological monitoring program, are planned. Active bald eagle nests targeted for sampling eaglet blood (n = 6) were generally located southwest and south of the diversion structure. The designated sites for aquatic animal sampling were at Lake Salvador, at Lake Cataouatche, at Bayou Couba, and along the Mississippi River. Aquatic animals representative of eagle prey were collected. Fish were from three different trophic levels and have varying feeding strategies and life histories. These included herbivorous striped mullet (Mugil cephalus), omnivorous blue catfish (Ictalurus furcatus), and carnivorous largemouth bass (Micropterus salmoides). Three individuals per species were collected at each of the four sampling sites. Freshwater Atlantic rangia clams (Rangia cuneata) were collected at the downstream marsh sites, and zebra mussels (Dreissena spp.) were collected on the Mississippi River. The U.S. Geological Survey (USGS) Biomonitoring of Environmental Status and Trends (BEST) protocols served as guides for fish sampling and health assessments. Fish are useful for monitoring aquatic ecosystems because they accumulate

  8. Stripping voltammetric determination of palladium, platinum and rhodium in freshwater and sediment samples from South African water resources.

    PubMed

    van der Horst, C; Silwana, B; Iwuoha, E; Somerset, V

    2012-01-01

    reproducibility was also observed and the practical applicability of the sensor was demonstrated with the analysis of environmental water and sediment samples.

  9. Using high-resolution suspended-sediment measurements to infer changes in the topographic distribution and grain size of bed sediment in the Colorado River downstream from Glen Canyon Dam

    NASA Astrophysics Data System (ADS)

    Topping, D. J.; Rubin, D. M.; Melis, T. S.; Wright, S. A.

    2004-12-01

    Eddy sandbars and other sandy deposits in and along the Colorado River in Grand Canyon National Park (GCNP) were an integral part of the pre-dam riverscape, and are still important for habitat, protection of archeological sites, and recreation. Recent work has shown that eddy bars are dynamic landforms and represent the bulk of the ecosystem's sand reserves. These deposits began eroding following the 1963 closure of Glen Canyon Dam that reduced the supply of sand at the upstream boundary of GCNP by about 94% and are still eroding today. Sand transport in the post-dam river is limited by episodic resupply from tributaries, and is equally regulated by the discharge of water and short-term changes in the grain size of sand available for transport (Rubin and Topping, WRR, 2001). During tributary floods, sand on the bed of the Colorado River fines; this causes the suspended sand to fine and the suspended-sand concentration to increase even when the discharge of water remains constant. Subsequently, the bed is winnowed of finer sand, the suspended sand coarsens, and the suspended-sand concentration decreases independently of discharge. This prohibits the computation of sand-transport rates in the Colorado River using stable relations between water discharge and sand transport (i.e., sediment rating curves) and requires a more continuous method for measuring sand transport. To monitor suspended sediment at higher (i.e., 15-minute) resolutions, we began testing a laser-acoustic system at four locations along the Colorado River in Grand Canyon in August 2002. Because they are much easier to acquire, the high-resolution suspended-sediment datasets collected using the laser-acoustic systems greatly outnumber (by >5 orders of magnitude) direct grain-size measurements of the upstream bed sediment. Furthermore, suspension processes effectively provide an average "sample" of the bed sediment on the perimeter of the upstream channel and the underwater portions of the banks and

  10. Modeling flow and sediment transport dynamics in the lowermost Mississippi River, Louisiana, USA, with an upstream alluvial-bedrock transition and a downstream bedrock-alluvial transition: Implications for land building using engineered diversions

    NASA Astrophysics Data System (ADS)

    Viparelli, Enrica; Nittrouer, Jeffrey A.; Parker, Gary

    2015-03-01

    The lowermost Mississippi River, defined herein as the river segment downstream of the Old River Control Structure and hydrodynamically influenced by the Gulf of Mexico, extends for approximately 500 km. This segment includes a bedrock (or more precisely, mixed bedrock-alluvial) reach that is bounded by an upstream alluvial-bedrock transition and a downstream bedrock-alluvial transition. Here we present a one-dimensional mathematical formulation for the long-term evolution of lowland rivers that is able to reproduce the morphodynamics of both the alluvial-bedrock and the bedrock-alluvial transitions. Model results show that the magnitude of the alluvial equilibrium bed slope relative to the bedrock surface slope and the depth of bedrock surface relative to the water surface base level strongly influence the mobile bed equilibrium of low-sloping river channels. Using data from the lowermost Mississippi River, the model is zeroed and validated at field scale by comparing the numerical results with field measurements. The model is then applied to predict the influence on the stability of channel bed elevation in response to delta restoration projects. In particular, the response of the river bed to the implementation of two examples of land-building diversions to extract water and sediment from the main channel is studied. In this regard, our model results show that engineered land-building diversions along the lowermost Mississippi River are capable of producing equilibrated bed profiles with only modest shoaling or erosion, and therefore, such diversions are a sustainable strategy for mitigating land loss within the Mississippi River Delta.

  11. Survival and persistence of host-associated Bacteroidales cells and DNA in comparison with Escherichia coli and Enterococcus in freshwater sediments as quantified by PMA-qPCR and qPCR.

    PubMed

    Kim, Minji; Wuertz, Stefan

    2015-12-15

    Decay of the fecal source identifier Bacteroidales in sediments has not been studied until now. Two types of microcosms inoculated with human, cow and dog feces were constructed to investigate the survival and persistence of host-associated Bacteroidales cells and their DNA, respectively, in freshwater sediments: (i) a completely anaerobic microcosm where feces were entirely mixed with sediments for estimating decay of Bacteroidales in oxygen-free sediments at two temperatures (6 °C and 20 °C) and (ii) a core microcosm where feces in the overlying water column settled on top of undisturbed core sediments. Quantitative PCR (qPCR) along with propidium monoazide (PMA) was used to differentiate between genetic markers present in intact cells and total intracellular as well as extracellular marker DNA. Regulated fecal indicator bacteria were measured by cultivation (Escherichia coli and Enterococcus) and qPCR (Enterococcus) in relation to Bacteroidales-associated host markers. In anaerobic microcosms, the survival and persistence of Bacteroidales cells and DNA in sediments were considerably extended, especially at the lower temperature of 6 °C, with two-log reduction times (T99) >56 d (cells) and >169 d (DNA). Bacteroidales DNA persisted up to five times longer than cells in anaerobic microcosms at 6 °C, whereas decay rates of cells and DNA were not significantly different at 20 °C in anaerobic microcosms. In core microcosms, the levels of Bacteroidales cells and DNA decreased approximately six times more slowly in sediments than in overlying water; T99 values of Bacteroidales cells and DNA were 6-9 d (water) and 29-82 d (sediment). The survival of universal, human-, ruminant- and dog-associated Bacteroidales cells in sediments was similar in both microcosms under each given condition, as was the persistence of DNA. Decay rate constants of Bacteroidales cells and DNA were comparable with those of cultivable Enterococcus and E. coli cells in core sediments while

  12. Use of Sediment Budgets for Watershed Erosion Control Planning: A Case Study From Northern California

    NASA Astrophysics Data System (ADS)

    O'Connor, M.; McDavitt, W.

    2002-05-01

    Erosion, sedimentation and peak flow increases caused by forest management for commercial timber production may negatively affect aquatic habitat of endangered anadromous fish such as coho salmon ({\\ it O. kisutch}). This paper summarizes a portion of a Watershed Analysis study performed for Pacific Lumber Company, Scotia, CA, focusing on erosion and sedimentation processes and rates and downstream sediment routing and water quality in the Freshwater Creek watershed in northwest California. Hillslope, road and bank erosion, channel sedimentation and sediment rates were quantified using field surveys, aerial photo interpretation, and empirical modeling approaches for different elements of the study. Sediment transport rates for bedload were modeled, and sediment transport rates for suspended sediment were estimated based on size distribution of sediment inputs in relation to sizes transported in suspension. The resulting sediment budget was validated through comparison using recent short-term, high-quality estimates of suspended sediment yield collected by a community watershed group at a downstream monitoring site with technical assistance from the US Forest Service. Another check on the sediment budget was provided by bedload yield data from an adjacent watershed, Jacoby Creek. The sediment budget techniques and bedload routing models used for this study provide sediment yield estimates that are in good agreement with available data. These results suggest that sediment budget techniques that require moderate levels of fieldwork can be used to provide relatively accurate technical assessments for use in the TMDL process. The sediment budget also identifies the most significant sediment sources and suggests a framework within which effective erosion control strategies can be developed.

  13. Reservoir impacts downstream in highly regulated river basins: the Ebro delta and the Guadalquivir estuary in Spain

    NASA Astrophysics Data System (ADS)

    Polo, María J.; Rovira, Albert; García-Contreras, Darío; Contreras, Eva; Millares, Agustín; Aguilar, Cristina; Losada, Miguel A.

    2016-05-01

    Regulation by reservoirs affects both the freshwater regime and the sediment delivery at the area downstream, and may have a significant impact on water quality in the final transitional water bodies. Spain is one the countries with more water storage capacity by reservoirs in the world. Dense reservoir networks can be found in most of the hydrographic basins, especially in the central and southern regions. The spatial redistribution of the seasonal and annual water storage in reservoirs for irrigation and urban supply, mainly, has resulted in significant changes of water flow and sediment load regimes, together with a fostered development of soil and water uses, with environmental impacts downstream and higher vulnerability of these areas to the sea level rise and drought occurrence. This work shows these effects in the Guadalquivir and the Ebro River basins, two of the largest regulated areas in Spain. The results show a 71 % decrease of the annual freshwater input to the Guadalquivir River estuary during 1930-2014, an increase of 420 % of the irrigated area upstream the estuary, and suspended sediment loads up to 1000 % the initial levels. In the Ebro River delta, the annual water yield has decreased over a 30 % but, on the contrary, the big reservoirs are located in the main stream, and the sediment load has decreased a 99 %, resulting in a delta coastal regression up to 10 m per year and the massive presence of macrophytes in the lower river. Adaptive actions proposed to face these impacts in a sea level rise scenario are also analyzed.

  14. Microplastics in freshwater systems: a review of the emerging threats, identification of knowledge gaps and prioritisation of research needs.

    PubMed

    Eerkes-Medrano, Dafne; Thompson, Richard C; Aldridge, David C

    2015-05-15

    Plastic contamination is an increasing environmental problem in marine systems where it has spread globally to even the most remote habitats. Plastic pieces in smaller size scales, microplastics (particles <5 mm), have reached high densities (e.g., 100,000 items per m(3)) in waters and sediments, and are interacting with organisms and the environment in a variety of ways. Early investigations of freshwater systems suggest microplastic presence and interactions are equally as far reaching as are being observed in marine systems. Microplastics are being detected in freshwaters of Europe, North America, and Asia, and the first organismal studies are finding that freshwater fauna across a range of feeding guilds ingest microplastics. Drawing from the marine literature and these initial freshwater studies, we review the issue of microplastics in freshwater systems to summarise current understanding, identify knowledge gaps and suggest future research priorities. Evidence suggests that freshwater systems may share similarities to marine systems in the types of forces that transport microplastics (e.g. surface currents); the prevalence of microplastics (e.g. numerically abundant and ubiquitous); the approaches used for detection, identification and quantification (e.g. density separation, filtration, sieving and infrared spectroscopy); and the potential impacts (e.g. physical damage to organisms that ingest them, chemical transfer of toxicants). Differences between freshwater and marine systems include the closer proximity to point sources in freshwaters, the typically smaller sizes of freshwater systems, and spatial and temporal differences in the mixing/transport of particles by physical forces. These differences between marine and freshwater systems may lead to differences in the type of microplastics present. For example, rivers may show a predictable pattern in microplastic characteristics (size, shape, relative abundance) based on waste sources (e.g. household vs

  15. Freshwater Wetlands.

    ERIC Educational Resources Information Center

    Naturescope, 1986

    1986-01-01

    Provides descriptions about freshwater wetlands, such as marshes, swamps, and bogs. Contains three learning activities which deal with unusual wetland plants, the animals and plants in a typical marsh, and the effects of a draught on a swamp. Included are reproducible handouts and worksheets for two of the activities. (TW)

  16. Charting a course downstream

    SciTech Connect

    Not Available

    1984-01-01

    In the petroleum industry, the term downstream refers to those business operations that take place after the search for and the production of crude oil. The actual purchase of crude oil, its transportation to refineries, its refining and the subsequent marketing and distribution of the refined products take place, in industry parlance, downstream. No other industry is required to coordinate the movement of so large a volume of liquids to so many destinations. And few other industries contend with raw material and end-product uncertainties so profound. Both the mixture of available world crude oil supplies and the demand patterns for petroleum products are subject to change. The downstream operations of Marathon Petroleum Company are discussed. The objective is to maximize profitability in the context of constantly changing prices for a variety of products.

  17. Disposables in downstream processing.

    PubMed

    Gottschalk, Uwe

    2009-01-01

    Disposable equipment has been used for many years in the downstream processing industry, but mainly for filtration and buffer/media storage. Over the last decade, there has been increasing interest in the use of disposable concepts for chromatography, replacing steel and glass fixed systems with disposable plastic modules that can be discarded once exhausted, fouled or contaminated. These modules save on cleaning and validation costs, and their reduce footprints reduce buffer consumption, water for injection, labor and facility space, contributing to an overall reduction in expenditure that lowers the cost of goods. This chapter examines the practical and economic benefits of disposable modules in downstream processing.

  18. In-situ Subaqueous Capping of Mercury-Contaminated Sediments in a Fresh-Water Aquatic System, Part I-Bench-Scale Microcosm Study to Assess Methylmercury Production

    EPA Science Inventory

    Bench-scale microcosm experiments were designed to provide a better understanding of the potential for Hg methylation in sediments from an aquatic environment. Experiments were conducted to examine the function of sulfate concentration, lactate concentration, the presence/absenc...

  19. A comparison of metal levels and antioxidant enzymes in freshwater snails, Lymnaea natalensis, exposed to sediment and water collected from Wright Dam and Lower Mguza Dam, Bulawayo, Zimbabwe.

    PubMed

    Siwela, A H; Nyathi, C B; Naik, Y S

    2010-10-01

    We compared the bioaccumulation of lead (Pb), cadmium (Cd), zinc (Zn), copper (Cu), nickel (Ni) and iron (Fe) with antioxidant enzyme activity in tissues of the snails, Lymnaea natalensis, exposed to elements of two differently polluted dams. 45 snails were exposed to sediment and water collected from Wight Dam (reference) whilst another 45 snails were also exposed to sediment and water collected from Lower Mguza Dam (polluted dam). Except for Fe in sediment and Pb in water, metal concentrations were statistically higher in sediment and water collected from Lower Mguza Dam. Lead, Cd and Zn were two times higher in tissues of snails exposed to Lower Mguza Dam elements. On one hand, superoxide dismutase (SOD), diphosphotriphosphodiaphorase (DTD) and catalase (CAT) activities were significantly lower whilst malondialdehyde (MDA) levels were significantly higher in tissues of snails exposed to Lower Mguza Dam sediment and water. On the other hand, selenium-dependent glutathione peroxidase (Se-GPX) activity was significantly elevated in tissues of snails exposed to Lower Mguza Dam sediment and water. Snails exposed to Lower Mguza Dam elements seem to have responded to pollution by increasing CAT and Se-GPX specific activity in an effort to detoxify peroxides produced as a result of metal induced oxidative stress.

  20. Horizon-specific oxidation of acid volatile sulfide (AVS) in relation to the toxicity of cadmium spiked into a freshwater sediment

    SciTech Connect

    Leonard, E.N.; Mattson, V.R.; Ankley, G.T.

    1994-12-31

    To evaluate the effects of oxidative processes on acid volatile sulfide concentrations in various horizons of whole sediment cores, in relation to the toxicity of a metal (cadmium), the authors used an artificial system to ``age`` Cd-spiked sediment samples under a constant flow of fresh Lake Superior water. Sediments from Pequaywan Lake, MN (ca. 12 umol AVS/g) were spiked so as to achieve (nominal) cadmium: AVS molar ratios of 0.02 (control), 0.2, 0.8, 1.2 and 3.0. At 0, 24 and 48 days post-spiking, sediment cores were removed from the aging system and tested for toxicity to the amphipod Hyalella azteca. At the same time, horizons from replicate sediment cores were prepared for analysis by freezing, and then cutting them into 10--20 mm increments. The sediment horizons were analyzed for AVS and simultaneously extracted cadmium concentrations, and pore water concentrations of cadmium. Relatively little oxidation of surficial AVS concentrations was observed, even at aging times up to 48 d. By 48 d, pore water concentrations of cadmium were slightly elevated at all spiking concentrations, but were increased greatly at cadmium:AVS ratios greater than one. Hyalella azteca mortality was generally predictable based on surficial cadmium:AVS ratios or pore water cadmium concentrations.

  1. 21,000 years of Ethiopian African monsoon variability recorded in sediments of the western Nile deep-sea fan: impact of the Nile freshwater inflow for the Mediterranean thermo-haline circulation

    NASA Astrophysics Data System (ADS)

    Revel, Marie; Colin, Christophe; Bernasconi, Stephano; Combourieu-Nebout, Nathalie; Ducassou, Emmanuelle; Rolland, Yann; Bosch, Delphine

    2014-05-01

    The Nile delta sedimentation constitutes a continuous high resolution (1.6 mm/year) record of Ethiopian African monsoon regime intensity. Multiproxy analyses performed on core MS27PT recovered in hemipelagic Nile sediment margin (<90 km outward of the Rosetta mouth of the Nile) allow the quantification of the Saharan aeolian dust and the Blue/White Nile River suspended matter frequency fluctuations during the last 21 cal. ka BP. The radiogenic Sr and Nd isotopes, clay mineralogy, bulk elemental composition and palynological analyses reveal large changes in source components, oscillating between a dominant aeolian Saharan contribution during the LGM and the Late Holocene (~4 to 2 cal. ka BP), a dominant Blue/Atbara Nile River contribution during the early Holocene (15 to 8.4 cal. ka BP) and a probable White Nile River contribution during the Middle Holocene (8.4 to 4 cal. ka BP). The following main features are highlighted: 1. The rapid shift from the LGM arid conditions to the African Humid Period (AHP) started at about 15 cal. ka BP. AHP extends until 8.4 cal. ka BP, and we suggest that the Ethiopian African Monsoon maximum between 12 and 8 cal. ka BP is responsible for a larger Blue/Atbara Nile sediment load and freshwater input into the Eastern Mediterranean Sea. 2. The transition between the AHP and the arid Late Holocene is gradual and occurs in two main phases between 8.4 and 6.5 cal. ka BP and 6.5 to 3.2 cal. ka BP. We suggest that the main rain belt shifted southward from 8.4 to ~4 cal. ka BP and was responsible for progressively reduced sediment load and freshwater input into the eastern Mediterranean Sea. 3. The aridification along the Nile catchments occurred from ~4 to 2 cal. ka BP. A dry period, which culminates at 3.2 cal. ka BP, and seems to coincide with a re-establishment of increased oceanic primary productivity in the western Mediterranean Sea. We postulate that the decrease in thermo-haline water Mediterranean circulation could be part of a

  2. Mapping localised freshwater anomalies in the brackish paleo-lake sediments of the Machile-Zambezi Basin with transient electromagnetic sounding, geoelectrical imaging and induced polarisation

    NASA Astrophysics Data System (ADS)

    Chongo, Mkhuzo; Christiansen, Anders Vest; Fiandaca, Gianluca; Nyambe, Imasiku A.; Larsen, Flemming; Bauer-Gottwein, Peter

    2015-12-01

    A recent airborne TEM survey in the Machile-Zambezi Basin of south western Zambia revealed high electrical resistivity anomalies (around 100 Ωm) in a low electrical resistivity (below 13 Ωm) background. The near surface (0-40 m depth range) electrical resistivity distribution of these anomalies appeared to be coincident with superficial features related to surface water such as alluvial fans and flood plains. This paper describes the application of transient electromagnetic soundings (TEM) and continuous vertical electrical sounding (CVES) using geo-electrics and time domain induced polarisation to evaluate a freshwater lens across a flood plain on the northern bank of the Zambezi River at Kasaya in south western Zambia. Coincident TEM and CVES measurements were conducted across the Simalaha Plain from the edge of the Zambezi River up to 6.6 km inland. The resulting TEM, direct current and induced polarisation data sets were inverted using a new mutually and laterally constrained joint inversion scheme. The resulting inverse model sections depict a freshwater lens sitting on top of a regional saline aquifer. The fresh water lens is about 60 m thick at the boundary with the Zambezi River and gradually thins out and deteriorates in water quality further inland. It is postulated that the freshwater lens originated as a result of interaction between the Zambezi River and the salty aquifer in a setting in which evapotranspiration is the net climatic stress. Similar high electrical resistivity bodies were also associated with other surface water features located in the airborne surveyed area.

  3. In-situ subaqueous capping of mercury-contaminated sediments in a fresh-water aquatic system, Part I-Bench-scale microcosm study to assess methylmercury production.

    PubMed

    Randall, Paul M; Fimmen, Ryan; Lal, Vivek; Darlington, Ramona

    2013-08-01

    Bench-scale microcosm experiments were designed to provide a better understanding of the potential for Hg methylation in sediments from an aquatic environment. Experiments were conducted to examine the function of sulfate concentration, lactate concentration, the presence/absence of an aqueous inorganic Hg spike, and the presence/absence of inoculums of Desulfovibrio desulfuricans, a strain of sulfate-reducing bacteria (SRB) commonly found in the natural sediments of aquatic environments. Incubations were analyzed for both the rate and extent of (methylmercury) MeHg production. Methylation rates were estimated by analyzing MeHg and Hg after 2, 7, 14, 28, and 42 days. The production of metabolic byproducts, including dissolved gases as a proxy for metabolic utilization of carbon substrate, was also monitored. In all treatments amended with lactate, sulfate, Hg, and SRB, MeHg was produced (37ng/g-sediment dry weight) after only 48h of incubation and reached a maximum sediment concentration of 127ng/g-sediment dry weight after the 42 day incubation period. Aqueous phase production of MeHg was observed to be 10ng/L after 2 day, reaching a maximum observed concentration of 32.8ng/L after 14 days, and declining to 10.8ng/L at the end of the incubation period (42 day). The results of this study further demonstrates that, in the presence of an organic carbon substrate, sulfate, and the appropriate consortia of microorganisms, sedimentary Hg will be transformed into MeHg through bacterial metabolism. Further, this study provided the basis for evaluation of an in-situ subaqueous capping strategy that may limit (or potentially enhance) MeHg production.

  4. Distribution of heavy metals in vegetation surrounding the Blackstone River, USA: considerations regarding sediment contamination and long term metals transport in freshwater riverine ecosystems.

    PubMed

    Ozdilek, Hasan Goksel; Mathisen, Paul P; Pellegrino, Don

    2007-04-01

    The Blackstone River, a 74 km interstate stream located in South Central Massachusetts and Rhode Island (USA), has had a long history of problems due to high concentrations of metals such as copper and lead. The river has been subjected to metals load that include contributions from urban runoff, wastewater discharges, contaminated sediments, and also resuspension of contaminated sediments in the river-bed. All of these effects lead to elevated concentrations of metals such as lead, copper, zinc, chromium, cadmium and arsenic. Furthermore, the contaminated sediments located behind impoundments become especially important when higher flows cause resuspension of the previously deposited sediments and associated metals. While it is known that high metals concentrations in this river are found in the bottom sediments, the fate of the metals and impact on the ecosystem are not well known. This paper addresses the potential impacts that metals may have on vegetation and plant tissues in the vicinity of the river Plant tissues (primarily mosses), were collected from a number of sampling sites along a 14 km stretch of this river. At each site, samples were collected from multiple distances from the riverbank. Laboratory analyses made use of both wet digestion and dry ashing digestion methods, followed by analysis using an atomic absorption spectrophotometer. The wet and dry ashing digestion methods yielded similar results, although the results afforded by the dry ashing methods were slightly lower than the results obtained from the wet method. The results showed that the metals concentrations in vegetation (as determined from plant tissue analyses) were generally inversely related to the distance between the vegetation and the riverbank, with higher metals concentrations existing in plant tissues located close to the riverbank. In addition, it was found that the transport of metals concentrations to the terrestrial vegetation adjacent to this section of the Blackstone

  5. In-situ subaqueous capping of mercury-contaminated sediments in a fresh-water aquatic system, Part I—Bench-scale microcosm study to assess methylmercury production

    SciTech Connect

    Randall, Paul M.; Fimmen, Ryan; Lal, Vivek; Darlington, Ramona

    2013-08-15

    Bench-scale microcosm experiments were designed to provide a better understanding of the potential for Hg methylation in sediments from an aquatic environment. Experiments were conducted to examine the function of sulfate concentration, lactate concentration, the presence/absence of an aqueous inorganic Hg spike, and the presence/absence of inoculums of Desulfovibrio desulfuricans, a strain of sulfate-reducing bacteria (SRB) commonly found in the natural sediments of aquatic environments. Incubations were analyzed for both the rate and extent of (methylmercury) MeHg production. Methylation rates were estimated by analyzing MeHg and Hg after 2, 7, 14, 28, and 42 days. The production of metabolic byproducts, including dissolved gases as a proxy for metabolic utilization of carbon substrate, was also monitored. In all treatments amended with lactate, sulfate, Hg, and SRB, MeHg was produced (37 ng/g-sediment dry weight) after only 48 h of incubation and reached a maximum sediment concentration of 127 ng/g-sediment dry weight after the 42 day incubation period. Aqueous phase production of MeHg was observed to be 10 ng/L after 2 day, reaching a maximum observed concentration of 32.8 ng/L after 14 days, and declining to 10.8 ng/L at the end of the incubation period (42 day). The results of this study further demonstrates that, in the presence of an organic carbon substrate, sulfate, and the appropriate consortia of microorganisms, sedimentary Hg will be transformed into MeHg through bacterial metabolism. Further, this study provided the basis for evaluation of an in-situ subaqueous capping strategy that may limit (or potentially enhance) MeHg production. -- Highlights: • Hg methylation by SRB is limited by the depletion of sulfate and carbon. • Hg methylation is sensitive to competition by methanogens for carbon substrate. • In high lactate environment, all lactate was utilized in the microcosms within seven days. • In the absence of adequate metabolic fuel, Me

  6. Influence of porewater sulfide on methylmercury production and partitioning in sulfate-impacted lake sediments.

    PubMed

    Bailey, Logan T; Mitchell, Carl P J; Engstrom, Daniel R; Berndt, Michael E; Coleman Wasik, Jill K; Johnson, Nathan W

    2017-02-15

    In low-sulfate and sulfate-limited freshwater sediments, sulfate loading increases the production of methylmercury (MeHg), a potent and bioaccumulative neurotoxin. Sulfate loading to anoxic sediments leads to sulfide production that can inhibit mercury methylation, but this has not been commonly observed in freshwater lakes and wetlands. In this study, sediments were collected from sulfate-impacted, neutral pH, surface water bodies located downstream from ongoing and historic mining activities to examine how chronic sulfate loading produces porewater sulfide, and influences MeHg production and transport. Sediments were collected over two years, during several seasons from lakes with a wide range of overlying water sulfate concentration. Samples were characterized for in-situ solid phase and porewater MeHg, Hg methylation potentials via incubations with enriched stable Hg isotopes, and sulfur, carbon, and iron content and speciation. Porewater sulfide reflected historic sulfur loading and was strongly related to the extractable iron content of sediment. Overall, methylation potentials were consistent with the accumulation of MeHg on the solid phase, but both methylation potentials and MeHg were significantly lower at chronically sulfate-impacted sites with a low solid-phase Fe:S ratio. At these heavily sulfate-impacted sites that also contained elevated porewater sulfide, both MeHg production and partitioning are influenced: Hg methylation potentials and sediment MeHg concentrations are lower, but occasionally porewater MeHg concentrations in sediment are elevated, particularly in the spring. The dual role of sulfide as a ligand for inorganic mercury (decreasing bioavailability) and methylmercury (increasing partitioning into porewater) means that elucidating the role of iron and sulfur loads as they define porewater sulfide is key to understanding sulfate's influence on MeHg production and partitioning in sulfate-impacted freshwater sediment.

