Depth-dependent resistance of granular media to vertical penetration.
Brzinski, T A; Mayor, P; Durian, D J
2013-10-18
We measure the quasistatic friction force acting on intruders moving downwards into a granular medium. By utilizing different intruder geometries, we demonstrate that the force acts locally normal to the intruder surface. By altering the hydrostatic loading of grain contacts by a sub-fluidizing airflow through the bed, we demonstrate that the relevant frictional contacts are loaded by gravity rather than by the motion of the intruder itself. Lastly, by measuring the final penetration depth versus airspeed and using an earlier result for inertial drag, we demonstrate that the same quasistatic friction force acts during impact. Altogether this force is set by a friction coefficient, hydrostatic pressure, projectile size and shape, and a dimensionless proportionality constant. The latter is the same in nearly all experiments, and is surprisingly greater than one.
Studying the Frictional Force Directions via Bristles
ERIC Educational Resources Information Center
Prasitpong, S.; Chitaree, R.; Rakkapao, S.
2010-01-01
We present simple apparatus designed to help Thai high school students visualize the directions of frictional forces. Bristles of toothbrushes, paintbrushes and scrubbing brushes are used to demonstrate the frictional forces acting in a variety of situations. These demonstrations, when followed by discussion of free-body diagrams, were found to be…
Friction Force: From Mechanics to Thermodynamics
ERIC Educational Resources Information Center
Ferrari, Christian; Gruber, Christian
2010-01-01
We study some mechanical problems in which a friction force is acting on a system. Using the fundamental concepts of state, time evolution and energy conservation, we explain how to extend Newtonian mechanics to thermodynamics. We arrive at the two laws of thermodynamics and then apply them to investigate the time evolution and heat transfer of…
Special cases of friction and applications
NASA Technical Reports Server (NTRS)
Litvin, F. L.; Coy, J. J.
1983-01-01
Two techniques for reducing friction forces are presented. The techniques are applied to the generalized problem of reducing the friction between kinematic pairs which connect a moveable link to a frame. The basic principles are: (1) Let the moveable link be supported by two bearings where the relative velocities of the link with respect to each bearing are of opposite directions. Thus the resultant force (torque) of friction acting on the link due to the bearings is approximately zero. Then, additional perturbation of motion parallel to the main motion of the moveable link will require only a very small force; (2) Let the perturbation in motion be perpendicular to the main motion. Equations are developed which explain these two methods. The results are discussed in relation to friction in geared couplings, gyroscope gimbal bearings and a rotary conveyor system. Design examples are presented.
Biomechanics of ant adhesive pads: frictional forces are rate- and temperature-dependent.
Federle, Walter; Baumgartner, Werner; Hölldobler, Bert
2004-01-01
Tarsal adhesive pads enable insects to hold on to smooth plant surfaces. Using a centrifuge technique, we tested whether a "wet adhesion" model of a thin film of liquid secreted between the pad and the surface can explain adhesive and frictional forces in Asian Weaver ants (Oecophylla smaragdina). When forces are acting parallel to the surface, pads in contact with the surface can slide smoothly. Force per unit pad contact area was strongly dependent on sliding velocity and temperature. Seemingly consistent with the effect of a thin liquid film in the contact zone, (1) frictional force linearly increased with sliding velocity, (2) the increment was greater at lower temperatures and (3) no temperature dependence was detected for low-rate perpendicular detachment forces. However, we observed a strong, temperature-independent static friction that was inconsistent with a fully lubricated contact. Static friction was too large to be explained by the contribution of other (sclerotized) body parts. Moreover, the rate-specific increase of shear stress strongly exceeded predictions derived from estimates of the adhesive liquid film's thickness and viscosity. Both lines of evidence indicate that the adhesive secretion alone is insufficient to explain the observed forces and that direct interaction of the soft pad cuticle with the surface ("rubber friction") is involved.
Viscous friction of hydrogen-bonded matter
NASA Astrophysics Data System (ADS)
Erbas, Aykut; Horinek, Dominik; Netz, Roland R.
2012-02-01
Amontons' law successfully describes friction between macroscopic solid bodies for a wide range of velocities and normal forces. For the diffusion and forced sliding of adhering or entangled macromolecules, proteins and biological complexes, temperature effects are invariably important and a similarly successful friction law at biological length and velocity scales is missing. Hydrogen bonds are key to the specific binding of bio-matter. Here we show that friction between hydrogen-bonded matter obeys in the biologically relevant low-velocity viscous regime a simple equations: the friction force is proportional to the number of hydrogen bonds, the sliding velocity, and a friction coefficient γHB. This law is deduced from atomistic molecular dynamics simulations for short peptide chains that are laterally pulled over hydroxylated substrates in the presence of water and holds for widely different peptides, surface polarities and applied normal forces. The value of γHB is extrapolated from simulations at sliding velocities in the range from v=10-2 m/s to 100 m/s by mapping on a simple stochastic model and turns out to be of the order of γHB˜10-8 kg/s. 3 hydrogen bonds act collectively.
Rolling Motion of a Ball Spinning about a Near-Vertical Axis
ERIC Educational Resources Information Center
Cross, Rod
2012-01-01
A ball that is projected forward without spin on a horizontal surface will slide for a short distance before it starts rolling. Sliding friction acts to decrease the translation speed v and it acts to increase the rotation speed [omega]. When v = R[omega], where R is the ball radius, the ball will start rolling and the friction force drops almost…
Real-time observation of slipping and rolling events in DLC wear nanoparticles.
Sato, Takaaki; Nabeya, Shinsuke; Menon, Vivek; Ishida, Tadashi; Kometani, Reo; Fujita, Hiroyuki
2018-08-10
Real-time observation of the actual contact area between surface interfaces at the nanoscale enables more precise examination of what happens during friction. We have combined micro electro mechanical system actuators and transmission electron microscopy (TEM) observation, to both apply and measure forces across nanoscale junctions and contacts. This custom-designed experimental system can measure the true surface area of a contact site from a lateral viewpoint, while simultaneously measuring the friction force. We scratched surfaces coated with diamond like carbon, a classical solid lubricant, and observed the formation of wear particles that slipped and rolled between the interface. TEM images showed that the shape of the surface at the nanoscale underwent permanent deformation when acted upon with forces as low as several tens of nano newtons. The results demonstrated the limitations of friction analyses relying on friction force measurements without real-time surface profiling.
The Friction Force Determination of Large-Sized Composite Rods in Pultrusion
NASA Astrophysics Data System (ADS)
Grigoriev, S. N.; Krasnovskii, A. N.; Kazakov, I. A.
2014-08-01
Nowadays, the simple pull-force models of pultrusion process are not suitable for large sized rods because they are not considered a chemical shrinkage and thermal expansion acting in cured material inside the die. But the pulling force of the resin-impregnated fibers as they travels through the heated die is essential factor in the pultrusion process. In order to minimize the number of trial-and-error experiments a new mathematical approach to determine the frictional force is presented. The governing equations of the model are stated in general terms and various simplifications are implemented in order to obtain solutions without extensive numerical efforts. The influence of different pultrusion parameters on the frictional force value is investigated. The results obtained by the model can establish a foundation by which process control parameters are selected to achieve an appropriate pull-force and can be used for optimization pultrusion process.
NASA Technical Reports Server (NTRS)
Crane, Harold L.
1961-01-01
With an electric analog computer, an investigation has been made of the effects of control frictions and preloads on the transient longitudinal response of a fighter airplane during abrupt small attitude corrections. The simulation included the airplane dynamics, powered control system, feel system, and a simple linearized pseudopilot. Control frictions at the stick pivot and at the servo valve as well as preloads of the stick and valve were considered individually and in combinations. It is believed that the results which are presented in the form of time histories and vector diagrams present a more detailed illustration of the effects of stray forces and compensating forces in the longitudinal control system than has previously been available. Consistent with the results of previous studies, the present results show that any of these four friction and preload forces caused some deterioration of the response. However, even a small amount of valve friction caused an oscillatory pitching response during which the phasing of the valve friction was such that it caused energy to be fed into the pitching oscillation of the air-plane. Of the other friction and preload forces which were considered, it was found that stick preload was close to 180 deg. out of phase with valve friction and thus could compensate in large measure for valve friction as long as the cycling of the stick encompassed the trim point. Either stick friction or valve preload provided a smaller stabilizing effect primarily through a reduction in the amplitude of the resultant force vector acting on the control system. Some data were obtained on the effects of friction when the damping or inertia of the control system or the pilot lag was varied.
NASA Technical Reports Server (NTRS)
Crane, Harold L
1957-01-01
With an electric analog computer, an investigation has been made of the effects of control frictions and preloads on the transient longitudinal response of a fighter airplane during abrupt small attitude corrections. The simulation included the airplane dynamics, powered control system, feel system, and a simple linearized pseudopilot. Control frictions at the stick pivot and at the servo valve as well as preloads of the stick and valve were considered individually and in combinations. It is believed that the results which are presented in the form of time histories and vector diagrams present a more detailed illustration of the effects of stray forces and compensating forces in the longitudinal control system than has previously been available. Consistent with the results of previous studies, the present results show that any of thesefour friction and preload forces caused some deterioration of the response. However, even a small amount of valve friction caused an oscillatory pitching response during which the phasing of the valve friction was such that it caused energy to be fed into the pitching oscillation of the airplane. Of the other friction and preload forces which were considered, it was found that stick preload was close to 180 degrees out of phase with valve friction and thus could compensate in large measure for valve friction as long as the cycling of the stick encompassed the trim point. Either stick friction or valve preload provided a smaller stabilizing effect primarily through a reduction in the amplitude of the resultant force vector acting on the control system. Some data were obtained on the effects of friction when the damping or inertia of the control system or the pilot lag was varied.
Fuzzy control for nonlinear structure with semi-active friction damper
NASA Astrophysics Data System (ADS)
Zhao, Da-Hai; Li, Hong-Nan
2007-04-01
The implementation of semi-active friction damper for vibration mitigation of seismic structure generally requires an efficient control strategy. In this paper, the fuzzy logic based on Takagi-Sugeno model is proposed for controlling a semi-active friction damper that is installed on a nonlinear building subjected to strong earthquakes. The continuous Bouc-Wen hysteretic model for the stiffness is used to describe nonlinear characteristic of the building. The optimal sliding force with friction damper is determined by nonlinear time history analysis under normal earthquakes. The Takagi-Sugeno fuzzy logic model is employed to adjust the clamping force acted on the friction damper according to the semi-active control strategy. Numerical simulation results demonstrate that the proposed method is very efficient in reducing the peak inter-story drift and acceleration of the nonlinear building structure under earthquake excitations.
Thermophoretic transport of water nanodroplets confined in carbon nanotubes: The role of friction
NASA Astrophysics Data System (ADS)
Oyarzua, Elton; Walther, Jens H.; Zambrano, Harvey A.
2017-11-01
The development of efficient nanofluidic devices requires driving mechanisms that provide controlled transport of fluids through nanoconduits. Temperature gradients have been proposed as a mechanism to drive particles, fullerenes and nanodroplets inside carbon nanotubes (CNTs). In this work, molecular dynamics (MD) simulations are conducted to study thermophoresis of water nanodroplets inside CNTs. To gain insight into the interplay between the thermophoretic force acting on the droplet and the retarding liquid-solid friction, sets of constrained and unconstrained MD simulations are conducted. The results indicate that the thermophoretic motion of a nanodroplet displays two kinetic regimes: an initial regime characterized by a decreasing acceleration and afterwards a terminal regime with constant velocity. During the initial regime, the magnitude of the friction force increases linearly with the droplet velocity whereas the thermophoretic force has a constant magnitude defined by the magnitude of the thermal gradient and the droplet size. Subsequently, in the terminal regime, the droplet moves at constant velocity due to a dynamic balance between the thermophoretic force and the retarding friction force. We acknowledge partial support from CONICYT (Chile) under scholarship No. 21140427.
NASA Technical Reports Server (NTRS)
Chang, C. H.
1999-01-01
The relationship between Joule heating, diffusion fluxes, and friction forces has been studied for both total and electron thermal energy equations, using general expressions for multicomponent diffusion in two-temperature plasmas with the velocity dependent Lorentz force acting on charged species in a magnetic field. It is shown that the derivation of Joule heating terms requires both diffusion fluxes and friction between species which represents the resistance experienced by the species moving at different relative velocities. It is also shown that the familiar Joule heating term in the electron thermal energy equation includes artificial effects produced by switching the convective velocity from the species velocity to the mass-weighted velocity, and thus should not be ignored even when there is no net energy dissipation.
Computational Analysis of Stresses Acting on Intermodular Junctions in Thoracic Aortic Endografts
Prasad, Anamika; To, Lillian K.; Gorrepati, Madhu L.; Zarins, Christopher K.; Figueroa, C. Alberto
2011-01-01
Purpose: To evaluate the biomechanical and hemodynamic forces acting on the intermodular junctions of a multi-component thoracic endograft and elucidate their influence on the development of type III endoleak due to disconnection of stent-graft segments. Methods: Three-dimensional computer models of the thoracic aorta and a 4-component thoracic endograft were constructed using postoperative (baseline) and follow-up computed tomography (CT) data from a 69-year-old patient who developed type III endoleak 4 years after stent-graft placement. Computational fluid dynamics (CFD) techniques were used to quantitate the displacement forces acting on the device. The contact stresses between the different modules of the graft were then quantified using computational solid mechanics (CSM) techniques. Lastly, the intermodular junction frictional stability was evaluated using a Coulomb model. Results: The CFD analysis revealed that curvature and length are key determinants of the displacement forces experienced by each endograft and that the first 2 modules were exposed to displacement forces acting in opposite directions in both the lateral and longitudinal axes. The CSM analysis revealed that the highest concentration of stresses occurred at the junction between the first and second modules of the device. Furthermore, the frictional analysis demonstrated that most of the surface area (53%) of this junction had unstable contact. The predicted critical zone of intermodular stress concentration and frictional instability matched the location of the type III endoleak observed in the 4-year follow-up CT image. Conclusion: The region of larger intermodular stresses and highest frictional instability correlated with the zone where a type III endoleak developed 4 years after thoracic stent-graft placement. Computational techniques can be helpful in evaluating the risk of endograft migration and potential for modular disconnection and may be useful in improving device placement strategies and endograft design. PMID:21861748
New design for inertial piezoelectric motors
NASA Astrophysics Data System (ADS)
Liu, Lige; Ge, Weifeng; Meng, Wenjie; Hou, Yubin; Zhang, Jing; Lu, Qingyou
2018-03-01
We have designed, implemented, and tested a novel inertial piezoelectric motor (IPM) that is the first IPM to have controllable total friction force, which means that it sticks with large total friction forces and slips with severely reduced total friction forces. This allows the IPM to work with greater robustness and produce a larger output force at a lower threshold voltage while also providing higher rigidity. This is a new IPM design that means that the total friction force can be dramatically reduced or even canceled where necessary by pushing the clamping points at the ends of a piezoelectric tube that contains the sliding shaft inside it in the opposite directions during piezoelectric deformation. Therefore, when the shaft is propelled forward by another exterior piezoelectric tube, the inner piezoelectric tube can deform to reduce the total friction force acting on the shaft instantly and cause more effective stepping movement of the shaft. While our new IPM requires the addition of another piezoelectric tube, which leads to an increase in volume of 120% when compared with traditional IPMs, the average step size has increased by more than 400% and the threshold voltage has decreased by more than 50 V. The improvement in performance is far more significant than the increase in volume. This enhanced performance will allow the proposed IPM to work under large load conditions where a simple and powerful piezoelectric motor is needed.
Dynamical friction for supersonic motion in a homogeneous gaseous medium
NASA Astrophysics Data System (ADS)
Thun, Daniel; Kuiper, Rolf; Schmidt, Franziska; Kley, Wilhelm
2016-05-01
Context. The supersonic motion of gravitating objects through a gaseous ambient medium constitutes a classical problem in theoretical astrophysics. Its application covers a broad range of objects and scales from planetesimals, planets, and all kind of stars up to galaxies and black holes. In particular, the dynamical friction caused by the wake that forms behind the object plays an important role for the dynamics of the system. To calculate the dynamical friction for a particular system, standard formulae based on linear theory are often used. Aims: It is our goal to check the general validity of these formulae and provide suitable expressions for the dynamical friction acting on the moving object, based on the basic physical parameters of the problem: first, the mass, radius, and velocity of the perturber; second, the gas mass density, soundspeed, and adiabatic index of the gaseous medium; and finally, the size of the forming wake. Methods: We perform dedicated sequences of high-resolution numerical studies of rigid bodies moving supersonically through a homogeneous ambient medium and calculate the total drag acting on the object, which is the sum of gravitational and hydrodynamical drag. We study cases without gravity with purely hydrodynamical drag, as well as gravitating objects. In various numerical experiments, we determine the drag force acting on the moving body and its dependence on the basic physical parameters of the problem, as given above. From the final equilibrium state of the simulations, for gravitating objects we compute the dynamical friction by direct numerical integration of the gravitational pull acting on the embedded object. Results: The numerical experiments confirm the known scaling laws for the dependence of the dynamical friction on the basic physical parameters as derived in earlier semi-analytical studies. As a new important result we find that the shock's stand-off distance is revealed as the minimum spatial interaction scale of dynamical friction. Below this radius, the gas settles into a hydrostatic state, which - owing to its spherical symmetry - causes no net gravitational pull onto the moving body. Finally, we derive an analytic estimate for the stand-off distance that can easily be used when calculating the dynamical friction force.
Effects of intraoral aging of arch-wires on frictional forces: An ex vivo study.
Kumar, Avinash; Khanam, Arifa; Ghafoor, Hajra
2016-01-01
Archwires act as gears to move teeth with light, continuous forces. However, the intraoral use of orthodontic archwires is liable to surface deposits which alter the mechanical properties of archwires, causing an increase in the friction coefficient. To evaluate the surface changes of the stainless steel archwires after 6 weeks of intraoral use and its influence on frictional resistance during sliding mechanics. As-received rectangular 0.019" × 0.025" stainless steel orthodontic archwires (control) were compared with the archwires retrieved after the final phase of leveling and alignment stage of orthodontic treatment collected after 6 weeks of intraoral exposure (test samples) from 10 patients undergoing treatment. The control and test samples were used to evaluate surface debris using Scanning Electron Microscopy, surface roughness was assessed using Atomic Force Microscope and frictional forces were measured using Instron Universal Testing Machine in the buccal inter-bracket region that slides through the molar tube for space closure. Unpaired t -test and Pearson correlation tests were used for statistical analysis ( P < 0.05 level of significance). Significant increase was observed in the level of debris ( P = 0.0001), surface roughness ( P = 0.0001), and friction resistance ( P = 0.001) of orthodontic archwires after their intraoral exposure. Significant positive correlations ( P < 0.05) were also observed between these three variables. Stainless steel test archwires showed a significant increase in the degree of debris and surface roughness, increasing the frictional forces between the archwire-bracket interfaces which would considerably reduce the normal orthodontic forces. Thus, continuing the same archwire after levelling and alignment for space closure is not recommended.
40 CFR 1066.210 - Dynamometers.
Code of Federal Regulations, 2014 CFR
2014-07-01
... to recreate the mechanical inertia and frictional forces that a vehicle exerts on road surfaces... drive axles may share a single drive roll. Use good engineering judgment to ensure that the dynamometer... engineering judgment. (3) The load applied by the dynamometer simulates forces acting on the vehicle during...
Application of dGNSS in Alpine Ski Racing: Basis for Evaluating Physical Demands and Safety
Gilgien, Matthias; Kröll, Josef; Spörri, Jörg; Crivelli, Philip; Müller, Erich
2018-01-01
External forces, such as ground reaction force or air drag acting on athletes' bodies in sports, determine the sport-specific demands on athletes' physical fitness. In order to establish appropriate physical conditioning regimes, which adequately prepare athletes for the loads and physical demands occurring in their sports and help reduce the risk of injury, sport-and/or discipline-specific knowledge of the external forces is needed. However, due to methodological shortcomings in biomechanical research, data comprehensively describing the external forces that occur in alpine super-G (SG) and downhill (DH) are so far lacking. Therefore, this study applied new and accurate wearable sensor-based technology to determine the external forces acting on skiers during World Cup (WC) alpine skiing competitions in the disciplines of SG and DH and to compare these with those occurring in giant slalom (GS), for which previous research knowledge exists. External forces were determined using WC forerunners carrying a differential global navigation satellite system (dGNSS). Combining the dGNSS data with a digital terrain model of the snow surface and an air drag model, the magnitudes of ground reaction forces were computed. It was found that the applied methodology may not only be used to track physical demands and loads on athletes, but also to simultaneously investigate safety aspects, such as the effectiveness of speed control through increased air drag and ski–snow friction forces in the respective disciplines. Therefore, the component of the ground reaction force in the direction of travel (ski–snow friction) and air drag force were computed. This study showed that (1) the validity of high-end dGNSS systems allows meaningful investigations such as characterization of physical demands and effectiveness of safety measures in highly dynamic sports; (2) physical demands were substantially different between GS, SG, and DH; and (3) safety-related reduction of skiing speed might be most effectively achieved by increasing the ski–snow friction force in GS and SG. For DH an increase in the ski–snow friction force might be equally as effective as an increase in air drag force. PMID:29559918
Thrust Force Analysis of Tripod Constant Velocity Joint Using Multibody Model
NASA Astrophysics Data System (ADS)
Sugiura, Hideki; Matsunaga, Tsugiharu; Mizutani, Yoshiteru; Ando, Yosei; Kashiwagi, Isashi
A tripod constant velocity joint is used in the driveshaft of front wheel drive vehicles. Thrust force generated by this joint causes lateral vibration in these vehicles. To analyze the thrust force, a detailed model is constructed based on a multibody dynamics approach. This model includes all principal parts of the joint defined as rigid bodies and all force elements of contact and friction acting among these parts. This model utilizes a new contact modeling method of needle roller bearings for more precise and faster computation. By comparing computational and experimental results, the appropriateness of this model is verified and the principal factors inducing the second and third rotating order components of the thrust force are clarified. This paper also describes the influence of skewed needle rollers on the thrust force and evaluates the contribution of friction forces at each contact region to the thrust force.
Fast antibody fragment motion: flexible linkers act as entropic spring
Stingaciu, Laura R.; Ivanova, Oxana; Ohl, Michael; Biehl, Ralf; Richter, Dieter
2016-01-01
A flexible linker region between three fragments allows antibodies to adjust their binding sites to an antigen or receptor. Using Neutron Spin Echo Spectroscopy we observed fragment motion on a timescale of 7 ns with motional amplitudes of about 1 nm relative to each other. The mechanistic complexity of the linker region can be described by a spring model with Brownian motion of the fragments in a harmonic potential. Displacements, timescale, friction and force constant of the underlying dynamics are accessed. The force constant exhibits a similar strength to an entropic spring, with friction of the fragment matching the unbound state. The observed fast motions are fluctuations in pre-existing equilibrium configurations. The Brownian motion of domains in a harmonic potential is the appropriate model to examine functional hinge motions dependent on the structural topology and highlights the role of internal forces and friction to function. PMID:27020739
Fast antibody fragment motion: flexible linkers act as entropic spring
Stingaciu, Laura R.; Ivanova, Oxana; Ohl, Michael; ...
2016-03-29
A flexible linker region between three fragments allows antibodies to adjust their binding sites to an antigen or receptor. Using Neutron Spin Echo Spectroscopy we observed fragment motion on a timescale of 7 ns with motional amplitudes of about 1 nm relative to each other. The mechanistic complexity of the linker region can be described by a spring model with Brownian motion of the fragments in a harmonic potential. Displacements, timescale, friction and force constant of the underlying dynamics are accessed. The force constant exhibits a similar strength to an entropic spring, with friction of the fragment matching the unboundmore » state. The observed fast motions are fluctuations in pre-existing equilibrium configurations. In conclusion, the Brownian motion of domains in a harmonic potential is the appropriate model to examine functional hinge motions dependent on the structural topology and highlights the role of internal forces and friction to function.« less
Fast antibody fragment motion: flexible linkers act as entropic spring.
Stingaciu, Laura R; Ivanova, Oxana; Ohl, Michael; Biehl, Ralf; Richter, Dieter
2016-03-29
A flexible linker region between three fragments allows antibodies to adjust their binding sites to an antigen or receptor. Using Neutron Spin Echo Spectroscopy we observed fragment motion on a timescale of 7 ns with motional amplitudes of about 1 nm relative to each other. The mechanistic complexity of the linker region can be described by a spring model with Brownian motion of the fragments in a harmonic potential. Displacements, timescale, friction and force constant of the underlying dynamics are accessed. The force constant exhibits a similar strength to an entropic spring, with friction of the fragment matching the unbound state. The observed fast motions are fluctuations in pre-existing equilibrium configurations. The Brownian motion of domains in a harmonic potential is the appropriate model to examine functional hinge motions dependent on the structural topology and highlights the role of internal forces and friction to function.
Ultrasonic friction power during Al wire wedge-wedge bonding
NASA Astrophysics Data System (ADS)
Shah, A.; Gaul, H.; Schneider-Ramelow, M.; Reichl, H.; Mayer, M.; Zhou, Y.
2009-07-01
Al wire bonding, also called ultrasonic wedge-wedge bonding, is a microwelding process used extensively in the microelectronics industry for interconnections to integrated circuits. The bonding wire used is a 25μm diameter AlSi1 wire. A friction power model is used to derive the ultrasonic friction power during Al wire bonding. Auxiliary measurements include the current delivered to the ultrasonic transducer, the vibration amplitude of the bonding tool tip in free air, and the ultrasonic force acting on the bonding pad during the bond process. The ultrasonic force measurement is like a signature of the bond as it allows for a detailed insight into mechanisms during various phases of the process. It is measured using piezoresistive force microsensors integrated close to the Al bonding pad (Al-Al process) on a custom made test chip. A clear break-off in the force signal is observed, which is followed by a relatively constant force for a short duration. A large second harmonic content is observed, describing a nonsymmetric deviation of the signal wave form from the sinusoidal shape. This deviation might be due to the reduced geometrical symmetry of the wedge tool. For bonds made with typical process parameters, several characteristic values used in the friction power model are determined. The ultrasonic compliance of the bonding system is 2.66μm/N. A typical maximum value of the relative interfacial amplitude of ultrasonic friction is at least 222nm. The maximum interfacial friction power is at least 11.5mW, which is only about 4.8% of the total electrical power delivered to the ultrasonic generator.
Anisotropic particles near surfaces: Propulsion force and friction
NASA Astrophysics Data System (ADS)
Müller, Boris; Krüger, Matthias
2016-03-01
We theoretically study the phenomenon of propulsion through Casimir forces in thermal nonequilibrium. Using fluctuational electrodynamics, we derive a formula for the propulsion force for an arbitrary small object in two scenarios: (i) for the object being isolated, and (ii) for the object being close to a planar surface. In the latter case, the propulsion force (i.e., the force parallel to the surface) increases with decreasing distance, i.e., it couples to the near field. We numerically calculate the lateral force acting on a hot spheroid near a surface and show that it can be as large as the gravitational force, thus being potentially measurable in fly-by experiments. We close by linking our results to well-known relations of linear-response theory in fluctuational electrodynamics: Looking at the friction of the anisotropic object for constant velocity, we identify a correction term that is additional to the typically used approach.
A method for evaluating dynamical friction in linear ball bearings.
Fujii, Yusaku; Maru, Koichi; Jin, Tao; Yupapin, Preecha P; Mitatha, Somsak
2010-01-01
A method is proposed for evaluating the dynamical friction of linear bearings, whose motion is not perfectly linear due to some play in its internal mechanism. In this method, the moving part of a linear bearing is made to move freely, and the force acting on the moving part is measured as the inertial force given by the product of its mass and the acceleration of its centre of gravity. To evaluate the acceleration of its centre of gravity, the acceleration of two different points on it is measured using a dual-axis optical interferometer.
NASA Astrophysics Data System (ADS)
Yamada, M.; Mangeney, A.; Moretti, L.; Matsushi, Y.
2014-12-01
Understanding physical parameters, such as frictional coefficients, velocity change, and dynamic history, is important issue for assessing and managing the risks posed by deep-seated catastrophic landslides. Previously, landslide motion has been inferred qualitatively from topographic changes caused by the event, and occasionally from eyewitness reports. However, these conventional approaches are unable to evaluate source processes and dynamic parameters. In this study, we use broadband seismic recordings to trace the dynamic process of the deep-seated Akatani landslide that occurred on the Kii Peninsula, Japan, which is one of the best recorded large slope failures. Based on the previous results of waveform inversions and precise topographic surveys done before and after the event, we applied numerical simulations using the SHALTOP numerical model (Mangeney et al., 2007). This model describes homogeneous continuous granular flows on a 3D topography based on a depth averaged thin layer approximation. We assume a Coulomb's friction law with a constant friction coefficient, i. e. the friction is independent of the sliding velocity. We varied the friction coefficients in the simulation so that the resulting force acting on the surface agrees with the single force estimated from the seismic waveform inversion. Figure shows the force history of the east-west components after the band-pass filtering between 10-100 seconds. The force history of the simulation with frictional coefficient 0.27 (thin red line) the best agrees with the result of seismic waveform inversion (thick gray line). Although the amplitude is slightly different, phases are coherent for the main three pulses. This is an evidence that the point-source approximation works reasonably well for this particular event. The friction coefficient during the sliding was estimated to be 0.38 based on the seismic waveform inversion performed by the previous study and on the sliding block model (Yamada et al., 2013), whereas the frictional coefficient estimated from the numerical simulation was about 0.27. This discrepancy may be due to the digital elevation model, to the other forces such as pressure gradients and centrifugal acceleration included in the model. However, quantitative interpretation of this difference requires further investigation.
Forces on wheels and fuel consumption in cars
NASA Astrophysics Data System (ADS)
Güémez, J.; Fiolhais, M.
2013-07-01
Motivated by real classroom discussions, we analyze the forces acting on moving vehicles, specifically friction on their wheels. In typical front-wheel-drive cars when the car accelerates these forces are in the forward direction in the front wheels, but they are in the opposite direction in the rear wheels. The situation may be intriguing for students, but it may also be helpful and stimulating to clarify the role of friction forces on rolling objects. In this paper we also study the thermodynamical aspects of an accelerating car, relating the distance traveled to the amount of fuel consumed. The fuel consumption is explicitly shown to be Galilean invariant and we identify the Gibbs free energy as the relevant quantity that enters into the thermodynamical description of the accelerating car. The more realistic case of the car's motion with the dragging forces taken into account is also discussed.
Friction coefficient of skin in real-time.
Sivamani, Raja K; Goodman, Jack; Gitis, Norm V; Maibach, Howard I
2003-08-01
Friction studies are useful in quantitatively investigating the skin surface. Previous studies utilized different apparatuses and materials for these investigations but there was no real-time test parameter control or monitoring. Our studies incorporated the commercially available UMT Series Micro-Tribometer, a tribology instrument that permits real-time monitoring and calculation of the important parameters in friction studies, increasing the accuracy over previous tribology and friction measurement devices used on skin. Our friction tests were performed on four healthy volunteers and on abdominal skin samples. A stainless steel ball was pressed on to the skin with at a pre-set load and then moved across the skin at a constant velocity of 5 mm/min. The UMT continuously monitored the friction force of the skin and the normal force of the ball to calculate the friction coefficient in real-time. Tests investigated the applicability of Amonton's law, the impact of increased and decreased hydration, and the effect of the application of moisturizers. The friction coefficient depends on the normal load applied, and Amonton's law does not provide an accurate description for the skin surface. Application of water to the skin increased the friction coefficient and application of isopropyl alcohol decreased it. Fast acting moisturizers immediately increased the friction coefficient, but did not have the prolonged effect of the slow, long lasting moisturizers. The UMT is capable of making real-time measurements on the skin and can be used as an effective tool to study friction properties. Results from the UMT measurements agree closely with theory regarding the skin surface.
Subtidal sea level variability in a shallow Mississippi River deltaic estuary, Louisiana
Snedden, G.A.; Cable, J.E.; Wiseman, W.J.
2007-01-01
The relative roles of river, atmospheric, and tidal forcings on estuarine sea level variability are examined in Breton Sound, a shallow (0.7 m) deltaic estuary situated in an interdistributary basin on the Mississippi River deltaic plain. The deltaic landscape contains vegetated marshes, tidal flats, circuitous channels, and other features that frictionally dissipate waves propagating through the system. Direct forcing by local wind stress over the surface of the estuary is minimal, owing to the lack of significant fetch due to landscape features of the estuary. Atmospheric forcing occurs almost entirely through remote forcing, where alongshore winds facilitate estuary-shelf exchange through coastal Ekman convergence. The highly frictional nature of the deltaic landscape causes the estuary to act as a low-pass filter to remote atmospheric forcing, where high-frequency, coastally-induced fluctuations are significantly damped, and the damping increases with distance from the estuary mouth. During spring, when substantial quantities of controlled Mississippi River inputs (q?? = 62 m3 s-1) are discharged into the estuary, upper estuary subtidal sea levels are forced by a combination of river and remote atmospheric forcings, while river effects are less clear downestuary. During autumn (q?? = 7 m3 s-1) sea level variability throughout the estuary is governed entirely by coastal variations at the marine boundary. A frequency-dependent analytical model, previously used to describe sea level dynamics forced by local wind stress and coastal forcing in deeper, less frictional systems, is applied in the shallow Breton Sound estuary. In contrast to deeper systems where coastally-induced fluctuations exhibit little or no frictional attenuation inside the estuary, these fluctuations in the shallow Breton Sound estuary show strong frequency-dependent amplitude reductions that extend well into the subtidal frequency spectrum. ?? 2007 Estuarine Research Federation.
Force and torque of a string on a pulley
NASA Astrophysics Data System (ADS)
de Oliveira, Thiago R.; Lemos, Nivaldo A.
2018-04-01
Every university introductory physics course considers the problem of Atwood's machine taking into account the mass of the pulley. In the usual treatment, the tensions at the two ends of the string are offhandedly taken to act on the pulley and be responsible for its rotation. However, such a free-body diagram of the forces on the pulley is not a priori justified, inducing students to construct wrong hypotheses such as that the string transfers its tension to the pulley or that some symmetry is in operation. We reexamine this problem by integrating the contact forces between each element of the string and the pulley and show that although the pulley does behave as if the tensions were acting on its ends, this comes only as the final result of a detailed analysis. We also address the question of how much friction is needed to prevent the string from slipping over the pulley. Finally, we deal with the case in which the string is on the verge of sliding and show that this cannot happen unless certain conditions are met by the coefficient of static friction and the masses involved.
VIBRATION DAMPING AND SHOCK MOUNT
Stevens, D.J.; Forman, G.W.
1963-12-10
A shock absorbing mount in which vibrations are damped by an interference fit between relatively movable parts of the mount is described. A pair of generally cup-shaped parts or members have skirt portions disposed in an oppositely facing nesting relationship with the skirt of one member frictionally engaging the skirt of the other. The outermost skirt may be slotted to provide spring-like segments which embrace the inner skirt for effecting the interference fit. Belleville washers between the members provide yieldable support for a load carried by the mount. When a resonant frequency of vibration forces acting upon the moumt attains a certain level the kinetic energy of these forces is absorbed by sliding friction between the parts. (AEC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Konovalenko, Ivan S., E-mail: ivkon@ispms.tsc.ru; Konovalenko, Igor S., E-mail: igkon@ispms.tsc.ru; Kolubaev, Evgeniy A., E-mail: eak@ispms.tsc.ru
2015-10-27
A molecular dynamics model was constructed to describe material loading on the atomic scale by the mode identical to friction stir welding. It was shown that additional vibration applied to the tool during the loading mode provides specified intensity values and continuous thermomechanical action during welding. An increase in additional vibration intensity causes an increase both in the force acting on the workpiece from the rotating tool and in temperature within the welded area.
Dynamic analysis of the mechanical seals of the rotor of the labyrinth screw pump
NASA Astrophysics Data System (ADS)
Lebedev, A. Y.; Andrenko, P. M.; Grigoriev, A. L.
2017-08-01
A mathematical model of the work of the mechanical seal with smooth rings made from cast tungsten carbide in the condition of liquid friction is drawn up. A special feature of this model is the allowance for the thermal expansion of a liquid in the gap between the rings; this effect acting in the conjunction with the frictional forces creates additional pressure and lift which in its turn depends on the width of the gap and the speed of sliding. The developed model displays the processes of separation, transportation and heat removal in the compaction elements and also the resistance to axial movement of the ring arising in the gap caused by the pumping effect and the friction in the flowing liquid; the inertia of this fluid is taken into account by the mass reduction method. The linearization of the model is performed and the dynamic characteristics of the transient processes and the forced oscillations of the device are obtained. The conditions imposed on the parameters of the mechanical seal are formulated to provide a regime of the liquid friction, which minimizes the wear.
In-Situ-measurement of restraining forces during forming of rectangular cups
NASA Astrophysics Data System (ADS)
Singer, M.; Liewald, M.
