Sample records for fresnel diffraction integral

  1. Fresnel diffraction by spherical obstacles

    NASA Technical Reports Server (NTRS)

    Hovenac, Edward A.

    1989-01-01

    Lommel functions were used to solve the Fresnel-Kirchhoff diffraction integral for the case of a spherical obstacle. Comparisons were made between Fresnel diffraction theory and Mie scattering theory. Fresnel theory is then compared to experimental data. Experiment and theory typically deviated from one another by less than 10 percent. A unique experimental setup using mercury spheres suspended in a viscous fluid significantly reduced optical noise. The major source of error was due to the Gaussian-shaped laser beam.

  2. Huygens-Fresnel principle: Analyzing consistency at the photon level

    NASA Astrophysics Data System (ADS)

    Santos, Elkin A.; Castro, Ferney; Torres, Rafael

    2018-04-01

    Typically the use of the Rayleigh-Sommerfeld diffraction formula as a photon propagator is widely accepted due to the abundant experimental evidence that suggests that it works. However, a direct link between the propagation of the electromagnetic field in classical optics and the propagation of photons where the square of the probability amplitude describes the transverse probability of the photon detection is still an issue to be clarified. We develop a mathematical formulation for the photon propagation using the formalism of electromagnetic field quantization and the path-integral method, whose main feature is its similarity with a fractional Fourier transform (FRFT). Here we show that because of the close relation existing between the FRFT and the Fresnel diffraction integral, this propagator can be written as a Fresnel diffraction, which brings forward a discussion of the fundamental character of it at the photon level compared to the Huygens-Fresnel principle. Finally, we carry out an experiment of photon counting by a rectangular slit supporting the result that the diffraction phenomenon in the Fresnel approximation behaves as the actual classical limit.

  3. Linear Fresnel Spectrometer Chip with Gradient Line Grating

    NASA Technical Reports Server (NTRS)

    Choi, Sang Hyouk (Inventor); Park, Yeonjoon (Inventor)

    2015-01-01

    A spectrometer that includes a grating that disperses light via Fresnel diffraction according to wavelength onto a sensing area that coincides with an optical axis plane of the grating. The sensing area detects the dispersed light and measures the light intensity associated with each wavelength of the light. Because the spectrometer utilizes Fresnel diffraction, it can be miniaturized and packaged as an integrated circuit.

  4. Accurate reconstruction in digital holographic microscopy using Fresnel dual-tree complex wavelet transform

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaolei; Zhang, Xiangchao; Yuan, He; Zhang, Hao; Xu, Min

    2018-02-01

    Digital holography is a promising measurement method in the fields of bio-medicine and micro-electronics. But the captured images of digital holography are severely polluted by the speckle noise because of optical scattering and diffraction. Via analyzing the properties of Fresnel diffraction and the topographies of micro-structures, a novel reconstruction method based on the dual-tree complex wavelet transform (DT-CWT) is proposed. This algorithm is shiftinvariant and capable of obtaining sparse representations for the diffracted signals of salient features, thus it is well suited for multiresolution processing of the interferometric holograms of directional morphologies. An explicit representation of orthogonal Fresnel DT-CWT bases and a specific filtering method are developed. This method can effectively remove the speckle noise without destroying the salient features. Finally, the proposed reconstruction method is compared with the conventional Fresnel diffraction integration and Fresnel wavelet transform with compressive sensing methods to validate its remarkable superiority on the aspects of topography reconstruction and speckle removal.

  5. Diffraction of Nondiverging Bessel Beams by Fork-Shaped and Rectilinear Grating

    NASA Astrophysics Data System (ADS)

    Janicijevic, Ljiljana; Topuzoski, Suzana

    2007-04-01

    We present an investigation about Fresnel diffraction of Bessel beams, propagating as nondiverging within a distance Ln, with or without phase singularities, by rectilinear and fork-shaped gratings. The common general transmission function of these gratings is defined and specialized for three different cases: binary amplitude gratings, amplitude holograms and their phase versions. Solving the Fresnel diffraction integral in cylindrical coordinates, we obtain analytical expressions for the diffracted wave amplitude for all types of proposed gratings, and make conclusions about the existence of phase singularities and corresponding topological charges in the created by the gratings beams of different diffraction orders.

  6. Mathematical Simulation for Integrated Linear Fresnel Spectrometer Chip

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon; Yoon, Hargoon; Lee, Uhn; King, Glen C.; Choi, Sang H.

    2012-01-01

    A miniaturized solid-state optical spectrometer chip was designed with a linear gradient-gap Fresnel grating which was mounted perpendicularly to a sensor array surface and simulated for its performance and functionality. Unlike common spectrometers which are based on Fraunhoffer diffraction with a regular periodic line grating, the new linear gradient grating Fresnel spectrometer chip can be miniaturized to a much smaller form-factor into the Fresnel regime exceeding the limit of conventional spectrometers. This mathematical calculation shows that building a tiny motionless multi-pixel microspectrometer chip which is smaller than 1 cubic millimter of optical path volume is possible. The new Fresnel spectrometer chip is proportional to the energy scale (hc/lambda), while the conventional spectrometers are proportional to the wavelength scale (lambda). We report the theoretical optical working principle and new data collection algorithm of the new Fresnel spectrometer to build a compact integrated optical chip.

  7. Uniform theory of the boundary diffraction wave

    NASA Astrophysics Data System (ADS)

    Umul, Yusuf Z.

    2009-04-01

    A uniform version of the potential function of the Maggi-Rubinowicz boundary diffraction wave theory is obtained by using the large argument expansion of the Fresnel integral. The derived function is obtained for the problem of diffraction of plane waves by a circular edge. The results are plotted numerically.

  8. Numerical calculation of the Fresnel transform.

    PubMed

    Kelly, Damien P

    2014-04-01

    In this paper, we address the problem of calculating Fresnel diffraction integrals using a finite number of uniformly spaced samples. General and simple sampling rules of thumb are derived that allow the user to calculate the distribution for any propagation distance. It is shown how these rules can be extended to fast-Fourier-transform-based algorithms to increase calculation efficiency. A comparison with other theoretical approaches is made.

  9. An improved method for calculating power density in the Fresnel region of circular parabolic reflector antennas

    NASA Astrophysics Data System (ADS)

    Mize, Johnnie E.

    1988-03-01

    A computer program is presented which calculates power density in the Fresnel region of circular parabolic reflector antennas. The aperture illumination model is the one-parameter circular distribution developed by Hansen. The program is applicable to the analysis of electrically large, center-fed (or Cassegrain) paraboloids with linearly polarized feeds. The scalar Kirchoff diffraction integral is solved numerically by Romberg integration for points both on and perpendicular to the antenna boresight. Axial results cannot be directly compared to any others obtained with this illumination model, but they are consistent with what is expected in the Fresnel region where a quadratic must be added to the linear phase term of the integral expression. Graphical results are presented for uniform illumination and for cases where the first sidelobe ratio is 20, 25, 30, and 35 dB.

  10. Focal shift and the axial optical coordinate for high-aperture systems of finite Fresnel number.

    PubMed

    Sheppard, Colin J R; Török, Peter

    2003-11-01

    Analytic expressions are given for the on-axis intensity predicted by the Rayleigh-Sommerfeld and Kirchhoff diffraction integrals for a scalar optical system of high numerical aperture and finite value of Fresnel number. A definition of the axial optical coordinate is introduced that is valid for finite values of Fresnel number, for high-aperture systems, and for observation points distant from the focus. The focal shift effect is reexamined. For the case when the focal shift is small, explicit expressions are given for the focal shift and the axial peak in intensity.

  11. An amplitude and phase hybrid modulation Fresnel diffractive optical element

    NASA Astrophysics Data System (ADS)

    Li, Fei; Cheng, Jiangao; Wang, Mengyu; Jin, Xueying; Wang, Keyi

    2018-04-01

    An Amplitude and Phase Hybrid Modulation Fresnel Diffractive Optical Element (APHMFDOE) is proposed here. We have studied the theory of APHMFDOE and simulated the focusing properties of it along the optical axis, which show that the focus can be blazed to other positions with changing the quadratic phase factor. Moreover, we design a Composite Fresnel Diffraction Optical Element (CFDOE) based on the characteristics of APHMFDOE. It greatly increases the outermost zone width without changing the F-number, which brings a lot of benefits to the design and processing of diffraction device. More importantly, the diffraction efficiency of the CFDOE is almost unchanged compared with AFZP at the same focus.

  12. Rayleigh-Sommerfield Diffraction vs Fresnel-Kirchhoff, Fourier Propagation and Poisson's Spot

    NASA Technical Reports Server (NTRS)

    Lucke, Robert L.

    2004-01-01

    The boundary conditions imposed on the diffraction problem in order to obtain the Fresnel-Kirchhoff (FK) solution are well-known to be mathematically inconsistent and to be violated by the solution when the observation point is close to the diffracting screen 1-3. These problems are absent in the Rayleigh-Sommerfeld (RS) solution. The difference between RS and FK is in the inclination factor and is usually immaterial because the inclination factor is approximated by unity. But when this approximation is not valid, FK can lead to unacceptable answers. Calculating the on-axis intensity of Poisson s spot provides a critical test, a test passed by RS and failed by FK. FK fails because (a) convergence of the integral depends on how it is evaluated and (b) when the convergence problem is xed, the predicted amplitude at points near the obscuring disk is not consistent with the assumed boundary conditions.

  13. Real-time digital holographic microscopy using the graphic processing unit.

    PubMed

    Shimobaba, Tomoyoshi; Sato, Yoshikuni; Miura, Junya; Takenouchi, Mai; Ito, Tomoyoshi

    2008-08-04

    Digital holographic microscopy (DHM) is a well-known powerful method allowing both the amplitude and phase of a specimen to be simultaneously observed. In order to obtain a reconstructed image from a hologram, numerous calculations for the Fresnel diffraction are required. The Fresnel diffraction can be accelerated by the FFT (Fast Fourier Transform) algorithm. However, real-time reconstruction from a hologram is difficult even if we use a recent central processing unit (CPU) to calculate the Fresnel diffraction by the FFT algorithm. In this paper, we describe a real-time DHM system using a graphic processing unit (GPU) with many stream processors, which allows use as a highly parallel processor. The computational speed of the Fresnel diffraction using the GPU is faster than that of recent CPUs. The real-time DHM system can obtain reconstructed images from holograms whose size is 512 x 512 grids in 24 frames per second.

  14. Names in Physics: Fresnel

    ERIC Educational Resources Information Center

    Cooper, M. L.

    1970-01-01

    This short biography of Fresnel traces his early education, his work as an engineer and his theories and discoveries in optics. The importance of Fresnel's ideas on diffraction, interference and double refraction are discussed. Bibliography. (LC)

  15. High refractive index Fresnel lens on a fiber fabricated by nanoimprint lithography for immersion applications.

    PubMed

    Koshelev, Alexander; Calafiore, Giuseppe; Piña-Hernandez, Carlos; Allen, Frances I; Dhuey, Scott; Sassolini, Simone; Wong, Edward; Lum, Paul; Munechika, Keiko; Cabrini, Stefano

    2016-08-01

    In this Letter, we present a Fresnel lens fabricated on the end of an optical fiber. The lens is fabricated using nanoimprint lithography of a functional high refractive index material, which is suitable for mass production. The main advantage of the presented Fresnel lens compared to a conventional fiber lens is its high refractive index (n=1.68), which enables efficient light focusing even inside other media, such as water or an adhesive. Measurement of the lens performance in an immersion liquid (n=1.51) shows a near diffraction limited focal spot of 810 nm in diameter at the 1/e2 intensity level for a wavelength of 660 nm. Applications of such fiber lenses include integrated optics, optical trapping, and fiber probes.

  16. Complex space monofilar approximation of diffraction currents on a conducting half plane

    NASA Technical Reports Server (NTRS)

    Lindell, I. V.

    1987-01-01

    Simple approximation of diffraction surface currents on a conducting half plane, due to an incoming plane wave, is obtained with a line current (monofile) in complex space. When compared to an approximating current at the edge, the diffraction pattern is seen to improve by an order of magnitude for a minimal increase of computation effort. Thus, the inconvient Fresnel integral functions can be avoided for quick calculations of diffracted fields and the accuracy is good in other directions than along the half plane. The method can be applied to general problems involving planar metal edges.

  17. Diffraction effect of the injected beam in axisymmetrical structural CO2 laser

    NASA Astrophysics Data System (ADS)

    Xu, Yonggen; Wang, Shijian; Fan, Qunchao

    2012-07-01

    Diffraction effect of the injected beam in axisymmetrical structural CO2 laser is studied based on the injection-locking principle. The light intensity of the injected beam at the plane where the holophotes lie is derived according to the Huygens-Fresnel diffraction integral equation. And then the main parameters which influence the diffraction light intensity are given. The calculated results indicate that the first-order diffraction signal will play an important role in the phase-locking when the zero-order diffraction cannot reach the folded cavities. The numerical examples are given to confirm the correctness of the results, and the comparisons between the theoretical and the experimental results are illustrated.

  18. Beam propagation modeling of modified volume Fresnel zone plates fabricated by femtosecond laser direct writing.

    PubMed

    Srisungsitthisunti, Pornsak; Ersoy, Okan K; Xu, Xianfan

    2009-01-01

    Light diffraction by volume Fresnel zone plates (VFZPs) is simulated by the Hankel transform beam propagation method (Hankel BPM). The method utilizes circularly symmetric geometry and small step propagation to calculate the diffracted wave fields by VFZP layers. It is shown that fast and accurate diffraction results can be obtained with the Hankel BPM. The results show an excellent agreement with the scalar diffraction theory and the experimental results. The numerical method allows more comprehensive studies of the VFZP parameters to achieve higher diffraction efficiency.

  19. Fresnel zone plate light field spectral imaging simulation

    NASA Astrophysics Data System (ADS)

    Hallada, Francis D.; Franz, Anthony L.; Hawks, Michael R.

    2017-05-01

    Through numerical simulation, we have demonstrated a novel snapshot spectral imaging concept using binary diffractive optics. Binary diffractive optics, such as Fresnel zone plates (FZP) or photon sieves, can be used as the single optical element in a spectral imager that conducts both imaging and dispersion. In previous demonstrations of spectral imaging with diffractive optics, the detector array was physically translated along the optic axis to measure different image formation planes. In this new concept the wavelength-dependent images are constructed synthetically, by using integral photography concepts commonly applied to light field (plenoptic) cameras. Light field cameras use computational digital refocusing methods after exposure to make images at different object distances. Our concept refocuses to make images at different wavelengths instead of different object distances. The simulations in this study demonstrate this concept for an imager designed with a FZP. Monochromatic light from planar sources is propagated through the system to a measurement plane using wave optics in the Fresnel approximation. Simple images, placed at optical infinity, are illuminated by monochromatic sources and then digitally refocused to show different spectral bins. We show the formation of distinct images from different objects, illuminated by monochromatic sources in the VIS/NIR spectrum. Additionally, this concept could easily be applied to imaging in the MWIR and LWIR ranges. In conclusion, this new type of imager offers a rugged and simple optical design for snapshot spectral imaging and warrants further development.

  20. Near-field limitations of Fresnel-regime coherent diffraction imaging

    DOE PAGES

    Pound, Benjamin A.; Barber, John L.; Nguyen, Kimberly; ...

    2017-08-04

    Coherent diffraction imaging (CDI) is a rapidly developing form of imaging that offers the potential of wavelength-limited resolution without image-forming lenses. In CDI, the intensity of the diffraction pattern is measured directly by the detector, and various iterative phase retrieval algorithms are used to “invert” the diffraction pattern and reconstruct a high-resolution image of the sample. But, there are certain requirements in CDI that must be met to reconstruct the object. Although most experiments are conducted in the “far-field”—or Fraunhofer—regime where the requirements are not as stringent, some experiments must be conducted in the “near field” where Fresnel diffraction mustmore » be considered. According to the derivation of Fresnel diffraction, successful reconstructions can only be obtained when the small-angle number, a derived quantity, is much less than one. We show, however, that it is not actually necessary to fulfill the small-angle condition. The Fresnel kernel well approximates the exact kernel in regions where the phase oscillates slowly, and in regions of fast oscillations, indicated by large A n , the error between kernels should be negligible due to stationary-phase arguments. Finally we verify, by experiment, this conclusion with a helium neon laser setup and show that it should hold at x-ray wavelengths as well.« less

  1. Computer-based classification of bacteria species by analysis of their colonies Fresnel diffraction patterns

    NASA Astrophysics Data System (ADS)

    Suchwalko, Agnieszka; Buzalewicz, Igor; Podbielska, Halina

    2012-01-01

    In the presented paper the optical system with converging spherical wave illumination for classification of bacteria species, is proposed. It allows for compression of the observation space, observation of Fresnel patterns, diffraction pattern scaling and low level of optical aberrations, which are not possessed by other optical configurations. Obtained experimental results have shown that colonies of specific bacteria species generate unique diffraction signatures. Analysis of Fresnel diffraction patterns of bacteria colonies can be fast and reliable method for classification and recognition of bacteria species. To determine the unique features of bacteria colonies diffraction patterns the image processing analysis was proposed. Classification can be performed by analyzing the spatial structure of diffraction patterns, which can be characterized by set of concentric rings. The characteristics of such rings depends on the bacteria species. In the paper, the influence of basic features and ring partitioning number on the bacteria classification, is analyzed. It is demonstrated that Fresnel patterns can be used for classification of following species: Salmonella enteritidis, Staplyococcus aureus, Proteus mirabilis and Citrobacter freundii. Image processing is performed by free ImageJ software, for which a special macro with human interaction, was written. LDA classification, CV method, ANOVA and PCA visualizations preceded by image data extraction were conducted using the free software R.

  2. Near-field limitations of Fresnel-regime coherent diffraction imaging

    NASA Astrophysics Data System (ADS)

    Pound, Benjamin A.; Barber, John L.; Nguyen, Kimberly; Tyson, Matthew C.; Sandberg, Richard L.

    2017-08-01

    Coherent diffraction imaging (CDI) is a rapidly developing form of imaging that offers the potential of wavelength-limited resolution without image-forming lenses. In CDI, the intensity of the diffraction pattern is measured directly by the detector, and various iterative phase retrieval algorithms are used to "invert" the diffraction pattern and reconstruct a high-resolution image of the sample. However, there are certain requirements in CDI that must be met to reconstruct the object. Although most experiments are conducted in the "far-field"—or Fraunhofer—regime where the requirements are not as stringent, some experiments must be conducted in the "near field" where Fresnel diffraction must be considered. According to the derivation of Fresnel diffraction, successful reconstructions can only be obtained when the small-angle number, a derived quantity, is much less than one. We show, however, that it is not actually necessary to fulfill the small-angle condition. The Fresnel kernel well approximates the exact kernel in regions where the phase oscillates slowly, and in regions of fast oscillations, indicated by large A n , the error between kernels should be negligible due to stationary-phase arguments. We experimentally verify this conclusion with a helium neon laser setup and show that it should hold at x-ray wavelengths as well.

  3. Computer Generated Diffraction Patterns Of Rough Surfaces

    NASA Astrophysics Data System (ADS)

    Rakels, Jan H.

    1989-03-01

    It is generally accepted, that optical methods are the most promising for the in-process measurement of surface finish. These methods have the advantages of being non-contacting and fast data acquisition. In the Micro-Engineering Centre at the University of Warwick, an optical sensor has been devised which can measure the rms roughness, slope and wavelength of turned and precision ground surfaces. The operation of this device is based upon the Kirchhoff-Fresnel diffraction integral. Application of this theory to ideal turned surfaces is straightforward, and indeed the theoretically calculated diffraction patterns are in close agreement with patterns produced by an actual optical instrument. Since it is mathematically difficult to introduce real surface profiles into the diffraction integral, a computer program has been devised, which simulates the operation of the optical sensor. The program produces a diffraction pattern as a graphical output. Comparison between computer generated and actual diffraction patterns of the same surfaces show a high correlation.

  4. Color image cryptosystem using Fresnel diffraction and phase modulation in an expanded fractional Fourier transform domain

    NASA Astrophysics Data System (ADS)

    Chen, Hang; Liu, Zhengjun; Chen, Qi; Blondel, Walter; Varis, Pierre

    2018-05-01

    In this letter, what we believe is a new technique for optical color image encryption by using Fresnel diffraction and a phase modulation in an extended fractional Fourier transform domain is proposed. Different from the RGB component separation based method, the color image is converted into one component by improved Chirikov mapping. The encryption system is addressed with Fresnel diffraction and phase modulation. A pair of lenses is placed into the fractional Fourier transform system for the modulation of beam propagation. The structure parameters of the optical system and parameters in Chirikov mapping serve as extra keys. Some numerical simulations are given to test the validity of the proposed cryptosystem.

  5. Nanoscale Fresnel coherent diffraction imaging tomography using ptychography.

    PubMed

    Peterson, I; Abbey, B; Putkunz, C T; Vine, D J; van Riessen, G A; Cadenazzi, G A; Balaur, E; Ryan, R; Quiney, H M; McNulty, I; Peele, A G; Nugent, K A

    2012-10-22

    We demonstrate Fresnel Coherent Diffractive Imaging (FCDI) tomography in the X-ray regime. The method uses an incident X-ray illumination with known curvature in combination with ptychography to overcome existing problems in diffraction imaging. The resulting tomographic reconstruction represents a 3D map of the specimen's complex refractive index at nano-scale resolution. We use this technique to image a lithographically fabricated glass capillary, in which features down to 70nm are clearly resolved.

  6. Near-field diffraction from amplitude diffraction gratings: theory, simulation and results

    NASA Astrophysics Data System (ADS)

    Abedin, Kazi Monowar; Rahman, S. M. Mujibur

    2017-08-01

    We describe a computer simulation method by which the complete near-field diffract pattern of an amplitude diffraction grating can be generated. The technique uses the method of iterative Fresnel integrals to calculate and generate the diffraction images. Theoretical background as well as the techniques to perform the simulation is described. The program is written in MATLAB, and can be implemented in any ordinary PC. Examples of simulated diffraction images are presented and discussed. The generated images in the far-field where they reduce to Fraunhofer diffraction pattern are also presented for a realistic grating, and compared with the results predicted by the grating equation, which is applicable in the far-field. The method can be used as a tool to teach the complex phenomenon of diffraction in classrooms.

  7. On the relative intensity of Poisson’s spot

    NASA Astrophysics Data System (ADS)

    Reisinger, T.; Leufke, P. M.; Gleiter, H.; Hahn, H.

    2017-03-01

    The Fresnel diffraction phenomenon referred to as Poisson’s spot or spot of Arago has, beside its historical significance, become relevant in a number of fields. Among them are for example fundamental tests of the super-position principle in the transition from quantum to classical physics and the search for extra-solar planets using star shades. Poisson’s spot refers to the positive on-axis wave interference in the shadow of any spherical or circular obstacle. While the spot’s intensity is equal to the undisturbed field in the plane wave picture, its intensity in general depends on a number of factors, namely the size and wavelength of the source, the size and surface corrugation of the diffraction obstacle, and the distances between source, obstacle and detector. The intensity can be calculated by solving the Fresnel-Kirchhoff diffraction integral numerically, which however tends to be computationally expensive. We have therefore devised an analytical model for the on-axis intensity of Poisson’s spot relative to the intensity of the undisturbed wave field and successfully validated it both using a simple light diffraction setup and numerical methods. The model will be useful for optimizing future Poisson-spot matter-wave diffraction experiments and determining under what experimental conditions the spot can be observed.

  8. Binary logic based purely on Fresnel diffraction

    NASA Astrophysics Data System (ADS)

    Hamam, H.; de Bougrenet de La Tocnaye, J. L.

    1995-09-01

    Binary logic operations on two-dimensional data arrays are achieved by use of the self-imaging properties of Fresnel diffraction. The fields diffracted by periodic objects can be considered as the superimposition of weighted and shifted replicas of original objects. We show that a particular spatial organization of the input data can result in logical operations being performed on these data in the considered diffraction planes. Among various advantages, this approach is shown to allow the implementation of dual-track, nondissipative logical operators. Image algebra is presented as an experimental illustration of this principle.

  9. Diffraction and quantum control of wave functions in nonresonant two-photon absorption

    NASA Astrophysics Data System (ADS)

    Li, Baihong; Pang, Huafeng; Wang, Doudou; Zhang, Tao; Dong, Ruifang; Li, Yongfang

    2018-03-01

    In this study, the nonresonant two-photon absorption process in a two-level atom, induced by a weak chirped pulse, is theoretically investigated in the frequency domain. An analytical expression of the wave function expressed by Fresnel functions is obtained, and the two-photon transition probability (TPTP) versus the integral bandwidth, spectral width, and chirp parameter is analyzed. The results indicate that the oscillation evolution of the TPTP result from quantum diffraction of the wave function, which can be explained by analogy with Fresnel diffraction from a wide slit in the spatial domain. Moreover, the ratio between the real and imaginary parts of the excited state wave function and, hence, the atomic polarization, can be controlled by the initial phase of the excitation pulse. In some special initial phase of the excitation pulse, the wave functions with purely real or imaginary parts can be obtained by measuring the population probability. This work provides a novel perspective for understanding the physical details of the interactions between atoms and chirped light pulses in the multiphoton process.

  10. A fast point-cloud computing method based on spatial symmetry of Fresnel field

    NASA Astrophysics Data System (ADS)

    Wang, Xiangxiang; Zhang, Kai; Shen, Chuan; Zhu, Wenliang; Wei, Sui

    2017-10-01

    Aiming at the great challenge for Computer Generated Hologram (CGH) duo to the production of high spatial-bandwidth product (SBP) is required in the real-time holographic video display systems. The paper is based on point-cloud method and it takes advantage of the propagating reversibility of Fresnel diffraction in the propagating direction and the fringe pattern of a point source, known as Gabor zone plate has spatial symmetry, so it can be used as a basis for fast calculation of diffraction field in CGH. A fast Fresnel CGH method based on the novel look-up table (N-LUT) method is proposed, the principle fringe patterns (PFPs) at the virtual plane is pre-calculated by the acceleration algorithm and be stored. Secondly, the Fresnel diffraction fringe pattern at dummy plane can be obtained. Finally, the Fresnel propagation from dummy plan to hologram plane. The simulation experiments and optical experiments based on Liquid Crystal On Silicon (LCOS) is setup to demonstrate the validity of the proposed method under the premise of ensuring the quality of 3D reconstruction the method proposed in the paper can be applied to shorten the computational time and improve computational efficiency.

  11. Diffraction patterns in Fresnel approximation of periodic objects for a colorimeter of two apertures

    NASA Astrophysics Data System (ADS)

    Cortes-Reynoso, Jose-German R.; Suarez-Romero, Jose G.; Hurtado-Ramos, Juan B.; Tepichin-Rodriguez, Eduardo; Solorio-Leyva, Juan Carlos

    2004-10-01

    In this work, we present a study of Fresnel diffraction of periodic structures in an optical system of two apertures. This system of two apertures was used successfully for measuring color in textile samples solving the problems of illumination and directionality that present current commercial equipments. However, the system is sensible to the spatial frequency of the periodic sample"s area enclosed in its optical field of view. The study of Fresnel diffraction allows us to establish criteria for geometrical parameters of measurements in order to assure invariance in angular rotations and spatial positions. In this work, we use the theory of partial coherence to calculate the diffraction through two continuous apertures. In the calculation process, we use the concept of point-spread function of the system for partial coherence, in this way we avoid complicated statistical processes commonly used in the partial coherence theory.

  12. Collimation testing using slit Fresnel diffraction

    NASA Astrophysics Data System (ADS)

    Luo, Xiaohe; Hui, Mei; Wang, Shanshan; Hou, Yinlong; Zhou, Siyu; Zhu, Qiudong

    2018-03-01

    A simple collimation testing method based on slit Fresnel diffraction is proposed. The method needs only a CMOS and a slit with no requirement in dimensional accuracy. The light beam to be tested diffracts across the slit and forms a Fresnel diffraction pattern received by CMOS. After analysis, the defocusing amount and the distance between the primary peak point and secondary peak point of diffraction pattern fulfill an expression relationship and then the defocusing amount can be deduced from the expression. The method is applied to both the coherent beam and partially coherent beam, and these two beams are emitted from a laser and light-emitting diode (LED) with a spectrum width of about 50 nm in this paper. Simulations show that the wide spectrum of LED has the effect of smooth filtering to provide higher accuracy. Experiments show that the LED with a spectrum width of about 50 nm has a lower limitation error than the laser and can achieve up to 58.1601 μm with focal length 200 mm and slit width 15 mm.

  13. An optimized Fresnel array for a test space mission in UV

    NASA Astrophysics Data System (ADS)

    Roux, W.; Koechlin, L.

    2016-07-01

    The Fresnel Diffractive Imager is based on a new optical concept for space telescopes, developed at Institut de Recherche en Astrophysique et Planétologie (IRAP) in Toulouse, France. We propose it for space missions dedicated to science cases in the Ultra-Violet with aperture ranges from 6 to 30 meters. Instead of a classical mirror to focus light, this concept uses very light-weight diffractive optics : the Fresnel array. Our project has already proved its performances in terms of resolution and high dynamic range in the laboratory, in the visible and near IR. It has been tested successfully on real astrophysical sources from the ground. At present, the project has reached the stage where a probatory mission is needed to validate its operation in space. In collaboration with institutes in Spain and Russia, we will propose a mission to the Russian space agency Roscosmos, to board a small prototype Fresnel imager on the International Space Station (ISS) for a UV astronomy program. We have improved the Fresnel array design to get a better Point Spread Function (PSF), 2 different ways. Numerical simulations have first allowed us to confirm these optical improvements, before manufacturing the diffractive optics and using them for new lab tests. In our previous setups, the opaque Fresnel zones in the primary Fresnel array (playing the role of the telescope objective) were maintained with an orthogonal bars mesh, following the pseudo-period of the Fresnel zones. We show that the PSF improves when these bars are regularly spaced. Furthermore, the optical system is apodized to get a better peaked PSF, and increase its high contrast performances. In our case, to apodize a binary mask the solution is to modulate the Fresnel zones in relative thickness ratio (opaque versus void), thus driving the local light transmission ratio. In earlier implementations, our Fresnel arrays were apodized with a circularly symmetric law, but an orthogonal apodization law is more efficient. That is why we are developing this particular type of apodized square aperture Fresnel arrays.

  14. Astrophysical targets of the Fresnel diffractive imager

    NASA Astrophysics Data System (ADS)

    Koechlin, L.; Deba, P.; Raksasataya, T.

    2017-11-01

    The Fresnel Diffractive imager is an innovative concept of distributed space telescope, for high resolution (milli arc-seconds) spectro-imaging in the IR, visible and UV domains. This paper presents its optical principle and the science that can be done on potential astrophysical targets. The novelty lies in the primary optics: a binary Fresnel array, akin to a binary Fresnel zone plate. The main interest of this approach is the relaxed manufacturing and positioning constraints. While having the resolution and imaging capabilities of lens or mirrors of equivalent size, no optical material is involved in the focusing process: just vacuum. A Fresnel array consists of millions void subapertures punched into a large and thin opaque membrane, that focus light by diffraction into a compact and highly contrasted image. The positioning law of the aperture edges drives the image quality and contrast. This optical concept allows larger and lighter apertures than solid state optics, aiming to high angular resolution and high dynamic range imaging, in particular for UV applications. Diffraction focusing implies very long focal distances, up to dozens of kilometers, which requires at least a two-vessel formation flying in space. The first spacecraft, "the Fresnel Array spacecraft", holds the large punched foil: the Fresnel Array. The second, the "Receiver spacecraft" holds the field optics and focal instrumentation. A chromatism correction feature enables moderately large (20%) relative wavebands, and fields of a few to a dozen arc seconds. This Fresnel imager is adapted to high contrast stellar environments: dust disks, close companions and (we hope) exoplanets. Specific to the particular grid-like pattern of the primary focusing zone plate, is the very high dynamic range achieved in the images, in the case of compact objects. Large stellar photospheres may also be mapped with Fresnel arrays of a few meters opertaing in the UV. Larger and more complex fields can be imaged with a lesser dynamic range: galactic or extragalactic, or at the opposite distance scale: small solar system bodies. This paper will briefly address the optical principle, and in more detail the astrophysical missions and targets proposed for a 4-meter class demonstrator: - Exoplanet imaging, Exoplanet spectroscopic analysis in the visible and UV, - Stellar environments, young stellar systems, disks, - Galactic clouds, astrochemistry, - IR observation of the galactic center, - Small objects of our solar system.

  15. Optical Manipulation along Optical Axis with Polarization Sensitive Meta-lens.

    PubMed

    Markovich, Hen; Shishkin, Ivan; Hendler, Netta; Ginzburg, Pavel

    2018-06-27

    The ability to manipulate small objects with focused laser beams opens a broad spectrum of opportunities in fundamental and applied studies, where a precise control over mechanical path and stability is required. While conventional optical tweezers are based on bulky diffractive optical elements, developing compact integrable within a fluid cell trapping devices is highly demanded. Here, plasmonic polarization sensitive metasurface-based lens, embedded within a fluid, is demonstrated to provide several stable trapping centers along the optical axis. The position of a particle is controlled with the polarization of the incident light, interacting with plasmonic nanoscale patch antennas, organized within overlapping Fresnel zones of the lens. While standard diffractive optical elements face challenges to trap objects in lateral direction outside the depth of focus, bi-focal Fresnel meta-lens demonstrates the capability to manipulate a bead along 4 micrometers line. Additional fluorescent module, incorporated within the optical trapping setup, was implemented and enabled accurate mapping of optical potential via a particle tracking algorithm. Auxiliary micro- and nano- structures, integrated within fluidic devices, provide numerous opportunities to achieve flexible optomechanical manipulation, including, transport, trapping and sorting, which are highly demanded in lab-on-a-chip applications and many others.

  16. Coherent X-ray beam metrology using 2D high-resolution Fresnel-diffraction analysis.

    PubMed

    Ruiz-Lopez, M; Faenov, A; Pikuz, T; Ozaki, N; Mitrofanov, A; Albertazzi, B; Hartley, N; Matsuoka, T; Ochante, Y; Tange, Y; Yabuuchi, T; Habara, T; Tanaka, K A; Inubushi, Y; Yabashi, M; Nishikino, M; Kawachi, T; Pikuz, S; Ishikawa, T; Kodama, R; Bleiner, D

    2017-01-01

    Direct metrology of coherent short-wavelength beamlines is important for obtaining operational beam characteristics at the experimental site. However, since beam-time limitation imposes fast metrology procedures, a multi-parametric metrology from as low as a single shot is desirable. Here a two-dimensional (2D) procedure based on high-resolution Fresnel diffraction analysis is discussed and applied, which allowed an efficient and detailed beamline characterization at the SACLA XFEL. So far, the potential of Fresnel diffraction for beamline metrology has not been fully exploited because its high-frequency fringes could be only partly resolved with ordinary pixel-limited detectors. Using the high-spatial-frequency imaging capability of an irradiated LiF crystal, 2D information of the coherence degree, beam divergence and beam quality factor M 2 were retrieved from simple diffraction patterns. The developed beam metrology was validated with a laboratory reference laser, and then successfully applied at a beamline facility, in agreement with the source specifications.

  17. Fresnel Lenses for Wide-Aperture Optical Receivers

    NASA Technical Reports Server (NTRS)

    Hemmati, Hamid

    2004-01-01

    Wide-aperture receivers for freespace optical communication systems would utilize Fresnel lenses instead of conventional telescope lenses, according to a proposal. Fresnel lenses weigh and cost much less than conventional lenses having equal aperture widths. Plastic Fresnel lenses are commercially available in diameters up to 5 m large enough to satisfy requirements for aperture widths of the order of meters for collecting sufficient light in typical long-distance free-space optical communication systems. Fresnel lenses are not yet suitable for high-quality diffraction-limited imaging, especially in polychromatic light. However, optical communication systems utilize monochromatic light, and there is no requirement for high-quality imaging; instead, the basic requirement for an optical receiver is to collect the incoming monochromatic light over a wide aperture and concentrate the light onto a photodetector. Because of lens aberrations and diffraction, the light passing through any lens is focused to a blur circle rather than to a point. Calculations for some representative cases of wide-aperture non-diffraction-limited Fresnel lenses have shown that it should be possible to attain blur-circle diameters of less than 2 mm. Preferably, the blur-circle diameter should match the width of the photodetector. For most high-bandwidth communication applications, the required photodetector diameters would be about 1 mm. In a less-preferable case in which the blur circle was wider than a single photodetector, it would be possible to occupy the blur circle with an array of photodetectors. As an alternative to using a single large Fresnel lens, one could use an array of somewhat smaller lenses to synthesize the equivalent aperture area. Such a configuration might be preferable in a case in which a single Fresnel lens of the requisite large size would be impractical to manufacture, and the blur circle could not be made small enough. For example one could construct a square array of four 5-m-diameter Fresnel lenses to obtain the same light-collecting area as that of a single 10-m-diameter lens. In that case (see figure), the light collected by each Fresnel lens could be collimated, the collimated beams from the four Fresnel lenses could be reflected onto a common offaxis paraboloidal reflector, and the paraboloidal reflector would focus the four beams onto a single photodetector. Alternatively, detected signal from each detector behind each lens would be digitized before summing the signals.

  18. Sharp acoustic vortex focusing by Fresnel-spiral zone plates

    NASA Astrophysics Data System (ADS)

    Jiménez, Noé; Romero-García, Vicent; García-Raffi, Luis M.; Camarena, Francisco; Staliunas, Kestutis

    2018-05-01

    We report the optimal focusing of acoustic vortex beams by using flat lenses based on a Fresnel-spiral diffraction grating. The flat lenses are designed by spiral-shaped Fresnel zone plates composed of one or several arms. The constructive and destructive interferences of the diffracted waves by the spiral grating result in sharp acoustic vortex beams, following the focal laws obtained in analogy with the Fresnel zone plate lenses. In addition, we show that the number of arms determines the topological charge of the vortex, allowing the precise manipulation of the acoustic wave field by flat lenses. The experimental results in the ultrasonic regime show excellent agreement with the theory and full-wave numerical simulations. A comparison with beam focusing by Archimedean spirals also showing vortex focusing is given. The results of this work may have potential applications for particle trapping, ultrasound therapy, imaging, or underwater acoustic transmitters.

  19. Finite element area and line integral transforms for generalization of aperture function and geometry in Kirchhoff scalar diffraction theory

    NASA Astrophysics Data System (ADS)

    Kraus, Hal G.

    1993-02-01

    Two finite element-based methods for calculating Fresnel region and near-field region intensities resulting from diffraction of light by two-dimensional apertures are presented. The first is derived using the Kirchhoff area diffraction integral and the second is derived using a displaced vector potential to achieve a line integral transformation. The specific form of each of these formulations is presented for incident spherical waves and for Gaussian laser beams. The geometry of the two-dimensional diffracting aperture(s) is based on biquadratic isoparametric elements, which are used to define apertures of complex geometry. These elements are also used to build complex amplitude and phase functions across the aperture(s), which may be of continuous or discontinuous form. The finite element transform integrals are accurately and efficiently integrated numerically using Gaussian quadrature. The power of these methods is illustrated in several examples which include secondary obstructions, secondary spider supports, multiple mirror arrays, synthetic aperture arrays, apertures covered by screens, apodization, phase plates, and off-axis apertures. Typically, the finite element line integral transform results in significant gains in computational efficiency over the finite element Kirchhoff transform method, but is also subject to some loss in generality.

  20. FEL amplifier performance in the Compton regime

    NASA Astrophysics Data System (ADS)

    Cover, R. A.; Bhowmik, A.

    1984-01-01

    The Kroll-Morton-Rosenbluth equations of motion for electrons in a linearly polarized, tapered wiggler are utilized to describe gain in free-electron laser amplifiers. The three-dimensional amplifier model includes the effects of density variation in the electron beam, off-axis variations in the wiggler magnetic field, and betatron oscillations. The input electromagnetic field is injected and subsequently propagated within the wiggler by computing the Fresnel-Kirchhoff diffraction integral using the Gardner-Fresnel-Kirchhoff algorithm. The injected optical beam used in evaluating amplifier performance is initially a Gaussian which in general may be astigmatic. The importance of the above effects on extraction efficiency is computed both with rigorous three-dimensional electromagnetic wave propagation and a Gaussian treatment of the field.

  1. Babinet's principle in the Fresnel regime studied using ultrasound

    NASA Astrophysics Data System (ADS)

    Hitachi, Akira; Takata, Momo

    2010-07-01

    The diffraction of ultrasound by a circular disk and an aperture of the same size has been investigated as a demonstration of Babinet's principle in the Fresnel regime. The amplitude and the phase of the diffracted ultrasonic waves are measured and a graphical treatment of the results is performed by drawing vectors in the complex plane. The results verify Babinet's principle. It is also found that the incident wave is π /2 behind the phase of the wave passing through on the central axis of a circular aperture. Because both waves travel the same path and the same distance, they should be in phase. This paradox has previously been regarded as a defect of Fresnel's theory.

  2. Dispersion-compensated fresnel lens

    DOEpatents

    Johnson, Kenneth C.

    1992-01-01

    A transmission grating is used to reduce chromatic aberration in a Fresnel lens, wherein the lens chromatic dispersion is offset and substantially canceled by the grating's diffraction-induced dispersion. The grating comprises a Fresnel-type pattern of microscopic facets molded directly into the lens surface. The facets would typically have a profile height of around 4.multidot.10.sup.-5 inch and a profile width of at least 10.sup.-3 inch. In its primary intended application, the invention would function to improve the optical performance of a Fresnel lens used to concentrate direct sunlight.

  3. Dispersion-compensated Fresnel lens

    DOEpatents

    Johnson, K.C.

    1992-11-03

    A transmission grating is used to reduce chromatic aberration in a Fresnel lens, wherein the lens chromatic dispersion is offset and substantially canceled by the grating's diffraction-induced dispersion. The grating comprises a Fresnel-type pattern of microscopic facets molded directly into the lens surface. The facets would typically have a profile height of around 4[times]10[sup [minus]5] inch and a profile width of at least 10[sup [minus]3] inch. In its primary intended application, the invention would function to improve the optical performance of a Fresnel lens used to concentrate direct sunlight. 10 figs.

  4. The Gaussian beam mode analysis of classical phase aberrations in diffraction-limited optical systems

    NASA Astrophysics Data System (ADS)

    Trappe, Neil; Murphy, J. Anthony; Withington, Stafford

    2003-07-01

    Gaussian beam mode analysis (GBMA) offers a more intuitive physical insight into how light beams evolve as they propagate than the conventional Fresnel diffraction integral approach. In this paper we illustrate that GBMA is a computationally efficient, alternative technique for tracing the evolution of a diffracting coherent beam. In previous papers we demonstrated the straightforward application of GBMA to the computation of the classical diffraction patterns associated with a range of standard apertures. In this paper we show how the GBMA technique can be expanded to investigate the effects of aberrations in the presence of diffraction by introducing the appropriate phase error term into the propagating quasi-optical beam. We compare our technique to the standard diffraction integral calculation for coma, astigmatism and spherical aberration, taking—for comparison—examples from the classic text 'Principles of Optics' by Born and Wolf. We show the advantages of GBMA for allowing the defocusing of an aberrated image to be evaluated quickly, which is particularly important and useful for probing the consequences of astigmatism and spherical aberration.

  5. Integration of nanostructured planar diffractive lenses dedicated to near infrared detection for CMOS image sensors.

    PubMed

    Lopez, Thomas; Massenot, Sébastien; Estribeau, Magali; Magnan, Pierre; Pardo, Fabrice; Pelouard, Jean-Luc

    2016-04-18

    This paper deals with the integration of metallic and dielectric nanostructured planar lenses into a pixel from a silicon based CMOS image sensor, for a monochromatic application at 1.064 μm. The first is a Plasmonic Lens, based on the phase delay through nanoslits, which has been found to be hardly compatible with current CMOS technology and exhibits a notable metallic absorption. The second is a dielectric Phase-Fresnel Lens integrated at the top of a pixel, it exhibits an Optical Efficiency (OE) improved by a few percent and an angle of view of 50°. The third one is a metallic diffractive lens integrated inside a pixel, which shows a better OE and an angle of view of 24°. The last two lenses exhibit a compatibility with a spectral band close to 1.064 μm.

  6. SUB 1-Millimeter Size Fresnel Micro Spectrometer

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon; Koch, Laura; Song, Kyo D.; Park, Sangloon; King, Glen; Choi, Sang

    2010-01-01

    An ultra-small micro spectrometer with less than 1mm diameter was constructed using Fresnel diffraction. The fabricated spectrometer has a diameter of 750 nmicrometers and a focal length of 2.4 mm at 533nm wavelength. The micro spectrometer was built with a simple negative zone plate that has an opaque center with an ecliptic shadow to remove the zero-order direct beam to the aperture slit. Unlike conventional approaches, the detailed optical calculation indicates that the ideal spectral resolution and resolving power do not depend on the miniaturized size but only on the total number of rings. We calculated 2D and 3D photon distribution around the aperture slit and confirmed that improved micro-spectrometers below 1mm size can be built with Fresnel diffraction. The comparison between mathematical simulation and measured data demonstrates the theoretical resolution, measured performance, misalignment effect, and improvement for the sub-1mm Fresnel micro-spectrometer. We suggest the utilization of an array of micro spectrometers for tunable multi-spectral imaging in the ultra violet range.

  7. Single-Slit Diffraction Pattern of a Thermal Atomic Potassium Beam

    ERIC Educational Resources Information Center

    Leavitt, John A.; Bills, Francis A.

    1969-01-01

    The diffraction of a full thermal atomic potassium beam by a single slit was observed. Four experimental diffraction patterns were compared with that predicted by de Brogtie's hypothesis and simple scalar Fresnel diffraction theory. Possible reasons for the differences were discussed. (LC)

  8. Design of a variable-line-spacing grating pattern for spectrometers based on a grating Fresnel device.

    PubMed

    Li, Xinghui; Zhang, Jinchao; Zhou, Qian; Ni, Kai; Pang, Jinchao; Tian, Rui

    2016-04-01

    In this Letter, we propose a variable-line-spacing (VLS) grating pattern for a hybrid diffractive device termed a grating Fresnel (G-Fresnel) lens, which is used in spectrometers to improve spectral resolution over a wide spectral range. The VLS grating pattern disperses light of specific wavelengths with a different angle and position such that the aberration caused by the Fresnel surface can be compensated for. In this manner, high resolution can be achieved over a relatively wide spectral range. The VLS grating pattern is designed based on the least wave-change principle and simulated by ZEMAX. Results reveal that the VLS G-Fresnel device allows a subnanometer resolution over a spectral range of 200 nm.

  9. Production application of injection-molded diffractive elements

    NASA Astrophysics Data System (ADS)

    Clark, Peter P.; Chao, Yvonne Y.; Hines, Kevin P.

    1995-12-01

    We demonstrate that transmission kinoforms for visible light applications can be injection molded in acrylic in production volumes. A camera is described that employs molded Fresnel lenses to change the convergence of a projection ranging system. Kinoform surfaces are used in the projection system to achromatize the Fresnel lenses.

  10. Computer Simulation of Diffraction Patterns.

    ERIC Educational Resources Information Center

    Dodd, N. A.

    1983-01-01

    Describes an Apple computer program (listing available from author) which simulates Fraunhofer and Fresnel diffraction using vector addition techniques (vector chaining) and allows user to experiment with different shaped multiple apertures. Graphics output include vector resultants, phase difference, diffraction patterns, and the Cornu spiral…

  11. Fraunhofer Diffraction and Polarization.

    ERIC Educational Resources Information Center

    Fortin, E.

    1979-01-01

    Describes an experiment for the intermediate undergraduate optics laboratory designed to illustrate simultaneously some aspects of the phenomena of diffraction; interference, coherence, apodization, the Fresnel-Arago law; as well as of the interrelations between these concepts. (HM)

  12. Faithful reconstruction of digital holograms captured by FINCH using a Hamming window function in the Fresnel propagation.

    PubMed

    Siegel, Nisan; Rosen, Joseph; Brooker, Gary

    2013-10-01

    Recent advances in Fresnel incoherent correlation holography (FINCH) increase the signal-to-noise ratio in hologram recording by interference of images from two diffractive lenses with focal lengths close to the image plane. Holograms requiring short reconstruction distances are created that reconstruct poorly with existing Fresnel propagation methods. Here we show a dramatic improvement in reconstructed fluorescent images when a 2D Hamming window function substituted for the disk window typically used to bound the impulse response in the Fresnel propagation. Greatly improved image contrast and quality are shown for simulated and experimentally determined FINCH holograms using a 2D Hamming window without significant loss in lateral or axial resolution.

  13. Fast integral methods for integrated optical systems simulations: a review

    NASA Astrophysics Data System (ADS)

    Kleemann, Bernd H.

    2015-09-01

    Boundary integral equation methods (BIM) or simply integral methods (IM) in the context of optical design and simulation are rigorous electromagnetic methods solving Helmholtz or Maxwell equations on the boundary (surface or interface of the structures between two materials) for scattering or/and diffraction purposes. This work is mainly restricted to integral methods for diffracting structures such as gratings, kinoforms, diffractive optical elements (DOEs), micro Fresnel lenses, computer generated holograms (CGHs), holographic or digital phase holograms, periodic lithographic structures, and the like. In most cases all of the mentioned structures have dimensions of thousands of wavelengths in diameter. Therefore, the basic methods necessary for the numerical treatment are locally applied electromagnetic grating diffraction algorithms. Interestingly, integral methods belong to the first electromagnetic methods investigated for grating diffraction. The development started in the mid 1960ies for gratings with infinite conductivity and it was mainly due to the good convergence of the integral methods especially for TM polarization. The first integral equation methods (IEM) for finite conductivity were the methods by D. Maystre at Fresnel Institute in Marseille: in 1972/74 for dielectric, and metallic gratings, and later for multiprofile, and other types of gratings and for photonic crystals. Other methods such as differential and modal methods suffered from unstable behaviour and slow convergence compared to BIMs for metallic gratings in TM polarization from the beginning to the mid 1990ies. The first BIM for gratings using a parametrization of the profile was developed at Karl-Weierstrass Institute in Berlin under a contract with Carl Zeiss Jena works in 1984-1986 by A. Pomp, J. Creutziger, and the author. Due to the parametrization, this method was able to deal with any kind of surface grating from the beginning: whether profiles with edges, overhanging non-functional profiles, very deep ones, very large ones compared to wavelength, or simple smooth profiles. This integral method with either trigonometric or spline collocation, iterative solver with O(N2) complexity, named IESMP, was significantly improved by an efficient mesh refinement, matrix preconditioning, Ewald summation method, and an exponentially convergent quadrature in 2006 by G. Schmidt and A. Rathsfeld from Weierstrass-Institute (WIAS) Berlin. The so-called modified integral method (MIM) is a modification of the IEM of D. Maystre and has been introduced by L. Goray in 1995. It has been improved for weak convergence problems in 2001 and it was the only commercial available integral method for a long time, known as PCGRATE. All referenced integral methods so far are for in-plane diffraction only, no conical diffraction was possible. The first integral method for gratings in conical mounting was developed and proven under very weak conditions by G. Schmidt (WIAS) in 2010. It works for separated interfaces and for inclusions as well as for interpenetrating interfaces and for a large number of thin and thick layers in the same stable way. This very fast method has then been implemented for parallel processing under Unix and Windows operating systems. This work gives an overview over the most important BIMs for grating diffraction. It starts by presenting the historical evolution of the methods, highlights their advantages and differences, and gives insight into new approaches and their achievements. It addresses future open challenges at the end.

  14. Talbot effect of quasi-periodic grating.

    PubMed

    Zhang, Chong; Zhang, Wei; Li, Furui; Wang, Junhong; Teng, Shuyun

    2013-07-20

    Theoretic and experimental studies of the Talbot effect of quasi-periodic gratings are performed in this paper. The diffractions of periodic and quasi-periodic square aperture arrays in Fresnel fields are analyzed according to the scalar diffraction theory. The expressions of the diffraction intensities of two types of quasi-periodic gratings are deduced. Talbot images of the quasi-periodic gratings are predicted to appear at multiple certain distances. The quasi-periodic square aperture arrays are produced with the aid of a liquid crystal light modulator, and the self-images of the quasi-periodic gratings are measured successfully in the experiment. This study indicates that even a structure in short-range disorder may take on the self-imaging effect in a Fresnel field.

  15. Imaging quality analysis of computer-generated holograms using the point-based method and slice-based method

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen; Chen, Siqing; Zheng, Huadong; Sun, Tao; Yu, Yingjie; Gao, Hongyue; Asundi, Anand K.

    2017-06-01

    Computer holography has made a notably progress in recent years. The point-based method and slice-based method are chief calculation algorithms for generating holograms in holographic display. Although both two methods are validated numerically and optically, the differences of the imaging quality of these methods have not been specifically analyzed. In this paper, we analyze the imaging quality of computer-generated phase holograms generated by point-based Fresnel zone plates (PB-FZP), point-based Fresnel diffraction algorithm (PB-FDA) and slice-based Fresnel diffraction algorithm (SB-FDA). The calculation formula and hologram generation with three methods are demonstrated. In order to suppress the speckle noise, sequential phase-only holograms are generated in our work. The results of reconstructed images numerically and experimentally are also exhibited. By comparing the imaging quality, the merits and drawbacks with three methods are analyzed. Conclusions are given by us finally.

  16. Fresnel Lens

    NASA Technical Reports Server (NTRS)

    Watson, Michael D.; Scott, Steve; Lamb, David; Zimmerman, Joe E. (Technical Monitor)

    2001-01-01

    Fresnel lenses span the full range of sizes from lens a few micrometers in diameter to lens several meters in diameter. These lenses are utilized in various fields including optical communication, theatrical lighting, office equipment, video entertainment systems, solar concentrators, and scientific research instruments. These lenses function either as diffractive or refractive optical elements depending on the geometrical feature size of the lens. The basic functions of these lenses is described followed by an overview of fabrication methods. A summary of applications is then provided illustrating the rich variety of applications for which fresnel lenses may be designed to fulfill.

  17. Propagation of hollow Gaussian beam through a misaligned first-order optical system and its propagation properties

    NASA Astrophysics Data System (ADS)

    Zhao, Cheng Liang; Lu, Xuan Hui

    2007-06-01

    Propagation properties of hollow Gaussian beam through a misaligned first-order ABCD system is studied using the generalized Huygens-Fresnel diffraction integral, augmented matrix. It is shown that, as a hollow Gaussian beam passes through the misaligned first-order ABCD system, the beam shape is not preserved, the out-put beams have differences when passing different misaligned optical systems. We can adjust the size of dark region through adjusting the misaligned transverse vector E.

  18. Generation of dark hollow beam by focusing a sine-Gaussian beam using a cylindrical lens and a focusing lens

    NASA Astrophysics Data System (ADS)

    Tang, Huiqin; Zhu, Kaicheng

    2013-12-01

    Based on the generalized Huygens-Fresnel diffraction integral, a closed-form propagation equation related to sine-Gaussian beams through a cylindrical lens and a focusing lens is derived and illustrated with numerical methods. It is found that a sine-Gaussian beam through such a system may be converted into a dark hollow beam (DHB) with topological charge index one and its bright enclosure is approximately an elongated ellipse with very high ellipticity. Moreover, the parameter values at which the DHBs have perfect intensity patterns are designed. The optimal relative orientation between the dislocation line of the input sine-Gaussian beam and the axial orientation of the cylindrical lens is specified. And the ellipticity of the elliptical DHBs is mainly defined by the focal length of the cylindrical lens and the Fresnel number of the optical system.

  19. Nonlinear optical cryptosystem based on joint Fresnel transform correlator under vector wave illumination

    NASA Astrophysics Data System (ADS)

    Xueju, Shen; Chao, Lin; Xiao, Zou; Jianjun, Cai

    2015-05-01

    We present a nonlinear optical cryptosystem with multi-dimensional keys including phase, polarization and diffraction distance. To make full use of the degrees of freedom that optical processing offers, an elaborately designed vector wave with both a space-variant phase and locally linear polarization is generated with a common-path interferometer for illumination. The joint transform correlator in the Fresnel domain, implemented with a double optical wedge, is utilized as the encryption framework which provides an additional key known as the Fresnel diffraction distance. Two nonlinear operations imposed on the recorded joint Fresnel power distribution (JFPD) by a charge coupled device (CCD) are adopted. The first one is the division of power distribution of the reference window random function which is previously proposed by researchers and can improve the quality of the decrypted image. The second one is the recording of a hybrid JFPD using a micro-polarizers array with orthogonal and random transmissive axes attached to the CCD. Then the hybrid JFPD is further scrambled by substituting random noise for partial power distribution. The two nonlinear operations break the linearity of this cryptosystem and provide ultra security. We verify our proposal using a quick response code for noise-free recovery.

  20. Diffraction limited gamma-ray optics using Fresnel lenses for micro-arc second angular resolution

    NASA Astrophysics Data System (ADS)

    Skinner, G.; von Ballmoos, P.; Gehrels, N.; Krzmanic, J.

    2003-03-01

    Refractive indices at gamma-ray wavelengths are such that material thicknesses of the order of millimeters allow the phase of a wavefront to be changed by up to 2π . Thus a phase Fresnel lens can be made from a simple profiled thin disk of, for example, aluminium or plastic. Such a lens can easily have a collecting area of several square meters and an efficiency >90%. Ordinary engineering tolerances allow the manufacture of a lens which can be diffraction limited in the pico-meter wavelength band (up to ˜MeV) and thus provides a simple optical system with angular resolution better than a micro arc second i.e. the resolution necessary to resolve structures on the scale of the event horizon of super-massive black holes in AGN. However the focal length of such a lens is very long - up to a million km. Nevertheless studies have shown that a mission `Fresnel' using a detector and a phase Fresnel lens on two station-keeping spacecraft separated by such a distance is feasible. Results from these studies and work on other proof of concept studies are presented.

  1. More are better, but the details matter: combinations of multiple Fresnel zone plates for improved resolution and efficiency in X-ray microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Kenan; Jacobsen, Chris

    Fresnel zone plates used for X-ray nanofocusing face high-aspect-ratio nanofabrication challenges in combining narrow transverse features (for high spatial resolution) along with extended optical modulation along the X-ray beam direction (to improve efficiency). The stacking of multiple Fresnel zone plates along the beam direction has already been shown to offer improved characteristics of resolution and efficiency when compared with thin single zone plates. Using multislice wave propagation simulation methods, here a number of new schemes for the stacking of multiple Fresnel zone plates are considered. These include consideration of optimal thickness and spacing in the axial direction, and methods tomore » capture a fraction of the light otherwise diffracted into unwanted orders, and instead bring it into the desired first-order focus. In conclusion, the alignment tolerances for stacking multiple Fresnel zone plates are also considered.« less

  2. Generation of phase singularity through diffracting a plane or Gaussian beam by a spiral phase plate.

    PubMed

    Kotlyar, Victor V; Almazov, Anton A; Khonina, Svetlana N; Soifer, Victor A; Elfstrom, Henna; Turunen, Jari

    2005-05-01

    We deduce and study an analytical expression for Fresnel diffraction of a plane wave by a spiral phase plate (SPP) that imparts an arbitrary-order phase singularity on the light field. Estimates for the optical vortex radius that depends on the singularity's integer order n (also termed topological charge, or order of the dislocation) have been derived. The near-zero vortex intensity is shown to be proportional to rho2n, where p is the radial coordinate. Also, an analytical expression for Fresnel diffraction of the Gaussian beam by a SPP with nth-order singularity is analyzed. The far-field intensity distribution is derived. The radius of maximal intensity is shown to depend on the singularity number. The behavior of the Gaussian beam intensity after a SPP with second-order singularity (n = 2) is studied in more detail. The parameters of the light beams generated numerically with the Fresnel transform and via analytical formulas are in good agreement. In addition, the light fields with first- and second-order singularities were generated by a 32-level SPP fabricated on the resist by use of the electron-beam lithography technique.

  3. Electric and magnetic polarization singularities of first-order Laguerre-Gaussian beams diffracted at a half-plane screen.

    PubMed

    Luo, Yamei; Gao, Zenghui; Tang, Bihua; Lü, Baida

    2013-08-01

    Based on the vector Fresnel diffraction integrals, analytical expressions for the electric and magnetic components of first-order Laguerre-Gaussian beams diffracted at a half-plane screen are derived and used to study the electric and magnetic polarization singularities in the diffraction field for both two- and three-dimensional (2D and 3D) cases. It is shown that there exist 2D and 3D electric and magnetic polarization singularities in the diffraction field, which do not coincide each other in general. By suitably varying the waist width ratio, off-axis displacement parameter, amplitude ratio, or propagation distance, the motion, pair-creation, and annihilation of circular polarization singularities, and the motion of linear polarization singularities take place in 2D and 3D electric and magnetic fields. The V point, at which two circular polarization singularities with the same topological charge but opposite handedness collide, appears in the 2D electric field under certain conditions in the diffraction field and free-space propagation. A comparison with the free-space propagation is also made.

  4. Optical study of a spectrum splitting solar concentrator based on a combination of a diffraction grating and a Fresnel lens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michel, Céline, E-mail: cmichel@ulg.ac.be; Habraken, Serge; Hololab, University of Liège, Allée du 6 Août, 17

    2015-09-28

    This paper presents recent improvements of our new solar concentrator design for space application. The concentrator is based on a combination of a diffraction grating (blazed or lamellar) coupled with a Fresnel lens. Thanks to this diffractive/refractive combination, this optical element splits spatially and spectrally the light and focus approximately respectively visible light and IR light onto electrically independent specific cells. It avoid the use of MJs cells and then also their limitations like current matching and lattice matching conditions, leading theoretically to a more tolerant system. The concept is reminded, with recent optimizations, ideal and more realistic results, andmore » the description of an experimental realization highlighting the feasibility of the concept and the closeness of theoretical and experimental results.« less

  5. Understanding the Physical Optics Phenomena by Using a Digital Application for Light Propagation

    NASA Astrophysics Data System (ADS)

    Sierra-Sosa, Daniel-Esteban; Ángel-Toro, Luciano

    2011-01-01

    Understanding the light propagation on the basis of the Huygens-Fresnel principle stands for a fundamental factor for deeper comprehension of different physical optics related phenomena like diffraction, self-imaging, image formation, Fourier analysis and spatial filtering. This constitutes the physical approach of the Fourier optics whose principles and applications have been developed since the 1950's. Both for analytical and digital applications purposes, light propagation can be formulated in terms of the Fresnel Integral Transform. In this work, a digital optics application based on the implementation of the Discrete Fresnel Transform (DFT), and addressed to serve as a tool for applications in didactics of optics is presented. This tool allows, at a basic and intermediate learning level, exercising with the identification of basic phenomena, and observing changes associated with modifications of physical parameters. This is achieved by using a friendly graphic user interface (GUI). It also assists the user in the development of his capacity for abstracting and predicting the characteristics of more complicated phenomena. At an upper level of learning, the application could be used to favor a deeper comprehension of involved physics and models, and experimenting with new models and configurations. To achieve this, two characteristics of the didactic tool were taken into account when designing it. First, all physical operations, ranging from simple diffraction experiments to digital holography and interferometry, were developed on the basis of the more fundamental concept of light propagation. Second, the algorithm was conceived to be easily upgradable due its modular architecture based in MATLAB® software environment. Typical results are presented and briefly discussed in connection with didactics of optics.