  7. Relevance of the bioavailable fraction of DDT and its metabolites in freshwater sediment toxicity: New insight into the mode of action of these chemicals on Dictyostelium discoideum.

    PubMed

    Sforzini, Susanna; Governa, Daniela; Boeri, Marta; Oliveri, Laura; Oldani, Alessandro; Vago, Fabio; Viarengo, Aldo; Borrelli, Raffaella

    2016-10-01

    In this work, the toxicity of lake sediments contaminated with DDT and its metabolites DDD and DDE (collectively, DDX) was evaluated with widely used toxicity tests (i.e., Vibrio fischeri, Daphnia magna, Pseudokirchneriella subcapitata, and Lumbriculus variegatus) and with the social amoeba Dictyostelium discoideum, a model organism that is also suitable for studying pollutant-induced alterations at the molecular and cellular levels. Although the DDX concentration in the sediments was high (732.5 ppb), the results suggested a minimal environmental risk; in fact, no evidence of harmful effects was found using the different bioassays or when we considered the results of more sensitive sublethal biomarkers in D. discoideum amoebae. In line with the biological results, the chemical data showed that the concentration of DDX in the pore water (in general a highly bioavailable phase) showed a minimal value (0.0071ppb). To confirm the importance of the bioavailability of the toxic chemicals in determining their biological effects and to investigate the mechanisms of DDX toxicity, we exposed D. discoideum amoebae to 732.5ppb DDX in water solution. DDX had no effect on cell viability; however, a strong reduction in amoebae replication rate was observed, which depended mainly on a reduction in endocytosis rate and on lysosomal and mitochondrial alterations. In the presence of a moderate and transient increase in reactive oxygen species, the glutathione level in DDX-exposed amoebae drastically decreased. These results highlight that studies of the bioavailability of pollutants in environmental matrices and their biological effects are essential for site-specific ecological risk assessment. Moreover, glutathione depletion in DDX-exposed organisms is a new finding that could open the possibility of developing new pesticide mixtures that are more effective against DDT-resistant malaria vectors.

  8. Methylation of Hg downstream from the Bonanza Hg mine, Oregon

    USGS Publications Warehouse

    Gray, John E.; Hines, Mark E.; Krabbenhoft, David P.; Thoms, Bryn

    2012-01-01

    Speciation of Hg and conversion to methyl-Hg were evaluated in stream sediment, stream water, and aquatic snails collected downstream from the Bonanza Hg mine, Oregon. Total production from the Bonanza mine was >1360t of Hg, during mining from the late 1800s to 1960, ranking it as an intermediate sized Hg mine on an international scale. The primary objective of this study was to evaluate the distribution, transport, and methylation of Hg downstream from a Hg mine in a coastal temperate climatic zone. Data shown here for methyl-Hg, a neurotoxin hazardous to humans, are the first reported for sediment and water from this area. Stream sediment collected from Foster Creek flowing downstream from the Bonanza mine contained elevated Hg concentrations that ranged from 590 to 71,000ng/g, all of which (except the most distal sample) exceeded the probable effect concentration (PEC) of 1060ng/g, the Hg concentration above which harmful effects are likely to be observed in sediment-dwelling organisms. Concentrations of methyl-Hg in stream sediment collected from Foster Creek varied from 11 to 62ng/g and were highly elevated compared to regional baseline concentrations (0.11-0.82ng/g) established in this study. Methyl-Hg concentrations in stream sediment collected in this study showed a significant correlation with total organic C (TOC, R2=0.62), generally indicating increased methyl-Hg formation with increasing TOC in sediment. Isotopic-tracer methods indicated that several samples of Foster Creek sediment exhibited high rates of Hg-methylation. Concentrations of Hg in water collected downstream from the mine varied from 17 to 270ng/L and were also elevated compared to baselines, but all were below the 770ng/L Hg standard recommended by the USEPA to protect against chronic effects to aquatic wildlife. Concentrations of methyl-Hg in the water collected from Foster Creek ranged from 0.17 to 1.8ng/L, which were elevated compared to regional baseline sites upstream and downstream

  9. 5. AERATOR VIEW FROM DOWNSTREAM. FLUSH VALVE AT RIGHT OPENS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. AERATOR VIEW FROM DOWNSTREAM. FLUSH VALVE AT RIGHT OPENS TO CLEAR THE SYSTEM ABOVE THE SILT AND DEBRIS AND TO STOP THE FLOW OF WATER INTO THE SYSTEM DOWN LINE. BOX FLUME CONTINUES DOWN LINE TO SEDIMENTATION CHAMBER. - Kalaupapa Water Supply System, Waikolu Valley to Kalaupapa Settlement, Island of Molokai, Kalaupapa, Kalawao County, HI

  10. Downstream effects of mine effluent on an intermontane riparian system

    USGS Publications Warehouse

    Moore, Johnnie N.; Luoma, Samuel N.; Peters, Donald

    1991-01-01

    Metal concentrations were determined in benthic biota, fish livers, water, and fine-grained sediment through 215 km of an intermontane river system (Blackfoot River, Montana, USA) affected by headwater inputs of acid-mine effluent. Solute and particulate contaminants decreased rapidly downstream from headwater sources, but some extended through an extensive marsh system. Particulate contaminants penetrated through the marsh system, effectively resulting in food web contamination downstream of the marshes. Metals differed in their bioavailability within and below the marsh system. Cadmium was most consistently accumulated in the food web, and the general order of downstream mobilization of bioavailable metals appears to be Cd, Zn > Cu > As, Ni. Depauperate benthic communities and reduced fish populations occurred coincident with the sediment contamination.

  11. What makes a healthy environment for native freshwater mussels?

    USGS Publications Warehouse

    ,

    2000-01-01

    Freshwater mussels are sensitive to contamination of sediment that they inhabit and to the water that they filter, making the presence of live, adult mussels an excellent indicator of ecosystem health and stability. Freshwater mussels are relatively immobile, imbedded in the streambed with part of the shell sticking up into the water so that they can filter water to obtain oxygen and food. This lack of mobility makes them particularly vulnerable to water and sediment contamination, changes in sedimentation, or prolonged drought. Thus, ecosystem health and stability are critical for their reproduction and survival.

  12. Simultaneous measurements of tidal straining and advection at two parallel transects far downstream in the Rhine ROFI

    NASA Astrophysics Data System (ADS)

    Rijnsburger, Sabine; van der Hout, Carola M.; van Tongeren, Onno; de Boer, Gerben J.; van Prooijen, Bram C.; Borst, Wil G.; Pietrzak, Julie D.

    2016-05-01

    This study identifies and unravels the processes that lead to stratification and destratification in the far field of a Region of Freshwater Influence (ROFI). We present measurements that are novel for two reasons: (1) measurements were carried out with two vessels that sailed simultaneously over two cross-shore transects; (2) the measurements were carried out in the far field of the Rhine ROFI, 80 km downstream from the river mouth. This unique four dimensional dataset allows the application of the 3D potential energy anomaly equation for one of the first times on field data. With this equation, the relative importance of the depth mean advection, straining and nonlinear processes over one tidal cycle is assessed. The data shows that the Rhine ROFI extends 80 km downstream and periodic stratification is observed. The analysis not only shows the important role of cross-shore tidal straining but also the significance of along-shore straining and depth mean advection. In addition, the nonlinear terms seem to be small. The presence of all the terms influences the timing of maximum stratification. The analysis also shows that the importance of each term varies in the cross-shore direction. One of the most interesting findings is that the data are not inline with several hypotheses on the functioning of straining and advection in ROFIs. This highlights the dynamic behaviour of the Rhine ROFI, which is valuable for understanding the distribution of fine sediments, contaminants and the protection of coasts.

  13. Potential role of anammox in nitrogen removal in a freshwater reservoir, Jiulonghu Reservoir (China).

    PubMed

    Shen, Li-Dong; Cheng, Hai-Xiang; Liu, Xu; Li, Jian-Hui; Liu, Yan

    2017-02-01

    Currently, the nitrogen removal potential of anaerobic ammonium oxidation (anammox) and its regulating factors in reservoir systems remain uncertain. Here, we provided the molecular and isotopic evidence for anammox in the freshwater sediment of Jiulonghu Reservoir that is located in Quzhou, Zhejiang Province, China. Diverse 16S rRNA gene sequences related to Candidatus Kuenenia and Candidatus Brocadia were detected by using high-throughput (Illumina MiSeq) sequencing of total bacterial 16S rRNA genes, and the Candidatus Brocadia was the most frequently detected anammox bacterial genus. The anammox bacterial abundance was determined based on quantitative PCR on hzsA (the alpha subunit of the hydrazine synthase) genes and varied from 3.1 × 10(5) to 1.1 × 10(6) copies g(-1) dry sediment. Homogenized sediments were further incubated with (15)NO3(-) amendments to measure the potential anammox rates and determine the contribution of this process to dinitrogen gas (N2) production. The potential rates of anammox ranged between 8.1 and 30.8 nmol N2 g(-1) dry sediment day(-1), and anammox accounted for 7.7-20.5% of total N2 production in sediment. Higher levels of anammox bacterial diversity, abundance, and activity were observed in the downstream with greater human disturbance than those in the upstream with less human disturbance. Correlation analyses suggested that the inorganic nitrogen level in sediment could be a key factor for the anammox bacterial abundance and activity. The results showed that the nitrogen removal via anammox may not be negligible in the examined reservoir and indicated that human activities could influence the anammox process in reservoir systems.

  14. Modeling downstream fining in sand-bed rivers. I: Formulation

    USGS Publications Warehouse

    Wright, S.; Parker, G.

    2005-01-01

    In this paper a numerical modeling formulation is presented for simulation of the development of the longitudinal profile and bed sediment distribution in sand-bed rivers. The objective of the model application, which is presented in the companion paper (Wright and Parker, 2005), is to study the development of two characteristics of large, low-slope, sand-bed rivers: (1) a downstream decrease in bed slope (i.e. concave upward longitudinal profile) and (2) a downstream decrease in characteristic bed sediment diameter (e.g. the median bed surface size D50). Three mechanisms that lead to an upward concave profile and downstream fining are included in the modeling formulation: (1) a delta prograding into standing water at the downstream boundary, (2) sea-level rise, and (3) tectonic subsidence. In the companion paper (Wright and Parker, 2005) the model is applied to simulate the development of the longitudinal profile and downstream fining in sand-bed rivers flowing into the ocean during the past 5000 years of relatively slow sea-level rise. ?? 2005 International Association of Hydraulic Engineering and Research.

  15. Downstream hydraulic geometry of alluvial rivers

    NASA Astrophysics Data System (ADS)

    Julien, P. Y.

    2015-03-01

    This article presents a three-level approach to the analysis of downstream hydraulic geometry. First, empirical concepts based on field observations of "poised" conditions in irrigation canals are examined. Second, theoretical developments have been made possible by combining basic relationships for the description of flow and sediment transport in alluvial rivers. Third, a relatively new concept of equivalent channel widths is presented. The assumption of equilibrium may describe a perpetual state of change and adjustments. The new concepts define the trade-offs between some hydraulic geometry parameters such as width and slope. The adjustment of river widths and slope typically follows a decreasing exponential function and recent developments indicate how the adjustment time scale can be quantified. Some examples are also presented to illustrate the new concepts presented and the realm of complex river systems.

  16. Urbanization and nutrient retention in freshwater riparian wetlands

    USGS Publications Warehouse

    Hogan, D.M.; Walbridge, M.R.

    2007-01-01

    Urbanization can degrade water quality and alter watershed hydrology, with profound effects on the structure and function of both riparian wetlands (RWs) and aquatic ecosystems downstream. We used freshwater RWs in Fairfax County, Virginia, USA, as a model system to examine: (1) the effects of increasing urbanization (indexed by the percentage of impervious surface cover [%ISC] in the surrounding watershed) on nitrogen (N) and phosphorus (P) concentrations in surface soils and plant tissues, soil P saturation, and soil iron (Fe) chemistry; and (2) relationships between RW soil and plant nutrient chemistries vs. the physical and biotic integrity of adjacent streams. Soil total P and NaOH-extractable P (representing P bound to aluminum [Al] and Fe hydrous oxides) varied significantly but nonlinearly with %ISC (r2 = 0.69 and 0.57, respectively); a similar pattern was found for soil P saturation but not for soil total N. Relationships were best described by second-order polynomial equations. Riparian wetlands appear to receive greater P loads in moderately (8.6-13.3% ISC) than in highly (25.1-29.1% ISC) urbanized watersheds. These observations are consistent with alterations in watershed hydrology that occur with increasing urbanization, directing water and nutrient flows away from natural RWs. Significant increases in total and crystalline soil Fe (r 2 = 0.57 and 0.53, respectively) and decreases in relative soil Fe crystallinity with increasing %ISC suggest the mobilization and deposition of terrestrial sediments in RWs, likely due to construction activities in the surrounding watershed. Increases in RW plant tissue nutrient concentrations and %ISC in the surrounding watershed were negatively correlated with standard indices of the physical and biotic integrity of adjacent streams. In combination, these data suggest that nutrient and sediment inputs associated with urbanization and storm-water management are important variables that affect wetland ecosystem services

  17. Transport, fate and bioremediation of PCBs in freshwater systems

    SciTech Connect

    Birge, W.J.; Price, D.; Robison, A. |

    1995-12-31

    PCB monitoring studies were conducted on four riverine systems that varied in order, gradient, and substrate composition. Accumulation of PCBs was greater in fine-grained sediments with organic carbon content of 1 percent or more. Due to the short residence time of PCBs in water, downstream transport occurred mostly via erosion, suspension and resuspension of sediments and floodplain soils. Residues of PCBs in fish were lowest in the green sunfish and other species, higher in black bass, and highest in bottom feeders, (e.g., channel catfish, carp). Carp and catfish were the poorest indicators of real-time contamination but more useful in assessing historical conditions. Differences in PCB half-life in fish correlated with lipid content. Sunfish were the best indicators of current levels of contamination. PCB body burden in these species decreased markedly after curtailment of PCB outfall. Residues at or above 2 mg/Kg in sunfish decreased to 0.5 mg/Kg or less within 12 to 18 months. Percent tissue lipid was a major factor affecting the rate of metabolic degradation of PCBs in fish. High lipid content may prolong the biological half-life of PCBS, whereas low content may correlate with more rapid degradation, depending on the species. Sunfish, due to their localized range, lower lipid content, and ability to metabolize PCBs may be useful tools in the bioremediation of freshwater systems. They feed largely on primary consumers (e.g. detritivores, herbivores); are adaptable to a wide variety of warm water habitats; and management practices have been well established.

  18. Occurrence and antibiotic resistance of mesophilic Aeromonas in three riverine freshwaters of Marrakech, Morocco.

    PubMed

    Imziln, B

    2001-12-01

    In order to evaluate the impact of pollution and sewage on the occurrence and antibiotic resistance of mesophilic aeromonads in riverine freshwaters of Marrakech, samples were collected from three rivers (Oukaimeden, Ourika, and Tensift) upstream and downstream from the principal bordering villages. During a 2-year study, indicators of pollution increased dramatically in the downstream waters. Bacterial indicators (faecal coliforms and faecal streptococci) correlated with mesophilic aeromonads only in heavily polluted waters. In low and moderately polluted sources, densities of mesophilic aeromonads were independent of water quality indicators and did not correlate statistically with faecal indicators. Average counts of Aeromonas in low and heavily polluted waters were 2.5 x 10(3) and 2.1 x 10(6) colony forming units per 100 ml, respectively. The biochemical identification of 841 isolates indicated a predominance of A. caviae in heavily and moderately polluted water and sediment. A. hydrophila was dominant only in low polluted waters and when the temperature was below 12 degrees C. High densities of A. sobria were found in low, moderately polluted, or cleaned waters and when the water temperature was above 18 degrees C. All selected isolates (total = 841) were tested for antibiotic susceptibility against 21 antibiotics. Antibiotic resistance frequencies recorded were: ampicillin and amoxicillin, 100%; novobiocin, 96%; cefalotin, 81%; colistin, 72%; sulfamethoxazole, 40%; cefamandole, 37%; polymyxin B, 23%; trimethoprim, 17%; erythromycin, 15%; streptomycin, 8%; amoxicillin-clavulanate, 5%. Resistance to cefotaxime, kanamycin, gentamycin, chloramphenicol, tetracycline, oxytetracycline, nalidixic acid, rifampicin, or trimethoprim-sulfameth-oxazole was found to be <5%. Antibiotic resistance rates did vary according to the source of a strain"s isolation, and high numbers of antibiotic resistant strains were recorded in polluted samples. Since no correlation between

  19. Retention of riverine sediment and nutrient loads by coastal plain floodplains

    USGS Publications Warehouse

    Noe, G.B.; Hupp, C.R.

    2009-01-01

    Despite the frequent citation of wetlands as effective regulators of water quality, few quantitative estimates exist for their cumulative retention of the annual river loads of nutrients or sediments. Here we report measurements of sediment accretion and associated carbon, nitrogen, and phosphorus accumulation as sedimentation over feldspar marker horizons placed on floodplains of the non-tidal, freshwater Coastal Plain reaches of seven rivers in the Chesapeake Bay watershed, USA. We then scale these accumulation rates to the entire extent of non-tidal floodplain in the Coastal Plain of each river, defined as riparian area extending from the Fall Line to the upper limit of tidal influence, and compare them to annual river loads. Floodplains accumulated a very large amount of material compared to their annual river loads of sediment (median among rivers = 119%), nitrogen (24%), and phosphorus (59%). Systems with larger floodplain areas and longer floodplain inundation retained greater proportions of riverine loads of nitrogen and phosphorus, but systems with larger riverine loads retained a smaller proportion of that load on floodplains. Although the source and long-term fate of deposited sediment and associated nutrients are uncertain, these fluxes represent the interception of large amounts of material that otherwise could have been exported downstream. Coastal Plain floodplain ecosystems are important regulators of sediment, carbon, and nutrient transport in watersheds of the Chesapeake Bay.

  20. Chemical downstream etching of tungsten

    SciTech Connect

    Blain, M.G.; Jarecki, R.L.; Simonson, R.J.

    1998-07-01

    The downstream etching of tungsten and tungsten oxide has been investigated. Etching of chemical vapor deposited tungsten and e-beam deposited tungsten oxide samples was performed using atomic fluorine generated by a microwave discharge of argon and NF{sub 3}. Etching was found to be highly activated with activation energies approximated to be 6.0{plus_minus}0.5thinspkcal/mol and 5.4{plus_minus}0.4thinspkcal/mol for W and WO{sub 3}, respectively. In the case of F etching of tungsten, the addition of undischarged nitric oxide (NO) directly into the reaction chamber results in the competing effects of catalytic etch rate enhancement and the formation of a nearly stoichiometric WO{sub 3} passivating tungsten oxide film, which ultimately stops the etching process. For F etching of tungsten oxide, the introduction of downstream NO reduces the etch rate. {copyright} {ital 1998 American Vacuum Society.}

  1. A TOXICITY ASSESSMENT APPROACH TO EVALUATING IN-SITU BIOREMEDIATION OF PAH CONTAMINATED SEDIMENTS

    EPA Science Inventory

    Freshwater and marine sediment toxicity tests were used to measure baseline toxicity of sediment samples collected from New Jersey/New York Harbor (NJ/NY) (non-PAH- contaminated) sediment (ERC). Four freshwater toxicity tests were used: 1) amphipod (Hyalella azteca) mortality and...

  2. Downstream processing in marine biotechnology.

    PubMed

    Muffler, Kai; Ulber, Roland

    2005-01-01

    Downstream processing is one of the most underestimated steps in bioprocesses and this is not only the case in marine biotechnology. However, it is well known, especially in the pharmaceutical industry, that downstreaming is the most expensive and unfortunately the most ineffective part of a bioprocess. Thus, one might assume that new developments are widely described in the literature. Unfortunately this is not the case. Only a few working groups focus on new and more effective procedures to separate products from marine organisms. A major characteristic of marine biotechnology is the wide variety of products. Due to this variety a broad spectrum of separation techniques must be applied. In this chapter we will give an overview of existing general techniques for downstream processing which are suitable for marine bioprocesses, with some examples focussing on special products such as proteins (enzymes), polysaccharides, polyunsaturated fatty acids and other low molecular weight products. The application of a new membrane adsorber is described as well as the use of solvent extraction in marine biotechnology.

  3. Trapping of sediment along the Amazon tidal river in diverse floodplain environments

    NASA Astrophysics Data System (ADS)

    Fricke, A. T.; Nittrouer, C. A.; Ogston, A. S.; Nowacki, D. J.; Souza Filho, P. W.; Silveira, O.; Asp, N. E.

    2013-12-01

    The Amazon tidal river, the freshwater reach that is influenced by tides, extends roughly 800 kilometers upstream of the river mouth. Previous studies suggest that up to one third of the sediment measured at the upstream limit of tides does not reach the ocean, and is likely trapped along the tidal river. Here we present data from a variety of depositional environments along this reach, including intertidal vegetated floodplains, floodplain lakes, and drowned tributary confluences. Sediment delivery to each of these environments is temporally variable as a result of changing tides and river stage, and spatially variable along the continuum from the purely fluvial upstream condition to the strongly tidal downstream environment. Short-term instrument records and direct observations are paired with sedimentological and radiochemical techniques to identify mechanisms of sediment exchange between river and floodplain and associated patterns of sediment accumulation. Sediments in vegetated intertidal floodplains exhibit tidal laminations and incised channel networks similar to muddy marine intertidal areas. Floodplain lakes experience dramatic seasonal changes in size, and during high flows of the river skim water and sediment from the Amazon River by providing a shortcut relative to the meandering mainstem. Amazon sediment is fluxed into the drowned tributary confluences (rías) of the Xingu and Tapajos Rivers by density-driven underflows. In the Tapajos Ría, sediment from the Amazon River has built a 25-km long birdfoot delta, suggesting these tributaries may be net sinks of sediment, rather than sources. These findings help define the importance of each tidal environment in trapping Amazon sediment before it reaches the marine environment.

  4. Adjustment of the San Francisco estuary and watershed to decreasing sediment supply in the 20th century

    USGS Publications Warehouse

    Schoellhamer, David H.; Wright, Scott A.; Drexler, Judith Z.

    2013-01-01

    The general progression of human land use is an initial disturbance (e.g., deforestation, mining, agricultural expansion, overgrazing, and urbanization) that creates a sediment pulse to an estuary followed by dams that reduce sediment supply. We present a conceptual model of the effects of increasing followed by decreasing sediment supply that includes four sequential regimes, which propagate downstream: a stationary natural regime, transient increasing sediment supply, transient decreasing sediment supply, and a stationary altered regime. The model features characteristic lines that separate the four regimes. Previous studies of the San Francisco Estuary and watershed are synthesized in the context of this conceptual model. Hydraulic mining for gold in the watershed increased sediment supply to the estuary in the late 1800s. Adjustment to decreasing sediment supply began in the watershed and upper estuary around 1900 and in the lower estuary in the 1950s. Large freshwater flow in the late 1990s caused a step adjustment throughout the estuary and watershed. It is likely that the estuary and watershed are still capable of adjusting but further adjustment will be as steps that occur only during greater floods than previously experienced during the adjustment period. Humans are actively managing the system to try to prevent greater floods. If this hypothesis of step changes occurring for larger flows is true, then the return interval of step changes will increase or, if humans successfully control floods in perpetuity, there will be no more step changes.

