Sample records for friction factor characteristics

  1. Orthogonal Simulation Experiment for Flow Characteristics of Ore in Ore Drawing and Influencing Factors in a Single Funnel Under a Flexible Isolation Layer

    NASA Astrophysics Data System (ADS)

    Chen, Qingfa; Zhao, Fuyu; Chen, Qinglin; Wang, Yuding; Zhong, Yu; Niu, Wenjing

    2017-12-01

    A study on the flow characteristics of ore and factors that influence these characteristics is important to master ore flow laws. An orthogonal ore-drawing numerical model was established and the flow characteristics were explored. A weight matrix was obtained and the effect of the factors was determined. It was found that (1) the entire isolation-layer interface presents a Gaussian curve morphology and marked particles in each layer show a funnel morphology; (2) the drawing amount, Q, and the isolation layer half-width, W, are correlated positively with the fall depth, H, of the isolation layer; (3) factors that affect the characteristics sequentially include the particle friction coefficient, the interface friction coefficient, the isolation layer thickness, and the particle radius, and (4) the optimal combination is an isolation layer thickness of 0.005 m, an interface friction coefficient of 0.8, a particle friction coefficient of 0.2, and a particle radius of 0.007 m.

  2. Entrance and exit region friction factor models for annular seal analysis. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Elrod, David Alan

    1988-01-01

    The Mach number definition and boundary conditions in Nelson's nominally-centered, annular gas seal analysis are revised. A method is described for determining the wall shear stress characteristics of an annular gas seal experimentally. Two friction factor models are developed for annular seal analysis; one model is based on flat-plate flow theory; the other uses empirical entrance and exit region friction factors. The friction factor predictions of the models are compared to experimental results. Each friction model is used in an annular gas seal analysis. The seal characteristics predicted by the two seal analyses are compared to experimental results and to the predictions of Nelson's analysis. The comparisons are for smooth-rotor seals with smooth and honeycomb stators. The comparisons show that the analysis which uses empirical entrance and exit region shear stress models predicts the static and stability characteristics of annular gas seals better than the other analyses. The analyses predict direct stiffness poorly.

  3. Pathology and clinical presentation of friction injuries: case series and literature review.

    PubMed

    Berke, Christine Thies

    2015-01-01

    Effective wound management is dependent, in part, on identification and correction of causative factors. Trunk wounds can be caused by pressure, shear, moisture, friction, or some combination of these factors. Wounds caused by moisture and/or friction are frequently mislabeled as pressure ulcers. This article presents a series of 45 patients who developed skin injuries on the medial buttocks and/or posterior thighs that the author believes were caused primarily by friction damage to the skin. The lesions were not located over palpable bony prominences and are therefore unlikely to be pressure ulcers. They were not located in skin folds and are unlikely to represent intertriginous dermatitis. Clinical data related to these 45 patients are presented, as are the location and characteristics of the lesions. These characteristics are discussed in relation to current literature regarding the pathology and clinical presentation of wounds caused by pressure, moisture, and friction. It is critical for wound clinicians and staff nurses to accurately identify the etiology of any wound. Wounds located on fleshy prominences exposed to repetitive friction should be labeled as friction injuries.

  4. Efficiency limit factor analysis for the Francis-99 hydraulic turbine

    NASA Astrophysics Data System (ADS)

    Zeng, Y.; Zhang, L. X.; Guo, J. P.; Guo, Y. K.; Pan, Q. L.; Qian, J.

    2017-01-01

    The energy loss in hydraulic turbine is the most direct factor that affects the efficiency of the hydraulic turbine. Based on the analysis theory of inner energy loss of hydraulic turbine, combining the measurement data of the Francis-99, this paper calculates characteristic parameters of inner energy loss of the hydraulic turbine, and establishes the calculation model of the hydraulic turbine power. Taken the start-up test conditions given by Francis-99 as case, characteristics of the inner energy of the hydraulic turbine in transient and transformation law are researched. Further, analyzing mechanical friction in hydraulic turbine, we think that main ingredients of mechanical friction loss is the rotation friction loss between rotating runner and water body, and defined as the inner mechanical friction loss. The calculation method of the inner mechanical friction loss is given roughly. Our purpose is that explore and research the method and way increasing transformation efficiency of water flow by means of analysis energy losses in hydraulic turbine.

  5. Heat transfer and friction characteristics of the microfluidic heat sink with variously-shaped ribs for chip cooling.

    PubMed

    Wang, Gui-Lian; Yang, Da-Wei; Wang, Yan; Niu, Di; Zhao, Xiao-Lin; Ding, Gui-Fu

    2015-04-22

    This paper experimentally and numerically investigated the heat transfer and friction characteristics of microfluidic heat sinks with variously-shaped micro-ribs, i.e., rectangular, triangular and semicircular ribs. The micro-ribs were fabricated on the sidewalls of microfluidic channels by a surface-micromachining micro-electro-mechanical system (MEMS) process and used as turbulators to improve the heat transfer rate of the microfluidic heat sink. The results indicate that the utilizing of micro-ribs provides a better heat transfer rate, but also increases the pressure drop penalty for microchannels. Furthermore, the heat transfer and friction characteristics of the microchannels are strongly affected by the rib shape. In comparison, the triangular ribbed microchannel possesses the highest Nusselt number and friction factor among the three rib types.

  6. Friction, wear, and lubrication in vacuum

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1971-01-01

    A review of studies and observations on the friction, wear, and lubrication behavior of materials in a vacuum environment is presented. The factors that determine and influence friction and wear are discussed. They include topographical, physical, mechanical, and the chemical nature of the surface. The effects of bulk properties such as deformation characteristics, fracture behavior, and structure are included.

  7. Reduction of Noise from Disc Brake Systems Using Composite Friction Materials Containing Thermoplastic Elastomers (TPEs)

    NASA Astrophysics Data System (ADS)

    Masoomi, Mohsen; Katbab, Ali Asghar; Nazockdast, Hossein

    2006-09-01

    Attempts have been made for the first time to prepare a friction material with the characteristic of thermal sensitive modulus, by the inclusion of thermoplastic elastomers (TPE) as viscoelastic polymeric materials into the formulation in order to the increase the damping behavior of the cured friction material. Styrene butadiene styrene (SBS), styrene ethylene butylene styrene (SEBS) and nitrile rubber/polyvinyl chloride (NBR/PVC) blend system were used as TPE materials. In order to evaluate the viscoelastic parameters such as loss factor (tan δ) and storage modulus (E‧) for the friction material, dynamic mechanical analyzer (DMA) were used. Natural frequencies and mode shapes of friction material and brake disc were determined by modal analysis. However, NBR/PVC and SEBS were found to be much more effective in damping behavior. The results from this comparative study suggest that the damping characteristics of commercial friction materials can be strongly affected by the TPE ingredients. This investigation also confirmed that the specimens with high TPE content had low noise propensity.

  8. Experimental Research Into Generation of Acoustic Emission Signals in the Process of Friction of Hadfield Steel Single Crystals

    NASA Astrophysics Data System (ADS)

    Lychagin, D. V.; Filippov, A. V.; Novitskaia, O. S.; Kolubaev, E. A.; Sizova, O. V.

    2016-08-01

    The results of experimental research into dry sliding friction of Hadfield steel single crystals involving registration of acoustic emission are presented in the paper. The images of friction surfaces of Hadfield steel single crystals and wear grooves of the counterbody surface made after completion of three serial experiments conducted under similar conditions and friction regimes are given. The relation of the acoustic emission waveform envelope to the changing friction factor is revealed. Amplitude-frequency characteristics of acoustic emission signal frames are determined on the base of Fast Fourier Transform and Short Time Fourier Transform during the run-in stage of tribounits and in the process of stable friction.

  9. Investigation friction factor and heat transfer characteristics of turbulent flow inside the corrugated tube inserted with typical and V-cut twisted tapes

    NASA Astrophysics Data System (ADS)

    Langeroudi, H. G.; Javaherdeh, K.

    2018-07-01

    In present paper the effects of using typical twisted tape (TT) and V-cut twisted tape (VTT) on Nusselt number (Nu), friction factor (f) and thermal performance factor (η) inside corrugated tube in the turbulent flow are experimentally investigated despite the fact that the wall is under uniform heat flux. The experiments are conducted by twisted tapes with different twist ratio (y = 4.5, 6.07), depth and width ratios ranging (0.285-0.5) and Reynolds number varied from 5300 to 25,700 and water was as a working fluid. The obtained results show that the Nusselt number for corrugated tube that equipped with twisted tapes increases with increasing Reynolds number and is remarkable at high Reynolds Number while the friction factor is low. Moreover, the thermal performance factor for fluid increases with increasing Reynolds number and also the thermal performance factor for all states of VTT are higher than of TT. The new empirical correlations for Nusselt number, friction factor and thermal performance factor are predicted and compared with experimental data.

  10. Friction loss in straight pipes of unplasticized polyvinyl chloride.

    PubMed

    Iwasaki, T; Ojima, J

    1996-01-01

    In order to design proper ductwork for a local exhaust system, airflow characteristics were investigated in straight pipes of unplasticized polyvinyl chloride (PVC). A linear decrease in static pressure was observed downstream at points from the opening of the VU pipes (JIS K 6741) located at distances greater than 10 times the pipe diameter, for velocities ranging between 10.18-36.91 m/s. Roughness inside pipes with small diameters was found to be 0.0042-0.0056 mm and the friction factor was calculated on the basis of Colebrook's equation for an airflow transition zone. An extended friction chart was then constructed on the basis of the roughness value and the friction factor. This chart can be applied when designing a local exhaust system with the ducts of diameters ranging from 40 to 900 mm. The friction loss of the PVC pipe was found to be approximately 2/3 of that of a galvanized steel pipe.

  11. Comprehensive tire-road friction coefficient estimation based on signal fusion method under complex maneuvering operations

    NASA Astrophysics Data System (ADS)

    Li, L.; Yang, K.; Jia, G.; Ran, X.; Song, J.; Han, Z.-Q.

    2015-05-01

    The accurate estimation of the tire-road friction coefficient plays a significant role in the vehicle dynamics control. The estimation method should be timely and reliable for the controlling requirements, which means the contact friction characteristics between the tire and the road should be recognized before the interference to ensure the safety of the driver and passengers from drifting and losing control. In addition, the estimation method should be stable and feasible for complex maneuvering operations to guarantee the control performance as well. A signal fusion method combining the available signals to estimate the road friction is suggested in this paper on the basis of the estimated ones of braking, driving and steering conditions individually. Through the input characteristics and the states of the vehicle and tires from sensors the maneuvering condition may be recognized, by which the certainty factors of the friction of the three conditions mentioned above may be obtained correspondingly, and then the comprehensive road friction may be calculated. Experimental vehicle tests validate the effectiveness of the proposed method through complex maneuvering operations; the estimated road friction coefficient based on the signal fusion method is relatively timely and accurate to satisfy the control demands.

  12. Oxide Ceramic Films Grown on 55Ni-45Ti for NASA and Department of Defense Applications: Unidirectional Sliding Friction and Wear Evaluation

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Lukco, Dorothy; Cytron, Sheldon J.

    2004-01-01

    An investigation was conducted to examine the friction and wear behavior of the two types of oxide ceramic films furnished by the U.S. Army Research Laboratory, Development and Engineering Center (ARDEC) under Space Act Agreement SAA3 567. These two types of oxide ceramics were grown on 55Ni-45Ti (60 wt% Ni and 40 wt% Ti) substrates: one was a TiO2 with no other species (designated the B film) and the other was a TiO2 with additional species (designated the G film). Unidirectional ball-on-disk sliding friction experiments were conducted with the oxide films in contact with sapphire at 296 K (23 C) in approx. 50-percent relative humidity laboratory air in this investigation. All material characterization and sliding friction experiments were conducted at the NASA Glenn Research Center. The results indicate that both films greatly improve the surface characteristics of 55Ni-45Ti, enhancing its tribological characteristics. Both films decreased the coefficient of friction by a factor of 4 and increased wear resistance by a two-figure factor, though the B film was superior to the G film in wear resistance and endurance life. The levels of coefficient of friction and wear resistance of both films in sliding contact with sapphire were acceptable for NASA and Department of Defense tribological applications. The decrease in friction and increase in wear resistance will contribute to longer wear life for parts, lower energy consumption, reduced related breakdowns, decreased maintenance costs, and increased reliability.

  13. Consideration of Materials for Aircraft Brakes

    NASA Technical Reports Server (NTRS)

    Peterson, M. B.; Ho, T.

    1972-01-01

    An exploratory investigation was conducted concerning materials and their properties for use in aircraft brakes. Primary consideration was given to the heat dissipation and the frictional behavior of materials. Used brake pads and rotors were analyzed as part of the investigation. A simple analysis was conducted in order to determine the most significant factors which affect surface temperatures. It was found that where size and weight restrictions are necessary, the specific heat of the material, and maintaining uniform contact area are the most important factors. A criterion was suggested for optimum sizing of the brake disks. Bench friction tests were run with brake materials. It was found that there is considerable friction variation due to the formation and removal of surface oxide films. Other causes of friction variations are surface softening and melting. The friction behavior at high temperature was found to be more characteristic of the steel surface rather than the copper brake material. It is concluded that improved brake materials are feasible.

  14. Heat and fluid flow characteristics of an oval fin-and-tube heat exchanger with large diameters for textile machine dryer

    NASA Astrophysics Data System (ADS)

    Bae, Kyung Jin; Cha, Dong An; Kwon, Oh Kyung

    2016-11-01

    The objectives of this paper are to develop correlations between heat transfer and pressure drop for oval finned-tube heat exchanger with large diameters (larger than 20 mm) used in a textile machine dryer. Numerical tests using ANSYS CFX are performed for four different parameters; tube size, fin pitch, transverse tube pitch and longitudinal tube pitch. The numerical results showed that the Nusselt number and the friction factor are in a range of -16.2 ~ +3.1 to -7.7 ~ +3.9 %, respectively, compared with experimental results. It was found that the Nusselt number linearly increased with increasing Reynolds number, but the friction factor slightly decreased with increasing Reynolds number. It was also found that the variation of longitudinal tube pitch has little effect on the Nusselt number and friction factor than other parameters (below 2.0 and 2.5 %, respectively). This study proposed a new Nusselt number and friction factor correlation of the oval finned-tube heat exchanger with large diameters for textile machine dryer.

  15. A Procedure for Determining Tire-Road Friction Characteristics Using a Modification of the Magic Formula Based on Experimental Results

    PubMed Central

    Pérez, Javier; Velasco, Juan M.; Guerra, Antonio J.; Hernández, Pedro

    2018-01-01

    Knowledge of tire-road friction characteristics is essential for the proper performance of most relevant vehicle active safety systems. Therefore, its determination is necessary to improve the effectiveness of these systems and to avoid or reduce the consequences of traffic accidents. For this reason, there is a great deal of literature concerning methods and devices for measuring and modeling tire-road friction. Most of these methods have focused on determining the road friction resistance, taking only road composition and making measurements in wet conditions into account. However, friction forces are also dependent on the tire type, since the contact is established between the tire and the road in real driving conditions. Thus, the type and characteristics of the tire have to be considered in the study of the interaction between the vehicle and the road. The aim of this work is to unify the study of the friction coefficient, taking into consideration the two existing bodies involved in the contact, i.e., the tire and road and the main factors that influence the forces in the contact. To this end, a modification of the Pacejka Magic Formula is proposed to include the effects of the main parameters that influence the contact, such as road composition and its state, tire type, vehicle speed, and slip between the tire and the road. To do so, real tests have been conducted on several roads and with different operating conditions. As a result, a more accurate tire-road friction model has been obtained. PMID:29562623

  16. A Procedure for Determining Tire-Road Friction Characteristics Using a Modification of the Magic Formula Based on Experimental Results.

    PubMed

    Cabrera, Juan A; Castillo, Juan J; Pérez, Javier; Velasco, Juan M; Guerra, Antonio J; Hernández, Pedro

    2018-03-17

    Knowledge of tire-road friction characteristics is essential for the proper performance of most relevant vehicle active safety systems. Therefore, its determination is necessary to improve the effectiveness of these systems and to avoid or reduce the consequences of traffic accidents. For this reason, there is a great deal of literature concerning methods and devices for measuring and modeling tire-road friction. Most of these methods have focused on determining the road friction resistance, taking only road composition and making measurements in wet conditions into account. However, friction forces are also dependent on the tire type, since the contact is established between the tire and the road in real driving conditions. Thus, the type and characteristics of the tire have to be considered in the study of the interaction between the vehicle and the road. The aim of this work is to unify the study of the friction coefficient, taking into consideration the two existing bodies involved in the contact, i.e., the tire and road and the main factors that influence the forces in the contact. To this end, a modification of the Pacejka Magic Formula is proposed to include the effects of the main parameters that influence the contact, such as road composition and its state, tire type, vehicle speed, and slip between the tire and the road. To do so, real tests have been conducted on several roads and with different operating conditions. As a result, a more accurate tire-road friction model has been obtained.

  17. Experimental and Model Studies on Loading Path-Dependent and Nonlinear Gas Flow Behavior in Shale Fractures

    NASA Astrophysics Data System (ADS)

    Li, Honglian; Lu, Yiyu; Zhou, Lei; Tang, Jiren; Han, Shuaibin; Ao, Xiang

    2018-01-01

    Interest in shale gas as an energy source is growing worldwide. Because the rock's natural fracture system can contribute to gas production, it is important to understand the flow behavior of natural fractures in shale. Previous studies on the flow characteristics in shale fractures were limited and did not consider the effect of nonlinearity. To understand the basic mechanics of the gas flow behavior in shale fractures, laboratory investigations with consideration of the fluid pressure gradient, the confining stress, the loading history and the fracture geometry were conducted in this paper. Izbash's equation was used to analyze the nonlinearity of the flow. The results show that the behavior of the friction factors is similar to that shown in flow tests in smooth and rough pipes. The increase of the confining stress and the irreversible damage to the shale decreased the hydraulic aperture and increased the relative roughness. Thus, turbulent flow could appear at a low Reynolds number, resulting in a significant pressure loss. The limits of the cubic law and the existing correction factor for transmissivity are discussed. It is found that the previous friction models overestimate the friction factor in the laminar regime and underestimate the friction factor in the turbulent regime. For this reason, a new friction model based on a linear combination of the Reynolds number and the relative roughness was developed.

  18. Analysis of dry friction damping characteristics for short cylindrical shell structures

    NASA Astrophysics Data System (ADS)

    Wang, Nengmao; Wang, Yanrong

    2018-05-01

    An efficient mathematical model to describe the friction of short cylindrical shell structures with a dry friction damping sleeve is proposed. The frictional force in the circumference and axial direction is caused by the opposing bending strains at the interface. Slipping will occur at part region of the interface and the mathematic model of the slipping region is established. Ignoring the effect of contact stiffness on the vibration analysis, the friction energy dissipation capability of damping sleeve would be calculated. Structural vibration mode, positive pressure at the interface and vibration stress of the short cylindrical shell structures is analyzed as influence factors to the critical damping ratio. The results show that the circumferential friction energy dissipation is more sensitive to the number of nodal diameter, and the circumferential friction damping ratio increases rapidly with the number of nodal diameter. The slipping frictional force would increase along with the positive pressure, but the slipping region would decrease with it. The peak damping ratio keeps nearly constant. But the vibration stress corresponding to peak damping ratio would increases with the positive pressure. The dry friction damping ratio of damping sleeve contains the effect of frictional force in the circumference and axial direction, and the axial friction plays a major role.

  19. Composites materials for friction and braking application

    NASA Astrophysics Data System (ADS)

    Crăciun, A. L.; Pinca-Bretotean, C.; Birtok-Băneasă, C.; Josan, A.

    2017-05-01

    The brake pads are an important component in the braking system of automotive. Materials used for brake pads should have stable and reliable frictional and wear properties under varying conditions of load, velocity, temperature and high durability. These factors must be satisfied simultaneously which makes it difficult to select effective brake pads material. The paper presents the results of the study for characterisation of the friction product used for automotive brake pads. In the study it was developed four frictional composites by using different percentages of coconut fibres (0%, 5%, 10%, 15%) reinforcement in aluminium matrix. The new composites tested in the laboratory, modelling appropriate percentage ratio between matrix and reinforcement volume and can be obtained with low density, high hardness properties, good thermal stability, higher ability to hold the compressive force and have a stable friction coefficient. These characteristics make them useful in automotive industry.

  20. Impact of inertia, friction, and backlash upon force control in telemanipulation

    NASA Technical Reports Server (NTRS)

    Duffie, Neil A.; Zik, John J.; Wiker, Steven F.; Gale, Karen L.

    1991-01-01

    The mechanical behavior of master controllers of telemanipulators has been a concern of both designers and implementors of telerobotic systems. In general, the literature recommends that telemanipulator systems be constructed that minimize inertia, friction, and backlash in an effort to improve telemanipulative performance. For the most part, these recommendations are founded upon theoretical analysis or simply intuition. Although these recommendations are not challenged on their merit, the material results are measured of building and fielding telemanipulators that possess less than ideal mechanical behaviors. Experiments are described in which forces in a mechanical system with human input are evaluated as a function of mechanical characteristics such as inertia, friction, and backlash. Results indicate that the ability of the human to maintain gripping forces was relatively unaffected by dynamic characteristics in the range studied, suggesting that telemanipulator design in this range should be based on task level force control requirements rather than human factors.

  1. Numerical investigation of heat transfer and friction factor characteristics in a circular tube fitted with V-cut twisted tape inserts.

    PubMed

    Salman, Sami D; Kadhum, Abdul Amir H; Takriff, Mohd S; Mohamad, Abu Bakar

    2013-01-01

    Numerical investigation of the heat transfer and friction factor characteristics of a circular fitted with V-cut twisted tape (VCT) insert with twist ratio (y = 2.93) and different cut depths (w = 0.5, 1, and 1.5 cm) were studied for laminar flow using CFD package (FLUENT-6.3.26). The data obtained from plain tube were verified with the literature correlation to ensure the validation of simulation results. Classical twisted tape (CTT) with different twist ratios (y = 2.93, 3.91, 4.89) were also studied for comparison. The results show that the enhancement of heat transfer rate induced by the classical and V-cut twisted tape inserts increases with the Reynolds number and decreases with twist ratio. The results also revealed that the V-cut twisted tape with twist ratio y = 2.93 and cut depth w = 0.5 cm offered higher heat transfer rate with significant increases in friction factor than other tapes. In addition the results of V-cut twist tape compared with experimental and simulated data of right-left helical tape inserts (RLT), it is found that the V-cut twist tape offered better thermal contact between the surface and the fluid which ultimately leads to a high heat transfer coefficient. Consequently, 107% of maximum heat transfer was obtained by using this configuration.

  2. Numerical Investigation of Heat Transfer and Friction Factor Characteristics in a Circular Tube Fitted with V-Cut Twisted Tape Inserts

    PubMed Central

    Salman, Sami D.; Kadhum, Abdul Amir H.; Takriff, Mohd S.; Mohamad, Abu Bakar

    2013-01-01

    Numerical investigation of the heat transfer and friction factor characteristics of a circular fitted with V-cut twisted tape (VCT) insert with twist ratio (y = 2.93) and different cut depths (w = 0.5, 1, and 1.5 cm) were studied for laminar flow using CFD package (FLUENT-6.3.26). The data obtained from plain tube were verified with the literature correlation to ensure the validation of simulation results. Classical twisted tape (CTT) with different twist ratios (y = 2.93, 3.91, 4.89) were also studied for comparison. The results show that the enhancement of heat transfer rate induced by the classical and V-cut twisted tape inserts increases with the Reynolds number and decreases with twist ratio. The results also revealed that the V-cut twisted tape with twist ratio y = 2.93 and cut depth w = 0.5 cm offered higher heat transfer rate with significant increases in friction factor than other tapes. In addition the results of V-cut twist tape compared with experimental and simulated data of right-left helical tape inserts (RLT), it is found that the V-cut twist tape offered better thermal contact between the surface and the fluid which ultimately leads to a high heat transfer coefficient. Consequently, 107% of maximum heat transfer was obtained by using this configuration. PMID:24078795

  3. Analysis of Mold Friction in a Continuous Casting Using Wavelet Transform

    NASA Astrophysics Data System (ADS)

    Ma, Yong; Fang, Bohan; Ding, Qiqi; Wang, Fangyin

    2018-04-01

    Mold friction (MDF) is an important parameter reflecting the lubrication condition between the initial shell and the mold during continuous casting. In this article, based on practical MDF from the slab continuous casting driven by a mechanical vibration device, the characteristics of friction were analyzed by continuous wavelet transform (CWT) and discrete wavelet transform (DWT) in different casting conditions, such as normal casting, level fluctuation, and alarming of the temperature measurement system. The results show that the CWT of friction accurately captures the subtle changes in friction force, such as the periodic characteristic of MDF during normal casting and the disordered feature of MDF during level fluctuation. Most important, the results capture the occurrence of abnormal casting and display the friction frequency characteristics at this abnormal time. In addition, in this article, there are some abnormal casting conditions, and the friction signal is stable until there is a sudden large change when abnormal casting, such as split breakout and submerged entry nozzle breakage, occurs. The DWT has a good ability to capture the friction characteristics for such abnormal situations. In particular, the potential abnormal features of MDF were presented in advance, which provides strong support for identifying abnormal casting and even preventing abnormal casting.

  4. Effect of Sodium Fluoride Mouthwash on the Frictional Resistance of Orthodontic Wires.

    PubMed

    Geramy, Allahyar; Hooshmand, Tabassom; Etezadi, Tahura

    2017-09-01

    The friction between the brackets and orthodontic wire during sliding mechanics inflicts difficulties such as decreasing the applied force and tooth movement and also the loss of anchorage. Therefore, many studies have focused on the factors that affect the friction. The purpose of this study was to assess the effect of 0.05% sodium fluoride mouthwash on the friction between orthodontic brackets and wire. Four types of orthodontic wires including rectangular standard stainless steel (SS), titanium molybdenum alloy (TMA), nickel-titanium (NiTi) and copper-nickel-titanium (Cu-NiTi) were selected. In each group, half of the samples were immersed in 0.05% sodium fluoride mouthwash and the others were immersed in artificial saliva for 10 hours. An elastomeric ligature was used for ligating the wires to brackets. The frictional test was performed in a universal testing machine at the speed of 10 mm/minute. Two-way ANOVA was used for statistical analysis of the friction rate. The friction rate was significantly higher after immersion in 0.05% sodium fluoride mouthwash in comparison with artificial saliva (P=0.00). Cu-NiTi wire showed the highest friction value followed by TMA, NiTi and SS wires. According to the results of the current study, 0.05% sodium fluoride mouthwash increased the frictional characteristics of all the evaluated orthodontic wires.

  5. Frictional Characteristics of graphene

    NASA Astrophysics Data System (ADS)

    Lee, Changgu; Carpick, Robert; Hone, James

    2009-03-01

    The frictional characteristics of graphene were characterized using friction force microscopy (FFM). The frictional force for monolayer graphene is more than twice that of bulk graphite, with 2,3, and 4 layer samples showing a monotonic decrease in friction with increasing sample thickness. Measurements on suspended graphene membranes show identical results, ruling out substrate effects as the cause of the observed variation. Likewise, the adhesion force is identical for all samples. The frictional force is independent of load within experimental uncertainty, consistent with previous measurements on graphite. We consider several possible explanations for the origin of the observed thickness dependence.

  6. Hydrodynamic studies of CNT nanofluids in helical coil heat exchanger

    NASA Astrophysics Data System (ADS)

    Babita; Sharma, S. K.; Mital Gupta, Shipra; Kumar, Arinjay

    2017-12-01

    Helical coils are extensively used in several industrial processes such as refrigeration systems, chemical reactors, recovery processes etc to accommodate a large heat transfer area within a smaller space. Nanofluids are getting great attention due to their enhanced heat transfer capability. In heat transfer equipments, pressure drop is one of the major factors of consideration for pumping power calculations. So, the present work is aimed to study hydrodynamics of CNT nanofluids in helical coils. In this study, pressure drop characteristics of CNT nanofluid flowing inside horizontal helical coils are investigated experimentally. The helical coil to tube diameter was varied from 11.71 to 27.34 keeping pitch of the helical coil constant. Double distilled water was used as basefluid. SDBS and GA surfactants were added to stablilize CNT nanofluids. The volumetric fraction of CNT nanofluid was varied from 0.003 vol% to 0.051 vol%. From the experimental data, it was analyzed that the friction factor in helical coils is greater than that of straight tubes. Concentration of CNT in nanofluids also has a significant influence on the pressure drop/friction factor of helical coils. At a constant concentration of CNT, decreasing helical coil to tube diameter from 27.24 to 11.71, fanning friction factor of helical coil; f c increases for a constant value of p/d t. This increase in the value of fanning friction factor can be attributed to the secondary flow of CNT nanofluid in helical coils.

  7. A Correction to the Stress-Strain Curve During Multistage Hot Deformation of 7150 Aluminum Alloy Using Instantaneous Friction Factors

    NASA Astrophysics Data System (ADS)

    Jiang, Fulin; Tang, Jie; Fu, Dinfa; Huang, Jianping; Zhang, Hui

    2018-04-01

    Multistage stress-strain curve correction based on an instantaneous friction factor was studied for axisymmetric uniaxial hot compression of 7150 aluminum alloy. Experimental friction factors were calculated based on continuous isothermal axisymmetric uniaxial compression tests at various deformation parameters. Then, an instantaneous friction factor equation was fitted by mathematic analysis. After verification by comparing single-pass flow stress correction with traditional average friction factor correction, the instantaneous friction factor equation was applied to correct multistage stress-strain curves. The corrected results were reasonable and validated by multistage relative softening calculations. This research provides a broad potential for implementing axisymmetric uniaxial compression in multistage physical simulations and friction optimization in finite element analysis.

  8. Comparison of Friction Characteristics on TN and VA Mode Alignment Films with Friction Force Microscopy

    NASA Astrophysics Data System (ADS)

    Kwak, Musun; Chung, Hanrok; Kwon, Hyukmin; Kim, Jehyun; Han, Daekyung; Yi, Yoonseon; Lee, Sangmun; Lee, Chulgu; Cha, Sooyoul

    Using frictional force microscopy (FFM), the friction surface characteristics were compared between twisted nematic (TN) mode and vertical alignment (VA) mode alignment films (AFs). The friction asymmetry was detected depending on temperature conditions on TN mode AF, but not on VA mode AF. The difference between two modes was explained by leaning intermolecular repulsion caused by the pre-tilt angle uniformity and the density of side chain. No level difference according to temperature conditions appeared when the pre-tilt angle were measured after liquid crystal (LC) injection.

  9. The influence of resting periods on friction in the artificial hip.

    PubMed

    Nassutt, Roman; Wimmer, Markus A; Schneider, Erich; Morlock, Michael M

    2003-02-01

    Insufficient tribologic performance of total joint components is a major cause of prostheses failure. Wear has been studied intensively using testing machines that apply continuous motions. Human locomotion, however, is not well represented by continuous motions alone. Singular events and resting periods are a substantial part of daily activities. Resting does influence adhesion in the artificial joint with possible effects on friction, wear, and loosening. The current study evaluated the effects of resting on the frictional properties of hip prosthesis components. The activity measurements of 32 patients with artificial hip replacements were analyzed for resting durations of the hip. A pin-on-ball screening device was used to determine friction after characteristic resting periods and during continuous oscillating motion. All common articulation pairings were investigated. Prolonged and frequent resting periods of the hip were found for the patients. Initial friction increased with increasing resting duration for all tested materials (between 41% and 191%). The metal-on-metal articulations showed the highest friction level (0.098 for sliding) and the highest increase (191%) in friction with resting duration (0.285 after resting periods of 60 seconds). A high static frictional moment after resting periods might present a risk for aseptic implant loosening. Therefore, large head diameters of metal-on-metal joints should be used with caution, especially when additional unfavorable risk factors such as obesity, weak bone-implant interface, or high activity level are present.

  10. Intraoral corrosion of self-ligating metallic brackets and archwires and the effect on friction

    NASA Astrophysics Data System (ADS)

    Tima, Lori Lynn

    The purpose of this study was to investigate how the frictional coefficient was affected due to intraoral use. A secondary aim of this study was to determine whether or not there was a relationship between corrosion of orthodontic alloys and friction via scanning electron microscopic qualitative analysis. Orthodontic brackets and 0.019 x 0.025 inch stainless steel archwires were collected and divided into three groups of n=10: used bracket and used wires (UBUW), used brackets and new wires (UBNW), and new brackets and new wires (NBNW). New materials were as-received from the manufacturer, and used materials were clinically used bracket and wires collected from patients following orthodontic treatment. Archwires were pulled through bracket slots at a rate of 0.5mm/min while friction forces were measured. Following a cleaning process, the surface topography of the bracket slots was examined under a scanning electron microscope (SEM). Based on a 1-factor MANOVA, there was no significant group effect (all p>0.05) on frictional forces. Partial eta squared values indicated that intraoral exposure had only a small effect on frictional forces (≤ 3%). Qualitative analysis of SEM images did not show an association between surface characteristics of the bracket slots and magnitude of frictional force. Results suggest that surface corrosion from intraoral use does not significantly affect friction at the bracket wire interface.

  11. Comparative Research on Characteristics of the Isolation Systems with Dry Friction Damping and with Vicious Damping under Base Excitation

    NASA Astrophysics Data System (ADS)

    Hou, Junfang; jing, Min; Zhang, Weihua; Lu, Yahui; He, Haiwen

    2017-12-01

    As for the isolation problem of electronic equipments on vehicle, the vibration response characteristics of dry friction damping isolation system under base displacement excitation was analyzed in theory by harmonic balance method, and the displacement response was compared between the isolation systems with dry friction damping and vicious damping separately. The results show that the isolation system with small dry friction damping can’t meet the demands of displacement reduction close to the natural frequency, and it can realize full-frequency vibration isolation by improving dry friction damping when the lock frequency passes beyond the resonance frequency band. The results imply that the damping mechanism of dry friction isolator can’t be described only by dry friction damping, and the composite damping with dry friction and vicious damping is more appropriate.

  12. Friction factor data for flat plate tests of smooth and honeycomb surfaces. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Ha, Tae Woong

    1989-01-01

    Friction factors for honeycomb surfaces were measured with a flat plate tester. The flat plate test apparatus was described and a method was discussed for determining the friction factor experimentally. The friction factor model was developed for the flat plate test based on the Fanno Line Flow. The comparisons of the friction factor were plotted for smooth surfaces and six-honeycomb surfaces with three-clearances, 6.9 bar to 17.9 bar range of inlet pressures, and 5,000 to 100,000 range of the Reynolds number. The optimum geometries for the maximum friction factor were found as a function of cell width to cell depth and cell width to clearance ratios.

  13. Enhanced heat transfer and frictional losses in heat exchanger tube with modified helical coiled inserts

    NASA Astrophysics Data System (ADS)

    Verma, Aditya; Kumar, Manoj; Patil, Anil Kumar

    2018-04-01

    The application of compact heat exchangers in any thermal system improves overall performance with a considerable reduction in size and weight. Inserts of different geometrical features have been used as turbulence promoting devices to increase the heat transfer rates. The present study deals with the experimental investigation of heat transfer and fluid flow characteristics of a tubular heat exchanger fitted with modified helical coiled inserts. Experiments have been carried out for a smooth tube without insert, tube fitted with helical coiled inserts, and modified helical coiled inserts. The helical coiled inserts are tested by varying the pitch ratio and wire diameter ratio from 0.5-1.5, and 0.063-0.125, respectively for the Reynolds number range of 1400 to 11,000. Experimental data have also been collected for the modified helical coiled inserts with gradually increasing pitch (GIP) and gradually decreasing pitch (GDP) configurations. The Nusselt number and friction factor values for helical coiled inserts are enhanced in the range of 1.42-2.62, 3.4-27.4, relative to smooth tube, respectively. The modified helical coiled insert showed enhancements in Nusselt number and friction factor values in the range of 1.49-3.14, 11.2-19.9, relative to smooth tube, respectively. The helical coiled and modified helical coiled inserts have thermo-hydraulic performance factor in the range of 0.59-1.29, 0.6-1.39, respectively. The empirical correlations of Nusselt number and friction factor for helical coiled inserts are proposed.

  14. Experimental study on the regenerator under actual operating conditions

    NASA Astrophysics Data System (ADS)

    Nam, Kwanwoo; Jeong, Sangkwon

    2002-05-01

    An experimental apparatus was prepared to investigate thermal and hydrodynamic characteristics of the regenerator under its actual operating conditions. The apparatus included a compressor to pressurize and depressurize regenerator with various operating frequencies. Cold end of the regenerator was maintained around 100 K by means of liquid nitrogen container and heat exchanger. Instantaneous gas temperature and mass flow rate were measured at both ends of the regenerator during the whole pressure cycle. Pulsating pressure and pressure drop across the regenerator were also measured. The operating frequency of the pressure cycle was varied between 3 and 60 Hz, which are typical operating frequencies of Gifford-McMahon, pulse tube, and Stirling cryocoolers. First, friction factor for the wire screen mesh was directly determined from room temperature experiments. When the operating frequency was less than 9 Hz, the oscillating flow friction factor was nearly same as the steady flow friction factor for Reynolds number up to 100. For 60 Hz operations, the ratio of oscillating flow friction factor to steady flow one was increased as hydraulic Reynolds number became high. When the Reynolds number was 100, this ratio was about 1.6. Second, ineffectiveness of the regenerator was obtained when the cold-end was maintained around 100 K and the warm-end at 300 K to simulate the actual operating condition of the regenerator in cryocooler. Effect of the operating frequency on ineffectiveness of regenerator was discussed at low frequency range.

  15. Reconsideration of data and correlations for plate finned-tube heat exchangers

    NASA Astrophysics Data System (ADS)

    Otović, Milena; Mihailović, Miloš; Genić, Srbislav; Jaćimović, Branislav; Milovančević, Uroš; Marković, Saša

    2018-04-01

    This paper deals with heat exchangers having plain finned tubes in staggered (triangular) pattern. The objective of this paper is to provide the heat transfer and friction factor correlation which can be used in engineering practice. For this purpose, the experimental data of several (most cited) authors who deal with this type of heat exchangers are used. The new correlations are established to predict the air-side heat transfer coefficient and friction factor as a function of the Reynolds number and geometric variables of the heat exchanger - tube diameter, tube pitch, fin spacing, tube rows, etc. In those correlations the characteristic dimension in Reynolds number is calculated by using the new parameter - volumetric porosity. Also, there are given the errors of those correlations.

  16. Heat Transfer and Friction Characteristics of Artificially Roughened Duct used for Solar Air Heaters—a Review

    NASA Astrophysics Data System (ADS)

    Kumar, Khushmeet; Prajapati, D. R.; Samir, Sushant

    2018-02-01

    Solar air heater uses the energy coming from the sun to heat the air. The conversion rate of solar energy to heat depends upon the efficiency of the solar air heater and this efficiency can be increased by the use of artificial roughness on the surface of absorber plate. Various studies were carried out to analyse the effect of different roughness geometries on heat transfer and friction factor characteristics. The thermo-hydraulic performance of solar air heater can be evaluated in terms of effective efficiency, thermo-hydraulic performance parameter and exergetic efficiency. In this study various geometries used for artificial roughness and to improve the performance of solar air heaters were studied. Also correlations developed by various researchers are presented in this paper.

  17. Ice friction of flared ice hockey skate blades.

    PubMed

    Federolf, Peter A; Mills, Robert; Nigg, Benno

    2008-09-01

    In ice hockey, skating performance depends on the skill and physical conditioning of the players and on the characteristics of their equipment. CT Edge have recently designed a new skate blade that angles outward near the bottom of the blade. The objective of this study was to compare the frictional characteristics of three CT Edge blades (with blade angles of 4 degrees, 60, and 8 degrees, respectively) with the frictional characteristics of a standard skate blade. The friction coefficients of the blades were determined by measuring the deceleration of an aluminium test sled equipped with three test blades. The measurements were conducted with an initial sled speed of 1.8 m s(-1) and with a load of 53 kg on each blade. The friction coefficient of the standard blades was 0.0071 (s = 0.0005). For the CT Edge blades with blade angles of 4 degrees, 6 degrees, and 8 degrees, friction coefficients were lower by about 13%, 21%, and 22%, respectively. Furthermore, the friction coefficients decreased with increasing load. The results of this study show that widely accepted paradigms such as "thinner blades cause less friction" need to be revisited. New blade designs might also be able to reduce friction in speed skating, figure skating, bobsledding, and luge.

  18. Numerical study of the influence of the thickness and roughness of TiN coatings on their wear in scratch testing

    NASA Astrophysics Data System (ADS)

    Eremina, G. M.; Smolin, A. Yu.

    2017-12-01

    One of the mostly used and complicated surgical operations on large human joints is total hip replacement. An endoprosthesis is chosen individually for each person on the basis of his anatomical features and physical activity. However, such an important factor affecting the durability of an endoprosthesis as wear in the head-acetabular cup friction pair is still poorly understood, and it is taken into account only qualitatively. The determining role in wear belongs to the structure of the surface layers and coatings of the friction pair. The mechanical and structural characteristics of the coating largely depend on the method of its application. In this paper, to study the tribological characteristics of the coating material of the friction pair, we use computer simulation of scratch testing. The simulations are performed with the application of the method of movable cellular automata. The model specimens correspond to real coatings manufactured under different treatment conditions (deposition temperature and time). The analysis of the simulation results allows one to choose the optimal regime corresponding to the maximum hardness of coatings or adhesive strength.

  19. Effects of friction layer characteristics on the tribological properties of Ni3Al solid-lubricating composites at different load conditions

    NASA Astrophysics Data System (ADS)

    Lu, Guanchen; Shi, Xiaoliang; Huang, Yuchun; Liu, Xiyao; Yang, Meijun

    2018-05-01

    This paper investigates the effects of friction layer characteristics of Ni3Al matrix self-lubricating composites (NMCs) on the tribological properties sliding against ceramic ball Si3N4 at dry friction process at the different load conditions. The characteristics of friction layer are performed in terms of hardness of wear scars, thickness and elemental distributions of friction layer. The results show that the microhardness of wear scars of NMCs increases with the increase of the sliding time and applied load, which results in friction coefficient reduced and wear rate decreased, indicating that the tribological performance of NMCs is obviously affected by microhardness of wear scar. However, under excessive applied load, the performance of friction layer of NMCs is deteriorated for the spalling of wear debris and deformation of contact surface. Therefore, selecting appropriate load conditions during the sliding contact, at the transition to the optimal properties of friction layer maybe occur. NMCs exhibits excellent tribological properties at 15N, which leads to the lowest friction coefficient (0.386) and wear rate (2.48 × 10‑5 mm3 N‑1 m‑1), as well as the smoothest surface of wear track compared with the other load conditions. Meanwhile, the elemental distributions analysis of cross-section of friction layer of NMCs shows that the frictional structures can be divided into three main layers. The thickness of the friction-affected layer varies with the changing of applied load. These results could provide a reference for preparing the solid-lubrication materials with better tribological properties.

  20. Friction Surface Treatment Selection: Aggregate Properties, Surface Characteristics, Alternative Treatments, and Safety Effects

    DOT National Transportation Integrated Search

    2017-07-01

    This study aimed to evaluate the long term performance of the selected surface friction treatments, including high friction surface treatment (HFST) using calcined bauxite and steel slag, and conventional friction surfacing, in particular pavement pr...

  1. A novel investigation of heat transfer characteristics in rifled tubes

    NASA Astrophysics Data System (ADS)

    Jegan, C. Dhayananth; Azhagesan, N.

    2018-05-01

    The experimental investigation of heat transfer of water flowing in a rifled tube was explored at different pressures and at various operating conditions in a rifled tube heat exchanger. The specifications for the inner and outer diameters of the inner tube are 25.8 and 50.6 mm, respectively. The working fluids used in shell side and tube side are cold and hot water. The rifled tube was made of the stainless steel with 4 ribs, 50.6 mm outer diameter, 0.775 mm rib height, 58o helix angle and the length 1500 mm. The effect of pressure, wall heat flux and friction factor were discussed. The results confirm that even at low pressures the rifled tubes has an obvious enhancement in heat transfer compared with smooth tube. Results depicts that the Nusselt number increases with Reynolds number and the friction factor decreases with increase in Reynolds number and the heat transfer rate is higher for the rifled tube when compared to smooth tube, because of strong swirl flow due to centrifugal action. It also confirms that, the friction factor obtained from the rifled tube is significantly higher than that of smooth tube.

  2. Numerical simulation of turbulent flow and heat transfer though sinusoidal ducts

    NASA Astrophysics Data System (ADS)

    Abroshan, Hamid

    2018-02-01

    Turbulent forced convection heat transfer in corrugated plate surfaces was studied by means of CFD. Flow through corrugated plates, which are sets of sinusoidal ducts, was analyzed for different inlet flow angles (0° to 50°), aspect ratios (0.1 to 10), Reynolds numbers (2000 to 40,000) and Prantdel numbers (0.7 to 5). Heat transfer is affected significantly by variation of aspect ratio. A maximum heat transfer coefficient is observed at a particular aspect ratio although the aspect ratio has a minor effect on friction factor. Enlarging inlet flow angle also leads to a higher heat transfer coefficient and pressure loss in aspect ratios close to unity. Dependency of Nusselt and friction factor on the angle and aspect ratio was interpreted by means of appearance of secondary motions and coexistence of laminar and turbulent flow in a cross section. Comparing the results with experimental data shows a maximum 12.8% difference. By evaluating the results, some correlations were proposed to calculate Nusselt number and friction factor for entrance and fully developed regions. A corrugated plate with an aspect ratio equal to 1.125 and an inlet flow angle equal to 50° gives the best heat transfer and pressure drop characteristics.

  3. Nano-Sized Grain Refinement Using Friction Stir Processing

    DTIC Science & Technology

    2013-03-01

    friction stir weld is a very fine grain microstructure produced as a result of dynamic recrystallization. The friction stir ... Friction Stir Processing, Magnesium, Nano-size grains Abstract A key characteristic of a friction stir weld is a very fine grain microstructure...state process developed on the basis of the friction stir welding (FSW) technique invented by The Welding Institute (TWI) in 1991 [2]. During

  4. Friction Laws Derived From the Acoustic Emissions of a Laboratory Fault by Machine Learning

    NASA Astrophysics Data System (ADS)

    Rouet-Leduc, B.; Hulbert, C.; Ren, C. X.; Bolton, D. C.; Marone, C.; Johnson, P. A.

    2017-12-01

    Fault friction controls nearly all aspects of fault rupture, yet it is only possible to measure in the laboratory. Here we describe laboratory experiments where acoustic emissions are recorded from the fault. We find that by applying a machine learning approach known as "extreme gradient boosting trees" to the continuous acoustical signal, the fault friction can be directly inferred, showing that instantaneous characteristics of the acoustic signal are a fingerprint of the frictional state. This machine learning-based inference leads to a simple law that links the acoustic signal to the friction state, and holds for every stress cycle the laboratory fault goes through. The approach does not use any other measured parameter than instantaneous statistics of the acoustic signal. This finding may have importance for inferring frictional characteristics from seismic waves in Earth where fault friction cannot be measured.

  5. Friction Anisotropy with Respect to Topographic Orientation

    PubMed Central

    Yu, Chengjiao; Wang, Q. Jane

    2012-01-01

    Friction characteristics with respect to surface topographic orientation were investigated using surfaces of different materials and fabricated with grooves of different scales. Scratching friction tests were conducted using a nano-indentation-scratching system with the tip motion parallel or perpendicular to the groove orientation. Similar friction anisotropy trends were observed for all the surfaces studied, which are (1) under a light load and for surfaces with narrow grooves, the tip motion parallel to the grooves offers higher friction coefficients than does that perpendicular to them, (2) otherwise, equal or lower friction coefficients are found under this motion. The influences of groove size relative to the diameter of the mating tip (as a representative asperity), surface contact stiffness, contact area, and the characteristic stiction length are discussed. The appearance of this friction anisotropy is independent of material; however, the boundary and the point of trend transition depend on material properties. PMID:23248751

  6. Estimating Fault Friction From Seismic Signals in the Laboratory

    NASA Astrophysics Data System (ADS)

    Rouet-Leduc, Bertrand; Hulbert, Claudia; Bolton, David C.; Ren, Christopher X.; Riviere, Jacques; Marone, Chris; Guyer, Robert A.; Johnson, Paul A.

    2018-02-01

    Nearly all aspects of earthquake rupture are controlled by the friction along the fault that progressively increases with tectonic forcing but in general cannot be directly measured. We show that fault friction can be determined at any time, from the continuous seismic signal. In a classic laboratory experiment of repeating earthquakes, we find that the seismic signal follows a specific pattern with respect to fault friction, allowing us to determine the fault's position within its failure cycle. Using machine learning, we show that instantaneous statistical characteristics of the seismic signal are a fingerprint of the fault zone shear stress and frictional state. Further analysis of this fingerprint leads to a simple equation of state quantitatively relating the seismic signal power and the friction on the fault. These results show that fault zone frictional characteristics and the state of stress in the surroundings of the fault can be inferred from seismic waves, at least in the laboratory.

  7. CFD analysis to study effect of circular vortex generator placed in inlet section to investigate heat transfer aspects of solar air heater.

    PubMed

    Gawande, Vipin B; Dhoble, A S; Zodpe, D B

    2014-01-01

    CFD analysis of 2-dimensional artificially roughened solar air heater duct with additional circular vortex generator, inserted in inlet section is carried out. Circular transverse ribs on the absorber plate are placed as usual. The analysis is done to investigate the effect of inserting additional vortex generator on the heat transfer and flow friction characteristics inside the solar air heater duct. This investigation covers relative roughness pitch in the range of 10 ≤ P/e ≤ 25 and relevant Reynolds numbers in the range of 3800 ≤ Re ≤ 18000. Relative roughness height (e/D) is kept constant as 0.03 for analysis. The turbulence created due to additional circular vortex generator increases the heat transfer rate and at the same time there is also increase in friction factor values. For combined arrangement of ribs and vortex generator, maximum Nusselt number is found to be 2.05 times that of the smooth duct. The enhancement in Nusselt number with ribs and additional vortex generator is found to be 1.06 times that of duct using ribs alone. The maximum increase in friction factor with ribs and circular vortex generator is found to be 2.91 times that of the smooth duct. Friction factor in a combined arrangement is 1.114 times that in a duct with ribs alone on the absorber plate. The augmentation in Thermal Enhancement Factor (TEF) with vortex generator in inlet section is found to be 1.06 times more than with circular ribs alone on the absorber plate.

  8. CFD Analysis to Study Effect of Circular Vortex Generator Placed in Inlet Section to Investigate Heat Transfer Aspects of Solar Air Heater

    PubMed Central

    Gawande, Vipin B.; Dhoble, A. S.; Zodpe, D. B.

    2014-01-01

    CFD analysis of 2-dimensional artificially roughened solar air heater duct with additional circular vortex generator, inserted in inlet section is carried out. Circular transverse ribs on the absorber plate are placed as usual. The analysis is done to investigate the effect of inserting additional vortex generator on the heat transfer and flow friction characteristics inside the solar air heater duct. This investigation covers relative roughness pitch in the range of 10 ≤ P/e ≤ 25 and relevant Reynolds numbers in the range of 3800 ≤ Re ≤ 18000. Relative roughness height (e/D) is kept constant as 0.03 for analysis. The turbulence created due to additional circular vortex generator increases the heat transfer rate and at the same time there is also increase in friction factor values. For combined arrangement of ribs and vortex generator, maximum Nusselt number is found to be 2.05 times that of the smooth duct. The enhancement in Nusselt number with ribs and additional vortex generator is found to be 1.06 times that of duct using ribs alone. The maximum increase in friction factor with ribs and circular vortex generator is found to be 2.91 times that of the smooth duct. Friction factor in a combined arrangement is 1.114 times that in a duct with ribs alone on the absorber plate. The augmentation in Thermal Enhancement Factor (TEF) with vortex generator in inlet section is found to be 1.06 times more than with circular ribs alone on the absorber plate. PMID:25254251

  9. Parameter tuning method for dither compensation of a pneumatic proportional valve with friction

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Song, Yang; Huang, Leisheng; Fan, Wei

    2016-05-01

    In the practical application of pneumatic control devices, the nonlinearity of a pneumatic control valve become the main factor affecting the control effect, which comes mainly from the dynamic friction force. The dynamic friction inside the valve may cause hysteresis and a dead zone. In this paper, a dither compensation mechanism is proposed to reduce negative effects on the basis of analyzing the mechanism of friction force. The specific dither signal (using a sinusoidal signal) was superimposed on the control signal of the valve. Based on the relationship between the parameters of the dither signal and the inherent characteristics of the proportional servo valve, a parameter tuning method was proposed, which uses a displacement sensor to measure the maximum static friction inside the valve. According to the experimental results, the proper amplitude ranges are determined for different pressures. In order to get the optimal parameters of the dither signal, some dither compensation experiments have been carried out on different signal amplitude and gas pressure conditions. Optimal parameters are determined under two kinds of pressure conditions. Using tuning parameters the valve spool displacement experiment has been taken. From the experiment results, hysteresis of the proportional servo valve is significantly reduced. And through simulation and experiments, the cut-off frequency of the proportional valve has also been widened. Therefore after adding the dither signal, the static and dynamic characteristics of the proportional valve are both improved to a certain degree. This research proposes a parameter tuning method of dither signal, and the validity of the method is verified experimentally.

  10. [On Two Opposing (Bio)surfaces as Comprehended in Terms of an Extension of the Coulomb-Amontons Law of Friction, with Its Virtual Usefulness for Biotribology in Nanoscale].

    PubMed

    Gadomski, A; Hladyszowski, J

    2015-01-01

    An extension of the Coulomb-Amontons law is proposed in terms of an interaction-detail involving renormalization (simplified) n-th level scheme. The coefficient of friction is obtained in a general exponential (nonlinear) form, characteristic of virtually infinite (or, many body) level of the interaction map. Yet, its application for a hydration repulsion bilayered system, prone to facilitated lubrication, is taken as linearly confined, albeit with an inclusion of a decisive repelling force/pressure factor. Some perspectives toward related systems, fairly outside biotribological issues, have been also addressed.

  11. Tribological behaviour and statistical experimental design of sintered iron-copper based composites

    NASA Astrophysics Data System (ADS)

    Popescu, Ileana Nicoleta; Ghiţă, Constantin; Bratu, Vasile; Palacios Navarro, Guillermo

    2013-11-01

    The sintered iron-copper based composites for automotive brake pads have a complex composite composition and should have good physical, mechanical and tribological characteristics. In this paper, we obtained frictional composites by Powder Metallurgy (P/M) technique and we have characterized them by microstructural and tribological point of view. The morphology of raw powders was determined by SEM and the surfaces of obtained sintered friction materials were analyzed by ESEM, EDS elemental and compo-images analyses. One lot of samples were tested on a "pin-on-disc" type wear machine under dry sliding conditions, at applied load between 3.5 and 11.5 × 10-1 MPa and 12.5 and 16.9 m/s relative speed in braking point at constant temperature. The other lot of samples were tested on an inertial test stand according to a methodology simulating the real conditions of dry friction, at a contact pressure of 2.5-3 MPa, at 300-1200 rpm. The most important characteristics required for sintered friction materials are high and stable friction coefficient during breaking and also, for high durability in service, must have: low wear, high corrosion resistance, high thermal conductivity, mechanical resistance and thermal stability at elevated temperature. Because of the tribological characteristics importance (wear rate and friction coefficient) of sintered iron-copper based composites, we predicted the tribological behaviour through statistical analysis. For the first lot of samples, the response variables Yi (represented by the wear rate and friction coefficient) have been correlated with x1 and x2 (the code value of applied load and relative speed in braking points, respectively) using a linear factorial design approach. We obtained brake friction materials with improved wear resistance characteristics and high and stable friction coefficients. It has been shown, through experimental data and obtained linear regression equations, that the sintered composites wear rate increases with increasing applied load and relative speed, but in the same conditions, the frictional coefficients slowly decrease.

  12. Frictional wave dissipation on a remarkably rough reef

    NASA Astrophysics Data System (ADS)

    Monismith, Stephen G.; Rogers, Justin S.; Koweek, David; Dunbar, Robert B.

    2015-05-01

    We present a week of observations of wave dissipation on the south forereef of Palmyra Atoll. Using wave measurements made in 6.2 m and 11.2 m of water offshore of the surf zone, we computed energy fluxes and near-bottom velocity. Equating the divergence of the shoreward energy flux to its dissipation by bottom friction and parameterizating dissipation in terms of the root-mean-square velocity cubed, we find that the wave friction factor, fw, for this reef is 1.80 ± 0.07, nearly an order of magnitude larger than values previously found for reefs. We attribute this remarkably high value of fw to the complex canopy structure of the reef, which we believe may be characteristic of healthy reefs. This suggests that healthy reefs with high coral cover may provide greater coastal protection than do degraded reefs with low coral cover.

  13. Preparation of Artificial Skin that Mimics Human Skin Surface and Mechanical Properties.

    PubMed

    Shimizu, Rana; Nonomura, Yoshimune

    2018-01-01

    We have developed an artificial skin that mimics the morphological and mechanical properties of human skin. The artificial skin comprises a polyurethane block possessing a microscopically rough surface. We evaluated the tactile sensations when skin-care cream was applied to the artificial skin. Many subjects perceived smooth, moist, and soft feels during the application process. Cluster analysis showed that these characteristic tactile feels are similar to those when skin-care cream is applied to real human skin. Contact angle analysis showed that an oil droplet spread smoothly on the artificial skin surface, which occurred because there were many grooves several hundred micrometers in width on the skin surface. In addition, when the skin-care cream was applied, the change in frictional force during the dynamic friction process increased. These wetting and frictional properties are important factors controlling the similarity of artificial skin to real human skin.

  14. Permeability estimations and frictional flow features passing through porous media comprised of structured microbeads

    NASA Astrophysics Data System (ADS)

    Shin, C.

    2017-12-01

    Permeability estimation has been extensively researched in diverse fields; however, methods that suitably consider varying geometries and changes within the flow region, for example, hydraulic fracture closing for several years, are yet to be developed. Therefore, in the present study a new permeability estimation method is presented based on the generalized Darcy's friction flow relation, in particular, by examining frictional flow parameters and characteristics of their variations. For this examination, computational fluid dynamics (CFD) simulations of simple hydraulic fractures filled with five layers of structured microbeads and accompanied by geometry changes and flow transitions are performed. Consequently, it was checked whether the main structures and shapes of each flow path are preserved, even for geometry variations within porous media. However, the scarcity and discontinuity of streamlines increase dramatically in the transient- and turbulent-flow regions. The quantitative and analytic examinations of the frictional flow features were also performed. Accordingly, the modified frictional flow parameters were successfully presented as similarity parameters of porous flows. In conclusion, the generalized Darcy's friction flow relation and friction equivalent permeability (FEP) equation were both modified using the similarity parameters. For verification, the FEP values of the other aperture models were estimated and then it was checked whether they agreed well with the original permeability values. Ultimately, the proposed and verified method is expected to efficiently estimate permeability variations in porous media with changing geometric factors and flow regions, including such instances as hydraulic fracture closings.

  15. A preliminary assessment of the Titan planetary boundary layer

    NASA Technical Reports Server (NTRS)

    Allison, Michael

    1992-01-01

    Results of a preliminary assessment of the characteristic features of the Titan planetary boundary are addressed. These were derived from the combined application of a patched Ekman surface layer model and Rossby number similarity theory. Both these models together with Obukhov scaling, surface speed limits and saltation are discussed. A characteristic Akman depth of approximately 0.7 km is anticipated, with an eddy viscosity approximately equal to 1000 sq cm/s, an associated friction velocity approximately 0.01 m/s, and a surface wind typically smaller than 0.6 m/s. Actual values of these parameters probably vary by as much as a factor of two or three, in response to local temporal variations in surface roughness and stability. The saltation threshold for the windblown injection of approximately 50 micrometer particulates into the atmosphere is less than twice the nominal friction velocity, suggesting that dusty breezes might be an occassional feature of the Titan meteorology.

  16. Molecular relaxations, molecular orientation, and the friction characteristics of polyimide films. [wear characteristics of polymeric lubricant

    NASA Technical Reports Server (NTRS)

    Fusaro, R. L.

    1975-01-01

    The friction characteristics of polyimide films bonded to metallic substrates were studied from 25 to 500 C. These results were interpreted in terms of molecular orientation and thermomechanical data obtained by torsional braid analysis (TBA). A large friction transition was found to occur at 40 + or - 10 C in a dry argon atmosphere (10 ppm H2O). It was postulated that the mechanical stresses of sliding transform or reorder the molecules on the surface into a configuration conducive to easy shear, such as an extended chain. The molecular relaxation which occurs in this temperature region appears to give the molecules the necessary freedom for this reordering process to occur. The effects of velocity, reversibility, and thermal prehistory on the friction properties of polyimide were also studied.

  17. Estimating Fault Friction From Seismic Signals in the Laboratory

    DOE PAGES

    Rouet-Leduc, Bertrand; Hulbert, Claudia; Bolton, David C.; ...

    2018-01-29

    Nearly all aspects of earthquake rupture are controlled by the friction along the fault that progressively increases with tectonic forcing but in general cannot be directly measured. We show that fault friction can be determined at any time, from the continuous seismic signal. In a classic laboratory experiment of repeating earthquakes, we find that the seismic signal follows a specific pattern with respect to fault friction, allowing us to determine the fault's position within its failure cycle. Using machine learning, we show that instantaneous statistical characteristics of the seismic signal are a fingerprint of the fault zone shear stress andmore » frictional state. Further analysis of this fingerprint leads to a simple equation of state quantitatively relating the seismic signal power and the friction on the fault. Finally, these results show that fault zone frictional characteristics and the state of stress in the surroundings of the fault can be inferred from seismic waves, at least in the laboratory.« less

  18. Estimating Fault Friction From Seismic Signals in the Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rouet-Leduc, Bertrand; Hulbert, Claudia; Bolton, David C.

    Nearly all aspects of earthquake rupture are controlled by the friction along the fault that progressively increases with tectonic forcing but in general cannot be directly measured. We show that fault friction can be determined at any time, from the continuous seismic signal. In a classic laboratory experiment of repeating earthquakes, we find that the seismic signal follows a specific pattern with respect to fault friction, allowing us to determine the fault's position within its failure cycle. Using machine learning, we show that instantaneous statistical characteristics of the seismic signal are a fingerprint of the fault zone shear stress andmore » frictional state. Further analysis of this fingerprint leads to a simple equation of state quantitatively relating the seismic signal power and the friction on the fault. Finally, these results show that fault zone frictional characteristics and the state of stress in the surroundings of the fault can be inferred from seismic waves, at least in the laboratory.« less

  19. Experimental research on anchoring force in intestine for the motion of capsule robot.

    PubMed

    Chen, Wenwen; Ke, Quan; He, Shu; Luo, Weijie; Ji, Xing Chun; Yan, Guozheng

    2013-07-01

    Multiple research groups are currently attempting to develop less-invasive robotic capsule endoscopes (RCEs) with better outcomes for enteroscopic procedures. Understanding the biomechanical response of the bowel to RCE is crucial for optimizing the design of these devices. For this reason, this study aims to develop an analytical model to predict the anchoring force of the model when travelling through the intestine. Previous work has developed, characterized and tested the frictional characteristics of the intestine with microgroove structures that had different surface contours. This work tested basic anchoring force characteristics with custom-built testers and clamping mechanism dummies to analyse the robot clamping movement (which is vital to improving movement efficiency). Balloon-shaped and leg-based clamping mechanisms were developed, which were found to have variable anchoring forces from 0.01 N to 1.2 N. After analysing the experimental results it was found that: (a) robot weight does not play a major role in anchoring force; (b) an increase in anchoring force corresponded to an increase in diameter of the clamping mechanism; and (c) textured contact surfaces effectively increased friction. These results could be explained by the biomechanical response of the intestine, friction and mucoadhesion characteristics of the small intestine material. With these factors considered, a model was developed for determining anchoring force in the small intestine.

  20. Influence of friction forces on the motion of VTOL aircraft during landing operations on ships at sea

    NASA Technical Reports Server (NTRS)

    Howard, J. C.; Chin, D. O.

    1981-01-01

    Equations describing the friction forces generated during landing operations on ships at sea were formulated. These forces depend on the platform reaction and the coefficient of friction. The platform reaction depends on the relative sink rate and the shock absorbing capability of the landing gear. The friction coefficient varies with the surface condition of the landing platform and the angle of yaw of the aircraft relative to the landing platform. Landings by VTOL aircraft, equipped with conventional oleopneumatic landing gears are discussed. Simplifications are introduced to reduce the complexity of the mathematical description of the tire and shock strut characteristics. Approximating the actual complicated force deflection characteristic of the tire by linear relationship is adequate. The internal friction forces in the shock strut are included in the landing gear model. A set of relatively simple equations was obtained by including only those tire and shock strut characteristics that contribute significantly to the generation of landing gear forces.

  1. Heat Transfer Enhancement of Laminar Nanofluids Flow in a Circular Tube Fitted with Parabolic-Cut Twisted Tape Inserts

    PubMed Central

    Salman, Sami D.; Kadhum, Abdul Amir H.; Takriff, Mohd S.; Mohamad, Abu Bakar

    2014-01-01

    Numerical investigation has been carried out on heat transfer and friction factor characteristics of copper-water nanofluid flow in a constant heat-fluxed tube with the existence of new configuration of vortex generator using Computational Fluid Dynamics (CFD) simulation. Two types of swirl flow generator: Classical twisted tape (CTT) and Parabolic-cut twisted tape (PCT) with a different twist ratio (y = 2.93, 3.91 and 4.89) and different cut depth (w = 0.5, 1.0 and 1.5 cm) with 2% and 4% volume concentration of CuO nanofluid were used for simulation. The effect of different parameters such as flow Reynolds number, twist ratio, cut depth and nanofluid were considered. The results show that the enhancement of heat transfer rate and the friction factor induced by the Classical (CTT) and Parabolic-cut (PCT) inserts increases with twist ratio and cut depth decreases. The results also revealed that the heat transfer enhancement increases with an increase in the volume fraction of the CuO nanoparticle. Furthermore, the twisted tape with twist ratio (y = 2.93) and cut depth w = 0.5 cm offered 10% enhancement of the average Nusselt number with significant increases in friction factor than those of Classical twisted tape. PMID:24605055

  2. Friction-Testing Machine

    NASA Technical Reports Server (NTRS)

    Benz, F. J.; Dixon, D. S.; Shaw, R. C.

    1986-01-01

    Testing machine evaluates wear and ignition characteristics of materials in rubbing contact. Offers advantages over other laboratory methods of measuring wear because it simulates operating conditions under which material will actually be used. Machine used to determine wear characteristics, rank and select materials for service with such active oxidizers as oxygen, halogens, and oxides of nitrogen, measure wear characteristics, and determine coefficients of friction.

  3. Analyses and Comparison of Solar Air Heater with Various Rib Roughness using Computational Fluid Dynamics (CFD)

    NASA Astrophysics Data System (ADS)

    Kumar, K. Ravi; Cheepu, Muralimohan; Srinivas, B.; Venkateswarlu, D.; Pramod Kumar, G.; Shiva, Apireddi

    2018-03-01

    In solar air heater, artificial roughness on absorber plate become prominent technique to improving heat transfer rate of air flowing passage as a result of laminar sublayer. The selection of rib geometries plays important role on friction characteristics and heat transfer rate. Many researchers studying the roughness shapes over the years to investigate the effect of geometries on the performance of friction factor and heat transfer of the solar air heater. The present study made an attempt to develop the different rib shapes utilised for creating artificial rib roughness and its comparison to investigate higher performance of the geometries. The use of computational fluid dynamics software resulted in correlation of friction factor and heat transfer rate. The simulations studies were performed on 2D computational fluid dynamics model and analysed to identify the most effective parameters of relative roughness of the height, width and pitch on major considerations of friction factor and heat transfer. The Reynolds number is varied in a range from 3000 to 20000, in the current study and modelling has conducted on heat transfer and turbulence phenomena by using Reynolds number. The modelling results showed the formation of strong vortex in the main stream flow due to the right angle triangle roughness over the square, rectangle, improved rectangle and equilateral triangle geometries enhanced the heat transfer extension in the solar air heater. The simulation of the turbulence kinetic energy of the geometry suggests the local turbulence kinetic energy has been influenced strongly by the alignments of the right angle triangle.

  4. Centaur engine gimbal friction characteristics under simulated thrust load

    NASA Technical Reports Server (NTRS)

    Askew, J. W.

    1986-01-01

    An investigation was performed to determine the friction characteristics of the engine gimbal system of the Centaur upper stage rocket. Because the Centaur requires low-gain autopilots in order to meet all stability requirements for some configurations, control performance (response to transients and limit-cycle amplitudes) depends highly on these friction characteristics. Forces required to rotate the Centaur engine gimbal system were measured under a simulated thrust load of 66,723 N (15,000 lb) and in an altitude/thermal environment. A series of tests was performed at three test conditions; ambient temperature and pressure, ambient temperature and vacuum, and cryogenic temperature and vacuum. Gimbal rotation was controlled, and tests were performed in which rotation amplitude and frequency were varied by using triangular and sinusoidal waveforms. Test data revealed an elastic characteristic of the gimbal, independent of the input signal, which was evident prior to true gimbal sliding. The torque required to initiate gimbal sliding was found to decrease when both pressure and temperature decreased. Results from the low amplitude and low frequency data are currently being used in mathematically modeling the gimbal friction characteristics for Centaur autopilot performance studies.

  5. Centaur engine gimbal friction characteristics under simulated thrust load

    NASA Astrophysics Data System (ADS)

    Askew, J. W.