  6. A Wigner-based ray-tracing method for imaging simulations

    NASA Astrophysics Data System (ADS)

    Mout, B. M.; Wick, M.; Bociort, F.; Urbach, H. P.

    2015-09-01

    The Wigner Distribution Function (WDF) forms an alternative representation of the optical field. It can be a valuable tool for understanding and classifying optical systems. Furthermore, it possesses properties that make it suitable for optical simulations: both the intensity and the angular spectrum can be easily obtained from the WDF and the WDF remains constant along the paths of paraxial geometrical rays. In this study we use these properties by implementing a numerical Wigner-Based Ray-Tracing method (WBRT) to simulate diffraction effects at apertures in free-space and in imaging systems. Both paraxial and non-paraxial systems are considered and the results are compared with numerical implementations of the Rayleigh-Sommerfeld and Fresnel diffraction integrals to investigate the limits of the applicability of this approach. The results of the different methods are in good agreement when simulating free-space diffraction or calculating point spread functions (PSFs) for aberration-free imaging systems, even at numerical apertures exceeding the paraxial regime. For imaging systems with aberrations, the PSFs of WBRT diverge from the results using diffraction integrals. For larger aberrations WBRT predicts negative intensities, suggesting that this model is unable to deal with aberrations.

  7. Miniaturization of Fresnel lenses for solar concentration: a quantitative investigation.

    PubMed

    Duerr, Fabian; Meuret, Youri; Thienpont, Hugo

    2010-04-20

    Sizing down the dimensions of solar concentrators for photovoltaic applications offers a number of promising advantages. It provides thinner modules and smaller solar cells, which reduces thermal issues. In this work a plane Fresnel lens design is introduced that is first analyzed with geometrical optics. Because of miniaturization, pure ray tracing may no longer be valid to determine the concentration performance. Therefore, a quantitative wave optical analysis of the miniaturization's influence on the obtained concentration performance is presented. This better quantitative understanding of the impact of diffraction in microstructured Fresnel lenses might help to optimize the design of several applications in nonimaging optics.

  8. High convergence efficiency design of flat Fresnel lens with large aperture

    NASA Astrophysics Data System (ADS)

    Ke, Jieyao; Zhao, Changming; Guan, Zhe

    2018-01-01

    This paper designed a circle-shaped Fresnel lens with large aperture as part of the solar pumped laser design project. The Fresnel lens designed in this paper simulate in size 1000mm×1000mm, focus length 1200mm and polymethyl methacrylate (PMMA) material in order to conduct high convergence efficiency. In the light of design requirement of concentric ring with same width of 0.3mm, this paper proposed an optimized Fresnel lens design based on previous sphere design and conduct light tracing simulation in Matlab. This paper also analyzed the effect of light spot size, light intensity distribution, optical efficiency under four conditions, monochromatic parallel light, parallel spectrum light, divergent monochromatic light and sunlight. Design by 550nm wavelength and under the condition of Fresnel reflection, the results indicated that the designed lens could convergent sunlight in diffraction limit of 11.8mm with a 78.7% optical efficiency, better than the sphere cutting design results of 30.4%.

  9. Bragg-Fresnel optics: New field of applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snigirev, A.

    Bragg-Fresnel Optics shows excellent compatibility with the third generation synchrotron radiation sources such as ESRF and is capable of obtaining monochromatic submicron focal spots with 10{sup 8}-10{sup 9} photons/sec in an energy bandwidth of 10{sup -4}-10{sup -6} and in a photon energy range between 2-100 keV. New types of Bragg-Fresnel lenses like modified, ion implanted, bent and acoustically modulated were tested. Microprobe techniques like microdiffraction and microfluorescence based on Bragg-Fresnel optics were realised at the ESRF beamlines. Excellent parameters of the X-ray beam at the ESRF in terms of low emittance and quite small angular source size allow for Bragg-Fresnelmore » optics to occupy new fields of applications such as high resolution diffraction, holography, interferometry and phase contrast imaging.« less

  10. Digital reconstruction of Young's fringes using Fresnel transformation

    NASA Astrophysics Data System (ADS)

    Kulenovic, Rudi; Song, Yaozu; Renninger, P.; Groll, Manfred

    1997-11-01

    This paper deals with the digital numerical reconstruction of Young's fringes from laser speckle photography by means of the Fresnel-transformation. The physical model of the optical reconstruction of a specklegram is a near-field Fresnel-diffraction phenomenon which can be mathematically described by the Fresnel-transformation. Therefore, the interference phenomena can be directly calculated by a microcomputer.If additional a CCD-camera is used for specklegram recording the measurement procedure and evaluation process can be completely carried out in a digital way. Compared with conventional laser speckle photography no holographic plates, no wet development process and no optical specklegram reconstruction are needed. These advantages reveal a wide future in scientific and engineering applications. The basic principle of the numerical reconstruction is described, the effects of experimental parameters of Young's fringes are analyzed and representative results are presented.

  11. Off-axis phase-only holograms of 3D objects using accelerated point-based Fresnel diffraction algorithm

    NASA Astrophysics Data System (ADS)

    Zeng, Zhenxiang; Zheng, Huadong; Yu, Yingjie; Asundi, Anand K.

    2017-06-01

    A method for calculating off-axis phase-only holograms of three-dimensional (3D) object using accelerated point-based Fresnel diffraction algorithm (PB-FDA) is proposed. The complex amplitude of the object points on the z-axis in hologram plane is calculated using Fresnel diffraction formula, called principal complex amplitudes (PCAs). The complex amplitudes of those off-axis object points of the same depth can be obtained by 2D shifting of PCAs. In order to improve the calculating speed of the PB-FDA, the convolution operation based on fast Fourier transform (FFT) is used to calculate the holograms rather than using the point-by-point spatial 2D shifting of the PCAs. The shortest recording distance of the PB-FDA is analyzed in order to remove the influence of multiple-order images in reconstructed images. The optimal recording distance of the PB-FDA is also analyzed to improve the quality of reconstructed images. Numerical reconstructions and optical reconstructions with a phase-only spatial light modulator (SLM) show that holographic 3D display is feasible with the proposed algorithm. The proposed PB-FDA can also avoid the influence of the zero-order image introduced by SLM in optical reconstructed images.

  12. Computer Simulation Of An In-Process Surface Finish Sensor.

    NASA Astrophysics Data System (ADS)

    Rakels, Jan H.

    1987-01-01

    It is generally accepted, that optical methods are the most promising for the in-process measurement of surface finish. These methods have the advantages of being non-contacting and fast data acquisition. Furthermore, these optical instruments can be easily retrofitted on existing machine-tools. In the Micro-Engineering Centre at the University of Warwick, an optical sensor has been developed which can measure the rms roughness, slope and wavelength of turned and precision ground surfaces during machining. The operation of this device is based upon the Kirchhoff-Fresnel diffraction integral. Application of this theory to ideal turned and ground surfaces is straightforward, and indeed the calculated diffraction patterns are in close agreement with patterns produced by an actual optical instrument. Since it is mathematically difficult to introduce real machine-tool behaviour into the diffraction integral, a computer program has been devised, which simulates the operation of the optical sensor. The program produces a diffraction pattern as a graphical output. Comparison between computer generated and actual diffraction patterns of the same surfaces show a high correlation. The main aim of this program is to construct an atlas, which maps known machine-tool errors versus optical diffraction patterns. This atlas can then be used for machine-tool condition diagnostics. It has been found that optical monitoring is very sensitive to minor defects. Therefore machine-tool detoriation can be detected before it is detrimental.

  13. Diffraction-based analysis of tunnel size for a scaled external occulter testbed

    NASA Astrophysics Data System (ADS)

    Sirbu, Dan; Kasdin, N. Jeremy; Vanderbei, Robert J.

    2016-07-01

    For performance verification of an external occulter mask (also called a starshade), scaled testbeds have been developed to measure the suppression of the occulter shadow in the pupil plane and contrast in the image plane. For occulter experiments the scaling is typically performed by maintaining an equivalent Fresnel number. The original Princeton occulter testbed was oversized with respect to both input beam and shadow propagation to limit any diffraction effects due to finite testbed enclosure edges; however, to operate at realistic space-mission equivalent Fresnel numbers an extended testbed is currently under construction. With the longer propagation distances involved, diffraction effects due to the edge of the tunnel must now be considered in the experiment design. Here, we present a diffraction-based model of two separate tunnel effects. First, we consider the effect of tunnel-edge induced diffraction ringing upstream from the occulter mask. Second, we consider the diffraction effect due to clipping of the output shadow by the tunnel downstream from the occulter mask. These calculations are performed for a representative point design relevant to the new Princeton occulter experiment, but we also present an analytical relation that can be used for other propagation distances.

  14. Electromagnetic sensing for the monitoring of structures and infrastructures: a model for the diffraction by penetrable wedges

    NASA Astrophysics Data System (ADS)

    Riccio, G.; Gennarelli, G.

    2012-04-01

    As well-known, the observation of structures and infrastructures by radar remote sensing involves the investigation of the high-frequency electromagnetic scattering by canonical shapes, such as cylinders and wedges. For instance, the ruptures caused by natural disasters can be represented in the form of a wedge-shaped fracture [1]. They modify the electromagnetic response of the scene under investigation and the Geometrical Theory of Diffraction (GTD) can be used as efficient tool for describing this occurrence. Diffraction by a wedge is a well-covered topic in the scientific literature, but the available results mainly concern impenetrable structures. The aim of this work is to provide Uniform Asymptotic Physical Optics (UAPO) diffraction coefficients in the case of lossless penetrable wedges illuminated by plane waves having normal incidence with respect to the edge. To this end, the original problem is subdivided into two parts relevant to the internal region of the wedge and the surrounding space. For what concerns the evaluation of the field diffracted in the outer region, equivalent electric and magnetic PO surface currents are used as sources in the radiation integral. They lie on the external faces of the wedge and their expressions change in accordance with the incidence direction. As a matter of fact, they involve the reflection and transmission Fresnel's coefficients when one external face is directly illuminated, and only the reflection Fresnel's coefficients if both the external faces are considered. A useful approximation and a uniform asymptotic evaluation of the resulting radiation integrals allow one to obtain the diffraction coefficients in terms of the Geometrical Optics (GO) response and the standard transition function of the Uniform Theory of Diffraction (UTD) [2]. The evaluation of the field diffracted in the inner region is tackled and solved by using equivalent PO surface currents on the internal faces of the wedge. Once such currents are determined, the diffracted field is evaluated by using a method like that employed for the exterior problem. The UAPO solutions for the diffracted field allow one to compensate the GO field discontinuities in the interior and exterior regions. Furthermore, they are simple to handle and implement in numerical simulators for radar remote sensing. Their accuracy is well assessed by comparisons with Finite-Difference Time-Domain (FDTD) results. [1] A.I. Kozlov, L. Lighart, A.I. Logvin, "Radar reflection from surfaces with ruptures," Proc. of MIKON 2000, vol. 1, pp. 347-350. [2] R.G. Kouyoumjian, P.H. Pathak, "A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface," Proc. of IEEE, vol. 62, pp. 1448-1461, 1974.

  15. The fresnel interferometric imager

    NASA Astrophysics Data System (ADS)

    Koechlin, Laurent; Serre, Denis; Deba, Paul; Pelló, Roser; Peillon, Christelle; Duchon, Paul; Gomez de Castro, Ana Ines; Karovska, Margarita; Désert, Jean-Michel; Ehrenreich, David; Hebrard, Guillaume; Lecavelier Des Etangs, Alain; Ferlet, Roger; Sing, David; Vidal-Madjar, Alfred

    2009-03-01

    The Fresnel Interferometric Imager has been proposed to the European Space Agency (ESA) Cosmic Vision plan as a class L mission. This mission addresses several themes of the CV Plan: Exoplanet study, Matter in extreme conditions, and The Universe taking shape. This paper is an abridged version of the original ESA proposal. We have removed most of the technical and financial issues, to concentrate on the instrumental design and astrophysical missions. The instrument proposed is an ultra-lightweight telescope, featuring a novel optical concept based on diffraction focussing. It yields high dynamic range images, while releasing constraints on positioning and manufacturing of the main optical elements. This concept should open the way to very large apertures in space. In this two spacecraft formation-flying instrument, one spacecraft holds the focussing element: the Fresnel interferometric array; the other spacecraft holds the field optics, focal instrumentation, and detectors. The Fresnel array proposed here is a 3.6 ×3.6 m square opaque foil punched with 105 to 106 void “subapertures”. Focusing is achieved with no other optical element: the shape and positioning of the subapertures (holes in the foil) is responsible for beam combining by diffraction, and 5% to 10% of the total incident light ends up into a sharp focus. The consequence of this high number of subapertures is high dynamic range images. In addition, as it uses only a combination of vacuum and opaque material, this focussing method is potentially efficient over a very broad wavelength domain. The focal length of such diffractive focussing devices is wavelength dependent. However, this can be corrected. We have tested optically the efficiency of the chromatism correction on artificial sources (500 < λ < 750 nm): the images are diffraction limited, and the dynamic range measured on an artificial double source reaches 6.2 10 - 6. We have also validated numerical simulation algorithms for larger Fresnel interferometric arrays. These simulations yield a dynamic range (rejection factor) close to 10 - 8 for arrays such as the 3.6 m one we propose. A dynamic range of 10 - 8 allows detection of objects at contrasts as high as than 10 - 9 in most of the field. The astrophysical applications cover many objects in the IR, visible an UV domains. Examples are presented, taking advantage of the high angular resolution and dynamic range capabilities of this concept.

  16. Method and apparatus for making absolute range measurements

    DOEpatents

    Earl, Dennis D [Knoxville, TN; Allison, Stephen W [Knoxville, TN; Cates, Michael R [Oak Ridge, TN; Sanders, Alvin J [Knoxville, TN

    2002-09-24

    This invention relates to a method and apparatus for making absolute distance or ranging measurements using Fresnel diffraction. The invention employs a source of electromagnetic radiation having a known wavelength or wavelength distribution, which sends a beam of electromagnetic radiation through a screen at least partially opaque at the wavelength. The screen has an aperture sized so as to produce a Fresnel diffraction pattern. A portion of the beam travels through the aperture to a detector spaced some distance from the screen. The detector detects the central intensity of the beam as well as a set of intensities displaced from a center of the aperture. The distance from the source to the target can then be calculated based upon the known wavelength, aperture radius, and beam intensity.

  17. Polarization dependent formation of femtosecond laser-induced periodic surface structures near stepped features

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, Ryan D.; Torralva, Ben; Adams, David P.

    2014-06-09

    Laser-induced periodic surface structures (LIPSS) are formed near 110 nm-tall Au microstructured edges on Si substrates after single-pulse femtosecond irradiation with a 150 fs pulse centered near a 780 nm wavelength. We investigate the contributions of Fresnel diffraction from step-edges and surface plasmon polariton (SPP) excitation to LIPSS formation on Au and Si surfaces. For certain laser polarization vector orientations, LIPSS formation is dominated by SPP excitation; however, when SPP excitation is minimized, Fresnel diffraction dominates. The LIPSS orientation and period distributions are shown to depend on which mechanism is activated. These results support previous observations of the laser polarization vectormore » influencing LIPSS formation on bulk surfaces.« less

  18. Diffraction effects incorporated design of a parallax barrier for a high-density multi-view autostereoscopic 3D display.

    PubMed

    Yoon, Ki-Hyuk; Ju, Heongkyu; Kwon, Hyunkyung; Park, Inkyu; Kim, Sung-Kyu

    2016-02-22

    We present optical characteristics of view image provided by a high-density multi-view autostereoscopic 3D display (HD-MVA3D) with a parallax barrier (PB). Diffraction effects that become of great importance in such a display system that uses a PB, are considered in an one-dimensional model of the 3D display, in which the numerical simulation of light from display panel pixels through PB slits to viewing zone is performed. The simulation results are then compared to the corresponding experimental measurements with discussion. We demonstrate that, as a main parameter for view image quality evaluation, the Fresnel number can be used to determine the PB slit aperture for the best performance of the display system. It is revealed that a set of the display parameters, which gives the Fresnel number of ∼ 0.7 offers maximized brightness of the view images while that corresponding to the Fresnel number of 0.4 ∼ 0.5 offers minimized image crosstalk. The compromise between the brightness and crosstalk enables optimization of the relative magnitude of the brightness to the crosstalk and lead to the choice of display parameter set for the HD-MVA3D with a PB, which satisfies the condition where the Fresnel number lies between 0.4 and 0.7.

  19. A nanostructure based on metasurfaces for optical interconnects

    NASA Astrophysics Data System (ADS)

    Lin, Shulang; Gu, Huarong

    2017-08-01

    Optical-electronic Integrated Neural Co-processor takes vital part in optical neural network, which is mainly realized by optical interconnects. Because of the accuracy requirement and long-term goal of integration, optical interconnects should be effective and pint-size. In traditional solutions of optical interconnects, holography built on crystalloid or law of Fresnel diffraction exploited on zone plate was used. However, holographic method cannot meet the efficiency requirement and zone plate is too bulk to make the optical neural unit miniaturization. Thus, this paper aims to find a way to replace holographic method or zone plate with enough diffraction efficiency and smaller size. Metasurfaces are composed of subwavelength-spaced phase shifters at an interface of medium. Metasurfaces allow for unprecedented control of light properties. They also have advanced optical technology of enabling versatile functionalities in a planar structure. In this paper, a nanostructure is presented for optical interconnects. The comparisons of light splitting ability and simulated crosstalk between nanostructure and zone plate are also made.

  20. Effect of turbulent atmosphere on the on-axis average intensity of Pearcey-Gaussian beam

    NASA Astrophysics Data System (ADS)

    F, Boufalah; L, Dalil-Essakali; H, Nebdi; A, Belafhal

    2016-06-01

    The propagation characteristics of the Pearcey-Gaussian (PG) beam in turbulent atmosphere are investigated in this paper. The Pearcey beam is a new kind of paraxial beam, based on the Pearcey function of catastrophe theory, which describes diffraction about a cusp caustic. By using the extended Huygens-Fresnel integral formula in the paraxial approximation and the Rytov theory, an analytical expression of axial intensity for the considered beam family is derived. Some numerical results for PG beam propagating in atmospheric turbulence are given by studying the influences of some factors, including incident beam parameters and turbulence strengths.

  1. New 2D diffraction model and its applications to terahertz parallel-plate waveguide power splitters

    PubMed Central

    Zhang, Fan; Song, Kaijun; Fan, Yong

    2017-01-01

    A two-dimensional (2D) diffraction model for the calculation of the diffraction field in 2D space and its applications to terahertz parallel-plate waveguide power splitters are proposed in this paper. Compared with the Huygens-Fresnel principle in three-dimensional (3D) space, the proposed model provides an approximate analytical expression to calculate the diffraction field in 2D space. The diffraction filed is regarded as the superposition integral in 2D space. The calculated results obtained from the proposed diffraction model agree well with the ones by software HFSS based on the element method (FEM). Based on the proposed 2D diffraction model, two parallel-plate waveguide power splitters are presented. The splitters consist of a transmitting horn antenna, reflectors, and a receiving antenna array. The reflector is cylindrical parabolic with superimposed surface relief to efficiently couple the transmitted wave into the receiving antenna array. The reflector is applied as computer-generated holograms to match the transformed field to the receiving antenna aperture field. The power splitters were optimized by a modified real-coded genetic algorithm. The computed results of the splitters agreed well with the ones obtained by software HFSS verify the novel design method for power splitter, which shows good applied prospects of the proposed 2D diffraction model. PMID:28181514

  2. Fast algorithm for chirp transforms with zooming-in ability and its applications.

    PubMed

    Deng, X; Bihari, B; Gan, J; Zhao, F; Chen, R T

    2000-04-01

    A general fast numerical algorithm for chirp transforms is developed by using two fast Fourier transforms and employing an analytical kernel. This new algorithm unifies the calculations of arbitrary real-order fractional Fourier transforms and Fresnel diffraction. Its computational complexity is better than a fast convolution method using Fourier transforms. Furthermore, one can freely choose the sampling resolutions in both x and u space and zoom in on any portion of the data of interest. Computational results are compared with analytical ones. The errors are essentially limited by the accuracy of the fast Fourier transforms and are higher than the order 10(-12) for most cases. As an example of its application to scalar diffraction, this algorithm can be used to calculate near-field patterns directly behind the aperture, 0 < or = z < d2/lambda. It compensates another algorithm for Fresnel diffraction that is limited to z > d2/lambdaN [J. Opt. Soc. Am. A 15, 2111 (1998)]. Experimental results from waveguide-output microcoupler diffraction are in good agreement with the calculations.

  3. Digital simulation of scalar optical diffraction: revisiting chirp function sampling criteria and consequences.

    PubMed

    Voelz, David G; Roggemann, Michael C

    2009-11-10

    Accurate simulation of scalar optical diffraction requires consideration of the sampling requirement for the phase chirp function that appears in the Fresnel diffraction expression. We describe three sampling regimes for FFT-based propagation approaches: ideally sampled, oversampled, and undersampled. Ideal sampling, where the chirp and its FFT both have values that match analytic chirp expressions, usually provides the most accurate results but can be difficult to realize in practical simulations. Under- or oversampling leads to a reduction in the available source plane support size, the available source bandwidth, or the available observation support size, depending on the approach and simulation scenario. We discuss three Fresnel propagation approaches: the impulse response/transfer function (angular spectrum) method, the single FFT (direct) method, and the two-step method. With illustrations and simulation examples we show the form of the sampled chirp functions and their discrete transforms, common relationships between the three methods under ideal sampling conditions, and define conditions and consequences to be considered when using nonideal sampling. The analysis is extended to describe the sampling limitations for the more exact Rayleigh-Sommerfeld diffraction solution.

  4. Fabrication and characterization of high-efficiency double-sided blazed x-ray optics.

    PubMed

    Mohacsi, Istvan; Vartiainen, Ismo; Guizar-Sicairos, Manuel; Karvinen, Petri; Guzenko, Vitaliy A; Müller, Elisabeth; Kewish, Cameron M; Somogyi, Andrea; David, Christian

    2016-01-15

    The focusing efficiency of conventional diffractive x-ray lenses is fundamentally limited due to their symmetric binary structures and the corresponding symmetry of their focusing and defocusing diffraction orders. Fresnel zone plates with asymmetric structure profiles can break this limitation; yet existing implementations compromise either on resolution, ease of use, or stability. We present a new way for the fabrication of such blazed lenses by patterning two complementary binary Fresnel zone plates on the front and back sides of the same membrane chip to provide a compact, inherently stable, single-chip device. The presented blazed double-sided zone plates with 200 nm smallest half-pitch provide up to 54.7% focusing efficiency at 6.2 keV, which is clearly beyond the value obtainable by their binary counterparts.

  5. A numerical wave-optical approach for the simulation of analyzer-based x-ray imaging

    NASA Astrophysics Data System (ADS)

    Bravin, A.; Mocella, V.; Coan, P.; Astolfo, A.; Ferrero, C.

    2007-04-01

    An advanced wave-optical approach for simulating a monochromator-analyzer set-up in Bragg geometry with high accuracy is presented. The polychromaticity of the incident wave on the monochromator is accounted for by using a distribution of incoherent point sources along the surface of the crystal. The resulting diffracted amplitude is modified by the sample and can be well represented by a scalar representation of the optical field where the limitations of the usual ‘weak object’ approximation are removed. The subsequent diffraction mechanism on the analyzer is described by the convolution of the incoming wave with the Green-Riemann function of the analyzer. The free space propagation up to the detector position is well reproduced by a classical Fresnel-Kirchhoff integral. The preliminary results of this innovative approach show an excellent agreement with experimental data.

  6. Visualizing light with electrons

    NASA Astrophysics Data System (ADS)

    Fitzgerald, J. P. S.; Word, R. C.; Koenenkamp, R.

    2014-03-01

    In multiphoton photoemission electron microscopy (nP-PEEM) electrons are emitted from surfaces at a rate proportional to the surface electromagnetic field amplitude. We use 2P-PEEM to give nanometer scale visualizations of light of diffracted and waveguide fields around various microstructures. We use Fourier analysis to determine the phase and amplitude of surface fields in relation to incident light from the interference patterns. To provide quick and intuitive simulations of surface fields, we employ two dimensional Fresnel-Kirchhoff integration, a technique based on freely propagating waves and Huygens' principle. We find generally good agreement between simulations and experiment. Additionally diffracted wave simulations exhibit greater phase accuracy, indicating that these waves are well represented by a two dimensional approximation. The authors gratefully acknowledge funding of this research by the US-DOE Basic Science Office under Contract DE-FG02-10ER46406.

  7. Huygen-Fresnel Diffraction Model H-Fdm for the Simulation of Ultrasonic Time-Of Diffraction Technique in 2d Geometries

    NASA Astrophysics Data System (ADS)

    Reddy, K. Sanjeeva; Krishnamurthy, C. V.; Balasubramaniam, Krishnan; Balasubramanian, T.

    2010-02-01

    This paper discusses the evaluation of diffracted signals from cracks in 2D based on a new Huygen-Fresnel Diffraction Model (H-FDM). The model employs the frequency-domain far-field displacement expressions derived by Miller & Pursey [1] in 2D for a line source located on the free surface of a semi-infinite elastic medium. At each frequency in the bandwidth of a pulsed excitation, the complex diffracted field is obtained by summing over the unblocked virtual sources located in the section containing a vertical crack. The time-domain diffracted signal is obtained using standard FFT procedures. The effect of beam refraction from a wedge-based finite transducer has been modeled by treating the finite transducer as an array of line sources. The model has been used for predicting diffracted signals in time-of-flight from the crack like defect. The model allows the evaluation of back wall signal amplitude and lateral wave amplitude as well. Experiments have been carried out on 10 mm thick aluminum sample with surface breaking crack of lengths 2 mm and 4 mm using shear probe shoe. The simulated A-Scan results for the aluminum sample with 2 mm and 4 mm surface breaking lengths compare very well in relative amplitudes and time of arrivals with experiments. The H-FDM model offers a tool to evaluate diffraction and related phenomena quantitatively with modest computational resources.

  8. Sagnac-interferometer-based fresnel flow probe.

    PubMed

    Tselikov, A; Blake, J

    1998-10-01

    We used a near-diffraction-limited flow or light-wave-interaction pipe to produce a Sagnac-interferometer-based Fresnel drag fluid flowmeter capable of detecting extremely small flow rates. An optimized design of the pipe along with the use of a state-of-the-art Sagnac interferometer results in a minimum-detectable water flow rate of 2.4 nl/s [1 drop/(5 h)]. The flowmeter's capability of measuring the water consumption by a small plant in real time has been demonstrated. We then designed an automated alignment system that finds and maintains the optimum fiber-coupling regime, which makes the applications of the Fresnel-drag-based flowmeters practical, especially if the length of the interaction pipe is long. Finally, we have applied the automatic alignment technique to an air flowmeter.

  9. Diffraction-assisted micropatterning of silicon surfaces by ns-laser irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haro-Poniatowski, E., E-mail: haro@xanum.uam.mx; Acosta-Zepeda, C.; Mecalco, G.

    2014-06-14

    Single-pulse (532 nm, 8 ns) micropatterning of silicon with nanometric surface modulation is demonstrated by irradiating through a diffracting pinhole. The irradiation results obtained at fluences above the melting threshold are characterized by scanning electron and scanning force microscopy and reveal a good agreement with Fresnel diffraction theory. The physical mechanism is identified and discussed on basis of both thermocapillary and chemicapillary induced material transport during the molten state of the surface.

  10. Design of tracking and detecting lens system by diffractive optical method

    NASA Astrophysics Data System (ADS)

    Yang, Jiang; Qi, Bo; Ren, Ge; Zhou, Jianwei

    2016-10-01

    Many target-tracking applications require an optical system to acquire the target for tracking and identification. This paper describes a new detecting optical system that can provide automatic flying object detecting, tracking and measuring in visible band. The main feature of the detecting lens system is the combination of diffractive optics with traditional lens design by a technique was invented by Schupmann. Diffractive lens has great potential for developing the larger aperture and lightweight lens. First, the optical system scheme was described. Then the Schupmann achromatic principle with diffractive lens and corrective optics is introduced. According to the technical features and requirements of the optical imaging system for detecting and tracking, we designed a lens system with flat surface Fresnel lens and cancels the optical system chromatic aberration by another flat surface Fresnel lens with effective focal length of 1980mm, an F-Number of F/9.9 and a field of view of 2ωω = 14.2', spatial resolution of 46 lp/mm and a working wavelength range of 0.6 0.85um. At last, the system is compact and easy to fabricate and assembly, the diffuse spot size and MTF function and other analysis provide good performance.

  11. Diffusion approximation of the radiative-conductive heat transfer model with Fresnel matching conditions

    NASA Astrophysics Data System (ADS)

    Chebotarev, Alexander Yu.; Grenkin, Gleb V.; Kovtanyuk, Andrey E.; Botkin, Nikolai D.; Hoffmann, Karl-Heinz

    2018-04-01

    The paper is concerned with a problem of diffraction type. The study starts with equations of complex (radiative and conductive) heat transfer in a multicomponent domain with Fresnel matching conditions at the interfaces. Applying the diffusion, P1, approximation yields a pair of coupled nonlinear PDEs describing the radiation intensity and temperature for each component of the domain. Matching conditions for these PDEs, imposed at the interfaces between the domain components, are derived. The unique solvability of the obtained problem is proven, and numerical experiments are conducted.

  12. The propagation of a flattened circular Gaussian beam through an optical system in turbulent atmosphere

    NASA Astrophysics Data System (ADS)

    Chu, X. X.; Liu, Z. J.; Wu, Y.

    2008-07-01

    Based on the Huygens-Fresnel integral, the properties of a circular flattened Gaussian beam through a stigmatic optical system in turbulent atmosphere are investigated. Analytical formulas for the average intensity are derived. As elementary examples, the average intensity distributions of a collimated circular flattened Gaussian beam and a focused circular flattened Gaussian beam through a simple optical system are studied. To see the effects of the optical system on the propagation, the average intensity distributions of the beam for direct propagation are also studied. From the analysis, comparison and numerical calculation we can see that there are many differences between the two propagations. These differences are due to the geometrical magnification of the optical system, different diffraction and different turbulence-induced spreading. Namely, an optical system not only affects the diffraction but also affects the turbulence-induced spreading.

  13. The Fresnel Diffraction: A Story of Light and Darkness

    NASA Astrophysics Data System (ADS)

    Aime, C.; Aristidi, É.; Rabbia, Y.

    2013-03-01

    In a first part of the paper we give a simple introduction to the free space propagation of light at the level of a Master degree in Physics. The presentation promotes linear filtering aspects at the expense of fundamental physics. Following the Huygens-Fresnel approach, the propagation of the wave writes as a convolution relationship, the impulse response being a quadratic phase factor. We give the corresponding filter in the Fourier plane. As an illustration, we describe the propagation of wave with a spatial sinusoidal amplitude, introduce lenses as quadratic phase transmissions, discuss their Fourier transform properties and give some properties of Soret screens. Classical diffractions of rectangular diaphragms are also given here. In a second part of the paper, the presentation turns into the use of external occulters in coronagraphy for the detection of exoplanets and the study of the solar corona. Making use of Lommel series expansions, we obtain the analytical expression for the diffraction of a circular opaque screen, giving thereby the complete formalism for the Arago-Poisson spot. We include there shaped occulters. The paper ends up with a brief application to incoherent imaging in astronomy.

  14. Effect of contrast enhancement prior to iteration procedure on image correction for soft x-ray projection microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jamsranjav, Erdenetogtokh, E-mail: ja.erdenetogtokh@gmail.com; Shiina, Tatsuo, E-mail: shiina@faculity.chiba-u.jp; Kuge, Kenichi

    2016-01-28

    Soft X-ray microscopy is well recognized as a powerful tool of high-resolution imaging for hydrated biological specimens. Projection type of it has characteristics of easy zooming function, simple optical layout and so on. However the image is blurred by the diffraction of X-rays, leading the spatial resolution to be worse. In this study, the blurred images have been corrected by an iteration procedure, i.e., Fresnel and inverse Fresnel transformations repeated. This method was confirmed by earlier studies to be effective. Nevertheless it was not enough to some images showing too low contrast, especially at high magnification. In the present study,more » we tried a contrast enhancement method to make the diffraction fringes clearer prior to the iteration procedure. The method was effective to improve the images which were not successful by iteration procedure only.« less

  15. Hologram production and representation for corrected image

    NASA Astrophysics Data System (ADS)

    Jiao, Gui Chao; Zhang, Rui; Su, Xue Mei

    2015-12-01

    In this paper, a CCD sensor device is used to record the distorted homemade grid images which are taken by a wide angle camera. The distorted images are corrected by using methods of position calibration and correction of gray with vc++ 6.0 and opencv software. Holography graphes for the corrected pictures are produced. The clearly reproduced images are obtained where Fresnel algorithm is used in graph processing by reducing the object and reference light from Fresnel diffraction to delete zero-order part of the reproduced images. The investigation is useful in optical information processing and image encryption transmission.

  16. Investigation of Next-Generation Earth Radiation Budget Radiometry

    NASA Technical Reports Server (NTRS)

    Coffey, Katherine L.; Mahan, J. R.

    1999-01-01

    The current effort addresses two issues important to the research conducted by the Thermal Radiation Group at Virginia Tech. The first research topic involves the development of a method which can properly model the diffraction of radiation as it enters an instrument aperture. The second topic involves the study of a potential next-generation space-borne radiometric instrument concept. Presented are multiple modeling efforts to describe the diffraction of monochromatic radiant energy passing through an aperture for use in the Monte-Carlo ray-trace environment. Described in detail is a deterministic model based upon Heisenberg's uncertainty principle and the particle theory of light. This method is applicable to either Fraunhofer or Fresnel diffraction situations, but is incapable of predicting the secondary fringes in a diffraction pattern. Also presented is a second diffraction model, based on the Huygens-Fresnel principle with a correcting obliquity factor. This model is useful for predicting Fraunhofer diffraction, and can predict the secondary fringes because it keeps track of phase. NASA is planning for the next-generation of instruments to follow CERES (Clouds and the Earth's Radiant Energy System), an instrument which measures components of the Earth's radiant energy budget in three spectral bands. A potential next-generation concept involves modification of the current CERES instrument to measure in a larger number of wavelength bands. This increased spectral partitioning would be achieved by the addition of filters and detectors to the current CERES geometry. The capacity of the CERES telescope to serve for this purpose is addressed in this thesis.

  17. Planar techniques for fabricating X-ray diffraction gratings and zone plates

    NASA Technical Reports Server (NTRS)

    Smith, H. I.; Anderson, E. H.; Hawryluk, A. M.; Schattenburg, M. L.

    1984-01-01

    The state of current planar techniques in the fabrication of Fresnel zone plates and diffraction gratings is reviewed. Among the fabrication techniques described are multilayer resist techniques; scanning electron beam lithography; and holographic lithography. Consideration is also given to: X-ray lithography; ion beam lithography; and electroplating. SEM photographs of the undercut profiles obtained in a type AZ 135OB photoresistor by holographic lithography are provided.

  18. Educational Software for Interference and Optical Diffraction Analysis in Fresnel and Fraunhofer Regions Based on MATLAB GUIs and the FDTD Method

    ERIC Educational Resources Information Center

    Frances, J.; Perez-Molina, M.; Bleda, S.; Fernandez, E.; Neipp, C.; Belendez, A.

    2012-01-01

    Interference and diffraction of light are elementary topics in optics. The aim of the work presented here is to develop an accurate and cheap optical-system simulation software that provides a virtual laboratory for studying the effects of propagation in both time and space for the near- and far-field regions. In laboratory sessions, this software…

  19. Propagation of waves from an arbitrary shaped surface-A generalization of the Fresnel diffraction integral

    NASA Astrophysics Data System (ADS)

    Feshchenko, R. M.; Vinogradov, A. V.; Artyukov, I. A.

    2018-04-01

    Using the method of Laplace transform the field amplitude in the paraxial approximation is found in the two-dimensional free space using initial values of the amplitude specified on an arbitrary shaped monotonic curve. The obtained amplitude depends on one a priori unknown function, which can be found from a Volterra first kind integral equation. In a special case of field amplitude specified on a concave parabolic curve the exact solution is derived. Both solutions can be used to study the light propagation from arbitrary surfaces including grazing incidence X-ray mirrors. They can find applications in the analysis of coherent imaging problems of X-ray optics, in phase retrieval algorithms as well as in inverse problems in the cases when the initial field amplitude is sought on a curved surface.

  20. Fabrication of Fresnel micro lens array in borosilicate glass by F2-laser ablation for glass interposer application

    NASA Astrophysics Data System (ADS)

    Brusberg, Lars; Neitz, Marcel; Schröder, Henning; Fricke-Begemann, Thomas; Ihlemann, Jürgen

    2014-03-01

    The future need for more bandwidth forces the development of optical transmission solutions for rack-to-rack, boardto- board and chip-to-chip interconnects. The goals are significant reduction of power consumption, highest density and potential for bandwidth scalability to overcome the limitations of the systems today with mostly copper based interconnects. For system integration the enabling of thin glass as a substrate material for electro-optical components with integrated micro-optics for efficient light coupling to integrated optical waveguides or fibers is becoming important. Our glass based packaging approach merges micro-system packaging and glass integrated optics. This kind of packaging consists of a thin glass substrate with integrated micro lenses providing a platform for photonic component assembly and optical fiber or waveguide interconnection. Thin glass is commercially available in panel and wafer size and characterizes excellent optical and high frequency properties. That makes it perfect for microsystem packaging. A suitable micro lens approach has to be comparable with different commercial glasses and withstand post-processing like soldering. A benefit of using laser ablated Fresnel lenses is the planar integration capability in the substrate for highest integration density. In the paper we introduce our glass based packaging concept and the Fresnel lens design for different scenarios like chip-to-fiber, chip-to-optical-printed-circuit-board coupling. Based on the design the Fresnel lenses were fabricated by using a 157 nm fluorine laser ablation system.

  1. Efficient modeling of Bragg coherent x-ray nanobeam diffraction

    DOE PAGES

    Hruszkewycz, S. O.; Holt, M. V.; Allain, M.; ...

    2015-07-02

    X-ray Bragg diffraction experiments that utilize tightly focused coherent beams produce complicated Bragg diffraction patterns that depend on scattering geometry, characteristics of the sample, and properties of the x-ray focusing optic. In this paper, we use a Fourier-transform-based method of modeling the 2D intensity distribution of a Bragg peak and apply it to the case of thin films illuminated with a Fresnel zone plate in three different Bragg scattering geometries. Finally, the calculations agree well with experimental coherent diffraction patterns, demonstrating that nanodiffraction patterns can be modeled at nonsymmetric Bragg conditions with this approach—a capability critical for advancing nanofocused x-raymore » diffraction microscopy.« less

  2. Dynamical scattering in coherent hard x-ray nanobeam Bragg diffraction

    NASA Astrophysics Data System (ADS)

    Pateras, A.; Park, J.; Ahn, Y.; Tilka, J. A.; Holt, M. V.; Kim, H.; Mawst, L. J.; Evans, P. G.

    2018-06-01

    Unique intensity features arising from dynamical diffraction arise in coherent x-ray nanobeam diffraction patterns of crystals having thicknesses larger than the x-ray extinction depth or exhibiting combinations of nanoscale and mesoscale features. We demonstrate that dynamical scattering effects can be accurately predicted using an optical model combined with the Darwin theory of dynamical x-ray diffraction. The model includes the highly divergent coherent x-ray nanobeams produced by Fresnel zone plate focusing optics and accounts for primary extinction, multiple scattering, and absorption. The simulation accurately reproduces the dynamical scattering features of experimental diffraction patterns acquired from a GaAs/AlGaAs epitaxial heterostructure on a GaAs (001) substrate.

  3. High precision refractometry based on Fresnel diffraction from phase plates.

    PubMed

    Tavassoly, M Taghi; Naraghi, Roxana Rezvani; Nahal, Arashmid; Hassani, Khosrow

    2012-05-01

    When a transparent plane-parallel plate is illuminated at a boundary region by a monochromatic parallel beam of light, Fresnel diffraction occurs because of the abrupt change in phase imposed by the finite change in refractive index at the plate boundary. The visibility of the diffraction fringes varies periodically with changes in incident angle. The visibility period depends on the plate thickness and the refractive indices of the plate and the surrounding medium. Plotting the phase change versus incident angle or counting the visibility repetition in an incident-angle interval provides, for a given plate thickness, the refractive index of the plate very accurately. It is shown here that the refractive index of a plate can be determined without knowing the plate thickness. Therefore, the technique can be utilized for measuring plate thickness with high precision. In addition, by installing a plate with known refractive index in a rectangular cell filled with a liquid and following the described procedures, the refractive index of the liquid is obtained. The technique is applied to measure the refractive indices of a glass slide, distilled water, and ethanol. The potential and merits of the technique are also discussed.

  4. Three-dimensional generalization of the Van Cittert-Zernike theorem to wave and particle scattering

    NASA Astrophysics Data System (ADS)

    Zarubin, Alexander M.

    1993-07-01

    Coherence properties of primary partially coherent radiations (light, X-rays and particles) elastically scattered from a 3D object consisting of a collection of electrons and nuclei are analyzed in the Fresnel diffraction region and in the far field. The behaviour of the cross-spectral density of the scattered radiation transverse and along to the local direction of propagation is shown to be described by respectively the 3D Fourier and Fresnel transform of the generalized radiance function of a scattering secondary source associated with the object. A relativistic correct expression is derived for the mutual coherence function of radiation which takes account of the dispersive propagation of particle beams in vacuum. An effect of the spatial coherence of radiation on the temporal one is found; in the Fresnel diffraction region, in distinction to the field, both the longitudinal spatial coherence and the spectral width of radiation affect the longitudinal coherence. A solution of the 3D inverse scattering problem for partially coherent radiation is presented. It is shown that squared modulus of the scattering potential and its 2D projections can be reconstructed from measurements of the modulus and phase of the degree of transverse spatial coherence of the scattered radiation. The results provide a theoretical basis for new methods of image formation and structure analysis in X-ray, electron, ion, and neutron optics.

  5. Reconstructing surface wave profiles from reflected acoustic pulses using multiple receivers.

    PubMed

    Walstead, Sean P; Deane, Grant B

    2014-08-01

    Surface wave shapes are determined by analyzing underwater reflected acoustic signals collected at multiple receivers. The transmitted signals are of nominal frequency 300 kHz and are reflected off surface gravity waves that are paddle-generated in a wave tank. An inverse processing algorithm reconstructs 50 surface wave shapes over a length span of 2.10 m. The inverse scheme uses a broadband forward scattering model based on Kirchhoff's diffraction formula to determine wave shapes. The surface reconstruction algorithm is self-starting in that source and receiver geometry and initial estimates of wave shape are determined from the same acoustic signals used in the inverse processing. A high speed camera provides ground-truth measurements of the surface wave field for comparison with the acoustically derived surface waves. Within Fresnel zone regions the statistical confidence of the inversely optimized surface profile exceeds that of the camera profile. Reconstructed surfaces are accurate to a resolution of about a quarter-wavelength of the acoustic pulse only within Fresnel zones associated with each source and receiver pair. Multiple isolated Fresnel zones from multiple receivers extend the spatial extent of accurate surface reconstruction while overlapping Fresnel zones increase confidence in the optimized profiles there.

  6. Method and apparatus for making absolute range measurements

    DOEpatents

    Allison, Stephen W.; Cates, Michael R.; Key, William S.; Sanders, Alvin J.; Earl, Dennis D.

    1999-01-01

    This invention relates to a method and apparatus for making absolute distance or ranging measurements using Fresnel diffraction. The invention employs a source of electromagnetic radiation having a known wavelength or wavelength distribution, which sends a beam of electromagnetic radiation through an object which causes it to be split (hereinafter referred to as a "beamsplitter"), and then to a target. The beam is reflected from the target onto a screen containing an aperture spaced a known distance from the beamsplitter. The aperture is sized so as to produce a Fresnel diffraction pattern. A portion of the beam travels through the aperture to a detector, spaced a known distance from the screen. The detector detects the central intensity of the beam. The distance from the object which causes the beam to be split to the target can then be calculated based upon the known wavelength, aperture radius, beam intensity, and distance from the detector to the screen. Several apparatus embodiments are disclosed for practicing the method embodiments of the present invention.

  7. Resolution factors in edgeline holography.

    PubMed

    Trolinger, J D; Gee, T H

    1971-06-01

    When an in-line Fresnel hologram of an object such as a projectile in flight is made, the reconstruction comprises an image of the outside edge of the object superimposed upon a Fresnel diffraction pattern of the edge and an unmodulated portion of the reconstruction beam. When the reconstructed image is bandpass filtered, the only remaining significant contribution is that of a diffraction pattern which is symmetrical about an edgeline gaussian image of the object. The present paper discusses the application of this type of holography in accurately locating the edge of a large dynamic object, the position of which is not accurately known in any dimension. A theoretical and experimental analysis was performed to study the effects of motion, hologram size, film type, and practical limitations upon the attainable resolution in the reconstructed image. The bandlimiting effect of motion is used to relate the motion effected resolution limit of holography to that of photography. The study shows that an edgeline can be accurately located even at high velocity normal to the edge.

  8. Method and apparatus for making absolute range measurements

    DOEpatents

    Allison, S.W.; Cates, M.R.; Key, W.S.; Sanders, A.J.; Earl, D.D.

    1999-06-22

    This invention relates to a method and apparatus for making absolute distance or ranging measurements using Fresnel diffraction. The invention employs a source of electromagnetic radiation having a known wavelength or wavelength distribution, which sends a beam of electromagnetic radiation through an object which causes it to be split (hereinafter referred to as a beam splitter''), and then to a target. The beam is reflected from the target onto a screen containing an aperture spaced a known distance from the beam splitter. The aperture is sized so as to produce a Fresnel diffraction pattern. A portion of the beam travels through the aperture to a detector, spaced a known distance from the screen. The detector detects the central intensity of the beam. The distance from the object which causes the beam to be split to the target can then be calculated based upon the known wavelength, aperture radius, beam intensity, and distance from the detector to the screen. Several apparatus embodiments are disclosed for practicing the method embodiments of the present invention. 9 figs.

  9. Huygens-Feynman-Fresnel principle as the basis of applied optics.

    PubMed

    Gitin, Andrey V

    2013-11-01

    The main relationships of wave optics are derived from a combination of the Huygens-Fresnel principle and the Feynman integral over all paths. The stationary-phase approximation of the wave relations gives the correspondent relations from the point of view of geometrical optics.

  10. Two-dimensional periodic structures in solid state laser resonator

    NASA Astrophysics Data System (ADS)

    Okulov, Alexey Y.

    1991-07-01

    Transverse effects in nonlinear optical devices are being widely investigated. Recently, synchronization of a laser set by means of the Talbot effect has been demonstrated experimentally. This paper considers a Talbot cavity formed by a solid-state amplifying laser separated from the output mirror by a free space interval. This approach involves the approximation of the nonlinear medium as a thin layer, within which the diffraction is negligible. The other part of a resonator is empty, and the wave field is transformed by the Fresnel-Kirchoff integral. As a result, the dynamics of the transverse (and temporal) structure is computed by a successively iterated nonlinear local map (one- or two-dimensional) and a linear nonlocal map (generally speaking, infinitely dimensional).

  11. Efficient matrix approach to optical wave propagation and Linear Canonical Transforms.

    PubMed

    Shakir, Sami A; Fried, David L; Pease, Edwin A; Brennan, Terry J; Dolash, Thomas M

    2015-10-05

    The Fresnel diffraction integral form of optical wave propagation and the more general Linear Canonical Transforms (LCT) are cast into a matrix transformation form. Taking advantage of recent efficient matrix multiply algorithms, this approach promises an efficient computational and analytical tool that is competitive with FFT based methods but offers better behavior in terms of aliasing, transparent boundary condition, and flexibility in number of sampling points and computational window sizes of the input and output planes being independent. This flexibility makes the method significantly faster than FFT based propagators when only a single point, as in Strehl metrics, or a limited number of points, as in power-in-the-bucket metrics, are needed in the output observation plane.

  12. Laser fresnel distance measuring system and method

    NASA Technical Reports Server (NTRS)

    Campbell, Jonathan W. (Inventor); Lehner, David L. (Inventor); Smalley, Larry L. (Inventor); Smith, legal representative, Molly C. (Inventor); Sanders, Alvin J. (Inventor); Earl, Dennis Duncan (Inventor); Allison, Stephen W. (Inventor); Smith, Kelly L. (Inventor)

    2008-01-01

    A method and system for determining range to a target are provided. A beam of electromagnetic energy is transmitted through an aperture in an opaque screen such that a portion of the beam passes through the aperture to generate a region of diffraction that varies as a function of distance from the aperture. An imaging system is focused on a target plane in the region of diffraction with the generated image being compared to known diffraction patterns. Each known diffraction pattern has a unique value associated therewith that is indicative of a distance from the aperture. A match between the generated image and at least one of the known diffraction patterns is indicative of a distance between the aperture and target plane.

  13. Displacements and evolution of optical vortices in edge-diffracted Laguerre-Gaussian beams

    NASA Astrophysics Data System (ADS)

    Bekshaev, Aleksandr; Chernykh, Aleksey; Khoroshun, Anna; Mikhaylovskaya, Lidiya

    2017-05-01

    Based on the Kirchhoff-Fresnel approximation, we consider the behavior of optical vortices (OV) upon propagation of diffracted Laguerre-Gaussian (LG) beams with topological charge ∣m∣ = 1, 2. Under conditions of weak diffraction perturbation (i.e. the diffraction obstacle covers only the far transverse periphery of the incident LG beam), these OVs describe almost perfect 3D spirals within the diffracted beam body, which is an impressive demonstration of the helical nature of an OV beam. The far-field OV positions within the diffracted beam cross section depend on the wavefront curvature of the incident OV beam, so that the input wavefront curvature is transformed into the output azimuthal OV rotation. The results are expected to be useful in OV metrology and OV beam diagnostics.

  14. The Strong Effects Of On-Axis Focal Shift And Its Nonlinear Variation In Ultrasound Beams Radiated By Low Fresnel Number Transducers

    NASA Astrophysics Data System (ADS)

    Makov, Y. N.; Espinosa, V.; Sánchez-Morcillo, V. J.; Ramis, J.; Cruañes, J.; Camarena, F.

    2006-05-01

    On the basis of theoretical concepts, an accurate and complete experimental and numerical examination of the on-axis distribution and the corresponding temporal profiles for low-Fresnel-number focused ultrasound beams under increasing transducer input voltage has been performed. For a real focusing transducer with sufficiently small Fresnel number, a strong initial (linear) shift of the main on-axis pressure maximum from geometrical focal point towards the transducer, and its following displacement towards the focal point and backward motion as the driving transducer voltage increase until highly nonlinear regimes were fixed. The simultaneous monitoring of the temporal waveform modifications determines the real roles and interplay between different nonlinear effects (refraction and attenuation) in the observed dynamics of on-axis pressure maximum. The experimental results are in good agreement with numerical solutions of KZK equation, confirming that the observed dynamic shift of the maximum pressure point is related only to the interplay between diffraction, dissipation and nonlinearity of the acoustic wave.

  15. Fast computation algorithms for speckle pattern simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nascov, Victor; Samoilă, Cornel; Ursuţiu, Doru

    2013-11-13

    We present our development of a series of efficient computation algorithms, generally usable to calculate light diffraction and particularly for speckle pattern simulation. We use mainly the scalar diffraction theory in the form of Rayleigh-Sommerfeld diffraction formula and its Fresnel approximation. Our algorithms are based on a special form of the convolution theorem and the Fast Fourier Transform. They are able to evaluate the diffraction formula much faster than by direct computation and we have circumvented the restrictions regarding the relative sizes of the input and output domains, met on commonly used procedures. Moreover, the input and output planes canmore » be tilted each to other and the output domain can be off-axis shifted.« less

  16. Improvements on Fresnel arrays for high contrast imaging

    NASA Astrophysics Data System (ADS)

    Wilhem, Roux; Laurent, Koechlin

    2018-03-01

    The Fresnel Diffractive Array Imager (FDAI) is based on a new optical concept for space telescopes, developed at Institut de Recherche en Astrophysique et Planétologie (IRAP), Toulouse, France. For the visible and near-infrared it has already proven its performances in resolution and dynamic range. We propose it now for astrophysical applications in the ultraviolet with apertures from 6 to 30 meters, aimed at imaging in UV faint astrophysical sources close to bright ones, as well as other applications requiring high dynamic range. Of course the project needs first a probatory mission at small aperture to validate the concept in space. In collaboration with institutes in Spain and Russia, we will propose to board a small prototype of Fresnel imager on the International Space Station (ISS), with a program combining technical tests and astrophysical targets. The spectral domain should contain the Lyman- α line ( λ = 121 nm). As part of its preparation, we improve the Fresnel array design for a better Point Spread Function in UV, presently on a small laboratory prototype working at 260 nm. Moreover, we plan to validate a new optical design and chromatic correction adapted to UV. In this article we present the results of numerical propagations showing the improvement in dynamic range obtained by combining and adapting three methods : central obturation, optimization of the bars mesh holding the Fresnel rings, and orthogonal apodization. We briefly present the proposed astrophysical program of a probatory mission with such UV optics.

  17. Coherent Diffractive Imaging: From Nanometric Down to Picometric Resolution

    NASA Astrophysics Data System (ADS)

    De Caro, Liberato; Carlino, Elvio; Siliqi, Dritan; Giannini, Cinzia

    Coherent diffractive imaging (CDI) is a novel technique for inspecting (crystalline and non-crystalline) matter from nanometric down to picometric resolution. It was used originally with X-rays and, more recently, with electrons (so-called electron diffractive imaging, or EDI). This chapter introduces basic concepts concerning CDI and addresses the different types of X-ray CDI experiments that have been conducted, namely plane wave CDI from isolated objects in forward scattering, focused-beam Fresnel CDI from isolated objects in forward scattering, Bragg CDI from nanocrystals, and keyhole CDI and ptychography from extended objects. A CDI experiment with a transmission electron microscope, alternatively named an EDI experiment, is also introduced.

  18. Beam Wave Considerations for Optical Link Budget Calculations

    NASA Technical Reports Server (NTRS)

    Manning, Robert M.

    2016-01-01

    The bounded beam wave nature of electromagnetic radiation emanating from a finite size aperture is considered for diffraction-based link power budget calculations for an optical communications system. Unlike at radio frequency wavelengths, diffraction effects are very important at optical wavelengths. In the general case, the situation cannot be modeled by supposing isotropic radiating antennas and employing the concept of effective isotropic radiated power. It is shown here, however, that these considerations are no more difficult to treat than spherical-wave isotopic based calculations. From first principles, a general expression governing the power transfer for a collimated beam wave is derived and from this are defined the three regions of near-field, first Fresnel zone, and far-field behavior. Corresponding equations for the power transfer are given for each region. It is shown that although the well-known linear expressions for power transfer in the far-field hold for all distances between source and receiver in the radio frequency case, nonlinear behavior within the first Fresnel zone must be accounted for in the optical case at 1550 nm with typical aperture sizes at source/receiver separations less that 100 km.

  19. The dome-shaped Fresnel-Köhler concentrator

    NASA Astrophysics Data System (ADS)

    Zamora, P.; Benitez, P.; Li, Y.; Miñano, J. C.; Mendes-Lopes, J.; Araki, K.

    2012-10-01

    Manufacturing tolerances, along with a high concentration ratio, are key issues in order to obtain cheap CPV systems for mass production. Consequently, this manuscript presents a novel tolerant and cost effective concentrator optic: the domed-shaped Fresnel-Köhler, presenting a curved Fresnel lens as Primary Optical Element (POE). This concentrator is based on two previous successful CPV designs: the FK concentrator, based on a flat Fresnel lens, and the dome-shaped Fresnel lens system developed by Daido Steel, resulting on a superior concentrator. The manuscript shows outstanding simulation results for geometrical concentration factor of Cg = 1,230x: high tolerance and high optical efficiency, achieving acceptance angles of 1.18° (dealing to a CAP*=0.72) and efficiencies over 85% (without any anti-reflective coating). Moreover, Köhler integration provides good irradiance uniformity on the cell surface without increasing system complexity by means of any extra element. Daido Steel advanced technique for demolding injected plastic pieces will allow for easy manufacture of the dome-shaped POE of DFK concentrator.

  20. Can the Hypothesis 'Photon Interferes only with Itself' be Reconciled with Superposition of Light from Multiple Beams or Sources?

    NASA Technical Reports Server (NTRS)

    Roychoudhuri, Chandrasekhar; Prasad, Narasimha S.; Peng, Qing

    2007-01-01

    Any superposition effect as measured (SEM) by us is the summation of simultaneous stimulations experienced by a detector due to the presence of multiple copies of a detectee each carrying different values of the same parameter. We discus the cases with light beams carrying same frequency for both diffraction and multiple beam Fabry-Perot interferometer and also a case where the two superposed light beams carry different frequencies. Our key argument is that if light really consists of indivisible elementary particle, photon, then it cannot by itself create superposition effect since the state vector of an elementary particle cannot carry more than one values of any parameter at the same time. Fortunately, semiclassical model explains all light induced interactions using quantized atoms and classical EM wave packet. Classical physics, with its deeper commitment to Reality Ontology, was better prepared to nurture the emergence of Quantum Mechanics and still can provide guidance to explore nature deeper if we pay careful attention to successful classical formulations like Huygens-Fresnel diffraction integral.

  1. Serial number coding and decoding by laser interference direct patterning on the original product surface for anti-counterfeiting.

    PubMed

    Park, In-Yong; Ahn, Sanghoon; Kim, Youngduk; Bae, Han-Sung; Kang, Hee-Shin; Yoo, Jason; Noh, Jiwhan

    2017-06-26

    Here, we investigate a method to distinguish the counterfeits by patterning multiple reflective type grating directly on the surface of the original product and analyze the serial number from its rotation angles of diffracted fringes. The micro-sized gratings were fabricated on the surface of the material at high speeds by illuminating the interference fringe generated by passing a high-energy pulse laser through the Fresnel biprism. In addition, analysis of the grating's diffraction fringes was performed using a continuous wave laser.

  2. Conception of a cheap infrared camera using a Fresnel lens

    NASA Astrophysics Data System (ADS)

    Grulois, Tatiana; Druart, Guillaume; Guérineau, Nicolas; Crastes, Arnaud; Sauer, Hervé; Chavel, Pierre

    2014-09-01

    Today huge efforts are made in the research and industrial areas to design compact and cheap uncooled infrared optical systems for low-cost imagery applications. Indeed, infrared cameras are currently too expensive to be widespread. If we manage to cut their cost, we expect to open new types of markets. In this paper, we will present the cheap broadband microimager we have designed. It operates in the long-wavelength infrared range and uses only one silicon lens at a minimal cost for the manufacturing process. Our concept is based on the use of a thin optics. Therefore inexpensive unconventional materials can be used because some absorption can be tolerated. Our imager uses a thin Fresnel lens. Up to now, Fresnel lenses have not been used for broadband imagery applications because of their disastrous chromatic properties. However, we show that working in a high diffraction order can significantly reduce chromatism. A prototype has been made and the performance of our camera will be discussed. Its characterization has been carried out in terms of modulation transfer function (MTF) and noise equivalent temperature difference (NETD). Finally, experimental images will be presented.

  3. Integrated large view angle hologram system with multi-slm

    NASA Astrophysics Data System (ADS)

    Yang, ChengWei; Liu, Juan

    2017-10-01

    Recently holographic display has attracted much attention for its ability to generate real-time 3D reconstructed image. CGH provides an effective way to produce hologram, and spacial light modulator (SLM) is used to reconstruct the image. However the reconstructing system is usually very heavy and complex, and the view-angle is limited by the pixel size and spatial bandwidth product (SBP) of the SLM. In this paper a light portable holographic display system is proposed by integrating the optical elements and host computer units.Which significantly reduces the space taken in horizontal direction. CGH is produced based on the Fresnel diffraction and point source method. To reduce the memory usage and image distortion, we use an optimized accurate compressed look up table method (AC-LUT) to compute the hologram. In the system, six SLMs are concatenated to a curved plane, each one loading the phase-only hologram in a different angle of the object, the horizontal view-angle of the reconstructed image can be expanded to about 21.8°.

  4. Spectromicroscopy and coherent diffraction imaging: focus on energy materials applications.

    PubMed

    Hitchcock, Adam P; Toney, Michael F

    2014-09-01

    Current and future capabilities of X-ray spectromicroscopy are discussed based on coherence-limited imaging methods which will benefit from the dramatic increase in brightness expected from a diffraction-limited storage ring (DLSR). The methods discussed include advanced coherent diffraction techniques and nanoprobe-based real-space imaging using Fresnel zone plates or other diffractive optics whose performance is affected by the degree of coherence. The capabilities of current systems, improvements which can be expected, and some of the important scientific themes which will be impacted are described, with focus on energy materials applications. Potential performance improvements of these techniques based on anticipated DLSR performance are estimated. Several examples of energy sciences research problems which are out of reach of current instrumentation, but which might be solved with the enhanced DLSR performance, are discussed.

  5. A CPV System with Static Linear Fresnel Lenses in a Greenhouse

    NASA Astrophysics Data System (ADS)

    Sonneveld, Piet; Zahn, Helmut; Swinkels, Gert-Jan

    2010-10-01

    A new CPV system with a static linear Fresnel lens, silicon PV module suitable for concentrated radiation and an innovative tracking system is integrated in a greenhouse covering. The basic idea of this horticultural application is to develop a greenhouse for pot plants (typical shadow plants) which don't like high direct radiation. Removing all direct radiation will block up to 77% of the solar energy, which will reduce the necessary cooling capacity. The solar energy focused on the Thermal Photovoltaic (PV/T) module generates electric and thermal energy. The PV/T module is tracked in the focal line and requires cooling due to the high heat load of the concentrated radiation (concentration factor of 50 times). All parts are integrated in a greenhouse with a size of about 36 m2. The electrical and thermal yield is determined for Dutch climate circumstances. Some measurements were performed with a PMMA linear Fresnel lens between double glass. Further improvement of the performance of the CPV-system is possible by using a PDMS lens directly laminated on glass and using AR-coated glass. This lens is developed with ZEMAX and the results of the Ray-tracing simulations are presented with the lens structure oriented in an upwards and downwards position. The best performance of the static linear Fresnel lens is achieved with upwards orientation of the lens structures. In practice this is only possible with the Fresnel lens placed between a double glass structure, which will keep the lens clean and free of water.

  6. Tailored semiconductors for high-harmonic optoelectronics

    NASA Astrophysics Data System (ADS)

    Sivis, Murat; Taucer, Marco; Vampa, Giulio; Johnston, Kyle; Staudte, André; Naumov, Andrei Yu.; Villeneuve, D. M.; Ropers, Claus; Corkum, P. B.

    2017-07-01

    The advent of high-harmonic generation in gases 30 years ago set the foundation for attosecond science and facilitated ultrafast spectroscopy in atoms, molecules, and solids. We explore high-harmonic generation in the solid state by means of nanostructured and ion-implanted semiconductors. We use wavelength-selective microscopic imaging to map enhanced harmonic emission and show that the generation medium and the driving field can be locally tailored in solids by modifying the chemical composition and morphology. This enables the control of high-harmonic technology within precisely engineered solid targets. We demonstrate customized high-harmonic wave fields with wavelengths down to 225 nanometers (ninth-harmonic order of 2-micrometer laser pulses) and present an integrated Fresnel zone plate target in silicon, which leads to diffraction-limited self-focusing of the generated harmonics down to 1-micrometer spot sizes.