  5. Freshwater mussels of Florida

    USGS Publications Warehouse

    Williams, James D.; Butler, Robert S.; Warren, Gary L.; Johnson, Nathan A.

    2014-01-01

    An exhaustive guide to all aspects of the freshwater mussel fauna in Florida,Freshwater Mussels of Florida covers the ecology, biology, distribution, and conservation of the many species of bivalve mollusks in the Sunshine State. In the past three decades, researchers, the public, businesses that depend on wildlife, and policy makers have given more attention to the threatened natural diversity of the Southeast, including freshwater mussels. This compendium meets the increasingly urgent need to catalog this imperiled group of aquatic organisms in the United States.

  6. Effects of ammonia on freshwater mussels in the St. Croix River

    USGS Publications Warehouse

    Newton, Teresa J.

    2004-01-01

    The St. Croix River contains a diverse and abundant group of freshwater mussels. The St. Croix is one of the few rivers in the Midwest not substantially affected by the invasion of the exotic zebra mussel, which encrusts and kills native freshwater mussels. Increased concentrations of ammonia in river sediments, however, poses a significant threat to mussels.

  7. Integrated modeling approach for fate and transport of submerged oil and oil-particle aggregates in a freshwater riverine environment

    USGS Publications Warehouse

    Fitzpatrick, Faith A.; Johnson, Rex; Zhu, Zhenduo; Waterman, David; McCulloch, Richard D.; Hayter, Earl; Garcia, Marcelo H.; Boufadel, Michel C.; Dekker, Timothy; Hassan, Jacob S.; Soong, David T.; Hoard, Christopher J.; Lee, Kenneth

    2016-01-01

    The Enbridge Line 6B pipeline release of diluted bitumen into the Kalamazoo River downstream of Marshall, Michigan, U.S.A., in July 2010 was one of the largest oil spills into freshwater in North American history. A portion of the oil interacted with river sediment and submerged requiring the development and implementation of new approaches for detection and recovery of oil mixed with river sediment. Hydrodynamic and sediment transport modeling became an integral part of containment and recovery operations for decision support about the potential fate and migration of submerged oil and oiled sediment. Three models were developed for the U.S. Environmental Protection Agency to cover a range of spatial scales of interest to onsite operations. Two-dimensional (2D) hydrodynamic and sediment transport models from the Environmental Fluid Dynamics Code and the sediment bed model SEDZLJ1 were used to simulate potential resuspension, migration, and deposition of submerged oil and oiled sediment along a 38-mile reach of the Kalamazoo River affected by the oil from Marshall to Kalamazoo. An algorithm was added to SEDZLJ to represent three additional particle size classes of oilparticle aggregates (OPAs) with a range of sizes, specific gravities, and settling velocities. Field and laboratory experiments and flume tests were done to support the numerical modeling of OPAs. A three-dimensional hydrodynamic model was developed to simulate hydrodynamics and OPA tracking through Morrow Lake, the most downstream impoundment. This model incorporated wind and dam operations into high and low flow, lake drawdown, and containment simulations. Finally, a 2D unstructured grid model, HydroSed2D, was used to simulate flows and sediment transport along 1- to 2-mile segments of the Kalamazoo River around islands and through side channels and backwater areas that are particularly prone to submerged oil deposition.Integrated models could be developed quickly due to the availability of

  8. Freshwater Harmful Algal Blooms

    EPA Pesticide Factsheets

    EPA is seeking regular and early career applications proposing innovative research on the prediction, prevention, control and mitigation of freshwater HABs as well as the drivers, life cycle patterns, and fate of and effects from from less-common, less

  9. Radionuclides and metals in freshwater mussels of the upper South Alligator River, Australia.

    PubMed

    Ryan, Bruce; Bollhöfer, Andreas; Martin, Paul

    2008-03-01

    During an inspection of the old Rockhole Mine area in Kakadu National Park in 1999, it was found that a small amount of tailings from the former South Alligator uranium (U) mill had been uncovered by wet season rain and road works. Samples of sediment, water and freshwater mussels, Velesunio angasi, were collected from the South Alligator River, near and at the confluence of Rockhole Mine Creek, and adjacent to the exposed tailings. The 228Ra/226Ra activity ratios in sediments and mussel tissue indicate a small influence from the tailings and from Rockhole Mine adit water on 226Ra concentrations. The uptake of 226Ra in mussels does not correlate with other alkaline-earth metals. Mussel U concentrations are higher immediately downstream of Rockhole Mine Creek, but there is no noticeable increase in the immediate vicinity of the tailings area. A hypothetical ingestion of 2 kg of mussels from the sites was used to estimate the committed effective dose for a 10-year-old child resulting in a figure of 0.23 mSv per annum, of this total dose, 69% is attributed to 210Po. Only 0.03 mSv per annum can be directly linked to impacts of the tailings.

  10. It Takes Two to Tango: When and Where Dual Nutrient (N & P) Reductions Are Needed to Protect Lakes and Downstream Ecosystems.

    PubMed

    Paerl, Hans W; Scott, J Thad; McCarthy, Mark J; Newell, Silvia E; Gardner, Wayne S; Havens, Karl E; Hoffman, Daniel K; Wilhelm, Steven W; Wurtsbaugh, Wayne A

    2016-10-06

    Preventing harmful algal blooms (HABs) is needed to protect lakes and downstream ecosystems. Traditionally, reducing phosphorus (P) inputs was the prescribed solution for lakes, based on the assumption that P universally limits HAB formation. Reduction of P inputs has decreased HABs in many lakes, but was not successful in others. Thus, the "P-only" paradigm is overgeneralized. Whole-lake experiments indicate that HABs are often stimulated more by combined P and nitrogen (N) enrichment rather than N or P alone, indicating that the dynamics of both nutrients are important for HAB control. The changing paradigm from P-only to consideration of dual nutrient control is supported by studies indicating that (1) biological N fixation cannot always meet lake ecosystem N needs, and (2) that anthropogenic N and P loading has increased dramatically in recent decades. Sediment P accumulation supports long-term internal loading, while N may escape via denitrification, leading to perpetual N deficits. Hence, controlling both N and P inputs will help control HABs in some lakes and also reduce N export to downstream N-sensitive ecosystems. Managers should consider whether balanced control of N and P will most effectively reduce HABs along the freshwater-marine continuum.

  11. Antibiotic resistance in Aeromonas upstream and downstream of a water resource recovery facility.

    PubMed

    Cisar, Cindy R; Henderson, Samantha K; Askew, Maegan L; Risenhoover, Hollie G; McAndrews, Chrystle R; Kennedy, S Dawn; Paine, C Sue

    2014-09-01

    Aeromonas strains isolated from sediments upstream and downstream of a water resource recovery facility (WRRF) over a two-year time period were tested for susceptibility to 13 antibiotics. Incidence of resistance to antibiotics, antibiotic resistance phenotypes, and diversity (based on resistance phenotypes) were compared in the two populations. At the beginning of the study, the upstream and downstream Aeromonas populations were different for incidence of antibiotic resistance (p < 0.01), resistance phenotypes (p < 0.005), and diversity. However, these differences declined over time and were not significant at the end of the study. These results (1) indicate that antibiotic resistance in Aeromonas in stream sediments fluctuates considerably over time and (2) suggest that WRRF effluent does not, when examined over the long- term, affect antibiotic resistance in Aeromonas in downstream sediment.

  12. IDENTIFICATION OF SEDIMENT SOURCE AREAS WITHIN A WATERSHED

    EPA Science Inventory

    Identification of sediment source areas is crucial for designing proper abatement strategies that reduce sediment and associated contaminant loading to receiving water downstream. In this study, two methodologies were developed to identify the source areas and their relative stre...

  13. Wood and Sediment Dynamics in River Corridors

    NASA Astrophysics Data System (ADS)

    Wohl, E.; Scott, D.

    2015-12-01

    Large wood along rivers influences entrainment, transport, and storage of mineral sediment and particulate organic matter. We review how wood alters sediment dynamics and explore patterns among volumes of instream wood, sediment storage, and residual pools for dispersed pieces of wood, logjams, and beaver dams. We hypothesized that: volume of sediment per unit area of channel stored in association with wood is inversely proportional to drainage area; the form of sediment storage changes downstream; sediment storage correlates most strongly with wood load; and volume of sediment stored behind beaver dams correlates with pond area. Lack of data from larger drainage areas limits tests of these hypotheses, but analyses suggest a negative correlation between sediment volume and drainage area and a positive correlation between wood and sediment volume. The form of sediment storage in relation to wood changes downstream, with wedges of sediment upstream from jammed steps most prevalent in small, steep channels and more dispersed sediment storage in lower gradient channels. Use of a published relation between sediment volume, channel width, and gradient predicted about half of the variation in sediment stored upstream from jammed steps. Sediment volume correlates well with beaver pond area. Historically more abundant instream wood and beaver populations likely equated to greater sediment storage within river corridors. This review of the existing literature on wood and sediment dynamics highlights the lack of studies on larger rivers.

  14. ORGANOCHLORINE PESTICIDES AND POLYCHLORINATED BIPHENYLS (PCBS) IN SEDIMENTS AND BIOTA FROM FOUR US ARCTIC LAKES

    EPA Science Inventory

    Organochlorine (OC) concentrations in surface sediment, snails (Lymnea sp.), and two freshwater fish species (grayling, Thymallus arcticus; and lake trout, Salvelinus namaycush) from four lakes in the US Arctic were determined. In surface sediment, chlorinated benzenes (including...

  15. DENITRIFICATION AND NITROGEN DYNAMICS IN SEDIMENTS OF A MID-ATLANTIC INCISED STREAM DEPOSITED WITH DEEP LEGACY SEDIMENTS.

    EPA Science Inventory

    Excess legacy sediments deposited in former impounded streams frequently bury Holocene pre-settlement wetlands, decrease in-situ nitrogen removal, and increase nitrogen transport downstream, particularly where deep incised channels limit sediment-water interactions. This has prom...

  16. A downstream voyage with mercury

    USGS Publications Warehouse

    Heinz, Gary

    2016-01-01

    Retrospective essay for the Bulletin of Environmental Contamination and Toxicology.As I look back on my paper, “Effects of Low Dietary Levels of Methyl Mercury on Mallard Reproduction,” published in 1974 in the Bulletin of Environmental Contamination and Toxicology, a thought sticks in my mind. I realize just how much my mercury research was not unlike a leaf in a stream, carried this way and that, sometimes stalled in an eddy, restarted, and carried downstream at a pace and path that was not completely under my control. I was hired in 1969 by the Patuxent Wildlife Research Center to study the effects of environmental pollutants on the behavior of wildlife. A colleague was conducting a study on the reproductive effects of methylmercury on mallards (Anas platyrhynchos), and he offered to give me some of the ducklings. I conducted a pilot study, testing how readily ducklings approached a tape-recorded maternal call. Sample sizes were small, but the results suggested that ducklings from mercury-treated parents behaved differently than controls. That’s how I got into mercury research—pretty much by chance.

  17. Continuous-flow centrifugation to collect suspended sediment for chemical analysis

    USGS Publications Warehouse

    Conn, Kathleen E.; Dinicola, Richard S.; Black, Robert W.; Cox, Stephen E.; Sheibley, Richard W.; Foreman, James R.; Senter, Craig A.; Peterson, Norman T.

    2016-12-22

    polychlorinated biphenyls. The particle-size distribution of the captured sediment changes to a more fine-grained sample during centrifugation, and the necessity to account for this change when extrapolating chemical concentrations on the centrifuged sediment sample to the environmental water system is discussed.The data produced using this method will help eliminate a data gap of suspended sediment-bound chemical concentrations, and will support management decisions, such as chemical source-control efforts or in-stream restoration activities. When coupled with streamflow and sediment flux data, it will improve estimates of riverine chemical fluxes, and will aid in assessing the importance and impacts of suspended sediment-bound chemicals to downstream freshwater and coastal marine ecosystems.

  18. Mesozooplankton affinities in a recovering freshwater estuary

    NASA Astrophysics Data System (ADS)

    Chambord, Sophie; Maris, Tom; Colas, Fanny; Van Engeland, Tom; Sossou, Akoko-C.; Azémar, Frédéric; Le Coz, Maïwen; Cox, Tom; Buisson, Laetitia; Souissi, Sami; Meire, Patrick; Tackx, Michèle

    2016-08-01

    Water quality of the Scheldt estuary (Belgium/The Netherlands) has considerably improved in recent years, especially in the upstream, freshwater reaches. Within the zooplankton community, the copepod Eurytemora affinis, typically abundant in brackish water and quasi-absent from freshwater before 2007, has since substantially developed in the latter, where it now represents 90% of the crustacean mesozooplankton community. Simultaneously, cyclopoid copepod abundance has greatly decreased, while cladoceran abundance did not change. The study aim was: 1) to verify if the zooplankton community described for the period 2007-2009 by Mialet et al. (2011) has stabilized until present, and 2) to look for the environmental conditions favouring E. affinis development and causing changes in the upstream freshwater zooplankton community. The 2002-2012 temporal evolution of the zooplankton distribution at three stations in the upstream freshwater Scheldt estuary was analyzed. Water quality remained better after 2007 than before, and some factors revealed continuous improvement in annual mean concentrations (e.g. increase in O2, decrease in BOD5 and NH4sbnd N concentration). The increase in oxygen and the decrease in NH4sbnd N concentration, together with low discharge during summer were the main environmental factors explaining the development and timing of E. affinis in the upstream freshwater reach. In this reach, E. affinis maximal abundance is shifted to higher temperatures (summer) compared to its typical maximum spring abundance peak in the brackish zone of the Scheldt estuary and in most temperate estuaries. The changes in zooplankton community followed a temporal and spatial gradient induced by the spatio-temporal evolution of water quality improvement. The most downstream station (3) allowed E. affinis development (oxygen concentration > 4 mg L-1; NH4sbnd N concentration < 2 mg L-1, discharge (Q) < 50 m3 s-1) from 2007 onwards, and this station showed the highest E

  19. PAH occurrence in chalk river systems from the Jura region (France). Pertinence of suspended particulate matter and sediment as matrices for river quality monitoring.

    PubMed

    Chiffre, Axelle; Degiorgi, François; Morin-Crini, Nadia; Bolard, Audrey; Chanez, Etienne; Badot, Pierre-Marie

    2015-11-01

    This study investigates the variations of polycyclic aromatic hydrocarbon (PAH) levels in surface water, suspended particulate matter (SPM) and sediment upstream and downstream of the discharges of two wastewater treatment plant (WWTP) effluents. Relationships between the levels of PAHs in these different matrices were also investigated. The sum of 16 US EPA PAHs ranged from 73.5 to 728.0 ng L(-1) in surface water and from 85.4 to 313.1 ng L(-1) in effluent. In SPM and sediment, ∑16PAHs ranged from 749.6 to 2,463 μg kg(-1) and from 690.7 μg kg(-1) to 3,625.6 μg kg(-1), respectively. Investigations performed upstream and downstream of both studied WWTPs showed that WWTP discharges may contribute to the overall PAH contaminations in the Loue and the Doubs rivers. Comparison between gammarid populations upstream and downstream of WWTP discharge showed that biota was impacted by the WWTP effluents. When based only on surface water samples, the assessment of freshwater quality did not provide evidence for a marked PAH contamination in either of the rivers studied. However, using SPM and sediment samples, we found PAH contents exceeding sediment quality guidelines. We conclude that sediment and SPM are relevant matrices to assess overall PAH contamination in aquatic ecosystems. Furthermore, we found a positive linear correlation between PAH contents of SPM and sediment, showing that SPM represents an integrating matrix which is able to provide meaningful data about the overall contamination over a given time span.

  20. Freshwater Marsh. Habitat Pac.

    ERIC Educational Resources Information Center

    Fish and Wildlife Service (Dept. of Interior), Washington, DC.

    The materials in this educational packet are designed for use with students in grades 4 through 7. They consist of an overview, three lesson plans and student data sheets, and a poster. The overview describes how the freshwater marsh is an important natural resource for plant, animal, and human populations and how the destruction of marshes causes…

  1. BLOOMING MECHANISM OF FRESHWATER RED-TIDE IN EUTRORHIC ABOLISHED-RIVER

    NASA Astrophysics Data System (ADS)

    Nagabayashi, Hisao; Hirayama, Kazuo; Horikawa, Kunihiko

    This paper analyzes blooming mechanism of freshwater red-tide in an abolished-river which eutrophicated by seventy-years. Outbreaks of red tide of the river is depend on two phenomenon; the first one is the effect of secondary current generated by the wind along with the temperature rise, the second is the flow for the downstream by the release discharge from the power generation-dam in the downstream. Euglena spp. in euglena and Uroglena spp. in yellow-zooxanthellas is clarified to be the dominant species of the freshwater red-tide.

  2. Evidence of local short-distance spawning migration of tropical freshwater eels, and implications for the evolution of freshwater eel migration.

    PubMed

    Arai, Takaomi

    2014-10-01

    Freshwater eels have fascinated biologists for centuries due to the spectacular long-distance migrations between the eels' freshwater habitats and their spawning areas far out in the ocean and the mysteries of their ecology. The spawning areas of Atlantic eels and Japanese eel were located far offshore in the Atlantic Ocean and the Pacific Ocean, respectively, and their reproduction took place thousands of kilometers away from their growth habitats. Phylogenetic studies have revealed that freshwater eels originated in the Indonesian region. However, remarkably little is known about the life histories of tropical freshwater eels despite the fact that tropical eels are key to understanding the nature of primitive forms of catadromous migration. This study found spawning-condition tropical freshwater eels in Lake Poso, central Sulawesi, Indonesia, with considerably high gonadosomatic index values and with histologically fully developed gonads. This study provides the first evidence that under certain conditions, freshwater eels have conditions that are immediately able to spawn even in river downstream. The results suggest that, in contrast to the migrations made by the Atlantic and Japanese eels, freshwater eels originally migrated only short distances of <100 kilometers to local spawning areas adjacent to their freshwater growth habitats. Ancestral eels most likely underwent a catadromous migration from local short-distance movements in tropical coastal waters to the long-distance migrations characteristic of present-day temperate eels, which has been well established as occurring in subtropical gyres in both hemispheres.

  3. Stormwater runoff drives viral community composition changes in inland freshwaters

    PubMed Central

    Williamson, Kurt E.; Harris, Jamie V.; Green, Jasmin C.; Rahman, Faraz; Chambers, Randolph M.

    2014-01-01

    Storm events impact freshwater microbial communities by transporting terrestrial viruses and other microbes to freshwater systems, and by potentially resuspending microbes from bottom sediments. The magnitude of these impacts on freshwater ecosystems is unknown and largely unexplored. Field studies carried out at two discrete sites in coastal Virginia (USA) were used to characterize the viral load carried by runoff and to test the hypothesis that terrestrial viruses introduced through stormwater runoff change the composition of freshwater microbial communities. Field data gathered from an agricultural watershed indicated that primary runoff can contain viral densities approximating those of receiving waters. Furthermore, viruses attached to suspended colloids made up a large fraction of the total load, particularly in early stages of the storm. At a second field site (stormwater retention pond), RAPD-PCR profiling showed that the viral community of the pond changed dramatically over the course of two intense storms while relatively little change was observed over similar time scales in the absence of disturbance. Comparisons of planktonic and particle-associated viral communities revealed two completely distinct communities, suggesting that particle-associated viruses represent a potentially large and overlooked portion of aquatic viral abundance and diversity. Our findings show that stormwater runoff can quickly change the composition of freshwater microbial communities. Based on these findings, increased storms in the coastal mid-Atlantic region predicted by most climate change models will likely have important impacts on the structure and function of local freshwater microbial communities. PMID:24672520

  4. Mercury exposure in terrestrial birds far downstream of an historical point source.

    PubMed

    Jackson, Allyson K; Evers, David C; Folsom, Sarah B; Condon, Anne M; Diener, John; Goodrick, Lizzie F; McGann, Andrew J; Schmerfeld, John; Cristol, Daniel A

    2011-12-01

    Mercury (Hg) is a persistent environmental contaminant found in many freshwater and marine ecosystems. Historical Hg contamination in rivers can impact the surrounding terrestrial ecosystem, but there is little known about how far downstream this contamination persists. In 2009, we sampled terrestrial forest songbirds at five floodplain sites up to 137 km downstream of an historical source of Hg along the South and South Fork Shenandoah Rivers (Virginia, USA). We found that blood total Hg concentrations remained elevated over the entire sampling area and there was little evidence of decline with distance. While it is well known that Hg is a pervasive and long-lasting aquatic contaminant, it has only been recently recognized that it also biomagnifies effectively in floodplain forest food webs. This study extends the area of concern for terrestrial habitats near contaminated rivers for more than 100 km downstream from a waterborne Hg point source.

  5. Suspended sediment transport trough a large fluvial-tidal channel network

    USGS Publications Warehouse

    Wright, Scott A.; Morgan-King, Tara L.

    2015-01-01

    The confluence of the Sacramento and San Joaquin Rivers, CA, forms a large network of interconnected channels, referred to as the Sacramento-San Joaquin Delta (the Delta). The Delta comprises the transition zone from the fluvial influences of the upstream rivers and tidal influences of San Francisco Bay downstream. Formerly an extensive tidal marsh, the hydrodynamics and geomorphology of Delta have been substantially modified by humans to support agriculture, navigation, and water supply. These modifications, including construction of new channels, diking and draining of tidal wetlands, dredging of navigation channels, and the operation of large pumping facilities for distribution of freshwater from the Delta to other parts of the state, have had a dramatic impact on the physical and ecological processes within the Delta. To better understand the current physical processes, and their linkages to ecological processes, the USGS maintains an extensive network of flow, sediment, and water quality gages in the Delta. Flow gaging is accomplished through use of the index-velocity method, and sediment monitoring uses turbidity as a surrogate for suspended-sediment concentration. Herein, we present analyses of the transport and dispersal of suspended sediment through the complex network of channels in the Delta. The primary source of sediment to the Delta is the Sacramento River, which delivers pulses of sediment primarily during winter and spring runoff events. Upon reaching the Delta, the sediment pulses move through the fluvial-tidal transition while also encountering numerous channel junctions as the Sacramento River branches into several distributary channels. The monitoring network allows us to track these pulses through the network and document the dominant transport pathways for suspended sediment. Further, the flow gaging allows for an assessment of the relative effects of advection (the fluvial signal) and dispersion (from the tides) on the sediment pulses as they

  6. Reclaiming freshwater sustainability in the Cadillac Desert

    USGS Publications Warehouse

    Sabo, John L.; Sinha, Tushar; Bowling, Laura C.; Schoups, Gerrit H.W.; Wallender, Wesley W.; Campana, Michael E.; Cherkauer, Keith A.; Fuller, Pam L.; Graf, William L.; Hopmans, Jan W.; Kominoski, John S.; Taylor, Carissa; Trimble, Stanley W.; Webb, Robert H.; Wohl, Ellen E.

    2010-01-01

    Increasing human appropriation of freshwater resources presents a tangible limit to the sustainability of cities, agriculture, and ecosystems in the western United States. Marc Reisner tackles this theme in his 1986 classic Cadillac Desert: The American West and Its Disappearing Water. Reisner's analysis paints a portrait of region-wide hydrologic dysfunction in the western United States, suggesting that the storage capacity of reservoirs will be impaired by sediment infilling, croplands will be rendered infertile by salt, and water scarcity will pit growing desert cities against agribusiness in the face of dwindling water resources. Here we evaluate these claims using the best available data and scientific tools. Our analysis provides strong scientific support for many of Reisner's claims, except the notion that reservoir storage is imminently threatened by sediment. More broadly, we estimate that the equivalent of nearly 76% of streamflow in the Cadillac Desert region is currently appropriated by humans, and this figure could rise to nearly 86% under a doubling of the region's population. Thus, Reisner's incisive journalism led him to the same conclusions as those rendered by copious data, modern scientific tools, and the application of a more genuine scientific method. We close with a prospectus for reclaiming freshwater sustainability in the Cadillac Desert, including a suite of recommendations for reducing region-wide human appropriation of streamflow to a target level of 60%.

  7. Reclaiming freshwater sustainability in the Cadillac Desert

    PubMed Central

    Sabo, John L.; Sinha, Tushar; Bowling, Laura C.; Schoups, Gerrit H. W.; Wallender, Wesley W.; Campana, Michael E.; Cherkauer, Keith A.; Fuller, Pam L.; Graf, William L.; Hopmans, Jan W.; Kominoski, John S.; Taylor, Carissa; Trimble, Stanley W.; Webb, Robert H.; Wohl, Ellen E.