    1986-09-01

    An investigation was performed to determine the friction characteristics of the engine gimbal system of the Centaur upper stage rocket. Because the Centaur requires low-gain autopilots in order to meet all stability requirements for some configurations, control performance (response to transients and limit-cycle amplitudes) depends highly on these friction characteristics. Forces required to rotate the Centaur engine gimbal system were measured under a simulated thrust load of 66,723 N (15,000 lb) and in an altitude/thermal environment. A series of tests was performed at three test conditions; ambient temperature and pressure, ambient temperature and vacuum, and cryogenic temperature and vacuum. Gimbal rotation was controlled, and tests were performed in which rotation amplitude and frequency were varied by using triangular and sinusoidal waveforms. Test data revealed an elastic characteristic of the gimbal, independent of the input signal, which was evident prior to true gimbal sliding. The torque required to initiate gimbal sliding was found to decrease when both pressure and temperature decreased. Results from the low amplitude and low frequency data are currently being used in mathematically modeling the gimbal friction characteristics for Centaur autopilot performance studies.

  6. Experimental and analytical determination of characteristics affecting light aircraft landing-gear dynamics

    NASA Technical Reports Server (NTRS)

    Fasanella, E. L.; Mcgehee, J. R.; Pappas, M. S.

    1977-01-01

    An experimental and analytical investigation was conducted to determine which characteristics of a light aircraft landing gear influence gear dynamic behavior significantly. The investigation focused particularly on possible modification for load control. Pseudostatic tests were conducted to determine the gear fore-and-aft spring constant, axial friction as a function of drag load, brake pressure-torque characteristics, and tire force-deflection characteristics. To study dynamic tire response, vertical drops were conducted at impact velocities of 1.2, 1.5, and 1.8 m/s onto a level surface; to determine axial-friction effects, a second series of vertical drops were made at 1.5 m/s onto surfaces inclined 5 deg and 10 deg to the horizontal. An average dynamic axial-friction coefficient of 0.15 was obtained by comparing analytical data with inclined surface drop test data. Dynamic strut bending and associated axial friction were found to be severe for the drop tests on the 10 deg surface.

  7. Tribological characteristics of perfluoropolyether liquid lubricants under sliding conditions in high vacuum

    NASA Technical Reports Server (NTRS)

    Masuko, Masabumi; Jones, William R., Jr.; Helmick, Larry S.

    1993-01-01

    Tribological characteristics of three PFPE's (Fomblin Z, Demnum, and Krytox) were studied under high vacuum using a four-ball apparatus with 440C steel specimens. Fomblin Z and Demnum exhibited initial scuffing-like high friction whereas Krytox did not. Steady state friction with Fomblin Z was the lowest among the three oils. Frictional values for Demnum and Krytox were almost the same. The lowest wear rate in air was provided by Krytox regardless of load, and low wear rates in vacuum at high load were achieved with Krytox and Demnum. Results are explained by reactivity and pressure-viscosity characteristics of the oils.

  8. United Formula for the Friction Factor in the Turbulent Region of Pipe Flow.

    PubMed

    Li, Shuolin; Huai, Wenxin

    2016-01-01

    Friction factor is an important element in both flow simulations and river engineering. In hydraulics, studies on the friction factor in turbulent regions have been based on the concept of three flow regimes, namely, the fully smooth regime, the fully rough regime, and the transitional regime, since the establishment of the Nikuradze's chart. However, this study further demonstrates that combining the friction factor with Reynolds number yields a united formula that can scale the entire turbulent region. This formula is derived by investigating the correlation between friction in turbulent pipe flow and its influencing factors, i.e., Reynolds number and relative roughness. In the present study, the formulae of Blasius and Stricklerare modified to rearrange the implicit model of Tao. In addition, we derive a united explicit formula that can compute the friction factor in the entire turbulent regimes based on the asymptotic behavior of the improved Tao's model. Compared with the reported formulae of Nikuradze, the present formula exhibits higher computational accuracy for the original pipe experiment data of Nikuradze.

  9. The effect of surface waviness on friction between Neolite and quarry tiles.

    PubMed

    Chang, Wen-Ruey; Grönqvist, Raoul; Hirvonen, Mikko; Matz, Simon

    2004-06-22

    Friction is widely used as an indicator of surface slipperiness in preventing accidents in slips and falls. Surface texture affects friction, but it is not clear which surface characteristics are better correlated with friction. Highly correlated surface characteristics could be used as potential interventions to prevent slip and fall accidents. The dynamic friction between quarry tiles and a commonly used sole testing material, Neolite, using three different mixtures of glycerol and water as contaminants at the interface was correlated with the surface parameters of the tile surfaces. The surface texture was quantified with various surface roughness and surface waviness parameters using three different cut-off lengths to filter the measured profiles for obtaining the profiles of either surface roughness or surface waviness. The correlation coefficients between the surface parameters and the measured friction were affected by the glycerol contents and cut-off lengths. Surface waviness parameters could potentially be better indicators of friction than commonly used surface roughness parameters, especially when they were measured with commonly used cut-off lengths or when the viscosity of the liquid contaminant was high.

  10. The flow of magnetohydrodynamic Maxwell nanofluid over a cylinder with Cattaneo-Christov heat flux model

    NASA Astrophysics Data System (ADS)

    Raju, C. S. K.; Sanjeevi, P.; Raju, M. C.; Ibrahim, S. M.; Lorenzini, G.; Lorenzini, E.

    2017-11-01

    A theoretical analysis is performed for studying the flow and heat and mass transfer characteristics of Maxwell fluid over a cylinder with Cattaneo-Christov and non-uniform heat source/sink. The Brownian motion and thermophoresis parameters also considered into account. Numerical solutions are carried out by using Runge-Kutta-based shooting technique. The effects of various governing parameters on the flow and temperature profiles are demonstrated graphically. We also computed the friction factor coefficient, local Nusselt and Sherwood numbers for the permeable and impermeable flow over a cylinder cases. It is found that the rising values of Biot number, non-uniform heat source/sink and thermophoresis parameters reduce the rate of heat transfer. It is also found that the friction factor coefficient is high in impermeable flow over a cylinder case when compared with the permeable flow over a cylinder case.

  11. Tactile texture and friction of soft sponge surfaces.

    PubMed

    Takahashi, Akira; Suzuki, Makoto; Imai, Yumi; Nonomura, Yoshimune

    2015-06-01

    We evaluated the tactile texture and frictional properties of five soft sponges with various cell sizes. The frictional forces were measured by a friction meter containing a contact probe with human-finger-like geometry and mechanical properties. When the subjects touched these sponges with their fingers, hard-textured sponges were deemed unpleasant. This tactile feeling changed with friction factors including friction coefficients, their temporal patterns, as well as mechanical and shape factors. These findings provide useful information on how to control the tactile textures of various sponges. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Determination of Actual Friction Factors in Metal Forming under Heavy Loaded Regimes Combining Experimental and Numerical Analysis.

    PubMed

    Camacho, Ana María; Veganzones, Mariano; Claver, Juan; Martín, Francisco; Sevilla, Lorenzo; Sebastián, Miguel Ángel

    2016-09-01

    Tribological conditions can change drastically during heavy loaded regimes as experienced in metal forming; this is especially critical when lubrication can only be applied at the early stage of the process because the homogeneous lubricant layer can break along the die-workpiece interface. In these cases, adopting a constant friction factor for the lubricant-surface pair may not be a valid assumption. This paper presents a procedure based on the use of dual friction factor maps to determine friction factors employed in heavy loaded regimes. A finite element (FE) simulation is used to obtain the friction factor map for the alloy UNS A96082. Experiments were conducted using four lubricants (aluminum anti-size, MoS₂ grease, silicone oil, and copper paste) to determine the actual friction curves. The experimental procedure is based on the application of lubricant only at the beginning of the first stage of ring compression, and not at intermediate stages as is usual in typical ring compression tests (RCTs). The results show that for small reductions ( r h < 20%), the conventional RCT can be applied because the tribological conditions remain similar. For large reductions ( r h > 20%), it is recommended to obtain an average value of the friction factor for every lubricant-surface pair in the range of deformation considered.

  13. Determination of Actual Friction Factors in Metal Forming under Heavy Loaded Regimes Combining Experimental and Numerical Analysis

    PubMed Central

    Camacho, Ana María; Veganzones, Mariano; Claver, Juan; Martín, Francisco; Sevilla, Lorenzo; Sebastián, Miguel Ángel

    2016-01-01

    Tribological conditions can change drastically during heavy loaded regimes as experienced in metal forming; this is especially critical when lubrication can only be applied at the early stage of the process because the homogeneous lubricant layer can break along the die-workpiece interface. In these cases, adopting a constant friction factor for the lubricant-surface pair may not be a valid assumption. This paper presents a procedure based on the use of dual friction factor maps to determine friction factors employed in heavy loaded regimes. A finite element (FE) simulation is used to obtain the friction factor map for the alloy UNS A96082. Experiments were conducted using four lubricants (aluminum anti-size, MoS2 grease, silicone oil, and copper paste) to determine the actual friction curves. The experimental procedure is based on the application of lubricant only at the beginning of the first stage of ring compression, and not at intermediate stages as is usual in typical ring compression tests (RCTs). The results show that for small reductions (rh < 20%), the conventional RCT can be applied because the tribological conditions remain similar. For large reductions (rh > 20%), it is recommended to obtain an average value of the friction factor for every lubricant-surface pair in the range of deformation considered. PMID:28773868

  14. Friction transition in polyimide films as related to molecular relaxations and structure

    NASA Technical Reports Server (NTRS)

    Fusaro, R. L.

    1975-01-01

    The friction characteristics of polyimide films bonded to metallic substrates were studied from 25 to 500 C. These results were correlated to molecular structure and the results of torsional braid analysis (TBA). A large friction transition (0.23 to 0.03) was found to occur at 45 C + or - 5 C. It was postulated that this transition was initiated by some molecular relaxation, which gave the molecules a degree of freedom by which an external mechanical stress could rearrange the molecules into a structure, such as an extended chain, which is conducive to easy shear. Above 300 C the friction characteristics were found to be dependent on the thermal prehistory of the film.

  15. Friction and fretting wear characteristics of different diamond-like carbon coatings against alumina in water-lubricated fretting conditions.

    PubMed

    Watabe, Tsukasa; Amanov, Auezhan; Tsuboi, Ryo; Sasaki, Shinya

    2013-12-01

    Diamond-like carbon (DLC) coatings typically show low friction and high wear resistance. In this study, the friction and fretting wear characteristics of PVD, CVD and CVD-Si DLC coatings were investigated against an alumina (Al2O3) ball under water-lubricated fretting conditions. The objective of this study is to investigate and compare the friction and fretting wear characteristics of those DLC coatings at various fretting frequencies. The test results showed that the PVD DLC coating led to a lower friction coefficient and a higher resistance to fretting wear compared to those of the CVD and CVD-Si DLC coatings. However, the CVD DLC coating showed that the fretting wear resistance decreases with increasing frequency, while no significant difference in fretting wear resistances of the PVD and CVD-Si DLC coatings was observed. Quantitative surface analyses of the specimens were performed using an energy dispersive spectroscopy (EDS), a laser scanning microscope (LSM), a scanning electron microscope (SEM), an atomic force microscope (AFM) and the Raman spectroscopy.

  16. The use of polymer modified asphalt binder for high friction thin lift overlays in Connecticut.

    DOT National Transportation Integrated Search

    2014-09-01

    Controlling the frictional characteristics of a roadway is of paramount importance when considering highway safety. Several state highway agencies specify a friction wearing course to be used in high profile or high accident prone areas. The Connecti...

  17. Physical and Tribological Characteristics of Ion-Implanted Diamond Films

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Heidger, S.; Korenyi-Both, A. L.; Jayne, D. T.; Herrera-Fierro, P.; Shogrin, B.; Wilbur, P. J.; Wu, R. L. C.; Garscadden, A.; Barnes, P. N.

    1994-01-01

    Unidirectional sliding friction experiments were conducted with a natural, polished diamond pin in contact with both as-deposited and carbon-ion-implanted diamond films in ultrahigh vacuum. Diamond films were deposited on silicon, silicon carbide, and silicon nitride by microwave-plasma-assisted chemical vapor deposition. The as-deposited diamond films were impacted with carbon ions at an accelerating energy of 60 keV and a current density of 50 micron A/cm(exp 2) for approximately 6 min, resulting in a dose of 1.2 x 10(exp 17) carbon ions/cm(exp 2). The results indicate that the carbon ion implantation produced a thin surface layer of amorphous, nondiamond carbon. The nondiamond carbon greatly decreased both friction and wear of the diamond films. The coefficients of friction for the carbon-ion-implanted, fine-grain diamond films were less than 0.1, factors of 20 to 30 lower than those for the as-deposited, fine-grain diamond films. The coefficients of friction for the carbon-ion-implanted, coarse-grain diamond films were approximately 0.35, a factor of five lower than those for the as-deposited, coarse-grain diamond films. The wear rates for the carbon-ion-implanted, diamond films were on the order of 10(exp -6) mm(exp 3)/Nm, factors of 30 to 80 lower than that for the as-deposited diamond films, regardless of grain size. The friction of the carbon-ion-implanted diamond films was greatly reduced because the amorphous, nondiamond carbon, which had a low shear strength, was restricted to the surface layers (less than 0.1 micron thick) and because the underlying diamond materials retained their high hardness. In conclusion, the carbon-ion-implanted, fine-grain diamond films can be used effectively as wear resistant, self-lubricating coatings for ceramics, such as silicon nitride and silicon carbide, in ultrahigh vacuum.

  18. Studies of friction and wear characteristics of various wires for wire-brush skids

    NASA Technical Reports Server (NTRS)

    Dreher, R. C.

    1977-01-01

    The friction and wear characteristics of 22 types and sizes of wires for potential use in wire-brush skids were studied. These characteristics were determined by placing brushes made from candidate wires on a belt sander whose moving belt simulated landing roll-out distance. At the same time, the drag force and wear behavior were monitored. Data were obtained over distances up to 3048 m (10,000 ft) at preselected bearing pressures of 172 to 1034 kPa (25 to 150 psi). In general, the friction coefficient developed by the candidate wires was found to be independent of bearing pressure and ranged between 0.4 and 0.6 under the test conditions of this investigation. The friction coefficient was not degraded when the surface was wetted and appears to be independent of wire diameter except perhaps when wire size is relatively large compared with the surface asperities. Generally, the high friction demonstrated by the soft materials was accompanied by high wear rates; conversely, the hard materials provided greater wear resistance but offered lower friction. For all test wires, the wear was shown to increase with increasing bearing pressure, in general, for the same bearing pressure, wear increased with increasing wire diameter and decreased when the surface was wetted.

  19. Identification of laboratory techniques to optimize Superpave HMA surface friction characteristics : final report, April 2010.

    DOT National Transportation Integrated Search

    2010-04-15

    Wet pavement friction is known to be one of the most important roadway safety parameters. In this : research, frictional properties of flexible (asphalt) pavements were investigated. : As a part of this study, a laboratory device to polish asphalt sp...

  20. Particle bed reactor modeling

    NASA Technical Reports Server (NTRS)

    Sapyta, Joe; Reid, Hank; Walton, Lew

    1993-01-01

    The topics are presented in viewgraph form and include the following: particle bed reactor (PBR) core cross section; PBR bleed cycle; fuel and moderator flow paths; PBR modeling requirements; characteristics of PBR and nuclear thermal propulsion (NTP) modeling; challenges for PBR and NTP modeling; thermal hydraulic computer codes; capabilities for PBR/reactor application; thermal/hydralic codes; limitations; physical correlations; comparison of predicted friction factor and experimental data; frit pressure drop testing; cold frit mask factor; decay heat flow rate; startup transient simulation; and philosophy of systems modeling.

  1. Tribological evaluation of PS300: A new chrome oxide based solid lubricant coating sliding against Al2O3 From 25 to 650 C

    NASA Technical Reports Server (NTRS)

    DellaCorte, C.; Laskowski, J. A.

    1996-01-01

    This paper presents the tribological characteristics of Al203 sliding against PS300; a chrome oxide based self lubricating coating. Al203 pins were slid against PS300 coated superalloy disks in air, under a 4.9 N load at velocities of 1 to 8 m/s. At a sliding velocity of 1 m/s, friction ranged from 0.6 at 25 C to 0.2 at 650 C. Wear factors for the Al203 pins were in the 10(exp -7) mm(exp 3)/N-m range and for the PS300 coating was in the 10(exp -5) mm(exp 3)/N-m range. The test results suggest that increased surface temperature resulting from either frictional heating, generated by increased sliding velocity, or ambient heating caused a reduction in friction and wear of the sliding couple. Based upon these results, the tested material combination is a promising candidate for high temperature wear applications.

  2. Evaluation of Improvements to Brayton Cycle Performance.

    DTIC Science & Technology

    1986-05-29

    cogeneration systems. They are International Power Technology (IPT), Palo Alto, California and Mechanical Technology, Inc. (MTI), Latham, New York [13]. IPT...constant (10) For a constant Reynold’s number and dimensions, the friction factor will be constant. The relationship for friction of internal ...equation for the friction factor of internal turbulent flow is expressed as Ap -friction =f(Re) - constant. (12) pV 2 Applying Equation (11), Equation (12

  3. Threshold friction velocity of crusted windblown soils in the Columbia Plateau

    USDA-ARS?s Scientific Manuscript database

    Wind erosion processes are governed by soil physical properties and surface characteristics. Erosion is initiated when the friction velocity exceeds the threshold friction velocity (u*t) of soils. Although u*t is influenced by soil physical properties such as wetness and crusting, there is little in...

  4. Some Observations on the Relationship Between Fatigue and Internal Friction

    NASA Technical Reports Server (NTRS)

    Valluri, S R

    1956-01-01

    Results are presented of an investigation made to determine the internal friction and fatigue strength of commercially pure 1100 aluminum under repeated stressing in torsion at various temperatures and stress levels in an effort to find if there exists any correlation between internal friction and fatigue characteristics.

  5. Investigation of squeal noise under positive friction characteristics condition provided by friction modifiers

    NASA Astrophysics Data System (ADS)

    Liu, Xiaogang; Meehan, Paul A.

    2016-06-01

    Field application of friction modifiers on the top of rail has been shown to effectively curb squeal and reduce lateral forces, but performance can be variable, according to other relevant research. Up to now, most investigations of friction modifiers were conducted in the field, where it is difficult to control or measure important parameters such as angle of attack, rolling speed, adhesion ratio etc. In the present investigation, the effect of different friction modifiers on the occurrence of squeal was investigated on a rolling contact two disk test rig. In particular, friction-creep curves and squeal sound pressure levels were measured under different rolling speeds and friction modifiers. The results show friction modifiers can eliminate or reduce the negative slope of friction-creep curves, but squeal noise still exists. Theoretical modelling of instantaneous creep behaviours reveals a possible reason why wheel squeal still exists after the application of friction modifiers.

  6. Surface deformation and friction characteristic of nano scratch at ductile-removal regime for optical glass BK7.

    PubMed

    Li, Chen; Zhang, Feihu; Ding, Ye; Liu, Lifei

    2016-08-20

    Nano scratch for optical glass BK7 based on the ductile-removal regime was carried out, and the influence rule of scratch parameters on surface deformation and friction characteristic was analyzed. Experimental results showed that, with increase of normal force, the deformation of burrs in the edge of the scratch was more obvious, and with increase of the scratch velocity, the deformation of micro-fracture and burrs in the edge of the scratch was more obvious similarly. The residual depth of the scratch was measured by atomic force microscope. The experimental results also showed that, with increase of normal force, the residual depth of the scratch increased linearly while the elastic recovery rate decreased. Furthermore, with increase of scratch velocity, the residual depth of the scratch decreased while the elastic recovery rate increased. The scratch process of the Berkovich indenter was divided into the cutting process of many large negative rake faces based on the improved cutting model, and the friction characteristic of the Berkovich indenter and the workpiece was analyzed. The analysis showed that the coefficient of friction increased and then tended to be stable with the increase of normal force. Meanwhile, the coefficient of friction decreased with the increase of scratch velocity, and the coefficients, k ln(v) and μ0, were introduced to improve the original formula of friction coefficient.

  7. Propulsion of a fin whale (Balaenoptera physalus): why the fin whale is a fast swimmer.

    PubMed

    Bose, N; Lien, J

    1989-07-22

    Measurements of an immature fin whale (Balaenoptera physalus), which died as a result of entrapment in fishing gear near Frenchmans Cove, Newfoundland (47 degrees 9' N, 55 degrees 25' W), were made to obtain estimates of volume and surface area of the animal. Detailed measurements of the flukes, both planform and sections, were also obtained. A strip theory was developed to calculate the hydrodynamic performance of the whale's flukes as an oscillating propeller. This method is based on linear, two-dimensional, small-amplitude, unsteady hydrofoil theory with correction factors used to account for the effects of finite span and finite amplitude motion. These correction factors were developed from theoretical results of large-amplitude heaving motion and unsteady lifting-surface theory. A model that makes an estimate of the effects of viscous flow on propeller performance was superimposed on the potential-flow results. This model estimates the drag of the hydrofoil sections by assuming that the drag is similar to that of a hydrofoil section in steady flow. The performance characteristics of the flukes of the fin whale were estimated by using this method. The effects of the different correction factors, and of the frictional drag of the fluke sections, are emphasized. Frictional effects in particular were found to reduce the hydrodynamic efficiency of the flukes significantly. The results are discussed and compared with the known characteristics of fin-whale swimming.

  8. Research on the Mechanism of In-Plane Vibration on Friction Reduction

    PubMed Central

    Wang, Peng; Ni, Hongjian; Wang, Ruihe; Liu, Weili; Lu, Shuangfang

    2017-01-01

    A modified model for predicting the friction force between drill-string and borehole wall under in-plane vibrations was developed. It was found that the frictional coefficient in sliding direction decreased significantly after applying in-plane vibration on the bottom specimen. The friction reduction is due to the direction change of friction force, elastic deformation of surface asperities and the change of frictional coefficient. Normal load, surface topography, vibration direction, velocity ratio and interfacial shear factor are the main influence factors of friction force in sliding direction. Lower driving force can be realized for a pair of determinate rubbing surfaces under constant normal load by setting the driving direction along the minimum arithmetic average attack angle direction, and applying intense longitudinal vibration on the rubbing pair. The modified model can significantly improve the accuracy in predicting frictional coefficient under vibrating conditions, especially under the condition of lower velocity ratio. The results provide a theoretical gist for friction reduction technology by vibrating drill-string, and provide a reference for determination of frictional coefficient during petroleum drilling process, which has great significance for realizing digitized and intelligent drilling. PMID:28862679

  9. Experimental test program for evaluation of solid lubricant coating as applied to compliant foil gas bearings to 315 deg C

    NASA Technical Reports Server (NTRS)

    Wagner, R. C.

    1985-01-01

    An experimental apparatus and test procedure was developed to compare the performance of two solid lubricant coatings for air lubricated compliant foil gas bearings in the temperature range of 25 to 315 C. Polyimide bonded additive (SBGC) were tested extensively for durability and frictional characteristics. A partial arc bearing constructed of Inconel X-750 was coated on the bore with one of these coatings. The foil was subjected to repeated start/stop cycles. Performance comparisons reveal that although both coatings survive thousands of start/stop cycles, only the PBGF coated bearing achieves the specified 9000 start/stops. There is enough wear on the SBGC coated bearing to warrant termination of the test prior to 9000 start/stop cycles due to coating failure. The frictional characteristics of the PBGF are better at the elevated temperatures than at lower temperatures; a marked increase in sliding friction occurs as the temperature decreases. The SBGC maintains relatively constant frictional characteristics independent of operating temperature.

  10. A novel explicit equation for the friction factor prediction in the annular flow with drag-reducing polymer

    NASA Astrophysics Data System (ADS)

    Lakzian, Esmail; Masoudifar, Amir; Saghi, Hassan

    2017-03-01

    In this paper, a novel explicit equation is presented for the friction factor prediction in the annular flow with drag reducing polymer (DRP). By using dimensional analyses and curve fitting on the published experimental data, the suggested equation is derived based on the logarithmic velocity profiles and power law in boundary layers. In the next step, a least squares method is used to calibrate the presented equation. Then, the equation is used to friction factor prediction of the gas-liquid mixture with DRP and the results are compared with the experimental data and the Al-Sarkhi ones. Finally, drag reduction (DR) is applied as the ratio of the friction factor reduction using DRP to the friction factor without DRP. The DR results show that the suggested equation has a better agreement with the experimental data in comparison with the pervious equations. The results also show that DR prediction decreases with the increase of the gas superficial velocity.

  11. Local control of noise and vibration with KELTRACK™ friction modifier and Protector ® trackside application: an integrated solution

    NASA Astrophysics Data System (ADS)

    Eadie, D. T.; Santoro, M.; Powell, W.

    2003-10-01

    Wheel squeal is a source of continuing concern for many railroads and transits, as well as for their neighbours. The underlying mechanism for squeal noise has been well understood in the literature for some time. However an integrated abatement method addressing the underlying cause of the problem has not previously been reported. This paper describes practical experience using a water-based liquid Friction Modifier (KELTRACK™) applied using a top of rail trackside applicator (Portec Protector ®). The Friction Modifier and delivery equipment have been co-developed to provide an optimized product/delivery system that gives significant reduction of wheel squeal in curves. Wheels experiencing lateral creep in curves are subject to roll-slip oscillations as a result of the frictional characteristics of the interface layer between the wheel and rail. These roll-slip oscillations are amplified in the wheel web leading to the familiar squeal. Providing a thin film of material between the wheel and rail with positive friction characteristics can both in theory and practice greatly reduce the magnitude of these oscillations. The controlled intermediate friction characteristics of KELTRACK™ allow the material to be delivered to the top of both rails without compromising traction or braking. The positive friction aspects of the friction modifier are illustrated by published laboratory studies. Delivery of KELTRACK™ to the contact patch is achieved with a proprietary top of rail electric trackside applicator, the Portec Protector ®. The material is delivered to the top of both rails for optimum friction control. The integrated product/equipment technology is now successfully controlling noise at more than twenty transit sites. Typical sound level reduction is 10-15 dB, in some cases as high as 20 dB, depending on the initial sound level. Two case studies are presented illustrating the technology.

  12. Molecular relaxations, molecular orientation and the friction characteristics of polyimide films

    NASA Technical Reports Server (NTRS)

    Fusaro, R. L.

    1975-01-01

    The friction characteristics of polyimide films bonded to metallic substrates were studied from 25 to 500 C. These results were interpreted in terms of molecular orientation and thermomechanical data obtained by torsional braid analysis (TBA). A large friction transition was found to occur at 40 plus or minus 10 C in a dry argon atmosphere (10 ppm H2O). It was postulated that the mechanical stresses of sliding transform or reorder the molecules on the surface into a configuration conducive to easy shear, such as an extended chain. The molecular relaxation which occurs in this temperature region appears to give the molecules the necessary freedom for this reordering process to occur. The effects of velocity, reversibility, and thermal prehistory on the friction properties of polyimide were also studied.

  13. Time-dependent friction and the mechanics of stick-slip

    USGS Publications Warehouse

    Dieterich, J.H.

    1978-01-01

    Time-dependent increase of static friction is characteristic of rock friction undera variety of experimental circumstances. Data presented here show an analogous velocity-dependent effect. A theor of friction is proposed that establishes a common basis for static and sliding friction. Creep at points of contact causes increases in friction that are proportional to the logarithm of the time that the population of points of contact exist. For static friction that time is the time of stationary contact. For sliding friction the time of contact is determined by the critical displacement required to change the population of contacts and the slip velocity. An analysis of a one-dimensional spring and slider system shows that experimental observations establishing the transition from stable sliding to stick-slip to be a function of normal stress, stiffness and surface finish are a consequence of time-dependent friction. ?? 1978 Birkha??user Verlag.

  14. Breakway friction and dynamic friction/wear measurements of various ceramic materials from 25 C (75 F) to 650 C (1200 F)

    NASA Technical Reports Server (NTRS)

    Boes, D. J.

    1984-01-01

    This report describes the results of a program designed to evaluate the breakaway friction and dynamic friction/wear characteristics of materials having potential for use as load bearing components in a high-performance high-temperature heavy duty diesel engine. Ten candidate materials were selected, six of which were evaluated under all possible material combinations as both stationary as well as moving breakaway specimens. The remaining materials were evaluated either in the static mode against themselves and all other materials, or against themselves only. Experiments were performed at five temperatures up to 650 C (1200 F) and unit pressures of 700 kPa (100 lb/sq in.), 3500 kPa (500 lb/sq in.), and 7000 kPa (1000 lb/sq in.). Experimental results indicate that under dynamic conditions, four of the ten materials exhibited good to excellent friction/wear characteristics in various material combinations. These materials were: titanium carbide, silicon nitride, silicon carbide (reaction sintered), and Refel (SiC).

  15. Finite-time adaptive sliding mode force control for electro-hydraulic load simulator based on improved GMS friction model

    NASA Astrophysics Data System (ADS)

    Kang, Shuo; Yan, Hao; Dong, Lijing; Li, Changchun

    2018-03-01

    This paper addresses the force tracking problem of electro-hydraulic load simulator under the influence of nonlinear friction and uncertain disturbance. A nonlinear system model combined with the improved generalized Maxwell-slip (GMS) friction model is firstly derived to describe the characteristics of load simulator system more accurately. Then, by using particle swarm optimization (PSO) algorithm ​combined with the system hysteresis characteristic analysis, the GMS friction parameters are identified. To compensate for nonlinear friction and uncertain disturbance, a finite-time adaptive sliding mode control method is proposed based on the accurate system model. This controller has the ability to ensure that the system state moves along the nonlinear sliding surface to steady state in a short time as well as good dynamic properties under the influence of parametric uncertainties and disturbance, which further improves the force loading accuracy and rapidity. At the end of this work, simulation and experimental results are employed to demonstrate the effectiveness of the proposed sliding mode control strategy.

  16. Influence of alloying elements on friction and wear of copper

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1972-01-01

    The friction and wear characteristics were determined for copper binary alloys containing 10 atomic percent aluminum, silicon, indium, and tin. A ternary alloy containing 10 atomic percent aluminum and 5 atomic percent silicon was also examined. The effectiveness of each of the alloying elements aluminum and silicon were very effective in reducing friction. Silicon, however, also reduced wear appreciably. With lubrication, silicon, indium, and tin were all effective alloying elements in reducing friction and wear from values obtained for copper. Silicon was the most effective single element in reducing friction and wear in dry sliding and with lubrication.

  17. Modified friction factor correlation for CICC's based on a porous media analogy

    NASA Astrophysics Data System (ADS)

    Lewandowska, Monika; Bagnasco, Maurizio

    2011-09-01

    A modified correlation for the bundle friction factor in CICC's based on a porous media analogy is presented. The correlation is obtained by the analysis of the collected pressure drop data measured for 23 CICC's. The friction factors predicted by the proposed correlation are compared with those resulting from the pressure drop data for two CICC's measured recently using cryogenic helium in the SULTAN test facility at EPFL-CRPP.

  18. Structural state scale-dependent physical characteristics and endurance of cermet composite for cutting metal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ovcharenko, V. E., E-mail: ovcharenko.ove45@mail.ru; Ivanov, Yu. F., E-mail: ivanov.yufi55@mail.ru; Mohovikov, A. A., E-mail: mohovikov.maa28@rambler.ru

    A structural-phase state developed on the surface of a TiC/Ni–Cr–Al cermet alloy under superfast heating and cooling produced by pulse electron beam melting has been presented. The effect of the surface’s structural state multimodality on the temperature dependencies of the friction and endurance of the cermet tool in cutting metal has been investigated. The high-energy flux treatment of subsurface layers by electron beam pulses in argon-containing gas discharge plasma serves to improve the endurance of metal cutting tools manifold (by a factor of 6), to reduce the friction via precipitation of secondary 200 nm carbides in binder interlayers. It ismore » possible to improve the cermet tool endurance for cutting metal by a factor of 10–12 by irradiating the cermet in a reactive nitrogen-containing atmosphere with the ensuing precipitation of nanosize 50 nm AlN particles in the binder interlayers.« less

  19. Environmental invariants in the representation of motion: Implied dynamics and representational momentum, gravity, friction, and centripetal force.

    PubMed

    Hubbard, T L

    1995-09-01

    Memory for the final position of a moving target is often shifted or displaced from the true final position of that target. Early studies of this memory shift focused on parallels between the momentum of the target and the momentum of the representation of the target and called this displacementrepresentational momentum, but many factors other than momentum contribute to the memory shift. A consideration of the empirical literature on representational momentum and related types of displacement suggests there are at least four different types of factors influencing the direction and magnitude of such memory shifts: stimulus characteristics (e.g., target direction, target velocity), implied dynamics and environmental invariants (e.g., implied momentum, gravity, friction, centripetal force), memory averaging of target and nontarget context (e.g., biases toward previous target locations or nontarget context), and observers' expectations (both tacit and conscious) regarding future target motion and target/context interactions. Several theories purporting to account for representational momentum and related types of displacement are also considered.

  20. Investigation on frictional characteristics and drawbead restraining force of steel with/without coating

    NASA Astrophysics Data System (ADS)

    Chen, Lianfeng; Zheng, Tianran; Chen, Qing; Zhang, Jun

    2013-12-01

    Advanced high strength steels (AHSS) are used more and more in automotive industry for increasing crashworthiness and weight reduction. Improving metal flow and reduce friction are important to forming the part and decrease part reject rates of AHSS. The present study focused on friction characteristics and drawbead restraining force of Dual Phase (DP) steels with or without coating, such as DP980, DP780, DP590, DP780+Z, DP780+ZF, DP590+Z, using experimental approach. The effect of material properties, temperature, sliding velocity, surface roughness, dry and lubricant on friction behavior of DP steels is investigated. The contrast of DP steels with mild IF steel is carried out. The restraining force draw through different radius of drawbead is evaluated. This study is benefit to the set up of technique parameters during sheet metal forming simulation.

  1. Effect of Young's Modulus and Surface Roughness on the Inter-Particle Friction of Granular Materials.

    PubMed

    Sandeep, Chitta Sai; Senetakis, Kostas

    2018-01-31

    In the study we experimentally examine the influence of elastic properties and surface morphology on the inter-particle friction of natural soil grains. The experiments are conducted with a custom-built micromechanical apparatus and the database is enhanced by testing engineered-reference grains. Naturally-occurring geological materials are characterized by a wide spectrum of mechanical properties (e.g., Young's modulus) and surface morphology (e.g., roughness), whereas engineered grains have much more consistent characteristics. Comparing to engineered materials, geological materials are found to display more pronounced initial plastic behavior during compression. Under the low normal load range applied in the study, between 1 and 5 N, we found that the frictional force is linearly correlated with the applied normal load, but we acknowledge that the data are found more scattered for natural soil grains, especially for rough and weathered materials which have inconsistent characteristics. The inter-particle coefficient of friction is found to be inversely correlated with the Young's modulus and the surface roughness. These findings are important in geophysical and petroleum engineering contents, since a number of applications, such as landslides and granular flows, hydraulic fracturing using proppants, and weathering process of cliffs, among others, can be simulated using discrete numerical methods. These methods employ contact mechanics properties at the grain scale and the inter-particle friction is one of these critical components. It is stressed in our study that friction is well correlated with the elastic and morphological characteristics of the grains.

  2. The influence of stem design on critical squeaking friction with ceramic bearings.

    PubMed

    Fan, Na; Morlock, Michael M; Bishop, Nicholas E; Huber, Gerd; Hoffmann, Norbert; Ciavarella, Michele; Chen, Guang X; Hothan, Arne; Witt, Florian

    2013-10-01

    Ceramic-on-ceramic hip joints have been reported to squeak, a phenomenon that may occur in compromised lubrication conditions. One factor related to the incidence of in vivo squeaking is the stem design. However, it has not yet been possible to relate stem design to squeaking in deteriorating lubrication conditions. The purpose of this study was to determine critical friction factors for different stem designs. A hip simulator was used to measure the friction factor of a ceramic bearing with different stem designs and gradually deteriorating lubrication represented by evaporation of a volatile fluid lubricant. The critical squeaking friction factor was measured at the onset of squeaking for each stem. Critical friction was higher for the long cobalt chrome (0.32 ± 0.02) and short titanium stems (0.39 ± 0.02) in comparison with a long titanium stem (0.29 ± 0.02). The onset of squeaking occurred at a friction factor lower than that measured for dry conditions, in which squeaking is usually investigated experimentally. The results suggest that shorter or heavier stems might limit the possibility of squeaking as lubrication deteriorates. The method developed can be used to investigate the influence of design parameters on squeaking probability. Copyright © 2013 Orthopaedic Research Society.

  3. Physical fundamentals of criterial estimation of nitriding technology for parts of friction units

    NASA Astrophysics Data System (ADS)

    Kuksenova, L. I.; Gerasimov, S. A.; Lapteva, V. G.; Alekseeva, M. S.

    2013-03-01

    Characteristics of the structure and properties of surface layers of nitrided structural steels and alloys, which affect the level of surface fracture under friction, are studied. A generalized structural parameter for optimizing the nitriding process and a rapid method for estimating the quality of the surface layer of nitrided parts of friction units are developed.

  4. Tuning the nanotribological behaviors of single silver nanowire through various manipulations

    NASA Astrophysics Data System (ADS)

    Zeng, Xingzhong; Peng, Yitian; Lang, Haojie; Cao, Xing'an

    2018-05-01

    Nanotribological characteristics of silver nanowires (Ag NWs) are of great importance for the reliability of their applications where involving mechanical interactions. The frictional behaviors of the Ag NWs with different lengths on SiO2/Si substrate have been investigated directly by atomic force microscopy (AFM) nanomanipulation. The relatively short and long Ag NWs behave like the rigid rods and flexible beams, respectively, and the critical aspect ratio of NWs for the two cases is found to be about 20. The relatively short NWs demonstrates three forms of motion with different frictional behaviors. The friction of the relatively long NWs increases with the bend of the NWs. The long Ag NWs display extraordinary flexibility that can be folded to different shapes, and the folded NWs show a similar frictional behavior with the rigid rods. Different simplified mechanical models are established to match the frictional behaviors of the corresponding Ag NWs. The adhesion between the Ag NWs and substrate is calculated by an indirect method based on the van der Waals force equation to assess their adhesive attraction. These findings may provide insight into the frictional characteristics of Ag NWs and contribute to the quantitative interface design and control for their applications.

  5. Intelligent Flow Friction Estimation.

    PubMed

    Brkić, Dejan; Ćojbašić, Žarko

    2016-01-01

    Nowadays, the Colebrook equation is used as a mostly accepted relation for the calculation of fluid flow friction factor. However, the Colebrook equation is implicit with respect to the friction factor (λ). In the present study, a noniterative approach using Artificial Neural Network (ANN) was developed to calculate the friction factor. To configure the ANN model, the input parameters of the Reynolds Number (Re) and the relative roughness of pipe (ε/D) were transformed to logarithmic scales. The 90,000 sets of data were fed to the ANN model involving three layers: input, hidden, and output layers with, 2, 50, and 1 neurons, respectively. This configuration was capable of predicting the values of friction factor in the Colebrook equation for any given values of the Reynolds number (Re) and the relative roughness (ε/D) ranging between 5000 and 10(8) and between 10(-7) and 0.1, respectively. The proposed ANN demonstrates the relative error up to 0.07% which had the high accuracy compared with the vast majority of the precise explicit approximations of the Colebrook equation.

  6. Studies on heat transfer and pressure drop in turbulent flow of silver - water nanofluids through a circular tube at constant wall heat flux

    NASA Astrophysics Data System (ADS)

    Iyahraja, S.; Rajadurai, J. Selwin; Rajesh, S.; Pandian, R. Seeni Thangaraj; Kumaran, M. Selva; Selvakumar, G.

    2018-07-01

    In the present study, performance of convective heat transfer and friction factor of silver-water nanofluids in a horizontal circular pipe under turbulent flow were investigated experimentally under uniform heat flux condition. The volume concentration of silver nanoparticles is varied as 0.01, 0.05 and 0.1%. Heat transfer coefficient and friction factor of nanofluids were measured experimentally by varying the Reynolds number from 3000 to 21,000. It is observed that the addition of even low volume fraction of silver nanoparticles increases both Nusselt number and heat transfer coefficient of the nanofluid significantly. Nusselt number of silver-water nanofluid increases up to 32.6% for 0.1% volume fraction at Reynolds number of 21,000. However, the addition of nanoparticles in the base fluid increases the friction factor slightly. New empirical correlations are also proposed for the estimation of Nusselt number and friction factor of silver-water nanofluid based on the data of present experimental investigation. The proposed correlations of Nusselt number and friction factor show good agreement with their experimental data.

  7. Studies on heat transfer and pressure drop in turbulent flow of silver - water nanofluids through a circular tube at constant wall heat flux

    NASA Astrophysics Data System (ADS)

    Iyahraja, S.; Rajadurai, J. Selwin; Rajesh, S.; Pandian, R. Seeni Thangaraj; Kumaran, M. Selva; Selvakumar, G.

    2018-02-01

    In the present study, performance of convective heat transfer and friction factor of silver-water nanofluids in a horizontal circular pipe under turbulent flow were investigated experimentally under uniform heat flux condition. The volume concentration of silver nanoparticles is varied as 0.01, 0.05 and 0.1%. Heat transfer coefficient and friction factor of nanofluids were measured experimentally by varying the Reynolds number from 3000 to 21,000. It is observed that the addition of even low volume fraction of silver nanoparticles increases both Nusselt number and heat transfer coefficient of the nanofluid significantly. Nusselt number of silver-water nanofluid increases up to 32.6% for 0.1% volume fraction at Reynolds number of 21,000. However, the addition of nanoparticles in the base fluid increases the friction factor slightly. New empirical correlations are also proposed for the estimation of Nusselt number and friction factor of silver-water nanofluid based on the data of present experimental investigation. The proposed correlations of Nusselt number and friction factor show good agreement with their experimental data.

  8. Bio-Tribology Properties of Bionic Carp Scale Morphology on Ti6A14V Surface

    NASA Astrophysics Data System (ADS)

    Wang, W.; Y Wei, X.; Meng, K.; Zhong, L. H.; Wang, Y.; Yu, X. H.

    2017-12-01

    In order to improve the bio-tribology properties of Ti6A14V surface, the bionic carp scale appearance pattern on Ti6A14V surface was prepared by laser surface texturing technology. The ball-disc reciprocating linear tribological experiment under different lubricants with dry friction was carried out by MRTR multifunction friction and wear testing machine using ZrO2/Ti6A14V as friction pair. The wear scar morphology of the sample surface was observed by SEM. The results show that for dry friction, the friction factor of the bionic carp scale morphology Ti6A14V reduces by 0.23 than those without bionic carp scale morphology, a decline of 45%. Under different lubrication conditions, the friction factors of samples with the bionic carp scale are increased in varying degrees with the increase of size of bionic texturing. The friction factor with same specimen under different lubrication conditions according to the ascending order are 0.5g/dl of sodium hyaluronate +0.5g/dl-γglobulin and 0.5g/dl mixed aqueous solution of sodium hyaluronate solution and artificial saliva. The wear volume also showed a similar variation.

  9. Friction in hip prostheses.

    PubMed

    Hall, R M; Unsworth, A

    1997-08-01

    Although the reduction of frictional torques was the driving force behind the design of the Charnley prosthesis, later concerns about wear and subsequent loosening of this and other hip replacements have dominated debate within the bioengineering community. To stimulate discussion on the role of friction in loosening, a review of the frictional characteristics of different prostheses was undertaken. The use of simple laboratory screening-type machines in the frictional assessment of different material combinations is discussed together with experiments performed on single axis simulators using both conventional and experimental prostheses. In particular, recent developments in the use of soft layer components are highlighted. Further, the possible link between excessively high frictional torques and loosening is discussed in the light of current results obtained from explanted prostheses.

  10. A multivariable model for predicting the frictional behaviour and hydration of the human skin.

    PubMed

    Veijgen, N K; van der Heide, E; Masen, M A

    2013-08-01

    The frictional characteristics of skin-object interactions are important when handling objects, in the assessment of perception and comfort of products and materials and in the origins and prevention of skin injuries. In this study, based on statistical methods, a quantitative model is developed that describes the friction behaviour of human skin as a function of the subject characteristics, contact conditions, the properties of the counter material as well as environmental conditions. Although the frictional behaviour of human skin is a multivariable problem, in literature the variables that are associated with skin friction have been studied using univariable methods. In this work, multivariable models for the static and dynamic coefficients of friction as well as for the hydration of the skin are presented. A total of 634 skin-friction measurements were performed using a recently developed tribometer. Using a statistical analysis, previously defined potential influential variables were linked to the static and dynamic coefficient of friction and to the hydration of the skin, resulting in three predictive quantitative models that descibe the friction behaviour and the hydration of human skin respectively. Increased dynamic coefficients of friction were obtained from older subjects, on the index finger, with materials with a higher surface energy at higher room temperatures, whereas lower dynamic coefficients of friction were obtained at lower skin temperatures, on the temple with rougher contact materials. The static coefficient of friction increased with higher skin hydration, increasing age, on the index finger, with materials with a higher surface energy and at higher ambient temperatures. The hydration of the skin was associated with the skin temperature, anatomical location, presence of hair on the skin and the relative air humidity. Predictive models have been derived for the static and dynamic coefficient of friction using a multivariable approach. These two coefficients of friction show a strong correlation. Consequently the two multivariable models resemble, with the static coefficient of friction being on average 18% lower than the dynamic coefficient of friction. The multivariable models in this study can be used to describe the data set that was the basis for this study. Care should be taken when generalising these results. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dumpala, Ravikumar; Nano Functional Materials Technology Centre, Department of Physics, Indian Institute of Technology Madras, Chennai 600036; Kumar, N.

    Tribo-layer formation and frictional characteristics of the SiC ball were studied with the sliding test against nanocrystalline diamond coating under atmospheric test conditions. Unsteady friction coefficients in the range of 0.04 to 0.1 were observed during the tribo-test. Friction and wear characteristics were found to be influenced by the formation of cohesive tribo-layer (thickness ∼ 1.3 μm) in the wear track of nanocrystalline diamond coating. Hardness of the tribo-layer was measured using nanoindentation technique and low hardness of ∼ 1.2 GPa was observed. The presence of silicon and oxygen in the tribo-layer was noticed by the energy dispersive spectroscopy mappingmore » and the chemical states of the silicon were analyzed using X-ray photoelectron spectroscopy. Large amount of oxygen content in the tribo-layer indicated tribo-oxidation wear mechanism. - Highlights: • Sliding wear and friction characteristics of SiC were studied against NCD coating. • Silicon oxide tribo-layer formation was observed in the NCD coating wear track. • Low hardness 1.2 GPa of tribo-layer was measured using nanoindentation technique. • Chemical states of silicon were analyzed using X-ray photoelectron spectroscopy.« less

  12. Water Pulsejet Research

    DTIC Science & Technology

    1977-08-01

    pulsejet. C W W/pW2 X3A, a work coefficient D Pipe diameter = 2R E Young’s modulus, or kinetic energy f D’Arcy friction factor , or stress g Acceleration due...to con- tact the hot region to provide a supply of steam for later condensation. This factor may account for the somewhat more stable operation of a...momentum in the wake. (c) Equation (1) assumes that the [)’Arcy friction factor f is constant, so that skin friction terms cancel out. The magnitu|de of

  13. Contact Dependence and Velocity Crossover in Friction between Microscopic Solid/Solid Contacts.

    PubMed

    McGraw, Joshua D; Niguès, Antoine; Chennevière, Alexis; Siria, Alessandro

    2017-10-11

    Friction at the nanoscale differs markedly from that between surfaces of macroscopic extent. Characteristically, the velocity dependence of friction between apparent solid/solid contacts can strongly deviate from the classically assumed velocity independence. Here, we show that a nondestructive friction between solid tips with radius on the scale of hundreds of nanometers and solid hydrophobic self-assembled monolayers has a strong velocity dependence. Specifically, using laterally oscillating quartz tuning forks, we observe a linear scaling in the velocity at the lowest accessed velocities, typically hundreds of micrometers per second, crossing over into a logarithmic velocity dependence. This crossover is consistent with a general multicontact friction model that includes thermally activated breaking of the contacts at subnanometric elongation. We find as well a strong dependence of the friction on the dimensions of the frictional probe.

  14. Friction Stir Weld Tools

    NASA Technical Reports Server (NTRS)

    Carter, Robert W. (Inventor); Payton, Lewis N. (Inventor)

    2007-01-01

    A friction stir weld tool sleeve is supported by an underlying support pin. The pin material is preferably selected for toughness and fracture characteristics. The pin sleeve preferably has a geometry which employs the use of an interrupted thread, a plurality of flutes and/or eccentric path to provide greater flow through. Paddles have been found to assist in imparting friction and directing plastic metal during the welding process.

  15. Friction stir weld tools

    NASA Technical Reports Server (NTRS)

    Carter, Robert W. (Inventor); Payton, Lewis N. (Inventor)

    2007-01-01

    A friction stir weld tool sleeve is supported by an underlying support pin. The pin material is preferably selected for toughness and fracture characteristics. The pin sleeve preferably has a geometry which employs the use of an interrupted thread, a plurality of flutes and/or eccentric path to provide greater flow through. Paddles have been found to assist in imparting friction and directing plastic metal during the welding process.

  16. The tribology of rosin

    NASA Astrophysics Data System (ADS)

    Smith, J. H.; Woodhouse, J.

    2000-08-01

    Rosin is well known for its ability to excite stick-slip vibration on a violin string but the precise characteristics of the material which enable it to exhibit this behaviour have not been studied in any detail. A method is described in which the coefficient of friction of rosin is measured during individual cycles of a stick-slip vibration. Friction versus sliding velocity characteristics deduced in this way exhibit hysteresis, similar to that found in other investigations using different materials. No part of the hysteresis loops follow the friction/velocity curve found from steady-sliding experiments. Possible constitutive laws are examined to describe this frictional behaviour. It is suggested by a variety of evidence that contact temperature plays an important role. Friction laws are developed by considering that the friction arises primarily from the shear of a softened or molten layer of rosin, with a temperature-dependent viscosity or shear strength. The temperature of the rosin layer is calculated by modelling the heat flow around the sliding contact. The temperature-based models are shown to reproduce some features of the measurements which are not captured in the traditional model, in which friction depends only on sliding speed. A model based on viscous behaviour of a thin melted layer of rosin gives predictions at variance with observations. However, a model based on plastic yielding at the surface of the rosin gives good agreement with these observations.

  17. Friction and wear behaviors and mechanisms of ZnO and graphite in Cu-based friction materials

    NASA Astrophysics Data System (ADS)

    Chen, Tianhua

    2018-03-01

    Based on powder metallurgy method, nanometer graphite reinforced copper matrix friction materials were prepared. The nanometer zinc oxide were obtained by the hydro-thermal synthesis. Nanoparticles on friction performances of copper-based materials was studied. The wear morphology were investigated by metallographic microscopes. Tribological performance were use the inertia friction and wear testing machine. Experimental results show that the friction factor of the friction material added by nanometer zinc oxide and nano graphite are high and stable, which has no obvious recession phenomenon with the increase of number of joint compared with not add nanoparticles of friction materials.

  18. Coefficient of friction: tribological studies in man - an overview.

    PubMed

    Sivamani, Raja K; Goodman, Jack; Gitis, Norm V; Maibach, Howard I

    2003-08-01

    Compared to other studies of skin, relatively few studies have focused on the friction of skin. This work reviews existing skin friction, emphasizing test apparatuses and parameters that have added to information regarding the friction coefficient. This review also outlines what factors are important to consider in future friction studies. Past studies have utilized numerous designs for a test apparatus, including probe geometry and material, as well as various probe motions (rotational vs. linear). Most tests were performed in vivo; a few were performed in vitro and on porcine skin. Differences in probe material, geometry and smoothness affect friction coefficient measurements. An increase in skin hydration, either through water or through moisturizer application, increases its friction coefficient; a decrease in skin hydration, either through clinical dermatitis or through alcohol addition, decreases the coefficient. Differences are present between anatomical sites. Conflicting results are found regarding age and no differences are apparent as a result of gender or race. Skin friction appears to be dependent on several factors - such as age, anatomical site and skin hydration. The choice of the probe and the test apparatus also influence the measurement.

  19. A Comparative thermophysiological study in sport bras for running

    NASA Astrophysics Data System (ADS)

    Carneiro, L. P.; Miranda, T. M. R.; Catarino, A.

    2017-10-01

    Comfort in clothing is essential for user’s performance and is considered as a quality factor when choosing a particular piece of garment. Sportswear’s need include comfort and functionality, meaning that the thermo-physiological properties are of extreme importance. The aim of this work consists in comparing six different models of sports bra used specifically for running, taking into consideration the aspects of the thermo-physiological properties, air permeability, moisture behaviour, and friction. This paper is part of an ongoing research aiming to establish a comprehension about function and comfort characteristics for sport bras and propose a new bra with improved characteristics both in ergonomics design as well as in comfort performance. The thermal characterization of different regions on each bra were tested using Alambeta apparatus, Textest FX 3300 for air permeability and Frictorq for friction. Evaporation tests were also carried out in different regions on each bra at 37ºC corresponding to internal temperature of the human body. The results show that raw material, structures and construction can have influence in the properties studied.

  20. Tribological study of non-asbestos fiber reinforced phenolic composites for braking applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gopal, P.; Dharani, L.R.; Blum, F.D.

    A cashew modified phenolic resin was used as the binder to prepare several different nonasbestos fiber reinforced composite friction materials. Friction-wear tests were conducted at various loads, speeds and temperatures on a Chase friction testing machine. The fade and wear characteristics of glass and carbon fiber reinforced friction materials were studied. The wear rates of hybrid composites containing Kevlar{reg_sign} (registered trademark of E.I. duPont de Nemours) pulp were compared to those of control composites without Kevlar{reg_sign} pulp.

  1. Frictional Behavior of Micro/nanotextured Surfaces Investigated by Atomic Force Microscope: a Review

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoliang; Jia, Junhong

    2015-08-01

    Tribological issues between friction pair are fundamental problems for minimized devices because of their higher surface-to-volume ratio. Micro/nanotexturing is an effective technique to reduce actual contact area between contact pair at the nanoscale. Micro/nanotexture made a great impact on the frictional behavior of textured surfaces. This paper summarizes the recent advancements in the field of frictional behavior of micro/nanotextured surfaces, which are based on solid surface contact in atmosphere environment, especially focusing on the factors influencing the frictional behavior: Surface property, texturing density, texturing height, texturing structure and size of contact pair (atomic force microscope (AFM) tip) and texturing structures. Summarizing the effects of these factors on the frictional behavior is helpful for the understanding and designing of the surfaces in sliding micro/nanoelectromechanical systems (MEMS/NEMS). Controlling and reducing the friction force in moving mechanical systems is very important for the performance and reliability of nanosystems, which contribute to a sustainable future.

  2. Correlation between friction and thickness of vanadium-pentoxide nanowires

    NASA Astrophysics Data System (ADS)

    Kim, Taekyeong

    2015-11-01

    We investigated the correlation between friction and thickness of vanadium-pentoxide nanowires (V2O5 NWs) by using friction/atomic force microscopy (FFM/AFM). We observed that the friction signal generally increased with thickness in the FFM/AFM image of the V2O5 NWs. We constructed a two-dimensional (2D) correlation distribution of the frictional force and the thickness of the V2O5 NWs and found that they are strongly correlated; i.e., thicker NWs had higher friction. We also generated a histogram for the correlation factors obtained from each distribution and found that the most probable factor is ~0.45. Furthermore, we found that the adhesion force between the tip and the V2O5 NWs was about -3 nN, and that the friction increased with increasing applied load for different thicknesses of V2O5 NWs. Our results provide an understanding of tribological and nanomechanical studies of various one-dimensional NWs for future fundamental research.

  3. Frictional and morphological properties of Au-MoS2 films sputtered from a compact target

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1984-01-01

    AuMoS2 films 0.02 to 1.2 microns thick were sputtered from target compacted from 5 wt % Au + 95 wt % MoS2, to investigate the frictional and morphological film growth characteristics. The gold dispersion effects in MoS2 films are of interest to increase the densitification and strengthening of the film structure. Three microstructural growth stages were identified on the nano-micro-macrostructural level. During sliding both sputtered Au-MoS2 and MoS2 films have a tendency to break within the columner region. The remaining or effective film, about 0.2 microns thick, performs the lubrication. The Au-MoS2 films displayed a lower friction coefficient with a high degree of frictional stability and less wear debris generation as compared to pure MoS2 films. The more favorable frictional characteristics of the Au-MoS2 films are attributed to the effective film thickness and the high density packed columner zone which has a reduced effect on the fragmentation of the tapered crystallites during fracture.

  4. Investigation of Shear-Thinning Behavior on Film Thickness and Friction Coefficient of Polyalphaolefin Base Fluids With Varying Olefin Copolymer Content

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zolper, Thomas J.; He, Yifeng; Delferro, Massimiliano

    2016-08-11

    This study investigates the rheological properties, elastohydrodynamic (EHD) film-forming capability, and friction coefficients of low molecular mass poly-alpha-olefin (PAO) base stocks with varying contents of high molecular mass olefin copolymers (OCPs) to assess their shear stability and their potential for energy-efficient lubrication. Several PAO-OCP mixtures were blended in order to examine the relationship between their additive content and tribological performance. Gel permeation chromatography (GPC) and nuclear magnetic resonance (NMR) spectroscopy were used to characterize the molecular masses and structures, respectively. Density, viscosity, EHD film thickness, and friction were measured at 303 K, 348 K, and 398 K. Film thickness andmore » friction were studied at entrainment speeds relevant to the boundary, mixed, and full-film lubrication regimes. The PAO-OCP mixtures underwent temporary shear-thinning resulting in decreases in film thickness and hydrodynamic friction. These results demonstrate that the shear characteristics of PAO-OCP mixtures can be tuned with the OCP content and provide insight into the effects of additives on EHD characteristics.« less

  5. Effects of rail dynamics and friction characteristics on curve squeal

    NASA Astrophysics Data System (ADS)

    Ding, B.; Squicciarini, G.; Thompson, D. J.

    2016-09-01

    Curve squeal in railway vehicles is an instability mechanism that arises in tight curves under certain running and environmental conditions. In developing a model the most important elements are the characterisation of friction coupled with an accurate representation of the structural dynamics of the wheel. However, the role played by the dynamics of the rail is not fully understood and it is unclear whether this should be included in a model or whether it can be safely neglected. This paper makes use of previously developed time domain and frequency domain curve squeal models to assess whether the presence of the rail and the falling characteristics of the friction force can modify the instability mechanisms and the final response. For this purpose, the time-domain model has been updated to include the rail dynamics in terms of its state space representation in various directions. Frequency domain and time domain analyses results show that falling friction is not the only reason for squeal and rail dynamics can play an important role, especially under constant friction conditions.

  6. Temperature-Dependent Friction and Wear Behavior of PTFE and MoS 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babuska, T. F.; Pitenis, A. A.; Jones, M. R.

    2016-06-16

    We present an investigation of the temperature-dependent friction behavior of PTFE, MoS 2, and PTFE-on- MoS 2. Friction behavior was measured while continuously varying contact temperature in the range -150 to 175°C while sliding in dry nitrogen, as well as for self-mated PTFE immersed in liquid nitrogen. These results contrast with previous reports of monotonic inverse temperature dependent friction behavior, as well as reported high-friction transitions and plateaus at temperatures below about -20°C that were not observed, providing new insights about the molecular mechanisms of macro-scale friction. The temperature-dependent friction behavior characteristic of self-mated PTFE was found also on themore » PTFE-on-MoS 2 sliding contact, suggesting that PTFE friction was defined by sub-surface deformation mechanisms and internal friction even when sliding against a lamellar lubricant with extremely low friction coefficient (μ ~ 0.02). The various relaxation temperatures of PTFE were found in the temperature-dependent friction behavior, showing excellent agreement with reported values acquired using torsional techniques measuring internal friction. Additionally, hysteresis in friction behavior suggests an increase in near-surface crystallinity at upon exceeding the high temperature relaxation, T α~ 116°C.« less

  7. Dynamic mechanical analysis of waste tyre rubber filled brake friction composite materials

    NASA Astrophysics Data System (ADS)

    Rathi, Mukesh Kumar; Singh, Tej; Chauhan, Ranchan

    2018-05-01

    In this research work, the dynamic mechanical properties of waste tyre rubber filled friction composites were studied. Four friction composites with varying amount of waste rubber (0, 4, 8, 12 wt.%) and barium sulphate (38, 42, 46, 50 wt.%) were designed and fabricated as per industrial norms. Dynamic mechanical analysis has been carried out to characterize the storage modulus, loss modulus and damping factor of the fabricated friction composite. Experimental results indicated that storage modulus decreases with increasing waste rubber content up to particular loading (4 wt.%), and after that it increases with further loading. The loss modulus of the composites increases steadily with increasing waste rubber content whereas, damping factor remain maximum for 12 wt.% waste rubber filled friction composites.

  8. Pressure and partial wetting effects on superhydrophobic friction reduction in microchannel flow

    NASA Astrophysics Data System (ADS)

    Kim, Tae Jin; Hidrovo, Carlos

    2012-11-01

    Friction reduction in microchannel flows can help alleviate the inherently taxing pumping power requirements associated with the dimensions involved. One possible way of achieving friction reduction is through the introduction of surface microtexturing that can lead to a superhydrophobic Cassie-Baxter state. The Cassie-Baxter state is characterized by the presence of air pockets within the surface microtexturing believed to act as an effective "shear free" (or at least shear reduced) layer, decreasing the overall friction characteristics of the surface. Most work in this area has concentrated on optimizing the surface microtexturing geometry to maximize the friction reduction effects and overall stability of the Cassie-Baxter state. However, less attention has been paid to the effects of partially wetted conditions induced by pressure and the correlation between the liquid-gas interface location within the surface microtexturing and the microchannel flow characteristics. This is mainly attributed to the difficulty in tracking the interface shape and location within the microtexturing in the typical top-down view arrangements used in most studies. In this paper, a rectangular microchannel with regular microtexturing on the sidewalls is used to visualize and track the location of the air-water interface within the roughness elements. While visually tracking the wetting conditions in the microtextures, pressure drops versus flow rates for each microchannel are measured and analyzed in terms of the non-dimensional friction coefficient. The frictional behavior of the Poiseuille flow suggests that (1) the air-water interface more closely resembles a no-slip boundary rather than a shear-free one, (2) the friction is rather insensitive to the degree of microtexturing wetting, and (3) the fully wetted (Wenzel state) microtexturing provides lower friction than the non-wetted one (Cassie state), in corroboration with observations (1) and (2).

  9. Differential Evolution algorithm applied to FSW model calibration

    NASA Astrophysics Data System (ADS)

    Idagawa, H. S.; Santos, T. F. A.; Ramirez, A. J.

    2014-03-01

    Friction Stir Welding (FSW) is a solid state welding process that can be modelled using a Computational Fluid Dynamics (CFD) approach. These models use adjustable parameters to control the heat transfer and the heat input to the weld. These parameters are used to calibrate the model and they are generally determined using the conventional trial and error approach. Since this method is not very efficient, we used the Differential Evolution (DE) algorithm to successfully determine these parameters. In order to improve the success rate and to reduce the computational cost of the method, this work studied different characteristics of the DE algorithm, such as the evolution strategy, the objective function, the mutation scaling factor and the crossover rate. The DE algorithm was tested using a friction stir weld performed on a UNS S32205 Duplex Stainless Steel.

  10. Construction of a Precursor Model for the Concept of Rolling Friction in the Thought of Preschool Age Children: A Socio-cognitive Teaching Intervention

    NASA Astrophysics Data System (ADS)

    Ravanis, Konstantinos; Koliopoulos, Dimitris; Boilevin, Jean-Marie

    2008-08-01

    The aim of this study was to explore the extent to which the characteristics of two teaching interventions can bring about cognitive progress in preschoolers with regard to the factors rolling friction depends on, when it is applied to an object that is freely rolling on a horizontal surface. The study was conducted in three phases: pre-test, teaching intervention, and post-test. Two teaching strategies were compared: one inspired by Piaget’s theory (Piagetian approach) and one inspired by post-Piagetian and Vygotkian assumptions (socio-cognitive approach). A statistically significant difference was found between the pre-test and post-test, providing evidence that the socio-cognitive approach allows for the creation of a more appropriate teaching framework compared to the Piagetian one.

  11. Physical, mechanical, and flexural properties of 3 orthodontic wires: an in-vitro study.

    PubMed

    Juvvadi, Shubhaker Rao; Kailasam, Vignesh; Padmanabhan, Sridevi; Chitharanjan, Arun B

    2010-11-01

    Understanding the biologic requirements of orthodontic patients requires proper characterization studies of new archwire alloys. The aims of this study were to evaluate properties of wires made of 2 new materials and to compare their properties with those of stainless steel. The sample consisted of 30 straight lengths of 3 types of wires: stainless steel, titanium-molybdenum alloy, and beta-titanium alloy. Eight properties were evaluated: wire dimension, edge bevel, composition, surface characteristics, frictional characteristics, ultimate tensile strength (UTS), modulus of elasticity (E), yield strength (YS), and load deflection characteristics. A toolmaker's microscope was used to measure the edge bevel, and x-ray fluorescence was used for composition analysis. Surface profilometry and scanning electron microscopy were used for surface evaluation. A universal testing machine was used to evaluate frictional characteristics, tensile strength, and 3-point bending. Stainless steel was the smoothest wire; it had the lowest friction and spring-back values and high values for stiffness, E, YS, and UTS. The titanium-molybdenum alloy was the roughest wire; it had high friction and intermediate spring-back, stiffness, and UTS values. The beta-titanium alloy was intermediate for smoothness, friction, and UTS but had the highest spring-back. The beta-titanium alloy with increased UTS and YS had a low E value, suggesting that it would have greater resistance to fracture, thereby overcoming a major disadvantage of titanium-molybdenum alloy wires. The beta-titanium alloy wire would also deliver gentler forces. Copyright © 2010 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  12. Velocity Dependence of the Kinetic Friction of Nanoparticles

    NASA Astrophysics Data System (ADS)

    Dietzel, Dirk; Feldmann, Michael; Schirmeisen, Andre

    2010-03-01

    The velocity dependence of interfacial friction is of high interest to unveil the fundamental processes in nanoscopic friction. So far, different forms of velocity dependence have been observed for contacts between friction force microscope (FFM) tips and a substrate surface. In this work we present velocity-dependent friction measurements performed by nanoparticle manipulation of antimony nanoparticles on atomically flat HOPG substrates under UHV conditions. This allows to analyze interfacial friction for very well defined and clean surface contacts. A novel approach to nanoparticle manipulation, the so called 'tip-on-top' technique [1], made it possible to manipulate the same particle many times while varying the velocity. The antimony particles exhibit a qualitatively different velocity dependence on friction in comparison to direct tip-HOPG contacts. A characteristic change in velocity dependence was observed when comparing freshly prepared particles to contaminated specimen, which were exposed to air before the manipulation experiments. [1] Dietzel et al., Appl. Phys. Lett. 95, 53104 (2009)

  13. Nonlinear Friction Compensation of Ball Screw Driven Stage Based on Variable Natural Length Spring Model and Disturbance Observer

    NASA Astrophysics Data System (ADS)

    Asaumi, Hiroyoshi; Fujimoto, Hiroshi

    Ball screw driven stages are used for industrial equipments such as machine tools and semiconductor equipments. Fast and precise positioning is necessary to enhance productivity and microfabrication technology of the system. The rolling friction of the ball screw driven stage deteriorate the positioning performance. Therefore, the control system based on the friction model is necessary. In this paper, we propose variable natural length spring model (VNLS model) as the friction model. VNLS model is simple and easy to implement as friction controller. Next, we propose multi variable natural length spring model (MVNLS model) as the friction model. MVNLS model can represent friction characteristic of the stage precisely. Moreover, the control system based on MVNLS model and disturbance observer is proposed. Finally, the simulation results and experimental results show the advantages of the proposed method.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eiamsa-ard, Smith; Seemawute, Panida; Wongcharee, Khwanchit

    Effects of peripherally-cut twisted tape insert on heat transfer, friction loss and thermal performance factor characteristics in a round tube were investigated. Nine different peripherally-cut twisted tapes with constant twist ratio (y/W = 3.0) and different three tape depth ratios (DR = d/W = 0.11, 0.22 and 0.33), each with three different tape width ratios (WR = w/W = 0.11, 0.22 and 0.33) were tested. Besides, one typical twisted tape was also tested for comparison. The measurement of heat transfer rate was conducted under uniform heat flux condition while that of friction factor was performed under isothermal condition. Tests weremore » performed with Reynolds number in a range from 1000 to 20,000, using water as a working fluid. The experimental results revealed that both heat transfer rate and friction factor in the tube equipped with the peripherally-cut twisted tapes were significantly higher than those in the tube fitted with the typical twisted tape and plain tube, especially in the laminar flow regime. The higher turbulence intensity of fluid in the vicinity of the tube wall generated by the peripherally-cut twisted tape compared to that induced by the typical twisted tape is referred as the main reason for achieved results. The obtained results also demonstrated that as the depth ratio increased and width ratio decreased, the heat transfer enhancement increased. Over the range investigated, the peripherally-cut twisted tape enhanced heat transfer rates in term of Nusselt numbers up to 2.6 times (turbulent regime) and 12.8 times (laminar regime) of that in the plain tube. These corresponded to the maximum performance factors of 1.29 (turbulent regime) and 4.88 (laminar regime). (author)« less

  15. Intelligent Flow Friction Estimation

    PubMed Central

    Brkić, Dejan; Ćojbašić, Žarko

    2016-01-01

    Nowadays, the Colebrook equation is used as a mostly accepted relation for the calculation of fluid flow friction factor. However, the Colebrook equation is implicit with respect to the friction factor (λ). In the present study, a noniterative approach using Artificial Neural Network (ANN) was developed to calculate the friction factor. To configure the ANN model, the input parameters of the Reynolds Number (Re) and the relative roughness of pipe (ε/D) were transformed to logarithmic scales. The 90,000 sets of data were fed to the ANN model involving three layers: input, hidden, and output layers with, 2, 50, and 1 neurons, respectively. This configuration was capable of predicting the values of friction factor in the Colebrook equation for any given values of the Reynolds number (Re) and the relative roughness (ε/D) ranging between 5000 and 108 and between 10−7 and 0.1, respectively. The proposed ANN demonstrates the relative error up to 0.07% which had the high accuracy compared with the vast majority of the precise explicit approximations of the Colebrook equation. PMID:27127498

  16. Aircraft and ground vehicle friction measurements obtained under winter runway conditions

    NASA Technical Reports Server (NTRS)

    Yager, Thomas J.