2016-11-01
This contribution introduces a new method for evaluating the restraining forces during forming of rectangular cups with the goal of eliminating the disadvantages of the currently used scientifically established measurement procedures. With this method forming forces are measured indirectly by the elastic deformation of die structure caused by locally varying tribological system. Therefore, two sensors were integrated into the punch, which measure the restraining forces during the forming process. Furthermore, it was possible to evaluate the effects of different lubricants showing the time dependent trend as a function of stroke during the forming of the materials DP600 and DC04. A main advantage of this testing method is to get real friction corresponding data out of the physical deep drawing process as well as the measurement of real acting restraining forces at different areas of the deep drawing part by one single test. Measurement results gained by both sensors have been integrated into LS-Dyna simulation in which the coefficient of friction was regarded as a function of time. The simulated and deep drawn parts afterwards are analysed and compared to specific areas with regard to locally measured thickness of part. Results show an improvement of simulation quality when using locally varying, time dependent coefficients of friction compared to commonly used constant values.
Bioinspired orientation-dependent friction.
Xue, Longjian; Iturri, Jagoba; Kappl, Michael; Butt, Hans-Jürgen; del Campo, Aránzazu
2014-09-23
Spatular terminals on the toe pads of a gecko play an important role in directional adhesion and friction required for reversible attachment. Inspired by the toe pad design of a gecko, we study friction of polydimethylsiloxane (PDMS) micropillars terminated with asymmetric (spatular-shaped) overhangs. Friction forces in the direction of and against the spatular end were evaluated and compared to friction forces on symmetric T-shaped pillars and pillars without overhangs. The shape of friction curves and the values of friction forces on spatula-terminated pillars were orientation-dependent. Kinetic friction forces were enhanced when shearing against the spatular end, while static friction was stronger in the direction toward the spatular end. The overall friction force was higher in the direction against the spatula end. The maximum value was limited by the mechanical stability of the overhangs during shear. The aspect ratio of the pillar had a strong influence on the magnitude of the friction force, and its contribution surpassed and masked that of the spatular tip for aspect ratios of >2.
de Freitas, Paulo B; Jaric, Slobodan
2009-04-01
We evaluated coordination of the hand grip force (GF; normal component of the force acting at the hand-object contact area) and load force (LF; the tangential component) in a variety of grasping techniques and two LF directions. Thirteen participants exerted a continuous sinusoidal LF pattern against externally fixed handles applying both standard (i.e., using either the tips of the digits or the palms; the precision and palm grasps, respectively) and non-standard grasping techniques (using wrists and the dorsal finger areas; the wrist and fist grasp). We hypothesized (1) that the non-standard grasping techniques would provide deteriorated indices of force coordination when compared with the standard ones, and (2) that the nervous system would be able to adjust GF to the differences in friction coefficients of various skin areas used for grasping. However, most of the indices of force coordination remained similar across the tested grasping techniques, while the GF adjustments for the differences in friction coefficients (highest in the palm and the lowest in the fist and wrist grasp) provided inconclusive results. As hypothesized, GF relative to the skin friction was lowest in the precision grasp, but highest in the palm grasp. Therefore, we conclude that (1) the elaborate coordination of GF and LF consistently seen across the standard grasping techniques could be generalized to the non-standard ones, while (2) the ability to adjust GF using the same grasping technique to the differences in friction of various objects cannot be fully generalized to the GF adjustment when different grasps (i.e., hand segments) are used to manipulate the same object. Due to the importance of the studied phenomena for understanding both the functional and neural control aspects of manipulation, future studies should extend the current research to the transient and dynamic tasks, as well as to the general role of friction in our mechanical interactions with the environment.
Internal graphite moderator forces study, C and K Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cooley, D.E.
1963-10-28
The purpose of this study was to determine the maximum forces that can be imposed by the graphite moderator on prospective VSR channel sleeves. In order to do this, both the origins and modes of transmission of the forces were determined. Forces in the moderator stack that are capable of acting on a block or group of blocks may originate from any of the following primary effects: Contraction of graphite due to irradiation; thermal expansion of graphite; frictional resistance to motion; resistance from keys; gravity; and other.
Study of force loss due to friction comparing two ceramic brackets during sliding tooth movement.
AlSubaie, Mai; Talic, Nabeel; Khawatmi, Said; Alobeid, Ahmad; Bourauel, Christoph; El-Bialy, Tarek
2016-09-01
To compare the percentage of force loss generated during canine sliding movements in newly introduced ceramic brackets with metal brackets. Two types of ceramic brackets, namely polycrystalline alumina (PCA) ceramic brackets (Clarity Advanced) and monocrystalline alumina (MCA) ceramic brackets (Inspire Ice) were compared with stainless steel (SS) brackets (Victory Series). All bracket groups (n = 5 each) were for the maxillary canines and had a 0.018-inch slot size. The brackets were mounted on an Orthodontic Measurement and Simulation System (OMSS) to simulate the canine retraction movement into the first premolar extraction space. Using elastic ligatures, 0.016 × 0.022″ (0.40 × 0.56 mm) stainless steel archwires were ligated onto the brackets. Retraction force was applied via a nickel-titanium coil spring with a nearly constant force of approximately 1 N. The OMSS measured the percentage of force loss over the retraction path by referring to the difference between the applied retraction force and actual force acting on each bracket. Between group comparisons were done with one-way analysis of variance. The metal brackets revealed the lowest percentage of force loss due to friction, followed by the PCA and MCA ceramic bracket groups (67 ± 4, 68 ± 7, and 76 ± 3 %, respectively). There was no significant difference between SS and PCA brackets (p = 0.97), but we did observe significant differences between metal and MCA brackets (p = 0.03) and between PCA and MCA ceramic brackets (p = 0.04). PCA ceramic brackets, whose slot surface is covered with an yttria-stabilized zirconia-based coating exhibited frictional properties similar to those of metal brackets. Frictional resistance resulted in an over 60 % loss of the applied force due to the use of elastic ligatures.
Modeling of Passive Forces of Machine Tool Covers
NASA Astrophysics Data System (ADS)
Kolar, Petr; Hudec, Jan; Sulitka, Matej
The passive forces acting against the drive force are phenomena that influence dynamical properties and precision of linear axes equipped with feed drives. Covers are one of important sources of passive forces in machine tools. The paper describes virtual evaluation of cover passive forces using the cover complex model. The model is able to compute interaction between flexible cover segments and sealing wiper. The result is deformation of cover segments and wipers which is used together with measured friction coefficient for computation of cover total passive force. This resulting passive force is dependent on cover position. Comparison of computational results and measurement on the real cover is presented in the paper.
The Indeterminate Case of Classical Static Friction When Coupled with Tension
NASA Astrophysics Data System (ADS)
Hahn, Kenneth D.; Russell, Jacob M.
2018-02-01
It has been noted that the static friction force poses challenges for students and, at times, even their instructors. Unlike the gravitational force, which has a precise and unambiguous magnitude (FG = mg), the magnitude and direction of the static friction force depend on other forces at play. Friction can be understood rather well in terms of complicated atomic-scale interactions between surfaces. Ringlein and Robbins survey aspects of the atomic origins of friction, and Folkerts explores factors that affect the value of static friction. However, what students typically encounter in an introductory course ignores the atomic origins of friction (beyond perhaps a brief overview of the atomic model). The rules of dry friction (i.e., non-lubricated surfaces in contact) taught in introductory physics were originally published in 1699 by Guillaume Amontons. Amontons's first law states that the force of friction is directly proportional to the applied load, i.e., f = μFN, where FN is the normal force and μ is the coefficient of friction. His second law states that the force of friction is independent of the macroscopic area of contact. These laws were verified by Coulomb in 1781.
Self-Regulating Shock Absorber
NASA Technical Reports Server (NTRS)
Wesselski, Clarence J.
1995-01-01
Mechanical shock absorber keeps frictional damping force within tolerable limit. Its damping force does not increase with coefficient of friction between energy-absorbing components; rather, frictional damping force varies only slightly. Relatively insensitive to manufacturing variations and environmental conditions altering friction. Does not exhibit high breakaway friction and consequent sharp increase followed by sharp decrease in damping force at beginning of stroking. Damping force in absorber does not vary appreciably with speed of stroking. In addition, not vulnerable to leakage of hydraulic fluid.
NASA Astrophysics Data System (ADS)
Chang, Ho; Lan, Chou-Wei; Guo, Jia-Bin
2011-12-01
This paper studies the influence of addition of 100 nm diameter nickel nano-particles on the friction properties of synthetic grease (Li base, VG100) in pneumatic cylinder. The friction force test of pneumatic cylinder equipment measures the frictional force between seal and cylinder bore in pneumatic cylinders. The lubricants with addition of nickel nano-particles were used for lubricating the contact interface between seal and cylinder bore. The friction force test equipment employ a load cell force sensor to measure the friction force between seals and cylinder bores. Results obtained from experimental tests are compared to determine the friction force between seals and cylinder bore in pneumatic cylinders. The study leads to the conclusion that the addition of nickel nano-particles to synthetic grease results in a decrease in friction force between seals and cylinder bores in pneumatic cylinder. This tribological behavior is closely related to the deposition of nano-particles on the rubbing surfaces
NASA Technical Reports Server (NTRS)
Iversen, J. D.; White, B. R.; Pollack, J. B.; Greeley, R.
1976-01-01
Results are reported for wind-tunnel experiments performed to determine the threshold friction speed of particles with different densities. Experimentally determined threshold speeds are plotted as a function of particle diameter and in terms of threshold parameter vs particle friction Reynolds number. The curves are compared with those of previous experiments, and an A-B curve is plotted to show differences in threshold speed due to differences in size distributions and particle shapes. Effects of particle diameter are investigated, an expression for threshold speed is derived by considering the equilibrium forces acting on a single particle, and other approximately valid expressions are evaluated. It is shown that the assumption of universality of the A-B curve is in error at very low pressures for small particles and that only predictions which take account of both Reynolds number and effects of interparticle forces yield reasonable agreement with experimental data. Effects of nonerodible surface roughness are examined, and threshold speeds computed with allowance for this factor are compared with experimental values. Threshold friction speeds on Mars are then estimated for a surface pressure of 5 mbar, taking into account all the factors considered.
The Indeterminate Case of Classical Static Friction When Coupled with Tension
ERIC Educational Resources Information Center
Hahn, Kenneth D.; Russell, Jacob M.
2018-01-01
It has been noted that the static friction force poses challenges for students and, at times, even their instructors. Unlike the gravitational force, which has a precise and unambiguous magnitude (F[subscript G] = mg), the magnitude and direction of the static friction force depend on other forces at play. Friction can be understood rather well in…
Niu, Xun; Latash, Mark L.; Zatsiorsky, Vladimir M.
2010-01-01
We studied adjustments of digit forces to changes in the friction. The subjects held a handle statically in a three-digit grasp. The friction under each digit was either high or low, resulting in eight three-element friction sets (such grasps were coined the grasps with complex friction pattern). The total load was also manipulated. It was found that digit forces were adjusted not only to the supported load and local friction, but also to friction at other digits (synergic effects). When friction under a digit was low, its tangential force decreased and the normal force increased (local effects). The synergic effects were directed to maintain the equilibrium of the handle. The relation between the individual digit forces and loads agreed with the triple-product model: fin=ki(2)ki(1)L, where fin is normal force of digit i, L is the load (newtons), ki(1) is a dimensionless coefficient representing sharing the total tangential force among the digits (Σki(1)=1.0), and ki(2) is a coefficient representing the relation between the tangential and normal forces of digit i (the overall friction equivalent, OFE). At each friction set, the central controller selected the grasping template—a three-element array of ki(2)ki(1) products—and then scaled the template with the load magnitude. PMID:17493928
Particle Sliding on a Rough Incline
ERIC Educational Resources Information Center
Zurcher, Ulrich
2007-01-01
We study a particle sliding on a rough inclined plane as an example of a mechanical problem with nonholonomic constraint. The particle is launched in an arbitrary direction so that its motion has both a horizontal and a "vertical" (i.e., up- and downhill) direction. The friction force acts along the instantaneous velocity, so that the horizontal…
NASA Astrophysics Data System (ADS)
Shi, Junqin; Chen, Juan; Fang, Liang; Sun, Kun; Sun, Jiapeng; Han, Jing
2018-03-01
The effect of water film on the nanoscratching behavior of monocrystalline Cu was studied by molecular dynamics (MD) simulation. The results indicate that the friction force acting on abrasive particle increases due to the resistance of water film accumulating ahead of particle, but the water film with lubrication decreases friction force acting on Cu surface. The accumulation of water molecules around particle causes the anisotropy of ridge and the surface damage around the groove, and the water molecules remaining in the groove lead to the non-regular groove structure. The dislocation evolution displays the re-organization of the dislocation network in the nanoscratching process. The evaluation of removal efficiency shows the number of removed Cu atoms decreases with water film thickness. It is considered that an appropriate rather than a high removal efficiency should be adopted to evaluate the polishing process in real (chemical mechanical polishing) CMP. These results are helpful to reveal the polishing mechanism under the effect of water film from physical perspective, which benefits the development of ultra-precision manufacture and miniaturized components, as well as the innovation of CMP technology.
Frictional Characteristics of graphene
NASA Astrophysics Data System (ADS)
Lee, Changgu; Carpick, Robert; Hone, James
2009-03-01
The frictional characteristics of graphene were characterized using friction force microscopy (FFM). The frictional force for monolayer graphene is more than twice that of bulk graphite, with 2,3, and 4 layer samples showing a monotonic decrease in friction with increasing sample thickness. Measurements on suspended graphene membranes show identical results, ruling out substrate effects as the cause of the observed variation. Likewise, the adhesion force is identical for all samples. The frictional force is independent of load within experimental uncertainty, consistent with previous measurements on graphite. We consider several possible explanations for the origin of the observed thickness dependence.
NASA Astrophysics Data System (ADS)
Menzel, Andreas M.
2015-11-01
Diffusion of colloidal particles in a complex environment such as polymer networks or biological cells is a topic of high complexity with significant biological and medical relevance. In such situations, the interaction between the surroundings and the particle motion has to be taken into account. We analyze a simplified diffusion model that includes some aspects of a complex environment in the framework of a nonlinear friction process: at low particle speeds, friction grows linearly with the particle velocity as for regular viscous friction; it grows more than linearly at higher particle speeds; finally, at a maximum of the possible particle speed, the friction diverges. In addition to bare diffusion, we study the influence of a constant drift force acting on the diffusing particle. While the corresponding stationary velocity distributions can be derived analytically, the displacement statistics generally must be determined numerically. However, as a benefit of our model, analytical progress can be made in one case of a special maximum particle speed. The effect of a drift force in this case is analytically determined by perturbation theory. It will be interesting in the future to compare our results to real experimental systems. One realization could be magnetic colloidal particles diffusing through a shear-thickening environment such as starch suspensions, possibly exposed to an external magnetic field gradient.
2014-01-01
If there is no control then friction builds into a colossal traffic jam . It takes a traffic cop that understands the susceptible points of friction...to force control back into the jam so that movement can regain momentum. My position at the BCT TAC, south of the Whale Gap, acted as an effective...him that the COEFOR would most likely rouse the IDP camp north of the Whale Gap to create a massive traffic jam . The plan took all of this into
Force Rendering and its Evaluation of a Friction-Based Walking Sensation Display for a Seated User.
Kato, Ginga; Kuroda, Yoshihiro; Kiyokawa, Kiyoshi; Takemura, Haruo
2018-04-01
Most existing locomotion devices that represent the sensation of walking target a user who is actually performing a walking motion. Here, we attempted to represent the walking sensation, especially a kinesthetic sensation and advancing feeling (the sense of moving forward) while the user remains seated. To represent the walking sensation using a relatively simple device, we focused on the force rendering and its evaluation of the longitudinal friction force applied on the sole during walking. Based on the measurement of the friction force applied on the sole during actual walking, we developed a novel friction force display that can present the friction force without the influence of body weight. Using performance evaluation testing, we found that the proposed method can stably and rapidly display friction force. Also, we developed a virtual reality (VR) walk-through system that is able to present the friction force through the proposed device according to the avatar's walking motion in a virtual world. By evaluating the realism, we found that the proposed device can represent a more realistic advancing feeling than vibration feedback.
Rising dynamics of a bubble confined in vertical cells with rectangular cross-sections
NASA Astrophysics Data System (ADS)
Murano, Mayuko; Okumura, Ko
2017-11-01
Recently, the drag friction acting on a fluid drop in confined space has been actively studied. Here, we investigate the rising velocity of a bubble in a vertical cell with a rectangular cross-section, both theoretically and experimentally, in which understanding of the drag force acting on the rising bubble is crucial. Although the drag force in such confined space could involve several regimes, we study a special case in which the bubble is long and the aspect-ratio of the rectangular cross-section of the cell is high. As a result, we found new scaling law for the rising velocity and the drag force, and confirmed the laws experimentally. Crossover to the rising dynamics in a Hele-Shaw cell will be also discussed.
Periodic Forced Response of Structures Having Three-Dimensional Frictional Constraints
NASA Astrophysics Data System (ADS)
CHEN, J. J.; YANG, B. D.; MENQ, C. H.
2000-01-01
Many mechanical systems have moving components that are mutually constrained through frictional contacts. When subjected to cyclic excitations, a contact interface may undergo constant changes among sticks, slips and separations, which leads to very complex contact kinematics. In this paper, a 3-D friction contact model is employed to predict the periodic forced response of structures having 3-D frictional constraints. Analytical criteria based on this friction contact model are used to determine the transitions among sticks, slips and separations of the friction contact, and subsequently the constrained force which consists of the induced stick-slip friction force on the contact plane and the contact normal load. The resulting constrained force is often a periodic function and can be considered as a feedback force that influences the response of the constrained structures. By using the Multi-Harmonic Balance Method along with Fast Fourier Transform, the constrained force can be integrated with the receptance of the structures so as to calculate the forced response of the constrained structures. It results in a set of non-linear algebraic equations that can be solved iteratively to yield the relative motion as well as the constrained force at the friction contact. This method is used to predict the periodic response of a frictionally constrained 3-d.o.f. oscillator. The predicted results are compared with those of the direct time integration method so as to validate the proposed method. In addition, the effect of super-harmonic components on the resonant response and jump phenomenon is examined.
Relationship between friction force and orthodontic force at the leveling stage using a coated wire.
Murayama, Masaki; Namura, Yasuhiro; Tamura, Takahiko; Iwai, Hiroaki; Shimizu, Noriyoshi
2013-01-01
The relationship between orthodontic force and friction produced from an archwire and brackets affects the sliding of the wire in the leveling stage. The purpose of this study was to evaluate the relationship between force and friction in a small esthetic nickel-titanium (Ni-Ti) wire. Five esthetic wires (three coated and two plated) and two small, plain Ni-Ti wires (0.012 and 0.014 inches) were used. We performed a three-point bending test according to ISO 15841 and the drawing test with a dental arch model designed with upper linguoversion of the lateral incisor in the arch (displacements of 0.5, 1.0, 2.0 and 3.0 mm), and evaluated the relationship between them. Unloading bending forces of all wires at displacements of less than 1.0 mm were larger than friction forces, but all friction forces at displacements exceeding 2.0 mm were larger than unloading bending forces. The arch likely expands when displacement from the proximal brackets exceeds 1.0 mm. The friction force of a martensite 0.014-inch Ni-Ti wire was significantly greater than those of the other esthetic and austenitic wires. A wire with the smallest possible friction force should be used in cases with more than 1.0 mm displacement.
Otsuki, Michio; Matsukawa, Hiroshi
2013-01-01
In many sliding systems consisting of solid object on a solid substrate under dry condition, the friction force does not depend on the apparent contact area and is proportional to the loading force. This behaviour is called Amontons' law and indicates that the friction coefficient, or the ratio of the friction force to the loading force, is constant. Here, however, using numerical and analytical methods, we show that Amontons' law breaks down systematically under certain conditions for an elastic object experiencing a friction force that locally obeys Amontons' law. The macroscopic static friction coefficient, which corresponds to the onset of bulk sliding of the object, decreases as pressure or system length increases. This decrease results from precursor slips before the onset of bulk sliding, and is consistent with the results of certain previous experiments. The mechanisms for these behaviours are clarified. These results will provide new insight into controlling friction. PMID:23545778
Dynamic Contact Angle at the Nanoscale: A Unified View.
Lukyanov, Alex V; Likhtman, Alexei E
2016-06-28
Generation of a dynamic contact angle in the course of wetting is a fundamental phenomenon of nature. Dynamic wetting processes have a direct impact on flows at the nanoscale, and therefore, understanding them is exceptionally important to emerging technologies. Here, we reveal the microscopic mechanism of dynamic contact angle generation. It has been demonstrated using large-scale molecular dynamics simulations of bead-spring model fluids that the main cause of local contact angle variations is the distribution of microscopic force acting at the contact line region. We were able to retrieve this elusive force with high accuracy. It has been directly established that the force distribution can be solely predicted on the basis of a general friction law for liquid flow at solid surfaces by Thompson and Troian. The relationship with the friction law provides both an explanation of the phenomenon of dynamic contact angle and a methodology for future predictions. The mechanism is intrinsically microscopic, universal, and irreducible and is applicable to a wide range of problems associated with wetting phenomena.
ERIC Educational Resources Information Center
Cross, Rod
2017-01-01
When a hard object rolls on a soft surface, or vice versa, rolling friction arises from deformation of the soft object or the soft surface. The friction force can be described in terms of an offset in the normal reaction force or in terms of energy loss arising from the deformation. The origin of the friction force itself is not entirely clear. It…
1989-03-31
present several numerical studies designed to reveal the effect that some of the governing parameters have on the behavior of the system and, whenever...Friction and in the Control of Dynamical Systems with Frictional Forces FINAL TECHNICAL REPORT March 31, 1989 _ -- I -.7: .-.- - : AFOSR Contract F49620...SOLID AND STRUCTURAL MECHANICS: Progress in the Theory and Modeling of Friction and in the Control of Dynamical Systems with Frictional Forces I I * FINAL
Egberts, Philip; Han, Gang Hee; Liu, Xin Z; Johnson, A T Charlie; Carpick, Robert W
2014-05-27
Single asperity friction experiments using atomic force microscopy (AFM) have been conducted on chemical vapor deposited (CVD) graphene grown on polycrystalline copper foils. Graphene substantially lowers the friction force experienced by the sliding asperity of a silicon AFM tip compared to the surrounding oxidized copper surface by a factor ranging from 1.5 to 7 over loads from the adhesive minimum up to 80 nN. No damage to the graphene was observed over this range, showing that friction force microscopy serves as a facile, high contrast probe for identifying the presence of graphene on Cu. Consistent with studies of epitaxially grown, thermally grown, and mechanically exfoliated graphene films, the friction force measured between the tip and these CVD-prepared films depends on the number of layers of graphene present on the surface and reduces friction in comparison to the substrate. Friction results on graphene indicate that the layer-dependent friction properties result from puckering of the graphene sheet around the sliding tip. Substantial hysteresis in the normal force dependence of friction is observed with repeated scanning without breaking contact with a graphene-covered region. Because of the hysteresis, friction measured on graphene changes with time and maximum applied force, unless the tip slides over the edge of the graphene island or contact with the surface is broken. These results also indicate that relatively weak binding forces exist between the copper foil and these CVD-grown graphene sheets.
Design of tyre force excitation for tyre-road friction estimation
NASA Astrophysics Data System (ADS)
Albinsson, Anton; Bruzelius, Fredrik; Jacobson, Bengt; Fredriksson, Jonas
2017-02-01
Knowledge of the current tyre-road friction coefficient is essential for future autonomous vehicles. The environmental conditions, and the tyre-road friction in particular, determine both the braking distance and the maximum cornering velocity and thus set the boundaries for the vehicle. Tyre-road friction is difficult to estimate during normal driving due to low levels of tyre force excitation. This problem can be solved by using active tyre force excitation. A torque is added to one or several wheels in the purpose of estimating the tyre-road friction coefficient. Active tyre force excitation provides the opportunity to design the tyre force excitation freely. This study investigates how the tyre force should be applied to minimise the error of the tyre-road friction estimate. The performance of different excitation strategies was found to be dependent on both tyre model choice and noise level. Furthermore, the advantage with using tyre models with more parameters decreased when noise was added to the force and slip ratio.
Breakdown of Amontons' Law of Friction in Sheared-Elastomer with Local Amontons' Friction
NASA Astrophysics Data System (ADS)
Matsukawa, Hiroshi; Otsuki, Michio
2012-02-01
It is well known that Amontons' law of friction i.e. the frictional force against the sliding motion of solid object is proportional to the loading force and not dependent on the contact area, holds well for various systems. Here we show, however, the breakdown of the Amontons' law for the elastic object which have local friction obeying Amontons' law and is under uniform pressure by FEM calculation The external shearing force applied to the trailing edge of the sample induces local slip. The range of the slip increases with the increasing external force adiabatically at first. When the range reaches the critical magnitude, the slips moves rapidly and reaches the leading edge of the sample then the whole system slides. These behaviors are consistent with the experiment by Rubinstein et.al. (Phys. Rev. Lett. 98, 226103). The static frictional coefficient, the ratio between the static frictional force for the whole system and the loading force, decreases with the increasing pressure. This means the breakdown of Amontons' law. The pressure dependence of the frictional coefficient is caused by the change of the critical length of the local slip. The behaviors of the local slip and the frictional coefficient are well explained by the 1 dimensional model analytically.
Friction Forces during Sliding of Various Brackets for Malaligned Teeth: An In Vitro Study
Crincoli, Vito; Di Bisceglie, Maria Beatrice; Balsamo, Antonio; Serpico, Vitaliano; Chiatante, Francesco; Pappalettere, Carmine; Boccaccio, Antonio
2013-01-01
Aims. To measure the friction force generated during sliding mechanics with conventional, self-ligating (Damon 3 mx, Smart Clip, and Time 3) and low-friction (Synergy) brackets using different archwire diameters and ligating systems in the presence of apical and buccal malalignments of the canine. Methods. An experimental setup reproducing the right buccal segment of the maxillary arch was designed to measure the friction force generated at the bracket/wire and wire/ligature interfaces of different brackets. A complete factorial plan was drawn up and a three-way analysis of variance (ANOVA) was carried out to investigate whether the following factors affect the values of friction force: (i) degree of malalignment, (ii) diameter of the orthodontic wire, and (iii) bracket/ligature combination. Tukey post hoc test was also conducted to evaluate any statistically significant differences between the bracket/ligature combinations analyzed. Results. ANOVA showed that all the above factors affect the friction force values. The friction force released during sliding mechanics with conventional brackets is about 5-6times higher than that released with the other investigated brackets. A quasilinear increase of the frictional forces was observed for increasing amounts of apical and buccal malalignments. Conclusion. The Synergy bracket with silicone ligature placed around the inner tie-wings appears to yield the best performance. PMID:23533364
NASA Technical Reports Server (NTRS)
Ludwig, L. P.
1978-01-01
Self-acting seals are described in detail. The mathematical models for obtaining a seal force balance and the equilibrium operating film thickness are outlined. Particular attention is given to primary ring response (seal vibration) to rotating seat face runout. This response analysis reveals three different vibration models with secondary seal friction being an important parameter. Leakage flow inlet pressure drop and affects of axisymmetric sealing face deformations are discussed. Experimental data on self-acting face seals operating under simulated gas turbine conditions are given. Also a spiral groove seal design operated to 244 m/sec (800 ft/sec) is described.
Relationship between friction force and orthodontic force at the leveling stage using a coated wire
MURAYAMA, Masaki; NAMURA, Yasuhiro; TAMURA, Takahiko; IWAI, Hiroaki; SHIMIZU, Noriyoshi
2013-01-01
The relationship between orthodontic force and friction produced from an archwire and brackets affects the sliding of the wire in the leveling stage. Objective The purpose of this study was to evaluate the relationship between force and friction in a small esthetic nickel-titanium (Ni-Ti) wire. Material and Methods Five esthetic wires (three coated and two plated) and two small, plain Ni-Ti wires (0.012 and 0.014 inches) were used. We performed a three-point bending test according to ISO 15841 and the drawing test with a dental arch model designed with upper linguoversion of the lateral incisor in the arch (displacements of 0.5, 1.0, 2.0 and 3.0 mm), and evaluated the relationship between them. Results Unloading bending forces of all wires at displacements of less than 1.0 mm were larger than friction forces, but all friction forces at displacements exceeding 2.0 mm were larger than unloading bending forces. The arch likely expands when displacement from the proximal brackets exceeds 1.0 mm. The friction force of a martensite 0.014-inch Ni-Ti wire was significantly greater than those of the other esthetic and austenitic wires. Conclusions A wire with the smallest possible friction force should be used in cases with more than 1.0 mm displacement. PMID:24473722
Research on the Mechanism of In-Plane Vibration on Friction Reduction
Wang, Peng; Ni, Hongjian; Wang, Ruihe; Liu, Weili; Lu, Shuangfang
2017-01-01
A modified model for predicting the friction force between drill-string and borehole wall under in-plane vibrations was developed. It was found that the frictional coefficient in sliding direction decreased significantly after applying in-plane vibration on the bottom specimen. The friction reduction is due to the direction change of friction force, elastic deformation of surface asperities and the change of frictional coefficient. Normal load, surface topography, vibration direction, velocity ratio and interfacial shear factor are the main influence factors of friction force in sliding direction. Lower driving force can be realized for a pair of determinate rubbing surfaces under constant normal load by setting the driving direction along the minimum arithmetic average attack angle direction, and applying intense longitudinal vibration on the rubbing pair. The modified model can significantly improve the accuracy in predicting frictional coefficient under vibrating conditions, especially under the condition of lower velocity ratio. The results provide a theoretical gist for friction reduction technology by vibrating drill-string, and provide a reference for determination of frictional coefficient during petroleum drilling process, which has great significance for realizing digitized and intelligent drilling. PMID:28862679
Friction laws at the nanoscale.
Mo, Yifei; Turner, Kevin T; Szlufarska, Izabela
2009-02-26
Macroscopic laws of friction do not generally apply to nanoscale contacts. Although continuum mechanics models have been predicted to break down at the nanoscale, they continue to be applied for lack of a better theory. An understanding of how friction force depends on applied load and contact area at these scales is essential for the design of miniaturized devices with optimal mechanical performance. Here we use large-scale molecular dynamics simulations with realistic force fields to establish friction laws in dry nanoscale contacts. We show that friction force depends linearly on the number of atoms that chemically interact across the contact. By defining the contact area as being proportional to this number of interacting atoms, we show that the macroscopically observed linear relationship between friction force and contact area can be extended to the nanoscale. Our model predicts that as the adhesion between the contacting surfaces is reduced, a transition takes place from nonlinear to linear dependence of friction force on load. This transition is consistent with the results of several nanoscale friction experiments. We demonstrate that the breakdown of continuum mechanics can be understood as a result of the rough (multi-asperity) nature of the contact, and show that roughness theories of friction can be applied at the nanoscale.
Rossi, Anthony M; Claiborne, Tina L; Thompson, Gregory B; Todaro, Stacey
2016-09-01
The pocketing effect of helmet padding helps to dissipate forces experienced by the head, but if the player's helmet remains stationary in an opponent's shoulder pads, the compressive force on the cervical spine may increase. To (1) measure the coefficient of static friction between different football helmet finishes and football jersey fabrics and (2) calculate the potential amount of force on a player's helmet due to the amount of friction present. Cross-sectional study. Laboratory. Helmets with different finishes and different football jersey fabrics. The coefficient of friction was determined for 2 helmet samples (glossy and matte), 3 football jerseys (collegiate, high school, and youth), and 3 types of jersey numbers (silkscreened, sublimated, and stitched on) using the TAPPI T 815 standard method. These measurements determined which helmet-to-helmet, helmet-to-jersey number, and helmet-to-jersey material combination resulted in the least amount of static friction. The glossy helmet versus glossy helmet combination produced a greater amount of static friction than the other 2 helmet combinations (P = .013). The glossy helmet versus collegiate jersey combination produced a greater amount of static friction than the other helmet-to-jersey material combinations (P < .01). The glossy helmet versus silkscreened numbers combination produced a greater amount of static friction than the other helmet-to-jersey number combinations (P < .01). The force of static friction experienced during collisions can be clinically relevant. Conditions with higher coefficients of static friction result in greater forces. In this study, the highest coefficient of friction (glossy helmet versus silkscreened number) could increase the forces on the player's helmet by 3553.88 N when compared with other helmet-to-jersey combinations. Our results indicate that the makeup of helmet and uniform materials may affect sport safety.
Lateral-deflection-controlled friction force microscopy
NASA Astrophysics Data System (ADS)
Fukuzawa, Kenji; Hamaoka, Satoshi; Shikida, Mitsuhiro; Itoh, Shintaro; Zhang, Hedong
2014-08-01
Lateral-deflection-controlled dual-axis friction force microscopy (FFM) is presented. In this method, an electrostatic force generated with a probe-incorporated micro-actuator compensates for friction force in real time during probe scanning using feedback control. This equivalently large rigidity can eliminate apparent boundary width and lateral snap-in, which are caused by lateral probe deflection. The method can evolve FFM as a method for quantifying local frictional properties on the micro/nanometer-scale by overcoming essential problems to dual-axis FFM.
Neutral glycans from sandfish skin can reduce friction of polymers
Vihar, Boštjan; Hanisch, Franz Georg; Baumgartner, Werner
2016-01-01
The lizard Scincus scincus, also known as sandfish, can move through aeolian desert sand in a swimming-like manner. A prerequisite for this ability is a special integument, i.e. scales with a very low friction for sand and a high abrasion resistance. Glycans in the scales are causally related to the low friction. Here, we analysed the glycans and found that neutral glycans with five to nine mannose residues are important. If these glycans were covalently bound to acrylic polymers like poly(methyl methacrylate) or acrylic car coatings at a density of approximately one molecule per 4 nm², friction for and adhesion of sand particles could be reduced to levels close to those observed with sandfish scales. This was also found true, if the glycans were isolated from sources other than sandfish scales like plants such as almonds or mistletoe. We speculate that these neutral glycans act as low density spacers separating sand particles from the dense scales thereby reducing van der Waals forces. PMID:27030038
LCP method for a planar passive dynamic walker based on an event-driven scheme
NASA Astrophysics Data System (ADS)
Zheng, Xu-Dong; Wang, Qi
2018-06-01
The main purpose of this paper is to present a linear complementarity problem (LCP) method for a planar passive dynamic walker with round feet based on an event-driven scheme. The passive dynamic walker is treated as a planar multi-rigid-body system. The dynamic equations of the passive dynamic walker are obtained by using Lagrange's equations of the second kind. The normal forces and frictional forces acting on the feet of the passive walker are described based on a modified Hertz contact model and Coulomb's law of dry friction. The state transition problem of stick-slip between feet and floor is formulated as an LCP, which is solved with an event-driven scheme. Finally, to validate the methodology, four gaits of the walker are simulated: the stance leg neither slips nor bounces; the stance leg slips without bouncing; the stance leg bounces without slipping; the walker stands after walking several steps.
LCP method for a planar passive dynamic walker based on an event-driven scheme
NASA Astrophysics Data System (ADS)
Zheng, Xu-Dong; Wang, Qi
2018-02-01
The main purpose of this paper is to present a linear complementarity problem (LCP) method for a planar passive dynamic walker with round feet based on an event-driven scheme. The passive dynamic walker is treated as a planar multi-rigid-body system. The dynamic equations of the passive dynamic walker are obtained by using Lagrange's equations of the second kind. The normal forces and frictional forces acting on the feet of the passive walker are described based on a modified Hertz contact model and Coulomb's law of dry friction. The state transition problem of stick-slip between feet and floor is formulated as an LCP, which is solved with an event-driven scheme. Finally, to validate the methodology, four gaits of the walker are simulated: the stance leg neither slips nor bounces; the stance leg slips without bouncing; the stance leg bounces without slipping; the walker stands after walking several steps.
Airflow in Gravity Sewers - Determination of Wastewater Drag Coefficient.
Bentzen, Thomas Ruby; Østertoft, Kristian Kilsgaard; Vollertsen, Jes; Fuglsang, Emil Dietz; Nielsen, Asbjørn Haaning
2016-03-01
Several experiments have been conducted in order to improve the understanding of the wastewater drag and the wall frictional force acting on the headspace air in gravity sewers. The aim of the study is to improve the data basis for a numerical model of natural sewer ventilation. The results of the study shows that by integrating the top/side wall shear stresses the log-law models for the air velocity distribution along the unwetted perimeter resulted in a good agreement with the friction forces calculated by use of the Colebrook-White formula for hydraulic smooth pipes. Secondly, the water surface drags were found by log-law models of the velocity distribution in turbulent flows to fit velocity profiles measured from the water surface and by integrating the water surface drags along the wetted perimeter, mean water surface drags were found and a measure of the water surface drag coefficient was found.