    2010-01-01

    Increasing human appropriation of freshwater resources presents a tangible limit to the sustainability of cities, agriculture, and ecosystems in the western United States. Marc Reisner tackles this theme in his 1986 classic Cadillac Desert: The American West and Its Disappearing Water. Reisner's analysis paints a portrait of region-wide hydrologic dysfunction in the western United States, suggesting that the storage capacity of reservoirs will be impaired by sediment infilling, croplands will be rendered infertile by salt, and water scarcity will pit growing desert cities against agribusiness in the face of dwindling water resources. Here we evaluate these claims using the best available data and scientific tools. Our analysis provides strong scientific support for many of Reisner's claims, except the notion that reservoir storage is imminently threatened by sediment. More broadly, we estimate that the equivalent of nearly 76% of streamflow in the Cadillac Desert region is currently appropriated by humans, and this figure could rise to nearly 86% under a doubling of the region's population. Thus, Reisner's incisive journalism led him to the same conclusions as those rendered by copious data, modern scientific tools, and the application of a more genuine scientific method. We close with a prospectus for reclaiming freshwater sustainability in the Cadillac Desert, including a suite of recommendations for reducing region-wide human appropriation of streamflow to a target level of 60%. PMID:21149727

  8. Environmental Occurrence of Perfluoroalkyl Acids and Novel Fluorotelomer Surfactants in the Freshwater Fish Catostomus commersonii and Sediments Following Firefighting Foam Deployment at the Lac-Mégantic Railway Accident.

    PubMed

    Munoz, Gabriel; Desrosiers, Mélanie; Duy, Sung Vo; Labadie, Pierre; Budzinski, Hélène; Liu, Jinxia; Sauvé, Sébastien

    2017-02-07

    On July 6th 2013, an unmanned train laden with almost 8 million liters of crude oil careened off the rails downtown Lac-Mégantic (Québec, Canada). In the aftermath of the derailment accident, the emergency response entailed the deployment of 33 000 L of aqueous film forming foam (AFFF) concentrate that contained proprietary fluorosurfactants. The present study examines the environmental occurrence of perfluoroalkyl acids (PFAAs) and newly identified per and polyfluoroalkyl substances (PFASs) in the benthic fish white sucker (Catostomus commersonii) and sediments from Lake Mégantic and Chaudière River. In sediments, PFAAs displayed relatively low concentrations (∑PFAAs = 0.06-0.5 ng g(-1) dw) while the sum of fluorotelomer-based PFASs was in the range < LOD-6.2 ng g(-1) dw. Notably, fluorotelomer sulfonamide betaines (8:2-FTAB and 10:2-FTAB), fluorotelomer betaines (9:3-FTB, 11:3-FTB and 9:1:2 FTB) and 6:2 fluorotelomer sulfonate (6:2-FTSA) were ubiquitously identified in the sediment samples surveyed. Levels of PFAAs remained moderate in fish muscle (e.g.

  9. Acidification of freshwaters

    SciTech Connect

    Cresser, M.S.; Edwards, A.C.

    1987-01-01

    This volume gives an account that draws not only on the main branches of chemistry but also on soil physics, chemistry, hydrology, meteorology, geography, geology, plant physiology, soil microbiology and zoology. The author examine the numerous interacting physical, chemical, and biological, processes that regulate the acidity of freshwaters, a phenomenon that has various causes, including precipitation; acidifying pollutions; and the interaction of plants, soils and water. The relative importance of the different processes is examined.

  10. Sustainably Managing Sediment in Regulated Rivers: Recent Developments

    NASA Astrophysics Data System (ADS)

    Kondolf, G. M.; Gao, Y.; Annandale, G. W.; Morris, G. L.; Sumi, T.

    2014-12-01

    Inspired by the current drought and concerns about maintaining water storage capacity, California State Senate this year passed SB1259, directing the Department of Water Resources to assess the state's reservoirs for sedimentation problems. The need to actively manage sediment in reservoirs is increasingly recognized, as valuable reservoir storage capacity is lost and downstream reaches suffer from sediment starvation, manifesting problems such as channel incision, accelerated erosion of deltas, and loss of gravels important for habitat. With increased dam construction globally, these impacts will be widespread. Despite the opportunities to pass sediment through or around reservoirs (to preserve reservoir capacity and to minimize downstream impacts), these sustainable approaches to managing sediment are not applied in many situations where they would be effective. From a workshop involving international and Chinese experts and review of recent literature, collective global experience in managing reservoir sediments and mitigating downstream sediment starvation suggest that sediment management can be classified as catchment management (to reduce sediment inflow), sediment removal, and sediment routing through or around the reservoir. Sediment routing has the virtues of maintaining sediment flows to downstream reaches, as well as preserving reservoir capacity. Where geometry is favorable, sediment can often be bypassed around the reservoir (avoiding reservoir sedimentation and supplying sediment to downstream reaches) or sluiced through large-capacity outlets after flowing rapidly through the reservoir to avoid sedimentation. In narrow reservoirs with steep longitudinal gradients, sediments accumulated in the reservoir can often be re-suspended and flushed through when the reservoir is drawn down. Turbidity currents can often be 'vented' through the dam, with the advantage that the reservoir need not be drawn down to pass sediment. In planning dams, the expert group

  11. Strengths and Biases of High-Throughput Sequencing Data in the Characterization of Freshwater Ciliate Microbiomes.

    PubMed

    Boscaro, Vittorio; Rossi, Alessia; Vannini, Claudia; Verni, Franco; Fokin, Sergei I; Petroni, Giulio

    2016-12-28

    Molecular surveys of eukaryotic microbial communities employing high-throughput sequencing (HTS) techniques are rapidly supplanting traditional morphological approaches due to their larger data output and reduced bench work time. Here, we directly compare morphological and Illumina data obtained from the same samples, in an effort to characterize ciliate faunas from sediments in freshwater environments. We show how in silico processing affects the final outcome of our HTS analysis, providing evidence that quality filtering protocols strongly impact the number of predicted taxa, but not downstream conclusions such as biogeography patterns. We determine the abundance distribution of ciliates, showing that a small fraction of abundant taxa dominates read counts. At the same time, we advance reasons to believe that biases affecting HTS abundances may be significant enough to blur part of the underlying biological picture. We confirmed that the HTS approach detects many more taxa than morphological inspections, and highlight how the difference varies among taxonomic groups. Finally, we hypothesize that the two datasets actually correspond to different conceptions of "diversity," and consequently that neither is entirely superior to the other when investigating environmental protists.

  12. Anomalous Sediment Mixing by Bioturbation

    NASA Astrophysics Data System (ADS)

    Roche, K. R.; Aubeneau, A. F.; Xie, M.; Packman, A. I.

    2013-12-01

    Bioturbation, the reworking of sediments by animals and plants, is the dominant mode of sediment mixing in low-energy environments, and plays an important role in sedimentary biogeochemical processes. Mixing resulting from bioturbation has historically been modeled as a diffusive process. However, diffusion models often do not provide a sufficient description of sediment mixing due to bioturbation. Stochastic models, such as the continuous time random walk (CTRW) model, provide more general descriptions of mixing behavior that are applicable even when regular diffusion assumptions are not met. Here we present results from an experimental investigation of anomalous sediment mixing by bioturbation in freshwater sediments. Clean and heavy-metal-contaminated sediments were collected from Lake DePue, a backwater lake of the Illinois River. The burrowing worm species Lumbriculus variegatus was introduced to homogenized Lake DePue sediments in aerated aquaria. We then introduced inert fine fluorescent particles to the sediment-water interface. Using time-lapse photography, we observed the mixing of the fluorescent particles into the sediment bed over a two-week period. We developed image analysis software to characterize the concentration distribution of the fluorescent particles as a function of sediment depth, and applied this to the time-series of images to evaluate sediment mixing. We fit a one-dimensional CTRW model to the depth profiles to evaluate the underlying statistical properties of the mixing behavior. This analysis suggests that the sediment mixing caused by L. variegatus burrowing is subdiffusive in time and superdiffusive in space. We also found that heavy metal contamination significantly reduces L. variegatus burrowing, causing increasingly anomalous sediment mixing. This result implies that there can be important feedbacks between sediment chemistry, organism behavior, and sediment mixing that are not considered in current environmental models.

  13. Aquatic risk assessment of copper in freshwater and saltwater ecosystems of South Florida.

    PubMed

    Schuler, Lance J; Hoang, Tham C; Rand, Gary M

    2008-10-01

    A screening-level aquatic risk assessment was conducted for copper in south Florida's freshwater and saltwater environments. Risk was quantified by comparing the overlap between the probability distributions of copper exposure from surface water and sediment with the probability distributions of effects data obtained from laboratory studies. Copper concentrations in surface water and sediment in south Florida were summarized by county. For surface water, the highest concentrations of copper were found in Martin and St. Lucie counties for freshwater and saltwater, respectively. From the exposure probability distributions, the 90th centile values were estimated at 14.0 microg/L and 15.4 microg/L in freshwater and saltwater, respectively. Copper concentrations in sediment were evaluated from a probability distribution of predicted pore water concentrations. The 90th centile values of pore water concentrations from freshwater sediments ranged from 5.0 microg/L in Palm Beach County to 71.7 microg/L in Broward County. In saltwater sediments, the 90th centile values for pore water ranged from 26.1 microg/L in St. Lucie County to 27.3 microg/L in Miami-Dade County. Ecological effects data were obtained for acute and chronic copper effects in freshwater and saltwater. The 10th centile values for acute effects data were 21.2 microg/L and 9.8 microg/L for freshwater and saltwater species, respectively. For chronic effects, the 10th centile values were 3.8 microg/L and 3.9 microg/L for freshwater and saltwater species, respectively. The risk of acute copper exposure in surface water was generally low; however, the potential for ecological risk from chronic copper exposure was low to high in several counties including Lee, Martin, and St. Lucie counties. The risk of acute copper exposure in porewater from freshwater sediments also was low with the exception of St. Lucie and Broward counties. However, porewater from saltwater sediments posed a significant acute risk in Miami

  14. The use of carbon resin for the reduction of sediment toxicity to infaunal amphipods

    SciTech Connect

    Hurk, P. van den; Vogelbein, M.A.; McCullough, D.; Roberts, M.H. Jr.

    1995-12-31

    Commercially available carbon resins are designed to absorb non-polar organic compounds. To evaluate the potential of resins to absorb hydrophobic pore water pollutants and thus reduce the toxicity of sediments the Ambersorb 1500 resin was mixed with PAH-contaminated sediment samples and tested with infaunal amphipods. The sediments were collected at a freshwater site in the Little Scioto River, OH and at an estuarine site in the Elisabeth River, VA. The bulk chemical analysis of both sediments was comparable in that they both show creosote pollution. The sediments were tested in dilution series with clean reference sediments and with increasing amounts of resin (2, 4 and 8% dry sediment weight). The freshwater sediments were tested with both Hyalella azteca (a freshwater infaunal amphipod) and Leptocheirus plumulosus (an estuarine infaunal amphipod). The estuarine sediments were only tested with L. plumulosus. Significant effects of the resin were recognized by comparing polluted sediment LC50s with their 95% confidence intervals, as calculated with the Trimmed Spearman-Karber test. The results show that the freshwater samples were not very toxic to either of the species (LC50: 80--100% polluted sediment), and there was no significant effect of the resin. The estuarine samples were highly toxic (LC50: 3--13% polluted sediment) and there was a significant reduction of toxicity with increasing amount of resin. Pore water chemical analysis will be evaluated to explain the toxicity differences between the freshwater and estuarine samples.

  15. Effects of pollution on freshwater organisms

    SciTech Connect

    Phipps, G.L.; Harden, M.J.; Leonard, E.N.; Roush, T.H; Spehar, D.L.; Stephan, C.E.; Pickering, Q.H.; Buikema, A.L. Jr.

    1984-06-01

    This review includes subjects in last year's reviews on effects of pollution on freshwater invertebrates and effects of pollution on freshwater fish and amphibians. This review also includes information on the effects of pollution on freshwater plants. 625 references.

  16. Hydrology and sediment dynamics above and below the St. Croix Falls dam, MN/WI

    NASA Astrophysics Data System (ADS)

    MacGregor, K. R.; Hornbach, D.; Hove, M.

    2011-12-01

    Sediment budgets in river networks are notoriously difficult to construct but key for quantifying both short and long-term changes to fluvial environments. Hydrologic and sedimentologic conditions in the St. Croix River, one of the first rivers in the US to be designated a National Wild and Scenic River, play a significant role in the stability of native freshwater mussel populations. The availability and transport of sediment controls overall geomorphology, riverbed composition, and water turbidity, all of which are important to mussel habitat. Mussel habitat analyses show a decrease in the grain size of bed sediment and a >90% decline in the juvenile mussel population in the last decade, but only in a region below the St. Croix Falls dam. This reach of the St. Croix River is home to two federally endangered mussel species; we need to better understand the controls on sediment transport into and out of this stretch of river to understand the causes for the mussel decline, and to evaluate future threats to these species. In conjunction with mussel habitat analyses, we collected surface and near-bed suspended sediment, as well as bedload transport samples below the dam. Since January 2008 we have collected suspended sediment samples weekly at four locations, two above the dam and two below. Comparison to data collected in the 1970's suggests a decrease in suspended sediment, although the frequency of summer/fall high flow events has increased. We measured near-bed sediment transport using a BL-84 bedload sampler at Wild River, a sandy habitat upstream of the St. Croix Falls dam and Interstate Park, a rockier habitat downstream of the dam. A significant relationship was found between water discharge and bed sediment transport at both high (>5000 cfs) and low flows at both sites. Using historical maps and recent bathymetric data, we used GIS to construct changes in reservoir volume over time. Our results indicate that there has been substantial sediment infilling

  17. Downstream channel adjustment in a low-relief, glacially conditioned watershed

    NASA Astrophysics Data System (ADS)

    Thayer, James B.; Phillips, Roger T. J.; Desloges, Joseph R.

    2016-06-01

    River management practices are often informed by theoretical expectations of downstream channel adjustment, which may not be valid in low relief, glacially conditioned watersheds such as those in the lower North American Great Lakes region. Downstream trends in channel morphology and bed material size within a low-relief, glacially conditioned watershed are explored here and compared to a theoretical watershed model where slope and grain size are expected to decline exponentially. The observed channel morphology is then tested against a theoretical concept of reach-scale channel grade. The downstream hydraulic geometry relations wbf ∝ Qbf0.51S- 0.02 and dbf ∝ Qbf0.32S- 0.21 were found to best describe downstream changes in channel morphology and are consistent with some prior studies. Bed material size varies irregularly down the channel. Slope-controlled downstream fining trends are evident where inputs from glacial materials and tributaries are negligible but are masked by cobble/boulder lag deposits where the channel is cut into these glacial deposits. The asynchronous variability in slope and grain size produces downstream variations in graded and nongraded, understeepened conditions separated at τ*ex = 0. Graded reaches exist where τ*ex > 0, but an upper boundary with nongraded, oversteepened reaches is less clear. The results emphasize the geomorphic legacy of inherited slopes and sediment sources in dictating the modern downstream patterns of fluvial characteristics and morphologies in glacially conditioned, and similarly complex, watersheds.

  18. Sediment delivery after a wildfire

    USGS Publications Warehouse

    Reneau, S.L.; Katzman, D.; Kuyumjian, G.A.; Lavine, A.; Malmon, D.V.

    2007-01-01

    We use a record of sedimentation a small reservoir within the Cerro Grande burn area, New Mexico, to document postfire delivery of ash, other fine-grained sediment carried in suspension within floods, and coarse-grained sediment transported as bedload over a five-year period. Ash content of sediment layers is estimated using fallout 137Cs as a tracer, and ash concentrations are shown to rapidly decrease through a series of moderate-intensity convective storms in the first rainy season after the fire. Over 90% of the ash was delivered to the reservoir in the first year, and ash concentrations in suspended sediment were negligible after the second year. Delivery of the remainder of the fine sediment also declined rapidly after the first year despite the occurrence of higher-intensity storms in the second year. Fine sediment loads after five years remained significantly above prefire averages. Deposition of coarse-grained sediment was irregular in time and was associated with transport by snowmelt runoff of sediment stored along the upstream channel during short-duration summer floods. Coarse sediment delivery in the first four years was strongly correlated with snowmelt volume, suggesting a transport-limited system with abundant available sediment. Transport rates of coarse sediment declined in the fifth year, consistent with a transition to a more stable channel as the accessible sediment supply was depleted and the channel bed coarsened. Maximum impacts from ash and other fine-grained sediment therefore occurred soon after the fire, whereas the downstream impacts from coarse-grained sediment were attenuated by the more gradual process of bedload sediment transport. ?? 2007 Geological Society of America.

  19. New Zealand sediment toxicity testing methodologies

    SciTech Connect

    Hickey, C.W.; Roper, D.S.; Nipper, M.; Martin, M.L.

    1995-12-31

    Sediment toxicity testing in New Zealand is developing against a background of an increasing public desire for environmental protection and strict legislative requirements that contaminant discharges should not have any significant adverse effects on aquatic life. The importance of sediment contamination and its potential immediate and long term adverse effects on aquatic biota in general is becoming widely recognized, This has lead to an effort to develop acute and chronic sediment toxicity tests with organisms representative of the New Zealand indigenous biota. An amphipod species occurring in both freshwater and estuarine environments, Chaetocorophium cf lucasi, and the marine bivalve Macomona liliana, a common inhabitant of intertidal sandflats, have been evaluated for their sensitivity to natural sediment characteristics. The amphipod and bivalve are presently being used for testing sediment acute (10d) and chronic toxicity (20--30d), with survival and growth as test endpoints, and the bivalve has shown to be a useful organism for behavioral tests with burial and sediment avoidance by movement and drifting as endpoints. The estuarine bivalve Arthritica bifurca, abundant in muddy sediments, is a self-fertilizing hermaphroditic species and its suitability for sediment tests with a reproductive endpoint is underway. Freshwater sphaeriid bivalves, Sphaerium novazelandiae, are also being used for survival, growth, reproduction and behavioral endpoints. Sensitivity to reference toxicants and results for contaminated sediments will be presented and discussed in relation to sediment quality criteria developed elsewhere.

  20. Chronic effects of contaminated sediment on Daphnia magna and Chironomus tentans

    SciTech Connect

    Nebeker, A.V.; Onjukka, S.T.; Cairns, M.A.

    1988-10-01

    Chronic tests were conducted with Daphnia magna (cladoceran) and Chironomus tentans (midge) to determine their usefulness as test organisms for chronic sediment assays, and to estimate the potential long-term impact of contaminated freshwater sediments and contaminated Superfund site soils on freshwater invertebrates. These two species have been used successfully in acute sediment tests, and have been shown to be useful in chronic tests in water--only bioassays.

  1. Chronic effects of contaminated sediment on Daphnia magna and Chironomus tentans (journal version)

    SciTech Connect

    Nebeker, A.V.; Onjukka, S.T.; Cairns, M.A.

    1988-01-01

    Chronic tests were conducted with Daphnia magna (cladoceran) and Chironomus tentans (midge) to determine their usefulness as test organisms for chronic sediment assays, and to estimate the potential long-term impact of contaminated freshwater sediments and contaminated Superfund-site soils on freshwater invertebrates. These two species were used successfully in acute sediment tests and were shown to be useful in chronic tests in water.

  2. Sperm in "parhenogenetic" freshwater gastrotrichs.

    PubMed

    Weiss, M J; Levy, D P

    1979-07-20

    Freshwater members of the phylum Gastrotricha have been considered obligate parthenogens. In Lepidodermelia squammata, the species for which there is most evidence for parthenogenesis, sperm have been discovered. This finding will necessitate reexamination of the nature of sexuality and life cycles and of the concept of "species" in freshwater gastrotrichs.

  3. Toutle/Cowlitz River Sediment Budget

    DTIC Science & Technology

    2010-05-18

    during the post 1998 period when spillway flows were supplying significantly more sediment to the downstream channel system, the specific gage... flows began permanently passing through the spillway . For the past 10 years sediment moving through the spillway of the SRS has contributed to...97 Figure 4.43 Cowlitz deposition for period prior to SRS filling to spillway

  4. Climate variations, soil conservation and reservoir sedimentation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The integrated effects of soil conservation and a wetter climate on reservoir sedimentation were investigated for the Fort Cobb Reservoir watershed in west-central Oklahoma. A 12% wetter climate since the mid-1980s led to an increase in soil erosion and downstream sediment yield that offset the redu...

  5. SEDIMENT TOXICITY IDENTIFICATION EVALUATION (TIE) ...

    EPA Pesticide Factsheets

    Sediment contamination in the United States has been amply documented and, in order to comply with the 1972 Clean Water Act, the U.S. Environmental Protection Agency must address the issue of toxic sediments. Contaminated sediments from a number of freshwater and marine sites have demonstrated acute and/or chronic toxicity to a variety of test species, as well as adverse ecological effects such as population declines and changes in community structure. However, simply knowing that a sediment is toxic has limited use. This document provides guidance on the performance of sediment Toxicity Identification and Evaluation (TIE). TIE methods allow for the identification of toxic chemicals or chemical classes causing observed toxicity. The identification of pollutants responsible for toxicity of contaminated sediments has broad application in a number of EPA programs as the methods can be used within the total maximum daily load (TMDL) framework, to link sediment toxicity to specific dischargers, to design cost-effective remediation programs, and to identify environmentally protective options for dredged material disposal. In addition, the identification of specific problem contaminants in sediments could prove to be very useful to EPA programs involved in the development of water or sediment quality guidelines, and the registration of new products such as pesticides. Finally, knowledge of the causes of toxicity that influence ecological changes such as community struc

  6. Geomorphic response of rivers to glacial retreat and increasing peak flows downstream from Mount Rainier, Washington

    NASA Astrophysics Data System (ADS)

    Czuba, J. A.; Barnas, C. R.; Magirl, C. S.; Voss, F. D.

    2010-12-01

    On Mount Rainier, Washington, the National Park Service has documented widespread aggradation of as much as 10 m since the early 20th century, of rivers draining the glaciated stratovolcano. This rapid sedimentation appears to be related to glacial retreat and also may be a function of the increased magnitude and timing of peak flows that mobilize and transport sediment. We are conducting an assessment of the Puget Lowland rivers that drain Mount Rainier, 25-100 km downstream from the park boundary, to document the geomorphic response of the downstream reaches given the widespread aggradation upstream. These downstream reaches provide critical aquatic habitat for spawning and rearing of several species of salmonids, including endangered Chinook salmon and steelhead. Fluvial sedimentation can have both deleterious and beneficial effects on aquatic habitat depending on sediment particle size, river slope and width, and river management. To date, our work shows sedimentation of as much as 2 m between 1984 and 2009 in these lowland rivers. Aggradation rates that were calculated by comparing channel change at 156 cross sections, ranged between 4.8 and 9.1 cm/yr in reaches where rivers exit the mountain front and enter the lowland. Analysis of streamflow-gaging station data from throughout the watersheds draining Mount Rainier show rapid incision and aggradation, suggesting pulses of coarse-grained bedload may be moving down the mountainous rivers as kinetic waves. Preliminary results, however, seem to indicate that the rivers in the Puget Lowland have not yet experienced significant widespread sedimentation directly related to glacial retreat. Estimating the time of arrival of mobilized alluvium is a critical need for resource managers given the potential effects of sedimentation on river flood-conveyance capacity, fish habitat, and estuarine wetlands.

  7. Morphology and Sediment Transport Dynamics of the Selenga River Delta, Lake Baikal, Russia

    NASA Astrophysics Data System (ADS)

    Dong, T. Y.; Il'icheva, L.; Nittrouer, J. A.; Pavolv, M.

    2013-12-01

    The Selenga River fan delta is a lacustrine system located in southeastern Siberia, Russia, where Selenga River flows into Lake Baikal. The Selenga River is the largest source of sediment and water entering Lake Baikal. Covering ~550 km2, the Selenga delta is one of the largest freshwater deltas in the world. Evaluating the Selenga delta and its morphology is very important for local residents who rely upon the delta for both ecological and agricultural welfare. However, a sediment budget remains poorly constrained, as do estimates for the partitioning of water and sediment amongst the numerous bifurcating delta channels. This information is critical for addressing how the delta morphology evolves and influences the stratigraphic composition of the delta. To investigate the morphological characteristics of the delta, a field expedition was undertaken during July 2013 in collaboration with Russian scientists. The overall goal of the field work was to constrain delta dynamics through data collection. Field measurements included single-beam bathymetry data and sidescan sonar data to characterize: 1) channel geometries of the delta; 2) bedform sizes and distribution; and 3) grain-size composition of the channel bed. Flow velocity measurements were collected within the bifurcating channels to measure water discharge. Bedload samples were obtained within the active distributary channels to measure downstream sediment fining. Additionally, channel island cores were collected in order to analyze the internal architecture of the delta. The data reveal a systematic downstream sediment fining, from a predominantly gravel bed near the delta apex, to a fine-sand bed at the delta-lake interface (~40 km total distance). Bathymetry data document how width-to-depth ratios systematically decrease downstream in association with increasing channel bifurcations and decreasing channel-bed grain size. Furthermore, the investigations reveal that the delta is actively terraced, with the

  8. Management and the conservation of freshwater ecosystems

    USGS Publications Warehouse

    Wipfli, Mark S.; Richardson, John S.

    2015-01-01

    Riparian and freshwater ecosystems are typically tightly coupled, especially in their natural states, and the linkages that couple them frequently exert strong influence on their associated invertebrate and fish fauna (e.g. Gregory et al., 1991; Naiman et al., 2010). Riparian habitats, and the condition of these habitats, further plays a key role in the ecology of these fresh waters, influencing critical processes such as water, nutrient and sediment delivery and dynamics; prey resources for fish and other consumers, and other organic materials exchanged between aquatic and terrestrial habitats (Nakano et al., 1999; Naiman et al., 2010); light and water temperature dynamics that in turn affect food web processes and fish metabolism and growth; aquatic physical habitat (wood); and terrestrial consumers that prey upon fishes (Bisson & Bilby, 1998; Naiman et al., 2010; Wipfli & Baxter, 2010). These processes in turn directly or indirectly influence fishes in freshwater systems (Wang et al., 2001; Pusey & Arthington, 2003; Allan, 2004; Richardson et al., 2010a).