  7. Characterization of Beryllium Windows Using Coherent X-rays at 1-km Beamline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goto, Shunji; Yabashi, Makina; Takahashi, Sunao

    2004-05-12

    Beryllium windows were characterized using coherent x-rays at the one-kilometer beamline of SPring-8. Non-uniformity of transmission x-ray images is largely due to Fresnel diffraction from deficiencies such as surface pits with diameter of order of one micron to ten microns, having no correlation with averaged surface roughness measured with an optical profilometer.

  8. Thin Fresnel zone plate lenses for focusing underwater sound

    NASA Astrophysics Data System (ADS)

    Calvo, David C.; Thangawng, Abel L.; Nicholas, Michael; Layman, Christopher N.

    2015-07-01

    A Fresnel zone plate (FZP) lens of the Soret type creates a focus by constructive interference of waves diffracted through open annular zones in an opaque screen. For underwater sound below MHz frequencies, a large FZP that blocks sound using high-impedance, dense materials would have practical disadvantages. We experimentally and numerically investigate an alternative approach of creating a FZP with thin (0.4λ) acoustically opaque zones made of soft silicone rubber foam attached to a thin (0.1λ) transparent rubber substrate. An ultra-thin (0.0068λ) FZP that achieves higher gain is also proposed and simulated which uses low-volume fraction, bubble-like resonant air ring cavities to construct opaque zones. Laboratory measurements at 200 kHz indicate that the rubber foam can be accurately modeled as a lossy fluid with an acoustic impedance approximately 1/10 that of water. Measured focal gains up to 20 dB agree with theoretical predictions for normal and oblique incidence. The measured focal radius of 0.68λ (peak-to-null) agrees with the Rayleigh diffraction limit prediction of 0.61 λ/NA (NA = 0.88) for a low-aberration lens.

  9. Thin Fresnel zone plate lenses for focusing underwater sound

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calvo, David C., E-mail: david.calvo@nrl.navy.mil; Thangawng, Abel L.; Nicholas, Michael

    A Fresnel zone plate (FZP) lens of the Soret type creates a focus by constructive interference of waves diffracted through open annular zones in an opaque screen. For underwater sound below MHz frequencies, a large FZP that blocks sound using high-impedance, dense materials would have practical disadvantages. We experimentally and numerically investigate an alternative approach of creating a FZP with thin (0.4λ) acoustically opaque zones made of soft silicone rubber foam attached to a thin (0.1λ) transparent rubber substrate. An ultra-thin (0.0068λ) FZP that achieves higher gain is also proposed and simulated which uses low-volume fraction, bubble-like resonant air ringmore » cavities to construct opaque zones. Laboratory measurements at 200 kHz indicate that the rubber foam can be accurately modeled as a lossy fluid with an acoustic impedance approximately 1/10 that of water. Measured focal gains up to 20 dB agree with theoretical predictions for normal and oblique incidence. The measured focal radius of 0.68λ (peak-to-null) agrees with the Rayleigh diffraction limit prediction of 0.61 λ/NA (NA = 0.88) for a low-aberration lens.« less

  10. Fibonacci-like zone plate

    NASA Astrophysics Data System (ADS)

    Cheng, Shubo; Liu, Mengsi; Xia, Tian; Tao, Shaohua

    2018-06-01

    We present a new family of diffractive lenses, Fibonacci-like zone plates, generated with a modified Fibonacci sequence. The focusing properties and the evolution of transverse diffraction pattern for the Fibonacci-like zone plates have been analytically investigated both theoretically and experimentally and compared with the corresponding Fresnel zone plates of the same resolution. The results demonstrate that the Fibonacci-like zone plates possess the self-similar property and the multifocal behavior. Furthermore, the Fibonacci-like zone plate beams are found to possess the self-reconstruction property, and would be promising for 3D optical tweezers, laser machining, and optical imaging.

  11. Integration of Defocus by Dual Power Fresnel Lenses Inhibits Myopia in the Mammalian Eye

    PubMed Central

    McFadden, Sally A.; Tse, Dennis Y.; Bowrey, Hannah E.; Leotta, Amelia J.; Lam, Carly S.; Wildsoet, Christine F.; To, Chi-Ho

    2014-01-01

    Purpose. Eye growth compensates in opposite directions to single vision (SV) negative and positive lenses. We evaluated the response of the guinea pig eye to Fresnel-type lenses incorporating two different powers. Methods. A total of 114 guinea pigs (10 groups with 9–14 in each) wore a lens over one eye and interocular differences in refractive error and ocular dimensions were measured in each of three experiments. First, the effects of three Fresnel designs with various diopter (D) combinations (−5D/0D; +5D/0D or −5D/+5D dual power) were compared to three SV lenses (−5D, +5D, or 0D). Second, the ratio of −5D and +5D power in a Fresnel lens was varied (50:50 compared with 60:40). Third, myopia was induced by 4 days of exposure to a SV −5D lens, which was then exchanged for a Fresnel lens (−5D/+5D) or one of two SV lenses (+5D or −5D) and ocular parameters tracked for a further 3 weeks. Results. Dual power lenses induced an intermediate response between that to the two constituent powers (lenses +5D, +5D/0D, 0D, −5D/+5D, −5D/0D and −5D induced +2.1 D, +0.7 D, +0.1 D, −0.3 D, −1.6 D and −5.1 D in mean intraocular differences in refractive error, respectively), and changing the ratio of powers induced responses equal to their weighted average. In already myopic animals, continued treatment with SV negative lenses increased their myopia (from −3.3 D to −4.2 D), while switching to SV positive lenses or −5D/+5D Fresnel lenses reduced their myopia (by 2.9 D and 2.3 D, respectively). Conclusions. The mammalian eye integrates competing defocus to guide its refractive development and eye growth. Fresnel lenses, incorporating positive or plano power with negative power, can slow ocular growth, suggesting that such designs may control myopia progression in humans. PMID:24398103

  12. Integration of defocus by dual power Fresnel lenses inhibits myopia in the mammalian eye.

    PubMed

    McFadden, Sally A; Tse, Dennis Y; Bowrey, Hannah E; Leotta, Amelia J; Lam, Carly S; Wildsoet, Christine F; To, Chi-Ho

    2014-02-14

    Eye growth compensates in opposite directions to single vision (SV) negative and positive lenses. We evaluated the response of the guinea pig eye to Fresnel-type lenses incorporating two different powers. A total of 114 guinea pigs (10 groups with 9-14 in each) wore a lens over one eye and interocular differences in refractive error and ocular dimensions were measured in each of three experiments. First, the effects of three Fresnel designs with various diopter (D) combinations (-5D/0D; +5D/0D or -5D/+5D dual power) were compared to three SV lenses (-5D, +5D, or 0D). Second, the ratio of -5D and +5D power in a Fresnel lens was varied (50:50 compared with 60:40). Third, myopia was induced by 4 days of exposure to a SV -5D lens, which was then exchanged for a Fresnel lens (-5D/+5D) or one of two SV lenses (+5D or -5D) and ocular parameters tracked for a further 3 weeks. Dual power lenses induced an intermediate response between that to the two constituent powers (lenses +5D, +5D/0D, 0D, -5D/+5D, -5D/0D and -5D induced +2.1 D, +0.7 D, +0.1 D, -0.3 D, -1.6 D and -5.1 D in mean intraocular differences in refractive error, respectively), and changing the ratio of powers induced responses equal to their weighted average. In already myopic animals, continued treatment with SV negative lenses increased their myopia (from -3.3 D to -4.2 D), while switching to SV positive lenses or -5D/+5D Fresnel lenses reduced their myopia (by 2.9 D and 2.3 D, respectively). The mammalian eye integrates competing defocus to guide its refractive development and eye growth. Fresnel lenses, incorporating positive or plano power with negative power, can slow ocular growth, suggesting that such designs may control myopia progression in humans.

  13. Apparatus for X-ray diffraction microscopy and tomography of cryo specimens

    DOE PAGES

    Beetz, T.; Howells, M. R.; Jacobsen, C.; ...

    2005-03-14

    An apparatus for diffraction microscopy of biological and materials science specimens is described. In this system, a coherent soft X-ray beam is selected with a pinhole, and the illuminated specimen is followed by an adjustable beamstop and CCD camera to record diffraction data from non-crystalline specimens. In addition, a Fresnel zone plate can be inserted to allow for direct imaging. The system makes use of a cryogenic specimen holder with cryotransfer capabilities to allow frozen hydrated specimens to be loaded. The specimen can be tilted over a range of ± 80 ° degrees for three-dimensional imaging; this is done bymore » computer-controlled motors, enabling automated alignment of the specimen through a tilt series. The system is now in use for experiments in soft X-ray diffraction microscopy.« less

  14. The elliptical Gaussian wave transformation due to diffraction by an elliptical hologram

    NASA Astrophysics Data System (ADS)

    Janicijevic, L.

    1985-03-01

    Realized as an interferogram of a spherical and a cylindrical wave, the elliptical hologram is treated as a plane diffracting grating which produces Fresnel diffraction of a simple astigmatic Gaussian incident wave. It is shown that if the principal axes of the incident beam coincide with the principal axes of the hologram, the diffracted wave field is composed of three different astigmatic Gaussian waves, with their waists situated in parallel but distinct planes. The diffraction pattern, observed on a transverse screen, is the result of the interference of the three diffracted wave components. It consists of three systems of overlapped second-order curves, whose shape depends on the distance of the observation screen from the hologram, as well as on the parameters of the incident wave beam and the hologram. The results are specialized for gratings in the form of circular and linear holograms and for the case of a stigmatic Gaussian incident wave, as well as for the normal plane-wave incidence on the three mentioned types of hologram.

  15. Diffractive optical devices produced by light-assisted trapping of nanoparticles.

    PubMed

    Muñoz-Martínez, J F; Jubera, M; Matarrubia, J; García-Cabañes, A; Agulló-López, F; Carrascosa, M

    2016-01-15

    One- and two-dimensional diffractive optical devices have been fabricated by light-assisted trapping and patterning of nanoparticles. The method is based on the dielectrophoretic forces appearing in the vicinity of a photovoltaic crystal, such as Fe:LiNbO3, during or after illumination. By illumination with the appropriate light distribution, the nanoparticles are organized along patterns designed at will. One- and two-dimensional diffractive components have been achieved on X- and Z-cut Fe:LiNbO3 crystals, with their polar axes parallel and perpendicular to the crystal surface, respectively. Diffraction gratings with periods down to around a few micrometers have been produced using metal (Al, Ag) nanoparticles with radii in the range of 70-100 nm. Moreover, several 2D devices, such as Fresnel zone plates, have been also produced showing the potential of the method. The diffractive particle patterns remain stable when light is removed. A method to transfer the diffractive patterns to other nonphotovoltaic substrates, such as silica glass, has been also reported.

  16. Far-field characteristics of the square grooved-dielectric lens antenna for the terahertz band.

    PubMed

    Pan, Wu; Zeng, Wei

    2016-09-10

    In order to improve the gain and directionality of a terahertz antenna, a square grooved-dielectric lens antenna based on a Fresnel zone plate is proposed. First, a diagonal horn, which is adopted as the primary feed antenna, is designed. Then, the far-field characteristics of the lens antenna are studied by using Fresnel-Kirchhoff diffraction theory and the paraxial approximation. The effects of the full-wave period, the focus diameter ratio, the subregion, and the dielectric substrate thickness on radiation characteristics are studied. The experimental results show that the proposed lens antenna has axisymmetric radiation patterns. The gain is over 26.1 dB, and the 3 dB main lobe beam width is lower than 5.6° across the operation band. The proposed lens antenna is qualified for applications in terahertz wireless communication systems.

  17. X-Ray Phase Imaging for Breast Cancer Detection

    DTIC Science & Technology

    2012-09-01

    the Gerchberg-Saxton algorithm in the Fresnel diffraction regime, and is much more robust against image noise than the TIE-based method. For details...developed efficient coding with the software modules for the image registration, flat-filed correction , and phase retrievals. In addition, we...X, Liu H. 2010. Performance analysis of the attenuation-partition based iterative phase retrieval algorithm for in-line phase-contrast imaging

  18. Approximate Evaluation of Acoustical Focal Beams by Phased Array Probes for Austenitic Weld Inspections

    NASA Astrophysics Data System (ADS)

    Kono, Naoyuki; Miki, Masahiro; Nakamura, Motoyuki; Ehara, Kazuya

    2007-03-01

    Phased array techniques are capable of the sensitive detection and precise sizing of flaws or cracks in components of nuclear power plants by using arbitrary focal beams with various depths, positions and angles. Aquantitative investigation of these focal beams is essential for the optimization of array probes, especially for austenitic weld inspection, in order to improve the detectability, sizing accuracy, and signal-to-noise ratio using these beams. In the present work, focal beams generated by phased array probes are calculated based on the Fresnel-Kirchhoff diffraction integral (FKDI) method, and an approximation formula between the actual focal depth and optical focal depth is proposed as an extension of the theory for conventional spherically focusing probes. The validity of the approximation formula for the array probes is confirmed by a comparison with simulation data using the FKDI method, and the experimental data.

  19. Effect diffraction on a viewed object has on improvement of object optical image quality in a turbulent medium

    NASA Astrophysics Data System (ADS)

    Banakh, Viktor A.; Sazanovich, Valentina M.; Tsvik, Ruvim S.

    1997-09-01

    The influence of diffraction on the object, coherently illuminated and viewed through a random medium from the same point, on the image quality betterment caused by the counter wave correlation is studied experimentally. The measurements were carried out with the use of setup modeling artificial convective turbulence. It is shown that in the case of spatially limited reflector with the Fresnel number of the reflector surface radius r ranging from 3 to 12 the contribution of the counter wave correlation into image intensity distribution is maximal as compared with the point objects (r U.

  20. Micro-Fresnel Zone Plate Optical Devices Using Densely Accumulated Ray Points

    NASA Technical Reports Server (NTRS)

    Choi, Sang H. (Inventor); Park, Yeonjoon (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor)

    2011-01-01

    An embodiment generally relates to an optical device suitable for use with an optical medium for the storage and retrieval of data. The optical device includes an illumination means for providing a beam of optical radiation of wavelength .lamda. and an optical path that the beam of optical radiation follows. The optical device also includes a diffractive optical element defined by a plurality of annular sections. The plurality of annular sections having a first material alternately disposed with a plurality of annular sections comprising a second material. The diffractive optical element generates a plurality of focal points and densely accumulated ray points with phase contrast phenomena and the optical medium is positioned at a selected focal point or ray point of the diffractive optical element.

  1. Numerical analysis of fundamental mode selection of a He-Ne laser by a circular aperture

    NASA Astrophysics Data System (ADS)

    He, Xin; Zhang, Bin

    2011-11-01

    In the He-Ne laser with an integrated cavity made of zerodur, the inner face performance of the gain tube is limited by the machining techniques, which tends to influence the beam propagation and transverse mode distribution. In order to improve the beam quality and select out the fundamental mode, an aperture is usually introduced in the cavity. In the process of laser design, the Fresnel-Kirchhoff diffraction integral equation is adopted to calculate the optical field distributions on each interface. The transit matrix is obtained based on self-reproducing principle and finite element method. Thus, optical field distribution on any interface and field loss of each transverse mode could be acquired by solving the eigenvalue and eigenvector of the transit matrix. For different-sized apertures in different positions, we could get different matrices and corresponding calculation results. By comparing these results, the optimal size and position of the aperture could be obtained. As a result, the feasibility of selecting fundamental mode in a zerodur He-Ne laser by a circular aperture has been verified theoretically.

  2. Talbot effect of the defective grating in deep Fresnel region

    NASA Astrophysics Data System (ADS)

    Teng, Shuyun; Wang, Junhong; Zhang, Wei; Cui, Yuwei

    2015-02-01

    Talbot effect of the grating with different defect is studied theoretically and experimentally in this paper. The defects of grating include the loss of the diffraction unit, the dislocation of the diffraction unit and the modulation of the unit separation. The exact diffraction distributions of three kinds of defective gratings are obtained according to the finite-difference time-domain (FDTD) method. The calculation results show the image of the missing or dislocating unit appears at the Talbot distance (as mentioned in K. Patorski Prog. Opt., 27, 1989, pp.1-108). This is the so-called self-repair ability of grating imaging. In addition, some more phenomena are discovered. The loss or the dislocation of diffraction unit causes the diffraction distortion within a certain radial angle. The regular modulation of unit separation changes the original diffraction, but the new periodicity of the diffraction distribution rebuilds. The self-imaging of grating with smaller random modulation still keeps the partial self-repair ability, and yet this characteristic depends on the modulation degree of defective grating. These diffraction phenomena of the defective gratings are explained by use of the diffraction theory of grating. The practical experiment is also performed and the experimental results confirm the theoretic predictions.

  3. Diffraction of a Gaussian laser beam by a straight edge leading to the formation of optical vortices and elliptical diffraction fringes

    NASA Astrophysics Data System (ADS)

    Zeylikovich, Iosif; Nikitin, Aleksandr

    2018-04-01

    The diffraction of a Gaussian laser beam by a straight edge has been studied theoretically and experimentally for many years. In this paper, we have experimentally observed for the first time the formation of the cusped caustic (for the Fresnel number F ≈ 100) in the shadow region of the straight edge, with the cusp placed near the center of the circular laser beam(λ = 0 . 65 μm) overlapped with the elliptical diffraction fringes. These fringes are originated at the region near the cusp of the caustic where light intensity is zero and the wave phase is singular (the optical vortex). We interpret observed diffraction fringes as a result of interference between the helical wave created by the optical vortex and cylindrical wave diffracted at the straight edge. We have theoretically revealed that the number of high contrast diffraction fringes observable in a shadow region is determined by the square of the diffracted angles in the range of spatial frequencies of the scattered light field in excellent agreement with experiments. The extra phase singularities with opposite charges are also observed along the shadow boundary as the fork-like diffraction fringes.

  4. Priors for X-ray in-line phase tomography of heterogeneous objects.

    PubMed

    Langer, Max; Cloetens, Peter; Hesse, Bernhard; Suhonen, Heikki; Pacureanu, Alexandra; Raum, Kay; Peyrin, Françoise

    2014-03-06

    We present a new prior for phase retrieval from X-ray Fresnel diffraction patterns. Fresnel diffraction patterns are achieved by letting a highly coherent X-ray beam propagate in free space after interaction with an object. Previously, either homogeneous or multi-material object assumptions have been used. The advantage of the homogeneous object assumption is that the prior can be introduced in the Radon domain. Heterogeneous object priors, on the other hand, have to be applied in the object domain. Here, we let the relationship between attenuation and refractive index vary as a function of the measured attenuation index. The method is evaluated using images acquired at beamline ID19 (ESRF, Grenoble, France) of a phantom where the prior is calculated by linear interpolation and of a healing bone obtained from a rat osteotomy model. It is shown that the ratio between attenuation and refractive index in bone for different levels of mineralization follows a power law. Reconstruction was performed using the mixed approach but is compatible with other, more advanced models. We achieve more precise reconstructions than previously reported in literature. We believe that the proposed method will find application in biomedical imaging problems where the object is strongly heterogeneous, such as bone healing and biomaterials engineering.

  5. Digital in-line holography for the characterization of flowing particles in astigmatic optical systems

    NASA Astrophysics Data System (ADS)

    Sentis, Matthias P. L.; Bruel, Laurent; Charton, Sophie; Onofri, Fabrice R. A.; Lamadie, Fabrice

    2017-01-01

    An extended Generalized Fresnel Transform (GFT) is proposed to account for the astigmatism introduced by optical elements described, in the paraxial approximation, with a ray transfer matrix analysis. Generalized impulse response and generalized Fresnel transfer function propagators as well as sampling conditions are derived to properly implement this transformation. As a test case, the near-field diffraction patterns and in-line holograms produced by droplets flowing in a tube with cylindrical interfaces have been simulated. A best fitting approach is introduced to retrieve, from the propagated holograms, the 3D position and size of the droplets. Several hologram focusing indicators based on the analysis of droplets focus region are also proposed to further improve the estimation of the droplets position along the optical axis. Numerical simulations and experimental results confirm the applicability and accuracy of the proposed methods.

  6. Phase-and-amplitude recovery from a single phase-contrast image using partially spatially coherent x-ray radiation

    NASA Astrophysics Data System (ADS)

    Beltran, Mario A.; Paganin, David M.; Pelliccia, Daniele

    2018-05-01

    A simple method of phase-and-amplitude extraction is derived that corrects for image blurring induced by partially spatially coherent incident illumination using only a single intensity image as input. The method is based on Fresnel diffraction theory for the case of high Fresnel number, merged with the space-frequency description formalism used to quantify partially coherent fields and assumes the object under study is composed of a single-material. A priori knowledge of the object’s complex refractive index and information obtained by characterizing the spatial coherence of the source is required. The algorithm was applied to propagation-based phase-contrast data measured with a laboratory-based micro-focus x-ray source. The blurring due to the finite spatial extent of the source is embedded within the algorithm as a simple correction term to the so-called Paganin algorithm and is also numerically stable in the presence of noise.

  7. Photovoltaic performance of the dome-shaped Fresnel-Köhler concentrator

    NASA Astrophysics Data System (ADS)

    Zamora, Pablo; Benítez, Pablo; Yang, Li; Miñano, Juan Carlos; Mendes-Lopes, Joao; Araki, Kenji

    2012-10-01

    In order to have a cost-effective CPV system, two key issues must be ensured: high concentration factor and high tolerance. The novel concentrator we are presenting, the dome-shaped Fresnel-Köhler, can widely fulfill these two and other essential issues in a CPV module. This concentrator is based on two previous successful CPV designs: the FK concentrator with a flat Fresnel lens and the dome-shaped Fresnel lens system developed by Daido Steel, resulting on a superior concentrator. The concentrator has shown outstanding simulation results, achieving an effective concentration-acceptance product (CAP) value of 0.72, and an optical efficiency of 85% on-axis (no anti-reflective coating has been used). Moreover, Köhler integration provides good irradiance uniformity on the cell surface and low spectral aberration of this irradiance. This ensures an optimal performance of the solar cell, maximizing its efficiency. Besides, the domeshaped FK shows optimal results for very compact designs, especially in the f/0.7-1.0 range. The dome-shaped Fresnel- Köhler concentrator, natural and enhanced evolution of the flat FK concentrator, is a cost-effective CPV optical design, mainly due to its high tolerances. Daido Steel advanced technique for demolding injected plastic pieces will allow for easy manufacture of the dome-shaped POE of DFK concentrator.

  8. Space grating optical structure of the retina and RGB-color vision.

    PubMed

    Lauinger, Norbert

    2017-02-01

    Diffraction of light at the spatial cellular phase grating outer nuclear layer of the retina could produce Fresnel near-field interferences in three RGB diffraction orders accessible to photoreceptors (cones/rods). At perpendicular light incidence the wavelengths of the RGB diffraction orders in photopic vision-a fundamental R-wave with two G+B-harmonics-correspond to the peak wavelengths of the spectral brightness sensitivity curves of the cones at 559 nmR, 537 nmG, and 447 nmB. In scotopic vision the R+G diffraction orders optically fuse at 512 nm, the peak value of the rod's spectral brightness sensitivity curve. The diffractive-optical transmission system with sender (resonator), space waves, and receiver antennae converts the spectral light components involved in imaging into RGB space. The colors seen at objects are diffractive-optical products in the eye, as the German philosopher A. Schopenhauer predicted. They are second related to the overall illumination in object space. The RGB transmission system is the missing link optically managing the spectral tuning of the RGB photopigments.

  9. Optical testing using the transport-of-intensity equation.

    PubMed

    Dorrer, C; Zuegel, J D

    2007-06-11

    The transport-of-intensity equation links the intensity and phase of an optical source to the longitudinal variation of its intensity in the presence of Fresnel diffraction. This equation can be used to provide a simple, accurate spatial-phase measurement for optical testing of flat surfaces. The properties of this approach are derived. The experimental demonstration is performed by quantifying the surface variations induced by the magnetorheological finishing process on laser rods.

  10. Effective increase in beam emittance by phase-space expansion using asymmetric Bragg diffraction.

    PubMed

    Chu, Chia-Hung; Tang, Mau-Tsu; Chang, Shih-Lin

    2015-08-24

    We propose an innovative method to extend the utilization of the phase space downstream of a synchrotron light source for X-ray transmission microscopy. Based on the dynamical theory of X-ray diffraction, asymmetrically cut perfect crystals are applied to reshape the position-angle-wavelength space of the light source, by which the usable phase space of the source can be magnified by over one hundred times, thereby "phase-space-matching" the source with the objective lens of the microscope. The method's validity is confirmed using SHADOW code simulations, and aberration through an optical lens such as a Fresnel zone plate is examined via matrix optics for nano-resolution X-ray images.

  11. A Nipkow disk integrated with Fresnel lenses for terahertz single pixel imaging.

    PubMed

    Li, Chong; Grant, James; Wang, Jue; Cumming, David R S

    2013-10-21

    We present a novel Nipkow disk design for terahertz (THz) single pixel imaging applications. A 100 mm high resistivity (ρ≈3k-10k Ω·cm) silicon wafer was used for the disk on which a spiral array of twelve 16-level binary Fresnel lenses were fabricated using photolithography and a dry-etch process. The implementation of Fresnel lenses on the Nipkow disk increases the THz signal transmission compared to the conventional pinhole-based Nipkow disk by more than 12 times thus a THz source with lower power or a THz detector with lower detectivity can be used. Due to the focusing capability of the lenses, a pixel resolution better than 0.5 mm is in principle achievable. To demonstrate the concept, a single pixel imaging system operating at 2.52 THz is described.

  12. A Note on Feynman Path Integral for Electromagnetic External Fields

    NASA Astrophysics Data System (ADS)

    Botelho, Luiz C. L.

    2017-08-01

    We propose a Fresnel stochastic white noise framework to analyze the nature of the Feynman paths entering on the Feynman Path Integral expression for the Feynman Propagator of a particle quantum mechanically moving under an external electromagnetic time-independent potential.

  13. Optimized square Fresnel zone plates for microoptics applications

    NASA Astrophysics Data System (ADS)

    Rico-García, José María; Salgado-Remacha, Francisco Javier; Sanchez-Brea, Luis Miguel; Alda, Javier

    2009-06-01

    Polygonal Fresnel zone plates with a low number of sides have deserved attention in micro and nanoptics, because they can be straightforwardly integrated in photonic devices, and, at the same time, they represent a balance between the high-focusing performance of a circular zone plate and the easiness of fabrication at micro and nano-scales of polygons. Among them, the most representative family are Square Fresnel Zone Plates (SFZP). In this work, we propose two different customized designs of SFZP for optical wavelengths. Both designs are based on the optimization of a SFZP to perform as close as possible as a usual Fresnel Zone Plate. In the first case, the criterion followed to compute it is the minimization of the difference between the area covered by the angular sector of the zone of the corresponding circular plate and the one covered by the polygon traced on the former. Such a requirement leads to a customized polygon-like Fresnel zone. The simplest one is a square zone with a pattern of phases repeating each five zones. On the other hand, an alternative SFZP can be designed guided by the same criterion but with a new restriction. In this case, the distance between the borders of different zones remains unaltered. A comparison between the two lenses is carried out. The irradiance at focus is computed for both and suitable merit figures are defined to account for the difference between them.

  14. Coherent electromagnetic waves in the presence of a half space of randomly distributed scatterers

    NASA Technical Reports Server (NTRS)

    Karam, M. A.; Fung, A. K.

    1988-01-01

    The present investigation of coherent field propagation notes, upon solving the Foldy-Twersky integral equation for a half-space of small spherical scatterers illuminated by a plane wave at oblique incidence, that the coherent field for a horizontally-polarized incident wave exhibits reflectivity and transmissivity consistent with the Fresnel formula for an equivalent continuous effective medium. In the case of a vertically polarized incident wave, both the vertical and longitudinal waves obtained for the coherent field have reflectivities and transmissivities that do not agree with the Fresnel formula.

  15. Surface studies of solids using integral x-ray-induced photoemission yield

    DOE PAGES

    Stoupin, Stanislav; Zhernenkov, Mikhail; Shi, Bing

    2016-11-22

    X-ray induced photoemission yield contains structural information complementary to that provided by X-ray Fresnel reflectivity, which presents an advantage to a wide variety of surface studies if this information is made easily accessible. Photoemission in materials research is commonly acknowledged as a method with a probing depth limited by the escape depth of the photoelectrons. Here we show that the integral hard-X-ray-induced photoemission yield is modulated by the Fresnel reflectivity of a multilayer structure and carries structural information that extends well beyond the photoelectron escape depth. A simple electric self-detection of the integral photoemission yield and Fourier data analysis permitmore » extraction of thicknesses of individual layers. The approach does not require detection of the reflected radiation and can be considered as a framework for non-invasive evaluation of buried layers with hard X-rays under grazing incidence.« less

  16. Surface studies of solids using integral X-ray-induced photoemission yield

    PubMed Central

    Stoupin, Stanislav; Zhernenkov, Mikhail; Shi, Bing

    2016-01-01

    X-ray induced photoemission yield contains structural information complementary to that provided by X-ray Fresnel reflectivity, which presents an advantage to a wide variety of surface studies if this information is made easily accessible. Photoemission in materials research is commonly acknowledged as a method with a probing depth limited by the escape depth of the photoelectrons. Here we show that the integral hard-X-ray-induced photoemission yield is modulated by the Fresnel reflectivity of a multilayer structure and carries structural information that extends well beyond the photoelectron escape depth. A simple electric self-detection of the integral photoemission yield and Fourier data analysis permit extraction of thicknesses of individual layers. The approach does not require detection of the reflected radiation and can be considered as a framework for non-invasive evaluation of buried layers with hard X-rays under grazing incidence. PMID:27874041

  17. Tunable liquid crystal photonic devices

    NASA Astrophysics Data System (ADS)

    Fan, Yun-Hsing

    2005-07-01

    Liquid crystal (LC)-based adaptive optics are important for information processing, optical interconnections, photonics, integrated optics, and optical communications due to their tunable optical properties. In this dissertation, we describe novel liquid crystal photonic devices. In Chap. 3, we demonstrate a novel electrically tunable-efficiency Fresnel lens which is devised for the first time using nanoscale PDLC. The tunable Fresnel lens is very desirable to eliminate the need of external spatial light modulator. The nanoscale LC devices are polarization independent and exhibit a fast response time. Because of the small droplet sizes, the operating voltage is higher than 100 Vrms. To lower the driving voltage, in Chap. 2 and Chap. 3, we have investigated tunable Fresnel lens using polymer-network liquid crystal (PNLC) and phase-separated composite film (PSCOF). The operating voltage is below 12 Vrms. The PNLC and PSCOF devices are polarization dependent. To overcome this shortcoming, stacking two cells with orthogonal alignment directions is a possibility. Using PNLC, we also demonstrated LC blazed grating. The diffraction efficiency of these devices is continuously controlled by the electric field. We also develop a system with continuously tunable focal length. A conventional mechanical zooming system is bulky and power hungry. In Chap. 4, we developed an electrically tunable-focus flat LC spherical lens and microlens array. A huge tunable range from 0.6 m to infinity is achieved by the applied voltage. In Chap. 5, we describe a LC microlens array whose focal length can be switched from positive to negative by the applied voltage. The fast response time feature of our LC microlens array will be very helpful in developing 3-D animated images. In Chap. 6, we demonstrate polymer network liquid crystals for switchable polarizers and optical shutters. The use of dual-frequency liquid crystal and special driving scheme leads to a sub-millisecond response time. In Chap. 7, for the first time, we demonstrate a fast-response and scattering-free homogeneously-aligned PNLC light modulator. The PNLC response time is ˜300x faster than that of a pure LC mixture. The PNLC cell also holds promise for mid and long infrared applications where response time is a critical issue.

  18. Laser Beam and Resonator Calculations on Desktop Computers.

    NASA Astrophysics Data System (ADS)

    Doumont, Jean-Luc

    There is a continuing interest in the design and calculation of laser resonators and optical beam propagation. In particular, recently, interest has increased in developing concepts such as one-sided unstable resonators, supergaussian reflectivity profiles, diode laser modes, beam quality concepts, mode competition, excess noise factors, and nonlinear Kerr lenses. To meet these calculation needs, I developed a general-purpose software package named PARAXIA ^{rm TM}, aimed at providing optical scientists and engineers with a set of powerful design and analysis tools that provide rapid and accurate results and are extremely easy to use. PARAXIA can handle separable paraxial optical systems in cartesian or cylindrical coordinates, including complex-valued and misaligned ray matrices, with full diffraction effects between apertures. It includes the following programs:. ABCD provides complex-valued ray-matrix and gaussian -mode analyses for arbitrary paraxial resonators and optical systems, including astigmatism and misalignment in each element. This program required that I generalize the theory of gaussian beam propagation to the case of an off-axis gaussian beam propagating through a misaligned, complex -valued ray matrix. FRESNEL uses FFT and FHT methods to propagate an arbitrary wavefront through an arbitrary paraxial optical system using Huygens' integral in rectangular or radial coordinates. The wavefront can be multiplied by an arbitrary mirror profile and/or saturable gain sheet on each successive propagation through the system. I used FRESNEL to design a one-sided negative-branch unstable resonator for a free -electron laser, and to show how a variable internal aperture influences the mode competition and beam quality in a stable cavity. VSOURCE implements the virtual source analysis to calculate eigenvalues and eigenmodes for unstable resonators with both circular and rectangular hard-edged mirrors (including misaligned rectangular systems). I used VSOURCE to show the validity of the virtual source approach (by comparing its results to those of FRESNEL), to study the properties of hard-edged unstable resonators, and to obtain numerical values of the excess noise factors in such resonators. VRM carries out mode calculations for gaussian variable-reflectivity-mirror lasers. It implements complicated analytical results that I derived to point out the large numerical value of the excess noise factor in geometrically unstable resonators.

  19. Photon sieve telescope

    NASA Astrophysics Data System (ADS)

    Andersen, Geoff; Tullson, Drew

    2006-06-01

    In designing next-generation, ultra-large (>20m) apertures for space, many current concepts involve compactable, curved membrane reflectors. Here we present the idea of using a flat diffractive element that requires no out-of-plane deformation and so is much simpler to deploy. The primary is a photon sieve - a diffractive element consisting of a large number of precisely positioned holes distributed according to an underlying Fresnel Zone Plate (FZP) geometry. The advantage of the photon sieve over the FZP is that all the regions are connected, so the membrane substrate under simple tension can avoid buckling. Also, the hole distribution can be varied to generate any conic or apodization for specialized telescope requirements such as exo-solar planet detection. We have designed and tested numerous photon sieves as telescope primaries. Some of these have over 10 million holes in a 0.1 m diameter aperture and all of them give diffraction limited imaging. While photon sieves are diffractive elements and thus suffer from dispersion, we will present two successful solutions to this problem.

  20. Effects of Strong Local Sporadic E on ELF Propagation.

    DTIC Science & Technology

    1978-08-15

    Huygens diffraction model (e.g., Marcuse , 1972). The model is similar to that used by Crombie. Unlike Crombie’s work however , the Fresnel approximation...40. Marcuse , D., “Light transmission optics ,” Van Nostrand Reinhold Co., New York , 1972. Papper t , R. A. & Moler , W. F., “A theoretica’ study of...ATTN Donald Dubbert O1 CY ATTN Herbert Rend University of IllinoisDepartment of Electrical Engineering Develco Urbana , IL 61803 530 Logue Avenue O2CY

  1. Liquid crystal devices based on photoalignment and photopatterning materials

    NASA Astrophysics Data System (ADS)

    Chigrinov, Vladimir

    2014-02-01

    Liquid crystal (LC) display and photonics devices based on photo-alignment and photo-patterning LC cells are developed. A fast switchable grating based on ferroelectric liquid crystals and orthogonal planar alignment by means of photo alignments. Both 1D and 2D gratings have been constructed. The proposed diffracting element provides fast response time of around 20 μs, contrast of 7000:1 and high diffraction efficiency, at the electric field of 6V/μm. A switchable LC Fresnel zone lens was also developed with the efficiency of ~42% that can be further improved, and the switching time for the 3 μm thick cell is ~6.7 ms which is relatively fast in comparison of existing devices. Thus, because of the photoalignment technology the fabrication of Fresnel lens became considerably simpler than others. A thin high spatial resolution, photo-patterned micropolarizer array for complementary metal-oxide-semiconductor (CMOS) image sensors was implemented for the complete optical visualization of so called "invisible" objects, which are completely transparent (reflective) and colorless. Four Stokes parameters, which fully characterized the reflected light beam can be simultaneously detected using the array of photo-patterned polarizers on CMOS sensor plate. The cheap, high resolution photo-patterned LC matrix sensor was developed to be able successfully compete with the expensive and low reliable wire grid polarizer patterned arrays currently used for the purpose.

  2. Revealing small-scale diffracting discontinuities by an optimization inversion algorithm

    NASA Astrophysics Data System (ADS)

    Yu, Caixia; Zhao, Jingtao; Wang, Yanfei

    2017-02-01

    Small-scale diffracting geologic discontinuities play a significant role in studying carbonate reservoirs. The seismic responses of them are coded in diffracted/scattered waves. However, compared with reflections, the energy of these valuable diffractions is generally one or even two orders of magnitude weaker. This means that the information of diffractions is strongly masked by reflections in the seismic images. Detecting the small-scale cavities and tiny faults from the deep carbonate reservoirs, mainly over 6 km, poses an even bigger challenge to seismic diffractions, as the signals of seismic surveyed data are weak and have a low signal-to-noise ratio (SNR). After analyzing the mechanism of the Kirchhoff migration method, the residual of prestack diffractions located in the neighborhood of the first Fresnel aperture is found to remain in the image space. Therefore, a strategy for extracting diffractions in the image space is proposed and a regularized L 2-norm model with a smooth constraint to the local slopes is suggested for predicting reflections. According to the focusing conditions of residual diffractions in the image space, two approaches are provided for extracting diffractions. Diffraction extraction can be directly accomplished by subtracting the predicted reflections from seismic imaging data if the residual diffractions are focused. Otherwise, a diffraction velocity analysis will be performed for refocusing residual diffractions. Two synthetic examples and one field application demonstrate the feasibility and efficiency of the two proposed methods in detecting the small-scale geologic scatterers, tiny faults and cavities.

  3. Surface plasmon resonance microscopy: achieving a quantitative optical response

    PubMed Central

    Peterson, Alexander W.; Halter, Michael; Plant, Anne L.; Elliott, John T.

    2016-01-01

    Surface plasmon resonance (SPR) imaging allows real-time label-free imaging based on index of refraction, and changes in index of refraction at an interface. Optical parameter analysis is achieved by application of the Fresnel model to SPR data typically taken by an instrument in a prism based configuration. We carry out SPR imaging on a microscope by launching light into a sample, and collecting reflected light through a high numerical aperture microscope objective. The SPR microscope enables spatial resolution that approaches the diffraction limit, and has a dynamic range that allows detection of subnanometer to submicrometer changes in thickness of biological material at a surface. However, unambiguous quantitative interpretation of SPR changes using the microscope system could not be achieved using the Fresnel model because of polarization dependent attenuation and optical aberration that occurs in the high numerical aperture objective. To overcome this problem, we demonstrate a model to correct for polarization diattenuation and optical aberrations in the SPR data, and develop a procedure to calibrate reflectivity to index of refraction values. The calibration and correction strategy for quantitative analysis was validated by comparing the known indices of refraction of bulk materials with corrected SPR data interpreted with the Fresnel model. Subsequently, we applied our SPR microscopy method to evaluate the index of refraction for a series of polymer microspheres in aqueous media and validated the quality of the measurement with quantitative phase microscopy. PMID:27782542

  4. A high-performance photovoltaic concentrator array - The mini-dome Fresnel lens concentrator with 30 percent efficient GaAs/GaSb tandem cells

    NASA Technical Reports Server (NTRS)

    Piszczor, M. F.; Brinker, D. J.; Flood, D. J.; Avery, J. E.; Fraas, L. M.; Fairbanks, E. S.; Yerkes, J. W.; O'Neill, M. J.

    1991-01-01

    A high-efficiency, lightweight space photovoltaic concentrator array is described. Previous work on the minidome Fresnel lens concentrator concept is being integrated with Boeing's 30 percent efficient tandem GaAs/GaSb concentrator cells into a high-performance photovoltaic array. Calculations indicate that, in the near term, such an array can achieve 300 W/sq m at a specific power of 100 W/kg. Emphasis of the program has now shifted to integrating the concentrator lens, tandem cell, and supporting panel structure into a space-qualifiable array. A description is presented of the current status of component and prototype panel testing and the development of a flight panel for the Photovoltaic Array Space Power Plus Diagnostics (PASP PLUS) flight experiment.

  5. A high-performance photovoltaic concentrator array - The mini-dome Fresnel lens concentrator with 30 percent efficient GaAs/GaSb tandem cells

    NASA Astrophysics Data System (ADS)

    Piszczor, M. F.; Brinker, D. J.; Flood, D. J.; Avery, J. E.; Fraas, L. M.; Fairbanks, E. S.; Yerkes, J. W.; O'Neill, M. J.

    A high-efficiency, lightweight space photovoltaic concentrator array is described. Previous work on the minidome Fresnel lens concentrator concept is being integrated with Boeing's 30 percent efficient tandem GaAs/GaSb concentrator cells into a high-performance photovoltaic array. Calculations indicate that, in the near term, such an array can achieve 300 W/sq m at a specific power of 100 W/kg. Emphasis of the program has now shifted to integrating the concentrator lens, tandem cell, and supporting panel structure into a space-qualifiable array. A description is presented of the current status of component and prototype panel testing and the development of a flight panel for the Photovoltaic Array Space Power Plus Diagnostics (PASP PLUS) flight experiment.

  6. Tailored semiconductors for high-harmonic optoelectronics.

    PubMed

    Sivis, Murat; Taucer, Marco; Vampa, Giulio; Johnston, Kyle; Staudte, André; Naumov, Andrei Yu; Villeneuve, D M; Ropers, Claus; Corkum, P B

    2017-07-21

    The advent of high-harmonic generation in gases 30 years ago set the foundation for attosecond science and facilitated ultrafast spectroscopy in atoms, molecules, and solids. We explore high-harmonic generation in the solid state by means of nanostructured and ion-implanted semiconductors. We use wavelength-selective microscopic imaging to map enhanced harmonic emission and show that the generation medium and the driving field can be locally tailored in solids by modifying the chemical composition and morphology. This enables the control of high-harmonic technology within precisely engineered solid targets. We demonstrate customized high-harmonic wave fields with wavelengths down to 225 nanometers (ninth-harmonic order of 2-micrometer laser pulses) and present an integrated Fresnel zone plate target in silicon, which leads to diffraction-limited self-focusing of the generated harmonics down to 1-micrometer spot sizes. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  7. Hermite-cosine-Gaussian laser beam and its propagation characteristics in turbulent atmosphere.

    PubMed

    Eyyuboğlu, Halil Tanyer

    2005-08-01

    Hermite-cosine-Gaussian (HcosG) laser beams are studied. The source plane intensity of the HcosG beam is introduced and its dependence on the source parameters is examined. By application of the Fresnel diffraction integral, the average receiver intensity of HcosG beam is formulated for the case of propagation in turbulent atmosphere. The average receiver intensity is seen to reduce appropriately to various special cases. When traveling in turbulence, the HcosG beam initially experiences the merging of neighboring beam lobes, and then a TEM-type cosh-Gaussian beam is formed, temporarily leading to a plain cosh-Gaussian beam. Eventually a pure Gaussian beam results. The numerical evaluation of the normalized beam size along the propagation axis at selected mode indices indicates that relative spreading of higher-order HcosG beam modes is less than that of the lower-order counterparts. Consequently, it is possible at some propagation distances to capture more power by using higher-mode-indexed HcosG beams.

  8. High-performance etching of multilevel phase-type Fresnel zone plates with large apertures

    NASA Astrophysics Data System (ADS)

    Guo, Chengli; Zhang, Zhiyu; Xue, Donglin; Li, Longxiang; Wang, Ruoqiu; Zhou, Xiaoguang; Zhang, Feng; Zhang, Xuejun

    2018-01-01

    To ensure the etching depth uniformity of large-aperture Fresnel zone plates (FZPs) with controllable depths, a combination of a point source ion beam with a dwell-time algorithm has been proposed. According to the obtained distribution of the removal function, the latter can be used to optimize the etching time matrix by minimizing the root-mean-square error between the simulation results and the design value. Owing to the convolution operation in the utilized algorithm, the etching depth error is insensitive to the etching rate fluctuations of the ion beam, thereby reducing the requirement for the etching stability of the ion system. As a result, a 4-level FZP with a circular aperture of 300 mm was fabricated. The obtained results showed that the etching depth uniformity of the full aperture could be reduced to below 1%, which was sufficiently accurate for meeting the use requirements of FZPs. The proposed etching method may serve as an alternative way of etching high-precision diffractive optical elements with large apertures.

  9. Integrated otpical monitoring of MEMS for closed-loop control

    NASA Astrophysics Data System (ADS)

    Dawson, Jeremy M.; Wang, Limin; McCormick, W. B.; Rittenhouse, S. A.; Famouri, Parviz F.; Hornak, Lawrence A.

    2003-01-01

    Robust control and failure assessment of MEMS employed in physically demanding, mission critical applications will allow for higher degrees of quality assurance in MEMS operation. Device fault detection and closed-loop control require detailed knowledge of the operational states of MEMS over the lifetime of the device, obtained by a means decoupled from the system. Preliminary through-wafer optical monitoring research efforts have shown that through-wafer optical probing is suitable for characterizing and monitoring the behavior of MEMS, and can be implemented in an integrated optical monitoring package for continuous in-situ device monitoring. This presentation will discuss research undertaken to establish integrated optical device metrology for closed-loop control of a MUMPS fabricated lateral harmonic oscillator. Successful linear closed-loop control results using a through-wafer optical microprobe position feedback signal will be presented. A theoretical optical output field intensity study of grating structures, fabricated on the shuttle of the resonator, was performed to improve the position resolution of the optical microprobe position signal. Through-wafer microprobe signals providing a positional resolution of 2 μm using grating structures will be shown, along with initial binary Fresnel diffractive optical microelement design layout, process development, and testing results. Progress in the design, fabrication, and test of integrated optical elements for multiple microprobe signal delivery and recovery will be discussed, as well as simulation of device system model parameter changes for failure assessment.

  10. Fourier optics of constant-thickness three-dimensional objects on the basis of diffraction models

    NASA Astrophysics Data System (ADS)

    Chugui, Yu. V.

    2017-09-01

    Results of investigations of diffraction phenomena on constant-thickness three-dimensional objects with flat inner surfaces (thick plates) are summarized on the basis of our constructive theory of their calculation as applied to dimensional inspection. It is based on diffraction models of 3D objects with the use of equivalent diaphragms (distributions), which allow the Kirchhoff-Fresnel approximation to be effectively used. In contrast to available rigorous and approximate methods, the present approach does not require cumbersome calculations; it is a clearly arranged method, which ensures sufficient accuracy for engineering applications. It is found that the fundamental diffraction parameter for 3D objects of constant thickness d is the critical diffraction angle {θ _{cr}} = √ {λ /d} at which the effect of three-dimensionality on the spectrum of the 3D object becomes appreciable. Calculated Fraunhofer diffraction patterns (spectra) and images of constant-thickness 3D objects with absolutely absorbing, absolutely reflecting, and gray internal faces are presented. It is demonstrated that selection of 3D object fragments can be performed by choosing an appropriate configuration of the wave illuminating the object (plane normal or inclined waves, spherical waves).

  11. On the equivalence between Young's double-slit and crystal double-refraction interference experiments.

    PubMed

    Ossikovski, Razvigor; Arteaga, Oriol; Vizet, Jérémy; Garcia-Caurel, Enric

    2017-08-01

    We show, both analytically and experimentally, that under common experimental conditions the interference pattern produced in a classic Young's double-slit experiment is indistinguishable from that generated by means of a doubly refracting uniaxial crystal whose optic axis makes a skew angle with the light propagation direction. The equivalence between diffraction and crystal optics interference experiments, taken for granted by Arago and Fresnel in their pioneering research on the interference of polarized light beams, is thus rigorously proven.

  12. Nanometer-scale ablation using focused, coherent extreme ultraviolet/soft x-ray light

    DOEpatents

    Menoni, Carmen S [Fort Collins, CO; Rocca, Jorge J [Fort Collins, CO; Vaschenko, Georgiy [San Diego, CA; Bloom, Scott [Encinitas, CA; Anderson, Erik H [El Cerrito, CA; Chao, Weilun [El Cerrito, CA; Hemberg, Oscar [Stockholm, SE

    2011-04-26

    Ablation of holes having diameters as small as 82 nm and having clean walls was obtained in a poly(methyl methacrylate) on a silicon substrate by focusing pulses from a Ne-like Ar, 46.9 nm wavelength, capillary-discharge laser using a freestanding Fresnel zone plate diffracting into third order is described. Spectroscopic analysis of light from the ablation has also been performed. These results demonstrate the use of focused coherent EUV/SXR light for the direct nanoscale patterning of materials.

  13. A fiber-optic ice detection system for large-scale wind turbine blades

    NASA Astrophysics Data System (ADS)

    Kim, Dae-gil; Sampath, Umesh; Kim, Hyunjin; Song, Minho

    2017-09-01

    Icing causes substantial problems in the integrity of large-scale wind turbines. In this work, a fiber-optic sensor system for detection of icing with an arrayed waveguide grating is presented. The sensor system detects Fresnel reflections from the ends of the fibers. The transition in Fresnel reflection due to icing gives peculiar intensity variations, which categorizes the ice, the water, and the air medium on the wind turbine blades. From the experimental results, with the proposed sensor system, the formation of icing conditions and thickness of ice were identified successfully in real time.

  14. Broadband polarization gratings for efficient liquid crystal display, beam steering, spectropolarimetry, and Fresnel zone plate

    NASA Astrophysics Data System (ADS)

    Oh, Chulwoo

    Efficient control of light polarization is essential in any optical systems where polarized light is used or polarization information is of interest. In addition to intensity and wavelength, polarization of light gives a very useful/powerful tool to control light itself and observe many interesting optical phenomena in nature and applications. Most available light sources, however, produce unpolarized or weakly polarized light except some of fancy lasers. Therefore, efficient polarization control/generation is important to improve/advance existing or emerging technologies utilizing polarized light. It is also true that polarization can be used to control another properties of light (i.e., intensity, direction). We have introduced and demonstrated achromatic polarization gratings (PGs) as broadband polarizing beam splitters performing ˜100% theoretical efficiency over a wide spectral range. The novel design of achromatic PGs and their effective fabrication method will be presented. Experimental demonstration will show that practically 100% efficient diffraction is achieved by achromatic PGs embodied as thin liquid crystal (LC) layers patterned by holographic photoalignment techniques. Non-ideal diffraction behaviors of the PGs also have been investigated beyond the paraxial limitations via numerical analysis based on the finite-difference time-domain method. We, first, study the effect of the grating regime for this special type of anisotropic diffraction gratings with the minimum assumptions. Optical properties of the PGs at oblique incidence angles and in a finite pixel are numerically predicted and confirmed by experiments. Design and fabrication of small-period PGs are discussed to show how to achieve high diffraction efficiency and large diffraction angles at the same time. Three key innovative technologies utilizing the unique diffraction properties of the PGs have been introduced and experimentally demonstrated. The first application for light-efficient LC displays is the polymer-PG display, which allows an immediate brightness improvement (up to a factor of two) of conventional LC displays by replacing absorbing polarizers with achromatic PGs as thin, transmissive polymer films. We demonstrate the first proof-of-concept prototype projector based on the polymer-PG display and we also discuss optical design considerations and challenges toward a viable solution for our ultrabright pico-projector applications of the polymer-PG display. Second, two novel beam steering concepts based on the PG diffraction have been proposed. The polarization-sensitive diffraction of the PGs provides very attractive beam steering operations with ultra-high efficiency over wide steering angles by all-thin-plate electro-optical systems. We developed a non-mechanical, wide-angle beam steering system using stacked PGs and LC waveplates, and we also demonstrated a continuous beam steering using two rotating PGs, named the Risley grating as a thin-plate version of the Risley prism. The third PG application is in imaging and non-imaging spectropolarimetry. We have shown a snapshot, hyperspectral, full-Stokes polarimeter using inline PGs and quarter-waveplates. The use of PGs as a new polarimetric element for astronomical instruments in the mid-wave IR wavelengths also has been proposed to overcome current limitations of existing IR polarimeters. In the last part of this Dissertation, we introduce a polarization-type Fresnel zone plates (P-FZPs), comprising of spatially distributed linear birefringence or concentric PG (CPG) patterns. Effective fabrication methods of P-FZPs have been developed using polarization holography based on the Michelson interferometer and photoalignment of LC materials. We demonstrated high-quality P-FZPs, which exhibit ideal Fresnel-type lens effects, formed as both LC polymer films and electro-optical LC devices. We also discuss the polarization-selective lens properties of the P-FZPs as well as their electro-optical switching. In summary, we have explored the fundamental diffraction behavior of the polarization gratings and their applications in advanced optics and photonics. The achromatic designs of the PGs allow their broadband diffraction operation over a wide range of spectrum, which increases the applicability of the PGs with a great extent. Three novel technologies that directly benefit from the distinct diffraction properties of the PGs have been developed. In addition, a new diffractive lens element operating solely on light polarization has been introduced and experimentally demonstrated. We conclude this Dissertation with our suggestions of a number of potential innovations and advances in technologies that can be enabled by polarization gratings and related technologies.

  15. Mission Concepts for High-Resolution Solar Imaging with a Photon Sieve

    NASA Astrophysics Data System (ADS)

    Rabin, Douglas M.; Davila, Joseph; Daw, Adrian N.; Denis, Kevin L.; Novo-Gradac, Anne-Marie; Shah, Neerav; Widmyer, Thomas R.

    2017-08-01

    The best EUV coronal imagers are unable to probe the expected energy dissipation scales of the solar corona (<100 km) because conventional optics cannot be figured to near diffraction-limited accuracy at these wavelengths. Davila (2011) has proposed that a photon sieve, a diffractive imaging element similar to a Fresnel zone plate, provides a technically feasible path to the required angular resolution. We have produced photon sieves as large as 80 mm clear aperture. We discuss laboratory measurements of these devices and the path to larger apertures. The focal length of a sieve with high EUV resolution is at least 10 m. Options for solar imaging with such a sieve include a sounding rocket, a single spacecraft with a deployed boom, and two spacecraft flying in precise formation.

  16. Diffractive X-Ray Telescopes

    NASA Technical Reports Server (NTRS)

    Skinner, Gerald K.

    2010-01-01

    Diffractive X-ray telescopes, using zone plates, phase Fresnel lenses, or related optical elements have the potential to provide astronomers with true imaging capability with resolution many orders of magnitude better than available in any other waveband. Lenses that would be relatively easy to fabricate could have an angular resolution of the order of micro-arc-seconds or even better, that would allow, for example, imaging of the distorted spacetime in the immediate vicinity of the super-massive black holes in the center of active galaxies. What then is precluding their immediate adoption? Extremely long focal lengths, very limited bandwidth, and difficulty stabilizing the image are the main problems. The history, and status of the development of such lenses is reviewed here and the prospects for managing the challenges that they present are discussed.

  17. Measurement of strain in Al-Cu interconnect lines with x-ray microdiffraction

    NASA Astrophysics Data System (ADS)

    Solak, H. H.; Vladimirsky, Y.; Cerrina, F.; Lai, B.; Yun, W.; Cai, Z.; Ilinski, P.; Legnini, D.; Rodrigues, W.

    1999-07-01

    We report measurement of strain in patterned Al-Cu interconnect lines with x-ray microdiffraction technique with a ˜1 μm spatial resolution. Monochromatized x rays from an undulator were focused on the sample using a phase fresnel zone plate and diffracted light was collected by an area detector in a symmetric, angle dispersive x-ray diffraction geometry. Measurements were made before and after the line sample was stressed for electromigration. Results show an increase in inter- and intra-grain strain variation after the testing. Differences in strain behavior of grains with (111) and (200) crystallographic planes parallel to the substrate surface were observed. A position dependent variation of strain after the testing was measured whereas no such dependence was found before the testing.

  18. Evaluation of noise limits to improve image processing in soft X-ray projection microscopy.

    PubMed

    Jamsranjav, Erdenetogtokh; Kuge, Kenichi; Ito, Atsushi; Kinjo, Yasuhito; Shiina, Tatsuo

    2017-03-03

    Soft X-ray microscopy has been developed for high resolution imaging of hydrated biological specimens due to the availability of water window region. In particular, a projection type microscopy has advantages in wide viewing area, easy zooming function and easy extensibility to computed tomography (CT). The blur of projection image due to the Fresnel diffraction of X-rays, which eventually reduces spatial resolution, could be corrected by an iteration procedure, i.e., repetition of Fresnel and inverse Fresnel transformations. However, it was found that the correction is not enough to be effective for all images, especially for images with low contrast. In order to improve the effectiveness of image correction by computer processing, we in this study evaluated the influence of background noise in the iteration procedure through a simulation study. In the study, images of model specimen with known morphology were used as a substitute for the chromosome images, one of the targets of our microscope. Under the condition that artificial noise was distributed on the images randomly, we introduced two different parameters to evaluate noise effects according to each situation where the iteration procedure was not successful, and proposed an upper limit of the noise within which the effective iteration procedure for the chromosome images was possible. The study indicated that applying the new simulation and noise evaluation method was useful for image processing where background noises cannot be ignored compared with specimen images.

  19. The calculation of electromagnetic fields in the Fresnel and Fraunhofer regions using numerical integration methods

    NASA Technical Reports Server (NTRS)

    Schmidt, R. F.

    1971-01-01

    Some results obtained with a digital computer program written at Goddard Space Flight Center to obtain electromagnetic fields scattered by perfectly reflecting surfaces are presented. For purposes of illustration a paraboloidal reflector was illuminated at radio frequencies in the simulation for both receiving and transmitting modes of operation. Fields were computed in the Fresnel and Fraunhofer regions. A dual-reflector system (Cassegrain) was also simulated for the transmitting case, and fields were computed in the Fraunhofer region. Appended results include derivations which show that the vector Kirchhoff-Kottler formulation has an equivalent form requiring only incident magnetic fields as a driving function. Satisfaction of the radiation conditions at infinity by the equivalent form is demonstrated by a conversion from Cartesian to spherical vector operators. A subsequent development presents the formulation by which Fresnel or Fraunhofer patterns are obtainable for dual-reflector systems. A discussion of the time-average Poynting vector is also appended.

  20. Stationary nonimaging concentrator as a second stage element in tracking systems

    NASA Astrophysics Data System (ADS)

    Kritchman, E. M.; Snail, K. A.; Ogallagher, J.; Winston, R.

    1983-01-01

    An increase in the concentration in line focus solar concentrators is shown to be available using an evacuated compound parabolic concentrator (CPC) tube as a second stage element. The absorber is integrated into an evacuated tube with a transparent upper section and a reflective lower section, with a selective coating on the absorber surface. The overall concentration is calculated in consideration of a parabolic mirror in a trough configuration, a flat Fresnel lens over the top, or a color and coma corrected Fresnel lens. The resulting apparatus is noted to also suppress thermal losses due to conduction, convection, and IR radiation.

  1. X-ray simulations method for the large field of view

    NASA Astrophysics Data System (ADS)

    Schelokov, I. A.; Grigoriev, M. V.; Chukalina, M. V.; Asadchikov, V. E.

    2018-03-01

    In the standard approach, X-ray simulation is usually limited to the step of spatial sampling to calculate the convolution of integrals of the Fresnel type. Explicitly the sampling step is determined by the size of the last Fresnel zone in the beam aperture. In other words, the spatial sampling is determined by the precision of integral convolution calculations and is not connected with the space resolution of an optical scheme. In the developed approach the convolution in the normal space is replaced by computations of the shear strain of ambiguity function in the phase space. The spatial sampling is then determined by the space resolution of an optical scheme. The sampling step can differ in various directions because of the source anisotropy. The approach was used to simulate original images in the X-ray Talbot interferometry and showed that the simulation can be applied to optimize the methods of postprocessing.

  2. One-Micron Beams for Macromolecular Crystallography at GM/CA-CAT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoder, D. W.; Sanishvili, R.; Xu, S.

    2010-06-23

    GM/CA-CAT has developed a 1-{mu}m beam for challenging micro-diffraction experiments with macromolecular crystals (e.g. small crystals) and for radiation damage studies. Reflective (Kirkpatrick-Baez mirrors) and diffractive (Fresnel zone plates) optics have been used to focus the beam. Both cases are constrained by the need to maintain a small beam convergence. Using two different zone plates, 1.0x1.0 and 0.8x0.9 {mu}m{sup 2} (VxH,FWHM) beams were created at 15.2 keV and 18.5 keV, respectively. Additionally, by introducing a vertical focusing mirror upstream of the zone plate, a line focus at 15.2 keV was created (28x1.4 {mu}m{sup 2} VxH,FWHM) with the line oriented perpendicularmore » to the X-ray polarization and the crystal rotation axis. Crystal-mounting stages with nanometer resolution have been assembled to profile these beams and to perform diffraction experiments.« less

  3. Radius anomaly in the diffraction model for heavy-ion elastic scattering

    NASA Astrophysics Data System (ADS)

    Pandey, L. N.; Mukherjee, S. N.

    1984-04-01

    The elastic scattering of heavy ions, 20Ne on 208Pb, 20Ne on 235U, 84Kr on 208Pb, and 84Kr on 232Th, is examined within the framework of Frahn's diffraction model. An analysis of the experiment using the "quarter point recipe" of the expected Fresnel cross sections yields a larger radius for 208Pb than the radii for 235U and 232Th. It is shown that inclusion of the nuclear deformation in the model removes the above anomaly in the radii, and the assumption of smooth cutoff of the angular momentum simultaneously leads to a better fit to elastic scattering data, compared to those obtained by the earlier workers on the assumption of sharp cutoff. [NUCLEAR REACTIONS Elastic scattering, 20Ne+208Pb (161.2 MeV), 20Ne+235U (175 MeV), 84Kr+208Pb (500 MeV), 84Kr+232Th (500 MeV), diffraction model, nuclear deformation.

  4. Riccati Parametric Deformations of the Cornu Spiral

    NASA Astrophysics Data System (ADS)

    Rosu, Haret C.; Mancas, Stefan C.; Flores-Garduño, Elizabeth

    2018-06-01

    In this article, a parametric deformation of the Cornu spiral is introduced. The parameter is an integration constant which appears in the general solution of the Riccati equation and is related to the Fresnel integrals. The Argand plots of the deformed spirals are presented and a supersymmetric (Darboux) structure of the deformation is revealed through the factorization approach.

  5. Onion cell imaging by using Talbot/self-imaging effect

    NASA Astrophysics Data System (ADS)

    Agarwal, Shilpi; Kumar, Varun; Shakher, Chandra

    2017-08-01

    This paper presents the amplitude and phase imaging of onion epidermis cell using the self-imaging capabilities of a grating (Talbot effect) in visible light region. In proposed method, the Fresnel diffraction pattern from the first grating and object is recorded at self-image plane. Fast Fourier Transform (FFT) is used for extracting the 3D amplitude and phase image of onion epidermis cell. The stability of the proposed system, from environmental perturbation as well as its compactness and portability give the proposed system a high potential for several clinical applications.