Stick-slip chaos in a mechanical oscillator with dry friction
NASA Astrophysics Data System (ADS)
Kousaka, Takuji; Asahara, Hiroyuki; Inaba, Naohiko
2018-03-01
This study analyzes a forced mechanical dynamical system with dry friction that can generate chaotic stick-slip vibrations. We find that the dynamics proposed by Yoshitake et al. [Trans. Jpn. Soc. Mech. Eng. C 61, 768 (1995)] can be expressed as a nonautonomous constraint differential equation owing to the static friction force. The object is constrained to the surface of a moving belt by a static friction force from when it sticks to the surface until the force on the object exceeds the maximal static friction force. We derive a 1D Poincaré return map from the constrained mechanical system, and prove numerically that this 1D map has an absolutely continuous invariant measure and a positive Lyapunov exponent, providing strong evidence for chaos.
The effect of zinc oxide nanoparticles deposition for friction reduction on orthodontic wires
Kachoei, Mojghan; Eskandarinejad, Faranak; Divband, Baharak; Khatamian, Masumeh
2013-01-01
Background: In the sliding technique, the reduced frictional forces are associated with rapid tooth movements and better control of the anchorage. Recently, wire coating with different nanoparticles has been proposed to decrease frictional forces. This in vitro study was carried out to coat stainless steel (SS) wires with zinc oxide (ZnO) nanoparticles in order to determine the effect of this coating on friction between wires and orthodontic brackets. Materials and Methods: Eighty 0.016 inch and 0.019 inch × 0.025 inch SS wires with and without ZnO nanoparticles were used in 80 orthodontic brackets (0.018 and 0.022 systems). The coated wires were analyzed by SEM and X-Ray diffraction (XRD) observations. Kinetic friction between the wires and orthodontic brackets were calculated using a universal testing machine. Frictional forces were statistically analyzed using three-way ANOVA, one-way ANOVA, Student's t-test and Tukey multiple comparison tests. Results: Coating with ZnO nanoparticles significantly influenced frictional force values (P < 0.0001). In 0.019 inch × 0.025 inch wires, the frictional forces were 1.6912 ± 0.18868 and 3.4485 ± 0.32389 N in the coated and uncoated wires respectively, (51% reductions). In the 0.016 inch wires, the friction values were estimated to be 1.5668 ± 0.10703 and 2.56 ± 0.34008 N in the coated and uncoated conditions, respectively, (39% reductions). Conclusion: Due to the positive effects of ZnO nanoparticle coating on decreasing frictional forces, these nanoparticles might offer a novel opportunity to significantly reduce friction during tooth movement. PMID:24130586
When the Girls Still Wore Headscarves: Integration and Belonging in an After-School Center in Berlin
ERIC Educational Resources Information Center
Burnside, Bruce S.
2015-01-01
This study is centered on a youth center in Berlin, Germany, that serves migrant females. It draws on the anthropology of performance and the concept of "friction" to argue for an understanding of performances of belonging, where migrant girls stage acts of inclusion through creative encounters with the forces of integration to negotiate…
Tribological behavior of micro/nano-patterned surfaces in contact with AFM colloidal probe
NASA Astrophysics Data System (ADS)
Zhang, Xiaoliang; Wang, Xiu; Kong, Wen; Yi, Gewen; Jia, Junhong
2011-10-01
In effort to investigate the influence of the micro/nano-patterning or surface texturing on the nanotribological properties of patterned surfaces, the patterned polydimethylsiloxane (PDMS) surfaces with pillars were fabricated by replica molding technique. The surface morphologies of patterned PDMS surfaces with varying pillar sizes and spacing between pillars were characterized by atomic force microscope (AFM) and scanning electron microscope (SEM). The AFM/FFM was used to acquire the friction force images of micro/nano-patterned surfaces using a colloidal probe. A difference in friction force produced a contrast on the friction force images when the colloidal probe slid over different regions of the patterned polymer surfaces. The average friction force of patterned surface was related to the spacing between the pillars and their size. It decreased with the decreasing of spacing between the pillars and the increasing of pillar size. A reduction in friction force was attributed to the reduced area of contact between patterned surface and colloidal probe. Additionally, the average friction force increased with increasing applied load and sliding velocity.
Downhill cycling symmetry breaking: how the rider foils experiment
NASA Astrophysics Data System (ADS)
Ben Abu, Yuval; Wolfson, Ira; Bran, Gil; Yizhaq, Hezi
2017-11-01
In high-school teaching of mechanics, we deal, among other things, with the nature of static and kinetic friction, forces that are proportional to the normal force. Under the influence of frictional forces, a body moves down a rough sloped decline at a fixed rate of acceleration that is independent of its mass. This situation does not apply to cases where the frictional force is dependent upon velocity, such as bodies which are moving through a streaming fluid (such as raindrops falling to the ground). In this case the body moves with a continuously decreasing acceleration, eventually reaching a terminal velocity when the frictional and gravitational forces balance out. This velocity constraint is determined by the dependence of the frictional force on velocity and geometric parameters that determine the strength of the frictional force. We show here that a similar situation takes place when bicycles descend an incline with a fixed slope. We also investigated the dependence of the velocity constraint with mass, using bicycles equipped with sophisticated sensors that metamorphose them into data-processing laboratories.
SU-D-213AB-06: Surface Texture and Insertion Speed Effect on Needle Friction.
Abdullah, A; Golecki, C; Barnett, A; Moore, J
2012-06-01
High frictional forces between the needle surface and tissue cause tissue deflection which hinders accurate needle placement for procedures such as brachytherapy and needle biopsy. Accurate needle placement isimportant to maximize procedure efficacy. This work investigates how needle surface roughness and insertion speed affect the frictional forcebetween a needle and tissue. A friction experiment was conducted to measure the force of friction between bovine liver and three 11 gauge needles having Ra surface roughness of 3.43, 1.33, and 0.2 μm. Each of the three needles were mounted on a linear slide and were advanced and retracted through bovine liver at speeds of 50, 100, 150, and 200 mm/s for a total of 12 trials. In each trial the needle was advanced and retracted in 10 cycles producing a steady state insertion force and a steady state retraction force for each cycle. A force sensor connecting the needle to the linear slide recorded the resistance force of the needle sliding through the liver. The liver was mounted in a box with a pneumatic cylinder which compressed the liver sample by 11.65 kPa. The roughest needle (Ra = 3.43 μm) on average produced 68, 73, 74, and 73% lower friction force than the smoothest needle (Ra = 0.2 μm) for the speeds of 50, 100, 150, and 200mm/s, respectively. The second roughest needle (Ra = 1.33 μm) on average produced 25, 45, 60 and 64% lower friction force than the smoothest needle (Ra = 0.2 μm) for the speeds of 50, 100, 150, and 200 mm/s, respectively. Rougher needle surface texture and higher insertion speed reduced frictional forces between the tissue and the needle. Future studies will examine how frictional forces can be modeled and predicted given surface texture and insertion speed. © 2012 American Association of Physicists in Medicine.
Kato, Moeko; Namura, Yasuhiro; Yoneyama, Takayuki; Shimizu, Noriyoshi
2018-05-31
This study investigated the effect of the vertical position of the canine on changes in the frictional/orthodontic (F/O) force ratio of nickel-titanium (Ni-Ti) archwires during the initial levelling phase of orthodontic treatment. Frictional and orthodontic forces were measured by using low-friction brackets and Ni-Ti archwires with three different cross-sectional sizes and force types. To simulate canine malocclusion (first premolar extraction case), the upper right canine was displaced gingivally by 1 to 3 mm and the inter-bracket distance between the upper right lateral incisor and second premolar was set at 15 mm or 20 mm. A three-point bending test was performed to measure the orthodontic force of each Ni-Ti archwire. Frictional forces were measured with a universal testing machine and dental arch models by pulling parallel to the end of the archwire at a crosshead speed of 0.5 mm/min. F/O force ratio was calculated and analysed statistically. At a displacement of 3 mm, few archwires had F/O force ratios of less than 1.0, at which orthodontic force overcame frictional force, thus ensuring extrusion of the canine. For effective tooth movement, orthodontists should use Ni-Ti archwires with an F/O force ratio of less than 1.0.
Friction measurements on InAs NWs by AFM manipulation
NASA Astrophysics Data System (ADS)
Pettersson, Hakan; Conache, Gabriela; Gray, Struan; Bordag, Michael; Ribayrol, Aline; Froberg, Linus; Samuelson, Lars; Montelius, Lars
2008-03-01
We discuss a new approach to measure the friction force between elastically deformed nanowires and a surface. The wires are bent, using an AFM, into an equilibrium shape determined by elastic restoring forces within the wire and friction between the wire and the surface. From measurements of the radius of curvature of the bent wires, elasticity theory allows the friction force per unit length to be calculated. We have studied friction properties of InAs nanowires deposited on SiO2, silanized SiO2 and Si3N4 substrates. The wires were typically from 0.5 to a few microns long, with diameters varying between 20 and 80 nm. Manipulation is done in a `Retrace Lift' mode, where feedback is turned off for the reverse scan and the tip follows a nominal path. The effective manipulation force during the reverse scan can be changed by varying an offset in the height of the tip over the surface. We will report on interesting static- and sliding friction experiments with nanowires on the different substrates, including how the friction force per unit length varies with the diameter of the wires.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sánchez-Salcedo, F. J.; Chametla, Raul O., E-mail: jsanchez@astro.unam.mx
Using time-dependent linear theory, we investigate the morphology of the gravitational wake induced by a binary, whose center of mass moves at velocity V{sub cm} against a uniform background of gas. For simplicity, we assume that the components of the binary are on circular orbits about their common center of mass. The consequences of dynamical friction is twofold. First, gas dynamical friction may drag the center of mass of the binary and cause the binary to migrate. Second, drag forces also induce a braking torque, which causes the orbits of the components of the binary to shrink. We compute themore » drag forces acting on one component of the binary due to the gravitational interaction with its own wake. We show that the dynamical friction force responsible for decelerating the center of mass of the binary is smaller than it is in the point-mass case because of the loss of gravitational focusing. We show that the braking internal torque depends on the Mach numbers of each binary component about their center of mass, and also on the Mach number of the center of mass of the binary. In general, the internal torque decreases with increasing the velocity of the binary relative to the ambient gas cloud. However, this is not always the case. We also mention the relevance of our results to the period distribution of binaries.« less
Magnon-induced non-Markovian friction of a domain wall in a ferromagnet
NASA Astrophysics Data System (ADS)
Kim, Se Kwon; Tchernyshyov, Oleg; Galitski, Victor; Tserkovnyak, Yaroslav
2018-05-01
Motivated by the recent study on the quasiparticle-induced friction of solitons in superfluids, we theoretically study magnon-induced intrinsic friction of a domain wall in a one-dimensional ferromagnet. To this end, we start by obtaining the hitherto overlooked dissipative interaction of a domain wall and its quantum magnon bath to linear order in the domain-wall velocity and to quadratic order in magnon fields. An exact expression for the pertinent scattering matrix is obtained with the aid of supersymmetric quantum mechanics. We then derive the magnon-induced frictional force on a domain wall in two different frameworks: time-dependent perturbation theory in quantum mechanics and the Keldysh formalism, which yield identical results. The latter, in particular, allows us to verify the fluctuation-dissipation theorem explicitly by providing both the frictional force and the correlator of the associated stochastic Langevin force. The potential for magnons induced by a domain wall is reflectionless, and thus the resultant frictional force is non-Markovian similar to the case of solitons in superfluids. They share an intriguing connection to the Abraham-Lorentz force that is well known for its causality paradox. The dynamical responses of a domain wall are studied under a few simple circumstances, where the non-Markovian nature of the frictional force can be probed experimentally. Our work, in conjunction with the previous study on solitons in superfluids, shows that the macroscopic frictional force on solitons can serve as an effective probe of the microscopic degrees of freedom of the system.
Comparison of frictional resistance of esthetic and semi-esthetic self-ligating brackets
Kannan, M. S.; Murali, R. V.; Kishorekumar, S.; Gnanashanmugam, K.; Jayanth, V.
2015-01-01
Aim: The frictional resistance encountered during sliding mechanics has been well established in the orthodontic literature, and it consists of complex interactions between the bracket, archwire, and method of ligation the claim of reduced friction with self-ligating brackets is often cited as a primary advantage over conventional brackets. This study was done to compare and evaluate the frictional forces generated between fully esthetic brackets and semi-aesthetic self-ligating brackets, which are of passive form and SEM (scanning electron microscope) study of the Brackets after Frictional evaluation. Materials and Methods: Two types of self-ligating esthetic brackets, Damon clear (Ormco) made of fully ceramic and Opal (Ultradent Products, USA) and, Two types of self-ligating semi-esthetic brackets, Clarity SL (3M Unitek) and Damon 3 (Ormco) both of which are made of ceramic with metal slot. Arch wires with different dimensions and quality 17 × 25, 19 × 25 Titanium Molybdenum Alloy (TMA) and 17 × 25, 19 × 25 stainless steel that came from plain strands of wire were used for frictional comparison test. The brackets used in this study had 0.022 × 0.028 inch slot. Results: The statistical tests showed significantly smaller amount of kinetic frictional forces is generated by Damon 3 (semi-esthetic self-ligating brackets). For each wire used, Damon 3 displayed significantly lower frictional forces (P ≤ 0.05) than any of the self-ligating system, followed by Opal (fully esthetic self-ligating brackets) which generated smaller amount of frictional forces but relatively on the higher side when compared with Damon 3. Damon clear (fully esthetic self-ligating brackets) generated the maximum amount of kinetic forces with all types of wire dimensions and properties when compared to the other three types of self-ligating system. Clarity SL (semi-esthetic self-ligating brackets) generated smaller amount of frictional forces when compared with Damon clear and relatively higher amount of frictional forces when compared to Opal and Damon 3 PMID:26015687
Comparison of frictional resistance of esthetic and semi-esthetic self-ligating brackets.
Kannan, M S; Murali, R V; Kishorekumar, S; Gnanashanmugam, K; Jayanth, V
2015-04-01
The frictional resistance encountered during sliding mechanics has been well established in the orthodontic literature, and it consists of complex interactions between the bracket, archwire, and method of ligation the claim of reduced friction with self-ligating brackets is often cited as a primary advantage over conventional brackets. This study was done to compare and evaluate the frictional forces generated between fully esthetic brackets and semi-aesthetic self-ligating brackets, which are of passive form and SEM (scanning electron microscope) study of the Brackets after Frictional evaluation. Two types of self-ligating esthetic brackets, Damon clear (Ormco) made of fully ceramic and Opal (Ultradent Products, USA) and, Two types of self-ligating semi-esthetic brackets, Clarity SL (3M Unitek) and Damon 3 (Ormco) both of which are made of ceramic with metal slot. Arch wires with different dimensions and quality 17 × 25, 19 × 25 Titanium Molybdenum Alloy (TMA) and 17 × 25, 19 × 25 stainless steel that came from plain strands of wire were used for frictional comparison test. The brackets used in this study had 0.022 × 0.028 inch slot. The statistical tests showed significantly smaller amount of kinetic frictional forces is generated by Damon 3 (semi-esthetic self-ligating brackets). For each wire used, Damon 3 displayed significantly lower frictional forces (P ≤ 0.05) than any of the self-ligating system, followed by Opal (fully esthetic self-ligating brackets) which generated smaller amount of frictional forces but relatively on the higher side when compared with Damon 3. Damon clear (fully esthetic self-ligating brackets) generated the maximum amount of kinetic forces with all types of wire dimensions and properties when compared to the other three types of self-ligating system. Clarity SL (semi-esthetic self-ligating brackets) generated smaller amount of frictional forces when compared with Damon clear and relatively higher amount of frictional forces when compared to Opal and Damon 3.
Rossi, Anthony M.; Claiborne, Tina L.; Thompson, Gregory B.; Todaro, Stacey
2016-01-01
Context: The pocketing effect of helmet padding helps to dissipate forces experienced by the head, but if the player's helmet remains stationary in an opponent's shoulder pads, the compressive force on the cervical spine may increase. Objective: To (1) measure the coefficient of static friction between different football helmet finishes and football jersey fabrics and (2) calculate the potential amount of force on a player's helmet due to the amount of friction present. Design: Cross-sectional study. Setting: Laboratory. Patients or Other Participants: Helmets with different finishes and different football jersey fabrics. Main Outcome Measure(s): The coefficient of friction was determined for 2 helmet samples (glossy and matte), 3 football jerseys (collegiate, high school, and youth), and 3 types of jersey numbers (silkscreened, sublimated, and stitched on) using the TAPPI T 815 standard method. These measurements determined which helmet-to-helmet, helmet-to-jersey number, and helmet-to-jersey material combination resulted in the least amount of static friction. Results: The glossy helmet versus glossy helmet combination produced a greater amount of static friction than the other 2 helmet combinations (P = .013). The glossy helmet versus collegiate jersey combination produced a greater amount of static friction than the other helmet-to-jersey material combinations (P < .01). The glossy helmet versus silkscreened numbers combination produced a greater amount of static friction than the other helmet-to-jersey number combinations (P < .01). Conclusions: The force of static friction experienced during collisions can be clinically relevant. Conditions with higher coefficients of static friction result in greater forces. In this study, the highest coefficient of friction (glossy helmet versus silkscreened number) could increase the forces on the player's helmet by 3553.88 N when compared with other helmet-to-jersey combinations. Our results indicate that the makeup of helmet and uniform materials may affect sport safety. PMID:27824251
Friction enhancement via micro-patterned wet elastomer adhesives on small intestinal surfaces.
Kwon, Jiwoon; Cheung, Eugene; Park, Sukho; Sitti, Metin
2006-12-01
A micro-pillar-based silicone rubber adhesive coated with a thin silicone oil layer is investigated in this paper for developing friction-based clamping mechanisms for robotic endoscopic microcapsules. These adhesives are shown to enhance the frictional force between the capsule and the intestinal wall by a factor of about seven over a non-patterned flat elastomer material. In this study, tests performed on fresh samples of pig small intestine are used to optimize the diameter of the micro-pillars to maximize the frictional forces. In addition, the effects of other factors such as the oil viscosity and applied normal forces are investigated. It is demonstrated that the proposed micro-pillar pattern based elastomer adhesive exhibits a maximal frictional force when the pillar diameter is 140 microm and coated silicon oil has a very high viscosity (10,000 cSt). It is also found that the frictional force of the micro-patterned adhesive increases nonlinearly in proportion to the applied normal force. These adhesives would be used as a robust attachment material for developing robotic capsule endoscopes inside intestines with clamping capability.
Friction enhancement via micro-patterned wet elastomer adhesives on small intestinal surfaces
NASA Astrophysics Data System (ADS)
Kwon, Jiwoon; Cheung, Eugene; Park, Sukho; Sitti, Metin
2006-12-01
A micro-pillar-based silicone rubber adhesive coated with a thin silicone oil layer is investigated in this paper for developing friction-based clamping mechanisms for robotic endoscopic microcapsules. These adhesives are shown to enhance the frictional force between the capsule and the intestinal wall by a factor of about seven over a non-patterned flat elastomer material. In this study, tests performed on fresh samples of pig small intestine are used to optimize the diameter of the micro-pillars to maximize the frictional forces. In addition, the effects of other factors such as the oil viscosity and applied normal forces are investigated. It is demonstrated that the proposed micro-pillar pattern based elastomer adhesive exhibits a maximal frictional force when the pillar diameter is 140 µm and coated silicon oil has a very high viscosity (10 000 cSt). It is also found that the frictional force of the micro-patterned adhesive increases nonlinearly in proportion to the applied normal force. These adhesives would be used as a robust attachment material for developing robotic capsule endoscopes inside intestines with clamping capability.
Friction damping of two-dimensional motion and its application in vibration control
NASA Technical Reports Server (NTRS)
Menq, C.-H.; Chidamparam, P.; Griffin, J. H.
1991-01-01
This paper presents an approximate method for analyzing the two-dimensional friction contact problem so as to compute the dynamic response of a structure constrained by friction interfaces. The friction force at the joint is formulated based on the Coulomb model. The single-term harmonic balance scheme, together with the receptance approach of decoupling the effect of the friction force on the structure from those of the external forces has been utilized to obtain the steady state response. The computational efficiency and accuracy of the method are demonstrated by comparing the results with long-term time solutions.
Contact geometry and mechanics predict friction forces during tactile surface exploration.
Janko, Marco; Wiertlewski, Michael; Visell, Yon
2018-03-20
When we touch an object, complex frictional forces are produced, aiding us in perceiving surface features that help to identify the object at hand, and also facilitating grasping and manipulation. However, even during controlled tactile exploration, sliding friction forces fluctuate greatly, and it is unclear how they relate to the surface topography or mechanics of contact with the finger. We investigated the sliding contact between the finger and different relief surfaces, using high-speed video and force measurements. Informed by these experiments, we developed a friction force model that accounts for surface shape and contact mechanical effects, and is able to predict sliding friction forces for different surfaces and exploration speeds. We also observed that local regions of disconnection between the finger and surface develop near high relief features, due to the stiffness of the finger tissues. Every tested surface had regions that were never contacted by the finger; we refer to these as "tactile blind spots". The results elucidate friction force production during tactile exploration, may aid efforts to connect sensory and motor function of the hand to properties of touched objects, and provide crucial knowledge to inform the rendering of realistic experiences of touch contact in virtual reality.
NASA Astrophysics Data System (ADS)
Colpi, Monica; Pallavicini, Andrea
1998-07-01
The drag force on a satellite of mass M moving with speed V in the gravitational field of a spherically symmetric background of stars is computed. During the encounter, the stars are subject to a time-dependent force that alters their equilibrium. The resulting distortion in the stellar density field acts back to produce a force FΔ that decelerates the satellite. This force is computed using a perturbative technique known as linear response theory. In this paper, we extend the formalism of linear response to derive the correct expression for the back-reaction force FΔ that applies when the stellar system is described by an equilibrium one-particle distribution function. FΔ is expressed in terms of a suitable correlation function that couples the satellite dynamics to the unperturbed dynamics of the stars. At time t, the force depends upon the whole history of the composite system. In the formalism, we account for the shift of the stellar center of mass resulting from linear momentum conservation. The self-gravity of the response is neglected since it contributes to a higher order in the perturbation. Linear response theory applies also to the case of a satellite orbiting outside the spherical galaxy. The case of a satellite moving on a straight line, at high speed relative to the stellar dispersion velocity, is explored. We find that the satellite during its passage raises (1) global tides in the stellar distribution and (2) a wake, i.e., an overdense region behind its trail. If the satellite motion is external to the galaxy, it suffers a dissipative force that is not exclusively acting along V but acquires a component along R, the position vector relative to the center of the spherical galaxy. We derive the analytical expression of the force in the impulse approximation. In penetrating short-lived encounters, the satellite moves across the stellar distribution and the transient wake excited in the density field is responsible for most of the deceleration. We find that dynamical friction arises from a memory effect involving only those stars perturbed along the path. The force can be written in terms of an effective Coulomb logarithm that now depends upon time. The value of ln Λ is computed for two simple equilibrium density distributions; it is shown that the drag increases as the satellite approaches the denser regions of the stellar distribution and attains a maximum after pericentric passage. When the satellite crosses the edge of the galaxy, the force does not vanish since the galaxy keeps memory of the perturbation induced and declines on a time comparable to the dynamical time of the stellar system. In the case of a homogeneous cloud, we compute the total energy loss. In evaluating the contribution resulting from friction, we derive self-consistently the maximum impact parameter, which is found to be equal to the length traveled by the satellite within the system. Tides excited by the satellite in the galaxy reduce the value of the energy loss by friction; in close encounters, this value is decreased by a factor of ~1.5.
Friction phenomena and phase transition in the underdamped two-dimensional Frenkel-Kontorova model
NASA Astrophysics Data System (ADS)
Yang, Yang; Duan, Wen-Shan; Chen, Jian-Min; Yang, Lei; Tekić, Jasmina; Shao, Zhi-Gang; Wang, Cang-Long
2010-11-01
Locked-to-sliding phase transition has been studied in the driven two-dimensional Frenkel-Kontorova model with the square symmetric substrate potential. It is found that as the driving force increases, the system transfers from the locked state to the sliding state where the motion of particles is in the direction different from that of driving force. With the further increase in driving force, at some critical value, the particles start to move in the direction of driving force. These two critical forces, the static friction or depinning force, and the kinetic friction force for which particles move in the direction of driving force have been analyzed for different system parameters. Different scenarios of phase transitions have been examined and dynamical phases are classified. In the case of zero misfit angle, the analytical expressions for static and kinetic friction force have been obtained.
Bilaloglu, Seda; Lu, Ying; Geller, Daniel; Rizzo, John Ross; Aluru, Viswanath; Gardner, Esther P; Raghavan, Preeti
2016-03-01
Adaptation of fingertip forces to friction at the grasping surface is necessary to prevent use of inadequate or excessive grip forces. In the current study we investigated the effect of blocking tactile information from the fingertips noninvasively on the adaptation and efficiency of grip forces to surface friction during precision grasp. Ten neurologically intact subjects grasped and lifted an instrumented grip device with 18 different frictional surfaces under three conditions: with bare hands or with a thin layer of plastic (Tegaderm) or an additional layer of foam affixed to the fingertips. The coefficient of friction at the finger-object interface of each surface was obtained for each subject with bare hands and Tegaderm by measuring the slip ratio (grip force/load force) at the moment of slip. We found that the foam layer reduced sensibility for two-point discrimination and pressure sensitivity at the fingertips, but Tegaderm did not. However, Tegaderm reduced static, but not dynamic, tactile discrimination. Adaptation of fingertip grip forces to surface friction measured by the rate of change of peak grip force, and grip force efficiency measured by the grip-load force ratio at lift, showed a proportional relationship with bare hands but were impaired with Tegaderm and foam. Activation of muscles engaged in precision grip also varied with the frictional surface with bare hands but not with Tegaderm and foam. The results suggest that sensitivity for static tactile discrimination is necessary for feedforward and feedback control of grip forces and for adaptive modulation of muscle activity during precision grasp. Copyright © 2016 the American Physiological Society.
Nonmonotonic velocity dependence of atomic friction.
Reimann, Peter; Evstigneev, Mykhaylo
2004-12-03
We propose a theoretical model for friction force microscopy experiments with special emphasis on the realistic description of dissipation and inertia effects. Its main prediction is a nonmonotonic dependence of the friction force upon the sliding velocity of the atomic force microscope tip relative to an atomically flat surface. The region around the force maximum can be approximately described by a universal scaling law and should be observable under experimentally realistic conditions.
Harada, Shingo; Kanao, Kenichiro; Yamamoto, Yuki; Arie, Takayuki; Akita, Seiji; Takei, Kuniharu
2014-12-23
A three-axis tactile force sensor that determines the touch and slip/friction force may advance artificial skin and robotic applications by fully imitating human skin. The ability to detect slip/friction and tactile forces simultaneously allows unknown objects to be held in robotic applications. However, the functionalities of flexible devices have been limited to a tactile force in one direction due to difficulties fabricating devices on flexible substrates. Here we demonstrate a fully printed fingerprint-like three-axis tactile force and temperature sensor for artificial skin applications. To achieve economic macroscale devices, these sensors are fabricated and integrated using only printing methods. Strain engineering enables the strain distribution to be detected upon applying a slip/friction force. By reading the strain difference at four integrated force sensors for a pixel, both the tactile and slip/friction forces can be analyzed simultaneously. As a proof of concept, the high sensitivity and selectivity for both force and temperature are demonstrated using a 3×3 array artificial skin that senses tactile, slip/friction, and temperature. Multifunctional sensing components for a flexible device are important advances for both practical applications and basic research in flexible electronics.
A new algorithm for modeling friction in dynamic mechanical systems
NASA Technical Reports Server (NTRS)
Hill, R. E.
1988-01-01
A method of modeling friction forces that impede the motion of parts of dynamic mechanical systems is described. Conventional methods in which the friction effect is assumed a constant force, or torque, in a direction opposite to the relative motion, are applicable only to those cases where applied forces are large in comparison to the friction, and where there is little interest in system behavior close to the times of transitions through zero velocity. An algorithm is described that provides accurate determination of friction forces over a wide range of applied force and velocity conditions. The method avoids the simulation errors resulting from a finite integration interval used in connection with a conventional friction model, as is the case in many digital computer-based simulations. The algorithm incorporates a predictive calculation based on initial conditions of motion, externally applied forces, inertia, and integration step size. The predictive calculation in connection with an external integration process provides an accurate determination of both static and Coulomb friction forces and resulting motions in dynamic simulations. Accuracy of the results is improved over that obtained with conventional methods and a relatively large integration step size is permitted. A function block for incorporation in a specific simulation program is described. The general form of the algorithm facilitates implementation with various programming languages such as FORTRAN or C, as well as with other simulation programs.
Dynamic analysis of a circulating fluidized bed riser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Panday, Rupen; Shadle, Lawrence J.; Guenther, Chris
2012-01-01
A linear state model is proposed to analyze dynamic behavior of a circulating fluidized bed riser. Different operating regimes were attained with high density polyethylene beads at low and high system inventories. The riser was operated between the classical choking velocity and the upper transport velocity demarcating fast fluidized and transport regimes. At a given riser superficial gas velocity, the aerations fed at the standpipe were modulated resulting in a sinusoidal solids circulation rate that goes into the riser via L-valve. The state model was derived based on the mass balance equation in the riser. It treats the average solidsmore » fraction across the entire riser as a state variable. The total riser pressure drop was modeled using Newton’s second law of motion. The momentum balance equation involves contribution from the weight of solids and the wall friction caused by the solids to the riser pressure drop. The weight of solids utilizes the state variable and hence, the riser inventory could be easily calculated. The modeling problem boils down to estimating two parameters including solids friction coefficient and time constant of the riser. It has been shown that the wall friction force acts in the upward direction in fast fluidized regime which indicates that the solids were moving downwards on the average with respect to the riser wall. In transport regimes, the friction acts in the opposite direction. This behavior was quantified based on a sign of Fanning friction factor in the momentum balance equation. The time constant of the riser appears to be much higher in fast fluidized regime than in transport conditions.« less
Surface effects on friction-induced fluid heating in nanochannel flows.
Li, Zhigang
2009-02-01
We investigate the mechanism of friction-induced fluid heating under the influence of surfaces. The temperature distributions of liquid argon and helium in nanoscale Poiseuille flows are studied through molecular dynamics simulations. It is found that the fluid heating is mainly caused by the viscous friction in the fluid when the external force is small and there is no slip at the fluid-solid interface. When the external force is larger than the fluid-surface binding force, the friction at the fluid-solid interface dominates over the internal friction of the fluid and is the major contribution to fluid heating. An asymmetric temperature gradient in the fluid is developed in the case of nonidentical walls and the general temperature gradient may change sign as the dominant heating factor changes from internal to interfacial friction with increasing external force. The effect of temperature on the fluid heating is also discussed.
Sanborn, B.; Song, B.; Nishida, E.
2017-11-02
In order to understand interfacial interaction of a bi-material during an impact loading event, the dynamic friction coefficient is one of the key parameters that must be characterized and quantified. In this study, a new experimental method to determine the dynamic friction coefficient between two metals was developed by using a Kolsky tension bar and a custom-designed friction fixture. Polyvinylidene fluoride (PVDF) force sensors were used to measure the normal force applied to the friction tribo pairs and the friction force was measured with conventional Kolsky tension bar method. To evaluate the technique, the dynamic friction coefficient between 4340 steelmore » and 7075-T6 aluminum was investigated at an impact speed of approximately 8 m/s. Additionally, the dynamic friction coefficient of the tribo pairs with varied surface roughness was also investigated. The data suggest that higher surface roughness leads to higher friction coefficients at the same speed of 8 m/s.« less
Friction. Physical Science in Action[TM]. Schlessinger Science Library. [Videotape].
ERIC Educational Resources Information Center
2000
Most people think friction is what happens when two things are rubbed together. But there's so much more! Friction is a force that resists motion. Yet, without friction, motion would be impossible. Students will learn more about this natural force and the attempts made at controlling it in the world. Includes a hands-on activity and graphic…
Guo, Ying; Hou, Yubin; Lu, Qingyou
2014-05-01
We present a completely practical TunaDrive piezo motor. It consists of a central piezo stack sandwiched by two arm piezo stacks and two leg piezo stacks, respectively, which is then sandwiched and spring-clamped by a pair of parallel polished sapphire rods. It works by alternatively fast expanding and contracting the arm/leg stacks while slowly expanding/contracting the central stack simultaneously. The key point is that sufficiently fast expanding and contracting a limb stack can make its two sliding friction forces well cancel, resulting in the total sliding friction force is <10% of the total static friction force, which can help increase output force greatly. The piezo motor's high compactness, precision, and output force make it perfect in building a high-quality harsh-condition (vibration resistant) atomic resolution scanning probe microscope.
Friction on a granular-continuum interface: Effects of granular media
NASA Astrophysics Data System (ADS)
Ecke, Robert; Geller, Drew
We consider the frictional interactions of two soft plates with interposed granular material subject to normal and shear forces. The plates are soft photo-elastic material, have length 50 cm, and are separated by a gap of variable width from 0 to 20 granular particle diameters. The granular materials are two-dimensional rods that are bi-dispersed in size to prevent crystallization. Different rod materials with frictional coefficients between 0 . 04 < μ < 0 . 5 are used to explore the effects of inter-granular friction on the effective friction of a granular medium. The gap is varied to test the dependence of the friction coefficient on the thickness of the granular layer. Because the soft plates absorb most of the displacement associated with the compressional normal force, the granular packing fractions are close to a jamming threshold, probably a shear jamming criterion. The overall shear and normal forces are measured using force sensors and the local strain tensor over a central portion of the gap is obtained using relative displacements of fiducial markers on the soft elastic material. These measurements provide a good characterization of the global and local forces giving rise to an effective friction coefficient. Funded by US DOE LDRD Program.
Imaging high-speed friction at the nanometer scale
Thorén, Per-Anders; de Wijn, Astrid S.; Borgani, Riccardo; Forchheimer, Daniel; Haviland, David B.
2016-01-01
Friction is a complicated phenomenon involving nonlinear dynamics at different length and time scales. Understanding its microscopic origin requires methods for measuring force on nanometer-scale asperities sliding at velocities reaching centimetres per second. Despite enormous advances in experimental technique, this combination of small length scale and high velocity remain elusive. We present a technique for rapidly measuring the frictional forces on a single asperity over a velocity range from zero to several centimetres per second. At each image pixel we obtain the velocity dependence of both conservative and dissipative forces, revealing the transition from stick-slip to smooth sliding friction. We explain measurements on graphite using a modified Prandtl–Tomlinson model, including the damped elastic deformation of the asperity. With its improved force sensitivity and small sliding amplitude, our method enables rapid and detailed surface mapping of the velocity dependence of frictional forces with less than 10 nm spatial resolution. PMID:27958267
Transduction channels' gating can control friction on vibrating hair-cell bundles in the ear.
Bormuth, Volker; Barral, Jérémie; Joanny, Jean-François; Jülicher, Frank; Martin, Pascal
2014-05-20
Hearing starts when sound-evoked mechanical vibrations of the hair-cell bundle activate mechanosensitive ion channels, giving birth to an electrical signal. As for any mechanical system, friction impedes movements of the hair bundle and thus constrains the sensitivity and frequency selectivity of auditory transduction. Friction is generally thought to result mainly from viscous drag by the surrounding fluid. We demonstrate here that the opening and closing of the transduction channels produce internal frictional forces that can dominate viscous drag on the micrometer-sized hair bundle. We characterized friction by analyzing hysteresis in the force-displacement relation of single hair-cell bundles in response to periodic triangular stimuli. For bundle velocities high enough to outrun adaptation, we found that frictional forces were maximal within the narrow region of deflections that elicited significant channel gating, plummeted upon application of a channel blocker, and displayed a sublinear growth for increasing bundle velocity. At low velocity, the slope of the relation between the frictional force and velocity was nearly fivefold larger than the hydrodynamic friction coefficient that was measured when the transduction machinery was decoupled from bundle motion by severing tip links. A theoretical analysis reveals that channel friction arises from coupling the dynamics of the conformational change associated with channel gating to tip-link tension. Varying channel properties affects friction, with faster channels producing smaller friction. We propose that this intrinsic source of friction may contribute to the process that sets the hair cell's characteristic frequency of responsiveness.
NASA Technical Reports Server (NTRS)
Howard, J. C.; Chin, D. O.
1981-01-01
Equations describing the friction forces generated during landing operations on ships at sea were formulated. These forces depend on the platform reaction and the coefficient of friction. The platform reaction depends on the relative sink rate and the shock absorbing capability of the landing gear. The friction coefficient varies with the surface condition of the landing platform and the angle of yaw of the aircraft relative to the landing platform. Landings by VTOL aircraft, equipped with conventional oleopneumatic landing gears are discussed. Simplifications are introduced to reduce the complexity of the mathematical description of the tire and shock strut characteristics. Approximating the actual complicated force deflection characteristic of the tire by linear relationship is adequate. The internal friction forces in the shock strut are included in the landing gear model. A set of relatively simple equations was obtained by including only those tire and shock strut characteristics that contribute significantly to the generation of landing gear forces.