  9. Elwha River Restoration: Sediment Management

    NASA Astrophysics Data System (ADS)

    Kimbrel, S.; Bountry, J.; Randle, T. J.; Ritchie, A.; Huginin, H.; Torrance, A.

    2013-12-01

    The removal of Elwha and Glines Canyon Dams on the Elwha River relies on controlled reservoir drawdown increments and natural river flows to erode and redistribute the reservoir sediment, estimated to be a total of 23 (× 3) million m3. To mitigate for the predicted sediment effects, facilities have been constructed for water quality and flood protection. A sediment monitoring program is being implemented by an interdisciplinary team from Reclamation and National Park Service to integrate real-time measurements with continually updated numerical model predictions. The most recent numerical reservoir modeling and monitoring results indicate about 20 to 25 percent of the reservoir sediment has been released since the start of dam removal. Monitoring results in 2012 and early 2013 confirmed that controlled reservoir drawdown increments have induced sufficient vertical and lateral erosion of delta surfaces behind both dams. Predam channel and floodplain surface has been exposed in numerous portions of Lake Aldwell, with the release of coarse and fine sediment in the first few pools below Elwha Dam. The material released from Lake Aldwell has included organic material. With the removal of about three quarters of Glines Canyon Dam and the disappearance of Lake Mills, coarse bedload sediment has been continually released into the downstream river since late fall 2012. Field measurements and numerical modeling are being used to track the progression of the sediment wave downstream to the Elwha River mouth. Initial findings are that the aggradation was greatest immediately downstream of Glines Canyon Dam, and filled pools and transformed river planform from step-pool to glide for most of the 7 mile reach between Lake Mills and Lake Aldwell. Although there has not been a major flood, winter flows and spring snowmelt have significantly reworked the released sediment and remnants of the pre-sediment release pools and rapids have re-emerged. Large wood and organics have also

  10. Modern Reservoir Sedimentation Management Techniques with Examples

    NASA Astrophysics Data System (ADS)

    Annandale, G. W.

    2014-12-01

    Implementation of reservoir sedimentation management approaches results in a win-win scenario, it assists in enhancing the environment by preserving river function downstream of dams while concurrently providing opportunities to sustainably manage water resource infrastructure. This paper summarizes the most often used reservoir sedimentation management techniques with examples of where they have been implemented. Three categories can be used to classify these technologies, i.e. catchment management, sediment routing and sediment removal. The objective of catchment management techniques is to minimize the amount of sediment that may discharge into a reservoir, thereby reducing the loss of storage space due to sedimentation. Reservoir routing is a set of techniques that aim at minimizing the amount of sediment that may deposit in a reservoir, thereby maximizing the amount of sediment that may be passed downstream. The third group consists of techniques that may be used to remove previously deposited sediment from reservoirs. The selection of reservoir sedimentation management approaches is site specific and depends on various factors, including dam height, reservoir volume, reservoir length, valley shape, valley slope, sediment type and hydrology. Description of the different reservoir sedimentation management techniques that are used in practice will be accompanied by case studies, including video, illustrating criteria that may be used to determine the potential success of implementing the techniques.

  11. Large microplastic particles in sediments of tributaries of the River Thames, UK - Abundance, sources and methods for effective quantification.

    PubMed

    Horton, Alice A; Svendsen, Claus; Williams, Richard J; Spurgeon, David J; Lahive, Elma

    2017-01-15

    Sewage effluent input and population were chosen as predictors of microplastic presence in sediments at four sites in the River Thames basin (UK). Large microplastic particles (1mm-4mm) were extracted using a stepwise approach to include visual extraction, flotation and identification using Raman spectroscopy. Microplastics were found at all four sites. One site had significantly higher numbers of microplastics than other sites, average 66 particles 100g(-1), 91% of which were fragments. This site was downstream of a storm drain outfall receiving urban runoff; many of the fragments at this site were determined to be derived of thermoplastic road-surface marking paints. At the remaining three sites, fibres were the dominant particle type. The most common polymers identified included polypropylene, polyester and polyarylsulphone. This study describes two major new findings: presence of microplastic particles in a UK freshwater system and identification of road marking paints as a source of microplastics.

  12. Modeling grain size adjustments in the downstream reach following run-of-river development

    NASA Astrophysics Data System (ADS)

    Fuller, Theodore K.; Venditti, Jeremy G.; Nelson, Peter A.; Palen, Wendy J.

    2016-04-01

    Disruptions to sediment supply continuity caused by run-of-river (RoR) hydropower development have the potential to cause downstream changes in surface sediment grain size which can influence the productivity of salmon habitat. The most common approach to understanding the impacts of RoR hydropower is to study channel changes in the years following project development, but by then, any impacts are manifest and difficult to reverse. Here we use a more proactive approach, focused on predicting impacts in the project planning stage. We use a one-dimensional morphodynamic model to test the hypothesis that the greatest risk of geomorphic change and impact to salmon habitat from a temporary sediment supply disruption exists where predevelopment sediment supply is high and project design creates substantial sediment storage volume. We focus on the potential impacts in the reach downstream of a powerhouse for a range of development scenarios that are typical of projects developed in the Pacific Northwest and British Columbia. Results indicate that increases in the median bed surface size (D50) are minor if development occurs on low sediment supply streams (<1 mm for supply rates 1 × 10-5 m2 s-1 or lower), and substantial for development on high sediment supply streams (8-30 mm for supply rates between 5.5 × 10-4 and 1 × 10-3 m2 s-1). However, high sediment supply streams recover rapidly to the predevelopment surface D50 (˜1 year) if sediment supply can be reestablished.

  13. A periodic freshwater patch detachment process from the Block Island Sound estuarine plume

    NASA Astrophysics Data System (ADS)

    Liu, Qianqian; Rothstein, Lewis M.; Luo, Yiyong

    2017-01-01

    Previous observations suggest periodic freshwater patches separating from the Block Island Sound (BIS) estuarine plume. In this study, the dynamics of the separation process is investigated through a series of numerical experiments using the Regional Ocean Modeling System (ROMS). In addition, we explore the seasonal variability of the freshwater patches and their response to river discharge and ambient current. The model results indicate that episodic freshwater patches are triggered by small changes in tidal currents over the spring-neap tidal cycle. The spring-neap variation in tidal currents causes significant, monthly fluctuations in turbulent mixing and vertical stratification in BIS, modulating the freshwater discharge thereby generating episodic freshwater patches that move both downstream along the southern shore of Long Island and toward Rhode Island Sound (RIS). The realistically configured model shows that the freshwater patches experience strong seasonal variability. They are largest in spring when the river discharge peaks, and smallest in summer due to the weak river discharge and a robust upstream ambient current from RIS. According to the analysis of the freshwater transport out of BIS, we conclude that such detachment occurs at tidal mixing fronts.

  14. Downstream extent of the N Reactor plume

    SciTech Connect

    Dauble, D.D.; Ecker, R.M.; Vail, L.W.; Neitzel, D.A.

    1987-09-01

    The downstream extent of the N Reactor thermal plume was studied to assess the potential for fisheries impacts downstream of N Reactor. The N Reactor plume, as defined by the 0.5/sup 0/F isotherm, will extend less than 10 miles downstream at river flows greater than or equal to annual average flows (120,000 cfs). Incremental temperature increases at the Oregon-Washington border are expected to be less than 0.5/sup 0/F during all Columbia River flows greater than the minimum regulated flows (36,000 cfs). The major physical factor affecting Columbia River temperatures in the Hanford Reach is solar radiation. Because the estimated temperature increase resulting from N Reactor operations is less than 0.3/sup 0/F under all flow scenarios, it is unlikely that Columbia River fish populations will be adversely impacted.

  15. Nutrient fluxes in a eutrophic coastal Louisiana freshwater lake

    NASA Astrophysics Data System (ADS)

    Stow, C. A.; de Laune, R. D.; Patrick, W. H.

    1985-05-01

    Nitrogen and phosphorus cycling in a eutrophic Louisiana freshwater lake system (Lac des Allemands) was studied. Nutrients from runoff entering the lake, as well as sediment-interstitial and lake water nitrogen and phosphorus fractions, were measured seasonally. Sedimentation rates in the lake were determined using137Cs dating. Phosphorus levels in the lake were found to be largely dependent on concentrations in the incoming bayou water from upland drainage. Lake water concentrations appear to respond to fluctuations in incoming waters. Laboratory equilibrium studies showed bottom sediments in the lake are a major sink for the incoming dissolved orthophosphate phosphorus. Total nitrogen concentrations in the lake water generally exceeded incoming runoff concentrations, suggesting fixation by the large blue-green algae population in the lake as being the major source of nitrogen to the system. Sedimentation ranged from 0.44 cm/year to 0.81 cm/year, depending on the proximity to the inlet bayous. Even though the lake is eutrophic the sediment served as a buffer by removing large amounts of carbon, nitrogen, and phosphorus through sedimentation processes. Carbon, nitrogen, and phosphorus were accumulating in the sediment at rates of 60, 7.1, and 1.1 g/m2/year, respectively. The water quality of the lake is likely to continue to decline unless measures are taken to reduce municipal, industrial, and agricultural inputs of phosphorus into the lake.

  16. Wave-Induced Groundwater Flows in a Freshwater Beach Aquifer

    NASA Astrophysics Data System (ADS)

    Malott, S. S.; Robinson, C. E.; O'Carroll, D. M.

    2014-12-01

    Wave-induced recirculation across the sediment-water interface can impact the transport of pollutants through a beach aquifer and their ultimate flux into coastal waters. The fate of nutrients (e.g. from septic and agricultural sources) and fecal indicator bacteria (e.g. E. coil) near the sediment-water interface are of particular concern as these pollutants often lead to degradation of recreational water quality and nearshore ecosystems. This paper presents detailed field measurements of groundwater flows in a freshwater beach aquifer on Lake Huron over periods of intensified wave conditions. Quantifying wave-driven processes in a freshwater beach aquifer enables wave effects to be studied in isolation from density and tidal effects that complicate groundwater flows in marine beaches. Water exchange across the sediment-water interface and groundwater flow patterns were measured using groundwater wells, arrays of vertically nested pressure transducers and manometers. Results show that wave action induces rapid infiltration/exfiltration across the sediment-water interface and a larger recirculation cell through the beach aquifer. Field data is used to validate a numerical groundwater model of wave-induced groundwater flows. While prior studies have simulated the effects of waves on beach groundwater flows, this study is the first attempt to validate these sophisticated modeling approaches. Finally, field data illustrating the impact of wave-induced groundwater flows on nutrient and bacteria fate and transport in beach aquifers will also be presented.

  17. PROCEDURES FOR THE DERIVATION OF EQUILIBRIUM PARTITIONING SEDIMENT BENCHMARKS (ESBS) FOR THE PROTECTION OF BENTHIC ORGANISMS: COMPENDIUM OF TIER 2 VALUES FOR NONIONIC ORGANICS

    EPA Science Inventory

    This equilibrium partitioning sediment benchmark (ESB) document describes procedures to derive concentrations for 32 nonionic organic chemicals in sediment which are protective of the presence of freshwater and marine benthic organisms. The equilibrium partitioning (EqP) approach...

  18. An estimation of radiation doses to benthic invertebrates from sediments collected near a Canadian uranium mine.

    PubMed

    Thomas, P; Liber, K

    2001-10-01

    A new method is described for calculating radiation doses to benthic invertebrates from radionuclide concentrations in freshwater sediment. Both internal and external radiation doses were estimated for all 14 principal radionuclides of the uranium-238 decay series. Sediments were collected from three sites downstream of a uranium mining operation in northern Saskatchewan, Canada. Sediments from two sites, located approximately 1.6 and 4.4 km downstream from mining operations, yielded absorbed doses to both larval midges, Chironomus tentans, and adult amphipods, Hyalella azteca, of 59-60 and 19 mGy/year, respectively, compared to 3.2 mGy/year for a nearby control site. External beta radiation from protactinium-234 (234Pa) and alpha radiation from uranium (U) contributed most of the dose at the impacted sites, whereas polonium-210 (210Po) was most important at the control site. If a weighting factor of 20 was employed for the greater biological effect of alpha vs. beta and gamma radiation, then total equivalent doses rose to 540-560 mGy/year at the site closest to uranium operations. Such equivalent doses are above the 360-mGy/year no-observed-effect level for reproductive effects in vertebrates from gamma radiation exposure. Data are not available to determine the effect of such doses on benthic organisms, but they are high enough to warrant concern. Detrimental effects have been observed in H. azteca at similar uranium concentration in laboratory toxicity tests, but it remains unclear whether the radiotoxicity or the chemotoxicity of uranium is responsible for these effects.

  19. Comparative Geomorphology of Salt and Tidal Freshwater Marsh Environments

    NASA Astrophysics Data System (ADS)

    Pasternack, G. B.

    2002-05-01

    Temperate estuaries include a spectrum of coastal marshes ranging from highly saline near the ocean to fresh in tributaries with substantial watershed drainage. While the hydrologic, sedimentary, and geomorphic dynamics of salt marshes have been thoroughly investigated, those aspects of tidal freshwater marshes have only begun to be addressed. Based on a recent burst in research on tidal freshwater systems in Chesapeake Bay by different universities, an attempt is made here to provide comparative geomorphology. In terms of similarities, both have tidal channels whose hydraulic geometry is primarily controlled by the tidal prism. Both show decreasing sedimentation and increasing organics with elevation and distance from channels. At seasonal to interannual time scales, the morphodynamics of both show similarities in the interplay among hydroperiod, vegetation, and geomorphology. Rather than simply evolving from youth to maturity, both systems exhibit strong evidence for dynamic equilibrium between process and morphology. Despite these similarities, there are key differences that motivate further research of tidal freshwater marshes. First, whereas salt marshes are limited by sediment supply, tidal fresh ones may not be limited depending on upstream basin size. E.g., fringing marshes along Pumunkey River have very low sediment supply, while deltaic marshes in Bush River and Sassafras River are not supply-limited. Instead, the growth of deltaic fresh marshes is transport limited, as winds and tides can only generate low momentum and turbulence for sediment transport. As illustrated in multiple systems, a constant availability of sediment leads to higher sedimentation in fresh marshes. Second, in high latitude salt marshes where the tidal range is large and the climate cold, ice acts as a strong erosional agent. In fresh marshes, ice serves to sequester sediment and buffer the erosional impact of autumnal vegetation dieback. Third, the high spatial variation in plant

  20. SEDIMENT TOXICITY IDENTIFICATION EVALUATION (TIE)PHASE I,II,III GUIDANCE DOCUMENT

    EPA Science Inventory

    Sediment contamination in the United States has been amply documented and, in order to comply with the 1972 Clean Water Act, the U.S. Environmental Protection Agency must address the issue of toxic sediments. Contaminated sediments from a number of freshwater and marine sites hav...

  1. A TOXICITY ASSESSMENT APPROACH FOR THE EVALUATION OF IN-SITU BIOREMEDIATION OF PAH CONTAMINATED SEDIMENTS

    EPA Science Inventory

    Freshwater and marine sediment toxicity test were used to measure baseline toxicity of sediment samples collected from New York/New Jersey Harbor (NY/NJH) and East River (ER) (PAH contaminated) sediments and to determine the effectiveness of the developed biotreatment strategies ...

  2. Coastal sedimentation

    NASA Technical Reports Server (NTRS)

    Schubel, J. R.

    1980-01-01

    Several important coastal sedimentation problems are identified. Application of existing or anticipated remote sensing techniques to examine these problems is considered. Specifically, coastal fine particle sediment systems, floods and hy hurricanes and sedimentation f of coastal systems, routes and rates of sediment transport on continental shelves, and dredging and dredged material disposal are discussed.

  3. Salting our freshwater lakes.

    PubMed

    Dugan, Hilary A; Bartlett, Sarah L; Burke, Samantha M; Doubek, Jonathan P; Krivak-Tetley, Flora E; Skaff, Nicholas K; Summers, Jamie C; Farrell, Kaitlin J; McCullough, Ian M; Morales-Williams, Ana M; Roberts, Derek C; Ouyang, Zutao; Scordo, Facundo; Hanson, Paul C; Weathers, Kathleen C

    2017-04-10

    The highest densities of lakes on Earth are in north temperate ecosystems, where increasing urbanization and associated chloride runoff can salinize freshwaters and threaten lake water quality and the many ecosystem services lakes provide. However, the extent to which lake salinity may be changing at broad spatial scales remains unknown, leading us to first identify spatial patterns and then investigate the drivers of these patterns. Significant decadal trends in lake salinization were identified using a dataset of long-term chloride concentrations from 371 North American lakes. Landscape and climate metrics calculated for each site demonstrated that impervious land cover was a strong predictor of chloride trends in Northeast and Midwest North American lakes. As little as 1% impervious land cover surrounding a lake increased the likelihood of long-term salinization. Considering that 27% of large lakes in the United States have >1% impervious land cover around their perimeters, the potential for steady and long-term salinization of these aquatic systems is high. This study predicts that many lakes will exceed the aquatic life threshold criterion for chronic chloride exposure (230 mg L(-1)), stipulated by the US Environmental Protection Agency (EPA), in the next 50 y if current trends continue.

  4. Accounting for Long Term Sediment Storage in a Watershed Scale Numerical Model for Suspended Sediment Routing

    NASA Astrophysics Data System (ADS)

    Keeler, J. J.; Pizzuto, J. E.; Skalak, K.; Karwan, D. L.; Benthem, A.; Ackerman, T. R.

    2015-12-01

    Quantifying the delivery of suspended sediment from upland sources to downstream receiving waters is important for watershed management, but current routing models fail to accurately represent lag times in delivery resulting from sediment storage. In this study, we route suspended sediment tagged by a characteristic tracer using a 1-dimensional model that implicitly includes storage and remobilization processes and timescales. From an input location where tagged sediment is added, the model advects suspended sediment downstream at the velocity of the stream (adjusted for the intermittency of transport events). Deposition rates are specified by the fraction of the suspended load stored per kilometer of downstream transport (presumably available from a sediment budget). Tagged sediment leaving storage is evaluated from a convolution equation based on the probability distribution function (pdf) of sediment storage waiting times; this approach avoids the difficulty of accurately representing complex processes of sediment remobilization from floodplain and other deposits. To illustrate the role of storage on sediment delivery, we compare exponential and bounded power-law waiting time pdfs with identical means of 94 years. In both cases, the median travel time for sediment to reach the depocenter in fluvial systems less than 40km long is governed by in-channel transport and is unaffected by sediment storage. As the channel length increases, however, the median sediment travel time reflects storage rather than in-channel transport; travel times do not vary significantly between the two different waiting time functions. At distances of 50, 100, and 200 km, the median travel time for suspended sediment is 36, 136, and 325 years, orders of magnitude slower than travel times associated with in-channel transport. These computations demonstrate that storage can be neglected for short rivers, but for longer systems, storage controls the delivery of suspended sediment.

  5. Water hardness determines (226)Ra uptake in the tropical freshwater mussel.

    PubMed

    Doering, Che; Bollhöfer, Andreas

    2017-03-22

    Chemical data for freshwater mussels (Velesunio spp.) and water from 15 sampling sites in the Alligator Rivers Region and Rum Jungle uranium provinces in tropical Northern Australia were analysed to develop a predictive model of radium-226 ((226)Ra) bioaccumulation for variable water calcium (Ca) and magnesium (Mg) concentrations. Application of the model as a (226)Ra screening approach for freshwater mussels in tropical waterbodies potentially impacted by operational or remediated uranium mine sites is discussed in relation to Mudginberri Billabong, located approximately 12 km downstream of Ranger uranium mine in the Alligator Rivers Region.

  6. Sediment properties influencing the bioavailability of uranium to Chironomus dilutus larvae in spiked field sediments.

    PubMed

    Crawford, Sarah E; Liber, Karsten

    2016-04-01

    The partitioning of metals between dissolved and solid phases directly affects metal bioavailability to benthic invertebrates and is influenced by metal-binding properties of sediment phases. Little research has been done examining the effects of sediment properties on the bioavailability of uranium (U) to freshwater benthic invertebrates. In the present study, 18 field sediments with a wide range of properties (total organic carbon, fine fraction, cation exchange capacity, and iron content) were amended with the same concentrations of U to characterize the effects of these sediment properties on U bioavailability to freshwater midge, Chironomus dilutus. Bioaccumulation of U by C. dilutus larvae varied by over an order of magnitude when exposed to sediments spiked with 50 mg U kg(-1) d.w. (5-69 mg U kg(-1) d.w.) and 500 mg U kg(-1) d.w. (20-452 mg U kg(-1) d.w.), depending on the type of sediment. Variance in U bioaccumulation was best explained by differences in the cation exchange capacity, fine fraction (≤50 μm particle size), and Fe content of U-spiked sediment, with generated regression equations predicting observed bioaccumulation within a factor of two. The presented regression equations offer an easy-to-apply method for accounting for the influence of sediment properties on U bioavailability in freshwater sediment, with fine fraction being the single most practical variable. This research strongly supports that risk assessments and guidelines for U-contaminated sediments should not ignore the influence of sediment properties that can result in substantial differences in the bioaccumulation of U in benthic invertebrates.

  7. Sediment transport and sedimentation along the Amazon floodplain

    SciTech Connect

    Dunne, T.; Mertes, A.K.L.; Meade, R.H.

    1985-01-01

    As the Amazon River leaves the Andean foothills and crosses the structural trough in its Brazilian segment, it receives a large increment of discharge, but a small increase in sediment load from the bounding cratons. The gradient of the river declines gradually from Iquitos, Peru, downstream to Coari, Brazil, before increasing downstream to the vicinity of Manaus as the river crosses a structural arch. Between Manaus and Obidos, the river slope declines sharply. The interplay of the variable gradient and increasing discharge creates a pattern of boundary shear stress and sediment transport which the authors have defined by measurement and calculation. The downstream divergence of suspended and bed load transport is responsible for the patterns of aggradation, channel behavior and floodplain morphology. Aggradation has been computed on the basis of three years of sediment transport measurements; floodplain morphology was documented from radar photography and navigation charts; and channel migration from these charts and from aerial and satellite photography. In the reach between the Peruvian border and Coari, the river deposits sand bars within and alongside the channel and shifts laterally at a relatively rapid rate, forming a scroll-bar floodplain topography with long, narrow lakes. In the middle, steeper reach no net aggradation was measured, sand-bar development and channel shifting are limited. Below Manaus, the rapid decline in gradient and the large influx of Andean sediment from the Rio Madeira result in deposition of almost the entire sand load and a portion of the silt.

  8. Impact of freshwater diversion projects on diversity and activity of methanotrophic communities in freshwater wetlands

    NASA Astrophysics Data System (ADS)

    Isaac, J.; Schulz, C. J.; Childers, G. W.

    2009-12-01

    Methanotrophic bacteria are key players in the carbon cycle capable of using methane as a sole carbon and energy source. Methanotrophs are ubiquitous in soil environments and play a key role in decreasing methane flux from anaerobic environments to the atmosphere, reducing the concentration of this greenhouse gas. Wetlands are a particularly important source of methane to the atmosphere, even though methanotrophs can consume the majority of the methane produced. Decreases in methanotrophic activity in wetland environments due to disturbance can have negative impacts with regard to greenhouse gas emissions, especially if the impact is widespread. Currently, several freshwater diversion projects are active and/or scheduled to come online in south Louisiana, delivering freshwater, sediments, and nutrients to coastal wetlands en masse to help combat subsidence and coastal erosion. Along with freshwater, these diversions also deliver other components of the Mississippi River including substantial bicarbonate alkalinity, reactive nitrogen, and sulfate. Analogous to the large scale diversion projects are smaller restoration projects that deliver treated wastewater effluent to wetlands. In particular, the Joyce Wildlife Management Area (JWMA) in southeast Louisiana has been the recipient of ~5 million gallons of treated domestic effluent per day since 2006. Both the composition of the marsh receiving the effluent and the effluent itself have similarities to Mississippi River diversions. We collected pre and post JWMA sediment microbial community DNA and created cloned libraries of genes encoding particulate methane monooxygenase (pmoA) as a proxy for methanotrophic community composition. Water chemistry data was also collected. Shifts in methanotrophic community composition were apparent as well as shifts in water chemistry. The most notable shift in water chemistry was pH, which changed from mildly acidic to slightly alkaline conditions, due to the increased alkalinity of

  9. Modeling tidal freshwater marsh sustainability in the Sacramento-San Joaquin Delta under a broad suite of potential future scenarios

    USGS Publications Warehouse

    Swanson, Kathleen M.; Drexler, Judith Z.; Fuller, Christopher C.; Schoellhamer, David H.