  6. Realization of arbitrarily long focus-depth optical vortices with spiral area-varying zone plates

    NASA Astrophysics Data System (ADS)

    Zheng, Chenglong; Zang, Huaping; Du, Yanli; Tian, Yongzhi; Ji, Ziwen; Zhang, Jing; Fan, Quanping; Wang, Chuanke; Cao, Leifeng; Liang, Erjun

    2018-05-01

    We provide a methodology to realize an optical vortex with arbitrarily long focus-depth. With a technique of varying each zone area of a phase spiral zone plate one can obtain optics capable of generating ultra-long focus-depth optical vortex from a plane wave. The focal property of such optics was analysed using the Fresnel diffraction theory, and an experimental demonstration was performed to verify its effectiveness. Such optics may bring new opportunity and benefits for optical vortex application such as optical manipulation and lithography.

  7. Sub-25-nm laboratory x-ray microscopy using a compound Fresnel zone plate.

    PubMed

    von Hofsten, Olov; Bertilson, Michael; Reinspach, Julia; Holmberg, Anders; Hertz, Hans M; Vogt, Ulrich

    2009-09-01

    Improving the resolution in x-ray microscopes is of high priority to enable future applications in nanoscience. However, high-resolution zone-plate optics often have low efficiency, which makes implementation in laboratory microscopes difficult. We present a laboratory x-ray microscope based on a compound zone plate. The compound zone plate utilizes multiple diffraction orders to achieve high resolution while maintaining reasonable efficiency. We analyze the illumination conditions necessary for this type of optics in order to suppress stray light and demonstrate microscopic imaging resolving 25 nm features.

  8. Volumetric Near-Field Microwave Plasma Generation

    NASA Technical Reports Server (NTRS)

    Exton, R. J.; Balla, R. Jeffrey; Herring, G. C.; Popovic, S.; Vuskovic, L.

    2003-01-01

    A periodic series of microwave-induced plasmoids is generated using the outgoing wave from a microwave horn and the reflected wave from a nearby on-axis concave reflector. The plasmoids are spaced at half-wavelength separations according to a standing-wave pattern. The plasmoids are enhanced by an effective focusing in the near field of the horn (Fresnel region) as a result of a diffractive narrowing. Optical imaging, electron density, and rotational temperature measurements characterize the near field plasma region. Volumetric microwave discharges may have application to combustion ignition in scramjet engines.

  9. Flat liquid crystal diffractive lenses with variable focus and magnification

    NASA Astrophysics Data System (ADS)

    Valley, Pouria

    Non-mechanical variable lenses are important for creating compact imaging devices. Various methods employing dielectrically actuated lenses, membrane lenses, and liquid crystal lenses were previously proposed [1-4]. In This dissertation the design, fabrication, and characterization of innovative flat tunable-focus liquid crystal diffractive lenses (LCDL) are presented. LCDL employ binary Fresnel zone electrodes fabricated on Indium-Tin-Oxide using conventional micro-photolithography. The light phase can be adjusted by varying the effective refractive index of a nematic liquid crystal sandwiched between the electrodes and a reference substrate. Using a proper voltage distribution across various electrodes the focal length can be changed between several discrete values. Electrodes are shunted such that the correct phase retardation step sequence is achieved. If the number of 2pi zone boundaries is increased by a factor of m the focal length is changed from f to f/m based on the digitized Fresnel zone equation: f = rm2/2mlambda, where r m is mth zone radius, and lambda is the wavelength. The chromatic aberration of the diffractive lens is addressed and corrected by adding a variable fluidic lens. These LCDL operate at very low voltage levels (+/-2.5V ac input), exhibit fast switching times (20-150 ms), can have large apertures (>10 mm), and small form factor, and are robust and insensitive to vibrations, gravity, and capillary effects that limit membrane and dielectrically actuated lenses. Several tests were performed on the LCDL including diffraction efficiency measurement, switching dynamics, and hybrid imaging with a refractive lens. Negative focal lengths are achieved by adjusting the voltages across electrodes. Using these lenses in combination, magnification can be changed and zoom lenses can be formed. These characteristics make LCDL a good candidate for a variety of applications including auto-focus and zoom lenses in compact imaging devices such as camera phones. A business plan centered on this technology was developed as part of the requirements for the minor in entrepreneurship from the Eller College of Management. An industrial analysis is presented in this study that involves product development, marketing, and financial analyses (Appendix I).

  10. Shielding Characteristics Using an Ultrasonic Configurable Fan Artificial Noise Source to Generate Modes - Experimental Measurements and Analytical Predictions

    NASA Technical Reports Server (NTRS)

    Sutliff, Daniel L.; Walker, Bruce E.

    2014-01-01

    An Ultrasonic Configurable Fan Artificial Noise Source (UCFANS) was designed, built, and tested in support of the NASA Langley Research Center's 14x22 wind tunnel test of the Hybrid Wing Body (HWB) full 3-D 5.8% scale model. The UCFANS is a 5.8% rapid prototype scale model of a high-bypass turbofan engine that can generate the tonal signature of proposed engines using artificial sources (no flow). The purpose of the program was to provide an estimate of the acoustic shielding benefits possible from mounting an engine on the upper surface of a wing; a flat plate model was used as the shielding surface. Simple analytical simulations were used to preview the radiation patterns - Fresnel knife-edge diffraction was coupled with a dense phased array of point sources to compute shielded and unshielded sound pressure distributions for potential test geometries and excitation modes. Contour plots of sound pressure levels, and integrated power levels, from nacelle alone and shielded configurations for both the experimental measurements and the analytical predictions are presented in this paper.

  11. Fabrication of micro-optical components using femtosecond oscillator pulses

    NASA Astrophysics Data System (ADS)

    Rodrigues, Vanessa R. M.; Ramachandran, Hema; Chidangil, Santhosh; Mathur, Deepak

    2017-06-01

    With a penchant for integrated photonics and miniaturization, the fabrication of micron sized optical elements using precision laser pulse management is drawing attention due to the possibility of minimizing tolerances for collateral material damage. The work presented here deals with the design, fabrication and characterization of a range of diffractive optics - gratings, grids and Fresnel zone plates - on transparent and metallic samples. Their low volume, light weight, transmission bandwidth, high damage threshold and flexible design make them suited for replacing conventional refractive optical elements. Our one-step, mask-less, 3-D laser direct writing process is a green fabrication technique which is in stark contrast to currently popular Photo-lithography based micro-structuring. Our method provides scope for modifications on the surface as well as within the bulk of the material. The mechanism involved in the fabrication of these optics on transparent and thin metallic substrates differ from each other. Our studies show that both amplitude and phase versions of micro-structures were achieved successfully with performances bearing 98% accuracy vis-a-vis theoretical expectations.

  12. Design and characteristic analysis of shaping optics for optical trepanning

    NASA Astrophysics Data System (ADS)

    Zeng, D.; Latham, W. P.; Kar, A.

    2005-08-01

    Optical trepanning is a new laser drilling method using an annular beam. The annular beams allow numerous irradiance profiles to supply laser energy to the workpiece and thus provide more flexibility in affecting the hole quality than a traditional circular laser beam. The refractive axicon system has been designed to generating a collimated annular beam. In this article, calculations of intensity distributions produced by this refractive system are made by evaluating the Kirchhoff-Fresnel diffraction. It is shown that the refractive system is able to transform a Gaussian beam into a full Gaussian annular beam. The base angle of the axicon lens, input laser beam diameter and intensity profiles are found to be important factors for the axcion refractive system. Their effects on the annular beam profiles are analyzed based on the numerical solutions of the diffraction patterns.

  13. Fabrication of wedged multilayer Laue lenses

    DOE PAGES

    Prasciolu, M.; Leontowich, A. F. G.; Krzywinski, J.; ...

    2015-01-01

    We present a new method to fabricate wedged multilayer Laue lenses, in which the angle of diffracting layers smoothly varies in the lens to achieve optimum diffracting efficiency across the entire pupil of the lens. This was achieved by depositing a multilayer onto a flat substrate placed in the penumbra of a straight-edge mask. The distance between the mask and the substrate was calibrated and the multilayer Laue lens was cut in a position where the varying layer thickness and the varying layer tilt simultaneously satisfy the Fresnel zone plate condition and Bragg’s law for all layers in the stack.more » This method can be used to extend the achievable numerical aperture of multilayer Laue lenses to reach considerably smaller focal spot sizes than achievable with lenses composed of parallel layers.« less

  14. Theoretical performance of serrated external occulters for solar coronagraphy. Application to ASPIICS

    NASA Astrophysics Data System (ADS)

    Rougeot, R.; Aime, C.

    2018-04-01

    Context. This study is made in the context of the future solar coronagraph ASPIICS of the ESA formation-flying mission Proba-3. Aims: In the context of solar coronagraphy, we provide a comparative study of the theoretical performance of serrated (or toothed) external occulters by varying the number and size of the teeth, which we compare to the sharp-edged and apodized disks. The tooth height is small (a few centimeters), to avoid hindering the observation of the solar corona near the limb. We first analyze the diffraction pattern produced by such occulters. In a second step, we compute the umbra profile by integration over the Sun. Methods: We explored a few methods to compute the diffraction pattern. Two of them were implemented. The first is based on 2D fast Fourier transformation (FFT) routines and a multiplication by the Fresnel filter of the form exp(-iπλzu2). Simple rules were derived and discussed to set the sampling conditions. The Maggi-Rubinowicz representation is then proposed as an alternative method, and is proven to be very efficient for this study. Results: Serrated occulters tend to create a two-level intensity pattern, the inner being the darker, which perfectly matches a previously reported geometrical prediction. The diffraction in this central region is lower by two to four orders of magnitude when compared to the sharp-edged disk. The achieved umbra level at the center ranges from 10-4 to below 10-7, depending on the geometry of the teeth. Conclusions: Our study shows that serrated occulters can achieve a high rejection and can almost reach the performance of the apodized disk when very many teeth are used. We prove that shaped occulters must be preferred to simple disks in solar and stellar coronagraphy.

  15. Three-dimensional facial recognition using passive long-wavelength infrared polarimetric imaging.

    PubMed

    Yuffa, Alex J; Gurton, Kristan P; Videen, Gorden

    2014-12-20

    We use a polarimetric camera to record the Stokes parameters and the degree of linear polarization of long-wavelength infrared radiation emitted by human faces. These Stokes images are combined with Fresnel relations to extract the surface normal at each pixel. Integrating over these surface normals yields a three-dimensional facial image. One major difficulty of this technique is that the normal vectors determined from the polarizations are not unique. We overcome this problem by introducing an additional boundary condition on the subject. The major sources of error in producing inversions are noise in the images caused by scattering of the background signal and the ambiguity in determining the surface normals from the Fresnel coefficients.

  16. A Note on the Stochastic Nature of Feynman Quantum Paths

    NASA Astrophysics Data System (ADS)

    Botelho, Luiz C. L.

    2016-11-01

    We propose a Fresnel stochastic white noise framework to analyze the stochastic nature of the Feynman paths entering on the Feynman Path Integral expression for the Feynman Propagator of a particle quantum mechanically moving under a time-independent potential.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tregillis, Ian Lee

    This document examines the performance of a generic flat-mirror multimonochromatic imager (MMI), with special emphasis on existing instruments at NIF and Omega. We begin by deriving the standard equation for the mean number of photons detected per resolution element. The pinhole energy bandwidth is a contributing factor; this is dominated by the finite size of the source and may be considerable. The most common method for estimating the spatial resolution of such a system (quadrature addition) is, technically, mathematically invalid for this case. However, under the proper circumstances it may produce good estimates compared to a rigorous calculation based onmore » the convolution of point-spread functions. Diffraction is an important contribution to the spatial resolution. Common approximations based on Fraunhofer (farfield) diffraction may be inappropriate and misleading, as the instrument may reside in multiple regimes depending upon its configuration or the energy of interest. It is crucial to identify the correct diffraction regime; Fraunhofer and Fresnel (near-field) diffraction profiles are substantially different, the latter being considerably wider. Finally, we combine the photonics and resolution analyses to derive an expression for the minimum signal level such that the resulting images are not dominated by photon statistics. This analysis is consistent with observed performance of the NIF MMI.« less

  18. Acceleration of color computer-generated hologram from three-dimensional scenes with texture and depth information

    NASA Astrophysics Data System (ADS)

    Shimobaba, Tomoyoshi; Kakue, Takashi; Ito, Tomoyoshi

    2014-06-01

    We propose acceleration of color computer-generated holograms (CGHs) from three-dimensional (3D) scenes that are expressed as texture (RGB) and depth (D) images. These images are obtained by 3D graphics libraries and RGB-D cameras: for example, OpenGL and Kinect, respectively. We can regard them as two-dimensional (2D) cross-sectional images along the depth direction. The generation of CGHs from the 2D cross-sectional images requires multiple diffraction calculations. If we use convolution-based diffraction such as the angular spectrum method, the diffraction calculation takes a long time and requires large memory usage because the convolution diffraction calculation requires the expansion of the 2D cross-sectional images to avoid the wraparound noise. In this paper, we first describe the acceleration of the diffraction calculation using "Band-limited double-step Fresnel diffraction," which does not require the expansion. Next, we describe color CGH acceleration using color space conversion. In general, color CGHs are generated on RGB color space; however, we need to repeat the same calculation for each color component, so that the computational burden of the color CGH generation increases three-fold, compared with monochrome CGH generation. We can reduce the computational burden by using YCbCr color space because the 2D cross-sectional images on YCbCr color space can be down-sampled without the impairing of the image quality.

  19. Voyager radio occultation by the Uranian rings: Structure, dynamics, and particle sizes. Ph.D. Thesis Final Technical Report

    NASA Technical Reports Server (NTRS)

    Gresh, Donna Leigh

    1990-01-01

    Diffraction of Voyager 2's 3.6 and 13 cm wavelength microwaves by the Uranian rings is removed through an inverse Fresnel transform filtering procedure that accommodates the significant eccentricity of the rings. Resulting 50 m resolution profiles at two observation longitudes: (1) reveal remarkably detailed and longitudinally varying structure, (2) provide eccentricity gradient profiles of Rings alpha, beta, and epsilon which bring into question current theoretical models for observed rigid precession, and (3) suggest that two possible unseen satellites may confine some of the very sharp edges observed via resonant interactions.

  20. Terahertz holography for imaging amplitude and phase objects.

    PubMed

    Hack, Erwin; Zolliker, Peter

    2014-06-30

    A non-monochromatic THz Quantum Cascade Laser and an uncooled micro-bolometer array detector with VGA resolution are used in a beam-splitter free holographic set-up to measure amplitude and phase objects in transmission. Phase maps of the diffraction pattern are retrieved using the Fourier transform carrier fringe method; while a Fresnel-Kirchhoff back propagation algorithm is used to reconstruct the complex object image. A lateral resolution of 280 µm and a relative phase sensitivity of about 0.5 rad are estimated from reconstructed images of a metallic Siemens star and a polypropylene test structure, respectively. Simulations corroborate the experimental results.

  1. Stellar interferometers and hypertelescopes: new insights on an angular spatial frequency approach to their non-invariant imaging

    NASA Astrophysics Data System (ADS)

    Dettwiller, L.; Lépine, T.

    2017-12-01

    A general and pure wave theory of image formation for all types of stellar interferometers, including hypertelescopes, is developed in the frame of Fresnel's paraxial approximations of diffraction. For a hypertelescope, we show that the severe lack of translation invariance leads to multiple and strong spatial frequency heterodyning, which codes the very high frequencies detected by the hypertelescope into medium spatial frequencies and introduces a moiré-type ambiguity for extended objects. This explains mathematically the disappointing appearance of poor resolution observed in some image simulations for hypertelescopes.

  2. 21 CFR 886.1655 - Ophthalmic Fresnel prism.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ophthalmic Fresnel prism. 886.1655 Section 886...) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1655 Ophthalmic Fresnel prism. (a) Identification. An ophthalmic Fresnel prism is a device that is a thin plastic sheet with embossed rulings which...

  3. 21 CFR 886.1655 - Ophthalmic Fresnel prism.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Ophthalmic Fresnel prism. 886.1655 Section 886...) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1655 Ophthalmic Fresnel prism. (a) Identification. An ophthalmic Fresnel prism is a device that is a thin plastic sheet with embossed rulings which...

  4. 21 CFR 886.1655 - Ophthalmic Fresnel prism.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Ophthalmic Fresnel prism. 886.1655 Section 886...) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1655 Ophthalmic Fresnel prism. (a) Identification. An ophthalmic Fresnel prism is a device that is a thin plastic sheet with embossed rulings which...

  5. 21 CFR 886.1655 - Ophthalmic Fresnel prism.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ophthalmic Fresnel prism. 886.1655 Section 886...) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1655 Ophthalmic Fresnel prism. (a) Identification. An ophthalmic Fresnel prism is a device that is a thin plastic sheet with embossed rulings which...

  6. 21 CFR 886.1655 - Ophthalmic Fresnel prism.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ophthalmic Fresnel prism. 886.1655 Section 886...) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1655 Ophthalmic Fresnel prism. (a) Identification. An ophthalmic Fresnel prism is a device that is a thin plastic sheet with embossed rulings which...

  7. 21 CFR 886.1390 - Flexible diagnostic Fresnel lens.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Flexible diagnostic Fresnel lens. 886.1390 Section... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1390 Flexible diagnostic Fresnel lens. (a) Identification. A flexible diagnostic Fresnel lens is a device that is a very thin lens which has...

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aoki, Sadao; Namikawa, Tadahiro; Hoshino, Masato

    A Zernike-type phase contrast hard X-ray microscope was constructed at the Photon Factory BL3C2 (KEK). A white beam from a bending magnet was monochromatized by a silicon double crystal monochromator. Monochromatic parallel X-ray beam illuminated a sample, and transmitted and diffracted X-ray beams were imaged by a Fresnel zone plate (FZP) which had the outer zone width of 100 nm. A phase plate made of a thin aluminum foil with a pinhole was set at the back focal plane of the FZP. The phase plate modulated the diffraction beam from the FZP, whereas a direct beam passed through the pinhole.more » The resolution of the microscope was measured by observing a tantalum test pattern at an X-ray energy of 9 keV. A 100nm line-and-space pattern could be resolved. X-ray montage pictures of growing eggs of artemia (plankton) were obtained.« less

  9. High efficiency x-ray nanofocusing by the blazed stacking of binary zone plates

    NASA Astrophysics Data System (ADS)

    Mohacsi, I.; Karvinen, P.; Vartiainen, I.; Diaz, A.; Somogyi, A.; Kewish, C. M.; Mercere, P.; David, C.

    2013-09-01

    The focusing efficiency of binary Fresnel zone plate lenses is fundamentally limited and higher efficiency requires a multi step lens profile. To overcome the manufacturing problems of high resolution and high efficiency multistep zone plates, we investigate the concept of stacking two different binary zone plates in each other's optical near-field. We use a coarse zone plate with π phase shift and a double density fine zone plate with π/2 phase shift to produce an effective 4- step profile. Using a compact experimental setup with piezo actuators for alignment, we demonstrated 47.1% focusing efficiency at 6.5 keV using a pair of 500 μm diameter and 200 nm smallest zone width. Furthermore, we present a spatially resolved characterization method using multiple diffraction orders to identify manufacturing errors, alignment errors and pattern distortions and their effect on diffraction efficiency.

  10. Nonlinear focusing of ultrasonic waves by an axisymmetric diffraction grating embedded in water

    NASA Astrophysics Data System (ADS)

    Jiménez, N.; Romero-García, V.; Picó, R.; Garcia-Raffi, L. M.; Staliunas, K.

    2015-11-01

    We report the nonlinear focusing of ultrasonic waves by an axisymmetric diffraction grating immersed in water. In the linear regime, the system presents high focal gain (32 dB), with a narrow beam-width and intense side lobes as it is common in focusing by Fresnel-like lenses. Activating the nonlinearity of the host medium by using high amplitude incident waves, the focusing properties of the lens dramatically change. Theoretical predictions show that the focal gain of the system extraordinary increases in the strongly nonlinear regime (Mach number of 6.1 × 10-4). Particularly, the harmonic generation is locally activated at the focal spot, and the second harmonic beam is characterized by strongly reduced side-lobes and an excellent beam profile as experiments show in agreement with theory. The results can motivate applications in medical therapy or second harmonic imaging.

  11. Computer-generated holographic near-eye display system based on LCoS phase only modulator

    NASA Astrophysics Data System (ADS)

    Sun, Peng; Chang, Shengqian; Zhang, Siman; Xie, Ting; Li, Huaye; Liu, Siqi; Wang, Chang; Tao, Xiao; Zheng, Zhenrong

    2017-09-01

    Augmented reality (AR) technology has been applied in various areas, such as large-scale manufacturing, national defense, healthcare, movie and mass media and so on. An important way to realize AR display is using computer-generated hologram (CGH), which is accompanied by low image quality and heavy computing defects. Meanwhile, the diffraction of Liquid Crystal on Silicon (LCoS) has a negative effect on image quality. In this paper, a modified algorithm based on traditional Gerchberg-Saxton (GS) algorithm was proposed to improve the image quality, and new method to establish experimental system was used to broaden field of view (FOV). In the experiment, undesired zero-order diffracted light was eliminated and high definition 2D image was acquired with FOV broadened to 36.1 degree. We have also done some pilot research in 3D reconstruction with tomography algorithm based on Fresnel diffraction. With the same experimental system, experimental results demonstrate the feasibility of 3D reconstruction. These modifications are effective and efficient, and may provide a better solution in AR realization.

  12. Design and fabrication of sub-wavelength anti-reflection grating

    NASA Astrophysics Data System (ADS)

    Zou, Wenlong; Li, Chaoming; Chen, Xinrong; Cai, Zhijian; Wu, Jianhong

    2018-01-01

    In the high power laser system, the reflection of optical surface has a strong impact on the efficiency for luminous energy utilization. Fresnel reflection can be effectively suppressed by antireflection film. For that, the anti-reflection film is one of the important optical elements in high power laser system. The common preparation methods of anti-reflection film include monolayer film, multilayer film and sub-wavelength grating. The effectiveness of monolayer is unsatisfactory, and its application spectrum bandwidth is very narrow. The preparation process of multilayer film is complex and it is very expensive. The emerging technology of fabrication anti-reflection film is sub-wavelength grating. The zero order transmission diffraction efficiency depends on the period, etching depth and duty cycle of the grating. The structure parameters of antireflection grating were designed and optimized under small angle incidence of 351nm based on rigorous coupled wave analysis method. The impaction of zero order reflection diffraction and zero order transmission diffraction efficiency on period, duty cycle and etching depth of grating was discussed in detail in this paper. The sub-wavelength anti-reflection grating was fabricated by holographic and ion etching method.

  13. Compact, cost-effective and field-portable microscope prototype based on MISHELF microscopy

    NASA Astrophysics Data System (ADS)

    Sanz, Martín; Picazo-Bueno, José Ángel; Granero, Luis; García, Javier; Micó, Vicente

    2017-02-01

    We report on a reduced cost, portable and compact prototype design of lensless holographic microscope with an illumination/detection scheme based on wavelength multiplexing, working with single hologram acquisition and using a fast convergence algorithm for image processing. All together, MISHELF (initials coming from Multi-Illumination Single-Holographic-Exposure Lensless Fresnel) microscopy allows the recording of three Fresnel domain diffraction patterns in a single camera snap-shot incoming from illuminating the sample with three coherent lights at once. Previous implementations have proposed an illumination/detection procedure based on a tuned (illumination wavelengths centered at the maximum sensitivity of the camera detection channels) configuration but here we report on a detuned (non-centered ones) scheme resulting in prototype miniaturization and cost reduction. Thus, MISHELF microscopy in combination with a novel and fast iterative algorithm allows high-resolution (μm range) phase-retrieved (twin image elimination) quantitative phase imaging of dynamic events (video rate recording speed). The performance of this microscope prototype is validated through experiments using both amplitude (USAF resolution test) and complex (live swine sperm cells and flowing microbeads) samples. The proposed method becomes in an alternative instrument improving some capabilities of existing lensless microscopes.

  14. A compact "water-window" microscope with 60-nm spatial resolution based on a double stream gas-puff target and Fresnel zone plate optics

    NASA Astrophysics Data System (ADS)

    Wachulak, Przemyslaw; Torrisi, Alfio; Nawaz, Muhammad F.; Adjei, Daniel; Bartnik, Andrzej; Kostecki, Jerzy; Wegrzynski, Łukasz; Vondrová, Šárka; Turňová, Jana; Fok, Tomasz; Jančarek, Alexandr; Fiedorowicz, Henryk

    2015-05-01

    Radiation with shorter illumination wavelength allows for extension of the diffraction limit towards nanometer scale, which is a straightforward way to significantly improve a spatial resolution in photon based microscopes. Soft X-ray (SXR) radiation, from the so called "water window" spectral range, λ=2.3-4.4 nm, which is particularly suitable for biological imaging due to natural optical contrast, providing much better spatial resolution than one obtained with visible light microscopes. The high contrast is obtained because of selective absorption of radiation by carbon and water, being constituents of the biological samples. We present a desk-top system, capable of resolving 60 nm features in few seconds exposure time. We exploit the advantages of a compact, laser-plasma SXR source, based on a double stream nitrogen gas puff target, developed at the Institute of Optoelectronics, Military University of Technology. The source, emitting quasi-monochromatic, incoherent radiation, in the "water widow" spectral range at λ = 2.88 nm, is coupled with ellipsoidal, grazing incidence condenser and Fresnel zone plate objective. The construction of the microscope with some recent images of test and real samples will be presented and discussed.

  15. Compact, cost-effective and field-portable microscope prototype based on MISHELF microscopy

    PubMed Central

    Sanz, Martín; Picazo-Bueno, José Ángel; Granero, Luis; García, Javier; Micó, Vicente

    2017-01-01

    We report on a reduced cost, portable and compact prototype design of lensless holographic microscope with an illumination/detection scheme based on wavelength multiplexing, working with single hologram acquisition and using a fast convergence algorithm for image processing. All together, MISHELF (initials coming from Multi-Illumination Single-Holographic-Exposure Lensless Fresnel) microscopy allows the recording of three Fresnel domain diffraction patterns in a single camera snap-shot incoming from illuminating the sample with three coherent lights at once. Previous implementations have proposed an illumination/detection procedure based on a tuned (illumination wavelengths centered at the maximum sensitivity of the camera detection channels) configuration but here we report on a detuned (non-centered ones) scheme resulting in prototype miniaturization and cost reduction. Thus, MISHELF microscopy in combination with a novel and fast iterative algorithm allows high-resolution (μm range) phase-retrieved (twin image elimination) quantitative phase imaging of dynamic events (video rate recording speed). The performance of this microscope prototype is validated through experiments using both amplitude (USAF resolution test) and complex (live swine sperm cells and flowing microbeads) samples. The proposed method becomes in an alternative instrument improving some capabilities of existing lensless microscopes. PMID:28233829

  16. Fresnel zone considerations for reflection and scatter from refractive index irregularities

    NASA Technical Reports Server (NTRS)

    Doviak, R. J.; Zrnic, D. S.

    1983-01-01

    Several different echoing mechanisms are proposed to explain VHF/UHF scatter from clear air; (1) anisotropic scatter; (2) Fresnel reflection, and (3) Fresnel scatter, in order to account for the spatial (angle and range) and temporal dependence of the echoes. The term diffuse reflection describes the echoing mechanism when both scatter and reflection coexist. A unifying formulation is presented incorporating a statistical approach that embraces all mechanisms the above mechanisms and gives conditions under which reflection or scatter dominates. A distinction between Fraunhofer and Fresnel scatter and a criterion is presented under which Fresnel scatter is important.

  17. A Generalized Technique in Numerical Integration

    NASA Astrophysics Data System (ADS)

    Safouhi, Hassan

    2018-02-01

    Integration by parts is one of the most popular techniques in the analysis of integrals and is one of the simplest methods to generate asymptotic expansions of integral representations. The product of the technique is usually a divergent series formed from evaluating boundary terms; however, sometimes the remaining integral is also evaluated. Due to the successive differentiation and anti-differentiation required to form the series or the remaining integral, the technique is difficult to apply to problems more complicated than the simplest. In this contribution, we explore a generalized and formalized integration by parts to create equivalent representations to some challenging integrals. As a demonstrative archetype, we examine Bessel integrals, Fresnel integrals and Airy functions.

  18. Fabrication of high-resolution x-ray diffractive optics at King's College London

    NASA Astrophysics Data System (ADS)

    Charalambous, Pambos S.; Anastasi, Peter A. F.; Burge, Ronald E.; Popova, Katia

    1995-09-01

    The fabrication of high resolution x-ray diffractive optics, and Fresnel zone plates (ZPs) in particular, is a very demanding multifaceted technological task. The commissioning of more (and brighter) synchrotron radiation sources, has increased the number of x-ray imaging beam lines world wide. The availability of cheaper and more effective laboratory x-ray sources, has further increased the number of laboratories involved in x-ray imaging. The result is an ever increasing demand for x-ray optics with a very wide range of specifications, reflecting the particular type of x-ray imaging performed at different laboratories. We have been involved in all aspects of high resolution nanofabrication for a number of years, and we have explored many different methods of lithography, which, although unorthodox, open up possibilities, and increase our flexibility for the fabrication of different diffractive optical elements, as well as other types of nanostructures. The availability of brighter x-ray sources, means that the diffraction efficiency of the ZPs is becoming of secondary importance, a trend which will continue in the future. Resolution, however, is important and will always remain so. Resolution is directly related to the accuracy af pattern generation, as well as the ability to draw fine lines. This is the area towards which we have directed most of our efforts so far.

  19. Design of a solar collector system formed by a Fresnel lens and a CEC coupled to plastic fibers

    NASA Astrophysics Data System (ADS)

    Viera-González, Perla M.; Sánchez-Guerrero, Guillermo E.; Ceballos-Herrera, Daniel E.; Selvas-Aguilar, Romeo

    2015-08-01

    Among the main challenges for systems based in solar concentrators and plastic optical fibers (POF) the accuracy needed for the solar tracking is founded. One approach to overcome these requirements is increasing acceptance angle of the components, usually by secondary optical elements (SOE), however this technique is effective for photovoltaic applications but it has not been analyzed for systems coupled to POFs for indoor illumination. On this subject, it is presented a numerical analysis of a solar collector assembled by a Fresnel lens as primary optical element (POE) combined with a compound elliptical concentrator (CEC) coupled to POF in order to compare its performance under incidence angle direction and also to show a trade-off analysis for two different Fresnel lens shapes, imaging and nonimaging, used in the collector system. The description of the Fresnel lenses and its designs are included, in addition to the focal areas with space and angular distribution profiles considering the optimal alignment with the source and maximum permissible incident angle for each case. For both systems the coupling between the optical components is analyzed and the total performance is calculated, having as result its comparison for indoor illumination. In both cases, the systems have better performance increasing the final output power, but the angular tolerance only was improved for the system with nonimaging concentrator that had an efficiency over 80% with acceptance angles 𝜃𝑖 ≤ 2° and, the system integrated by the imaging lens, presented an efficiency ratio over 75% for acceptance angles 𝜃𝑖 ≤ 0.7°.

  20. Comparison of PSF maxima and minima of multiple annuli coded aperture (MACA) and complementary multiple annuli coded aperture (CMACA) systems

    NASA Astrophysics Data System (ADS)

    Ratnam, Challa; Lakshmana Rao, Vadlamudi; Lachaa Goud, Sivagouni

    2006-10-01

    In the present paper, and a series of papers to follow, the Fourier analytical properties of multiple annuli coded aperture (MACA) and complementary multiple annuli coded aperture (CMACA) systems are investigated. First, the transmission function for MACA and CMACA is derived using Fourier methods and, based on the Fresnel-Kirchoff diffraction theory, the formulae for the point spread function are formulated. The PSF maxima and minima are calculated for both the MACA and CMACA systems. The dependence of these properties on the number of zones is studied and reported in this paper.

  1. Characterization of Beryllium Windows for Coherent X-ray Optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goto, Shunji; Yabashi, Makina; Tamasaku, Kenji

    2007-01-19

    Beryllium foils fabricated by several processes were characterized using spatially coherent x rays at 1-km beamline of SPring-8. By thickness dependence of bright x-ray spot density due to Fresnel diffraction from several-micron deficiencies, we found that speckles (bright x-ray spots) were due to voids with densities 103-104 mm-3 in powder foils and ingot foils. Compared with powder and ingot foils, a polished physical-vapor-deposited (PVD) beryllium foil gave highly uniform beams with no speckles. The PVD process eliminates the internal voids in principle and the PVD foil is the best for coherent x-ray applications.

  2. Quadrupole radiation from terahertz dipole antennas.

    PubMed

    Rudd, J V; Johnson, J L; Mittleman, D M

    2000-10-15

    We report what is to our knowledge the first detailed investigation of the polarization state of radiation from lens-coupled terahertz dipole antennas. The radiation exhibits a weak but measurable component that is polarized orthogonally to the orientation of the emitter dipole. The angular radiation pattern of this cross-polarized emission reveals that it is quadrupolar, rather than dipolar, in nature. One can understand this result by taking into account the photocurrent flowing in the strip lines that feed the dipole antenna. A Fresnel-Kirchhoff scalar diffraction calculation is used for calculating the frequency-dependent angular distribution of the radiation pattern, providing satisfactory agreement with the measurements.

  3. Monte Carlo modeling of spatial coherence: free-space diffraction

    PubMed Central

    Fischer, David G.; Prahl, Scott A.; Duncan, Donald D.

    2008-01-01

    We present a Monte Carlo method for propagating partially coherent fields through complex deterministic optical systems. A Gaussian copula is used to synthesize a random source with an arbitrary spatial coherence function. Physical optics and Monte Carlo predictions of the first- and second-order statistics of the field are shown for coherent and partially coherent sources for free-space propagation, imaging using a binary Fresnel zone plate, and propagation through a limiting aperture. Excellent agreement between the physical optics and Monte Carlo predictions is demonstrated in all cases. Convergence criteria are presented for judging the quality of the Monte Carlo predictions. PMID:18830335

  4. Carbon-based Fresnel optics for hard x-ray astronomy.

    PubMed

    Braig, Christoph; Zizak, Ivo

    2018-03-10

    We investigate the potential of large-scale diffractive-refractive normal-incidence transmission lenses for the development of space-based hard x-ray telescopes with an angular resolution in the range of (10 -6 -10 -3 )  arcsec over a field of view that is restricted by the available detector size. Coherently stepped achromatic lenses with diameters up to 5 m for compact apertures and 13 m in the case of segmentation provide an access to spectrally resolved imaging within keV-wide bands around the design energy between 10 and 30 keV. Within an integration time of 10 6   s, a photon-limited 5σ sensitivity down to (10 -9 -10 -7 )  s -1  cm -2  keV -1 can be achieved depending on the specific design. An appropriate fabrication strategy, feasible nowadays with micro-optical technologies, is considered and relies on the availability of high-purity carbon or polymer membranes. X-ray fluorescence measurements of various commercially available carbon-based materials prove for most of them the existence of a virtually negligible contamination by critical trace elements such as transition metals on the ppm level.

  5. Computational modeling and experimental characterization of bacterial microcolonies for rapid detection using light scattering

    NASA Astrophysics Data System (ADS)

    Bai, Nan

    A label-free and nondestructive optical elastic forward light scattering method has been extended for the analysis of microcolonies for food-borne bacteria detection and identification. To understand the forward light scattering phenomenon, a model based on the scalar diffraction theory has been employed: a bacterial colony is considered as a biological spatial light modulator with amplitude and phase modulation to the incoming light, which continues to propagate to the far-field to form a distinct scattering 'fingerprint'. Numerical implementation via angular spectrum method (ASM) and Fresnel approximation have been carried out through Fast Fourier Transform (FFT) to simulate this optical model. Sampling criteria to achieve unbiased and un-aliased simulation results have been derived and the effects of violating these conditions have been studied. Diffraction patterns predicted by these two methods (ASM and Fresnel) have been compared to show their applicability to different simulation settings. Through the simulation work, the correlation between the colony morphology and its forward scattering pattern has been established to link the number of diffraction rings and the half cone angle with the diameter and the central height of the Gaussian-shaped colonies. In order to experimentally prove the correlation, a colony morphology analyzer has been built and used to characterize the morphology of different bacteria genera and investigate their growth dynamics. The experimental measurements have demonstrated the possibility of differentiating bacteria Salmonella, Listeria, Escherichia in their early growth stage (100˜500 µm) based on their phenotypic characteristics. This conclusion has important implications in microcolony detection, as most bacteria of our interest need much less incubation time (8˜12 hours) to grow into this size range. The original forward light scatterometer has been updated to capture scattering patterns from microcolonies. Experiments have been performed to reveal the time dependent nature of scattering patterns. The experimental work has been compared with simulation results and demonstrated the feasibility of extending this technique for microcolony identification. Lastly, a quantitative phase imaging technique based on the phase gradient driven intensity variation has been studied and implemented to render the 2D phase map of the colony sample.

  6. Fresnel's laws, ceteris paribus.

    PubMed

    Wright, Aaron Sidney

    2017-08-01

    This article is about structural realism, historical continuity, laws of nature, and ceteris paribus clauses. Fresnel's Laws of optics support Structural Realism because they are a scientific structure that has survived theory change. However, the history of Fresnel's Laws which has been depicted in debates over realism since the 1980s is badly distorted. Specifically, claims that J. C. Maxwell or his followers believed in an ontologically-subsistent electromagnetic field, and gave up the aether, before Einstein's annus mirabilis in 1905 are indefensible. Related claims that Maxwell himself did not believe in a luminiferous aether are also indefensible. This paper corrects the record. In order to trace Fresnel's Laws across significant ontological changes, they must be followed past Einstein into modern physics and nonlinear optics. I develop the philosophical implications of a more accurate history, and analyze Fresnel's Laws' historical trajectory in terms of dynamic ceteris paribus clauses. Structuralists have not embraced ceteris paribus laws, but they continue to point to Fresnel's Laws to resist anti-realist arguments from theory change. Fresnel's Laws fit the standard definition of a ceteris paribus law as a law applicable only in particular circumstances. Realists who appeal to the historical continuity of Fresnel's Laws to combat anti-realists must incorporate ceteris paribus laws into their metaphysics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Approach to atmospheric laser-propagation theory based on the extended Huygens-Fresnel principle and a self-consistency concept.

    PubMed

    Bochove, Erik J; Rao Gudimetla, V S

    2017-01-01

    We propose a self-consistency condition based on the extended Huygens-Fresnel principle, which we apply to the propagation kernel of the mutual coherence function of a partially coherent laser beam propagating through a turbulent atmosphere. The assumption of statistical independence of turbulence in neighboring propagation segments leads to an integral equation in the propagation kernel. This integral equation is satisfied by a Gaussian function, with dependence on the transverse coordinates that is identical to the previous Gaussian formulation by Yura [Appl. Opt.11, 1399 (1972)APOPAI0003-693510.1364/AO.11.001399], but differs in the transverse coherence length's dependence on propagation distance, so that this established version violates our self-consistency principle. Our formulation has one free parameter, which in the context of Kolmogorov's theory is independent of turbulence strength and propagation distance. We determined its value by numerical fitting to the rigorous beam propagation theory of Yura and Hanson [J. Opt. Soc. Am. A6, 564 (1989)JOAOD60740-323210.1364/JOSAA.6.000564], demonstrating in addition a significant improvement over other Gaussian models.

  8. ELF propagation in the presence of nonstratified ionospheric disturbances

    NASA Astrophysics Data System (ADS)

    Field, E. C., Jr.; Gayer, S. J.; Dambrosio, B. P.

    1980-06-01

    This report analyzes the propagation of the TEM-ELF waveguide mode when the ionosphere is not stratified. It treats strong localized ionospheric disturbances by recasting the lateral wave equation as a two dimensional integral equation, and applies a specially developed algorithm to obtain numerical solutions. The quasi-full wave results show that a localized ionospheric disturbance behaves like a converging cylindrical lens filling a narrow aperture. Lateral diffraction and focusing, ignored in treatments that do not fully account for transverse ionospheric structure, cause the ELF signal to exhibit a pattern of maxima and minima on the line normal to the path passing through the center of the disturbance. As expected, the focusing/diffraction effects diminish when the transverse dimension of the disturbance exceeds the width of the first Fresnel zone - typically, several megameters. The analysis models widespread inhomogeneities, such as within the polar cap or at the day/night terminator, as semiinfinite regions separated by diffuse boundaries; it then derives full-wave analytic expressions for the reflection of the TEM mode. Mode reflection is found to significantly affect an ELF signal in two actual situations: first, when receivers are on great circle paths that are nearly tangential to the disturbed polar cap - in which case shadow zones and interference patterns can occur; and second, when signals are incident on the day/night terminator (from the day side) at angles exceeding about 75 deg - in which case the signals are affected by a phenomenon analogous to total internal reflection. Reflection is found to be unimportant if the boundary thickness exceeds about one-sixth of a wavelength.

  9. Laboratory Verification of Occulter Contrast Performance and Formation Flight

    NASA Astrophysics Data System (ADS)

    Sirbu, Dan

    2014-01-01

    Direct imaging of an exo-Earth is a difficult technical challenge. First, the intensity ratio between the parent star and its dim, rocky planetary companion is expected to be ten billion times. Additionally, for a planetary companion in the habitable zone the angular separation to the star is very small, such that only nearby stars are feasible targets. An external occulter is a spacecraft that is flown in formation with the observing space telescope and blocks starlight prior to the entrance pupil. Its shape must be specially designed to control for diffraction and be tolerant of errors such as misalignment, manufacturing, and deformations. In this dissertation, we present laboratory results pertaining to the optical verification of the contrast performance of a scaled occulter and implementation of an algorithm for the alignment of the telescope in the shadow of the occulter. The experimental testbed is scaled from space dimensions to the laboratory by maintaining constant Fresnel numbers while preserving an identical diffraction integral. We present monochromatic results in the image plane showing contrast better than 10 orders of magnitude, consistent with the level required for imaging an Exo-earth, and obtained using an optimized occulter shape. We compare these results to a baseline case using a circular occulter and to the theoretical predictions. Additionally, we address the principal technical challenge in the formation flight problem through demonstration of an alignment algorithm that is based on out-of-band leaked light. Such leaked light can be used a map to estimate the location of the telescope in the shadow and perform fine alignment during science observations.

  10. Paraxial light distribution in the focal region of a lens: a comparison of several analytical solutions and a numerical result.

    PubMed

    Wu, Yang; Kelly, Damien P

    2014-12-12

    The distribution of the complex field in the focal region of a lens is a classical optical diffraction problem. Today, it remains of significant theoretical importance for understanding the properties of imaging systems. In the paraxial regime, it is possible to find analytical solutions in the neighborhood of the focus, when a plane wave is incident on a focusing lens whose finite extent is limited by a circular aperture. For example, in Born and Wolf's treatment of this problem, two different, but mathematically equivalent analytical solutions, are presented that describe the 3D field distribution using infinite sums of [Formula: see text] and [Formula: see text] type Lommel functions. An alternative solution expresses the distribution in terms of Zernike polynomials, and was presented by Nijboer in 1947. More recently, Cao derived an alternative analytical solution by expanding the Fresnel kernel using a Taylor series expansion. In practical calculations, however, only a finite number of terms from these infinite series expansions is actually used to calculate the distribution in the focal region. In this manuscript, we compare and contrast each of these different solutions to a numerically calculated result, paying particular attention to how quickly each solution converges for a range of different spatial locations behind the focusing lens. We also examine the time taken to calculate each of the analytical solutions. The numerical solution is calculated in a polar coordinate system and is semi-analytic. The integration over the angle is solved analytically, while the radial coordinate is sampled with a sampling interval of [Formula: see text] and then numerically integrated. This produces an infinite set of replicas in the diffraction plane, that are located in circular rings centered at the optical axis and each with radii given by [Formula: see text], where [Formula: see text] is the replica order. These circular replicas are shown to be fundamentally different from the replicas that arise in a Cartesian coordinate system.

  11. Paraxial light distribution in the focal region of a lens: a comparison of several analytical solutions and a numerical result

    NASA Astrophysics Data System (ADS)

    Wu, Yang; Kelly, Damien P.

    2014-12-01

    The distribution of the complex field in the focal region of a lens is a classical optical diffraction problem. Today, it remains of significant theoretical importance for understanding the properties of imaging systems. In the paraxial regime, it is possible to find analytical solutions in the neighborhood of the focus, when a plane wave is incident on a focusing lens whose finite extent is limited by a circular aperture. For example, in Born and Wolf's treatment of this problem, two different, but mathematically equivalent analytical solutions, are presented that describe the 3D field distribution using infinite sums of ? and ? type Lommel functions. An alternative solution expresses the distribution in terms of Zernike polynomials, and was presented by Nijboer in 1947. More recently, Cao derived an alternative analytical solution by expanding the Fresnel kernel using a Taylor series expansion. In practical calculations, however, only a finite number of terms from these infinite series expansions is actually used to calculate the distribution in the focal region. In this manuscript, we compare and contrast each of these different solutions to a numerically calculated result, paying particular attention to how quickly each solution converges for a range of different spatial locations behind the focusing lens. We also examine the time taken to calculate each of the analytical solutions. The numerical solution is calculated in a polar coordinate system and is semi-analytic. The integration over the angle is solved analytically, while the radial coordinate is sampled with a sampling interval of ? and then numerically integrated. This produces an infinite set of replicas in the diffraction plane, that are located in circular rings centered at the optical axis and each with radii given by ?, where ? is the replica order. These circular replicas are shown to be fundamentally different from the replicas that arise in a Cartesian coordinate system.

  12. Evaluation of different operating strategies to integrate storage in a linear Fresnel ORC power plant

    NASA Astrophysics Data System (ADS)

    Zoschke, Theda; Seubert, Bernhard; Fluri, Thomas

    2017-06-01

    An existing linear Fresnel power plant with ORC process located in Ben Guerir, Morocco, is retrofitted with a thermal energy storage system and additional collector loops. Two different plant configurations are investigated in this paper. In the first configuration two separate solar fields are built and only the minor one can charge the storage. In the second configuration, there is only one large solar field which offers more flexibility. Two different control strategies are assessed by comparing simulation results. It shows that the simulations of the systems with two solar fields results in higher energy yields throughout the year, but the power production of the system with one solar field is much more flexible and demand oriented. Also it offers great potential for improvement when it comes to weather forecasting.

  13. Rapid prototyping of Fresnel zone plates via direct Ga(+) ion beam lithography for high-resolution X-ray imaging.

    PubMed

    Keskinbora, Kahraman; Grévent, Corinne; Eigenthaler, Ulrike; Weigand, Markus; Schütz, Gisela

    2013-11-26

    A significant challenge to the wide utilization of X-ray microscopy lies in the difficulty in fabricating adequate high-resolution optics. To date, electron beam lithography has been the dominant technique for the fabrication of diffractive focusing optics called Fresnel zone plates (FZP), even though this preparation method is usually very complicated and is composed of many fabrication steps. In this work, we demonstrate an alternative method that allows the direct, simple, and fast fabrication of FZPs using focused Ga(+) beam lithography practically, in a single step. This method enabled us to prepare a high-resolution FZP in less than 13 min. The performance of the FZP was evaluated in a scanning transmission soft X-ray microscope where nanostructures as small as sub-29 nm in width were clearly resolved, with an ultimate cutoff resolution of 24.25 nm, demonstrating the highest first-order resolution for any FZP fabricated by the ion beam lithography technique. This rapid and simple fabrication scheme illustrates the capabilities and the potential of direct ion beam lithography (IBL) and is expected to increase the accessibility of high-resolution optics to a wider community of researchers working on soft X-ray and extreme ultraviolet microscopy using synchrotron radiation and advanced laboratory sources.

  14. 3D structured illumination microscopy using an incoherent illumination system based on a Fresnel biprism

    NASA Astrophysics Data System (ADS)

    Shabani, H.; Doblas, A.; Saavedra, G.; Preza, C.

    2018-02-01

    Three-dimensional (3D) structured illumination (SI) patterns that include lateral and axial variations have attracted more attention recently as their use in fluorescence microscope enhances the 3D resolution of the native imaging system. 3D SI patterns have already been created by interfering three mutually-coherent waves using a diffraction grating or some electro-optical devices such as spatial light modulators. Here, an interesting approach to generate a 3D SI pattern of tunable modulation frequency is shown. Our proposed illumination system is based on the incoherent illumination of a Fresnel biprism using several equidistant linear sources (i.e., slits). Previously, we investigated and compared numerically this tunable SI microscopy (SIM) system with the one achieved with three-wave interference. In this contribution, we implement our proposed incoherent 3D SIM system of tunable-frequency in an open-setup. We evaluate the axial confinement of the illumination pattern obtained with this system by recording the SI pattern using a mirror sample and different number of slits and compare these data with simulation results. Moreover, we verify that with a higher number of slits used, the axial confinement of the pattern increases, and consequently, the system's optical sectioning capability improves.

  15. Femtosecond laser ablation of transparent microphotonic devices and computer-generated holograms.

    PubMed

    Alqurashi, Tawfiq; Montelongo, Yunuen; Penchev, Pavel; Yetisen, Ali K; Dimov, Stefan; Butt, Haider

    2017-09-21

    Femtosecond laser ablation allows direct patterning of engineering materials in industrial settings without requiring multistage processes such as photolithography or electron beam lithography. However, femtosecond lasers have not been widely used to construct volumetric microphotonic devices and holograms with high reliability and cost efficiency. Here, a direct femtosecond laser writing process is developed to rapidly produce transmission 1D/2D gratings, Fresnel Zone Plate lenses, and computer-generated holograms. The optical properties including light transmission, angle-dependent resolution, and light polarization effects for the microphotonic devices have been characterized. Varying the depth of the microgratings from 400 nm to 1.5 μm allowed the control over their transmission intensity profile. The optical properties of the 1D/2D gratings were validated through a geometrical theory of diffraction model involving 2D phase modulation. The produced Fresnel lenses had transmission efficiency of ∼60% at normal incidence and they preserved the polarization of incident light. The computer-generated holograms had an average transmission efficiency of 35% over the visible spectrum. These microphotonic devices had wettability resistance of contact angle ranging from 44° to 125°. These devices can be used in a variety of applications including wavelength-selective filters, dynamic displays, fiber optics, and biomedical devices.

  16. Economic fabrication of a novel hybrid planar Grating/Fresnel lens for miniature spectrometers.

    PubMed

    Zhou, Qian; Li, Xinghui; Geng, Menglin; Hu, Haifei; Ni, Kai; Zhong, Lunchao; Yan, Peng; Wang, Xiaohao

    2018-03-05

    We propose a new technique to fabricate a highly specialized optical element, a hybrid planar Grating/Fresnel lens (G-Fresnel), which is particularly useful to improve or enable more-affordable miniature/portable spectrometers. Both the Fresnel and the grating surface are fabricated simultaneously by sandwiching soft PDMS between a hard grating and a pre-replicated negative Fresnel surface. Several adhesion reduction techniques are also investigated that help improve both fabrication and cost efficiency (by reducing the solidification time) as well as the lifetime of the mold. Alignment errors are systematically analyzed, and their effects on the G-Fresnel lens evaluated. A compact fabrication platform was built, which is smaller than a volume of 160☓140☓106 mm 3 to fit into a conventional vacuum drying oven, for the fabrication of a G-Fresnel lens with a diameter of 25.4 mm, an equivalent focal length of 25 mm, and a blazed grating pattern with 600 lines/mm spacing. The solidification time was reduced to 2 hours thanks to the improved adhesion reduction technique that permits a PDMS drying-temperature as high as 65 °C. The fabricated G-Fresnel lens was evaluated with regard to both geometrical fabrication precision and optical performance. The measured results, using a step gauge and atomic force microscopy, confirm that this replication technique produces high-quality replicates of the master surface-profile. Furthermore, a prototype spectrometer that uses a G-Fresnel lens was built and evaluated. The spectrometer fits within a volume of about 100 mm☓50 mm☓30 mm, and it operates across a wide wavelength spectrum (450 nm to 650 nm). Both the calculation based on the optical software ZEMAX and the experimental measurements are consistent and confirm that the spectrometer with the G-Fresnel lens can provide a spectral resolution of better than 1.2nm.

  17. Propagation of coherent light pulses with PHASE

    NASA Astrophysics Data System (ADS)

    Bahrdt, J.; Flechsig, U.; Grizzoli, W.; Siewert, F.

    2014-09-01

    The current status of the software package PHASE for the propagation of coherent light pulses along a synchrotron radiation beamline is presented. PHASE is based on an asymptotic expansion of the Fresnel-Kirchhoff integral (stationary phase approximation) which is usually truncated at the 2nd order. The limits of this approximation as well as possible extensions to higher orders are discussed. The accuracy is benchmarked against a direct integration of the Fresnel-Kirchhoff integral. Long range slope errors of optical elements can be included by means of 8th order polynomials in the optical element coordinates w and l. Only recently, a method for the description of short range slope errors has been implemented. The accuracy of this method is evaluated and examples for realistic slope errors are given. PHASE can be run either from a built-in graphical user interface or from any script language. The latter method provides substantial flexibility. Optical elements including apertures can be combined. Complete wave packages can be propagated, as well. Fourier propagators are included in the package, thus, the user may choose between a variety of propagators. Several means to speed up the computation time were tested - among them are the parallelization in a multi core environment and the parallelization on a cluster.

  18. Analytical expressions for the log-amplitude correlation function of a plane wave through anisotropic atmospheric refractive turbulence.

    PubMed

    Gudimetla, V S Rao; Holmes, Richard B; Smith, Carey; Needham, Gregory

    2012-05-01

    The effect of anisotropic Kolmogorov turbulence on the log-amplitude correlation function for plane-wave fields is investigated using analysis, numerical integration, and simulation. A new analytical expression for the log-amplitude correlation function is derived for anisotropic Kolmogorov turbulence. The analytic results, based on the Rytov approximation, agree well with a more general wave-optics simulation based on the Fresnel approximation as well as with numerical evaluations, for low and moderate strengths of turbulence. The new expression reduces correctly to previously published analytic expressions for isotropic turbulence. The final results indicate that, as asymmetry becomes greater, the Rytov variance deviates from that given by the standard formula. This deviation becomes greater with stronger turbulence, up to moderate turbulence strengths. The anisotropic effects on the log-amplitude correlation function are dominant when the separation of the points is within the Fresnel length. In the direction of stronger turbulence, there is an enhanced dip in the correlation function at a separation close to the Fresnel length. The dip is diminished in the weak-turbulence axis, suggesting that energy redistribution via focusing and defocusing is dominated by the strong-turbulence axis. The new analytical expression is useful when anisotropy is observed in relevant experiments. © 2012 Optical Society of America

  19. Large aperture diffractive space telescope

    DOEpatents

    Hyde, Roderick A.

    2001-01-01

    A large (10's of meters) aperture space telescope including two separate spacecraft--an optical primary objective lens functioning as a magnifying glass and an optical secondary functioning as an eyepiece. The spacecraft are spaced up to several kilometers apart with the eyepiece directly behind the magnifying glass "aiming" at an intended target with their relative orientation determining the optical axis of the telescope and hence the targets being observed. The objective lens includes a very large-aperture, very-thin-membrane, diffractive lens, e.g., a Fresnel lens, which intercepts incoming light over its full aperture and focuses it towards the eyepiece. The eyepiece has a much smaller, meter-scale aperture and is designed to move along the focal surface of the objective lens, gathering up the incoming light and converting it to high quality images. The positions of the two space craft are controlled both to maintain a good optical focus and to point at desired targets which may be either earth bound or celestial.

  20. X ray reflection masks: Manufacturing, characterization and first tests

    NASA Astrophysics Data System (ADS)

    Rahn, Stephen

    1992-09-01

    SXPL (Soft X-ray Projection Lithography) multilayer mirrors are characterized, laterally structured and then used as reflection masks in a projecting lithography procedure. Mo/Si-multilayer mirrors with a 2d in the region of 14 nm were characterized by Cu-k(alpha) grazing incidence as well as soft X-ray normal incidence reflectivity measurements. The multilayer mirrors were patterned by reactive ion etching with CF4 using a photoresist as etch mask, thus producing X-ray reflection masks. The masks were tested at the synchrotron radiation laboratory of the electron accelerator ELSA. A double crystal X-ray monochromator was modified so as to allow about 0.5 sq cm of the reflection mask to be illuminated by white synchrotron radiation. The reflected patterns were projected (with an energy of 100 eV) onto a resist and structure sizes down to 8 micrometers were nicely reproduced. Smaller structures were distorted by Fresnel-diffraction. The theoretically calculated diffraction images agree very well with the observed images.

  1. Materials for x-ray refractive lenses minimizing wavefront distortions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roth, Thomas; Alianelli, Lucia; Lengeler, Daniel

    2017-06-09

    Refraction through curved surfaces, reflection from curved mirrors in grazing incidence, and diffraction from Fresnel zone plates are key hard x-ray focusing mechanisms. In this article, we present materials used for refractive x-ray lenses. Important properties of such x-ray lenses include focusing strength, shape, and the material’s homogeneity and absorption coefficient. Both the properties of the initial material and the fabrication process result in a lens with imperfections, which can lead to unwanted wavefront distortions. Different fabrication methods for one-dimensional and two-dimensional focusing lenses are presented, together with the respective benefits and inconveniences that are mostly due to shape fidelity.more » Different materials and material grades have been investigated in terms of their homogeneity and the absence of inclusions. Single-crystalline materials show high homogeneity, but suffer from unwanted diffracted radiation, which can be avoided using amorphous materials. Lastly, we show that shape imperfections can be corrected using a correction lens.« less

  2. Metal slit array Fresnel lens for wavelength-scale optical coupling to nanophotonic waveguides.

    PubMed

    Jung, Young Jin; Park, Dongwon; Koo, Sukmo; Yu, Sunkyu; Park, Namkyoo

    2009-10-12

    We propose a novel metal slit array Fresnel lens for wavelength-scale optical coupling into a nanophotonic waveguide. Using the plasmonic waveguide structure in Fresnel lens form, a much wider beam acceptance angle and wavelength-scale working distance of the lens was realized compared to a conventional dielectric Fresnel lens. By applying the plasmon waveguide dispersion relation to a phased antenna array model, we also develop and analyze design rules and parameters for the suggested metal slit Fresnel lens. Numerical assessment of the suggested structure shows excellent coupling efficiency (up to 59%) of the 10 mum free-space Gaussian beam to the 0.36 mum Si waveguide within a working distance of a few mum.

  3. Fresnel Concentrators for Space Solar Power and Solar Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Bradford, Rodney; Parks, Robert W.; Craig, Harry B. (Technical Monitor)

    2001-01-01

    Large deployable Fresnel concentrators are applicable to solar thermal propulsion and multiple space solar power generation concepts. These concentrators can be used with thermophotovoltaic, solar thermionic, and solar dynamic conversion systems. Thin polyimide Fresnel lenses and reflectors can provide tailored flux distribution and concentration ratios matched to receiver requirements. Thin, preformed polyimide film structure components assembled into support structures for Fresnel concentrators provide the capability to produce large inflation-deployed concentrator assemblies. The polyimide film is resistant to the space environment and allows large lightweight assemblies to be fabricated that can be compactly stowed for launch. This work addressed design and fabrication of lightweight polyimide film Fresnel concentrators, alternate materials evaluation, and data management functions for space solar power concepts, architectures, and supporting technology development.

  4. The Small Module Fixed Mirror Distributed Focus (FMDF) Photothermal Concentrator Study

    NASA Technical Reports Server (NTRS)

    Meinel, A. B.

    1981-01-01

    The development of a general ray trace evaluation program called ICARUS, the study of novel Fresnel concepts, and the review of a report draft on novel Fresnel concepts are covered. ICARUS is documented, reports on the novel Fresnel concepts were previously submitted.

  5. Design and experimental study on Fresnel lens of the combination of equal-width and equal-height of grooves

    NASA Astrophysics Data System (ADS)

    Guo, Limin; Liu, Youqiang; Huang, Rui; Wang, Zhiyong

    2017-06-01

    High concentrating PV systems rely on large Fresnel lens that must be precisely oriented in the direction of the Sun to maintain high concentration ratio. We propose a new Fresnel lens design method combining equal-width and equal-height of grooves in this paper based on the principle of focused spot maximum energy. In the ring band near the center of Fresnel lens, the design with equal-width grooves is applied, and when the given condition is reached, the design with equal-height grooves is introduced near the edges of the Fresnel lens, which ensures all the lens grooves are planar. In this paper, we establish a Fresnel lens design example model by Solidworks, and simulate it with the software ZEMAX. An experimental test platform is built to test, and the simulation correctness is proved by experiments. Experimental result shows the concentrating efficiency of this example is 69.3%, slightly lower than the simulation result 75.1%.

  6. Novel Perspectives on the Characterization of Species-Dependent Optical Signatures of Bacterial Colonies by Digital Holography.

    PubMed

    Buzalewicz, Igor; Kujawińska, Małgorzata; Krauze, Wojciech; Podbielska, Halina

    2016-01-01

    The use of light diffraction for the microbiological diagnosis of bacterial colonies was a significant breakthrough with widespread implications for the food industry and clinical practice. We previously confirmed that optical sensors for bacterial colony light diffraction can be used for bacterial identification. This paper is focused on the novel perspectives of this method based on digital in-line holography (DIH), which is able to reconstruct the amplitude and phase properties of examined objects, as well as the amplitude and phase patterns of the optical field scattered/diffracted by the bacterial colony in any chosen observation plane behind the object from single digital hologram. Analysis of the amplitude and phase patterns inside a colony revealed its unique optical properties, which are associated with the internal structure and geometry of the bacterial colony. Moreover, on a computational level, it is possible to select the desired scattered/diffracted pattern within the entire observation volume that exhibits the largest amount of unique, differentiating bacterial features. These properties distinguish this method from the already proposed sensing techniques based on light diffraction/scattering of bacterial colonies. The reconstructed diffraction patterns have a similar spatial distribution as the recorded Fresnel patterns, previously applied for bacterial identification with over 98% accuracy, but they are characterized by both intensity and phase distributions. Our results using digital holography provide new optical discriminators of bacterial species revealed in one single step in form of new optical signatures of bacterial colonies: digital holograms, reconstructed amplitude and phase patterns, as well as diffraction patterns from all observation space, which exhibit species-dependent features. To the best of our knowledge, this is the first report on bacterial colony analysis via digital holography and our study represents an innovative approach to the subject.