Friction between various self-ligating brackets and archwire couples during sliding mechanics.
Stefanos, Sennay; Secchi, Antonino G; Coby, Guy; Tanna, Nipul; Mante, Francis K
2010-10-01
The aim of this study was to evaluate the frictional resistance between active and passive self-ligating brackets and 0.019 × 0.025-in stainless steel archwire during sliding mechanics by using an orthodontic sliding simulation device. Maxillary right first premolar active self-ligating brackets In-Ovation R, In-Ovation C (both, GAC International, Bohemia, NY), and SPEED (Strite Industries, Cambridge, Ontario, Canada), and passive self-ligating brackets SmartClip (3M Unitek, Monrovia, Calif), Synergy R (Rocky Mountain Orthodontics, Denver, Colo), and Damon 3mx (Ormco, Orange, Calif) with 0.022-in slots were used. Frictional force was measured by using an orthodontic sliding simulation device attached to a universal testing machine. Each bracket-archwire combination was tested 30 times at 0° angulation relative to the sliding direction. Statistical comparisons were performed with 1-way analysis of variance (ANOVA) followed by Dunn multiple comparisons. The level of statistical significance was set at P <0.05. The Damon 3mx brackets had significantly the lowest mean static frictional force (8.6 g). The highest mean static frictional force was shown by the SPEED brackets (83.1 g). The other brackets were ranked as follows, from highest to lowest, In-Ovation R, In-Ovation C, SmartClip, and Synergy R. The mean static frictional forces were all statistically different. The ranking of the kinetic frictional forces of bracket-archwire combinations was the same as that for static frictional forces. All bracket-archwire combinations showed significantly different kinetic frictional forces except SmartClip and In-Ovation C, which were not significantly different from each other. Passive self-ligating brackets have lower static and kinetic frictional resistance than do active self-ligating brackets with 0.019 × 0.025-in stainless steel wire. Copyright © 2010 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.
Mezeg, Uroš; Primožic, Jasmina
2017-11-30
The aim was to assess the influence of long-term in vivo exposure, debris accumulation and archwire material on static and kinetic friction force among different types of brackets and archwires couples. Friction testing was performed among four lower incisors' brackets, conventional and self-ligating (SL), coupled with either nickel-titanium or stainless steel archwires, as-received and in vivo exposed in 18 subjects. The friction testing was performed for a sliding distance of 14 mm at a speed of 10 mm/min, with a starting force of 0.2 N. Wear and quantitative assessment of debris accumulation was performed on pictures of brackets obtained using a scanning electron microscope. Non parametric tests were used for statistical analysis. Only bracket type, but not exposure duration, amount of debris accumulation, archwire material or their manufacturer, was significantly correlated with both static (rho = 0.602, P < 0.001) and kinetic (rho = 0.584, P < 0.001) friction force. Within each bracket type no significant difference was observed between as-received and in vivo exposed brackets for any friction parameter except for the SL brackets in which significantly higher static and kinetic (P = 0.001, at least) friction forces were seen in in vivo exposed SL brackets (164.9 cN and 217.63 cN, respectively) in comparison with as-received SL brackets (19.69 cN and 55.72 cN, respectively). The frictional testing was performed in the dry condition which might have influenced the results. A significant correlation was seen between friction force and bracket type, while treatment duration, amount of debris accumulation, archwire material or their manufacturer was not significantly correlated to it. Nevertheless, higher friction forces were measured among in vivo aged SL brackets in comparison with as-received ones. © The Author 2017. Published by Oxford University Press on behalf of the European Orthodontic Society. All rights reserved. For permissions, please email: journals.permissions@oup.com
Friction forces position the neural anlage
Smutny, Michael; Ákos, Zsuzsa; Grigolon, Silvia; Shamipour, Shayan; Ruprecht, Verena; Čapek, Daniel; Behrndt, Martin; Papusheva, Ekaterina; Tada, Masazumi; Hof, Björn; Vicsek, Tamás; Salbreux, Guillaume; Heisenberg, Carl-Philipp
2017-01-01
During embryonic development, mechanical forces are essential for cellular rearrangements driving tissue morphogenesis. Here, we show that in the early zebrafish embryo, friction forces are generated at the interface between anterior axial mesoderm (prechordal plate, ppl) progenitors migrating towards the animal pole and neurectoderm progenitors moving in the opposite direction towards the vegetal pole of the embryo. These friction forces lead to global rearrangement of cells within the neurectoderm and determine the position of the neural anlage. Using a combination of experiments and simulations, we show that this process depends on hydrodynamic coupling between neurectoderm and ppl as a result of E-cadherin-mediated adhesion between those tissues. Our data thus establish the emergence of friction forces at the interface between moving tissues as a critical force-generating process shaping the embryo. PMID:28346437
Friction forces position the neural anlage.
Smutny, Michael; Ákos, Zsuzsa; Grigolon, Silvia; Shamipour, Shayan; Ruprecht, Verena; Čapek, Daniel; Behrndt, Martin; Papusheva, Ekaterina; Tada, Masazumi; Hof, Björn; Vicsek, Tamás; Salbreux, Guillaume; Heisenberg, Carl-Philipp
2017-04-01
During embryonic development, mechanical forces are essential for cellular rearrangements driving tissue morphogenesis. Here, we show that in the early zebrafish embryo, friction forces are generated at the interface between anterior axial mesoderm (prechordal plate, ppl) progenitors migrating towards the animal pole and neurectoderm progenitors moving in the opposite direction towards the vegetal pole of the embryo. These friction forces lead to global rearrangement of cells within the neurectoderm and determine the position of the neural anlage. Using a combination of experiments and simulations, we show that this process depends on hydrodynamic coupling between neurectoderm and ppl as a result of E-cadherin-mediated adhesion between those tissues. Our data thus establish the emergence of friction forces at the interface between moving tissues as a critical force-generating process shaping the embryo.
Perception and Haptic Rendering of Friction Moments.
Kawasaki, H; Ohtuka, Y; Koide, S; Mouri, T
2011-01-01
This paper considers moments due to friction forces on the human fingertip. A computational technique called the friction moment arc method is presented. The method computes the static and/or dynamic friction moment independent of a friction force calculation. In addition, a new finger holder to display friction moment is presented. This device incorporates a small brushless motor and disk, and connects the human's finger to an interface finger of the five-fingered haptic interface robot HIRO II. Subjects' perception of friction moment while wearing the finger holder, as well as perceptions during object manipulation in a virtual reality environment, were evaluated experimentally.
Effect of time derivative of contact area on dynamic friction
NASA Astrophysics Data System (ADS)
Arakawa, Kazuo
2014-06-01
This study investigated dynamic friction during oblique impact of a golf ball by evaluating the ball's angular velocity, contact force, and the contact area between the ball and target. The effect of the contact area on the angular velocities was evaluated, and the results indicated that the contact area plays an important role in dynamic friction. In this study, the dynamic friction force F was given by F = μN + μη dA/dt, where μ is the coefficient of friction, N is the contact force, dA/dt is the time derivative of the contact area A, and η is a coefficient associated with the contact area.
NASA Astrophysics Data System (ADS)
Razali, M. F.; Mahmud, A. S.; Mokhtar, N.; Abdullah, J.
2017-10-01
This study investigated the influence of sliding friction toward the effective force of superelastic NiTi arch wire applied in orthodontic bracing for tooth leveling. A three-dimensional finite-element model integrated with superelastic subroutine and contact interaction was used to predict the contribution of friction on force-deflection curve of NiTi wire in three brackets bending configuration. It was found that the friction between the wire and the bracket increased proportionally as a function of wire deflection, thus transforming the constant force characteristic of NiTi material into a slope. The highest magnitude of sliding friction was measured to be 3.1 N and 2.2 N with respect to the activation and deactivation of the arch wire.
Mean Lagrangian drift in continental shelf waves
NASA Astrophysics Data System (ADS)
Drivdal, M.; Weber, J. E. H.
2012-04-01
The time- and depth-averaged mean drift induced by barotropic continental shelf waves (CSW's) is studied theoretically for idealized shelf topography by calculating the mean volume fluxes to second order in wave amplitude. The waves suffer weak spatial damping due to bottom friction, which leads to radiation stress forcing of the mean fluxes. In terms of the total wave energy density E¯ over the shelf region, the radiation stress tensor component S¯11 for CSW's is found to be different from that of shallow water surface waves in a non-rotating ocean. For CSW's, the ratio ¯S11/¯E depends strongly on the wave number. The mean Lagrangian flow forced by the radiation stress can be subdivided into a Stokes drift and a mean Eulerian drift current. The magnitude of the latter depends on the ratio between the radiation stress and the bottom stress acting on the mean flow. When the effect of bottom friction acts equally strong on the waves and the mean current, calculations for short CSW's show that the Stokes drift and the friction-dependent wave-induced mean Eulerian current varies approximately in anti-phase over the shelf, and that the latter is numerically the largest. For long CSW's they are approximately in phase. In both cases the mean Lagrangian current, which is responsible for the net particle drift, has its largest numerical value at the coast on the shallow part of the shelf. Enhancing the effect of bottom friction on the Eulerian mean flow, results in a general current speed reduction, as well as a change in spatial structure for long waves. Applying realistic physical parameters for the continental shelf west of Norway, calculations yield along-shelf mean drift velocities for short CSW's that may be important for the transport of biological material, neutral tracers, and underwater plumes of dissolved oil from deep water drilling accidents.
Radiation stress and mean drift in continental shelf waves
NASA Astrophysics Data System (ADS)
Weber, Jan Erik H.; Drivdal, Magnus
2012-03-01
The time- and depth-averaged mean drift induced by barotropic continental shelf waves (CSW's) is studied theoretically for idealized shelf topography by calculating the mean volume fluxes to second order in wave amplitude. The waves suffer weak spatial damping due to bottom friction, which leads to radiation stress forcing of the mean fluxes. In terms of the total wave energy density E̅̅ over the shelf region, the radiation stress tensor component S̅11 for CSW's is found to be different from that of shallow water surface waves in a non-rotating ocean. For CSW's, the ratio S̅11/E̅ depends strongly on the wave number. The mean Lagrangian flow forced by the radiation stress can be subdivided into a Stokes drift and a mean Eulerian drift current. The magnitude of latter depends on ratio between the radiation stress and the bottom stress acting on the mean flow. When the effect of bottom friction acts equally strong on the waves and the mean current, calculations for short CSW's show that the Stokes drift and the friction-dependent wave-induced mean Eulerian current varies approximately in anti-phase over the shelf, and that the latter is numerically the largest. For long CSW's they are approximately in phase. In both cases the mean Lagrangian current, which is responsible for the net particle drift, has its largest numerical value at the coast on the shallow part of the shelf. Enhancing the effect of bottom friction on the Eulerian mean flow, results in a general current speed reduction, as well as a change in spatial structure for long waves. Applying realistic physical parameters for the continental shelf west of Norway, calculations yield along-shelf mean drift velocities for short CSW's that may be important for the transport of biological material, neutral tracers, and underwater plumes of dissolved oil from deepwater drilling accidents.
Drag force scaling for penetration into granular media.
Katsuragi, Hiroaki; Durian, Douglas J
2013-05-01
Impact dynamics is measured for spherical and cylindrical projectiles of many different densities dropped onto a variety non-cohesive granular media. The results are analyzed in terms of the material-dependent scaling of the inertial and frictional drag contributions to the total stopping force. The inertial drag force scales similar to that in fluids, except that it depends on the internal friction coefficient. The frictional drag force scales as the square-root of the density of granular medium and projectile, and hence cannot be explained by the combination of granular hydrostatic pressure and Coulomb friction law. The combined results provide an explanation for the previously observed penetration depth scaling.
NASA Astrophysics Data System (ADS)
Staf, Hjalmar; Olsson, Erik; Lindskog, Per; Larsson, Per-Lennart
2018-03-01
The frictional behavior during powder compaction and ejection is studied using an instrumented die with eight radial sensors. The average friction over the total powder pillar is used to determine a local friction coefficient at each sensor. By comparing forces at compaction with forces at ejection, it can be shown that the Coulomb's friction coefficient can be described as a function of normal pressure. Also stick phenomena has been investigated in order to assess its influence on the determination of the local friction coefficient.
Auto-Adjustable Tool for Self-Reacting and Conventional Friction Stir Welding
NASA Technical Reports Server (NTRS)
Carter, Robert W. (Inventor)
2002-01-01
A friction stir welding dcvice that is configured to perform convention friction stir welding as well as self-reacting friction stir welding is described. A pin passes hrough an upper shoulder and can selectively attach 10 and detach from a lower shoulder in a preferred embodiment. A controller maintains thc discrete position of, and/or force applied by, the upper and lower shoulders during self-reacting friction stir welding, or maintains the pin at a desired depth and/or applied force during conventional friction stir welding.
Giant and Tunable Anisotropy of Nanoscale Friction in Graphene
NASA Astrophysics Data System (ADS)
Almeida, Clara M.; Prioli, Rodrigo; Fragneaud, Benjamin; Cançado, Luiz Gustavo; Paupitz, Ricardo; Galvão, Douglas S.; de Cicco, Marcelo; Menezes, Marcos G.; Achete, Carlos A.; Capaz, Rodrigo B.
2016-08-01
The nanoscale friction between an atomic force microscopy tip and graphene is investigated using friction force microscopy (FFM). During the tip movement, friction forces are observed to increase and then saturate in a highly anisotropic manner. As a result, the friction forces in graphene are highly dependent on the scanning direction: under some conditions, the energy dissipated along the armchair direction can be 80% higher than along the zigzag direction. In comparison, for highly-oriented pyrolitic graphite (HOPG), the friction anisotropy between armchair and zigzag directions is only 15%. This giant friction anisotropy in graphene results from anisotropies in the amplitudes of flexural deformations of the graphene sheet driven by the tip movement, not present in HOPG. The effect can be seen as a novel manifestation of the classical phenomenon of Euler buckling at the nanoscale, which provides the non-linear ingredients that amplify friction anisotropy. Simulations based on a novel version of the 2D Tomlinson model (modified to include the effects of flexural deformations), as well as fully atomistic molecular dynamics simulations and first-principles density-functional theory (DFT) calculations, are able to reproduce and explain the experimental observations.
Zhang, Gangqiang; Ren, Tianhui; Lette, Walter; Zeng, Xiangqiong; van der Heide, Emile
2017-10-01
Nowadays there is a wide variety of surgical sutures available in the market. Surgical sutures have different sizes, structures, materials and coatings, whereas they are being used for various surgeries. The frictional performances of surgical sutures have been found to play a vital role in their functionality. The high friction force of surgical sutures in the suturing process may cause inflammation and pain to the person, leading to a longer recovery time, and the second trauma of soft or fragile tissue. Thus, the investigation into the frictional performance of surgical suture is essential. Despite the unquestionable fact, little is actually known on the friction performances of surgical suture-tissue due to the lack of appropriate test equipment. This study presents a new penetration friction apparatus (PFA) that allowed for the evaluation of the friction performances of various surgical needles and sutures during the suturing process, under different contact conditions. It considered the deformation of tissue and can realize the puncture force measurements of surgical needles as well as the friction force of surgical sutures. The developed PFA could accurately evaluate and understand the frictional behaviour of surgical suture-tissue in the simulating clinical conditions. The forces measured by the PFA showed the same trend as that reported in literatures. Copyright © 2017 Elsevier Ltd. All rights reserved.
Study of Nanoscale Friction Behaviors of Graphene on Gold Substrates Using Molecular Dynamics
NASA Astrophysics Data System (ADS)
Zhu, Pengzhe; Li, Rui
2018-02-01
In this paper, we investigate the friction behaviors of graphene flakes sliding on a gold substrate using molecular dynamics simulations. The effects of flake size, flake shape, relative rotation angle between flake and substrate, and crystal orientation of substrate on the friction process are thoroughly studied. It is found that under the same load, the average friction forces per atom are smaller for a bigger graphene flake, which exhibits an obvious size effect. It is also shown that flake shape is critical in determining the friction in the sliding process. The average friction forces per atom for the square flake are much bigger than those for the triangular and round flakes. Moreover, the average friction forces per atom for the triangular flake are the smallest. We also find that the orientation of graphene flake relative to gold substrate plays a vital role in the friction process. The friction forces for the graphene flake sliding along the armchair direction are much bigger than those for the flakes with rotation. In addition, it is also found that single crystalline gold substrate exhibits a significant anisotropic effect of friction, which is attributed to the anisotropic effect of potential energy corrugation. These understandings not only shed light on the underlying mechanisms of graphene flake sliding on the gold substrates but also may guide the design and fabrication of nanoscale graphene-based devices.
An analysis of the wear behavior of SiC whisker reinforced alumina from 25 to 1200 C
NASA Technical Reports Server (NTRS)
Dellacorte, Christopher
1991-01-01
A model is described for predicting the wear behavior of whisker reinforced ceramics. The model was successfully applied to a silicon carbide whisker reinforced alumina ceramic composite subjected to sliding contact. The model compares the friction forces on the whiskers due to sliding, which act to pull or push them out of the matrix, to the clamping or compressive forces on the whiskers due to the matrix, which act to hold the whiskers in the composite. At low temperatures, the whiskers are held strongly in the matrix and are fractured into pieces during the wear process along with the matrix. At elevated temperatures differential thermal expansion between the whiskers and matrix can cause loosening of the whiskers and lead to pullout during the wear process and to higher wear. The model, which represents the combination of elastic stress analysis and a friction heating analysis, predicts a transition temperature at which the strength of the whiskers equals the clamping force holding them in the matrix. Above the transition the whiskers are pulled out of the matrix during sliding, and below the transition the whiskers are simply fractured. The existence of the transition gives rise to a dual wear mode or mechanism behavior for this material which was observed in laboratory experiments. The results from this model correlate well with experimentally observed behavior indicating that the model may be useful in obtaining a better understanding of material behavior and in making material improvements.
An analysis of the wear behavior of SiC whisker-reinforced alumina from 25 to 1200 C
NASA Technical Reports Server (NTRS)
Dellacorte, Christopher
1993-01-01
A model is described for predicting the wear behavior of whisker reinforced ceramics. The model was successfully applied to a silicon carbide whisker reinforced alumina ceramic composite subjected to sliding contact. The model compares the friction forces on the whiskers due to sliding, which act to pull or push them out of the matrix, to the clamping or compressive forces on the whiskers due to the matrix, which act to hold the whiskers in the composite. At low temperatures, the whiskers are held strongly in the matrix and are fractured into pieces during the wear process along with the matrix. At elevated temperatures differential thermal expansion between the whiskers and matrix can cause loosening of the whiskers and lead to pullout during the wear process and to higher wear. The model, which represents the combination of elastic stress analysis and a friction heating analysis, predicts a transition temperature at which the strength of the whiskers equals the clamping force holding them in the matrix. Above the transition the whiskers are pulled out of the matrix during sliding, and below the transition the whiskers are simply fractured. The existence of the transition gives rise to a dual wear mode or mechanism behavior for this material which was observed in laboratory experiments. The results from this model correlate well with experimentally observed behavior indicating that the model may be useful in obtaining a better understanding of material behavior and in making material improvements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Ying; Lu, Qingyou, E-mail: qxl@ustc.edu.cn; Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230026
2014-05-15
We present a completely practical TunaDrive piezo motor. It consists of a central piezo stack sandwiched by two arm piezo stacks and two leg piezo stacks, respectively, which is then sandwiched and spring-clamped by a pair of parallel polished sapphire rods. It works by alternatively fast expanding and contracting the arm/leg stacks while slowly expanding/contracting the central stack simultaneously. The key point is that sufficiently fast expanding and contracting a limb stack can make its two sliding friction forces well cancel, resulting in the total sliding friction force is <10% of the total static friction force, which can help increasemore » output force greatly. The piezo motor's high compactness, precision, and output force make it perfect in building a high-quality harsh-condition (vibration resistant) atomic resolution scanning probe microscope.« less
Xie, Qingguang; Harting, Jens
2018-05-08
The deposition of particles on a substrate by drying a colloidal suspension droplet is at the core of applications ranging from traditional printing on paper to printable electronics or photovoltaic devices. The self-pinning induced by the accumulation of particles at the contact line plays an important role in the formation of a deposit. In this article, we investigate, both numerically and theoretically, the effect of friction between the particles and the substrate on the deposition pattern. Without friction, the contact line shows a stick-slip behavior and a dotlike deposit is left after the droplet is evaporated. By increasing the friction force, we observe a transition from a dotlike to a ringlike deposit. We propose a theoretical model to predict the effective radius of the particle deposit as a function of the friction force. Our theoretical model predicts a critical friction force when self-pinning happens and the effective radius of deposit increases with increasing friction force, confirmed by our simulation results. Our results can find implications for developing active control strategies for the deposition of drying droplets.
The Frictional Force with Respect to the Actual Contact Surface
NASA Technical Reports Server (NTRS)
Holm, Ragnar
1944-01-01
Hardy's statement that the frictional force is largely adhesion, and to a lesser extent, deformation energy is proved by a simple experiment. The actual contact surface of sliding contacts and hence the friction per unit of contact surface was determined in several cases. It was found for contacts in normal atmosphere to be about one-third t-one-half as high as the macroscopic tearing strength of the softest contact link, while contacts annealed in vacuum and then tested, disclosed frictional forces which are greater than the macroscopic strength.
Solid friction between soft filaments.
Ward, Andrew; Hilitski, Feodor; Schwenger, Walter; Welch, David; Lau, A W C; Vitelli, Vincenzo; Mahadevan, L; Dogic, Zvonimir
2015-06-01
Any macroscopic deformation of a filamentous bundle is necessarily accompanied by local sliding and/or stretching of the constituent filaments. Yet the nature of the sliding friction between two aligned filaments interacting through multiple contacts remains largely unexplored. Here, by directly measuring the sliding forces between two bundled F-actin filaments, we show that these frictional forces are unexpectedly large, scale logarithmically with sliding velocity as in solid-like friction, and exhibit complex dependence on the filaments' overlap length. We also show that a reduction of the frictional force by orders of magnitude, associated with a transition from solid-like friction to Stokes's drag, can be induced by coating F-actin with polymeric brushes. Furthermore, we observe similar transitions in filamentous microtubules and bacterial flagella. Our findings demonstrate how altering a filament's elasticity, structure and interactions can be used to engineer interfilament friction and thus tune the properties of fibrous composite materials.
Solid friction between soft filaments
NASA Astrophysics Data System (ADS)
Ward, Andrew; Hilitski, Feodor; Schwenger, Walter; Welch, David; Lau, A. W. C.; Vitelli, Vincenzo; Mahadevan, L.; Dogic, Zvonimir
2015-06-01
Any macroscopic deformation of a filamentous bundle is necessarily accompanied by local sliding and/or stretching of the constituent filaments. Yet the nature of the sliding friction between two aligned filaments interacting through multiple contacts remains largely unexplored. Here, by directly measuring the sliding forces between two bundled F-actin filaments, we show that these frictional forces are unexpectedly large, scale logarithmically with sliding velocity as in solid-like friction, and exhibit complex dependence on the filaments’ overlap length. We also show that a reduction of the frictional force by orders of magnitude, associated with a transition from solid-like friction to Stokes’s drag, can be induced by coating F-actin with polymeric brushes. Furthermore, we observe similar transitions in filamentous microtubules and bacterial flagella. Our findings demonstrate how altering a filament’s elasticity, structure and interactions can be used to engineer interfilament friction and thus tune the properties of fibrous composite materials.
Li, Chengwei; Zhan, Liwei
2015-08-01
To estimate the coefficient of friction between tire and runway surface during airplane touchdowns, we designed an experimental rig to simulate such events and to record the impact and friction forces being executed. Because of noise in the measured signals, we developed a filtering method that is based on the ensemble empirical mode decomposition and the bandwidth of probability density function of each intrinsic mode function to extract friction and impact force signals. We can quantify the coefficient of friction by calculating the maximum values of the filtered force signals. Signal measurements are recorded for different drop heights and tire rotational speeds, and the corresponding coefficient of friction is calculated. The result shows that the values of the coefficient of friction change only slightly. The random noise and experimental artifact are the major reason of the change.
Solid friction between soft filaments
Ward, Andrew; Hilitski, Feodor; Schwenger, Walter; ...
2015-03-02
Any macroscopic deformation of a filamentous bundle is necessarily accompanied by local sliding and/or stretching of the constituent filaments. Yet the nature of the sliding friction between two aligned filaments interacting through multiple contacts remains largely unexplored. Here, by directly measuring the sliding forces between two bundled F-actin filaments, we show that these frictional forces are unexpectedly large, scale logarithmically with sliding velocity as in solid-like friction, and exhibit complex dependence on the filaments’ overlap length. We also show that a reduction of the frictional force by orders of magnitude, associated with a transition from solid-like friction to Stokes’s drag,more » can be induced by coating F-actin with polymeric brushes. Furthermore, we observe similar transitions in filamentous microtubules and bacterial flagella. In conclusion, our findings demonstrate how altering a filament’s elasticity, structure and interactions can be used to engineer interfilament friction and thus tune the properties of fibrous composite materials.« less
Stationary orbits of satellites of disk galaxies
NASA Technical Reports Server (NTRS)
Polyachenko, Valerij L.
1990-01-01
The satellite of an S-galaxy will experience opposing dynamical-friction forces from the stars of the disk and the halo. If these forces are in balance, the satellite may travel in a stable, near-circular orbit whose radius, for a wide range of physical parameters, should be limited to a zone 1.2 to 1.4 times the disk radius, much as is observed. The idea is very simple. The dynamical friction acting on a small satellite, moving through a stellar galactic halo, makes this satellite slow down. On the other hand, a stellar disk, rotating faster than a satellite, makes it speed up. But the density distributions in radius for disk's and halo's stars in real flat galaxies are quite different (respectively, exponential and power-law). Moreover, the observational data show that the exponential profile for disk's surface density drops abruptly at some radius (r sub d). So it is natural to expect that a stationary orbit could be near the edge of a disk (where two effects are mutually compensated).
The Prediction of the Work of Friction Force on the Arbitrary Path
ERIC Educational Resources Information Center
Matehkolaee, Mehdi Jafari; Majidian, Kourosh
2013-01-01
In this paper we have calculated the work of friction force on the arbitrary path. In our method didn't use from energy conservative conceptions any way. The distinction of this procedure is that at least do decrease measurement on the path once. Thus we can forecast the amount of work of friction force without information about speed of…
Nonlinear friction dynamics on polymer surface under accelerated movement
NASA Astrophysics Data System (ADS)
Aita, Yuuki; Asanuma, Natsumi; Takahashi, Akira; Mayama, Hiroyuki; Nonomura, Yoshimune
2017-04-01
Nonlinear phenomena on the soft material surface are one of the most exciting topics of chemical physics. However, only a few reports exist on the friction phenomena under accelerated movement, because friction between two solid surfaces is considered a linear phenomenon in many cases. We aim to investigate how nonlinear accelerated motion affects friction on solid surfaces. In the present study, we evaluate the frictional forces between two polytetrafluoroethylene (PTFE) resins using an advanced friction evaluation system. On PTFE surfaces, the normalized delay time δ, which is the time lag in the response of the friction force to the accelerated movement, is observed in the pre-sliding friction process. Under high-velocity conditions, kinetic friction increases with velocity. Based on these experimental results, we propose a two-phase nonlinear model including a pre-sliding process (from the beginning of sliding of a contact probe to the establishment of static friction) and a kinetic friction process. The present model consists of several factors including velocity, acceleration, stiffness, viscosity, and vertical force. The findings reflecting the viscoelastic properties of soft material is useful for various fields such as in the fabrication of clothes, cosmetics, automotive materials, and virtual reality systems as well as for understanding friction phenomena on soft material surfaces.
Friction and Wear on the Atomic Scale
NASA Astrophysics Data System (ADS)
Gnecco, Enrico; Bennewitz, Roland; Pfeiffer, Oliver; Socoliuc, Anisoara; Meyer, Ernst
Friction has long been the subject of research: the empirical da Vinci-Amontons friction laws have been common knowledge for centuries. Macroscopic experiments performed by the school of Bowden and Tabor revealed that macroscopic friction can be related to the collective action of small asperities. Over the last 15 years, experiments performed with the atomic force microscope have provided new insights into the physics of single asperities sliding over surfaces. This development, together with the results from complementary experiments using surface force apparatus and the quartz microbalance, have led to the new field of nanotribology. At the same time, increasing computing power has permitted the simulation of processes that occur during sliding contact involving several hundreds of atoms. It has become clear that atomic processes cannot be neglected when interpreting nanotribology experiments. Even on well-defined surfaces, experiments have revealed that atomic structure is directly linked to friction force. This chapter will describe friction force microscopy experiments that reveal, more or less directly, atomic processes during sliding contact.
Fragmentation dynamics of ionized neon trimer inside helium nanodroplets: a theoretical study.
Bonhommeau, David; Viel, Alexandra; Halberstadt, Nadine
2004-06-22
We report a theoretical study of the fragmentation dynamics of Ne(3) (+) inside helium nanodroplets, following vertical ionization of the neutral neon trimer. The motion of the neon atoms is treated classically, while transitions between the electronic states of the ionic cluster are treated quantum mechanically. A diatomics-in-molecules description of the potential energy surfaces is used, in a minimal basis set consisting of three effective p orbitals on each neon atom for the missing electron. The helium environment is modeled by a friction force acting on the neon atoms when their speed exceeds the Landau velocity. A reasonable range of values for the corresponding friction coefficient is obtained by comparison with existing experimental measurements. (c) 2004 American Institute of Physics.
NASA Astrophysics Data System (ADS)
Konovalenko, Ivan S.; Konovalenko, Igor S.
2015-10-01
Metal behavior under loading conditions that reproduce friction stir welding was studied on the atomic scale. Calculations were conducted based on molecular dynamics simulation with potentials calculated within the embedded atom method. The loading of the interface between two crystallites, whose structure corresponded to aluminum alloy 2024, was simulated by the motion of a cone-shaped tool along the interface with constant angular and translational velocities. The motion of the rotating tool causes fracture of the workpiece crystal structure with subsequent mixing of surface atoms of the interfacing crystallites. It is shown that the resistance force acting on the moving tool from the workpiece and the process of structural defect formation in the workpiece depend on the tool shape.
Acetylcholine released by endothelial cells facilitates flow‐mediated dilatation
Wilson, Calum; Lee, Matthew D.
2016-01-01
Key points The endothelium plays a pivotal role in the vascular response to chemical and mechanical stimuli.The endothelium is exquisitely sensitive to ACh, although the physiological significance of ACh‐induced activation of the endothelium is unknown.In the present study, we investigated the mechanisms of flow‐mediated endothelial calcium signalling.Our data establish that flow‐mediated endothelial calcium responses arise from the autocrine action of non‐neuronal ACh released by the endothelium. Abstract Circulating blood generates frictional forces (shear stress) on the walls of blood vessels. These frictional forces critically regulate vascular function. The endothelium senses these frictional forces and, in response, releases various vasodilators that relax smooth muscle cells in a process termed flow‐mediated dilatation. Although some elements of the signalling mechanisms have been identified, precisely how flow is sensed and transduced to cause the release of relaxing factors is poorly understood. By imaging signalling in large areas of the endothelium of intact arteries, we show that the endothelium responds to flow by releasing ACh. Once liberated, ACh acts to trigger calcium release from the internal store in endothelial cells, nitric oxide production and artery relaxation. Flow‐activated release of ACh from the endothelium is non‐vesicular and occurs via organic cation transporters. ACh is generated following mitochondrial production of acetylCoA. Thus, we show ACh is an autocrine signalling molecule released from endothelial cells, and identify a new role for the classical neurotransmitter in endothelial mechanotransduction. PMID:27730645
Shear thickening in suspensions: the lubricated-to-frictional contact scenario
NASA Astrophysics Data System (ADS)
Morris, Jeffrey
2017-11-01
Suspensions of solid particles in viscous liquids can vary from low-viscosity liquids to wet granular materials or soft solids depending on the solids loading and the forces acting between particles. When the particles are very concentrated, these mixtures are ''dense suspensions.'' Dense suspensions often exhibit shear thickening, an increase in apparent viscosity as the shear rate is increased. In its most extreme form, order of magnitude increases in viscosity over such a narrow range in shear rate occur that the term discontinuous shear thickening (DST) is applied. DST is particularly striking as it occurs in the relatively simple case of nearly hard spheres in a Newtonian liquid, and is found to take place for submicron particles in colloidal dispersions to much larger particle corn starch dispersions. We focus on simulations of a recently developed ``lubricated-to-frictional'' rheology in which the interplay of viscous lubrication, repulsive surface forces, and contact friction between particle surfaces provides a scenario to explain DST. Our simulation method brings together elements of the discrete-element method from granular flow with a simplified Stokesian Dynamics, and can rationalize not only the abrupt change in properties with imposed shear rate (or shear stress), but also the magnitude of the change. The large change in properties is associated with the breakdown of lubricating films between particles, with activation of Coulomb friction between particles. The rate dependence is caused by the shearing forces driving particles to contact, overwhelming conservative repulsive forces between surfaces; the repulsive forces are representative of colloidal stabilization by surface charge or steric effects, e.g. due to adsorbed polymer. The results of simulation are compared to developments by other groups, including a number of experimental studies and a theory incorporating the same basic elements as the simulation. The comparison to experiments of the predictions of the lubricated-to-frictional rheology is generally good, but discrepancies demand some perspective on the strong simplifying assumptions in the model. Since contact is difficult to both establish and to characterize for surfaces between particles of micron scale or smaller, what is happening in the very close ``contacts'' is not clear, and how changes at this scale give rise to the large-scale force organization is yet to be established. The insight to the elements needed for the abrupt flow induced transition seen in DST thus suggests a need for consideration of both the microscopic physics of contact and the statistical physics governing the macroscopic properties. This work was supported in part by the NSF CBET program, Grant # 1605283.
Nanjundan, Kavitha; Vimala, G
2016-01-01
To evaluate the changes of static and kinetic frictional forces between the brackets and wires following exposure to a soft drink, acidic food ingredient, and acidulated fluoride prophylactic agents. Two types of Roth prescription mandibular incisor brackets were used: 3M Unitek Victory stainless steel (SS) brackets (n = 40) and Transcend 6000 polycrystalline alumina (PCA) brackets (n = 40) as well as eighty 0.019 × 0.025" dimension ortho technology SS wires of 50 mm length each. Subsequently, brackets tied with SS wires divided into eight subgroups (n = 10) and were immersed in vinegar (pH = 3.5 ± 0.5), Pepsi ® (pH = 2.46), Colgate Phos-Flur mouth rinse (pH = 5.1), and artificial saliva (control group pH = 7) for 24 h. Changes in surface morphology under scanning electron microscope ×1000, surface roughness (Ra) with surface profilometer (single bracket and single wire from each subgroup), and frictional resistance using universal testing machine were evaluated. Highest mean (standard deviation) static frictional force of 2.65 (0.25) N was recorded in Pepsi ® followed by 2.57 (0.25) N, 2.40 (0.22) N, and 2.36 (0.17) N for Vinegar, Colgate Phos-Flur mouth rinse, and artificial saliva groups, respectively. In a similar order, lesser mean kinetic frictional forces obtained. PCA brackets revealed more surface deterioration and higher frictional force values than SS brackets. A significant positive correlation was observed between frictional forces and bracket slot roughness (r = 0.861 and 0.802, respectively, for static and kinetic frictional forces, p < 0.001 for both) and wire roughness (r = 0.243 and 0.242, respectively, for static and kinetic frictional forces, p < 0.05 for both). Findings may have long-term implications when acidic food substances are used during fixed orthodontic treatment. Further, in vivo studies are required to analyze the clinical effect of acidic mediums in the oral environment during orthodontic treatment.
NASA Astrophysics Data System (ADS)
Feng, Dongdong; Peng, Jinfeng; Liu, Sisi; Zheng, Xuejun; Yan, Xinyang; He, Wenyuan
2018-01-01
Distinguishing with the traditional cantilever mechanics method, we propose the extended cantilever mechanics method to calibrate the lateral calibration factor by using the normal spring constant obtained from atomic force microscopy (AFM) but not the Young’s modulus and the width of the cantilever, before the influences of thickness, scanning velocity and humidity on the frictional properties are investigated via friction measurement performed by the lateral force mode (LFM) of AFM. Tungsten disulfide (WS2) nanosheets were prepared through hydrothermal intercalation and exfoliation route, and AFM and Raman microscope were used to investigate the frictional properties, thickness and crystalline structure. The friction force and coefficient decrease monotonically with the increase of the nanosheet’s thickness, and the friction coefficient minimum value is close to 0.012 when the thickness larger than 5 nm. The friction property variation on the nanosheet’s thickness can be explained by the puckering effect of tip-sheet adhesion according thickness dependence of bending stiffness in the frame of continuum mechanics. The friction force is a constant value 1.7 nN when the scanning speed larger than the critical value 3.10 μm s-1, while it logarithmically increases for the scanning speed less than the critical value. It is easy to understand through the energy dissipation model and the thermally activated effect. The friction force and friction coefficient increase with the relative humidity at the range of 30%-60%, and the latter is at the range of 0.010-0.013. Influence of relative humidity is discussed via the increasing area of the water monolayer during the water adsorption process. The research can not only enrich nanotribology theory, but also prompt two dimensions materials for nanomechanical applications.