    1989-01-01

    Tests with specially instrumented NASA B-737 and B-727 aircraft together with several different ground friction measuring devices have been conducted for a variety of runway surface types and wetness conditions. This effort is part of the Joint FAA/NASA Aircraft/Ground Vehicle Runway Friction Program aimed at obtaining a better understanding of aircraft ground handling performance under adverse weather conditions, and defining relationships between aircraft and ground vehicle tire friction measurements. Aircraft braking performance on dry, wet, snow-, and ice-covered runway conditions is discussed together with ground vehicle friction data obtained under similar runway conditions. For the wet, compacted snow- and ice-covered runway conditions, the relationship between ground vehicles and aircraft friction data is identified. The influence of major test parameters on friction measurements such as speed, test tire characteristics, and surface contaminant-type are discussed. The test results indicate that use of properly maintained and calibrated ground vehicles for monitoring runway friction conditions should be encouraged particularly under adverse weather conditions.

  17. Aeromechanical stability augmentation using semi-active friction-based lead-lag damper

    NASA Astrophysics Data System (ADS)

    Agarwal, Sandeep

    2005-11-01

    Lead-lag dampers are present in most rotors to provide the required level of damping in all flight conditions. These dampers are a critical component of the rotor system, but they also represent a major source of maintenance cost. In present rotor systems, both hydraulic and elastomeric lead-lag dampers have been used. Hydraulic dampers are complex mechanical components that require hydraulic fluids and have high associated maintenance costs. Elastomeric dampers are conceptually simpler and provide a "dry" rotor, but are rather costly. Furthermore, their damping characteristics can degrade with time without showing external signs of failure. Hence, the dampers must be replaced on a regular basis. A semi-active friction based lead-lag damper is proposed as a replacement for hydraulic and elastomeric dampers. Damping is provided by optimized energy dissipation due to frictional forces in semi-active joints. An actuator in the joint modulates the normal force that controls energy dissipation at the frictional interfaces, resulting in large hysteretic loops. Various selective damping strategies are developed and tested for a simple system containing two different frequency modes in its response, one of which needs to be damped out. The system reflects the situation encountered in rotor response where 1P excitation is present along with the potentially unstable regressive lag motion. Simulation of the system response is obtained to compare their effectiveness. Next, a control law governing the actuation in the lag damper is designed to generate the desired level of damping for performing adaptive selective damping of individual blade lag motion. Further, conceptual design of a piezoelectric friction based lag damper for a full-scale rotor is presented and various factors affecting size, design and maintenance cost, damping capacity, and power requirements of the damper are discussed. The selective semi-active damping strategy is then studied in the context of classical ground resonance problem. In view of the inherent nonlinearity in the system due to friction phenomena, multiblade transformation from rotating frame to nonrotating frame is not useful. Stability analysis of the system is performed in the rotating frame to gain an understanding of the dynamic characteristics of rotor system with attached semi-active friction based lag dampers. This investigation is extended to the ground resonance stability analysis of a comprehensive UH-60 model within the framework of finite element based multibody dynamics formulations. Simulations are conducted to study the performance of several integrated lag dampers ranging from passive to semi-active ones with varying levels of selectivity. Stability analysis is performed for a nominal range of rotor speeds using Prony's method.

  18. Surface friction measurements of fine-graded asphalt mixtures : final report, June 2008.

    DOT National Transportation Integrated Search

    2008-06-01

    Skid resistance is generated by the development of friction between the vehicle tire and : roadway surface, and is partially dependent upon the characteristics of the pavement : texture. Microtexture and macrotexture are the critical components of pa...

  19. Evaluation of two transport aircraft and several ground test vehicle friction measurements obtained for various runway surface types and conditions. A summary of test results from joint FAA/NASA Runway Friction Program

    NASA Technical Reports Server (NTRS)

    Yager, Thomas J.; Vogler, William A.; Baldasare, Paul

    1990-01-01

    Tests with specially instrumented NASA Boeing 737 and 727 aircraft together with several different ground friction measuring devices were conducted for a variety of runway surface types and conditions. These tests are part of joint FAA/NASA Aircraft/Ground Vehicle Runway Friction Program aimed at obtaining a better understanding of aircraft ground handling performance under adverse weather conditions and defining relationships between aircraft and ground vehicle tire friction measurements. Aircraft braking performance on dry, wet, snow and ice-covered runway conditions is discussed as well as ground vehicle friction data obtained under similar runway conditions. For a given contaminated runway surface condition, the correlation between ground vehicles and aircraft friction data is identified. The influence of major test parameters on friction measurements such as speed, test tire characteristics, type and amount of surface contaminant, and ambient temperature are discussed. The effect of surface type on wet friction levels is also evaluated from comparative data collected on grooved and ungrooved concrete and asphalt surfaces.

  20. Coseismic slip and early afterslip of the 2015 Illapel, Chile, earthquake: Implications for frictional heterogeneity and coastal uplift

    USGS Publications Warehouse

    Barnhart, William D.; Murray, Jessica R.; Briggs, Richard W.; Gomez, Francisco; Miles, Charles P. J.; Svarc, Jerry L.; Riquelme, Sebástian; Stressler, Bryan J.

    2016-01-01

    Great subduction earthquakes are thought to rupture portions of the megathrust, where interseismic coupling is high and velocity-weakening frictional behavior is dominant, releasing elastic deformation accrued over a seismic cycle. Conversely, postseismic afterslip is assumed to occur primarily in regions of velocity-strengthening frictional characteristics that may correlate with lower interseismic coupling. However, it remains unclear if fixed frictional properties of the subduction interface, coseismic or aftershock-induced stress redistribution, or other factors control the spatial distribution of afterslip. Here we use interferometric synthetic aperture radar and Global Position System observations to map the distribution of coseismic slip of the 2015 Mw 8.3 Illapel, Chile, earthquake and afterslip within the first 38 days following the earthquake. We find that afterslip overlaps the coseismic slip area and propagates along-strike into regions of both high and moderate interseismic coupling. The significance of these observations, however, is tempered by the limited resolution of geodetic inversions for both slip and coupling. Additional afterslip imaged deeper on the fault surface bounds a discrete region of deep coseismic slip, and both contribute to net uplift of the Chilean Coastal Cordillera. A simple partitioning of the subduction interface into regions of fixed frictional properties cannot reconcile our geodetic observations. Instead, stress heterogeneities, either preexisting or induced by the earthquake, likely provide the primary control on the afterslip distribution for this subduction zone earthquake. We also explore the occurrence of coseismic and postseismic coastal uplift in this sequence and its implications for recent hypotheses concerning the source of permanent coastal uplift along subduction zones.

  1. Friction and wear of hydrogenated and hydrogen-free diamond-like carbon films: Relative humidity dependent character

    NASA Astrophysics Data System (ADS)

    Shi, Jing; Gong, Zhenbin; Wang, Yongfu; Gao, Kaixiong; Zhang, Junyan

    2017-11-01

    In this study, tribological properties of hydrogenated and hydrogen free diamond-like carbon films at various relative humidity (RH) were investigated to understand the friction mechanism in the presence of water molecules. At normal load of 2N, DLC-H film's friction coefficient was 0.06 at RH14% while DLC film's friction coefficient was 0.19 at RH17%. With the increase of RH, their friction coefficient converged to about 0.15. This character remained unaltered when the normal load was 5N. Results show that low friction of DLC-H film at low RH was attributed to the low shear force aroused by graphitic tribofilm at wear care center. However, the high friction of DLC film was mainly endowed by the high adhesive force aroused by σ dangling bonds. At high RH, solid-to-solid contact was isolated by water molecules confined between the counterfaces, where capillary was a dominant factor for friction. In addition to the capillary force, the absence of tribofilm was also accountable. These two factors lead to the level off of friction coefficient for DLC-H and DLC films. Moreover, for both DLC-H and DLC films, tribo-oxidization was proved to be closely related to wear rate with the assist of H2O molecules during sliding.

  2. Valuation of coefficient of rolling friction by the inclined plane method

    NASA Astrophysics Data System (ADS)

    Ciornei, F. C.; Alaci, S.; Ciogole, V. I.; Ciornei, M. C.

    2017-05-01

    A major objective of tribological researches is characterisation of rolling friction, due to various cases encountered in classical engineering applications, like gear transmissions and cam mechanisms or more recent examples met in bioengineering and biomedical devices. A characteristic of these examples consists in reduced dimensions of the contact zones, theoretically zero, the relative motion occurring between the contact points being either sliding or rolling. A characteristic parameter for the rolling motion is the coefficient of rolling friction. The paper proposes a method for estimation of coefficient of rolling friction by studying the motion of a body of revolution on an inclined plane. Assuming the hypothesis that moment of rolling friction is proportional to the normal reaction force, the law of motion for the body on the inclined plane is found under the premise of pure rolling. It is reached the conclusion that there is an uniformly accelerated motion, and thus for a known plane slope, it is sufficient to find the time during which the body runs a certain distance, starting from motionless situation. To obtain accurate results assumes finding precisely the time of motion. The coefficient of rolling friction was estimated for several slopes of the inclined plane and it is concluded that with increased slope, the values of coefficient of rolling friction increase, fact that suggest that the proportionality between the rolling torque and normal load is valid only for domains of limited variations of normal load.

  3. An analysis of the Dahl friction model and its effect on a CMG gimbal rate controller

    NASA Technical Reports Server (NTRS)

    Nurre, G. S.

    1974-01-01

    The effects of friction, represented by the Dahl model, on a CMG rate control system was investigated by digital simulation. The conclusion from these simulation results is that gimbal pivot friction can be a significant effect on the gimbal rate control system. The magnitude of the problem this presents depends on the characteristics of the actual pivot. It would appear from this preliminary look that one solution is to insure that the control system natural frequency is higher by some prescribed amount than the natural frequency of the friction loop.

  4. The Friction Factor in the Forchheimer Equation for Rock Fractures

    NASA Astrophysics Data System (ADS)

    Zhou, Jia-Qing; Hu, Shao-Hua; Chen, Yi-Feng; Wang, Min; Zhou, Chuang-Bing

    2016-08-01

    The friction factor is an important dimensionless parameter for fluid flow through rock fractures that relates pressure head loss to average flow velocity; it can be affected by both fracture geometry and flow regime. In this study, a theoretical formula form of the friction factor containing both viscous and inertial terms is formulated by incorporating the Forchheimer equation, and a new friction factor model is proposed based on a recent phenomenological relation for the Forchheimer coefficient. The viscous term in the proposed formula is inversely proportional to Reynolds number and represents the limiting case in Darcy flow regime when the inertial effects diminish, whereas the inertial term is a power function of the relative roughness and represents a limiting case in fully turbulent flow regime when the fracture roughness plays a dominant role. The proposed model is compared with existing friction factor models for fractures through parametric sensitivity analyses and using experimental data on granite fractures, showing that the proposed model has not only clearer physical significance, but also better predictive performance. By accepting proper percentages of nonlinear pressure drop to quantify the onset of Forchheimer flow and fully turbulent flow, a Moody-type diagram with explicitly defined flow regimes is created for rock fractures of varying roughness, indicating that rougher fractures have a large friction factor and are more prone to the Forchheimer flow and fully turbulent flow. These findings may prove useful in better understanding of the flow behaviors in rock fractures and improving the numerical modeling of non-Darcy flow in fractured aquifers.

  5. Influence of technological factors on characteristics of hybrid fluid-film bearings

    NASA Astrophysics Data System (ADS)

    Koltsov, A.; Prosekova, A.; Rodichev, A.; Savin, L.

    2017-08-01

    The influence of the parameters of micro- and macrounevenness on the characteristics of a hybrid bearing with slotted throttling is considered in the present paper. The quantitative assumptions of calculation of pressure distribution, load capacity, lubricant flow rate and power loss due to friction in a radial hybrid bearing with slotted throttling are taken into account, considering the shape, dimensions and roughness of the support surfaces inaccuracies. Numerical simulation of processes in the lubricating layer is based on the finite-difference solution of the Reynolds equation using an uneven orthogonal computational grid with adaptive condensation. The results of computational and physical experiments are presented.

  6. Operating characteristics of a cantilever-mounted resilient-pad gas-lubricated thrust bearing

    NASA Technical Reports Server (NTRS)

    Nemeth, Z. N.

    1979-01-01

    A resilient-pad gas thrust bearing consisting of pads mounted on cantilever beams was tested to determine its operating characteristic. The bearing was run at a thrust load of 74 newtons to a speed of 17000 rpm. The pad film thickness and bearing friction torque were measured and compared with theory. The measured film thickness was less than that predicted by theory. The bearing friction torque was greater than that predicted by theory.

  7. Soil mechanics results of Luna 16 and Lunokhod 1: A preliminary report

    NASA Technical Reports Server (NTRS)

    Johnson, S. W.; Carrier, W. D., III

    1971-01-01

    The physical and mechanical properties of the lunar soil, as determined by Luna 16 and Lunokhod 1 experiments, are discussed. Data are included for interactions between vehicle wheels and the lunar soil, compressibility, resistance to penetration, and friction characteristics of the soil. The shear strength of the returned lunar soil for various bulk densities is also examined. Several potential spacecraft materials were tested in contact with lunar soil to determine their friction and wear characteristics.

  8. Wear, friction, and temperature characteristics of an aircraft tire undergoing braking and cornering

    NASA Technical Reports Server (NTRS)

    Mccarty, J. L.; Yager, T. J.; Riccitiello, S. R.

    1979-01-01

    An investigation to evaluate the wear, friction, and temperature characteristics of aircraft tire treads fabricated from different elastomers is presented. The braking and cornering tests performed on aircraft tires retreaded with currently employed and experimental elastomers are described. The tread wear rate is discussed in relation to the slip ratio during braking and yaw angle during cornering. The extent of wear in either operational mode is examined in relation to the runway surface.

  9. The experiment research of the friction sliding isolation structure

    NASA Astrophysics Data System (ADS)

    Zhang, Shirong; Li, Jiangle; Wang, Sheliang

    2018-04-01

    This paper investigated the theory of the friction sliding isolation structure, The M0S2 solid lubricant was adopted as isolation bearing friction materials, and a new sliding isolation bearing was designed and made. The formula of the friction factor and the compression stress was proposed. The feasibility of the material MoS2 used as the coating material in a friction sliding isolation system was tested on the 5 layers concrete frame model. Two application experiment conditions were presented. The results of the experiment research indicated that the friction sliding isolation technology have a good damping effect.

  10. SINGLE-INTERVAL GAS PERMEABILITY ESTIMATION

    EPA Science Inventory

    Single-interval, steady-steady-state gas permeability testing requires estimation of pressure at a screened interval which in turn requires measurement of friction factors as a function of mass flow rate. Friction factors can be obtained by injecting air through a length of pipe...

  11. Friction factor and heat transfer of nanofluids containing cylindrical nanoparticles in laminar pipe flow

    NASA Astrophysics Data System (ADS)

    Lin, Jianzhong; Xia, Yi; Ku, Xiaoke

    2014-10-01

    Numerical simulations of polyalphaolefins-Al2O3 nanofluids containing cylindrical nanoparticles in a laminar pipe flow are performed by solving the Navier-Stokes equation with term of cylindrical nanoparticles, the general dynamic equation for cylindrical nanoparticles, and equation for nanoparticle orientation. The distributions of particle number and volume concentration, the friction factor, and heat transfer are obtained and analyzed. The results show that distributions of nanoparticle number and volume concentration are non-uniform across the section, with larger and smaller values in the region near the pipe center and near the wall, respectively. The non-uniformity becomes significant with the increase in the axial distance from the inlet. The friction factor decreases with increasing Reynolds number. The relationships between the friction factor and the nanoparticle volume concentration as well as particle aspect ratio are dependent on the Reynolds number. The Nusselt number of nanofluids, directly proportional to the Reynolds number, particle volume concentration, and particle aspect ratio, is higher near the pipe entrance than at the downstream locations. The rate of increase in Nusselt number at lower particle volume concentration is more than that at higher concentration. Finally, the expressions of friction factor and Nusselt number as a function of particle volume concentration, particle aspect ratio, and Reynolds number are derived based on the numerical data.

  12. Evaluation of long-term pavement performance and noise characteristics of open-graded friction courses : project 3.

    DOT National Transportation Integrated Search

    2010-06-01

    This experimental project is being conducted as a part of WSDOTs effort to produce pavements that reduce the noise : generated at the tire/pavement interface. Experimental sections of open-graded friction courses were built using asphalt rubber : ...

  13. Evaluation of long-term pavement performance and noise characteristics of open-graded friction courses : project 2.

    DOT National Transportation Integrated Search

    2012-06-01

    This report describes the second of three experimental installations of open-graded friction course (OGFC) quieter pavements designed to reduce the noise generated at the tire/pavement interface. Experimental sections of OGFC were built using a...

  14. The evaluation of the micro-tracks and micro-dimples on the tribological characteristics of thrust ball bearings.

    PubMed

    Amanov, Auezhan; Pyoun, Young-Shik; Cho, In-Shik; Lee, Chang-Soon; Park, In-Gyu

    2011-01-01

    One of the primary remedies for tribological problems is surface modification. The reduction of the friction between the ball and the raceway of bearings is a very important goal of the development of bearing technology. A low friction has a positive effect in terms of the extension of the fatigue life, avoidance of a temperature rise, and prevention of premature failure of bearings. Therefore, this research sought to investigate the effects of micro-tracks and micro-dimples on the tribological characteristics at the contact point between the ball and the raceway of thrust ball bearings (TBBs). The ultrasonic nanocrystal surface modification (UNSM) technology was applied using different intervals (feed rates) to the TBB raceway surface to create micro-tracks and micro-dimples. The friction coefficient after UNSM at 50 microm intervals showed marked sensitivity and a significant reduction of 30%. In this study, the results showed that more micro-dimples yield a lower friction coefficient.

  15. Prediction Of Tensile And Shear Strength Of Friction Surfaced Tool Steel Deposit By Using Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Manzoor Hussain, M.; Pitchi Raju, V.; Kandasamy, J.; Govardhan, D.

    2018-04-01

    Friction surface treatment is well-established solid technology and is used for deposition, abrasion and corrosion protection coatings on rigid materials. This novel process has wide range of industrial applications, particularly in the field of reclamation and repair of damaged and worn engineering components. In this paper, we present the prediction of tensile and shear strength of friction surface treated tool steel using ANN for simulated results of friction surface treatment. This experiment was carried out to obtain tool steel coatings of low carbon steel parts by changing contribution process parameters essentially friction pressure, rotational speed and welding speed. The simulation is performed by a 33-factor design that takes into account the maximum and least limits of the experimental work performed with the 23-factor design. Neural network structures, such as the Feed Forward Neural Network (FFNN), were used to predict tensile and shear strength of tool steel sediments caused by friction.

  16. Energy efficient reduced graphene oxide additives: Mechanism of effective lubrication and antiwear properties

    PubMed Central

    Gupta, Bhavana; Kumar, N.; Panda, Kalpataru; Dash, S.; Tyagi, A. K.

    2016-01-01

    Optimized concentration of reduced graphene oxide (rGO) in the lube is one of the important factors for effective lubrication of solid body contacts. At sufficiently lower concentration, the lubrication is ineffective and friction/wear is dominated by base oil. In contrast, at sufficiently higher concentration, the rGO sheets aggregates in the oil and weak interlayer sliding characteristic of graphene sheets is no more active for providing lubrication. However, at optimized concentration, friction coefficient and wear is remarkably reduced to 70% and 50%, respectively, as compared to neat oil. Traditionally, such lubrication is described by graphene/graphite particle deposited in contact surfaces that provides lower shear strength of boundary tribofilm. In the present investigation, graphene/graphite tribofilm was absent and existing traditional lubrication mechanism for the reduction of friction and wear is ruled out. It is demonstrated that effective lubrication is possible, if rGO is chemically linked with PEG molecules through hydrogen bonding and PEG intercalated graphene sheets provide sufficiently lower shear strength of freely suspended composite tribofilm under the contact pressure. The work revealed that physical deposition and adsorption of the graphene sheets in the metallic contacts is not necessary for the lubrication. PMID:26725334

  17. Controlling the length scale and distribution of the ductile phase in metallic glass composites through friction stir processing

    PubMed Central

    Arora, Harpreet Singh; Mridha, Sanghita; Grewal, Harpreet Singh; Singh, Harpreet; Hofmann, Douglas C; Mukherjee, Sundeep

    2014-01-01

    We demonstrate the refinement and uniform distribution of the crystalline dendritic phase by friction stir processing (FSP) of titanium based in situ ductile-phase reinforced metallic glass composite. The average size of the dendrites was reduced by almost a factor of five (from 24 μm to 5 μm) for the highest tool rotational speed of 900 rpm. The large inter-connected dendrites become more fragmented with increased circularity after processing. The changes in thermal characteristics were measured by differential scanning calorimetry. The reduction in crystallization enthalpy after processing suggests partial devitrification due to the high strain plastic deformation. FSP resulted in increased hardness and modulus for both the amorphous matrix and the crystalline phase. This is explained by interaction of shear bands in amorphous matrix with the strain-hardened dendritic phase. Our approach offers a new strategy for microstructural design in metallic glass composites. PMID:27877687

  18. Controlling the length scale and distribution of the ductile phase in metallic glass composites through friction stir processing.

    PubMed

    Arora, Harpreet Singh; Mridha, Sanghita; Grewal, Harpreet Singh; Singh, Harpreet; Hofmann, Douglas C; Mukherjee, Sundeep

    2014-06-01

    We demonstrate the refinement and uniform distribution of the crystalline dendritic phase by friction stir processing (FSP) of titanium based in situ ductile-phase reinforced metallic glass composite. The average size of the dendrites was reduced by almost a factor of five (from 24 μ m to 5 μ m) for the highest tool rotational speed of 900 rpm. The large inter-connected dendrites become more fragmented with increased circularity after processing. The changes in thermal characteristics were measured by differential scanning calorimetry. The reduction in crystallization enthalpy after processing suggests partial devitrification due to the high strain plastic deformation. FSP resulted in increased hardness and modulus for both the amorphous matrix and the crystalline phase. This is explained by interaction of shear bands in amorphous matrix with the strain-hardened dendritic phase. Our approach offers a new strategy for microstructural design in metallic glass composites.

  19. Friction characteristics of trocars in laparoscopic surgery.

    PubMed

    Alazmani, Ali; Roshan, Rupesh; Jayne, David G; Neville, Anne; Culmer, Peter

    2015-04-01

    This article investigates the friction characteristics of the instrument-trocar interface in laparoscopic surgery for varying linear instrument velocities, trocar seal design and material, and trocar tilt. Furthermore, the effect of applying lubrication at the instrument-trocar seal interface on friction was studied. A friction testing apparatus was designed and built to characterise the resistance force at the instrument-trocar interface as a function of the instrument's linear movement in the 12-mm trocar (at constant velocity) for different design, seal material, and angle of tilt. The resistance force depended on the trocar seal design and material properties, specifically surface roughness, elasticity, hardness, the direction of movement, and the instrument linear velocity, and varied between 0.25 and 8 N. Lubricating the shaft with silicone oil reduced the peak resistance force by 75% for all trocars and eliminated the stick-slip phenomenon evident in non-lubricated cases. The magnitude of fluctuation in resistance force depends on the trocar design and is attributed to stick-slip of the sealing mechanism and is generally higher during retraction in comparison to insertion. Trocars that have an inlet seal made of rubber/polyurethane showed higher resistance forces during retraction. Use of a lubricant significantly reduced frictional effects. Comparisons of the investigated trocars indicate that a low friction port, providing the surgeon with improved haptic feedback, can be designed by improving the tribological properties of the trocar seal interface. © IMechE 2015.

  20. Stick-slip friction and ageing in Velcro®

    NASA Astrophysics Data System (ADS)

    Mariani, Lisa; Angiolillo, Paul

    2014-03-01

    The mesoscopic hook and loop system of Velcro® provides a model of stick-slip friction that exhibits behavior reminiscent of results seen in nanoscale model systems. The friction is linearly dependent on contact area and independent of driving velocity. Morever, there is a power law dependence of the friction on loading, with exponent between 1/4 and 1/3. Furthermore, the evolution of stick-slip to more smooth sliding, as controlled by contact area, is also noted. These transition predictions follow power law profiles, as well, with respect to increasing contact area. Thus, the hook-and-loop system shows to be a good mesoscale model system of stick-slip friction and provides a link between nanoscale and macroscale friction. Through an investigation into the ageing of the hooks in the system, the data suggests that the hooks age during the shearing regime and take a characteristic time to return to initial attachment strength. Additionally, there does not appear to be a significant affect of ageing on the kinetic friction experienced by the system.

  1. Friction evaluation of unpaved, gypsum-surface runways at Northrup Strip, White Sands Missile Range, in support of Space Shuttle Orbiter landing and retrieval operations

    NASA Technical Reports Server (NTRS)

    Yager, T. J.; Horne, W. B.

    1980-01-01

    Friction measurement results obtained on the gypsum surface runways at Northrup Strip, White Sands Missile Range, N. M., using an instrumented tire test vehicle and a diagonal braked vehicle, are presented. These runways were prepared to serve as backup landing and retrieval sites to the primary sites located at Dryden Flight Research Center for shuttle orbiter during initial test flights. Similar friction data obtained on paved and other unpaved surfaces was shown for comparison and to indicate that the friction capability measured on the dry gypsum surface runways is sufficient for operations with the shuttle orbiter and the Boeing 747 aircraft. Based on these ground vehicle friction measurements, estimates of shuttle orbiter and aircraft tire friction performance are presented and discussed. General observations concerning the gypsum surface characteristics are also included and several recommendations are made for improving and maintaining adequate surface friction capabilities prior to the first shuttle orbiter landing.

  2. Observation instrument of dynamic frictional interface of gel engineering materials with polarized optical microscopic

    NASA Astrophysics Data System (ADS)

    Yamada, Naoya; Wada, Masato; Kabir, M. Hasnat; Gong, Jin; Furukawa, Hidemitsu

    2013-03-01

    Gels are soft and wet materials that differ from hard and dry materials like metals, plastics and ceramics. These have some unique characteristic such as low frictional properties, high water content and materials permeability. A decade earlier, DN gels having a mechanical strength of 30MPa of the maximum breaking stress in compression was developed and it is a prospective material as the biomaterial of the human body. Indeed it frictional coefficient and mechanical strength are comparable to our cartilages. In this study, we focus on the dynamic frictional interface of hydrogels and aim to develop a new apparatus with a polarization microscope for observation. The dynamical interface is observed by the friction of gel and glass with hudroxypropylcellulose (HPC) polymer solution sandwiching. At the beginning, we rubbed hydrogel and glass with HPC solution sandwiching on stage of polarization microscope. Second step, we designed a new system which combined microscope with friction measuring machine. The comparison between direct observation with this instrument and measurement of friction coefficient will become a foothold to elucidate distinctive frictional phenomena that can be seen in soft and wet materials.

  3. Friction and wear behavior of single-crystal silicon carbide in contact with titanium

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1977-01-01

    Sliding friction experiments were conducted with single crystal silicon carbide in sliding contact with titanium. Results indicate that the friction coefficient is greater in vacuum than in argon and that this is due to the greater adhesion or adhesive transfer in vacuum. Thin films of silicon carbide transferred to titanium also adhered to silicon carbide both in argon at atmospheric pressure and in high vacuum. Cohesive bonds fractured on both the silicon carbide and titanium surfaces. The wear debris of silicon carbide created by fracture plowed the silicon carbide surface in a plastic manner. The friction characteristics of titanium in contact with silicon carbide were sensitive to the surface roughness of silicon carbide, and the friction coefficients were higher for a rough surface of silicon carbide than for a smooth one. The difference in friction results was due to plastic deformation (plowing of titanium).

  4. Losses in Channels with Increased External Turbulence

    NASA Technical Reports Server (NTRS)

    Zaryankin, A. Y.; Soloveva, G. S.

    1986-01-01

    An approximate method for determining the effect of the level of turbulence on the aerodynamic characteristics of convergent and diffuser channels is examined. A momentum equation for the boundary layer is in the method, introducing external flow turbulence on the basis of experimental values of the coefficient of friction and the form factor. It is found that at significant levels of external turbulence, losses must be considered not only in the boundary layer but also in the central region of the channel.

  5. Regular and reverse nanoscale stick-slip behavior: Modeling and experiments

    NASA Astrophysics Data System (ADS)

    Landolsi, Fakhreddine; Sun, Yuekai; Lu, Hao; Ghorbel, Fathi H.; Lou, Jun

    2010-02-01

    We recently proposed a new nanoscale friction model based on the bristle interpretation of single asperity contacts. The model is mathematically continuous and dynamic which makes it suitable for implementation in nanomanipulation and nanorobotic modeling. In the present paper, friction force microscope (FFM) scans of muscovite mica samples and vertically aligned multi-wall carbon nanotubes (VAMWCNTs) arrays are conducted. The choice of these materials is motivated by the fact that they exibit different stick-slip behaviors. The corresponding experimental and simulation results are compared. Our nanoscale friction model is shown to represent both the regular and reverse frictional sawtooth characteristics of the muscovite mica and the VAMWCNTs, respectively.

  6. Friction Forces during Sliding of Various Brackets for Malaligned Teeth: An In Vitro Study

    PubMed Central

    Crincoli, Vito; Di Bisceglie, Maria Beatrice; Balsamo, Antonio; Serpico, Vitaliano; Chiatante, Francesco; Pappalettere, Carmine; Boccaccio, Antonio

    2013-01-01

    Aims. To measure the friction force generated during sliding mechanics with conventional, self-ligating (Damon 3 mx, Smart Clip, and Time 3) and low-friction (Synergy) brackets using different archwire diameters and ligating systems in the presence of apical and buccal malalignments of the canine. Methods. An experimental setup reproducing the right buccal segment of the maxillary arch was designed to measure the friction force generated at the bracket/wire and wire/ligature interfaces of different brackets. A complete factorial plan was drawn up and a three-way analysis of variance (ANOVA) was carried out to investigate whether the following factors affect the values of friction force: (i) degree of malalignment, (ii) diameter of the orthodontic wire, and (iii) bracket/ligature combination. Tukey post hoc test was also conducted to evaluate any statistically significant differences between the bracket/ligature combinations analyzed. Results. ANOVA showed that all the above factors affect the friction force values. The friction force released during sliding mechanics with conventional brackets is about 5-6times higher than that released with the other investigated brackets. A quasilinear increase of the frictional forces was observed for increasing amounts of apical and buccal malalignments. Conclusion. The Synergy bracket with silicone ligature placed around the inner tie-wings appears to yield the best performance. PMID:23533364

  7. Friction and wear of plasma-deposited diamond films

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Wu, Richard L. C.; Garscadden, Alan; Barnes, Paul N.; Jackson, Howard E.

    1993-01-01

    Reciprocating sliding friction experiments in humid air and in dry nitrogen and unidirectional sliding friction experiments in ultrahigh vacuum were conducted with a natural diamond pin in contact with microwave-plasma-deposited diamond films. Diamond films with a surface roughness (R rms) ranging from 15 to 160 nm were produced by microwave-plasma-assisted chemical vapor deposition. In humid air and in dry nitrogen, abrasion occurred when the diamond pin made grooves in the surfaces of diamond films, and thus the initial coefficients of friction increased with increasing initial surface roughness. The equilibrium coefficients of friction were independent of the initial surface roughness of the diamond films. In vacuum the friction for diamond films contacting a diamond pin arose primarily from adhesion between the sliding surfaces. In these cases, the initial and equilibrium coefficients of friction were independent of the initial surface roughness of the diamond films. The equilibrium coefficients of friction were 0.02 to 0.04 in humid air and in dry nitrogen, but 1.5 to 1.8 in vacuum. The wear factor of the diamond films depended on the initial surface roughness, regardless of environment; it increased with increasing initial surface roughness. The wear factors were considerably higher in vacuum than in humid air and in dry nitrogen.

  8. LOW-ENGINE-FRICTION TECHNOLOGY FOR ADVANCED NATURAL-GAS RECIPROCATING ENGINES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Victor W. Wong; Tian Tian; Grant Smedley

    2003-08-28

    This program aims at improving the efficiency of advanced natural-gas reciprocating engines (ANGRE) by reducing piston/ring assembly friction without major adverse effects on engine performance, such as increased oil consumption and emissions. A detailed set of piston/ring dynamic and friction models have been developed and applied that illustrated the fundamental relationships between design parameters and friction losses. Various low-friction strategies and concepts have been explored, and engine experiments will validate these concepts. An iterative process of experimentation, simulation and analysis, will be followed with the goal of demonstrating a complete optimized low-friction engine system. As planned, MIT has developed guidelinesmore » for an initial set of low-friction piston-ring-pack designs. Current recommendations focus on subtle top-piston-ring and oil-control-ring characteristics. A full-scale Waukesha F18 engine has been installed at Colorado State University and testing of the baseline configuration is in progress. Components for the first design iteration are being procured. Subsequent work includes examining the friction and engine performance data and extending the analyses to other areas to evaluate opportunities for further friction improvement and the impact on oil consumption/emission and wear, towards demonstrating an optimized reduced-friction engine system.« less

  9. Theoretical and computational validation of the Kuhn barrier friction mechanism in unfolded proteins.

    PubMed

    Avdoshenko, Stanislav M; Das, Atanu; Satija, Rohit; Papoian, Garegin A; Makarov, Dmitrii E

    2017-03-21

    A long time ago, Kuhn predicted that long polymers should approach a limit where their global motion is controlled by solvent friction alone, with ruggedness of their energy landscapes having no consequences for their dynamics. In contrast, internal friction effects are important for polymers of modest length. Internal friction in proteins, in particular, affects how fast they fold or find their binding targets and, as such, has attracted much recent attention. Here we explore the molecular origins of internal friction in unfolded proteins using atomistic simulations, coarse-grained models and analytic theory. We show that the characteristic internal friction timescale is directly proportional to the timescale of hindered dihedral rotations within the polypeptide chain, with a proportionality coefficient b that is independent of the chain length. Such chain length independence of b provides experimentally testable evidence that internal friction arises from concerted, crankshaft-like dihedral rearrangements. In accord with phenomenological models of internal friction, we find the global reconfiguration timescale of a polypeptide to be the sum of solvent friction and internal friction timescales. At the same time, the time evolution of inter-monomer distances within polypeptides deviates both from the predictions of those models and from a simple, one-dimensional diffusion model.

  10. Prediction of friction factor of pure water flowing inside vertical smooth and microfin tubes by using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Çebi, A.; Akdoğan, E.; Celen, A.; Dalkilic, A. S.

    2017-02-01

    An artificial neural network (ANN) model of friction factor in smooth and microfin tubes under heating, cooling and isothermal conditions was developed in this study. Data used in ANN was taken from a vertically positioned heat exchanger experimental setup. Multi-layered feed-forward neural network with backpropagation algorithm, radial basis function networks and hybrid PSO-neural network algorithm were applied to the database. Inputs were the ratio of cross sectional flow area to hydraulic diameter, experimental condition number depending on isothermal, heating, or cooling conditions and mass flow rate while the friction factor was the output of the constructed system. It was observed that such neural network based system could effectively predict the friction factor values of the flows regardless of their tube types. A dependency analysis to determine the strongest parameter that affected the network and database was also performed and tube geometry was found to be the strongest parameter of all as a result of analysis.

  11. Microscopic aspects of the effect of friction reducers at the lubrication limit. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Mansot, J. L.

    1984-01-01

    An attempt is made to analytically model the physicochemical properties of lubricants and their capacity to reduce friction. A technique of frozen fracturing of the lubricants was employed to study the dispersion of additives throughout a lubricant. Adsorption was observed at the liquid-solid interface, which was the region where the solid and lubricant met, and the molecular dispersion of the additive enhanced the effectiveness of the lubricant. The electrically conductive characteristics of the lubricant at the friction interface indicated the presence of tunneling effects. The Bethe model was used to examine the relationship between the coefficient of friction and the variation of interface thickness. The electron transport permitted an inelastic tunnel electron spectroscopic investigation of the molecular transformations undergone by the additive during friction episodes.

  12. Influence of sliding friction on leveling force of superelastic NiTi arch wire: A computational analysis

    NASA Astrophysics Data System (ADS)

    Razali, M. F.; Mahmud, A. S.; Mokhtar, N.; Abdullah, J.

    2017-10-01

    This study investigated the influence of sliding friction toward the effective force of superelastic NiTi arch wire applied in orthodontic bracing for tooth leveling. A three-dimensional finite-element model integrated with superelastic subroutine and contact interaction was used to predict the contribution of friction on force-deflection curve of NiTi wire in three brackets bending configuration. It was found that the friction between the wire and the bracket increased proportionally as a function of wire deflection, thus transforming the constant force characteristic of NiTi material into a slope. The highest magnitude of sliding friction was measured to be 3.1 N and 2.2 N with respect to the activation and deactivation of the arch wire.

  13. Friction, wear, and transfer of carbon and graphite to copper, chromium, and aluminum metal surfaces in vacuum

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1973-01-01

    Sliding friction experiments were conducted with amorphous and fully graphitized carbons sliding on copper and on films of chromium and aluminum on copper. Auger emission spectroscopy analysis was used to monitor carbon transfer to the metal surfaces. Friction and wear were also measured. Metal surfaces were examined both in the clean state and with normal oxides present. Results indicate that different metals have an important effect on friction, wear, and transfer characteristics. With amorphous carbon, the least chemically active metal gave the highest wear and amount of carbon transfer. Both forms of carbon gave lower friction and wear and lower transfer rates when in contact with clean, as opposed to oxide-covered, chromium surfaces. With copper, the reverse was true; cleaning was detrimental.

  14. Friction and wear of single-crystal and polycrystalline maganese-zinc ferrite in contact with various metals

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1977-01-01

    Sliding friction experiments were conducted with single-crystal (SCF) and hot-pressed polycrystalline (HPF) manganese-zinc ferrite in contact with various metals. Results indicate that the coefficients of friction for SCF and HPF are related to the relative chemical activity of those metals in high vacuum. The more active the metal, the higher the coefficient of friction. The coefficients of friction for both SCF and HPF were the same and much higher in vacuum than in argon at atmospheric pressure. All the metals tested transferred to the surface of both SCF and HPF in sliding. Both SCF and HPF exhibited cracking and fracture with sliding. Cracking in SCF is dependent on crystallographic characteristics. In HPF, cracking depends on the orientation of the individual crystallites.

  15. Evolution of turbulence characteristics from straight to curved pipes

    NASA Astrophysics Data System (ADS)

    El Khoury, George K.; Noorani, Azad; Schlatter, Philipp; Fischer, Paul F.

    2012-11-01

    Large-scale direct numerical simulations are performed to study turbulent flow in straight and bent pipes at four different Reynolds numbers: Reb = 5300 , 11700 (bent and straight) and 19000 and 37700 (only straight). We consider a pipe of radius R and axial length 25 R with curvature parameter κ taken to be 0 , 0 . 01 and 0 . 1 for zero, mild and strong curvatures, respectively. The code used is Nek5000 based on the spectral element method. In the straight configuration, the obtained DNS data is carefully checked against other recent simulations, highlighting minute differences between the available data. Owing to a centrifugal instability mechanism, the flow in bent pipe (κ ≠ 0) develops counter-rotating vortices, so-called Dean vortices. The presence of the secondary motion thus induces substantial asymmetries both in the mean flow and turbulence characteristics for the bent pipe. These asymmetries tend to damp turbulence along the inner side and correspondingly enhance it along the upper side. The results are validated with recent experiments, and we could confirm the peculiar behaviour of the friction factor for specific curvatures and Re , leading to a lower friction in curved pipes than in straight pipes for the same mass flux.

  16. Linear viscoelasticity of a single semiflexible polymer with internal friction.

    PubMed

    Hiraiwa, Tetsuya; Ohta, Takao

    2010-07-28

    The linear viscoelastic behaviors of single semiflexible chains with internal friction are studied based on the wormlike-chain model. It is shown that the frequency dependence of the complex compliance in the high frequency limit is the same as that of the Voigt model. This asymptotic behavior appears also for the Rouse model with internal friction. We derive the characteristic times for both the high frequency limit and the low frequency limit and compare the results with those obtained by Khatri et al.

  17. A simple method to estimate threshold friction velocity of wind erosion in the field

    USDA-ARS?s Scientific Manuscript database

    Nearly all wind erosion models require the specification of threshold friction velocity (TFV). Yet determining TFV of wind erosion in field conditions is difficult as it depends on both soil characteristics and distribution of vegetation or other roughness elements. While several reliable methods ha...

  18. Restoration of frictional characteristics on older Portland cement concrete pavement.

    DOT National Transportation Integrated Search

    1986-06-01

    Safety is a very important aspect o f the highway program. The Iowa DOT : initiated an inventory of the friction values of all paved primary : roadways i n 1969. This inventory, with an ASTM E-274 test unit, has : continued to the present time. The t...

  19. An Additive to Improve the Wear Characteristics of Perfluoropolyether Based Greases

    NASA Technical Reports Server (NTRS)

    Jones, David G. V.; Fowzy, Mahmoud A.; Landry, James F.; Jones, William R., Jr.; Shogrin, Bradley A.; Nguyen, QuynhGiao

    1999-01-01

    The friction and wear characteristics of two formulated perfluoropolyether based greases were compared to their non-additive base greases. One grease was developed for the electronics industry (designated as GXL-296A) while the other is for space applications (designated as GXL-320A). The formulated greases (GXL-296B and GXL-320B) contained a proprietary antiwear additive at an optimized concentration. Tests were conducted using a vacuum four-ball tribometer. AISI 52100 steel specimens were used for all GXL-296 tests. Both AISI 52100 steel and 440C stainless steel were tested with the GXL-320 greases. Test conditions included: a pressure less than 6.7 x 10(exp )-4 Pa, a 200N load, a sliding velocity of 28.8 mm/sec (100 rpm) and room temperature (approximately equal to 23 C). Wear rates for each grease were determined from the slope of the wear volume as a function of sliding distance. Both non-additive base greases yielded relatively high wear rates on the order of 10(exp -8) cu mm using AISI 52100 steel specimens. Formulated grease GXL-296B yielded a reduction in wear rate by a factor of approximately 21, while grease GXL-320B had a reduction of approximately 12 times. Lower wear rates (-50%) were observed with both GXL-320 greases using 440C stainless steel. Mean friction coefficients were slightly higher for both formulated greases compared to their base greases. The GXL-296 series (higher base oil viscosity) yielded much higher friction coefficients compared to their GXL-320 series (lower base oil viscosity) counterparts.

  20. Transduction channels' gating can control friction on vibrating hair-cell bundles in the ear.

    PubMed

    Bormuth, Volker; Barral, Jérémie; Joanny, Jean-François; Jülicher, Frank; Martin, Pascal

    2014-05-20

    Hearing starts when sound-evoked mechanical vibrations of the hair-cell bundle activate mechanosensitive ion channels, giving birth to an electrical signal. As for any mechanical system, friction impedes movements of the hair bundle and thus constrains the sensitivity and frequency selectivity of auditory transduction. Friction is generally thought to result mainly from viscous drag by the surrounding fluid. We demonstrate here that the opening and closing of the transduction channels produce internal frictional forces that can dominate viscous drag on the micrometer-sized hair bundle. We characterized friction by analyzing hysteresis in the force-displacement relation of single hair-cell bundles in response to periodic triangular stimuli. For bundle velocities high enough to outrun adaptation, we found that frictional forces were maximal within the narrow region of deflections that elicited significant channel gating, plummeted upon application of a channel blocker, and displayed a sublinear growth for increasing bundle velocity. At low velocity, the slope of the relation between the frictional force and velocity was nearly fivefold larger than the hydrodynamic friction coefficient that was measured when the transduction machinery was decoupled from bundle motion by severing tip links. A theoretical analysis reveals that channel friction arises from coupling the dynamics of the conformational change associated with channel gating to tip-link tension. Varying channel properties affects friction, with faster channels producing smaller friction. We propose that this intrinsic source of friction may contribute to the process that sets the hair cell's characteristic frequency of responsiveness.

  1. Transduction channels’ gating can control friction on vibrating hair-cell bundles in the ear

    PubMed Central

    Bormuth, Volker; Barral, Jérémie; Joanny, Jean-François; Jülicher, Frank; Martin, Pascal

    2014-01-01

    Hearing starts when sound-evoked mechanical vibrations of the hair-cell bundle activate mechanosensitive ion channels, giving birth to an electrical signal. As for any mechanical system, friction impedes movements of the hair bundle and thus constrains the sensitivity and frequency selectivity of auditory transduction. Friction is generally thought to result mainly from viscous drag by the surrounding fluid. We demonstrate here that the opening and closing of the transduction channels produce internal frictional forces that can dominate viscous drag on the micrometer-sized hair bundle. We characterized friction by analyzing hysteresis in the force–displacement relation of single hair-cell bundles in response to periodic triangular stimuli. For bundle velocities high enough to outrun adaptation, we found that frictional forces were maximal within the narrow region of deflections that elicited significant channel gating, plummeted upon application of a channel blocker, and displayed a sublinear growth for increasing bundle velocity. At low velocity, the slope of the relation between the frictional force and velocity was nearly fivefold larger than the hydrodynamic friction coefficient that was measured when the transduction machinery was decoupled from bundle motion by severing tip links. A theoretical analysis reveals that channel friction arises from coupling the dynamics of the conformational change associated with channel gating to tip-link tension. Varying channel properties affects friction, with faster channels producing smaller friction. We propose that this intrinsic source of friction may contribute to the process that sets the hair cell’s characteristic frequency of responsiveness. PMID:24799674

  2. Frictional melt and seismic slip

    NASA Astrophysics Data System (ADS)

    Nielsen, S.; di Toro, G.; Hirose, T.; Shimamoto, T.

    2008-01-01

    Frictional melt is implied in a variety of processes such as seismic slip, ice skating, and meteorite combustion. A steady state can be reached when melt is continuously produced and extruded from the sliding interface, as shown recently in a number of laboratory rock friction experiments. A thin, low-viscosity, high-temperature melt layer is formed resulting in low shear resistance. A theoretical solution describing the coupling of shear heating, thermal diffusion, and extrusion is obtained, without imposing a priori the melt thickness. The steady state shear traction can be approximated at high slip rates by the theoretical form τss = σn1/4 (A/?) ? under a normal stress σn, slip rate V, radius of contact area R (A is a dimensional normalizing factor and W is a characteristic rate). Although the model offers a rather simplified view of a complex process, the predictions are compatible with experimental observations. In particular, we consider laboratory simulations of seismic slip on earthquake faults. A series of high-velocity rotary shear experiments on rocks, performed for σn in the range 1-20 MPa and slip rates in the range 0.5-2 m s-1, is confronted to the theoretical model. The behavior is reasonably well reproduced, though the effect of radiation loss taking place in the experiment somewhat alters the data. The scaling of friction with σn, R, and V in the presence of melt suggests that extrapolation of laboratory measures to real Earth is a highly nonlinear, nontrivial exercise.

  3. Friction enhancement via micro-patterned wet elastomer adhesives on small intestinal surfaces.

    PubMed

    Kwon, Jiwoon; Cheung, Eugene; Park, Sukho; Sitti, Metin

    2006-12-01

    A micro-pillar-based silicone rubber adhesive coated with a thin silicone oil layer is investigated in this paper for developing friction-based clamping mechanisms for robotic endoscopic microcapsules. These adhesives are shown to enhance the frictional force between the capsule and the intestinal wall by a factor of about seven over a non-patterned flat elastomer material. In this study, tests performed on fresh samples of pig small intestine are used to optimize the diameter of the micro-pillars to maximize the frictional forces. In addition, the effects of other factors such as the oil viscosity and applied normal forces are investigated. It is demonstrated that the proposed micro-pillar pattern based elastomer adhesive exhibits a maximal frictional force when the pillar diameter is 140 microm and coated silicon oil has a very high viscosity (10,000 cSt). It is also found that the frictional force of the micro-patterned adhesive increases nonlinearly in proportion to the applied normal force. These adhesives would be used as a robust attachment material for developing robotic capsule endoscopes inside intestines with clamping capability.

  4. Friction enhancement via micro-patterned wet elastomer adhesives on small intestinal surfaces

    NASA Astrophysics Data System (ADS)

    Kwon, Jiwoon; Cheung, Eugene; Park, Sukho; Sitti, Metin

    2006-12-01

    A micro-pillar-based silicone rubber adhesive coated with a thin silicone oil layer is investigated in this paper for developing friction-based clamping mechanisms for robotic endoscopic microcapsules. These adhesives are shown to enhance the frictional force between the capsule and the intestinal wall by a factor of about seven over a non-patterned flat elastomer material. In this study, tests performed on fresh samples of pig small intestine are used to optimize the diameter of the micro-pillars to maximize the frictional forces. In addition, the effects of other factors such as the oil viscosity and applied normal forces are investigated. It is demonstrated that the proposed micro-pillar pattern based elastomer adhesive exhibits a maximal frictional force when the pillar diameter is 140 µm and coated silicon oil has a very high viscosity (10 000 cSt). It is also found that the frictional force of the micro-patterned adhesive increases nonlinearly in proportion to the applied normal force. These adhesives would be used as a robust attachment material for developing robotic capsule endoscopes inside intestines with clamping capability.

  5. Friction-induced skin injuries-are they pressure ulcers? An updated NPUAP white paper.

    PubMed

    Brienza, David; Antokal, Steven; Herbe, Laura; Logan, Susan; Maguire, Jeanine; Van Ranst, Jennifer; Siddiqui, Aamir

    2015-01-01

    Friction injuries are often misdiagnosed as pressure ulcers. The reason for the misdiagnosis may be a misinterpretation of classic pressure ulcer literature that reported friction increased the susceptibility of the skin to pressure damage. This analysis assesses the classic literature that led to the inclusion of friction as a causative factor in the development of pressure ulcers in light of more recent research on the effects of shear. The analysis in this article suggests that friction can contribute to pressure ulcers by creating shear strain in deeper tissues, but friction does not appear to contribute to pressure ulcers in the superficial layers of the skin. Injuries to the superficial layers of the skin caused by friction are not pressure ulcers and should not be classified or treated as such.

  6. Internal friction and dislocation collective pinning in disordered quenched solid solutions

    NASA Astrophysics Data System (ADS)

    D'Anna, G.; Benoit, W.; Vinokur, V. M.

    1997-12-01

    We introduce the collective pinning of dislocations in disordered quenched solid solutions and calculate the macroscopic mechanical response to a small dc or ac applied stress. This work is a generalization of the Granato-Lücke string model, able to describe self-consistently short and long range dislocation motion. Under dc applied stress the long distance dislocation creep has at the microscopic level avalanche features, which result in a macroscopic nonlinear "glassy" velocity-stress characteristic. Under ac conditions the model predicts, in addition to the anelastic internal friction relaxation in the high frequency regime, a linear internal friction background which remains amplitude-independent down to a crossover frequency to a strongly nonlinear internal friction regime.

  7. Finite element modeling of frictionally restrained composite interfaces

    NASA Technical Reports Server (NTRS)

    Ballarini, Roberto; Ahmed, Shamim

    1989-01-01

    The use of special interface finite elements to model frictional restraint in composite interfaces is described. These elements simulate Coulomb friction at the interface, and are incorporated into a standard finite element analysis of a two-dimensional isolated fiber pullout test. Various interfacial characteristics, such as the distribution of stresses at the interface, the extent of slip and delamination, load diffusion from fiber to matrix, and the amount of fiber extraction or depression are studied for different friction coefficients. The results are compared to those obtained analytically using a singular integral equation approach, and those obtained by assuming a constant interface shear strength. The usefulness of these elements in micromechanical modeling of fiber-reinforced composite materials is highlighted.

  8. Effect of carbon content on friction and wear of cast irons

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1977-01-01

    Friction and wear experiments were conducted with cast irons and wrought steels containing various amounts of carbon in the alloy structure in contact with 52100 steel. Gray cast irons were found to exhibit lower friction and wear characteristics than white cast irons. Further, gray cast iron wear was more sensitive to carbon content than was white. Wear with gray cast iron was linearly related to load, and friction was found to be sensitive to relative humidity and carbon content. The form, in which the carbon is present in the alloy, is more important, as the carbon content and no strong relationship seems to exist between hardness of these ferrous alloys and wear.

  9. Improving friction performance of cast iron by laser shock peening

    NASA Astrophysics Data System (ADS)

    Feng, Xu; Zhou, Jianzhong; Huang, Shu; Sheng, Jie; Mei, Yufen; Zhou, Hongda

    2015-05-01

    According to different purpose, some high or low friction coefficient of the material surface is required. In this study, micro-dent texture was fabricated on cast iron specimens by a set of laser shock peening (LSP) experiments under different laser energy, with different patterns of micro dimples in terms of the depth over diameter. The mechanism of LSP was discussed and surface morphology of the micro dimples were investigated by utilizing a Keyence KS-1100 3D optical surface profilometer. The tests under the conditions of dry and lubricating sliding friction were accomplished on the UMT-2 apparatus. The performance of treated samples during friction and wear tests were characterized and analyzed. Based on theoretical analysis and experimental study, friction performance of textured and untextured samples were studied and compared. Morphological characteristics were observed by scanning electron microscope (SEM) and compared after friction tests under dry condition. The results showed that friction coefficient of textured samples were obvious changed than smooth samples. It can be seen that LSP is an effective way to improve the friction performance of cast iron by fabricating high quality micro dimples on its surface, no matter what kind of engineering application mentioned in this paper.

  10. Fuzzy control for nonlinear structure with semi-active friction damper

    NASA Astrophysics Data System (ADS)

    Zhao, Da-Hai; Li, Hong-Nan

    2007-04-01

    The implementation of semi-active friction damper for vibration mitigation of seismic structure generally requires an efficient control strategy. In this paper, the fuzzy logic based on Takagi-Sugeno model is proposed for controlling a semi-active friction damper that is installed on a nonlinear building subjected to strong earthquakes. The continuous Bouc-Wen hysteretic model for the stiffness is used to describe nonlinear characteristic of the building. The optimal sliding force with friction damper is determined by nonlinear time history analysis under normal earthquakes. The Takagi-Sugeno fuzzy logic model is employed to adjust the clamping force acted on the friction damper according to the semi-active control strategy. Numerical simulation results demonstrate that the proposed method is very efficient in reducing the peak inter-story drift and acceleration of the nonlinear building structure under earthquake excitations.

  11. A novel disturbance-observer based friction compensation scheme for ball and plate system.

    PubMed

    Wang, Yongkun; Sun, Mingwei; Wang, Zenghui; Liu, Zhongxin; Chen, Zengqiang

    2014-03-01

    Friction is often ignored when designing a controller for the ball and plate system, which can lead to steady-error and stick-slip phenomena, especially for the small amplitude command. It is difficult to achieve high-precision control performance for the ball and plate system because of its friction. A novel reference compensation strategy is presented to attenuate the aftereffects caused by the friction. To realize this strategy, a linear control law is proposed based on a reduced-order observer. Neither the accurate friction model nor the estimation of specific characteristic parameters is needed in this design. Moreover, the describing function method illustrates that the limit cycle can be avoided. Finally, the comparative mathematical simulations and the practical experiments are used to validate the effectiveness of the proposed method. © 2013 ISA Published by ISA All rights reserved.

  12. Coefficient of Friction Patterns Can Identify Damage in Native and Engineered Cartilage Subjected to Frictional-Shear Stress

    PubMed Central

    Whitney, G. A.; Mansour, J. M.; Dennis, J. E.

    2015-01-01

    The mechanical loading environment encountered by articular cartilage in situ makes frictional-shear testing an invaluable technique for assessing engineered cartilage. Despite the important information that is gained from this testing, it remains under-utilized, especially for determining damage behavior. Currently, extensive visual inspection is required to assess damage; this is cumbersome and subjective. Tools to simplify, automate, and remove subjectivity from the analysis may increase the accessibility and usefulness of frictional-shear testing as an evaluation method. The objective of this study was to determine if the friction signal could be used to detect damage that occurred during the testing. This study proceeded in two phases: first, a simplified model of biphasic lubrication that does not require knowledge of interstitial fluid pressure was developed. In the second phase, frictional-shear tests were performed on 74 cartilage samples, and the simplified model was used to extract characteristic features from the friction signals. Using support vector machine classifiers, the extracted features were able to detect damage with a median accuracy of approximately 90%. The accuracy remained high even in samples with minimal damage. In conclusion, the friction signal acquired during frictional-shear testing can be used to detect resultant damage to a high level of accuracy. PMID:25691395

  13. Lower extremity kinematics that correlate with success in lateral load transfers over a low friction surface.

    PubMed

    Catena, Robert D; Xu, Xu

    2015-01-01

    We previously studied balance during lateral load transfers, but were left without explanation of why some individuals were successful in novel low friction conditions and others were not. Here, we retrospectively examined lower extremity kinematics between successful (SL) and unsuccessful (UL) groups to determine what characteristics may improve low friction performance. Success versus failure over a novel slippery surface was used to dichotomise 35 healthy working-age individuals into the two groups (SL and UL). Participants performed lateral load transfers over three sequential surface conditions: high friction, novel low friction, and practiced low friction. The UL group used a wide stance with rotation mostly at the hips during the high and novel low friction conditions. To successfully complete the practiced low friction task, they narrowed their stance and pivoted both feet and torso towards the direction of the load, similar to the SL group in all conditions. This successful kinematic method potentially results in reduced muscle demand throughout the task. Practitioner Summary: The reason for this paper is to retrospectively examine the different load transfer strategies that are used in a low friction lateral load transfer. We found stance width to be the major source of success, while sagittal plane motion was altered to potentially maintain balance.

  14. Estimation of wheel-rail friction for vehicle certification

    NASA Astrophysics Data System (ADS)

    Petrov, Vladislav; Berg, Mats; Persson, Ingemar

    2014-08-01

    In certification of new rail vehicles with respect to running characteristics, a wide variety of operating conditions needs to be considered. However, in associated test runs the wheel-rail friction condition is difficult to handle because the friction coefficient needs to be fairly high and the friction is also generally hard to assess. This is an issue that has been studied in the European project DynoTRAIN and part of the results is presented in this paper. More specifically, an algorithm for estimating the wheel-rail friction coefficient at vehicle certification tests is proposed. Owing to lack of some measurement results, the algorithm here is evaluated in a simulation environment which is also an important step towards practical implementation. A quality measure of the friction estimate is suggested in terms of estimated wheel-rail spin and total creep. It is concluded that, tentatively, the total creep should exceed 0.006 and the spin should be less than 1.0 m-1 for the algorithm to give a good friction estimate. Sensitivity analysis is carried out to imitate measurement errors, but should be expanded in further work.

  15. A Proposal: Mitigating Effects of the Economic Crisis with Career ePortfolios

    ERIC Educational Resources Information Center

    Lievens, Ronald

    2014-01-01

    Contemporary labor markets are suffering from the recession and structural shifts, which can cause various mismatches through processes of search friction. A lack of informational transparency among worker- and job characteristics is the common denominator of these search frictions. In this paper, the potential of the career ePortfolio, which…

  16. Reduction of friction stress of ethylene glycol by attached hydrogen ions

    PubMed Central

    Li, Jinjin; Zhang, Chenhui; Deng, Mingming; Luo, Jianbin

    2014-01-01

    In the present work, it is shown that the friction stress of ethylene glycol can decrease by an order of magnitude to achieve superlubricity if there are hydrogen ions attached on the friction surfaces. An ultra-low friction coefficient (μ = 0.004) of ethylene glycol between Si3N4 and SiO2 can be obtained with the effect of hydrogen ions. Experimental result indicates that the hydrogen ions adsorbed on the friction surfaces forming a hydration layer and the ethylene glycol in the contact region forming an elastohydrodynamic film are the two indispensable factors for the reduction of friction stress. The mechanism of superlubricity is attributed to the extremely low shear strength of formation of elastohydrodynamic film on the hydration layer. This finding may introduce a new approach to reduce friction coefficient of liquid by attaching hydrogen ions on friction surfaces. PMID:25428584

  17. Squeaking friction phenomena in ceramic hip endoprosthesis: Modeling and experimental validation

    NASA Astrophysics Data System (ADS)

    Ouenzerfi, G.; Massi, F.; Renault, E.; Berthier, Y.

    2015-06-01

    The modern evolution of ceramic bearing surfaces for total hip arthroplasty has allowed longer implant longevity with lower amounts of osteolysis. It has been applied to younger patient expecting improved survivorship compared with traditional bearing surfaces. However, the phenomenon of an audible squeaking produced by implants during daily activities is reported as an annoying complication for patients. Although recent studies have been carried out on this topic, the origin of squeaking and the analysis of factors leading to this phenomenon are not completely identified. Numerical analyses are still not able to reproduce precisely the in vitro and in vivo observations. The lack of understanding on the physics of this issue is still an obstacle to find appropriate solutions to prevent it. In this paper, numerical and experimental approaches to reproduce squeaking are presented. A pre-stressed modal analysis is performed to identify the unstable eigenfrequencies that cause the vibrations and the perceived acoustic emission. The numerical results are validated by experiments on a laboratory test bench and the predicted frequencies are compared to the squeaking frequencies that can be found both in vitro and in vivo. The natural frequencies related to the femoral components are closer to the observed squeaking frequency. Simulations results confirmed that these vibrations are related to the stem dynamic response, which has a strong influence on the squeaking characteristic. In the other hand, the cup and the ceramic components play a main indirect role providing the frictional pair between the head and the liner. The analysis suggests that one of the possible mechanisms at the origin of squeaking is the modal coupling of two modes of vibration of the stem under frictional contact. The numerical model will allow for identifying the dominant factors and parameters affecting squeaking in order to avoid the unstable mode coupling. Squeaking can be reduced clinically by minimizing friction rising factors (such edge loading and situations promoting metal transfer or stripe wear) or by developing endoprosthesis design to avoid the unstable vibrations, regressing the squeaking emission to a negligible phenomenon.

  18. Impact of mechanism vibration characteristics by joint clearance and optimization design of its multi-objective robustness

    NASA Astrophysics Data System (ADS)

    Zeng, Baoping; Wang, Chao; Zhang, Yu; Gong, Yajun; Hu, Sanbao

    2017-12-01

    Joint clearances and friction characteristics significantly influence the mechanism vibration characteristics; for example: as for joint clearances, the shaft and bearing of its clearance joint collide to bring about the dynamic normal contact force and tangential coulomb friction force while the mechanism works; thus, the whole system may vibrate; moreover, the mechanism is under contact-impact with impact force constraint from free movement under action of the above dynamic forces; in addition, the mechanism topology structure also changes. The constraint relationship between joints may be established by a repeated complex nonlinear dynamic process (idle stroke - contact-impact - elastic compression - rebound - impact relief - idle stroke movement - contact-impact). Analysis of vibration characteristics of joint parts is still a challenging open task by far. The dynamic equations for any mechanism with clearance is often a set of strong coupling, high-dimensional and complex time-varying nonlinear differential equations which are solved very difficultly. Moreover, complicated chaotic motions very sensitive to initial values in impact and vibration due to clearance let high-precision simulation and prediction of their dynamic behaviors be more difficult; on the other hand, their subsequent wearing necessarily leads to some certain fluctuation of structure clearance parameters, which acts as one primary factor for vibration of the mechanical system. A dynamic model was established to the device for opening the deepwater robot cabin door with joint clearance by utilizing the finite element method and analysis was carried out to its vibration characteristics in this study. Moreover, its response model was carried out by utilizing the DOE method and then the robust optimization design was performed to sizes of the joint clearance and the friction coefficient change range so that the optimization design results may be regarded as reference data for selecting bearings and controlling manufacturing process parameters for the opening mechanism. Several optimization objectives such as x/y/z accelerations for various measuring points and dynamic reaction forces of mounting brackets, and a few constraints including manufacturing process were taken into account in the optimization models, which were solved by utilizing the multi-objective genetic algorithm (NSGA-II). The vibration characteristics of the optimized opening mechanism are superior to those of the original design. In addition, the numerical forecast results are in good agreement with the test results of the prototype.

  19. Friction factors of colloidal suspension containing silicon dioxide nanoparticles in water

    NASA Astrophysics Data System (ADS)

    Tang, Clement; Pant, Sarbottam; Sharif, Md. Tanveer

    2015-11-01

    The purpose of this study is to experimentally characterize the friction factor of a colloidal suspension flow in circular and square tubes. The suspension contained silicon dioxide nanoparticles dispersed in distilled water at 9.58% volume concentration. Rheological measurements indicated that the suspension exhibits non-Newtonian behavior, and could be modelled as a power-law generalized Newtonian fluid. The experimental study showed that, with proper characterization of the consistency and flow behavior indices, the suspension flow friction factors in circular and square tubes exhibit similarities with those of Newtonian fluid flow. In the laminar fully-developed flow region, the Poiseuille numbers are similar to those established for Newtonian fluid flow. In the turbulent region, the Dodge and Metzner relation between the friction factor and a generalized Reynolds number can adequately describe the flow. The onsets of transition to turbulent flow for the suspension vary with the shape of the tube and differ from those of Newtonian fluid flow. The deviations suggest that the flow passage shape and the presence of nanoparticles affect the onset of transition to turbulent flow. Supported by North Dakota NASA EPSCoR.

  20. Effect of Torsion on the Friction Factor of Helical Pipe Flow

    NASA Astrophysics Data System (ADS)

    Kumer Datta, Anup; Yanase, Shinichiro; Hayamizu, Yasutaka; Kouchi, Toshinori; Nagata, Yasunori; Yamamoto, Kyoji

    2017-06-01

    Three-dimensional direct numerical simulations of a viscous incompressible fluid flow through a helical pipe with a circular cross section were conducted for three Reynolds numbers, Re (= 80, 300, and 1000), and two nondimensional curvatures, δ (= 0.1 and 0.05), over a wide range of torsion parameters, β (= nondimensional torsion/√{2δ } ), from 0.02 to 2.8. Well-developed axially invariant regions were obtained where the friction factors were calculated, in good agreement with the experimental data obtained by Yamamoto et al. [https://doi.org/10.1016/0169-5983(95)00022-6, Fluid Dyn. Res. 16, 237 (1995)]. It was found that the friction factor sharply increases as β increases from zero, then decreases after taking a maximum, and finally slowly approaches that of a straight pipe when β tends to infinity. It is interesting that a peak of the friction factor exists in the region 0.2 ≤ β ≤ 0.3 for all the Reynolds numbers and curvatures studied in the present paper, which manifests the importance of the torsion parameter in helical pipe flow.

  1. Numerical investigation of fluid mud motion using a three-dimensional hydrodynamic and two-dimensional fluid mud coupling model

    NASA Astrophysics Data System (ADS)

    Yang, Xiaochen; Zhang, Qinghe; Hao, Linnan

    2015-03-01

    A water-fluid mud coupling model is developed based on the unstructured grid finite volume coastal ocean model (FVCOM) to investigate the fluid mud motion. The hydrodynamics and sediment transport of the overlying water column are solved using the original three-dimensional ocean model. A horizontal two-dimensional fluid mud model is integrated into the FVCOM model to simulate the underlying fluid mud flow. The fluid mud interacts with the water column through the sediment flux, current, and shear stress. The friction factor between the fluid mud and the bed, which is traditionally determined empirically, is derived with the assumption that the vertical distribution of shear stress below the yield surface of fluid mud is identical to that of uniform laminar flow of Newtonian fluid in the open channel. The model is validated by experimental data and reasonable agreement is found. Compared with numerical cases with fixed friction factors, the results simulated with the derived friction factor exhibit the best agreement with the experiment, which demonstrates the necessity of the derivation of the friction factor.

  2. MoS2-Filled PEEK Composite as a Self-Lubricating Material for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Theiler, Geraldine; Gradt, Thomas

    2010-01-01

    At BAM, several projects were conducted in the past years dealing with the tribological properties of friction couples at cryogenic temperature and in vacuum environment. Promising candidates for vacuum application are MoS2-filled PEEK/PTFE composites, which showed a friction coefficient as low as 0.03 in high vacuum. To complete the tribological profile of these composites, further tests were performed in ultra-high vacuum (UHV) at room temperature. In this paper, friction and stick slip behavior, as well as outgassing characteristics during the test are presented.

  3. Tidal-flow, circulation, and flushing characteristics of Kings Bay, Citrus County, Florida

    USGS Publications Warehouse

    Hammett, K.M.; Goodwin, C.R.; Sanders, G.L.

    1996-01-01

    Kings Bay is an estuary on the gulf coast of peninsular Florida with a surface area of less than one square mile. It is a unique estuarine system with no significant inflowing rivers or streams. As much as 99 percent of the freshwater entering the bay originates from multiple spring vents at the bottom of the estuary. The circulation and flushing characteristics of Kings Bay were evaluated by applying SIMSYS2D, a two-dimensional numerical model. Field data were used to calibrate and verify the model. Lagrangian particle simulations were used to determine the circulation characteristics for three hydrologic conditions: low inflow, typical inflow, and low inflow with reduced friction from aquatic vegetation. Spring discharge transported the particles from Kings Bay through Crystal River and out of the model domain. Tidal effects added an oscillatory component to the particle paths. The mean particle residence time was 59 hours for low inflow with reduced friction; therefore, particle residence time is affected more by spring discharge than by bottom friction. Circulation patterns were virtually identical for the three simulated hydroloigc conditions. Simulated particles introduced in the southern part of Kings Bay traveled along the eastern side of Buzzard Island before entering Crystal River and existing the model domain. The flushing characteristics of Kings Bay for the three hydrodynamic conditions were determined by simulating the injection of conservative dye constituents. The average concentration of dye initially injected in Kings Bay decreased asymptotically because of spring discharge, and the tide caused some oscillation in the average dye concentration. Ninety-five percent of the injected dye exited Kings Bay and Crystal River with 94 hours for low inflow, 71 hours for typical inflow, and 94 hours for low inflow with reduced bottom friction. Simulation results indicate that all of the open waters of Kings Bay are flushed by the spring discharge. Reduced bottom friction has little effect on flushing.