  7. Novel Perspectives on the Characterization of Species-Dependent Optical Signatures of Bacterial Colonies by Digital Holography

    PubMed Central

    Buzalewicz, Igor; Kujawińska, Małgorzata; Krauze, Wojciech; Podbielska, Halina

    2016-01-01

    The use of light diffraction for the microbiological diagnosis of bacterial colonies was a significant breakthrough with widespread implications for the food industry and clinical practice. We previously confirmed that optical sensors for bacterial colony light diffraction can be used for bacterial identification. This paper is focused on the novel perspectives of this method based on digital in-line holography (DIH), which is able to reconstruct the amplitude and phase properties of examined objects, as well as the amplitude and phase patterns of the optical field scattered/diffracted by the bacterial colony in any chosen observation plane behind the object from single digital hologram. Analysis of the amplitude and phase patterns inside a colony revealed its unique optical properties, which are associated with the internal structure and geometry of the bacterial colony. Moreover, on a computational level, it is possible to select the desired scattered/diffracted pattern within the entire observation volume that exhibits the largest amount of unique, differentiating bacterial features. These properties distinguish this method from the already proposed sensing techniques based on light diffraction/scattering of bacterial colonies. The reconstructed diffraction patterns have a similar spatial distribution as the recorded Fresnel patterns, previously applied for bacterial identification with over 98% accuracy, but they are characterized by both intensity and phase distributions. Our results using digital holography provide new optical discriminators of bacterial species revealed in one single step in form of new optical signatures of bacterial colonies: digital holograms, reconstructed amplitude and phase patterns, as well as diffraction patterns from all observation space, which exhibit species-dependent features. To the best of our knowledge, this is the first report on bacterial colony analysis via digital holography and our study represents an innovative approach to the subject. PMID:26943121

  8. Astronomy (communication arising): black holes, fleas and microlithography.

    PubMed

    Skinner, Gerry; Gorenstein, Paul

    2003-11-20

    Fresnel lenses allow almost perfect imaging in widely different circumstances, but their focus is perfect only for a single wavelength. Wang et al. have shown how the effective bandpass may be widened for X-ray microscopy by using a compound diffractive/refractive lens near to an absorption edge. A compound lens has also been proposed for high-energy astronomy, working well above all absorption edges. Although the scale is very different, we point out here that the principle is the same. Ever since Galileo constructed an astronomical telescope that he was able to reconfigure to study fleas and gnats, astronomy and microscopy have relied on optics that are closely related, but different in detail.

  9. In-line FINCH super resolution digital holographic fluorescence microscopy using a high efficiency transmission liquid crystal GRIN lens.

    PubMed

    Brooker, Gary; Siegel, Nisan; Rosen, Joseph; Hashimoto, Nobuyuki; Kurihara, Makoto; Tanabe, Ayano

    2013-12-15

    We report a new optical arrangement that creates high-efficiency, high-quality Fresnel incoherent correlation holography (FINCH) holograms using polarization sensitive transmission liquid crystal gradient index (TLCGRIN) diffractive lenses. In contrast, current universal practice in the field employs a reflective spatial light modulator (SLM) to separate sample and reference beams. Polarization sensitive TLCGRIN lenses enable a straight optical path, have >90% transmission efficiency, are not pixilated, and are free of many limitations of reflective SLM devices. For each sample point, two spherical beams created by a glass lens in combination with a polarization sensitive TLCGRIN lens interfere and create a hologram and resultant super resolution image.

  10. Stellar occultation studies of the solar system

    NASA Technical Reports Server (NTRS)

    Elliot, J. L.

    1979-01-01

    The paper covers the principles, observational procedures, and results relating to occultations of stars by solar system bodies other than the moon. Physical processes involved in occultations are presented including (1) extinction by ring material, (2) differential refraction by a planetary atmosphere, (3) extinction by a planetary atmosphere, and (4) Fresnel diffraction by sharp edges. It is noted that from a sufficient number of immersion and emersion timings of a stellar occultation, the radius and ellipticity of the occulting body can be accurately determined. From an occultation by a planet having an atmosphere, temperature, pressure, and number density profiles can be obtained along with information about the composition of the atmosphere and the extinction.

  11. Image security based on iterative random phase encoding in expanded fractional Fourier transform domains

    NASA Astrophysics Data System (ADS)

    Liu, Zhengjun; Chen, Hang; Blondel, Walter; Shen, Zhenmin; Liu, Shutian

    2018-06-01

    A novel image encryption method is proposed by using the expanded fractional Fourier transform, which is implemented with a pair of lenses. Here the centers of two lenses are separated at the cross section of axis in optical system. The encryption system is addressed with Fresnel diffraction and phase modulation for the calculation of information transmission. The iterative process with the transform unit is utilized for hiding secret image. The structure parameters of a battery of lenses can be used for additional keys. The performance of encryption method is analyzed theoretically and digitally. The results show that the security of this algorithm is enhanced markedly by the added keys.

  12. Analysis of a dual-reflector antenna system using physical optics and digital computers

    NASA Technical Reports Server (NTRS)

    Schmidt, R. F.

    1972-01-01

    The application of physical-optics diffraction theory to a deployable dual-reflector geometry is discussed. The methods employed are not restricted to the Conical-Gregorian antenna, but apply in a general way to dual and even multiple reflector systems. Complex vector wave methods are used in the Fresnel and Fraunhofer regions of the reflectors. Field amplitude, phase, polarization data, and time average Poynting vectors are obtained via an IBM 360/91 digital computer. Focal region characteristics are plotted with the aid of a CalComp plotter. Comparison between the GSFC Huygens wavelet approach, JPL measurements, and JPL computer results based on the near field spherical wave expansion method are made wherever possible.

  13. Phase holograms in polymethyl methacrylate

    NASA Technical Reports Server (NTRS)

    Maker, P. D.; Muller, R. E.

    1992-01-01

    A procedure is described for the fabrication of complex computer-generated phase holograms in polymethyl methacrylate (PMMA) by means of partial-exposure e-beam lithography and subsequent carefully controlled partial development. Following the development, the pattern appears (rendered in relief) in the PMMA, which then acts as the phase-delay medium. The devices fabricated were designed with 16 equal phase steps per retardation cycle, were up to 3 mm square, and consisted of up to 10 millions of 0.3-2.0-micron square pixels. Data files were up to 60 Mb-long, and the exposure times ranged to several hours. A Fresnel phase lens was fabricated with a diffraction-limited optical performance of 83-percent efficiency.

  14. Photonic fractional Fourier transformer with a single dispersive device.

    PubMed

    Cuadrado-Laborde, C; Carrascosa, A; Díez, A; Cruz, J L; Andres, M V

    2013-04-08

    In this work we used the temporal analog of spatial Fresnel diffraction to design a temporal fractional Fourier transformer with a single dispersive device, in this way avoiding the use of quadratic phase modulators. We demonstrate that a single dispersive passive device inherently provides the fractional Fourier transform of an incident optical pulse. The relationships linking the fractional Fourier transform order and scaling factor with the dispersion parameters are derived. We first provide some numerical results in order to prove the validity of our proposal, using a fiber Bragg grating as the dispersive device. Next, we experimentally demonstrate the feasibility of this proposal by using a spool of a standard optical fiber as the dispersive device.

  15. Optical properties of PbS/PVP nanocomposites films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, Mitesh H., E-mail: miteshpatel7204@gmail.com; Chaudhuri, Tapas K.; Patel, Vaibhav K.

    2016-05-06

    PbS/Polyvinylpyrrolidone (PVP) nanocomposites films with different volume fraction of PbS have been deposited from single molecular precursors. X-ray diffraction patterns conforms the formation of PbS nanocrystals in PVP matrix. The transmission spectra of the films in the wavelength range of 300 to 2400 nm show the absorption edges are blue shifted due to formation of PbS Nanoparticles. The band gap determined are 2.4, 1.5 and 1.25 eV for PbS volume fraction of 8.5, 16, 27%, respectively. The corresponding refractive indices, n determined from Fresnel relation are 1.8, 2, and 2.35 which are in between that of PbS (4.2) and PVP (1.48).

  16. Quantitative measurements of magnetic vortices using position resolved diffraction in Lorentz STEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaluzec, N. J.

    2002-03-05

    A number of electron column techniques have been developed over the last forty years to permit visualization of magnetic fields in specimens. These include: Fresnel imaging, Differential Phase Contrast, Electron Holography and Lorentz STEM. In this work we have extended the LSTEM methodology using Position Resolved Diffraction (PRD) to quantitatively measure the in-plane electromagnetic fields of thin film materials. The experimental work reported herein has been carried out using the ANL AAEM HB603Z 300 kV FEG instrument 5. In this instrument, the electron optical column was operated in a zero field mode, at the specimen, where the objective lens ismore » turned off and the probe forming lens functions were reallocated to the C1, C2, and C3 lenses. Post specimen lenses (P1, P2, P3, P4) were used to magnify the transmitted electrons to a YAG screen, which was then optically transferred to a Hamamatsu ORCA ER CCD array. This CCD was interfaced to an EmiSpec Data Acquisition System and the data was subsequently transferred to an external computer system for detailed quantitative analysis. In Position Resolved Diffraction mode, we digitally step a focused electron probe across the region of interest of the specimen while at the same time recording the complete diffraction pattern at each point in the scan.« less

  17. 21 CFR 886.1390 - Flexible diagnostic Fresnel lens.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1390 Flexible diagnostic Fresnel lens. (a) Identification. A flexible diagnostic Fresnel lens is a device that is a very thin lens which has its surface a concentric series of increasingly refractive zones. The device is intended to be applied...

  18. Concentrating Solar Power Projects - Puerto Errado 2 Thermosolar Power

    Science.gov Websites

    linear Fresnel reflector system. Status Date: April 26, 2013 Project Overview Project Name: Puerto Errado . (Novatec Biosol AG) (15%) Technology: Linear Fresnel reflector Turbine Capacity: Net: 30.0 MW Gross: 30.0 ? Background Technology: Linear Fresnel reflector Status: Operational Country: Spain City: Calasparra Region

  19. Concentrated solar power in the built environment

    NASA Astrophysics Data System (ADS)

    Montenon, Alaric C.; Fylaktos, Nestor; Montagnino, Fabio; Paredes, Filippo; Papanicolas, Costas N.

    2017-06-01

    Solar concentration systems are usually deployed in large open spaces for electricity generation; they are rarely used to address the pressing energy needs of the built environment sector. Fresnel technology offers interesting and challenging CSP energy pathways suitable for the built environment, due to its relatively light weight (<30 kg.m-2) and low windage. The Cyprus Institute (CyI) and Consorzio ARCA are cooperating in such a research program; we report here the construction and integration of a 71kW Fresnel CSP system into the HVAC (Heating, Ventilation, and Air Conditioning) system of a recently constructed office & laboratory building, the Novel Technologies Laboratory (NTL). The multi-generative system will support cooling, heating and hot water production feeding the system of the NTL building, as a demonstration project, part of the STS-MED program (Small Scale Thermal Solar District Units for Mediterranean Communities) financed by the European Commission under the European Neighbourhood and Partnership Instrument (ENPI), CBCMED program.

  20. Method of Modeling and Simulation of Shaped External Occulters

    NASA Technical Reports Server (NTRS)

    Lyon, Richard G. (Inventor); Clampin, Mark (Inventor); Petrone, Peter, III (Inventor)

    2016-01-01

    The present invention relates to modeling an external occulter including: providing at least one processor executing program code to implement a simulation system, the program code including: providing an external occulter having a plurality of petals, the occulter being coupled to a telescope; and propagating light from the occulter to a telescope aperture of the telescope by scalar Fresnel propagation, by: obtaining an incident field strength at a predetermined wavelength at an occulter surface; obtaining a field propagation from the occulter to the telescope aperture using a Fresnel integral; modeling a celestial object at differing field angles by shifting a location of a shadow cast by the occulter on the telescope aperture; calculating an intensity of the occulter shadow on the telescope aperture; and applying a telescope aperture mask to a field of the occulter shadow, and propagating the light to a focal plane of the telescope via FFT techniques.

  1. Optical design for reliability and efficiency in concentrating photovoltaics

    NASA Astrophysics Data System (ADS)

    Leutz, Ralf; Annen, Hans Philipp; Fu, Ling

    2010-08-01

    Complex systems like modules in concentrating photovoltaics (CPV) are designed in a systems approach. The better the components are concerted, the better the performance goals of the system can be fulfilled. Optics are central to the CPV module's reliability and efficiency. Fresnel lens optics provide the module cover, and protect the module against the environment. Fresnel lenses on glass can provide the module's structural integrity. The secondary optical element, used to increase the collection of light, the acceptance half-angle, and the uniformity on the cell, may provide encapsulation for the receiver. This encapsulation function may be provided by some optical designs in sol gel, or silicone. Both materials are unknown in their longevity in this application. We present optical designs fulfilling structural or protective functions, discuss the optical penalties to be paid, and the innovative materials and manufacturing technologies to be tested.

  2. Concentrating Solar Power Projects - Urat 50MW Fresnel CSP project |

    Science.gov Websites

    Concentrating Solar Power | NREL 50MW Fresnel CSP project Status Date: September 29, 2016 Turbine Capacity: Net: 50.0 MW Gross: 50.0 MW Status: Under development Do you have more information , corrections, or comments? Background Technology: Linear Fresnel reflector Status: Under development Country

  3. Flexible fabrication of multi-scale integrated 3D periodic nanostructures with phase mask

    NASA Astrophysics Data System (ADS)

    Yuan, Liang Leon

    Top-down fabrication of artificial nanostructures, especially three-dimensional (3D) periodic nanostructures, that forms uniform and defect-free structures over large area with the advantages of high throughput and rapid processing and in a manner that can further monolithically integrate into multi-scale and multi-functional devices is long-desired but remains a considerable challenge. This thesis study advances diffractive optical element (DOE) based 3D laser holographic nanofabrication of 3D periodic nanostructures and develops new kinds of DOEs for advanced diffracted-beam control during the fabrication. Phase masks, as one particular kind of DOE, are a promising direction for simple and rapid fabrication of 3D periodic nanostructures by means of Fresnel diffraction interference lithography. When incident with a coherent beam of light, a suitable phase mask (e.g. with 2D nano-grating) can create multiple diffraction orders that are inherently phase-locked and overlap to form a 3D light interference pattern in the proximity of the DOE. This light pattern is typically recorded in photosensitive materials including photoresist to develop into 3D photonic crystal nanostructure templates. Two kinds of advanced phase masks were developed that enable delicate phase control of multiple diffraction beams. The first exploits femtosecond laser direct writing inside fused silica to assemble multiple (up to nine) orthogonally crossed (2D) grating layers, spaced on Talbot planes to overcome the inherent weak diffraction efficiency otherwise found in low-contrast volume gratings. A systematic offsetting of orthogonal grating layers to establish phase offsets over 0 to pi/2 range provided precise means for controlling the 3D photonic crystal structure symmetry between body centered tetragonal (BCT) and woodpile-like tetragonal (wTTR). The second phase mask consisted of two-layered nanogratings with small sub-wavelength grating periods and phase offset control. That was designed with isotropic properties attractive for generating a complete photonic band gap (PBG). An isolation layer was used between adjacent polymer layers to offer a reversal coating for sample preparation of scanning electron microscopy (SEM) imaging and top surface planarization. Electron beam lithography has been employed to fabricate a multi-level nano-grating phase mask that produces a diamond-like 3D nanostructure via phase mask lithography, promising for creating photonic crystal (PC) templates that can be inverted with high-index materials and form a complete PBG at telecommunication wavelengths. A laser scanning holographic method for 3D exposure in thick photoresist is introduced that combines the unique advantages of large area 3D holographic interference lithography (HIL) with the flexible patterning of laser direct writing to form both micro- and nano-structures in a single exposure step. Phase mask interference patterns accumulated over multiple overlapping scans are shown to stitch seamlessly and form highly uniform 3D nanostructure with beam size scaled to small 200 microm diameter. Further direct-write holography demonstrates monolithical writing of multi-scale lab-on-a-chip with multiple functionalities including on-chip integrated fluorescence. Various 3D periodic nanostructures are demonstrated over a 15 mmx15 mm area, through full 40 microm photoresist thickness and with uniform structural and optical properties revealed by focused ion beam (FIB) milling, SEM imaging and stopband measures. The lateral and axial periods scale from respective 1500 nm to 570 nm and 9.2 microm to 1.2 microm to offer a Gamma-Z stopband at 1.5 microm. Overall, laser scanning is presented as a facile means to embed 3D PC nanostructure within microfluidic channels for integration into an optofluidic lab-on-chip, demonstrating a new laser HIL writing approach for creating multi-scale integrated microsystems.

  4. Novel optical scanning cryptography using Fresnel telescope imaging.

    PubMed

    Yan, Aimin; Sun, Jianfeng; Hu, Zhijuan; Zhang, Jingtao; Liu, Liren

    2015-07-13

    We propose a new method called modified optical scanning cryptography using Fresnel telescope imaging technique for encryption and decryption of remote objects. An image or object can be optically encrypted on the fly by Fresnel telescope scanning system together with an encryption key. For image decryption, the encrypted signals are received and processed with an optical coherent heterodyne detection system. The proposed method has strong performance through use of secure Fresnel telescope scanning with orthogonal polarized beams and efficient all-optical information processing. The validity of the proposed method is demonstrated by numerical simulations and experimental results.

  5. Manufacturing injection-moleded Fresnel lens parquets for point-focus concentrating photovoltaic systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, E.M.; Masso, J.D.

    This project involved the manufacturing of curved-faceted, injection-molded, four-element Fresnel lens parquets for concentrating photovoltaic arrays. Previous efforts showed that high-efficiency (greater than 82%) Fresnel concentrators could be injection molded. This report encompasses the mold design, molding, and physical testing of a four-lens parquet for a solar photovoltaic concentrator system.

  6. Reflections From a Fresnel Lens

    ERIC Educational Resources Information Center

    Keeports, David

    2005-01-01

    Reflection of light by a convex Fresnel lens gives rise to two distinct images. A highly convex inverted real reflective image forms on the object side of the lens, while an upright virtual reflective image forms on the opposite side of the lens. I describe here a set of laser experiments performed upon a Fresnel lens. These experiments provide…

  7. Concentrating Solar Power Projects - Puerto Errado 1 Thermosolar Power

    Science.gov Websites

    linear Fresnel reflector system. Status Date: September 7, 2011 Photo showing an aerial view at an angle ): Novatec Solar España S.L. (100%) Technology: Linear Fresnel reflector Turbine Capacity: Gross: 1.4 MW Technology: Linear Fresnel reflector Status: Operational Country: Spain City: Calasparra Region: Murcia Lat

  8. Design of Fresnel Lens-Type Multi-Trapping Acoustic Tweezers

    PubMed Central

    Tu, You-Lin; Chen, Shih-Jui; Hwang, Yean-Ren

    2016-01-01

    In this paper, acoustic tweezers which use beam forming performed by a Fresnel zone plate are proposed. The performance has been demonstrated by finite element analysis, including the acoustic intensity, acoustic pressure, acoustic potential energy, gradient force, and particle distribution. The acoustic tweezers use an ultrasound beam produced by a lead zirconate titanate (PZT) transducer operating at 2.4 MHz and 100 Vpeak-to-peak in a water medium. The design of the Fresnel lens (zone plate) is based on air reflection, acoustic impedance matching, and the Fresnel half-wave band (FHWB) theory. This acoustic Fresnel lens can produce gradient force and acoustic potential wells that allow the capture and manipulation of single particles or clusters of particles. Simulation results strongly indicate a good trapping ability, for particles under 150 µm in diameter, in the minimum energy location. This can be useful for cell or microorganism manipulation. PMID:27886050

  9. Research on properties of an infrared imaging diffractive element

    NASA Astrophysics Data System (ADS)

    Rachoń, M.; Wegrzyńska, K.; Doch, M.; Kołodziejczyk, A.; Siemion, A.; Suszek, J.; Kakarenko, K.; Sypek, M.

    2014-09-01

    Novel thermovision imaging systems having high efficiency require very sophisticated optical components. This paper describes the diffractive optical elements which are designed for the wavelengths between 8 and 14 μm for the application in the FLIR cameras. In the current paper the authors present phase only diffractive elements manufactured in the etched gallium arsenide. Due to the simplicity of the manufacturing process only binary phase elements were designed and manufactured. Such solution exhibits huge chromatic aberration. Moreover, the performance of such elements is rather poor, which is caused by two factors. The first one is the limited diffraction efficiency (c.a. 40%) of binary phase structures. The second problem lies in the Fresnel losses coming from the reflection from the two surfaces (around 50%). Performance of this structures is limited and the imaging contrast is poor. However, such structures can be used for relatively cheap practical testing of the new ideas. For example this solution is sufficient for point spread function (PSF) measurements. Different diffractive elements were compared. The first one was the equivalent of the lens designed on the basis of the paraxial approximation. For the second designing process, the non-paraxial approach was used. It was due to the fact that f/# was equal to 1. For the non-paraxial designing the focal spot is smaller and better focused. Moreover, binary phase structures suffer from huge chromatic aberrations. Finally, it is presented that non-paraxially designed optical element imaging with extended depth of focus (light-sword) can suppress chromatic aberration and therefore it creates the image not only in the image plane.

  10. Modeling thermal infrared (2-14 micrometer) reflectance spectra of frost and snow

    NASA Technical Reports Server (NTRS)

    Wald, Andrew E.

    1994-01-01

    Existing theories of radiative transfer in close-packed media assume that each particle scatters independently of its neighbors. For opaque particles, such as are common in the thermal infrared, this assumption is not valid, and these radiative transfer theories will not be accurate. A new method is proposed, called 'diffraction subtraction', which modifies the scattering cross section of close-packed large, opaque spheres to account for the effect of close packing on the diffraction cross section of a scattering particle. This method predicts the thermal infrared reflectance of coarse (greater than 50 micrometers radius), disaggregated granular snow. However, such coarse snow is typically old and metamorphosed, with adjacent grains welded together. The reflectance of such a welded block can be described as partly Fresnel in nature and cannot be predicted using Mie inputs to radiative transfer theory. Owing to the high absorption coefficient of ice in the thermal infrared, a rough surface reflectance model can be used to calculate reflectance from such a block. For very small (less than 50 micrometers), disaggregated particles, it is incorrect in principle to treat diffraction independently of reflection and refraction, and the theory fails. However, for particles larger than 50 micrometers, independent scattering is a valid assumption, and standard radiative transfer theory works.

  11. The Fresnel Zone Light Field Spectral Imager

    DTIC Science & Technology

    2017-03-23

    Marciniak Member AFIT-ENP-MS-17-M-095 Abstract This thesis provides a computational model and the first experimental demonstration of a Fresnel zone...Fresnel propagation. It was validated experimentally and provides excellent demonstration of system capabilities. The experimentally demonstrated system...in the measured light fields, they did not degrade the system’s performance. Experimental demonstration also showed the capability to resolve between

  12. Solar-pumped 80 W laser irradiated by a Fresnel lens.

    PubMed

    Ohkubo, Tomomasa; Yabe, Takashi; Yoshida, Kunio; Uchida, Shigeaki; Funatsu, Takayuki; Bagheri, Behgol; Oishi, Takehiro; Daito, Kazuya; Ishioka, Manabu; Nakayama, Yuichirou; Yasunaga, Norihito; Kido, Kouichirou; Sato, Yuji; Baasandash, Choijil; Kato, Kiyoshi; Yanagitani, Takagimi; Okamoto, Yoshiaki

    2009-01-15

    A solar-pumped 100 W class laser that features high efficiency and low cost owing to the use of a Fresnel lens and a chromium codoped neodymium YAG ceramic laser medium was developed. A laser output of about 80 W was achieved with combination of a 4 m(2) Fresnel lens and a pumping cavity as a secondary power concentrator. This output corresponds to 4.3% of conversion efficiency from solar power into laser, and the maximum output from a unit area of Fresnel lens was 20 W/m(2), which is 2.8 times larger than previous results with mirror-type concentrator.

  13. The Development of a Scanning Soft X-Ray Microscope.

    NASA Astrophysics Data System (ADS)

    Rarback, Harvey Miles

    We have developed a scanning soft X-ray microscope, which can be used to image natural biological specimens at high resolution and with less damage than electron microscopy. The microscope focuses a monochromatic beam of synchrotron radiation to a nearly diffraction limited spot with the aid of a high resolution Fresnel zone plate, specially fabricated for us at the IBM Watson Research Center. The specimen at one atmosphere is mechanically scanned through the spot and the transmitted radiation is efficiently detected with a flow proportional counter. A computer forms a realtime transmission image of the specimen which is displayed on a color monitor. Our first generation optics have produced images of natural wet specimens at a resolution of 300 nm.

  14. Point spread function and depth-invariant focal sweep point spread function for plenoptic camera 2.0.

    PubMed

    Jin, Xin; Liu, Li; Chen, Yanqin; Dai, Qionghai

    2017-05-01

    This paper derives a mathematical point spread function (PSF) and a depth-invariant focal sweep point spread function (FSPSF) for plenoptic camera 2.0. Derivation of PSF is based on the Fresnel diffraction equation and image formation analysis of a self-built imaging system which is divided into two sub-systems to reflect the relay imaging properties of plenoptic camera 2.0. The variations in PSF, which are caused by changes of object's depth and sensor position variation, are analyzed. A mathematical model of FSPSF is further derived, which is verified to be depth-invariant. Experiments on the real imaging systems demonstrate the consistency between the proposed PSF and the actual imaging results.

  15. Cryptosystem based on two-step phase-shifting interferometry and the RSA public-key encryption algorithm

    NASA Astrophysics Data System (ADS)

    Meng, X. F.; Peng, X.; Cai, L. Z.; Li, A. M.; Gao, Z.; Wang, Y. R.

    2009-08-01

    A hybrid cryptosystem is proposed, in which one image is encrypted to two interferograms with the aid of double random-phase encoding (DRPE) and two-step phase-shifting interferometry (2-PSI), then three pairs of public-private keys are utilized to encode and decode the session keys (geometrical parameters, the second random-phase mask) and interferograms. In the stage of decryption, the ciphered image can be decrypted by wavefront reconstruction, inverse Fresnel diffraction, and real amplitude normalization. This approach can successfully solve the problem of key management and dispatch, resulting in increased security strength. The feasibility of the proposed cryptosystem and its robustness against some types of attack are verified and analyzed by computer simulations.

  16. A hard X-ray nanoprobe beamline for nanoscale microscopy.

    PubMed

    Winarski, Robert P; Holt, Martin V; Rose, Volker; Fuesz, Peter; Carbaugh, Dean; Benson, Christa; Shu, Deming; Kline, David; Stephenson, G Brian; McNulty, Ian; Maser, Jörg

    2012-11-01

    The Hard X-ray Nanoprobe Beamline (or Nanoprobe Beamline) is an X-ray microscopy facility incorporating diffraction, fluorescence and full-field imaging capabilities designed and operated by the Center for Nanoscale Materials and the Advanced Photon Source at Sector 26 of the Advanced Photon Source at Argonne National Laboratory. This facility was constructed to probe the nanoscale structure of biological, environmental and material sciences samples. The beamline provides intense focused X-rays to the Hard X-ray Nanoprobe (or Nanoprobe) which incorporates Fresnel zone plate optics and a precision laser sensing and control system. The beamline operates over X-ray energies from 3 to 30 keV, enabling studies of most elements in the periodic table, with a particular emphasis on imaging transition metals.

  17. Aerospace Applications Conference, Steamboat Springs, CO, Feb. 1-8, 1986, Digest

    NASA Astrophysics Data System (ADS)

    The present conference considers topics concerning the projected NASA Space Station's systems, digital signal and data processing applications, and space science and microwave applications. Attention is given to Space Station video and audio subsystems design, clock error, jitter, phase error and differential time-of-arrival in satellite communications, automation and robotics in space applications, target insertion into synthetic background scenes, and a novel scheme for the computation of the discrete Fourier transform on a systolic processor. Also discussed are a novel signal parameter measurement system employing digital signal processing, EEPROMS for spacecraft applications, a unique concurrent processor architecture for high speed simulation of dynamic systems, a dual polarization flat plate antenna, Fresnel diffraction, and ultralinear TWTs for high efficiency satellite communications.

  18. Angle-of-arrival variance of waves and rays in strong atmospheric scattering: split-step simulation results

    NASA Astrophysics Data System (ADS)

    Voelz, David; Wijerathna, Erandi; Xiao, Xifeng; Muschinski, Andreas

    2017-09-01

    The analysis of optical propagation through both deterministic and stochastic refractive-index fields may be substantially simplified if diffraction effects can be neglected. With regard to simplification, it is known that certain geometricaloptics predictions often agree well with field observations but it is not always clear why this is so. Here, a new investigation of this issue is presented involving wave optics and geometrical (ray) optics computer simulations of a beam of visible light propagating through fully turbulent, homogeneous and isotropic refractive-index fields. We compare the computationally simulated, aperture-averaged angle-of-arrival variances (for aperture diameters ranging from 0.5 to 13 Fresnel lengths) with theoretical predictions based on the Rytov theory.

  19. Diffractive phase-shift lithography photomask operating in proximity printing mode.

    PubMed

    Cirino, Giuseppe A; Mansano, Ronaldo D; Verdonck, Patrick; Cescato, Lucila; Neto, Luiz G

    2010-08-02

    A phase shift proximity printing lithographic mask is designed, manufactured and tested. Its design is based on a Fresnel computer-generated hologram, employing the scalar diffraction theory. The obtained amplitude and phase distributions were mapped into discrete levels. In addition, a coding scheme using sub-cells structure was employed in order to increase the number of discrete levels, thus increasing the degree of freedom in the resulting mask. The mask is fabricated on a fused silica substrate and an amorphous hydrogenated carbon (a:C-H) thin film which act as amplitude modulation agent. The lithographic image is projected onto a resist coated silicon wafer, placed at a distance of 50 microm behind the mask. The results show a improvement of the achieved resolution--linewidth as good as 1.5 microm--what is impossible to obtain with traditional binary masks in proximity printing mode. Such achieved dimensions can be used in the fabrication of MEMS and MOEMS devices. These results are obtained with a UV laser but also with a small arc lamp light source exploring the partial coherence of this source.

  20. System alignment using the Talbot effect

    NASA Astrophysics Data System (ADS)

    Chevallier, Raymond; Le Falher, Eric; Heggarty, Kevin

    1990-08-01

    The Talbot effect is utilized to correct an alignment problem related to a neural network used for image recognition, which required the alignment of a spatial light modulator (SLM) with the input module. A mathematical model which employs the Fresnel diffraction theory is presented to describe the method. The calculation of the diffracted amplitude describes the wavefront sphericity and the original object transmittance function in order to qualify the lateral shift of the Talbot image. Another explanation is set forth in terms of plane-wave illumination in the neural network. Using a Fourier series and by describing planes where all the harmonics are in phase, the reconstruction of Talbot images is explained. The alignment is effective when the lenslet array is aligned on the even Talbot images of the SLM pixels and the incident wave is a plane wave. The alignment is evaluated in terms of source and periodicity errors, tilt of the incident plane waves, and finite object dimensions. The effects of the error sources are concluded to be negligible, the lenslet array is shown to be successfully aligned with the SLM, and other alignment applications are shown to be possible.

  1. The Optical Design of a System using a Fresnel Lens that Gathers Light for a Solar Concentrator and that Feeds into Solar Alignment Optics

    NASA Technical Reports Server (NTRS)

    Wilkerson, Gary W.; Huegele, Vinson

    1998-01-01

    The Marshall Space Flight Center (MSFC) has been developing a space deployable, lightweight membrane concentrator to focus solar energy into a solar furnace while remaining aligned to the sun. For an inner surface, this furnace has a cylindrical heat exchanger cavity coaligned to the optical axis; the furnace warms gas to propel the spacecraft. The membrane concentrator is a 1727 mm (68.00 in.) diameter, F/1.7 Fresnel lens. This large membrane is made from polyimide and is 0.076 mm (0.0030 in.) thick; it has the Fresnel grooves cast into it. The solar concentrator system has a super fast paraboloid reflector near the lens focus and immediately adjacent to the cylindrical exchanger cavity. The paraboloid collects the wide bandwidth and some of the solar energy scattered by the Fresnel lens. Finally, the paraboloid feeds the light into the cylinder. The Fresnel lens also possesses a narrow annular zone that focuses a reference beam toward four detectors that keep the optical system aligned to the sun; thus, occurs a refracting lens that focuses two places! The result can be summarized as a composite Fresnel lens for solar concentration and alignment.

  2. Double image encryption in Fresnel domain using wavelet transform, gyrator transform and spiral phase masks

    NASA Astrophysics Data System (ADS)

    Kumar, Ravi; Bhaduri, Basanta

    2017-06-01

    In this paper, we propose a new technique for double image encryption in the Fresnel domain using wavelet transform (WT), gyrator transform (GT) and spiral phase masks (SPMs). The two input mages are first phase encoded and each of them are then multiplied with SPMs and Fresnel propagated with distances d1 and d2, respectively. The single-level discrete WT is applied to Fresnel propagated complex images to decompose each into sub-band matrices i.e. LL, HL, LH and HH. Further, the sub-band matrices of two complex images are interchanged after modulation with random phase masks (RPMs) and subjected to inverse discrete WT. The resulting images are then both added and subtracted to get intermediate images which are further Fresnel propagated with distances d3 and d4, respectively. These outputs are finally gyrator transformed with the same angle α to get the encrypted images. The proposed technique provides enhanced security in terms of a large set of security keys. The sensitivity of security keys such as SPM parameters, GT angle α, Fresnel propagation distances are investigated. The robustness of the proposed techniques against noise and occlusion attacks are also analysed. The numerical simulation results are shown in support of the validity and effectiveness of the proposed technique.

  3. Digital holographic interferometry employing Fresnel transform reconstruction for the study of flow shear stabilized Z-pinch plasmas.

    PubMed

    Ross, M P; Shumlak, U

    2016-10-01

    The ZaP-HD flow Z-pinch project provides a platform to explore how shear flow stabilized Z-pinches could scale to high-energy-density plasma (plasma with pressures exceeding 1 Mbar) and fusion reactor conditions. The Z-pinch is a linear plasma confinement geometry in which the plasma carries axial electric current and is confined by its self-induced magnetic field. ZaP-HD generates shear stabilized, axisymmetric Z-pinches with stable lifetimes approaching 60 μs. The goal of the project is to increase the plasma density and temperature compared to the previous ZaP project by compressing the plasma to smaller radii (≈1 mm). Radial and axial plasma electron density structure is measured using digital holographic interferometry (DHI), which provides the necessary fine spatial resolution. ZaP-HD's DHI system uses a 2 ns Nd:YAG laser pulse with a second harmonic generator (λ = 532 nm) to produce holograms recorded by a Nikon D3200 digital camera. The holograms are numerically reconstructed with the Fresnel transform reconstruction method to obtain the phase shift caused by the interaction of the laser beam with the plasma. This provides a two-dimensional map of line-integrated electron density, which can be Abel inverted to determine the local number density. The DHI resolves line-integrated densities down to 3 × 10 20 m -2 with spatial resolution near 10 μm. This paper presents the first application of Fresnel transform reconstruction as an analysis technique for a plasma diagnostic, and it analyzes the method's accuracy through study of synthetic data. It then presents an Abel inversion procedure that utilizes data on both sides of a Z-pinch local number density profile to maximize profile symmetry. Error estimation and Abel inversion are applied to the measured data.

  4. Signal-enhancement reflective pulse oximeter with Fresnel lens

    NASA Astrophysics Data System (ADS)

    Chung, Shuang-Chao; Sun, Ching-Cherng

    2016-09-01

    In this paper, a new reflective pulse oximeter is proposed and demonstrated with implanting a Fresnel lens, which enhances the reflected signal. An optical simulation model incorporated with human skin characteristics is presented to evaluate the capability of the Fresnel lens. In addition, the distance between the light emitting diode and the photodiode is optimized. Compared with the other reflective oximeters, the reflected signal light detected by the photodiode is enhanced to more than 140%.

  5. Fresnel-region fields and antenna noise-temperature calculations for advanced microwave sounding units

    NASA Technical Reports Server (NTRS)

    Schmidt, R. F.

    1982-01-01

    A transition from the antenna noise temperature formulation for extended noise sources in the far-field or Fraunhofer-region of an antenna to one of the intermediate near field or Fresnel-region is discussed. The effort is directed toward microwave antenna simulations and high-speed digital computer analysis of radiometric sounding units used to obtain water vapor and temperature profiles of the atmosphere. Fresnel-region fields are compared at various distances from the aperture. The antenna noise temperature contribution of an annular noise source is computed in the Fresnel-region (D squared/16 lambda) for a 13.2 cm diameter offset-paraboloid aperture at 60 GHz. The time-average Poynting vector is used to effect the computation.

  6. Performance comparison of four kinds of flat nonimaging Fresnel lenses made of polycarbonates and polymethyl methacrylate for concentrated photovoltaics.

    PubMed

    Languy, Fabian; Habraken, Serge

    2011-07-15

    Solar concentrators made of a single refractive primary optics are limited to a concentration ratio of about 1000× [Opt. Express 19, A280 (2011)], due only to longitudinal chromatic aberration, while mirrors are limited to ∼46,000× by the angular size of the Sun. To reduce the chromatic aberration while keeping cost-effective systems for concentrated photovoltaics, a study of four different kinds of flat Fresnel doublets made of polycarbonates and polymethyl methacrylate is presented. It reveals that Fresnel doublets may have fewer optical losses than non-Fresnel doublets, with a lower lateral chromatic split allowing for even higher concentration ratio. © 2011 Optical Society of America

  7. Millimeter-wave and terahertz integrated circuit antennas

    NASA Technical Reports Server (NTRS)

    Rebeiz, Gabriel M.

    1992-01-01

    This paper presents a comprehensive review of integrated circuit antennas suitable for millimeter and terahertz applications. A great deal of research was done on integrated circuit antennas in the last decade and many of the problems associated with electrically thick dielectric substrates, such as substrate modes and poor radiation patterns, have been understood and solved. Several new antennas, such as the integrated horn antenna, the dielectric-filled parabola, the Fresnel plate antenna, the dual-slot antenna, and the log-periodic and spiral antennas on extended hemispherical lenses, have resulted in excellent performance at millimeter-wave frequencies, and are covered in detail in this paper. Also, a review of the efficiency definitions used with planar antennas is given in detail in the appendix.

  8. Diffracted field distributions from the HE11 mode in a hollow optical fibre for an atomic funnel

    NASA Astrophysics Data System (ADS)

    Ni, Yun; Liu, Nanchun; Yin, Jianping

    2003-06-01

    The diffracted near field distribution from an LP01 mode in a hollow optical fibre was recently calculated using a scalar model based on the weakly waveguiding approximation (Yoo et al 1999 J. Opt. B: Quantum Semiclass. Opt. 1 364). It showed a dominant Gaussian-like distribution with an increased axial intensity in the central region (not a doughnut-like distribution), so the diffracted output beam from the hollow fibre cannot be used to form an atomic funnel. Using exact solutions of the Maxwell equations based on a vector model, however, we calculate the electric field and intensity distributions of the HE11 mode in the same hollow fibre and study the diffracted near- and far-field distributions of the HE11-mode output beam under the Fresnel approximation. We analyse and compare the differences between the output beams from the HE11 and LP01 modes. Our study shows that both the near- and far-field intensity distributions of the HE11-mode output beam are doughnut-like and can be used to form a simple atomic funnel. However, it is not suitable to use the weakly waveguiding approximation to calculate the diffracted near-field distribution of the hollow fibre due to the greater refractive-index difference between the hollow region (n0 = 1) and the core (n1 = 1.45 or 1.5). Finally, the 3D intensity distribution of the HE11-mode output beam is modelled and the corresponding optical potentials for cold atoms are calculated. Some potential applications of the HE11-mode output beam in an atomic guide and funnel are briefly discussed.

  9. Indoor Experimental Assessment of the Efficiency and Irradiance Spot of the Achromatic Doublet on Glass (ADG) Fresnel Lens for Concentrating Photovoltaics

    PubMed Central

    Vallerotto, Guido; Victoria, Marta; Askins, Stephen; Antón, Ignacio; Sala, Gabriel; Herrero, Rebeca; Domínguez, César

    2017-01-01

    We present a method to characterize achromatic Fresnel lenses for photovoltaic applications. The achromatic doublet on glass (ADG) Fresnel lens is composed of two materials, a plastic and an elastomer, whose dispersion characteristics (refractive index variation with wavelength) are different. We first designed the lens geometry and then used ray-tracing simulation, based on the Monte Carlo method, to analyze its performance from the point of view of both optical efficiency and the maximum attainable concentration. Afterwards, ADG Fresnel lens prototypes were manufactured using a simple and reliable method. It consists of a prior injection of plastic parts and a consecutive lamination, together with the elastomer and a glass substrate to fabricate the parquet of ADG Fresnel lenses. The accuracy of the manufactured lens profile is examined using an optical microscope while its optical performance is evaluated using a solar simulator for concentrator photovoltaic systems. The simulator is composed of a xenon flash lamp whose emitted light is reflected by a parabolic mirror. The collimated light has a spectral distribution and an angular aperture similar to the real Sun. We were able to assess the optical performance of the ADG Fresnel lenses by taking photographs of the irradiance spot cast by the lens using a charge-coupled device (CCD) camera and measuring the photocurrent generated by several types of multi junction (MJ) solar cells, which have been previously characterized at a solar simulator for concentrator solar cells. These measurements have demonstrated the achromatic behavior of ADG Fresnel lenses and, as a consequence, the suitability of the modelling and manufacturing methods. PMID:29155715

  10. Indoor Experimental Assessment of the Efficiency and Irradiance Spot of the Achromatic Doublet on Glass (ADG) Fresnel Lens for Concentrating Photovoltaics.

    PubMed

    Vallerotto, Guido; Victoria, Marta; Askins, Stephen; Antón, Ignacio; Sala, Gabriel; Herrero, Rebeca; Domínguez, César

    2017-10-27

    We present a method to characterize achromatic Fresnel lenses for photovoltaic applications. The achromatic doublet on glass (ADG) Fresnel lens is composed of two materials, a plastic and an elastomer, whose dispersion characteristics (refractive index variation with wavelength) are different. We first designed the lens geometry and then used ray-tracing simulation, based on the Monte Carlo method, to analyze its performance from the point of view of both optical efficiency and the maximum attainable concentration. Afterwards, ADG Fresnel lens prototypes were manufactured using a simple and reliable method. It consists of a prior injection of plastic parts and a consecutive lamination, together with the elastomer and a glass substrate to fabricate the parquet of ADG Fresnel lenses. The accuracy of the manufactured lens profile is examined using an optical microscope while its optical performance is evaluated using a solar simulator for concentrator photovoltaic systems. The simulator is composed of a xenon flash lamp whose emitted light is reflected by a parabolic mirror. The collimated light has a spectral distribution and an angular aperture similar to the real Sun. We were able to assess the optical performance of the ADG Fresnel lenses by taking photographs of the irradiance spot cast by the lens using a charge-coupled device (CCD) camera and measuring the photocurrent generated by several types of multi junction (MJ) solar cells, which have been previously characterized at a solar simulator for concentrator solar cells. These measurements have demonstrated the achromatic behavior of ADG Fresnel lenses and, as a consequence, the suitability of the modelling and manufacturing methods.

  11. An experimental investigation of the power spectrum of phase modulation induced on a satellite radio signal by the ionosphere

    NASA Technical Reports Server (NTRS)

    Moser, D. T.

    1972-01-01

    The power spectrum of phase modulation imposed upon satellite radio signals by the inhomogeneous F-region of the ionosphere (100 - 500 km) was studied. Tapes of the S-66 Beacon B Satellite recorded during the period 1964 - 1966 were processed to yield or record the frequency of modulation induced on the signals by ionospheric dispersion. This modulation is produced from the sweeping across the receiving station as the satellite transits of the two dimensional spatial phase pattern are produced on the ground. From this a power spectrum of structure sizes comprising the diffracting mechanism was determined using digital techniques. Fresnel oscillations were observed and analyzed along with some comments on the statistical stationarity of the shape of the power spectrum observed.

  12. A hard X-ray nanoprobe beamline for nanoscale microscopy

    PubMed Central

    Winarski, Robert P.; Holt, Martin V.; Rose, Volker; Fuesz, Peter; Carbaugh, Dean; Benson, Christa; Shu, Deming; Kline, David; Stephenson, G. Brian; McNulty, Ian; Maser, Jörg

    2012-01-01

    The Hard X-ray Nanoprobe Beamline (or Nanoprobe Beamline) is an X-ray microscopy facility incorporating diffraction, fluorescence and full-field imaging capabilities designed and operated by the Center for Nanoscale Materials and the Advanced Photon Source at Sector 26 of the Advanced Photon Source at Argonne National Laboratory. This facility was constructed to probe the nanoscale structure of biological, environmental and material sciences samples. The beamline provides intense focused X-rays to the Hard X-ray Nanoprobe (or Nanoprobe) which incorporates Fresnel zone plate optics and a precision laser sensing and control system. The beamline operates over X-ray energies from 3 to 30 keV, enabling studies of most elements in the periodic table, with a particular emphasis on imaging transition metals. PMID:23093770

  13. High speed phase retrieval of in-line holograms by the assistance of corresponding off-axis holograms.

    PubMed

    Orzó, László

    2015-06-29

    Retrieving correct phase information from an in-line hologram is difficult as the object wave field and the diffractions of the zero order and the conjugate object term overlap. The existing iterative numerical phase retrieval methods are slow, especially in the case of high Fresnel number systems. Conversely, the reconstruction of the object wave field from an off-axis hologram is simple, but due to the applied spatial frequency filtering the achievable resolution is confined. Here, a new, high-speed algorithm is introduced that efficiently incorporates the data of an auxiliary off-axis hologram in the phase retrieval of the corresponding in-line hologram. The efficiency of the introduced combined phase retrieval method is demonstrated by simulated and measured holograms.

  14. Periodic surface structure creation by UV femtosecond pulses on silicon

    NASA Astrophysics Data System (ADS)

    Gilicze, Barnabás; Moczok, Márió; Madarász, Dániel; Juhász, Nóra; Racskó, Bence; Nánai, László

    2017-01-01

    Laser-induced periodic surface structures are created on Si (100) and Si (111) wafers by 500 fs laser pulses at 248 nm. The periodic structure is concentric and highly regular. The spatial period is consistently varying between 1.1 µm and 3.3 µm in the radial direction. It is shown that the fluence of the irradiation at the same pulse number determines the size of the area where the periodic structure is created and for the same fluence the pulse number determines the regularity of the created grooves by melting processes. The origin of this structure is identified as the inhomogeneity of the laser beam profile caused by Fresnel diffraction close to the focal plane. Further improvement of the formation of periodic structure with femtosecond laser pulses is suggested.

  15. Optimization of a constrained linear monochromator design for neutral atom beams.

    PubMed

    Kaltenbacher, Thomas

    2016-04-01

    A focused ground state, neutral atom beam, exploiting its de Broglie wavelength by means of atom optics, is used for neutral atom microscopy imaging. Employing Fresnel zone plates as a lens for these beams is a well established microscopy technique. To date, even for favorable beam source conditions a minimal focus spot size of slightly below 1μm was reached. This limitation is essentially given by the intrinsic spectral purity of the beam in combination with the chromatic aberration of the diffraction based zone plate. Therefore, it is important to enhance the monochromaticity of the beam, enabling a higher spatial resolution, preferably below 100nm. We propose to increase the monochromaticity of a neutral atom beam by means of a so-called linear monochromator set-up - a Fresnel zone plate in combination with a pinhole aperture - in order to gain more than one order of magnitude in spatial resolution. This configuration is known in X-ray microscopy and has proven to be useful, but has not been applied to neutral atom beams. The main result of this work is optimal design parameters based on models for this linear monochromator set-up followed by a second zone plate for focusing. The optimization was performed for minimizing the focal spot size and maximizing the centre line intensity at the detector position for an atom beam simultaneously. The results presented in this work are for, but not limited to, a neutral helium atom beam. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Understanding interference experiments with polarized light through photon trajectories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanz, A.S.; Davidovic, M.; Bozic, M.

    2010-04-15

    Bohmian mechanics allows to visualize and understand the quantum-mechanical behavior of massive particles in terms of trajectories. As shown by Bialynicki-Birula, Electromagnetism also admits a hydrodynamical formulation when the existence of a wave function for photons (properly defined) is assumed. This formulation thus provides an alternative interpretation of optical phenomena in terms of photon trajectories, whose flow yields a pictorial view of the evolution of the electromagnetic energy density in configuration space. This trajectory-based theoretical framework is considered here to study and analyze the outcome from Young-type diffraction experiments within the context of the Arago-Fresnel laws. More specifically, photon trajectoriesmore » in the region behind the two slits are obtained in the case where the slits are illuminated by a polarized monochromatic plane wave. Expressions to determine electromagnetic energy flow lines and photon trajectories within this scenario are provided, as well as a procedure to compute them in the particular case of gratings totally transparent inside the slits and completely absorbing outside them. As is shown, the electromagnetic energy flow lines obtained allow to monitor at each point of space the behavior of the electromagnetic energy flow and, therefore, to evaluate the effects caused on it by the presence (right behind each slit) of polarizers with the same or different polarization axes. This leads to a trajectory-based picture of the Arago-Fresnel laws for the interference of polarized light.« less

  17. Photon Sieve Space Telescope

    NASA Astrophysics Data System (ADS)

    Andersen, G.; Dearborn, M.; Hcharg, G.

    2010-09-01

    We are investigating new technologies for creating ultra-large apertures (>20m) for space-based imagery. Our approach has been to create diffractive primaries in flat membranes deployed from compact payloads. These structures are attractive in that they are much simpler to fabricate, launch and deploy compared to conventional three-dimensional optics. In this case the flat focusing element is a photon sieve which consists of a large number of holes in an otherwise opaque substrate. A photon sieve is essentially a large number of holes located according to an underlying Fresnel Zone Plate (FZP) geometry. The advantages over the FZP are that there are no support struts which lead to diffraction spikes in the far-field and non-uniform tension which can cause wrinkling of the substrate. Furthermore, with modifications in hole size and distribution we can achieve improved resolution and contrast over conventional optics. The trade-offs in using diffractive optics are the large amounts of dispersion and decreased efficiency. We present both theoretical and experimental results from small-scale prototypes. Several key solutions to issues of limited bandwidth and efficiency have been addressed. Along with these we have studied the materials aspects in order to optimize performance and achieve a scalable solution to an on-orbit demonstrator. Our current efforts are being directed towards an on-orbit 1m solar observatory demonstration deployed from a CubeSat bus.

  18. Range safety signal propagation through the SRM exhaust plume of the space shuttle

    NASA Technical Reports Server (NTRS)

    Boynton, F. P.; Davies, A. R.; Rajasekhar, P. S.; Thompson, J. A.

    1977-01-01

    Theoretical predictions of plume interference for the space shuttle range safety system by solid rocket booster exhaust plumes are reported. The signal propagation was calculated using a split operator technique based upon the Fresnel-Kirchoff integral, using fast Fourier transforms to evaluate the convolution and treating the plume as a series of absorbing and phase-changing screens. Talanov's lens transformation was applied to reduce aliasing problems caused by ray divergence.

  19. Defining the Fresnel zone for broadband radiation.

    PubMed

    Pearce, Jeremy; Mittleman, Daniel

    2002-11-01

    The concept of the Fresnel zone is central to many areas of imaging. In tomographic imaging, the transverse spatial resolution can be limited by the size of the first Fresnel zone, usually defined only for monochromatic radiation. With the increasing prevalence of broadband tomographic imaging systems, a generalization of this concept is required. Here, a proposed generalization is described in the context of femtosecond optics, and experimentally verified using terahertz time-domain spectroscopy. Based on this definition, a simple zone plate design is demonstrated.

  20. Solar Photovoltaic Array With Mini-Dome Fresnel Lenses

    NASA Technical Reports Server (NTRS)

    Piszczor, Michael F., Jr.; O'Neill, Mark J.

    1994-01-01

    Mini-dome Fresnel lenses concentrate sunlight onto individual photovoltaic cells. Facets of Fresnel lens designed to refract incident light at angle of minimum deviation to minimize reflective losses. Prismatic cover on surface of each cell reduces losses by redirecting incident light away from metal contacts toward bulk of semiconductor, where it is usefully absorbed. Simple design of mini-dome concentrator array easily adaptable to automated manufacturing techniques currently used by semiconductor industry. Attractive option for variety of future space missions.

  1. Transformation of light double cones in the human retina: the origin of trichromatism, of 4D-spatiotemporal vision, and of patchwise 4D Fourier transformation in Talbot imaging

    NASA Astrophysics Data System (ADS)

    Lauinger, Norbert

    1997-09-01

    The interpretation of the 'inverted' retina of primates as an 'optoretina' (a light cones transforming diffractive cellular 3D-phase grating) integrates the functional, structural, and oscillatory aspects of a cortical layer. It is therefore relevant to consider prenatal developments as a basis of the macro- and micro-geometry of the inner eye. This geometry becomes relevant for the postnatal trichromatic synchrony organization (TSO) as well as the adaptive levels of human vision. It is shown that the functional performances, the trichromatism in photopic vision, the monocular spatiotemporal 3D- and 4D-motion detection, as well as the Fourier optical image transformation with extraction of invariances all become possible. To transform light cones into reciprocal gratings especially the spectral phase conditions in the eikonal of the geometrical optical imaging before the retinal 3D-grating become relevant first, then in the von Laue resp. reciprocal von Laue equation for 3D-grating optics inside the grating and finally in the periodicity of Talbot-2/Fresnel-planes in the near-field behind the grating. It is becoming possible to technically realize -- at least in some specific aspects -- such a cortical optoretina sensor element with its typical hexagonal-concentric structure which leads to these visual functions.

  2. Acoustical tweezers using single spherically focused piston, X-cut, and Gaussian beams.

    PubMed

    Mitri, Farid G

    2015-10-01

    Partial-wave series expansions (PWSEs) satisfying the Helmholtz equation in spherical coordinates are derived for circular spherically focused piston (i.e., apodized by a uniform velocity amplitude normal to its surface), X-cut (i.e., apodized by a velocity amplitude parallel to the axis of wave propagation), and Gaussian (i.e., apodized by a Gaussian distribution of the velocity amplitude) beams. The Rayleigh-Sommerfeld diffraction integral and the addition theorems for the Legendre and spherical wave functions are used to obtain the PWSEs assuming weakly focused beams (with focusing angle α ⩽ 20°) in the Fresnel-Kirchhoff (parabolic) approximation. In contrast with previous analytical models, the derived expressions allow computing the scattering and acoustic radiation force from a sphere of radius a without restriction to either the Rayleigh (a ≪ λ, where λ is the wavelength of the incident radiation) or the ray acoustics (a ≫λ) regimes. The analytical formulations are valid for wavelengths largely exceeding the radius of the focused acoustic radiator, when the viscosity of the surrounding fluid can be neglected, and when the sphere is translated along the axis of wave propagation. Computational results illustrate the analysis with particular emphasis on the sphere's elastic properties and the axial distance to the center of the concave surface, with close connection of the emergence of negative trapping forces. Potential applications are in single-beam acoustical tweezers, acoustic levitation, and particle manipulation.

  3. Reflective properties of randomly rough surfaces under large incidence angles.

    PubMed

    Qiu, J; Zhang, W J; Liu, L H; Hsu, P-f; Liu, L J

    2014-06-01

    The reflective properties of randomly rough surfaces at large incidence angles have been reported due to their potential applications in some of the radiative heat transfer research areas. The main purpose of this work is to investigate the formation mechanism of the specular reflection peak of rough surfaces at large incidence angles. The bidirectional reflectance distribution function (BRDF) of rough aluminum surfaces with different roughnesses at different incident angles is measured by a three-axis automated scatterometer. This study used a validated and accurate computational model, the rigorous coupled-wave analysis (RCWA) method, to compare and analyze the measurement BRDF results. It is found that the RCWA results show the same trend of specular peak as the measurement. This paper mainly focuses on the relative roughness at the range of 0.16<σ/λ<5.35. As the relative roughness decreases, the specular peak enhancement dramatically increases and the scattering region significantly reduces, especially under large incidence angles. The RCWA and the Rayleigh criterion results have been compared, showing that the relative error of the total integrated scatter increases as the roughness of the surface increases at large incidence angles. In addition, the zero-order diffractive power calculated by RCWA and the reflectance calculated by Fresnel equations are compared. The comparison shows that the relative error declines sharply when the incident angle is large and the roughness is small.

  4. Concentrating Solar Power Projects | Concentrating Solar Power | NREL

    Science.gov Websites

    construction, or under development. CSP technologies include parabolic trough, linear Fresnel reflector, power Technology-listing by parabolic trough, linear Fresnel reflector, power tower, or dish/engine systems Status

  5. Fresnel Lens Characterization for Potential Use in an Unpiloted Atmospheric Vehicle DIAL Receiver System

    NASA Technical Reports Server (NTRS)

    Fastig, Shlomo; Deoung, Russell J.

    1998-01-01

    Acrylic plastic Fresnel lenses are very light and can have large diameters. Such lenses could be used in lidar telescope receivers if the focal spot is not too large or distorted. This research effort characterizes the focal spot diameter produced by a Fresnel lens with a diameter of 30.5 cm (12 in.). It was found that the focal spot diameter varied from 1.2 mm at 750 nm to 1.6 mm at 910 nm. The focal spot was irregular and not easily described by a Gaussian profile.

  6. Design of an efficient Fresnel-type lens utilizing double total internal reflection for solar energy collection.

    PubMed

    Wallhead, Ian; Jiménez, Teresa Molina; Ortiz, Jose Vicente García; Toledo, Ignacio Gonzalez; Toledo, Cristóbal Gonzalez

    2012-11-05

    A novel of Fresnel-type lens for use as a solar collector has been designed which utilizes double total internal reflection (D-TIR) to optimize collection efficiency for high numerical aperture lenses (in the region of 0.3 to 0.6 NA). Results show that, depending on the numerical aperture and the size of the receiver, a collection efficiency theoretical improvement on the order of 20% can be expected with this new design compared with that of a conventional Fresnel lens.

  7. Evolutionary algorithm for optimization of nonimaging Fresnel lens geometry.

    PubMed

    Yamada, N; Nishikawa, T

    2010-06-21

    In this study, an evolutionary algorithm (EA), which consists of genetic and immune algorithms, is introduced to design the optical geometry of a nonimaging Fresnel lens; this lens generates the uniform flux concentration required for a photovoltaic cell. Herein, a design procedure that incorporates a ray-tracing technique in the EA is described, and the validity of the design is demonstrated. The results show that the EA automatically generated a unique geometry of the Fresnel lens; the use of this geometry resulted in better uniform flux concentration with high optical efficiency.

  8. Polarization Compensation of Fresnel Aberrations in Telescopes

    NASA Technical Reports Server (NTRS)

    Clark, Natalie; Breckenridge, James B.

    2011-01-01

    Large aperture space telescopes are built with low F# s to accommodate the mechanical constraints of launch vehicles and to reduce resonance frequencies of the on-orbit system. Inherent with these low F# s is Fresnel polarization which affects image quality. We present the design and modeling of a nano-structure consisting of birefringent layers to control polarization and increase contrast. Analysis shows a device that functions across a 400nm bandwidth tunable from 300nm to 1200nm. This Fresnel compensator device has a cross leakage of less than 0.001 retardance.

  9. Development of variable-magnification X-ray Bragg optics.

    PubMed

    Hirano, Keiichi; Yamashita, Yoshiki; Takahashi, Yumiko; Sugiyama, Hiroshi

    2015-07-01

    A novel X-ray Bragg optics is proposed for variable-magnification of an X-ray beam. This X-ray Bragg optics is composed of two magnifiers in a crossed arrangement, and the magnification factor, M, is controlled through the azimuth angle of each magnifier. The basic properties of the X-ray optics such as the magnification factor, image transformation matrix and intrinsic acceptance angle are described based on the dynamical theory of X-ray diffraction. The feasibility of the variable-magnification X-ray Bragg optics was verified at the vertical-wiggler beamline BL-14B of the Photon Factory. For X-ray Bragg magnifiers, Si(220) crystals with an asymmetric angle of 14° were used. The magnification factor was calculated to be tunable between 0.1 and 10.0 at a wavelength of 0.112 nm. At various magnification factors (M ≥ 1.0), X-ray images of a nylon mesh were observed with an air-cooled X-ray CCD camera. Image deformation caused by the optics could be corrected by using a 2 × 2 transformation matrix and bilinear interpolation method. Not only absorption-contrast but also edge-contrast due to Fresnel diffraction was observed in the magnified images.

  10. Spatial effects in intrinsic optical bistability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haus, J.W.; Wang, L.; Scalora, M.

    Using the nonlinear oscillator model as a prototype medium exhibiting intrinsic optical bistability, we investigate the inhomogeneous absorption of the electromagnetic field. The forward- and backward-field amplitudes and diffraction effects are retained in the mathematical description. Analytic results are given in the limit of plane-wave propagation under steady-state conditions. The transmitted and reflected intensity exhibit a structure that is determined by the spatial inhomogeneity of the absorption in the longitudinal direction. The transmitted intensity has a structure that is dependent on the length of the medium. The reflected intensity has an interference structure from light reflected at the front surfacemore » and the internal boundary separating a high-polarization from a low-polarization branch. A degenerate-four-wave-mixing experiment is predicted to be a very sensitive probe of the internal boundary and the interference between the forward and backward field. The phase-conjugate signal develops large oscillations as the input field is varied. Numerical results for diffraction effects are also given, and we find that the plane-wave results for the center of the beam remain reliable down to Fresnel numbers of order unity and in media that are smaller than the linear absorption length.« less

  11. The Milli-Arc-Second Structure Imager, MASSIM: A New Concept for a High Angular Resolution X-ray Telescope

    NASA Technical Reports Server (NTRS)

    Skinner, Gerry; Arzoumanian, Z.; Cash, W.; Gehrels, N.; Gendreau, K.; Gorenstein, P.; Krizmanic, J.; Leitner, J.; Miller, M.; Reasenberg, R.; hide

    2008-01-01

    MASSIM, the Milli-Arc-Second Structure Imager, is a mission that has been proposed for study within the context of NASA's "Astrophysics Strategic Mission Concept Studies" program. It uses a set of achromatic diffractive-refractive Fresnel lenses on an optics spacecraft to focus 5-11 keV X-rays onto detectors on a second spacecraft flying in formation 1000 km away. It will have a point-source sensitivity comparable with that of the current generation of major X-ray observatories (Chandra, XMM-Newton) but an angular resolution some three orders of magnitude better. MASSIM is optimized for the study of jets and other phenomena that occur in the immediate vicinity of black holes and neutron stars. It can also be used for studying other astrophysical phenomena on the milli-arc-second scale, such as those involving proto-stars, the surfaces and surroundings of nearby active stars and interacting winds. After introducing the principle of diffractive imaging in the x-ray/gamma-ray regime, the MASSIM mission concept and baseline design will be described along with a discussion of the options and trade-offs within the X-ray optics design.

  12. X-ray Interferometry with Transmissive Beam Combiners for Ultra-High Angular Resolution Astronomy

    NASA Technical Reports Server (NTRS)

    Skinner, G. K.; Krismanic, John F.

    2009-01-01

    Abstract Interferometry provides one of the possible routes to ultra-high angular resolution for X-ray and gamma-ray astronomy. Sub-micro-arc-second angular resolution, necessary to achieve objectives such as imaging the regions around the event horizon of a super-massive black hole at the center of an active galaxy, can be achieved if beams from parts of the incoming wavefront separated by 100s of meters can be stably and accurately brought together at small angles. One way of achieving this is by using grazing incidence mirrors. We here investigate an alternative approach in which the beams are recombined by optical elements working in transmission. It is shown that the use of diffractive elements is a particularly attractive option. We report experimental results from a simple 2-beam interferometer using a low-cost commercially available profiled film as the diffractive elements. A rotationally symmetric filled (or mostly filled) aperture variant of such an interferometer, equivalent to an X-ray axicon, is shown to offer a much wider bandpass than either a Phase Fresnel Lens (PFL) or a PFL with a refractive lens in an achromatic pair. Simulations of an example system are presented.

  13. Power and charge dissipation from an electrodynamic tether

    NASA Technical Reports Server (NTRS)

    Hite, Gerald E.