NASA Astrophysics Data System (ADS)
Latorre, Carmen; Bhushan, Bharat
2005-07-01
Tribological properties are useful in the study of human hair and other biological materials. Major sources of investigation for conditioner treated hair includes localization of conditioner, mechanisms related to changes in surface roughness, friction, and adhesion on the nanoscale due to conditioner agents, and how the products change the microstructure of the cuticle. The paper presents nanotribological studies investigating surface roughness, friction, and adhesion using atomic force/friction force microscopy (AFM/FFM). Test samples include virgin and chemically damaged hair, both with and without commercial conditioner treatment, as well as chemically damaged hair with experimental conditioner treatments. Friction force mapping provides insight into the localized change in friction caused by the application of hair care materials. Adhesive force maps to study adhesion on the cuticle surface provide information about localization and distribution of conditioner as well. A discussion is presented on these properties of hair as a function of relative humidity, temperature, durability, and conditioning treatments.
NASA Astrophysics Data System (ADS)
Grzegożek, W.; Dobaj, K.; Kot, A.
2016-09-01
The paper includes the analysis of the rubber V-belt cooperation with the CVT transmission pulleys. The analysis of the forces and torques acting in the CVT transmission was conducted basing on calculated characteristics of the centrifugal regulator and the torque regulator. The accurate estimation of the regulator surface curvature allowed for calculation of the relation between the driving wheel axial force, the engine rotational speed and the gear ratio of the CVT transmission. Simplified analytical models of the rubber V-belt- pulley cooperation are based on three basic approaches. The Dittrich model assumes two contact regions on the driven and driving wheel. The Kim-Kim model considers, in addition to the previous model, also the radial friction. The radial friction results in the lack of the developed friction area on the driving pulley. The third approach, formulated in the Cammalleri model, assumes variable sliding angle along the wrap arch and describes it as a result the belt longitudinal and cross flexibility. Theoretical torque on the driven and driving wheel was calculated on the basis of the known regulators characteristics. The calculated torque was compared to the measured loading torque. The best accordance, referring to the centrifugal regulator range of work, was obtained for the Kim-Kim model.
NASA Astrophysics Data System (ADS)
Bakker, O. J.; Gibson, C.; Wilson, P.; Lohse, N.; Popov, A. A.
2015-10-01
Due to its inherent advantages, linear friction welding is a solid-state joining process of increasing importance to the aerospace, automotive, medical and power generation equipment industries. Tangential oscillations and forge stroke during the burn-off phase of the joining process introduce essential dynamic forces, which can also be detrimental to the welding process. Since burn-off is a critical phase in the manufacturing stage, process monitoring is fundamental for quality and stability control purposes. This study aims to improve workholding stability through the analysis of fixture cassette deformations. Methods and procedures for process monitoring are developed and implemented in a fail-or-pass assessment system for fixture cassette deformations during the burn-off phase. Additionally, the de-noised signals are compared to results from previous production runs. The observed deformations as a consequence of the forces acting on the fixture cassette are measured directly during the welding process. Data on the linear friction-welding machine are acquired and de-noised using empirical mode decomposition, before the burn-off phase is extracted. This approach enables a direct, objective comparison of the signal features with trends from previous successful welds. The capacity of the whole process monitoring system is validated and demonstrated through the analysis of a large number of signals obtained from welding experiments.
Dong, Sheng; Dapino, Marcelo
2015-01-01
Friction and wear are detrimental to engineered systems. Ultrasonic lubrication is achieved when the interface between two sliding surfaces is vibrated at a frequency above the acoustic range (20 kHz). As a solid-state technology, ultrasonic lubrication can be used where conventional lubricants are unfeasible or undesirable. Further, ultrasonic lubrication allows for electrical modulation of the effective friction coefficient between two sliding surfaces. This property enables adaptive systems that modify their frictional state and associated dynamic response as the operating conditions change. Surface wear can also be reduced through ultrasonic lubrication. We developed a protocol to investigate the dependence of friction force reduction and wear reduction on the linear sliding velocity between ultrasonically lubricated surfaces. A pin-on-disc tribometer was built which differs from commercial units in that a piezoelectric stack is used to vibrate the pin at 22 kHz normal to the rotating disc surface. Friction and wear metrics including effective friction force, volume loss, and surface roughness are measured without and with ultrasonic vibrations at a constant pressure of 1 to 4 MPa and three different sliding velocities: 20.3, 40.6, and 87 mm/sec. An optical profilometer is utilized to characterize the wear surfaces. The effective friction force is reduced by 62% at 20.3 mm/sec. Consistently with existing theories for ultrasonic lubrication, the percent reduction in friction force diminishes with increasing speed, down to 29% friction force reduction at 87 mm/sec. Wear reduction remains essentially constant (49%) at the three speeds considered. PMID:26436691
Estimation of real-time runway surface contamination using flight data recorder parameters
NASA Astrophysics Data System (ADS)
Curry, Donovan
Within this research effort, the development of an analytic process for friction coefficient estimation is presented. Under static equilibrium, the sum of forces and moments acting on the aircraft, in the aircraft body coordinate system, while on the ground at any instant is equal to zero. Under this premise the longitudinal, lateral and normal forces due to landing are calculated along with the individual deceleration components existent when an aircraft comes to a rest during ground roll. In order to validate this hypothesis a six degree of freedom aircraft model had to be created and landing tests had to be simulated on different surfaces. The simulated aircraft model includes a high fidelity aerodynamic model, thrust model, landing gear model, friction model and antiskid model. Three main surfaces were defined in the friction model; dry, wet and snow/ice. Only the parameters recorded by an FDR are used directly from the aircraft model all others are estimated or known a priori. The estimation of unknown parameters is also presented in the research effort. With all needed parameters a comparison and validation with simulated and estimated data, under different runway conditions, is performed. Finally, this report presents results of a sensitivity analysis in order to provide a measure of reliability of the analytic estimation process. Linear and non-linear sensitivity analysis has been performed in order to quantify the level of uncertainty implicit in modeling estimated parameters and how they can affect the calculation of the instantaneous coefficient of friction. Using the approach of force and moment equilibrium about the CG at landing to reconstruct the instantaneous coefficient of friction appears to be a reasonably accurate estimate when compared to the simulated friction coefficient. This is also true when the FDR and estimated parameters are introduced to white noise and when crosswind is introduced to the simulation. After the linear analysis the results show the minimum frequency at which the algorithm still provides moderately accurate data is at 2Hz. In addition, the linear analysis shows that with estimated parameters increased and decreased up to 25% at random, high priority parameters have to be accurate to within at least +/-5% to have an effect of less than 1% change in the average coefficient of friction. Non-linear analysis results show that the algorithm can be considered reasonably accurate for all simulated cases when inaccuracies in the estimated parameters vary randomly and simultaneously up to +/-27%. At worst-case the maximum percentage change in average coefficient of friction is less than 10% for all surfaces.
Adhesion and friction in gecko toe attachment and detachment
Tian, Yu; Pesika, Noshir; Zeng, Hongbo; Rosenberg, Kenny; Zhao, Boxin; McGuiggan, Patricia; Autumn, Kellar; Israelachvili, Jacob
2006-01-01
Geckos can run rapidly on walls and ceilings, requiring high friction forces (on walls) and adhesion forces (on ceilings), with typical step intervals of ≈20 ms. The rapid switching between gecko foot attachment and detachment is analyzed theoretically based on a tape model that incorporates the adhesion and friction forces originating from the van der Waals forces between the submicron-sized spatulae and the substrate, which are controlled by the (macroscopic) actions of the gecko toes. The pulling force of a spatula along its shaft with an angle θ between 0 and 90° to the substrate, has a “normal adhesion force” contribution, produced at the spatula-substrate bifurcation zone, and a “lateral friction force” contribution from the part of spatula still in contact with the substrate. High net friction and adhesion forces on the whole gecko are obtained by rolling down and gripping the toes inward to realize small pulling angles θ between the large number of spatulae in contact with the substrate. To detach, the high adhesion/friction is rapidly reduced to a very low value by rolling the toes upward and backward, which, mediated by the lever function of the setal shaft, peels the spatulae off perpendicularly from the substrates. By these mechanisms, both the adhesion and friction forces of geckos can be changed over three orders of magnitude, allowing for the swift attachment and detachment during gecko motion. The results have obvious implications for the fabrication of dry adhesives and robotic systems inspired by the gecko's locomotion mechanism. PMID:17148600
Nikogeorgos, Nikolaos; Madsen, Jan Busk; Lee, Seunghwan
2014-10-01
Lubricating properties of bovine submaxillary mucin (BSM) on a compliant, hydrophobic surface were studied as influenced by impurities, in particular bovine serum albumin (BSA), at macro and nanoscale contacts by means of pin-on-disk tribometry and friction force microscopy (FFM), respectively. At both contact scales, the purity of BSM and the presence of BSA were quantitatively discriminated. The presence of BSA was responsible for higher frictional forces observed from BSM samples containing relatively larger amount of BSA. But, the mechanisms contributing to higher friction forces by BSA were different at different contact scales. At the macroscale contact, higher friction forces were caused by faster and dominant adsorption of BSA into the contacting area under a continuous cycle of desorption and re-adsorption of the macromolecules from tribostress. Nevertheless, all BSMs lowered the interfacial friction forces due to large contact area and a large number of BSM molecules in the contact area. At the nanoscale contact, however, no significant desorption of the macromolecules is expected in tribological contacts because of too small contact area and extremely small number of BSM molecules involved in the contact area. Instead, increasingly higher friction forces with increasing amount of BSA in BSM layer are attributed to higher viscosity caused by BSA in the layer. Comparable size of AFM probes with BSM molecules allowed them to penetrate through the BSM layers and to scratch on the underlying substrates, and thus induced higher friction forces compared to the sliding contact on bare substrates. Copyright © 2014 Elsevier B.V. All rights reserved.
Force fluctuations while pressing and moving against high- and low-friction touch screen surfaces.
Joshi, Mukta N; Keenan, Kevin G
2016-07-01
The purpose of this study was to identify the influence of a high- and low-friction surface on the ability to maintain a steady downward force during an index finger pressing and moving task. Fifteen right-handed subjects (24-48 years) performed a static force pressing task and a hybrid pressing and moving task on the surface of an iPad mini while holding a steady 2-N force on high- and low-friction surfaces. Variability of force was quantified as the standard deviation (SD) of normal force (F z) and shear force (F xy) across friction conditions and tasks. The SD of F z was 227 % greater during the hybrid task as compared to the static task (p < .001) and was 19 % greater for the high- versus low-friction condition (p = .033). There were positive correlations between SD of F z and F xy during the hybrid force/motion tasks on the high- and low-friction conditions (r (2) = 0.5 and 0.86, respectively), suggesting significant associations between normal and shear forces for this hybrid task. The correlation between the SD of F z for static and hybrid tasks was r (2) = 0.44, indicating that the common practice of examining the control of static tasks may not sufficiently explain performance during hybrid tasks, at least for the young subjects tested in the current study. As activities of daily living frequently require hybrid force/motion tasks (e.g., writing, doing the dishes, and cleaning counters), the results of this study emphasize the need to study motor performance during hybrid tasks in addition to static force tasks.
Physics-based process model approach for detecting discontinuity during friction stir welding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shrivastava, Amber; Pfefferkorn, Frank E.; Duffie, Neil A.
2015-02-12
The goal of this work is to develop a method for detecting the creation of discontinuities during friction stir welding. This in situ weld monitoring method could significantly reduce the need for post-process inspection. A process force model and a discontinuity force model were created based on the state-of-the-art understanding of flow around an friction stir welding (FSW) tool. These models are used to predict the FSW forces and size of discontinuities formed in the weld. Friction stir welds with discontinuities and welds without discontinuities were created, and the differences in force dynamics were observed. In this paper, discontinuities weremore » generated by reducing the tool rotation frequency and increasing the tool traverse speed in order to create "cold" welds. Experimental force data for welds with discontinuities and welds without discontinuities compared favorably with the predicted forces. The model currently overpredicts the discontinuity size.« less
Analysis of dry friction damping characteristics for short cylindrical shell structures
NASA Astrophysics Data System (ADS)
Wang, Nengmao; Wang, Yanrong
2018-05-01
An efficient mathematical model to describe the friction of short cylindrical shell structures with a dry friction damping sleeve is proposed. The frictional force in the circumference and axial direction is caused by the opposing bending strains at the interface. Slipping will occur at part region of the interface and the mathematic model of the slipping region is established. Ignoring the effect of contact stiffness on the vibration analysis, the friction energy dissipation capability of damping sleeve would be calculated. Structural vibration mode, positive pressure at the interface and vibration stress of the short cylindrical shell structures is analyzed as influence factors to the critical damping ratio. The results show that the circumferential friction energy dissipation is more sensitive to the number of nodal diameter, and the circumferential friction damping ratio increases rapidly with the number of nodal diameter. The slipping frictional force would increase along with the positive pressure, but the slipping region would decrease with it. The peak damping ratio keeps nearly constant. But the vibration stress corresponding to peak damping ratio would increases with the positive pressure. The dry friction damping ratio of damping sleeve contains the effect of frictional force in the circumference and axial direction, and the axial friction plays a major role.
NASA Astrophysics Data System (ADS)
Amanokura, Jin; Ono, Hiroshi; Hombo, Kyoko
2011-05-01
In order to obtain a high-speed copper chemical mechanical polishing (CMP) process for through silicon vias (TSV) application, we developed a new Cu CMP slurry through friction analysis of Cu reaction layer by an atomic force microscope (AFM) technique. A lateral modulation friction force microscope (LM-FFM) is able to measure the friction value properly giving a vibration to the layer. We evaluated the torsional displacement between the probe of the LM-FFM and the Cu reaction layer under a 5 nm vibration to cancel the shape effect of the Cu reaction layer. The developed Cu CMP slurry forms a frictionally easy-removable Cu reaction layer.
Dynamic Friction Performance of a Pneumatic Cylinder with Al2O3 Film on Cylinder Surface.
Chang, Ho; Lan, Chou-Wei; Wang, Hao-Xian
2015-11-01
A friction force system is proposed for accurately measuring friction force and motion properties produced by reciprocating motion of piston in a pneumatic cylinder. In this study, the proposed system is used to measure the effects of lubricating greases of different viscosities on the friction properties of pneumatic cylinder, and improvement of stick-slip motion for the cylinder bore by anodizing processes. A servo motor-driven ball screw is used to drive the pneumatic cylinder to be tested and to measure the change in friction force of the pneumatic cylinder. Experimental results show, that under similar test conditions, the lubricating grease with viscosity VG100 is best suited for measuring reciprocating motion of the piston of pneumatic cylinder. The wear experiment showed that, in the Al2O3 film obtained at a preset voltage 40 V in the anodic process, the friction coefficient and hardness decreased by 55% and increased by 274% respectively, thus achieving a good tribology and wear resistance. Additionally, the amplitude variation in the friction force of the pneumatic cylinder wall that received the anodizing treatment was substantially reduced. Additionally, the stick-slip motion of the pneumatic cylinder during low-speed motion was substantially improved.
Rolling Friction on a Wheeled Laboratory Cart
2012-01-01
by gravity, and a vehicle (such as a car or bicycle) accelerating along a level road is driven by a motor or by pedalling. In such cases, static...is slowing down, its acceleration a points downhill). The normal force N, frictional force f and axle torque four wheels. θ υ N a θ ω τ ƒ mg...friction force pointed backward (to translationally decelerate the object), then it would simultaneously rotationally accelerate the cylinder about its
Study on longitudinal force simulation of heavy-haul train
NASA Astrophysics Data System (ADS)
Chang, Chongyi; Guo, Gang; Wang, Junbiao; Ma, Yingming
2017-04-01
The longitudinal dynamics model of heavy-haul trains and air brake model used in the longitudinal train dynamics (LTDs) are established. The dry friction damping hysteretic characteristic of steel friction draft gears is simulated by the equation which describes the suspension forces in truck leaf springs. The model of draft gears introduces dynamic loading force, viscous friction of steel friction and the damping force. Consequently, the numerical model of the draft gears is brought forward. The equation of LTDs is strongly non-linear. In order to solve the response of the strongly non-linear system, the high-precision and equilibrium iteration method based on the Newmark-β method is presented and numerical analysis is made. Longitudinal dynamic forces of the 20,000 tonnes heavy-haul train are tested, and models and solution method provided are verified by the test results.
NASA Astrophysics Data System (ADS)
Kwak, Musun; Chung, Hanrok; Kwon, Hyukmin; Kim, Jehyun; Han, Daekyung; Yi, Yoonseon; Lee, Sangmun; Lee, Chulgu; Cha, Sooyoul
Using frictional force microscopy (FFM), the friction surface characteristics were compared between twisted nematic (TN) mode and vertical alignment (VA) mode alignment films (AFs). The friction asymmetry was detected depending on temperature conditions on TN mode AF, but not on VA mode AF. The difference between two modes was explained by leaning intermolecular repulsion caused by the pre-tilt angle uniformity and the density of side chain. No level difference according to temperature conditions appeared when the pre-tilt angle were measured after liquid crystal (LC) injection.
Frictional Behavior of Micro/nanotextured Surfaces Investigated by Atomic Force Microscope: a Review
NASA Astrophysics Data System (ADS)
Zhang, Xiaoliang; Jia, Junhong
2015-08-01
Tribological issues between friction pair are fundamental problems for minimized devices because of their higher surface-to-volume ratio. Micro/nanotexturing is an effective technique to reduce actual contact area between contact pair at the nanoscale. Micro/nanotexture made a great impact on the frictional behavior of textured surfaces. This paper summarizes the recent advancements in the field of frictional behavior of micro/nanotextured surfaces, which are based on solid surface contact in atmosphere environment, especially focusing on the factors influencing the frictional behavior: Surface property, texturing density, texturing height, texturing structure and size of contact pair (atomic force microscope (AFM) tip) and texturing structures. Summarizing the effects of these factors on the frictional behavior is helpful for the understanding and designing of the surfaces in sliding micro/nanoelectromechanical systems (MEMS/NEMS). Controlling and reducing the friction force in moving mechanical systems is very important for the performance and reliability of nanosystems, which contribute to a sustainable future.
Correlation between friction and thickness of vanadium-pentoxide nanowires
NASA Astrophysics Data System (ADS)
Kim, Taekyeong
2015-11-01
We investigated the correlation between friction and thickness of vanadium-pentoxide nanowires (V2O5 NWs) by using friction/atomic force microscopy (FFM/AFM). We observed that the friction signal generally increased with thickness in the FFM/AFM image of the V2O5 NWs. We constructed a two-dimensional (2D) correlation distribution of the frictional force and the thickness of the V2O5 NWs and found that they are strongly correlated; i.e., thicker NWs had higher friction. We also generated a histogram for the correlation factors obtained from each distribution and found that the most probable factor is ~0.45. Furthermore, we found that the adhesion force between the tip and the V2O5 NWs was about -3 nN, and that the friction increased with increasing applied load for different thicknesses of V2O5 NWs. Our results provide an understanding of tribological and nanomechanical studies of various one-dimensional NWs for future fundamental research.
Casanova, Fernando; Carney, Paul R; Sarntinoranont, Malisa
2014-11-30
Convection enhanced delivery (CED) infuses drugs directly into brain tissue. Needle insertion is required and results in tissue damage which can promote flowback along the needle track and improper targeting. The goal of this study was to evaluate friction stress (calculated from needle insertion force) as a measure of tissue contact and damage during needle insertion for varying insertion speeds. Forces and surface dimpling during needle insertion were measured in rat brain in vivo. Needle retraction forces were used to calculate friction stresses. These measures were compared to track damage from a previous study. Differences between brain tissues and soft hydrogels were evaluated for varying insertion speeds: 0.2, 2, and 10mm/s. In brain tissue, average insertion force and surface dimpling increased with increasing insertion speed. Average friction stress along the needle-tissue interface decreased with insertion speed (from 0.58 ± 0.27 to 0.16 ± 0.08 kPa). Friction stress varied between brain regions: cortex (0.227 ± 0.27 kPa), external capsule (0.222 ± 0.19 kPa), and CPu (0.383 ± 0.30 kPa). Hydrogels exhibited opposite trends for dimpling and friction stress with insertion speed. Previously, increasing needle damage with insertion speed has been measured with histological methods. Friction stress appears to decrease with increasing tissue damage and decreasing tissue contact, providing the potential for in vivo and real time evaluation along the needle track. Force derived friction stress decreased with increasing insertion speed and was smaller within white matter regions. Hydrogels exhibited opposite trends to brain tissue. Copyright © 2014 Elsevier B.V. All rights reserved.
Hibi, N; Fujinaga, H; Ishii, K
1996-01-01
Work and power outputs during short-term, maximal exertion on a friction loaded cycle ergometer are usually calculated from the friction force applied to the flywheel. The inertia of the flywheel is sometimes taken into consideration, but the effects of internal resistances and other factors have been ignored. The purpose of this study was to estimate their effects by comparing work or power output determined from the force exerted on the pedals (pedalling force) with work or power output determined from the friction force and the moment of inertia of the rotational parts. A group of 22 male college students accelerated a cycle ergometer as rapidly as possible for 3 s. The total work output determined from the pedalling force (TWp) was significantly greater than that calculated from the friction force and the moment of inertia (TWf). Power output determined from the pedalling force during each pedal stroke (SPp) was also significantly greater than that calculated from the friction force and the moment of inertia. Percentage difference (% diff), defined by % diff = ¿(TWp - TWf)/TWf¿ x 100, ranged from 16.8% to 49.3% with a mean value of 30.8 (SD 9.1)%. It was observed that % diff values were higher in subjects with greater TWp or greater maximal SPp. These results would indicate that internal resistances and other factors, such as the deformation of the chain and the vibrations of the entire system, may have significant effects on the measurements of work and power outputs. The effects appear to depend on the magnitudes of pedalling force and pedal velocity.
Internally architectured materials with directionally asymmetric friction
Bafekrpour, Ehsan; Dyskin, Arcady; Pasternak, Elena; Molotnikov, Andrey; Estrin, Yuri
2015-01-01
Internally Architectured Materials (IAMs) that exhibit different friction forces for sliding in the opposite directions are proposed. This is achieved by translating deformation normal to the sliding plane into a tangential force in a manner that is akin to a toothbrush with inclined bristles. Friction asymmetry is attained by employing a layered material or a structure with parallel ‘ribs’ inclined to the direction of sliding. A theory of directionally asymmetric friction is presented, along with prototype IAMs designed, fabricated and tested. The friction anisotropy (the ξ-coefficient) is characterised by the ratio of the friction forces for two opposite directions of sliding. It is further demonstrated that IAM can possess very high levels of friction anisotropy, with ξ of the order of 10. Further increase in ξ is attained by modifying the shape of the ribs to provide them with directionally dependent bending stiffness. Prototype IAMs produced by 3D printing exhibit truly giant friction asymmetry, with ξ in excess of 20. A novel mechanical rectifier, which can convert oscillatory movement into unidirectional movement by virtue of directionally asymmetric friction, is proposed. Possible applications include locomotion in a constrained environment and energy harvesting from oscillatory noise and vibrations. PMID:26040634
Role of lubricants on friction between self-ligating brackets and archwires.
Leal, Renata C; Amaral, Flávia L B; França, Fabiana M G; Basting, Roberta T; Turssi, Cecilia P
2014-11-01
To evaluate the effect of different lubricants on friction between orthodontic brackets and archwires. Active (Quick, Forestadent) and passive (Damon 3MX, Ormco) self-ligating brackets underwent friction tests in the presence of mucin- and carboxymethylcellulose (CMC)-based artificial saliva, distilled water, and whole human saliva (positive control). Dry friction (no lubricant) was used as the negative control. Bracket/wire samples (0.014 × 0.025 inch, CuNiTi, SDS Ormco) underwent friction tests eight times in a universal testing machine. Two-way analysis of variance showed no significant interaction between bracket type and lubricant (P = .324). Friction force obtained with passive self-ligating brackets was lower than that for active brackets (P < .001). Friction observed in the presence of artificial saliva did not differ from that generated under lubrication with natural human saliva, as shown by Tukey test. Higher friction forces were found with the use of distilled water or when the test was performed under dry condition (ie, with no lubricant). Lubrication plays a role in friction forces between self-ligating brackets and CuNiTi wires, with mucin- and CMC-based artificial saliva providing a reliable alternative to human natural saliva.
Frictional properties of single crystals HMX, RDX and PETN explosives.
Wu, Y Q; Huang, F L
2010-11-15
The frictional properties of single crystals of cyclotetramethylene tetranitramine (HMX), cyclotrimethylene trinitramine (RDX) and pentaerythritol tetranitrate (PETN) secondary explosives are examined using a sensitive friction machine. The explosive crystals used for the measurements are at least 3.5 mm wide. The friction coefficients between crystals of the same explosive (i.e., HMX on HMX, etc.), crystals of different explosives (i.e., HMX on RDX, etc.), and each explosive and a well-polished gauge steel surface are determined. The frictional surfaces are also studied under an environmental scanning electron microscope (ESEM) to analyze surface microstructural changes under increasing loading forces. The friction coefficients vary considerably with increasing normal loading forces and are particularly sensitive to slider shapes, crystal roughness and the mechanical properties of both the slider and the sample. With increasing loading forces, most friction experiments show surface damage, consisting of grooves, debris, and nano-particles, on both the slider and sample. In some cases, a strong evidence of a localized molten state is found in the central region of the friction track. Possible mechanisms that affect the friction coefficient are discussed based on microscopic observations. Copyright © 2010 Elsevier B.V. All rights reserved.
A force balance system for the measurement of skin friction drag force
NASA Technical Reports Server (NTRS)
Moore, J. W.; Mcvey, E. S.
1971-01-01
Research on force balance instrumentation to measure the skin friction of hypersonic vehicles at extreme temperatures, high altitudes and in a vibration field is discussed. A rough overall summary and operating instructions for the equipment are presented.
Tool For Friction Stir Tack Welding of Aluminum Alloys
NASA Technical Reports Server (NTRS)
Bjorkman, Gerald W.; Dingler, Johnny W.; Loftus, Zachary
2003-01-01
A small friction-stir-welding tool has been developed for use in tack welding of aluminum-alloy workpieces. It is necessary to tack-weld the workpieces in order to hold them together during friction stir welding because (1) in operation, a full-size friction-stir-welding tool exerts a large force that tends to separate the workpieces and (2) clamping the workpieces is not sufficient to resist this force. It is possible to tack the pieces together by gas tungsten arc welding, but the process can be awkward and time-consuming and can cause sufficient damage to necessitate rework. Friction stir tack welding does not entail these disadvantages. In addition, friction stir tack welding can be accomplished by use of the same automated equipment (except for the welding tool) used in subsequent full friction stir welding. The tool for friction stir tack welding resembles the tool for full friction stir welding, but has a narrower shoulder and a shorter pin. The shorter pin generates a smaller workpiece-separating force so that clamping suffices to keep the workpieces together. This tool produces a continuous or intermittent partial-penetration tack weld. The tack weld is subsequently consumed by action of the larger tool used in full friction stir welding tool.
NASA Astrophysics Data System (ADS)
Piotrowski, J.
2010-07-01
This paper presents two extensions of Kalker's algorithm Fastsim of the simplified theory of rolling contact. The first extension is for solving tangential contact problems with the coefficient of friction depending on slip velocity. Two friction laws have been considered: with and without recuperation of the static friction. According to the tribological hypothesis for metallic bodies shear failure, the friction law without recuperation of static friction is more suitable for wheel and rail than the other one. Sample results present local quantities inside the contact area (division to slip and adhesion, traction) as well as global ones (creep forces as functions of creepages and rolling velocity). For the coefficient of friction diminishing with slip, the creep forces decay after reaching the maximum and they depend on the rolling velocity. The second extension is for solving tangential contact problems with friction anisotropy characterised by a convex set of the permissible tangential tractions. The effect of the anisotropy has been shown on examples of rolling without spin and in the presence of pure spin for the elliptical set. The friction anisotropy influences tangential tractions and creep forces. Sample results present local and global quantities. Both extensions have been described with the same language of formulation and they may be merged into one, joint algorithm.
NASA Astrophysics Data System (ADS)
Lu, Lyan-Ywan; Lin, Tzu-Kang; Jheng, Rong-Jie; Wu, Hsin-Hsien
2018-01-01
A semi-active friction damper (SAFD) can be employed for the seismic protection of structural systems. The effectiveness of an SAFD in absorbing seismic energy is usually superior to that of its passive counterpart, since its slip force can be altered in real time according to structural response and excitation. Most existing SAFDs are controlled by adjusting the clamping force applied on the friction interface. Thus, the implementation of SAFDs in practice requires precision control of the clamping force, which is usually substantially larger than the slip force. This may increase the implementation complexity and cost of SAFDs. To avoid this problem, this study proposes a novel position-controlled SAFD, named the leverage-type controllable friction damper (LCFD). The LCFD system combines a traditional passive friction damper and a leverage mechanism with a movable central pivot. By simply controlling the pivot position, the damping force generated by the LCFD system can be adjusted in real time. In order to verify the feasibility of the proposed SAFD, a prototype LCFD was tested by using a shaking table. The test results demonstrate that the equivalent friction force and hysteresis loop of the LCFD can be regulated by controlling the pivot position. By considering 16 ground motions with two different intensities, the adaptive feature of the LCFD for seismic structural control is further demonstrated numerically.
Microscopic Origins of Shear Jamming for 2D Frictional Grains
NASA Astrophysics Data System (ADS)
Wang, Dong; Ren, Jie; Dijksman, Joshua A.; Zheng, Hu; Behringer, Robert P.
2018-05-01
Shear jamming (SJ) occurs for frictional granular materials with packing fractions ϕ in ϕS<ϕ <ϕJ0, when the material is subject to shear strain γ starting from a force-free state. Here, ϕJμ is the isotropic jamming point for particles with a friction coefficient μ . SJ states have mechanically stable anisotropic force networks, e.g., force chains. Here, we investigate the origins of SJ by considering small-scale structures—trimers and branches—whose response to shear leads to SJ. Trimers are any three grains where the two outer grains contact a center one. Branches occur where three or more quasilinear force chain segments intersect. Certain trimers respond to shear by compressing and bending; bending is a nonlinear symmetry-breaking process that can push particles in the dilation direction faster than the affine dilation. We identify these structures in physical experiments on systems of two-dimensional frictional discs, and verify their role in SJ. Trimer bending and branch creation both increase Z above Ziso≃3 needed for jamming 2D frictional grains, and grow the strong force network, leading to SJ.
Determination of backbone chain direction of PDA using FFM
NASA Astrophysics Data System (ADS)
Jo, Sadaharu; Okamoto, Kentaro; Takenaga, Mitsuru
2010-01-01
The effect of backbone chains on friction force was investigated on both Langmuir-Blodgett (LB) films of 10,12-heptacosadiynoic acid and the (0 1 0) surfaces of single crystals of 2,4-hexadiene-1,6-diol using friction force microscopy (FFM). It was observed that friction force decreased when the scanning direction was parallel to the [0 0 1] direction in both samples. Moreover, friction force decreased when the scanning direction was parallel to the crystallographic [1 0 2], [1 0 1], [1 0 0] and [1 0 1¯] directions in only the single crystals. For the LB films, the [0 0 1] direction corresponds to the backbone chain direction of 10,12-heptacosadiynoic acid. For the single crystals, both the [0 0 1] and [1 0 1] directions correspond to the backbone chain direction, and the [1 0 2], [1 0 0] and [1 0 1¯] directions correspond to the low-index crystallographic direction. In both the LB films and single crystals, the friction force was minimized when the directions of scanning and the backbone chain were parallel.
Stensballe, J; Looms, D; Nielsen, P N; Tvede, M
2005-12-01
To compare two hydrophilic-coated (SpeediCath and LoFric and one uncoated gel-lubricated catheter (InCare Advance Plus) concerning withdrawal friction force and urethral micro trauma. 49 healthy male volunteers participated in this prospective, randomised, blinded, crossover study of three different bladder catheters. The withdrawal friction force was measured, and urine analysis of blood, nitrite and leucocytes, microbiological analysis of urine cultures and subjective evaluation of the catheters were performed. 40 participants completed the study and were included in the analysis. SpeediCath exerted a significantly lower mean withdrawal friction force and work than the gel-lubricated uncoated catheter, whereas LoFric exerted a significantly higher mean friction force than both of the other catheters. The hydrophilic catheters caused less microscopic haematuria and less pain than the gel-lubricated uncoated catheter. Furthermore, 93% of the participants preferred the hydrophilic catheters. Hydrophilic-coated catheters perform better than uncoated catheters with regard to haematuria and preference. SpeediCath, but not LoFric, exerts less withdrawal friction force than InCare Advance Plus.
Intraoral corrosion of self-ligating metallic brackets and archwires and the effect on friction
NASA Astrophysics Data System (ADS)
Tima, Lori Lynn
The purpose of this study was to investigate how the frictional coefficient was affected due to intraoral use. A secondary aim of this study was to determine whether or not there was a relationship between corrosion of orthodontic alloys and friction via scanning electron microscopic qualitative analysis. Orthodontic brackets and 0.019 x 0.025 inch stainless steel archwires were collected and divided into three groups of n=10: used bracket and used wires (UBUW), used brackets and new wires (UBNW), and new brackets and new wires (NBNW). New materials were as-received from the manufacturer, and used materials were clinically used bracket and wires collected from patients following orthodontic treatment. Archwires were pulled through bracket slots at a rate of 0.5mm/min while friction forces were measured. Following a cleaning process, the surface topography of the bracket slots was examined under a scanning electron microscope (SEM). Based on a 1-factor MANOVA, there was no significant group effect (all p>0.05) on frictional forces. Partial eta squared values indicated that intraoral exposure had only a small effect on frictional forces (≤ 3%). Qualitative analysis of SEM images did not show an association between surface characteristics of the bracket slots and magnitude of frictional force. Results suggest that surface corrosion from intraoral use does not significantly affect friction at the bracket wire interface.
NASA Astrophysics Data System (ADS)
Kawashima, T.
2016-09-01
To reduce the risk of injury to an infant in an in-car crib (or in a child safety bed) collision shock during a car crash, it is necessary to maintain a constant force acting on the crib below a certain allowable value. To realize this objective, we propose a semi-active in-car crib system with the joint application of regular and inverted pendulum mechanisms. The arms of the proposed crib system support the crib like a pendulum while the pendulum system itself is supported like an inverted pendulum by the arms. In addition, the friction torque of each arm is controlled using a brake mechanism that enables the proposed in-car crib to decrease the acceleration of the crib gradually and maintain it around the target value. This system not only reduces the impulsive force but also transfers the force to the infant's back using a spin control system, i.e., the impulse force acts is made to act perpendicularly on the crib. The spin control system was developed in our previous work. This work focuses on the acceleration control system. A semi-active control law with acceleration feedback is introduced, and the effectiveness of the system is demonstrated using numerical simulation and model experiment.
CAM/LIFTER forces and friction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gabbey, D.J.; Lee, J.; Patterson, D.J.
1992-02-01
This report details the procedures used to measure the cam/lifter forces and friction. The present effort employed a Cummins LTA-10, and focuses on measurements and dynamic modeling of the injector train. The program was sponsored by the US Department of Energy in support of advanced diesel engine technology. The injector train was instrumented to record the instantaneous roller speed, roller pin friction torque, pushrod force, injector link force and cam speed. These measurements, together with lift profiles for pushrod and injector link displacement, enabled the friction work loss in the injector train to be determined. Other significant design criteria suchmore » as camshaft roller follower slippage and maximum loads on components were also determined. Future efforts will concentrate on the dynamic model, with tests run as required for correlation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Konovalenko, Ivan S., E-mail: ivkon@ispms.tsc.ru; Konovalenko, Igor S., E-mail: igkon@ispms.tsc.ru; National Research Tomsk Polytechnic University, Tomsk, 634050
2015-10-27
Metal behavior under loading conditions that reproduce friction stir welding was studied on the atomic scale. Calculations were conducted based on molecular dynamics simulation with potentials calculated within the embedded atom method. The loading of the interface between two crystallites, whose structure corresponded to aluminum alloy 2024, was simulated by the motion of a cone-shaped tool along the interface with constant angular and translational velocities. The motion of the rotating tool causes fracture of the workpiece crystal structure with subsequent mixing of surface atoms of the interfacing crystallites. It is shown that the resistance force acting on the moving toolmore » from the workpiece and the process of structural defect formation in the workpiece depend on the tool shape.« less
NASA Technical Reports Server (NTRS)
Stubbs, S. M.; Tanner, J. A.