  4. Study on turbulent flow and heat transfer performance of tubes with internal fins in EGR cooler

    NASA Astrophysics Data System (ADS)

    Liu, Lin; Ling, Xiang; Peng, Hao

    2015-07-01

    In this paper, flow and heat transfer performances of the tubes with internal longitudinal fins in Exhaust Gas Recirculation (EGR ) cooler were investigated by three-dimension computation and experiment . Each test tube was a single-pipe structure, without inner tube. Three-dimension computation was performed to determine the thermal characteristics difference between the two kinds of tubes, that is, the tube with an inner solid staff as a blocked structure and the tube without the blocked structure. The effects of fin width and fin height on heat transfer and flow are examined. For proving the validity of numerical method, the calculated results were compared with corresponding experimental data. The tube-side friction factor and heat transfer coefficient were examined. As a result, the maximum deviations between the numerical results and the experimental data are approximately 5.4 % for friction factor and 8.6 % for heat transfer coefficient, respectively. It is found that two types of internally finned tubes enhance significantly heat transfer. The heat transfer of the tube with blocked structure is better, while the pressure drop of the tube without blocked structure is lower. The comprehensive performance of the unblocked tube is better to applied in EGR cooler.

  5. Effects of Al2O3-Cu/water hybrid nanofluid on heat transfer and flow characteristics in turbulent regime

    NASA Astrophysics Data System (ADS)

    Takabi, Behrouz; Shokouhmand, Hossein

    2015-09-01

    In this paper, forced convection of a turbulent flow of pure water, Al2O3/water nanofluid and Al2O3-Cu/water hybrid nanofluid (a new advanced nanofluid composited of Cu and Al2O3 nanoparticles) through a uniform heated circular tube is numerically analyzed. This paper examines the effects of these three fluids as the working fluids, a wide range of Reynolds number (10 000 ≤ Re ≤ 10 0000) and also the volume concentration (0% ≤ ϕ ≤ 2%) on heat transfer and hydrodynamic performance. The finite volume discretization method is employed to solve the set of the governing equations. The results indicate that employing hybrid nanofluid improves the heat transfer rate with respect to pure water and nanofluid, yet it reveals an adverse effect on friction factor and appears severely outweighed by pressure drop penalty. However, the average increase of the average Nusselt number (when compared to pure water) in Al2O3-Cu/water hybrid nanofluid is 32.07% and the amount for the average increase of friction factor would be 13.76%.

  6. Space Shuttle Main Engine (SSME) LOX turbopump pump-end bearing analysis

    NASA Technical Reports Server (NTRS)

    1986-01-01

    A simulation of the shaft/bearing system of the Space Shuttle Main Engine Liquid Oxygen turbopump was developed. The simulation model allows the thermal and mechanical characteristics to interact as a realistic simulation of the bearing operating characteristics. The model accounts for single and two phase coolant conditions, and includes the heat generation from bearing friction and fluid stirring. Using the simulation model, parametric analyses were performed on the 45 mm pump-end bearings to investigate the sensitivity of bearing characteristics to contact friction, axial preload, coolant flow rate, coolant inlet temperature and quality, heat transfer coefficients, outer race clearance and misalignment, and the effects of thermally isolating the outer race from the isolator.

  7. Tribomaterial factors in space mechanism brake performance

    NASA Technical Reports Server (NTRS)

    Hawthorne, H. M.

    1990-01-01

    The asbestos/phenolic pads of Shuttle Remote Manipulator System (SRMS) brakes are unsuitable for use in long life space mechanisms because their friction decreases on extended sliding in high vacuum. Dehydration of the material and accumulation of wear debris in the conforming interface of this tribosystem induces the permanent friction changes. Other polymer and some ceramic based materials exhibit similar frictional torque behavior due to the development of minimal contact patches by the interfacial debris. In contrast, high friction occurs when other ceramics form many small contacts throughout fine debris beds. Generating this latter interfacial structure during run-in ensures that the in-vacuo friction remains stable thereafter. Such materials with low wear rates are potential candidates for friction elements in SSRMS and similar mechanisms.

  8. Microstructure Characterization of Al-TiC Surface Composite Fabricated by Friction Stir Processing

    NASA Astrophysics Data System (ADS)

    Shiva, Apireddi; Cheepu, Muralimohan; Charan Kantumuchu, Venkata; Kumar, K. Ravi; Venkateswarlu, D.; Srinivas, B.; Jerome, S.

    2018-03-01

    Titanium carbide (TiC) is an exceedingly hard and wear refractory ceramic material. The surface properties of the material are very important and the corrosion, wear and fatigue resistance behaviour determines its ability and applications. It is necessary to modify the surface properties of the materials to enhance their performance. The present work aims on developing a new surface composite using commercially pure aluminum and TiC reinforcement powder with a significant fabrication technique called friction stir processing (FSP). The metal matrix composite of Al/TiC has been developed without any defects formation to investigate the particles distribution in the composite, microstructural changes and mechanical properties of the material. The microstructural observations exhibited that the grain refinement in the nugget compared to the base metal and FSP without TiC particles. The developed composite properties showed substantial improvement in micro-hardness, friction factor, wear resistance and microstructural characteristics in comparison to parent metal. On the other side, the ductility of the composite specimens was diminished over the substrate. The FSPed specimens were characterised using X-ray diffraction technique and revealed that the formation of AlTi compounds and the presence of Ti phases in the matrix. The microstructures of the samples illustrated the uniform distribution of particles in the newly developed metal matrix composite.

  9. Elastic, Frictional, Strength and Dynamic Characteristics of the Bell Shape Shock Absorbers Made of MR Wire Material

    NASA Astrophysics Data System (ADS)

    Lazutkin, G. V.; Davydov, D. P.; Boyarov, K. V.; Volkova, T. V.

    2018-01-01

    The results of the mechanical characteristic experimental studies are presented for the shock absorbers of DKU type with the elastic elements of the bell shape made of MR material and obtained by the cold pressing of mutually crossing wire spirals with their inclusion in the array of reinforcing wire harnesses. The design analysis and the technology of MR production based on the methods of similarity theory and dimensional analysis revealed the dimensionless determined and determining parameters of elastic frictional, dynamic and strength characteristics under the static and dynamic loading of vibration isolators. The main similarity criteria of mechanical characteristics for vibration isolators and their graphical and analytical representation are determined, taking into account the coefficients of these (affine) transformations of the hysteresis loop family field.

  10. The Indeterminate Case of Classical Static Friction When Coupled with Tension

    NASA Astrophysics Data System (ADS)

    Hahn, Kenneth D.; Russell, Jacob M.

    2018-02-01

    It has been noted that the static friction force poses challenges for students and, at times, even their instructors. Unlike the gravitational force, which has a precise and unambiguous magnitude (FG = mg), the magnitude and direction of the static friction force depend on other forces at play. Friction can be understood rather well in terms of complicated atomic-scale interactions between surfaces. Ringlein and Robbins survey aspects of the atomic origins of friction, and Folkerts explores factors that affect the value of static friction. However, what students typically encounter in an introductory course ignores the atomic origins of friction (beyond perhaps a brief overview of the atomic model). The rules of dry friction (i.e., non-lubricated surfaces in contact) taught in introductory physics were originally published in 1699 by Guillaume Amontons. Amontons's first law states that the force of friction is directly proportional to the applied load, i.e., f = μFN, where FN is the normal force and μ is the coefficient of friction. His second law states that the force of friction is independent of the macroscopic area of contact. These laws were verified by Coulomb in 1781.

  11. Heat transfer, friction, and rheological characteristics of antimisting kerosene

    NASA Technical Reports Server (NTRS)

    Matthys, E.; Sarohia, V.

    1985-01-01

    Experiments were performed to determine the skin friction and heat transfer behavior of antimisting kerosene (AMK) in pipe flows. The additive used was FM-9. Based on the results of the experiments, which identify high viscosity and viscoelasticity for AMK, it is recommended that AMK be degraded. Sufficient degradation produces behavior similar to that of jet A.

  12. Assessments of fluid friction factors for use in leak rate calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chivers, T.C.

    1997-04-01

    Leak before Break procedures require estimates of leakage, and these in turn need fluid friction to be assessed. In this paper available data on flow rates through idealized and real crack geometries are reviewed in terms of a single friction factor k It is shown that for {lambda} < 1 flow rates can be bounded using correlations in terms of surface R{sub a} values. For {lambda} > 1 the database is less precise, but {lambda} {approx} 4 is an upper bound, hence in this region flow calculations can be assessed using 1 < {lambda} < 4.

  13. High-temperature Friction and Wear Resistance of Ni-Co-SiC Composite Coatings

    NASA Astrophysics Data System (ADS)

    Guo, Fang; Sun, Wan-chang; Jia, Zong-wei; Liu, Xiao-jia; Dong, Ya-ru

    2018-05-01

    Ni-Co alloy and SiC micro-particles were co-deposited on 45 steel by electrodeposition for high temperature performance. The high temperature tribological characteristics were studied by use of a ball-on-disk method. The micrographs and phase structure of the Ni-Co-SiC composite coatings after high-temperature friction were observed by using a field emission scanning electron microscope(FESEM). The results reveal that the Ni-Co-SiC composite coating presents better wear resistance and lower friction coefficient at high temperature in comparison with that of Ni-Co coating and 45 steel substrate. The embedded SiC particles could strengthen the alloy coating by dispersion strengthening effect and changing the friction mechanism from adhesive wear to abrasive wear.

  14. The effect of oxygen concentration on the boundary lubricating characteristics of an unformulated C-ether to 300 C

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.

    1973-01-01

    The effect of oxygen concentration on the boundary lubricating characteristics of an unformulated C-ether was studied with the use of a ball-on disk sliding-friction apparatus. Results were compared with those obtained with a polyphenyl ether. Experimental conditions included oxygen concentrations ranging from 20 percent (air) to 0.001 percent (nitrogen), a load of 1 kilogram, a sliding speed of 17 meters per minute, and disk temperatures ranging from 20 to 300 C (77 to 572 F). The C-ether yielded better boundary lubricating characteristics than did the polyphenyl ether in air and nitrogen over most of the temperature range. The C-ether exhibited lower wear at high oxygen levels (10 to 20 percent O2) from 25 to 200 C (77 to 392 F) and at low oxygen levels (0.001 to 1.0 percent O2) from 200 to 300 C (392 to 572 F). Friction polymer was observed around the wear scars of most test specimens. Friction polymer generation and its effect on wear are discussed in light of current theories.

  15. Nonlinear friction dynamics on polymer surface under accelerated movement

    NASA Astrophysics Data System (ADS)

    Aita, Yuuki; Asanuma, Natsumi; Takahashi, Akira; Mayama, Hiroyuki; Nonomura, Yoshimune

    2017-04-01

    Nonlinear phenomena on the soft material surface are one of the most exciting topics of chemical physics. However, only a few reports exist on the friction phenomena under accelerated movement, because friction between two solid surfaces is considered a linear phenomenon in many cases. We aim to investigate how nonlinear accelerated motion affects friction on solid surfaces. In the present study, we evaluate the frictional forces between two polytetrafluoroethylene (PTFE) resins using an advanced friction evaluation system. On PTFE surfaces, the normalized delay time δ, which is the time lag in the response of the friction force to the accelerated movement, is observed in the pre-sliding friction process. Under high-velocity conditions, kinetic friction increases with velocity. Based on these experimental results, we propose a two-phase nonlinear model including a pre-sliding process (from the beginning of sliding of a contact probe to the establishment of static friction) and a kinetic friction process. The present model consists of several factors including velocity, acceleration, stiffness, viscosity, and vertical force. The findings reflecting the viscoelastic properties of soft material is useful for various fields such as in the fabrication of clothes, cosmetics, automotive materials, and virtual reality systems as well as for understanding friction phenomena on soft material surfaces.

  16. Systematic evaluation of common lubricants for optimal use in tablet formulation.

    PubMed

    Paul, Shubhajit; Sun, Changquan Calvin

    2018-05-30

    As an essential formulation component for large-scale tablet manufacturing, the lubricant preserves tooling by reducing die-wall friction. Unfortunately, lubrication also often results in adverse effects on tablet characteristics, such as prolonged disintegration, slowed dissolution, and reduced mechanical strength. Therefore, the choice of lubricant and its optimal concentration in a tablet formulation is a critical decision in tablet formulation development to attain low die-wall friction while minimizing negative impact on other tablet properties. Three commercially available tablet lubricants, i.e., magnesium stearate, sodium stearyl fumerate, and stearic acid, were systematically investigated in both plastic and brittle matrices to elucidate their effects on reducing die-wall friction, tablet strength, tablet hardness, tablet friability, and tablet disintegration kinetics. Clear understanding of the lubrication efficiency of commonly used lubricants as well as their impact on tablet characteristics would help future tablet formulation efforts. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. The Effect of a Variable Disc Pad Friction Coefficient for the Mechanical Brake System of a Railway Vehicle

    PubMed Central

    Lee, Nam-Jin; Kang, Chul-Goo

    2015-01-01

    A brake hardware-in-the-loop simulation (HILS) system for a railway vehicle is widely applied to estimate and validate braking performance in research studies and field tests. When we develop a simulation model for a full vehicle system, the characteristics of all components are generally properly simplified based on the understanding of each component’s purpose and interaction with other components. The friction coefficient between the brake disc and the pad used in simulations has been conventionally considered constant, and the effect of a variable friction coefficient is ignored with the assumption that the variability affects the performance of the vehicle braking very little. However, the friction coefficient of a disc pad changes significantly within a range due to environmental conditions, and thus, the friction coefficient can affect the performance of the brakes considerably, especially on the wheel slide. In this paper, we apply a variable friction coefficient and analyzed the effects of the variable friction coefficient on a mechanical brake system of a railway vehicle. We introduce a mathematical formula for the variable friction coefficient in which the variable friction is represented by two variables and five parameters. The proposed formula is applied to real-time simulations using a brake HILS system, and the effectiveness of the formula is verified experimentally by testing the mechanical braking performance of the brake HILS system. PMID:26267883

  18. The Effect of a Variable Disc Pad Friction Coefficient for the Mechanical Brake System of a Railway Vehicle.

    PubMed

    Lee, Nam-Jin; Kang, Chul-Goo

    2015-01-01

    A brake hardware-in-the-loop simulation (HILS) system for a railway vehicle is widely applied to estimate and validate braking performance in research studies and field tests. When we develop a simulation model for a full vehicle system, the characteristics of all components are generally properly simplified based on the understanding of each component's purpose and interaction with other components. The friction coefficient between the brake disc and the pad used in simulations has been conventionally considered constant, and the effect of a variable friction coefficient is ignored with the assumption that the variability affects the performance of the vehicle braking very little. However, the friction coefficient of a disc pad changes significantly within a range due to environmental conditions, and thus, the friction coefficient can affect the performance of the brakes considerably, especially on the wheel slide. In this paper, we apply a variable friction coefficient and analyzed the effects of the variable friction coefficient on a mechanical brake system of a railway vehicle. We introduce a mathematical formula for the variable friction coefficient in which the variable friction is represented by two variables and five parameters. The proposed formula is applied to real-time simulations using a brake HILS system, and the effectiveness of the formula is verified experimentally by testing the mechanical braking performance of the brake HILS system.

  19. Optimal filtering and Bayesian detection for friction-based diagnostics in machines.

    PubMed

    Ray, L R; Townsend, J R; Ramasubramanian, A

    2001-01-01

    Non-model-based diagnostic methods typically rely on measured signals that must be empirically related to process behavior or incipient faults. The difficulty in interpreting a signal that is indirectly related to the fundamental process behavior is significant. This paper presents an integrated non-model and model-based approach to detecting when process behavior varies from a proposed model. The method, which is based on nonlinear filtering combined with maximum likelihood hypothesis testing, is applicable to dynamic systems whose constitutive model is well known, and whose process inputs are poorly known. Here, the method is applied to friction estimation and diagnosis during motion control in a rotating machine. A nonlinear observer estimates friction torque in a machine from shaft angular position measurements and the known input voltage to the motor. The resulting friction torque estimate can be analyzed directly for statistical abnormalities, or it can be directly compared to friction torque outputs of an applicable friction process model in order to diagnose faults or model variations. Nonlinear estimation of friction torque provides a variable on which to apply diagnostic methods that is directly related to model variations or faults. The method is evaluated experimentally by its ability to detect normal load variations in a closed-loop controlled motor driven inertia with bearing friction and an artificially-induced external line contact. Results show an ability to detect statistically significant changes in friction characteristics induced by normal load variations over a wide range of underlying friction behaviors.

  20. Review of modern methods for continuous friction measurement on airfield pavements

    NASA Astrophysics Data System (ADS)

    Iwanowski, Paweł; Blacha, Krzysztof; Wesołowski, Mariusz

    2018-05-01

    The safety of traffic, including both road and air traffic on a ground manoeuvre area, depends on many factors. These mainly include the anti-slip properties of a road or airfield pavement on which the traffic takes place. The basic pavement parameter that determines its characteristics in terms of anti-slip properties is the skid resistance, which constitutes the ratio of the wheel downforce and the friction on the contact surface. There are currently many devices for continuous measurement of the skid resistance (Continuous Friction-Measuring Equipment - CFME) around the world. Most of them, in principle, do not vary much from one another. Most of the devices measure the measuring wheel’s downforce on the pavement and the friction on the wheel-pavement contact surface. The skid resistance is the result of this measurement. The devices vary in many aspects, such as the type and size of the used measuring tyre, pavement-wheel slip or tyre pressure. This does not mean that the results obtained from various devices mbe directly compared. On the other hand, each device allows determining the pavement’s anti-slip conditions in terms of the requirements specified for the given type of devices, thereby enabling pavement classification in these terms. The classification allows for comparing the results obtained from various measuring devices. The paper presents an overview of equipment used in Poland and around the world to measure the skid resistance on airfield pavements. The authors draw attention to the requirements for pavements in terms of their roughness, with division into road and airfield pavements.

  1. In-situ-measurement of the friction coefficient in the deep drawing process

    NASA Astrophysics Data System (ADS)

    Recklin, V.; Dietrich, F.; Groche, P.

    2017-09-01

    The surface texture plays an important role in the tribological behaviour of deep drawn components. It influences both the process of sheet metal forming as well as the properties for post processing, such as paint appearance, bonding, or corrosion tendency. During the forming process, the texture of the sheet metal and therefore its friction coefficient, changes due to process related strains. This contribution focuses on the development and validation of a tool to investigate the friction coefficient of the flange region of deep drawn components. The influence of biaxial strain on the friction coefficient will be quantified through a comparison of the experimental results with a conventional friction test (stand). The presented method will be applied on a cup drawing test, using a segmented and sensor-monitored blankholder. This setup allows the measurement of the friction coefficient in-situ without simplification of the real process. The experiments were carried out using DX 56D+Z as sheet metal and PL61 as lubricant. The results show a characteristic change in the friction coefficient over the displacement of the punch, which is assumed to be caused by strain induced change of the surface texture.

  2. Stiffness of frictional contact of dissimilar elastic solids

    NASA Astrophysics Data System (ADS)

    Lee, Jin Haeng; Gao, Yanfei; Bower, Allan F.; Xu, Haitao; Pharr, George M.

    2018-03-01

    The classic Sneddon relationship between the normal contact stiffness and the contact size is valid for axisymmetric, frictionless contact, in which the two contacting solids are approximated by elastic half-spaces. Deviation from this result critically affects the accuracy of the load and displacement sensing nanoindentation techniques. This paper gives a thorough numerical and analytical investigation of corrections needed to the Sneddon solution when finite Coulomb friction exists between an elastic half-space and a flat-ended rigid punch with circular or noncircular shape. Because of linearity of the Coulomb friction, the correction factor is found to be a function of the friction coefficient, Poisson's ratio, and the contact shape, but independent of the contact size. Two issues are of primary concern in the finite element simulations - adequacy of the mesh near the contact edge and the friction implementation methodology. Although the stick or slip zone sizes are quite different from the penalty or Lagrangian methods, the calculated contact stiffnesses are almost the same and may be considerably larger than those in Sneddon's solution. For circular punch contact, the numerical solutions agree remarkably well with a previous analytical solution. For non-circular punch contact, the results can be represented using the equivalence between the contact problem and bi-material fracture mechanics. The correction factor is found to be a product of that for the circular contact and a multiplicative factor that depends only on the shape of the punch but not on the friction coefficient or Poisson's ratio.

  3. Dynamic Stability of the Rate, State, Temperature, and Pore Pressure Friction Model at a Rock Interface

    NASA Astrophysics Data System (ADS)

    Sinha, Nitish; Singh, Arun K.; Singh, Trilok N.

    2018-05-01

    In this article, we study numerically the dynamic stability of the rate, state, temperature, and pore pressure friction (RSTPF) model at a rock interface using standard spring-mass sliding system. This particular friction model is a basically modified form of the previously studied friction model namely the rate, state, and temperature friction (RSTF). The RSTPF takes into account the role of thermal pressurization including dilatancy and permeability of the pore fluid due to shear heating at the slip interface. The linear stability analysis shows that the critical stiffness, at which the sliding becomes stable to unstable or vice versa, increases with the coefficient of thermal pressurization. Critical stiffness, on the other hand, remains constant for small values of either dilatancy factor or hydraulic diffusivity, but the same decreases as their values are increased further from dilatancy factor (˜ 10^{ - 4} ) and hydraulic diffusivity (˜ 10^{ - 9} {m}2 {s}^{ - 1} ) . Moreover, steady-state friction is independent of the coefficient of thermal pressurization, hydraulic diffusivity, and dilatancy factor. The proposed model is also used for predicting time of failure of a creeping interface of a rock slope under the constant gravitational force. It is observed that time of failure decreases with increase in coefficient of thermal pressurization and hydraulic diffusivity, but the dilatancy factor delays the failure of the rock fault under the condition of heat accumulation at the creeping interface. Moreover, stiffness of the rock-mass also stabilizes the failure process of the interface as the strain energy due to the gravitational force accumulates in the rock-mass before it transfers to the sliding interface. Practical implications of the present study are also discussed.

  4. Influence of tool speeds on dissimilar friction stir spot welding characteristics of bulk metallic glass/Mg alloy

    NASA Astrophysics Data System (ADS)

    Shin, Hyung-Seop; Jung, Yoon-Chul; Lee, Jin-Kyu

    2012-08-01

    A small-scale joining technique of dissimilar friction stir spot welding (FSSW) between bulk metallic glass and Mg alloy sheet has been tried using an apparatus which was devised with a CNC milling machine to give a precise control of tool speeds. The influence of tool speeds on the joining characteristics during FSSW was investigated. As a result, it was found that the rotation speed and plunge speed of a tool during FSSW significantly influenced the welding performance of dissimilar FSSW between bulk metallic glasses and Mg alloy.

  5. Pushability and frictional characteristics of medical instruments.

    PubMed

    Wünsche, P; Werner, C; Bloss, P

    2002-01-01

    A tensile testing equipment is combined with a torque module and a 3D force tranducer to characterize the pushability of catheter systems inside modular vessel phantoms. The modular construction of the phantom allows using two dimensional vessel shapes with different contours. Inside the phantom we put a tube or a guide catheter in which the instruments are pushed or redrawn in the presence of a liquid (water, blood, etc.) at body temperature. During pushing or redrawing we measure axial and rotational values. Additionally, friction forces and coefficients are separately determined by using a special designed friction module. First results are presented and discussed.

  6. Structural Phase Evolution in Ultrasonic-Assisted Friction Stir Welded 2195 Aluminum Alloy Joints

    NASA Astrophysics Data System (ADS)

    Eliseev, A. A.; Fortuna, S. V.; Kalashnikova, T. A.; Chumaevskii, A. V.; Kolubaev, E. A.

    2017-10-01

    The authors examined the structural and phase state of fixed joints produced by method of friction stir welding (FSW) and ultrasonic-assisted friction stir welding (UAFSW) from extruded profile of aluminum alloy AA2195. In order to identify the role of ultrasonic application in the course of welding, such characteristics, as volume fraction and average size of secondary particles are compared in the base material and stir zones of FSW and UAFSW joints. By applying the methods of SEM and TEM analysis, researchers established the complex character of phase transitions as a result of ultrasonic application.

  7. Quasi-dynamic earthquake fault systems with rheological heterogeneity

    NASA Astrophysics Data System (ADS)

    Brietzke, G. B.; Hainzl, S.; Zoeller, G.; Holschneider, M.

    2009-12-01

    Seismic risk and hazard estimates mostly use pure empirical, stochastic models of earthquake fault systems tuned specifically to the vulnerable areas of interest. Although such models allow for reasonable risk estimates, such models cannot allow for physical statements of the described seismicity. In contrary such empirical stochastic models, physics based earthquake fault systems models allow for a physical reasoning and interpretation of the produced seismicity and system dynamics. Recently different fault system earthquake simulators based on frictional stick-slip behavior have been used to study effects of stress heterogeneity, rheological heterogeneity, or geometrical complexity on earthquake occurrence, spatial and temporal clustering of earthquakes, and system dynamics. Here we present a comparison of characteristics of synthetic earthquake catalogs produced by two different formulations of quasi-dynamic fault system earthquake simulators. Both models are based on discretized frictional faults embedded in an elastic half-space. While one (1) is governed by rate- and state-dependent friction with allowing three evolutionary stages of independent fault patches, the other (2) is governed by instantaneous frictional weakening with scheduled (and therefore causal) stress transfer. We analyze spatial and temporal clustering of events and characteristics of system dynamics by means of physical parameters of the two approaches.

  8. Friction characteristics of 20 x 4.4, type 7, aircraft tires constructed with different tread rubber compounds

    NASA Technical Reports Server (NTRS)

    Dreher, R. C.; Yager, T. J.

    1976-01-01

    A test program was conducted at the Langley aircraft landing loads and traction facility to evaluate the friction characteristics of 20 x 4.4, type, aircraft tires constructed with experimental cut-resistant, tread rubber compounds. These compounds consisted of different blends of natural rubber (NR) and an alfin catalyzed styrene-butadiene copolymer rubber (SBR). One tire having a blend of 30 SBR and 70 NR and another having a blend of 60 SBR and 40 NR in the tread were tested together with a standard production tire with no SBR content in the tread rubber. The results of this investigation indicated that the test tires constructed with the special cut-resistant tread rubber compositions did not suffer any significant degradation in tire friction capability when compared with the standard tire. In general, tire friction capability decreased with increasing speed and surface wetness condition. As yaw angle increased, tire braking capability decreased while tire cornering capability increased. Tread-wear data based on number of brake cycles, however, suggested that the tires with alfin SBR blends experienced significantly greater wear than the standard production tire.

  9. The effect of twisted-tape width on heat transfer and pressure drop for fully developed laminar flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakroun, W.M.; Al-Fahed, S.F.

    1996-07-01

    A series of experiments was conducted to study the effect of twisted-tape width on the heat transfer and pressure drop with laminar flow in tubes. Data for three twisted-tape wavelengths, each with five different widths, have been collected with constant wall temperature boundary condition. Correlations for the friction factor and Nusselt number are also available. The correlations predict the experimental data to within 10 to 15 percent for the heat transfer and friction factor, respectively. The presence of the twisted tape has caused the friction factor to increase by a factor of 3 to 7 depending on Reynolds number andmore » the twisted-tape geometry. Heat transfer results have shown an increase of 1.5 to 3 times that of plain tubes depending on the flow conditions and the twisted-tape geometry. The width shows no effect on friction factor and heat transfer in the low range of Reynolds number but has a more pronounced effect on heat transfer at the higher range of Reynolds number. It is recommended to use loose-fit tapes for low Reynolds number flows instead of tight-fit in the design of heat exchangers because they are easier to install and remove for cleaning purposes.« less

  10. Modelling of the frictional behaviour of the snake skin covered by anisotropic surface nanostructures.

    PubMed

    Filippov, Alexander E; Gorb, Stanislav N

    2016-03-23

    Previous experimental data clearly revealed anisotropic friction on the ventral scale surface of snakes. However, it is known that frictional properties of the ventral surface of the snake skin range in a very broad range and the degree of anisotropy ranges as well to a quite strong extent. This might be due to the variety of species studied, diversity of approaches used for the friction characterization, and/or due to the variety of substrates used as a counterpart in the experiments. In order to understand the interactions between the nanostructure arrays of the ventral surface of the snake skin, this study was undertaken, which is aimed at numerical modeling of frictional properties of the structurally anisotropic surfaces in contact with various size of asperities. The model shows that frictional anisotropy appears on the snake skin only on the substrates with a characteristic range of roughness, which is less or comparable with dimensions of the skin microstructure. In other words, scale of the skin relief should reflect an adaptation to the particular range of surfaces asperities of the substrate.

  11. Measurment of threshold friction velocities at potential dust sources in semi-arid regions

    NASA Astrophysics Data System (ADS)

    King, Matthew A.

    The threshold friction velocities of potential dust sources in the US Southwest were measured in the field using a Portable Wind Tunnel, which is based on the Desert Research Institute's Portable In-Situ Wind Erosion Laboratory (PI-SWERL). A mix of both disturbed and undisturbed surfaces were included in this study. It was found that disturbed surfaces, such as those at the Iron King Mine tailings site, which is part of the EPA's Superfund program and contains surface concentrations of arsenic and lead reaching as high as 0.5% (w/w), had lower threshold friction velocities (0.32 m s -1 to 0.40 m s-1) in comparison to those of undisturbed surfaces (0.48 to 0.61 m s-1). Surface characteristics, such as particle size distribution, had effects on the threshold friction velocity (smaller grain sized distributions resulted in lower threshold friction velocities). Overall, the threshold friction velocities of disturbed surfaces were within the range of natural wind conditions, indicating that surfaces disturbed by human activity are more prone to causing windblown dust.

  12. MRI of lower extremity impingement and friction syndromes in children

    PubMed Central

    Aydıngöz, Üstün; Özdemir, Zeynep Maraş; Güneş, Altan; Ergen, Fatma Bilge

    2016-01-01

    Although generally more common in adults, lower extremity impingement and friction syndromes are also observed in the pediatric age group. Encompassing femoroacetabular impingement, iliopsoas impingement, subspine impingement, and ischiofemoral impingement around the hip; patellar tendon–lateral femoral condyle friction syndrome; iliotibial band friction syndrome; and medial synovial plica syndrome in the knee as well as talocalcaneal impingement on the hindfoot, these syndromes frequently cause pain and may mimic other, and occasionally more ominous, conditions in children. Magnetic resonance imaging (MRI) plays a key role in the diagnosis of musculoskeletal impingement and friction syndromes. Iliopsoas, subspine, and ischiofemoral impingements have been recently described, while some features of femoroacetabular and talocalcaneal impingements have recently gained increased relevance in the pediatric population. Fellowship-trained pediatric radiologists and radiologists with imaging workloads of exclusively or overwhelmingly pediatric patients (particularly those without a structured musculoskeletal imaging program as part of their imaging training) specifically need to be aware of these rare syndromes that mostly have quite characteristic imaging findings. This review highlights MRI features of lower extremity impingement and friction syndromes in children and provides updated pertinent pathophysiologic and clinical data. PMID:27538047

  13. Modelling of the frictional behaviour of the snake skin covered by anisotropic surface nanostructures

    PubMed Central

    Filippov, Alexander E.; Gorb, Stanislav N.

    2016-01-01

    Previous experimental data clearly revealed anisotropic friction on the ventral scale surface of snakes. However, it is known that frictional properties of the ventral surface of the snake skin range in a very broad range and the degree of anisotropy ranges as well to a quite strong extent. This might be due to the variety of species studied, diversity of approaches used for the friction characterization, and/or due to the variety of substrates used as a counterpart in the experiments. In order to understand the interactions between the nanostructure arrays of the ventral surface of the snake skin, this study was undertaken, which is aimed at numerical modeling of frictional properties of the structurally anisotropic surfaces in contact with various size of asperities. The model shows that frictional anisotropy appears on the snake skin only on the substrates with a characteristic range of roughness, which is less or comparable with dimensions of the skin microstructure. In other words, scale of the skin relief should reflect an adaptation to the particular range of surfaces asperities of the substrate. PMID:27005001

  14. Modelling of the frictional behaviour of the snake skin covered by anisotropic surface nanostructures

    NASA Astrophysics Data System (ADS)

    Filippov, Alexander E.; Gorb, Stanislav N.

    2016-03-01

    Previous experimental data clearly revealed anisotropic friction on the ventral scale surface of snakes. However, it is known that frictional properties of the ventral surface of the snake skin range in a very broad range and the degree of anisotropy ranges as well to a quite strong extent. This might be due to the variety of species studied, diversity of approaches used for the friction characterization, and/or due to the variety of substrates used as a counterpart in the experiments. In order to understand the interactions between the nanostructure arrays of the ventral surface of the snake skin, this study was undertaken, which is aimed at numerical modeling of frictional properties of the structurally anisotropic surfaces in contact with various size of asperities. The model shows that frictional anisotropy appears on the snake skin only on the substrates with a characteristic range of roughness, which is less or comparable with dimensions of the skin microstructure. In other words, scale of the skin relief should reflect an adaptation to the particular range of surfaces asperities of the substrate.

  15. Experimental investigation on heat transfer and frictional characteristics of vertical upward rifled tube in supercritical CFB boiler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Dong; Pan, Jie; Zhu, Xiaojing

    2011-02-15

    Water wall design is a key issue for supercritical Circulating Fluidized Bed (CFB) boiler. On account of the good heat transfer performance, rifled tube is applied in the water wall design of a 600 MW supercritical CFB boiler in China. In order to investigate the heat transfer and frictional characteristics of the rifled tube with vertical upward flow, an in-depth experiment was conducted in the range of pressure from 12 to 30 MPa, mass flux from 230 to 1200 kg/(m{sup 2} s), and inner wall heat flux from 130 to 720 kW/m{sup 2}. The wall temperature distribution and pressure dropmore » in the rifled tube were obtained in the experiment. The normal, enhanced and deteriorated heat transfer characteristics were also captured. In this paper, the effects of pressure, inner wall heat flux and mass flux on heat transfer characteristics are analyzed, the heat transfer mechanism and the frictional resistance performance are discussed, and the corresponding empirical correlations are presented. The experimental results show that the rifled tube can effectively prevent the occurrence of departure from nucleate boiling (DNB) and keep the tube wall temperature in a permissible range under the operating condition of supercritical CFB boiler. (author)« less

  16. A Clinico-Epidemiological Study of Macular Amyloidosis from North India

    PubMed Central

    Bandhlish, Anshu; Aggarwal, Asok; Koranne, Ravinder V

    2012-01-01

    Background: Macular amyloidosis (MA) is the most subtle form of cutaneous amyloidosis, characterized by brownish macules in a rippled pattern, distributed predominantly over the trunk and extremities. MA has a high incidence in Asia, Middle East, and South America. Its etiology has yet to be fully elucidated though various risk factors such as sex, race, genetic predisposition, exposure to sunlight, atopy and friction and even auto-immunity have been implicated. Aim: This study attempts to evaluate the epidemiology and risk factors in the etiology of MA. Materials and: Methods: Clinical history and risk factors of 50 patients with a clinical diagnosis of MA were evaluated. Skin biopsies of 26 randomly selected patients were studied for the deposition of amyloid. Results: We observed a characteristic female preponderance (88%) with a female to male ratio of 7.3:1, with a mean age of onset of MA being earlier in females. Upper back was involved in 80% of patients and sun-exposed sites were involved in 64% cases. Incidence of MA was high in patients with skin phototype III. Role of friction was inconclusive Conclusion: Lack of clear-cut etiological factors makes it difficult to suggest a reasonable therapeutic modality. Histopathology is not specific and amyloid deposits can be demonstrated only in a small number of patients. For want of the requisite information on the natural course and definitive etiology, the disease MA remains an enigma and a source of concern for the suffering patients. PMID:22837559

  17. Conjugate gradient based projection - A new explicit methodology for frictional contact

    NASA Technical Reports Server (NTRS)

    Tamma, Kumar K.; Li, Maocheng; Sha, Desong

    1993-01-01

    With special attention towards the applicability to parallel computation or vectorization, a new and effective explicit approach for linear complementary formulations involving a conjugate gradient based projection methodology is proposed in this study for contact problems with Coulomb friction. The overall objectives are focussed towards providing an explicit methodology of computation for the complete contact problem with friction. In this regard, the primary idea for solving the linear complementary formulations stems from an established search direction which is projected to a feasible region determined by the non-negative constraint condition; this direction is then applied to the Fletcher-Reeves conjugate gradient method resulting in a powerful explicit methodology which possesses high accuracy, excellent convergence characteristics, fast computational speed and is relatively simple to implement for contact problems involving Coulomb friction.

  18. Turbulent Plume Dispersion over Two-dimensional Idealized Urban Street Canyons

    NASA Astrophysics Data System (ADS)

    Wong, C. C. C.; Liu, C. H.

    2012-04-01

    Human activities are the primary pollutant sources which degrade the living quality in the current era of dense and compact cities. A simple and reasonably accurate pollutant dispersion model is helpful to reduce pollutant concentrations in city or neighborhood scales by refining architectural design or urban planning. The conventional method to estimate the pollutant concentration from point/line sources is the Gaussian plume model using empirical dispersion coefficients. Its accuracy is pretty well for applying to rural areas. However, the dispersion coefficients only account for the atmospheric stability and streamwise distance that often overlook the roughness of urban surfaces. Large-scale buildings erected in urban areas significantly modify the surface roughness that in turn affects the pollutant transport in the urban canopy layer (UCL). We hypothesize that the aerodynamic resistance is another factor governing the dispersion coefficient in the UCL. This study is thus conceived to study the effects of urban roughness on pollutant dispersion coefficients and the plume behaviors. Large-eddy simulations (LESs) are carried out to examine the plume dispersion from a ground-level pollutant source over idealized 2D street canyons in neutral stratification. Computations with a wide range of aspect ratios (ARs), including skimming flow to isolated flow regimes, are conducted. The vertical profiles of pollutant distribution for different values of friction factor are compared that all reach a self-similar Gaussian shape. Preliminary results show that the pollutant dispersion is closely related to the friction factor. For relatively small roughness, the factors of dispersion coefficient vary linearly with the friction factor until the roughness is over a certain level. When the friction factor is large, its effect on the dispersion coefficient is less significant. Since the linear region covers at least one-third of the full range of friction factor in our empirical analysis, urban roughness is a major factor for dispersion coefficient. The downstream air quality could then be a function of both atmospheric stability and urban roughness.

  19. Analysis of friction between articular cartilage and polyvinyl alcohol hydrogel artificial cartilage.

    PubMed

    Li, Feng; Wang, Anmin; Wang, Chengtao

    2016-05-01

    Many biomaterials are being used to repair damaged articular cartilage. In particular, poly vinyl alcohol hydrogel has similar mechanical properties to natural cartilage under compressive and shearing loading. Here, three-factor and two-level friction experiments and long-term tests were conducted to better evaluate its tribological properties. The friction coefficient between articular cartilage and the poly vinyl alcohol hydrogel depended primarily on the three factors of load, speed, and lubrication. When the speed increased from 10 to 20 mm/s under a load of 10 N, the friction coefficient increased from 0.12 to 0.147. When the lubricant was changed from Ringer's solution to a hyaluronic acid solution, the friction coefficient decreased to 0.084 with loads as high as 22 N. The poly vinyl alcohol hydrogel was severely damaged and lost its top surface layers, which were transferred to the articular cartilage surface. Wear was observed in the surface morphologies, which indicated the occurrence of surface adhesion of bovine cartilage. Surface fatigue and adhesive wear was the dominant wear mechanism.

  20. LOW-ENGINE-FRICTION TECHNOLOGY FOR ADVANCED NATURAL-GAS RECIPROCATING ENGINES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Victor Wong; Tian Tian; Luke Moughon

    2005-09-30

    This program aims at improving the efficiency of advanced natural-gas reciprocating engines (ANGRE) by reducing piston and piston ring assembly friction without major adverse effects on engine performance, such as increased oil consumption and wear. An iterative process of simulation, experimentation and analysis is being followed towards achieving the goal of demonstrating a complete optimized low-friction engine system. To date, a detailed set of piston and piston-ring dynamic and friction models have been developed and applied that illustrate the fundamental relationships between design parameters and friction losses. Low friction ring designs have already been recommended in a previous phase, withmore » full-scale engine validation partially completed. Current accomplishments include the addition of several additional power cylinder design areas to the overall system analysis. These include analyses of lubricant and cylinder surface finish and a parametric study of piston design. The Waukesha engine was found to be already well optimized in the areas of lubricant, surface skewness and honing cross-hatch angle, where friction reductions of 12% for lubricant, and 5% for surface characteristics, are projected. For the piston, a friction reduction of up to 50% may be possible by controlling waviness alone, while additional friction reductions are expected when other parameters are optimized. A total power cylinder friction reduction of 30-50% is expected, translating to an engine efficiency increase of two percentage points from its current baseline towards the goal of 50% efficiency. Key elements of the continuing work include further analysis and optimization of the engine piston design, in-engine testing of recommended lubricant and surface designs, design iteration and optimization of previously recommended technologies, and full-engine testing of a complete, optimized, low-friction power cylinder system.« less

  1. Analog-Computer Investigation of Effects of Friction and Preload on the Dynamic Longitudinal Characteristics of a Pilot-Airplane Combination

    NASA Technical Reports Server (NTRS)

    Crane, Harold L.

    1961-01-01

    With an electric analog computer, an investigation has been made of the effects of control frictions and preloads on the transient longitudinal response of a fighter airplane during abrupt small attitude corrections. The simulation included the airplane dynamics, powered control system, feel system, and a simple linearized pseudopilot. Control frictions at the stick pivot and at the servo valve as well as preloads of the stick and valve were considered individually and in combinations. It is believed that the results which are presented in the form of time histories and vector diagrams present a more detailed illustration of the effects of stray forces and compensating forces in the longitudinal control system than has previously been available. Consistent with the results of previous studies, the present results show that any of these four friction and preload forces caused some deterioration of the response. However, even a small amount of valve friction caused an oscillatory pitching response during which the phasing of the valve friction was such that it caused energy to be fed into the pitching oscillation of the air-plane. Of the other friction and preload forces which were considered, it was found that stick preload was close to 180 deg. out of phase with valve friction and thus could compensate in large measure for valve friction as long as the cycling of the stick encompassed the trim point. Either stick friction or valve preload provided a smaller stabilizing effect primarily through a reduction in the amplitude of the resultant force vector acting on the control system. Some data were obtained on the effects of friction when the damping or inertia of the control system or the pilot lag was varied.

  2. Analog-computer investigation of effects of friction and preload on the dynamic longitudinal characteristics of a pilot-airplane combination

    NASA Technical Reports Server (NTRS)

    Crane, Harold L

    1957-01-01

    With an electric analog computer, an investigation has been made of the effects of control frictions and preloads on the transient longitudinal response of a fighter airplane during abrupt small attitude corrections. The simulation included the airplane dynamics, powered control system, feel system, and a simple linearized pseudopilot. Control frictions at the stick pivot and at the servo valve as well as preloads of the stick and valve were considered individually and in combinations. It is believed that the results which are presented in the form of time histories and vector diagrams present a more detailed illustration of the effects of stray forces and compensating forces in the longitudinal control system than has previously been available. Consistent with the results of previous studies, the present results show that any of thesefour friction and preload forces caused some deterioration of the response. However, even a small amount of valve friction caused an oscillatory pitching response during which the phasing of the valve friction was such that it caused energy to be fed into the pitching oscillation of the airplane. Of the other friction and preload forces which were considered, it was found that stick preload was close to 180 degrees out of phase with valve friction and thus could compensate in large measure for valve friction as long as the cycling of the stick encompassed the trim point. Either stick friction or valve preload provided a smaller stabilizing effect primarily through a reduction in the amplitude of the resultant force vector acting on the control system. Some data were obtained on the effects of friction when the damping or inertia of the control system or the pilot lag was varied.

  3. Effect of the coefficient of friction and tightening speed on the preload induced at the dental implant complex with the finite element method.

    PubMed

    Bulaqi, Haddad Arabi; Mousavi Mashhadi, Mahmoud; Geramipanah, Farideh; Safari, Hamed; Paknejad, Mojgan

    2015-05-01

    To prevent screw loosening, a clear understanding of the factors influencing secure preload is necessary. The purpose of this study was to investigate the effect of coefficient of friction and tightening speed on screw tightening based on energy distribution method with exact geometric modeling and finite element analysis. To simulate the proper boundary conditions of the screw tightening process, the supporting bone of an implant was considered. The exact geometry of the implant complex, including the Straumann dental implant, direct crown attachment, and abutment screw were modeled with Solidworks software. Abutment screw/implant and implant/bone interfaces were designed as spiral thread helixes. The screw-tightening process was simulated with Abaqus software, and to achieve the target torque, an angular displacement was applied to the abutment screw head at different coefficients of friction and tightening speeds. The values of torque, preload, energy distribution, elastic energy, and efficiency were obtained at the target torque of 35 Ncm. Additionally, the torque distribution ratio and preload simulated values were compared to theoretically predicted values. Upon reducing the coefficient of friction and enhancing the tightening speed, the angle of turn increased at the target torque. As the angle of turn increased, the elastic energy and preload also increased. Additionally, by increasing the coefficient of friction, the frictional dissipation energy increased but the efficiency decreased, whereas the increase in tightening speed insignificantly affected efficiency. The results of this study indicate that the coefficient of friction is the most influential factor on efficiency. Increasing the tightening speed lowered the response rate to the frictional resistance, thus diminishing the coefficient of friction and slightly increasing the preload. Increasing the tightening speed has the same result as reducing the coefficient of friction. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  4. Tribological Properties of CrN Coating Under Lubrication Conditions

    NASA Astrophysics Data System (ADS)

    Lubas, Janusz

    2012-08-01

    The paper presents research results of the influence of CrN coating on the friction parameters in friction pairs under lubricated friction conditions. The formed CrN homogeneous coating and CrN-steel 46Cr2 "ring" structure coating was matched under test conditions with a counterpart made from SAE-48 and SAE-783 bearing alloys. Tested sliding pairs were lubricated with 5W/40 Lotos synthetic engine oil. The tribological test was conducted on block-on-ring tester. The applied modification technologies of the surface layer of steel allowed for obtaining construction materials with pre-determined tribological characteristics required for the elements of friction pairs in lubricated contact. The results of the tests proved the possibility of implementing CrN coating in friction pairs, which work under mixed friction conditions. The results showed differences in the wear of bearing alloy, as the effect of the interaction between the co-operating surface layers and of the physiochemical changes of their surfaces, induced by external forces. The smallest wear of the bearing alloy occurs during the cooperation with the nitrided layer, whereas the largest wear occurs during the cooperation with the homogenous CrN coating. The CrN coating-46Cr2 steel "ring structure" decreases friction resistance during the start-up of the sliding pair, as well as lowers the level of the friction force and temperature in the friction area during co-operation with SAE-783 bearing alloys.

  5. Effect of gas release in hot molding on flexural strength of composite friction brake

    NASA Astrophysics Data System (ADS)

    Rusdja, Andy Permana; Surojo, Eko; Muhayat, Nurul; Raharjo, Wijang Wisnu

    2018-02-01

    Composite friction brake is a vital part of braking system which serves to reduce the speed of vehicle. To fulfill the requirement of brake performance, composite friction brake must have friction and mechanical characteristic as required. The characteristics of composite friction brake are affected by brake material formulation and manufacturing parameter. In the beginning of hot molding, intermittent hot pressing was carried out to release the gases that consist of ammonia gas and water vapor. In composite friction brake, phenolic resin containing hexamethylenetetramine (HMTA) is often used as a binder. During hot molding, the reaction of phenolic resin and HMTA forms ammonia gas. Hot molding also generates water vapor because raw materials absorb moisture from environment when they are placed in storage. The gas release in hot molding is supposed affecting mechanical properties because it avoid entrapped gas in composite, so that this research investigated effect of gas release on flexural strength. Manufacturing of composite specimen was carried out as follow: mixing of raw materials, cold molding, and hot molding. In this research, duration of intermittent hot pressing and number of gas release were varied. The flexural strength of specimen was measured using three point bending test. The results showed that flexural strength specimens that were manufactured without gas release, using 4 times gas release with intermittent hot pressing for 5 and 10 seconds were not remarkably different. Conversely, hot molding using 4 times gas release with intermittent hot pressing for 15 seconds decreased flexural strength of composite. Hot molding using 2, 4, and 8 times gas release with intermittent hot pressing for 10 seconds also had no effect on increasing flexural strength. Increasing of flexural strength of composite was obtained only by using 6 times gas release with intermittent hot pressing for 10 seconds.

  6. Fundamental structural characteristics of planar granular assemblies: Self-organization and scaling away friction and initial state.

    PubMed

    Matsushima, Takashi; Blumenfeld, Raphael

    2017-03-01

    The microstructural organization of a granular system is the most important determinant of its macroscopic behavior. Here we identify the fundamental factors that determine the statistics of such microstructures, using numerical experiments to gain a general understanding. The experiments consist of preparing and compacting isotropically two-dimensional granular assemblies of polydisperse frictional disks and analyzing the emergent statistical properties of quadrons-the basic structural elements of granular solids. The focus on quadrons is because the statistics of their volumes have been found to display intriguing universal-like features [T. Matsushima and R. Blumenfeld, Phys. Rev. Lett. 112, 098003 (2014)PRLTAO0031-900710.1103/PhysRevLett.112.098003]. The dependence of the structures and of the packing fraction on the intergranular friction and the initial state is analyzed, and a number of significant results are found. (i) An analytical formula is derived for the mean quadron volume in terms of three macroscopic quantities: the mean coordination number, the packing fraction, and the rattlers fraction. (ii) We derive a unique, initial-state-independent relation between the mean coordination number and the rattler-free packing fraction. The relation is supported numerically for a range of different systems. (iii) We collapse the quadron volume distributions from all systems onto one curve, and we verify that they all have an exponential tail. (iv) The nature of the quadron volume distribution is investigated by decomposition into conditional distributions of volumes given the cell order, and we find that each of these also collapses onto a single curve. (v) We find that the mean quadron volume decreases with increasing intergranular friction coefficients, an effect that is prominent in high-order cells. We argue that this phenomenon is due to an increased probability of stable irregularly shaped cells, and we test this using a herewith developed free cell analytical model. We conclude that, in principle, the microstructural characteristics are governed mainly by the packing procedure, while the effects of intergranular friction and initial states are details that can be scaled away. However, mechanical stability constraints suppress slightly the occurrence of small quadron volumes in cells of order ≥6, and the magnitude of this effect does depend on friction. We quantify in detail this dependence and the deviation it causes from an exact collapse for these cells. (vi) We argue that our results support strongly the view that ensemble granular statistical mechanics does not satisfy the uniform measure assumption of conventional statistical mechanics. Results (i)-(iv) have been reported in the aforementioned reference, and they are reviewed and elaborated on here.

  7. Rotary Engine Friction Test Rig Development Report

    DTIC Science & Technology

    2011-12-01

    fundamental research is needed to understand the friction characteristics of the rotary engine that lead to accelerated wear and tear on the seals...that includes a turbocharger . Once the original GT-Suite model is validated, the turbocharger model will be more accurate. This validation will...prepare for turbocharger and fuel-injector testing, which will lead to further development and calibration of the model. Further details are beyond the

  8. Model A: High-Temperature Tribometer

    DTIC Science & Technology

    1992-02-01

    spring loaded collet which grips the pin. In previous machines Inconel 625 collets and sleeves with 450 contact angles were used without collet...Triboeter, high temperature, friction, wear 11 1 08__ 19 ABSTRACT (Continue on revere if necewry and identify by blck number) A high temperature...tribometer has been specifically designed and fabricated to accurately measure, in real time, friction and wear characteristics of materials at temperatures

  9. Analysis of the characteristics of slot design affecting resistance to sliding during active archwire configurations

    PubMed Central

    2013-01-01

    Background During orthodontic treatment, a low resistance to slide (RS) is desirable when sliding mechanics are used. Many studies showed that several variables affect the RS at the bracket-wire interface; among these, the design of the bracket slot has not been deeply investigated yet. This study aimed to clarify the effect of different slot designs on the RS expressed by five types of low-friction brackets in vertical and horizontal active configurations of the wire. Methods Five low-friction brackets (Damon SL II, Ormco, Orange, CA, USA; In-Ovation, GAC International, Bohemia, NY, USA; Quick, Forestadent, Pforzheim, Germany; Time 2, AO, Sheboygan, WI, USA; Synergy, RMO, Denver, CO, USA) coupled with an 0.014-in NiTi thermal wire (Therma-Lite, AO) were tested in two three-bracket experimental models simulating vertical and horizontal bracket displacements. A custom-made machine was used to measure frictional resistance with tests repeated on ten occasions for each bracket-wire combination. Design characteristics such as the mesio-distal slot width, slot depth, and presence of chamfered edges at the extremities of the slot were evaluated on SEM images (SUPRA, Carl Zeiss, Oberkochen, Germany) and analyzed in relation to the data of RS recorded. Results Time 2 was found to show the higher frictional forces (1.50 and 1.35 N) in both experimental models (p < 0.05), while Quick and Synergy brackets showed the lower frictional values in the vertical (0.66 N) and in the horizontal (0.68 N) bracket displacements, respectively. With vertically displaced brackets, the increased mesio-distal slot width and the presence of clear angle at mesial and distal slot edges increase the values of RS. With brackets horizontally displaced, the RS expressed by the wire is influenced simultaneously by the depth of the slot, the mesio-distal slot width, and the presence of clear angle at the extremities of the slot base, the clip, or the slide. Conclusion In order to select the proper low-friction bracket system, clinicians should consider specific characteristics of slot design apart from the wire engaging method. PMID:24325837

  10. Experimental study of the oscillating flow characteristics for a regenerator in a pulse tube cryocooler

    NASA Astrophysics Data System (ADS)

    Ju, Yonglin; Jiang, Yan; Zhou, Yuan

    A dynamic experimental apparatus was designed and constructed to investigate oscillating flow characteristics in a regenerator subjected to a periodically reversing flow established by means of a self-made linear compressor. Detailed experimental data of oscillating pressure drops and phase shift characteristics for regenerators in a high frequency pulse tube cryocooler with an operating frequency of 50 Hz were given. The correlation equations for the maximum and cycle-averaged friction factors in terms of Reynolds numbers and dimensionless distance X were obtained. It was found that the value of the cycle-averaged pressure drop in the oscillating flow across the regenerator is two to three times higher than that of a steady flow at the same Reynolds numbers based on the cross-sectional mean velocity. In addition, the relationship of the phase shifts between the velocity and pressure wave is also discussed.

  11. Numerical study of the influence of geometrical characteristics of a vertical helical coil on a bubbly flow

    NASA Astrophysics Data System (ADS)

    Saffari, H.; Moosavi, R.

    2014-11-01

    In this article, turbulent single-phase and two-phase (air-water) bubbly fluid flows in a vertical helical coil are analyzed by using computational fluid dynamics (CFD). The effects of the pipe diameter, coil diameter, coil pitch, Reynolds number, and void fraction on the pressure loss, friction coefficient, and flow characteristics are investigated. The Eulerian-Eulerian model is used in this work to simulate the two-phase fluid flow. Three-dimensional governing equations of continuity, momentum, and energy are solved by using the finite volume method. The k- ɛ turbulence model is used to calculate turbulence fluctuations. The SIMPLE algorithm is employed to solve the velocity and pressure fields. Due to the effect of a secondary force in helical pipes, the friction coefficient is found to be higher in helical pipes than in straight pipes. The friction coefficient increases with an increase in the curvature, pipe diameter, and coil pitch and decreases with an increase in the coil diameter and void fraction. The close correlation between the numerical results obtained in this study and the numerical and empirical results of other researchers confirm the accuracy of the applied method. For void fractions up to 0.1, the numerical results indicate that the friction coefficient increases with increasing the pipe diameter and keeping the coil pitch and diameter constant and decreases with increasing the coil diameter. Finally, with an increase in the Reynolds number, the friction coefficient decreases, while the void fraction increases.

  12. An automated high throughput tribometer for adhesion, wear, and friction measurements

    NASA Astrophysics Data System (ADS)

    Kalihari, Vivek; Timpe, Shannon J.; McCarty, Lyle; Ninke, Matthew; Whitehead, Jim

    2013-03-01

    Understanding the origin and correlation of different surface properties under a multitude of operating conditions is critical in tribology. Diverse tribological properties and a lack of a single instrument to measure all make it difficult to compare and correlate properties, particularly in light of the wide range of interfaces commonly investigated. In the current work, a novel automated tribometer has been designed and validated, providing a unique experimental platform capable of high throughput adhesion, wear, kinetic friction, and static friction measurements. The innovative design aspects are discussed that allow for a variety of probes, sample surfaces, and testing conditions. Critical components of the instrument and their design criteria are described along with examples of data collection schemes. A case study is presented with multiple surface measurements performed on a set of characteristic substrates. Adhesion, wear, kinetic friction, and static friction are analyzed and compared across surfaces, highlighting the comprehensive nature of the surface data that can be generated using the automated high throughput tribometer.

  13. Determination of the frictional coefficient of the implant-antler interface: experimental approach.

    PubMed

    Hasan, Istabrak; Keilig, Ludger; Staat, Manfred; Wahl, Gerhard; Bourauel, Christoph

    2012-10-01

    The similar bone structure of reindeer antler to human bone permits studying the osseointegration of dental implants in the jawbone. As the friction is one of the major factors that have a significant influence on the initial stability of immediately loaded dental implants, it is essential to define the frictional coefficient of the implant-antler interface. In this study, the kinetic frictional forces at the implant-antler interface were measured experimentally using an optomechanical setup and a stepping motor controller under different axial loads and sliding velocities. The corresponding mean values of the static and kinetic frictional coefficients were within the range of 0.5-0.7 and 0.3-0.5, respectively. An increase in the frictional forces with increasing applied axial loads was registered. The measurements showed an evidence of a decrease in the magnitude of the frictional coefficient with increasing sliding velocity. The results of this study provide a considerable assessment to clarify the suitable frictional coefficient to be used in the finite element contact analysis of antler specimens.

  14. Identification and compensation of friction for a novel two-axis differential micro-feed system

    NASA Astrophysics Data System (ADS)

    Du, Fuxin; Zhang, Mingyang; Wang, Zhaoguo; Yu, Chen; Feng, Xianying; Li, Peigang

    2018-06-01

    Non-linear friction in a conventional drive feed system (CDFS) feeding at low speed is one of the main factors that lead to the complexity of the feed drive. The CDFS will inevitably enter or approach a non-linear creeping work area at extremely low speed. A novel two-axis differential micro-feed system (TDMS) is developed in this paper to overcome the accuracy limitation of CDFS. A dynamic model of TDMS is first established. Then, a novel all-component friction parameter identification method (ACFPIM) using a genetic algorithm (GA) to identify the friction parameters of a TDMS is introduced. The friction parameters of the ball screw and linear motion guides are identified independently using the method, assuring the accurate modelling of friction force at all components. A proportional-derivate feed drive position controller with an observer-based friction compensator is implemented to achieve an accurate trajectory tracking performance. Finally, comparative experiments demonstrate the effectiveness of the TDMS in inhibiting the disadvantageous influence of non-linear friction and the validity of the proposed identification method for TDMS.

  15. Friction measurement in a hip wear simulator.

    PubMed

    Saikko, Vesa

    2016-05-01

    A torque measurement system was added to a widely used hip wear simulator, the biaxial rocking motion device. With the rotary transducer, the frictional torque about the drive axis of the biaxial rocking motion mechanism was measured. The principle of measuring the torque about the vertical axis above the prosthetic joint, used earlier in commercial biaxial rocking motion simulators, was shown to sense only a minor part of the total frictional torque. With the present method, the total frictional torque of the prosthetic hip was measured. This was shown to consist of the torques about the vertical axis above the joint and about the leaning axis. Femoral heads made from different materials were run against conventional and crosslinked polyethylene acetabular cups in serum lubrication. Regarding the femoral head material and the type of polyethylene, there were no categorical differences in frictional torque with the exception of zirconia heads, with which the lowest values were obtained. Diamond-like carbon coating of the CoCr femoral head did not reduce friction. The friction factor was found to always decrease with increasing load. High wear could increase the frictional torque by 75%. With the present system, friction can be continuously recorded during long wear tests, so the effect of wear on friction with different prosthetic hips can be evaluated. © IMechE 2016.

  16. Effect of design factors on surface temperature and wear in disk brakes

    NASA Technical Reports Server (NTRS)

    Santini, J. J.; Kennedy, F. E.; Ling, F. F.

    1976-01-01

    The temperatures, friction, wear and contact conditions that occur in high energy disk brakes are studied. Surface and near surface temperatures were monitored at various locations in a caliper disk brake during drag type testing, with friction coefficient and wear rates also being determined. The recorded transient temperature distributions in the friction pads and infrared photographs of the rotor disk surface both showed that contact at the friction surface was not uniform, with contact areas constantly shifting due to nonuniform thermal expansion and wear. The effect of external cooling and of design modifications on friction, wear and temperatures was also investigated. It was found that significant decreases in surface temperature and in wear rate can be achieved without a reduction in friction either by slotting the contacting face of the brake pad or by modifying the design of the pad support to improve pad compliance. Both design changes result in more uniform contact conditions on the friction surface.

  17. Coincidental match of numerical simulation and physics

    NASA Astrophysics Data System (ADS)

    Pierre, B.; Gudmundsson, J. S.

    2010-08-01

    Consequences of rapid pressure transients in pipelines range from increased fatigue to leakages and to complete ruptures of pipeline. Therefore, accurate predictions of rapid pressure transients in pipelines using numerical simulations are critical. State of the art modelling of pressure transient in general, and water hammer in particular include unsteady friction in addition to the steady frictional pressure drop, and numerical simulations rely on the method of characteristics. Comparison of rapid pressure transient calculations by the method of characteristics and a selected high resolution finite volume method highlights issues related to modelling of pressure waves and illustrates that matches between numerical simulations and physics are purely coincidental.

  18. The influence of micro-scale dimples and nano-sized grains on the fretting characteristics generated by laser pulses.

    PubMed

    Amanov, Auezhan; Watabe, Tsukasa; Sasaki, Shinya

    2013-12-01

    The tribological characteristics of micro-scale dimpled Cu-based alloy specimen generated using a laser surface texturing (LST) were assessed and compared with that of the untextured specimen. The objective of this study is to improve the tribological characteristics of internal combustion engine (ICE) bearings and bushings made of Cu-based alloy by generating micro-scale dimples using an LST. Fretting wear tests were performed by sliding a hardened SAE52100 steel ball against the untextured and LSTed specimens at a normal load of 5 N under oil-lubricated conditions. The friction force and relative movement between the specimens were measured simultaneously during the fretting tests. The test results showed that the LSTed specimens showed a reduction in friction coefficient and an enhancement in fretting wear resistance compared to that of the untextured specimen. The friction coefficient and fretting wear volume increased with increasing frequency for both untextured and LSTed specimens. The improved tribological properties of the LSTed specimen may be attributed to the micro-scale dimples, refined grain size and high lattice strain. In addition, a model for the nanocrystallization mechanism of the LSTed specimen was proposed.

  19. Performance evaluation of traveling wave ultrasonic motor based on a model with visco-elastic friction layer on stator.

    PubMed

    Qu, Jianjun; Sun, Fengyan; Zhao, Chunsheng

    2006-12-01

    A new visco-elastic contact model of traveling wave ultrasonic motor (TWUSM) is proposed. In this model, the rotor is assumed to be rigid body and the friction material on stator teeth surface to be visco-elastic body. Both load characteristics of TWUSM, such as rotation speed, torque and efficiency, and effects of interface parameters between stator and rotor on output characteristic of TWUSM can be calculated and simulated numerically by using MATLAB method based on this model. This model is compared with that one of compliant slider and rigid stator. The results show that this model can obtain bigger stall torque. The simulated results are compared with test results, and found that their load characteristics have good agreement.

  20. Optical skin friction measurement technique in hypersonic wind tunnel

    NASA Astrophysics Data System (ADS)

    Chen, Xing; Yao, Dapeng; Wen, Shuai; Pan, Junjie

    2016-10-01

    Shear-sensitive liquid-crystal coatings (SSLCCs) have an optical characteristic that they are sensitive to the applied shear stress. Based on this, a novel technique is developed to measure the applied shear stress of the model surface regarding both its magnitude and direction in hypersonic flow. The system of optical skin friction measurement are built in China Academy of Aerospace Aerodynamics (CAAA). A series of experiments of hypersonic vehicle is performed in wind tunnel of CAAA. Global skin friction distribution of the model which shows complicated flow structures is discussed, and a brief mechanism analysis and an evaluation on optical measurement technique have been made.

  1. The friction and wear of ceramic/ceramic and ceramic/metal combinations in sliding contact

    NASA Technical Reports Server (NTRS)

    Sliney, Harold E.; Dellacorte, Christopher

    1993-01-01

    The tribological characteristics of ceramics sliding on ceramics are compared to those of ceramics sliding on a nickel based turbine alloy. The friction and wear of oxide ceramics and silicon-based ceramics in air at temperatures from room ambient to 900 C (in a few cases to 1200 C) were measured for a hemispherically-tipped pin on a flat sliding contact geometry. In general, especially at high temperature, friction and wear were lower for ceramic/metal combinations than for ceramic/ceramic combinations. The better tribological performance for ceramic/metal combinations is attributed primarily to the lubricious nature of the oxidized surface of the metal.

  2. Analytical formulation of orbiter-payload models coupled by trunnion joints with Coulomb friction

    NASA Technical Reports Server (NTRS)

    Liu, Frank C.

    1987-01-01

    An orbiter and its payload substructure are linked together by five trunnion joints which have thirty degrees-of-freedom. Geometric compatibility conditions require fourteen of the interface physical coordinates of the orbiter and payload to be equal to each other and the remaining sixteen are free to have relative motions under Coulomb friction. The component modes synthesis method using fourteen inertia relief attachment modes for the formulation of the coupled system is presented. The exact nonlinear friction function is derived based on the characteristics of the joints. Formulation is applicable to an orbiter that carries any number of payload substructures.

  3. Analytical formulation of orbiter-payload coupled by trunnion joints with Coulomb friction

    NASA Technical Reports Server (NTRS)

    Liu, Frank C.

    1986-01-01

    An orbiter and its payload substructure are linked together by five trunnion joints which have thirty degrees-of-freedom. Geometric compatibility conditions require fourteen of the interface physical coordinates of the orbiter and payload to be equal to each other and the remaining sixteen are free to have relative motions under Coulomb friction. The component modes synthesis method using fourteen inertia relief attachment modes for the formulation of the coupled system is presented. The exact nonlinear friction function is derived based on the characteristics of the joints. Formulation is applicable to an orbiter that carries any number of payload substructures.

  4. Study on longitudinal force simulation of heavy-haul train

    NASA Astrophysics Data System (ADS)

    Chang, Chongyi; Guo, Gang; Wang, Junbiao; Ma, Yingming

    2017-04-01

    The longitudinal dynamics model of heavy-haul trains and air brake model used in the longitudinal train dynamics (LTDs) are established. The dry friction damping hysteretic characteristic of steel friction draft gears is simulated by the equation which describes the suspension forces in truck leaf springs. The model of draft gears introduces dynamic loading force, viscous friction of steel friction and the damping force. Consequently, the numerical model of the draft gears is brought forward. The equation of LTDs is strongly non-linear. In order to solve the response of the strongly non-linear system, the high-precision and equilibrium iteration method based on the Newmark-β method is presented and numerical analysis is made. Longitudinal dynamic forces of the 20,000 tonnes heavy-haul train are tested, and models and solution method provided are verified by the test results.

  5. Probing atomic-scale friction on reconstructed surfaces of single-crystal semiconductors

    NASA Astrophysics Data System (ADS)

    Goryl, M.; Budzioch, J.; Krok, F.; Wojtaszek, M.; Kolmer, M.; Walczak, L.; Konior, J.; Gnecco, E.; Szymonski, M.

    2012-02-01

    Friction force microscopy (FFM) investigations have been performed on reconstructed (001) surfaces of InSb and Ge in an ultrahigh vacuum. On the c(8×2) reconstruction of InSb(001) atomic resolution is achieved under superlubric conditions, and the features observed in the lateral force images are precisely reproduced by numerical simulations, taking into account possible decorations of the probing tip. On the simultaneously acquired (1×3) reconstruction a significant disorder of the surface atoms is observed. If the loading force increases, friction becomes much larger on this reconstruction compared to the c(8×2) one. In FFM images acquired on the Ge(001)(2×1) characteristic substructures are resolved within the unit cells. In such a case, a strong dependence of the friction pattern on the scan direction is observed.

  6. Excellent lubricating behavior of Brasenia schreberi mucilage.

    PubMed

    Li, Jinjin; Liu, Yuhong; Luo, Jianbin; Liu, Pengxiao; Zhang, Chenhui

    2012-05-22

    The present work reports an excellent lubrication property of an aquatic plant called Brasenia schreberi (BS). To investigate the lubrication characteristics of the BS mucilage, a novel measuring system is designed, and an ultralow friction coefficient about 0.005 between the mucilage and glass surface has been obtained. It is found that the ultralow friction is closely related to the structure of mucilage and water molecules in the mucilage. The microstructure analysis indicates that the mucilage surrounding BS forms a kind of polysaccharide gel with many nanosheets. A possible lubrication mechanism is proposed that the formation of hydration layers among these polymer nanosheets with plenty of bonded water molecules causes the ultralow friction. The excellent lubrication property has a potential application for reducing the friction between a glossy pill coated with such layer of mucilage and people's throats.

  7. Sliding seal materials for adiabatic engines

    NASA Technical Reports Server (NTRS)

    Lankford, J.