    1987-01-01

    The Plasma Motor-Generator project utilizes the influence of the geomagnetic field on a conductive tether attached to a LEO spacecraft to provide a reversible conversion of orbital energy into electrical energy. The behavior of the current into the ionospheric plasma under the influence of the geomagnetic field is of significant experimental and theoretical interest. Theoretical calculations are reviewed which start from Maxwell's equations and treat the ionospheric plasma as a linear dielectric medium. These calculations show a charge emitting tether moving in a magnetic field will generate electromagnetic waves in the plasma which carry the charge in the direction of the magnetic field. The ratio of the tether's speed to the ion cyclotron frequency which is about 25 m for a LEO is a characteristic length for the phenomena. Whereas for the dimensions of the contact plasma much larger than this value the waves are the conventional Alfven waves, when the dimensions are comparable or smaller, diffraction effects occur similar to those associated with Fresnel diffraction in optics. The power required to excite these waves for a given tether current is used to estimate the impedance associated with this mode of charge dissipation.

  14. Advantages of phase retrieval for fast x-ray tomographic microscopy

    NASA Astrophysics Data System (ADS)

    Mokso, R.; Marone, F.; Irvine, S.; Nyvlt, M.; Schwyn, D.; Mader, K.; Taylor, G. K.; Krapp, H. G.; Skeren, M.; Stampanoni, M.

    2013-12-01

    In near-field imaging with partially coherent x-rays, the phase shifting properties of the sample are encoded in the diffraction fringes that appear as an additional intensity modulation in the x-ray projection images. These Fresnel fringes are often regarded as purely an enhancement of the visibility at the interfaces. We show that retrieving the phase information contained in these patterns significantly advances the developments in fast micro-tomography. Improving temporal resolution without intensifying radiation damage implies a shortening of the exposure time rather than increasing the photon flux on the sample. Phase retrieval, to a large extent, compensates the consequent photon count moderation in the images, by fully exploiting the stronger refraction effect as compared with absorption. Two single-distance phase retrieval methods are evaluated for the case of an in situ 3 Hz micro-tomography of a rapidly evolving liquid foam, and an in vivo 6 Hz micro-tomography of a blowfly. A new dual-detector setup is introduced for simultaneous acquisition of two near-field diffraction patterns. Our goal is to couple high temporal, spatial and density resolution in a single imaging system in a dose-efficient manner, opening further options for dynamic four-dimensional studies.

  15. Accuracy concerns in digital speckle photography combined with Fresnel digital holographic interferometry

    NASA Astrophysics Data System (ADS)

    Zhao, Yuchen; Zemmamouche, Redouane; Vandenrijt, Jean-François; Georges, Marc P.

    2018-05-01

    A combination of digital holographic interferometry (DHI) and digital speckle photography (DSP) allows in-plane and out-of-plane displacement measurement between two states of an object. The former can be determined by correlating the two speckle patterns whereas the latter is given by the phase difference obtained from DHI. We show that the amplitude of numerically reconstructed object wavefront obtained from Fresnel in-line digital holography (DH), in combination with phase shifting techniques, can be used as speckle patterns in DSP. The accuracy of in-plane measurement is improved after correcting the phase errors induced by reference wave during reconstruction process. Furthermore, unlike conventional imaging system, Fresnel DH offers the possibility to resize the pixel size of speckle patterns situated on the reconstruction plane under the same optical configuration simply by zero-padding the hologram. The flexibility of speckle size adjustment in Fresnel DH ensures the accuracy of estimation result using DSP.

  16. Solar concentrator modules with silicone-onglass Fresnel lens panels and multijunction cells.

    PubMed

    Rumyantsev, Valery D

    2010-04-26

    High-efficiency multijunction (MJ) solar cells, being very expensive to manufacture, should only be used in combination with solar concentrators in terrestrial applications. An essential cost reduction of electric power produced by photovoltaic (PV) installations with MJ cells, may be expected by the creation of highly-effective, but inexpensive, elements for optical concentration and sun tracking. This article is an overview of the corresponding approach under development at the Ioffe Physical Technical Institute. The approach to R&D of the solar PV modules is based on the concepts of sunlight concentration by small-aperture area Fresnel lenses and "all-glass" module design. The small-aperture area lenses are arranged as a panel with silicone-on-glass structure where the glass plate serves as the front surface of a module. In turn, high-efficiency InGaP/(In)GaAs/Ge cells are arranged on a rear module panel mounted on a glass plate which functions as a heat sink and integrated protective cover for the cells. The developed PV modules and sun trackers are characterized by simple design, and are regarded as the prototypes for further commercialization.

  17. The application of Fresnel zone plate based projection in optofluidic microscopy.

    PubMed

    Wu, Jigang; Cui, Xiquan; Lee, Lap Man; Yang, Changhuei

    2008-09-29

    Optofluidic microscopy (OFM) is a novel technique for low-cost, high-resolution on-chip microscopy imaging. In this paper we report the use of the Fresnel zone plate (FZP) based projection in OFM as a cost-effective and compact means for projecting the transmission through an OFM's aperture array onto a sensor grid. We demonstrate this approach by employing a FZP (diameter = 255 microm, focal length = 800 microm) that has been patterned onto a glass slide to project the transmission from an array of apertures (diameter = 1 microm, separation = 10 microm) onto a CMOS sensor. We are able to resolve the contributions from 44 apertures on the sensor under the illumination from a HeNe laser (wavelength = 633 nm). The imaging quality of the FZP determines the effective field-of-view (related to the number of resolvable transmissions from apertures) but not the image resolution of such an OFM system--a key distinction from conventional microscope systems. We demonstrate the capability of the integrated system by flowing the protist Euglena gracilis across the aperture array microfluidically and performing OFM imaging of the samples.

  18. Graphical Approach to Fresnel's Equations for Reflection and Refraction of Light.

    ERIC Educational Resources Information Center

    Doyle, William T.

    1980-01-01

    Develops a coordinate-free approach to Fresnel's equations for the reflection and refraction of light at a plane interface. Describes a graphical construction for finding the vector amplitudes of the reflected and transmitted waves. (Author/CS)

  19. Extreme Universe Space Observatory (EUSO) Optics Module

    NASA Technical Reports Server (NTRS)

    Young, Roy; Christl, Mark

    2008-01-01

    A demonstration part will be manufactured in Japan on one of the large Toshiba machines with a diameter of 2.5 meters. This will be a flat PMMA disk that is cut between 0.5 and 1.25 meters radius. The cut should demonstrate manufacturing the most difficult parts of the 2.5 meter Fresnel pattern and the blazed grating on the diffractive surface. Optical simulations, validated with the subscale prototype, will be used to determine the limits on manufacturing errors (tolerances) that will result in optics that meet EUSO s requirements. There will be limits on surface roughness (or errors at high spatial frequency); radial and azimuthal slope errors (at lower spatial frequencies) and plunge cut depth errors in the blazed grating. The demonstration part will be measured to determine whether it was made within the allowable tolerances.

  20. Generation of a dark hollow beam by a nonlinear ZnSe crystal and its propagation properties in free space: Theoretical analysis

    NASA Astrophysics Data System (ADS)

    Du, Xiangli; Yin, Yaling; Zheng, Gongjue; Guo, Chaoxiu; Sun, Yu; Zhou, Zhongneng; Bai, Shunjie; Wang, Hailing; Xia, Yong; Yin, Jianping

    2014-07-01

    A new nonlinear optical method to generate a dark hollow beam (DHB) with a dielectric ZnSe crystal is proposed. From Huygens-Fresnel diffraction theory, we calculate the intensity distributions of the DHB and its propagating properties in free space, and study the dependences of the optimal propagation position and the dark-spot size (DSS) of the hollow beam on the waist radius of the incident Gaussian laser beam. Our study shows that the intensity distribution of the DHB presents symmetrical distribution with increasing the propagation distance, the optimal distance zopt becomes farther and the DSS becomes larger with the increase of the waist radius w of the incident Gaussian laser beam. This generated DHB will have applications in the optical guiding and trapping of macroscopic objects, atoms or molecules.

  1. Plume interference with space shuttle range safety signals

    NASA Technical Reports Server (NTRS)

    Boynton, F. P.; Rajaseknar, P. S.

    1979-01-01

    The computational procedure for signal propagation in the presence of an exhaust plume is presented. Comparisons with well-known analytic diffraction solutions indicate that accuracy suffers when mesh spacing is inadequate to resolve the first unobstructed Fresnel zone at the plume edge. Revisions to the procedure to improve its accuracy without requiring very large arrays are discussed. Comparisons to field measurements during a shuttle solid rocket motor (SRM) test firing suggest that the plume is sharper edged than one would expect on the basis of time averaged electron density calculations. The effects, both of revisions to the computational procedure and of allowing for a sharper plume edge, are to raise the signal level near tail aspect. The attenuation levels then predicted are still high enough to be of concern near SRM burnout for northerly launches of the space shuttle.

  2. Four-dimensional key design in amplitude, phase, polarization and distance for optical encryption based on polarization digital holography and QR code.

    PubMed

    Lin, Chao; Shen, Xueju; Li, Baochen

    2014-08-25

    We demonstrate that all parameters of optical lightwave can be simultaneously designed as keys in security system. This multi-dimensional property of key can significantly enlarge the key space and further enhance the security level of the system. The single-shot off-axis digital holography with orthogonal polarized reference waves is employed to perform polarization state recording on object wave. Two pieces of polarization holograms are calculated and fabricated to be arranged in reference arms to generate random amplitude and phase distribution respectively. When reconstruction, original information which is represented with QR code can be retrieved using Fresnel diffraction with decryption keys and read out noise-free. Numerical simulation results for this cryptosystem are presented. An analysis on the key sensitivity and fault tolerance properties are also provided.

  3. Research Progress on F-P Interference—Based Fiber-Optic Sensors

    PubMed Central

    Huang, Yi Wen; Tao, Jin; Huang, Xu Guang

    2016-01-01

    We review our works on Fabry-Perot (F-P) interferometric fiber-optic sensors with various applications. We give a general model of F-P interferometric optical fiber sensors including diffraction loss caused by the beam divergence and the Gouy phase shift. Based on different structures of an F-P cavity formed on the end of a single-mode fiber, the F-P interferometric optical sensor has been extended to measurements of the refractive index (RI) of liquids and solids, temperature as well as small displacement. The RI of liquids and solids can be obtained by monitoring the fringe contrast related to Fresnel reflections, while the ambient temperature and small displacement can be obtained by monitoring the wavelength shift of the interference fringes. The F-P interferometric fiber-optic sensors can be used for many scientific and technological applications. PMID:27598173

  4. Fresnel cup reflector directs maximum energy from light source

    NASA Technical Reports Server (NTRS)

    Laue, E. G.; Youngberg, C. L.

    1964-01-01

    To minimize shielding and overheating, a composite Fresnel cup reflector design directs the maximum energy from a light source. It consists of a uniformly ellipsoidal end surface and an extension comprising a series of confocal ellipsoidal and concentric spherical surfaces.

  5. Magnified reconstruction of digitally recorded holograms by Fresnel-Bluestein transform.

    PubMed

    Restrepo, John F; Garcia-Sucerquia, Jorge

    2010-11-20

    A method for numerical reconstruction of digitally recorded holograms with variable magnification is presented. The proposed strategy allows for smaller, equal, or larger magnification than that achieved with Fresnel transform by introducing the Bluestein substitution into the Fresnel kernel. The magnification is obtained independent of distance, wavelength, and number of pixels, which enables the method to be applied in color digital holography and metrological applications. The approach is supported by experimental and simulation results in digital holography of objects of comparable dimensions with the recording device and in the reconstruction of holograms from digital in-line holographic microscopy.

  6. Why history matters: Ab initio rederivation of Fresnel equations confirms microscopic theory of refractive index

    NASA Astrophysics Data System (ADS)

    Starke, R.; Schober, G. A. H.

    2018-03-01

    We provide a systematic theoretical, experimental, and historical critique of the standard derivation of Fresnel's equations, which shows in particular that these well-established equations actually contradict the traditional, macroscopic approach to electrodynamics in media. Subsequently, we give a rederivation of Fresnel's equations which is exclusively based on the microscopic Maxwell equations and hence in accordance with modern first-principles materials physics. In particular, as a main outcome of this analysis being of a more general interest, we propose the most general boundary conditions on electric and magnetic fields which are valid on the microscopic level.

  7. Cost estimates for flat plate and concentrator collector arrays

    NASA Technical Reports Server (NTRS)

    Shimada, K.

    1982-01-01

    The current module and installation costs for the U.S. National Photovoltaic Program's grid-connected systems are significantly higher than required for economic viability of this alternative. Attention is accordingly given to the prospects for installed module cost reductions in flat plate, linear focus Fresnel concentrator, and point focus Fresnel concentrator candidate systems. Cost projections indicate that all three systems would meet near-term and midterm goals, provided that module costs of $2.80/W(p) and $0.70/W(p), respectively, are met. The point focus Fresnel system emerges as the most viable for the near term.

  8. Generation of multifocal irradiance patterns by using complex Fresnel holograms.

    PubMed

    Mendoza-Yero, Omel; Carbonell-Leal, Miguel; Mínguez-Vega, Gladys; Lancis, Jesús

    2018-03-01

    We experimentally demonstrate Fresnel holograms able to produce multifocal irradiance patterns with micrometric spatial resolution. These holograms are assessed from the coherent sum of multiple Fresnel lenses. The utilized encoded technique guarantees full control over the reconstructed irradiance patterns due to an optimal codification of the amplitude and phase information of the resulting complex field. From a practical point of view, a phase-only spatial light modulator is used in a couple of experiments addressed to obtain two- and three-dimensional distributions of focal points to excite both linear and non-linear optical phenomena.

  9. Holographic video at 40 frames per second for 4-million object points.

    PubMed

    Tsang, Peter; Cheung, W-K; Poon, T-C; Zhou, C

    2011-08-01

    We propose a fast method for generating digital Fresnel holograms based on an interpolated wavefront-recording plane (IWRP) approach. Our method can be divided into two stages. First, a small, virtual IWRP is derived in a computational-free manner. Second, the IWRP is expanded into a Fresnel hologram with a pair of fast Fourier transform processes, which are realized with the graphic processing unit (GPU). We demonstrate state-of-the-art experimental results, capable of generating a 2048 x 2048 Fresnel hologram of around 4 × 10(6) object points at a rate of over 40 frames per second.

  10. New adaptive method to optimize the secondary reflector of linear Fresnel collectors

    DOE PAGES

    Zhu, Guangdong

    2017-01-16

    Performance of linear Fresnel collectors may largely depend on the secondary-reflector profile design when small-aperture absorbers are used. Optimization of the secondary-reflector profile is an extremely challenging task because there is no established theory to ensure superior performance of derived profiles. In this work, an innovative optimization method is proposed to optimize the secondary-reflector profile of a generic linear Fresnel configuration. The method correctly and accurately captures impacts of both geometric and optical aspects of a linear Fresnel collector to secondary-reflector design. The proposed method is an adaptive approach that does not assume a secondary shape of any particular form,more » but rather, starts at a single edge point and adaptively constructs the next surface point to maximize the reflected power to be reflected to absorber(s). As a test case, the proposed optimization method is applied to an industrial linear Fresnel configuration, and the results show that the derived optimal secondary reflector is able to redirect more than 90% of the power to the absorber in a wide range of incidence angles. Here, the proposed method can be naturally extended to other types of solar collectors as well, and it will be a valuable tool for solar-collector designs with a secondary reflector.« less

  11. New adaptive method to optimize the secondary reflector of linear Fresnel collectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Guangdong

    Performance of linear Fresnel collectors may largely depend on the secondary-reflector profile design when small-aperture absorbers are used. Optimization of the secondary-reflector profile is an extremely challenging task because there is no established theory to ensure superior performance of derived profiles. In this work, an innovative optimization method is proposed to optimize the secondary-reflector profile of a generic linear Fresnel configuration. The method correctly and accurately captures impacts of both geometric and optical aspects of a linear Fresnel collector to secondary-reflector design. The proposed method is an adaptive approach that does not assume a secondary shape of any particular form,more » but rather, starts at a single edge point and adaptively constructs the next surface point to maximize the reflected power to be reflected to absorber(s). As a test case, the proposed optimization method is applied to an industrial linear Fresnel configuration, and the results show that the derived optimal secondary reflector is able to redirect more than 90% of the power to the absorber in a wide range of incidence angles. Here, the proposed method can be naturally extended to other types of solar collectors as well, and it will be a valuable tool for solar-collector designs with a secondary reflector.« less

  12. Fresnel prisms and their effects on visual acuity and binocularity.

    PubMed Central

    Véronneau-Troutman, S

    1978-01-01

    1. The visual acuity with the Fresnel membrane prism is significantly less than that with the conventional prism of the same power for all prism powers from 12 delta through 30 delata at distance and from 15 delta through 30 delta at near. 2. The difference in the visual acuity between base up and base down, and between base in and base out, is not significantly different for either the Fresnel membrane prism or for the conventional prism. 3. For both Fresnel membrane prism and the conventional prism, the visual acuity when looking straight ahead. 4. Using Fresnel membrane prisms of the same power from different lots, the visual acuity varied significantly. The 30 delta prism caused the widest range in visual acuity. 5. When normal subjects are fitted with the higher powers of the Fresnel membrane prism, fusion and stereopsis are disrupted to such an extent that the use of this device to restore or to improve binocular vision in cases with large-angle deviations is seriously questioned. 6. Moreover, the disruption of fusion and stereopsis is abrupt and severe and does not parallel the decrease in visual acuity. The severely reduced ability to maintain fusion may be related to the optical aberrations, which, in turn, may be due to the molding process and the polyvinyl chloride molding material. 7. Through the flexibility of the membrane prism is a definite advantage, because of its proclivity to reduce visual acuity and increase aberrations its prescription for adults often must be limited to only one eye. 8. For the same reasons in the young child with binocular vision problems, the membrane prism presently available should be prescribed over both eyes only in powers less than 20 delta. When the membrane prism is to be used as a partial occluder (over one eye only), any power can be used. 9. The new Fresnel "hard" prism reduces visual acuity minimally and rarely disrupts binocularity, thus increasing the potential for prismotherapy to establish binocularity. This prism is currently available only for use as a trial set. Since the cosmetic appearance of the Fresnel "hard" prism is similar to that of the Fresnel membrane prism and it is easier to maintain, it would be the prism of choice (over all other types) for bilateral prescriptions in the young patient with emmetropia. The manufacturer is urged to make these prisms available to fit a special round adjustable frame, such as that developed in Europe for use with the wafer prism. Images FIGURE 14 A FIGURE 14 B FIGURE 2 A FIGURE 2 B FIGURE 12 PMID:754384

  13. Polarization changes in light beams trespassing anisotropic turbulence.

    PubMed

    Korotkova, Olga

    2015-07-01

    The polarization properties of deterministic or random light with isotropic source correlations propagating in anisotropic turbulence along horizontal paths are considered for the first time and predicted to change on the basis of the second-order coherence theory of beam-like fields and the extended Huygens-Fresnel integral. Our examples illustrate that the beams whose degree of polarization is unaffected by free-space propagation or isotropic turbulence can either decrease or increase on traversing the anisotropic turbulence, depending on the polarization state of the source.

  14. Propagation properties of a partially coherent radially polarized beam in atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Zheng, Guo; Wang, Lin; Wang, Jue; Zhou, Muchun; Song, Minmin

    2018-07-01

    Based on the extended Huygens-Fresnel integral, second-order moments of the Wigner distribution function of a partially coherent radially polarized beam propagating through atmospheric turbulence are derived. Besides, propagation properties such as the mean-squared beam width, angular width, effective radius of curvature, beam propagation factor and Rayleigh range can also be obtained and calculated numerically. It is shown that the propagation properties are dependent on the spatial correlation length, refraction index structure constant and propagation distance.

  15. Some simple solutions of Schrödinger's equation for a free particle or for an oscillator

    NASA Astrophysics Data System (ADS)

    Andrews, Mark

    2018-05-01

    For a non-relativistic free particle, we show that the evolution of some simple initial wave functions made up of linear segments can be expressed in terms of Fresnel integrals. Examples include the square wave function and the triangular wave function. The method is then extended to wave functions made from quadratic elements. The evolution of all these initial wave functions can also be found for the harmonic oscillator by a transformation of the free evolutions.

  16. Lightweight Inexpensive Ozone Lidar Telescope Using a Plastic Fresnel Lens

    NASA Technical Reports Server (NTRS)

    DeYoung, Russell J.; Notari, Anthony; Carrion, William; Pliutau, Denis

    2014-01-01

    An inexpensive lightweight ozone lidar telescope was designed, constructed and operated during an ozone lidar field campaign. This report summarizes the design parameters and performance of the plastic Fresnel lens telescope and shows the ozone lidar performance compared to Zemax calculations.

  17. Prediction of subsurface fracture in mining zone of Papua using passive seismic tomography based on Fresnel zone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Setiadi, Herlan; Nurhandoko, Bagus Endar B.; Wely, Woen

    Fracture prediction in a block cave of underground mine is very important to monitor the structure of the fracture that can be harmful to the mining activities. Many methods can be used to obtain such information, such as TDR (Time Domain Relectometry) and open hole. Both of them have limitations in range measurement. Passive seismic tomography is one of the subsurface imaging method. It has advantage in terms of measurements, cost, and rich of rock physical information. This passive seismic tomography studies using Fresnel zone to model the wavepath by using frequency parameter. Fresnel zone was developed by Nurhandoko inmore » 2000. The result of this study is tomography of P and S wave velocity which can predict position of fracture. The study also attempted to use sum of the wavefronts to obtain position and time of seismic event occurence. Fresnel zone tomography and the summation wavefront can predict location of geological structure of mine area as well.« less

  18. Hard X-ray focusing by stacked Fresnel zone plates

    NASA Astrophysics Data System (ADS)

    Snigireva, Irina; Snigirev, Anatoly; Kohn, Viktor; Yunkin, Vyacheslav; Grigoriev, Maxim; Kuznetsov, Serguei; Vaughan, Gavin; Di Michiel, Marco

    2007-09-01

    Stacking technique was developed in order to increase focusing efficiency of Fresnel zone plates at high energies. Two identical Si chips each of which containing Fresnel zone plates were used for stacking. Alignment of the chips was achieved by on-line observation of the moiré pattern from the two zone plates. The formation of moiré patterns was studied theoretically and experimentally at different experimental conditions. To provide the desired stability Si-chips with zone plates were bonded together with slow solidification speed epoxy glue. Technique of angular alignment in order to compensate a linear displacement in the process of gluing was proposed. Two sets of stacked FZPs were produced and experimentally tested to focus 15 and 50 keV X-rays. Gain in the efficiency by factor 2.5 was demonstrated at 15 keV. Focal spot of 1.8 μm vertically and 14 μm horizontally with 35% efficiency was measured at 50 keV. Forecast for the stacking of nanofocusing Fresnel zone plates was discussed.

  19. Cylindrically symmetric Fresnel lens for high concentration photovoltaic

    NASA Astrophysics Data System (ADS)

    Hung, Yu-Ting; Su, Guo-Dung

    2009-08-01

    High concentration photovoltaic (HCPV) utilizes point-focus cost-effective plastic Fresnel lens. And a millimeter-sized Ill-V compound multi-junction solar cell is placed underneath focusing optics which can achieve cell efficiency potential of up to 40.7 %. The advantage of HCPV makes less solar cell area and higher efficiency; however, the acceptance angle of HCPV is about +/-1°, which is very small and the mechanical tracking of the sun is necessary. In order to reduce the power consumption and the angle tracking error of tracking systems, a light collector model with larger acceptance angle is designed with ZEMAX®. In this model, the original radially symmetric Fresnel lens of HCPV is replaced by cylindrically symmetric Fresnel lens and a parabolic reflective surface. Light is collected in two dimensions separately. And a couple of lenses and a light pipe are added before the solar cell chip in order to collect more light when sun light deviates from incident angle of 00. An acceptance angle of +/-10° is achieved with GCR 400.

  20. Recent and emerging applications of holographic photopolymers and nanocomposites

    NASA Astrophysics Data System (ADS)

    Naydenova, Izabela; Kotakonda, Pavani; Jallapuram, Raghavendra; Babeva, Tsvetanka; Mintova, S.; Bade, Denis; Martin, Suzanne; Toal, Vincent

    2010-11-01

    Sensing applications of holograms may be based on effects such as change in the spacing of the recorded fringes in a holographic diffraction grating in the presence of an analyte so that the direction of the diffracted laser light changes, or, in the case of a white light reflection grating, the wavelength of the diffracted light changes. An example is a reflection grating which swells in the presence of atmospheric moisture to indicate relative humidity by a change is the colour of the diffracted light. These devices make use of the photopolymer's ability to absorb moisture. In a more versatile approach one can add inorganic nanoparticles to the photopolymer composition. These nanoparticles have refractive indices that are different from that of the bulk photopolymer. During the holographic recording of diffraction gratings, the polymerisation and accompanying diffusion processes cause redistribution of the nanoparticles enhancing the holographic diffraction efficiency. Zeolite nanoparticles have the form of hollow cages enabling them to trap analyte molecules of appropriate sizes. The refractive index of the nanoparticle-analyte combination is normally different from that of the nanoparticles alone and this alters the refractive index modulation of the recorded grating, leading to a change in diffraction efficiency and hence of the strength of the diffracted light signal. Yet another approach makes use of a principle which we call dye deposition holography. The analyte is labelled using a dye which acts as a photosensitiser for the polymerisation process. When the analyte labeled is deposited on a layer containing the other photopolymer components photopolymerisation can take place. If the illumination is in the form of an interference pattern, a diffraction grating is formed, in the region where dye has been deposited. In this way the formation of a holographic diffraction grating itself becomes a sensing action with the potential for extremely high signal to noise ratio. The method also allows fabrication of photonic devices by direct writing, using photosensitising dye, of structures such as Fresnel zone plate lenses and waveguides onto the photopolymer layer followed by exposure to spatially uniform light. Our work on HDS is concerned with enhancing the diffraction efficiency of user selected very weak diffraction gratings by illumination with a single beam at the Bragg angle. Light in the illuminating beam is coupled into the diffracted beam and the two interfere to enhance the grating strength. In this way grating diffraction efficiency can be raised above a threshold so that a binary zero can be changed to binary one. A large number of identical weak holographic gratings may be multiplexed into the recording medium at the manufacturing stage, for user selection at the data recording stage. In this way consumer HDS systems could be made much more simply and cheaply than at present.

  1. Note: Measurement of synchrotron radiation phase-space beam properties to verify astigmatism compensation in Fresnel zone plate focusing optics

    NASA Astrophysics Data System (ADS)

    Kagoshima, Yasushi; Miyagawa, Takamasa; Kagawa, Saki; Takeda, Shingo; Takano, Hidekazu

    2017-08-01

    The intensity distribution in phase space of an X-ray synchrotron radiation beamline was measured using a pinhole camera method, in order to verify astigmatism compensation by a Fresnel zone plate focusing optical system. The beamline is equipped with a silicon double crystal monochromator. The beam size and divergence at an arbitrary distance were estimated. It was found that the virtual source point was largely different between the vertical and horizontal directions, which is probably caused by thermal distortion of the monochromator crystal. The result is consistent with our astigmatism compensation by inclining a Fresnel zone plate.

  2. Fresnel Lens Solar Concentrator Design Based on Geometric Optics and Blackbody Radiation Equations

    NASA Technical Reports Server (NTRS)

    Watson, Michael D.; Jayroe, Robert, Jr.

    1999-01-01

    Fresnel lenses have been used for years as solar concentrators in a variety of applications. Several variables effect the final design of these lenses including: lens diameter, image spot distance from the lens, and bandwidth focused in the image spot. Defining the image spot as the geometrical optics circle of least confusion and applying blackbody radiation equations the spot energy distribution can be determined. These equations are used to design a fresnel lens to produce maximum flux for a given spot size, lens diameter, and image distance. This approach results in significant increases in solar efficiency over traditional single wavelength designs.

  3. Design and fabrication of Si-HDPE hybrid Fresnel lenses for infrared imaging systems.

    PubMed

    Manaf, Ahmad Rosli Abdul; Sugiyama, Tsunetoshi; Yan, Jiwang

    2017-01-23

    In this work, novel hybrid Fresnel lenses for infrared (IR) optical applications were designed and fabricated. The Fresnel structures were replicated from an ultraprecision diamond-turned aluminum mold to an extremely thin layer (tens of microns) of high-density polyethylene polymer, which was directly bonded onto a flat single-crystal silicon wafer by press molding without using adhesives. Night mode imaging results showed that the fabricated lenses were able to visualize objects in dark fields with acceptable image quality. The capability of the lenses for thermography imaging was also demonstrated. This research provides a cost-effective method for fabricating ultrathin IR optical components.

  4. Scattering of S waves diffracted at the core-mantle boundary: forward modelling

    NASA Astrophysics Data System (ADS)

    Emery, Valérie; Maupin, Valérie; Nataf, Henri-Claude

    1999-11-01

    The lowermost 200-300 km of the Earth's mantle, known as the D'' layer, is an extremely complex and heterogeneous region where transfer processes between the core and the mantle take place. Diffracted S waves propagate over large distances and are very sensitive to the velocity structure of this region. Strong variations of ampli-tudes and waveforms are observed on recordings from networks of broad-band seismic stations. We perform forward modelling of diffracted S waves in laterally heterogeneous structures in order to analyse whether or not these observations can be related to lateral inhomogeneities in D''. We combine the diffraction due to the core and the scattering due to small-scale volumetric heterogeneities (10-100 km) by coupling single scattering (Born approximation) with the Langer approximation, which describes Sdiff wave propagation. The influence on the direct as well as on the scattered wavefields of the CMB as well as of possible tunnelling in the core or in D'' is fully accounted for. The SH and the SV components of the diffracted waves are analysed, as well as their coupling. The modelling is applied in heterogeneous models with different geometries: isolated heterogeneities, vertical cylinders, horizontal inhomogeneities and random media. Amplitudes of scattered waves are weak and only velocity perturbations of the order of 10 per cent over a volume of 240 x 240 x 300 km3 produce visible effects on seismograms. The two polarizations of Sdiff have different radial sensitivities, the SH components being more sensitive to heterogeneities closer to the CMB. However, we do not observe significant time-shifts between the two components similar to those produced by anisotropy. The long-period Sdiff have a poor lateral resolution and average the velocity perturbations in their Fresnel zone. Random small-scale heterogeneities with +/- 10 per cent velocity contrast in the layer therefore have little effect on Sdiff, in contrast to their effect on PKIKP.

  5. Self-pumped Gaussian beam-coupling and stimulated backscatter due to reflection gratings in a photorefractive material

    NASA Astrophysics Data System (ADS)

    Saleh, Mohammad Abu

    2007-05-01

    When overlapping monochromatic light beams interfere in a photorefractive material, the resulting intensity fringes create a spatially modulated charge distribution. The resulting refractive index grating may cause power transfer from one beam (the pump) to the other beam (the signal). In a special case of the reflection grating geometry, the Fresnel reflection of the pump beam from the rear surface of the crystal is used as the signal beam. It has been noted that for this self-pumped, contra-directional two-beam coupling (SPCD-TBC) geometry, the coupling efficiency seems to be strongly dependent on the focal position and spot size, which is attributed to diffraction and the resulting change in the spatial overlaps between the pump and signal. In this work a full diffraction based simulation of SPCD-TBC for a Gaussian beam is developed with a novel algorithm. In a related context involving reflection gratings, a particular phenomenon named six-wave mixing has received some interest in the photorefractive research. The generation of multiple waves during near-oblique incidence of a 532 nm weakly focused laser light on photorefractive iron doped lithium niobate in a typical reflection geometry configuration is studied. It is shown that these waves are produced through two-wave coupling (self-diffraction) and four-wave mixing (parametric diffraction). One of these waves, the stimulated photorefractive backscatter produced from parametric diffraction, contains the self-phase conjugate. The dynamics of six-wave mixing, and their dependence on crystal parameters, angle of incidence, and pump power are analyzed. A novel order analysis of the interaction equations provides further insight into experimental observations in the steady state. The quality of the backscatter is evaluated through image restoration, interference experiments, and visibility measurement. Reduction of two-wave coupling may significantly improve the quality of the self-phase conjugate.

  6. NASA Tech Briefs, January 2008

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Topics covered include: Induction Charge Detector with Multiple Sensing Stages; Generic Helicopter-Based Testbed for Surface Terrain Imaging Sensors; Robot Electronics Architecture; Optimized Geometry for Superconducting Sensing Coils; Sensing a Changing Chemical Mixture Using an Electronic Nose; Inertial Orientation Trackers with Drift Compensation; Microstrip Yagi Antenna with Dual Aperture-Coupled Feed; Patterned Ferroelectric Films for Tunable Microwave Devices; Micron-Accurate Laser Fresnel-Diffraction Ranging System; Efficient G(sup 4)FET-Based Logic Circuits; Web-Enabled Optoelectronic Particle-Fallout Monitor; SiO2/TiO2 Composite for Removing Hg from Combustion Exhaust; Lightweight Tanks for Storing Liquefied Natural Gas; Hybrid Wound Filaments for Greater Resistance to Impacts; Making High-Tensile-Strength Amalgam Components; Bonding by Hydroxide-Catalyzed Hydration and Dehydration; Balanced Flow Meters without Moving Parts; Deflection-Compensating Beam for Use inside a Cylinder; Four-Point-Latching Microactuator; Curved Piezoelectric Actuators for Stretching Optical Fibers; Tunable Optical Assembly with Vibration Dampening; Passive Porous Treatment for Reducing Flap Side-Edge Noise; Cylindrical Piezoelectric Fiber Composite Actuators; Patterning of Indium Tin Oxide Films; Gimballed Shoulders for Friction Stir Welding; Improved Thermal Modulator for Gas Chromatography; Nuclear-Spin Gyroscope Based on an Atomic Co-Magnetometer; Utilizing Ion-Mobility Data to Estimate Molecular Masses; Optical Displacement Sensor for Sub-Hertz Applications; Polarization/Spatial Combining of Laser-Diode Pump Beams; Spatial Combining of Laser-Diode Beams for Pumping an NPRO; Algorithm Optimally Orders Forward-Chaining Inference Rules; Project Integration Architecture; High Power Amplifier and Power Supply; Estimating Mixing Heights Using Microwave Temperature Profiler; and Multiple-Cone Sunshade for a Spaceborne Telescope.

  7. High Dynamic Range (Δn) Two-Stage Photopolymers via Enhanced Solubility of a High Refractive Index Acrylate Writing Monomer.

    PubMed

    Alim, Marvin D; Glugla, David J; Mavila, Sudheendran; Wang, Chen; Nystrom, Philip D; Sullivan, Amy C; McLeod, Robert R; Bowman, Christopher N

    2018-01-10

    Holographic photopolymers capable of high refractive index modulation (Δn) on the order of 10 -2 are integral for the fabrication of functional holographic optical elements that are useful in a myriad of optical applications. In particular, to address the deficiency of suitable high refractive index writing monomers for use in two-stage holographic formulations, here we report a novel high refractive index writing monomer, 1,3-bis(phenylthio)-2-propyl acrylate (BPTPA), simultaneously possessing enhanced solubility in a low refractive index (n = 1.47) urethane matrix. When examined in comparison to a widely used high refractive index monomer, 2,4,6-tribromophenyl acrylate, BPTPA exhibited superior solubility in a stage 1 urethane matrix of approximately 50% with a 20% higher refractive index increase per unit amount of the writing monomer for stage 2 polymerizations. Formulations with 60 wt % loading of BPTPA exhibit a peak-to-mean holographic Δn ≈ 0.029 without obvious deficiencies in transparency, color, or scatter. To the best of our knowledge, this value is the highest reported in the peer-reviewed literature for a transmission hologram. The capabilities and versatility of BPTPA-based formulations are demonstrated at varying length scales via demonstrative refractive index gradient structure examples including direct laser write, projection mask lithography of a 1″ diameter Fresnel lens, and ∼100% diffraction efficiency volume transmission holograms with a 1 μm fringe spacing in 11 μm thick samples.

  8. Simulation of optical interstellar scintillation

    NASA Astrophysics Data System (ADS)

    Habibi, F.; Moniez, M.; Ansari, R.; Rahvar, S.

    2013-04-01

    Aims: Stars twinkle because their light propagates through the atmosphere. The same phenomenon is expected on a longer time scale when the light of remote stars crosses an interstellar turbulent molecular cloud, but it has never been observed at optical wavelengths. The aim of the study described in this paper is to fully simulate the scintillation process, starting from the molecular cloud description as a fractal object, ending with the simulations of fluctuating stellar light curves. Methods: Fast Fourier transforms are first used to simulate fractal clouds. Then, the illumination pattern resulting from the crossing of background star light through these refractive clouds is calculated from a Fresnel integral that also uses fast Fourier transform techniques. Regularisation procedure and computing limitations are discussed, along with the effect of spatial and temporal coherency (source size and wavelength passband). Results: We quantify the expected modulation index of stellar light curves as a function of the turbulence strength - characterised by the diffraction radius Rdiff - and the projected source size, introduce the timing aspects, and establish connections between the light curve observables and the refractive cloud. We extend our discussion to clouds with different structure functions from Kolmogorov-type turbulence. Conclusions: Our study confirms that current telescopes of ~4 m with fast-readout, wide-field detectors have the capability of discovering the first interstellar optical scintillation effects. We also show that this effect should be unambiguously distinguished from any other type of variability through the observation of desynchronised light curves, simultaneously measured by two distant telescopes.

  9. Some More Simple Laser Experiments for the Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Yap, F. Y.

    1969-01-01

    Describes three elementary optics experiments using a laser instead of conventional light sources. Experiments illustrate the Fresnel-Arago law, elliptical polarization, double refraction and polarization in calcite, and interference by a Fresnel biprism. Because of the high intensity of the laser beam, these experiments lend themselves very well…

  10. Shack-Hartmann Phasing of Segmented Telescopes: Systematic Effects from Lenslet Arrays

    NASA Technical Reports Server (NTRS)

    Troy, Mitchell; Chanan, Gary; Roberts, Jennifer

    2010-01-01

    The segments in the Keck telescopes are routinely phased using a Shack-Hartmann wavefront sensor with sub-apertures that span adjacent segments. However, one potential limitation to the absolute accuracy of this technique is that it relies on a lenslet array (or a single lens plus a prism array) to form the subimages. These optics have the potential to introduce wavefront errors and stray reflections at the subaperture level that will bias the phasing measurement. We present laboratory data to quantify this effect, using measured errors from Keck and two other lenslet arrays. In addition, as part of the design of the Thirty Meter Telescope Alignment and Phasing System we present a preliminary investigation of a lenslet-free approach that relies on Fresnel diffraction to form the subimages at the CCD. Such a technique has several advantages, including the elimination of lenslet aberrations.

  11. Towards do-it-yourself planar optical components using plasmon-assisted etching.

    PubMed

    Chen, Hao; Bhuiya, Abdul M; Ding, Qing; Johnson, Harley T; Toussaint, Kimani C

    2016-01-27

    In recent years, the push to foster increased technological innovation and basic scientific and engineering interest from the broadest sectors of society has helped to accelerate the development of do-it-yourself (DIY) components, particularly those related to low-cost microcontroller boards. The attraction with DIY kits is the simplification of the intervening steps going from basic design to fabrication, albeit typically at the expense of quality. We present herein plasmon-assisted etching as an approach to extend the DIY theme to optics, specifically the table-top fabrication of planar optical components. By operating in the design space between metasurfaces and traditional flat optical components, we employ arrays of Au pillar-supported bowtie nanoantennas as a template structure. To demonstrate, we fabricate a Fresnel zone plate, diffraction grating and holographic mode converter--all using the same template. Applications to nanotweezers and fabricating heterogeneous nanoantennas are also shown.

  12. Towards do-it-yourself planar optical components using plasmon-assisted etching

    NASA Astrophysics Data System (ADS)

    Chen, Hao; Bhuiya, Abdul M.; Ding, Qing; Johnson, Harley T.; Toussaint, Kimani C., Jr.

    2016-01-01

    In recent years, the push to foster increased technological innovation and basic scientific and engineering interest from the broadest sectors of society has helped to accelerate the development of do-it-yourself (DIY) components, particularly those related to low-cost microcontroller boards. The attraction with DIY kits is the simplification of the intervening steps going from basic design to fabrication, albeit typically at the expense of quality. We present herein plasmon-assisted etching as an approach to extend the DIY theme to optics, specifically the table-top fabrication of planar optical components. By operating in the design space between metasurfaces and traditional flat optical components, we employ arrays of Au pillar-supported bowtie nanoantennas as a template structure. To demonstrate, we fabricate a Fresnel zone plate, diffraction grating and holographic mode converter--all using the same template. Applications to nanotweezers and fabricating heterogeneous nanoantennas are also shown.

  13. Towards do-it-yourself planar optical components using plasmon-assisted etching

    PubMed Central

    Chen, Hao; Bhuiya, Abdul M.; Ding, Qing; Johnson, Harley T.; Toussaint Jr, Kimani C.

    2016-01-01

    In recent years, the push to foster increased technological innovation and basic scientific and engineering interest from the broadest sectors of society has helped to accelerate the development of do-it-yourself (DIY) components, particularly those related to low-cost microcontroller boards. The attraction with DIY kits is the simplification of the intervening steps going from basic design to fabrication, albeit typically at the expense of quality. We present herein plasmon-assisted etching as an approach to extend the DIY theme to optics, specifically the table-top fabrication of planar optical components. By operating in the design space between metasurfaces and traditional flat optical components, we employ arrays of Au pillar-supported bowtie nanoantennas as a template structure. To demonstrate, we fabricate a Fresnel zone plate, diffraction grating and holographic mode converter—all using the same template. Applications to nanotweezers and fabricating heterogeneous nanoantennas are also shown. PMID:26814026

  14. Biopatterning of Silk Proteins for Soft Micro-optics.

    PubMed

    Pal, Ramendra K; Kurland, Nicholas E; Wang, Congzhou; Kundu, Subhas C; Yadavalli, Vamsi K

    2015-04-29

    Silk proteins from spiders and silkworms have been proposed as outstanding candidates for soft micro-optic and photonic applications because of their optical transparency, unique biological properties, and mechanical robustness. Here, we present a method to form microstructures of the two constituent silk proteins, fibroin and sericin for use as an optical biomaterial. Using photolithography, chemically modified silk protein photoresists are patterned in 2D arrays of periodic patterns and Fresnel zone plates. Angle-dependent iridescent colors are produced in these periodic micropatterns because of the Bragg diffraction. Silk protein photolithography can used to form patterns on different substrates including flexible sheets with features of any shape with high fidelity and resolution over large areas. Finally, we show that these mechanically stable and transparent iridescent architectures are also completely biodegradable. This versatile and scalable technique can therefore be used to develop biocompatible, soft micro-optic devices that can be degraded in a controlled manner.

  15. Unconventional Magnetic Domain Structure in the Ferromagnetic Phase of MnP Single Crystals

    NASA Astrophysics Data System (ADS)

    Koyama, Tsukasa; Yano, Shin-ichiro; Togawa, Yoshihiko; Kousaka, Yusuke; Mori, Shigeo; Inoue, Katsuya; Kishine, Jun-ichiro; Akimitsu, Jun

    2012-04-01

    We have studied ferromagnetic (FM) structures in the FM phase of MnP single crystals by low-temperature Lorentz transmission electron microscopy and small-angle electron diffraction analysis. In Lorentz Fresnel micrographs, striped FM domain structures were observed at an external magnetic field less than 10 Oe in specimens with the ab-plane in their plane. From real- and reciprocal-space analyses, it was clearly identified that striped FM domains oriented to the c-axis appear with Bloch-type domain walls in the b-direction and order regularly along the a-axis with a constant separation less than 100 nm. Moreover, the magnetic chirality reverses in alternate FM domain walls. These specific spin configuration of striped FM domains will affect the magnetic phase transition from the FM phase to the proper screw spiral phase at low temperature or to the FAN phase in magnetic fields in MnP.

  16. Fiber-optic miniature sensor for in situ temperature monitoring of curing composite material

    NASA Astrophysics Data System (ADS)

    Sampath, Umesh; Kim, Dae-gil; Kim, Hyunjin; Song, Minho

    2018-04-01

    This study proposes a fiber-optic temperature sensor with a single-mode fiber tip covered with a thermo-sensitive polymer resin. The temperature is sensed by measuring the Fresnel reflection from the optical fiber/polymer interface. Because the thermo-optic coefficients differ between the optical fiber and the polymer, the in situ temperature can be measured even in curing composite materials. In initial experiments, the proposed sensor successfully measured and recovered the temperature information. The measured sensor data were linearly correlated, with an R2 exceeding 0.99. The standard deviation in the long-term measurements of constant temperature was 2.6%. The durability and stability of the sensor head material in long-term operation was validated by Fourier transform infrared spectroscopy and X-ray diffraction analysis. In further experiments, the suggested miniature temperature sensor obtained the internal temperatures of curing composite material over a wide range (30-110 °C).

  17. Mode-medium instability and its correction with a Gaussian-reflectivity mirror

    NASA Technical Reports Server (NTRS)

    Webster, K. L.; Sung, C. C.

    1992-01-01

    A high-power CO2 laser beam is known to deteriorate after a few microseconds due to a mode-medium instability (MMI) which results from an intensity-dependent heating rate related to the vibrational-to-translational decay of the upper and lower CO2 lasing levels. An iterative numerical technique is developed to model the time evolution of the beam as it is affected by the MMI. The technique is used to study the MMI in an unstable CO2 resonator with a hard-edge output mirror for different parameters like the Fresnel number and the gas density. The results show that the mode of the hard edge unstable resonator deteriorates because of the diffraction ripples in the mode. A Gaussian-reflectivity mirror was used to correct the MMI. This mirror produces a smoother intensity profile which significantly reduces the effects of the MMI. Quantitative results on peak density variation and beam quality are presented.

  18. Mode-medium instability and its correction with a Gaussian reflectivity mirror

    NASA Technical Reports Server (NTRS)

    Webster, K. L.; Sung, C. C.

    1990-01-01

    A high power CO2 laser beam is known to deteriorate after a few microseconds due to a mode-medium instability (MMI) which results from an intensity dependent heating rate related to the vibrational-to-translational decay of the upper and lower CO2 lasing levels. An iterative numerical technique is developed to model the time evolution of the beam as it is affected by the MMI. The technique is used to study the MMI in an unstable CO2 resonator with a hard-edge output mirror for different parameters like the Fresnel number and the gas density. The results show that the mode of the hard edge unstable resonator deteriorates because of the diffraction ripples in the mode. A Gaussian-reflectivity mirror was used to correct the MMI. This mirror produces a smoother intensity profile which significantly reduces the effects of the MMI. Quantitative results on peak density variation and beam quality are presented.

  19. MASSIM, the Milli-Arc-Second Structure Imager

    NASA Technical Reports Server (NTRS)

    Skinner, Gerry

    2008-01-01

    The MASSIM (Milli-Arc-Second Structure Imager) mission will use a set of achromatic diffractive-refractive Fresnel lenses to achieve imaging in the X-ray band with unprecedented angular resolution. It has been proposed for study within the context of NASA's "Astrophysics Strategic Mission Concept Studies" program. Lenses on an optics spacecraft will focus 5-11 keV X-rays onto detectors on a second spacecraft flying in formation 1000 km away. It will have a point-source sensitivity comparable with that of the current generation of major X-ray observatories (Chandra, XMM-Newton) but an angular resolution some three orders of magnitude better. MASSIM is optimized for the study of jets and other phenomena that occur in the immediate vicinity of black holes and neutron stars. It can also be used for studying other phenomena on the milli-arc-second scale, such as those involving proto-stars, the surfaces and surroundings of nearby active stars and interacting winds.

  20. A Fresnel zone plate collimator: potential and aberrations

    NASA Astrophysics Data System (ADS)

    Menz, Benedikt; Bräuninger, Heinrich; Burwitz, Vadim; Hartner, Gisela; Predehl, Peter

    2015-09-01

    A collimator, that parallelizes an X-ray beam, provides a significant improvement of the metrology to characterize X-ray optics for space instruments at MPE's PANTER X-ray test facility. A Fresnel zone plate was selected as a collimating optic, as it meets a good angular resolution < 0.1n combined with a large active area > 10 cm2. Such an optic is ideally suited to illuminate Silicon Pore Optic (SPO) modules as proposed for ATHENA. This paper provides the theoretic description of such a Fresnel zone plate especially considering resolution and efficiency. Based on the theoretic results the collimator setup performance is analyzed and requirements for fabrication and alignment are calculated.

  1. Elastic and inelastic electrons in the double-slit experiment: A variant of Feynman's which-way set-up.

    PubMed

    Frabboni, Stefano; Gazzadi, Gian Carlo; Grillo, Vincenzo; Pozzi, Giulio

    2015-07-01

    Modern nanotechnology tools allowed us to prepare slits of 90 nm width and 450 nm spacing in a screen almost completely opaque to 200 keV electrons. Then by covering both slits with a layer of amorphous material and carrying out the experiment in a conventional transmission electron microscope equipped with an energy filter we can demonstrate that the diffraction pattern, taken by selecting the elastically scattered electrons, shows the presence of interference fringes, but with a bimodal envelope which can be accounted for by taking into account the non-constant thickness of the deposited layer. However, the intensity of the inelastically scattered electrons in the diffraction plane is very broad and at the limit of detectability. Therefore the experiment was repeated using an aluminum film and a microscope also equipped with a Schottky field emission gun. It was thus possible to observe also the image due to the inelastically scattered electron, which does not show interference phenomena both in the Fraunhofer or Fresnel regimes. If we assume that inelastic scattering through the thin layer covering the slits provides the dissipative process of interaction responsible for the localization mechanism, then these experiments can be considered a variant of the Feynman which-way thought experiment. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Solar concentrator modules with silicone-on-glass Fresnel lens panels and multijunction cells.

    PubMed

    Rumyantsev, Valery D

    2010-04-26

    High-efficiency multijunction (MJ) solar cells, being very expensive to manufacture, should only be used in combination with solar concentrators in terrestrial applications. An essential cost reduction of electric power produced by photovoltaic (PV) installations with MJ cells, may be expected by the creation of highly-effective, but inexpensive, elements for optical concentration and sun tracking. This article is an overview of the corresponding approach under development at the Ioffe Physical Technical Institute. The approach to R&D of the solar PV modules is based on the concepts of sunlight concentration by small-aperture area Fresnel lenses and "all-glass" module design. The small-aperture area lenses are arranged as a panel with silicone-on-glass structure where the glass plate serves as the front surface of a module. In turn, high-efficiency InGaP/(In)GaAs/Ge cells are arranged on a rear module panel mounted on a glass plate which functions as a heat sink and integrated protective cover for the cells. The developed PV modules and sun trackers are characterized by simple design, and are regarded as the prototypes for further commercialization.

  3. Free-form Fresnel RXI Köhler design with spectrum-splitting for photovoltaics

    NASA Astrophysics Data System (ADS)

    Buljan, M.; Benítez, P.; Mohedano, R.; Miñano, J. C.; Sun, Y.; Falicoff, W.; Vilaplana, J.; Chaves, J.; Biot, G.; López, J.

    2011-10-01

    Here we present a novel optical design of the high concentration photovoltaics (HPCV) nonimaging concentrator (>500x) with built-in spectrum splitting concept. The primary optical element (POE) is a flat Fresnel lens and the secondary optical element (SOE) is a free-form RXI-type concentrator with a band-pass filter embedded in it, both POE and SOE performing Köhler integration to produce light homogenization on the target. It uses the combination of a commercial concentration GaInP/GaInAs/Ge 3J cell and a concentration Back-Point-Contact (BPC) silicon cell for efficient spectral utilization, and external confinement techniques for recovering the 3J cell's reflection. Design targets equivalent cell efficiency ~46% using commercial 39% 3J and 26% Si cells, and CPV module efficiency greater than 38%, achieved at a concentration level larger than 500X and wide acceptance angle (+/-1°). A first proof-of concept receiver prototype has been manufactured using a simpler optical architecture (with a lower concentration, ~100x and lower simulated added efficiency), and experimental measurements have shown up to 39.8% 4J receiver efficiency using a 3J with peak efficiency of 36.9%.

  4. Fresnel representation of the Wigner function: an operational approach.

    PubMed

    Lougovski, P; Solano, E; Zhang, Z M; Walther, H; Mack, H; Schleich, W P

    2003-07-04

    We present an operational definition of the Wigner function. Our method relies on the Fresnel transform of measured Rabi oscillations and applies to motional states of trapped atoms as well as to field states in cavities. We illustrate this technique using data from recent experiments in ion traps [Phys. Rev. Lett. 76, 1796 (1996)

  5. Concentrating Solar Power Projects - Linear Fresnel Reflector Projects |

    Science.gov Websites

    Kimberlina solar thermal power plant, a linear Fresnel reflector system located near Bakersfield, California Solar Thermal Project eLLO Solar Thermal Project (Llo) IRESEN 1 MWe CSP-ORC pilot project Kimberlina Solar Thermal Power Plant (Kimberlina) Liddell Power Station Puerto Errado 1 Thermosolar Power Plant

  6. Two-wavelength ghost imaging through atmospheric turbulence.

    PubMed

    Shi, Dongfeng; Fan, Chengyu; Zhang, Pengfei; Shen, Hong; Zhang, Jinghui; Qiao, Chunhong; Wang, Yingjian

    2013-01-28

    Recent work has indicated that ghost imaging might find useful application in standoff sensing where atmospheric turbulence is a serious problem. There has been theoretical study of ghost imaging in the presence of turbulence. However, most work has addressed signal-wavelength ghost imaging. Two-wavelength ghost imaging through atmospheric turbulence is theoretically studied in this paper. Based on the extended Huygens-Fresnel integral, the analytical expressions describing atmospheric turbulence effects on the point spread function (PSF) and field of view (FOV) are derived. The computational case is also reported.

  7. Electrically controlled lens and prism using nanoscale polymer-dispersed and polymer-networked liquid crystals

    NASA Astrophysics Data System (ADS)

    Fan, Yun Hsing; Ren, Hongwen; Wu, Shin Tson

    2004-05-01

    Inhomogeneous nanoscale polymer-dispersed liquid crystal (PDLC) devices having gradient nanoscale droplet distribution were fabricated. This gradient refractive index nanoscale (GRIN) PDLC film was obtained by exposing the LC/ monomer with a uniform ultraviolet (UV) light through a patterned photomask. The monomer and LC were mixed at 70: 30 wt% ratio. The area exposed to a weaker UV intensity would produce a larger droplet size, and vice versa. Owing to the nanoscale LC droplets involved, the GRIN PDLC devices are highly transparent in the whole visible region. The gradient refractive index profile can be used as switchable prism gratings, Fresnel lens, and positive and negative lenses with tunable focal lengths. Such a GRIN PDLC device is a broadband device and independent of light polarization. The diffraction efficiency of the lens is controllable by the applied voltage. The major advantages of the GRIN PDLC devices are in simple fabrication process, polarization-independent, and fast switching speed, although the required driving voltage is higher than 100 Vrms. To lower the driving voltage, the technique of polymer-networked liquid crystal (PNLC) has been developed. The PNLC was also produced by exposing the LC/monomer mixture with a uniform UV light through a patterned photomask. However, the monomer concentration in PNLC is only around 2-5 wt%. The formed PNLC structure exhibits a gradient polymer network distribution. The LC in the regions stabilized by a higher polymer concentration exhibits a higher threshold voltage. By using this technique, prism grating, tunable electronic lens and Fresnel lens have been demonstrated. The driving voltage is around 10 Vrms. A drawback of this kind of device is polarization dependence. To overcome the polarization dependence, stacking two orthogonal homogeneous PNLC lens is considered.

  8. Huygens-Fresnel picture for electron-molecule elastic scattering★

    NASA Astrophysics Data System (ADS)

    Baltenkov, Arkadiy S.; Msezane, Alfred Z.

    2017-11-01

    The elastic scattering cross sections for a slow electron by C2 and H2 molecules have been calculated within the framework of the non-overlapping atomic potential model. For the amplitudes of the multiple electron scattering by a target the wave function of the molecular continuum is represented as a combination of a plane wave and two spherical waves generated by the centers of atomic spheres. This wave function obeys the Huygens-Fresnel principle according to which the electron wave scattering by a system of two centers is accompanied by generation of two spherical waves; their interaction creates a diffraction pattern far from the target. Each of the Huygens waves, in turn, is a superposition of the partial spherical waves with different orbital angular momenta l and their projections m. The amplitudes of these partial waves are defined by the corresponding phases of electron elastic scattering by an isolated atomic potential. In numerical calculations the s- and p-phase shifts are taken into account. So the number of interfering electron waves is equal to eight: two of which are the s-type waves and the remaining six waves are of the p-type with different m values. The calculation of the scattering amplitudes in closed form (rather than in the form of S-matrix expansion) is reduced to solving a system of eight inhomogeneous algebraic equations. The differential and total cross sections of electron scattering by fixed-in-space molecules and randomly oriented ones have been calculated as well. We conclude by discussing the special features of the S-matrix method for the case of arbitrary non-spherical potentials. Contribution to the Topical Issue "Low energy positron and electron interactions", edited by James Sullivan, Ron White, Michael Bromley, Ilya Fabrikant, and David Cassidy.

  9. Simulating first order optical systems—algorithms for and composition of discrete linear canonical transforms

    NASA Astrophysics Data System (ADS)

    Healy, John J.

    2018-01-01

    The linear canonical transforms (LCTs) are a parameterised group of linear integral transforms. The LCTs encompass a number of well-known transformations as special cases, including the Fourier transform, fractional Fourier transform, and the Fresnel integral. They relate the scalar wave fields at the input and output of systems composed of thin lenses and free space, along with other quadratic phase systems. In this paper, we perform a systematic search of all algorithms based on up to five stages of magnification, chirp multiplication and Fourier transforms. Based on that search, we propose a novel algorithm, for which we present numerical results. We compare the sampling requirements of three algorithms. Finally, we discuss some issues surrounding the composition of discrete LCTs.

  10. Multilayer Anti-Reflective Coating Development for PMMA Fresnel Lenses

    DTIC Science & Technology

    2010-06-07

    been sputter deposited on UV transparent polymethylmethacrylate (UVT-PMMA) windows. The amorphous coatings are deposited using reactive sputtering in a...SUBJECT TERMS Anti-reflective coatings, Fresnel lens, polymethylmethacrylate , PMMA 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18...high quality dielectric materials deposited on a variety of substrates including polymethylmethacrylate (PMMA)  Highly amorphous films achieved

  11. Experimental study of refrigeration performance based on linear Fresnel solar thermal photovoltaic system

    NASA Astrophysics Data System (ADS)

    Song, Jinghui; Yuan, Hui; Xia, Yunfeng; Kan, Weimin; Deng, Xiaowen; Liu, Shi; Liang, Wanlong; Deng, Jianhua

    2018-03-01

    This paper introduces the working principle and system constitution of the linear Fresnel solar lithium bromide absorption refrigeration cycle, and elaborates several typical structures of absorption refrigeration cycle, including single-effect, two-stage cycle and double-effect lithium bromide absorption refrigeration cycle A 1.n effect absorption chiller system based on the best parameters was introduced and applied to a linear Fresnel solar absorption chiller system. Through the field refrigerator performance test, the results show: Based on this heat cycle design and processing 1.n lithium bromide absorption refrigeration power up to 35.2KW, It can meet the theoretical expectations and has good flexibility and reliability, provides guidance for the use of solar thermal energy.

  12. Comparison-based optical study on a point-line-coupling-focus system with linear Fresnel heliostats.

    PubMed

    Dai, Yanjun; Li, Xian; Zhou, Lingyu; Ma, Xuan; Wang, Ruzhu

    2016-05-16

    Concentrating the concept of a beam-down solar tower with linear Fresnel heliostat (PLCF) is one of the feasible choices and has great potential in reducing spot size and improving optical efficiency. Optical characteristics of a PLCF system with the hyperboloid reflector are introduced and investigated theoretically. Taking into account solar position and optical surface errors, a Monte Carlo ray-tracing (MCRT) analysis model for a PLCF system is developed and applied in a comparison-based study on the optical performance between the PLCF system and the conventional beam-down solar tower system with flat and spherical heliostats. The optimal square facet of linear Fresnel heliostat is also proposed for matching with the 3D-CPC receiver.

  13. An analytical and experimental evaluation of the plano-cylindrical Fresnel lens solar concentrator

    NASA Technical Reports Server (NTRS)

    Hastings, L. J.; Allums, S. L.; Cosby, R. M.

    1976-01-01

    Plastic Fresnel lenses for solar concentration are attractive because of potential for low-cost mass production. An analytical and experimental evaluation of line-focusing Fresnel lenses with application potential in the 200 to 370 C range is reported. Analytical techniques were formulated to assess the solar transmission and imaging properties of a grooves-down lens. Experimentation was based primarily on a 56 cm-wide lens with f-number 1.0. A sun-tracking heliostat provided a non-moving solar source. Measured data indicated more spreading at the profile base than analytically predicted. The measured and computed transmittances were 85 and 87% respectively. Preliminary testing with a second lens (1.85 m) indicated that modified manufacturing techniques corrected the profile spreading problem.

  14. Seismic imaging of the Waltham Canyon fault, California: comparison of ray‐theoretical and Fresnel volume prestack depth migration

    USGS Publications Warehouse

    Bauer, Klaus; Ryberg, Trond; Fuis, Gary S.; Lüth, Stefan

    2013-01-01

    Near‐vertical faults can be imaged using reflected refractions identified in controlled‐source seismic data. Often theses phases are observed on a few neighboring shot or receiver gathers, resulting in a low‐fold data set. Imaging can be carried out with Kirchhoff prestack depth migration in which migration noise is suppressed by constructive stacking of large amounts of multifold data. Fresnel volume migration can be used for low‐fold data without severe migration noise, as the smearing along isochrones is limited to the first Fresnel zone around the reflection point. We developed a modified Fresnel volume migration technique to enhance imaging of steep faults and to suppress noise and undesired coherent phases. The modifications include target‐oriented filters to separate reflected refractions from steep‐dipping faults and reflections with hyperbolic moveout. Undesired phases like multiple reflections, mode conversions, direct P and S waves, and surface waves are suppressed by these filters. As an alternative approach, we developed a new prestack line‐drawing migration method, which can be considered as a proxy to an infinite frequency approximation of the Fresnel volume migration. The line‐drawing migration is not considering waveform information but requires significantly shorter computational time. Target‐oriented filters were extended by dip filters in the line‐drawing migration method. The migration methods were tested with synthetic data and applied to real data from the Waltham Canyon fault, California. The two techniques are applied best in combination, to design filters and to generate complementary images of steep faults.

  15. Optimization of insulation of a linear Fresnel collector

    NASA Astrophysics Data System (ADS)

    Ardekani, Mohammad Moghimi; Craig, Ken J.; Meyer, Josua P.

    2017-06-01

    This study presents a simulation based optimization study of insulation around the cavity receiver of a Linear Fresnel Collector. This optimization study focuses on minimizing heat losses from a cavity receiver (maximizing plant thermal efficiency), while minimizing insulation cross-sectional area (minimizing material cost and cavity dead load), which leads to a cheaper and thermally more efficient LFC cavity receiver.

  16. Note: Index of refraction measurement using the Fresnel equations.

    PubMed

    McClymer, J P

    2014-08-01

    The real part of the refractive index is measured from 1.30 to above 3.00 without the use of index matching fluids. This approach expands upon the Brewster angle technique as both S and P polarized lights are used and the full Fresnel equations fitted to the data to extract the index of refraction using nonlinear curve fitting.