    2015-01-01

    In this paper, we report on the adaptation and application of a one-dimensional marsh surface elevation model, the Wetland Accretion Rate Model of Ecosystem Resilience (WARMER), to explore the conditions that lead to sustainable tidal freshwater marshes in the Sacramento–San Joaquin Delta. We defined marsh accretion parameters to encapsulate the range of observed values over historic and modern time-scales based on measurements from four marshes in high and low energy fluvial environments as well as possible future trends in sediment supply and mean sea level. A sensitivity analysis of 450 simulations was conducted encompassing a range of eScholarship provides open access, scholarly publishing services to the University of California and delivers a dynamic research platform to scholars worldwide. porosity values, initial elevations, organic and inorganic matter accumulation rates, and sea-level rise rates. For the range of inputs considered, the magnitude of SLR over the next century was the primary driver of marsh surface elevation change. Sediment supply was the secondary control. More than 84% of the scenarios resulted in sustainable marshes with 88 cm of SLR by 2100, but only 32% and 11% of the scenarios resulted in surviving marshes when SLR was increased to 133 cm and 179 cm, respectively. Marshes situated in high-energy zones were marginally more resilient than those in low-energy zones because of their higher inorganic sediment supply. Overall, the results from this modeling exercise suggest that marshes at the upstream reaches of the Delta—where SLR may be attenuated—and high energy marshes along major channels with high inorganic sediment accumulation rates will be more resilient to global SLR in excess of 88 cm over the next century than their downstream and low-energy counterparts. However, considerable uncertainties exist in the projected rates of sea-level rise and sediment avail-ability. In addition, more research is needed to constrain future

  10. STABLE NITROGEN ISOTOPES AS INDICATORS OF ANTHOPOGENIC ACTIVITIES IN SMALL FRESHWATER SYSTEMS

    EPA Science Inventory

    Stable nitrogen isotope ratios ( 15N) were measured in fish, mussel, and sediment samples taken from 17 small freshwater sites to examine food chain length and trophic position across sites affected by differing levels of anthropogenic activity. Both shoreline development and fis...

  11. Enabling technologies: fermentation and downstream processing.

    PubMed

    Weuster-Botz, Dirk; Hekmat, Dariusch; Puskeiler, Robert; Franco-Lara, Ezequiel

    2007-01-01

    Efficient parallel tools for bioprocess design, consequent application of the concepts for metabolic process analysis as well as innovative downstream processing techniques are enabling technologies for new industrial bioprocesses from an engineering point of view. Basic principles, state-of-the-art techniques and cutting-edge technologies are briefly reviewed. Emphasis is on parallel bioreactors for bioprocess design, biochemical systems characterization and metabolic control analysis, as well as on preparative chromatography, affinity filtration and protein crystallization on a process scale.

  12. Fish reproductive guilds downstream of dams.

    PubMed

    Vasconcelos, L P; Alves, D C; Gomes, L C

    2014-11-01

    Fish reproductive guilds were used to evaluate the responses of species with different reproductive strategies during two different periods of post-dam construction. The data used for the comparisons were collected in the upper Paraná River floodplain (Brazil), downstream of the Porto Primavera dam, 2 and 10 years after impoundment. The abundance (catch per unit effort, CPUE), species richness, evenness and structure of communities, all within reproductive guilds, were used to test the hypothesis that these metrics vary spatially and temporally. The influence of damming on species structure and the diversity of fish reproductive guilds varied spatiotemporally, and species with opportunistic reproductive strategies tended to be less affected. Conversely, long-distance migratory species responded more markedly to spatiotemporal variations, indicating that the ecosystem dynamics exert greater effects on populations of these species. Thus, the effects of a dam, even if attenuated, may extend over several years, especially downstream. This finding emphasizes the importance of maintaining large undammed tributaries downstream of reservoirs.

  13. Downstream Development of a Laminar Spot

    NASA Astrophysics Data System (ADS)

    Sekiya, Naoki; Matsumoto, Akira

    It was well-known that a disturbance, introduced artificially into a supercritical laminar boundary layer along a flat plate, is still laminar in the initial stage of its downstream development. Thus, we named it a "laminar spot" because it resembles a turbulent spot though its velocity perturbation remains laminar. From velocity measurements using a rake-type 16-channel hot-wire probe, we found that in the first stage of the downstream development of a laminar spot, its maximum width was at 0.2δ (what is called the critical layer) and one-half of its lateral growth angle was about 5°, which is almost one-half that of a turbulent spot. We call this region a "laminar spot region". In the present study, we measured in detail the velocity field of a laminar spot using a new hot-wire probe in the laminar spot region. The results showed that a laminar spot consists of some hairpin vortices and some induced U-shaped vortices under the hairpin vortices. Because of the interaction of the velocities induced by the respective vortex legs, the legs of the U-shaped vortices were located at the outermost part of the spot. Moreover, the new vortex legs extended spanwise at about 4° as the spot traveled downstream. Consequently, we concluded that the laminar spot grew spanwise in accordance with the span of these vortex legs.

  14. Physical modeling of artificial river replenishment techniques to restore morphological conditions downstream of dams

    NASA Astrophysics Data System (ADS)

    Battisacco, Elena; Franca, Mário J.; Schleiss, Anton J.

    2015-04-01

    The river behavior downstream of dams may be strongly modified in terms of morphology, sediment transport and hydrodynamics. Over the last decades, a reduction on the supply of bed load sediments has been observed in these reaches in several alpine rivers. The main effects resulting from the reduction of sediment supply are bed armoring, river incision and bank instability which can affect negatively the aquatic ecosystem. Artificial river replenishment is one of the proposed technique to mitigate the problem of sediment deficit downstream dams and to restore the sediment continuum along these rivers. Many field experiments were performed in Japan and United States and, more recently, also in Europe. Generally, the full erosion of the replenished volumes was rarely observed and the distance travelled by the sediments in the downstream direction was often not sufficient to reestablish natural morphological conditions. In order to improve the practical applicability of replenishment technique a series of laboratory tests are performed with the purpose to investigate the hydrodynamics of the river flow once artificial replenishment is performed. Erodible volumes, reproducing sediment replenishments, are positioned along the banks of an experimental channel. A 15 m long and 2.5 m flume is used to implement two parallel test channels with trapezoidal cross section with a 0.4 m bed width and 2:3 (V:H) of bank slope. Different geometrical combinations of erodible replenishment, in terms of length, distance between volumes and position along the banks, are tested in the experimental flume. For the replenished volumes colored gravel is used which allows the visual tracking of the temporal evolution of the erosion by means of image analysis. The bed morphology is measured at the beginning and end of the tests by a high definition laser scanner. The influence of discharge is evaluated considering different submergence conditions of the replenishment volumes. The first results

  15. Assessment of mercury and methylmercury in water, sediment, and biota in Sulphur Creek in the vicinity of the Clyde Gold Mine and the Elgin Mercury Mine, Colusa County, California

    USGS Publications Warehouse

    Hothem, Roger L.; Rytuba, James J.; Brussee, Brianne E.; Goldstein, Daniel N.

    2013-01-01

    At the request of the U.S. Bureau of Land Management, we performed a study during April–July 2010 to characterize mercury (Hg), monomethyl mercury (MMeHg), and other geochemical constituents in sediment, water, and biota at the Clyde Gold Mine and the Elgin Mercury Mine, located in neighboring subwatersheds of Sulphur Creek, Colusa County, California. This study was in support of a Comprehensive Environmental Response, Compensation, and Liability Act - Removal Site Investigation. The investigation was in response to an abatement notification from the California Central Valley Regional Water Quality Control Board to evaluate the release of Hg from the Clyde and Elgin mines. Samples of water, sediment, and biota (aquatic macroinvertebrates) were collected from sites upstream and downstream from the two mine sites to evaluate the level of Hg contamination contributed by each mine to the aquatic ecosystem. Physical parameters, as well as dissolved organic carbon, total Hg (HgT), and MMeHg were analyzed in water and sediment. Other relevant geochemical constituents were analyzed in sediment, filtered water, and unfiltered water. Samples of aquatic macroinvertebrates from each mine were analyzed for HgT and MMeHg. The presence of low to moderate concentrations of HgT and MMeHg in water, sediment, and biota from the Freshwater Branch of Sulphur Creek, and the lack of significant increases in these concentrations downstream from the Clyde Mine indicated that this mine is not a significant source of Hg to the watershed during low flow conditions. Although concentrations of HgT and MMeHg were generally higher in samples of sediment and water from the Elgin Mine compared to the Clyde Mine, concentrations in comparable biota from the two mine areas were similar. It is likely that highly saline effluent from nearby hot springs contribute more Hg to the West Fork of Sulphur Creek than the mine waste material at the Elgin Mine.

  16. Measuring benefits of protected area management: trends across realms and research gaps for freshwater systems

    PubMed Central

    Adams, Vanessa M.; Setterfield, Samantha A.; Douglas, Michael M.; Kennard, Mark J.; Ferdinands, Keith

    2015-01-01

    Protected areas remain a cornerstone for global conservation. However, their effectiveness at halting biodiversity decline is not fully understood. Studies of protected area benefits have largely focused on measuring their impact on halting deforestation and have neglected to measure the impacts of protected areas on other threats. Evaluations that measure the impact of protected area management require more complex evaluation designs and datasets. This is the case across realms (terrestrial, freshwater, marine), but measuring the impact of protected area management in freshwater systems may be even more difficult owing to the high level of connectivity and potential for threat propagation within systems (e.g. downstream flow of pollution). We review the potential barriers to conducting impact evaluation for protected area management in freshwater systems. We contrast the barriers identified for freshwater systems to terrestrial systems and discuss potential measurable outcomes and confounders associated with protected area management across the two realms. We identify key research gaps in conducting impact evaluation in freshwater systems that relate to three of their major characteristics: variability, connectivity and time lags in outcomes. Lastly, we use Kakadu National Park world heritage area, the largest national park in Australia, as a case study to illustrate the challenges of measuring impacts of protected area management programmes for environmental outcomes in freshwater systems. PMID:26460127

  17. A Copernicus downstream service for surface displacement monitoring in Germany

    NASA Astrophysics Data System (ADS)

    Cahyadi Kalia, Andre; Frei, Michaela; Lege, Thomas

    2016-04-01

    SAR Interferometry is a powerful technique able to detect and monitor various surface displacements caused by e.g. gravitative mass movement, subrosion, groundwater extraction, fluid injection, natural gas extraction. These processes can e.g. cause damage to buildings, infrastructure, affect ecosystems, agriculture and the economic use of the geological underground by influencing the hydro(geo)logical setting. Advanced techniques of interferometric processing (Persistent Scatterer Interferometry, PSI) allow highly precise displacement measurements (mm precision) by analyzing stacks of SAR imagery. The PSI mapping coverage can be increased to entire nations by using several adjacent satellite tracks. In order to assist the operational use of this technique a German-wide, officially approved, PSI dataset is under development. The intention of this presentation is to show i) the concept of the Copernicus downstream service for surface displacement monitoring in Germany and ii) a pilot study to exemplarily demonstrate the workflow and potential products from the Copernicus downstream service. The pilot study is focusing on the built up of an officially approved wide-area PSI dataset. The study area covers an area of more than 30.000 km² and is located in the Northwest German Basin. Several natural processes (e.g. compaction of marine sediments, peat loss) and anthropogenic activities (e.g. natural gas extraction, rock salt mining) are causing surface displacements in the study area. The PSI analysis is based on six ERS-1/-2 data stacks covering the timespan from 1992 until 2001. Each data stack consists of 49 to 73 ERS-1/-2 SAR images. A comparison of the PSI results with thematic data (e.g. volume and location of extracted natural gas) strongly indicates that a part of the detected land subsidence is caused by natural gas extraction. Furthermore, land subsidence caused by e.g. fluid injection and rock salt mining were successfully detected by the PSI analysis.

  18. Ecoenzymatic Stoichiometry of Microbial Organic Nutrient Acquisition in Soil and Sediment

    EPA Science Inventory

    Terrestrial soils and freshwater sediments contain reserves of organic carbon estimated at 1500 Pg and 0.2 Pg, respectively. Mineralization of this organic matter by heterotrophic microorganisms drives global carbon and nutrient cycles, controlling plant production and atmospher...

  19. Terrestrial and freshwater Tardigrada of the Americas.

    PubMed

    Meyer, Harry A

    2013-12-16

    This paper provides a comprehensive list of the freshwater and terrestrial tardigrade fauna reported from the Americas (North America, South America, Central America and the West Indies), their distribution in the Americas, and the substrates from which they have been reported. Data were obtained from 316 published references. Authors' identifications were accepted at face value unless subsequently amended. Taxa were assigned to sub-national units (states, provinces, etc.). Many areas, in particular large portions of Central America and the West Indies, have no reported tardigrade fauna.        The presence of 54 genera and 380 species has been reported for the Americas; 245 species have been collected in the Nearctic ecozone and 251 in the Neotropical ecozone. Among the tardigrade species found in the Americas, 52 are currently considered cosmopolitan, while 153 species have known distributions restricted to the Americas. Based on recent taxonomic revision of the genus Milnesium, the vast majority of records of M. tardigradum in the Americas should now be reassigned to Milnesium tardigradum sensu lato, either because the provided description differs from M. tardigradum sensu stricto or because insufficient description is provided to make a determination; the remainder should be considered Milnesium cf. tardigradum.        Most terrestrial tardigrade sampling in the Americas has focused on cryptogams (mosses, lichens and liverworts); 90% of the species have been collected in such substrates. The proportion of species collected in other habitats is lower: 14% in leaf litter, 20% in soil, and 24% in aquatic samples (in other terrestrial substrates the proportion never exceeds 5%). Most freshwater tardigrades have been collected from aquatic vegetation and sediment. For nine species in the Americas no substrates have been reported. 

  20. Reactive iron and manganese in estuarine sediments of the Baltic Sea: Impacts of flocculation and redox shuttling

    NASA Astrophysics Data System (ADS)

    Jilbert, Tom; Tiihonen, Rosa; Myllykangas, Jukka-Pekka; Asmala, Eero; Hietanen, Susanna

    2016-04-01

    Iron (Fe) and manganese (Mn) play important roles in sedimentary carbon cycling in both freshwater and marine systems. Dissimilatory reduction of Fe and Mn oxides is known to be a major pathway of suboxic organic matter remineralization in surface sediments, while recent studies have shown that Fe and Mn oxides may be involved in the anaerobic oxidation of methane deeper in the sediment column (e.g., Egger et al., 2015). Estuaries are transitional environments, characterized by gradients of salinity and redox conditions which impact on the mobility of Fe and Mn. In turn, the distribution of Fe and Mn in estuarine sediments, and the role of the two metals in carbon cycling, is expected to be spatially heterogeneous. However, few studies have attempted to describe the sedimentary distribution of Fe and Mn in the context of processes occurring in the estuarine water column. In particular, salinity-driven flocculation and redox shuttling are two key processes whose relative impacts on sedimentary Fe and Mn have not been clearly demonstrated. In this study we investigated the coupled water column and sedimentary cycling of Fe and Mn along a 60km non-tidal estuarine transect in the Gulf of Finland, Baltic Sea. We show that riverine Fe entering the estuary as colloidal oxides associated with dissolved organic matter (DOM) is quickly flocculated and sedimented within 5 km of the river mouth, despite the shallow lateral salinity gradient. Sediments within this range are enriched in Fe (up to twice the regional average), principally in the form of crystalline Fe oxides as determined by sequential extractions. The high crystallinity implies relative maturity of the oxide mineralogy, likely due to sustained oxic conditions and long residence time in the river catchment. Despite the reducing conditions below the sediment-water interface, Fe is largely retained in the sediments close to the river mouth. In contrast, sedimentary Mn concentrations are highest in a deep silled

  1. Contaminated Sediment

    EPA Pesticide Factsheets

    Contaminated sediments are a significant problem in the Great Lakes basin. Persistent high concentrations of contaminants in the bottom sediments of rivers and harbors pose risks to aquatic organisms, wildlife, and humans.

  2. Tracking Freshwater from Space

    NASA Astrophysics Data System (ADS)

    Alsdorf, D.

    2005-05-01

    River discharge as well as lake and wetland storage of water are critical elements of land surface hydrology, yet they are poorly observed globally and the prospects for improvement from in-situ networks are bleak. Considering this, a NASA Surface Water working group has been focused on answering the following science and applications questions: (1) What are the observational and data assimilation requirements for measuring natural and manmade surface storage and river discharge that will allow us to (a) understand the land surface branch of the global hydrologic cycle, (b) predict the consequences of global change, and (c) make assessments for water resources management? (2) What are the roles of wetlands, lakes, and rivers (a) as regulators of biogeochemical and constituent cycles (e.g., carbon, nutrients, and sediments) and (b) in creating or ameliorating water-related hazards of relevance to society? Global models of weather and climate could be constrained spatially and temporally by stream discharge and surface storage measurements. Yet this constraint is rarely applied, despite weather and climate modeling results showing that predicted precipitation is often inconsistent with observed discharge. Thus, as satellite missions are developed for global observations of critical hydrologic parameters such as soil moisture (i.e., HYDROS) and precipitation (i.e., GPM), the lack of concomitant measurements of runoff and surface water storage at compatible spatial and temporal scales may well result in inconsistent parameterizations of global hydrologic, weather, and climate models. Fortunately, several spaceborne methods have provided potential avenues toward answering these hydrologic questions. Among the most promising are active radar and lidar methods that measure inundation area, water heights, and changes. For example, radar altimetry is well known for its ability to measure ocean surface topography and such methods should be easily adaptable to inland waters

  3. AKT/PKB Signaling: Navigating Downstream

    PubMed Central

    Manning, Brendan D.; Cantley, Lewis C.

    2009-01-01

    The serine/threonine kinase Akt, also known as protein kinase B (PKB), is a central node in cell signaling downstream of growth factors, cytokines, and other cellular stimuli. Aberrant loss or gain of Akt activation underlies the pathophysiological properties of a variety of complex diseases, including type-2 diabetes and cancer. Here, we review the molecular properties of Akt and the approaches used to characterize its true cellular targets. In addition, we discuss those Akt substrates that are most likely to contribute to the diverse cellular roles of Akt, which include cell survival, growth, proliferation, angiogenesis, metabolism, and migration. PMID:17604717

  4. Erosion and sedimentation in the Kenai River, Alaska

    USGS Publications Warehouse

    Scott, Kevin M.

    1981-01-01

    The Kenai River is the most important freshwater fishery in Alaska. The flow regime is characterized by high summer flow of glacial meltwater and periodic flooding caused by sudden releases of glacier-dammed lakes in the headwaters. Every part of the stream is a known or potential salmon-spawning site. The stream channel is underfit, attributed to regional glacial recession and drainage changes, and locally is entrenched in response to geologically recent changes in base level. Throughout the central section of the river the channel is armored, a condition with implications for the ability of this section of channel to support the spawning and rearing of salmon. The entrenched section of the channel has been stable since 1951. Bank erosion is active both upstream and downstream from the entrenched channel, however. Although erosion rates have been generally constant since 1951, evidence suggests a possible recent decrease in bank stability that may be related to changes in river use. As population and recreation use increases, development can pose a hazard to the productivity of the stream through increased suspended-sediment concentration resulting directly from construction and, with greater potential for long-term impact, indirectly from bank erosion. A short-term hazard to both stream and developments is the cutoff of meander loops, the risk of which is increased by canals and boat slips cut in the surface layer of cohesive, erosion-resistant sediment on the flood plain within nonentrenched meander loops. A long-term hazard is an increase in bank erosion rates resulting from loss of vegetation on the high (up to 70 feet) cutbanks of entrenched and partially entrenched sections. (USGS)

  5. Erosion and sedimentation in the Kenai River, Alaska

    USGS Publications Warehouse

    Scott, Kevin M.

    1982-01-01

    The Kenai River is the most important freshwater fishery in Alaska. The flow regime is characterized by high summer flow of glacial meltwater and periodic flooding caused by sudden releases of glacier-dammed lakes in the headwaters. Every part of the stream is a known or potential salmon-spawning site. The stream channel is underfit, attributed to regional glacial recession and drainage changes, and locally is entrenched in response to geologically recent changes in base level. Throughout the central section of the river the channel is armored, a condition with implications for the ability of this section of channel to support the spawning and rearing of salmon. The entrenched section of the channel has been stable since 1951. Bank erosion is active both upstream and downstream from the entrenched channel, however. Although erosion rates have been generally constant since 1951, evidence suggests a possible recent decrease in bank stability that may be related to changes in river use. As population and recreation use increases, development can pose a hazard to the productivity of the stream through increased suspended-sediment concentration resulting directly from construction and, with greater potential for long-term impact, indirectly from bank erosion. A short-term hazard to both stream and developments is the cutoff of meander loops, the risk of which is increased by canals and boat slips cut in the surface layer of cohesive, erosion-resistant sediment on the flood plain within nonentrenched meander loops. A long-term hazard is an increase in bank erosion rates resulting from loss of vegetation on the high (up to 70 feet) cutbacks of entrenched and partially entrenched section. (USGS)

  6. Aquatic Sediments.

    ERIC Educational Resources Information Center

    Sanville, W. D.; And Others

    1978-01-01

    Presents a literature review of aquatic sediments and its effect upon water quality, covering publications of 1976-77. This review includes: (1) sediment water interchange; (2) chemical and physical characterization; and (3) heavy water in sediments. A list of 129 references is also presented. (HM)

  7. Freshwater diatomite deposits in the western United States

    USGS Publications Warehouse

    Wallace, Alan R.; Frank, David G.; Founie, Alan

    2006-01-01

    Freshwater diatomite deposits in the Western United States are found in lake beds that formed millions of years ago. These diatom-rich sediments are among the Nation's largest commercial diatomite deposits. Each deposit contains billions of tiny diatom skeletons, which are widely used for filtration, absorption, and abrasives. New studies by the U.S. Geological Survey (USGS) are revealing how ancient lakes in the Western States produced such large numbers of diatoms. These findings can be used by both land-use managers and mining companies to better evaluate diatomite resources in the region.

  8. Estimation of Downstream Cesium Concentrations Following a Postulated PAR Pond Dam Break

    SciTech Connect

    Chen, K.F.

    2002-07-08

    Following a postulated PAR Pond dam break, some of the PAR Pond sediment including the cesium could be eroded and be transported downstream to the Savannah River through the Lower Three Runs Creek. Studies showed that most of the eroded sediment including the cesium would deposit in the Lower Three Runs Creek and the remainder would discharge to the Savannah River from the mouth of Lower Three Runs Creek. A WASP5 model was developed to simulate the eroded sediment and cesium transport from the Lower Three Runs Creek mouth to the Atlantic coast. The dissolved cesium concentrations at the Highway 301 bridge and near the City of Savannah Industrial and Domestic Water Supply Plant are 30 and 27 pCi/l, respectively. The concentrations at both locations are less than the U. S. Environmental Protection Agency drinking water standard of 200 pCi/l.

  9. Draft Test Guideline: Whole Sediment Acute Toxicity Invertebrates, Freshwater

    EPA Pesticide Factsheets

    The following draft test guideline is part of a series of test guidelines that have been developed by EPA for use in the testing of pesticides and toxic substances, and the development of test data for submission to the Agency for review.

  10. Review and Synthesis of Bioassessment Methodologies for Freshwater Contaminated Sediments

    DTIC Science & Technology

    1990-01-01

    treatment effects, and safety considerations. The authors recommend three test species; Hyalella azteca, Chironomus tentans, and Chironomus riparius...given below. a. Hyalella azteca. Provide exposure at 200 C in I-L beakers or 20- aquaria for ᝺ days (short-term partial life cycle) or >10 days...benthic invertebrate bioassays. Three test species are recommended: Chironomus tentans, Hyalella azteca, and Hexa- genia limbata. See earlier discussions

  11. Inhabitants of the Fresh-Water Community.

    ERIC Educational Resources Information Center

    Jorgensen, Joseph; Schroeder, Marlene

    This learner's guide is designed to assist middle school students in studying freshwater organisms. Following a brief introduction to freshwater ecology, simple line drawings facilitate the identification of plants and animals common to Florida's freshwater ecosystems. Emphasis of the short text which accompanies each illustration is upon the…

  12. Upstream and Downstream Influence in STBLI Instability

    NASA Astrophysics Data System (ADS)

    Martin, Pino; Priebe, Stephan; Helm, Clara

    2016-11-01

    Priebe and Martín (JFM, 2012) show that the low-frequency unsteadiness in shockwave and turbulent boundary layer interactions (STBLI) is governed by an inviscid instability. Priebe, Tu, Martín and Rowley (JFM, 2016) show that the instability is an inviscid centrifugal one, i.e Görtlerlike vortices. Previous works had given differing conclusions as to whether the low-frequency unsteadiness in STBLI is caused by an upstream or downstream mechanism. In this paper, we reconcile these opposite views and show that upstream and downstream correlations co-exist in the context of the nature of Görtler vortices. We find that the instability is similar to that in separated subsonic and laminar flows. Since the turbulence is modulated but passive to the global mode, the turbulent separated flows are amenable to linear global analysis. As such, the characteristic length and time scales, and the receptivity of the global mode might be determined, and low-order models that represent the low-frequency dynamics in STBLI might be developed. The centrifugal instability persists even under hypersonic conditions. This work is funded by the AFOSR Grant Number AF9550-15-1-0284 with Dr. Ivett Leyva.

  13. Plasma waves downstream of weak collisionless shocks

    NASA Technical Reports Server (NTRS)

    Coroniti, F. V.; Greenstadt, E. W.; Moses, S. L.; Smith, E. J.; Tsurutani, B. T.