    1985-01-01

    The sliding friction coefficients and wear rates of promising carbide, oxide, and nitride materials were measured under temperature, environmental, velocity, loading conditions that are representative of the adiabatic engine environment. In order to provide guidance needed to improve materials for this application, the program stressed fundamental understanding of the mechanisms involved in friction and wear. Microhardness tests were performed on the candidate materials at elevated temperatures, and in atmospheres relevant to the piston seal application, and optical and electron microscopy were used to elucidate the micromechanisms of wear following wear testing. X-ray spectroscopy was used to evaluate interface/environment interactions which seemed to be important in the friction and wear process. Electrical effects in the friction and wear processes were explored in order to evaluate the potential usefulness of such effects in modifying the friction and wear rates in service. However, this factor was found to be of negligible significance in controlling friction and wear.

  8. Surface effects on friction-induced fluid heating in nanochannel flows.

    PubMed

    Li, Zhigang

    2009-02-01

    We investigate the mechanism of friction-induced fluid heating under the influence of surfaces. The temperature distributions of liquid argon and helium in nanoscale Poiseuille flows are studied through molecular dynamics simulations. It is found that the fluid heating is mainly caused by the viscous friction in the fluid when the external force is small and there is no slip at the fluid-solid interface. When the external force is larger than the fluid-surface binding force, the friction at the fluid-solid interface dominates over the internal friction of the fluid and is the major contribution to fluid heating. An asymmetric temperature gradient in the fluid is developed in the case of nonidentical walls and the general temperature gradient may change sign as the dominant heating factor changes from internal to interfacial friction with increasing external force. The effect of temperature on the fluid heating is also discussed.

  9. Atomic scale friction of molecular adsorbates during diffusion.

    PubMed

    Lechner, B A J; de Wijn, A S; Hedgeland, H; Jardine, A P; Hinch, B J; Allison, W; Ellis, J

    2013-05-21

    Experimental observations suggest that molecular adsorbates exhibit a larger friction coefficient than atomic species of comparable mass, yet the origin of this increased friction is not well understood. We present a study of the microscopic origins of friction experienced by molecular adsorbates during surface diffusion. Helium spin-echo measurements of a range of five-membered aromatic molecules, cyclopentadienyl, pyrrole, and thiophene, on a copper(111) surface are compared with molecular dynamics simulations of the respective systems. The adsorbates have different chemical interactions with the surface and differ in bonding geometry, yet the measurements show that the friction is greater than 2 ps(-1) for all these molecules. We demonstrate that the internal and external degrees of freedom of these adsorbate species are a key factor in the underlying microscopic processes and identify the rotation modes as the ones contributing most to the total measured friction coefficient.

  10. Flow field and friction factor of slush nitrogen in a horizontal circular pipe

    NASA Astrophysics Data System (ADS)

    Jin, Tao; Li, Yijian; Wu, Shuqin; Wei, Jianjian

    2018-04-01

    Slush nitrogen is the low-temperature two-phase fluid with solid nitrogen particle suspended in the liquid nitrogen. The flow characteristics of slush nitrogen in a horizontal pipe with the diameter of 16 mm have been experimentally and numerically investigated, under the operating conditions with the inlet flow velocity of 0-4 m/s and the solid volume fraction of 0-23%. The numerical results for pressure drop agree well with those of the experiments, with the relative errors of ±5%. The experimental and numerical results both show that the pressure drop of slush nitrogen is greater than that of subcooled liquid nitrogen and rises with the increasing particle concentration, under the working conditions in present work. Based on the simulation result, the flow pattern evolution of slush nitrogen with the increasing slush Reynolds number has been discussed, which can be classified into homogenous flow, heterogeneous flow and moving bed. The slush effective viscosity and the slush Reynolds number are calculated with Cheng & Law formula, which includes the effects of particle shape, size and type and has a high accuracy for high concentration slurries. Based on the slush Reynolds number, an experimental empirical correlation considering particle conditions for the friction factor of slush nitrogen flow is obtained.

  11. Numerical study of the thermo-flow performances of novel finned tubes for air-cooled condensers in power plant

    NASA Astrophysics Data System (ADS)

    Guo, Yonghong; Du, Xiaoze; Yang, Lijun

    2018-02-01

    Air-cooled condenser is the main equipment of the direct dry cooling system in a power plant, which rejects heat of the exhaust steam with the finned tube bundles. Therefore, the thermo-flow performances of the finned tubes have an important effect on the optimal operation of the direct dry cooling system. In this paper, the flow and heat transfer characteristics of the single row finned tubes with the conventional flat fins and novel jagged fins are investigated by numerical method. The flow and temperature fields of cooling air for the finned tubes are obtained. Moreover, the variations of the flow resistance and average convection heat transfer coefficient under different frontal velocity of air and jag number are presented. Finally, the correlating equations of the friction factor and Nusselt number versus the Reynolds number are fitted. The results show that with increasing the frontal velocity of air, the heat transfer performances of the finned tubes are enhanced but the pressure drop will increase accordingly, resulting in the average convection heat transfer coefficient and friction factor increasing. Meanwhile, with increasing the number of fin jag, the heat transfer performance is intensified. The present studies provide a reference in optimal designing for the air-cooled condenser of direct air cooling system.

  12. Skin-friction measurements in high-enthalpy hypersonic boundary layers

    NASA Astrophysics Data System (ADS)

    Goyne, C. P.; Stalker, R. J.; Paull, A.

    2003-06-01

    Skin-friction measurements are reported for high-enthalpy and high-Mach-number laminar, transitional and turbulent boundary layers. The measurements were performed in a free-piston shock tunnel with air-flow Mach number, stagnation enthalpy and Reynolds numbers in the ranges of 4.4 6.7, 3 13 MJ kg(-1) and 0.16× 10(6) 21× 10(6) , respectively. Wall temperatures were near 300 K and this resulted in ratios of wall enthalpy to flow-stagnation enthalpy in the range of 0.1 0.02. The experiments were performed using rectangular ducts. The measurements were accomplished using a new skin-friction gauge that was developed for impulse facility testing. The gauge was an acceleration compensated piezoelectric transducer and had a lowest natural frequency near 40 kHz. Turbulent skin-friction levels were measured to within a typical uncertainty of ± 7%. The systematic uncertainty in measured skin-friction coefficient was high for the tested laminar conditions; however, to within experimental uncertainty, the skin-friction and heat-transfer measurements were in agreement with the laminar theory of van Driest (1952). For predicting turbulent skin-friction coefficient, it was established that, for the range of Mach numbers and Reynolds numbers of the experiments, with cold walls and boundary layers approaching the turbulent equilibrium state, the Spalding & Chi (1964) method was the most suitable of the theories tested. It was also established that if the heat transfer rate to the wall is to be predicted, then the Spalding & Chi (1964) method should be used in conjunction with a Reynolds analogy factor near unity. If more accurate results are required, then an experimentally observed relationship between the Reynolds analogy factor and the skin-friction coefficient may be applied.

  13. [Endodontics in motion: new concepts, materials and techniques 3. The role of irrigants during root canal treatment].

    PubMed

    van der Sluis, L W M

    2015-10-01

    The aims of root canal irrigation are the chemical dissolution or disruption and the mechanical detachment of pulp tissue, dentin debris and smear layer (instrumentation products), microorganisms (planktonic or biofilm) and their products from the root canal wall, their removal out of the root canal system and their chemical dissolution or disruption. Each of the endodontic irrigation systems has its own irrigant flow characteristics, which should fulfill these aims. Without flow (convection), the irrigant would have to be distributed through diffusion. This process is slow and depends on temperature and concentration gradients. On the other hand, convection is a faster and more efficient transport mechanism. During irrigant flow, frictional forces will occur, for example between the irrigant and the root canal wall (wall shear stress). These frictional forces have a mechanical cleaning effect on the root canal wall. These frictional forces are the result of the flow characteristics related to the different irrigation systems.

  14. Friction characteristics of three 30 by 11.5-14.5, type 8, aircraft tires with various tread groove patterns and rubber compounds

    NASA Technical Reports Server (NTRS)

    Yager, T. J.; Mccarty, J. L.

    1977-01-01

    A test program was conducted to evaluate friction performance and wear characteristics on wet runways of three 30 x 11.5-14.5, type, aircraft tires having two different tread patterns and natural rubber contents. All test tires had the standard three circumferential groove tread, but two had molded transverse grooves which extended from shoulder to shoulder. The tread rubber content of the two tires with transverse grooves differed in that one had a 100 percent natural rubber tread and the other had a rubber tread composition that was 30 percent synthetic and 70 percent natural. The third test tire had the conventional 100 percent natural rubber tread. Results indicate that the differences in tire tread design and rubber composition do not significantly affect braking and cornering friction capability on wet or dry surfaces. Braking performance of the tires decreases with increased speed, with increased yaw angle and, at higher speeds, with increased wetness of the surface.

  15. A Model for Couples. How Two Can Grow Together

    ERIC Educational Resources Information Center

    Sherwood, John J.; Scherer, John J.

    1975-01-01

    The authors present a model which follows the development of a male-female relationship through dating, marriage and divorce. They discuss the factors that cause friction between a husband and wife and offer procedures for coping with such friction. (SE)

  16. Characterization of Skin Friction Coefficient, and Relationship to Stratum Corneum Hydration in a Normal Chinese Population

    PubMed Central

    Zhu, Y.H.; Song, S.P.; Luo, W.; Elias, P.M.; Man, M.Q.

    2011-01-01

    Background and Objectives Studies have demonstrated that some cutaneous biophysical properties vary with age, gender and body sites. However, the characteristics of the skin friction coefficient in different genders and age groups have not yet been well established. In the present study, we assess the skin friction coefficient in a larger Chinese population. Methods A total of 633 subjects (300 males and 333 females) aged 0.15–79 years were enrolled. A Frictiometer® FR 770 and Corneometer® CM 825 (C&K MPA 5) were used to measure the skin friction coefficient and stratum corneum hydration, respectively, on the dorsal surface of the hand, the forehead and the canthus. Results In the females, the maximum skin friction coefficients on both the canthus and the dorsal hand skin were observed around the age of 40 years. In the males, the skin friction coefficient on the dorsal hand skin gradually increased from 0 to 40 years of age, and changed little afterward. Skin friction coefficients on some body sites were higher in females than in age-matched males in some age groups. On the canthus and the dorsal hand skin of females, a positive correlation was found between skin friction coefficient and stratum corneum hydration (p < 0.001 and p < 0.0001, respectively). In contrast, in males, the skin friction coefficient was positively correlated with stratum corneum hydration on the forehead and the dorsal hand skin (p < 0.05 and p < 0.0001, respectively). Conclusion The skin friction coefficient varies with age, gender and body site, and positively correlates with stratum corneum hydration on some body sites. PMID:21088455

  17. Characterization of skin friction coefficient, and relationship to stratum corneum hydration in a normal Chinese population.

    PubMed

    Zhu, Y H; Song, S P; Luo, W; Elias, P M; Man, M Q

    2011-01-01

    Studies have demonstrated that some cutaneous biophysical properties vary with age, gender and body sites. However, the characteristics of the skin friction coefficient in different genders and age groups have not yet been well established. In the present study, we assess the skin friction coefficient in a larger Chinese population. A total of 633 subjects (300 males and 333 females) aged 0.15-79 years were enrolled. A Frictiometer FR 770 and Corneometer CM 825 (C&K MPA 5) were used to measure the skin friction coefficient and stratum corneum hydration, respectively, on the dorsal surface of the hand, the forehead and the canthus. In the females, the maximum skin friction coefficients on both the canthus and the dorsal hand skin were observed around the age of 40 years. In the males, the skin friction coefficient on the dorsal hand skin gradually increased from 0 to 40 years of age, and changed little afterward. Skin friction coefficients on some body sites were higher in females than in age-matched males in some age groups. On the canthus and the dorsal hand skin of females, a positive correlation was found between skin friction coefficient and stratum corneum hydration (p < 0.001 and p < 0.0001, respectively). In contrast, in males, the skin friction coefficient was positively correlated with stratum corneum hydration on the forehead and the dorsal hand skin (p < 0.05 and p < 0.0001, respectively). The skin friction coefficient varies with age, gender and body site, and positively correlates with stratum corneum hydration on some body sites. Copyright © 2010 S. Karger AG, Basel.

  18. The effect of postprocessing on tensile property and microstructure evolution of friction stir welding aluminum alloy joint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Z.L., E-mail: zhilihuhit@163.com; State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001; State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology

    Friction stir welding is an efficient manufacturing method for joining aluminum alloy and can dramatically reduce grain size conferring excellent plastic deformation properties. Consequently, friction stir welding is used to manufacture tailor welded blanks to optimize weight or performance in the final component. In the study, the microstructural evolution and mechanical properties of friction stir welding joint during plastic forming and subsequent heat treatment were investigated. The microstructural characteristics of the friction stir welding joints were studied by Electron Backscattered Diffraction and Transmission Electron Microscopy. The mechanical properties were evaluated by tensile and microhardness tests. It is found that themore » tensile and yield strengths of friction stir welding joints are significantly improved after severe plastic deformation due to the grain refinement. Following heat treatment, the strength of the friction stir welding joints significantly decrease due to the obvious abnormal grain growth. Careful attention must be given to the processing route of any friction stir welding joint intended for plastic forming, especially the annealing between forming passes. Severe plastic deforming of the friction stir welding joint leads to a high level of stored energy/dislocation density, which causes the abnormal grain growth during subsequent heat treatment, and consequently reduce the mechanical properties of the friction stir welding joint. - Highlights: • Great changes are observed in the microstructure of FSW joint after postprocessing. • Postprocessing shows great effect on the microstructure stability of FSW joint. • The weld shows more significant decrease in strength than the BM due to the AGG. • Attention must be given to the processing route of FSW joint for plastic forming.« less

  19. The Effect of Humidity and Particle Characteristics on Friction and Stick-slip Instability in Granular Fault Gouge

    NASA Astrophysics Data System (ADS)

    Anthony, J. L.; Marone, C. J.

    2003-12-01

    Previous studies have shown that particle characteristics such as shape, dimension, and roughness affect friction in granular shear zones. Other work shows that humidity plays a key role in frictional healing and rate/state dependence within granular gouge. In order to improve our understanding of grain-scale deformation mechanisms within fault gouge, we performed laboratory experiments using a double-direct-shear testing apparatus. This assembly includes three rigid forcing blocks with two gouge layers sandwiched between rough or smooth surfaces. Roughened surfaces were triangular grooves 0.8 mm deep and 1 mm wavelength. These promote distributed shear throughout the layer undergoing cataclastic deformation. Smooth surfaces were mirror-finished hardened steel and were used to promote and isolate grain boundary sliding. The center block is forced at controlled displacement rate between the two side blocks to create frictional shear. We studied gouge layers 3-7 mm thick, consisting of either quartz rods sheared in 1-D and 2-D configurations and smooth glass beads mixed with varying amounts of rough sand particles. We report on particle diameters that range from 0.050-0.210 mm, and quartz rods 1 mm in diameter and 100 mm long. The experiments are run at room temperature, controlled relative humidity ranging from 5 to 100%, and shear displacement rates from 0.1 to 300 microns per second. Experiments are carried out under a normal stress of 5 MPa, a non-fracture loading regime where sliding friction for smooth spherical particles is measurably lower than for rough angular particles. We compare results from shear between smooth boundaries, where we hypothesize that grain boundary sliding is the mechanism influencing granular friction, to rough sample experiments where shear undergoes a transition from distributed, pervasive shear to progressively localized as a function of increasing strain. For shear within rough surfaces, stick-slip instability occurs in gouge that consists of less than 30% angular grains and begins once the coefficient of friction (shear stress divided by normal stress) reaches a value of 0.35-0.40. Peak friction during stick-slip cycles is 0.40-0.45. Each stick-slip event involves a small amount of quasi-static displacement prior to failure, which we refer to as pre-seismic slip. For unstable sliding regimes, we measure the amount of pre-seismic slip and the magnitude of dynamic stress drop. These parameters vary systematically with sliding velocity, particle characteristics, and bounding roughness. For shear within smooth surfaces, friction is very low (0.15-0.16 for spherical particles) and sliding is stable, without stick-slip instability. As more angular grains are mixed with spherical beads the coefficient of friction increases. This holds true for both the rough and smooth sample experiments. We expand on previous work done by Frye and Marone 2002 (JGR) to study the effect of humidity on 1-D, 2-D, and 3-D gouge layer configurations. Our data show that humidity has a significant effect on frictional strength and stability and that this effect is observed for both smooth surfaces, where grain boundary sliding is the dominant deformation mechanisms, and for shear within rough surfaces where gouge deformation occurs by rolling, dilation, compaction, and grain boundary sliding.

  20. Sea-level rise induced amplification of coastal protection design heights.

    PubMed

    Arns, Arne; Dangendorf, Sönke; Jensen, Jürgen; Talke, Stefan; Bender, Jens; Pattiaratchi, Charitha

    2017-01-06

    Coastal protection design heights typically consider the superimposed effects of tides, surges, waves, and relative sea-level rise (SLR), neglecting non-linear feedbacks between these forcing factors. Here, we use hydrodynamic modelling and multivariate statistics to show that shallow coastal areas are extremely sensitive to changing non-linear interactions between individual components caused by SLR. As sea-level increases, the depth-limitation of waves relaxes, resulting in waves with larger periods, greater amplitudes, and higher run-up; moreover, depth and frictional changes affect tide, surge, and wave characteristics, altering the relative importance of other risk factors. Consequently, sea-level driven changes in wave characteristics, and to a lesser extent, tides, amplify the resulting design heights by an average of 48-56%, relative to design changes caused by SLR alone. Since many of the world's most vulnerable coastlines are impacted by depth-limited waves, our results suggest that the overall influence of SLR may be greatly underestimated in many regions.

  1. Cornering characteristics of the nose-gear tire of the space shuttle orbiter

    NASA Technical Reports Server (NTRS)

    Vogler, W. A.; Tanner, J. A.

    1981-01-01

    An experimental investigation was conducted to evaluate cornering characteristics of the 32 x 8.8 nose gear tire of the space shuttle orbiter. Data were obtained on a dry concrete runway at nominal ground speeds ranging from 50 to 100 knots and over a range of tire vertical loads and yaw angles which span the expected envelope of loads and yaw angles to be encountered during space shuttle landing operations. The cornering characteristics investigated included side and drag forces and friction coefficients, aligning and overturning torques, friction force moment arm, and the lateral center of pressure shift. Results of this investigation indicate that the cornering characteristics of the space shuttle nose gear tire are insensitive to variations in ground speed over the range tested. The effects on cornering characteristics of variations in the tire vertical load and yaw angle are as expected. Trends observed are consistent with trends observed during previous cornering tests involving other tire sizes.

  2. Prediction of Sliding Friction Coefficient Based on a Novel Hybrid Molecular-Mechanical Model.

    PubMed

    Zhang, Xiaogang; Zhang, Yali; Wang, Jianmei; Sheng, Chenxing; Li, Zhixiong

    2018-08-01

    Sliding friction is a complex phenomenon which arises from the mechanical and molecular interactions of asperities when examined in a microscale. To reveal and further understand the effects of micro scaled mechanical and molecular components of friction coefficient on overall frictional behavior, a hybrid molecular-mechanical model is developed to investigate the effects of main factors, including different loads and surface roughness values, on the sliding friction coefficient in a boundary lubrication condition. Numerical modelling was conducted using a deterministic contact model and based on the molecular-mechanical theory of friction. In the contact model, with given external loads and surface topographies, the pressure distribution, real contact area, and elastic/plastic deformation of each single asperity contact were calculated. Then asperity friction coefficient was predicted by the sum of mechanical and molecular components of friction coefficient. The mechanical component was mainly determined by the contact width and elastic/plastic deformation, and the molecular component was estimated as a function of the contact area and interfacial shear stress. Numerical results were compared with experimental results and a good agreement was obtained. The model was then used to predict friction coefficients in different operating and surface conditions. Numerical results explain why applied load has a minimum effect on the friction coefficients. They also provide insight into the effect of surface roughness on the mechanical and molecular components of friction coefficients. It is revealed that the mechanical component dominates the friction coefficient when the surface roughness is large (Rq > 0.2 μm), while the friction coefficient is mainly determined by the molecular component when the surface is relatively smooth (Rq < 0.2 μm). Furthermore, optimal roughness values for minimizing the friction coefficient are recommended.

  3. Deposition of Coatings for Raising the Wear Resistance of Friction Surfaces of Spherical Sliding Bearings

    NASA Astrophysics Data System (ADS)

    Gorlenko, A. O.; Davydov, S. V.

    2018-01-01

    The process of finishing plasma hardening with deposition of a multilayer amorphous coating of the Si - O - C - N system is considered as applied to hardening of the friction surfaces of spherical sliding bearings. The microrelief, the submicrorelief, and the tribological characteristics of the deposited wear-resistant antifriction amorphous coating, which are responsible for the elevated wear resistance of spherical sliding bearings, are investigated.

  4. Effect of counterface roughness on the friction of bionic wall-shaped microstructures for gecko-like attachments.

    PubMed

    Kasem, Haytam; Cohen, Yossi

    2017-08-04

    Hairy adhesive systems involved in gecko locomotion have drawn the interest of many researchers regarding the development of bionic solutions for fast and reversible adhesive technologies. To date, despite extensive efforts to design gecko-inspired adhesive surfaces, adhesion and friction capacities are often evaluated using smooth and rigid counterfaces, in general glass, whereas most natural and artificial surfaces inevitably have a certain level of roughness. For that reason, in this study experiments tested the effects of the substrate roughness on the friction of bionic wale-shaped microstructures for gecko-like attachments. To this end, 12 substrates with different isotropic roughness were prepared using the same Epoxy material. Friction force was measured under various normal loads. It was concluded that classical roughness parameters, considered separately, are not appropriate to explain roughness-related variations in friction force. This has led us to develop a new integrative roughness parameter that combines characteristics of the surface. The parameter is capable of classifying the obtained experimental results in a readable way. An analytical model based on the experimental results has been developed to predict the variation of the friction force as a function of counterface roughness and applied normal load.

  5. Cyriax's deep friction massage application parameters: Evidence from a cross-sectional study with physiotherapists.

    PubMed

    Chaves, Paula; Simões, Daniela; Paço, Maria; Pinho, Francisco; Duarte, José Alberto; Ribeiro, Fernando

    2017-12-01

    Deep friction massage is one of several physiotherapy interventions suggested for the management of tendinopathy. To determine the prevalence of deep friction massage use in clinical practice, to characterize the application parameters used by physiotherapists, and to identify empirical model-based patterns of deep friction massage application in degenerative tendinopathy. observational, analytical, cross-sectional and national web-based survey. 478 physiotherapists were selected through snow-ball sampling method. The participants completed an online questionnaire about personal and professional characteristics as well as specific questions regarding the use of deep friction massage. Characterization of deep friction massage parameters used by physiotherapists were presented as counts and proportions. Latent class analysis was used to identify the empirical model-based patterns. Crude and adjusted odds ratios and 95% confidence intervals were computed. The use of deep friction massage was reported by 88.1% of the participants; tendinopathy was the clinical condition where it was most frequently used (84.9%) and, from these, 55.9% reported its use in degenerative tendinopathy. The "duration of application" parameters in chronic phase and "frequency of application" in acute and chronic phases are those that diverge most from those recommended by the author of deep friction massage. We found a high prevalence of deep friction massage use, namely in degenerative tendinopathy. Our results have shown that the application parameters are heterogeneous and diverse. This is reflected by the identification of two application patterns, although none is in complete agreement with Cyriax's description. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Condensation heat transfer and flow friction in silicon microchannels

    NASA Astrophysics Data System (ADS)

    Wu, Huiying; Wu, Xinyu; Qu, Jian; Yu, Mengmeng

    2008-11-01

    An experimental investigation was performed on heat transfer and flow friction characteristics during steam condensation flow in silicon microchannels. Three sets of trapezoidal silicon microchannels, with hydraulic diameters of 77.5 µm, 93.0 µm and 128.5 µm respectively, were tested under different flow and cooling conditions. It was found that both the condensation heat transfer Nusselt number (Nu) and the condensation two-phase frictional multiplier (phi2Lo) were dependent on the steam Reynolds number (Rev), condensation number (Co) and dimensionless hydraulic diameter (Dh/L). With the increase in the steam Reynolds number, condensation number and dimensionless hydraulic diameter, the condensation Nusselt number increased. However, different variations were observed for the condensation two-phase frictional multiplier. With the increase in the steam Reynolds number and dimensionless hydraulic diameter, the condensation two-phase frictional multiplier decreased, while with the increase in the condensation number, the condensation two-phase frictional multiplier increased. Based on the experimental results, dimensionless correlations for condensation heat transfer and flow friction in silicon microchannels were proposed for the first time. These correlations can be used to determine the condensation heat transfer coefficient and pressure drop in silicon microchannels if the steam mass flow rate, cooling rate and geometric parameters are fixed. It was also found that the condensation heat transfer and flow friction have relations to the injection flow (a transition flow pattern from the annular flow to the slug/bubbly flow), and with injection flow moving toward the outlet, both the condensation heat transfer coefficient and the condensation two-phase frictional multiplier increased.

  7. Analysing the Friction Stir Welded Joints of AA2219 Al-Cu Alloy in Different Heat-Treated-State

    NASA Astrophysics Data System (ADS)

    Venkateswarlu, D.; Cheepu, Muralimohan; Kranthi kumar, B.; Mahapatra, M. M.

    2018-03-01

    Aluminium alloy AA2219 is widely used in light weight structural applications where the good corrosion resistance and specific weight required. The fabrication of this alloy using friction stir welding process is gaining interest towards finding the characteristics of the weld metal properties, since this process involved in the welded materials does not melt and recast. In the present investigation, friction stir welding process was used for different heat treated conditions of 2219-T87 and 2219-T62 aluminium alloys to find the influence of base metal on characteristics of the joints. The experimental output results exhibited that, mechanical properties, weld metal characteristics and joint failure locations are significantly affected by the different heat treatment conditions of the substrate. The joints tensile and yield strength of the 2219-T87 welds was higher than the 2219-T62 welds. Hardness distribution in the stir zone was significantly varied between two different heat treaded material conditions. The microstructural features of the 2219-T62 welds reveal the coarse grains formation in the thermo-mechanically affected zone and heat affected zone. The joint efficiency of the 2219- T82 welds is 59.87%, while that of 2219-T62 welds is 39.10%. In addition, the elongation of the joint also varied and the joints failure location characteristics are different for two different types heat treated condition joints.

  8. Antifriction basalt-plastics based on polypropylene

    NASA Astrophysics Data System (ADS)

    Bashtannik, P. I.; Ovcharenko, V. G.

    1997-05-01

    A study is made of the dependence of the mechanical and friction-engineering properties of polypropylene reinforced with basalt fibers on the viscosity of the polymer matrix. It is established that the main factors that determine the mechanical properties of the plastics are the quality of impregnation of the fibers by the binder and the residual length of the reinforcing filler in the composite after extrusion and injection molding. The material that was developed has a low friction coefficient and low rate of wear within a relatively brood range of friction conditions. The basalt-plastics can be used in the rubbing parts of machines and mechanisms subjected to dry friction.

  9. Analytical model development for the prediction of the frictional resistance of a capsule endoscope inside an intestine.

    PubMed

    Kim, J S; Sung, I H; Kim, Y T; Kim, D E; Jang, Y H

    2007-11-01

    For the purpose of optimizing the design of the locomotion mechanism as well as the body shape of a self-propelled capsule endoscope, an analytical model for the prediction of frictional resistance of the capsule moving inside the small intestine was first developed. The model was developed by considering the contact geometry and viscoelasticity of the intestine, based on the experimental investigations on the material properties of the intestine and the friction of the capsule inside the small intestine. In order to verify the model and to investigate the distributions of various stress components applied to the capsule, finite element (FE) analyses were carried out. The comparison of the frictional resistance between the predicted and the experimental values suggested that the proposed model could predict the frictional force of the capsule with reasonable accuracy. Also, the FE analysis results of various stress components revealed the stress relaxation of the intestine and explained that such stress relaxation characteristics of the intestine resulted in lower frictional force as the speed of the capsule decreased. These results suggested that the frontal shape of the capsule was critical to the design of the capsule with desired frictional performance. It was shown that the proposed model can provide quantitative estimation of the frictional resistance of the capsule under various moving conditions inside the intestine. The model is expected to be useful in the design optimization of the capsule locomotion inside the intestine.

  10. Static-dynamic friction transition of FRP esthetic orthodontic wires on various brackets by suspension-type friction test.

    PubMed

    Suwa, N; Watari, F; Yamagata, S; Iida, J; Kobayashi, M

    2003-11-15

    A new testing apparatus for the measurement of frictional properties was designed and the frictional coefficients were obtained and compared with each other in various combinations of brackets and orthodontic wires, including esthetic fiber-reinforced plastic (FRP) wire that was especially designed and manufactured. Three kinds of wires (stainless steel, nickel-titanium, and FRP) and four brackets (single-crystal alumina, polycrystalline alumina, polycarbonate, and stainless steel) were used. The testing was done under dry and wet conditions. The friction testing equipment was designed to attach the bracket to a C-shaped bar suspended with a variable mass, and sliding along a fixed wire. The transition between static and dynamic friction was measured as a breakaway force, with the use of a universal test machine. In addition to material properties, this testing fixture eliminates geometrical factors, such as the rotational moment at the edge of the bracket slot, deflection of the orthodontic wire, and tension of the ligature wire. Nearly ideal frictional properties between materials are obtained. The frictional properties of FRP wire were similar to those of metal wires on all brackets, except the polycrystalline alumina bracket. The frictional coefficient between the polycrystalline ceramic bracket and FRP wire was larger than that of other combinations. There was little difference in frictional coefficients between dry and wet conditions. Copyright 2003 Wiley Periodicals, Inc.

  11. Butane dihedral angle dynamics in water is dominated by internal friction

    PubMed Central

    Daldrop, Jan O.; Kappler, Julian; Brünig, Florian N.; Netz, Roland R.

    2018-01-01

    The dihedral dynamics of butane in water is known to be rather insensitive to the water viscosity; possible explanations for this involve inertial effects or Kramers’ turnover, the finite memory time of friction, and the presence of so-called internal friction. To disentangle these factors, we introduce a method to directly extract the friction memory function from unconstrained simulations in the presence of an arbitrary free-energy landscape. By analysis of the dihedral friction in butane for varying water viscosity, we demonstrate the existence of an internal friction contribution that does not scale linearly with water viscosity. At normal water viscosity, the internal friction turns out to be eight times larger than the solvent friction and thus completely dominates the effective friction. By comparison with simulations of a constrained butane molecule that has the dihedral as the only degree of freedom, we show that internal friction comes from the six additional degrees of freedom in unconstrained butane that are orthogonal to the dihedral angle reaction coordinate. While the insensitivity of butane’s dihedral dynamics to water viscosity is solely due to the presence of internal friction, inertial effects nevertheless crucially influence the resultant transition rates. In contrast, non-Markovian effects due to the finite memory time are present but do not significantly influence the dihedral barrier-crossing rate of butane. These results not only settle the character of dihedral dynamics in small solvated molecular systems such as butane, they also have important implications for the folding of polymers and proteins. PMID:29712838

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Shyy Woei; Yang, Tsun Lirng; Liou, Jin Shuen

    An experimental study measuring the axial heat transfer distributions and the pressure drop coefficients of the tube fitted with a broken twisted tape of twist ratio 1, 1.5, 2, 2.5 or {infinity} is performed in the Re range of 1000-40,000. This type of broken twisted tape is newly invented without previous investigations available. Local Nusselt numbers and mean Fanning friction factors in the tube fitted with the broken twisted tape increase as the twist ratio decreases. Heat transfer coefficients, mean Fanning friction factors and thermal performance factors in the tube fitted with the broken twisted tape are, respectively, augmented tomore » 1.28-2.4, 2-4.7 and 0.99-1.8 times of those in the tube fitted with the smooth twisted tape. Empirical heat transfer and pressure drop correlations which evaluate the local Nusselt number and the mean Fanning friction factor for the tube with the broken twisted tape insert are generated to assist the industrial applications. (author)« less

  13. Wear resistance of Ti/TiB composites produced by spark plasma sintering

    NASA Astrophysics Data System (ADS)

    Ozerov, M.; Stepanov, N.; Zherebtsov, S.

    2017-12-01

    The tribological characteristics of Ti/TiB composites were studied in as-sintered condition and after isothermal multiaxial forging. A mixture of commercially pure Ti and TiB2 powders was used to produce Ti/TiB composites with 8.5 and 17 vol % of TiB via in-situ Ti+TiB2→Ti+TiB reactions during spark plasma sintering at 1000°C. During isothermal multiaxial forging (MAF), the material was exposed to successive compressions along three orthogonal directions at a temperature of 700°C and strain rate of 10-3 s-1 to cumulative strains e = 5.2. The microstructure of the as-sintered composites consisted of TiB whiskers nonuniformly distributed within the Ti matrix. In the forged composites, intensive shortening of TiB whiskers occurred. The hardness of the composites increased greatly compared to that of commercially pure Ti; the hardness also increased with increasing the TiB fraction. The hardness in the forged composites decreased by ˜20% for both composite states. Tribological tests using a standard ball-on-disk geometry showed that the friction coefficient of the Ti/TiB composites increased in comparison with Ti. Increasing the TiB fraction in the composites increased the friction coefficient and decreased the wear factor. It was shown that the tribological characteristics after isothermal multiaxial forging were changed but slightly.

  14. Optimizing the parameters of heat transmission in a small heat exchanger with spiral tapes cut as triangles and Aluminum oxide nanofluid using central composite design method

    NASA Astrophysics Data System (ADS)

    Ghasemi, Nahid; Aghayari, Reza; Maddah, Heydar

    2018-07-01

    The present study aims at optimizing the heat transmission parameters such as Nusselt number and friction factor in a small double pipe heat exchanger equipped with rotating spiral tapes cut as triangles and filled with aluminum oxide nanofluid. The effects of Reynolds number, twist ratio (y/w), rotating twisted tape and concentration (w%) on the Nusselt number and friction factor are also investigated. The central composite design and the response surface methodology are used for evaluating the responses necessary for optimization. According to the optimal curves, the most optimized value obtained for Nusselt number and friction factor was 146.6675 and 0.06020, respectively. Finally, an appropriate correlation is also provided to achieve the optimal model of the minimum cost. Optimization results showed that the cost has decreased in the best case.

  15. Optimizing the parameters of heat transmission in a small heat exchanger with spiral tapes cut as triangles and Aluminum oxide nanofluid using central composite design method

    NASA Astrophysics Data System (ADS)

    Ghasemi, Nahid; Aghayari, Reza; Maddah, Heydar

    2018-02-01

    The present study aims at optimizing the heat transmission parameters such as Nusselt number and friction factor in a small double pipe heat exchanger equipped with rotating spiral tapes cut as triangles and filled with aluminum oxide nanofluid. The effects of Reynolds number, twist ratio (y/w), rotating twisted tape and concentration (w%) on the Nusselt number and friction factor are also investigated. The central composite design and the response surface methodology are used for evaluating the responses necessary for optimization. According to the optimal curves, the most optimized value obtained for Nusselt number and friction factor was 146.6675 and 0.06020, respectively. Finally, an appropriate correlation is also provided to achieve the optimal model of the minimum cost. Optimization results showed that the cost has decreased in the best case.

  16. Friction and wear behavior of glasses and ceramics

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1973-01-01

    Adhesion, friction, and wear behavior of glasses and ionic solids are reviewed. These materials are shown to behave in a manner similar to other solids with respect to adhesion. Their friction characteristics are shown to be sensitive to environmental constituents and surface films. This sensitivity can be related to a reduction in adhesive bonding and the changes in surficial mechanical behavior associated with Rehbinder and Joffe effects. Both friction and wear properties of ionic crystalline solids are highly anisotropic. With metals in contact with ionic solids the fracture strength of the ionic solid and the shear strength in the metal and those properties that determine these will dictate which of the materials undergoes adhesive wear. The chemical activity of the metal plays an important role in the nature and strength of the adhesive interfacial bond that develops between the metal and a glass or ionic solid.

  17. Time- & Load-Dependence of Triboelectric Effect.

    PubMed

    Pan, Shuaihang; Yin, Nian; Zhang, Zhinan

    2018-02-06

    Time- and load-dependent friction behavior is considered as important for a long time, due to its time-evolution and force-driving characteristics. However, its electronic behavior, mainly considered in triboelectric effect, has almost never been given the full attention and analyses from the above point of view. In this paper, by experimenting with fcc-latticed aluminum and copper friction pairs, the mechanical and electronic behaviors of friction contacts are correlated by time and load analyses, and the behind physical understanding is provided. Most importantly, the difference of "response lag" in force and electricity is discussed, the extreme points of coefficient of friction with the increasing normal loads are observed and explained with the surface properties and dynamical behaviors (i.e. wear), and the micro and macro theories linking tribo-electricity to normal load and wear (i.e. the physical explanation between coupled electrical and mechanical phenomena) are successfully developed and tested.

  18. Friction stir scribe welding technique for dissimilar joining of aluminium and galvanised steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Tianhao; Sidhar, Harpreet; Mishra, Rajiv S.

    Friction stir scribe technology, a derivative of friction stir welding, was applied for the dissimilar lap welding of an aluminum alloy and galvanized mild steel sheets. During the process, the rotating tool with a cobalt steel scribe first penetrated the top material — aluminum — and then the scribe cut the bottom material — steel. The steel was displaced into the upper material to produce a characteristic hook feature. Lap welds were shear tested, and their fracture paths were studied. Welding parameters affected the welding features including hook height, which turned out to be highly related to fracture position. Therefore,more » in this paper, the relationships among welding parameters, hook height, joint strength and fracture position are presented. In addition, influence of zinc coating on joint strength was also studied. Keywords: friction stir scribe technology; dissimilar material welding; zinc coating; hook height; joint strength; fracture position« less

  19. The Application of Vibration Accelerations in the Assessment of Average Friction Coefficient of a Railway Brake Disc

    NASA Astrophysics Data System (ADS)

    Sawczuk, Wojciech

    2017-06-01

    Due to their wide range of friction characteristics resulting from the application of different friction materials and good heat dissipation conditions, railway disc brakes have long replaced block brakes in many rail vehicles. A block brake still remains in use, however, in low speed cargo trains. The paper presents the assessment of the braking process through the analysis of vibrations generated by the components of the brake system during braking. It presents a possibility of a wider application of vibroacoustic diagnostics (VA), which aside from the assessment of technical conditions (wear of brake pads) also enables the determination of the changes of the average friction coefficient as a function of the braking onset speed. Vibration signals of XYZ were measured and analyzed. The analysis of the results has shown that there is a relation between the values of the point measures and the wear of the brake pads.

  20. Mechanical Characteristics of Welded Joints of Aluminum Alloy 6061 T6 Formed by Arc and Friction Stir Welding

    NASA Astrophysics Data System (ADS)

    Astarita, A.; Squillace, A.; Nele, L.

    2016-01-01

    Butt welds formed by arc welding in inert gas with nonconsumable electrode (tungsten inert gas (TIG) welding) and by friction stir welding (FSW) from aluminum alloy AA6061 T6 are studied. Comparative analysis of the structures and mechanical properties of the welded joints is performed using the results of optical and electron microscopy, tensile tests, tests for residual bending ductility, and measurements of microhardness. The changes in the microstructure in different zones and the degrees of degradation of the mechanical properties after the welding are determined. It is shown that the size of the tool for the friction stir welding affects the properties of the welds. Quantitative results showing the relation between the microscopic behavior of the alloy and the welding-induced changes in the microstructure are obtained. Friction stir welding is shown to provide higher properties of the welds.

  1. Comparison of friction produced by two types of orthodontic bracket protectors

    PubMed Central

    Mendonça, Steyner de Lima; Praxedes Neto, Otávio José; de Oliveira, Patricia Teixeira; dos Santos, Patricia Bittencourt Dutra; Pinheiro, Fábio Henrique de Sá Leitão

    2014-01-01

    Introduction Fixed orthodontic appliances have been regarded as a common causative factor of oral lesions. To manage soft tissue discomfort, most orthodontists recommend using a small amount of utility wax over the brackets in order to alleviate trauma. This in vitro study aimed at evaluating friction generated by two types of bracket protectors (customized acetate protector [CAP] and temporary resin protector [TRP]) during the initial stages of orthodontic treatment. Methods An experimental model (test unit) was used to assess friction. In order to measure the friction produced in each test, the model was attached to a mechanical testing machine which simulated maxillary canines alignment. Intergroup comparison was carried out by one-way ANOVA with level of significance set at 5%. Results The friction presented by the TRP group was statistically higher than that of the control group at 6 mm. It was also higher than in the control and CAP groups in terms of maximum friction. Conclusion The customized acetate protector (CAP) demonstrated not to interfere in friction between the wire and the orthodontic bracket slot. PMID:24713564

  2. Comparison of friction produced by two types of orthodontic bracket protectors.

    PubMed

    de Lima Mendonça, Steyner; Praxedes Neto, Otávio José; de Oliveira, Patricia Teixeira; dos Santos, Patricia Bittencourt Dutra; de Sá Leitão Pinheiro, Fábio Henrique

    2014-01-01

    Fixed orthodontic appliances have been regarded as a common causative factor of oral lesions. To manage soft tissue discomfort, most orthodontists recommend using a small amount of utility wax over the brackets in order to alleviate trauma. This in vitro study aimed at evaluating friction generated by two types of bracket protectors (customized acetate protector [CAP] and temporary resin protector [TRP]) during the initial stages of orthodontic treatment. An experimental model (test unit) was used to assess friction. In order to measure the friction produced in each test, the model was attached to a mechanical testing machine which simulated maxillary canines alignment. Intergroup comparison was carried out by one-way ANOVA with level of significance set at 5%. The friction presented by the TRP group was statistically higher than that of the control group at 6 mm. It was also higher than in the control and CAP groups in terms of maximum friction. The customized acetate protector (CAP) demonstrated not to interfere in friction between the wire and the orthodontic bracket slot.

  3. Measuring the Coefficient of Friction of a Small Floating Liquid Marble

    PubMed Central

    Ooi, Chin Hong; Nguyen, Anh Van; Evans, Geoffrey M.; Dao, Dzung Viet; Nguyen, Nam-Trung

    2016-01-01

    This paper investigates the friction coefficient of a moving liquid marble, a small liquid droplet coated with hydrophobic powder and floating on another liquid surface. A floating marble can easily move across water surface due to the low friction, allowing for the transport of aqueous solutions with minimal energy input. However, the motion of a floating marble has yet to be systematically characterised due to the lack of insight into key parameters such as the coefficient of friction between the floating marble and the carrier liquid. We measured the coefficient of friction of a small floating marble using a novel experimental setup that exploits the non-wetting properties of a liquid marble. A floating liquid marble pair containing a minute amount magnetite particles were immobilised and then released in a controlled manner using permanent magnets. The capillarity-driven motion was analysed to determine the coefficient of friction of the liquid marbles. The “capillary charge” model was used to fit the experimental results. We varied the marble content and carrier liquid to establish a relationship between the friction correction factor and the meniscus angle. PMID:27910916

  4. Performance of PTFE-lined composite journal bearings

    NASA Technical Reports Server (NTRS)

    Sliney, H. E.; Williams, F. J.

    1982-01-01

    Plain cylindrical journal bearings consisting of aramid fiber reinforced epoxy outer shells and glass fiber reinforced PTFE lubricating liners were evaluated. All materials in these bearings are electrically nonconductive; thus eliminating the problem of galvanic corrosion sometimes encountered with metal bearings installed in dissimilar metal mountings. Friction and wear characteristics were determined for loads, temperatures, and oscillating conditions that are typical of current airframe bearing applications. Friction and wear characteristics were found to be compatible with most airframe bearing requirements from -23 C to 121 C. Contamination with MIL H-5606 hydraulic fluid increased wear of the PTFE liners at 121 C, but did not affect the structural integrity of the aramid/epoxy composite.

  5. Experimental Measurement of the Static Coefficient of Friction at the Ti-Ti Taper Connection in Total Hip Arthroplasty.

    PubMed

    Bitter, T; Khan, I; Marriott, T; Schreurs, B W; Verdonschot, N; Janssen, D

    2016-03-01

    The modular taper junction in total hip replacements has been implicated as a possible source of wear. The finite-element (FE) method can be used to study the wear potential at the taper junction. For such simulations it is important to implement representative contact parameters, in order to achieve accurate results. One of the main parameters in FE simulations is the coefficient of friction. However, in current literature, there is quite a wide spread in coefficient of friction values (0.15 - 0.8), which has a significant effect on the outcome of the FE simulations. Therefore, to obtain more accurate results, one should use a coefficient of friction that is determined for the specific material couple being analyzed. In this study, the static coefficient of friction was determined for two types of titanium-on-titanium stem-adaptor couples, using actual cut-outs of the final implants, to ensure that the coefficient of friction was determined consistently for the actual implant material and surface finish characteristics. Two types of tapers were examined, Biomet type-1 and 12/14, where type-1 has a polished surface finish and the 12/14 is a microgrooved system. We found static coefficients of friction of 0.19 and 0.29 for the 12/14 and type-1 stem-adaptor couples, respectively.

  6. Low Friction Hull Coatings for Icebreakers. Phase II, Parts I and II. Laboratory and Field Tests

    DTIC Science & Technology

    1976-02-01

    is a hybrid of the above systems . It contains no solvent, can cure at room temperature, is flexible and exhibits good wear characteristics. This...31 Figure I-12 Schematic of Humidity Control System Figure I-13 Effect of Velocity on the Friction Coefficient of...Application of a Conventional Epoxy System and a Vinyl Antifoul Photographs of the USCG Cutter Mackinaw during and after Application of Polyurethane Coating

  7. An in vitro Evaluation of Friction Characteristics of Conventional Stainless Steel and Self-ligating Stainless Steel Brackets with different Dimensions of Archwires in Various Bracket-archwire Combination.

    PubMed

    Sridharan, K; Sandbhor, Shailesh; Rajasekaran, U B; Sam, George; Ramees, M Mohamed; Abraham, Esther A

    2017-08-01

    The purpose of this research is to compare the frictional attributes of stainless steel conventional brackets and self-ligating stainless steel brackets with different dimensions of archwires. The test was carried with two sets of maxillary brackets: (1) Conventional stainless steel (Victory Series), (2) stainless steel self-ligating (SmartClip) without first premolar brackets. Stainless steel, nickel-titanium (NiTi), and beta-Ti which are the types of orthodontic wire alloys were tested in this study. To monitor the frictional force, a universal testing machine (Instron 33R 4467) that comprises 10 kg tension load cell was assigned on a range of 1 kg and determined from 0 to 2 kg, which allows moving of an archwire along the brackets. One-way analysis of variance was used to test the difference between groups. To analyze the statistical difference between the two groups, Student's t-test was used. For Victory Series in static friction, p-value was 0.946 and for kinetic friction it was 0.944; at the same time for SmartClip, the p value for static and kinetic frictional resistance was 0.497 and 0.518 respectively. Hence, there was no statistically significant difference between the NiTi and stainless steel archwires. It is concluded that when compared with conventional brackets with stainless steel ligatures, self-ligating brackets can produce significantly less friction during sliding. Beta-Ti archwires expressed high amount of frictional resistance and the stainless steel archwires comprise low frictional resistance among all the archwire materials. In orthodontics, frictional resistance has always had a major role. Its ability to impair tooth movement leads to the need for higher forces to move the teeth and it extends the treatment time which results in loss of posterior anchorage. Friction in orthodontics is related with sliding mechanics when a wire is moving through one or a series of bracket slots.

  8. Correlation of Fracture Behavior With Microstructure in Friction Stir Welded, and Spin Formed AI-Li 2195 Domes

    NASA Technical Reports Server (NTRS)

    Tayon, Wesley A.; Domack, Marcia S.; Hales, Stephen J.

    2012-01-01

    Single-piece, spin-formed domes manufactured from friction stir welded (FSW) plates of Al-Li alloy 2195 have the potential to reduce the cost of fabricating cryogenic propellant tanks. Mechanical properties in the completed domes can be related directly to the final material condition and the microstructures developed. However, these new fabrication techniques have resulted in unexpected material challenges, such as abnormal grain growth in the weld nugget and the propensity for fracture in the adjacent thermo-mechanically affected zone (TMAZ). In this study, the microstructure and texture transformations within the TMAZ are related to fracture location in the vicinity of the weldment. The texture variations in the TMAZ are caused primarily by the varying amounts of shear deformation introduced during the FSW process. Grain morphology and microtexture characteristics are examined as a function of location in the TMAZ via electron backscatter diffraction (EBSD). A strong correlation between fracture location and the presence of texture banding in the TMAZ is observed. The fracture path tends to follow a distinct region of low Taylor Factor (TF) grains.

  9. Correlation of Fracture Behavior with Microstructure in Friction Stir Welded, and Spin-Formed Al-Li 2195 Domes

    NASA Astrophysics Data System (ADS)

    Tayon, Wesley A.; Domack, Marcia S.; Hales, Stephen J.

    Single-piece, spin-formed domes manufactured from friction stir welded (FSW) plates of Al-Li alloy 2195 have the potential to reduce the cost of fabricating cryogenic propellant tanks. Mechanical properties in the completed domes can be related directly to the final material condition and the microstructures developed. However, these new fabrication techniques have resulted in unexpected material challenges, such as abnormal grain growth in the weld nugget and the propensity for fracture in the adjacent thermo-mechanically affected zone (TMAZ). In this study, the microstructure and texture transformations within the TMAZ are related to fracture location in the vicinity of the weldment. The texture variations in the TMAZ are caused primarily by the varying amounts of shear deformation introduced during the FSW process. Grain morphology and microtexture characteristics are examined as a function of location in the TMAZ via electron backscatter diffraction (EBSD). A strong correlation between fracture location and the presence of texture banding in the TMAZ is observed. The fracture path tends to follow a distinct region of low Taylor Factor (TF) grains.

  10. Bi-directional, buried-wire skin-friction gage

    NASA Technical Reports Server (NTRS)

    Higuchi, H.; Peake, D. J.

    1978-01-01

    A compact, nonobtrusive, bi-directional, skin-friction gage was developed to measure the mean shear stress beneath a three-dimensional boundary layer. The gage works by measuring the heat flux from two orthogonal wires embedded in the surface. Such a gage was constructed and its characteristics were determined for different angles of yaw in a calibration experiment in subsonic flow with a Preston tube used as a standard. Sample gages were then used in a fully three-dimensional turbulent boundary layer on a circular cone at high relative incidence, where there were regimes of favorable and adverse pressure gradients and three-dimensional separation. Both the direction and magnitude of skin friction were then obtained on the cone surface.

  11. Internal friction, Young's modulus, and electrical resistivity of submicrocrystalline titanium

    NASA Astrophysics Data System (ADS)

    Kardashev, B. K.; Sapozhnikov, K. V.; Betekhtin, V. I.; Kadomtsev, A. G.; Narykova, M. V.

    2017-12-01

    The variation of the internal friction, Young's modulus, and electrical resistivity of two grades of polycrystalline titanium (VT1-0 and Grade 4) in the area of low temperatures (100-300 K) as depending on the initial structure and subsequent severe plastic deformation converting the material into the submicrocrystalline structural state in relation to the grain size is studied. The maximum of the internal friction is detected in submicrocrystalline titanium, which is interpreted as a Bordoni peak. All the studied characteristics are sensitive indicators for a nonequilibrium state of the grain boundaries after the deformation. The effect of the initial structure of the metal on its properties after the severe deformation is revealed.

  12. Experimental studies on laminar flow heat transfer in nanofluids flowing through a straight circular tube with and without V-cut twisted tape insert

    NASA Astrophysics Data System (ADS)

    Arunachalam, U.; Edwin, M.

    2018-03-01

    This paper presents experimental studies on the convective heat transfer and friction factor characteristics of flows in a straight circular tube with and without V-cut twisted tapeinserts using Al2O3-Cu/water hybrid nanofluid as working fluid and also comparative studies between Alumina nanofluid and (Cu-Alumina) hybrid nanofluid is conducted. This work is restricted to one type of hybrid nanofluid only. It also does not include the effect of twisted tape dimensions on heat transfer coefficient and pressure drop.Itis observed that the experimental convective heat transfer coefficient increases slightly with an increase in particle volume concentration from 0.1 and 0.4%. The experimental data is in good agreement with the previous models and correlations.The experimental results showed a good enhancement in Nusselt number for Peclet number from 2580 to 11,780 compared to Nusselt number of water, when the copper nanofluid is 0.01% volume concentration and mixed with 0.4% concentration of Alumina nanofluid.Itis also noticed that 0.01% Al2O3-Cu/water hybrid nanofluidhas a higher friction factor than the Al2O3/water nanofluid and base fluid. Since the magnitude of thermal enhancement factor (η) has been observed to be only marginally higher than unity (1.01 to 1.05), the net benefit of inserting V - cut twisted tapes in nanofluids is also nevertheless marginal.

  13. Stiffness of frictional contact of dissimilar elastic solids

    DOE PAGES

    Lee, Jin Haeng; Gao, Yanfei; Bower, Allan F.; ...

    2017-12-22

    The classic Sneddon relationship between the normal contact stiffness and the contact size is valid for axisymmetric, frictionless contact, in which the two contacting solids are approximated by elastic half-spaces. Deviation from this result critically affects the accuracy of the load and displacement sensing nanoindentation techniques. This study gives a thorough numerical and analytical investigation of corrections needed to the Sneddon solution when finite Coulomb friction exists between an elastic half-space and a flat-ended rigid punch with circular or noncircular shape. Because of linearity of the Coulomb friction, the correction factor is found to be a function of the frictionmore » coefficient, Poisson's ratio, and the contact shape, but independent of the contact size. Two issues are of primary concern in the finite element simulations – adequacy of the mesh near the contact edge and the friction implementation methodology. Although the stick or slip zone sizes are quite different from the penalty or Lagrangian methods, the calculated contact stiffnesses are almost the same and may be considerably larger than those in Sneddon's solution. For circular punch contact, the numerical solutions agree remarkably well with a previous analytical solution. For non-circular punch contact, the results can be represented using the equivalence between the contact problem and bi-material fracture mechanics. Finally, the correction factor is found to be a product of that for the circular contact and a multiplicative factor that depends only on the shape of the punch but not on the friction coefficient or Poisson's ratio.« less

  14. Stiffness of frictional contact of dissimilar elastic solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jin Haeng; Gao, Yanfei; Bower, Allan F.

    The classic Sneddon relationship between the normal contact stiffness and the contact size is valid for axisymmetric, frictionless contact, in which the two contacting solids are approximated by elastic half-spaces. Deviation from this result critically affects the accuracy of the load and displacement sensing nanoindentation techniques. This study gives a thorough numerical and analytical investigation of corrections needed to the Sneddon solution when finite Coulomb friction exists between an elastic half-space and a flat-ended rigid punch with circular or noncircular shape. Because of linearity of the Coulomb friction, the correction factor is found to be a function of the frictionmore » coefficient, Poisson's ratio, and the contact shape, but independent of the contact size. Two issues are of primary concern in the finite element simulations – adequacy of the mesh near the contact edge and the friction implementation methodology. Although the stick or slip zone sizes are quite different from the penalty or Lagrangian methods, the calculated contact stiffnesses are almost the same and may be considerably larger than those in Sneddon's solution. For circular punch contact, the numerical solutions agree remarkably well with a previous analytical solution. For non-circular punch contact, the results can be represented using the equivalence between the contact problem and bi-material fracture mechanics. Finally, the correction factor is found to be a product of that for the circular contact and a multiplicative factor that depends only on the shape of the punch but not on the friction coefficient or Poisson's ratio.« less

  15. Tribological properties of structural ceramics

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.; Miyoshi, K.

    1985-01-01

    The tribological and lubricated behavior of both oxide and nonoxide ceramics are reviewed in this chapter. Ceramics are examined in contact with themselves, other harder materials and metals. Elastic, plastic and fracture behavior of ceramics in solid state contact is discussed. The contact load necessary to initiate fracture in ceramics is shown to be appreciably reduced with tangential motion. Both friction and wear of ceramics are anisotropic and relate to crystal structure as has been observed with metals. Grit size effects in two and three body abrasive wear are observed for ceramics. Both free energy of oxide formation and the d valence bond character of metals are related to the friction and wear characteristics for metals in contact with ceramics. Surface contaminants affect friction and adhesive wear. For example, carbon on silicon carbide and chlorine on aluminum oxide reduce friction while oxygen on metal surfaces in contact with ceramics increases friction. Lubrication increases the critical load necessary to initiate fracture of ceramics both in indentation and with sliding or rubbing. Ceramics compositions both as coatings and in composites are described for the high temperature lubrication of both alloys and ceramics.

  16. Large-scale landslide simulations: Global deformation, velocities and basal friction

    NASA Technical Reports Server (NTRS)

    Campbell, Charles S.; Cleary, Paul W.; Hopkins, Mark

    1995-01-01

    The cause of the apparent small friction exhibited by long runout landslides has long been speculated upon. In an attempt to provide some insight into the matter, this paper describes results obtained from a discrete particle computer simulation of landslides composed of up to 1,000,000 two-dimensional discs. While simplified, the results show many of the characteristics of field data (the volumetric effect on runout, preserved strata, etc.) and with allowances made for the two-dimensional nature of the simulation, the runouts compare well with those of actual landslides. The results challenge the current view that landslides travel as a nearly solid block riding atop a low friction basal layer. Instead, they show that the mass is completely shearing and indicate that the apparent friction coefficient is an increasing function of shear rate. The volumetric effect can then be understood. With all other conditions being equal, different size slides appear to travel with nearly the same average velocity; however, as the larger landslides are thicker, they experience smaller shear rates and correspondingly smaller frictional resistance.

  17. Impact of Microstructure on MoS 2 Oxidation and Friction

    DOE PAGES

    Curry, John F.; Wilson, Mark A.; Luftman, Henry S.; ...

    2017-07-31

    In this work, we demonstrate the role of microstructure in the friction and oxidation behavior of the lamellar solid lubricant molybdenum disulfide (MoS 2). We report on systematic investigations of oxidation and friction for two MoS 2 films with distinctively different microstructures—amorphous and planar/highly-ordered—before and after exposure to atomic oxygen (AO) and high-temperature (250 °C) molecular oxygen. A combination of experimental tribology, molecular dynamics simulations, X-ray photoelectron spectroscopy (XPS), and high-sensitivity low-energy ion scattering (HS-LEIS) was used to reveal new insights about the links between structure and properties of these widely utilized low-friction materials. Initially, ordered MoS 2 films showedmore » a surprising resistance to both atomic and molecular oxygens (even at elevated temperature), retaining characteristic low friction after exposure to extreme oxidative environments. Finally, XPS shows comparable oxidation of both coatings via AO; however, monolayer resolved compositional depth profiles from HS-LEIS reveal that the microstructure of the ordered coatings limits oxidation to the first atomic layer.« less

  18. The effects of aluminum oxide on inertial welding of aluminum in space applications

    NASA Astrophysics Data System (ADS)

    Smith, Michael H.

    1992-05-01

    Inertial friction welding of 2219 aluminum alloy studs to 2219 aluminum alloy plates is investigated in air and in an argon atmosphere to determine the effects of an intact oxide layer on weld quality. Scratch-brushing of plates and studs was performed in an argon atmosphere to break up the oxide layer and prevent reformation prior to testing. Argon was used to simulate the near-oxygen free space environment. Weld quality was determined by a bend test and by measurement of the fraction of the weld surface area that was dimpled in appearance following fracture of the weld. The fundamental theories of friction and wear that are applicable to friction welding are reviewed. A brief survey of current welding methods that may have application in space is presented, as well as a discussion of their feasibility and limitations. Characteristics of the space station are discussed as well as their consequences on welding in space. A qualitative model of the process of inertial friction welding based on the theories of friction and observations of welds and weld fractures is developed and presented.

  19. Influence of adhesion and friction on the geometry of packings of spherical particles

    NASA Astrophysics Data System (ADS)

    Martin, C. L.; Bordia, R. K.

    2008-03-01

    We study the effect of both adhesion and friction on the geometry of monosized packings of spheres by means of discrete element simulations. We use elastic properties that are characteristic of materials typically used for particulate processing (Young’s modulus in the range 20-200 GPa). The geometrical features, both global and local, of the packings are studied using a variety of approaches in order to investigate their ability to quantify the effect of adhesion and/or friction. We show that both adhesion and friction interaction decrease the packing fraction. The very localized ordering that adhesion triggers is particularly investigated by use of the radial distribution function, the ordering parameter Q6 , and four triclinic cells that allow a description of the microstructure at the local level. We show that the probability of occurrence of these triclinic cells is approximately proportional to their degree of freedom when neither adhesion nor friction plays a role. We find that the introduction of adhesive interactions increases the probability of occurrence of those cells that have the lowest degree of freedom.

  20. Friction falls towards zero in quartz rock as slip velocity approaches seismic rates.

    PubMed

    Di Toro, Giulio; Goldsby, David L; Tullis, Terry E

    2004-01-29

    An important unsolved problem in earthquake mechanics is to determine the resistance to slip on faults in the Earth's crust during earthquakes. Knowledge of coseismic slip resistance is critical for understanding the magnitude of shear-stress reduction and hence the near-fault acceleration that can occur during earthquakes, which affects the amount of damage that earthquakes are capable of causing. In particular, a long-unresolved problem is the apparently low strength of major faults, which may be caused by low coseismic frictional resistance. The frictional properties of rocks at slip velocities up to 3 mm s(-1) and for slip displacements characteristic of large earthquakes have been recently simulated under laboratory conditions. Here we report data on quartz rocks that indicate an extraordinary progressive decrease in frictional resistance with increasing slip velocity above 1 mm s(-1). This reduction extrapolates to zero friction at seismic slip rates of approximately 1 m s(-1), and appears to be due to the formation of a thin layer of silica gel on the fault surface: it may explain the low strength of major faults during earthquakes.

  1. Impact of Microstructure on MoS 2 Oxidation and Friction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curry, John F.; Wilson, Mark A.; Luftman, Henry S.

    In this work, we demonstrate the role of microstructure in the friction and oxidation behavior of the lamellar solid lubricant molybdenum disulfide (MoS 2). We report on systematic investigations of oxidation and friction for two MoS 2 films with distinctively different microstructures—amorphous and planar/highly-ordered—before and after exposure to atomic oxygen (AO) and high-temperature (250 °C) molecular oxygen. A combination of experimental tribology, molecular dynamics simulations, X-ray photoelectron spectroscopy (XPS), and high-sensitivity low-energy ion scattering (HS-LEIS) was used to reveal new insights about the links between structure and properties of these widely utilized low-friction materials. Initially, ordered MoS 2 films showedmore » a surprising resistance to both atomic and molecular oxygens (even at elevated temperature), retaining characteristic low friction after exposure to extreme oxidative environments. Finally, XPS shows comparable oxidation of both coatings via AO; however, monolayer resolved compositional depth profiles from HS-LEIS reveal that the microstructure of the ordered coatings limits oxidation to the first atomic layer.« less

  2. Deformation During Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    White, Henry J.

    2002-01-01

    Friction Stir Welding (FSW) is a solid state welding process that exhibits characteristics similar to traditional metal cutting processes. The plastic deformation that occurs during friction stir welding is due to the superposition of three flow fields: a primary rotation of a radially symmetric solid plug of metal surrounding the pin tool, a secondary uniform translation, and a tertiary ring vortex flow (smoke rings) surrounding the tool. If the metal sticks to the tool, the plug surface extends down into the metal from the outer edge of the tool shoulder, decreases in diameter like a funnel, and closes up beneath the pin. Since its invention, ten years have gone by and still very little is known about the physics of the friction stir welding process. In this experiment, an H13 steel weld tool (shoulder diameter, 0.797 in; pin diameter, 0.312 in; and pin length, 0.2506 in) was used to weld three 0.255 in thick plates. The deformation behavior during friction stir welding was investigated by metallographically preparing a plan view sections of the weldment and taking Vickers hardness test in the key-hole region.

  3. Matrix crack extension at a frictionally constrained fiber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Selvadurai, A.P.S.

    1994-07-01

    The paper presents the application of a boundary element scheme to the study of the behavior of a penny-shaped matrix crack which occurs at an isolated fiber which is frictionally constrained. An incremental technique is used to examine the progression of self similar extension of the matrix crack due to the axial straining of the composite region. The extension of the crack occurs at the attainment of the critical stress intensity factor in the crack opening mode. Iterative techniques are used to determine the extent to crack enlargement and the occurrence of slip and locked regions in the frictional fiber-matrixmore » interface. The studies illustrate the role of fiber-matrix interface friction on the development of stable cracks in such frictionally constrained zones. The methodologies are applied to typical isolated fiber configurations of interest to fragmentation tests.« less

  4. Correlations for heat transfer coefficient and friction factor for turbulent flow of air through square and hexagonal ducts with twisted tape insert

    NASA Astrophysics Data System (ADS)

    Yadav, Rupesh J.; Kore, Sandeep S.; Joshi, Prathamesh S.

    2018-05-01

    The experimental and numerical Nusselt number and friction factor investigation for turbulent flow through a non-circular duct with twisted-tape inserts have been presented. The non-circular ducts include square, hexagonal duct. The results of non-circular ducts are compared with circular duct. All the ducts have same equivalent diameter. The twist ratios used for the experiment are Y = 3.5, 4.5, 5.5 and 6.5. Experiments were carried out on square duct, hexagonal duct and circular duct. The Reynolds number lied between 10,000 and 1, 05,000. The present study is restricted to the flow of air at Pr = 0.7 only and within a narrow temperature range of 40 to 75 ΟC, within which the compressible nature of air can be neglected. The results reveal that, both Nusselt number and friction factor increases as the side of non-circular duct increases. Maximum Nusselt number and friction factor is obtained in case of circular duct with twisted tape. Further the correlations of Nu and f are given for different non circular duct with twisted tape insert for engineering applications for the turbulent regime. Since the thermal performance factor (η) is observed to be within the range of 0.8 to 1.13 for both circular and noncircular ducts, the overall benefit of using twisted tape in the flow field shall nevertheless be marginal.

  5. Physical and chemical properties of orthodontic brackets after 12 and 24 months: in situ study

    PubMed Central

    MENDES, Bernardo de Azevedo Bahia; FERREIRA, Ricardo Alberto Neto; PITHON, Matheus Melo; HORTA, Martinho Campolina Rebello; OLIVEIRA, Dauro Douglas

    2014-01-01

    Objective The aim of this article was to assess how intraoral biodegradation influenced the surface characteristics and friction levels of metallic brackets used during 12 and 24 months of orthodontic treatment and also to compare the static friction generated in these brackets with four different methods of the ligation of orthodontic wires. Material and Methods Seventy premolar brackets as received from the manufacturer and 224 brackets that were used in previous orthodontic treatments were evaluated in this experiment. The surface morphology and the composition of the deposits found in the brackets were evaluated with rugosimetry, scanning electron microscopy, and energy dispersive X-ray spectroscopy. Friction was analyzed by applying tensile tests simulating sliding mechanics with a 0.019x0.025" steel wire. The static friction levels produced by the following ligation methods were evaluated: loosely attached steel ligature around all four bracket wings, steel ligature attached to only two wings, conventional elastomeric ligation around all 4 bracket wings, and non-conventional Slide® elastomeric ligature. Results The results demonstrated the presence of biodegradation effects such as corrosion pits, plastic deformation, cracks, and material deposits. The main chemical elements found on these deposits were Carbon and Oxygen. The maximum friction produced by each ligation method changed according to the time of intraoral use. The steel ligature loosely attached to all four bracket wings produced the lowest friction levels in the new brackets. The conventional elastic ligatures generated the highest friction levels. The metallic brackets underwent significant degradation during orthodontic treatment, showing an increase in surface roughness and the deposit of chemical elements on the surface. Conclusion The levels of static friction decreased with use. The non-conventional elastic ligatures were the best alternative to reduce friction. PMID:25025560

  6. Physical and chemical properties of orthodontic brackets after 12 and 24 months: in situ study.

    PubMed

    Mendes, Bernardo de Azevedo Bahia; Neto Ferreira, Ricardo Alberto; Pithon, Matheus Melo; Horta, Martinho Campolina Rebello; Oliveira, Dauro Douglas

    2014-06-01

    The aim of this article was to assess how intraoral biodegradation influenced the surface characteristics and friction levels of metallic brackets used during 12 and 24 months of orthodontic treatment and also to compare the static friction generated in these brackets with four different methods of the ligation of orthodontic wires. Seventy premolar brackets as received from the manufacturer and 224 brackets that were used in previous orthodontic treatments were evaluated in this experiment. The surface morphology and the composition of the deposits found in the brackets were evaluated with rugosimetry, scanning electron microscopy, and energy dispersive X-ray spectroscopy. Friction was analyzed by applying tensile tests simulating sliding mechanics with a 0.019x0.025" steel wire. The static friction levels produced by the following ligation methods were evaluated: loosely attached steel ligature around all four bracket wings, steel ligature attached to only two wings, conventional elastomeric ligation around all 4 bracket wings, and non-conventional Slide® elastomeric ligature. The results demonstrated the presence of biodegradation effects such as corrosion pits, plastic deformation, cracks, and material deposits. The main chemical elements found on these deposits were Carbon and Oxygen. The maximum friction produced by each ligation method changed according to the time of intraoral use. The steel ligature loosely attached to all four bracket wings produced the lowest friction levels in the new brackets. The conventional elastic ligatures generated the highest friction levels. The metallic brackets underwent significant degradation during orthodontic treatment, showing an increase in surface roughness and the deposit of chemical elements on the surface. The levels of static friction decreased with use. The non-conventional elastic ligatures were the best alternative to reduce friction.

  7. Friction and morphology of magnetic tapes in sliding contact with nickel-zinc ferrite

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.; Bhushan, B.

    1984-01-01

    Friction and morphological studies were conducted with magnetic tapes containing a Ni-Zn ferrite hemispherical pin in laboratory air at a relative humidity of 40 percent and at 23 C. The results indicate that the binder plays a significant role in the friction properties, morphology, and microstructure of the tape. Comparisons were made with four binders: nitrocellulose; poly (vinyledene) chloride; cellulose acetate; and hydroxyl-terminated, low molecular weight polyester added to the base polymer, polyester-polyurethane. The coefficient of friction was lowest for the tape with the nitrocellulose binder and increased in the order hydroxylterminated, low molecular weight polyester resin; poly (vinyledene) chloride; and cellulose acetate. The degree of enclosure of the oxide particles by the binder was highest for hydroxyl-terminated, low molecular weight polyester and decreased in the order cellulose acetate, poly (vinyledene) chloride, and nitrocellulose. The nature of deformation of the tape was a factor in controlling friction. The coefficient of friction under elastic contact conditions was considerably lower than under conditions that produced plastic contacts.