  17. Certification and verification for Northrup Model NSC-01-0732 Fresnel lens concentrating solar collector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-03-01

    The certification and verification of the Northrup Model NSC-01-0732 Fresnel lens tracking solar collector are presented. A certification statement is included with signatures and a separate report on the structural analysis of the collector system. System verification against the Interim Performance Criteria are indicated by matrices with verification discussion, analysis, and enclosed test results.

  18. Effect of reflection losses on stationary dielectric-filled nonimaging concentrators

    NASA Astrophysics Data System (ADS)

    Madala, Srikanth; Boehm, Robert F.

    2016-10-01

    The effect of Fresnel reflection and total internal reflection (TIR) losses on the performance parameters in refractive solar concentrators has often been downplayed because most refractive solar concentrators are traditionally the imaging type, yielding a line or point image on the absorber surface when solely interacted with paraxial etendue ensured by solar tracking. Whereas, with refractive-type nonimaging solar concentrators that achieve two-dimensional (rectangular strip) focus or three-dimensional (circular or elliptical) focus through interaction with both paraxial and nonparaxial etendue within the acceptance angle, the Fresnel reflection and TIR losses are significant as they will affect the performance parameters and, thereby, energy collection. A raytracing analysis has been carried out to illustrate the effects of Fresnel reflection and TIR losses on four different types of stationary dielectric-filled nonimaging concentrators, namely V-trough, compound parabolic concentrator, compound elliptical concentrator, and compound hyperbolic concentrator. The refractive index (RI) of a dielectric fill material determines the acceptance angle of a solid nonimaging collector. Larger refractive indices yield larger acceptance angles and, thereby, larger energy collection. However, they also increase the Fresnel reflection losses. This paper also assesses the relative benefit of increasing RI from an energy collection standpoint.

  19. Solar powered desalination system using Fresnel lens

    NASA Astrophysics Data System (ADS)

    Sales, M. T. B. F.

    2016-11-01

    The Philippines is surrounded by coastal areas and these areas can be a potential source for potable water. This study aims to design and construct a solar powered desalination system using Fresnel lens. The experimental study was conducted using polluted salt water for the sample and desalination was carried out using the designed system. The desalination system was composed of the solar concentrator, solar still and the condenser system. The Fresnel lens was made of acrylic plastic and was an effective solar concentrator. Solar stills made of dark colored glass bottles were effective in absorbing the solar energy. The condenser system made of polybutylene and polystyrene were effective in condensing the vapor at ambient temperature. The shortest time of vaporization of the salt water was at 293 sec and the optimum angle of position of the lens was 36.42°. The amount of condensate collected was directly proportional to the amount of salt water in the solar still. The highest mean efficiency of the designed set-up was 34.82%. The water produced by the solar powered desalination system using Fresnel lens passed the standards set by WHO (World Health Organization) for drinking water.

  20. High diffraction efficiency of three-layer diffractive optics designed for wide temperature range and large incident angle.

    PubMed

    Mao, Shan; Cui, Qingfeng; Piao, Mingxu; Zhao, Lidong

    2016-05-01

    A mathematical model of diffraction efficiency and polychromatic integral diffraction efficiency affected by environment temperature change and incident angle for three-layer diffractive optics with different dispersion materials is put forward, and its effects are analyzed. Taking optical materials N-FK5 and N-SF1 as the substrates of multilayer diffractive optics, the effect on diffraction efficiency and polychromatic integral diffraction efficiency with intermediate materials POLYCARB is analyzed with environment temperature change as well as incident angle. Therefore, three-layer diffractive optics can be applied in more wide environmental temperature ranges and larger incident angles for refractive-diffractive hybrid optical systems, which can obtain better image quality. Analysis results can be used to guide the hybrid imaging optical system design for optical engineers.

  1. Optical Characterizations of Surface Polished Polycrystalline YAG (Yttrium Aluminum Garnet) Fibers (Postprint)

    DTIC Science & Technology

    2017-06-02

    Ho:YAG fiber. 0 0.5 1 1.5 20 0.01 0.02 0.03 0.04 0.05 0.06 Input Power (W) O ut pu t P ow er (W ) Fresnel+Fresnel HR+Fresnel HR+70% R HR+90% R...1 2 3 4 5 6 7 8 9 10 11 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Input Power (W) O ut pu t P ow er (W ) y = 0.07*x - 0.011 50% duty cycle CW linear...1979). [4] Aggarwal, R. L ., Ripin, D. J., Ochoa, J. R. and Fan, T. Y., “Measurement of thermos-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3

  2. A perfect Fresnel acoustic reflector implemented by a Fano-resonant metascreen

    NASA Astrophysics Data System (ADS)

    Amin, M.; Siddiqui, O.; Farhat, M.; Khelif, A.

    2018-04-01

    We propose a perfectly reflecting acoustic metasurface which is designed by replacing the curved segments of the traditional Fresnel reflector by flat Fano-resonant sub-wavelength unit cells. To preserve the original Fresnel focusing mechanism, the unit cell phase follows a specific phase profile which is obtained by applying the generalized Snell's law and Fermat's principle. The reflected curved phase fronts are thus created at the air-metasurface boundary by tailoring the metasurface dispersion as dictated by Huygens' principle. Since the unit cells are implemented by sub-wavelength double slit-shaped cavity resonators, the impinging sound waves are perfectly reflected producing acoustic focusing with negligible absorption. We use plane-wave solution and full-wave simulations to demonstrate the focusing effects. The simulation results closely follow the analytical predictions.

  3. Optical design of a LED searchlight system

    NASA Astrophysics Data System (ADS)

    Gong, Chen; Xu, Haiping; Liang, Jinhua; Liu, Yunfei; Yuan, Zengquan

    2018-01-01

    A 1200m visible searchlight system is designed based on photometry and application of geometric optics. To generate intensity distribution of this relatively powerful light beam we propose to use a high power LED and several refractive optical elements, which are composed of two plane-convex lenses and a conventional Fresnel lens. Two plane-convex lenses enable refraction of the side rays from the LED to the front direction which incident on the Fresnel lens. Fresnel lens, in its turn, concentrate the light flux and provide a nearly collimated beam to meet the requirement of forming a well-illuminated area across the road in the far field. Simulation data shows that this searchlight allow generating an appropriate illumination distribution for the long range requirements. A proof-of-concept prototype producing acceptable illuminance is developed.

  4. Progress In Fresnel-Köhler Concentrators

    NASA Astrophysics Data System (ADS)

    Mohedano, Rubén; Cvetković, Aleksandra; Benítez, Pablo; Chaves, Julio; Miñano, Juan C.; Zamora, Pablo; Hernandez, Maikel; Vilaplana, Juan

    2011-12-01

    The Fresnel Köhler (FK) concentrator was first presented in 2008. Since then, various CPV companies have adopted this technology as base for their future commercial product. The key for this rapid penetration is a mixture of simplicity (the FK is essentially a Fresnel lens concentrator, a technology that dominates the market) and excellent performance: high concentration without giving up large manufacturing/aiming tolerances, enabling high efficiency even at the array level. All these features together have a great potential to lower energy costs. This work shows recent results and progress regarding this device, covering new design features, measurements and tests along with first performance achievements at the array level (pilot 6.5 Kwp plant). The work also discusses the potential impact of the FK enhanced performance on the Levelized Cost Of Electricity (LCOE).

  5. Ti/Al multilayer zone plate and Bragg-Fresnel lens.

    PubMed

    Koike, M; Suzuki, I H; Komiya, S; Amemiya, Y

    1998-05-01

    By using a helicon plasma sputtering technique, a one-dimensional Ti/Al multilayer zone plate with an outermost layer width of 76 nm has been successfully fabricated. A Bragg-Fresnel lens has been made by combining this zone plate with a Ge(422) crystal. Comparison of the Ti/Al multilayer zone plate with the Ag/Al zone plate is discussed in terms of focusing efficiency.

  6. Optical sectioning using a digital Fresnel incoherent-holography-based confocal imaging system

    PubMed Central

    Kelner, Roy; Katz, Barak; Rosen, Joseph

    2015-01-01

    We propose a new type of confocal microscope using Fresnel incoherent correlation holography (FINCH). Presented here is a confocal configuration of FINCH using a phase pinhole and point illumination that is able to suppress out-of-focus information from the recorded hologram and hence combine the super-resolution capabilities of FINCH with the sectioning capabilities of confocal microscopy. PMID:26413560

  7. Liquid crystal true 3D displays for augmented reality applications

    NASA Astrophysics Data System (ADS)

    Li, Yan; Liu, Shuxin; Zhou, Pengcheng; Chen, Quanming; Su, Yikai

    2018-02-01

    Augmented reality (AR) technology, which integrates virtual computer-generated information into the real world scene, is believed to be the next-generation human-machine interface. However, most AR products adopt stereoscopic 3D display technique, which causes the accommodation-vergence conflict. To solve this problem, we have proposed two approaches. The first is a multi-planar volumetric display using fast switching polymer-stabilized liquid crystal (PSLC) films. By rapidly switching the films between scattering and transparent states while synchronizing with a high-speed projector, the 2D slices of a 3D volume could be displayed in time sequence. We delved into the research on developing high-performance PSLC films in both normal mode and reverse mode; moreover, we also realized the demonstration of four-depth AR images with correct accommodation cues. For the second approach, we realized a holographic AR display using digital blazed gratings and a 4f system to eliminate zero-order and higher-order noise. With a 4k liquid crystal on silicon device, we achieved a field of view (FOV) of 32 deg. Moreover, we designed a compact waveguidebased holographic 3D display. In the design, there are two holographic optical elements (HOEs), each of which functions as a diffractive grating and a Fresnel lens. Because of the grating effect, holographic 3D image light is coupled into and decoupled out of the waveguide by modifying incident angles. Because of the lens effect, the collimated zero order light is focused at a point, and got filtered out. The optical power of the second HOE also helps enlarge FOV.

  8. Simulations of far-field optical beam quality influenced by the thermal distortion of the secondary mirror for high-power laser system

    NASA Astrophysics Data System (ADS)

    Guo, Ruhai; Chen, Ning; Zhuang, Xinyu; Wang, Bing

    2015-02-01

    In order to research the influence on the beam quality due to thermal deformation of the secondary mirror in the high power laser system, the theoretical simulation study is performed. Firstly, three typical laser power 10kW, 50kW and 100kW with the wavelength 1.064μm are selected to analyze thermal deformation of mirror through the finite element analyze of thermodynamics instantaneous method. Then the wavefront aberration can be calculated by ray-tracing theory. Finally, focus spot radius,beam quality (BQ) of far-filed beam can be calculated and comparably analyzed by Fresnel diffraction integration. The simulation results show that with the increasing laser power, the optical aberration of beam director gets worse, the far-field optical beam quality decrease, which makes the laser focus spot broadening and the peak optical intensity of center decreasing dramatically. Comparing the clamping ring and the three-point clamping, the former is better than the latter because the former only induces the rotation symmetric deformation and the latter introduces additional astigmatism. The far-field optical beam quality can be improved partly by simply adjusting the distance between the main mirror and the secondary mirror. But the far-field power density is still the one tenth as that without the heat distortion of secondary mirror. These results can also provide the reference to the thermal aberration analyze for high power laser system and can be applied to the field of laser communication system and laser weapon etc.

  9. Average intensity and coherence properties of a partially coherent Lorentz-Gauss beam propagating through oceanic turbulence

    NASA Astrophysics Data System (ADS)

    Liu, Dajun; Wang, Guiqiu; Wang, Yaochuan

    2018-01-01

    Based on the Huygens-Fresnel integral and the relationship of Lorentz distribution and Hermite-Gauss function, the average intensity and coherence properties of a partially coherent Lorentz-Gauss beam propagating through oceanic turbulence have been investigated by using numerical examples. The influences of beam parameters and oceanic turbulence on the propagation properties are also discussed in details. It is shown that the partially coherent Lorentz-Gauss beam with smaller coherence length will spread faster in oceanic turbulence, and the stronger oceanic turbulence will accelerate the spreading of partially coherent Lorentz-Gauss beam in oceanic turbulence.

  10. Optofluidic solar concentrators using electrowetting tracking: Concept, design, and characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, JT; Park, S; Chen, CL

    2013-03-01

    We introduce a novel optofluidic solar concentration system based on electrowetting tracking. With two immiscible fluids in a transparent cell, we can actively control the orientation of fluid fluid interface via electrowetting. The naturally-formed meniscus between the two liquids can function as a dynamic optical prism for solar tracking and sunlight steering. An integrated optofluidic solar concentrator can be constructed from the liquid prism tracker in combination with a fixed and static optical condenser (Fresnel lens). Therefore, the liquid prisms can adaptively focus sunlight on a concentrating photovoltaic (CPV) cell sitting on the focus of the Fresnel lens as themore » sun moves. Because of the unique design, electrowetting tracking allows the concentrator to adaptively track both the daily and seasonal changes of the sun's orbit (dual-axis tracking) without bulky, expensive and inefficient mechanical moving parts. This approach can potentially reduce capital costs for CPV and increases operational efficiency by eliminating the power consumption of mechanical tracking. Importantly, the elimination of bulky tracking hardware and quiet operation will allow extensive residential deployment of concentrated solar power. In comparison with traditional silicon-based photovoltaic (PV) solar cells, the electrowetting-based self-tracking technology will generate,similar to 70% more green energy with a 50% cost reduction. (C) 2013 Elsevier Ltd. All rights reserved.« less

  11. Diffracted wavefield by an arbitrary aperture from Maggi-Rubinowicz transformation

    NASA Astrophysics Data System (ADS)

    Ganci, S.

    2008-01-01

    Fraunhofer diffraction patterns through apertures in opaque screens are the cases of most interest in optics. The major purpose of this paper is to establish a general and explicit formula for calculating diffracted wavefield from Maggi-Rubinowicz transformation. The 2-D integration (Rayleigh-Sommerfeld or Helmholtz-Kirchhoff integral formulas) is reduced to a 1-D integration over the rim of the aperture. Some examples for elliptical and polygonal apertures are given.

  12. Solitary waves of surface plasmon polariton via phase shifts under Doppler broadening and Kerr nonlinearity

    NASA Astrophysics Data System (ADS)

    Ahmad, S.; Ahmad, A.; Bacha, B. A.; Khan, A. A.; Abdul Jabar, M. S.

    2017-12-01

    Surface Plasmon Polaritons (SPPs) are theoretically investigated at the interface of a dielectric metal and gold. The output pulse from the dielectric is used as the input pulse for the generation of SPPs. The SPPs show soliton-like behavior at the interface. The solitary form of a SPP is maintained under the effects of Kerr nonlinearity, Doppler broadening and Fresnel dragging whereas its phase shift is significantly modified. A 0.3radian phase shift is calculated in the presence of both Kerr nonlinearity and Fresnel dragging in the absence of plasma motion. The phase shift is enhanced to 60radian due to the combined effect of Doppler broadening, Kerr nonlinearity and Fresnel dragging. The results may have significant applications in nano-photonics, optical tweezers, photovoltaic devices, plasmonster and sensing technology.

  13. An integral equation formulation for the diffraction from convex plates and polyhedra.

    PubMed

    Asheim, Andreas; Svensson, U Peter

    2013-06-01

    A formulation of the problem of scattering from obstacles with edges is presented. The formulation is based on decomposing the field into geometrical acoustics, first-order, and multiple-order edge diffraction components. An existing secondary-source model for edge diffraction from finite edges is extended to handle multiple diffraction of all orders. It is shown that the multiple-order diffraction component can be found via the solution to an integral equation formulated on pairs of edge points. This gives what can be called an edge source signal. In a subsequent step, this edge source signal is propagated to yield a multiple-order diffracted field, taking all diffraction orders into account. Numerical experiments demonstrate accurate response for frequencies down to 0 for thin plates and a cube. No problems with irregular frequencies, as happen with the Kirchhoff-Helmholtz integral equation, are observed for this formulation. For the axisymmetric scattering from a circular disc, a highly effective symmetric formulation results, and results agree with reference solutions across the entire frequency range.

  14. Features of Talbot effect on phase diffraction grating

    NASA Astrophysics Data System (ADS)

    Brazhnikov, Denis G.; Danko, Volodymyr P.; Kotov, Myhaylo M.; Kovalenko, Andriy V.

    2018-01-01

    The features of the Talbot effect using the phase diffraction gratings have been considered. A phase grating, unlike an amplitude grating, gives a constant light intensity in the observation plane at a distance multiple to half of the Talbot length ZT. In this case, the subject of interest consists in so-called fractional Talbot effect with the periodic intensity distribution observed in planes shifted from the position nZT/2 (the so-called Fresnel images). Binary phase diffraction gratings with varying phase steps have been investigated. Gratings were made photographically on holographic plates PFG-01. The phase shift was obtained by modulating the emulsion refraction index of the plates. Two types of gratings were used: a square grating with a fill factor of 0.5 and a checkerwise grating (square areas with a bigger and lower refractive index alternate in a checkerboard pattern). By the example of these gratings, the possibility of obtaining in the observation plane an image of a set of equidistant spots with a size smaller than the size of the phase-shifting elements of the grating (the so-called Talbot focusing) has been shown. Clear images of spots with a sufficient signal-to-noise ratio have been obtained for a square grating. Their period was equal to the period of the grating. For a grating with a checkerwise distribution of the refractive index, the spots have been located in positions corresponding to the centres of cells. In addition, the quality of the resulting pattern strongly depended on the magnitude of a grating phase step. As a result of the work, the possibility to obtain Talbot focusing has been shown and the use of this effect to wavefront investigation with a gradient sensor has been demonstrated.

  15. High-contrast imaging with an arbitrary aperture: active correction of aperture discontinuities

    NASA Astrophysics Data System (ADS)

    Pueyo, Laurent; Norman, Colin; Soummer, Rémi; Perrin, Marshall; N'Diaye, Mamadou; Choquet, Elodie

    2013-09-01

    We present a new method to achieve high-contrast images using segmented and/or on-axis telescopes. Our approach relies on using two sequential Deformable Mirrors to compensate for the large amplitude excursions in the telescope aperture due to secondary support structures and/or segment gaps. In this configuration the parameter landscape of Deformable Mirror Surfaces that yield high contrast Point Spread Functions is not linear, and non-linear methods are needed to find the true minimum in the optimization topology. We solve the highly non-linear Monge-Ampere equation that is the fundamental equation describing the physics of phase induced amplitude modulation. We determine the optimum configuration for our two sequential Deformable Mirror system and show that high-throughput and high contrast solutions can be achieved using realistic surface deformations that are accessible using existing technologies. We name this process Active Compensation of Aperture Discontinuities (ACAD). We show that for geometries similar to JWST, ACAD can attain at least 10-7 in contrast and an order of magnitude higher for future Extremely Large Telescopes, even when the pupil features a missing segment" . We show that the converging non-linear mappings resulting from our Deformable Mirror shapes actually damp near-field diffraction artifacts in the vicinity of the discontinuities. Thus ACAD actually lowers the chromatic ringing due to diffraction by segment gaps and strut's while not amplifying the diffraction at the aperture edges beyond the Fresnel regime and illustrate the broadband properties of ACAD in the case of the pupil configuration corresponding to the Astrophysics Focused Telescope Assets. Since details about these telescopes are not yet available to the broader astronomical community, our test case is based on a geometry mimicking the actual one, to the best of our knowledge.

  16. Born scattering of long-period body waves

    NASA Astrophysics Data System (ADS)

    Dalkolmo, Jörg; Friederich, Wolfgang

    2000-09-01

    The Born approximation is applied to the modelling of the propagation of deeply turning long-period body waves through heterogeneities in the lowermost mantle. We use an exact Green's function for a spherically symmetric earth model that also satisfies the appropriate boundary conditions at internal boundaries and the surface of the earth. The scattered displacement field is obtained by a numerical quadrature of the product of the Green's function, the exciting wavefield and structural perturbations. We study three examples: scattering of long-period P waves from a plume rising from the core-mantle boundary (CMB), generation of long-period precursors to PKIKP by strong, localized scatterers at the CMB, and propagation of core-diffracted P waves through large-scale heterogeneities in D''. The main results are as follows: (1) the signals scattered from a realistic plume are small with relative amplitudes of less than 2 per cent at a period of 20s, rendering plume detection a fairly difficult task; (2) strong heterogeneities at the CMB of appropriate size may produce observable long-period precursors to PKIKP in spite of the presence of a diffraction from the PKP-B caustic; (3) core-diffracted P waves (Pdiff) are sensitive to structure in D'' far off the geometrical ray path and also far beyond the entry and exit points of the ray into and out of D'' sensitivity kernels exhibit ring-shaped patterns of alternating sign reminiscent of Fresnel zones; (4) Pdiff also shows a non-negligible sensitivity to shear wave velocity in D'' (5) down to periods of 40s, the Born approximation is sufficiently accurate to allow waveform modelling of Pdiff through large-scale heterogeneities in D'' of up to 5 per cent.

  17. Mode/Medium Instability in CO2 Laser

    NASA Technical Reports Server (NTRS)

    Webster, K. L.; Sung, C. C.

    1992-01-01

    Report discribes theoretical study of model/medium instability (MMI) in CO2 laser. Purposes of study to extend, to small Fresnel numbers, previous study of MMI restricted to large Fresnel numbers and to study methods of previous studies, to suppress MMI. Method of primary interest involves replacement of hard edge output mirror in laser resonator with mirror, local reflectivity of which decreases with radial distance from optical axis according to Gaussian profile.

  18. Elastic medium equivalent to Fresnel's double-refraction crystal.

    PubMed

    Carcione, José M; Helbig, Klaus

    2008-10-01

    In 1821, Fresnel obtained the wave surface of an optically biaxial crystal, assuming that light waves are vibrations of the ether in which longitudinal vibrations (P waves) do not propagate. An anisotropic elastic medium mathematically analogous to Fresnel's crystal exists. The medium has four elastic constants: a P-wave modulus, associated with a spherical P wave surface, and three elastic constants, c(44), c(55), and c(66), associated with the shear waves, which are mathematically equivalent to the three dielectric permittivity constants epsilon(11), epsilon(22), and epsilon(33) as follows: mu(0)epsilon(11)<==>rho/c(44), mu(0)epsilon(22)<==>rho/c(55), mu(0)epsilon(33)<==>rho/c(66), where mu(0) is the magnetic permeability of vacuum and rho is the mass density. These relations also represent the equivalence between the elastic and electromagnetic wave velocities along the principal axes of the medium. A complete mathematical equivalence can be obtained by setting the P-wave modulus equal to zero, but this yields an unstable elastic medium (the hypothetical ether). To obtain stability the P-wave velocity has to be assumed infinite (incompressibility). Another equivalent Fresnel's wave surface corresponds to a medium with anomalous polarization. This medium is physically unstable even for a nonzero P-wave modulus.

  19. Fresnel transform phase retrieval from magnitude.

    PubMed

    Pitts, Todd A; Greenleaf, James F

    2003-08-01

    This report presents a generalized projection method for recovering the phase of a finite support, two-dimensional signal from knowledge of its magnitude in the spatial position and Fresnel transform domains. We establish the uniqueness of sampled monochromatic scalar field phase given Fresnel transform magnitude and finite region of support constraints for complex signals. We derive an optimally relaxed version of the algorithm resulting in a significant reduction in the number of iterations needed to obtain useful results. An advantage of using the Fresnel transform (as opposed to Fourier) for measurement is that the shift-invariance of the transform operator implies retention of object location information in the transformed image magnitude. As a practical application in the context of ultrasound beam measurement we discuss the determination of small optical phase shifts from near field optical intensity distributions. Experimental data are used to reconstruct the phase shape of an optical field immediately after propagating through a wide bandwidth ultrasonic pulse. The phase of each point on the optical wavefront is proportional to the ray sum of pressure through the ultrasound pulse (assuming low ultrasonic intensity). An entire pressure field was reconstructed in three dimensions and compared with a calibrated hydrophone measurement. The comparison is excellent, demonstrating that the phase retrieval is quantitative.

  20. Inverse-designed stretchable metalens with tunable focal distance

    NASA Astrophysics Data System (ADS)

    Callewaert, Francois; Velev, Vesselin; Jiang, Shizhou; Sahakian, Alan Varteres; Kumar, Prem; Aydin, Koray

    2018-02-01

    In this paper, we present an inverse-designed 3D-printed all-dielectric stretchable millimeter wave metalens with a tunable focal distance. A computational inverse-design method is used to design a flat metalens made of disconnected polymer building blocks with complex shapes, as opposed to conventional monolithic lenses. The proposed metalens provides better performance than a conventional Fresnel lens, using lesser amount of material and enabling larger focal distance tunability. The metalens is fabricated using a commercial 3D-printer and attached to a stretchable platform. Measurements and simulations show that the focal distance can be tuned by a factor of 4 with a stretching factor of only 75%, a nearly diffraction-limited focal spot, and with a 70% relative focusing efficiency, defined as the ratio between power focused in the focal spot and power going through the focal plane. The proposed platform can be extended for design and fabrication of multiple electromagnetic devices working from visible to microwave radiation depending on scaling of the devices.

  1. Generation of phase edge singularities by coplanar three-beam interference and their detection.

    PubMed

    Patorski, Krzysztof; Sluzewski, Lukasz; Trusiak, Maciej; Pokorski, Krzysztof

    2017-02-06

    In recent years singular optics has gained considerable attention in science and technology. Up to now optical vortices (phase point dislocations) have been of main interest. This paper presents the first general analysis of formation of phase edge singularities by coplanar three-beam interference. They can be generated, for example, by three-slit interference or self-imaging in the Fresnel diffraction field of a sinusoidal grating. We derive a general condition for the ratio of amplitudes of interfering beams resulting in phase edge dislocations, lateral separation of dislocations depends on this ratio as well. Analytically derived properties are corroborated by numerical and experimental studies. We develop a simple, robust, common path optical self-imaging configuration aided by a coherent tilted reference wave and spatial filtering. Finally, we propose an automatic fringe pattern analysis technique for detecting phase edge dislocations, based on the continuous wavelet transform. Presented studies open new possibilities for developing grating based sensing techniques for precision metrology of very small phase differences.

  2. Parallel computing of a digital hologram and particle searching for microdigital-holographic particle-tracking velocimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Satake, Shin-ichi; Kanamori, Hiroyuki; Kunugi, Tomoaki

    2007-02-01

    We have developed a parallel algorithm for microdigital-holographic particle-tracking velocimetry. The algorithm is used in (1) numerical reconstruction of a particle image computer using a digital hologram, and (2) searching for particles. The numerical reconstruction from the digital hologram makes use of the Fresnel diffraction equation and the FFT (fast Fourier transform),whereas the particle search algorithm looks for local maximum graduation in a reconstruction field represented by a 3D matrix. To achieve high performance computing for both calculations (reconstruction and particle search), two memory partitions are allocated to the 3D matrix. In this matrix, the reconstruction part consists of horizontallymore » placed 2D memory partitions on the x-y plane for the FFT, whereas, the particle search part consists of vertically placed 2D memory partitions set along the z axes.Consequently, the scalability can be obtained for the proportion of processor elements,where the benchmarks are carried out for parallel computation by a SGI Altix machine.« less

  3. Interlaced zone plate optics for hard X-ray imaging in the 10 nm range

    DOE PAGES

    Mohacsi, Istvan; Vartiainen, Ismo; Rosner, Benedikt; ...

    2017-03-08

    Multi-keV X-ray microscopy has been particularly successful in bridging the resolution gap between optical and electron microscopy. However, resolutions below 20 nm are still considered challenging, as high throughput direct imaging methods are limited by the availability of suitable optical elements. In order to bridge this gap, we present a new type of Fresnel zone plate lenses aimed at the sub-20 and the sub-10 nm resolution range. By extending the concept of double-sided zone plate stacking, we demonstrate the doubling of the effective line density and thus the resolution and provide large aperture, single- chip optical devices with 15 andmore » 7 nm smallest zone widths. The detailed characterization of these lenses shows excellent optical properties with focal spots down to 7.8 nm. Furthermore, beyond wave front characterization, the zone plates also excel in typical imaging scenarios, verifying their resolution close to their diffraction limited optical performance.« less

  4. High-contrast Imager for Complex Aperture Telescopes (HICAT): II. Design overview and first light results

    NASA Astrophysics Data System (ADS)

    N'Diaye, Mamadou; Choquet, Elodie; Egron, Sylvain; Pueyo, Laurent; Leboulleux, Lucie; Levecq, Olivier; Perrin, Marshall D.; Elliot, Erin; Wallace, J. Kent; Hugot, Emmanuel; Marcos, Michel; Ferrari, Marc; Long, Chris A.; Anderson, Rachel; DiFelice, Audrey; Soummer, Rémi

    2014-08-01

    We present a new high-contrast imaging testbed designed to provide complete solutions in wavefront sensing, control and starlight suppression with complex aperture telescopes. The testbed was designed to enable a wide range of studies of the effects of such telescope geometries, with primary mirror segmentation, central obstruction, and spiders. The associated diffraction features in the point spread function make high-contrast imaging more challenging. In particular the testbed will be compatible with both AFTA-like and ATLAST-like aperture shapes, respectively on-axis monolithic, and on-axis segmented telescopes. The testbed optical design was developed using a novel approach to define the layout and surface error requirements to minimize amplitude­ induced errors at the target contrast level performance. In this communication we compare the as-built surface errors for each optic to their specifications based on end-to-end Fresnel modelling of the testbed. We also report on the testbed optical and optomechanical alignment performance, coronagraph design and manufacturing, and preliminary first light results.

  5. Interlaced zone plate optics for hard X-ray imaging in the 10 nm range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohacsi, Istvan; Vartiainen, Ismo; Rosner, Benedikt

    Multi-keV X-ray microscopy has been particularly successful in bridging the resolution gap between optical and electron microscopy. However, resolutions below 20 nm are still considered challenging, as high throughput direct imaging methods are limited by the availability of suitable optical elements. In order to bridge this gap, we present a new type of Fresnel zone plate lenses aimed at the sub-20 and the sub-10 nm resolution range. By extending the concept of double-sided zone plate stacking, we demonstrate the doubling of the effective line density and thus the resolution and provide large aperture, single- chip optical devices with 15 andmore » 7 nm smallest zone widths. The detailed characterization of these lenses shows excellent optical properties with focal spots down to 7.8 nm. Furthermore, beyond wave front characterization, the zone plates also excel in typical imaging scenarios, verifying their resolution close to their diffraction limited optical performance.« less

  6. Interlaced zone plate optics for hard X-ray imaging in the 10 nm range

    PubMed Central

    Mohacsi, Istvan; Vartiainen, Ismo; Rösner, Benedikt; Guizar-Sicairos, Manuel; Guzenko, Vitaliy A.; McNulty, Ian; Winarski, Robert; Holt, Martin V.; David, Christian

    2017-01-01

    Multi-keV X-ray microscopy has been particularly successful in bridging the resolution gap between optical and electron microscopy. However, resolutions below 20 nm are still considered challenging, as high throughput direct imaging methods are limited by the availability of suitable optical elements. In order to bridge this gap, we present a new type of Fresnel zone plate lenses aimed at the sub-20 and the sub-10 nm resolution range. By extending the concept of double-sided zone plate stacking, we demonstrate the doubling of the effective line density and thus the resolution and provide large aperture, singlechip optical devices with 15 and 7 nm smallest zone widths. The detailed characterization of these lenses shows excellent optical properties with focal spots down to 7.8 nm. Beyond wave front characterization, the zone plates also excel in typical imaging scenarios, verifying their resolution close to their diffraction limited optical performance.

  7. Laser diode side-pumped Nd:YVO4 microchip laser with film-etched microcavity mirrors.

    PubMed

    Li, Jiyang; Niu, Yanxiong; Chen, Sanbin; Tan, Yidong

    2017-10-01

    Microchip lasers are applied as the light sources on various occasions with the end-pumping scheme. However, the vibration, the temperature drift, or the mechanical deformation of the pumping light in laser diodes in the end-pumping scheme will lead to instability in the microchip laser output, which causes errors and malfunctioning in the optic systems. In this paper, the side-pumping scheme is applied for improving the disturbance-resisting ability of the microchip laser. The transverse mode and the frequency purity of the laser output are tested. To ensure unicity in the frequency of the laser output, numerical simulations based on Fresnel-Kirchhoff diffraction theory are conducted on the parameters of the microchip laser cavity. Film-etching technique is applied to restrain the area of the film and form the microcavity mirrors. The laser output with microcavity mirrors is ensured to be in single frequency and with good beam quality, which is significant in the applications of microchip lasers as the light sources in optical systems.

  8. Interlaced zone plate optics for hard X-ray imaging in the 10 nm range

    NASA Astrophysics Data System (ADS)

    Mohacsi, Istvan; Vartiainen, Ismo; Rösner, Benedikt; Guizar-Sicairos, Manuel; Guzenko, Vitaliy A.; McNulty, Ian; Winarski, Robert; Holt, Martin V.; David, Christian

    2017-03-01

    Multi-keV X-ray microscopy has been particularly successful in bridging the resolution gap between optical and electron microscopy. However, resolutions below 20 nm are still considered challenging, as high throughput direct imaging methods are limited by the availability of suitable optical elements. In order to bridge this gap, we present a new type of Fresnel zone plate lenses aimed at the sub-20 and the sub-10 nm resolution range. By extending the concept of double-sided zone plate stacking, we demonstrate the doubling of the effective line density and thus the resolution and provide large aperture, singlechip optical devices with 15 and 7 nm smallest zone widths. The detailed characterization of these lenses shows excellent optical properties with focal spots down to 7.8 nm. Beyond wave front characterization, the zone plates also excel in typical imaging scenarios, verifying their resolution close to their diffraction limited optical performance.

  9. Numerical correction of distorted images in full-field optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Min, Gihyeon; Kim, Ju Wan; Choi, Woo June; Lee, Byeong Ha

    2012-03-01

    We propose a numerical method which can numerically correct the distorted en face images obtained with a full field optical coherence tomography (FF-OCT) system. It is shown that the FF-OCT image of the deep region of a biological sample is easily blurred or degraded because the sample has a refractive index (RI) much higher than its surrounding medium in general. It is analyzed that the focal plane of the imaging system is segregated from the imaging plane of the coherence-gated system due to the RI mismatch. This image-blurring phenomenon is experimentally confirmed by imaging the chrome pattern of a resolution test target through its glass substrate in water. Moreover, we demonstrate that the blurred image can be appreciably corrected by using the numerical correction process based on the Fresnel-Kirchhoff diffraction theory. The proposed correction method is applied to enhance the image of a human hair, which permits the distinct identification of the melanin granules inside the cortex layer of the hair shaft.

  10. Optically reconfigurable metasurfaces and photonic devices based on phase change materials

    NASA Astrophysics Data System (ADS)

    Wang, Qian; Rogers, Edward T. F.; Gholipour, Behrad; Wang, Chih-Ming; Yuan, Guanghui; Teng, Jinghua; Zheludev, Nikolay I.

    2016-01-01

    Photonic components with adjustable parameters, such as variable-focal-length lenses or spectral filters, which can change functionality upon optical stimulation, could offer numerous useful applications. Tuning of such components is conventionally achieved by either micro- or nanomechanical actuation of their constituent parts, by stretching or by heating. Here, we report a novel approach for making reconfigurable optical components that are created with light in a non-volatile and reversible fashion. Such components are written, erased and rewritten as two-dimensional binary or greyscale patterns into a nanoscale film of phase-change material by inducing a refractive-index-changing phase transition with tailored trains of femtosecond pulses. We combine germanium-antimony-tellurium-based films with a diffraction-limited resolution optical writing process to demonstrate a variety of devices: visible-range reconfigurable bichromatic and multi-focus Fresnel zone plates, a super-oscillatory lens with subwavelength focus, a greyscale hologram, and a dielectric metamaterial with on-demand reflection and transmission resonances.

  11. Extreme ultraviolet interferometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldberg, Kenneth A.

    EUV lithography is a promising and viable candidate for circuit fabrication with 0.1-micron critical dimension and smaller. In order to achieve diffraction-limited performance, all-reflective multilayer-coated lithographic imaging systems operating near 13-nm wavelength and 0.1 NA have system wavefront tolerances of 0.27 nm, or 0.02 waves RMS. Owing to the highly-sensitive resonant reflective properties of multilayer mirrors and extraordinarily tight tolerances set forth for their fabrication, EUV optical systems require at-wavelength EUV interferometry for final alignment and qualification. This dissertation discusses the development and successful implementation of high-accuracy EUV interferometric techniques. Proof-of-principle experiments with a prototype EUV point-diffraction interferometer for themore » measurement of Fresnel zoneplate lenses first demonstrated sub-wavelength EUV interferometric capability. These experiments spurred the development of the superior phase-shifting point-diffraction interferometer (PS/PDI), which has been implemented for the testing of an all-reflective lithographic-quality EUV optical system. Both systems rely on pinhole diffraction to produce spherical reference wavefronts in a common-path geometry. Extensive experiments demonstrate EUV wavefront-measuring precision beyond 0.02 waves RMS. EUV imaging experiments provide verification of the high-accuracy of the point-diffraction principle, and demonstrate the utility of the measurements in successfully predicting imaging performance. Complementary to the experimental research, several areas of theoretical investigation related to the novel PS/PDI system are presented. First-principles electromagnetic field simulations of pinhole diffraction are conducted to ascertain the upper limits of measurement accuracy and to guide selection of the pinhole diameter. Investigations of the relative merits of different PS/PDI configurations accompany a general study of the most significant sources of systematic measurement errors. To overcome a variety of experimental difficulties, several new methods in interferogram analysis and phase-retrieval were developed: the Fourier-Transform Method of Phase-Shift Determination, which uses Fourier-domain analysis to improve the accuracy of phase-shifting interferometry; the Fourier-Transform Guided Unwrap Method, which was developed to overcome difficulties associated with a high density of mid-spatial-frequency blemishes and which uses a low-spatial-frequency approximation to the measured wavefront to guide the phase unwrapping in the presence of noise; and, finally, an expedient method of Gram-Schmidt orthogonalization which facilitates polynomial basis transformations in wave-front surface fitting procedures.« less

  12. An analytical theory of radio-wave scattering from meteoric ionization - I. Basic equation

    NASA Astrophysics Data System (ADS)

    Pecina, P.

    2016-01-01

    We have developed an analytical theory of radio-wave scattering from ionization of meteoric origin. It is based on an integro-differential equation for the polarization vector, P, inside the meteor trail, representing an analytical solution of the set of Maxwell equations, in combination with a generalized radar equation involving an integral of the trail volume electron density, Ne, and P represented by an auxiliary vector, Q, taken over the whole trail volume. During the derivation of the final formulae, the following assumptions were applied: transversal as well as longitudinal dimensions of the meteor trail are small compared with the distances of the relevant trail point to both the transmitter and receiver and the ratio of these distances to the wavelength of the wave emitted by the radar is very large, so that the stationary-phase method can be employed for evaluation of the relevant integrals. Further, it is shown that in the case of sufficiently low electron density, Ne, corresponding to the case of underdense trails, the classical McKinley's radar equation results as a special case of the general theory. The same also applies regarding the Fresnel characteristics. Our approach is also capable of yielding solutions to the problems of the formation of Fresnel characteristics on trails having any electron density, forward scattering and scattering on trails immersed in the magnetic field. However, we have also shown that the geomagnetic field can be removed from consideration, due to its low strength. The full solution of the above integro-differential equation, valid for any electron volume densities, has been left to subsequent works dealing with this particular problem, due to its complexity.

  13. Analysis of Fresnel Zone Plates Focusing Dependence on Operating Frequency

    PubMed Central

    Fuster, José Miguel; Candelas, Pilar; Castiñeira-Ibáñez, Sergio; Pérez-López, Sergio

    2017-01-01

    The focusing properties of Fresnel Zone Plates (FZPs) against frequency are analyzed in this work. It is shown that the FZP focal length depends almost linearly on the operating frequency. Focal depth and focal distortion are also considered, establishing a limit on the frequency span at which the operating frequency can be shifted. An underwater FZP ultrasound focusing system is demonstrated, and experimental results agree with the theoretical analysis and simulations. PMID:29206137

  14. Chromatic aberration compensation in numerical reconstruction of digital holograms by Fresnel-Bluestein propagation.

    PubMed

    Hincapie, Diego; Velasquez, Daniel; Garcia-Sucerquia, Jorge

    2017-12-15

    In this Letter, we present a method for chromatic compensation in numerical reconstruction of digitally recorded holograms based on Fresnel-Bluestein propagation. The proposed technique is applied to correct the chromatic aberration that arises in the reconstruction of RGB holograms of both millimeter- and micrometer-sized objects. The results show the feasibility of this strategy to remove the wavelength dependence of the size of the numerically propagated wavefields.

  15. Earth orbital teleoperator visual system evaluation program

    NASA Technical Reports Server (NTRS)

    Frederick, P. N.; Shields, N. L., Jr.; Kirkpatrick, M., III

    1977-01-01

    Visual system parameters and stereoptic television component geometries were evaluated for optimum viewing. The accuracy of operator range estimation using a Fresnell stereo television system with a three dimensional cursor was examined. An operator's ability to align three dimensional targets using vidicon tube and solid state television cameras as part of a Fresnell stereoptic system was evaluated. An operator's ability to discriminate between varied color samples viewed with a color television system was determined.

  16. Comparison of Fresnel lenses and parabolic mirrors as solar energy concentrators.

    PubMed

    Lorenzo, E; Luque, A

    1982-05-15

    This paper compares the gain that can be achieved with a one- or two-stage concentrator, when the first stage is a Fresnel lens or a parabolic mirror, as a function of the luminosity of the concentrator. The results show that the achievable gain using a parabolic mirror is greater than that obtained using a flat or roof lens but is lower than that obtained using a curved lens.

  17. Fresnel-propagated imaging for the study of human tooth dentin by partially coherent x-ray tomography

    NASA Astrophysics Data System (ADS)

    Zabler, S.; Riesemeier, H.; Fratzl, P.; Zaslansky, P.

    2006-09-01

    Recent methods of phase imaging in x-ray tomography allow the visualization of features that are not resolved in conventional absorption microtomography. Of these, the relatively simple setup needed to produce Fresnel-propagated tomograms appears to be well suited to probe tooth-dentin where composition as well as microstructure vary in a graded manner. By adapting analytical propagation approximations we provide predictions of the form of the interference patterns in the 3D images, which we compare to numerical simulations as well as data obtained from measurements of water immersed samples. Our observations reveal details of the tubular structure of dentin, and may be evaluated similarly to conventional absorption tomograms. We believe this exemplifies the power of Fresnel-propagated imaging as a form of 3D microscopy, well suited to quantify gradual microstructural-variations in teeth and similar tissues.

  18. Progress on an external occulter testbed at flight Fresnel numbers

    NASA Astrophysics Data System (ADS)

    Kim, Yunjong; Sirbu, Dan; Galvin, Michael; Kasdin, N. Jeremy; Vanderbei, Robert J.

    2016-01-01

    An external occulter is a spacecraft flown along the line-of-sight of a space telescope to suppress starlight and enable high-contrast direct imaging of exoplanets. Laboratory verification of occulter designs is necessary to validate the optical models used to design and predict occulter performance. At Princeton, we have designed and built a testbed that allows verification of scaled occulter designs whose suppressed shadow is mathematically identical to that of space occulters. The occulter testbed uses 78 m optical propagation distance to realize the flight Fresnel numbers. We will use an etched silicon mask as the occulter. The occulter is illuminated by a diverging laser beam to reduce the aberrations from the optics before the occulter. Here, we present first light result of a sample design operating at a flight Fresnel number and the mechanical design of the testbed. We compare the experimental results with simulations that predict the ultimate contrast performance.

  19. Phase reconstruction using compressive two-step parallel phase-shifting digital holography

    NASA Astrophysics Data System (ADS)

    Ramachandran, Prakash; Alex, Zachariah C.; Nelleri, Anith

    2018-04-01

    The linear relationship between the sample complex object wave and its approximated complex Fresnel field obtained using single shot parallel phase-shifting digital holograms (PPSDH) is used in compressive sensing framework and an accurate phase reconstruction is demonstrated. It is shown that the accuracy of phase reconstruction of this method is better than that of compressive sensing adapted single exposure inline holography (SEOL) method. It is derived that the measurement model of PPSDH method retains both the real and imaginary parts of the Fresnel field but with an approximation noise and the measurement model of SEOL retains only the real part exactly equal to the real part of the complex Fresnel field and its imaginary part is completely not available. Numerical simulation is performed for CS adapted PPSDH and CS adapted SEOL and it is demonstrated that the phase reconstruction is accurate for CS adapted PPSDH and can be used for single shot digital holographic reconstruction.

  20. Secondary optics for Fresnel lens solar concentrators

    NASA Astrophysics Data System (ADS)

    Fu, Ling; Leutz, Ralf; Annen, Hans Philipp

    2010-08-01

    Secondary optics are used in concentrating photovoltaic (CPV) systems with Fresnel lens primaries to increase the optical system efficiency by catching refracted light that otherwise would miss the receiver, better the tracking tolerance (acceptance half-angle) and enhance the flux uniformity on the cell. Several refractive secondary optics under the same Fresnel lens primary are designed, analyzed and compared based on their optical performances, materials, manufacturability, manufacturing tolerancing and cost. The goal of this work is to show the basic two different design approaches statistical mixing as opposed to deterministic mixing. Caustics are elementary in the deterministic tailoring approach. We find that statistical mixing offers higher flexibility for the solar application. It is also shown that there are conventional, i.e. designs based on conic section ("half-egg") that work well as solar secondaries. It is also made clear that primary and secondary must be designed as optical train.

  1. Use of speckle for determining the response characteristics of Doppler imaging radars

    NASA Technical Reports Server (NTRS)

    Tilley, D. G.

    1986-01-01

    An optical model is developed for imaging optical radars such as the SAR on Seasat and the Shuttle Imaging Radar (SIR-B) by analyzing the Doppler shift of individual speckles in the image. The signal received at the spacecraft is treated in terms of a Fresnel-Kirchhoff integration over all backscattered radiation within a Huygen aperture at the earth. Account is taken of the movement of the spacecraft along the orbital path between emission and reception. The individual points are described by integration of the point source amplitude with a Green's function scattering kernel. Doppler data at each point furnishes the coordinates for visual representations. A Rayleigh-Poisson model of the surface scattering characteristics is used with Monte Carlo methods to generate simulations of Doppler radar speckle that compare well with Seasat SAR data SIR-B data.

  2. A transmitting antenna with hexagon illumination shape for four-color VLC

    NASA Astrophysics Data System (ADS)

    Liu, Kexin; Zhang, Lijun; Hu, Shanshan; Xing, Jichuan; Li, Ping'an

    2018-01-01

    This paper demonstrated a compact white light transmitting antenna based on four-color VLC system, which included an integrating rod and a Fresnel lens system. This paper mainly analyzed the homogenizer: the hexagon integrating rod. After simulation and optimizing, the size of this rod is designed as 60mm (length) x 4.35mm (D). As a result of experiments, this antenna which mixes RGBY-LEDs' beam into white light with high uniformity (67.18%), and illuminate the area of 0.75m x 0.75m at 1.77m transmission distance. The color temperature of the detection surface is 5583K, the chromatic aberration is 0.0021, compared with light source E of standard illumination, less than eye solution (0.005). Also, we verified that this antenna could ensure a stable SNR in mobile communication.

  3. Fresnel's original interpretation of complex numbers in 19th century optics

    NASA Astrophysics Data System (ADS)

    Karam, Ricardo

    2018-04-01

    In 1823, Fresnel published an original (physical) interpretation of complex numbers in his investigations of refraction and reflection of polarized light. This is arguably the first time that complex numbers were given a physical interpretation, which led to a better understanding of elliptical and circular polarizations. This rather unknown episode of the history of physics is described in this work, and some of the pedagogical lessons that can be extracted from it are discussed.

  4. Accuracy of meteoroid speeds determined using a Fresnel transform procedure

    NASA Astrophysics Data System (ADS)

    Campbell, L.; Elford, W. G.

    2006-03-01

    New methods of determining meteor speeds using radar are giving results with an accuracy of better that 1%. It is anticipated that this degree of precision will allow determinations of pre-atmospheric speeds of shower meteors as well as estimates of the density of the meteoroids. The next step is to determine under what conditions these new measurements are reliable. Errors in meteoroid speeds determined using a Fresnel transform procedure applied to radar meteor data are investigated. The procedure determines the reflectivity of a meteor trail as a function of position, by application of the Fresnel transform to the time series of a radar reflection from the trail observed at a single detection station. It has previously been shown that this procedure can be used to determine the speed of the meteoroid, by finding the assumed speed that gives a reflectivity image that best meets physical expectations. It has also been shown that speeds determined by this method agree with those from the well established "pre-t o phase" method when applied to reflections with a high signal to noise ratio. However, there is a discrepancy between the two methods for weaker reflections. A method to investigate the discrepancy is described and applied, with the finding that the speed determined by using the Fresnel transform procedure is more accurate for weaker reflections than that given by the "pre-t o phase" method.

  5. An evaluation of analog and numerical techniques for unsteady heat transfer measurement with thin-film gauges in transient facilities

    NASA Technical Reports Server (NTRS)

    George, William K.; Rae, William J.; Woodward, Scott H.

    1991-01-01

    The importance of frequency response considerations in the use of thin-film gages for unsteady heat transfer measurements in transient facilities is considered, and methods for evaluating it are proposed. A departure frequency response function is introduced and illustrated by an existing analog circuit. A Fresnel integral temperature which possesses the essential features of the film temperature in transient facilities is introduced and is used to evaluate two numerical algorithms. Finally, criteria are proposed for the use of finite-difference algorithms for the calculation of the unsteady heat flux from a sampled temperature signal.

  6. Symmetrical group theory for mathematical complexity reduction of digital holograms

    NASA Astrophysics Data System (ADS)

    Perez-Ramirez, A.; Guerrero-Juk, J.; Sanchez-Lara, R.; Perez-Ramirez, M.; Rodriguez-Blanco, M. A.; May-Alarcon, M.

    2017-10-01

    This work presents the use of mathematical group theory through an algorithm to reduce the multiplicative computational complexity in the process of creating digital holograms. An object is considered as a set of point sources using mathematical symmetry properties of both the core in the Fresnel integral and the image, where the image is modeled using group theory. This algorithm has multiplicative complexity equal to zero and an additive complexity ( k - 1) × N for the case of sparse matrices and binary images, where k is the number of pixels other than zero and N is the total points in the image.

  7. Security enhancement of optical encryption based on biometric array keys

    NASA Astrophysics Data System (ADS)

    Yan, Aimin; Wei, Yang; Zhang, Jingtao

    2018-07-01

    A novel optical image encryption method is proposed by using Dammann grating and biometric array keys. Dammann grating is utilized to create a 2D finite uniform-intensity spot array. In encryption, a fingerprint array is used as private encryption keys. An original image can be encrypted by a scanning Fresnel zone plate array. Encrypted signals are processed by an optical coherent heterodyne detection system. Biometric array keys and optical scanning cryptography are integrated with each other to enhance information security greatly. Numerical simulations are performed to demonstrate the feasibility and validity of this method. Analyses on key sensitivity and the resistance against to possible attacks are provided.

  8. Spatial and temporal pulse propagation for dispersive paraxial optical systems.

    PubMed

    Marcus, G

    2016-04-04

    The formalism for pulse propagation through dispersive paraxial optical systems first presented by Kostenbauder (IEEE J. Quant. Elec.261148-1157 (1990)) using 4 × 4 ray-pulse matrices is extended to 6 × 6 matrices and includes non-separable spatial-temporal couplings in both transverse dimensions as well as temporal dispersive effects up to a quadratic phase. The eikonal in a modified Huygens integral in the Fresnell approximation is derived and can be used to propagate pulses through complicated dispersive optical systems within the paraxial approximation. In addition, a simple formula for the propagation of ultrashort pulses having a Gaussian profile both spatially and temporally is presented.

  9. Wavelength-division multiplexed optical integrated circuit with vertical diffraction grating

    NASA Technical Reports Server (NTRS)

    Lang, Robert J. (Inventor); Forouhar, Siamak (Inventor)

    1994-01-01

    A semiconductor optical integrated circuit for wave division multiplexing has a semiconductor waveguide layer, a succession of diffraction grating points in the waveguide layer along a predetermined diffraction grating contour, a semiconductor diode array in the waveguide layer having plural optical ports facing the succession of diffraction grating points along a first direction, respective semiconductor diodes in the array corresponding to respective ones of a predetermined succession of wavelengths, an optical fiber having one end thereof terminated at the waveguide layer, the one end of the optical fiber facing the succession of diffraction grating points along a second direction, wherein the diffraction grating points are spatially distributed along the predetermined contour in such a manner that the succession of diffraction grating points diffracts light of respective ones of the succession of wavelengths between the one end of the optical fiber and corresponding ones of the optical ports.

  10. Simulation electromagnetic scattering on bodies through integral equation and neural networks methods

    NASA Astrophysics Data System (ADS)

    Lvovich, I. Ya; Preobrazhenskiy, A. P.; Choporov, O. N.

    2018-05-01

    The paper deals with the issue of electromagnetic scattering on a perfectly conducting diffractive body of a complex shape. Performance calculation of the body scattering is carried out through the integral equation method. Fredholm equation of the second time was used for calculating electric current density. While solving the integral equation through the moments method, the authors have properly described the core singularity. The authors determined piecewise constant functions as basic functions. The chosen equation was solved through the moments method. Within the Kirchhoff integral approach it is possible to define the scattered electromagnetic field, in some way related to obtained electrical currents. The observation angles sector belongs to the area of the front hemisphere of the diffractive body. To improve characteristics of the diffractive body, the authors used a neural network. All the neurons contained a logsigmoid activation function and weighted sums as discriminant functions. The paper presents the matrix of weighting factors of the connectionist model, as well as the results of the optimized dimensions of the diffractive body. The paper also presents some basic steps in calculation technique of the diffractive bodies, based on the combination of integral equation and neural networks methods.

  11. Characterization and Application of a Grazing Angle Objective for Quantitative Infrared Reflection Microspectroscopy

    NASA Technical Reports Server (NTRS)

    Pepper, Stephen V.

    1995-01-01

    A grazing angle objective on an infrared microspectrometer is studied for quantitative spectroscopy by considering the angular dependence of the incident intensity within the objective's angular aperture. The assumption that there is no angular dependence is tested by comparing the experimental reflectance of Si and KBr surfaces with the reflectance calculated by integrating the Fresnel reflection coefficient over the angular aperture under this assumption. Good agreement was found, indicating that the specular reflectance of surfaces can straight-forwardly be quantitatively integrated over the angular aperture without considering non-uniform incident intensity. This quantitative approach is applied to the thickness determination of dipcoated Krytox on gold. The infrared optical constants of both materials are known, allowing the integration to be carried out. The thickness obtained is in fair agreement with the value determined by ellipsometry in the visible. Therefore, this paper illustrates a method for more quantitative use of a grazing angle objective for infrared reflectance microspectroscopy.

  12. Free-form Fresnel RXI-RR Köhler design for high-concentration photovoltaics with spectrum-splitting

    NASA Astrophysics Data System (ADS)

    Buljan, M.; Benítez, P.; Mohedano, R.; Miñano, J. C.; Sun, Y.; Falicoff, W.; Vilaplana, J.; Chaves, J.; Biot, G.; López, J.

    2011-10-01

    Development of a novel HCPV nonimaging concentrator with high concentration (>500x) and built-in spectrum splitting concept is presented. It uses the combination of a commercial concentration GaInP/GaInAs/Ge 3J cell and a concentration Back-Point-Contact (BPC) silicon cell for efficient spectral utilization, and external confinement techniques for recovering the 3J cell's reflection. The primary optical element (POE) is a flat Fresnel lens and the secondary optical element (SOE) is a free-form RXI-type concentrator with a band-pass filter embedded in it - Both the POE and SOE performing Köhler integration to produce light homogenization on the receiver. The band-pass filter transmits the IR photons in the 900-1200 nm band to the silicon cell. A design target of an "equivalent" cell efficiency ~46% is predicted using commercial 39% 3J and 26% Si cells. A projected CPV module efficiency of greater than 38% is achievable at a concentration level larger than 500X with a wide acceptance angle of +/-1°. A first proof-of concept receiver prototype has been manufactured using a simpler optical architecture (with a lower concentration, ~100x and lower simulated added efficiency), and experimental measurements have shown up to 39.8% 4J receiver efficiency using a 3J cell with a peak efficiency of 36.9%.

  13. IOTA: integration optimization, triage and analysis tool for the processing of XFEL diffraction images.

    PubMed

    Lyubimov, Artem Y; Uervirojnangkoorn, Monarin; Zeldin, Oliver B; Brewster, Aaron S; Murray, Thomas D; Sauter, Nicholas K; Berger, James M; Weis, William I; Brunger, Axel T

    2016-06-01

    Serial femtosecond crystallography (SFX) uses an X-ray free-electron laser to extract diffraction data from crystals not amenable to conventional X-ray light sources owing to their small size or radiation sensitivity. However, a limitation of SFX is the high variability of the diffraction images that are obtained. As a result, it is often difficult to determine optimal indexing and integration parameters for the individual diffraction images. Presented here is a software package, called IOTA , which uses a grid-search technique to determine optimal spot-finding parameters that can in turn affect the success of indexing and the quality of integration on an image-by-image basis. Integration results can be filtered using a priori information about the Bravais lattice and unit-cell dimensions and analyzed for unit-cell isomorphism, facilitating an improvement in subsequent data-processing steps.

  14. Theory of fiber-optic, evanescent-wave spectroscopy and sensors

    NASA Astrophysics Data System (ADS)

    Messica, A.; Greenstein, A.; Katzir, A.

    1996-05-01

    A general theory for fiber-optic, evanescent-wave spectroscopy and sensors is presented for straight, uncladded, step-index, multimode fibers. A three-dimensional model is formulated within the framework of geometric optics. The model includes various launching conditions, input and output end-face Fresnel transmission losses, multiple Fresnel reflections, bulk absorption, and evanescent-wave absorption. An evanescent-wave sensor response is analyzed as a function of externally controlled parameters such as coupling angle, f number, fiber length, and diameter. Conclusions are drawn for several experimental apparatuses.

  15. Autostereoscopic projection viewer

    DOEpatents

    Toeppen, John S [Livermore, CA

    2006-12-19

    An autostereoscopic viewer is employed to produce aberration corrected images to simulate a virtual presence by employing pairs of projector optical components coupled with an image corrector plate and a field lens. Images are designed with magnifications and optical qualities and positioned at predetermined eyezones having controlled directional properties. The viewer's eyes are positioned in these eyezones. The size of these zones is related to the aperture of the projection lenses, the magnification produced by the Fresnel(s), and the optical properties and position of the image corrector plate.

  16. Long-term stability enhancement of Brillouin measurement in polymer optical fibers using amorphous fluoropolymer

    NASA Astrophysics Data System (ADS)

    Matsutani, Natsuki; Lee, Heeyoung; Mizuno, Yosuke; Nakamura, Kentaro

    2018-01-01

    For Brillouin-sensing applications, we develop a method for mitigating the Fresnel reflection at the perfluorinated-polymer-optical-fiber ends by covering them with an amorphous fluoropolymer (CYTOP, fiber core material) dissolved in a volatile solvent. Unlike the conventional method using water, even after solvent evaporation, the CYTOP layer remains, resulting in long-term Fresnel reduction. In addition, the high viscosity of the CYTOP solution is a practical advantage. The effectiveness of this method is experimentally proved by Brillouin measurement.

  17. Large-area soft x-ray projection lithography using multilayer mirrors structured by RIE

    NASA Astrophysics Data System (ADS)

    Rahn, Steffen; Kloidt, Andreas; Kleineberg, Ulf; Schmiedeskamp, Bernt; Kadel, Klaus; Schomburg, Werner K.; Hormes, F. J.; Heinzmann, Ulrich

    1993-01-01

    SXPL (soft X-ray projection lithography) is one of the most promising applications of X-ray reflecting optics using multilayer mirrors. Within our collaboration, such multilayer mirrors were fabricated, characterized, laterally structured and then used as reflection masks in a projecting lithography procedure. Mo/Si-multilayer mirrors were produced by electron beam evaporation in UHV under thermal treatment with an in-situ X-ray controlled thickness in the region of 2d equals 14 nm. The reflectivities measured at normal incidence reached up to 54%. Various surface analysis techniques have been applied in order to characterize and optimize the X-ray mirrors. The multilayers were patterned by reactive ion etching (RIE) with CF(subscript 4), using a photoresist as the etch mask, thus producing X-ray reflection masks. The masks were tested in the synchrotron radiation laboratory of the electron accelerator ELSA at the Physikalisches Institut of Bonn University. A double crystal X-ray monochromator was modified so as to allow about 0.5 cm(superscript 2) of the reflection mask to be illuminated by white synchrotron radiation. The reflected patterns were projected (with an energy of 100 eV) onto the resist (Hoechst AZ PF 514), which was mounted at an average distance of about 7 mm. In the first test-experiments, structure sizes down to 8 micrometers were nicely reproduced over the whole of the exposed area. Smaller structures were distorted by Fresnel-diffraction. The theoretically calculated diffraction images agree very well with the observed images.

  18. Fluorescent sensing with Fresnel microlenses for optofluidic systems

    NASA Astrophysics Data System (ADS)

    Siudzińska, Anna; Miszczuk, Andrzej; Marczak, Jacek; Komorowska, Katarzyna

    2017-05-01

    The concept of fluorescent sensing in a microchannel equipped with focusing light Fresnel lenses has been demonstrated. The concept employs a line or array of Fresnel lenses generating a line or array of focused light spots within a microfluidic channel, to increase the sensitivity of fluorescent signal detection in the system. We have presented efficient methods of master mold fabrication based on the lithography method and focused ion beam milling. The flexible microchannel was fabricated by an imprint process with new thiolene-epoxy resin with a good ability to replicate even submicron-size features. For final imprinted lenses, the measured background to peak signal level shows more than nine times the increase in brightness at the center of the focal spot for the green part of the spectrum (532 nm). The effectiveness of the microlenses in fluorescent-marked Escherichia coli bacteria was confirmed in a basic fluoroscope experiment, showing the increase of the sensitivity of the detection by the order of magnitude.

  19. Highly efficient solar-pumped Nd:YAG laser.

    PubMed

    Liang, Dawei; Almeida, Joana

    2011-12-19

    The recent progress in solar-pumped laser with Fresnel lens and Cr:Nd:YAG ceramic medium has revitalized solar laser researches, revealing a promising future for renewable reduction of magnesium from magnesium oxide. Here we show a big advance in solar laser collection efficiency by utilizing an economical Fresnel lens and a most widely used Nd:YAG single-crystal rod. The incoming solar radiation from the sun is focused by a 0.9 m diameter Fresnel lens. A dielectric totally internally reflecting secondary concentrator is employed to couple the concentrated solar radiation from the focal zone to a 4 mm diameter Nd:YAG rod within a conical pumping cavity. 12.3 W cw laser power is produced, corresponding to 19.3 W/m(2) collection efficiency, which is 2.9 times larger than the previous results with Nd:YAG single-crystal medium. Record-high slope efficiency of 3.9% is also registered. Laser beam quality is considerably improved by pumping a 3 mm diameter Nd:YAG rod.