1976-01-01
During maximum braking the average ratio of drag-force friction coefficient developed by the antiskid system to maximum drag-force friction coefficient available at the tire/runway interface was higher on dry surfaces than on wet surfaces. The gross stopping power generated by the brake system on the dry surface was more than twice that obtained on the wet surfaces. With maximum braking applied, the average ratio of side-force friction coefficient developed by the tire under antiskid control to maximum side-force friction available at the tire/runway interface of a free-rolling yawed tire was shown to decrease with increasing yaw angle. Braking reduced the side-force friction coefficient on a dry surface by 75 percent as the wheel slip ratio was increased to 0.3; on a flooded surface the coefficient dropped to near zero for the same slip ratio. Locked wheel skids were observed when the tire encountered a runway surface transition from dry to flooded, due in part to the response time required for the system to sense abrupt changes in the runway friction; however, the antiskid system quickly responded by reducing brake pressure and cycling normally during the remainder of the run on the flooded surface.
Transduction channels’ gating can control friction on vibrating hair-cell bundles in the ear
Bormuth, Volker; Barral, Jérémie; Joanny, Jean-François; Jülicher, Frank; Martin, Pascal
2014-01-01
Hearing starts when sound-evoked mechanical vibrations of the hair-cell bundle activate mechanosensitive ion channels, giving birth to an electrical signal. As for any mechanical system, friction impedes movements of the hair bundle and thus constrains the sensitivity and frequency selectivity of auditory transduction. Friction is generally thought to result mainly from viscous drag by the surrounding fluid. We demonstrate here that the opening and closing of the transduction channels produce internal frictional forces that can dominate viscous drag on the micrometer-sized hair bundle. We characterized friction by analyzing hysteresis in the force–displacement relation of single hair-cell bundles in response to periodic triangular stimuli. For bundle velocities high enough to outrun adaptation, we found that frictional forces were maximal within the narrow region of deflections that elicited significant channel gating, plummeted upon application of a channel blocker, and displayed a sublinear growth for increasing bundle velocity. At low velocity, the slope of the relation between the frictional force and velocity was nearly fivefold larger than the hydrodynamic friction coefficient that was measured when the transduction machinery was decoupled from bundle motion by severing tip links. A theoretical analysis reveals that channel friction arises from coupling the dynamics of the conformational change associated with channel gating to tip-link tension. Varying channel properties affects friction, with faster channels producing smaller friction. We propose that this intrinsic source of friction may contribute to the process that sets the hair cell’s characteristic frequency of responsiveness. PMID:24799674
NASA Astrophysics Data System (ADS)
Chen, G. X.; Zhou, Z. R.; Ouyang, H.; Jin, X. S.; Zhu, M. H.; Liu, Q. Y.
2010-10-01
The present work proposes friction coupling at the wheel-rail interface as the mechanism for formation of rail corrugation. Stability of a wheelset-track system is studied using the finite element complex eigenvalue method. Two models for a wheelset-track system on a tight curved track and on a straight track are established. In these two models, motion of the wheelset is coupled with that of the rail by friction. Creep force at the interface is assumed to become saturated and approximately equal to friction force, which is equal to the normal contact force multiplied by dynamic coefficient of friction. The rail is supported by vertical and lateral springs and dampers at the positions of sleepers. Numerical results show that there is a strong propensity of self-excited vibration of the wheelset-track system when the friction coefficient is larger than 0.21. Some unstable frequencies fall in the range 60-1200 Hz, which correspond to frequencies of rail corrugation. Parameter sensitivity analysis shows that the dynamic coefficient of friction, spring stiffness and damping of the sleeper supports all have important influences on the rail corrugation formation. Bringing the friction coefficient below a certain level can suppress or eliminate rail corrugation.
Ramakrishna, Shivaprakash N; Nalam, Prathima C; Clasohm, Lucy Y; Spencer, Nicholas D
2013-01-08
We have previously investigated the dependence of adhesion on nanometer-scale surface roughness by employing a roughness gradient. In this study, we correlate the obtained adhesion forces on nanometer-scale rough surfaces to their frictional properties. A roughness gradient with varying silica particle (diameter ≈ 12 nm) density was prepared, and adhesion and frictional forces were measured across the gradient surface in perfluorodecalin by means of atomic force microscopy with a polyethylene colloidal probe. Similarly to the pull-off measurements, the frictional forces initially showed a reduction with decreasing particle density and later an abrupt increase as the colloidal sphere began to touch the flat substrate beneath, at very low particle densities. The friction-load relation is found to depend on the real contact area (A(real)) between the colloid probe and the underlying particles. At high particle density, the colloidal sphere undergoes large deformations over several nanoparticles, and the contact adhesion (JKR type) dominates the frictional response. However, at low particle density (before the colloidal probe is in contact with the underlying surface), the colloidal sphere is suspended by a few particles only, resulting in local deformations of the colloid sphere, with the frictional response to the applied load being dominated by long-range, noncontact (DMT-type) interactions with the substrate beneath.
Friction Compensation for Enhancing Transparency of a Teleoperator with Compliant Transmission
Mahvash, Mohsen; Okamura, Allison
2009-01-01
This article presents a model-based compensator for canceling friction in the tendon-driven joints of a haptic-feedback teleoperator. Unlike position-tracking systems, a teleoperator involves an unknown environment force that prevents the use of tracking position error as a feedback to the compensator. Thus, we use a model-based feedforward friction compensator to cancel the friction forces. We provide conditions for selecting compensator parameters to ensure passivity of the teleoperator and demonstrate performance experimentally. PMID:20514151
Two-axis direct fluid shear stress sensor
NASA Technical Reports Server (NTRS)
Bajikar, Sateesh (Inventor); Scott, Michael A. (Inventor); Adcock, Edward E. (Inventor)
2011-01-01
A micro sized multi-axis semiconductor skin friction/wall shear stress induced by fluid flow. The sensor design includes a shear/strain transduction gimble connected to a force collecting plate located at the flow boundary surface. The shear force collecting plate is interconnected by an arm to offset the tortional hinges from the fluid flow. The arm is connected to the shear force collecting plate through dual axis torsional hinges with piezoresistive torsional strain gauges. These gauges are disposed on the tortional hinges and provide a voltage output indicative of applied shear stress acting on the force collection plate proximate the flow boundary surface. Offsetting the torsional hinges creates a force concentration and resolution structure that enables the generation of a large stress on the strain gauge from small shear stress, or small displacement of the collecting plate. The design also isolates the torsional sensors from exposure to the fluid flow.
Giant and Tunable Anisotropy of Nanoscale Friction in Graphene
NASA Astrophysics Data System (ADS)
Capaz, Rodrigo; Menezes, Marcos; Almeida, Clara; de Cicco, Marcelo; Achete, Carlos; Fragneaud, Benjamin; Cançado, Luiz Gustavo; Paupitz, Ricardo; Galvão, Douglas; Prioli, Rodrigo
The nanoscale friction between an atomic force microscopy tip and graphene is investigated using friction force microscopy (FFM). During the tip movement, friction forces are observed to increase and then saturate in a highly anisotropic manner. As a result, the friction coefficient of graphene is highly dependent on the scanning direction: Under some conditions, the energy dissipated along the armchair direction can be 80% higher than along the zigzag direction. In comparison, for highly-oriented pyrolitic graphite (HOPG), the friction anisotropy between armchair and zigzag directions is only 15%. This giant friction anisotropy in graphene results from anisotropies in the amplitudes of flexural deformations of the graphene sheet driven by the tip movement, not present in HOPG. The effect can be seen as a novel manifestation of the classical phenomenon of Euler buckling at the nanoscale, which provides the non-linear ingredients that amplify friction anisotropy. Simulations based on a novel version of the 2D Tomlinson model (modified to include the effects of flexural deformations), as well as fully atomistic molecular dynamics simulations and first-principles density-functional theory (DFT) calculations, are able to reproduce and explain the experimental observations.
NASA Astrophysics Data System (ADS)
Shi, Jing; Gong, Zhenbin; Wang, Yongfu; Gao, Kaixiong; Zhang, Junyan
2017-11-01
In this study, tribological properties of hydrogenated and hydrogen free diamond-like carbon films at various relative humidity (RH) were investigated to understand the friction mechanism in the presence of water molecules. At normal load of 2N, DLC-H film's friction coefficient was 0.06 at RH14% while DLC film's friction coefficient was 0.19 at RH17%. With the increase of RH, their friction coefficient converged to about 0.15. This character remained unaltered when the normal load was 5N. Results show that low friction of DLC-H film at low RH was attributed to the low shear force aroused by graphitic tribofilm at wear care center. However, the high friction of DLC film was mainly endowed by the high adhesive force aroused by σ dangling bonds. At high RH, solid-to-solid contact was isolated by water molecules confined between the counterfaces, where capillary was a dominant factor for friction. In addition to the capillary force, the absence of tribofilm was also accountable. These two factors lead to the level off of friction coefficient for DLC-H and DLC films. Moreover, for both DLC-H and DLC films, tribo-oxidization was proved to be closely related to wear rate with the assist of H2O molecules during sliding.
Dynamic measurements of gear tooth friction and load
NASA Technical Reports Server (NTRS)
Rebbechi, Brian; Oswald, Fred B.; Townsend, Dennis P.
1991-01-01
As part of a program to study fundamental mechanisms of gear noise, static and dynamic gear tooth strain measurements were made on the NASA gear-noise rig. Tooth-fillet strains from low-contact ratio-spur gears were recorded for 28 operating conditions. A method is introduced whereby strain gage measurements taken from both the tension and compression sides of a gear tooth can be transformed into the normal and frictional loads on the tooth. This technique was applied to both the static and dynamic strain data. The static case results showed close agreement with expected results. For the dynamic case, the normal-force computation produced very good results, but the friction results, although promising, were not as accurate. Tooth sliding friction strongly affected the signal from the strain gage on the tensionside of the tooth. The compression gage was affected by friction to a much lesser degree. The potential of the method to measure friction force was demonstrated, but further refinement will be required before this technique can be used to measure friction forces dynamically with an acceptable degree of accuracy.
In-Vivo Human Skin to Textiles Friction Measurements
NASA Astrophysics Data System (ADS)
Pfarr, Lukas; Zagar, Bernhard
2017-10-01
We report on a measurement system to determine highly reliable and accurate friction properties of textiles as needed for example as input to garment simulation software. Our investigations led to a set-up that allows to characterize not just textile to textile but also textile to in-vivo human skin tribological properties and thus to fundamental knowledge about genuine wearer interaction in garments. The method of test conveyed in this paper is measuring concurrently and in a highly time resolved manner the normal force as well as the resulting shear force caused by a friction subject intending to slide out of the static friction regime and into the dynamic regime on a test bench. Deeper analysis of various influences is enabled by extending the simple model following Coulomb's law for rigid body friction to include further essential parameters such as contact force, predominance in the yarn's orientation and also skin hydration. This easy-to-use system enables to measure reliably and reproducibly both static and dynamic friction for a variety of friction partners including human skin with all its variability there might be.
NASA Astrophysics Data System (ADS)
Thøgersen, Kjetil; Trømborg, Jørgen Kjoshagen; Sveinsson, Henrik Andersen; Malthe-Sørenssen, Anders; Scheibert, Julien
2014-05-01
To study how macroscopic friction phenomena originate from microscopic junction laws, we introduce a general statistical framework describing the collective behavior of a large number of individual microjunctions forming a macroscopic frictional interface. Each microjunction can switch in time between two states: a pinned state characterized by a displacement-dependent force and a slipping state characterized by a time-dependent force. Instead of tracking each microjunction individually, the state of the interface is described by two coupled distributions for (i) the stretching of pinned junctions and (ii) the time spent in the slipping state. This framework allows for a whole family of microjunction behavior laws, and we show how it represents an overarching structure for many existing models found in the friction literature. We then use this framework to pinpoint the effects of the time scale that controls the duration of the slipping state. First, we show that the model reproduces a series of friction phenomena already observed experimentally. The macroscopic steady-state friction force is velocity dependent, either monotonic (strengthening or weakening) or nonmonotonic (weakening-strengthening), depending on the microscopic behavior of individual junctions. In addition, slow slip, which has been reported in a wide variety of systems, spontaneously occurs in the model if the friction contribution from junctions in the slipping state is time weakening. Next, we show that the model predicts a nontrivial history dependence of the macroscopic static friction force. In particular, the static friction coefficient at the onset of sliding is shown to increase with increasing deceleration during the final phases of the preceding sliding event. We suggest that this form of history dependence of static friction should be investigated in experiments, and we provide the acceleration range in which this effect is expected to be experimentally observable.
Postoperative changes in in vivo measured friction in total hip joint prosthesis during walking.
Damm, Philipp; Bender, Alwina; Bergmann, Georg
2015-01-01
Loosening of the artificial cup and inlay is the most common reasons for total hip replacement failures. Polyethylene wear and aseptic loosening are frequent reasons. Furthermore, over the past few decades, the population of patients receiving total hip replacements has become younger and more active. Hence, a higher level of activity may include an increased risk of implant loosening as a result of friction-induced wear. In this study, an instrumented hip implant was used to measure the contact forces and friction moments in vivo during walking. Subsequently, the three-dimensional coefficient of friction in vivo was calculated over the whole gait cycle. Measurements were collected from ten subjects at several time points between three and twelve months postoperative. No significant change in the average resultant contact force was observed between three and twelve months postoperative. In contrast, a significant decrease of up to 47% was observed in the friction moment. The coefficient of friction also decreased over postoperative time on average. These changes may be caused by 'running-in' effects of the gliding components or by the improved lubricating properties of the synovia. Because the walking velocity and contact forces were found to be nearly constant during the observed period, the decrease in friction moment suggests an increase in fluid viscosity. The peak values of the contact force individually varied by 32%-44%. The friction moment individually differed much more, by 110%-129% at three and up to 451% at twelve months postoperative. The maximum coefficient of friction showed the highest individual variability, about 100% at three and up to 914% at twelve months after surgery. These individual variations in the friction parameters were most likely due to different 'running-in' effects that were influenced by the individual activity levels and synovia properties.
Thøgersen, Kjetil; Trømborg, Jørgen Kjoshagen; Sveinsson, Henrik Andersen; Malthe-Sørenssen, Anders; Scheibert, Julien
2014-05-01
To study how macroscopic friction phenomena originate from microscopic junction laws, we introduce a general statistical framework describing the collective behavior of a large number of individual microjunctions forming a macroscopic frictional interface. Each microjunction can switch in time between two states: a pinned state characterized by a displacement-dependent force and a slipping state characterized by a time-dependent force. Instead of tracking each microjunction individually, the state of the interface is described by two coupled distributions for (i) the stretching of pinned junctions and (ii) the time spent in the slipping state. This framework allows for a whole family of microjunction behavior laws, and we show how it represents an overarching structure for many existing models found in the friction literature. We then use this framework to pinpoint the effects of the time scale that controls the duration of the slipping state. First, we show that the model reproduces a series of friction phenomena already observed experimentally. The macroscopic steady-state friction force is velocity dependent, either monotonic (strengthening or weakening) or nonmonotonic (weakening-strengthening), depending on the microscopic behavior of individual junctions. In addition, slow slip, which has been reported in a wide variety of systems, spontaneously occurs in the model if the friction contribution from junctions in the slipping state is time weakening. Next, we show that the model predicts a nontrivial history dependence of the macroscopic static friction force. In particular, the static friction coefficient at the onset of sliding is shown to increase with increasing deceleration during the final phases of the preceding sliding event. We suggest that this form of history dependence of static friction should be investigated in experiments, and we provide the acceleration range in which this effect is expected to be experimentally observable.
Vinay, K; Venkatesh, M J; Nayak, Rabindra S; Pasha, Azam; Rajesh, M; Kumar, Pradeep
2014-01-01
Background: Friction between archwires and brackets is assuming greater importance for finishing with increased use of sliding mechanics in orthodontics as friction impedes the desired tooth movement. The following study is conducted to compare and evaluate the effect of ligation on friction in sliding mechanics using 0.022" slot bracket in dry condition. Materials & Methods: In the study 48 combinations of brackets, archwires and different ligation techniques were tested in order to provide best combination that offers less friction during sliding mechanics. Instron- 4467 machine was used to evaluate static and kinetic friction force values and the results were subjected to Statistical Analysis and Anova test. Results: The results of the study showed that 0.022" metal brackets, Stainless steel wires and Slick modules provided the optimum frictional resistance to sliding mechanics. It is observed that frictional forces of 0.019" x 0.025" were higher when compared with 0.016" x 0.022" Stainless steel archwire due to the increase in dimension. Self-ligating brackets offered least friction followed by mini twin, variable force, regular stainless steel, ceramic with metal insert bracket and ceramic brackets. The stainless steel ligature offered less resistance than slick and grey modules, and TMA wires recorded maximum friction. Conclusion: The stainless steel archwire of 0.019" x 0.025" dimension are preferred during sliding mechanics, these archwires with variable force brackets ligated with Slick Modules offer decreased friction and is cost effective combination which can be utilized during sliding mechanics. How to cite the article: Vinay K, Venkatesh MJ, Nayak RS, Pasha A, Rajesh M, Kumar P. A comparative study to evaluate the effects of ligation methods on friction in sliding mechanics using 0.022" slot brackets in dry state: An In-vitro study. J Int Oral Health 2014;6(2):76-83. PMID:24876706
Vinay, K; Venkatesh, M J; Nayak, Rabindra S; Pasha, Azam; Rajesh, M; Kumar, Pradeep
2014-04-01
Friction between archwires and brackets is assuming greater importance for finishing with increased use of sliding mechanics in orthodontics as friction impedes the desired tooth movement. The following study is conducted to compare and evaluate the effect of ligation on friction in sliding mechanics using 0.022" slot bracket in dry condition. In the study 48 combinations of brackets, archwires and different ligation techniques were tested in order to provide best combination that offers less friction during sliding mechanics. Instron- 4467 machine was used to evaluate static and kinetic friction force values and the results were subjected to Statistical Analysis and Anova test. The results of the study showed that 0.022" metal brackets, Stainless steel wires and Slick modules provided the optimum frictional resistance to sliding mechanics. It is observed that frictional forces of 0.019" x 0.025" were higher when compared with 0.016" x 0.022" Stainless steel archwire due to the increase in dimension. Self-ligating brackets offered least friction followed by mini twin, variable force, regular stainless steel, ceramic with metal insert bracket and ceramic brackets. The stainless steel ligature offered less resistance than slick and grey modules, and TMA wires recorded maximum friction. The stainless steel archwire of 0.019" x 0.025" dimension are preferred during sliding mechanics, these archwires with variable force brackets ligated with Slick Modules offer decreased friction and is cost effective combination which can be utilized during sliding mechanics. How to cite the article: Vinay K, Venkatesh MJ, Nayak RS, Pasha A, Rajesh M, Kumar P. A comparative study to evaluate the effects of ligation methods on friction in sliding mechanics using 0.022" slot brackets in dry state: An In-vitro study. J Int Oral Health 2014;6(2):76-83.
Integrated Data Collection and Analysis Project: Friction Correlation Study
2015-08-01
methods authorized in AOP-7 include Pendulum Friction, Rotary Friction, Sliding Friction (ABL), BAM Friction and Steel/Fiber Shoe Methods. The...sensitivity can be obtained by Pendulum Friction, Rotary Friction, Sliding Friction (such as the ABL), BAM Friction and Steel/Fiber Shoe Methods.3, 4 Within...Figure 4.16 A variable compressive force is applied downward through the wheel hydraulically (50-1995 psi). The 5 kg pendulum impacts (8 ft/sec is the
Choose Wisely: Static or Kinetic Friction--The Power of Dimensionless Plots
ERIC Educational Resources Information Center
Ludwigsen, Daniel; Svinarich, Kathryn
2009-01-01
Consider a problem of sliding blocks, one stacked atop the other, resting on a frictionless table. If the bottom block is pulled horizontally, nature makes a choice: if the applied force is small, static friction between the blocks accelerates the blocks together, but with a large force the blocks slide apart. In that case, kinetic friction still…
Friction in Total Hip Joint Prosthesis Measured In Vivo during Walking
Damm, Philipp; Dymke, Joern; Ackermann, Robert; Bender, Alwina; Graichen, Friedmar; Halder, Andreas; Beier, Alexander; Bergmann, Georg
2013-01-01
Friction-induced moments and subsequent cup loosening can be the reason for total hip joint replacement failure. The aim of this study was to measure the in vivo contact forces and friction moments during walking. Instrumented hip implants with Al2O3 ceramic head and an XPE inlay were used. In vivo measurements were taken 3 months post operatively in 8 subjects. The coefficient of friction was calculated in 3D throughout the whole gait cycle, and average values of the friction-induced power dissipation in the joint were determined. On average, peak contact forces of 248% of the bodyweight and peak friction moments of 0.26% bodyweight times meter were determined. However, contact forces and friction moments varied greatly between individuals. The friction moment increased during the extension phase of the joint. The average coefficient of friction also increased during this period, from 0.04 (0.03 to 0.06) at contralateral toe off to 0.06 (0.04 to 0.08) at contralateral heel strike. During the flexion phase, the coefficient of friction increased further to 0.14 (0.09 to 0.23) at toe off. The average friction-induced power throughout the whole gait cycle was 2.3 W (1.4 W to 3.8 W). Although more parameters than only the synovia determine the friction, the wide ranges of friction coefficients and power dissipation indicate that the lubricating properties of synovia are individually very different. However, such differences may also exist in natural joints and may influence the progression of arthrosis. Furthermore, subjects with very high power dissipation may be at risk of thermally induced implant loosening. The large increase of the friction coefficient during each step could be caused by the synovia being squeezed out under load. PMID:24260114
Friction in total hip joint prosthesis measured in vivo during walking.
Damm, Philipp; Dymke, Joern; Ackermann, Robert; Bender, Alwina; Graichen, Friedmar; Halder, Andreas; Beier, Alexander; Bergmann, Georg
2013-01-01
Friction-induced moments and subsequent cup loosening can be the reason for total hip joint replacement failure. The aim of this study was to measure the in vivo contact forces and friction moments during walking. Instrumented hip implants with Al2O3 ceramic head and an XPE inlay were used. In vivo measurements were taken 3 months post operatively in 8 subjects. The coefficient of friction was calculated in 3D throughout the whole gait cycle, and average values of the friction-induced power dissipation in the joint were determined. On average, peak contact forces of 248% of the bodyweight and peak friction moments of 0.26% bodyweight times meter were determined. However, contact forces and friction moments varied greatly between individuals. The friction moment increased during the extension phase of the joint. The average coefficient of friction also increased during this period, from 0.04 (0.03 to 0.06) at contralateral toe off to 0.06 (0.04 to 0.08) at contralateral heel strike. During the flexion phase, the coefficient of friction increased further to 0.14 (0.09 to 0.23) at toe off. The average friction-induced power throughout the whole gait cycle was 2.3 W (1.4 W to 3.8 W). Although more parameters than only the synovia determine the friction, the wide ranges of friction coefficients and power dissipation indicate that the lubricating properties of synovia are individually very different. However, such differences may also exist in natural joints and may influence the progression of arthrosis. Furthermore, subjects with very high power dissipation may be at risk of thermally induced implant loosening. The large increase of the friction coefficient during each step could be caused by the synovia being squeezed out under load.
CAM/LIFTER forces and friction. Final report, September 15, 1988--November 30, 1991
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gabbey, D.J.; Lee, J.; Patterson, D.J.
1992-02-01
This report details the procedures used to measure the cam/lifter forces and friction. The present effort employed a Cummins LTA-10, and focuses on measurements and dynamic modeling of the injector train. The program was sponsored by the US Department of Energy in support of advanced diesel engine technology. The injector train was instrumented to record the instantaneous roller speed, roller pin friction torque, pushrod force, injector link force and cam speed. These measurements, together with lift profiles for pushrod and injector link displacement, enabled the friction work loss in the injector train to be determined. Other significant design criteria suchmore » as camshaft roller follower slippage and maximum loads on components were also determined. Future efforts will concentrate on the dynamic model, with tests run as required for correlation.« less
Ultrasonic Low-Friction Containment Plate for Thermal and Ultrasonic Stir Weld Processes
NASA Technical Reports Server (NTRS)
Graff, Karl; Short, Matt
2013-01-01
The thermal stir welding (TSW) process is finding applications in fabrication of space vehicles. In this process, workpieces to be joined by TSW are drawn, by heavy forces, between "containment plates," past the TSW tool that then causes joining of the separate plates. It is believed that the TSW process would be significantly improved by reducing the draw force, and that this could be achieved by reducing the friction forces between the workpieces and containment plates. Based on use of high-power ultrasonics in metal forming processes, where friction reduction in drawing dies has been achieved, it is believed that ultrasonic vibrations of the containment plates could achieve similar friction reduction in the TSW process. By applying ultrasonic vibrations to the containment plates in a longitudinal vibration mode, as well as by mounting and holding the containment plates in a specific manner such as to permit the plates to acoustically float, friction between the metal parts and the containment plates is greatly reduced, and so is the drawing force. The concept was to bring in the ultrasonics from the sides of the plates, permitting the ultrasonic hardware to be placed to the side, away from the equipment that contains the thermal stir tooling and that applies clamping forces to the plates. Tests demonstrated that one of the major objectives of applying ultrasonics to the thermal stir system, that of reducing draw force friction, should be achievable on a scaled-up system.
Assessment of semi-active friction dampers
NASA Astrophysics Data System (ADS)
dos Santos, Marcelo Braga; Coelho, Humberto Tronconi; Lepore Neto, Francisco Paulo; Mafhoud, Jarir
2017-09-01
The use of friction dampers has been widely proposed for a variety of mechanical systems for which applying viscoelastic materials, fluid based dampers or other viscous dampers is impossible. An important example is the application of friction dampers in aircraft engines to reduce the blades' vibration amplitudes. In most cases, friction dampers have been studied in a passive manner, but significant improvements can be achieved by controlling the normal force in the contact region. The aim of this paper is to present and study five control strategies for friction dampers based on three different hysteresis cycles by using the Harmonic Balance Method (HBM), a numerical and experimental analysis. The first control strategy uses the friction force as a resistance when the system is deviating from its equilibrium position. The second control strategy maximizes the energy removal in each harmonic oscillation cycle by calculating the optimal normal force based on the last displacement peak. The third control strategy combines the first strategy with the homogenous modulation of the friction force. Finally, the last two strategies attempt to predict the system's movement based on its velocity and acceleration and our knowledge of its physical properties. Numerical and experimental studies are performed with these five strategies, which define the performance metrics. The experimental testing rig is fully identified and its parameters are used for numerical simulations. The obtained results show the satisfactory performance of the friction damper and selected strategy and the suitable agreement between the numerical and experimental results.
MONTEIRO, Maria Regina Guerra; da SILVA, Licinio Esmeraldo; ELIAS, Carlos Nelson; VILELLA, Oswaldo de Vasconcellos
2014-01-01
Objective To compare the influence of archwire material (NiTi, beta-Ti and stainless steel) and brackets design (self-ligating and conventional) on the frictional force resistance. Material and Methods Two types of brackets (self-ligating brackets - Smartclip, 3M/Unitek - and conventional brackets - Gemini, 3M/Unitek) with three (0, 5, and 10 degrees) slot angulation attached with elastomeric ligatures (TP Orthodontics) were tested. All brackets were tested with archwire 0.019"x0.025" nickel-titanium, beta-titanium, and stainless steel (Unitek/3M). The mechanical testing was performed with a universal testing machine eMIC DL 10000 (eMIC Co, Brazil). The wires were pulled from the bracket slots at a cross-head speed of 3 mm/min until 2 mm displacement. Results Self-ligating brackets produced significantly lower friction values compared with those of conventional brackets. Frictional force resistance values were directly proportional to the increase in the bracket/ wire angulation. With regard to conventional brackets, stainless steel wires had the lowest friction force values, followed by nickel-titanium and beta-titanium ones. With regard to self-ligating brackets, the nickel-titanium wires had the lowest friction values, significantly lower than those of other materials. Conclusion even at different angulations, the self-ligating brackets showed significantly lower friction force values than the conventional brackets. Combined with nickel-titanium wires, the self-ligating brackets exhibit much lower friction, possibly due to the contact between nickel-titanium clips and wires of the same material. PMID:25025564
Magnetic moment of solar plasma and the Kelvin force: -The driving force of plasma up-flow -
NASA Astrophysics Data System (ADS)
Shibasaki, Kiyoto
2017-04-01
Thermal plasma in the solar atmosphere is magnetized (diamagnetic). The magnetic moment does not disappear by collisions because complete gyration is not a necessary condition to have magnetic moment. Magnetized fluid is subjected to Kelvin force in non-uniform magnetic field. Generally, magnetic field strength decreases upwards in the solar atmosphere, hence the Kelvin force is directed upwards along the field. This force is not included in the fluid treatment of MHD. By adding the Kelvin force to the MHD equation of motion, we can expect temperature dependent plasma flows along the field which are reported by many observations. The temperature dependence of the flow speed is explained by temperature dependence of magnetic moment. From the observed parameters, we can infer physical parameters in the solar atmosphere such as scale length of the magnetic field strength and the friction force acting on the flowing plasma. In case of closed magnetic field lines, loop-top concentration of hot plasma is expected which is frequently observed.
Collisional model of the drag force of granular impact
NASA Astrophysics Data System (ADS)
Stevens Bester, Cacey; Behringer, Robert P.
2017-06-01
A dense, dry granular target can cause a free-falling intruding object to come to an abrupt stop as its momentum is lost to the grains. An empirical force law describes this process, characterizing the stopping force as the sum of depth-dependent friction and velocity-dependent inertial drag. However, a complete interpretation of the stopping force, incorporating grain-scale interactions during impact, remains unresolved. Here, the momentum transfer is proposed to occur through sporadic, normal collisions with clusters of high force-carrying grains at the intruder's surface. To test this model in impact experiments, we determine the forces acting on an intruder decelerating through a dense granular medium using high-speed imaging of its trajectory. We vary the geometry of the impacting object to infer intruder-grain interactions. As a result, we connect the inertial drag to the effect of intruder shape based on the proposed collisional model. These impact studies serve as an approach to understand dynamic force transmission in granular media.
Friction characteristics of trocars in laparoscopic surgery.
Alazmani, Ali; Roshan, Rupesh; Jayne, David G; Neville, Anne; Culmer, Peter
2015-04-01
This article investigates the friction characteristics of the instrument-trocar interface in laparoscopic surgery for varying linear instrument velocities, trocar seal design and material, and trocar tilt. Furthermore, the effect of applying lubrication at the instrument-trocar seal interface on friction was studied. A friction testing apparatus was designed and built to characterise the resistance force at the instrument-trocar interface as a function of the instrument's linear movement in the 12-mm trocar (at constant velocity) for different design, seal material, and angle of tilt. The resistance force depended on the trocar seal design and material properties, specifically surface roughness, elasticity, hardness, the direction of movement, and the instrument linear velocity, and varied between 0.25 and 8 N. Lubricating the shaft with silicone oil reduced the peak resistance force by 75% for all trocars and eliminated the stick-slip phenomenon evident in non-lubricated cases. The magnitude of fluctuation in resistance force depends on the trocar design and is attributed to stick-slip of the sealing mechanism and is generally higher during retraction in comparison to insertion. Trocars that have an inlet seal made of rubber/polyurethane showed higher resistance forces during retraction. Use of a lubricant significantly reduced frictional effects. Comparisons of the investigated trocars indicate that a low friction port, providing the surgeon with improved haptic feedback, can be designed by improving the tribological properties of the trocar seal interface. © IMechE 2015.
Scanning Probe Microscopy for Identifying the Component Materials of a Nanostripe Structure
NASA Astrophysics Data System (ADS)
Mizuno, Akira; Ando, Yasuhisa
2010-08-01
The authors prepared a nanostripe structure in which two types of metal are arranged alternately, and successfully identified the component materials using scanning probe microscopy (SPM) to measure the lateral force distribution image. The nanostripe structure was prepared using a new method developed by the authors and joint development members. The lateral force distribution image was measured in both friction force microscopy (FFM) and lateral modulation friction force microscopy (LM-FFM) modes. In FFM mode, the effect of slope angle appeared in the lateral force distribution image; therefore, no difference in the type of material was observed. On the other hand, in LM-FFM mode, the effect of surface curvature was observed in the lateral force distribution image. A higher friction force on chromium than on gold was identified, enabling material identification.
The frictional response of patterned soft polymer surfaces
NASA Astrophysics Data System (ADS)
Rand, Charles J.
2008-10-01
Friction plays an intricate role in our everyday lives, it is therefore critical to understand the underlying features of friction to better help control and manipulate the response anywhere two surfaces in contact move past each other by a sliding motion. Here we present results targeting a thorough understanding of soft material friction and how it can be manipulated with patterns. We found that the naturally occurring length scale or periodicity (lambda) of frictionally induced patterns, Schallamach waves, could be described using two materials properties (critical energy release rate Gc and complex modulus (E*), i.e. lambdainfinity Gc /E*). Following this, we evaluated the effect of a single defect at a sliding interface. Sliding over a defect can be used to model the sliding from one feature to another in a patterned surface. Defects decreased the sliding frictional force by as much as 80% sliding and this decrease was attributed to changes in tangential stiffness of the sliding interface. The frictional response of surface wrinkles, where multiple edges or defects are acting in concert, was also evaluated. Wrinkles were shown to decrease friction (F) and changes in contact area (A) could not describe this decrease. A tangential stiffness correction factor (fx) and changes in the critical energy release rate were used to describe this deviation (F infinity Gc *A*fx/ℓ, where ℓ is a materials defined length scale of dissipation). This scaling can be used to describe the friction of any topographically patterned surface including the Gecko's foot, where the feature size is smaller than ℓ and thus replaces ℓ, increasing the friction compared to a flat surface. Also, mechanically-induced surface defects were used to align osmotically driven surface wrinkles by creating stress discontinuities that convert the global biaxial stress state to local uniaxial stresses. Defect spacing was used to control the alignment process at the surface of the wrinkled rigid film/soft elastomer interface. These aligned wrinkled surfaces can be used to tune the adhesion and friction of an interface. The work presented here gives insight into tuning the friction of a soft polymeric surface as well as understanding the friction of complex hierarchical structures.
NASA Astrophysics Data System (ADS)
Kokorian, Jaap; Merlijn van Spengen, W.
2017-11-01
In this paper we demonstrate a new method for analyzing and visualizing friction force measurements of meso-scale stick-slip motion, and introduce a method for extracting two separate dissipative energy components. Using a microelectromechanical system tribometer, we execute 2 million reciprocating sliding cycles, during which we measure the static friction force with a resolution of \
NASA Astrophysics Data System (ADS)
Karamış, M. B.; Yıldızlı, K.; Çakırer, H.
2004-05-01
Surface properties of the Al-Mo-Ni coating plasma sprayed on the piston ring material and the frictional forces obtained by testing carried out under different loads, temperatures and frictional conditions were evaluated. Al-Mo-Ni composite material was deposited on the AISI 440C test steel using plasma spraying method. The coated and uncoated samples were tested by being exposed to frictional testing under dry and lubricated conditions. Test temperatures of 25, 100, 200, and 300 °C and loads of 83, 100, 200, and 300 N were applied during the tests in order to obtain the frictional response of the coating under conditions similar to real piston ring/cylinder friction conditions. Gray cast iron was used as a counterface material. All the tests were carried out with a constant sliding speed of 1 m/s. The properties of the coating were determined by using EDX and SEM analyses. Hardness distribution on the cross-section of the coating was also determined. In addition, the variations of the surface roughness after testing with test temperatures and loads under dry and lubricated conditions were recorded versus sliding distance. It was determined that the surface roughness increased with increasing loads. It increased with temperature up to 200 °C and then decreased at 300 °C under dry test conditions. Under lubricated conditions, the roughness decreased under the loads of 100 N and then increased. The roughness decreased at 200 °C but below and above this point it increased with the test temperature. Frictional forces observed under dry and lubricated test conditions increased with load at running-in period of the sliding. The steady-state period was then established with the sliding distance as a normal situation. However, the frictional forces were generally lower at a higher test temperature than those at a lower test temperature. Surprisingly, the test temperature of 200 °C was a critical point for frictional forces and surface roughness.
Prediction of static friction coefficient in rough contacts based on the junction growth theory
NASA Astrophysics Data System (ADS)
Spinu, S.; Cerlinca, D.
2017-08-01
The classic approach to the slip-stick contact is based on the framework advanced by Mindlin, in which localized slip occurs on the contact area when the local shear traction exceeds the product between the local pressure and the static friction coefficient. This assumption may be too conservative in the case of high tractions arising at the asperities tips in the contact of rough surfaces, because the shear traction may be allowed to exceed the shear strength of the softer material. Consequently, the classic frictional contact model is modified in this paper so that gross sliding occurs when the junctions formed between all contacting asperities are independently sheared. In this framework, when the contact tractions, normal and shear, exceed the hardness of the softer material on the entire contact area, the material of the asperities yields and the junction growth process ends in all contact regions, leading to gross sliding inception. This friction mechanism is implemented in a previously proposed numerical model for the Cattaneo-Mindlin slip-stick contact problem, which is modified to accommodate the junction growth theory. The frictionless normal contact problem is solved first, then the tangential force is gradually increased, until gross sliding inception. The contact problems in the normal and in the tangential direction are successively solved, until one is stabilized in relation to the other. The maximum tangential force leading to a non-vanishing stick area is the static friction force that can be sustained by the rough contact. The static friction coefficient is eventually derived as the ratio between the latter friction force and the normal force.