  8. Spectrum of Slip Processes on the Subduction Interface in a Continuum Framework Resolved by Rate-and State Dependent Friction and Adaptive Time Stepping

    NASA Astrophysics Data System (ADS)

    Herrendoerfer, R.; van Dinther, Y.; Gerya, T.

    2015-12-01

    To explore the relationships between subduction dynamics and the megathrust earthquake potential, we have recently developed a numerical model that bridges the gap between processes on geodynamic and earthquake cycle time scales. In a self-consistent, continuum-based framework including a visco-elasto-plastic constitutive relationship, cycles of megathrust earthquake-like ruptures were simulated through a purely slip rate-dependent friction, albeit with very low slip rates (van Dinther et al., JGR, 2013). In addition to much faster earthquakes, a range of aseismic slip processes operate at different time scales in nature. These aseismic processes likely accommodate a considerable amount of the plate convergence and are thus relevant in order to estimate the long-term seismic coupling and related hazard in subduction zones. To simulate and resolve this wide spectrum of slip processes, we innovatively implemented rate-and state dependent friction (RSF) and an adaptive time-stepping into our continuum framework. The RSF formulation, in contrast to our previous friction formulation, takes the dependency of frictional strength on a state variable into account. It thereby allows for continuous plastic yielding inside rate-weakening regions, which leads to aseismic slip. In contrast to the conventional RSF formulation, we relate slip velocities to strain rates and use an invariant formulation. Thus we do not require the a priori definition of infinitely thin, planar faults in a homogeneous elastic medium. With this new implementation of RSF, we succeed to produce consistent cycles of frictional instabilities. By changing the frictional parameter a, b, and the characteristic slip distance, we observe a transition from stable sliding to stick-slip behaviour. This transition is in general agreement with predictions from theoretical estimates of the nucleation size, thereby to first order validating our implementation. By incorporating adaptive time-stepping based on a fraction of characteristic slip distance over maximum slip velocity, we are able to resolve stick-slip events and increase computational speed. In this better resolved framework, we examine the role of aseismic slip on the megathrust cycle and its dependence on subduction velocity.

  9. Design and Analysis of the Measurement Characteristics of a Bidirectional-Decoupling Over-Constrained Six-Dimensional Parallel-Mechanism Force Sensor

    PubMed Central

    Zhao, Tieshi; Zhao, Yanzhi; Hu, Qiangqiang; Ding, Shixing

    2017-01-01

    The measurement of large forces and the presence of errors due to dimensional coupling are significant challenges for multi-dimensional force sensors. To address these challenges, this paper proposes an over-constrained six-dimensional force sensor based on a parallel mechanism of steel ball structures as a measurement module. The steel ball structure can be subject to rolling friction instead of sliding friction, thus reducing the influence of friction. However, because the structure can only withstand unidirectional pressure, the application of steel balls in a six-dimensional force sensor is difficult. Accordingly, a new design of the sensor measurement structure was designed in this study. The static equilibrium and displacement compatibility equations of the sensor prototype’s over-constrained structure were established to obtain the transformation function, from which the forces in the measurement branches of the proposed sensor were then analytically derived. The sensor’s measurement characteristics were then analysed through numerical examples. Finally, these measurement characteristics were confirmed through calibration and application experiments. The measurement accuracy of the proposed sensor was determined to be 1.28%, with a maximum coupling error of 1.98%, indicating that the proposed sensor successfully overcomes the issues related to steel ball structures and provides sufficient accuracy. PMID:28867812

  10. Friction, Wear, and Surface Damage of Metals as Affected by Solid Surface Films

    NASA Technical Reports Server (NTRS)

    Bisson, Edmond E; Johnson, Robert L; Swikert, Max A; Godfrey, Douglas

    1956-01-01

    As predicted by friction theory, experiments showed that friction and surface damage of metals can be reduced by solid surface films. The ability of materials to form surface films that prevent welding was a very important factor in wear of dry and boundary lubricated surfaces. Films of graphitic carbon on cast irons, nio on nickel alloys, and feo and fe sub 3 o sub 4 on ferrous materials were found to be beneficial. Abrasive films such as fe sub 2 o sub 3 or moo sub 3 were definitely detrimental. It appears that the importance of oxide films to friction and wear processes has not been fully appreciated.

  11. Gait of dairy cows on floors with different slipperiness.

    PubMed

    Telezhenko, E; Magnusson, M; Bergsten, C

    2017-08-01

    This study assessed the slip resistance of different types of solid flooring in cattle housing using a range of technical tests and gait analysis. Dynamic and static coefficient of friction, skid resistance, and abrasiveness were tested on concrete flooring with a smooth finish, a grooved pattern, or a tamped pattern, acid-resistant mastic asphalt, soft rubber mats, and a worn slatted concrete floor. Coefficients of friction and skid resistance were tested under clean and slurry-soiled conditions. Linear kinematic variables were assessed in 40 cows with trackway measurements after the cows passed over the floors in a straight walk. All gait variables were assessed as deviations from those obtained on the slatted concrete floor, which was used as a baseline. The coefficient of friction tests divided the floors into 3 categories: concrete flooring, which had a low coefficient of friction (0.29-0.41); mastic asphalt flooring, which had medium values (0.38-0.45); and rubber mats, which had high values (0.49-0.57). The highest abrasion (g/10 m) was on the asphalt flooring (4.48), and the concrete flooring with a tamped pattern had significantly higher abrasiveness (2.77) than the other concrete floors (1.26-1.60). Lowest values on the skid-resistance tests (dry/wet) were for smooth concrete (79/35) and mastic asphalt (65/47), especially with a slurry layer on the surface. Gait analysis mainly differentiated floors with higher friction and abrasion by longer strides and better tracking. Step asymmetry was lower on floors with high skid-resistance values. The most secure cow gait, in almost every aspect, was observed on soft rubber mats. Relationships between gait variables and physical floor characteristics ranged from average to weak (partial correlations 0.54-0.16). Thus, none of the physical characteristics alone was informative enough to characterize slip resistance. With reference to gait analysis, the abrasiveness of the hard surfaces was more informative than the coefficient of friction, but the effect of pattern was better detected by skid-resistance measurements. Consequently, several physical characteristics are needed to objectively describe the slip resistance of cattle floors. Soft rubber mats gave better tracking than hard, solid floors, even with a grooved surface or a tamped pattern. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. A geological evidence of very low frequency earthquake inferred from vitrinite thermal records across a microfault within on-land accretionary complex.

    NASA Astrophysics Data System (ADS)

    Morita, K.; Hashimoto, Y.; Hirose, T.; Hamada, Y.; Kitamura, M.

    2014-12-01

    Generation of friction heat associated with fault slip is controlled by friction, slip distance and fault thickness. Nature of fault slip can be estimated from the record of frictional heating along a fault (e.g., Fulton et al., 2012). Purpose of this study is to detect the record of frictional heating along a microfault observed in on-land accretionary complex, Shimanto Belt, SW Japan using vitrinite reflectance (Ro) and to examine the characteristics of fault slip in deeper subduction zone. The study area is located in Nonokawa formation, the Cretaceous Shimanto Belt, in Kochi Prefecture, Southwest Japan. We found a carbonaceous material concentrated layer (CMCL) in the formation. Some micro-faults cut the layer. The thickness of CMCL is about 3-4m. Ro of host rock is about 0.98-1.1% and of fault rock is over 1.2%. Kitamura et al. (2012) pointed out that fracturing energy may control the high Ro within fault zone. To avoid the effect of fracturing on Ro, we tired to detect a diffusion pattern of frictional heating in host rocks. Distribution of Ro is mapped in thin sections to make the Ro-distance pattern perpendicular to the fault plane. Within the fracture zone, abnormally high Ro (about 2.0% or above) was observed. Ro was 1.25% at the wall of fracture zone and decreases to 1.1% at about 5cm from the wall. We interpreted that the Ro-distance pattern was resulted from the thermal diffusion. Using this diffusion pattern, the characteristic fault parameters, such as friction, slip rate and rise time (Tr) was examined. We set parameters Q (= friction times slip rate). We have simulated frictional heating and Ro maturation on the basis of the method by Sweeny and Burnham (1990). Grid search was conducted to find the best fitted combination of Q and Tr at the smallest residual between simulated Ro and observed Ro. In the result, we estimated about 1500 (Pa m/s) of Q and about 130000(s) of Tr. Because the base temperature is about 185˚C based on the 1.1% of Ro, the depth of fault activity can be corresponded to about 6 km. The effective pressure is estimated about 94MPa. If we put friction coefficient as 0.4-0.6, the friction is about 37.6-56.5MPa. Therefore, slip rate is calculated to be about 27-40μm/s. This very slow slip rate is consistent with that for very low frequency earthquake (VLFe) reported by Sugioka et al. (2012).

  13. Butane dihedral angle dynamics in water is dominated by internal friction.

    PubMed

    Daldrop, Jan O; Kappler, Julian; Brünig, Florian N; Netz, Roland R

    2018-05-15

    The dihedral dynamics of butane in water is known to be rather insensitive to the water viscosity; possible explanations for this involve inertial effects or Kramers' turnover, the finite memory time of friction, and the presence of so-called internal friction. To disentangle these factors, we introduce a method to directly extract the friction memory function from unconstrained simulations in the presence of an arbitrary free-energy landscape. By analysis of the dihedral friction in butane for varying water viscosity, we demonstrate the existence of an internal friction contribution that does not scale linearly with water viscosity. At normal water viscosity, the internal friction turns out to be eight times larger than the solvent friction and thus completely dominates the effective friction. By comparison with simulations of a constrained butane molecule that has the dihedral as the only degree of freedom, we show that internal friction comes from the six additional degrees of freedom in unconstrained butane that are orthogonal to the dihedral angle reaction coordinate. While the insensitivity of butane's dihedral dynamics to water viscosity is solely due to the presence of internal friction, inertial effects nevertheless crucially influence the resultant transition rates. In contrast, non-Markovian effects due to the finite memory time are present but do not significantly influence the dihedral barrier-crossing rate of butane. These results not only settle the character of dihedral dynamics in small solvated molecular systems such as butane, they also have important implications for the folding of polymers and proteins. Copyright © 2018 the Author(s). Published by PNAS.

  14. Estimating productivity costs using the friction cost approach in practice: a systematic review.

    PubMed

    Kigozi, Jesse; Jowett, Sue; Lewis, Martyn; Barton, Pelham; Coast, Joanna

    2016-01-01

    The choice of the most appropriate approach to valuing productivity loss has received much debate in the literature. The friction cost approach has been proposed as a more appropriate alternative to the human capital approach when valuing productivity loss, although its application remains limited. This study reviews application of the friction cost approach in health economic studies and examines how its use varies in practice across different country settings. A systematic review was performed to identify economic evaluation studies that have estimated productivity costs using the friction cost approach and published in English from 1996 to 2013. A standard template was developed and used to extract information from studies meeting the inclusion criteria. The search yielded 46 studies from 12 countries. Of these, 28 were from the Netherlands. Thirty-five studies reported the length of friction period used, with only 16 stating explicitly the source of the friction period. Nine studies reported the elasticity correction factor used. The reported friction cost approach methods used to derive productivity costs varied in quality across studies from different countries. Few health economic studies have estimated productivity costs using the friction cost approach. The estimation and reporting of productivity costs using this method appears to differ in quality by country. The review reveals gaps and lack of clarity in reporting of methods for friction cost evaluation. Generating reporting guidelines and country-specific parameters for the friction cost approach is recommended if increased application and accuracy of the method is to be realized.

  15. Frictional behavior of atomically thin sheets: hexagonal-shaped graphene islands grown on copper by chemical vapor deposition.

    PubMed

    Egberts, Philip; Han, Gang Hee; Liu, Xin Z; Johnson, A T Charlie; Carpick, Robert W

    2014-05-27

    Single asperity friction experiments using atomic force microscopy (AFM) have been conducted on chemical vapor deposited (CVD) graphene grown on polycrystalline copper foils. Graphene substantially lowers the friction force experienced by the sliding asperity of a silicon AFM tip compared to the surrounding oxidized copper surface by a factor ranging from 1.5 to 7 over loads from the adhesive minimum up to 80 nN. No damage to the graphene was observed over this range, showing that friction force microscopy serves as a facile, high contrast probe for identifying the presence of graphene on Cu. Consistent with studies of epitaxially grown, thermally grown, and mechanically exfoliated graphene films, the friction force measured between the tip and these CVD-prepared films depends on the number of layers of graphene present on the surface and reduces friction in comparison to the substrate. Friction results on graphene indicate that the layer-dependent friction properties result from puckering of the graphene sheet around the sliding tip. Substantial hysteresis in the normal force dependence of friction is observed with repeated scanning without breaking contact with a graphene-covered region. Because of the hysteresis, friction measured on graphene changes with time and maximum applied force, unless the tip slides over the edge of the graphene island or contact with the surface is broken. These results also indicate that relatively weak binding forces exist between the copper foil and these CVD-grown graphene sheets.

  16. Comparison of predicted and measured low-speed performance of two 51 centimeter-diameter inlets at incidence angle

    NASA Technical Reports Server (NTRS)

    Albers, J. A.

    1973-01-01

    Theoretical and experimental internal flow characteristics of two 51-cm-diameter inlets are compared. Theoretical flow characteristics along the inlet surface were obtained from an axisymmetric potential flow and boundary layer analysis. The experimental data were obtained from low-speed tests of a high-bypass-ratio turbofan engine simulator. Comparisons between calculated internal surface pressure distributions and experimental data are presented for a free-system velocity of 45 m/sec and for incidence angles from 0 deg to 50 deg. Analysis of boundary layer separation on the inlet lip at incidence angle is the major emphasis of this report. Theoretical boundary layer shape factors, skin friction coefficients, and velocity profiles in the boundary layer are presented, along with the location of the transition region. Theoretical and experimental separation locations are also discussed.

  17. Interfacial friction and adhesion of cross-linked polymer thin films swollen with linear chains.

    PubMed

    Zhang, Qing; Archer, Lynden A

    2007-07-03

    The preparation and interfacial properties of a new type of tethered, thin-film lubricant coating are presented. These coatings are composed of three components: a dense self-assembled monolayer (SAM) underlayer that presents reactive vinyl groups at its surface; a cross-linked polydimethylsiloxane (PDMS) overlayer that is covalently tethered to the SAM; and free, mobile linear PDMS chains dispersed in the network. We investigate the influence of the molecular weight (Ms) and concentration of the free PDMS chains on the structure and equilibrium swelling properties of the cross-linked films. Using a bead-probe lateral force microscopy measurement technique, we also quantify the interfacial friction and adhesion characteristics of surfaces functionalized with these coatings. We find that both the volume fraction and the molecular weight of free PDMS molecules in the coatings influence their interfacial friction and adhesion properties. For example, the addition of short PDMS chains in dry, cross-linked PDMS thin films yields tethered surface coatings with ultralow friction coefficients (mu = 5.2 x 10(-3)). An analysis based on classical lubrication theory suggests that the reduction in friction force produced by free polymer is a consequence of the gradual separation of asperities on opposing surfaces and the consequent substitution of solid-solid friction by viscous drag of the free polymer chains in the network.

  18. Effect of Groove Surface Texture on Tribological Characteristics and Energy Consumption under High Temperature Friction.

    PubMed

    Wu, Wei; Chen, Guiming; Fan, Boxuan; Liu, Jianyou

    2016-01-01

    Energy consumption and tribological properties could be improved by proper design of surface texture in friction. However, some literature focused on investigating their performance under high temperature. In the study, different groove surface textures were fabricated on steels by a laser machine, and their tribological behaviors were experimentally studied with the employment of the friction and wear tester under distinct high temperature and other working conditions. The friction coefficient was recorded, and wear performance were characterized by double light interference microscope, scanning electron microscope (SEM) and x-ray energy dispersive spectrometry (EDS). Then, the performances of energy consumptions were carefully estimated. Results showed that friction coefficient, wear, and energy consumption could almost all be reduced by most textures under high temperature conditions, but to a different extent which depends on the experimental conditions and texture parameters. The main improvement mechanisms were analyzed, such as the hardness change, wear debris storage, thermal stress release and friction induced temperature reduction by the textures. Finally, a scattergram of the relatively reduced ratio of the energy consumption was drawn for different surface textures under four distinctive experimental conditions to illustrate the comprehensive energy consumption improving ability of textures, which was of benefit for the application of texture design.

  19. Effect of Groove Surface Texture on Tribological Characteristics and Energy Consumption under High Temperature Friction

    PubMed Central

    Wu, Wei; Chen, Guiming; Fan, Boxuan; Liu, Jianyou

    2016-01-01

    Energy consumption and tribological properties could be improved by proper design of surface texture in friction. However, some literature focused on investigating their performance under high temperature. In the study, different groove surface textures were fabricated on steels by a laser machine, and their tribological behaviors were experimentally studied with the employment of the friction and wear tester under distinct high temperature and other working conditions. The friction coefficient was recorded, and wear performance were characterized by double light interference microscope, scanning electron microscope (SEM) and x-ray energy dispersive spectrometry (EDS). Then, the performances of energy consumptions were carefully estimated. Results showed that friction coefficient, wear, and energy consumption could almost all be reduced by most textures under high temperature conditions, but to a different extent which depends on the experimental conditions and texture parameters. The main improvement mechanisms were analyzed, such as the hardness change, wear debris storage, thermal stress release and friction induced temperature reduction by the textures. Finally, a scattergram of the relatively reduced ratio of the energy consumption was drawn for different surface textures under four distinctive experimental conditions to illustrate the comprehensive energy consumption improving ability of textures, which was of benefit for the application of texture design. PMID:27035658

  20. Slope stability analysis of landslide in Wayang Windu Geothermal Field, Pangalengan, West Java Province, Indonesia

    NASA Astrophysics Data System (ADS)

    Yuhendar, A. H.; Wusqa, U.; Kartiko, R. D.; Raya, N. R.; Misbahudin

    2016-05-01

    Large-scale landslide occurred in Margamukti village, Pangalengan, Bandung Regency, West Java Province, Indonesia. The landslide damaged geothermal gas pipeline along 300 m in Wayang Windu Geothermal Field. Based on field observation, landslide occured in rotational sliding movement. Laboratory analysis were conducted to obtain the characteristics of the soil. Based on the condition of the landslide in this area, the Factor of Safety can be simulated by the soil mechanics approach. Factor of safety analysis based on soil cohesion and internal friction angle was conducted using manual sensitivity analysis for back analysis. The analysis resulted soil cohesion in critical condition (FS<1) is 6.01 kPa. This value is smaller than cohesion of undisturbed slope soil sample. Water from rainfall is the most important instability factors in research area. Because it decreases cohesion in soils and increases weight and pore water pressure in granular media.

  1. Structural and phase transformations in Hadfield steel upon frictional loading in liquid nitrogen

    NASA Astrophysics Data System (ADS)

    Korshunov, L. G.; Sagaradze, V. V.; Chernenko, N. L.

    2016-08-01

    Structural transformations that occur in 110G13 steel (Hadfield) upon sliding friction in liquid nitrogen (-196°C) have been investigated by metallographic, electron-microscopic, and X-ray diffraction methods. The frictional action was performed through the reciprocating sliding of a cylindrical indenter of quenched 110G13 steel over a plate of the studied steel. A like friction pair was immersed into a bath with liquid nitrogen. It has been shown that the Hadfield steel quenched from 1100°C under the given temperature conditions of frictional loading retains the austenitic structure completely. The frictional action forms in a surface layer up to 10 μm thick the nanocrystalline structure with austenite grains 10-50 nm in size and a hardness 6 GPa. Upon subsequent low-temperature friction, the tempering of steel at 400°C (3 h) and at 600°C (5 min and 5 h) brings about the formation of a large amount (tens of vol %) of ɛ (hcp) martensite in steel. The formation of this phase under friction is supposedly a consequence of the reduction in the stacking fault energy of Hadfield steel, which is achieved due to the combined action of the following factors: low-temperature cooling, a decrease in the carbon content in the austenite upon tempering, and the presence of high compressive stresses in the friction-contact zone.

  2. 14 CFR 23.253 - High speed characteristics.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... and characteristics include gust upsets, inadvertent control movements, low stick force gradients in relation to control friction, passenger movement, leveling off from climb, and descent from Mach to... normal attitude and its speed reduced to VMO/MMO, without— (1) Exceptional piloting strength or skill; (2...

  3. 14 CFR 23.253 - High speed characteristics.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... and characteristics include gust upsets, inadvertent control movements, low stick force gradients in relation to control friction, passenger movement, leveling off from climb, and descent from Mach to... normal attitude and its speed reduced to VMO/MMO, without— (1) Exceptional piloting strength or skill; (2...

  4. Tribology of selected ceramics at temperatures to 900 C

    NASA Technical Reports Server (NTRS)

    Sliney, H. E.; Jacobson, T. P.; Deadmore, D.; Miyoshi, K.

    1986-01-01

    Results of fundamental and focused research on the tribological properties of ceramics are discussed. The basic friction and wear characteristics are given for ceramics of interest for use in gas turbine, adiabatic diesel, and Stirling engine applications. The importance of metal oxides in ceramic/metal sliding combinations is illustrated. The formulation and tribological additives are described. Friction and wear data are given for carbide and oxide-based composite coatings for temperatures to at least 900 C.

  5. Rouse-Bueche Theory and The Calculation of The Monomeric Friction Coefficient in a Filled System

    NASA Astrophysics Data System (ADS)

    Martinetti, Luca; Macosko, Christopher; Bates, Frank

    According to flexible chain theories of viscoelasticity, all relaxation and retardation times of a polymer melt (hence, any dynamic property such as the diffusion coefficient) depend on the monomeric friction coefficient, ζ0, i.e. the average drag force per monomer per unit velocity encountered by a Gaussian submolecule moving through its free-draining surroundings. Direct experimental access to ζ0 relies on the availability of a suitable polymer dynamics model. Thus far, no method has been suggested that is applicable to filled systems, such as filled rubbers or microphase-segregated A-B-A thermoplastic elastomers at temperatures where one of the blocks is glassy. Building upon the procedure proposed by Ferry for entangled and unfilled polymer melts, the Rouse-Bueche theory is applied to an undiluted triblock copolymer to extract ζ0 from the linear viscoelastic behavior in the rubber-glass transition region, and to estimate the size of Gaussian submolecules. At iso-free volume conditions, the so-obtained matrix monomeric friction factor is consistent with the corresponding value for the homopolymer melt. In addition, the characteristic Rouse dimensions are in good agreement with independent estimates based on the Kratky-Porod worm-like chain model. These results seem to validate the proposed approach for estimating ζ0 in a filled system. Although preliminary tested on a thermoplastic elastomer of the A-B-A type, the method may be extended and applied to filled homopolymers as well.

  6. Transient Characteristics of Free Piston Vuilleurnier Cycle Heat Pumps

    NASA Astrophysics Data System (ADS)

    Matsue, Junji; Fujimoto, Norioki; Shirai, Hiroyuki

    A dynamic analysis of a free piston Vuilleumier cycle heat pump was performed using a time-stepping integration method to investigate transient characteristics under power controlling. The nonlinear relationship between displacement and force for pistons was taken into account for the motion of reciprocating components. The force for pistons is mainly caused by the pressure change of working gas varying with piston displacements; moreover nonlinear viscous dissipative force due to the oscillating flow of working gas in heat exchangers and discontinuous damping force caused by solid friction at piston seals and rod seals are included. The displacements of pistons and pressure changes in the Vuilleumier cycle heat pump were integrated by an ideal isothermal thermodynamic relationship. It was assumed that the flow friction was proportional to the kinematic pressure of working gas, and that the solid friction at the seals was due to the functions of the working gas pressure and the tension of seal springs. In order to investigate the transient characteristics of a proposed free piston Vuilleumier cycle heat pump machine when hot-side working gas temperatures and alternate force were changed, some calculations were performed and discussed. These calculation results make clear transient characteristics at starting and power controlling. It was further found that only a small amount of starter power is required in particular conditions. During controlling, the machine becomes unstable when there is ar elatively large reduction in cooling or heating power. Therefore, an auxiliary device is additionally needed to obtain stable operation, such as al inear motor.

  7. Wear and related characteristics of an aircraft tire during braking

    NASA Technical Reports Server (NTRS)

    Mccarty, J. L.

    1972-01-01

    Wear and related characteristics of friction and temperature developed during braking of size 22 x 5.5, type aircraft tires are studied. The testing technique involved gearing the tire to a driving wheel of a ground vehicle to provide operations at constant slip ratios on asphalt, concrete, and slurry-seal surfaces. Data were obtained over the range of slip ratios generally attributed to an aircraft braking system during dry runway operations. The results show that the cumulative tire wear varies linearly with distance traveled and the wear rate increases with increasing slip ratio and is influenced by the runway-surface character. Differences in the wear rates associated with the various surfaces suggest that runways can be rated on the basis of tire wear. The results also show that the friction coefficients developed during fixed-slip-ratio operations are in good agreement with those obtained by other investigators during cyclic braking, in that the dry friction is insensitive to the tire tread temperature is shown to increase with increasing slip ratio and, at the higher ratios, to be greater during braking on asphalt and slurry seal than on concrete.

  8. Structure and nano-mechanical characteristics of surface oxide layers on a metallic glass.

    PubMed

    Caron, A; Qin, C L; Gu, L; González, S; Shluger, A; Fecht, H-J; Louzguine-Luzgin, D V; Inoue, A

    2011-03-04

    Owing to their low elastic moduli, high specific strength and excellent processing characteristics in the undercooled liquid state, metallic glasses are promising materials for applications in micromechanical systems. With miniaturization of metallic mechanical components down to the micrometer scale, the importance of a native oxide layer on a glass surface is increasing. In this work we use TEM and XPS to characterize the structure and properties of the native oxide layer grown on Ni(62)Nb(38) metallic glass and their evolution after annealing in air. The thickness of the oxide layer almost doubled after annealing. In both cases the oxide layer is amorphous and consists predominantly of Nb oxide. We investigate the friction behavior at low loads and in ambient conditions (i.e. at T = 295 K and 60% air humidity) of both as-cast and annealed samples by friction force microscopy. After annealing the friction coefficient is found to have significantly increased. We attribute this effect to the increase of the mechanical stability of the oxide layer upon annealing.

  9. Experimental Study of Characteristics of Micro-Hole Porous Skins for Turbulent Skin Friction Reduction

    NASA Technical Reports Server (NTRS)

    Hwang, Danny P.

    2002-01-01

    Characteristics of micro-hole porous skins for the turbulent skin friction reduction technology called the micro-blowing technique (MBT) were assessed experimentally at Mach 0.4 and blowing fractions from zero to 0.005. The objective of this study was to provide guidelines for the selection of porous plates for MBT. The hole angle, pattern, diameter, aspect ratio, and porosity were the parameters considered for this study. The additional effort to angle and stagger the holes was experimentally determined to be unwarranted in terms of skin friction benefit; therefore, these parameters were systematically eliminated from the parametric study. The impact of the remaining three parameters was evaluated by fixing two parameters at the reference values while varying the third parameter. The best hole-diameter Reynolds number was found to be around 400, with an optimum aspect ratio of about 6. The optimum porosity was not conclusively discerned because the range of porosities in the test plates considered was not great enough. However, the porosity was estimated to be about 15 percent or less.

  10. Nanoscale deformation and friction characteristics of atomically thin WSe2 and heterostructure using nanoscratch and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Manimunda, P.; Nakanishi, Y.; Jaques, Y. M.; Susarla, S.; Woellner, C. F.; Bhowmick, S.; Asif, S. A. S.; Galvão, D. S.; Tiwary, C. S.; Ajayan, P. M.

    2017-12-01

    2D transition metals di-selenides are attracting a lot of attention due to their interesting optical, chemical and electronics properties. Here, the deformation characteristics of monolayer, multi- layer WSe2 and its heterostructure with MoSe2 were investigated using a new technique that combines nanoscratch and Raman spectroscopy. The 2D monolayer WSe2 showed anisotropy in deformation. Effect of number of WSe2 layers on friction characteristics were explored in detail. Experimental observations were further supported by MD simulations. Raman spectra recorded from the scratched regions showed strain induced degeneracy splitting. Further nano-scale scratch tests were extended to MoSe2-WSe2 lateral heterostructures. Effect of deformation on lateral hetero junctions were further analysed using PL and Raman spectroscopy. This new technique is completely general and can be applied to study other 2D materials.

  11. Rate and State Friction Relation for Nanoscale Contacts: Thermally Activated Prandtl-Tomlinson Model with Chemical Aging

    NASA Astrophysics Data System (ADS)

    Tian, Kaiwen; Goldsby, David L.; Carpick, Robert W.

    2018-05-01

    Rate and state friction (RSF) laws are widely used empirical relationships that describe macroscale to microscale frictional behavior. They entail a linear combination of the direct effect (the increase of friction with sliding velocity due to the reduced influence of thermal excitations) and the evolution effect (the change in friction with changes in contact "state," such as the real contact area or the degree of interfacial chemical bonds). Recent atomic force microscope (AFM) experiments and simulations found that nanoscale single-asperity amorphous silica-silica contacts exhibit logarithmic aging (increasing friction with time) over several decades of contact time, due to the formation of interfacial chemical bonds. Here we establish a physically based RSF relation for such contacts by combining the thermally activated Prandtl-Tomlinson (PTT) model with an evolution effect based on the physics of chemical aging. This thermally activated Prandtl-Tomlinson model with chemical aging (PTTCA), like the PTT model, uses the loading point velocity for describing the direct effect, not the tip velocity (as in conventional RSF laws). Also, in the PTTCA model, the combination of the evolution and direct effects may be nonlinear. We present AFM data consistent with the PTTCA model whereby in aging tests, for a given hold time, static friction increases with the logarithm of the loading point velocity. Kinetic friction also increases with the logarithm of the loading point velocity at sufficiently high velocities, but at a different increasing rate. The discrepancy between the rates of increase of static and kinetic friction with velocity arises from the fact that appreciable aging during static contact changes the energy landscape. Our approach extends the PTT model, originally used for crystalline substrates, to amorphous materials. It also establishes how conventional RSF laws can be modified for nanoscale single-asperity contacts to provide a physically based friction relation for nanoscale contacts that exhibit chemical bond-induced aging, as well as other aging mechanisms with similar physical characteristics.

  12. A review of the physics of ice surface friction and the development of ice skating.

    PubMed

    Formenti, Federico

    2014-01-01

    Our walking and running movement patterns require friction between shoes and ground. The surface of ice is characterised by low friction in several naturally occurring conditions, and compromises our typical locomotion pattern. Ice skates take advantage of this slippery nature of ice; the first ice skates were made more than 4000 years ago, and afforded the development of a very efficient form of human locomotion. This review presents an overview of the physics of ice surface friction, and discusses the most relevant factors that can influence ice skates' dynamic friction coefficient. It also presents the main stages in the development of ice skating, describes the associated implications for exercise physiology, and shows the extent to which ice skating performance improved through history. This article illustrates how technical and materials' development, together with empirical understanding of muscle biomechanics and energetics, led to one of the fastest forms of human powered locomotion.

  13. An analytical model of dynamic sliding friction during impact

    NASA Astrophysics Data System (ADS)

    Arakawa, Kazuo

    2017-01-01

    Dynamic sliding friction was studied based on the angular velocity of a golf ball during an oblique impact. This study used the analytical model proposed for the dynamic sliding friction on lubricated and non-lubricated inclines. The contact area A and sliding velocity u of the ball during impact were used to describe the dynamic friction force Fd = λAu, where λ is a parameter related to the wear of the contact area. A comparison with experimental results revealed that the model agreed well with the observed changes in the angular velocity during impact, and λAu is qualitatively equivalent to the empirical relationship, μN + μη‧dA/dt, given by the product between the frictional coefficient μ and the contact force N, and the additional term related to factor η‧ for the surface condition and the time derivative of A.

  14. Thermo-Mechanical Calculations of Hybrid Rotary Friction Welding at Equal Diameter Copper Bars and Effects of Essential Parameters on Dependent Special Variables

    NASA Astrophysics Data System (ADS)

    Parsa, M. H.; Davari, H.; Hadian, A. M.; Ahmadabadi, M. Nili

    2007-05-01

    Hybrid Rotary Friction Welding is a modified type of common rotary friction welding processes. In this welding method parameters such as pressure, angular velocity and time of welding control temperature, stress, strain and their variations. These dependent factors play an important rule in defining optimum process parameters combinations in order to improve the design and manufacturing of welding machines and quality of welded parts. Thermo-mechanical simulation of friction welding has been carried out and it has been shown that, simulation is an important tool for prediction of generated heat and strain at the weld interface and can be used for prediction of microstructure and evaluation of quality of welds. For simulation of Hybrid Rotary Friction Welding, a commercial finite element program has been used and the effects of pressure and rotary velocity of rotary part on temperature and strain variations have been investigated.

  15. An Evaluation of Global and Local Tensile Properties of Friction-Stir Welded DP980 Dual-Phase Steel Joints Using a Digital Image Correlation Method

    PubMed Central

    Lee, Hyoungwook; Kim, Cheolhee; Song, Jung Han

    2015-01-01

    The effect of the microstructure heterogeneity on the tensile plastic deformation characteristic of friction-stir-welded (FSW) dual-phase (DP) steel was investigated for the potential applications on the lightweight design of vehicles. Friction-stir-welded specimens with a butt joint configuration were prepared, and quasi-static tensile tests were conducted, to evaluate the tensile properties of DP980 dual-phase steels. The friction-stir welding led to the formation of martensite and a significant hardness rise in the stir zone (SZ), but the presence of a soft zone in the heat-affected zone (HAZ) was caused by tempering of the pre-existing martensite. Owing to the appearance of severe soft zone, DP980 FSW joint showed almost 93% joint efficiency with the view-point of ultimate tensile strength and relatively low ductility than the base metal (BM). The local tensile deformation characteristic of the FSW joints was also examined using the digital image correlation (DIC) methodology by mapping the global and local strain distribution, and was subsequently analyzed by mechanics calculation. It is found that the tensile deformation of the FSW joints is highly heterogeneous, leading to a significant decrease in global ductility. The HAZ of the joints is the weakest region where the strain localizes early, and this localization extends until fracture with a strain near 30%, while the strain in the SZ and BM is only 1% and 4%, respectively. Local constitutive properties in different heterogeneous regions through the friction-stir-welded joint was also briefly evaluated by assuming iso-stress conditions. The local stress-strain curves of individual weld zones provide a clear indication of the heterogeneity of the local mechanical properties. PMID:28793720

  16. An Evaluation of Global and Local Tensile Properties of Friction-Stir Welded DP980 Dual-Phase Steel Joints Using a Digital Image Correlation Method.

    PubMed

    Lee, Hyoungwook; Kim, Cheolhee; Song, Jung Han

    2015-12-04

    The effect of the microstructure heterogeneity on the tensile plastic deformation characteristic of friction-stir-welded (FSW) dual-phase (DP) steel was investigated for the potential applications on the lightweight design of vehicles. Friction-stir-welded specimens with a butt joint configuration were prepared, and quasi-static tensile tests were conducted, to evaluate the tensile properties of DP980 dual-phase steels. The friction-stir welding led to the formation of martensite and a significant hardness rise in the stir zone (SZ), but the presence of a soft zone in the heat-affected zone (HAZ) was caused by tempering of the pre-existing martensite. Owing to the appearance of severe soft zone, DP980 FSW joint showed almost 93% joint efficiency with the view-point of ultimate tensile strength and relatively low ductility than the base metal (BM). The local tensile deformation characteristic of the FSW joints was also examined using the digital image correlation (DIC) methodology by mapping the global and local strain distribution, and was subsequently analyzed by mechanics calculation. It is found that the tensile deformation of the FSW joints is highly heterogeneous, leading to a significant decrease in global ductility. The HAZ of the joints is the weakest region where the strain localizes early, and this localization extends until fracture with a strain near 30%, while the strain in the SZ and BM is only 1% and 4%, respectively. Local constitutive properties in different heterogeneous regions through the friction-stir-welded joint was also briefly evaluated by assuming iso-stress conditions. The local stress-strain curves of individual weld zones provide a clear indication of the heterogeneity of the local mechanical properties.

  17. Development of a novel test-setup for identifying the frictional characteristics of carbon fibre reinforced polymer composites at high surface pressure

    NASA Astrophysics Data System (ADS)

    Saxena, Prateek; Schinzel, Marie; Andrich, Manuela; Modler, Niels

    2016-09-01

    Carbon fibre reinforced polymer composites are extensively used in industrial applications. They are light in weight and have excellent load bearing properties. To understand this material's behaviour when carrying loads at high pressure, a tensile-friction test device was developed that can apply a contact surface pressure between composite and counterpart of 50-300 MPa. A tribological investigation of carbon fibre reinforced epoxy composites was carried out, in which the influence of the surface morphology was investigated by using grinding and sandblasting techniques. The friction coefficient of the polymer composite was measured at 100 MPa surface pressure against uncoated and Diamond-Like Carbon coated stainless steel counterparts.

  18. Heat transfer and pressure drop studies of TiO2/DI water nanofluids in helically corrugated tubes using spiraled rod inserts

    NASA Astrophysics Data System (ADS)

    Anbu, S.; Venkatachalapathy, S.; Suresh, S.

    2018-05-01

    An experimental study on the convective heat transfer and friction factor characteristics of TiO2/DI water nanofluids in uniformly heated plain and helically corrugated tubes (HCT) with and without spiraled rod inserts (SRI) under laminar flow regime is presented in this paper. TiO2 nanoparticles with an average size of 32 nm are dispersed in deionized (DI) water to form stable suspensions containing 0.1, 0.15, 0.2, and 0.25% volume concentrations of nanoparticles. It is found that the inclusion of nanoparticles to DI water ameliorated Nusselt number which increased with nanoparticles concentration upto 0.2%. Two spiraled rod inserts made of copper with different pitches (pi = 50 mm and 30 mm) are inserted in both plain and corrugated tubes and it is found that the addition of these inserts increased the Nusselt number substantially. For Helically corrugated tube with lower pitch and maximum height of corrugation (pc = 8 mm, hc = 1 mm) with 0.2% volume concentration of nanoparticles, a maximum enhancement of 15% in Nusselt number is found without insert and with insert having lower pitch (pi = 30 mm) the enhancement is 34% when compared to DI water in plain tube. The results on friction factor show a maximum penalty of about 53.56% for the above HCT.

  19. Quantifying the Frictional Forces between Skin and Nonwoven Fabrics

    PubMed Central

    Jayawardana, Kavinda; Ovenden, Nicholas C.; Cottenden, Alan

    2017-01-01

    When a compliant sheet of material is dragged over a curved surface of a body, the frictional forces generated can be many times greater than they would be for a planar interface. This phenomenon is known to contribute to the abrasion damage to skin often suffered by wearers of incontinence pads and bed/chairbound people susceptible to pressure sores. Experiments that attempt to quantify these forces often use a simple capstan-type equation to obtain a characteristic coefficient of friction. In general, the capstan approach assumes the ratio of applied tensions depends only on the arc of contact and the coefficient of friction, and ignores other geometric and physical considerations; this approach makes it straightforward to obtain explicitly a coefficient of friction from the tensions measured. In this paper, two mathematical models are presented that compute the material displacements and surface forces generated by, firstly, a membrane under tension in moving contact with a rigid obstacle and, secondly, a shell-membrane under tension in contact with a deformable substrate. The results show that, while the use of a capstan equation remains fairly robust in some cases, effects such as the curvature and flaccidness of the underlying body, and the mass density of the fabric can lead to significant variations in stresses generated in the contact region. Thus, the coefficient of friction determined by a capstan model may not be an accurate reflection of the true frictional behavior of the contact region. PMID:28321192

  20. Control system for maximum use of adhesive forces of a railway vehicle in a tractive mode

    NASA Astrophysics Data System (ADS)

    Spiryagin, Maksym; Lee, Kwan Soo; Yoo, Hong Hee

    2008-04-01

    The realization of maximum adhesive forces for a railway vehicle is a very difficult process, because it involves using tractive efforts and depends on friction characteristics in the contact zone between wheels and rails. Tractive efforts are realized by means of tractive torques of motors, and their maximum values can provide negative effects such as slip and skid. These situations usually happen when information about friction conditions is lacking. The negative processes have a major influence on wearing of contact bodies and tractive units. Therefore, many existing control systems for vehicles use an effect of a prediction of a friction coefficient between wheels and rails because measuring a friction coefficient at the moment of running vehicle movement is very difficult. One of the ways to solve this task is to use noise spectrum analysis for friction coefficient detection. This noise phenomenon has not been clearly studied and analyzed. In this paper, we propose an adhesion control system of railway vehicles based on an observer, which allows one to determine the maximum tractive torque based on the optimal adhesive force between the wheels (wheel pair) of a railway vehicle and rails (rail track) depending on weight load from a wheel to a rail, friction conditions in the contact zone, a lateral displacement of wheel set and wheel sleep. As a result, it allows a railway vehicle to be driven in a tractive mode by the maximum adhesion force for real friction conditions.

  1. Microstructural Characterization of Friction Stir Welded Aluminum-Steel Joints

    NASA Astrophysics Data System (ADS)

    Patterson, Erin E.; Hovanski, Yuri; Field, David P.

    2016-06-01

    This work focuses on the microstructural characterization of aluminum to steel friction stir welded joints. Lap weld configuration coupled with scribe technology used for the weld tool have produced joints of adequate quality, despite the significant differences in hardness and melting temperatures of the alloys. Common to friction stir processes, especially those of dissimilar alloys, are microstructural gradients including grain size, crystallographic texture, and precipitation of intermetallic compounds. Because of the significant influence that intermetallic compound formation has on mechanical and ballistic behavior, the characterization of the specific intermetallic phases and the degree to which they are formed in the weld microstructure is critical to predicting weld performance. This study used electron backscatter diffraction, energy dispersive spectroscopy, scanning electron microscopy, and Vickers micro-hardness indentation to explore and characterize the microstructures of lap friction stir welds between an applique 6061-T6 aluminum armor plate alloy and a RHA homogeneous armor plate steel alloy. Macroscopic defects such as micro-cracks were observed in the cross-sectional samples, and binary intermetallic compound layers were found to exist at the aluminum-steel interfaces of the steel particles stirred into the aluminum weld matrix and across the interfaces of the weld joints. Energy dispersive spectroscopy chemical analysis identified the intermetallic layer as monoclinic Al3Fe. Dramatic decreases in grain size in the thermo-mechanically affected zones and weld zones that evidenced grain refinement through plastic deformation and recrystallization. Crystallographic grain orientation and texture were examined using electron backscatter diffraction. Striated regions in the orientations of the aluminum alloy were determined to be the result of the severe deformation induced by the complex weld tool geometry. Many of the textures observed in the weld zone and thermo-mechanically affected zones exhibited shear texture components; however, there were many textures that deviated from ideal simple shear. Factors affecting the microstructure which are characteristic of the friction stir welding process, such as post-recrystallization deformation and complex deformation induced by tool geometry were discussed as causes for deviation from simple shear textures.

  2. Latent structure analysis in the pharmaceutical process of tablets prepared by wet granulation.

    PubMed

    Uehara, Naoto; Hayashi, Yoshihiro; Mochida, Hiroshi; Otoguro, Saori; Onuki, Yoshinori; Obata, Yasuko; Takayama, Kozo

    2016-01-01

    Granule characteristics are some of the important intermediate qualities that determine tablet properties. However, the relationships between granule and tablet characteristics are poorly understood. The aim of this study was to elucidate relationships among formulation factors, granule characteristics, and tablet properties using a non-linear response surface method (RSM) incorporating a thin-plate spline interpolation (RSM-S) and a Bayesian network (BN). Tablets containing lactose (Lac), cornstarch (CS), and microcrystalline cellulose (MCC) were prepared by wet granulation. Ten formulations were prepared by an extreme vertices design. The angle of repose (Y 1 ), compressibility (Y 2 ), cohesion force (Y 3 ), internal friction angle (Y 4 ), and mean particle size (Y 5 ) were measured as granule characteristics. Tensile strength (TS) and disintegration time (DT) were measured as tablet properties. RSM-S results showed that TS increased with increasing amounts of MCC and Lac. DT decreased with increasing amounts of MCC and CS. The optimal BN models were predicted using four evaluation indices -Y 3 was shown to be the most important factor for TS, whereas Y 2 , Y 3 , and Y 4 were relatively important for predicting DT. Moreover, tablets with excellent tablet properties (i.e. high TS and low DT) were produced by relatively high Y 1 , low Y 2 , high Y 3 , high Y 4 , and middle Y 5 values, and resulted from the middle of MCC, middle-to-low CS, low Lac, and middle-to-low magnesium stearate (Mg-St) amounts. The RSM-S and BN techniques are useful for revealing complex relationships among formulation factors, granule characteristics, and tablet properties.

  3. Low-Engine-Friction Technology for Advanced Natural-Gas Reciprocating Engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Victor Wong; Tian Tian; G. Smedley

    This program aims at improving the efficiency of advanced natural-gas reciprocating engines (ANGRE) by reducing piston and piston ring assembly friction without major adverse effects on engine performance, such as increased oil consumption and wear. An iterative process of simulation, experimentation and analysis has been followed towards achieving the goal of demonstrating a complete optimized low-friction engine system. In this program, a detailed set of piston and piston-ring dynamic and friction models have been adapted and applied that illustrate the fundamental relationships among mechanical, surface/material and lubricant design parameters and friction losses. Demonstration of low-friction ring-pack designs in the Waukeshamore » VGF 18GL engine confirmed ring-pack friction reduction of 30-40%, which translates to total engine FEMP (friction mean effective pressure) reduction of 7-10% from the baseline configuration without significantly increasing oil consumption or blow-by flow. The study on surface textures, including roughness characteristics, cross hatch patterns, dimples and grooves have shown that even relatively small-scale changes can have a large effect on ring/liner friction, in some cases reducing FMEP by as much as 30% from a smooth surface case. The measured FMEP reductions were in good agreement with the model predictions. The combined analysis of lubricant and surface design indicates that low-viscosity lubricants can be very effective in reducing friction, subject to component wear for extremely thin oils, which can be mitigated with further lubricant formulation and/or engineered surfaces. Hence a combined approach of lubricant design and appropriate wear reduction offers improved potential for minimum engine friction loss. Testing of low-friction lubricants showed that total engine FMEP reduced by up to {approx}16.5% from the commercial reference oil without significantly increasing oil consumption or blow-by flow. Piston friction studies indicate that a flatter piston with a more flexible skirt, together with optimizing the waviness and film thickness on the piston skirt offer significant friction reduction. Combined with low-friction ring-pack, material and lubricant parameters, a total power cylinder friction reduction of 30-50% is expected, translating to an engine efficiency increase of two percentage points from its current baseline towards the goal of 50% ARES engine efficiency. The design strategies developed in this study have promising potential for application in all modern reciprocating engines as they represent simple, low-cost methods to extract significant fuel savings. The current program has possible spinoffs and applications in other industries as well, including transportation, CHP, and diesel power generation. The progress made in this program has wide engine efficiency implications, and potential deployment of low-friction engine components or lubricants in the near term is quite possible.« less

  4. Educational Brief: Using Space for a Better Foundation on Earth Mechanics of Granular Materials

    NASA Technical Reports Server (NTRS)

    Dooling, Dave (Editor)

    2002-01-01

    Soils are three-phase composite materials that consist of soil, solid particles, and voids filled with water and/or air. Based on the particle-size distribution, they are generally classified as fine-grained (clays and plastic silts) and coarse-grained soils (nonplastic silts, sand, and gravel). Soil's resistance to external loadings is mainly derived from friction between particles and cohesion. Friction resistance is due to particles' surface-to-surface friction, interlocking, crushing, rearrangement, and dilation (or expansion) during shearing. Cohesion can be due to chemical cementation between particles, electrostatic and electromagnetic forces, and soil-water reaction and equilibrium. The basic factor responsible for the strength of coarse-grained soils is friction. Cohesion can be ignored. This educational brief focuses on measuring shear strength of sands (typical example of coarse-grained soils) where, for the same material, packing density is a main factor to be considered when one asks about the shear strength value. As the external load is applied, the soil's resistance is attained through shearing resistance, which causes the soil volume to increase (expand) or decrease (compress) depending on the initial packing density.

  5. On the performance of finite journal bearings lubricated with micropolar fluids

    NASA Technical Reports Server (NTRS)

    Khonsari, M. M.; Brewe, D. E.

    1988-01-01

    A study of the performance parameters for a journal bearing of finite length lubricated with micropolar fluids is undertaken. Results indicate that a significantly higher load carrying capacity than the Newtonian fluids may result depending on the size of material characteristic length and the coupling number. It is also shown that although the frictional force associated with micropolar fluid is in general higher than that of a Newtonian fluid, the friction coefficient of micropolar fluids tends to be lower than that of the Newtonian.

  6. On the performance of finite journal bearings lubricated with micropolar fluids

    NASA Technical Reports Server (NTRS)

    Khonsari, M. M.; Brewe, D. E.

    1989-01-01

    A study of the performance parameters for a journal bearing of finite length lubricated with micropolar fluids is undertaken. Results indicate that a significantly higher load carrying capacity than the Newtonian fluids may result depending on the size of material characteristics length and the coupling number. It is also shown that although the frictional force associated with micropolar fluid is, in general, higher than that of a Newtonian fluid, the friction coefficient of micropolar fluids tends to be lower than that of the Newtonian.

  7. A Possible Link Between Macroscopic Wear and Temperature Dependent Friction Behaviors of MoS2 Coatings

    DTIC Science & Technology

    2008-09-01

    In situ analysis of third body contributions to sliding friction of a pb-mo-s coating in dry and humid air. Tribol. Lett. 28, 263–274 (2007). doi...activated behavior in macroscopic tribology is reserved for systems with stable interfaces and ultra-low wear, and athermal behavior is characteristic to...efforts to measure and under- stand tribological behavior at cryogenic temperatures; to date, results of these efforts show either no trend or con- flicting

  8. Thermoelastic damping effect of the micro-ring resonator with irregular mass and stiffness

    NASA Astrophysics Data System (ADS)

    Kim, Jung-Hwan; Kim, Ji-Hwan

    2016-05-01

    Fundamentally, vibration characteristic is a main factor for the stability of structures. In this regard, the irregularity of mass and stiffness distributions for the structure have been an interesting issue for many years. Recently, the Micro Electro Mechanical Systems (MEMS) are developed for various applications such as gyro sensors. In the present work, in-plane vibration of micro-ring structure with multiple finite-sized imperfections is investigated. Then, the unbalance of the structure is represented using Heaviside Step Function for the inextensional modeling of the ring. Also, thermoelastic damping (TED) due to internal friction is studied based on Fourier's one-dimensional heat conduction equation using Laplace Transform. To obtain the quality-factors (Q-factors) for imperfect micro-ring, analytical solutions are calculated from governing equations of motion with TED. And then, the natural frequencies and the Q-factors are observed to separate into lower and higher modes. Additionally, the vibration mode shapes are presented, and the frequency trimming concept due to attached imperfections is investigated.

  9. Effects of geometrical parameters on thermal-hydraulic performance of wavy microtube

    NASA Astrophysics Data System (ADS)

    Khoshvaght-Aliabadi, Morteza; Chamanroy, Zohreh

    2018-03-01

    Laminar flow and heat transfer characteristics of water flow through wavy microtubes (WMTs) with different values of wave length ( l) and wave amplitude ( a) are investigated experimentally. The tested WMTs are fabricated from copper microtube with the internal diameter of 914 μm. Experiments encompass the Reynolds numbers from 640 to 1950. In order to validate the experimental setup and create a base line for comparison, initial tests are also carried out for a straight microtube. The results show that both the heat transfer coefficient and the pressure drop are strongly affected by the studied geometrical factors. For a given Reynolds number, these parameters increase as the wave length decreases and the wave amplitude increases. However, in the studied ranges, the effect of wave amplitude is more than that of wave length. A considerable thermal-hydraulic factor of 1.78 is obtained for a WMT with l = 14.3 mm and a = 6 mm. Finally, correlations are developed to predict the Colburn factor and friction factor of water flow in the WMTs.

  10. Static coefficient of friction between stainless steel and PMMA used in cemented hip and knee implants.

    PubMed

    Nuño, N; Groppetti, R; Senin, N

    2006-11-01

    Design of cemented hip and knee implants, oriented to improve the longevity of artificial joints, is largely based on numerical models. The static coefficient of friction between the implant and the bone cement is necessary to characterize the interface conditions in these models and must be accurately provided. The measurement of this coefficient using a repeatable and reproducible methodology for materials used in total hip arthroplasty is missing from the literature. A micro-topographic surface analysis characterized the surfaces of the specimens used in the experiments. The coefficient of friction between stainless steel and bone cement in dry and wet conditions using bovine serum was determined using a prototype computerized sliding friction tester. The effects of surface roughness (polished versus matt) and of contact pressure on the coefficient of friction have also been investigated. The serum influences little the coefficient of friction for the matt steel surface, where the mechanical interactions due to higher roughness are still the most relevant factor. However, for polished steel surfaces, the restraining effect of proteins plays a very relevant role in increasing the coefficient of friction. When the coefficient of friction is used in finite element analysis, it is used for the debonded stem-cement situation. It can thus be assumed that serum will propagate between the stem and the cement mantle. The authors believe that the use of a static coefficient of friction of 0.3-0.4, measured in the present study, is appropriate in finite element models.

  11. Study of Dimple Effect on the Friction Characteristics of a Journal Bearing using Taguchi Method

    NASA Astrophysics Data System (ADS)

    Murthy, A. Amar; Raghunandana, Dr.

    2018-02-01

    The effect of producing dimples using chemically etched techniques or by machining process on the surface of a journal bearing bushing to reduce the friction using Taguchi method is investigated. The data used in the present analysis is based on the results obtained by the series of experiments conducted to study the dimples effect on the Stribeck curve. It is statistically proved that producing dimples on the bushing surface of a journal bearing has significant effect on the friction coefficient when used with light oils. Also it is seen that there is an interaction effect between speeds-load and load-dimples. Hence the interaction effect, which are usually neglected should be considered during actual experiments that significantly contributes in reducing the friction in mixed lubrication regime. The experiments, if were conducted after Taguchi method, then the number of experiments would have been reduced to half of the actual set of experiments that were essentially conducted.

  12. Study of Unsteady Flows with Concave Wall Effect

    NASA Technical Reports Server (NTRS)

    Wang, Chi R.

    2003-01-01

    This paper presents computational fluid dynamic studies of the inlet turbulence and wall curvature effects on the flow steadiness at near wall surface locations in boundary layer flows. The time-stepping RANS numerical solver of the NASA Glenn-HT RANS code and a one-equation turbulence model, with a uniform inlet turbulence modeling level of the order of 10 percent of molecular viscosity, were used to perform the numerical computations. The approach was first calibrated for its predictabilities of friction factor, velocity, and temperature at near surface locations within a transitional boundary layer over concave wall. The approach was then used to predict the velocity and friction factor variations in a boundary layer recovering from concave curvature. As time iteration proceeded in the computations, the computed friction factors converged to their values from existing experiments. The computed friction factors, velocity, and static temperatures at near wall surface locations oscillated periodically in terms of time iteration steps and physical locations along the span-wise direction. At the upstream stations, the relationship among the normal and tangential velocities showed vortices effects on the velocity variations. Coherent vortices effect on the velocity components broke down at downstream stations. The computations also predicted the vortices effects on the velocity variations within a boundary layer flow developed along a concave wall surface with a downstream recovery flat wall surface. It was concluded that the computational approach might have the potential to analyze the flow steadiness in a turbine blade flow.

  13. Biofilms inducing ultra-low friction on titanium.

    PubMed

    Souza, J C M; Henriques, M; Oliveira, R; Teughels, W; Celis, J-P; Rocha, L A

    2010-12-01

    Biofilm formation is widely reported in the literature as a problem in the healthcare, environmental, and industrial sectors. However, the role of biofilms in sliding contacts remains unclear. Friction during sliding was analyzed for titanium covered with mixed biofilms consisting of Streptococcus mutans and Candida albicans. The morphology of biofilms on titanium surfaces was evaluated before, during, and after sliding tests. Very low friction was recorded on titanium immersed in artificial saliva and sliding against alumina in the presence of biofilms. The complex structure of biofilms, which consist of microbial cells and their hydrated exopolymeric matrix, acts like a lubricant. A low friction in sliding contacts may have major significance in the medical field. The composition and structure of biofilms are shown to be key factors for an understanding of friction behavior of dental implant connections and prosthetic joints. For instance, a loss of mechanical integrity of dental implant internal connections may occur as a consequence of the decrease in friction caused by biofilm formation. Consequently, the study of the exopolymeric matrix can be important for the development of high-performance novel joint-based systems for medical and other engineering applications.

  14. Nonlinear vibration analysis of bladed disks with dry friction dampers

    NASA Astrophysics Data System (ADS)

    Ciğeroğlu, Ender; Özgüven, H. Nevzat

    2006-08-01

    In this work, a new model is proposed for the vibration analysis of turbine blades with dry friction dampers. The aim of the study is to develop a multiblade model that is accurate and yet easy to be analyzed so that it can be used efficiently in the design of friction dampers. The suggested nonlinear model for a bladed disk assembly includes all the blades with blade to blade and/or blade to cover plate dry friction dampers. An important feature of the model is that both macro-slip and micro-slip models are used in representing dry friction dampers. The model is simple to be analyzed as it is the case in macro-slip model, and yet it includes the features of more realistic micro-slip model. The nonlinear multidegree-of-freedom (mdof) model of bladed disk system is analyzed in frequency domain by applying a quasi-linearization technique, which transforms the nonlinear differential equations into a set of nonlinear algebraic equations. The solution method employed reduces the computational effort drastically compared to time solution methods for nonlinear systems, which makes it possible to obtain a more realistic model by the inclusion of all blades around the disk, disk itself and all friction dampers since in general system parameters are not identical throughout the geometry. The validation of the method is demonstrated by comparing the results obtained in this study with those given in literature and also with results obtained by time domain analysis. In the case studies presented the effect of friction damper parameters on vibration characteristics of tuned and mistuned bladed disk systems is studied by using a 20 blade system. It is shown that the method presented can be used to find the optimum friction damper values in a bladed disk assembly.

  15. Determining friction and effective loading for sled sprinting.

    PubMed

    Cross, Matt R; Tinwala, Farhan; Lenetsky, Seth; Samozino, Pierre; Brughelli, Matt; Morin, Jean-Benoit

    2017-11-01

    Understanding the impact of friction in sled sprinting allows the quantification of kinetic outputs and the effective loading experienced by the athlete. This study assessed changes in the coefficient of friction (µ k ) of a sled sprint-training device with changing mass and speed to provide a means of quantifying effective loading for athletes. A common sled equipped with a load cell was towed across an athletics track using a motorised winch under variable sled mass (33.1-99.6 kg) with constant speeds (0.1 and 0.3 m · s -1 ), and with constant sled mass (55.6 kg) and varying speeds (0.1-6.0 m · s -1 ). Mean force data were analysed, with five trials performed for each condition to assess the reliability of measures. Variables were determined as reliable (ICC > 0.99, CV < 4.3%), with normal-force/friction-force and speed/coefficient of friction relationships well fitted with linear (R 2  = 0.994-0.995) and quadratic regressions (R 2  = 0.999), respectively (P < 0.001). The linearity of composite friction values determined at two speeds, and the range in values from the quadratic fit (µ k  = 0.35-0.47) suggested µ k and effective loading were dependent on instantaneous speed on athletics track surfaces. This research provides a proof-of-concept for the assessment of friction characteristics during sled towing, with a practical example of its application in determining effective loading and sled-sprinting kinetics. The results clarify effects of friction during sled sprinting and improve the accuracy of loading applications in practice and transparency of reporting in research.

  16. Effect of the Conditions of the Nanostructuring Frictional Treatment Process on the Structural and Phase States and the Strengthening of Metastable Austenitic Steel

    NASA Astrophysics Data System (ADS)

    Makarov, A. V.; Skorynina, P. A.; Yurovskikh, A. S.; Osintseva, A. L.

    2017-12-01

    The effect of the multiplicity of frictional loading with a sliding synthetic diamond indenter at room temperature in an argon medium and the temperature of loading in the range of -196 to +250°C on the phase composition, fine structure, and micromechanical properties of the surface layer of metastable austenitic chromium-nickel steel has been studied. It has been established that the completeness of the strain-induced martensitic γ → α' transformation in the surface layer of steel is determined by the loading multiplicity and temperature, as well as the level of strengthening grows with an increase in the frictional loading multiplicity, but weakly depends on the frictional treatment temperature. According to the microindentation data, the characteristics of the surface layer strength and resistance to elastic and plastic deformation are improved with an increase in the frictional loading multiplicity. Frictional treatment by scanning with a synthetic diamond indenter at room and negative temperatures provides high quality for the treated surface with a low roughness parameter ( Ra = 80.115 nm), and an increase in the frictional loading temperature to 150-250°C leads to the development of a seizure and growth in Ra to 195-255 nm. Using transmission electron microscopy (TEM), it has been shown that frictional treatment results in the formation of nanocrystalline and fragmented submicrocrystalline structures of strain-induced α'-martensite (at a loading temperature of -196°C) and austenite (at a loading temperature of +250°C) in the surface layer of steel alongside with two-phase martensitic-austenitic structures (at a loading temperature of +20°C).

  17. The Effect of Drying-Wetting Cycle’s Repetition to the Characteristic of Natural and Stabilization Residual Soils Jawa Timur - Indonesia

    NASA Astrophysics Data System (ADS)

    Muntaha, M.

    2017-11-01

    Indonesia, which located in tropical region, continuously undergoes wetting and drying cycles due to the changeable seasons. An important role in activating the clay minerals on tropical residual soils is the main factor that affects the static and dynamic properties, such as: volume change, soil suction and dynamic modulus. The purpose of this paper is to evaluate the effect of drying-wetting cycles repetition on volume change, soil suction and mechanical characteristics of natural and stabilization of residual soils from Jawa Timur - Indonesia. The natural undisturbed and stabilized residual soil sample was naturally and gradually dried up with air to 25%, 50%, 75%, and 100 % of the initial water content. The wetting processes were carried out with the gradual increment water content of 25 %(wsat - wi), 50 %(wsat - wi), 75 %(wsat - wi), up to 100 %(wsat - wi). The Direct Shear test is used to measure the mechanic properties, and Whatman filter paper No. 42 is used to measure the soil suction. The drying-wetting processes were carried out for 1, 2, 4, and 6 cycles. The laboratory test results showed that, the void ratio decreased, the unit weight, cohesion and the internal friction angle were increasing due to stabilization. Drying-wetting cycle repetition reduces void ratio, negative pore-water pressure, cohesion and internal friction angle of natural and stabilized soils. Briefly, the decreased of mechanical soil properties was proven from the physical properties change observation.

  18. Aspects regarding the correlation between the physical-mechanical and tribological characteristics of composites materials reinforced with carbon fibers

    NASA Astrophysics Data System (ADS)

    Caliman, R.

    2017-08-01

    The purpose of this paper is to highlight a number of factors that influence the physical-mechanical and tribological characteristics of sintered composite materials. Such factors are grouped generally in two categories: technological parameters (pressure compacting, sintering temperature, sintering duration, heat treatment) and the receipt of sintered composite materials. In this paper is presented a program of experiments developed both in composite materials sintered polymer matrix (non-metallic) and in the metal matrix (eg., Al) which was prepared in advance a methodology original production and research for this particular type of materials. The experiments have focused development and testing of a number of 14 polymer composite and 5 composite sintered Al base, in both situations armed with carbon fiber in various forms. Tribological tests followed the establishment of the coefficient of friction and wear rate of the sliding speed at the constant values (v = 7.2 mm/s) and the normal load (N = 8 daN) and for different orientations of the fibers to the direction of sliding: normal (N type), parallel (P) and antiparallel-perpendicular (AP type).

  19. The possibility of modifying the elements of the bearing assembly with nanoparticles in order to reduce the friction coefficient

    NASA Astrophysics Data System (ADS)

    Stankevich, P.; Mironovs, V.; Vasilyeva, E.; Breki, A.; Tolochko, O.

    2017-10-01

    Recent study considers the tribological characteristics of the sintered bushings used in the connecting nodes brake lever system of railway cars. Particular attention is paid sleeves low content of alloying elements. Bushings had been prepared by powder metallurgy route by using low alloyed powders of Fe-Cu-C system. Porosity after sintering was about 20%. Generally, before using material was impregnated by industrial mineral oil in order to improve friction condition. In the recent study we use new lubricating compositions for impregnating in sintered bodies. Such compositions consist of basic mineral oil with addition of 4 wt.% of layered tungsten dichalcogenides (WS2 and WSe2) nanoparticles, which were ultrasonically dispersed. Tungsten disulphide nanoparticles have spherical shape with the diameter of 30-50 nm, and diselenide nanoparticles have a flat shape with the mean dimensions of 5x70 nm. Tribological testing of the product was provided. Sintered bushings impregnated with commercial oil and suspension of nanoparticles were tested in the spinning friction conditions in the couple with bearing steel at the load of 210 N and spinning rate of 200 rpm. The friction test in couple with steel exhibited the value of friction moment to be about 2 times less as compared with commercial oil. The additions of tungsten disulphide nanoparticles also significantly decrease oscillations the friction torque.

  20. Surface contact and design of fibrillar ‘friction pads’ in stick insects (Carausius morosus): mechanisms for large friction coefficients and negligible adhesion

    PubMed Central

    Labonte, David; Williams, John A.; Federle, Walter

    2014-01-01

    Many stick insects and mantophasmids possess tarsal ‘heel pads’ (euplantulae) covered by arrays of conical, micrometre-sized hairs (acanthae). These pads are used mainly under compression; they respond to load with increasing shear resistance, and show negligible adhesion. Reflected-light microscopy in stick insects (Carausius morosus) revealed that the contact area of ‘heel pads’ changes with normal load on three hierarchical levels. First, loading brought larger areas of the convex pads into contact. Second, loading increased the density of acanthae in contact. Third, higher loads changed the shape of individual hair contacts gradually from circular (tip contact) to elongated (side contact). The resulting increase in real contact area can explain the load dependence of friction, indicating a constant shear stress between acanthae and substrate. As the euplantula contact area is negligible for small loads (similar to hard materials), but increases sharply with load (resembling soft materials), these pads show high friction coefficients despite little adhesion. This property appears essential for the pads’ use in locomotion. Several morphological characteristics of hairy friction pads are in apparent contrast to hairy pads used for adhesion, highlighting key adaptations for both pad types. Our results are relevant for the design of fibrillar structures with high friction coefficients but small adhesion. PMID:24554580

  1. Dynamic Stiffness and Damping Characteristics of a High-Temperature Air Foil Journal Bearing

    NASA Technical Reports Server (NTRS)

    Howard, Samuel A.; DellaCorte, Christopher; Valco, Mark J.; Prahl, Joseph M.; Heshmat, Hooshang

    2001-01-01

    Using a high-temperature optically based displacement measurement system, a foil air bearing's stiffness and damping characteristics were experimentally determined. Results were obtained over a range of modified Sommerfeld Number from 1.5E6 to 1.5E7, and at temperatures from 25 to 538 C. An Experimental procedure was developed comparing the error in two curve fitting functions to reveal different modes of physical behavior throughout the operating domain. The maximum change in dimensionless stiffness was 3.0E-2 to 6.5E-2 over the Sommerfeld Number range tested. Stiffness decreased with temperature by as much as a factor of two from 25 to 538 C. Dimensionless damping was a stronger function of Sommerfeld Number ranging from 20 to 300. The temperature effect on damping being more qualitative, showed the damping mechanism shifted from viscous type damping to frictional type as temperature increased.

  2. NEW MODEL AND MEASUREMENT PRINCIPLE OF FLOWING AND HEAT TRANSFER CHARACTERISTICS OF REGENERATOR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Y. Y.; Graduate University of the Chinese Academy of Sciences, Beijing, 100049; Luo, E. C.

    2008-03-16

    Regenerators play key role in oscillating-flow cryocoolers or thermoacoustic heat engine systems. However, their flowing and heat transfer mechanism is still not well understood. The complexities of the oscillating flow regenerator make traditional method of heat transfer research become difficult or helpless. In this paper, a model for porous media regenerator was given based on the linear thermoacoustic theory. Then the correlations for characteristic parameters were obtained by deducing universal expressions for thermoacoustic viscous function F{sub v} and thermal function F{sub T}. A simple acoustical method and experimental system to get F{sub v} and F{sub T} via measurements of isothermalmore » regenerators were presented. Some measurements of packed stainless screen regenerators were performed, and preliminary experimental results for flow and convective coefficients were derived, which showing flowing friction factor is approximately within 132/Re to 173/Re.« less

  3. Coolant mixing in LMFBR rod bundles and outlet plenum mixing transients. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Todreas, N.E.; Cheng, S.K.; Basehore, K.

    1984-08-01

    This project principally undertook the investigation of the thermal hydraulic performance of wire wrapped fuel bundles of LMFBR configuration. Results obtained included phenomenological models for friction factors, flow split and mixing characteristics; correlations for predicting these characteristics suitable for insertion in design codes; numerical codes for analyzing bundle behavior both of the lumped subchannel and distributed parameter categories and experimental techniques for pressure velocity, flow split, salt conductivity and temperature measurement in water cooled mockups of bundles and subchannels. Flow regimes investigated included laminar, transition and turbulent flow under forced convection and mixed convection conditions. Forced convections conditions were emphasized.more » Continuing efforts are underway at MIT to complete the investigation of the mixed convection regime initiated here. A number of investigations on outlet plenum behavior were also made. The reports of these investigations are identified.« less

  4. Selective laser melting in heat exchanger development - experimental investigation of heat transfer and pressure drop characteristics of wavy fins

    NASA Astrophysics Data System (ADS)

    Kuehndel, J.; Kerler, B.; Karcher, C.