  20. Analytical analysis of solar thermal collector with glass and Fresnel lens glazing

    NASA Astrophysics Data System (ADS)

    Zulkifle, Idris; Ruslan, Mohd Hafidz Hj; Othman, Mohd Yusof Hj; Ibarahim, Zahari

    2018-04-01

    Solar thermal collector is a system that converts solar radiation to heat. The heat will raise the temperature higher than the ambient temperature. Absorber and glazing are two important components in order to increase the temperature of the collector. The thermal absorber will release heat by convection and as radiation to the surrounding. These losses will be reduced by glazing. Other than that, glazing is beneficial for protecting the collector from dust and water. This study discusses about modelling of solar thermal collector effects of different mass flow rates with different glazing for V-groove flat plate solar collectors. The glazing used was the glass and linear Fresnel lens. Concentration ratio in this modelling was 1.3 for 0.1m solar collector thickness. Results show that solar collectors with linear Fresnel lens has the highest efficiency value of 71.18% compared to solar collectors with glass which has efficiency 54.10% with same operation conditions.

  1. Design of optical element combining Fresnel lens with microlens array for uniform light-emitting diode lighting.

    PubMed

    Wang, Guangzhen; Wang, Lili; Li, Fuli; Kong, Depeng

    2012-09-01

    One kind of optical element combining Fresnel lens with microlens array is designed simply for LED lighting based on geometrical optics and nonimaging optics. This design method imposes no restriction on the source intensity pattern. The designed element has compact construction and can produce multiple shapes of illumination distribution. Taking square lighting as an example, tolerance analysis is carried out to determine tolerance limits for applying the element in the assembly process. This element can produce on-axis lighting and off-axis lighting.

  2. Digital Model of Fourier and Fresnel Quantized Holograms

    NASA Astrophysics Data System (ADS)

    Boriskevich, Anatoly A.; Erokhovets, Valery K.; Tkachenko, Vadim V.

    Some models schemes of Fourier and Fresnel quantized protective holograms with visual effects are suggested. The condition to arrive at optimum relationship between the quality of reconstructed images, and the coefficient of data reduction about a hologram, and quantity of iterations in the reconstructing hologram process has been estimated through computer model. Higher protection level is achieved by means of greater number both bi-dimensional secret keys (more than 2128) in form of pseudorandom amplitude and phase encoding matrixes, and one-dimensional encoding key parameters for every image of single-layer or superimposed holograms.

  3. Spatial and temporal pulse propagation for dispersive paraxial optical systems

    DOE PAGES

    Marcus, G.

    2016-04-01

    The formalism for pulse propagation through dispersive paraxial optical systems first presented by Kostenbauder (IEEE J. Quant. Elec. 261148–1157 (1990)) using 4 × 4 ray-pulse matrices is extended to 6 × 6 matrices and includes non-separable spatial-temporal couplings in both transverse dimensions as well as temporal dispersive effects up to a quadratic phase. The eikonal in a modified Huygens integral in the Fresnell approximation is derived and can be used to propagate pulses through complicated dispersive optical systems within the paraxial approximation. Additionally, a simple formula for the propagation of ultrashort pulses having a Gaussian profile both spatially and temporallymore » is presented.« less

  4. Spatial and temporal pulse propagation for dispersive paraxial optical systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marcus, G.

    The formalism for pulse propagation through dispersive paraxial optical systems first presented by Kostenbauder (IEEE J. Quant. Elec. 261148–1157 (1990)) using 4 × 4 ray-pulse matrices is extended to 6 × 6 matrices and includes non-separable spatial-temporal couplings in both transverse dimensions as well as temporal dispersive effects up to a quadratic phase. The eikonal in a modified Huygens integral in the Fresnell approximation is derived and can be used to propagate pulses through complicated dispersive optical systems within the paraxial approximation. Additionally, a simple formula for the propagation of ultrashort pulses having a Gaussian profile both spatially and temporallymore » is presented.« less

  5. Wigner distribution function and kurtosis parameter of vortex beams propagating through turbulent atmosphere

    NASA Astrophysics Data System (ADS)

    Suo, Qiangbo; Han, Yiping; Cui, Zhiwei

    2017-09-01

    Based on the extended Huygens-Fresnel integral, the analytical expressions for the Wigner distribution function (WDF) and kurtosis parameter of partially coherent flat-topped vortex (PCFTV) beams propagating through atmospheric turbulence and free space are derived. The WDF and kurtosis parameter of PCFTV beams through turbulent atmosphere are discussed with numerical examples. The numerical results show that the beam quality depends on the structure constants, the inner scale turbulence, the outer scale turbulence, the spatial correlation length, the wave length and the beam order. PCFTV beams are less affected by turbulence than partially flat-topped coherent (PCFT) beams under the same conditions, and will be useful in free-space optical communications.

  6. MTF evaluation of in-line phase contrast imaging system

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoran; Gao, Feng; Zhao, Huijuan; Zhang, Limin; Li, Jiao; Zhou, Zhongxing

    2017-02-01

    X-ray phase contrast imaging (XPCI) is a novel method that exploits the phase shift for the incident X-ray to form an image. Various XPCI methods have been proposed, among which, in-line phase contrast imaging (IL-PCI) is regarded as one of the most promising clinical methods. The contrast of the interface is enhanced due to the introduction of the boundary fringes in XPCI, thus it is generally used to evaluate the image quality of XPCI. But the contrast is a comprehensive index and it does not reflect the information of image quality in the frequency range. The modulation transfer function (MTF), which is the Fourier transform of the system point spread function, is recognized as the metric to characterize the spatial response of conventional X-ray imaging system. In this work, MTF is introduced into the image quality evaluation of the IL-PCI system. Numerous simulations based on Fresnel - Kirchhoff diffraction theory are performed with varying system settings and the corresponding MTFs were calculated for comparison. The results show that MTF can provide more comprehensive information of image quality comparing to contrast in IL-PCI.

  7. A reformulation of the Λ-Φ diagram for the prediction of ocean acoustic fluctuation regimes.

    PubMed

    Colosi, John A

    2015-05-01

    The Λ-Φ diagram was a tool introduced in the late 1970s to predict ocean acoustic fluctuation regimes termed unsaturated, partially saturated, and fully saturated, where internal wave sound speed fluctuations play a dominant role. The Λ-Φ parameters reflect, respectively, the strength of diffraction and the root-mean-square phase fluctuation along a ray path. Oceanographic knowledge of the small scale part of the internal wave spectrum and high angle Fresnel zone formulations now allow a more stable and accurate calculation of these parameters. An empirical relation between the variance of log-intensity and Λ-Φ provides a more accurate border between the unsaturated regime and stronger fluctuations. The diagram is consistent with six short range, deep water experiments in the Pacific, Atlantic, and Arctic oceans with frequencies ranging from 75 to 16 000 Hz. The utility of the Λ-Φ diagram is that it provides one of the few means to inter-compare experiments at different geographic locations, and at different frequencies and ranges.

  8. Manipulation by multiple filamentation of subpicosecond TW KrF laser beam

    NASA Astrophysics Data System (ADS)

    Zvorykin, V. D.; Smetanin, I. V.; Ustinovskii, N. N.; Shutov, A. V.

    2018-05-01

    A self-focusing of TW-level subpicosecond UV KrF laser pulses in ambient air produces a few 100 randomly distributed filaments over 100-m propagation distance. A control of multiple filamentation process by a number of methods was demonstrated in the present work envisaging applications for a HV discharge guiding, remote excitation of an atmospheric air laser, MW radiation transfer by virtual plasma waveguide, as well as filamentation suppression to improve short pulse parameters in direct amplification scheme. Under the laser beam focusing, a multitude of filaments coalesced into a superfilament with highly increased intensity and plasma conductivity. A superradiant forward lasing was obtained in the superfilament around 1.07-µm wavelength of atmospheric nitrogen. A regular 2D array of a 100 superfilaments was configured over 20-m distance by Fresnel diffraction on periodic amplitude masks. Effective Kerr defocusing and a subsequent filaments suppression over 50-m distance was demonstrated in Xe due to 2-photon resonance of laser radiation with 6p state being accompanied by a narrow-angle coherent conical emission at 828-nm wavelength.

  9. Fundamentals and techniques of nonimaging optics for solar-energy concentration

    NASA Astrophysics Data System (ADS)

    Winston, R.; Ogallagher, J. J.

    1981-10-01

    The development of the theoretical formulation of nonimaging optical principles and the investigation of practical questions having to do with the implementation of newly developed designs for solar and other applications are discussed. Forms of ideal concentrators known at present as shapes which do not disturb the lines of flow of a vector field defining the so called vector lux J are discussed. A search for a differential equation (other than div J = 0) was unsuccessful in the geometrical optics framework. However, an extension to the physical optics domain based on new theories of radiometry in partially coherent light was initiated and appears more promising. Linear concentrator designs to reduce gap losses for tubular absorbers were analyzed in detail. Fresnel lenses and less conventional diffractive components (i.e. holograms) were studied. A ray trace optimization of two second stage concentrators was carried out. Experimental measurements and ray trace studies of the response of an actual concentrator shape and absorber configuration for a fabricated prototype shows that deviation from ideal behavior can be accurately modeled.

  10. X-Ray Diffractive Optics

    NASA Technical Reports Server (NTRS)

    Dennis, Brian; Li, Mary; Skinner, Gerald

    2013-01-01

    X-ray optics were fabricated with the capability of imaging solar x-ray sources with better than 0.1 arcsecond angular resolution, over an order of magnitude finer than is currently possible. Such images would provide a new window into the little-understood energy release and particle acceleration regions in solar flares. They constitute one of the most promising ways to probe these regions in the solar atmosphere with the sensitivity and angular resolution needed to better understand the physical processes involved. A circular slit structure with widths as fine as 0.85 micron etched in a silicon wafer 8 microns thick forms a phase zone plate version of a Fresnel lens capable of focusing approx. =.6 keV x-rays. The focal length of the 3-cm diameter lenses is 100 microns, and the angular resolution capability is better than 0.1 arcsecond. Such phase zone plates were fabricated in Goddard fs Detector Development Lab. (DDL) and tested at the Goddard 600-microns x-ray test facility. The test data verified that the desired angular resolution and throughput efficiency were achieved.

  11. Polarization effects associated with thermal processing of HY-80 structural steel using high-power laser diode array

    NASA Astrophysics Data System (ADS)

    Wu, Sheldon S. Q.; Baker, Bradford W.; Rotter, Mark D.; Rubenchik, Alexander M.; Wiechec, Maxwell E.; Brown, Zachary M.; Beach, Raymond J.; Matthews, Manyalibo J.

    2017-12-01

    Localized heating of roughened steel surfaces using highly divergent laser light emitted from high-power laser diode arrays was experimentally demonstrated and compared with theoretical predictions. Polarization dependence was analyzed using Fresnel coefficients to understand the laser-induced temperature rise of HY-80 steel plates under 383- to 612-W laser irradiation. Laser-induced, transient temperature distributions were directly measured using bulk thermocouple probes and thermal imaging. Finite-element analysis yielded quantitative assessment of energy deposition and heat transport in HY-80 steel using absorptivity as a tuning parameter. The extracted absorptivity values ranged from 0.62 to 0.75 for S-polarized and 0.63 to 0.85 for P-polarized light, in agreement with partially oxidized iron surfaces. Microstructural analysis using electron backscatter diffraction revealed a heat affected zone for the highest temperature conditions (612 W, P-polarized) as evidence of rapid quenching and an austenite to martensite transformation. The efficient use of diode arrays for laser-assisted advanced manufacturing technologies, such as hybrid friction stir welding, is discussed.

  12. Log-amplitude variance and wave structure function: A new perspective for Gaussian beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, W.B.; Ricklin, J.C.; Andrews, L.C.

    1993-04-01

    Two naturally linked pairs of nondimensional parameters are identified such that either pair, together with wavelength and path length, completely specifies the diffractive propagation environment for a lowest-order paraxial Gaussian beam. Both parameter pairs are intuitive, and within the context of locally homogeneous and isotropic turbulence they reflect the long-recognized importance of the Fresnel zone size in the behavior of Rytov propagation statistics. These parameter pairs, called, respectively, the transmitter and receiver parameters, also provide a change in perspective in the analysis of optical turbulence effects on Gaussian beams by unifying a number of behavioral traits previously observed or predicted,more » and they create an environment in which the determination of limiting interrelationships between beam forms is especially simple. The fundamental nature of the parameter pairs becomes apparent in the derived analytical expressions for the log-amplitude variance and the wave structure function. These expressions verify general optical turbulence-related characteristics predicted for Gaussian beams, provide additional insights into beam-wave behavior, and are convenient tools for beam-wave analysis. 22 refs., 10 figs., 2 tabs.« less

  13. Nanostructure Diffraction Gratings for Integrated Spectroscopy and Sensing

    NASA Technical Reports Server (NTRS)

    Guo, Junpeng (Inventor)

    2015-01-01

    The present disclosure pertains to metal or dielectric nanostructures of the subwavelength scale within the grating lines of optical diffraction gratings. The nanostructures have surface plasmon resonances or non-plasmon optical resonances. A linear photodetector array is used to capture the resonance spectra from one of the diffraction orders. The combined nanostructure super-grating and photodetector array eliminates the use of external optical spectrometers for measuring surface plasmon or optical resonance frequency shift caused by the presence of chemical and biological agents. The nanostructure super-gratings can be used for building integrated surface enhanced Raman scattering (SERS) spectrometers. The nanostructures within the diffraction grating lines enhance Raman scattering signal light while the diffraction grating pattern of the nanostructures diffracts Raman scattering light to different directions of propagation according to their wavelengths. Therefore, the nanostructure super-gratings allows for the use of a photodetector array to capture the surface enhanced Raman scattering spectra.

  14. Nanostructure Diffraction Gratings for Integrated Spectroscopy and Sensing

    NASA Technical Reports Server (NTRS)

    Guo, Junpeng (Inventor)

    2016-01-01

    The present disclosure pertains to metal or dielectric nanostructures of the subwavelength scale within the grating lines of optical diffraction gratings. The nanostructures have surface plasmon resonances or non-plasmon optical resonances. A linear photodetector array is used to capture the resonance spectra from one of the diffraction orders. The combined nanostructure super-grating and photodetector array eliminates the use of external optical spectrometers for measuring surface plasmon or optical resonance frequency shift caused by the presence of chemical and biological agents. The nanostructure super-gratings can be used for building integrated surface enhanced Raman scattering (SERS) spectrometers. The nanostructures within the diffraction grating lines enhance Raman scattering signal light while the diffraction grating pattern of the nanostructures diffracts Raman scattering light to different directions of propagation according to their wavelengths. Therefore, the nanostructure super-gratings allows for the use of a photodetector array to capture the surface enhanced Raman scattering spectra.

  15. Quasi-optic millimeter-wave device application of liquid crystal material by using porous PMMA matrix

    NASA Astrophysics Data System (ADS)

    Nose, T.; Watanabe, Y.; Kon, A.; Ito, R.; Honma, M.

    2018-02-01

    Recently, millimeter-waves (MMWs) have become indispensable for application in next-generation high-speed wireless communication i.e., 5G, in addition to conventional applications such as in automobile collision avoidance radars and airport security inspection systems. Some manageable devices to control MMW propagation will be necessary with the development of this new technology field. We believe that liquid crystal (LC) devices are one of the major candidates for such applications because it is known that LC materials are excellent electro-optic materials. However, as the wavelength of MMWs is extremely longer than the optics region, extremely thick LC layers are necessary if we choose the quasioptic approach to attain LC MMW control devices. Therefore, we adopt a PDLC structure to attain the extremely thick LC layers by using porous (polymethyl methacrylate) PMMA materials, which can be easily obtained using a solvent consisting of a mixture of ethanol/water and a little heating. In this work, we focus on Fresnel lens, which is an important quasi-optic device for MMW application, to introduce a tunable property by using LC materials. Here, we adopt the thin film deposition method to obtain a porous PMMA matrix with the aim of obtaining final composite structure based on the Fresnel substrate. First, the fundamental material properties of porous PMMA are investigated to control the microscopic porous structure. Then, the LC-MMW Fresnel lens substrate is prepared using a 3D printer, and the fundamental MMW focusing properties of the prototype composite Fresnel structure are investigated.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Michael K; Parish, Chad M

    Helium accumulation negatively impacts structural materials used in neutron-irradiated environments, such as fission and fusion reactors. Next-generation fission and fusion reactors will require structural materials, such as steels, resistant to large neutron doses yet see service temperatures in the range most affected by helium embrittlement. Previous work has indicated the difficulty of experimentally differentiating nanometer-sized helium bubbles from the Ti-Y-O rich nanoclustsers (NCs) in radiation-tolerant nanostructured ferritic alloys (NFAs). Because the NCs are expected to sequester helium away from grain boundaries and reduce embrittlement, experimental methods to study simultaneously the NC and bubble populations are needed. In this study, aberration-correctedmore » scanning transmission electron microscopy (STEM) results combining high-collection-efficiency X-ray spectrum images (SIs), multivariate statistical analysis (MVSA), and Fresnel-contrast bright-field STEM imaging have been used for such a purpose. Results indicate that Fresnel-contrast imaging, with careful attention to TEM-STEM reciprocity, differentiates bubbles from NCs, and MVSA of X-ray SIs unambiguously identifies NCs. Therefore, combined Fresnel-contrast STEM and X-ray SI is an effective STEM-based method to characterize helium-bearing NFAs.« less

  17. Design and research of focusable secondary microprism in concentrating photovoltaic module

    NASA Astrophysics Data System (ADS)

    Guo, Limin; Liu, Youqiang; Zhao, Guoming; Wang, Zhiyong

    2017-09-01

    Low tracking accuracy of tracker, wind induced vibration of structure and lens deformation by temperature lead to non-vertical incident irradiation to the Fresnel lens, which necessitates a secondary concentrator in actual engineering application of concentrating photovoltaic module. This paper adds a secondary focusable microprism between Fresnel lens and solar cells in order to improve optical efficiency. The 3D model of microprism is established by SOLIDWORDS and main parameters are optimized using ZEMAX. Results show that combination of Fresnel lens and focusable microprism achieves a higher energy when the secondary microprism upper spherical diameter is 18mm, the opposite side face included angle is 116°, and the side length of the bottom is 2.15mm. The highest energy of solar cell surface can reach 2.4998W, improving 33.2%, and the module height with the secondary microprism is 88mm, which reduces by 5.5mm without secondary microprism. Experimental results show that the optical efficiency of 400X concentrating module system is 88.67%, the acceptance angle is ±1.2°, the 400X module maximum output power is 144.7W.

  18. New dual asymmetric CEC linear Fresnel concentrator for evacuated tubular receivers

    NASA Astrophysics Data System (ADS)

    Canavarro, Diogo; Chaves, Julio; Collares-Pereira, Manuel

    2017-06-01

    Linear Fresnel Reflector concentrators (LFR) are a potential solution for low-cost electricity production. Nevertheless in order to become more competitive with other CSP (Concentrated Solar Power) technologies, in particular with the Parabolic Trough concentrator, their overall solar to electricity efficiencies must increase. A possible path to achieve this goal is to increase the concentration factor, hence increasing the working temperatures for higher thermodynamic efficiency (more energy collection) and decrease the total number of rows of the solar field (less parasitic losses and corresponding cost reduction). This paper presents a dual asymmetric CEC-type (Compound Elliptical Concentrator) LFR (Linear Fresnel Concentrator) for evacuated tubular receivers. The concentrator is designed for a high concentration factor, presenting an asymmetric configuration enabling a very compact solution. The CEC-type secondary mirror is introduced to accommodate very high concentration values with a wide enough acceptance-angle (augmenting optical tolerances) for simple mechanical tracking solutions, achieving a higher CAP (Concentration Acceptance Product) in comparison with conventional LFR solutions. The paper presents an optical and thermal analysis of the concentrator using two different locations, Faro (Portugal) and Hurghada (Egypt).

  19. Fast precalculated triangular mesh algorithm for 3D binary computer-generated holograms.

    PubMed

    Yang, Fan; Kaczorowski, Andrzej; Wilkinson, Tim D

    2014-12-10

    A new method for constructing computer-generated holograms using a precalculated triangular mesh is presented. The speed of calculation can be increased dramatically by exploiting both the precalculated base triangle and GPU parallel computing. Unlike algorithms using point-based sources, this method can reconstruct a more vivid 3D object instead of a "hollow image." In addition, there is no need to do a fast Fourier transform for each 3D element every time. A ferroelectric liquid crystal spatial light modulator is used to display the binary hologram within our experiment and the hologram of a base right triangle is produced by utilizing just a one-step Fourier transform in the 2D case, which can be expanded to the 3D case by multiplying by a suitable Fresnel phase plane. All 3D holograms generated in this paper are based on Fresnel propagation; thus, the Fresnel plane is treated as a vital element in producing the hologram. A GeForce GTX 770 graphics card with 2 GB memory is used to achieve parallel computing.

  20. Optics of two-stage photovoltaic concentrators with dielectric second stages.

    PubMed

    Ning, X; O'Gallagher, J; Winston, R

    1987-04-01

    Two-stage photovoltaic concentrators with Fresnel lenses as primaries and dielectric totally internally reflecting nonimaging concentrators as secondaries are discussed. The general design principles of such two-stage systems are given. Their optical properties are studied and analyzed in detail using computer ray trace procedures. It is found that the two-stage concentrator offers not only a higher concentration or increased acceptance angle, but also a more uniform flux distribution on the photovoltaic cell than the point focusing Fresnel lens alone. Experimental measurements with a two-stage prototype module are presented and compared to the analytical predictions.

  1. Fresnel formulas for the forced electromagnetic pulses and their application for optical-to-terahertz conversion in nonlinear crystals.

    PubMed

    Bakunov, M I; Maslov, A V; Bodrov, S B

    2007-11-16

    We show that the usual Fresnel formulas for a free-propagating pulse are not applicable for a forced terahertz electromagnetic pulse supported by an optical pulse at the end of a nonlinear crystal. The correct linear reflection and transmission coefficients that we derive show that such pulses can experience a gain or loss at the boundary. This energy change depends on linear dielectric constants only. We also predict a regime where a complete disappearance of the forced pulse under oblique incidence occurs, an effect that has no counterpart for free-propagating pulses.

  2. Investigation of micro-injection molding based on longitudinal ultrasonic vibration core.

    PubMed

    Qiu, Zhongjun; Yang, Xue; Zheng, Hui; Gao, Shan; Fang, Fengzhou

    2015-10-01

    An ultrasound-assisted micro-injection molding method is proposed to improve the rheological behavior of the polymer melt radically, and a micro-injection molding system based on a longitudinal ultrasonic vibration core is developed and employed in the micro-injection molding process of Fresnel lenses. The verification experiments show that the filling mold area of the polymer melt is increased by 6.08% to 19.12%, and the symmetric deviation of the Fresnel lens is improved 15.62% on average. This method improved the filling performance and replication quality of the polymer melt in the injection molding process effectively.

  3. Optics of two-stage photovoltaic concentrators with dielectric second stages

    NASA Astrophysics Data System (ADS)

    Ning, Xiaohui; O'Gallagher, Joseph; Winston, Roland

    1987-04-01

    Two-stage photovoltaic concentrators with Fresnel lenses as primaries and dielectric totally internally reflecting nonimaging concentrators as secondaries are discussed. The general design principles of such two-stage systems are given. Their optical properties are studied and analyzed in detail using computer ray trace procedures. It is found that the two-stage concentrator offers not only a higher concentration or increased acceptance angle, but also a more uniform flux distribution on the photovoltaic cell than the point focusing Fresnel lens alone. Experimental measurements with a two-stage prototype module are presented and compared to the analytical predictions.

  4. Nonimaging achromatic shaped Fresnel lenses for ultrahigh solar concentration.

    PubMed

    Languy, Fabian; Habraken, Serge

    2013-05-15

    The maximum concentration ratio achievable with a solar concentrator made of a single refractive primary optics is much more limited by the chromatic aberration than by any other aberration. Therefore achromatic doublets made with poly(methyl methacrylate) and polycarbonate are of great interest to enhance the concentration ratio and to achieve a spectrally uniform flux on the receiver. In this Letter, shaped achromatic Fresnel lenses are investigated. One lossless design is of high interest since it provides spectrally and spatially uniform flux without being affected by soiling problems. With this design an optical concentration ratio of about 8500× can be achieved.

  5. Photovoltaic applications of Compound Parabolic Concentrator (CPC)

    NASA Technical Reports Server (NTRS)

    Winston, R.

    1975-01-01

    The use of a compound parabolic concentrator as field collector, in conjunction with a primary focusing concentrator for photovoltaic applications is studied. The primary focusing concentrator can be a parabolic reflector, an array of Fresnel mirrors, a Fresnel lens or some other lens. Silicon solar cell grid structures are proposed that increase efficiency with concentration up to 10 suns. A ray tracing program has been developed to determine energy distribution at the exit of a compound parabolic concentrator. Projected total cost of a CPC/solar cell system will be between 4 and 5 times lower than for flat plate silicon cell arrays.

  6. Application of up-sampling and resolution scaling to Fresnel reconstruction of digital holograms.

    PubMed

    Williams, Logan A; Nehmetallah, Georges; Aylo, Rola; Banerjee, Partha P

    2015-02-20

    Fresnel transform implementation methods using numerical preprocessing techniques are investigated in this paper. First, it is shown that up-sampling dramatically reduces the minimum reconstruction distance requirements and allows maximal signal recovery by eliminating aliasing artifacts which typically occur at distances much less than the Rayleigh range of the object. Second, zero-padding is employed to arbitrarily scale numerical resolution for the purpose of resolution matching multiple holograms, where each hologram is recorded using dissimilar geometric or illumination parameters. Such preprocessing yields numerical resolution scaling at any distance. Both techniques are extensively illustrated using experimental results.

  7. Optical computed tomography utilizing a rotating mirror and Fresnel lenses: operating principles and preliminary results

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Wuu, Cheng-Shie

    2013-02-01

    The performance of a fast optical computed tomography (CT) scanner based on a point laser source, a small area photodiode detector, and two optical-grade Fresnel lenses is evaluated. The OCTOPUS™-10× optical CT scanner (MGS Research Inc., Madison, CT) is an upgrade of the OCTOPUS™ research scanner with improved design for faster motion of the laser beam and faster data acquisition process. The motion of the laser beam in the new configuration is driven by the rotational motion of a scanning mirror. The center of the scanning mirror and the center of the photodiode detector are adjusted to be on the focal points of two coaxial Fresnel lenses. A glass water tank is placed between the two Fresnel lenses to house gel phantoms and matching liquids. The laser beam scans over the water tank in parallel beam geometry for projection data as the scanning mirror rotates at a frequency faster than 0.1 s per circle. Signal sampling is performed independently of the motion of the scanning mirror, to reduce the processing time for the synchronization of the stepper motors and the data acquisition board. An in-house developed reference image normalization mechanism is added to the image reconstruction program to correct the non-uniform light transmitting property of the Fresnel lenses. Technical issues with regard to the new design of the scanner are addressed, including projection data extraction from raw data samples, non-uniform pixel averaging and reference image normalization. To evaluate the dosimetric accuracy of the scanner, the reconstructed images from a 16 MeV, 6 cm × 6 cm electron field irradiation were compared with those from the Eclipse treatment planning system (Varian Corporation, Palo Alto, CA). The spatial resolution of the scanner is demonstrated to be of sub-millimeter accuracy. The effectiveness of the reference normalization method for correcting the non-uniform light transmitting property of the Fresnel lenses is analyzed. A sub-millimeter accuracy of the phantom positioning between the reference scan and the actual scan is demonstrated to be essential. The fast scanner is shown to be able to scan gel phantoms with a wider field of view (5 mm from the edge of the scanned dosimeters) and at a speed 10 to 20 times faster than the OCTOPUS™ scanner. A large uncertainty of 5% (defined as the ratio of the standard deviation to the mean) is typically observed in the reconstructed images, owing to the inaccuracy in the phantom positioning process. Methods for further improvement of the accuracy of the in-house modified OCTOPUS™-10× scanner are discussed.

  8. High-aspect ratio zone plate fabrication for hard x-ray nanoimaging

    NASA Astrophysics Data System (ADS)

    Parfeniukas, Karolis; Giakoumidis, Stylianos; Akan, Rabia; Vogt, Ulrich

    2017-08-01

    We present our results in fabricating Fresnel zone plate optics for the NanoMAX beamline at the fourth-generation synchrotron radiation facility MAX IV, to be used in the energy range of 6-10 keV. The results and challenges of tungsten nanofabrication are discussed, and an alternative approach using metal-assisted chemical etching (MACE) of silicon is showcased. We successfully manufactured diffraction-limited zone plates in tungsten with 30 nm outermost zone width and an aspect ratio of 21:1. These optics were used for nanoimaging experiments at NanoMAX. However, we found it challenging to further improve resolution and diffraction efficiency using tungsten. High efficiency is desirable to fully utilize the advantage of increased coherence on the optics at MAX IV. Therefore, we started to investigate MACE of silicon for the nanofabrication of high-resolution and high-efficiency zone plates. The first type of structures we propose use the silicon directly as the phase-shifting material. We have achieved 6 μm deep dense vertical structures with 100 nm linewidth. The second type of optics use iridium as the phase material. The structures in the silicon substrate act as a mold for iridium coating via atomic layer deposition (ALD). A semi-dense pattern is used with line-to-space ratio of 1:3 for a so-called frequency-doubled zone plate. This way, it is possible to produce smaller structures with the tradeoff of the additional ALD step. We have fabricated 45 nm-wide and 3.6 μm-tall silicon/iridium structures.

  9. Imaging Grating Spectrometer (I-GRASP) for Solar Soft X-Ray Spectral Measurements in Critically Under-Observed 0.5 - 7 nm Spectral Range

    NASA Astrophysics Data System (ADS)

    Didkovsky, L. V.; Wieman, S. R.; Chao, W.; Woods, T. N.; Jones, A. R.; Thiemann, E.; Mason, J. P.

    2016-12-01

    We discuss science and technology advantages of the Imaging Grating Spectrometer (I-GRASP) based on a novel transmission diffracting grating (TDG) made possible by technology for fabricating Fresnel zone plates (ZPs) developed at the Lawrence Berkeley National Laboratory (LBNL). Older version TDGs with 200 nm period available in the 1990s became a proven technology for providing 21 years of regular measurements of solar EUV irradiance. I-GRASP incorporates an advanced TDG with a grating period of 50 nm providing four times better diffraction dispersion than the 200 nm period gratings used in the SOHO/CELIAS/SEM, the SDO/EVE/ESP flight spectrophotometers, and the EVE/SAM sounding rocket channel. Such new technology for the TDG combined with a back-illuminated 2000 x 1504 CMOS image sensor with 7 micron pixels, will provide spatially-and-spectrally resolved images and spectra from individual Active Regions (ARs) and solar flares with high (0.15 nm) spectral resolution. Such measurements are not available in the spectral band from about 2 to 6 nm from existing or planned spectrographs and will be significantly important to study ARs and solar flare temperatures and dynamics, to improve existing spectral models, e.g. CHIANTI, and to better understand processes in the Earth's atmosphere processes. To test this novel technology, we have proposed to the NASA LCAS program an I-GRASP version for a sounding rocket flight to increase the TDG TRL to a level appropriate for future CubeSat projects.

  10. Scattering properties of ultrafast laser-induced refractive index shaping lenticular structures in hydrogels

    NASA Astrophysics Data System (ADS)

    Wozniak, Kaitlin T.; Germer, Thomas A.; Butler, Sam C.; Brooks, Daniel R.; Huxlin, Krystel R.; Ellis, Jonathan D.

    2018-02-01

    We present measurements of light scatter induced by a new ultrafast laser technique being developed for laser refractive correction in transparent ophthalmic materials such as cornea, contact lenses, and/or intraocular lenses. In this new technique, called intra-tissue refractive index shaping (IRIS), a 405 nm femtosecond laser is focused and scanned below the corneal surface, inducing a spatially-varying refractive index change that corrects vision errors. In contrast with traditional laser correction techniques, such as laser in-situ keratomileusis (LASIK) or photorefractive keratectomy (PRK), IRIS does not operate via photoablation, but rather changes the refractive index of transparent materials such as cornea and hydrogels. A concern with any laser eye correction technique is additional scatter induced by the process, which can adversely affect vision, especially at night. The goal of this investigation is to identify sources of scatter induced by IRIS and to mitigate possible effects on visual performance in ophthalmic applications. Preliminary light scattering measurements on patterns written into hydrogel showed four sources of scatter, differentiated by distinct behaviors: (1) scattering from scanned lines; (2) scattering from stitching errors, resulting from adjacent scanning fields not being aligned to one another; (3) diffraction from Fresnel zone discontinuities; and (4) long-period variations in the scans that created distinct diffraction peaks, likely due to inconsistent line spacing in the writing instrument. By knowing the nature of these different scattering errors, it will now be possible to modify and optimize the design of IRIS structures to mitigate potential deficits in visual performance in human clinical trials.

  11. On Babinet's principle and diffraction associated with an arbitrary particle.

    PubMed

    Sun, Bingqiang; Yang, Ping; Kattawar, George W; Mishchenko, Michael I

    2017-12-01

    Babinet's principle is widely used to compute the diffraction by a particle. However, the diffraction by a 3-D object is not totally the same as that simulated with Babinet's principle. This Letter uses a surface integral equation to exactly formulate the diffraction by an arbitrary particle and illustrate the condition for the applicability of Babinet's principle. The present results may serve to close the debate on the diffraction formalism.

  12. Multiple Optical Traps with a Single-Beam Optical Tweezer Utilizing Surface Micromachined Planar Curved Grating

    NASA Astrophysics Data System (ADS)

    Kuo, Ju-Nan; Chen, Kuan-Yu

    2010-11-01

    In this paper, we present a single-beam optical tweezer integrated with a planar curved diffraction grating for microbead manipulation. Various curvatures of the surface micromachined planar curved grating are systematically investigated. The planar curved grating was fabricated using multiuser micro-electro-mechanical-system (MEMS) processes (MUMPs). The angular separation and the number of diffracted orders were determined. Experimental results indicate that the diffraction patterns and curvature of the planar curved grating are closely related. As the curvature of the planar curved grating increases, the vertical diffraction angle increases, resulting in the strip patterns of the planar curved grating. A single-beam optical tweezer integrated with a planar curved diffraction grating was developed. We demonstrate a technique for creating multiple optical traps from a single laser beam using the developed planar curved grating. The strip patterns of the planar curved grating that resulted from diffraction were used to trap one row of polystyrene beads.

  13. SPECIAL ISSUE ON OPTICAL PROCESSING OF INFORMATION: Optical signal-processing systems based on anisotropic media

    NASA Astrophysics Data System (ADS)

    Kiyashko, B. V.

    1995-10-01

    Partially coherent optical systems for signal processing are considered. The transfer functions are formed in these systems by interference of polarised light transmitted by an anisotropic medium. It is shown that such systems can perform various integral transformations of both optical and electric signals, in particular, two-dimensional Fourier and Fresnel transformations, as well as spectral analysis of weak light sources. It is demonstrated that such systems have the highest luminosity and vibration immunity among the systems with interference formation of transfer functions. An experimental investigation is reported of the application of these systems in the processing of signals from a linear hydroacoustic antenna array, and in measurements of the optical spectrum and of the intrinsic noise.

  14. Hypergeometric Gaussian beam and its propagation in turbulence

    NASA Astrophysics Data System (ADS)

    Eyyuboğlu, Halil Tanyer; Cai, Yangjian

    2012-10-01

    We study propagation characteristics of hypergeometric Gaussian beam in turbulence. In this context, we formulate the receiver plane intensity using extended Huygens-Fresnel integral. From the graphical results, it is seen that, after propagation, hypergeometric Gaussian will in general assume the shape of a dark hollow beam at topological charges other than zero. Increasing values of topological charge will make the beam broader with steeper walls. On the other hand, higher values of hollowness parameter will contract into a narrower shape. Raising the topological charge or the hollowness parameter individually will cause outer rings to appear. Both increased levels of turbulence and longer propagation distances will accelerate the beam evolution and help reach the final Gaussian shape sooner. At lower wavelengths, there will be less beam spreading.

  15. Nonlinear Mixing of Optical Vortices with Fractional Topological Charges in Raman Sideband Generation.

    NASA Astrophysics Data System (ADS)

    Strohaber, James; Boran, Yakup; Sayrac, Muhammed; Johnson, Lewis; Zhu, Feng; Kolomenskii, Alexandre; Schuessler, Hans

    We studied the nonlinear parametric interaction of femtosecond fractionally-charged optical vortices in a Raman-active medium. Propagation of such beams is described using the Kirchhoff-Fresnel integrals by embedding a non-integer 2pi phase step in a Gaussian beam profile. When using fractionally-charged pump or Stokes beams, we observed the production of new topological charge and phase discontinuities in the Raman field. These newly generated fractionally-charged Raman vortex beams were found to follow the same orbital angular momentum algebra derived by for integer vortex beams. This work was funded by the Robert A. Welch Foundation, Grant No. A1546 and the Qatar Foundation under Grants No. NPRP 6-465-1-091.

  16. Diffraction of a Gaussian Beam by a Spherical Obstacle

    NASA Technical Reports Server (NTRS)

    Lock, James A.; Hovenac, Edward A.

    1993-01-01

    The Kirchhoff integral for diffraction in the near-forward direction is derived from the exact solution of the electromagnetic boundary value problem of a focused Gaussian laser beam incident on a spherical particle. The diffracted intensity in the vicinity of the particle is computed and the way in which the features of the diffraction pattern depend on the width of the Gaussian beam is commented on.

  17. Measurement of ultrasonic fields in transparent media using a scanning differential interferometer

    NASA Technical Reports Server (NTRS)

    Dockery, G. D.; Claus, R. O.

    1983-01-01

    An experimental system for the detection of three dimensional acoustic fields in optically transparent media using a dual beam differential interferometer is described. In this system, two coherent, parallel, focused laser beams are passed through the specimen and the interference fringe pattern which results when these beams are combined shifts linearly by an amount which is related to the optical pathlength difference between the two beams. It is shown that for small signals, the detector output is directly proportional to the amplitude of the acoustic field integrated along the optical beam path through the specimen. A water tank and motorized optical platform were constructed to allow these dual beams to be scanned through an ultrasonic field generated by a piezoelectric transducer at various distances from the transducer. Scan data for the near, Fresnel, and far zones of a uniform, circular transducer are presented and an algorithm for constructing the radial field profile from this integrated optical data, assuming cylindrical symmetry, is described.

  18. SCARLET: Design of the Fresnel concentrator array for New Millennium Deep Space 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, D.M.; Eskenazi, M.I.

    1997-12-31

    The primary power for the JPL New Millennium Deep Space 1 spacecraft is a 2.6 kW concentrator solar array. This paper surveys the design and analysis employed to combine line-focus Fresnel lenses and multijunction (GaInP{sub 2}/GaAs/Ge) solar cells in the second-generation SCARLET (Solar Concentrator Array with Refractive Linear Element Technology) system. The array structure and mechanisms are reviewed. Discussion is focused on the lens and receiver, from the optimizations of optical efficiency and thermal management, to the design issues of environmental extremes, reliability, producibility, and control of pointing error.

  19. Solar Tracking Error Analysis of Fresnel Reflector

    PubMed Central

    Zheng, Jiantao; Yan, Junjie; Pei, Jie; Liu, Guanjie

    2014-01-01

    Depending on the rotational structure of Fresnel reflector, the rotation angle of the mirror was deduced under the eccentric condition. By analyzing the influence of the sun tracking rotation angle error caused by main factors, the change rule and extent of the influence were revealed. It is concluded that the tracking errors caused by the difference between the rotation axis and true north meridian, at noon, were maximum under certain conditions and reduced at morning and afternoon gradually. The tracking error caused by other deviations such as rotating eccentric, latitude, and solar altitude was positive at morning, negative at afternoon, and zero at a certain moment of noon. PMID:24895664

  20. Compressive self-interference Fresnel digital holography with faithful reconstruction

    NASA Astrophysics Data System (ADS)

    Wan, Yuhong; Man, Tianlong; Han, Ying; Zhou, Hongqiang; Wang, Dayong

    2017-05-01

    We developed compressive self-interference digital holographic approach that allows retrieving three-dimensional information of the spatially incoherent objects from single-shot captured hologram. The Fresnel incoherent correlation holography is combined with parallel phase-shifting technique to instantaneously obtain spatial-multiplexed phase-shifting holograms. The recording scheme is regarded as compressive forward sensing model, thus the compressive-sensing-based reconstruction algorithm is implemented to reconstruct the original object from the under sampled demultiplexed sub-holograms. The concept was verified by simulations and experiments with simulating use of the polarizer array. The proposed technique has great potential to be applied in 3D tracking of spatially incoherent samples.

  1. Recent progress of hard x-ray imaging microscopy and microtomography at BL37XU of SPring-8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Yoshio, E-mail: yoshio@spring8.or.jp; Takeuchi, Akihisa; Terada, Yasuko

    2016-01-28

    A hard x-ray imaging microscopy and microtomography system is now being developed at the beamline 37XU of SPring-8. In the latest improvement, a spatial resolution of about 50 nm is achieved in two-dimensional imaging at 6 keV x-ray energy using a Fresnel zone plate objective with an outermost zone width of 35 nm. In the tomographic measurement, a spatial resolution of about 100 nm is achieved at 8 keV using an x-ray guide tube condenser optic and a Fresnel zone plate objective with an outermost zone width of 50 nm.

  2. Femtosecond laser-ablated Fresnel zone plate fiber probe and sensing applications

    NASA Astrophysics Data System (ADS)

    Tan, Xiaoling; Geng, Youfu; Chen, Yan; Li, Shiguo; Wang, Xinzhong

    2018-02-01

    We investigate the Fresnel zone plate (FZP) inscribed on multimode fiber endface using femtosecond laser ablation and its application in sensing. The mode transmission through fiber tips with FZP is investigated both by the beam propagation method theoretically and by measuring the beam images with a charge-coupled device camera experimentally, which show a good agreement. Such devices are tested for surface-enhanced Raman scattering (SERS) using the aqueous solution of rhodamine 6G under a Raman spectroscopy. The experimental results demonstrate that the SERS signal is enhanced benefiting from focal ability of FZP, which is a promising method for the particular biochemical spectra sensing applications.

  3. Tailored edge-ray concentrators as ideal second stages for Fresnel reflectors.

    PubMed

    Gordon, J M; Ries, H

    1993-05-01

    For both linear and point-focus Fresnel reflectors, we present a new type of ideal nonimaging secondary concentrator, the tailored edge-ray concentrator, that can closely approach the thermodynamic limit of concentration. For large rim-angle heliostat fields, practical-sized secondaries with shapes that should be relatively easy to fabricate can achieve concentrations substantially above those of compound parabolic concentrators. This superiority stems from designing so as to accommodate the particular flux from the heliostat field. The edge-ray principle used for generating the new secondary dictates a heliostat tracking strategy that is different from the conventional one but is equally easy to implement.

  4. Lightweight biometric detection system for human classification using pyroelectric infrared detectors.

    PubMed

    Burchett, John; Shankar, Mohan; Hamza, A Ben; Guenther, Bob D; Pitsianis, Nikos; Brady, David J

    2006-05-01

    We use pyroelectric detectors that are differential in nature to detect motion in humans by their heat emissions. Coded Fresnel lens arrays create boundaries that help to localize humans in space as well as to classify the nature of their motion. We design and implement a low-cost biometric tracking system by using off-the-shelf components. We demonstrate two classification methods by using data gathered from sensor clusters of dual-element pyroelectric detectors with coded Fresnel lens arrays. We propose two algorithms for person identification, a more generalized spectral clustering method and a more rigorous example that uses principal component regression to perform a blind classification.

  5. Dynamic modelling and simulation of linear Fresnel solar field model based on molten salt heat transfer fluid

    NASA Astrophysics Data System (ADS)

    Hakkarainen, Elina; Tähtinen, Matti

    2016-05-01

    Demonstrations of direct steam generation (DSG) in linear Fresnel collectors (LFC) have given promising results related to higher steam parameters compared to the current state-of-the-art parabolic trough collector (PTC) technology using oil as heat transfer fluid (HTF). However, DSG technology lacks feasible solution for long-term thermal energy storage (TES) system. This option is important for CSP technology in order to offer dispatchable power. Recently, molten salts have been proposed to be used as HTF and directly as storage medium in both line-focusing solar fields, offering storage capacity of several hours. This direct molten salt (DMS) storage concept has already gained operational experience in solar tower power plant, and it is under demonstration phase both in the case of LFC and PTC systems. Dynamic simulation programs offer a valuable effort for design and optimization of solar power plants. In this work, APROS dynamic simulation program is used to model a DMS linear Fresnel solar field with two-tank TES system, and example simulation results are presented in order to verify the functionality of the model and capability of APROS for CSP modelling and simulation.

  6. Secret shared multiple-image encryption based on row scanning compressive ghost imaging and phase retrieval in the Fresnel domain

    NASA Astrophysics Data System (ADS)

    Li, Xianye; Meng, Xiangfeng; Wang, Yurong; Yang, Xiulun; Yin, Yongkai; Peng, Xiang; He, Wenqi; Dong, Guoyan; Chen, Hongyi

    2017-09-01

    A multiple-image encryption method is proposed that is based on row scanning compressive ghost imaging, (t, n) threshold secret sharing, and phase retrieval in the Fresnel domain. In the encryption process, after wavelet transform and Arnold transform of the target image, the ciphertext matrix can be first detected using a bucket detector. Based on a (t, n) threshold secret sharing algorithm, the measurement key used in the row scanning compressive ghost imaging can be decomposed and shared into two pairs of sub-keys, which are then reconstructed using two phase-only mask (POM) keys with fixed pixel values, placed in the input plane and transform plane 2 of the phase retrieval scheme, respectively; and the other POM key in the transform plane 1 can be generated and updated by the iterative encoding of each plaintext image. In each iteration, the target image acts as the input amplitude constraint in the input plane. During decryption, each plaintext image possessing all the correct keys can be successfully decrypted by measurement key regeneration, compression algorithm reconstruction, inverse wavelet transformation, and Fresnel transformation. Theoretical analysis and numerical simulations both verify the feasibility of the proposed method.

  7. Experimental characterization of Fresnel-Köhler concentrators

    NASA Astrophysics Data System (ADS)

    Zamora, Pablo; Benítez, Pablo; Mohedano, Rubén; Cvetković, Aleksandra; Vilaplana, Juan; Li, Yang; Hernández, Maikel; Chaves, Julio; Miñano, Juan C.

    2012-01-01

    Most cost-effective concentrated photovoltaics (CPV) systems are based on an optical train comprising two stages, the first being a Fresnel lens. Among them, the Fresnel-Köhler (FK) concentrator stands out owing to both performance and practical reasons. We describe the experimental measurements procedure for FK concentrator modules. This procedure includes three main types of measurements: electrical efficiency, acceptance angle, and irradiance uniformity at the solar cell plane. We have collected here the performance features of two different FK prototypes (ranging different f-numbers, concentration ratios, and cell sizes). The electrical efficiencies measured in both prototypes are high and fit well with the models, achieving values up to 32.7% (temperature corrected, and with no antireflective coating on SOE or POE surfaces) in the best case. The measured angular transmission curves show large acceptance angles, again perfectly matching the expected values [measured concentration acceptance product (CAP) values over 0.56]. The irradiance pattern on the cell (obtained with a digital camera) shows an almost perfectly uniform distribution, as predicted by raytrace simulations. All these excellent on-sun results confirm the FK concentrator as a potentially cost-effective solution for the CPV market.

  8. Enhancement of security using structured phase masked in optical image encryption on Fresnel transform domain

    NASA Astrophysics Data System (ADS)

    Yadav, Poonam Lata; Singh, Hukum

    2018-05-01

    To enhance the security in optical image encryption system and to protect it from the attackers, this paper proposes new digital spiral phase mask based on Fresnel Transform. In this cryptosystem the Spiral Phase Mask (SPM) used is a hybrid of Fresnel Zone Plate (FZP) and Radial Hilbert Mask (RHM) which makes the key strong and enhances the security. The different keys used for encryption and decryption purposed make the system much more secure. Proposed scheme uses various structured phase mask which increases the key space also it increases the number of parameters which makes it difficult for the attackers to exactly find the key to recover the original image. We have also used different keys for encryption and decryption purpose to make the system much more secure. The strength of the proposed cryptosystem has been analyzed by simulating on MATLAB 7.9.0(R2008a). Mean Square Errors (MSE) and Peak Signal to Noise Ratio (PSNR) are calculated for the proposed algorithm. The experimental results are provided to highlight the effectiveness and sustainability of proposed cryptosystem and to prove that the cryptosystem is secure for usage.

  9. Decomposition method for fast computation of gigapixel-sized Fresnel holograms on a graphics processing unit cluster.

    PubMed

    Jackin, Boaz Jessie; Watanabe, Shinpei; Ootsu, Kanemitsu; Ohkawa, Takeshi; Yokota, Takashi; Hayasaki, Yoshio; Yatagai, Toyohiko; Baba, Takanobu

    2018-04-20

    A parallel computation method for large-size Fresnel computer-generated hologram (CGH) is reported. The method was introduced by us in an earlier report as a technique for calculating Fourier CGH from 2D object data. In this paper we extend the method to compute Fresnel CGH from 3D object data. The scale of the computation problem is also expanded to 2 gigapixels, making it closer to real application requirements. The significant feature of the reported method is its ability to avoid communication overhead and thereby fully utilize the computing power of parallel devices. The method exhibits three layers of parallelism that favor small to large scale parallel computing machines. Simulation and optical experiments were conducted to demonstrate the workability and to evaluate the efficiency of the proposed technique. A two-times improvement in computation speed has been achieved compared to the conventional method, on a 16-node cluster (one GPU per node) utilizing only one layer of parallelism. A 20-times improvement in computation speed has been estimated utilizing two layers of parallelism on a very large-scale parallel machine with 16 nodes, where each node has 16 GPUs.

  10. FRIDA: diffraction-limited imaging and integral-field spectroscopy for the GTC

    NASA Astrophysics Data System (ADS)

    Watson, Alan M.; Acosta-Pulido, José A.; Álvarez-Núñez, Luis C.; Bringas-Rico, Vicente; Cardiel, Nicolás.; Cardona, Salvador; Chapa, Oscar; Díaz García, José Javier; Eikenberry, Stephen S.; Espejo, Carlos; Flores-Meza, Rubén. A.; Fuentes-Fernández, Jorge; Gallego, Jesús; Garcés Medina, José Leonardo; Garzón López, Francisco; Hammersley, Peter; Keiman, Carolina; Lara, Gerardo; López, José Alberto; López, Pablo L.; Lucero, Diana; Moreno Arce, Heidy; Pascual Ramirez, Sergio; Patrón Recio, Jesús; Prieto, Almudena; Rodríguez, Alberto José; Marco de la Rosa, José; Sánchez, Beatriz; Uribe, Jorge A.; Váldez Berriozabal, Francisco

    2016-08-01

    FRIDA is a diffraction-limited imager and integral-field spectrometer that is being built for the adaptive-optics focus of the Gran Telescopio Canarias. In imaging mode FRIDA will provide scales of 0.010, 0.020 and 0.040 arcsec/pixel and in IFS mode spectral resolutions of 1500, 4000 and 30,000. FRIDA is starting systems integration and is scheduled to complete fully integrated system tests at the laboratory by the end of 2017 and to be delivered to GTC shortly thereafter. In this contribution we present a summary of its design, fabrication, current status and potential scientific applications.

  11. An Experimental Study on the Effect of Using Fresnel Lenses on the Performance of Solar Stills

    NASA Astrophysics Data System (ADS)

    Abdelsalam, Tarek I.; Abdel-Mesih, Bahy

    The global water concern is mainly about the scarcity of fresh water resources despite the abundance of saline and brackish water in oceans, seas, and underground. Solar desalination offers a worthy solution to produce fresh water by using solar radiation, which also lessens the energy concern by offering a renewable source of energy to alter the consumption of fossil fuels and other non-renewable resources. One of the solar desalination technologies is the solar still system, which is a portable unit capable of producing distilled water by evaporating brackish or saline water by using solar thermal energy. The steam is then condensed on the inside of the glass cover and collected as fresh water. Solar stills are easy to manufacture and install using local materials and workmanship, which suits underprivileged remote communities that face difficulties in finding clean potable water, while locating near a source of saline water. However, efficiency and productivity of solar stills are still feeble when compared to other traditional desalination techniques. As an attempt to overcome these issues, an upgraded system is proposed and tested experimentally to augment the incoming solar radiation falling on the top glass surface of the still by concentrating extra solar radiation to preheat the flowing feedwater to the solar still system. The results of the experimental study showed that the integration of linear Fresnel lenses has approximately tripled the productivity of distilled water and improved efficiency of a solar still, by about 68.76 %, when compared to a conventional non-concentrating solar still.

  12. Design of diffractive microlens array integration with focal plane arrays

    NASA Astrophysics Data System (ADS)

    Chen, Sihai; Yi, Xinjian; Li, Yi; He, Miao; Chen, Sixiang; Kong, Lingbin

    2000-10-01

    The IR spectrum from 3 to 5micrometers has numerous applications in both military and civil industries. High performance at high operating temperature is often important in these applications. Conventional Focal Plane Arrays (FPAs) without integration with concentrator such as microlens have poor sensitivity and low signal-to-noise ratio because of their lower fill factor. The binary optics microlens arrays reported in this paper are designed for integration with FPAs. Thus, the FPAs' fill factor, sensitivity, and signal- to-noise ratio can be improved while retaining a given image resolution and optical collection area. In the paper, we discussed the 256(Horizontal)x290(Vertical) microlens arrays designed for a center wavelength of 4micrometers , with 50micrometers (Horizontalx33micrometers (Vertical) quadrate pixel dimension and a speed (F number) of F/1.96. PtSi FPAs were fabricated on the front side of a 400-micrometers -thick Si substrate. The designed diffractive microlens arrays will be etched on the back side of the same wafer in a register fashion and it will be reported in other paper. Considering the diffraction efficiency, 8-phase-level approximation is enough. For the diffraction efficiency of 8-phase-level diffractive microlens reaches 95%. The process only need three mask-level, so we designed and fabricated three masks with the same dimension 4'x4'. Also, a set of fine verniers was designed and fabricated on each mask to allow accurate alignment during the fabrication process. Through a computer simulation, the microlens arrays are nearly diffraction limited, with the diffraction efficiency of 93%, a bit lower than the theoretical value of 95%. Introduction of microlens arrays has the ability to increase the FPAs' fill factor to 100%, while it is only about 21.6% without microlens. To our knowledge, this is the first trial of integration large area microlens arrays with FPAs at home.

  13. First light from a kilometer-baseline Scintillation Auroral GPS Array.

    PubMed

    Datta-Barua, S; Su, Y; Deshpande, K; Miladinovich, D; Bust, G S; Hampton, D; Crowley, G

    2015-05-28

    We introduce and analyze the first data from an array of closely spaced Global Positioning System (GPS) scintillation receivers established in the auroral zone in late 2013 to measure spatial and temporal variations in L band signals at 100-1000 m and subsecond scales. The seven receivers of the Scintillation Auroral GPS Array (SAGA) are sited at Poker Flat Research Range, Alaska. The receivers produce 100 s scintillation indices and 100 Hz carrier phase and raw in-phase and quadrature-phase samples. SAGA is the largest existing array with baseline lengths of the ionospheric diffractive Fresnel scale at L band. With an initial array of five receivers, we identify a period of simultaneous amplitude and phase scintillation. We compare SAGA power and phase data with collocated 630.0 nm all-sky images of an auroral arc and incoherent scatter radar electron precipitation measurements, to illustrate how SAGA can be used in multi-instrument observations for subkilometer-scale studies. A seven-receiver Scintillation Auroral GPS Array (SAGA) is now at Poker Flat, Alaska SAGA is the largest subkilometer array to enable phase/irregularities studies Simultaneous scintillation, auroral arc, and electron precipitation are observed.

  14. First light from a kilometer-baseline Scintillation Auroral GPS Array

    PubMed Central

    Datta-Barua, S; Su, Y; Deshpande, K; Miladinovich, D; Bust, G S; Hampton, D; Crowley, G

    2015-01-01

    We introduce and analyze the first data from an array of closely spaced Global Positioning System (GPS) scintillation receivers established in the auroral zone in late 2013 to measure spatial and temporal variations in L band signals at 100–1000 m and subsecond scales. The seven receivers of the Scintillation Auroral GPS Array (SAGA) are sited at Poker Flat Research Range, Alaska. The receivers produce 100 s scintillation indices and 100 Hz carrier phase and raw in-phase and quadrature-phase samples. SAGA is the largest existing array with baseline lengths of the ionospheric diffractive Fresnel scale at L band. With an initial array of five receivers, we identify a period of simultaneous amplitude and phase scintillation. We compare SAGA power and phase data with collocated 630.0 nm all-sky images of an auroral arc and incoherent scatter radar electron precipitation measurements, to illustrate how SAGA can be used in multi-instrument observations for subkilometer-scale studies. Key Points A seven-receiver Scintillation Auroral GPS Array (SAGA) is now at Poker Flat, Alaska SAGA is the largest subkilometer array to enable phase/irregularities studies Simultaneous scintillation, auroral arc, and electron precipitation are observed PMID:26709318

  15. Target recognition and phase acquisition by using incoherent digital holographic imaging

    NASA Astrophysics Data System (ADS)

    Lee, Munseob; Lee, Byung-Tak

    2017-05-01

    In this study, we proposed the Incoherent Digital Holographic Imaging (IDHI) for recognition and phase information of dedicated target. Although recent development of a number of target recognition techniques such as LIDAR, there have limited success in target discrimination, in part due to low-resolution, low scanning speed, and computation power. In the paper, the proposed system consists of the incoherent light source, such as LED, Michelson interferometer, and digital CCD for acquisition of four phase shifting image. First of all, to compare with relative coherence, we used a source as laser and LED, respectively. Through numerical reconstruction by using the four phase shifting method and Fresnel diffraction method, we recovered the intensity and phase image of USAF resolution target apart from about 1.0m distance. In this experiment, we show 1.2 times improvement in resolution compared to conventional imaging. Finally, to confirm the recognition result of camouflaged targets with the same color from background, we carry out to test holographic imaging in incoherent light. In this result, we showed the possibility of a target detection and recognition that used three dimensional shape and size signatures, numerical distance from phase information of obtained holographic image.

  16. Experimental Evidence on the Dependence of the Standard GPS Phase Scintillation Index on the Ionospheric Plasma Drift Around Noon Sector of the Polar Ionosphere

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Zhang, Q.-H.; Jayachandran, P. T.; Moen, J.; Xing, Z.-Y.; Chadwick, R.; Ma, Y.-Z.; Ruohoniemi, J. M.; Lester, M.

    2018-03-01

    First experimental proof of a clear and strong dependence of the standard phase scintillation index (σφ) derived using Global Positioning System measurements on the ionospheric plasma flow around the noon sector of polar ionosphere is presented. σφ shows a strong linear dependence on the plasma drift speed measured by the Super Dual Auroral Radar Network radars, whereas the amplitude scintillation index (S4) does not. This observed dependence can be explained as a consequence of Fresnel frequency dependence of the relative drift and the used constant cutoff frequency (0.1 Hz) to detrend the data for obtaining standard σφ. The lack of dependence of S4 on the drift speed possibly eliminates the plasma instability mechanism(s) involved as a cause of the dependence. These observations further confirm that the standard phase scintillation index is much more sensitive to plasma flow; therefore, utmost care must be taken when identifying phase scintillation (diffractive phase variations) from refractive (deterministic) phase variations, especially in the polar region where the ionospheric plasma drift is much larger than in equatorial and midlatitude regions.

  17. Analysis of field of view limited by a multi-line X-ray source and its improvement for grating interferometry.

    PubMed

    Du, Yang; Huang, Jianheng; Lin, Danying; Niu, Hanben

    2012-08-01

    X-ray phase-contrast imaging based on grating interferometry is a technique with the potential to provide absorption, differential phase contrast, and dark-field signals simultaneously. The multi-line X-ray source used recently in grating interferometry has the advantage of high-energy X-rays for imaging of thick samples for most clinical and industrial investigations. However, it has a drawback of limited field of view (FOV), because of the axial extension of the X-ray emission area. In this paper, we analyze the effects of axial extension of the multi-line X-ray source on the FOV and its improvement in terms of Fresnel diffraction theory. Computer simulation results show that the FOV limitation can be overcome by use of an alternative X-ray tube with a specially designed multi-step anode. The FOV of this newly designed X-ray source can be approximately four times larger than that of the multi-line X-ray source in the same emission area. This might be beneficial for the applications of X-ray phase contrast imaging in materials science, biology, medicine, and industry.

  18. Polarization mechanism in a ns laser-induced plasma spectroscopy of Al alloy

    NASA Astrophysics Data System (ADS)

    Aghababaei Nejad, Mahboobeh; Soltanolkotabi, Mahmood; Eslami Majd, Abdollah

    2018-01-01

    Polarization emission from aluminum alloy by ns laser-induced breakdown spectroscopy (LIBS) is carefully investigated in air using a non-gated CCD camera at integration time of 100 ms. First, the analysis reveals that the small polarization degree is the same for both continuum and discrete line emission spectra which also increases slowly with wavelength growth; second, laser fluence in the range of 347.81-550.10 J/cm2 has no significant changes in plasma polarization; and third, larger polarization in comparison with polarization introduced by preferential reflection of emission from the target surface (Fresnel reflectivity) is observed. The residual fluctuations of the anisotropic recombining plasma and the dynamic polarization of an ion's core are suggested as the possible main sources for observed polarized radiation in ns-LIBS.

  19. Bessel-Gauss resonator with spherical output mirror: geometrical- and wave-optics analysis.

    PubMed

    Gutiérrez-Vega, Julio C; Rodríguez-Masegosa, Rodolfo; Chávez-Cerda, Sabino

    2003-11-01

    A detailed study of the axicon-based Bessel-Gauss resonator with concave output coupler is presented. We employ a technique to convert the Huygens-Fresnel integral self-consistency equation into a matrix equation and then find the eigenvalues and the eigenfields of the resonator at one time. A paraxial ray analysis is performed to find the self-consistency condition to have stable periodic ray trajectories after one or two round trips. The fast-Fourier-transform-based Fox and Li algorithm is applied to describe the three-dimensional intracavity field distribution. Special attention was directed to the dependence of the output transverse profiles, the losses, and the modal-frequency changes on the curvature of the output coupler and the cavity length. The propagation of the output beam is discussed.

  20. Fresnel zone plate with apodized aperture for hard X-ray Gaussian beam optics.

    PubMed

    Takeuchi, Akihisa; Uesugi, Kentaro; Suzuki, Yoshio; Itabashi, Seiichi; Oda, Masatoshi

    2017-05-01

    Fresnel zone plates with apodized apertures [apodization FZPs (A-FZPs)] have been developed to realise Gaussian beam optics in the hard X-ray region. The designed zone depth of A-FZPs gradually decreases from the center to peripheral regions. Such a zone structure forms a Gaussian-like smooth-shouldered aperture function which optically behaves as an apodization filter and produces a Gaussian-like focusing spot profile. Optical properties of two types of A-FZP, i.e. a circular type and a one-dimensional type, have been evaluated by using a microbeam knife-edge scan test, and have been carefully compared with those of normal FZP optics. Advantages of using A-FZPs are introduced.

Top