    1993-01-01

    In September 1983 the International Sun Earth Explorer 3 (ISEE 3) International Cometary Explorer (ICE) spacecraft made a long traversal of the distant dawnside flank region of the Earth's magnetosphere and had many encounters with the low Mach number bow shock. These weak shocks excite plasma wave electric field turbulence with amplitudes comparable to those detected in the much stronger bow shock near the nose region. Downstream of quasi-perpendicular (quasi-parallel) shocks, the E field spectra exhibit a strong peak (plateau) at midfrequencies (1 - 3 kHz); the plateau shape is produced by a low-frequency (100 - 300 Hz) emission which is more intense behind downstream of two quasi-perpendicular shocks show that the low frequency signals are polarized parallel to the magnetic field, whereas the midfrequency emissions are unpolarized or only weakly polarized. A new high frequency (10 - 30 kHz) emission which is above the maximum Doppler shift exhibit a distinct peak at high frequencies; this peak is often blurred by the large amplitude fluctuations of the midfrequency waves. The high-frequency component is strongly polarized along the magnetic field and varies independently of the lower-frequency waves.

  14. Rapid reservoir erosion, hyperconcentrated flow, and downstream deposition triggered by breaching of 38 m tall Condit Dam, White Salmon River, Washington

    USGS Publications Warehouse

    Wilcox, Andrew C.; O'Connor, James E.; Major, Jon J.

    2014-01-01

    Condit Dam on the White Salmon River, Washington, a 38 m high dam impounding a large volume (1.8 million m3) of fine-grained sediment (60% sand, 35% silt and clay, and 5% gravel), was rapidly breached in October 2011. This unique dam decommissioning produced dramatic upstream and downstream geomorphic responses in the hours and weeks following breaching. Blasting a 5 m wide hole into the base of the dam resulted in rapid reservoir drawdown, abruptly releasing ~1.6 million m3 of reservoir water, exposing reservoir sediment to erosion, and triggering mass failures of the thickly accumulated reservoir sediment. Within 90 min of breaching, the reservoir's water and ~10% of its sediment had evacuated. At a gauging station 2.3 km downstream, flow increased briefly by 400 m3 s−1during passage of the initial pulse of released reservoir water, followed by a highly concentrated flow phase—up to 32% sediment by volume—as landslide-generated slurries from the reservoir moved downstream. This hyperconcentrated flow, analogous to those following volcanic eruptions or large landslides, draped the downstream river with predominantly fine sand. During the ensuing weeks, suspended-sediment concentration declined and sand and gravel bed load derived from continued reservoir erosion aggraded the channel by >1 m at the gauging station, after which the river incised back to near its initial elevation at this site. Within 15 weeks after breaching, over 1 million m3 of suspended load is estimated to have passed the gauging station, consistent with estimates that >60% of the reservoir's sediment had eroded. This dam removal highlights the influence of interactions among reservoir erosion processes, sediment composition, and style of decommissioning on rate of reservoir erosion and consequent downstream behavior of released sediment.

  15. Late Holocene climate and land-use impacts on ecology and carbon cycling in Atlantic coastal plain tidal freshwater wetlands

    NASA Astrophysics Data System (ADS)

    Jones, M.; Bernhardt, C. E.

    2013-12-01

    Tidal freshwater wetlands are vulnerable to degradation from changing climate, land-use practices, and sea level. Their position between fully tidal and fully non-tidal ecosystems and sensitivity to minor fluctuations in salinity makes them ideal candidates to record the effects of climate and sea-level variability. These wetlands also act as a substantial carbon (C) sink, and paleoclimate studies provide important evidence not only on the long-term impact of perturbations on their ecological structure and function, but also on their ability to store C. Here we examine the late Holocene impacts of climate, land-use change, and sea level rise on four tidal freshwater wetlands in the Waccamaw River and Turkey Creek, South Carolina. A transect of four sites that range from an almost completely fresh forested swamp at the most upstream site to a higher salinity oligohaline marsh downstream. The two intermediate sites are forested swamps at different stages of degradation. We analyzed pollen assemblages, plant macrofossils, and carbon accumulation rates from sediment cores spanning the last ~1500-2000 years. Overall, higher rates of C accumulation are associated with woody swamp peat than with herbaceous peat, as determined from peat macrofossils and pollen assemblages. All sites show decreased C accumulation rates with the onset of the Medieval Climate Anomaly (MCA), which remained low through the Little Ice Age (LIA) (~1500 to 150 cal yr BP). These changes are accompanied by a switch from woody swamp peat to a graminoid-dominated peat lithology in the two uppermost forested swamp locations, as well as in the oligohaline marsh located farthest south along the transect. The switch from swamp to the modern oligohaline marsh during the MCA suggests that both sea level and land-use change permanently transformed the wetland. Rice cultivation beginning ~300 cal yr BP may be responsible for an apparent hiatus in several of the cores and may explain a Poaceae spike in the

  16. Isotopic Composition of Inorganic Mercury and Methylmercury Downstream of a Historical Gold Mining Region.

    PubMed

    Donovan, Patrick M; Blum, Joel D; Singer, Michael Bliss; Marvin-DiPasquale, Mark; Tsui, Martin T K

    2016-02-16

    We measured total mercury (THg) and monomethyl mercury (MMHg) concentrations and mercury (Hg) isotopic compositions in sediment and aquatic organisms from the Yuba River (California, USA) to identify Hg sources and biogeochemical transformations downstream of a historical gold mining region. Sediment THg concentrations and δ(202)Hg decreased from the upper Yuba Fan to the lower Yuba Fan and the Feather River. These results are consistent with the release of Hg during gold mining followed by downstream mixing and dilution. The Hg isotopic composition of Yuba Fan sediment (δ(202)Hg = -0.38 ± 0.17‰ and Δ(199)Hg = 0.04 ± 0.03‰; mean ± 1 SD, n = 7) provides a fingerprint of inorganic Hg (IHg) that could be methylated locally or after transport downstream. The isotopic composition of MMHg in the Yuba River food web was estimated using biota with a range of %MMHg (the percent of THg present as MMHg) and compared to IHg in sediment, algae, and the food web. The estimated δ(202)Hg of MMHg prior to photodegradation (-1.29 to -1.07‰) was lower than that of IHg and we suggest this is due to mass-dependent fractionation (MDF) of up to -0.9‰ between IHg and MMHg. This result is in contrast to net positive MDF (+0.4 to +0.8‰) previously observed in lakes, estuaries, coastal oceans, and forests. We hypothesize that this unique relationship could be due to differences in the extent or pathway of biotic MMHg degradation in stream environments.

  17. Isotopic composition of inorganic mercury and methylmercury downstream of a historical gold mining region

    USGS Publications Warehouse

    Donovan, Patrick M.; Blum, Joel D.; Singer, Michael B.; Marvin-DiPasquale, Mark C.; Tsui, Martin T.K.

    2016-01-01

    We measured total mercury (THg) and monomethyl mercury (MMHg) concentrations and mercury (Hg) isotopic compositions in sediment and aquatic organisms from the Yuba River (California, USA) to identify Hg sources and biogeochemical transformations downstream of a historical gold mining region. Sediment THg concentrations and δ202Hg decreased from the upper Yuba Fan to the lower Yuba Fan and the Feather River. These results are consistent with the release of Hg during gold mining followed by downstream mixing and dilution. The Hg isotopic composition of Yuba Fan sediment (δ202Hg = −0.38 ± 0.17‰ and Δ199Hg = 0.04 ± 0.03‰; mean ± 1 SD, n = 7) provides a fingerprint of inorganic Hg (IHg) that could be methylated locally or after transport downstream. The isotopic composition of MMHg in the Yuba River food web was estimated using biota with a range of %MMHg (the percent of THg present as MMHg) and compared to IHg in sediment, algae, and the food web. The estimated δ202Hg of MMHg prior to photodegradation (−1.29 to −1.07‰) was lower than that of IHg and we suggest this is due to mass-dependent fractionation (MDF) of up to −0.9‰ between IHg and MMHg. This result is in contrast to net positive MDF (+0.4 to +0.8‰) previously observed in lakes, estuaries, coastal oceans, and forests. We hypothesize that this unique relationship could be due to differences in the extent or pathway of biotic MMHg degradation in stream environments.

  18. 9. VIEW WEST TOWARD DOWNSTREAM SIDE OF SPILLWAY FROM NORTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. VIEW WEST TOWARD DOWNSTREAM SIDE OF SPILLWAY FROM NORTH SIDE OF DOWNSTREAM BANK OF DAM - Upper Doughty Dam, 200 feet west of Garden State Parkway, 1.7 miles west of Absecon, Egg Harbor City, Atlantic County, NJ

  19. [Effect of Drought and Subsequent Re-wetting Cycles on Transferable Nitrogen and Its Form Distribution in the Sediment of Water Level Fluctuating Zone in the Tributary of Three Gorge Reservoir Areas].

    PubMed

    Lin, Jun-jie; Zhang, Shuai; Yang, Zhen-yu; He, Li-ping; Zhou, Nong; Zhang, Qian-ru

    2015-07-01

    Nitrogen is the most comment source of eutrophication in freshwater systems. In current study, we investigated the various forms of transferable nitrogen in sediments, which potentially contributed to the nitrogen output into waters. Sediments samples were collected in the water level fluctuating zone of Pengxi River crossing three hydrological sections, e. g. upstream, midstream and downstream and two water level altitudes, 160 m and 170 m, with multiple depths for each site, 0-20, 20-40, 40-60, 60-80, 80-100 cm. To characterize the response of transformation of nitrogen in sediment of the water level fluctuating zone towards cycles of drought and re-wetting processes, we analyzed the content and distribution of transferable nitrogen (TF-N) and its forms. The result showed that the changing of the amount of total nitrogen followed the pattern of upstream > midstream > downstream, the mean value was in the range of 313.02-3 255.53 mg. kg-1, while the content of total transferable nitrogen was on an average of 639.40 mg . kg-1 and coincided with the pattern of total nitrogen. In addition, TF-N followed the pattern of OSF-N > IMOF-N > OSF-N > IEF-N. It indicated that both OSF-N and IMOF-N dominated the form of TF-N in sediments by proportions of 50. 9% and 33. 3%, respectively. Since the transformation rate of OSF-N into dissolved phase was relatively slow, its contribution as a source of nitrogen to eutrophication was limited. We, thus, concluded that IMOF-N was the most important fraction which could be potentially affected by water fluctuation and contributed as dissolved nitrogen into water phase. This study indicated that the manner of manipulating water resource in the Three Gorges Reservoir area has raised the potential risk of transforming IMOF-N from sediment into water phase.

  20. Vannellid Species Isolated from Freshwater Source in a Park in Jamaica, West Indies

    PubMed Central

    Todd, Cheridah D.; Reyes-Batlle, María; Valladares, Basilio; Lindo, John F.; Lorenzo-Morales, Jacob

    2015-01-01

    Free-living amoebae (FLA) occupy a wide range of freshwater, marine, and soil habitats, and are opportunistic pathogens in human beings. While Acanthamoeba spp., Naegleria fowleri, and Balamuthia mandrillaris are well-known opportunistic organisms, Vannella epipetala is nonpathogenic. Sediments were collected from a freshwater source from a park in Jamaica to investigate the presence of FLA. Acanthamoeba and Naegleria spp. were not recovered; however, a Vannellid species identified by microscopy and PCR analysis as V. epipetala was isolated. These nonpathogens pose a threat to human beings as they may act as Trojan horses for microsporidian parasites and other pathogens, thereby facilitating their transmission to human beings. PMID:26512204

  1. Presence of enteric viruses in freshwater and their removal by the conventional drinking water treatment process.

    PubMed Central

    Hurst, C. J.

    1991-01-01

    A review of results published in English or French between 1980 and 1990 was carried out to determine the levels of indigenous human enteric viruses in untreated surface and subsurface freshwaters, as well as in drinking water that had undergone the complete conventional treatment process. For this purpose, the conventional treatment process was defined as an operation that included coagulation followed by sedimentation, filtration, and disinfection. Also assessed was the stepwise efficiency of the conventional treatment process, as practised at full-scale facilities, for removing indigenous viruses from naturally occurring freshwaters. A list was compiled of statistical correlations relating to the occurrence of indigenous viruses in water. PMID:1647273

  2. Genotoxicity monitoring of freshwater environments using caged crayfish (Astacus leptodactylus).

    PubMed

    Klobučar, Göran I V; Malev, Olga; Šrut, Maja; Štambuk, Anamaria; Lorenzon, Simonetta; Cvetković, Želimira; Ferrero, Enrico A; Maguire, Ivana

    2012-03-01

    Genotoxicity of freshwater pollution was assessed by measuring DNA damage in haemocytes of caged freshwater crayfish Astacus leptodactylus by the means of Comet assay and micronucleus test, integrated with the measurements of physiological (total protein concentration) and immunological (total haemocyte count) haemolymph parameters as biomarkers of undergone stress. Crayfish were collected at the reference site (River Mrežnica) and exposed in cages for 1 week at three polluted sites along the Sava River (Zagreb, Sisak, Krapje). The long term pollution status of these locations was confirmed by chemical analyses of sediments. Statistically significant increase in DNA damage measured by the Comet assay was observed at all three polluted sites comparing to the crayfish from reference site. In addition, native crayfish from the mildly polluted site (Krapje) cage-exposed on another polluted site (Zagreb) showed lower DNA damage than crayfish from the reference site exposed at the same location indicating adaptation and acclimatisation of crayfish to lower levels of pollution. Micronuclei induction showed similar gradient of DNA damage as Comet assay, but did not reach the statistical significance. Observed increase in total haemocyte count and total protein content in crayfish from polluted environments in the Sava River also confirmed stress caused by exposure to pollution. The results of this study have proved the applicability of caging exposure of freshwater crayfish A. leptodactylus in environmental genotoxicity monitoring using Comet assay and micronucleus test.

  3. Sediment quality and aquatic life assessment

    SciTech Connect

    Adams, W.J. ); Kimerle, R.A.; Barnettt, J.W. Jr. )

    1992-10-01

    The protection of aquatic resources has assumed national and global prominence. Oil spills, medical wastes, and plastic debris presence on beaches, ocean incineration, ocean disposal of garbage and dredged materials, pesticide and fertilizer runoff, contaminated harbors, and diminishing fisheries have focused public attention on the need to adequately protect marine and freshwater resources-including sediments. Sediments are repositories for physical debris and [open quotes]sinks[close quotes] for a wide variety of chemicals. The concern associated with the chemicals sorbed to sediments is that many commercial species and food chain organisms spend a major portion of their life-cycle living in or on aquatic sediments. This provides a pathway for these chemicals to be consumed by higher aquatic life and wildlife, including avian species as well as humans. Direct transfer of chemicals from sediments to organisms is now considered to be a major route of exposure for many species. Concern has increased over the number of incidences of tumors being observed in many species of fish, especially those that have direct contact with sediments. These issues are focusing attention on sediment contamination and highlight the fact that sediments are an important resource. The purposes of this article are to provide background information on the status of sediment assessment in the United States, a review of the existing methods available for assessing sediment quality, an analysis of the complexity and uncertainty of the sediment assessment methodologies, and a proposed approach that utilizes the unique attributes of many of these methods in a tiered sediment assessment strategy. The authors hope that this sediment assessment strategy will help provide a mechanism for achieving cleaner sediments and wate rin the nation's aquatic ecosystems.

  4. Sediment supply versus local hydraulic controls on sediment transport and storage in a river with large sediment loads

    USGS Publications Warehouse

    Dean, David; Topping, David; Schmidt, John C.; Griffiths, Ronald; Sabol, Thomas

    2016-01-01

    The Rio Grande in the Big Bend region of Texas, USA, and Chihuahua and Coahuila, Mexico, undergoes rapid geomorphic changes as a result of its large sediment supply and variable hydrology; thus, it is a useful natural laboratory to investigate the relative importance of flow strength and sediment supply in controlling alluvial channel change. We analyzed a suite of sediment transport and geomorphic data to determine the cumulative influence of different flood types on changing channel form. In this study, physically based analyses suggest that channel change in the Rio Grande is controlled by both changes in flow strength and sediment supply over different spatial and temporal scales. Channel narrowing is primarily caused by substantial deposition of sediment supplied to the Rio Grande during tributary-sourced flash floods. Tributary floods have large suspended-sediment concentrations, occur for short durations, and attenuate rapidly downstream in the Rio Grande, depositing much of their sediment in downstream reaches. Long-duration floods on the mainstem have the capacity to enlarge the Rio Grande, and these floods, released from upstream dams, can either erode or deposit sediment in the Rio Grande depending upon the antecedent in-channel sediment supply and the magnitude and duration of the flood. Geomorphic and sediment transport analyses show that the locations and rates of sand erosion and deposition during long-duration floods are most strongly controlled by spatial changes in flow strength, largely through changes in channel slope. However, spatial differences in the in-channel sediment supply regulate sediment evacuation or accumulation over time in long reaches (greater than a kilometer).

  5. Influence of Wastewater Discharge on the Metabolic Potential of the Microbial Community in River Sediments.

    PubMed

    Li, Dong; Sharp, Jonathan O; Drewes, Jörg E

    2016-01-01

    To reveal the variation of microbial community functions during water filtration process in river sediments, which has been utilized widely in natural water treatment systems, this study investigates the influence of municipal wastewater discharge to streams on the phylotype and metabolic potential of the microbiome in upstream and particularly various depths of downstream river sediments. Cluster analyses based on both microbial phylogenetic and functional data collectively revealed that shallow upstream sediments grouped with those from deeper subsurface downstream regions. These sediment samples were distinct from those found in shallow downstream sediments. Functional genes associated with carbohydrate, xenobiotic, and certain amino acid metabolisms were overrepresented in upstream and deep downstream samples. In contrast, the more immediate contact with wastewater discharge in shallow downstream samples resulted in an increase in the relative abundance of genes associated with nitrogen, sulfur, purine and pyrimidine metabolisms, as well as restriction-modification systems. More diverse bacterial phyla were associated with upstream and deep downstream sediments, mainly including Actinobacteria, Planctomycetes, and Firmicutes. In contrast, in shallow downstream sediments, genera affiliated with Betaproteobacteria and Gammaproteobacteria were enriched with putative functions that included ammonia and sulfur oxidation, polyphosphate accumulation, and methylotrophic bacteria. Collectively, these results highlight the enhanced capabilities of microbial communities residing in deeper stream sediments for the transformation of water contaminants and thus provide a foundation for better design of natural water treatment systems to further improve the removal of contaminants.

  6. Evidence of Mercurial Contamination and Denundation Downstream of New Idria Mercury Mine, San Benito County, California

    NASA Astrophysics Data System (ADS)

    Letsinger, H. E.; Sharma, R. K.; Weinman, B.

    2014-12-01

    California's Central Valley water quality and soils are essential to the survival of the valley's communities and agriculture. Therefore, detection of possible contaminants within the valley streams and soils are paramount to the protection of this land and the people that depend upon it. Here we explore the impact of the contaminated stream beds near the New Idria Mercury Mine site, San Benito County, California. Previous work by Ganguli et al. (2000) has been done in this area to determine the mercury levels associated with the water that flows near the ghost town of New Idria. We performed geochemical analyses on the finer bed sediments from channels draining the area, as well as the coarser sediments taken from along the channel banks, to determine mercury transport downriver from the source. Using a novel application of tau, a mass transfer coefficient typically used in critical zone studies or soil production and weathering rates, we determine downstream weathering, accumulation, and transport of mercury. Our initial geochemical data showed higher tau values upstream as well as within the banks of the contaminated streambed and a greater accumulation of mercury near the pollution source (i.e., mine tailings, (τ ~ 103)). Tau results also show elevated mercurial levels existing downstream, with accumulations in mid- (τ ~ 102) and down-stream (τ ~ 10) reaches. Combining tau results with more traditional indices of chemical weathering (CIA) support consistent overall Hg-weathering processes with low levels of chemical weathering and higher dominance of coupled physical-anthropogenic weathering.

  7. Widespread Inducible Transcription Downstream of Human Genes

    PubMed Central

    Vilborg, Anna; Passarelli, Maria C.; Yario, Therese A.; Tycowski, Kazimierz T.; Steitz, Joan A.

    2015-01-01

    Summary Pervasive transcription of the human genome generates RNAs whose mode of formation and functions are largely uncharacterized. Here, we combine RNA-Seq with detailed mechanistic studies to describe a transcript type derived from protein-coding genes. The resulting RNAs, which we call DoGs for downstream of gene containing transcripts, possess long non-coding regions (often >45 kb) and remain chromatin bound. DoGs are inducible by osmotic stress through an IP3 receptor signaling-dependent pathway, indicating active regulation. DoG levels are increased by decreased termination of the upstream transcript, a previously undescribed mechanism for rapid transcript induction. Relative depletion of polyA signals in DoG regions correlates with increased levels of DoGs after osmotic stress. We detect DoG transcription in several human cell lines and provide evidence for thousands of DoGs genome-wide. PMID:26190259

  8. Channel changes downstream from a dam

    USGS Publications Warehouse

    Hadley, R.F.; Emmett, W.W.

    1998-01-01

    A flood-control dam was completed during 1979 on Bear Creek, a small tributary stream to the South Platte River in the Denver, Colorado, area. Before and after dam closure, repetitive surveys between 1977 and 1992 at five cross sections downstream of the dam documented changes in channel morphology. During this 15-year period, channel width increased slightly, but channel depth increased by more than 40 percent. Within the study reach, stream gradient decreased and median bed material sizes coarsened from sand in the pools and fine gravel on the riffle to a median coarse gravel throughout the reach. The most striking visual change was from a sparse growth of streamside grasses to a dense growth of riparian woody vegetation.

  9. Turbulence decay downstream of an active grid

    NASA Astrophysics Data System (ADS)

    Bewley, Gregory; Bodenschatz, Eberhard

    2015-11-01

    A grid in a wind tunnel stirs up turbulence that has a certain large-scale structure. The moving parts in a so-called ``active grid'' can be programmed to produce different structures. We use a special active grid in which each of 129 paddles on the grid has its own position-controlled servomotor that can move independently of the others. We observe among other things that the anisotropy in the amplitude of the velocity fluctuations and in the correlation lengths can be set and varied with an algorithm that oscillates the paddles in a specified way. The variation in the anisotropies that we observe can be explained by our earlier analysis of anisotropic ``soccer ball'' turbulence (Bewley, Chang and Bodenschatz 2012, Phys. Fluids). We define the influence of this variation in structure on the downstream evolution of the turbulence. with Eberhard Bodenschatz and others.

  10. Trait-based modelling of bioaccumulation by freshwater benthic invertebrates.

    PubMed

    Sidney, Livia Alvarenga; Diepens, Noël J; Guo, Xiaoying; Koelmans, Albert A

    2016-07-01

    Understanding the role of species traits in chemical exposure is crucial for bioaccumulation and toxicity assessment of chemicals. We measured and modelled bioaccumulation of polychlorinated biphenyls (PCBs) in Chironomus riparius, Hyalella azteca, Lumbriculus variegatus and Sphaerium corneum. We used a battery test procedure with multiple enclosures in one aquarium, which maximized uniformity of exposure for the different species, such that the remaining variability was due mostly to species traits. The relative importance of uptake from either pore water or sediment ingestion was manipulated by using 28 d aged standard OECD sediment with low (1%) and medium (5%) OM content and 13 months aged sediment with medium OM (5%) content. Survival was ≥76% and wet weight increased for all species. Reproduction of H. azteca and weight gain of H. azteca and S. corneum were significantly higher in the medium OM aged sediments than in other sediments, perhaps due to a more developed microbial community (i.e., increase in food resources). Biota-sediment accumulation factors (BSAF) ranged from 3 to 114, depending on species and PCB congener, with C. riparius (3-10)freshwater taxonomic groups were compared with their marine counterparts and showed overlapping values. The dynamic bioaccumulation model with species-specific bioaccumulation parameters fitted well to the experimental data and showed that bioaccumulation parameters were depended on species traits. Enclosure-based battery tests and mechanistic BSAF models are expected to improve the quality of the exposure assessment in whole sediment toxicity tests.

  11. Ammonia downstream from HH 80 North

    NASA Technical Reports Server (NTRS)

    Girart, Jose M.; Rodriguez, Luis F.; Anglada, Guillem; Estalella, Robert; Torrelles, Jose, M.; Marti, Josep; Pena, Miriam; Ayala, Sandra; Curiel, Salvador; Noriega-Crespo, Alberto

    1994-01-01

    HH 80-81 are two optically visible Herbig-Haro (HH) objects located about 5 minutes south of their exciting source IRAS 18162-2048. Displaced symmetrically to the north of this luminous IRAS source, a possible HH counterpart was recently detected as a radio continuum source with the very large array (VLA). This radio source, HH 80 North, has been proposed to be a member of the Herbig-Haro class since its centimeter flux density, angular size, spectral index, and morphology are all similar to those of HH 80. However, no object has been detected at optical wavelengths at the position of HH 80 North, possibly because of high extinction, and the confirmation of the radio continuum source as an HH object has not been possible. In the prototypical Herbig-Haro objects HH 1 and 2, ammonia emission has been detected downstream of the flow in both objects. This detection has been intepreted as a result of an enhancement in the ammonia emission produced by the radiation field of the shock associated with the HH object. In this Letter we report the detection of the (1,1) and (2,2) inversion transitions of ammonia downstream HH 80 North. This detection gives strong suppport to the interpretation of HH 80 North as a heavily obscured HH object. In addition, we suggest that ammonia emission may be a tracer of embedded Herbig-Haro objects in other regions of star formation. A 60 micrometer IRAS source could be associated with HH 80 North and with the ammonia condensation. A tentative explanation for the far-infrared emission as arising in dust heated by their optical and UV radiation of the HH object is presented.

  12. Increasing the robustness and flexibility of freshwater lenses in coastal areas under climate stress

    NASA Astrophysics Data System (ADS)

    Pauw, P.