    2018-04-01

    To improve performance of heat exchangers for vehicle applications, it is necessary to increase the air side heat transfer. Selective laser melting gives rise to be applied for fin development due to: i) independency of conventional tooling ii) a fast way to conduct essential experimental studies iii) high dimensional accuracy iv) degrees of freedom in design. Therefore, heat exchanger elements with wavy fins were examined in an experimental study. Experiments were conducted for air side Reynolds number range of 1400-7400, varying wavy amplitude and wave length of the fins at a constant water flow rate of 9.0 m3/h. Heat transfer and pressure drop characteristics were evaluated with Nusselt Number Nu and Darcy friction factor ψ as functions of Reynolds number. Heat transfer and pressure drop correlations were derived from measurement data obtained by regression analysis.

  5. Assessment of local friction in protein folding dynamics using a helix cross-linker.

    PubMed

    Markiewicz, Beatrice N; Jo, Hyunil; Culik, Robert M; DeGrado, William F; Gai, Feng

    2013-11-27

    Internal friction arising from local steric hindrance and/or the excluded volume effect plays an important role in controlling not only the dynamics of protein folding but also conformational transitions occurring within the native state potential well. However, experimental assessment of such local friction is difficult because it does not manifest itself as an independent experimental observable. Herein, we demonstrate, using the miniprotein trp-cage as a testbed, that it is possible to selectively increase the local mass density in a protein and hence the magnitude of local friction, thus making its effect directly measurable via folding kinetic studies. Specifically, we show that when a helix cross-linker, m-xylene, is placed near the most congested region of the trp-cage it leads to a significant decrease in both the folding rate (by a factor of 3.8) and unfolding rate (by a factor of 2.5 at 35 °C) but has little effect on protein stability. Thus, these results, in conjunction with those obtained with another cross-linked trp-cage and two uncross-linked variants, demonstrate the feasibility of using a nonperturbing cross-linker to help quantify the effect of internal friction. In addition, we estimate that a m-xylene cross-linker could lead to an increase in the roughness of the folding energy landscape by as much as 0.4-1.0k(B)T.

  6. Temperature effect of friction and wear characteristics for solid lubricating graphite

    NASA Astrophysics Data System (ADS)

    Kim, Yeonwook; Kim, Jaehoon

    2015-03-01

    Graphite is one of the effective lubricant additives due to its excellent high-temperature endurance and self-lubricating properties. In this study, wear behavior of graphite used as sealing materials to cut off hot gas is evaluated at room and elevated temperature. Wear occurs on graphite seal due to the friction of driving shaft and graphite. Thus, a reciprocating wear test to evaluate the wear generated for the graphite by means of the relative motion between a shaft material and a graphite seal was carried out. The friction coefficient and specific wear rate for the changes of applied load and sliding speed were compared under different temperature conditions considering the actual operating environment. Through SEM observation of the worn surface, the lubricating film was observed and compared with test conditions.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landauer, Alexander K.; Barnhill, William C.; Qu, Jun

    Here we examine the elasticity, hardness, and resistance-to-plastic-deformation (P/S 2) measured via nanoindentation of several tribofilms and correlates these properties to friction and wear behavior. The tribofilms were generated by ball-on-plate reciprocating sliding lubricated by a base oil containing an ionic liquid, phosphonium-organophosphate or ammonium-organophosphate, zinc dialkyldithiophosphate (ZDDP), or combination of IL and ZDDP. Nanoindentation was conducted at room and elevated temperatures. While there seems little correlation between the tribofilm hardness and tribological behavior, a higher modulus generally leads to better friction and wear performance. Interestingly, a lower P/S 2 ratio tends to reduce friction and improve wear protection, whichmore » is in an opposite trend as reported for bulk materials. Ultimately, this is likely attributable to the dynamic, self-healing characteristics of tribofilms.« less

  8. Synthesis of silicone softener and its characteristics on cotton fabric.

    PubMed

    Robati, D

    2007-02-15

    This study was undertaken to examine the unresolved questions surrounding the influence of silicon softener on cotton fabrics. Results showed that the synthesized silicon softener was comparable with other tested conventional softener, According to present investigations the emulsions E1 and E2 is not economical and it is not evenly qualified and it become two phased after 24 h. But emulsion E3 was even and more economical. Moreover, it has high stability. In addition, measurement of kinetic and static friction show that the general effect of silicon softener on cotton cloth is the decrease of friction. Also, it was concluded that with increasing the add on percentage of softener, the crease of reflection angle did not change bending length and static and kinetic friction index significantly.

  9. Tribological and microstructural characteristics of ion-nitrided steels

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1983-01-01

    Three steels AISI 4140, AISI 4340 and AISI 304 stainless steel were ion nitrided in a plasma consisting of a 75:25 mixture of H2:N2, sometimes with a trace of CH4. Their surface topography was characterized by SEM and two distinct compound phases were identified: the gamma and the epsilon. The core-case hardness profiles were also established. The low Cr alloy steels have an extended diffusion zone in contrast to the 304 stainless steels which have a sharp interface. The depth of ion-nitriding is increased as the Cr content is decreased. Friction tests reveal that the gamma surface phase has a lower coefficient of friction than the epsilon phase. The lowest coefficient of friction is achieved when both the rider and the specimen surface are ion nitrided.

  10. Energy dissipation in a friction-controlled slide of a body excited by random motions of the foundation

    NASA Astrophysics Data System (ADS)

    Berezin, Sergey; Zayats, Oleg

    2018-01-01

    We study a friction-controlled slide of a body excited by random motions of the foundation it is placed on. Specifically, we are interested in such quantities as displacement, traveled distance, and energy loss due to friction. We assume that the random excitation is switched off at some time (possibly infinite) and show that the problem can be treated in an analytic, explicit, manner. Particularly, we derive formulas for the moments of the displacement and distance, and also for the average energy loss. To accomplish that we use the Pugachev-Sveshnikov equation for the characteristic function of a continuous random process given by a system of SDEs. This equation is solved by reduction to a parametric Riemann boundary value problem of complex analysis.

  11. Evaluation of frictional resistance and surface characteristics after immersion of orthodontic brackets and wire in different chemical solutions: A comparative in vitrostudy.

    PubMed

    Nanjundan, Kavitha; Vimala, G

    2016-01-01

    To evaluate the changes of static and kinetic frictional forces between the brackets and wires following exposure to a soft drink, acidic food ingredient, and acidulated fluoride prophylactic agents. Two types of Roth prescription mandibular incisor brackets were used: 3M Unitek Victory stainless steel (SS) brackets (n = 40) and Transcend 6000 polycrystalline alumina (PCA) brackets (n = 40) as well as eighty 0.019 × 0.025" dimension ortho technology SS wires of 50 mm length each. Subsequently, brackets tied with SS wires divided into eight subgroups (n = 10) and were immersed in vinegar (pH = 3.5 ± 0.5), Pepsi ® (pH = 2.46), Colgate Phos-Flur mouth rinse (pH = 5.1), and artificial saliva (control group pH = 7) for 24 h. Changes in surface morphology under scanning electron microscope ×1000, surface roughness (Ra) with surface profilometer (single bracket and single wire from each subgroup), and frictional resistance using universal testing machine were evaluated. Highest mean (standard deviation) static frictional force of 2.65 (0.25) N was recorded in Pepsi ® followed by 2.57 (0.25) N, 2.40 (0.22) N, and 2.36 (0.17) N for Vinegar, Colgate Phos-Flur mouth rinse, and artificial saliva groups, respectively. In a similar order, lesser mean kinetic frictional forces obtained. PCA brackets revealed more surface deterioration and higher frictional force values than SS brackets. A significant positive correlation was observed between frictional forces and bracket slot roughness (r = 0.861 and 0.802, respectively, for static and kinetic frictional forces, p < 0.001 for both) and wire roughness (r = 0.243 and 0.242, respectively, for static and kinetic frictional forces, p < 0.05 for both). Findings may have long-term implications when acidic food substances are used during fixed orthodontic treatment. Further, in vivo studies are required to analyze the clinical effect of acidic mediums in the oral environment during orthodontic treatment.

  12. Modeling and analysis of friction clutch at a driveline for suppressing car starting judder

    NASA Astrophysics Data System (ADS)

    Li, Liping; Lu, Zhaijun; Liu, Xue-Lai; Sun, Tao; Jing, Xingjian; Shangguan, Wen-Bin

    2018-06-01

    Car judder is a kind of back-forth vibration during vehicle starting which caused by the torsional oscillation of the driveline. This paper presents a systematic study on the dynamic response characteristics of the clutch driven disc for suppression of the judder during vehicle starting. Self-excited vibration behavior of the clutch driven disc is analyzed based on the developed 4DOF non-linear multi-body dynamic model of the clutch driving process considering stick-slip characteristics and using Karnopp friction models. Physical parameters of a clutch determining the generations of the judder behaviors are discussed and the revised designs of the driven disc of a clutch for suppression of the judder are consequently investigated and validated with experiments for two real cars.

  13. Experimental investigation of the cornering of a C40 x 14-21 cantilever aircraft tire

    NASA Technical Reports Server (NTRS)

    Dreher, R. C.; Tanner, J. A.

    1973-01-01

    An experimental investigation was conducted at the Langley aircraft landing loads and traction facility to define the cornering characteristics of a size C40 x14-21 aircraft tire of cantilever design. These characteristics, which include the cornering-force and drag-force friction coefficients and self-alining torque, were obtained for the tire operating on dry, damp, and flooded runway surfaces over a range of yaw angles from 0 deg to 20 deg and at ground speeds of 5 to 100 knots, both with and without braking. The results of this investigation show that the cornering-force and drag-force friction coefficients and self-alining torque were influenced by the yaw angle, ground speed, brake torque, surface wetness, and the locked-wheel condition.

  14. Mechanical spectroscopy of nanocrystalline aluminum films: effects of frequency and grain size on internal friction.

    PubMed

    Sosale, Guruprasad; Almecija, Dorothée; Das, Kaushik; Vengallatore, Srikar

    2012-04-20

    Energy dissipation by internal friction is a property of fundamental interest for probing the effects of scale on mechanical behavior in nanocrystalline metallic films and for guiding the use of these materials in the design of high-Q micro/nanomechanical resonators. This paper describes an experimental study to measure the effects of frequency, annealing and grain size on internal friction at room temperature in sputter-deposited nanocrystalline aluminum films with thicknesses ranging from 60 to 120 nm. Internal friction was measured using a single-crystal silicon microcantilever platform that calibrates dissipation against the fundamental limits of thermoelastic damping. Internal friction was a weak function of frequency, reducing only by a factor of two over three decades of frequency (70 Hz to 44 kHz). Annealing led to significant grain growth and the average grain size of 100 nm thick films increased from 90 to 390 nm after annealing for 1 h at 450 (∘)C. This increase in grain size was accompanied by a decrease in internal friction from 0.05 to 0.02. Taken together, these results suggest that grain-boundary sliding, characterized by a spectrum of relaxation times, contributes to internal friction in these films. © 2012 IOP Publishing Ltd

  15. Finger pad friction and its role in grip and touch

    PubMed Central

    Adams, Michael J.; Johnson, Simon A.; Lefèvre, Philippe; Lévesque, Vincent; Hayward, Vincent; André, Thibaut; Thonnard, Jean-Louis

    2013-01-01

    Many aspects of both grip function and tactile perception depend on complex frictional interactions occurring in the contact zone of the finger pad, which is the subject of the current review. While it is well established that friction plays a crucial role in grip function, its exact contribution for discriminatory touch involving the sliding of a finger pad is more elusive. For texture discrimination, it is clear that vibrotaction plays an important role in the discriminatory mechanisms. Among other factors, friction impacts the nature of the vibrations generated by the relative movement of the fingertip skin against a probed object. Friction also has a major influence on the perceived tactile pleasantness of a surface. The contact mechanics of a finger pad is governed by the fingerprint ridges and the sweat that is exuded from pores located on these ridges. Counterintuitively, the coefficient of friction can increase by an order of magnitude in a period of tens of seconds when in contact with an impermeably smooth surface, such as glass. In contrast, the value will decrease for a porous surface, such as paper. The increase in friction is attributed to an occlusion mechanism and can be described by first-order kinetics. Surprisingly, the sensitivity of the coefficient of friction to the normal load and sliding velocity is comparatively of second order, yet these dependencies provide the main basis of theoretical models which, to-date, largely ignore the time evolution of the frictional dynamics. One well-known effect on taction is the possibility of inducing stick–slip if the friction decreases with increasing sliding velocity. Moreover, the initial slip of a finger pad occurs by the propagation of an annulus of failure from the perimeter of the contact zone and this phenomenon could be important in tactile perception and grip function. PMID:23256185

  16. Influences of thickness, scanning velocity and relative humidity on the frictional properties of WS2 nanosheets

    NASA Astrophysics Data System (ADS)

    Feng, Dongdong; Peng, Jinfeng; Liu, Sisi; Zheng, Xuejun; Yan, Xinyang; He, Wenyuan

    2018-01-01

    Distinguishing with the traditional cantilever mechanics method, we propose the extended cantilever mechanics method to calibrate the lateral calibration factor by using the normal spring constant obtained from atomic force microscopy (AFM) but not the Young’s modulus and the width of the cantilever, before the influences of thickness, scanning velocity and humidity on the frictional properties are investigated via friction measurement performed by the lateral force mode (LFM) of AFM. Tungsten disulfide (WS2) nanosheets were prepared through hydrothermal intercalation and exfoliation route, and AFM and Raman microscope were used to investigate the frictional properties, thickness and crystalline structure. The friction force and coefficient decrease monotonically with the increase of the nanosheet’s thickness, and the friction coefficient minimum value is close to 0.012 when the thickness larger than 5 nm. The friction property variation on the nanosheet’s thickness can be explained by the puckering effect of tip-sheet adhesion according thickness dependence of bending stiffness in the frame of continuum mechanics. The friction force is a constant value 1.7 nN when the scanning speed larger than the critical value 3.10 μm s-1, while it logarithmically increases for the scanning speed less than the critical value. It is easy to understand through the energy dissipation model and the thermally activated effect. The friction force and friction coefficient increase with the relative humidity at the range of 30%-60%, and the latter is at the range of 0.010-0.013. Influence of relative humidity is discussed via the increasing area of the water monolayer during the water adsorption process. The research can not only enrich nanotribology theory, but also prompt two dimensions materials for nanomechanical applications.

  17. Tidal synchronization of an anelastic multi-layered body: Titan's synchronous rotation

    NASA Astrophysics Data System (ADS)

    Folonier, Hugo A.; Ferraz-Mello, Sylvio

    2017-12-01

    Tidal torque drives the rotational and orbital evolution of planet-satellite and star-exoplanet systems. This paper presents one analytical tidal theory for a viscoelastic multi-layered body with an arbitrary number of homogeneous layers. Starting with the static equilibrium figure, modified to include tide and differential rotation, and using the Newtonian creep approach, we find the dynamical equilibrium figure of the deformed body, which allows us to calculate the tidal potential and the forces acting on the tide generating body, as well as the rotation and orbital elements variations. In the particular case of the two-layer model, we study the tidal synchronization when the gravitational coupling and the friction in the interface between the layers is added. For high relaxation factors (low viscosity), the stationary solution of each layer is synchronous with the orbital mean motion ( n) when the orbit is circular, but the rotational frequencies increase if the orbital eccentricity increases. This behavior is characteristic in the classical Darwinian theories and in the homogeneous case of the creep tide theory. For low relaxation factors (high viscosity), as in planetary satellites, if friction remains low, each layer can be trapped in different spin-orbit resonances with frequencies n/2,n,3n/2,2n,\\ldots . When the friction increases, attractors with differential rotations are destroyed, surviving only commensurabilities in which core and shell have the same velocity of rotation. We apply the theory to Titan. The main results are: (i) the rotational constraint does not allow us to confirm or reject the existence of a subsurface ocean in Titan; and (ii) the crust-atmosphere exchange of angular momentum can be neglected. Using the rotation estimate based on Cassini's observation (Meriggiola et al. in Icarus 275:183-192, 2016), we limit the possible value of the shell relaxation factor, when a deep subsurface ocean is assumed, to γ _s≲ 10^{-9} s^{-1}, which corresponds to a shell's viscosity η _s≳ 10^{18} Pa s, depending on the ocean's thickness and viscosity values. In the case in which a subsurface ocean does not exist, the maximum shell relaxation factor is one order of magnitude smaller and the corresponding minimum shell's viscosity is one order higher.

  18. Required friction during overground walking is lower among obese compared to non-obese older men, but does not differ with obesity among women.

    PubMed

    Arena, Sara L; Garman, Christina R; Nussbaum, Maury A; Madigan, Michael L

    2017-07-01

    Obesity and aging have been independently associated with altered required friction during walking, but it is unclear how these factors interact to influence the likelihood of slipping. Therefore, the purpose of this study was to determine whether there are differences related to obesity and aging on required friction during overground walking. Fourteen older non-obese, 11 older obese, 20 younger non-obese, and 20 younger obese adults completed walking trials at both a self-selected and hurried speed. When walking at a hurried speed, older obese men walked at a slower gait speed and exhibited lower frictional demands compared both to older non-obese men and to younger obese men. No differences in required friction were found between non-obese and obese younger adults. These results suggest that the increased rate of falls among obese or older adults is not likely due to a higher risk of slip initiation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Effect of Friction on Barreling during cold Upset Forging of Aluminium 6082 Alloy Solid cylinders

    NASA Astrophysics Data System (ADS)

    Priyadarshini, Amrita; Kiran, C. P.; Suresh, K.

    2018-03-01

    Friction is one of the significant factors in forging operations since it affects metal flow in the die, forming load, strain distribution, tool and die life, surface quality of the product etc. In upset forging, the frictional forces at the die-workpiece interface oppose the outward flow of the material due to which the specimen develops a barrel shape. As a result, the deformation becomes non-uniform or inhomogeneous which is undesirable. Barreling can be reduced by applying effective lubricant on the surface of the platens. The objective of the present work is to study experimentally the effect of various frictional conditions (dry, grease, mineral oil) on barreling during upset forging of aluminum 6082 solid cylinders of different aspect ratio (length/diameter: 0.5, 0.75, 1). The friction coefficients are determined using the ring compression test. Curvature of barrel is determined based on the assumption that the curvature of the barrel follows the geometry of circular arc.

  20. Classroom Foils

    ERIC Educational Resources Information Center

    Pafford, William N.

    1970-01-01

    Aluminum foil, because of its characteristics, can be used for many elementary science activities: demonstrating Archimedes Principle, how to reduce cohesion, reflection and mirror effect, fuse action, condensation, friction, and as containers and barriers. (BR)

  1. Investigation of effects of process parameters on properties of friction stir welded joints

    NASA Astrophysics Data System (ADS)

    Chauhan, Atul; Soota, Tarun; Rajput, S. K.

    2018-03-01

    This work deals with application of friction stir welding (FSW) using application of Taguchi orthogonal array. FSW procedure is used for joining the aluminium alloy AA6063-T0 plates in butt configuration with orthogonal combination of factors and their levels. The combination of factors involving tool rotation speed, tool travel speed and tool pin profile are used in three levels. Grey relational analysis (GRA) has been applied to select optimum level of factors for optimising UTS, ductility and hardness of joint. Experiments have been conducted with two different tool materials (HSS and HCHCr steel) with various factors level combinations for joining AA6063-T0. On the basis of grey relational grades at different levels of factors and analysis of variance (ANOVA) ideal combination of factors are determined. The influence of tool material is also studied.

  2. Shear flow of angular grains: acoustic effects and nonmonotonic rate dependence of volume.

    PubMed

    Lieou, Charles K C; Elbanna, Ahmed E; Langer, J S; Carlson, J M

    2014-09-01

    Naturally occurring granular materials often consist of angular particles whose shape and frictional characteristics may have important implications on macroscopic flow rheology. In this paper, we provide a theoretical account for the peculiar phenomenon of autoacoustic compaction-nonmonotonic variation of shear band volume with shear rate in angular particles-recently observed in experiments. Our approach is based on the notion that the volume of a granular material is determined by an effective-disorder temperature known as the compactivity. Noise sources in a driven granular material couple its various degrees of freedom and the environment, causing the flow of entropy between them. The grain-scale dynamics is described by the shear-transformation-zone theory of granular flow, which accounts for irreversible plastic deformation in terms of localized flow defects whose density is governed by the state of configurational disorder. To model the effects of grain shape and frictional characteristics, we propose an Ising-like internal variable to account for nearest-neighbor grain interlocking and geometric frustration and interpret the effect of friction as an acoustic noise strength. We show quantitative agreement between experimental measurements and theoretical predictions and propose additional experiments that provide stringent tests on the new theoretical elements.

  3. Wind-tunnel investigation at supersonic speeds of a remote-controlled canard missile with a free-rolling-tail brake torque system

    NASA Technical Reports Server (NTRS)

    Blair, A. B., Jr.

    1985-01-01

    Wind tunnel tests were conducted at Mach numbers 1.70, 2.16, and 2.86 to determine the static aerodynamic characteristics of a cruciform canard-controlled missile with fixed or free rolling tailfin afterbodies. Mechanical coupling effects of the free-rolling-tail afterbody were investigated by using an electronic electromagnetic brake system providing arbitrary tail-fin brake torques with continuous measurements of tail-to-mainframe torque and tail roll rate. Remote-controlled canards were deflected to provide pitch, yaw, and roll control. Results indicate that the induced rolling moment coefficients due to canard yaw control are reduced and linearized for the free-rolling-tail (free-tail) configuration. The canards of the latter provide conventional roll control for the entire angle-of-attack test range. For the free-tail configuration, the induced rolling moment coefficient due to canard yaw control increased and the canard roll control decreased with increases in brake torque, which simulated bearing friction torque. It appears that a compromise in regard to bearing friction, for example, low-cost bearings with some friction, may allow satisfactory free-tail aerodynamic characteristics that include reductions in adverse rolling-moment coefficients and lower tail roll rates.

  4. Vibration characteristics measurement of beam-like structures using infrared thermography

    NASA Astrophysics Data System (ADS)

    Talai, S. M.; Desai, D. A.; Heyns, P. S.

    2016-11-01

    Infrared thermography (IRT) has matured and is now widely accepted as a condition monitoring tool where temperature is measured in a non-contact way. Since the late 1970s, it has been extensively used in vibrothermography (Sonic IR) non-destructive technique for the evaluation of surface cracks through the observation of thermal imaging of the vibration-induced crack heat generation. However, it has not received research attention on prediction of structural vibration behaviour, hence; the concept to date is not understood. Therefore, this paper explores its ability to fill the existing knowledge gap. To achieve this, two cantilever beam-like structures couple with a friction rod subjected to a forced excitations while infrared cameras capturing the thermal images on the friction interfaces. The analysed frictional temperature evolution using the Matlab Fast Fourier Transform (FFT) algorithm and the use of the heat conduction equation in conjunction with a finite difference approach successfully identifies the structural vibration characteristics; with maximum error of 0.28% and 20.71% for frequencies and displacements, respectively. These findings are particularly useful in overcoming many limitations inherent in some of the current vibration measuring techniques applied in structural integrity management such as strain gauge failures due to fatigue.

  5. Characteristics of dilute gas-solids suspensions in drag reducing flow

    NASA Technical Reports Server (NTRS)

    Kane, R. S.; Pfeffer, R.

    1973-01-01

    Measurements were performed on dilute flowing gas-solids suspensions and included data, with particles present, on gas friction factors, velocity profiles, turbulence intensity profiles, turbulent spectra, and particle velocity profiles. Glass beads of 10 to 60 micron diameter were suspended in air at Reynolds numbers of 10,000 to 25,000 and solids loading ratios from 0 to 4. Drag reduction was achieved for all particle sizes in vertical flow and for the smaller particle sizes in horizontal flow. The profile measurements in the vertical tube indicated that the presence of particles thickened the viscous sublayer. A quantitative theory based on particle-eddy interaction and viscous sublayer thickening has been proposed.

  6. Development and evaluation of a reinforced polymeric biomaterial for use as an orthodontic wire

    NASA Astrophysics Data System (ADS)

    Zufall, Scott William

    Composite archwires have the potential to provide esthetic and functional improvements over conventional wires. As part of an ongoing effort to bring these materials into general use, composite wires were fabricated using a photo-pultrusion manufacturing technique, and subsequently coated with a 10 mum layer of poly(chloro-p-xylylene). Coated and uncoated composites were subjected to several different evaluations to assess their ability to perform the functions of an orthodontic archwire. An investigation of the viscoelastic behavior of uncoated composite wires was conducted at a physiological temperature of 37°C using a bend stress relaxation test. Over 90 day testing periods, energy losses increased with decreasing reinforcement levels from to 8% of the initial wire stress. Final viscous losses were 1% for all reinforcement levels. Relaxed elastic moduli for the composite wires were comparable to the reported elastic moduli of conventional orthodontic wires that are typically used for initial and intermediate alignment procedures. Frictional characteristics were evaluated in passive and active configurations for uncoated composite wires against three contemporary orthodontic brackets. Kinetic coefficients of friction were the same for all wire-bracket combinations tested and were slightly lower than the reported coefficients of other initial and intermediate alignment wires. Wear patterns on the wires, which were largely caused by sharp leading edges of the bracket slots, were characteristic of plowing and cutting wear behaviors. This wear caused glass fibers to be released from the surface of the wires, presenting a potential irritant. Coated composite wires were subjected to the same frictional analysis as the uncoated wires. A mathematical model of the archwire-bracket system was derived using engineering mechanics, and used to define a coefficient of binding. The coating increased the frictional coefficients of the wires by 72%, yet the binding coefficient was unchanged. When frictional data for initial and intermediate alignment wires were compared, the coated composites had higher friction than all but one couple. However, binding coefficients were comparable. Glass fibers were contained for all testing conditions, although the coating was often damaged by plowing or cutting wear. Overall, the coating improved the clinical acceptability of the composite wires.

  7. Experimental and numerical investigation on heat transfer augmentation in a circular tube under forced convection with annular differential blockages/inserts

    NASA Astrophysics Data System (ADS)

    Waghole, D. R.

    2018-06-01

    Investigation on heat transfer by generating turbulence in the fluid stream inside the circular tube is an innovative area of research for researchers. Hence, many techniques are been investigated and adopted for enhancement of heat transfer rate to reduce the size and the cost of the heat exchanger/circular tube. In the present study the effect of differential solid ring inserts /turbulators on heat transfer, friction factor of heat exchanger/circular tube was evaluated through experimentally and numerically. The experiments were conducted in range of 3000 ≤Re≤ 6500 and annular blockages 0 ≤ɸ≤50 %. The heat transfer rate was higher for differential combination of inserts as compared to tube fitted with uniform inserts. The maximum heat transfer was obtained by the use of differential metal circular ring inserts/blockages. From this study, Nusselt number, friction factor and enhancement factor are found as 2.5-3.5 times, 12% - 50.5% and 155% - 195%, respectively with water. Finally new possible correlations for predicting heat transfer and friction factor in the flow of water through the circular tube with differential blockages/inserts are proposed.

  8. The frictional response of patterned soft polymer surfaces

    NASA Astrophysics Data System (ADS)

    Rand, Charles J.

    2008-10-01

    Friction plays an intricate role in our everyday lives, it is therefore critical to understand the underlying features of friction to better help control and manipulate the response anywhere two surfaces in contact move past each other by a sliding motion. Here we present results targeting a thorough understanding of soft material friction and how it can be manipulated with patterns. We found that the naturally occurring length scale or periodicity (lambda) of frictionally induced patterns, Schallamach waves, could be described using two materials properties (critical energy release rate Gc and complex modulus (E*), i.e. lambdainfinity Gc /E*). Following this, we evaluated the effect of a single defect at a sliding interface. Sliding over a defect can be used to model the sliding from one feature to another in a patterned surface. Defects decreased the sliding frictional force by as much as 80% sliding and this decrease was attributed to changes in tangential stiffness of the sliding interface. The frictional response of surface wrinkles, where multiple edges or defects are acting in concert, was also evaluated. Wrinkles were shown to decrease friction (F) and changes in contact area (A) could not describe this decrease. A tangential stiffness correction factor (fx) and changes in the critical energy release rate were used to describe this deviation (F infinity Gc *A*fx/ℓ, where ℓ is a materials defined length scale of dissipation). This scaling can be used to describe the friction of any topographically patterned surface including the Gecko's foot, where the feature size is smaller than ℓ and thus replaces ℓ, increasing the friction compared to a flat surface. Also, mechanically-induced surface defects were used to align osmotically driven surface wrinkles by creating stress discontinuities that convert the global biaxial stress state to local uniaxial stresses. Defect spacing was used to control the alignment process at the surface of the wrinkled rigid film/soft elastomer interface. These aligned wrinkled surfaces can be used to tune the adhesion and friction of an interface. The work presented here gives insight into tuning the friction of a soft polymeric surface as well as understanding the friction of complex hierarchical structures.

  9. Effects of working gas pressure on zirconium dioxide thin film prepared by pulsed plasma deposition: roughness, wettability, friction and wear characteristics.

    PubMed

    Berni, M; Marchiori, G; Gambardella, A; Boi, M; Bianchi, M; Russo, A; Visani, A; Marcacci, M; Pavan, P G; Lopomo, N F

    2017-08-01

    In joint arthroplasty one of the main issues related to the failure of prosthetic implants is due to the wear of the ultra-high molecular weight polyethylene (UHMWPE) component. Surface treatments and coatings have been recognized as enhancing methods, able to improve the tribological properties of the implants. Therefore, the main objective of this work was to investigate the possibility to fabricate yttria-stabilized zirconia (YSZ) coatings on a metal (AISI 316-L) substrate by means of Pulsed Electron Deposition, in order to improve the tribological behavior of the polymer-metal coupling, by reducing the initial wear of the UHMWPE component. In order to optimize the coating characteristics, the effects of working gas pressure on both its morphological and tribological properties were analyzed. Morphological characterization of the films was evaluated by Atomic Force Microscopy (AFM). Coating wettability was also estimated by contact angle (CA) measurement. Tribological performance (coupling friction and wear of UHMWPE) was evaluated by using a ball-on-disc tribometer during highly-stressing tests in dry and lubricated (i.e. NaCl and serum) conditions; friction and wear were specifically evaluated at the initial sliding distances - to highlight the main effect of coating morphology - and after 100m - where the influence of the intrinsic materials properties prevails. AFM analysis highlighted that the working pressure heavily affected the morphological characteristics of the realized films. The wettability of the coating at the highest and lowest deposition pressures (CA ~ 60°, closed to substrate value) decreased for intermediate pressures, reaching a maximum CA of ~ 90°. Regarding tribological tests, a strong correlation was found in the initial steps between friction coefficient and wettability, which decreased as the distance increased. Concerning UHMWPE wear associated to coated counterpart, at 100m a reduction rate of about 7% in dry, 12% in NaCl and 5% in presence of serum was obtained compared to the uncoated counterpart. Differently from what highlighted for friction, no correlation was found between wear rate and morphological parameters. These findings, in agreement with literature, underlined the effect of the deposition pressure on the morphological properties, but suggested that physical characteristics are influenced too. Further research on the deposition process will be required in order to improve the tribological performance of the coating at long distances, addressing - above all - orthopedic applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. On the dependence of the domain of values of functionals of hypersonic aerodynamics on controls

    NASA Astrophysics Data System (ADS)

    Bilchenko, Grigory; Bilchenko, Nataly

    2018-05-01

    The properties of mathematical model of control of heat and mass transfer in laminar boundary layer on permeable cylindrical and spherical surfaces of the hypersonic aircraft are considered. Dependences of hypersonic aerodynamics functionals (the total heat flow and the total Newton friction force) on controls (the blowing into boundary layer, the temperature factor, the magnetic field) are investigated. The domains of allowed values of functionals of hypersonic aerodynamics are obtained. The results of the computational experiments are presented: the dependences of total heat flow on controls; the dependences of total Newton friction force on controls; the mutual dependences of functionals (as the domains of allowed values "Heat and Friction"); the dependences of blowing system power on controls. The influences of magnetic field and dissociation on the domain of "Heat and Friction" allowed values are studied. It is proved that for any fixed constant value of magnetic field the blowing system power is a symmetric function of constant dimensionless controls (the blowing into boundary layer and the temperature factor). It is shown that the obtained domain of allowed values of functionals of hypersonic aerodynamics depending on permissible range of controls may be used in engineering.

  11. Quantification of the Effect of Cross-shear on the Wear of Conventional and Highly Cross-linked UHMWPE

    PubMed Central

    Kang, Lu; Galvin, Alison L.; Brown, Thomas D.; Jin, Zhongmin; Fisher, John

    2008-01-01

    A computational model has been developed to quantify the degree of cross-shear of a polyethylene pin articulating against a metallic plate, based on the direct simulation of a multidirectional pin-on-plate wear machine. The principal molecular orientation (PMO) was determined for each polymer site. The frictional work in the direction perpendicular to the PMO was assumed to produce the greatest orientation softening (Wang et al., 1997). The cross-shear ratio (CS) was defined as the frictional work perpendicular to the PMO direction, divided by the total frictional work. Cross-shear on the pin contact surface was location-specific, and of continuously changing magnitude because the direction of frictional force continuously changed due to pin rotation. The polymer pin motion was varied from a purely linear track (CS=0) up to a maximum rotation of ±55° (CS=0.254). The relationship between wear factors (K) measured experimentally and theoretically predicted CS was defined using logarithmic functions for both conventional and highly cross-linked UHMWPE. Cross-shear increased the apparent wear factor for both polyethylenes by more than 5-fold compared to unidirectional wear. PMID:17936763

  12. The influence of nitrogen ion implantation on the tribological properties of piston rings made of Hardox and Raex steels

    NASA Astrophysics Data System (ADS)

    Budzyński, P.; Kamiński, M.; Pyszniak, K.

    2016-09-01

    The implantation of nitrogen, carbon, and oxygen can be used for enhancing the tribological properties of critical components for internal combustion engines. Hardox and Raex steels have very similar strength parameters as for steel used for piston rings in internal combustion engines. An essential criterion when selecting material for the production of piston rings is a low friction factor and a low wear index. The aim of this study was to determine the extent to which these parameters can be enhanced by nitrogen ion implantation. Samples were implanted with nitrogen ions with 65 keV energy and the fluence of implanted ions set to 1.1017 N + /cm2. Friction and wear measurements were performed on a pin-on disc stand. The results demonstrate that implantation with nitrogen ions significantly reduces the friction factor and wear of Hardox 450 and Raex 400 steels. Implantation can and should be used for enhancing the tribological properties of steel used for friction elements in internal combustion engines, particularly when heat treatment is excluded. Final elements can be subjected to implantation, as the process does not change their dimensions.

  13. Surface modification of Monel K-500 as a means of reducing friction and wear in high-pressure oxygen

    NASA Technical Reports Server (NTRS)

    Gunaji, Mohan; Stoltzfus, Joel M.; Schoenman, Leonard; Kazaroff, John

    1989-01-01

    A study is conducted of the tribological characteristics of Monel K-500 during rubbing in a high pressure oxygen atmosphere, upon surface treatment by ion-implanted oxygen, chromium, lead, and silver, as well as electrolyzed chromium and an electroless nickel/SiC composite. The electrolyzed chromium dramatically increased total sample wear, while other surface treatments affected sample wear only moderately. Although the ion-implant treatments reduced the average coefficient of friction at low contact pressure, higher contact pressures eliminated this improvement.

  14. Modeling of electromagnetic brakes for enhanced braking capabilities

    NASA Astrophysics Data System (ADS)

    Kachroo, Pushkin; Ming, Qian

    1998-01-01

    In automatic highway systems, automatic brake actuation is a very important part of the overall control of the vehicle. Hence, a faster response and a robust braking system are crucial. This paper describes electromagnetic brakes as a supplementary system for regular friction brakes. This system provides better response time for emergency situations, and in general keeps the friction brake working longer and safer. A new mathematical model for electromagnetic brakes is proposed to describe their static characteristics. The performance of the new mathematical model is better than the other three models available in the literature.

  15. Surface chemistry and tribology of MEMS.

    PubMed

    Maboudian, Roya; Carraro, Carlo

    2004-01-01

    The microscopic length scale and high surface-to-volume ratio, characteristic of microelectro-mechanical systems (MEMS), dictate that surface properties are of paramount importance. This review deals with the effects of surface chemical treatments on tribological properties (adhesion, friction, and wear) of MEMS devices. After a brief review of materials and processes that are utilized in MEMS technology, the relevant tribological and chemical issues are discussed. Various MEMS microinstruments are discussed, which are commonly employed to perform adhesion, friction, and wear measurements. The effects of different surface treatments on the reported tribological properties are discussed.

  16. Anti-wear Mechanism Analysis of Nano-CaCO3 Additives

    NASA Astrophysics Data System (ADS)

    Xu, Zhen; Sun, Junfeng

    2018-06-01

    In this paper, the wear test was carried on with cylinder piston by the wear test device, receiving the results of the piston ring wear and abrasive characteristics by monitoring the wear process, the thesis analysis and put forward the nano-CaCO3 lubricating oil additive anti wear mechanism by the ferrography analysis technology, and provide the technical reference for the relevant measures to reduce wear and the friction, and provide reference value for further study on the related theories of reducing wear and reducing friction.

  17. Friction and wear behavior of graphite fiber reinforced polymide composites

    NASA Technical Reports Server (NTRS)

    Fusaro, R. L.; Sliney, H. E.

    1977-01-01

    The friction and wear rate characteristics of 50/50 (weight percent) graphite fiber polyimide composites were studied by sliding metallic hemispherically tipped riders against disks made from the composites. Two different polyimides and two different graphite fibers were evaluated. Also studied were such variables as the effect of moisture in an air atmosphere; the effect of temperature; and the effect of different sliding speeds. In general, wear to the the metallic riders was negligible, and composite wear increased at a constant rate as a function of number of sliding cycles.

  18. Dynamics of a poly(ethylene oxide) tracer in a poly(methyl methacrylate) matrix: remarkable decoupling of local and global motions.

    PubMed

    Haley, Jeffrey C; Lodge, Timothy P

    2005-06-15

    The tracer diffusion coefficient of unentangled poly(ethylene oxide) (PEO, M=1000 gmol) in a matrix of poly(methyl methacrylate) (PMMA, M=10 000 gmol) has been measured over a temperature range from 125 to 220 degrees C with forced Rayleigh scattering. The dynamic viscosities of blends of two different high molecular weight PEO tracers (M=440 000 and 900 000 gmol) in the same PMMA matrix were also measured at temperatures ranging from 160 to 220 degrees C; failure of time-temperature superposition was observed for these systems. The monomeric friction factors for the PEO tracers were extracted from the diffusion coefficients and the rheological relaxation times using the Rouse model. The friction factors determined by diffusion and rheology were in good agreement, even though the molecular weights of the tracers differed by about three orders of magnitude. The PEO monomeric friction factors were compared with literature data for PEO segmental relaxation times measured directly with NMR. The monomeric friction factors of the PEO tracer in the PMMA matrix were found to be from two to six orders of magnitude greater than anticipated based on direct measurements of segmental dynamics. Additionally, the PEO tracer terminal dynamics are a much stronger function of temperature than the corresponding PEO segmental dynamics. These results indicate that the fastest PEO Rouse mode, inferred from diffusion and rheology, is completely separated from the bond reorientation of PEO detected by NMR. This result is unlike other blend systems in which global and local motions have been compared.

  19. Work and power outputs determined from pedalling and flywheel friction forces during brief maximal exertion on a cycle ergometer.

    PubMed

    Hibi, N; Fujinaga, H; Ishii, K

    1996-01-01

    Work and power outputs during short-term, maximal exertion on a friction loaded cycle ergometer are usually calculated from the friction force applied to the flywheel. The inertia of the flywheel is sometimes taken into consideration, but the effects of internal resistances and other factors have been ignored. The purpose of this study was to estimate their effects by comparing work or power output determined from the force exerted on the pedals (pedalling force) with work or power output determined from the friction force and the moment of inertia of the rotational parts. A group of 22 male college students accelerated a cycle ergometer as rapidly as possible for 3 s. The total work output determined from the pedalling force (TWp) was significantly greater than that calculated from the friction force and the moment of inertia (TWf). Power output determined from the pedalling force during each pedal stroke (SPp) was also significantly greater than that calculated from the friction force and the moment of inertia. Percentage difference (% diff), defined by % diff = ¿(TWp - TWf)/TWf¿ x 100, ranged from 16.8% to 49.3% with a mean value of 30.8 (SD 9.1)%. It was observed that % diff values were higher in subjects with greater TWp or greater maximal SPp. These results would indicate that internal resistances and other factors, such as the deformation of the chain and the vibrations of the entire system, may have significant effects on the measurements of work and power outputs. The effects appear to depend on the magnitudes of pedalling force and pedal velocity.

  20. Experimental investigations on characteristics of boundary layer and control of transition on an airfoil by AC-DBD

    NASA Astrophysics Data System (ADS)

    Geng, Xi; Shi, Zhiwei; Cheng, Keming; Dong, Hao; Zhao, Qun; Chen, Sinuo

    2018-03-01

    Plasma-based flow control is one of the most promising techniques for aerodynamic problems, such as delaying the boundary layer transition. The boundary layer’s characteristics induced by AC-DBD plasma actuators and applied by the actuators to delay the boundary layer transition on airfoil at Ma = 0.3 were experimentally investigated. The PIV measurement was used to study the boundary layer’s characteristics induced by the plasma actuators. The measurement plane, which was parallel to the surface of the actuators and 1 mm above the surface, was involved in the test, including the perpendicular plane. The instantaneous results showed that the induced flow field consisted of many small size unsteady vortices which were eliminated by the time average. The subsequent oil-film interferometry skin friction measurement was conducted on a NASA SC(2)-0712 airfoil at Ma = 0.3. The coefficient of skin friction demonstrates that the plasma actuators successfully delay the boundary layer transition and the efficiency is better at higher driven voltage.

  1. Brittle and ductile friction modeling of triggered tremor in Guerrero, Mexico

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Daub, E. G.; Wu, C.

    2017-12-01

    Low frequency earthquakes (LFEs), which make up the highest amplitude portions of non-volcanic tremor, are mostly found along subduction zones at a depth of 30-40km which is typically within the brittle-ductile transition zone. Previous studies in Guerrero, Mexico demonstrated a relationship between the bursts of LFEs and the contact states of fault interfaces, and LFEs that triggered by different mechanisms were observed along different parts of the subduction zone. To better understand the physics of fault interfaces at depth, especially the influence of contact states of these asperities, we use a brittle-ductile friction model to simulate the occurrence of LFE families from a model of frictional failure and slip. This model takes the stress state, slip rate, perturbation force, fault area, and brittle-ductile frictional contact characteristics and simulates the times and amplitudes of LFE occurrence for a single family. We examine both spontaneous and triggered tremor occurrence by including stresses due to external seismic waves, such as the 2010 Maule Earthquake, which triggered tremor and slow slip on the Guerrero section of the subduction zone. By comparing our model output with detailed observations of LFE occurrence, we can determine valuable constraints on the frictional properties of subduction zones at depth.

  2. Tribological properties of silicon carbide in metal removal process

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1980-01-01

    Material properties are considered as they relate to adhesion, friction, and wear of single crystal silicon carbide in contact with metals and alloys that are likely to be involved in a metal removal process such as grinding. Metal removal from adhesion between sliding surfaces in contact and metal removal as a result of the silicon carbide sliding against a metal, indenting into it, and plowing a series of grooves or furrows are discussed. Fracture and deformation characteristics of the silicon carbide surface are also covered. The adhesion, friction, and metal transfer to silicon carbide is related to the relative chemical activity of the metals. The more active the metal, the higher the adhesion and friction, and the greater the metal transfer to silicon carbide. Atomic size and content of alloying elements play a dominant role in controlling adhesion, friction, and abrasive wear properties of alloys. The friction and abrasive wear (metal removal) decrease linearly as the shear strength of the bulk metal increases. They decrease as the solute to solvent atomic radius ratio increases or decreases linearly from unity, and with an increase of solute content. The surface fracture of silicon carbide is due to cleavages of 0001, 10(-1)0, and/or 11(-2)0 planes.

  3. A closed form slug test theory for high permeability aquifers.

    PubMed

    Ostendorf, David W; DeGroot, Don J; Dunaj, Philip J; Jakubowski, Joseph

    2005-01-01

    We incorporate a linear estimate of casing friction into the analytical slug test theory of Springer and Gelhar (1991) for high permeability aquifers. The modified theory elucidates the influence of inertia and casing friction on consistent, closed form equations for the free surface, pressure, and velocity fluctuations for overdamped and underdamped conditions. A consistent, but small, correction for kinetic energy is included as well. A characteristic velocity linearizes the turbulent casing shear stress so that an analytical solution for attenuated, phase shifted pressure fluctuations fits a single parameter (damping frequency) to transducer data from any depth in the casing. Underdamped slug tests of 0.3, 0.6, and 1 m amplitudes at five transducer depths in a 5.1 cm diameter PVC well 21 m deep in the Plymouth-Carver Aquifer yield a consistent hydraulic conductivity of 1.5 x 10(-3) m/s. The Springer and Gelhar (1991) model underestimates the hydraulic conductivity for these tests by as much as 25% by improperly ascribing smooth turbulent casing friction to the aquifer. The match point normalization of Butler (1998) agrees with our fitted hydraulic conductivity, however, when friction is included in the damping frequency. Zurbuchen et al. (2002) use a numerical model to establish a similar sensitivity of hydraulic conductivity to nonlinear casing friction.

  4. A method for the determination of the coefficient of rolling friction using cycloidal pendulum

    NASA Astrophysics Data System (ADS)

    Ciornei, M. C.; Alaci, S.; Ciornei, F. C.; Romanu, I. C.

    2017-08-01

    The paper presents a method for experimental finding of coefficient of rolling friction appropriate for biomedical applications based on the theory of cycloidal pendulum. When a mobile circle rolls over a fixed straight line, the points from the circle describe trajectories called normal cycloids. To materialize this model, it is sufficient that a small region from boundary surfaces of a moving rigid body is spherical. Assuming pure rolling motion, the equation of motion of the cycloidal pendulum is obtained - an ordinary nonlinear differential equation. The experimental device is composed by two interconnected balls rolling over the material to be studied. The inertial characteristics of the pendulum can be adjusted via weights placed on a rod. A laser spot oscillates together to the pendulum and provides the amplitude of oscillations. After finding the experimental parameters necessary in differential equation of motion, it can be integrated using the Runge-Kutta of fourth order method. The equation was integrated for several materials and found values of rolling friction coefficients. Two main conclusions are drawn: the coefficient of rolling friction influenced significantly the amplitude of oscillation but the effect upon the period of oscillation is practically imperceptible. A methodology is proposed for finding the rolling friction coefficient and the pure rolling condition is verified.

  5. Friction and lubrication of pleural tissues.

    PubMed

    D'Angelo, Edgardo; Loring, Stephen H; Gioia, Magda E; Pecchiari, Matteo; Moscheni, Claudia

    2004-08-20

    The frictional behaviour of rabbit's visceral pleura sliding against parietal pleura was assessed in vitro while oscillating at physiological velocities and amplitudes under physiological normal forces. For sliding velocities up to 3 cm s(-1) and normal compressive loads up to 12 cm H2O, the average value of the coefficient of kinetic friction (mu) was constant at 0.019 +/- 0.002 (S.E.) with pleural liquid as lubricant. With Ringer-bicarbonate solution, mu was still constant, but significantly increased (Deltamu = 0.008 +/- 0.001; P < 0.001). Under these conditions, no damage of the sliding pleural surfaces was found on light and electron microscopy. Additional measurements, performed also on peritoneum, showed that changes in nominal contact area or strain of the mesothelia, temperature in the range 19-39 degrees C, and prolonged sliding did not affect mu. Gentle application of filter paper increased mu approximately 10-fold and irreversibly, suggesting alteration of the mesothelia. With packed the red blood cells (RBC) between the sliding mesothelia, mu increased appreciably but reversibly on removal of RBC suspension, whilst no ruptures of RBC occurred. In conclusion, the results indicate a low value of sliding friction in pleural tissues, partly related to the characteristics of the pleural liquid, and show that friction is independent of velocity, normal load, and nominal contact area, consistent with boundary lubrication.

  6. Bottom friction models for shallow water equations: Manning’s roughness coefficient and small-scale bottom heterogeneity

    NASA Astrophysics Data System (ADS)

    Dyakonova, Tatyana; Khoperskov, Alexander

    2018-03-01

    The correct description of the surface water dynamics in the model of shallow water requires accounting for friction. To simulate a channel flow in the Chezy model the constant Manning roughness coefficient is frequently used. The Manning coefficient nM is an integral parameter which accounts for a large number of physical factors determining the flow braking. We used computational simulations in a shallow water model to determine the relationship between the Manning coefficient and the parameters of small-scale perturbations of a bottom in a long channel. Comparing the transverse water velocity profiles in the channel obtained in the models with a perturbed bottom without bottom friction and with bottom friction on a smooth bottom, we constructed the dependence of nM on the amplitude and spatial scale of perturbation of the bottom relief.

  7. Development of friction and wear full-scale testing for TKR prostheses with reliable low cost apparatus

    NASA Astrophysics Data System (ADS)

    Suwandi, Agri; Soemardi, Tresna P.; Kiswanto, Gandjar; Kusumaningsih, Widjajalaksmi; I. Gusti Agung I. G., W.

    2018-02-01

    Prostheses products must undergo simulation and physical testing, before clinical testing. Finite element method is a preliminary simulation for in vivo test. The method visualizes the magnitude of the compressive force and the critical location of the Total Knee Replacement (TKR) prostheses design. In vitro testing is classified as physical testing for prostheses product. The test is conducted to evaluate the potential failure of the product and the characteristics of the prostheses TKR material. Friction and wear testing are part of the in vivo test. Motion of knee joints, which results in the phenomena of extension and deflection in the femoral and tibia insert, is represented by friction and wear testing. Friction and wear tests aim to obtain an approximate lifetime in normal and extreme load patterns as characterized by the shape of the friction surface area. The lifetime estimation requires friction and wear full-scale testing equipments for TKR prostheses products. These are necessary in obtaining initial data on potential product failures and characterizing of the material based on the ASTM F2724-08 standards. Based on the testing result and statistical analysis data, the average wear rate value per year is 2.19 × 10-3 mg/MC, with a 10 % safety limit of volume and 14,400 cycles times, for 15 hours moving nonstop then the prediction of wear life of the component tibia insert is ± 10 years.

  8. Friction

    NASA Astrophysics Data System (ADS)

    Matsuo, Yoshihiro; Clarke, Daryl D.; Ozeki, Shinichi

    Friction materials such as disk pads, brake linings, and clutch facings are widely used for automotive applications. Friction materials function during braking due to frictional resistance that transforms kinetic energy into thermal energy. There has been a rudimentary evolution, from materials like leather or wood to asbestos fabric or asbestos fabric saturated with various resins such as asphalt or resin combined with pitch. These efforts were further developed by the use of woven asbestos material saturated by either rubber solution or liquid resin binder and functioned as an internal expanding brake, similar to brake lining system. The role of asbestos continued through the use of chopped asbestos saturated by rubber, but none was entirely successful due to the poor rubber heat resistance required for increased speeds and heavy gearing demands of the automobile industry. The use of phenolic resins as binder for asbestos friction materials provided the necessary thermal resistance and performance characteristics. Thus, the utility of asbestos as the main friction component, for over 100 years, has been significantly reduced in friction materials due to asbestos identity as a carcinogen. Steel and other fibrous components have displaced asbestos in disk pads. Currently, non-asbestos organics are the predominate friction material. Phenolic resins continue to be the preferred binder, and increased amounts are necessary to meet the requirements of highly functional asbestos-free disk pads for the automotive industry. With annual automobile production exceeding 70 million vehicles and additional automobile production occurring in developing countries worldwide and increasing yearly, the amount of phenolic resin for friction material is also increasing (Fig. 14.1). Fig. 14.1 Worldwide commercial vehicle production In recent years, increased fuel efficiency of passenger car is required due to the CO2 emission issue. One of the solutions to improve fuel efficiency is to lower the car body weight. It means that the weight of car components must be decreased. In the case of reduced weight for friction parts, the load applied to the friction parts would be higher (more heat also) and trend would lead to phenolic resins with improved heat resistance.

  9. Improving the particle distribution and mechanical properties of friction-stir-welded composites by using a smooth pin tool

    NASA Astrophysics Data System (ADS)

    Liu, Huijie; Hu, Yanying; Zhao, Yunqiang; Fujii, Hidetoshi

    2017-09-01

    Friction stir welding (FSW) is a very promising technique for joining particle-reinforced aluminum-matrix composites (PRAMCs), but with increase in the volume fraction of reinforcing particles, their distribution in welds becomes inhomogeneous. This leads to an inconsistent deformation of welds and their destruction at low stresses. In order to improve the weld microstructure, a smooth pin tool was used for the friction stir welding of AC4A + 30 vol.% SiC particle-reinforced aluminum-matrix composites. The present work describes the effect of welding parameters on the characteristics of particle distribution and the mechanical properties of welds. The ultimate strength of weld reached, 309 MPa, was almost 190% of that of the basic material. The mechanism of SiC particle conglomeration is clearly illustrated by means of schematic illustrations.

  10. Characteristics of Laser Beam and Friction Stir Welded AISI 409M Ferritic Stainless Steel Joints

    NASA Astrophysics Data System (ADS)

    Lakshminarayanan, A. K.; Balasubramanian, V.

    2012-04-01

    This article presents the comparative evaluation of microstructural features and mechanical properties of friction stir welded (solid-state) and laser beam welded (high energy density fusion welding) AISI 409M grade ferritic stainless steel joints. Optical microscopy, microhardness testing, transverse tensile, and impact tests were performed. The coarse ferrite grains in the base material were changed to fine grains consisting duplex structure of ferrite and martensite due to the rapid cooling rate and high strain induced by severe plastic deformation caused by frictional stirring. On the other hand, columnar dendritic grain structure was observed in fusion zone of laser beam welded joints. Tensile testing indicates overmatching of the weld metal relative to the base metal irrespective of the welding processes used. The LBW joint exhibited superior impact toughness compared to the FSW joint.

  11. Boundary lubrication of formulated C-ethers in air to 300 C. 2: Organic acid additives

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.

    1973-01-01

    Friction and wear measurements were made on CVM M-50 steel lubricated with three C-ether (modified polyphenyl ether) formulations in dry and moist air. Results were compared to those obtained with a formulated Type 2 ester and the C-ether base fluid. A ball-on-disk sliding friction apparatus was used. Experimental conditions were a 1-kilogram load, a 17-meter/minute surface speed, and a 25 to 300 C (77 to 572 F) disk temperature range. The three C-ether formulations yielded better boundary lubricating characteristics than the Type 2 ester under most test conditions. All C-ether formulations exhibited higher friction coefficients than the ester from 150 to 300 C (302 to 572 F) and similar or lower values from 25 to 150 C (77 to 302 F).

  12. Tribological and microstructural characteristics of ion-nitrided steels

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1983-01-01

    Three steels AISI 4140, AISI 4340 and AISI 304 stainless steel were ion nitrided in a plasma consisting of a 75:25 mixture of H2:N2, sometimes with a trace of CH4. Their surface topography was characterized by SEM and two distinct compound phases were identified: the gamma and the epsilon. The core-case hardness profiles were also established. The low Cr alloy steels have an extended diffusion zone in contrast to the 3034 stainless steels which have a sharp interface. The depth of ion-nitriding is increased as the Cr content is decreased. Friction tests reveal that the gamma surface phase has a lower coefficient of friction than the epsilon phase. The lowest coefficient of friction is achieved when both the rider and the specimen surface are ion nitrided. Previously announced in STAR as N83-24635

  13. Fault stability under conditions of variable normal stress

    USGS Publications Warehouse

    Dieterich, J.H.; Linker, M.F.

    1992-01-01

    The stability of fault slip under conditions of varying normal stress is modelled as a spring and slider system with rate- and state-dependent friction. Coupling of normal stress to shear stress is achieved by inclining the spring at an angle, ??, to the sliding surface. Linear analysis yields two conditions for unstable slip. The first, of a type previously identified for constant normal stress systems, results in instability if stiffness is below a critical value. Critical stiffness depends on normal stress, constitutive parameters, characteristic sliding distance and the spring angle. Instability of the first type is possible only for velocity-weakening friction. The second condition yields instability if spring angle ?? <-cot-1??ss, where ??ss is steady-state sliding friction. The second condition can arise under conditions of velocity strengthening or weakening. Stability fields for finite perturbations are investigated by numerical simulation. -Authors

  14. Microstructure and Mechanical Properties of 316L Stainless Steel Filling Friction Stir-Welded Joints

    NASA Astrophysics Data System (ADS)

    Zhou, L.; Nakata, K.; Tsumura, T.; Fujii, H.; Ikeuchi, K.; Michishita, Y.; Fujiya, Y.; Morimoto, M.

    2014-10-01

    Keyhole left at 316L stainless steel friction stir welding/friction stir processing seam was repaired by filling friction stir welding (FFSW). Both metallurgical and mechanical bonding characteristics were obtained by the combined plastic deformation and flow between the consumable filling tool and the wall of the keyhole. Two ways based on the original conical and modified spherical keyholes, together with corresponding filling tools and process parameters were investigated. Microstructure and mechanical properties of 316L stainless steel FFSW joints were evaluated. The results showed that void defects existed at the bottom of the refilled original conical keyhole, while excellent bonding interface was obtained on the refilled modified spherical keyhole. The FFSW joint with defect-free interface obtained on the modified spherical keyhole fractured at the base metal side during the tensile test due to microstructural refinement and hardness increase in the refilled keyhole. Moreover, no σ phase but few Cr carbides were formed in the refilled zone, which would not result in obvious corrosion resistance degradation of 316L stainless steel.

  15. The failure of poly (ether ether ketone) in high speed contacts

    NASA Astrophysics Data System (ADS)

    Briscoe, B. J.; Stuart, B. H.; Sebastian, S.; Tweedale, P. J.

    1993-04-01

    The paper describes an experimental study, with an associated analysis incorporating supplementary data, of the anti-boundary lubricating action of an alkane-aliphatic carboxylic acid lubricant system in a poly (ether ether ketone)-mild steel contact. The experiments involve progressively increasing the load in a contact formed between a polymer plate and a rotating steel shaft and estimating the frictional work dissipated. Scuffing is identified when a rapid increase in frictional work is noted at a characteristic normal load. It is shown that the additive induces premature scuffing. Subsidiary data is provided using Raman spectroscopy and hardness probes, and confirms that certain additives such as decanoic acid and dodecylamine will induce surface plasticization in poly (ether ether ketone). The trends in the frictional data have been interpreted using the adhesive model of friction in conjunction with temperature-dependent interfacial theology and bulk mechanical property data. It is proposed that the scuffing process is induced prematurely as a consequence of excessive additive-induced subsurface plasticization. Restricted surface plasticization in this system provides an enhanced self-lubricating capacity.

  16. Dynamic effects in friction and adhesion through cooperative rupture and formation of supramolecular bonds.

    PubMed

    Blass, Johanna; Albrecht, Marcel; Bozna, Bianca L; Wenz, Gerhard; Bennewitz, Roland

    2015-05-07

    We introduce a molecular toolkit for studying the dynamics in friction and adhesion from the single molecule level to effects of multivalency. As experimental model system we use supramolecular bonds established by the inclusion of ditopic adamantane connector molecules into two surface-bound cyclodextrin molecules, attached to a tip of an atomic force microscope (AFM) and to a flat silicon surface. The rupture force of a single bond does not depend on the pulling rate, indicating that the fast complexation kinetics of adamantane and cyclodextrin are probed in thermal equilibrium. In contrast, the pull-off force for a group of supramolecular bonds depends on the unloading rate revealing a non-equilibrium situation, an effect discussed as the combined action of multivalency and cantilever inertia effects. Friction forces exhibit a stick-slip characteristic which is explained by the cooperative rupture of groups of host-guest bonds and their rebinding. No dependence of friction on the sliding velocity has been observed in the accessible range of velocities due to fast rebinding and the negligible delay of cantilever response in AFM lateral force measurements.

  17. Dynamic analysis of the mechanical seals of the rotor of the labyrinth screw pump

    NASA Astrophysics Data System (ADS)

    Lebedev, A. Y.; Andrenko, P. M.; Grigoriev, A. L.

    2017-08-01

    A mathematical model of the work of the mechanical seal with smooth rings made from cast tungsten carbide in the condition of liquid friction is drawn up. A special feature of this model is the allowance for the thermal expansion of a liquid in the gap between the rings; this effect acting in the conjunction with the frictional forces creates additional pressure and lift which in its turn depends on the width of the gap and the speed of sliding. The developed model displays the processes of separation, transportation and heat removal in the compaction elements and also the resistance to axial movement of the ring arising in the gap caused by the pumping effect and the friction in the flowing liquid; the inertia of this fluid is taken into account by the mass reduction method. The linearization of the model is performed and the dynamic characteristics of the transient processes and the forced oscillations of the device are obtained. The conditions imposed on the parameters of the mechanical seal are formulated to provide a regime of the liquid friction, which minimizes the wear.

  18. Solid Lubrication Fundamentals and Applications. Chapter 6

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    2000-01-01

    This chapter focuses attention on the friction and wear properties of selected solid lubricating films to aid users in choosing the best lubricant, deposition conditions, and operational variables. For simplicity, discussion of the tribological properties of concern is separated into two parts. The first part of the chapter discusses the different solid lubricating films selected for study including commercially developed solid film lubricants: (1) bonded molybdenum disulfide (MoS2), (2) magnetron-sputtered MoS2, (3) ion-plated silver, (4) ion-plated lead, (5) magnetron-sputtered diamondlike carbon (MS DLC), and (6) plasma-assisted, chemical-vapor-deposited diamondlike carbon (PACVD DEC) films. Marked differences in the friction and wear properties of the different films resulted from the different environmental conditions (ultrahigh vacuum, humid air, and dry nitrogen) and the solid film lubricant materials. The second part of the chapter discusses the physical and chemical characteristics, friction behavior, and endurance life of the magnetron-sputtered MoS2 films. The role of interface species and the effects of applied load, film thickness, oxygen pressure, environment, and temperature on the friction and wear properties are considered.

  19. Friction and solid-solid adhesion on complex metallic alloys

    PubMed Central

    Dubois, Jean-Marie; Belin-Ferré, Esther

    2014-01-01

    The discovery in 1987 of stable quasicrystals in the Al–Cu–Fe system was soon exploited to patent specific coatings that showed reduced friction in ambient air against hard antagonists. Henceforth, it was possible to develop a number of applications, potential or commercially exploited to date, that will be alluded to in this topical review. A deeper understanding of the characteristics of complex metallic alloys (CMAs) may explain why material made of metals like Al, Cu and Fe offers reduced friction; low solid–solid adhesion came later. It is linked to the surface energy being significantly lower on those materials, in which translational symmetry has become a weak property, that is determined by the depth of the pseudo-gap at the Fermi energy. As a result, friction is anisotropic in CMAs that builds up according to the translation symmetry along one direction, but is aperiodic along the other two directions. A review is given in this article of the most salient data found along these lines during the past two decades or so. PMID:27877675

  20. Friction and Wear Characteristics of Candidate Foil Bearing Materials from 25 C to 800 C

    NASA Technical Reports Server (NTRS)

    DellaCorte, C.; Laskowski, J. A.

    1996-01-01

    The friction and wear behavior of unlubricated metal/metal sliding couples was investigated to screen potential candidates for high temperature foil bearings. The tribo-tests were run in an induction-heated high temperature pin-on-disk tribometer in an air atmosphere at a load of 4.9 N and at a sliding velocity of 1 m/s. The friction and wear properties of several nickel based alloys (Rene'41, Inconel X-750, Inconel 713C), iron based alloys (MA956 and Inconel 909) and a ceramic (Al2O3) were tested at 25, 500, and 800 C. In general, at elevated temperatures the alloys oxidized and formed a tenacious and lubricous oxide surface film or layer. At 800 C, Inconel X-750 versus Rene'41 had the lowest friction coefficient (0.27) and at 500 C, Inconel X-750 versus Inconel 909 the lowest pin wear (2.84 x 10(exp -6)cu mm/N-m). Gouging and severe wear of the softer material occurred whenever a significant difference in hardness existed between the pin and disk specimens.

  1. Stress-Dilatancy of Cambria Sand for Triaxial Tests at High Pressures

    NASA Astrophysics Data System (ADS)

    Szypcio, Zenon

    2017-12-01

    In this paper, the stress-dilatancy relationship of Cambria sand for drained triaxial compression and extension tests at high stress level is investigated. The stress dilatancy relationship is obtained by use of frictional state theory and experimental tests data published in literature. It is shown that stress-dilatancy relationship is bilinear, described by three parameters of frictional state theory: critical frictional angle and two other parameters. It is accepted that critical friction angle is independent of confining pressure. The two additional parameters are strongly dependent on confining pressure and different for initial and advanced stages. The point at which the values of these parameters change is termed as Transformation Shear Point. This point is not simply visible either in stress ratio-strain or the volume strain-shear strain relationship which are traditionally shown in soil mechanics papers. Transformation Shear Point is very characteristic in stress ratio-plastic dilatancy plane. Thus, stress ratio- plastic dilatancy is very important for describing stress-strain behaviour of soils. The relationship shown in the paper can be used in soil modelling in the future.

  2. Tribology in secondary wood machining

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ko, P.L.; Hawthorne, H.M.; Andiappan, J.

    Secondary wood manufacturing covers a wide range of products from furniture, cabinets, doors and windows, to musical instruments. Many of these are now mass produced in sophisticated, high speed numerical controlled machines. The performance and the reliability of the tools are key to an efficient and economical manufacturing process as well as to the quality of the finished products. A program concerned with three aspects of tribology of wood machining, namely, tool wear, tool-wood friction characteristics and wood surface quality characterization, was set up in the Integrated Manufacturing Technologies Institute (IMTI) of the National Research Council of Canada. The studiesmore » include friction and wear mechanism identification and modeling, wear performance of surface-engineered tool materials, friction-induced vibration and cutting efficiency, and the influence of wear and friction on finished products. This research program underlines the importance of tribology in secondary wood manufacturing and at the same time adds new challenges to tribology research since wood is a complex, heterogeneous, material and its behavior during machining is highly sensitive to the surrounding environments and to the moisture content in the work piece.« less

  3. Magnetic Fluid Friction and Wear Behavior

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.

    1998-01-01

    The friction and wear properties of two groups of magnetic fluids, one developed at NASA Lewis Research Center and a commercial fluid, were evaluated for boundary lubrication. Friction and wear measurements were made using a pin-on-disk apparatus. Three different ball materials were evaluated, (1) 440C, (2) Al2O3, and (3) Si3N4 against 440C disks. The first class of magnetic fluids have a low vapor pressure hydrocarbon base oil and are suitable for space application. Four variations of this fluid were evaluated: (1) the base oil, (2) base oil with anti-wear additives, (3) a 100 Gauss strength magnetic fluid, and (4) a 400 gauss magnetic fluid. The commercial fluid base oil and four different magnetic particle concentration levels have been evaluated. A space qualified fluorinated lubricant was tested for base line comparison. Hardness, optical microscopy, surface profilometry, and surface analysis were used to characterize the test specimens. Friction was unaffected by the concentration of magnetic particles. Wear rates for magnetic fluids were slightly higher than the base oil. The low vapor pressure magnetic fluid has better wear characteristics than the space qualified fluorinated lubricant.

  4. Flight test results of riblets at supersonic speeds

    NASA Technical Reports Server (NTRS)

    Zuniga, Fanny A.; Anderson, Bianca T.; Bertelrud, Arild

    1992-01-01

    A flight experiment to test and evaluate the skin friction drag characteristics of a riblet surface in turbulent flow at supersonic speeds was conducted at NASA Dryden. Riblets of groove sizes 0.0030 and 0.0013 in. were mounted on the F-104G flight test fixture. The test surfaces were surveyed with boundary layer rakes and pressure orifices to examine the boundary layer profiles and pressure distributions of the flow. Skin friction reductions caused by the riblet surface were reported based on measured differences of momentum thickness between the smooth and riblet surfaces obtained from the boundary layer data. Flight test results for the 0.0030 in. riblet show skin friction reductions of 4 to 8 % for Mach numbers ranging from 1.2 to 1.6 and Reynolds numbers ranging from 2 to 3.4 million per unit foot. The results from the 0.0013 in. riblets show skin friction reductions of 4 to 15 % for Mach 1.2 to 1.4 and Reynolds numbers ranging from 3.6 to 6 million per unit foot.

  5. Plume Dispersion over Idealized Urban-liked Roughness with Height Variation: an LES Approach

    NASA Astrophysics Data System (ADS)

    Wong, Colman Ching Chi; Liu, Chun-Ho

    2013-04-01

    Human activities (e.g. vehicular emission) are the primary pollutant sources affecting the health and living quality of stakeholders in modern compact cities. Gaussian plume dispersion model is commonly used for pollutant distribution estimate that works well over rural areas with flat terrain. However, its major parameters, dispersion coefficients, exclude the effect of surface roughness that unavoidably prone to error handling the pollutant transport in the urban boundary layer (UBL) over building roughness. Our recent large-eddy simulation (LES) has shown that urban surfaces affect significantly the pollutant dispersion over idealized, identical two-dimensional (2D) street canyons of uniform height. As an extension to our on-going effort, this study is conceived to investigate how rough urban surfaces, which are constructed by 2D street canyons of non-uniform height, modify the UBL pollutant dispersion . A series of LESs with idealized roughness elements of non-uniform heights were performed in neutral stratification. Building models with two different heights were placed alternatively in the computational domain to construct 2D street canyons in cross flows. The plume dispersion from a ground-level passive pollutant source over more realistic urban areas was then examined. Along with the existing building-height-to-street-width (aspect) ratio (AR), a new parameter, building-height variability (BHV), is used to measure the building height unevenness. Four ARs (1, 0.5, 0.25 and 0.125) and three BHVs (20%, 40% and 60%) were considered in this study. Preliminary results show that BHV greatly increases the aerodynamic roughness of the hypothetical urban surfaces for narrow street canyons. Analogous to our previous findings, the air exchange rate (ACH) of street canyons increases with increasing friction factor, implying that street-level ventilation could be improved by increasing building roughness via BHV. In addition, the parameters used in dispersion coefficient estimates are related to the friction factor in the way similar to that of uniform street canyons, i.e. they are linear functions of friction factor when the roughness is small and become insensitive to friction factor thereafter over very rough surfaces. It is thus suggested that aerodynamic resistance is the key factor affecting the air quality in urban areas. Moreover, the friction factor could be used to parameterize the dispersion coefficients over different roughness elements.