The amazing cases of motion with friction
NASA Astrophysics Data System (ADS)
Grech, Dariusz; Mazur, Zygmunt
2001-07-01
The paper describes the behaviour of a simple mechanical system, which should help students (or teachers) to understand and clarify the importance of relative motion of two surfaces when kinetic friction is present. We show that despite the simplicity of this system, the peculiar interplay between friction forces, tension forces and gravity leads to physical solutions exceeding in many cases most intuitive expectations. These are discussed in detail. The problem is intended to be solved in a theoretical framework as an example, which helps to understand better the physical background of kinetic friction phenomena.
Image contrast mechanisms in dynamic friction force microscopy: Antimony particles on graphite
NASA Astrophysics Data System (ADS)
Mertens, Felix; Göddenhenrich, Thomas; Dietzel, Dirk; Schirmeisen, Andre
2017-01-01
Dynamic Friction Force Microscopy (DFFM) is a technique based on Atomic Force Microscopy (AFM) where resonance oscillations of the cantilever are excited by lateral actuation of the sample. During this process, the AFM tip in contact with the sample undergoes a complex movement which consists of alternating periods of sticking and sliding. Therefore, DFFM can give access to dynamic transition effects in friction that are not accessible by alternative techniques. Using antimony nanoparticles on graphite as a model system, we analyzed how combined influences of friction and topography can effect different experimental configurations of DFFM. Based on the experimental results, for example, contrast inversion between fractional resonance and band excitation imaging strategies to extract reliable tribological information from DFFM images are devised.
Design of dry-friction dampers for turbine blades
NASA Technical Reports Server (NTRS)
Ancona, W.; Dowell, E. H.
1983-01-01
A study is conducted of turbine blade forced response, where the blade has been modeled as a cantilever beam with a generally dry friction damper attached, and where the minimization of blade root strain as the excitation frequency is varied over a given range is the criterion for the evaluation of the effectiveness of the dry friction damper. Attempts are made to determine the location of the damper configuration best satisfying the design criterion, together with the best damping force (assuming that the damper location has been fixed). Results suggest that there need not be an optimal value for the damping force, or an optimal location for the dry friction damper, although there is a range of values which should be avoided.
NASA Astrophysics Data System (ADS)
Kim, Gi-Woo; Wang, K. W.
2009-08-01
In this study, a nonlinear sliding-mode controller is designed for force tracking of a piezoelectric-hydraulic pump (PHP)-based actuation system, which is developed to replace the current electro-hydraulic actuation systems for automatic transmission (AT) friction elements, such as band brakes or clutches. By utilizing the PHP, one can eliminate the various hydraulic components (oil pump, regulating valve and control valve) in current ATs and achieve a simpler configuration with more efficient operation. With the derived governing equation of motion of the PHP-based actuation system integrated with the friction element (band brake), a switching control law is synthesized based on the sliding-mode theory. To evaluate the effectiveness of the proposed control law, its force tracking performance for the engagement of a friction element during an AT 1\\to 2 up-shift is examined experimentally. It is shown that one can successfully track the desired force trajectory for AT shift control with small tracking error. This study demonstrates the potential of the PHP as a new controllable actuation system for AT friction elements.
A Comparison of Classical Force-Fields for Molecular Dynamics Simulations of Lubricants
Ewen, James P.; Gattinoni, Chiara; Thakkar, Foram M.; Morgan, Neal; Spikes, Hugh A.; Dini, Daniele
2016-01-01
For the successful development and application of lubricants, a full understanding of their complex nanoscale behavior under a wide range of external conditions is required, but this is difficult to obtain experimentally. Nonequilibrium molecular dynamics (NEMD) simulations can be used to yield unique insights into the atomic-scale structure and friction of lubricants and additives; however, the accuracy of the results depend on the chosen force-field. In this study, we demonstrate that the use of an accurate, all-atom force-field is critical in order to; (i) accurately predict important properties of long-chain, linear molecules; and (ii) reproduce experimental friction behavior of multi-component tribological systems. In particular, we focus on n-hexadecane, an important model lubricant with a wide range of industrial applications. Moreover, simulating conditions common in tribological systems, i.e., high temperatures and pressures (HTHP), allows the limits of the selected force-fields to be tested. In the first section, a large number of united-atom and all-atom force-fields are benchmarked in terms of their density and viscosity prediction accuracy of n-hexadecane using equilibrium molecular dynamics (EMD) simulations at ambient and HTHP conditions. Whilst united-atom force-fields accurately reproduce experimental density, the viscosity is significantly under-predicted compared to all-atom force-fields and experiments. Moreover, some all-atom force-fields yield elevated melting points, leading to significant overestimation of both the density and viscosity. In the second section, the most accurate united-atom and all-atom force-field are compared in confined NEMD simulations which probe the structure and friction of stearic acid adsorbed on iron oxide and separated by a thin layer of n-hexadecane. The united-atom force-field provides an accurate representation of the structure of the confined stearic acid film; however, friction coefficients are consistently under-predicted and the friction-coverage and friction-velocity behavior deviates from that observed using all-atom force-fields and experimentally. This has important implications regarding force-field selection for NEMD simulations of systems containing long-chain, linear molecules; specifically, it is recommended that accurate all-atom potentials, such as L-OPLS-AA, are employed. PMID:28773773
A Comparison of Classical Force-Fields for Molecular Dynamics Simulations of Lubricants.
Ewen, James P; Gattinoni, Chiara; Thakkar, Foram M; Morgan, Neal; Spikes, Hugh A; Dini, Daniele
2016-08-02
For the successful development and application of lubricants, a full understanding of their complex nanoscale behavior under a wide range of external conditions is required, but this is difficult to obtain experimentally. Nonequilibrium molecular dynamics (NEMD) simulations can be used to yield unique insights into the atomic-scale structure and friction of lubricants and additives; however, the accuracy of the results depend on the chosen force-field. In this study, we demonstrate that the use of an accurate, all-atom force-field is critical in order to; (i) accurately predict important properties of long-chain, linear molecules; and (ii) reproduce experimental friction behavior of multi-component tribological systems. In particular, we focus on n -hexadecane, an important model lubricant with a wide range of industrial applications. Moreover, simulating conditions common in tribological systems, i.e., high temperatures and pressures (HTHP), allows the limits of the selected force-fields to be tested. In the first section, a large number of united-atom and all-atom force-fields are benchmarked in terms of their density and viscosity prediction accuracy of n -hexadecane using equilibrium molecular dynamics (EMD) simulations at ambient and HTHP conditions. Whilst united-atom force-fields accurately reproduce experimental density, the viscosity is significantly under-predicted compared to all-atom force-fields and experiments. Moreover, some all-atom force-fields yield elevated melting points, leading to significant overestimation of both the density and viscosity. In the second section, the most accurate united-atom and all-atom force-field are compared in confined NEMD simulations which probe the structure and friction of stearic acid adsorbed on iron oxide and separated by a thin layer of n -hexadecane. The united-atom force-field provides an accurate representation of the structure of the confined stearic acid film; however, friction coefficients are consistently under-predicted and the friction-coverage and friction-velocity behavior deviates from that observed using all-atom force-fields and experimentally. This has important implications regarding force-field selection for NEMD simulations of systems containing long-chain, linear molecules; specifically, it is recommended that accurate all-atom potentials, such as L-OPLS-AA, are employed.
Formation of nanoscale water bridges
NASA Astrophysics Data System (ADS)
Riedo, Elisa; Szoszkiewicz, Robert; Li, Tai-De; Gao, Jianping; Landman, Uzi
2006-03-01
The water bridges provide stability to sand castles, act as transport channels for dip-pen nanolitography and increase adhesion and friction in micro- and nano- devices such as MEMS. The kinetics of capillary condensation and growth at the nanoscale is studied here using friction force microscopy and molecular dynamics calculations. At 40% relative humidity we find that the meniscus nucleation times increase from 0.7 ms up to 4.2 ms when the temperature decreases from 332 K to 299 K. The nucleation times grow exponentially with the inverse temperature 1/T obeying an Arrhenius law. We obtain a nucleation energy barrier of 7.8*10̂-20˜J and an attempt frequency ranging between 4-250˜GHz, in excellent agreement with theoretical predictions. These results provide direct experimental evidence that capillary condensation is a thermally activated phenomenon.
Effect of Intraoral Aging on Debris Accumulation and Friction of First Molar Tubes.
Chaptini, Edmond; Khoury, Elie; Cacciafesta, Vittorio; Naaman, Nada
2016-11-01
The aim of this article was to evaluate the impact of intraoral aging and site specificity on debris accumulation and friction in molar tubes after intraoral use. A total of 80 intraorally used first molar convertible tubes were provided by 20 orthodontic adolescent patients after 6 months of treatment. The specimens were divided into eight groups (n = 10) according to the mouth quadrant and the type of examination [four groups of ten tubes for scanning electron microscope (SEM) and four groups of ten tubes for friction test]. Scanning electron microscope examination was performed after opening the convertible caps and friction test was executed using a 0.019'' × 0.025'' stainless steel wire, which was inserted in the tubes belonging to each group. The Mann-Whitney test, analysis of variance (ANOVA), and Bonferroni tests were performed for statistical analysis at 0.01 level of significance. There was a significant increase in the amount of debris and frictional force after 6 months of intraoral exposure (p < 0.0001). Debris scores were higher (10% increase) on the upper tubes when compared with the lower ones, with no statistical difference. Mean frictional force ranged from 0.22 to 0.26 N according to the mouth quadrant, but the difference between groups was also not significant. After 6 months of intraoral exposure, there was a significant increase in the amount of debris in the first molar tube slots, leading to significantly higher frictional forces during sliding mechanics. The influence of site specificity on the amount of debris and on frictional forces of the first molar tubes could not be demonstrated. Molar tubes should be cleaned, before and during sliding mechanics, in order to minimize friction.
Behroozian, Ahmad; Kachoei, Mojgan; Khatamian, Masumeh; Divband, Baharak
2016-01-01
Background. Any decrease in friction between orthodontic wire and bracket can accelerate tooth movement in the sliding technique and result in better control of anchorage. This study was carried out to evaluate frictional forces by coating orthodontic wires and porcelain brackets with zinc oxide nanoparticles (ZnO). Methods. In this in vitro study, we evaluated a combination of 120 samples of 0.019×0.025 stainless steel (SS) orthodonticwires and 22 mil system edgewise porcelain brackets with and without spherical zinc oxide nanoparticles. Spherical ZnOnanoparticles were deposited on wires and brackets by immersing them in ethanol solution and SEM (scanning electronmicroscope) evaluation confirmed the presence of the ZnO coating. The frictional forces were calculated between the wiresand brackets in four groups: group ZZ (coated wire and bracket), group OO (uncoated wire and bracket), group ZO (coatedwire and uncoated bracket) and group OZ (uncoated wire and coated bracket). Kolmogorov-Smirnov, Mann-Whitney andKruskal-Wallis tests were used for data analysis. Results. The frictional force in ZZ (3.07±0.4 N) was the highest (P <0.05), and OZ (2.18±0.5 N) had the lowest amount of friction (P <0.05) among the groups. There was no significant difference in frictional forces between the ZO and OO groups (2.65±0.2 and 2.70±0.2 N, respectively). Conclusion. Coating of porcelain bracket surfaces with ZnO nanoparticles can decrease friction in the sliding technique,and wire coating combined with bracket coating is not recommended due to its effect on friction. PMID:27429727
An eight-legged tactile sensor to estimate coefficient of static friction.
Wei Chen; Rodpongpun, Sura; Luo, William; Isaacson, Nathan; Kark, Lauren; Khamis, Heba; Redmond, Stephen J
2015-08-01
It is well known that a tangential force larger than the maximum static friction force is required to initiate the sliding motion between two objects, which is governed by a material constant called the coefficient of static friction. Therefore, knowing the coefficient of static friction is of great importance for robot grippers which wish to maintain a stable and precise grip on an object during various manipulation tasks. Importantly, it is most useful if grippers can estimate the coefficient of static friction without having to explicitly explore the object first, such as lifting the object and reducing the grip force until it slips. A novel eight-legged sensor, based on simplified theoretical principles of friction is presented here to estimate the coefficient of static friction between a planar surface and the prototype sensor. Each of the sensor's eight legs are straight and rigid, and oriented at a specified angle with respect to the vertical, allowing it to estimate one of five ranges (5 = 8/2 + 1) that the coefficient of static friction can occupy. The coefficient of friction can be estimated by determining whether the legs have slipped or not when pressed against a surface. The coefficients of static friction between the sensor and five different materials were estimated and compared to a measurement from traditional methods. A least-squares linear fit of the sensor estimated coefficient showed good correlation with the reference coefficient with a gradient close to one and an r(2) value greater than 0.9.
Science 101: What Causes Friction?
ERIC Educational Resources Information Center
Robertson, Bill
2014-01-01
Defining friction and asking what causes it might seem like a trivial question. Friction seems simple enough to understand. Friction is a force between surfaces that pushes against things that are moving or tending to move, and the rougher the surfaces, the greater the friction. Bill Robertson answers this by saying, "Well, not exactly".…
Showing Area Matters: A Work of Friction
ERIC Educational Resources Information Center
Van Domelen, David
2010-01-01
Typically, we teach the simplified friction equation of the form F[subscript s] = [mu][subscript s]N for static friction, where F[subscript s] is the maximum static friction, [mu][subscript s] is the coefficient of static friction, and "N" is the normal force pressing the surfaces together. However, this is a bit too simplified, and…
Effect of grafted oligopeptides on friction.
Iarikov, Dmitri D; Ducker, William A
2013-05-14
Frictional and normal forces in aqueous solution at 25 °C were measured between a glass particle and oligopeptide films grafted from a glass plate. Homopeptide molecules consisting of 11 monomers of either glutamine, leucine, glutamic acid, lysine, or phenylalanine and one heteropolymer were each "grafted from" an oxidized silicon wafer using microwave-assisted solid-phase peptide synthesis. The peptide films were characterized using X-ray photoelectron spectroscopy and secondary ion mass spectrometry. Frictional force measurements showed that the oligopeptides increased the magnitude of friction compared to that on a bare hydrophilic silicon wafer but that the friction was a strong function of the nature of the monomer unit. Overall we find that the friction is lower for more hydrophilic films. For example, the most hydrophobic monomer, leucine, exhibited the highest friction whereas the hydrophilic monomer, polyglutamic acid, exhibited the lowest friction at zero load. When the two surfaces had opposite charges, there was a strong attraction, adhesion, and high friction between the surfaces. Friction for all polymers was lower in phosphate-buffered saline than in pure water, which was attributed to lubrication via hydrated salt ions.
Theory of the locomotion of nematodes
Niebur, Ernst; Erdös, Paul
1991-01-01
We develop a model of the undulatory locomotion of nematodes, in particular that of Caenorhabditis elegans, based on mechanics. The model takes into account the most important forces acting on a moving worm and allows the computer simulation of a creeping nematode. These forces are produced by the interior pressure in the liquid-filled body cavity, the elasticity of the cuticle, the excitation of certain sets of muscles and the friction between the body and its support. We propose that muscle excitation patterns can be generated by stretch receptor control. By solving numerically the equations of motion of the model of the nematode, we demonstrate that these muscle excitation patterns are suitable for the propulsion of the animal. PMID:19431807
Mechanics of wheel-soil interaction
NASA Technical Reports Server (NTRS)
Houland, H. J.
1973-01-01
An approximate theory for wheel-soil interaction is presented which forms the basis for a practical solution to the problem. It is shown that two fundamental observations render the problem determinate: (1) The line of action of the resultant of radial stresses acting at the wheel soil interface approximately bisects the wheel-soil contact angle for all values of slip. (2) A shear stress surface can be hypothesized. The influence of soil inertia forces is also evaluated. A concept of equivalent cohesion is introduced which allows a convenient experimental comparison for both cohesive and frictional soils. This theory compares favorably with previous analyses and experimental data, and shows that soil inertia forces influencing the motion of a rolling wheel can be significant.
Quantum friction in arbitrarily directed motion
Klatt, J.; Farías, M. Belen; Dalvit, D. A. R.; ...
2017-05-30
In quantum friction, the electromagnetic fluctuation-induced frictional force decelerating an atom which moves past a macroscopic dielectric body, has so far eluded experimental evidence despite more than three decades of theoretical studies. Inspired by the recent finding that dynamical corrections to such an atom's internal dynamics are enhanced by one order of magnitude for vertical motion—compared with the paradigmatic setup of parallel motion—here we generalize quantum friction calculations to arbitrary angles between the atom's direction of motion and the surface in front of which it moves. Motivated by the disagreement between quantum friction calculations based on Markovian quantum master equationsmore » and time-dependent perturbation theory, we carry out our derivations of the quantum frictional force for arbitrary angles by employing both methods and compare them.« less
Friction force microscopy at a regularly stepped Au(665) electrode: Anisotropy effects
NASA Astrophysics Data System (ADS)
Podgaynyy, Nikolay; Iqbal, Shahid; Baltruschat, Helmut
2015-01-01
Using friction force microscopy, friction was determined for the AFM-tip scanning parallel and vertically to the monoatomic steps of Au(665) electrode for different coverages of Cu in sulfuric acid. When the tip was scanning parallel to the steps, the results were similar to those obtained before for a Au(111) surface: a higher coverage of Cu leads to an increased friction. However, differently from Au(111), no transitions in the friction coefficient were observed with increasing load. Atomic stick slip was observed both for the Au surface and the √{ 3} × √{ 3} honeycomb Cu adlayer with a Cu coverage of 2/3. When the tip was scanning perpendicular to the steps, friction did not depend much on coverage; astonishingly, atomic stick slip was also observed.
Pimentel, Roberta Ferreira; de Oliveira, Roberto Sotto Maior Fortes; Chaves, Maria das Graças Afonso Miranda; Elias, Carlos Nelson; Gravina, Marco Abdo
2013-01-01
To evaluate and compare "in vitro" the maximum friction force generated by three types of esthetic brackets, two types of polycrystalline conventional ceramic brackets (20/40 and InVu) and one type of sapphire monocrystalline bracket (Radiance) in dry and artificial saliva wet settings. Also, to evaluate the influence exerted by artificial saliva on the friction forces of those brackets. Tests were performed in dry and artificial saliva wet setting (Oral Balance) by using an EMIC DL 10000 testing machine, simulating a 2 mm slide of 0.019 x 0.025-in rectangular stainless steel wires over the pre-angulated and pre-torqued (right superior canine, Roth prescription, slot 0.022 x 0.030-in) brackets (n = 18 for each bracket). In order to compare groups in dry and wet settings, the ANOVA was used. For comparisons related to the dry versus wet setting, the student t test was used for each group. The results showed that in the absence of saliva the Radiance monocrystalline brackets showed the highest friction coefficients, followed by the 20/40 and the InVu polycrystalline brackets. In tests with artificial saliva, the Radiance and the 20/40 brackets had statistically similar friction coefficients and both were greater than that presented by the InVu brackets. The artificial saliva did not change the maximum friction force of the Radiance brackets, but, for the others (20/40 and InVu), an increase of friction was observed in its presence. The InVu brackets showed, in the absence and in the presence of saliva, the lowest friction coefficient.
Spatial dispersion in atom-surface quantum friction
Reiche, D.; Dalvit, D. A. R.; Busch, K.; ...
2017-04-15
We investigate the influence of spatial dispersion on atom-surface quantum friction. We show that for atom-surface separations shorter than the carrier's mean free path within the material, the frictional force can be several orders of magnitude larger than that predicted by local optics. In addition, when taking into account spatial dispersion effects, we show that the commonly used local thermal equilibrium approximation underestimates by approximately 95% the drag force, obtained by employing the recently reported nonequilibrium fluctuation-dissipation relation for quantum friction. Unlike the treatment based on local optics, spatial dispersion in conjunction with corrections to local thermal equilibrium change notmore » only the magnitude but also the distance scaling of quantum friction.« less
Lorenz, B; Persson, B N J
2012-06-06
We discuss the origin of static friction and show how it can be reduced towards kinetic friction by the appropriate design of the sliding system. The basic idea is to use elastically soft solids and apply the external forces in such a way that different parts of the contacting interface start to slip at different times during the (tangential) loading process. In addition, the local slip must be large enough in order to result in a strong drop in the static friction force. We illustrate the theoretical predictions with the results of a simple model experiment.
Generalized contact and improved frictional heating in the material point method
NASA Astrophysics Data System (ADS)
Nairn, J. A.; Bardenhagen, S. G.; Smith, G. D.
2017-09-01
The material point method (MPM) has proved to be an effective particle method for computational mechanics modeling of problems involving contact, but all prior applications have been limited to Coulomb friction. This paper generalizes the MPM approach for contact to handle any friction law with examples given for friction with adhesion or with a velocity-dependent coefficient of friction. Accounting for adhesion requires an extra calculation to evaluate contact area. Implementation of velocity-dependent laws usually needs numerical methods to find contacting forces. The friction process involves work which can be converted into heat. This paper provides a new method for calculating frictional heating that accounts for interfacial acceleration during the time step. The acceleration terms is small for many problems, but temporal convergence of heating effects for problems involving vibrations and high contact forces is improved by the new method. Fortunately, the new method needs few extra calculations and therefore is recommended for all simulations.
Generalized contact and improved frictional heating in the material point method
NASA Astrophysics Data System (ADS)
Nairn, J. A.; Bardenhagen, S. G.; Smith, G. D.
2018-07-01
The material point method (MPM) has proved to be an effective particle method for computational mechanics modeling of problems involving contact, but all prior applications have been limited to Coulomb friction. This paper generalizes the MPM approach for contact to handle any friction law with examples given for friction with adhesion or with a velocity-dependent coefficient of friction. Accounting for adhesion requires an extra calculation to evaluate contact area. Implementation of velocity-dependent laws usually needs numerical methods to find contacting forces. The friction process involves work which can be converted into heat. This paper provides a new method for calculating frictional heating that accounts for interfacial acceleration during the time step. The acceleration terms is small for many problems, but temporal convergence of heating effects for problems involving vibrations and high contact forces is improved by the new method. Fortunately, the new method needs few extra calculations and therefore is recommended for all simulations.
Maharaj, Dave
2012-01-01
Summary Nano-object additives are used in tribological applications as well as in various applications in liquids requiring controlled manipulation and targeting. On the macroscale, nanoparticles in solids and liquids have been shown to reduce friction and wear. On the nanoscale, atomic force microscopy (AFM) studies have been performed in single- and multiple-nanoparticle contact, in dry environments, to characterize friction forces and wear. However, limited studies in submerged liquid environments have been performed and further studies are needed. In this paper, spherical Au nanoparticles were studied for their effect on friction and wear under dry conditions and submerged in water. In single-nanoparticle contact, individual nanoparticles, deposited on silicon, were manipulated with a sharp tip and the friction force was determined. Multiple-nanoparticle contact sliding experiments were performed on nanoparticle-coated silicon with a glass sphere. Wear tests were performed on the nanoscale with AFM as well as on the macroscale by using a ball-on-flat tribometer to relate friction and wear reduction on the nanoscale and macroscale. Results indicate that the addition of Au nanoparticles reduces friction and wear. PMID:23213639
NASA Astrophysics Data System (ADS)
Scholz, Robert; Floß, Gereon; Saalfrank, Peter; Füchsel, Gernot; Lončarić, Ivor; Juaristi, J. I.
2016-10-01
A Langevin model accounting for all six molecular degrees of freedom is applied to femtosecond-laser induced, hot-electron driven dynamics of Ru(0001)(2 ×2 ):CO. In our molecular dynamics with electronic friction approach, a recently developed potential energy surface based on gradient-corrected density functional theory accounting for van der Waals interactions is adopted. Electronic friction due to the coupling of molecular degrees of freedom to electron-hole pairs in the metal are included via a local density friction approximation, and surface phonons by a generalized Langevin oscillator model. The action of ultrashort laser pulses enters through a substrate-mediated, hot-electron mechanism via a time-dependent electronic temperature (derived from a two-temperature model), causing random forces acting on the molecule. The model is applied to laser induced lateral diffusion of CO on the surface, "hot adsorbate" formation, and laser induced desorption. Reaction probabilities are strongly enhanced compared to purely thermal processes, both for diffusion and desorption. Reaction yields depend in a characteristic (nonlinear) fashion on the applied laser fluence, as well as branching ratios for various reaction channels. Computed two-pulse correlation traces for desorption and other indicators suggest that aside from electron-hole pairs, phonons play a non-negligible role for laser induced dynamics in this system, acting on a surprisingly short time scale. Our simulations on precomputed potentials allow for good statistics and the treatment of long-time dynamics (300 ps), giving insight into this system which hitherto has not been reached. We find generally good agreement with experimental data where available and make predictions in addition. A recently proposed laser induced population of physisorbed precursor states could not be observed with the present low-coverage model.
Nanoscale lubrication of ionic surfaces controlled via a strong electric field
Strelcov, Evgheni; Bocharova, Vera; Sumpter, Bobby G.; ...
2015-01-27
Frictional forces arise whenever objects around us are set in motion. Controlling them in a rational manner means gaining leverage over mechanical energy losses and wear. This paper presents a way of manipulating nanoscale friction by means of in situ lubrication and interfacial electrochemistry. Water lubricant is directionally condensed from the vapor phase at a moving metal-ionic crystal interface by a strong confined electric field, thereby allowing friction to be tuned up or down via an applied bias. The electric potential polarity and ionic solid solubility are shown to strongly influence friction between the atomic force microscope (AFM) tip andmore » salt surface. An increase in friction is associated with the AFM tip digging into the surface, whereas reducing friction does not influence its topography. No current flows during friction variation, which excludes Joule heating and associated electrical energy losses. Lastly, the demonstrated novel effect can be of significant technological importance for controlling friction in nano- and micro-electromechanical systems.« less
Jackson, M I; Hiley, M J; Yeadon, M R
2011-10-13
In the table contact phase of gymnastics vaulting both dynamic and static friction act. The purpose of this study was to develop a method of simulating Coulomb friction that incorporated both dynamic and static phases and to compare the results with those obtained using a pseudo-Coulomb implementation of friction when applied to the table contact phase of gymnastics vaulting. Kinematic data were obtained from an elite level gymnast performing handspring straight somersault vaults using a Vicon optoelectronic motion capture system. An angle-driven computer model of vaulting that simulated the interaction between a seven segment gymnast and a single segment vaulting table during the table contact phase of the vault was developed. Both dynamic and static friction were incorporated within the model by switching between two implementations of the tangential frictional force. Two vaulting trials were used to determine the model parameters using a genetic algorithm to match simulations to recorded performances. A third independent trial was used to evaluate the model and close agreement was found between the simulation and the recorded performance with an overall difference of 13.5%. The two-state simulation model was found to be capable of replicating performance at take-off and also of replicating key contact phase features such as the normal and tangential motion of the hands. The results of the two-state model were compared to those using a pseudo-Coulomb friction implementation within the simulation model. The two-state model achieved similar overall results to those of the pseudo-Coulomb model but obtained solutions more rapidly. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Shi, Ruoyu; Gao, Lei; Lu, Hongliang; Li, Qunyang; Ma, Tian-Bao; Guo, Hui; Du, Shixuan; Feng, Xi-Qiao; Zhang, Shuai; Liu, Yanmin; Cheng, Peng; Hu, Yuan-Zhong; Gao, Hong-Jun; Luo, Jianbin
2017-06-01
Two dimensional (2D) materials often exhibit novel properties due to various coupling effects with their supporting substrates. Here, using friction force microscopy (FFM), we report an unusual moiré superlattice-level stick-slip instability on monolayer graphene epitaxially grown on Ru(0 0 0 1) substrate. Instead of smooth friction modulation, a significant long-range stick-slip sawtooth modulation emerges with a period coinciding with the moiré superlattice structure, which is robust against high external loads and leads to an additional channel of energy dissipation. In contrast, the long-range stick-slip instability reduces to smooth friction modulation on graphene/Ir(1 1 1) substrate. The moiré superlattice-level slip instability could be attributed to the large sliding energy barrier, which arises from the morphological corrugation of graphene on Ru(0 0 0 1) surface as indicated by density functional theory (DFT) calculations. The locally steep humps acting as obstacles opposing the tip sliding, originates from the strong interfacial electronic interaction between graphene and Ru(0 0 0 1). This study opens an avenue for modulating friction by tuning the interfacial atomic interaction between 2D materials and their substrates.
Friction forces on atoms after acceleration
Intravaia, Francesco; Mkrtchian, Vanik E.; Buhmann, Stefan Yoshi; ...
2015-05-12
The aim of this study is to revisit the calculation of atom–surface quantum friction in the quantum field theory formulation put forward by Barton (2010 New J. Phys. 12 113045). We show that the power dissipated into field excitations and the associated friction force depend on how the atom is boosted from being initially at rest to a configuration in which it is moving at constant velocity (v) parallel to the planar interface. In addition, we point out that there is a subtle cancellation between the one-photon and part of the two-photon dissipating power, resulting in a leading order contributionmore » to the frictional power which goes as v 4. These results are also confirmed by an alternative calculation of the average radiation force, which scales as v 3.« less
NASA Astrophysics Data System (ADS)
Sweeney, James; Hausen, Florian; Hayes, Robert; Webber, Grant B.; Endres, Frank; Rutland, Mark W.; Bennewitz, Roland; Atkin, Rob
2012-10-01
The lubricating properties of an ionic liquid on gold surfaces can be controlled through application of an electric potential to the sliding contact. A nanotribology approach has been used to study the frictional behavior of 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl) trifluorophosphate ([Py1,4]FAP) confined between silica colloid probes or sharp silica tips and a Au(111) substrate using atomic force microscopy. Friction forces vary with potential because the composition of a confined ion layer between the two surfaces changes from cation-enriched (at negative potentials) to anion-enriched (at positive potentials). This offers a new approach to tuning frictional forces reversibly at the molecular level without changing the substrates, employing a self-replenishing boundary lubricant of low vapor pressure.
Quantifying the Frictional Forces between Skin and Nonwoven Fabrics
Jayawardana, Kavinda; Ovenden, Nicholas C.; Cottenden, Alan
2017-01-01
When a compliant sheet of material is dragged over a curved surface of a body, the frictional forces generated can be many times greater than they would be for a planar interface. This phenomenon is known to contribute to the abrasion damage to skin often suffered by wearers of incontinence pads and bed/chairbound people susceptible to pressure sores. Experiments that attempt to quantify these forces often use a simple capstan-type equation to obtain a characteristic coefficient of friction. In general, the capstan approach assumes the ratio of applied tensions depends only on the arc of contact and the coefficient of friction, and ignores other geometric and physical considerations; this approach makes it straightforward to obtain explicitly a coefficient of friction from the tensions measured. In this paper, two mathematical models are presented that compute the material displacements and surface forces generated by, firstly, a membrane under tension in moving contact with a rigid obstacle and, secondly, a shell-membrane under tension in contact with a deformable substrate. The results show that, while the use of a capstan equation remains fairly robust in some cases, effects such as the curvature and flaccidness of the underlying body, and the mass density of the fabric can lead to significant variations in stresses generated in the contact region. Thus, the coefficient of friction determined by a capstan model may not be an accurate reflection of the true frictional behavior of the contact region. PMID:28321192
Control system for maximum use of adhesive forces of a railway vehicle in a tractive mode
NASA Astrophysics Data System (ADS)
Spiryagin, Maksym; Lee, Kwan Soo; Yoo, Hong Hee
2008-04-01
The realization of maximum adhesive forces for a railway vehicle is a very difficult process, because it involves using tractive efforts and depends on friction characteristics in the contact zone between wheels and rails. Tractive efforts are realized by means of tractive torques of motors, and their maximum values can provide negative effects such as slip and skid. These situations usually happen when information about friction conditions is lacking. The negative processes have a major influence on wearing of contact bodies and tractive units. Therefore, many existing control systems for vehicles use an effect of a prediction of a friction coefficient between wheels and rails because measuring a friction coefficient at the moment of running vehicle movement is very difficult. One of the ways to solve this task is to use noise spectrum analysis for friction coefficient detection. This noise phenomenon has not been clearly studied and analyzed. In this paper, we propose an adhesion control system of railway vehicles based on an observer, which allows one to determine the maximum tractive torque based on the optimal adhesive force between the wheels (wheel pair) of a railway vehicle and rails (rail track) depending on weight load from a wheel to a rail, friction conditions in the contact zone, a lateral displacement of wheel set and wheel sleep. As a result, it allows a railway vehicle to be driven in a tractive mode by the maximum adhesion force for real friction conditions.
Krishnan, Manu; Saraswathy, Seema; Sukumaran, Kalathil; Abraham, Kurian Mathew
2013-01-01
To evaluate the changes in surface roughness and frictional features of 'ion-implanted nickel titanium (NiTi) and titanium molybdenum alloy (TMA) arch wires' from its conventional types in an in-vitro laboratory set up. 'Ion-implanted NiTi and low friction TMA arch wires' were assessed for surface roughness with scanning electron microscopy (SEM) and 3 dimensional (3D) optical profilometry. Frictional forces were studied in a universal testing machine. Surface roughness of arch wires were determined as Root Mean Square (RMS) values in nanometers and Frictional Forces (FF) in grams. Mean values of RMS and FF were compared by Student's 't' test and one way analysis of variance (ANOVA). SEM images showed a smooth topography for ion-implanted versions. 3D optical profilometry demonstrated reduction of RMS values by 58.43% for ion-implanted NiTi (795.95 to 330.87 nm) and 48.90% for TMA groups (463.28 to 236.35 nm) from controls. Nonetheless, the corresponding decrease in FF was only 29.18% for NiTi and 22.04% for TMA, suggesting partial correction of surface roughness and disproportionate reduction in frictional forces with ion-implantation. Though the reductions were highly significant at P < 0.001, relations between surface roughness and frictional forces remained non conclusive even after ion-implantation. The study proved that ion-implantation can significantly reduce the surface roughness of NiTi and TMA wires but could not make a similar reduction in frictional forces. This can be attributed to the inherent differences in stiffness and surface reactivity of NiTi and TMA wires when used in combination with stainless steel brackets, which needs further investigations.
Postoperative Changes in In Vivo Measured Friction in Total Hip Joint Prosthesis during Walking
Damm, Philipp; Bender, Alwina; Bergmann, Georg
2015-01-01
Loosening of the artificial cup and inlay is the most common reasons for total hip replacement failures. Polyethylene wear and aseptic loosening are frequent reasons. Furthermore, over the past few decades, the population of patients receiving total hip replacements has become younger and more active. Hence, a higher level of activity may include an increased risk of implant loosening as a result of friction-induced wear. In this study, an instrumented hip implant was used to measure the contact forces and friction moments in vivo during walking. Subsequently, the three-dimensional coefficient of friction in vivo was calculated over the whole gait cycle. Measurements were collected from ten subjects at several time points between three and twelve months postoperative. No significant change in the average resultant contact force was observed between three and twelve months postoperative. In contrast, a significant decrease of up to 47% was observed in the friction moment. The coefficient of friction also decreased over postoperative time on average. These changes may be caused by ‘running-in’ effects of the gliding components or by the improved lubricating properties of the synovia. Because the walking velocity and contact forces were found to be nearly constant during the observed period, the decrease in friction moment suggests an increase in fluid viscosity. The peak values of the contact force individually varied by 32%-44%. The friction moment individually differed much more, by 110%-129% at three and up to 451% at twelve months postoperative. The maximum coefficient of friction showed the highest individual variability, about 100% at three and up to 914% at twelve months after surgery. These individual variations in the friction parameters were most likely due to different ‘running-in’ effects that were influenced by the individual activity levels and synovia properties. PMID:25806805
Self-Reacting Friction Stir Welding for Aluminum Alloy Circumferential Weld Applications
NASA Technical Reports Server (NTRS)
Bjorkman, Gerry; Cantrell, Mark; Carter, Robert
2003-01-01
Friction stir welding is an innovative weld process that continues to grow in use, in the commercial, defense, and space sectors. It produces high quality and high strength welds in aluminum alloys. The process consists of a rotating weld pin tool that plasticizes material through friction. The plasticized material is welded by applying a high weld forge force through the weld pin tool against the material during pin tool rotation. The high weld forge force is reacted against an anvil and a stout tool structure. A variation of friction stir welding currently being evaluated is self-reacting friction stir welding. Self-reacting friction stir welding incorporates two opposing shoulders on the crown and root sides of the weld joint. In self-reacting friction stir welding, the weld forge force is reacted against the crown shoulder portion of the weld pin tool by the root shoulder. This eliminates the need for a stout tooling structure to react the high weld forge force required in the typical friction stir weld process. Therefore, the self-reacting feature reduces tooling requirements and, therefore, process implementation costs. This makes the process attractive for aluminum alloy circumferential weld applications. To evaluate the application of self-reacting friction stir welding for aluminum alloy circumferential welding, a feasibility study was performed. The study consisted of performing a fourteen-foot diameter aluminum alloy circumferential demonstration weld using typical fusion weld tooling. To accomplish the demonstration weld, weld and tack weld development were performed and fourteen-foot diameter rings were fabricated. Weld development consisted of weld pin tool selection and the generation of a process map and envelope. Tack weld development evaluated gas tungsten arc welding and friction stir welding for tack welding rings together for circumferential welding. As a result of the study, a successful circumferential demonstration weld was produced leading the way for future circumferential weld implementation.