    2011-12-01

    (by increased nearshore sediment nourishments) on groundwater flow will be investigated by means of numerical models. The increased sediment nourishments have been proposed by the Dutch scientific committee, the 'Deltacommissie', in order to realize a safer coast by artificial coastline progradation. For the long-term modelling of beach and dune groundwater flow, the dynamic groundwater flow on the beach needs to be upscaled properly. This knowledge will then be used to investigate the hydrological impacts a coastline progradation. Although all these aims are amplified on the situation in the Western Netherlands, the outcome of the research is believed to be of practical use in many other similar coastal areas in the world. The research has started in Oktober 2010. Preliminary results of numerical models and field measurements on the scale of medium and large freshwater lenses will be presented.

  13. Environmental Benefits of Restoring Sediment Continuity to the Kansas River

    DTIC Science & Technology

    2016-06-01

    quality and ecological effects of reservoir aging by sediment accumulation. The section titled “Downstream Channel Effects” cites specific ecological ...tons/year (National Research Council 2011). This technical note documents water quality and ecological effects of reservoir aging by sediment...accumulation, specific ecological effects from unnaturally low turbidity levels in the Kansas River, and natural (without reservoir) quantity and timing of

  14. Impacts of large dams on downstream flow conditions of rivers: Aggradation and reduction of the Medjerda channel capacity downstream of the Sidi Salem dam (Tunisia)

    NASA Astrophysics Data System (ADS)

    Zahar, Yadh; Ghorbel, Abdelmajid; Albergel, Jean

    2008-04-01

    SummarySince the opening of the Sidi Salem dam on the watercourse of the Medjerda, in 1981, an alarming narrowing of the riverbed in the lower valley has been observed. This geo-morphological change is attributed to different factors ranking from the reduction in the discharge flows, which used to clean out the riverbed to the periodic releases of turbid water undertaken to remove the silt deposition inside the reservoir, which increased the sediment deposition in the downstream channel. Other smaller hydraulic projects are also held responsible for the loss of the water velocity including a series of concrete sills meant to raise water levels, numerous cross bridges and the management of the downstream Laroussia dam regulating the discharge from the Cap Bon canal. The above anthropogenic factors, in conjunction with natural topographical conditions characterized by a generally shallow slope and a very sinuous watercourse, led to an extremely rapid aggradation of the downstream channel-bed. This paper proposes an analysis of this process and argues that the resulting reduction in channel capacity is one of the major causes of the large floods experienced in the country since 1996.

  15. Measuring the acute toxicity of estuarine sediments

    SciTech Connect

    DeWitt, T.H.; Swartz, R.C.; Lanberson, J.O.

    1989-01-01

    Estuarine sediments frequently are repositories and sources of anthropogenic contaminants. Toxicity is one method of assessing the environmental quality of sediments, yet because of the extreme range of salinities that characterize estuaries few infaunal organisms have both the physiological tolerance and sensitivity to chemical contaminants to serve in estuarine sediment toxicity tests. The study describes research on the estuarine burrowing amphipod, Eohaustorius estuarius Bosworth, 1973, whose survival was >95% in control sediments across a 2 to 28% salinity range over 10-d periods. E. estuarius also was acutely sensitive to low sediment concentrations of the polycyclic aromatic hydrocarbon, fluoranthene (LC50 approximately = 10.6 mg/kg), and its sensitivity to fluoranthene was not affected by salinity. E. estuarius was almost as sensitive as Rhepoxynius abronius to fluoranthene and to field-collected sediments from Puget Sound urban and industrial bays. E. estuarius was also more tolerant of very fine, uncontaminated sediments than R. abronius. Furthermore, E. estuarius was more sensitive to sediments spiked with fluoranthene than the freshwater amphipod, Hyalella azteca. E. estuarius, and possibly other estuarine haustoriid species, appears to be an excellent candidate for testing the acute toxicity if estuarine and marine sediments.

  16. Estimation of the impact of particulate organic matter drained from a freshwater reservoir on the sea using diatom tracking.

    PubMed

    Shiratani, Eisaku; Kiri, Hirohide; Shimokawa, Hiroaki; Yokoyama, Yoshihiro; Nakashima, Masataka

    2008-01-01

    We estimated the extent of suspended solids (SS) and particulate organic matter (POM) discharged from a freshwater reservoir, called the Isahaya Reservoir, into a sea area by tracking the diatom frustules produced in the reservoir. The estimation method is based on the fact that Skeletonema subsalsum and S. costatum, are the predominant diatoms in the reservoir and the sea, respectively, and the discharged SS and POM contain the freshwater diatom, S. subsalsum, and that the diatom frustules remain undecomposed in the environment even after the plankton decays. The results of the sediment trap experiment and bottom sediment survey showed that the distribution of diatom frustules in the bottom sediment had good agreement with that in the water column in the sea, and the greatest amounts of the drained SS and POM were estimated to have reached and settled down on the bottom sediment in the sea area within approximately 2 km from the drainage gates of the reservoir.

  17. Sedimentology of the cold-climate, coal-bearing, Lower Permian ``Lower Freshwater Sequence'' of Tasmania

    NASA Astrophysics Data System (ADS)

    Martini, I. P.; Banks, M. R.

    1989-08-01

    The Lower Permian "Lower Freshwater Sequence" of Tasmania consists of fluvial and coastal sediments deposited in a cold-climate setting adjacent to ice-ridden, shallow seas. The sequence represents a regressive pulse during the filling of a marine basin, possibly a fjord, up to 150 km wide and more than 270 km long, occupied by glaciers in the late Carboniferous. The climatic conditions during the early Permian in Tasmania are revealed by (1) well-developed continental scree breccias, (2) the flora ( Glossopteris-Gangamopteris assemblage), (3) rarity of fossils in tidal deposits, (4) the structure of the trace fossil population (intense bioturbation in offshore muds), (5) the foramol nature of the fauna of the marine beds below and above the Lower Freshwater Sequence, a fauna dominated by brachiopods and bryozoa and containing Eurydesma, and (6) features of the sediments themselves, such as "lonestones" in muddy offshore marine deposits, and oxygen isotopes of associated marine carbonates. Although the sedimentation in the Lower Freshwater Sequence is qualitatively analogous to that of the Quaternary of Canada, the fluvial and coastal sediments do not show evidence of ice rafting nor of frozen ground. Lack of such evidence suggests a cold-temperate rather than a subpolar setting.

  18. Comparison of water, sediment, and plants for the monitoring of antibiotics: a case study on a river dedicated to fish farming.

    PubMed

    Pouliquen, Hervé; Delépée, Raphaël; Thorin, Chantal; Haury, Jacques; Larhantec-Verdier, Michaëlle; Morvan, Marie-Line; Le Bris, Hervé

    2009-03-01

    Oxolinic acid, flumequine, oxytetracycline, and florfenicol are antibiotics commonly used in farming. Because an important percentage of these antibiotics given to fish and cattle ends up, directly or indirectly, in the freshwater environment, suitable tools for the monitoring of these antibiotics are needed. A French river was chosen because of the location of four fish farms and a sewage plant on its main course. First, a passive monitoring program involving water, sediment, and autochthonous bryophytes was performed at 25 sampling sites tested once every three months for one year. Second, an active monitoring method was performed using moss bags for a one-month exposure period, both upstream and downstream of each potential source of antibiotics. Sediment and bryophyte samples, but not water samples, were found to be useful for monitoring environmental contamination by oxolinic acid, flumequine, oxytetracycline, and florfenicol. Sediments and bryophytes also appeared to be complementary media for dating the river's contamination by antibiotics. Data collected by both active and passive monitoring methods confirmed contamination of the river, mainly by flumequine and oxytetracycline, attributable to fish farming but also to terrestrial animal farming and perhaps human pharmaceuticals.

  19. Freshwater Biodiversity and Insect Diversification

    PubMed Central

    Dijkstra, Klaas-Douwe B.; Monaghan, Michael T.; Pauls, Steffen U.

    2016-01-01

    Inland waters cover less than one percent of Earth’s surface, but harbor more than six percent of all insect species: nearly 100,000 species from 12 orders spend one or more life stages in freshwater. Little is known about how this remarkable diversity arose, although allopatric speciation and ecological adaptation are thought to be primary mechanisms. Freshwater habitats are exceptionally susceptible to environmental change, and exhibit marked ecological gradients. The amphibiotic lifestyles of aquatic insects result in complex contributions of extinction and allopatric and non-allopatric speciation in species diversification. In contrast to the lack of evolutionary studies, the ecology and habitat preferences of aquatic insects have been intensively studied, in part because of their widespread use as bio-indicators. The combination of phylogenetics with the extensive ecological data provides a promising avenue for future research, making aquatic insects highly suitable models for the study of ecological diversification. PMID:24160433

  20. Water quality for freshwater fish

    SciTech Connect

    Howells, G. )

    1994-01-01

    This timely and up-to-date volume brings together recent critical reviews on water quality requirements for freshwater fish commissioned by the European Inland Fisheries Advisory Commission, an agency of the United Nations Food and Agriculture Organization. It provides a unique and authoritative source of critically evaluated water quality data concerning the effects of chromium, nickel, aluminum and nitrite on freshwater fish and includes an assessment of the toxicity of mixtures. The reports presented in this volume cover all stages of the life cycle and relevant trophic levels, including aquatic invertebrates and plants and potential bioaccumulation through the food chain. An extensive bibliography is provided for each chapter as well as a glossary of terms and a list of fish species mentioned in the text. This compilation of papers is the definitive reference volume for chemists, biologists, ecologists and toxicologists as well as for water resource managers concerned with management and control of pollution in fresh waters.

  1. Multi proxy chemical properties of freshwater sapropel

    NASA Astrophysics Data System (ADS)

    Stankevica, Karina; Rutina, Liga; Burlakovs, Juris; Klavins, Maris

    2014-05-01

    Freshwater sapropel is organic rich lake sediment firstly named "gyttja" by Hampus van Post in 1862. It is composed of organic remains such as shell detritus, plankton, chitin of insects, spores of higher plants and mineral part formed in eutrophic lake environments. The most appropriate environments for the formation of sapropel are in shallow, overgrown post-glacial lakes and valleys of big rivers in boreal zone, while thick deposits of such kind of organic sediments rarely can be found in lakes on permafrost, mountainous regions or areas with increased aridity. Organic lake sediments are divided in 3 classes according the content of organic matter and mineral part: biogenic, clastic and mixed. The value of sapropel as natural resource increases with the content of organic matter and main applications of sapropel are in agriculture, medicine, cosmetic and chemical industry. The research of sapropel in Latvia has shown that the total amount of this natural resource is close to 2 billion m3 or ~500 million tons. Sapropel has fine, dispersed structure and is plastic, but colour due to the high natural content of phosphorus usually is dark blue, later after drying it becomes light blue. Main research of the sapropel nowadays is turned to investigation of interactions among organic and mineral part of the sapropel with living organisms thus giving the inside look in processes and biological activity of the formation. From the chemical point of view sapropel contains lipids (bitumen), water-soluble substances that are readily hydrolyzed, including humic and fulvic acids, cellulose and the residual part, which does not hydrolyze. In this work we have analyzed the class of organic sapropel: peaty, cyanobacterial and green algal types, as well as siliceous sapropel, in order to determine the presence of biologically active substances, including humic substances, proteins and enzymes as well as to check free radical scavenging activity. Samples were collected from lakes

  2. Changing Arctic Ocean freshwater pathways.

    PubMed

    Morison, James; Kwok, Ron; Peralta-Ferriz, Cecilia; Alkire, Matt; Rigor, Ignatius; Andersen, Roger; Steele, Mike

    2012-01-04

    Freshening in the Canada basin of the Arctic Ocean began in the 1990s and continued to at least the end of 2008. By then, the Arctic Ocean might have gained four times as much fresh water as comprised the Great Salinity Anomaly of the 1970s, raising the spectre of slowing global ocean circulation. Freshening has been attributed to increased sea ice melting and contributions from runoff, but a leading explanation has been a strengthening of the Beaufort High--a characteristic peak in sea level atmospheric pressure--which tends to accelerate an anticyclonic (clockwise) wind pattern causing convergence of fresh surface water. Limited observations have made this explanation difficult to verify, and observations of increasing freshwater content under a weakened Beaufort High suggest that other factors must be affecting freshwater content. Here we use observations to show that during a time of record reductions in ice extent from 2005 to 2008, the dominant freshwater content changes were an increase in the Canada basin balanced by a decrease in the Eurasian basin. Observations are drawn from satellite data (sea surface height and ocean-bottom pressure) and in situ data. The freshwater changes were due to a cyclonic (anticlockwise) shift in the ocean pathway of Eurasian runoff forced by strengthening of the west-to-east Northern Hemisphere atmospheric circulation characterized by an increased Arctic Oscillation index. Our results confirm that runoff is an important influence on the Arctic Ocean and establish that the spatial and temporal manifestations of the runoff pathways are modulated by the Arctic Oscillation, rather than the strength of the wind-driven Beaufort Gyre circulation.

  3. Meander cutoffs nonlocally accelerate upstream and downstream migration and channel widening

    NASA Astrophysics Data System (ADS)

    Schwenk, Jon; Foufoula-Georgiou, Efi

    2016-12-01

    The hydrologic and sediment dynamics within and near cutoffs have long been studied, establishing them as effective agents of rapid local geomorphic change. However, the morphodynamic impact of individual cutoffs at the reachwide scale remains unknown, mainly due to insufficient observations of channel adjustments over large areal extents and at high temporal frequency. Here we show via annually resolved, Landsat-derived channel masks of the dynamic meandering Ucayali River in Peru that cutoffs act as perturbations that nonlocally accelerate river migration and drive channel widening both upstream and downstream of the cutoff locations. By tracking planform changes of individual meander bends near cutoffs, we find that the downstream distance of cutoff influence scales linearly with the length of the removed reach. The discovery of nonlocal cutoff influence supports the hypothesis of "avalanche"-type behavior in meander cutoff dynamics and presents new challenges in modeling and prediction of rivers' self-adjusting responses to perturbations.

  4. Concentration, distribution, and translocation of mercury and methylmercury in mine-waste, sediment, soil, water, and fish collected near the Abbadia San Salvatore mercury mine, Monte Amiata district, Italy.

    PubMed

    Rimondi, Valentina; Gray, John E; Costagliola, Pilario; Vaselli, Orlando; Lattanzi, Pierfranco

    2012-01-01

    The distribution and translocation of mercury (Hg) was studied in the Paglia River ecosystem, located downstream from the inactive Abbadia San Salvatore mine (ASSM). The ASSM is part of the Monte Amiata Hg district, Southern Tuscany, Italy, which was one of the world's largest Hg districts. Concentrations of Hg and methyl-Hg were determined in mine-waste calcine (retorted ore), sediment, water, soil, and freshwater fish collected from the ASSM and the downstream Paglia River. Concentrations of Hg in calcine samples ranged from 25 to 1500 μg/g, all of which exceeded the industrial soil contamination level for Hg of 5 μg/g used in Italy. Stream and lake sediment samples collected downstream from the ASSM ranged in Hg concentration from 0.26 to 15 μg/g, of which more than 50% exceeded the probable effect concentration for Hg of 1.06 μg/g, the concentration above which harmful effects are likely to be observed in sediment-dwelling organisms. Stream and lake sediment methyl-Hg concentrations showed a significant correlation with TOC indicating considerable methylation and potential bioavailability of Hg. Stream water contained Hg as high as 1400 ng/L, but only one water sample exceeded the 1000 ng/L drinking water Hg standard used in Italy. Concentrations of Hg were elevated in freshwater fish muscle samples and ranged from 0.16 to 1.2 μg/g (wet weight), averaged 0.84 μg/g, and 96% of these exceeded the 0.3 μg/g (methyl-Hg, wet weight) USEPA fish muscle standard recommended to protect human health. Analysis of fish muscle for methyl-Hg confirmed that >90% of the Hg in these fish is methyl-Hg. Such highly elevated Hg concentrations in fish indicated active methylation, significant bioavailability, and uptake of Hg by fish in the Paglia River ecosystem. Methyl-Hg is highly toxic and the high Hg concentrations in these fish represent a potential pathway of Hg to the human food chain.

  5. Concentration, distribution, and translocation of mercury and methylmercury in mine-waste, sediment, soil, water, and fish collected near the Abbadia San Salvatore mercury mine, Monte Amiata district, Italy

    USGS Publications Warehouse

    Rimondi, V.; Gray, J.E.; Costagliola, P.; Vaselli, O.; Lattanzi, P.

    2012-01-01

    The distribution and translocation of mercury (Hg) was studied in the Paglia River ecosystem, located downstream from the inactive Abbadia San Salvatore mine (ASSM). The ASSM is part of the Monte Amiata Hg district, Southern Tuscany, Italy, which was one of the world’s largest Hg districts. Concentrations of Hg and methyl-Hg were determined in mine-waste calcine (retorted ore), sediment, water, soil, and freshwater fish collected from the ASSM and the downstream Paglia River. Concentrations of Hg in calcine samples ranged from 25 to 1500 μg/g, all of which exceeded the industrial soil contamination level for Hg of 5 μg/g used in Italy. Stream and lake sediment samples collected downstream from the ASSM ranged in Hg concentration from 0.26 to 15 μg/g, of which more than 50% exceeded the probable effect concentration for Hg of 1.06 μg/g, the concentration above which harmful effects are likely to be observed in sediment-dwelling organisms. Stream and lake sediment methyl-Hg concentrations showed a significant correlation with TOC indicating considerable methylation and potential bioavailability of Hg. Stream water contained Hg as high as 1400 ng/L, but only one water sample exceeded the 1000 ng/L drinking water Hg standard used in Italy. Concentrations of Hg were elevated in freshwater fish muscle samples and ranged from 0.16 to 1.2 μg/g (wet weight), averaged 0.84 μg/g, and 96% of these exceeded the 0.3 μg/g (methyl-Hg, wet weight) USEPA fish muscle standard recommended to protect human health. Analysis of fish muscle for methyl-Hg confirmed that > 90% of the Hg in these fish is methyl-Hg. Such highly elevated Hg concentrations in fish indicated active methylation, significant bioavailability, and uptake of Hg by fish in the Paglia River ecosystem. Methyl-Hg is highly toxic and the high Hg concentrations in these fish represent a potential pathway of Hg to the human food chain.

  6. Microbial production of scleroglucan and downstream processing.

    PubMed

    Castillo, Natalia A; Valdez, Alejandra L; Fariña, Julia I

    2015-01-01

    Synthetic petroleum-based polymers and natural plant polymers have the disadvantage of restricted sources, in addition to the non-biodegradability of the former ones. In contrast, eco-sustainable microbial polysaccharides, of low-cost and standardized production, represent an alternative to address this situation. With a strong global market, they attracted worldwide attention because of their novel and unique physico-chemical properties as well as varied industrial applications, and many of them are promptly becoming economically competitive. Scleroglucan, a β-1,3-β-1,6-glucan secreted by Sclerotium fungi, exhibits high potential for commercialization and may show different branching frequency, side-chain length, and/or molecular weight depending on the producing strain or culture conditions. Water-solubility, viscosifying ability and wide stability over temperature, pH and salinity make scleroglucan useful for different biotechnological (enhanced oil recovery, food additives, drug delivery, cosmetic and pharmaceutical products, biocompatible materials, etc.), and biomedical (immunoceutical, antitumor, etc.) applications. It can be copiously produced at bioreactor scale under standardized conditions, where a high exopolysaccharide concentration normally governs the process optimization. Operative and nutritional conditions, as well as the incidence of scleroglucan downstream processing will be discussed in this chapter. The relevance of using standardized inocula from selected strains and experiences concerning the intricate scleroglucan scaling-up will be also herein outlined.

  7. Microbial production of scleroglucan and downstream processing

    PubMed Central

    Castillo, Natalia A.; Valdez, Alejandra L.; Fariña, Julia I.

    2015-01-01

    Synthetic petroleum-based polymers and natural plant polymers have the disadvantage of restricted sources, in addition to the non-biodegradability of the former ones. In contrast, eco-sustainable microbial polysaccharides, of low-cost and standardized production, represent an alternative to address this situation. With a strong global market, they attracted worldwide attention because of their novel and unique physico-chemical properties as well as varied industrial applications, and many of them are promptly becoming economically competitive. Scleroglucan, a β-1,3-β-1,6-glucan secreted by Sclerotium fungi, exhibits high potential for commercialization and may show different branching frequency, side-chain length, and/or molecular weight depending on the producing strain or culture conditions. Water-solubility, viscosifying ability and wide stability over temperature, pH and salinity make scleroglucan useful for different biotechnological (enhanced oil recovery, food additives, drug delivery, cosmetic and pharmaceutical products, biocompatible materials, etc.), and biomedical (immunoceutical, antitumor, etc.) applications. It can be copiously produced at bioreactor scale under standardized conditions, where a high exopolysaccharide concentration normally governs the process optimization. Operative and nutritional conditions, as well as the incidence of scleroglucan downstream processing will be discussed in this chapter. The relevance of using standardized inocula from selected strains and experiences concerning the intricate scleroglucan scaling-up will be also herein outlined. PMID:26528259

  8. Dams and Rivers: A Primer on the Downstream Effects of Dams

    USGS Publications Warehouse

    Collier, Michael; Webb, Robert H.; Schmidt, John C.

    1996-01-01

    The U.S. Geological Survey is charged with monitoring the water and mineral resources of the United States. Beginning in 1889, the Survey established a network of water gaging stations across most of the country's rivers; some also measured sediment content of the water. Consequently, we now have valuable long-term data with which to track water supply, sediment transport, and the occurrence of floods. Many variables affect the flow of water from mountain brook to river delta. Some are short-term perturbations like summer thunderstorms. Others occur over a longer period of time, like the El Ninos that might be separated by a decade or more. We think of these variables as natural occurrences, but humans have exerted some of the most important changes -- water withdrawals for agriculture, inter-basin transfers, and especially the construction of an extensive system of dams. Dams have altered the flow of many of the Nation's rivers to meet societal needs. We expect floods to be contained. Irrigation is possible where deserts once existed. And water is released downstream not according to natural cycles but as dictated by a region's hour-by-hour needs for water or electricity. As a result, river channels below dams have changed dramatically. Depending on annual flow, flood peaks, and a river's sediment load, we might see changes such as sand building up in one channel, vegetation crowding into another, and extensive bank erosion in another. This Circular explores the emerging scientific arena of change in rivers below dams. This science tries first to understand and then anticipate changes to river beds and banks, and to riparian habitats and animal communities. To some degree, these downstream changes can be influenced by specific strategies of dam management. Scientists and resource managers have a duty to assemble this information and present it without bias to the rest of society. Society can then more intelligently choose a balance between the benefits and adverse

  9. Assessment of biomarkers for contaminants of emerging concern on aquatic organisms downstream of a municipal wastewater discharge.

    PubMed

    Jasinska, Edyta J; Goss, Greg G; Gillis, Patricia L; Van Der Kraak, Glen J; Matsumoto, Jacqueline; de Souza Machado, Anderson A; Giacomin, Marina; Moon, Thomas W; Massarsky, Andrey; Gagné, Francois; Servos, Mark R; Wilson, Joanna; Sultana, Tamanna; Metcalfe, Chris D

    2015-10-15

    Contaminants of emerging concern (CECs), including pharmaceuticals, personal care products and estrogens, are detected in wastewater treatment plant (WWTP) discharges. However, analytical monitoring of wastewater and surface water does not indicate whether CECs are affecting the organisms downstream. In this study, fathead minnows (Pimephales promelas) and freshwater mussels Pyganodon grandis Say, 1829 (synonym: Anodonta grandis Say, 1829) were caged for 4 weeks in the North Saskatchewan River, upstream and downstream of the discharge from the WWTP that serves the Edmonton, AB, Canada. Passive samplers deployed indicated that concentrations of pharmaceuticals, personal care products, an estrogen (estrone) and an androgen (androstenedione) were elevated at sites downstream of the WWTP discharge. Several biomarkers of exposure were significantly altered in the tissues of caged fathead minnows and freshwater mussels relative to the upstream reference sites. Biomarkers altered in fish included induction of CYP3A metabolism, an increase in vitellogenin (Vtg) gene expression in male minnows, elevated ratios of oxidized to total glutathione (i.e. GSSG/TGSH), and an increase in the activity of antioxidant enzymes (i.e. glutathione reductase, glutathione-S-transferase). In mussels, there were no significant changes in biomarkers of oxidative stress and the levels of Vtg-like proteins were reduced, not elevated, indicating a generalized stress response. Immune function was altered in mussels, as indicated by elevated lysosomal activity per hemocyte in P. grandis caged closest to the wastewater discharge. This immune response may be due to exposure to bacterial pathogens in the wastewater. Multivariate analysis indicated a response to the CECs Carbamazepine (CBZ) and Trimethoprim (TPM). Overall, these data indicate that there is a 1 km zone of impact for aquatic organisms downstream of WWTP discharge. However, multiple stressors in municipal wastewater make measurement and

  10. Laboratory experiments on dam-break flow of water-sediment mixtures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dams induce sedimentation and store significant amounts of sediment as they age; therefore, dam failures often involve the release of sediment-laden water to the downstream floodplain. In particular, tailings dams, which are constructed to impound mining wastes, can cause devastating damage when the...

  11. Effect of sediment transport boundary conditions on the numerical modeling of bed morphodynamics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Experimental sediment transport studies in laboratory flumes can use two sediment-supply methods: an imposed feed at the upstream end or recirculation of sediment from the downstream end to the upstream end. These methods generally produce similar equilibrium bed morphology, but temporal evolution c...

  12. Near-surface electromagnetic, rock magnetic, and geochemical