  6. A comparative study of tribological characteristics of hydrogenated DLC film sliding against ceramic mating materials for helium applications

    NASA Astrophysics Data System (ADS)

    Wu, Daheng; Ren, Siming; Pu, Jibin; Lu, Zhibin; Zhang, Guangan; Wang, Liping

    2018-05-01

    The tribological behaviors of hydrogenated DLC film sliding against Al2O3, ZrO2, Si3N4 and WC mating balls have been comparatively investigated by a ball-on-disk tribometer at 150 °C under helium and air (RH = 6%) conditions. The results showed that the mating material influenced the friction and wear behavior remarkably in helium atmosphere, where the wear rates were in inversely proportional to the friction coefficients (COF) of those tribo-pairs. Compared to the tests in helium, the tribological performance of DLC film significantly improved in air. Scanning electron microscope (SEM) and Raman spectroscopy were performed to study the friction behavior and wear mechanism of the film under different conditions. It suggested that the severe abrasion was caused by the strong interaction between the tribo-pairs in helium atmosphere at 150 °C, whereas the sufficient passivation of the dangling bonds of carbon atoms at sliding interface by chemically active molecules, such as water and oxygen, dominated the ultralow friction under air condition. Meanwhile, Hertz analysis was used to further elucidate the frictional mechanism of DLC film under helium and air conditions. It showed that the coefficient of friction was consistent with the varied tendency of the contact radius, namely, higher friction coefficient corresponded to the larger contact radius, which was the same with the relationship between the wear rate and the contact pressure. All of the results made better understanding of the essential mechanism of hydrogenated DLC film sliding against different pairs, which were able to guide the further application of DLC film in the industrial fields of helium atmosphere.

  7. Determination of the Basic Friction Angle of Rock Surfaces by Tilt Tests

    NASA Astrophysics Data System (ADS)

    Jang, Hyun-Sic; Zhang, Qing-Zhao; Kang, Seong-Seung; Jang, Bo-An

    2018-04-01

    Samples of Hwangdeung granite from Korea and Berea sandstone from USA, both containing sliding planes, were prepared by saw-cutting or polishing using either #100 or #600 grinding powders. Their basic friction angles were measured by direct shear testing, triaxial compression testing, and tilt testing. The direct shear tests and triaxial compression tests on the saw-cut, #100, and #600 surfaces indicated that the most reliable results were obtained from the #100 surface: basic friction angle of 29.4° for granite and 34.1° for sandstone. To examine the effect of surface conditions on the friction angle in tilt tests, the sliding angles were measured 50 times with two surface conditions (surfaces cleaned and not cleaned after each measurement). The initial sliding angles were high regardless of rock type and surface conditions and decreased exponentially as measurements continued. The characteristics of the sliding angles, differences between tilt tests, and dispersion between measurements in each test indicated that #100 surface produced the most reliable basic friction angle measurement. Without cleaning the surfaces, the average angles for granite (32 measurements) and sandstone (23 measurements) were similar to the basic friction angle. When 20-50 measurements without cleaning were averaged, the basic friction angle was within ± 2° for granite and ± 3° for sandstone. Sliding angles using five different tilting speeds were measured but the average was similar, indicating that tilting speed (between 0.2° and 1.6°/s) has little effect on the sliding angle. Sliding angles using four different sample sizes were measured with the best results obtained for samples larger than 8 × 8 cm.

  8. Effect of ion-implantation on surface characteristics of nickel titanium and titanium molybdenum alloy arch wires.

    PubMed

    Krishnan, Manu; Saraswathy, Seema; Sukumaran, Kalathil; Abraham, Kurian Mathew

    2013-01-01

    To evaluate the changes in surface roughness and frictional features of 'ion-implanted nickel titanium (NiTi) and titanium molybdenum alloy (TMA) arch wires' from its conventional types in an in-vitro laboratory set up. 'Ion-implanted NiTi and low friction TMA arch wires' were assessed for surface roughness with scanning electron microscopy (SEM) and 3 dimensional (3D) optical profilometry. Frictional forces were studied in a universal testing machine. Surface roughness of arch wires were determined as Root Mean Square (RMS) values in nanometers and Frictional Forces (FF) in grams. Mean values of RMS and FF were compared by Student's 't' test and one way analysis of variance (ANOVA). SEM images showed a smooth topography for ion-implanted versions. 3D optical profilometry demonstrated reduction of RMS values by 58.43% for ion-implanted NiTi (795.95 to 330.87 nm) and 48.90% for TMA groups (463.28 to 236.35 nm) from controls. Nonetheless, the corresponding decrease in FF was only 29.18% for NiTi and 22.04% for TMA, suggesting partial correction of surface roughness and disproportionate reduction in frictional forces with ion-implantation. Though the reductions were highly significant at P < 0.001, relations between surface roughness and frictional forces remained non conclusive even after ion-implantation. The study proved that ion-implantation can significantly reduce the surface roughness of NiTi and TMA wires but could not make a similar reduction in frictional forces. This can be attributed to the inherent differences in stiffness and surface reactivity of NiTi and TMA wires when used in combination with stainless steel brackets, which needs further investigations.

  9. The frictional strength of talc gouge in high-velocity shear experiments

    NASA Astrophysics Data System (ADS)

    Chen, Xiaofeng; Elwood Madden, Andrew S.; Reches, Ze'ev

    2017-05-01

    Talc is present in several large-scale fault zones worldwide and is mineralogically stable at temperature of the upper crust. It is therefore necessary to gain a better understanding of the frictional behavior of talc under a wide range of slip velocity conditions occurring during the seismic cycle. We analyzed the frictional and structural characteristics of room-dry and water-saturated talc gouge by shear experiments on a confined gouge layer at slip velocity range of 0.002-0.66 m/s and normal stress up to 4.1 MPa. Room-dry talc showed a distinct slip-strengthening with the initial friction coefficient of μ 0.4 increased systematically to μ 1 at slip distance D > 1 m. Room-dry talc also displayed velocity-strengthening at slip distances shorter than 1 m. The water-saturated talc gouge displayed systematic low frictional strength of μ = 0.1-0.3 for the entire experimental range, with clear velocity-strengthening behavior with positive (a-b) values (rate dependence parameter of rate and state friction) of 0.01-0.04. The microstructural analyses revealed distributed shear and systematic dilation (up to 50%) for the room-dry talc, in contrast to the extreme slip localization and strong shear compaction for water-saturated talc. We propose that talc frictional strength is controlled by lubrication along cleavage surfaces that is facilitated by adsorbed water (room-dry) and surplus water (water-saturated). This mechanism can explain our experimental observations of slip-strengthening and velocity-strengthening for both types of talc gouge, as well as other clay minerals. It is thus expected that talc presence in fault zones would enhance creep and inhibit unstable slip.

  10. An Analytical Calculation of Frictional and Bending Moments at the Head-Neck Interface of Hip Joint Implants during Different Physiological Activities.

    PubMed

    Farhoudi, Hamidreza; Oskouei, Reza H; Pasha Zanoosi, Ali A; Jones, Claire F; Taylor, Mark

    2016-12-05

    This study predicts the frictional moments at the head-cup interface and frictional torques and bending moments acting on the head-neck interface of a modular total hip replacement across a range of activities of daily living. The predicted moment and torque profiles are based on the kinematics of four patients and the implant characteristics of a metal-on-metal implant. Depending on the body weight and type of activity, the moments and torques had significant variations in both magnitude and direction over the activity cycles. For the nine investigated activities, the maximum magnitude of the frictional moment ranged from 2.6 to 7.1 Nm. The maximum magnitude of the torque acting on the head-neck interface ranged from 2.3 to 5.7 Nm. The bending moment acting on the head-neck interface varied from 7 to 21.6 Nm. One-leg-standing had the widest range of frictional torque on the head-neck interface (11 Nm) while normal walking had the smallest range (6.1 Nm). The widest range, together with the maximum magnitude of torque, bending moment, and frictional moment, occurred during one-leg-standing of the lightest patient. Most of the simulated activities resulted in frictional torques that were near the previously reported oxide layer depassivation threshold torque. The predicted bending moments were also found at a level believed to contribute to the oxide layer depassivation. The calculated magnitudes and directions of the moments, applied directly to the head-neck taper junction, provide realistic mechanical loading data for in vitro and computational studies on the mechanical behaviour and multi-axial fretting at the head-neck interface.

  11. An Analytical Calculation of Frictional and Bending Moments at the Head-Neck Interface of Hip Joint Implants during Different Physiological Activities

    PubMed Central

    Farhoudi, Hamidreza; Oskouei, Reza H.; Pasha Zanoosi, Ali A.; Jones, Claire F.; Taylor, Mark

    2016-01-01

    This study predicts the frictional moments at the head-cup interface and frictional torques and bending moments acting on the head-neck interface of a modular total hip replacement across a range of activities of daily living. The predicted moment and torque profiles are based on the kinematics of four patients and the implant characteristics of a metal-on-metal implant. Depending on the body weight and type of activity, the moments and torques had significant variations in both magnitude and direction over the activity cycles. For the nine investigated activities, the maximum magnitude of the frictional moment ranged from 2.6 to 7.1 Nm. The maximum magnitude of the torque acting on the head-neck interface ranged from 2.3 to 5.7 Nm. The bending moment acting on the head-neck interface varied from 7 to 21.6 Nm. One-leg-standing had the widest range of frictional torque on the head-neck interface (11 Nm) while normal walking had the smallest range (6.1 Nm). The widest range, together with the maximum magnitude of torque, bending moment, and frictional moment, occurred during one-leg-standing of the lightest patient. Most of the simulated activities resulted in frictional torques that were near the previously reported oxide layer depassivation threshold torque. The predicted bending moments were also found at a level believed to contribute to the oxide layer depassivation. The calculated magnitudes and directions of the moments, applied directly to the head-neck taper junction, provide realistic mechanical loading data for in vitro and computational studies on the mechanical behaviour and multi-axial fretting at the head-neck interface. PMID:28774104

  12. Microstructure evolution in dissimilar AA6060/copper friction stir welded joints

    NASA Astrophysics Data System (ADS)

    Kalashnikova, T. A.; Shvedov, M. A.; Vasilyev, P. A.

    2017-12-01

    Friction stir welding process has been applied for making a dissimilar copper/aluminum alloy joint. The grain microstructure and mechanical properties of the obtained joint were studied. The structure of the cross-section of the FSW compound was analyzed. The microstructural evolution of the joint was examined using optical microscopy. The mechanical properties of the intermetallic particles were evaluated by measuring the microhardness according to the Vickers method. The microhardness of the intermetallic particles was by a factor of 4 lower than that of the particles obtained by fusion welding. The results of the investigations enable using friction stir welding for making dissimilar joints.

  13. X-ray photoelectron spectroscopy study of radiofrequency sputtered chromium bromide, molybdenum disilicide, and molybdenum disulfide coatings and their friction properties

    NASA Technical Reports Server (NTRS)

    Wheeler, D. R.; Brainard, W. A.

    1977-01-01

    Radiofrequency sputtered coatings of CRB2, MOSI2, and MOS2 were examined by X-ray photoelectron spectroscopy. The effects of sputtering target history, deposition time, RF power level, and substrate bias on film composition were studied. Friction tests were run on RF sputtered surfaces of 440-C steel to correlate XPS data with lubricating properties. Significant deviations from stoichiometry and high oxide levels for all three compounds were related to target outgassing. The effect of biasing on these two factors depended on the compound. Improved stoichiometry correlated well with good friction and wear properties.

  14. Experimental evidence for friction-enhancing integumentary modifications of chameleons and associated functional and evolutionary implications

    PubMed Central

    Khannoon, Eraqi R.; Endlein, Thomas; Russell, Anthony P.; Autumn, Kellar

    2014-01-01

    The striking morphological convergence of hair-like integumentary derivatives of lizards and arthropods (spiders and insects) demonstrates the importance of such features for enhancing purchase on the locomotor substrate. These pilose structures are responsible for the unique tractive abilities of these groups of animals, enabling them to move with seeming ease on overhanging and inverted surfaces, and to traverse inclined smooth substrates. Three groups of lizards are well known for bearing adhesion-promoting setae on their digits: geckos, anoles and skinks. Similar features are also found on the ventral subdigital and distal caudal skin of chameleons. These have only recently been described in any detail, and structurally and functionally are much less well understood than are the setae of geckos and anoles. The seta-like structures of chameleons are not branched (a characteristic of many geckos), nor do they terminate in spatulate tips (which is characteristic of geckos, anoles and skinks). They are densely packed and have attenuated blunt, globose tips or broad, blade-like shafts that are flattened for much of their length. Using a force transducer, we tested the hypothesis that these structures enhance friction and demonstrate that the pilose skin has a greater frictional coefficient than does the smooth skin of these animals. Our results are consistent with friction being generated as a result of side contact of the integumentary filaments. We discuss the evolutionary and functional implications of these seta-like structures in comparison with those typical of other lizard groups and with the properties of seta-mimicking synthetic structures. PMID:24285195

  15. Temporal Changes in Stress Drop, Frictional Strength, and Earthquake Size Distribution in the 2011 Yamagata-Fukushima, NE Japan, Earthquake Swarm, Caused by Fluid Migration

    NASA Astrophysics Data System (ADS)

    Yoshida, Keisuke; Saito, Tatsuhiko; Urata, Yumi; Asano, Youichi; Hasegawa, Akira

    2017-12-01

    In this study, we investigated temporal variations in stress drop and b-value in the earthquake swarm that occurred at the Yamagata-Fukushima border, NE Japan, after the 2011 Tohoku-Oki earthquake. In this swarm, frictional strengths were estimated to have changed with time due to fluid diffusion. We first estimated the source spectra for 1,800 earthquakes with 2.0 ≤ MJMA < 3.0, by correcting the site-amplification and attenuation effects determined using both S waves and coda waves. We then determined corner frequency assuming the omega-square model and estimated stress drop for 1,693 earthquakes. We found that the estimated stress drops tended to have values of 1-4 MPa and that stress drops significantly changed with time. In particular, the estimated stress drops were very small at the beginning, and increased with time for 50 days. Similar temporal changes were obtained for b-value; the b-value was very high (b 2) at the beginning, and decreased with time, becoming approximately constant (b 1) after 50 days. Patterns of temporal changes in stress drop and b-value were similar to the patterns for frictional strength and earthquake occurrence rate, suggesting that the change in frictional strength due to migrating fluid not only triggered the swarm activity but also affected earthquake and seismicity characteristics. The estimated high Q-1 value, as well as the hypocenter migration, supports the presence of fluid, and its role in the generation and physical characteristics of the swarm.

  16. The wearing characteristics of mineral aggregates in highway pavements.

    DOT National Transportation Integrated Search

    1970-01-01

    Fifteen asphaltic concrete and seventeen portland cement concrete pavements located in Virginia were chosen for studies of aggregate wear and related wet pavement friction. Coarse aggregates from thirteen different geologic formations and quarry sour...

  17. Evaluating performance of limestone prone to polishing.

    DOT National Transportation Integrated Search

    2009-12-01

    This research project evaluated the effect of blending Vanport limestone and other aggregates on the frictional surface characteristic properties of constructed trial road surfaces. The study undertook the evaluation of the performance of different m...

  18. Friction enhancement in concertina locomotion of snakes

    PubMed Central

    Marvi, Hamidreza; Hu, David L.

    2012-01-01

    Narrow crevices are challenging terrain for most organisms and biomimetic robots. Snakes move through crevices using sequential folding and unfolding of their bodies in the manner of an accordion or concertina. In this combined experimental and theoretical investigation, we elucidate this effective means of moving through channels. We measure the frictional properties of corn snakes, their body kinematics and the transverse forces they apply to channels of varying width and inclination. To climb channels inclined at 60°, we find snakes use a combination of ingenious friction-enhancing techniques, including digging their ventral scales to double their frictional coefficient and pushing channel walls transversely with up to nine times body weight. Theoretical modelling of a one-dimensional n-linked crawler is used to calculate the transverse force factor of safety: we find snakes push up to four times more than required to prevent sliding backwards, presumably trading metabolic energy for an assurance of wall stability. PMID:22728386

  19. Tribological Behavior of IN718 Superalloy Coating Fabricated by Laser Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Zhang, Yaocheng; Pan, Qiyong; Yang, Li; Li, Ruifeng; Dai, Jun

    2017-12-01

    The tribological behavior of laser manufactured IN718 superalloy coating are investigated with different applied loads, sliding speeds and lubricating mediums. The wear resistance of laser manufactured IN718 coating is increased by heat treatment due to higher microhardness and homogeneous brittle phase distribution. The principal factors for the wear rate are applied load and lubricating medium. The worn surface of laser manufactured IN718 coating consists of the grooves, crack, wear debris and material delamination generated by the fatigue wear associated with adhesive wear and abrasive wear. The friction coefficients are influenced by the tribological noise decrescence by the tribo-oxidant and the liquid lubricant. The real contact temperature between coating sample and frictional counterpart is higher than the solid-solution temperature of IN718 superalloy, and the effect of surface contact temperature on the orientational microstructure and wear resistance for dry friction and wet friction process is indistinct.

  20. Tribological properties of graphene oxide and carbon spheres as lubricating additives

    NASA Astrophysics Data System (ADS)

    Song, Haojie; Wang, Zhiqiang; Yang, Jin

    2016-10-01

    The purpose of this paper was to investigate the tribological properties of carbon materials with various morphologies [i.e., graphene oxide (GO) and carbon spheres (CSs)] utilized as lubricating additives on a ball-plate tribotester. The morphology and spectroscopy characterization of GO and CSs were investigated by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectrometry, and thermogravimetric analysis. Friction and wear properties of the sunflower seed oil filled with GO and CSs were investigated by using a MS-T3000 ball-on-disk apparatus. Results show that the sunflower seed oil containing 0.3 wt% GO nanosheets exhibited a substantial diminution in friction and wear compared with the 3.0 wt% CSs as sunflower seed oil additives. Formation of low-shear strength tribofilms containing GO and its self-lubricating behavior was the key factor in reduction of the friction and prevention from wear and deformation. In addition, friction mechanism of CSs was also discussed.

  1. Physical processes in wheel-rail contact and its implications on vehicle-track interaction

    NASA Astrophysics Data System (ADS)

    Six, K.; Meierhofer, A.; Müller, G.; Dietmaier, P.

    2015-05-01

    Friction within the wheel-rail contact highly influences all aspects of vehicle-track interaction. Models describing this frictional behaviour are of high relevance, for example, for reliable predictions on drive train dynamics. It has been shown by experiments, that the friction at a certain position on rail is not describable by only one number for the coefficient of friction. Beside the contact conditions (existence of liquids, solid third bodies, etc.) the vehicle speed, normal loading and contact geometry are further influencing factors. State-of-the-art models are not able to account for this sufficiently. Thus, an Extended-Creep-Force-Model was developed taking into account effects from third body layers. This model is able to describe all considered effects. In this way, a significant improvement of the prediction quality with respect to all aspects of vehicle-track interaction is expected.

  2. Friction enhancement in concertina locomotion of snakes.

    PubMed

    Marvi, Hamidreza; Hu, David L

    2012-11-07

    Narrow crevices are challenging terrain for most organisms and biomimetic robots. Snakes move through crevices using sequential folding and unfolding of their bodies in the manner of an accordion or concertina. In this combined experimental and theoretical investigation, we elucidate this effective means of moving through channels. We measure the frictional properties of corn snakes, their body kinematics and the transverse forces they apply to channels of varying width and inclination. To climb channels inclined at 60°, we find snakes use a combination of ingenious friction-enhancing techniques, including digging their ventral scales to double their frictional coefficient and pushing channel walls transversely with up to nine times body weight. Theoretical modelling of a one-dimensional n-linked crawler is used to calculate the transverse force factor of safety: we find snakes push up to four times more than required to prevent sliding backwards, presumably trading metabolic energy for an assurance of wall stability.

  3. Investigation of Wear and Friction Properties Under Sliding Conditions of Some Materials Suitable for Cages of Rolling-Contact Bearings

    NASA Technical Reports Server (NTRS)

    Johnson, Robert L; Swikert, Max A; Bisson, Edmond E

    1952-01-01

    An investigation of wear and friction properties of a number of materials sliding against SAE 52100 steel was conducted. These materials included brass, bronze, beryllium copper, monel, nichrome v, 24s-t aluminum, nodular iron, and gray cast iron. The metals investigated may be useful as possible cage (separator or retainer) materials for rolling-contact bearings of high-speed turbine engines. The ability of materials to form surface films that prevent welding is a most important factor in both dry friction and boundary lubrication. On the basis of wear and resistance to welding only, the cast irons were the most promising materials investigated; they showed the least wear and the least tendency to surface failure when run dry, and when boundary lubricated they showed the highest load capacity. On the basis of mechanical properties, nodular iron is superior to gray cast iron. Bronze had the lowest friction coefficient under dry sliding conditions. The results with brass, beryllium copper, and aluminum were poor and these materials do not appear, with regard to friction and wear, to be suitable for cages.

  4. Frictional weakening of Landslides in the Solar System

    NASA Astrophysics Data System (ADS)

    Lucas, Antoine; Mangeney, Anne; Ampuero, Jean-Paul

    2014-05-01

    Landslides are an important phenomenon that shapes the surface morphology of solid planetary bodies, including planets and small bodies. In addition, landslide science aims to predict the maximum distance travelled and the maximum velocity reached by a potential landslide in order to quantify the damage it may cause. On the one hand, observations show that the so-called Heim's ratio (i.e. the ratio between the difference of the height of the initial mass and that of the deposit, and the traveling distance) decreases with increasing volume for landslides observed on Earth [1] and other planets like Mars and icy moons like Iapetus [2], but whether this quantity is a good representation of the effective friction during the flow is still a controversial issue. On the other hand, numerical simulations (either continuous or discrete) of real landslides commonly require the assumption of very small friction coefficient to reproduce the extension of deposits [2-5]. We investigate if a common origin can explain the characteristics of landslides in such variety of planetary environments. Based on analytical and numerical solutions for granular flows constrained by remote-sensing observations [3, 7], we developed a consistent method to estimate the effective friction coefficient of landslides, i.e., the constant basal friction coefficient that reproduces their first-order properties. We show that: i) the Heim's ratio is not equivalent to the effective friction coefficient; ii) the friction coefficient decreases with increasing volume or, more fundamentally, with increasing sliding velocity. Inspired by frictional weakening mechanisms thought to operate during earthquakes [8], we propose an empirical velocity-weakening friction law under an unifying phenomenological framework applicable to small to large landslides observed on Earth and beyond (including icy moons of giant planets) whatever the environment and material involved. References: [1] Legros, Eng. Geol. 2002; [2] Lucas, Nat. Geosc. News & Views, 2012. [3] Lucas & Mangeney, GRL, 2007. [4] Pudasaini & Hutter, Springer, 2007. [5] Campbell et al., JGR, 1995. [6] Smart et al., AGU Fall Meeting, 2010. [7] Lucas et al., JGR, 2011. [8] Rice, JGR, 2006. N.B. This work is subject to press embargo.

  5. Machine Learning of Fault Friction

    NASA Astrophysics Data System (ADS)

    Johnson, P. A.; Rouet-Leduc, B.; Hulbert, C.; Marone, C.; Guyer, R. A.

    2017-12-01

    We are applying machine learning (ML) techniques to continuous acoustic emission (AE) data from laboratory earthquake experiments. Our goal is to apply explicit ML methods to this acoustic datathe AE in order to infer frictional properties of a laboratory fault. The experiment is a double direct shear apparatus comprised of fault blocks surrounding fault gouge comprised of glass beads or quartz powder. Fault characteristics are recorded, including shear stress, applied load (bulk friction = shear stress/normal load) and shear velocity. The raw acoustic signal is continuously recorded. We rely on explicit decision tree approaches (Random Forest and Gradient Boosted Trees) that allow us to identify important features linked to the fault friction. A training procedure that employs both the AE and the recorded shear stress from the experiment is first conducted. Then, testing takes place on data the algorithm has never seen before, using only the continuous AE signal. We find that these methods provide rich information regarding frictional processes during slip (Rouet-Leduc et al., 2017a; Hulbert et al., 2017). In addition, similar machine learning approaches predict failure times, as well as slip magnitudes in some cases. We find that these methods work for both stick slip and slow slip experiments, for periodic slip and for aperiodic slip. We also derive a fundamental relationship between the AE and the friction describing the frictional behavior of any earthquake slip cycle in a given experiment (Rouet-Leduc et al., 2017b). Our goal is to ultimately scale these approaches to Earth geophysical data to probe fault friction. References Rouet-Leduc, B., C. Hulbert, N. Lubbers, K. Barros, C. Humphreys and P. A. Johnson, Machine learning predicts laboratory earthquakes, in review (2017). https://arxiv.org/abs/1702.05774Rouet-LeDuc, B. et al., Friction Laws Derived From the Acoustic Emissions of a Laboratory Fault by Machine Learning (2017), AGU Fall Meeting Session S025: Earthquake source: from the laboratory to the fieldHulbert, C., Characterizing slow slip applying machine learning (2017), AGU Fall Meeting Session S019: Slow slip, Tectonic Tremor, and the Brittle-to-Ductile Transition Zone: What mechanisms control the diversity of slow and fast earthquakes?

  6. Pollutant Plume Dispersion in the Atmospheric Boundary Layer over Idealized Urban Roughness

    NASA Astrophysics Data System (ADS)

    Wong, Colman C. C.; Liu, Chun-Ho

    2013-05-01

    The Gaussian model of plume dispersion is commonly used for pollutant concentration estimates. However, its major parameters, dispersion coefficients, barely account for terrain configuration and surface roughness. Large-scale roughness elements (e.g. buildings in urban areas) can substantially modify the ground features together with the pollutant transport in the atmospheric boundary layer over urban roughness (also known as the urban boundary layer, UBL). This study is thus conceived to investigate how urban roughness affects the flow structure and vertical dispersion coefficient in the UBL. Large-eddy simulation (LES) is carried out to examine the plume dispersion from a ground-level pollutant (area) source over idealized street canyons for cross flows in neutral stratification. A range of building-height-to-street-width (aspect) ratios, covering the regimes of skimming flow, wake interference, and isolated roughness, is employed to control the surface roughness. Apart from the widely used aerodynamic resistance or roughness function, the friction factor is another suitable parameter that measures the drag imposed by urban roughness quantitatively. Previous results from laboratory experiments and mathematical modelling also support the aforementioned approach for both two- and three-dimensional roughness elements. Comparing the UBL plume behaviour, the LES results show that the pollutant dispersion strongly depends on the friction factor. Empirical studies reveal that the vertical dispersion coefficient increases with increasing friction factor in the skimming flow regime (lower resistance) but is more uniform in the regimes of wake interference and isolated roughness (higher resistance). Hence, it is proposed that the friction factor and flow regimes could be adopted concurrently for pollutant concentration estimate in the UBL over urban street canyons of different roughness.

  7. Numerical investigation of the effect of friction conditions to increase die life

    NASA Astrophysics Data System (ADS)

    Mutlu, M. O.; Guleryuz, C. G.; Parlar, Z.

    2017-02-01

    The standard die materials in aluminium extrusion offer good mechanical properties like high tempering resistance, high strength and ductility. On the other hand, they struggle with the problem of sliding wear. As a result, there is a growing interest in using surface treatment techniques to increase the wear resistance of extrusion dies. In this study, it is aimed to observe the effects of the different friction conditions on material flow and contact pressure in extrusion process. These friction conditions can be obtained with the application of a variety of surface treatment. In this way, it is expected to decrease the friction force on the die bearing area and to increase the homogeneity of the material flow which will result in the increase of the quality of the extrudate as well as the improvement of the process economically by extending die life. For this purpose, an extrusion process is simulated with a finite element software. A die made of 1.2344 hot work tool steel-commonly used die material for aluminium extrusion process- has been modelled and Al 1100 alloy used as billet material. Various friction factor values defined on the die surface under the same process parameters and effects of changing frictional conditions on the die and the extrusion process have been discussed.

  8. Effect of bone-soft tissue friction on ultrasound axial shear strain elastography

    NASA Astrophysics Data System (ADS)

    Tang, Songyuan; Chaudhry, Anuj; Kim, Namhee; Reddy, J. N.; Righetti, Raffaella

    2017-08-01

    Bone-soft tissue friction is an important factor affecting several musculoskeletal disorders, frictional syndromes and the ability of a bone fracture to heal. However, this parameter is difficult to determine using non-invasive imaging modalities, especially in clinical settings. Ultrasound axial shear strain elastography is a non-invasive imaging modality that has been used in the recent past to estimate the bonding between different tissue layers. As most elastography methods, axial shear strain elastography is primarily used in soft tissues. More recently, this technique has been proposed to assess the bone-soft tissue interface. In this paper, we investigate the effect of a variation in bone-soft tissue friction coefficient in the resulting axial shear strain elastograms. Finite element poroelastic models of bone specimens exhibiting different bone-soft tissue friction coefficients were created and mechanically analyzed. These models were then imported to an ultrasound elastography simulation module to assess the presence of axial shear strain patterns. In vitro experiments were performed to corroborate selected simulation results. The results of this study show that the normalized axial shear strain estimated at the bone-soft tissue interface is statistically correlated to the bone-soft tissue coefficient of friction. This information may prove useful to better interpret ultrasound elastography results obtained in bone-related applications and, possibly, monitor bone healing.

  9. Effect of bone-soft tissue friction on ultrasound axial shear strain elastography.

    PubMed

    Tang, Songyuan; Chaudhry, Anuj; Kim, Namhee; Reddy, J N; Righetti, Raffaella

    2017-07-12

    Bone-soft tissue friction is an important factor affecting several musculoskeletal disorders, frictional syndromes and the ability of a bone fracture to heal. However, this parameter is difficult to determine using non-invasive imaging modalities, especially in clinical settings. Ultrasound axial shear strain elastography is a non-invasive imaging modality that has been used in the recent past to estimate the bonding between different tissue layers. As most elastography methods, axial shear strain elastography is primarily used in soft tissues. More recently, this technique has been proposed to assess the bone-soft tissue interface. In this paper, we investigate the effect of a variation in bone-soft tissue friction coefficient in the resulting axial shear strain elastograms. Finite element poroelastic models of bone specimens exhibiting different bone-soft tissue friction coefficients were created and mechanically analyzed. These models were then imported to an ultrasound elastography simulation module to assess the presence of axial shear strain patterns. In vitro experiments were performed to corroborate selected simulation results. The results of this study show that the normalized axial shear strain estimated at the bone-soft tissue interface is statistically correlated to the bone-soft tissue coefficient of friction. This information may prove useful to better interpret ultrasound elastography results obtained in bone-related applications and, possibly, monitor bone healing.

  10. Experimental investigation into biomechanical and biotribological properties of a real intestine and their significance for design of a spiral-type robotic capsule.

    PubMed

    Zhou, Hao; Alici, Gursel; Than, Trung D; Li, Weihua

    2014-03-01

    This article reports on the results and implications of our experimental investigation into the biomechanical and biotribological properties of a real intestine for the optimal design of a spiral-type robotic capsule. Dynamic shear experiments were conducted to evaluate how the storage and loss moduli and damping factor of the small intestine change with the speed or the angular frequency. The sliding friction between differently shaped test pieces, with a topology similar to that of the spirals, and the intestine sample was experimentally determined. Our findings demonstrate that the intestine's biomechanical and biotribological properties are coupled, suggesting that the sliding friction is strongly related to the internal friction of the intestinal tissue. The significant implication of this finding is that one can predict the reaction force between the capsule with a spiral-type traction topology and the intestine directly from the intestine's biomechanical measurements rather than employing complicated three-dimensional finite element analysis or an inaccurate analytical model. Sliding friction experiments were also conducted with bar-shaped solid samples to determine the sliding friction between the samples and the small intestine. This sliding friction data will be useful in determining spiral material for an optimally designed robotic capsule.

  11. Improved Skin Friction Interferometer

    NASA Technical Reports Server (NTRS)

    Westphal, R. V.; Bachalo, W. D.; Houser, M. H.

    1986-01-01

    An improved system for measuring aerodynamic skin friction which uses a dual-laser-beam oil-film interferometer was developed. Improvements in the optical hardware provided equal signal characteristics for each beam and reduced the cost and complexity of the system by replacing polarization rotation by a mirrored prism for separation of the two signals. An automated, objective, data-reduction procedure was implemented to eliminate tedious manual manipulation of the interferometry data records. The present system was intended for use in two-dimensional, incompressible flows over a smooth, level surface without pressure gradient, but the improvements discussed are not limited to this application.

  12. Direct measurement of skin friction with a new instrument

    NASA Technical Reports Server (NTRS)

    Vakili, A. D.; Wu, J. M.

    1986-01-01

    The design and performance of a small belt-type skin-friction gage to measure wall shear-stress coefficients in wind-tunnel testing are described, summarizing the report of Vakili and Wu (1982). The sensor employs a flexible belt of variable surface characteristics; this belt, wrapped tightly around two cylinders mounted on frictionless flexures, is equipped with strain gages to estimate the deflection of the belt by the flow. An alternative approach uses IR illumination, optical fibers, and a photosensitive transistor, permitting direct measurement of the belt deflection. Drawings, diagrams, and graphs of sample data are provided.

  13. Engine-Airframe Integration for Rotorcraft.

    DTIC Science & Technology

    1986-05-01

    detailed technical literature. Initial attempts were to apply this existing fixed-wing data ; but, in general, only small selective areas were applicable...tabulated loss coefficients for a great variety of geometries; two excellent ones are the SAE Manual and GE Data books (References 2 and 3). The loss...pressure drop due to friction is somewhat more complicated because friction factor data given in the literature applies to fully developed duct flow

  14. Friction and transfer of copper, silver, and gold to iron in the presence of various adsorbed surface films

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1979-01-01

    Sliding friction experiments were conducted with the noble metals copper, silver, and gold and two binary alloys of these metals contacting iron in the presence of various adsorbates including, oxygen, methyl mercaptan, and methyl chloride. A pin on disk specimen configuration was used with a load of 100 grams, sliding velocity of 60 mm/min; at 25 C with the surfaces saturated with the adsorbates. Auger emission spectroscopy was used to monitor surface films. Results of the experiments indicate that friction and transfer characteristics are highly specific with respect to both the noble metal and surface film present. With all three metals and films transfer of the noble metal to iron occurred very rapidly. With all metals and films transfer of the noble metal to iron continuously increased with repeated passes except for silver and copper sliding on iron sulfide.

  15. Experimental studies and performance analyses on polyurethane and nitrile rubber rod seals

    NASA Astrophysics Data System (ADS)

    Mirza, M.; Temiz, V.; Kamburoǧlu, E.

    2012-09-01

    The aim of this study is to determine the friction and leakage properties of rod seals made of polyethylene and nitrile rubber with different design geometries, under various pressure and lubricating oil viscosity conditions, in order to make assumptions about their general sealing characteristics and their pros and cons under certain working conditions that involve a range of fluid pressures. The test specimens consist of commercial rod seals of various designs and materials and were mounted on a hard chrome coated shaft subject to reciprocating motion. The test rig is capable of measuring friction force by means of strain measurements on a load cell transmitting the linear motion of a screw shaft to the test shaft. The test results of the reciprocating rod seal samples were evaluated according to leakage amount and friction resistance as a function of materials, design geometries and fluid pressures as well as the lubricating oil viscosity.

  16. Fundamental tribological properties of ceramics

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.; Miyoshi, K.

    1985-01-01

    When a ceramic is brought into contact with itself, another ceramic, or a metal, strong bond forces can develop between the materials. Adhesion between a ceramic and itself or another solid are discussed from a theoretical consideration of the nature of the surfaces and experimentally by relating bond forces to the interface resulting from solid state contact. Elastic, plastic, and fracture behavior of ceramics in solid-state contact are discussed as they relate to friction and wear. The contact load necessary to initiate fracture in ceramics is shown to be appreciably reduced with tangential motion. Both friction and wear of ceramics are anisotropic and relate to crystal structure as with metals. Both free energy of oxide formation and the d valence bond character of metals are related to the friction and wear characteristics for metals in contact with ceramics. Lubrication is found to increase the critical load necessary to initiate fracture of ceramics with sliding or rubbing contact.

  17. Correlating mechanical properties and anti-wear performance of tribofilms formed by ionic liquids, ZDDP and their combinations

    DOE PAGES

    Landauer, Alexander K.; Barnhill, William C.; Qu, Jun

    2016-03-10

    Here we examine the elasticity, hardness, and resistance-to-plastic-deformation (P/S 2) measured via nanoindentation of several tribofilms and correlates these properties to friction and wear behavior. The tribofilms were generated by ball-on-plate reciprocating sliding lubricated by a base oil containing an ionic liquid, phosphonium-organophosphate or ammonium-organophosphate, zinc dialkyldithiophosphate (ZDDP), or combination of IL and ZDDP. Nanoindentation was conducted at room and elevated temperatures. While there seems little correlation between the tribofilm hardness and tribological behavior, a higher modulus generally leads to better friction and wear performance. Interestingly, a lower P/S 2 ratio tends to reduce friction and improve wear protection, whichmore » is in an opposite trend as reported for bulk materials. Ultimately, this is likely attributable to the dynamic, self-healing characteristics of tribofilms.« less

  18. The role of strain hardening in the transition from dislocation-mediated to frictional deformation of marbles within the Karakoram Fault Zone, NW India

    NASA Astrophysics Data System (ADS)

    Wallis, David; Lloyd, Geoffrey E.; Hansen, Lars N.

    2018-02-01

    The onset of frictional failure and potentially seismogenic deformation in carbonate rocks undergoing exhumation within fault zones depends on hardening processes that reduce the efficiency of aseismic dislocation-mediated deformation as temperature decreases. However, few techniques are available for quantitative analysis of dislocation slip system activity and hardening in natural tectonites. Electron backscatter diffraction maps of crystal orientations offer one such approach via determination of Schmid factors, if the palaeostress conditions can be inferred and the critical resolved shear stresses of slip systems are constrained. We analyse calcite marbles deformed in simple shear within the Karakoram Fault Zone, NW India, to quantify changes in slip system activity as the rocks cooled during exhumation. Microstructural evidence demonstrates that between ∼300 °C and 200-250 °C the dominant deformation mechanisms transitioned from dislocation-mediated flow to twinning and frictional failure. However, Schmid factor analysis, considering critical resolved shear stresses for yield of undeformed single crystals, indicates that the fraction of grains with sufficient resolved shear stress for glide apparently increased with decreasing temperature. Misorientation analysis and previous experimental data indicate that strain-dependent work hardening is responsible for this apparent inconsistency and promoted the transition from dislocation-mediated flow to frictional, and potentially seismogenic, deformation.

  19. Experimental verification and comparison of the rubber V- belt continuously variable transmission models

    NASA Astrophysics Data System (ADS)

    Grzegożek, W.; Dobaj, K.; Kot, A.

    2016-09-01

    The paper includes the analysis of the rubber V-belt cooperation with the CVT transmission pulleys. The analysis of the forces and torques acting in the CVT transmission was conducted basing on calculated characteristics of the centrifugal regulator and the torque regulator. The accurate estimation of the regulator surface curvature allowed for calculation of the relation between the driving wheel axial force, the engine rotational speed and the gear ratio of the CVT transmission. Simplified analytical models of the rubber V-belt- pulley cooperation are based on three basic approaches. The Dittrich model assumes two contact regions on the driven and driving wheel. The Kim-Kim model considers, in addition to the previous model, also the radial friction. The radial friction results in the lack of the developed friction area on the driving pulley. The third approach, formulated in the Cammalleri model, assumes variable sliding angle along the wrap arch and describes it as a result the belt longitudinal and cross flexibility. Theoretical torque on the driven and driving wheel was calculated on the basis of the known regulators characteristics. The calculated torque was compared to the measured loading torque. The best accordance, referring to the centrifugal regulator range of work, was obtained for the Kim-Kim model.

  20. Biodynamic Performance of Hyaluronic Acid versus Synovial fluid of the Knee for Osteoarthritic Therapy

    PubMed Central

    Corvelli, Michael; Che, Bernadette; Saeui, Christopher; Singh, Anirudha; Elisseeff, Jennifer

    2015-01-01

    Hyaluronic acid (HA), a natural biomaterial present in healthy joints but depleted in osteoarthritis (OA), has been employed clinically to provide symptomatic relief of joint pain. Joint movement combined with a reduced joint lubrication in osteoarthritic knees can result in increased wear and tear, chondrocyte apoptosis, and inflammation, leading to cascading cartilage deterioration. Therefore, development of an appropriate cartilage model and evaluation for its friction properties with potential lubricants in different conditions is necessary, which can closely resemble a mechanically induced OA cartilage. Additionally, the comparison of different models with and without endogenous lubricating surface zone proteins, such as PRG4 promotes a well-rounded understanding of cartilage lubrication. In this study, we present our findings on the lubricating effects of HA on different articular cartilage model surfaces in comparison to synovial fluid, a physiological lubricating biomaterial. The mechanical testings data demonstrated that HA reduced average static and kinetic friction coefficient values of the cartilage samples by 75% and 70%, respectively. Furthermore, HA mimicked the friction characteristics of freshly harvested natural synovial fluid throughout all tested and modeled OA conditions with no statistically significant difference. These characteristics led us to exclusively identify HA as an effective boundary layer lubricant in the technology that we develop to treat OA [Singh et al. 2104]. PMID:25858258

  1. Tribological characteristics of nitrogen (N+) implanted iron

    NASA Technical Reports Server (NTRS)

    Jones, W. R.; Ferrante, J.

    1982-01-01

    The effect of implantation of nitrogen ions (1.5 MeV) on the friction and wear characteristics of pure ion sliding against M-50 steel (unimplanted) was studied in a pin-on-disk sliding friction apparatus. Test conditions included room temperature (25 C), a dry air atmosphere, a load of 1/2 kg (4.9 N), sliding velocities of 0.043 to 0.078 m/sec (15 to 25 rpm), a pure hydrocarbon lubricant (n-hexadecane), or a U.S.P. mineral oil and nitrogen ion implantation doses of 5x10 to the 15th power and 5x10 to the 17th power ions/sq cm. No differences in wear rates were observed in the low dose experiments. In the high dose experiments, small reductions in initial (40 percent) and steady state (20 percent) wear rates were observed for nitrogen implanted iron riders as compared with unimplanted controls. No differences in average friction coefficients were noted for either dose. Auger electron spectroscopy combined with argon ion bombardment revealed a subsurface Gaussian nitrogen distribution with a maximum concentration of 6 atomic percent at a depth of 0.8 microns. Similar analysis within the wear scar of an implanted rider after 20 microns of wear yielded only background nitrogen concentration. No inward migration of nitrogen ions was observed.

  2. Application of continuous normal-lognormal bivariate density functions in a sensitivity analysis of municipal solid waste landfill.

    PubMed

    Petrovic, Igor; Hip, Ivan; Fredlund, Murray D

    2016-09-01

    The variability of untreated municipal solid waste (MSW) shear strength parameters, namely cohesion and shear friction angle, with respect to waste stability problems, is of primary concern due to the strong heterogeneity of MSW. A large number of municipal solid waste (MSW) shear strength parameters (friction angle and cohesion) were collected from published literature and analyzed. The basic statistical analysis has shown that the central tendency of both shear strength parameters fits reasonably well within the ranges of recommended values proposed by different authors. In addition, it was established that the correlation between shear friction angle and cohesion is not strong but it still remained significant. Through use of a distribution fitting method it was found that the shear friction angle could be adjusted to a normal probability density function while cohesion follows the log-normal density function. The continuous normal-lognormal bivariate density function was therefore selected as an adequate model to ascertain rational boundary values ("confidence interval") for MSW shear strength parameters. It was concluded that a curve with a 70% confidence level generates a "confidence interval" within the reasonable limits. With respect to the decomposition stage of the waste material, three different ranges of appropriate shear strength parameters were indicated. Defined parameters were then used as input parameters for an Alternative Point Estimated Method (APEM) stability analysis on a real case scenario of the Jakusevec landfill. The Jakusevec landfill is the disposal site of the capital of Croatia - Zagreb. The analysis shows that in the case of a dry landfill the most significant factor influencing the safety factor was the shear friction angle of old, decomposed waste material, while in the case of a landfill with significant leachate level the most significant factor influencing the safety factor was the cohesion of old, decomposed waste material. The analysis also showed that a satisfactory level of performance with a small probability of failure was produced for the standard practice design of waste landfills as well as an analysis scenario immediately after the landfill closure. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Different erosion characteristics of sediment deposits in combined and storm sewers.

    PubMed

    Xu, Zuxin; Wu, Jun; Li, Huaizheng; Liu, Zhenghua; Chen, Keli; Chen, Hao; Xiong, Lijun

    2017-04-01

    To investigate the different erosion patterns of sediments in combined and storm sewers, sediments from three separate sewer systems and two combined sewer systems in urban Shanghai were collected for the flushing experiments. These experiments were conducted with different consolidation periods and shear velocities. As the consolidation period increases, dissolved oxygen exhibits a positive effect on the microbial transformations of organic substrates. Potential structural changes and separations of the surface and bottom layers of sediments are observed. The results also reveal that the organic matter, particle size and moisture have different effects on the erosion resistance of sediments. Furthermore, illicit connections behaved as an important factor affecting the viscosity and static friction force of particles, which directly alter the erosion resistance of sewer sediments.

  4. Ultrasonic friction power during Al wire wedge-wedge bonding

    NASA Astrophysics Data System (ADS)

    Shah, A.; Gaul, H.; Schneider-Ramelow, M.; Reichl, H.; Mayer, M.; Zhou, Y.

    2009-07-01

    Al wire bonding, also called ultrasonic wedge-wedge bonding, is a microwelding process used extensively in the microelectronics industry for interconnections to integrated circuits. The bonding wire used is a 25μm diameter AlSi1 wire. A friction power model is used to derive the ultrasonic friction power during Al wire bonding. Auxiliary measurements include the current delivered to the ultrasonic transducer, the vibration amplitude of the bonding tool tip in free air, and the ultrasonic force acting on the bonding pad during the bond process. The ultrasonic force measurement is like a signature of the bond as it allows for a detailed insight into mechanisms during various phases of the process. It is measured using piezoresistive force microsensors integrated close to the Al bonding pad (Al-Al process) on a custom made test chip. A clear break-off in the force signal is observed, which is followed by a relatively constant force for a short duration. A large second harmonic content is observed, describing a nonsymmetric deviation of the signal wave form from the sinusoidal shape. This deviation might be due to the reduced geometrical symmetry of the wedge tool. For bonds made with typical process parameters, several characteristic values used in the friction power model are determined. The ultrasonic compliance of the bonding system is 2.66μm/N. A typical maximum value of the relative interfacial amplitude of ultrasonic friction is at least 222nm. The maximum interfacial friction power is at least 11.5mW, which is only about 4.8% of the total electrical power delivered to the ultrasonic generator.

  5. Light as a key driver of freshwater biofouling surface roughness in an experimental hydrocanal pipe rig.

    PubMed

    Ravizza, Matilde; Giosio, Dean; Henderson, Alan; Hovenden, Mark; Hudson, Monica; Salleh, Sazlina; Sargison, Jane; Shaw, Jennifer L; Walker, Jessica; Hallegraeff, Gustaaf

    2016-07-01

    Biofouling in canals and pipelines used for hydroelectric power generation decreases the flow capacity of conduits. A pipeline rig was designed consisting of test sections of varying substrata (PVC, painted steel) and light levels (transparent, frosted, opaque). Stalk-forming diatoms were abundant in both the frosted and transparent PVC pipes but negligible in the painted steel and opaque PVC pipes. Fungi were slightly more abundant in the painted steel pipe but equally present in all the other pipes while bacterial diversity was similar in all pipes. Photosynthetically functional biofouling (mainly diatoms) was able to develop in near darkness. Different biological fouling compositions generated differing friction factors. The highest friction factor was observed in the transparent pipe (densest diatom fouling), the lowest peak friction for the opaque PVC pipe (lowest fouling biomass), and with the painted steel pipe (high fouling biomass, but composed of fungal and bacterial crusts) being intermediate between the opaque and frosted PVC pipes.

  6. Evaluation of replacement thread lubricants for red lead and graphite in mineral oil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jungling, T.L.; Rauth, D.R.; Goldberg, D.

    1998-04-30

    Eight commercially available thread lubricants were evaluated to determine the best replacement for Red Lead and Graphite in Mineral Oil (RLGMO). The evaluation included coefficient of friction testing, high temperature anti-seizing testing, room temperature anti-galling testing, chemical analysis for detrimental impurities, corrosion testing, off-gas testing, and a review of health and environmental factors. The coefficient of friction testing covered a wide variety of factors including stud, nut, and washer materials, sizes, manufacturing methods, surface coatings, surface finishes, applied loads, run-in cycles, and relubrication. Only one lubricant, Dow Corning Molykote P37, met all the criteria established for a replacement lubricant. Itmore » has a coefficient of friction range similar to RLGMO. Therefore, it can be substituted directly for RLGMO without changing the currently specified fastener torque values for the sizes, materials and conditions evaluated. Other lubricants did not perform as well as Molykote P37 in one or more test or evaluation categories.« less

  7. Traction Characteristics of a 30 by 11.5-14.5, Type 8, Aircraft Tire on Dry, Wet and Flooded Surfaces

    NASA Technical Reports Server (NTRS)

    Yager, T. J.; Dreher, R. C.

    1976-01-01

    A limited test program was conducted to extend and supplement the braking and cornering data on a 30 x 11.5-14.5, type VIII, aircraft tire to refine the tire/runway friction model for use in the development of an aircraft ground performance simulation. Tire traction data were obtained on dry, wet and flooded runway surfaces at ground speeds ranging from 5 to 100 knots and at yaw angles extending up to 12 deg. These friction coefficients are presented as a function of slip characteristics, namely, the maximum and skidding drag coefficients and the maximum cornering coefficients are presented as a function of both ground speed and yaw angle to extend existing data on that tire size. Tire braking and cornering capabilities were shown to be affected by vehicle ground speed, wheel yaw attitude and the extent of surface wetness.

  8. Evaluation of gait characteristics and ground reaction forces in cognitively declined older adults with an emphasis on slip-induced falls.

    PubMed

    Lockhart, Thurmon; Kim, Sukwon; Kapur, Radhika; Jarrott, Shannon

    2009-01-01

    The objective of the present study was to evaluate the relationship between gait adaptation and slip/fall risk of older adults with cognitive impairments. The study investigated the gait characteristics of six healthy older adults and five older adults with dementia. Participants walked on an instrumented walkway at their preferred walking speeds. After ensuring that the preferred walking speeds were consistent, participants' natural posture and ground reaction forces were measured. The results suggested that participants with dementia walked more cautiously yet demanded more friction at the shoe/floor interface at the time of heel contact, increasing the risk of slip initiation. To reduce the risk of slip-induced falls among older adults with dementia, specific gait training to reduce friction demand requirements by increasing the transfer speed of the whole body mass is suggested.

  9. Post-seismic and interseismic fault creep I: model description

    NASA Astrophysics Data System (ADS)

    Hetland, E. A.; Simons, M.; Dunham, E. M.

    2010-04-01

    We present a model of localized, aseismic fault creep during the full interseismic period, including both transient and steady fault creep, in response to a sequence of imposed coseismic slip events and tectonic loading. We consider the behaviour of models with linear viscous, non-linear viscous, rate-dependent friction, and rate- and state-dependent friction fault rheologies. Both the transient post-seismic creep and the pattern of steady interseismic creep rates surrounding asperities depend on recent coseismic slip and fault rheologies. In these models, post-seismic fault creep is manifest as pulses of elevated creep rates that propagate from the coseismic slip, these pulses feature sharper fronts and are longer lived in models with rate-state friction compared to other models. With small characteristic slip distances in rate-state friction models, interseismic creep is similar to that in models with rate-dependent friction faults, except for the earliest periods of post-seismic creep. Our model can be used to constrain fault rheologies from geodetic observations in cases where the coseismic slip history is relatively well known. When only considering surface deformation over a short period of time, there are strong trade-offs between fault rheology and the details of the imposed coseismic slip. Geodetic observations over longer times following an earthquake will reduce these trade-offs, while simultaneous modelling of interseismic and post-seismic observations provide the strongest constraints on fault rheologies.

  10. A comparison of the lubrication behavior of whey protein model foods using tribology in linear and elliptical movement.

    PubMed

    Campbell, Caroline L; Foegeding, E Allen; van de Velde, Fred

    2017-08-01

    Lubrication is an important factor in the sensory evaluation of food products. Tribology provides a theoretical framework and instrumental methods for evaluating frictional properties between two moving surfaces and the lubrication behavior of products between these surfaces. Relating frictional measurements to sensory properties detected during oral processing requires careful and pertinent choices in surface materials and testing conditions. The aims of this study were to investigate: (a) differences in lubrication behavior of a range of food textures and (b) the differences between linear and elliptical movement and added saliva to understand the contribution of food structure to friction. Six whey protein model food samples, ranging in texture from fluid to semisolid to soft solid, were analyzed using a pin on disk tribometer to determine the coefficient of friction (COF) across a range of sliding speeds. The samples were analyzed in their initial form and post-oral processing (n = 4) in both linear and elliptical movements. Elliptical movement slightly decreased coefficients of friction and extended the shape of the friction curve. Increases in test food viscosity decreased the COF but differences in viscosity were not apparent when test foods were mixed with saliva. Data correction for viscosity shifted the friction curves horizontally, indicating that lubrication had a greater impact upon friction than viscosity. This study provides initial insights for further comparison of linear and elliptical movement with a variety of sample compositions. Sensory perception of smoothness and creaminess are often major contributors to overall hedonic food liking and are a major reason why products high in fat and sugar are more highly preferred over other foods. These parameters are influenced by friction and lubrication between the tongue, palate, teeth, food products, and saliva during oral processing. Tribology provides an instrumental method to evaluate friction between moving surfaces that mimic oral surfaces and the lubrication behavior of foods. Trends in frictional measurements can be correlated with sensory ratings of the same foods to better understand why preferences exist for certain foods or food compositions and how to effectively improve the acceptability and enjoyment of healthier foods. © 2017 Wiley Periodicals, Inc.

  11. Stick-slip friction and wear of articular joints

    PubMed Central

    Lee, Dong Woog; Banquy, Xavier; Israelachvili, Jacob N.

    2013-01-01

    Stick-slip friction was observed in articular cartilage under certain loading and sliding conditions and systematically studied. Using the Surface Forces Apparatus, we show that stick-slip friction can induce permanent morphological changes (a change in the roughness indicative of wear/damage) in cartilage surfaces, even under mild loading and sliding conditions. The different load and speed regimes can be represented by friction maps—separating regimes of smooth and stick-slip sliding; damage generally occurs within the stick-slip regimes. Prolonged exposure of cartilage surfaces to stick-slip sliding resulted in a significant increase of surface roughness, indicative of severe morphological changes of the cartilage superficial zone. To further investigate the factors that are conducive to stick-slip and wear, we selectively digested essential components of cartilage: type II collagen, hyaluronic acid (HA), and glycosaminoglycans (GAGs). Compared with the normal cartilage, HA and GAG digestions modified the stick-slip behavior and increased surface roughness (wear) during sliding, whereas collagen digestion decreased the surface roughness. Importantly, friction forces increased up to 2, 10, and 5 times after HA, GAGs, and collagen digestion, respectively. Also, each digestion altered the friction map in different ways. Our results show that (i) wear is not directly related to the friction coefficient but (ii) more directly related to stick-slip sliding, even when present at small amplitudes, and that (iii) the different molecular components of joints work synergistically to prevent wear. Our results also suggest potential noninvasive diagnostic tools for sensing stick-slip in joints. PMID:23359687

  12. Geotribology - Friction, wear, and lubrication of faults

    NASA Astrophysics Data System (ADS)

    Boneh, Yuval; Reches, Ze'ev

    2018-05-01

    We introduce here the concept of Geotribology as an approach to study friction, wear, and lubrication of geological systems. Methods of geotribology are applied here to characterize the friction and wear associated with slip along experimental faults composed of brittle rocks. The wear in these faults is dominated by brittle fracturing, plucking, scratching and fragmentation at asperities of all scales, including 'effective asperities' that develop and evolve during the slip. We derived a theoretical model for the rate of wear based on the observation that the dynamic strength of brittle materials is proportional to the product of load stress and loading period. In a slipping fault, the loading period of an asperity is inversely proportional to the slip velocity, and our derivations indicate that the wear-rate is proportional to the ratio of [shear-stress/slip-velocity]. By incorporating the rock hardness data into the model, we demonstrate that a single, universal function fits wear data of hundreds of experiments with granitic, carbonate and sandstone faults. In the next step, we demonstrate that the dynamic frictional strength of experimental faults is well explained in terms of the tribological parameter PV factor (= normal-stress · slip-velocity). This factor successfully delineates weakening and strengthening regimes of carbonate and granitic faults. Finally, our analysis revealed a puzzling observation that wear-rate and frictional strength have strikingly different dependencies on the loading conditions of normal-stress and slip-velocity; we discuss sources for this difference. We found that utilization of tribological tools in fault slip analyses leads to effective and insightful results.

  13. The influence of landing mat composition on ankle injury risk during a gymnastic landing: a biomechanical quantification.

    PubMed

    Xiao, Xiaofei; Hao, Weiya; Li, Xuhong; Wan, Bingjun; Shan, Gongbing

    2017-01-01

    About 70% injury of gymnasts happened during landing - an interaction between gymnast and landing mat. The most injured joint is the ankle. The current study examined the effect of mechanical properties of landing mat on ankle loading with aims to identify means of decreasing the risk of ankle injury. Gymnastic skill - salto backward stretched with 3/2 twist was captured by two high-speed camcorders and digitized by using SIMI-Motion software. A subject-specific, 14-segment rigid-body model and a mechanical landing-mat model were built using BRG.LifeMODTM. The landings were simulated with varied landing-mat mechanical properties (i.e., stiffness, dampness and friction coefficients). Real landing performance could be accurately reproduced by the model. The simulations revealed that the ankle angle was relatively sensitive to stiffness and dampness of the landing mat, the ankle loading rate increased 26% when the stiffness was increased by 30%, and the changing of dampness had notable effect on horizontal ground reaction force and foot velocity. Further, the peak joint-reaction force and joint torque were more sensitive to friction than to stiffness and dampness of landing mat. Finally, ankle muscles would dissipate about twice energy (189%) when the friction was increased by 30%. Loads to ankles during landing would increase as the stiffness and dampness of the landing mat increase. Yet, increasing friction would cause a substantial rise of the ankle internal loads. As such, the friction should be a key factor influencing the risk of injury. Unfortunately, this key factor has rarely attracted attention in practice.

  14. Au/Cr Sputter Coating for the Protection of Alumina During Sliding at High Temperatures

    NASA Technical Reports Server (NTRS)

    Benoy, Patricia A.; Dellacorte, Christopher

    1995-01-01

    A sputter deposited bilayer coating of gold and chromium was investigated as a potential solid lubricant to protect alumina substrates in applications involving sliding at high temperature. The proposed lubricant was tested in a pin-on-disk tribometer with coated alumina disks sliding against uncoated alumina pins. Three test parameters; temperature, load, and sliding velocity were varied over a wide range in order to determine the performance envelope on the gold/chromium (Au/Cr) solid lubricant film. The tribo-tests were run in an air atmosphere at temperatures of 25 to 1000 C, under loads of 4.9 to 49.0 N and at sliding velocities from 1 to 15 m/sec. Post test analyses included surface profilometry, wear factor determination and scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS) examination of worn surfaces. Compared to unlubricated Al2O3 sliding, the use of the Au/Cr film reduced friction by 30 to 50 percent and wear by one to two orders of magnitude. Increases in test temperature resulted in lower friction and the Au/Cr film continued to provide low friction, about 0.3, even at 1000 C. Pin wear factors and friction were largely unaffected by increasing loads up to 29.4 N. Sliding velocity had essentially no effect on friction, however, increased velocity reduced coating life (total sliding distance). Based upon these research results, the Au/Cr film is a promising lubricant for moderately loaded, low speed applications operating at temperatures as high as 1000 C.

  15. Modeling of hybrid vehicle fuel economy and fuel engine efficiency

    NASA Astrophysics Data System (ADS)

    Wu, Wei

    "Near-CV" (i.e., near-conventional vehicle) hybrid vehicles, with an internal combustion engine, and a supplementary storage with low-weight, low-energy but high-power capacity, are analyzed. This design avoids the shortcoming of the "near-EV" and the "dual-mode" hybrid vehicles that need a large energy storage system (in terms of energy capacity and weight). The small storage is used to optimize engine energy management and can provide power when needed. The energy advantage of the "near-CV" design is to reduce reliance on the engine at low power, to enable regenerative braking, and to provide good performance with a small engine. The fuel consumption of internal combustion engines, which might be applied to hybrid vehicles, is analyzed by building simple analytical models that reflect the engines' energy loss characteristics. Both diesel and gasoline engines are modeled. The simple analytical models describe engine fuel consumption at any speed and load point by describing the engine's indicated efficiency and friction. The engine's indicated efficiency and heat loss are described in terms of several easy-to-obtain engine parameters, e.g., compression ratio, displacement, bore and stroke. Engine friction is described in terms of parameters obtained by fitting available fuel measurements on several diesel and spark-ignition engines. The engine models developed are shown to conform closely to experimental fuel consumption and motored friction data. A model of the energy use of "near-CV" hybrid vehicles with different storage mechanism is created, based on simple algebraic description of the components. With powertrain downsizing and hybridization, a "near-CV" hybrid vehicle can obtain a factor of approximately two in overall fuel efficiency (mpg) improvement, without considering reductions in the vehicle load.

  16. Experiments on vibration-driven stick-slip locomotion: A sliding bifurcation perspective

    NASA Astrophysics Data System (ADS)

    Du, Zhouwei; Fang, Hongbin; Zhan, Xiong; Xu, Jian

    2018-05-01

    Dry friction appears at the contact interface between two surfaces and is the source of stick-slip vibrations. Instead of being a negative factor, dry friction is essential for vibration-driven locomotion system to take effect. However, the dry-friction-induced stick-slip locomotion has not been fully understood in previous research, especially in terms of experiments. In this paper, we experimentally study the stick-slip dynamics of a vibration-driven locomotion system from a sliding bifurcation perspective. To this end, we first design and build a vibration-driven locomotion prototype based on an internal piezoelectric cantilever. By utilizing the mechanical resonance, the small piezoelectric deformation is significantly amplified to drive the prototype to achieve effective locomotion. Through identifying the stick-slip characteristics in velocity histories, we could categorize the system's locomotion into four types and obtain a stick-slip categorization diagram. In each zone of the diagram the locomotion exhibits qualitatively different stick-slip dynamics. Such categorization diagram is actually a sliding bifurcation diagram; crossing from one stick-slip zone to another corresponds to the triggering of a sliding bifurcation. In addition, a simplified single degree-of-freedom model is established, with the rationality of simplification been explained theoretically and numerically. Based on the equivalent model, a numerical stick-slip categorization is also obtained, which shows good agreement with the experiments both qualitatively and quantitatively. To the best of our knowledge, this is the first work that experimentally generates a sliding bifurcation diagram. The obtained stick-slip categorizations deepen our understanding of stick-slip dynamics in vibration-driven systems and could serve as a base for system design and optimization.

  17. Friction and wear performance of ion-beam deposited diamondlike carbon films on steel substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erdemir, A.; Nichols, F.A.; Pan, X.Z.

    1993-01-01

    In this study, we investigated the friction and wear performance of ion-beam-deposited diamondlike-carbon (DLC) films (1.5 {mu}m thick) on AISI 440C steel substrates. Furthermore, we ran a series of long-duration wear tests under 5, 10, and 20 N load to assess the load-bearing capacity and durability limits of these films under each load. Tests were performed on a ball-on-disk machine in open air at room temperature {approx} 22{plus_minus}1{degrees}C, and humidity, {approx} 30{plus_minus}5%. For the test conditions explored, we found that (1) the steady-state friction coefficients of pairs without a DLC film were in the range of 0.7 to 0.9 andmore » the average wear rates of 440C balls (9.55 mm diameter) sliding against uncoated 440C disks were on the order of 10{sup {minus}5} mm{sup 3}/N.m, depending on contact load; (2) DLC films reduced the steady-state friction coefficients of test pairs by factors of 6 to 8, and the wear rates of pins by factors of 500 to 2000; (3) The wear of disks coated with a DLC film was virtually unmeasurable while the wear of uncoated disks was quite substantial, (4) these DLC films were able to endure the range of loads, 5 to 20 N, without any delamination and to last over a million cycles before wearing out. During long-duration wear tests, the friction coefficients were initially on the order of 0.15, but decreased to some low values of 0.05 to 0.07 after sliding for 15 to 25 km, depending on the load, and remained low until wearing out. This low-friction regime was correlated with the formation of a carbon-rich transfer film on the wear scar of 440C balls. Micro-laser-Raman spectroscopy and scanning-electron microscopy were used to examine the structure and chemistry of worn surfaces and to elucidate the wear- and friction-reducing mechanisms of the DLC film.« less

  18. Friction and wear performance of ion-beam deposited diamondlike carbon films on steel substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erdemir, A.; Nichols, F.A.; Pan, X.Z.

    1993-01-01

    In this study, we investigated the friction and wear performance of ion-beam-deposited diamondlike-carbon (DLC) films (1.5 [mu]m thick) on AISI 440C steel substrates. Furthermore, we ran a series of long-duration wear tests under 5, 10, and 20 N load to assess the load-bearing capacity and durability limits of these films under each load. Tests were performed on a ball-on-disk machine in open air at room temperature [approx] 22[plus minus]1[degrees]C, and humidity, [approx] 30[plus minus]5%. For the test conditions explored, we found that (1) the steady-state friction coefficients of pairs without a DLC film were in the range of 0.7 tomore » 0.9 and the average wear rates of 440C balls (9.55 mm diameter) sliding against uncoated 440C disks were on the order of 10[sup [minus]5] mm[sup 3]/N.m, depending on contact load; (2) DLC films reduced the steady-state friction coefficients of test pairs by factors of 6 to 8, and the wear rates of pins by factors of 500 to 2000; (3) The wear of disks coated with a DLC film was virtually unmeasurable while the wear of uncoated disks was quite substantial, (4) these DLC films were able to endure the range of loads, 5 to 20 N, without any delamination and to last over a million cycles before wearing out. During long-duration wear tests, the friction coefficients were initially on the order of 0.15, but decreased to some low values of 0.05 to 0.07 after sliding for 15 to 25 km, depending on the load, and remained low until wearing out. This low-friction regime was correlated with the formation of a carbon-rich transfer film on the wear scar of 440C balls. Micro-laser-Raman spectroscopy and scanning-electron microscopy were used to examine the structure and chemistry of worn surfaces and to elucidate the wear- and friction-reducing mechanisms of the DLC film.« less

  19. Studies on centrifugal clutch judder behavior and the design of frictional lining materials

    NASA Astrophysics Data System (ADS)

    Li, Tse-Chang; Huang, Yu-Wen; Lin, Jen-Fin

    2016-01-01

    This study examines the judder behavior of a centrifugal clutch from the start of hot spots in the conformal contact, then the repeated developments of thermoelastic instability, and finally the formation of cyclic undulations in the vibrations, friction coefficient and torque. This behavior is proved to be consistent with the testing results. Using the Taguchi method, 18 kinds of frictional lining specimens were prepared in order to investigate their performance in judder resistance and establish a relationship between judder behavior and the Ts/Td (Ts: static torque; Td: dynamic torque) and dμ/dVx (μ: friction coefficient; Vx: relative sliding velocity of frictional lining and clutch drum) parameters. These specimens are also provided to examine the effects and profitability with regard to the centrifugal clutch, and find the relative importance of the various control factors. Theoretical models for the friction coefficient (μ), the critical sliding velocity (Vc) with clutch judder, and the contact pressure ratio p* /pbar (p*: pressure undulation w.r.t. pbar; pbar: mean contact pressure) and temperature corresponding to judder behavior are developed. The parameters of the contact pressure ratio and temperature are shown to be helpful to explain the occurrence of judder. The frictional torque and the rotational speeds of the driveline, clutch, and clutch drum as functions of engagement time for 100 clutch cycles are obtained experimentally to evaluate dμ/dVx and Ts/Td. A sharp rise in the maximum p* /pbar occurred when the relative sliding velocity reached the critical velocity, Vc. An increase in the maximum p* /pbar generally led to an increase of the (initially negative) dμ/dVx value, and thus the severity of judder. The fluctuation intensity of dμ/dVx becomes a governing factor of the growth of dμ/dVx itself in the engagement process. The mean values of dμ/dVx and Ts/Td for the clutching tests with 100 cycles can be roughly divided into three groups dependent on the fluctuation intensities of these two parameters, for each of which there is a linear relationship.

  20. The problem of modeling the process of air blowing through finely perforated wall for skin friction reduction

    NASA Astrophysics Data System (ADS)

    Kornilov, V. I.; Boiko, A. V.

    2017-10-01

    Problems of experimental modeling of the process of air blowing into turbulent boundary layer of incompressible fluid through finely perforated wall are discussed. Particular attention is paid to the analysis of both the main factors responsible for the effectiveness of blowing and the possibility of studying the factors in artificially generated turbulent boundary layer. It was shown that uniformity of the injected gas is one of the main requirements to enhance the effectiveness of this method of flow control. An example of the successful application of this technology exhibiting a significant reduction of the turbulent skin friction is provided.

Top