Reconnection Dynamics and Mutual Friction in Quantum Turbulence
NASA Astrophysics Data System (ADS)
Laurie, Jason; Baggaley, Andrew W.
2015-07-01
We investigate the behaviour of the mutual friction force in finite temperature quantum turbulence in He, paying particular attention to the role of quantized vortex reconnections. Through the use of the vortex filament model, we produce three experimentally relevant types of vortex tangles in steady-state conditions, and examine through statistical analysis, how local properties of the tangle influence the mutual friction force. Finally, by monitoring reconnection events, we present evidence to indicate that vortex reconnections are the dominant mechanism for producing areas of high curvature and velocity leading to regions of high mutual friction, particularly for homogeneous and isotropic vortex tangles.
Li, H; Atkin, R; Page, A J
2015-06-28
The energetic origins of the variation in friction with potential at the propylammonium nitrate-graphite interface are revealed using friction force microscopy (FFM) in combination with quantum chemical simulations. For boundary layer lubrication, as the FFM tip slides energy is dissipated via (1) boundary layer ions and (2) expulsion of near-surface ion layers from the space between the surface and advancing tip. Simulations reveal how changing the surface potential changes the ion composition of the boundary and near surface layer, which controls energy dissipation through both pathways, and thus the friction.
Atomic-scale friction modulated by potential corrugation in multi-layered graphene materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhuang, Chunqiang, E-mail: chunqiang.zhuang@bjut.edu.cn; Liu, Lei
2015-03-21
Friction is an important issue that has to be carefully treated for the fabrication of graphene-based nano-scale devices. So far, the friction mechanism of graphene materials on the atomic scale has not yet been clearly presented. Here, first-principles calculations were employed to unveil the friction behaviors and their atomic-scale mechanism. We found that potential corrugations on sliding surfaces dominate the friction force and the friction anisotropy of graphene materials. Higher friction forces correspond to larger corrugations of potential energy, which are tuned by the number of graphene layers. The friction anisotropy is determined by the regular distributions of potential energy.more » The sliding along a fold-line path (hollow-atop-hollow) has a relatively small potential energy barrier. Thus, the linear sliding observed in macroscopic friction experiments may probably be attributed to the fold-line sliding mode on the atomic scale. These findings can also be extended to other layer-structure materials, such as molybdenum disulfide (MoS{sub 2}) and graphene-like BN sheets.« less
Kinetic-energy absorber employs frictional force between mating cylinders
NASA Technical Reports Server (NTRS)
Conrad, E. W.
1964-01-01
A kinetic energy absorbing device uses a series of coaxial, mating cylindrical surfaces. These surfaces have high frictional resistance to relative motion when axial impact forces are applied. The device is designed for safe deceleration of vehicles impacting on landing surfaces.
Blass, Johanna; Albrecht, Marcel; Bozna, Bianca L; Wenz, Gerhard; Bennewitz, Roland
2015-05-07
We introduce a molecular toolkit for studying the dynamics in friction and adhesion from the single molecule level to effects of multivalency. As experimental model system we use supramolecular bonds established by the inclusion of ditopic adamantane connector molecules into two surface-bound cyclodextrin molecules, attached to a tip of an atomic force microscope (AFM) and to a flat silicon surface. The rupture force of a single bond does not depend on the pulling rate, indicating that the fast complexation kinetics of adamantane and cyclodextrin are probed in thermal equilibrium. In contrast, the pull-off force for a group of supramolecular bonds depends on the unloading rate revealing a non-equilibrium situation, an effect discussed as the combined action of multivalency and cantilever inertia effects. Friction forces exhibit a stick-slip characteristic which is explained by the cooperative rupture of groups of host-guest bonds and their rebinding. No dependence of friction on the sliding velocity has been observed in the accessible range of velocities due to fast rebinding and the negligible delay of cantilever response in AFM lateral force measurements.
High friction on ice provided by elastomeric fiber composites with textured surfaces
NASA Astrophysics Data System (ADS)
Rizvi, R.; Naguib, H.; Fernie, G.; Dutta, T.
2015-03-01
Two main applications requiring high friction on ice are automobile tires and footwear. The main motivation behind the use of soft rubbers in these applications is the relatively high friction force generated between a smooth rubber contacting smooth ice. Unfortunately, the friction force between rubber and ice is very low at temperatures near the melting point of ice and as a result we still experience automobile accidents and pedestrian slips and falls in the winter. Here, we report on a class of compliant fiber-composite materials with textured surfaces that provide outstanding coefficients of friction on wet ice. The fibrous composites consist of a hard glass-fiber phase reinforcing a compliant thermoplastic polyurethane matrix. The glass-fiber phase is textured such that it is aligned transversally and protruding out of the elastomer surface. Our analysis indicates that the exposed fiber phase exhibits a "micro-cleat" effect, allowing for it to fracture the ice and increase the interfacial contact area thereby requiring a high force to shear the interface.
Gueye, Birahima; Zhang, Yan; Wang, Yujuan; Chen, Yunfei
2015-07-08
The liquid lubrication, thermolubricity and dynamic lubricity due to mechanical oscillations are investigated with an atomic force microscope in ambient environmental conditions with different relative humidity (RH) levels. Experimental results demonstrate that high humidity at low-temperature regime enhances the liquid lubricity while at high-temperature regime it hinders the effect of the thermolubricity due to the formation of liquid bridges. Friction response to the dynamic lubricity in both high- and low-temperature regimes keeps the same trends, namely the friction force decreases with increasing the amplitude of the applied vibration on the tip regardless of the RH levels. An interesting finding is that for the dynamic lubricity at high temperature, high-humidity condition leads to the friction forces higher than that at low-humidity condition while at low temperature the opposite trend is observed. An extended two-dimensional dynamic model accounting for the RH is proposed to interpret the frictional mechanism in ambient conditions.
NASA Astrophysics Data System (ADS)
Kang, Shuo; Yan, Hao; Dong, Lijing; Li, Changchun
2018-03-01
This paper addresses the force tracking problem of electro-hydraulic load simulator under the influence of nonlinear friction and uncertain disturbance. A nonlinear system model combined with the improved generalized Maxwell-slip (GMS) friction model is firstly derived to describe the characteristics of load simulator system more accurately. Then, by using particle swarm optimization (PSO) algorithm combined with the system hysteresis characteristic analysis, the GMS friction parameters are identified. To compensate for nonlinear friction and uncertain disturbance, a finite-time adaptive sliding mode control method is proposed based on the accurate system model. This controller has the ability to ensure that the system state moves along the nonlinear sliding surface to steady state in a short time as well as good dynamic properties under the influence of parametric uncertainties and disturbance, which further improves the force loading accuracy and rapidity. At the end of this work, simulation and experimental results are employed to demonstrate the effectiveness of the proposed sliding mode control strategy.
Downhill Cycling Symmetry Breaking: How the Rider Foils Experiment
ERIC Educational Resources Information Center
Abu, Yuval Ben; Wolfson, Ira; Bran, Gil; Yizhaq, Hezi
2017-01-01
In high-school teaching of mechanics, we deal, among other things, with the nature of static and kinetic friction, forces that are proportional to the normal force. Under the influence of frictional forces, a body moves down a rough sloped decline at a fixed rate of acceleration that is independent of its mass. This situation does not apply to…
High-resolution imaging of (100) kyanite surfaces using friction force microscopy in water
NASA Astrophysics Data System (ADS)
Pimentel, Carlos; Gnecco, Enrico; Pina, Carlos M.
2015-05-01
In this paper, we present high-resolution friction force microscopy (FFM) images of the (100) face of kyanite (Al2SiO5) immersed in water. These images show an almost rectangular lattice presumably defined by the protruding oxygen of AlO6 polyhedra. Surface lattice parameters measured on two-dimensional fast Fourier transform (2D-FFT) plots of recorded high-resolution friction maps are in good agreement with lattice parameters calculated from the bulk mineral structure. Friction measurements performed along the [001] and [010] directions on the kyanite (100) face provide similar friction coefficients μ ≈ 0.10, even if the sequences of AlO6 polyhedra are different along the two crystallographic directions.
Weld defect identification in friction stir welding using power spectral density
NASA Astrophysics Data System (ADS)
Das, Bipul; Pal, Sukhomay; Bag, Swarup
2018-04-01
Power spectral density estimates are powerful in extraction of useful information retained in signal. In the current research work classical periodogram and Welch periodogram algorithms are used for the estimation of power spectral density for vertical force signal and transverse force signal acquired during friction stir welding process. The estimated spectral densities reveal notable insight in identification of defects in friction stir welded samples. It was observed that higher spectral density against each process signals is a key indication in identifying the presence of possible internal defects in the welded samples. The developed methodology can offer preliminary information regarding presence of internal defects in friction stir welded samples can be best accepted as first level of safeguard in monitoring the friction stir welding process.
Observing the Forces Involved in Static Friction under Static Situations
ERIC Educational Resources Information Center
Kaplan, Daniel
2013-01-01
Static friction is an important concept in introductory physics. Later in the year students apply their understanding of static friction under more complex conditions of static equilibrium. Traditional lab demonstrations in this case involve exceeding of the maximum level of static friction, resulting in the "onset of motion." (Contains…
Nanoscale friction properties of graphene and graphene oxide
Berman, Diana; Erdemir, Ali; Zinovev, Alexander V.; ...
2015-04-03
Achieving superlow friction and wear at the micro/nano-scales through the uses of solid and liquid lubricants may allow superior performance and long-lasting operations in a range of micromechanical system including micro-electro mechanical systems (MEMS). Previous studies have indicated that conventional solid lubricants such as highly ordered pyrolitic graphite (HOPG) can only afford low friction in humid environments at micro/macro scales; but, HOPG is not suitable for practical micro-scale applications. Here, we explored the nano-scale frictional properties of multi-layered graphene films as a potential solid lubricant for such applications. Atomic force microscopy (AFM) measurements have revealed that for high-purity multilayered graphenemore » (7–9 layers), the friction force is significantly lower than what can be achieved by the use of HOPG, regardless of the counterpart AFM tip material. We have demonstrated that the quality and purity of multilayered graphene plays an important role in reducing lateral forces, while oxidation of graphene results in dramatically increased friction values. Furthermore, for the first time, we demonstrated the possibility of achieving ultralow friction for CVD grown single layer graphene on silicon dioxide. This confirms that the deposition process insures a stronger adhesion to substrate and hence enables superior tribological performance than the previously reported mechanical exfoliation processes.« less
Friction and wear of TPS fibers: A study of the adhesion and friction of high modulus fibers
NASA Technical Reports Server (NTRS)
Bascom, Willard D.; Lee, Ilzoo
1990-01-01
The adhesional and frictional forces between filaments in a woven fabric or felt, strongly influenced the processability of the fiber and the mechanical durability of the final product. Even though the contact loads between fibers are low, the area of contact is extremely small giving rise to very high stresses; principally shear stresses. One consequence of these strong adhesional and frictional forces is the resistance of fibers to slide past each other during weaving or when processed into nonwoven mats or felts. Furthermore, the interfiber frictional forces may cause surface damage and thereby reduce the fiber strength. Once formed into fabrics, flexural handling and manipulation of the material again causes individual filaments to rub against each other resulting in modulus, brittle fibers such as those used in thermal protection systems (TPS). The adhesion and friction of organic fibers, notably polyethylene terephthalate (PET) fibers, have been extensively studied, but there has been very little work reported on high modulus inorganic fibers. An extensive study was made of the adhesion and friction of flame drawn silica fibers in order to develop experimental techniques and a scientific basis for data interpretation. Subsequently, these methods were applied to fibers of interest in TPS materials.
Leite, Brisa Dos Santos; Fagundes, Nathalia Carolina Fernandes; Aragón, Mônica Lídia Castro; Dias, Carmen Gilda Barroso Tavares; Normando, David
2016-01-01
Debris buildup on the bracket-wire interface can influence friction. Cleansing brackets with air-powder polishing can affect this process. The aim of this study was to evaluate the frictional force and amount of debris remaining on orthodontic brackets subjected to prophylaxis with air-powder polishing. Frictional force and debris buildup on the surface of 28 premolar brackets were evaluated after orthodontic treatment. In one hemiarch, each bracket was subjected to air-powder polishing (n = 14) for five seconds, while the contralateral hemiarch (n = 14) served as control. Mechanical friction tests were performed and images of the polished bracket surfaces and control surfaces were examined. Wilcoxon test was applied for comparative analysis between hemiarches at p < 0.05. Brackets that had been cleaned with air-powder polishing showed lower friction (median = 1.27 N) when compared to the control surfaces (median = 4.52 N) (p < 0.01). Image analysis showed that the control group exhibited greater debris buildup (median = 2.0) compared with the group that received prophylaxis with air-powder polishing (median = 0.5) (p < 0.05). Cleansing orthodontic brackets with air-powder polishing significantly reduces debris buildup on the bracket surface while decreasing friction levels observed during sliding mechanics.
Skin friction drag reduction on a flat plate turbulent boundary layer using synthetic jets
NASA Astrophysics Data System (ADS)
Belanger, Randy; Boom, Pieter D.; Hanson, Ronald E.; Lavoie, Philippe; Zingg, David W.
2017-11-01
In these studies, we investigate the effect of mild synthetic jet actuation on a flat plate turbulent boundary layer with the goal of interacting with the large scales in the log region of the boundary layer and manipulating the overall skin friction. Results will be presented from both large eddy simulations (LES) and wind tunnel experiments. In the experiments, a large parameter space of synthetic jet frequency and amplitude was studied with hot film sensors at select locations behind a pair of synthetic jets to identify the parameters that produce the greatest changes in the skin friction. The LES simulations were performed for a selected set of parameters and provide a more complete evaluation of the interaction between the boundary layer and synthetic jets. Five boundary layer thicknesses downstream, the skin friction between the actuators is generally found to increase, while regions of reduced skin friction persist downstream of the actuators. This pattern is reversed for forcing at low frequency. Overall, the spanwise-averaged skin friction is increased by the forcing, except when forcing at high frequency and low amplitude, for which a net skin friction reduction persists downstream. The physical interpretation of these results will be discussed. The financial support of Airbus is gratefully acknowledged.
D’Urso, Gianluca; Giardini, Claudio
2016-01-01
The present study was carried out to evaluate how the friction stir spot welding (FSSW) process parameters affect the temperature distribution in the welding region, the welding forces and the mechanical properties of the joints. The experimental study was performed by means of a CNC machine tool obtaining FSSW lap joints on AA7050 aluminum alloy plates. Three thermocouples were inserted into the samples to measure the temperatures at different distance from the joint axis during the whole FSSW process. Experiments was repeated varying the process parameters, namely rotational speed, axial feed rate and plunging depth. Axial welding forces were measured during the tests using a piezoelectric load cell, while the mechanical properties of the joints were evaluated by executing shear tests on the specimens. The correlation found between process parameters and joints properties, allowed to identify the best technological window. The data collected during the experiments were used to validate a simulation model of the FSSW process, too. The model was set up using a 2D approach for the simulation of a 3D problem, in order to guarantee a very simple and practical solution for achieving results in a very short time. A specific external routine for the calculation of the thermal energy due to friction acting between pin and sheet was developed. An index for the prediction of the joint mechanical properties using the FEM simulations was finally presented and validated. PMID:28773810
D'Urso, Gianluca; Giardini, Claudio
2016-08-11
The present study was carried out to evaluate how the friction stir spot welding (FSSW) process parameters affect the temperature distribution in the welding region, the welding forces and the mechanical properties of the joints. The experimental study was performed by means of a CNC machine tool obtaining FSSW lap joints on AA7050 aluminum alloy plates. Three thermocouples were inserted into the samples to measure the temperatures at different distance from the joint axis during the whole FSSW process. Experiments was repeated varying the process parameters, namely rotational speed, axial feed rate and plunging depth. Axial welding forces were measured during the tests using a piezoelectric load cell, while the mechanical properties of the joints were evaluated by executing shear tests on the specimens. The correlation found between process parameters and joints properties, allowed to identify the best technological window. The data collected during the experiments were used to validate a simulation model of the FSSW process, too. The model was set up using a 2D approach for the simulation of a 3D problem, in order to guarantee a very simple and practical solution for achieving results in a very short time. A specific external routine for the calculation of the thermal energy due to friction acting between pin and sheet was developed. An index for the prediction of the joint mechanical properties using the FEM simulations was finally presented and validated.
Li, Chen; Zhang, Feihu; Ding, Ye; Liu, Lifei
2016-08-20
Nano scratch for optical glass BK7 based on the ductile-removal regime was carried out, and the influence rule of scratch parameters on surface deformation and friction characteristic was analyzed. Experimental results showed that, with increase of normal force, the deformation of burrs in the edge of the scratch was more obvious, and with increase of the scratch velocity, the deformation of micro-fracture and burrs in the edge of the scratch was more obvious similarly. The residual depth of the scratch was measured by atomic force microscope. The experimental results also showed that, with increase of normal force, the residual depth of the scratch increased linearly while the elastic recovery rate decreased. Furthermore, with increase of scratch velocity, the residual depth of the scratch decreased while the elastic recovery rate increased. The scratch process of the Berkovich indenter was divided into the cutting process of many large negative rake faces based on the improved cutting model, and the friction characteristic of the Berkovich indenter and the workpiece was analyzed. The analysis showed that the coefficient of friction increased and then tended to be stable with the increase of normal force. Meanwhile, the coefficient of friction decreased with the increase of scratch velocity, and the coefficients, k ln(v) and μ0, were introduced to improve the original formula of friction coefficient.
NASA Astrophysics Data System (ADS)
Dai, L.; Sorkin, V.; Zhang, Y. W.
2017-04-01
We perform molecular dynamics simulations to investigate molecular structure alternation and friction behavior of heterogeneous polymer (perfluoropolyether) surfaces using a nanoscale probing tip (tetrahedral amorphous carbon). It is found that depending on the magnitude of the applied normal force, three regimes exist: the shallow depth-sensing (SDS), deep depth-sensing (DDS), and transitional depth-sensing (TDS) regimes; TDS is between SDS and DDS. In SDS, the tip is floating on the polymer surface and there is insignificant permanent alternation in the polymer structure due to largely recoverable atomic deformations, and the surface roughness profile can be accurately measured. In DDS, the tip is plowing through the polymer surface and there is significant permanent alternation in the molecular structure. In this regime, the lateral friction force rises sharply and fluctuates violently when overcoming surface pile-ups. In SDS, the friction can be described by a modified Amonton’s law including the adhesion effect; meanwhile, in DDS, the adhesion effect is negligible but the friction coefficient is significantly higher. The underlying reason for the difference in these regimes rests upon different contributions by the repulsion and attraction forces between the tip and polymer surfaces to the friction force. Our findings here reveal important insights into lateral depth-sensing on heterogeneous polymer surfaces and may help improve the precision of depth-sensing devices.
Wang, Y Z; Ding, X D; Xiong, X M; Zhang, J X
2007-10-01
Relations between various values of the internal friction (tgdelta, Q(-1), Q(-1*), and Lambda/pi) measured by free decay and forced vibration are analyzed systemically based on a fundamental mechanical model in this paper. Additionally, relations between various natural frequencies, such as vibration frequency of free decay omega(FD), displacement-resonant frequency of forced vibration omega(d), and velocity-resonant frequency of forced vibration omega(0) are calculated. Moreover, measurement of natural frequencies of a copper specimen of 99.9% purity has been made to demonstrate the relation between the measured natural frequencies of the system by forced vibration and free decay. These results are of importance for not only more accurate measurement of the elastic modulus of materials but also the data conversion between different internal friction measurements.
Reducing friction and miscibility studies of FEP dispersion/ PDMS fluid blends
NASA Astrophysics Data System (ADS)
Buapool, S.; Thavarungkul, N.; Srisukhumbowornchai, N.
2017-04-01
To develop new polymer blends having reduced friction force of fluorinated ethylene propylene (FEP) dispersion and improved adhesion of polydimethylsiloxane (PDMS) fluid, FEP dispersion was blended with PDMS fluids at different viscosities of 20 cSt and 100 cSt by using solution mixing method. The FEP/PDMS blends were coated on short hollow tubes and examined by penetrating the tubes into the rubber stoppers. It was found that the tubes coated with the blends showed reduced penetration and friction forces and improved adhesion. The tubes coated with the 100 cSt-PDMS blend in the ratio of 5:1.5 demonstrated the penetration and average friction forces as low as 3828 mN and 1524 mN, respectively. The formation of physical blends was characterized and confirmed by FTIR and DSC analyses.
NASA Astrophysics Data System (ADS)
Chen, Lianfeng; Zheng, Tianran; Chen, Qing; Zhang, Jun
2013-12-01
Advanced high strength steels (AHSS) are used more and more in automotive industry for increasing crashworthiness and weight reduction. Improving metal flow and reduce friction are important to forming the part and decrease part reject rates of AHSS. The present study focused on friction characteristics and drawbead restraining force of Dual Phase (DP) steels with or without coating, such as DP980, DP780, DP590, DP780+Z, DP780+ZF, DP590+Z, using experimental approach. The effect of material properties, temperature, sliding velocity, surface roughness, dry and lubricant on friction behavior of DP steels is investigated. The contrast of DP steels with mild IF steel is carried out. The restraining force draw through different radius of drawbead is evaluated. This study is benefit to the set up of technique parameters during sheet metal forming simulation.
Probing atomic-scale friction on reconstructed surfaces of single-crystal semiconductors
NASA Astrophysics Data System (ADS)
Goryl, M.; Budzioch, J.; Krok, F.; Wojtaszek, M.; Kolmer, M.; Walczak, L.; Konior, J.; Gnecco, E.; Szymonski, M.
2012-02-01
Friction force microscopy (FFM) investigations have been performed on reconstructed (001) surfaces of InSb and Ge in an ultrahigh vacuum. On the c(8×2) reconstruction of InSb(001) atomic resolution is achieved under superlubric conditions, and the features observed in the lateral force images are precisely reproduced by numerical simulations, taking into account possible decorations of the probing tip. On the simultaneously acquired (1×3) reconstruction a significant disorder of the surface atoms is observed. If the loading force increases, friction becomes much larger on this reconstruction compared to the c(8×2) one. In FFM images acquired on the Ge(001)(2×1) characteristic substructures are resolved within the unit cells. In such a case, a strong dependence of the friction pattern on the scan direction is observed.
Non-contact lateral force microscopy.
Weymouth, A J
2017-08-16
The goal of atomic force microscopy (AFM) is to measure the short-range forces that act between the tip and the surface. The signal recorded, however, includes long-range forces that are often an unwanted background. Lateral force microscopy (LFM) is a branch of AFM in which a component of force perpendicular to the surface normal is measured. If we consider the interaction between tip and sample in terms of forces, which have both direction and magnitude, then we can make a very simple yet profound observation: over a flat surface, long-range forces that do not yield topographic contrast have no lateral component. Short-range interactions, on the other hand, do. Although contact-mode is the most common LFM technique, true non-contact AFM techniques can be applied to perform LFM without the tip depressing upon the sample. Non-contact lateral force microscopy (nc-LFM) is therefore ideal to study short-range forces of interest. One of the first applications of nc-LFM was the study of non-contact friction. A similar setup is used in magnetic resonance force microscopy to detect spin flipping. More recently, nc-LFM has been used as a true microscopy technique to systems unsuitable for normal force microscopy.
Manipulation of nanoparticles of different shapes inside a scanning electron microscope
Polyakov, Boris; Dorogin, Leonid M; Butikova, Jelena; Antsov, Mikk; Oras, Sven; Lõhmus, Rünno; Kink, Ilmar
2014-01-01
Summary In this work polyhedron-like gold and sphere-like silver nanoparticles (NPs) were manipulated on an oxidized Si substrate to study the dependence of the static friction and the contact area on the particle geometry. Measurements were performed inside a scanning electron microscope (SEM) that was equipped with a high-precision XYZ-nanomanipulator. To register the occurring forces a quartz tuning fork (QTF) with a glued sharp probe was used. Contact areas and static friction forces were calculated by using different models and compared with the experimentally measured force. The effect of NP morphology on the nanoscale friction is discussed. PMID:24605279
Dai, Zhendong; Gorb, Stanislav N; Schwarz, Uli
2002-08-01
This paper studies slide-resisting forces generated by claws in the free-walking beetle Pachnoda marginata (Coleoptera, Scarabaeoidea) with emphasis on the relationship between the dimension of the claw tip and the substrate texture. To evaluate the force range by which the claw can interact with a substrate, forces generated by the freely moving legs were measured using a load cell force transducer. To obtain information about material properties of the claw, its mechanical strength was tested in a fracture experiment, and the internal structure of the fractured claw material was studied by scanning electron microscopy. The bending stress of the claw was evaluated as 143.4-684.2 MPa, depending on the cross-section model selected. Data from these different approaches led us to propose a model explaining the saturation of friction force with increased texture roughness. The forces are determined by the relative size of the surface roughness R(a) (or an average particle diameter) and the diameter of the claw tip. When surface roughness is much bigger than the claw tip diameter, the beetle can grasp surface irregularities and generate a high degree of attachment due to mechanical interlocking with substrate texture. When R(a) is lower than or comparable to the claw tip diameter, the frictional properties of the contact between claw and substrate particles play a key role in the generation of the friction force.
Comtet, Jean; Chatté, Guillaume; Niguès, Antoine; Bocquet, Lydéric; Siria, Alessandro; Colin, Annie
2017-01-01
The process by which sheared suspensions go through a dramatic change in viscosity is known as discontinuous shear thickening. Although well-characterized on the macroscale, the microscopic mechanisms at play in this transition are still poorly understood. Here, by developing new experimental procedures based on quartz-tuning fork atomic force microscopy, we measure the pairwise frictional profile between approaching pairs of polyvinyl chloride and cornstarch particles in solvent. We report a clear transition from a low-friction regime, where pairs of particles support a finite normal load, while interacting purely hydrodynamically, to a high-friction regime characterized by hard repulsive contact between the particles and sliding friction. Critically, we show that the normal stress needed to enter the frictional regime at nanoscale matches the critical stress at which shear thickening occurs for macroscopic suspensions. Our experiments bridge nano and macroscales and provide long needed demonstration of the role of frictional forces in discontinuous shear thickening. PMID:28561032
Comtet, Jean; Chatté, Guillaume; Niguès, Antoine; Bocquet, Lydéric; Siria, Alessandro; Colin, Annie
2017-05-31
The process by which sheared suspensions go through a dramatic change in viscosity is known as discontinuous shear thickening. Although well-characterized on the macroscale, the microscopic mechanisms at play in this transition are still poorly understood. Here, by developing new experimental procedures based on quartz-tuning fork atomic force microscopy, we measure the pairwise frictional profile between approaching pairs of polyvinyl chloride and cornstarch particles in solvent. We report a clear transition from a low-friction regime, where pairs of particles support a finite normal load, while interacting purely hydrodynamically, to a high-friction regime characterized by hard repulsive contact between the particles and sliding friction. Critically, we show that the normal stress needed to enter the frictional regime at nanoscale matches the critical stress at which shear thickening occurs for macroscopic suspensions. Our experiments bridge nano and macroscales and provide long needed demonstration of the role of frictional forces in discontinuous shear thickening.
Friction in Forming of UD Composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sachs, U.; Haanappel, S. P.; Akkerman, R.
2011-05-04
Inter-ply and tool/ply friction play a dominant role in hot stamp forming of UD fiber-reinforced thermoplastic laminates. This research treats friction measurements of a PEEK-AS4 composite system. To this end, an in-house developed friction tester is utilized to pull a laminate through two heat controlled clamping platens. The friction coefficient is determined by relating the clamp force to the pull force. The geometry of the gap between the clamping platens is monitored with micrometer accuracy. A first approach to describe the relation between the geometry and frictional behavior is undertaken by applying a standard thin-film theory for hydrodynamic lubrication. Experimentalmore » measurements showed that the thin-film theory does not entirely cover the underlying physics. Thus a second model is utilized, which employs a Leonov-model to describe the shear deformation of the matrix material, while its viscosity is described with a multi-mode Maxwell model. The combination of both models shows the potential to capture the complete frictional behavior.« less
Large Electric Field-Enhanced-Hardness Effect in a SiO2 Film
NASA Astrophysics Data System (ADS)
Revilla, Reynier I.; Li, Xiao-Jun; Yang, Yan-Lian; Wang, Chen
2014-03-01
Silicon dioxide films are extensively used in nano and micro-electromechanical systems. Here we studied the influence of an external electric field on the mechanical properties of a SiO2 film by using nanoindentation technique of atomic force microscopy (AFM) and friction force microscopy (FFM). A giant augmentation of the relative elastic modulus was observed by increasing the localized electric field. A slight decrease in friction coefficients was also clearly observed by using FFM with the increase of applied tip voltage. The reduction of the friction coefficients is consistent with the great enhancement of sample hardness by considering the indentation-induced deformation during the friction measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reiche, D.; Dalvit, D. A. R.; Busch, K.
We investigate the influence of spatial dispersion on atom-surface quantum friction. We show that for atom-surface separations shorter than the carrier's mean free path within the material, the frictional force can be several orders of magnitude larger than that predicted by local optics. In addition, when taking into account spatial dispersion effects, we show that the commonly used local thermal equilibrium approximation underestimates by approximately 95% the drag force, obtained by employing the recently reported nonequilibrium fluctuation-dissipation relation for quantum friction. Unlike the treatment based on local optics, spatial dispersion in conjunction with corrections to local thermal equilibrium change notmore » only the magnitude but also the distance scaling of quantum friction.« less
Elastic-plastic cube model for ultrasonic friction reduction via Poisson's effect.
Dong, Sheng; Dapino, Marcelo J
2014-01-01
Ultrasonic friction reduction has been studied experimentally and theoretically. This paper presents a new elastic-plastic cube model which can be applied to various ultrasonic lubrication cases. A cube is used to represent all the contacting asperities of two surfaces. Friction force is considered as the product of the tangential contact stiffness and the deformation of the cube. Ultrasonic vibrations are projected onto three orthogonal directions, separately changing contact parameters and deformations. Hence, the overall change of friction forces. Experiments are conducted to examine ultrasonic friction reduction using different materials under normal loads that vary from 40 N to 240 N. Ultrasonic vibrations are generated both in longitudinal and vertical (out-of-plane) directions by way of the Poisson effect. The tests show up to 60% friction reduction; model simulations describe the trends observed experimentally. Copyright © 2013 Elsevier B.V. All rights reserved.
Psychophysical evaluation of a variable friction tactile interface
NASA Astrophysics Data System (ADS)
Samur, Evren; Colgate, J. Edward; Peshkin, Michael A.
2009-02-01
This study explores the haptic rendering capabilities of a variable friction tactile interface through psychophysical experiments. In order to obtain a deeper understanding of the sensory resolution associated with the Tactile Pattern Display (TPaD), friction discrimination experiments are conducted. During the experiments, subjects are asked to explore the glass surface of the TPaD using their bare index fingers, to feel the friction on the surface, and to compare the slipperiness of two stimuli, displayed in sequential order. The fingertip position data is collected by an infrared frame and normal and translational forces applied by the finger are measured by force sensors attached to the TPaD. The recorded data is used to calculate the coefficient of friction between the fingertip and the TPaD. The experiments determine the just noticeable difference (JND) of friction coefficient for humans interacting with the TPaD.
Listening in on Friction: Stick-Slip Acoustical Signatures in Velcro
NASA Astrophysics Data System (ADS)
Hurtado Parra, Sebastian; Morrow, Leslie; Radziwanowski, Miles; Angiolillo, Paul
2013-03-01
The onset of kinetic friction and the possible resulting stick-slip motion remain mysterious phenomena. Moreover, stick-slip dynamics are typically accompanied by acoustic bursts that occur temporally with the slip event. The dry sliding dynamics of the hook-and-loop system, as exemplified by Velcro, manifest stick-slip behavior along with audible bursts that are easily micrphonically collected. Synchronized measurements of the friction force and acoustic emissions were collected as hooked Velcro was driven at constant velocity over a bed of looped Velcro in an anechoic chamber. Not surprising, the envelope of the acoustic bursts maps well onto the slip events of the friction force time series and the intensity of the bursts trends with the magnitude of the difference of the friction force during a stick-slip event. However, the analysis of the acoustic emission can serve as a sensitive tool for revealing some of the hidden details of the evolution of the transition from static to kinetic friction. For instance, small acoustic bursts are seen prior to the Amontons-Coulomb threshold, signaling precursor events prior to the onset of macroscopically observed motion. Preliminary spectral analysis of the acoustic emissions including intensity-frequency data will be presented.
Makarov, Dmitrii E
2013-01-07
Conformational rearrangements in biomolecules (such as protein folding or enzyme-ligand binding) are often interpreted in terms of low-dimensional models of barrier crossing such as Kramers' theory. Dimensionality reduction, however, entails memory effects; as a result, the effective frictional drag force along the reaction coordinate nontrivially depends on the time scale of the transition. Moreover, when both solvent and "internal" friction effects are important, their interplay results in a highly nonlinear dependence of the effective friction on solvent viscosity that is not captured by common phenomenological models of barrier crossing. Here, these effects are illustrated using an analytically solvable toy model of an unstructured polymer chain involved in an inter- or intramolecular transition. The transition rate is calculated using the Grote-Hynes and Langer theories, which--unlike Kramers' theory--account for memory. The resulting effective frictional force exerted by the polymer along the reaction coordinate can be rationalized in terms of the effective number of monomers engaged in the transition. Faster transitions (relative to the polymer reconfiguration time scale) involve fewer monomers and, correspondingly, lower friction forces, because the polymer chain does not have enough time to reconfigure in response to the transition.
Ratchet due to broken friction symmetry.
Nordén, B; Zolotaryuk, Y; Christiansen, P L; Zolotaryuk, A V
2002-01-01
A ratchet mechanism that occurs due to asymmetric dependence of the friction of a moving system on its velocity or a driving force is reported. For this kind of ratchet, instead of a particle moving in a periodic potential, the dynamics of which have broken space-time symmetry, the system must be provided with some internal structure realizing such a velocity- or force-friction dependence. For demonstration of a ratchet mechanism of this type, an experimental setup (gadget) that converts longitudinal oscillating or fluctuating motion into a unidirectional rotation has been built and experiments with it have been carried out. In this device, an asymmetry of friction dependence on an applied force appears, resulting in rectification of rotary motion. In experiments, our setup is observed to rotate only in one direction, which is in accordance with given theoretical arguments. Despite the setup being three dimensional, the ratchet rotary motion is proved to be described by one dynamical equation. This kind of motion is a result of the interplay of friction and inertia. We also consider a case with viscous friction, which is irrelevant to this gadget, but it can be a possible mechanism of rotary unidirectional motion of some swimming organisms in a liquid.
Kasem, Haytam; Cohen, Yossi
2017-08-04
Hairy adhesive systems involved in gecko locomotion have drawn the interest of many researchers regarding the development of bionic solutions for fast and reversible adhesive technologies. To date, despite extensive efforts to design gecko-inspired adhesive surfaces, adhesion and friction capacities are often evaluated using smooth and rigid counterfaces, in general glass, whereas most natural and artificial surfaces inevitably have a certain level of roughness. For that reason, in this study experiments tested the effects of the substrate roughness on the friction of bionic wale-shaped microstructures for gecko-like attachments. To this end, 12 substrates with different isotropic roughness were prepared using the same Epoxy material. Friction force was measured under various normal loads. It was concluded that classical roughness parameters, considered separately, are not appropriate to explain roughness-related variations in friction force. This has led us to develop a new integrative roughness parameter that combines characteristics of the surface. The parameter is capable of classifying the obtained experimental results in a readable way. An analytical model based on the experimental results has been developed to predict the variation of the friction force as a function of counterface roughness and applied normal load.
Kao, Chia-Tze; Guo, Jia-Uei; Huang, Tsui-Hsien
2011-05-01
Titanium nitride (TiN) plating is a method to prevent metal corrosion and can increase the surface smoothness. The purpose of this study was to evaluate the friction forces between the orthodontic bracket, with or without TiN plating, and stainless steel wire after it was corroded in fluoride-containing solution. In total, 540 metal brackets were divided into a control group and a TiN-coated experimental group. The electrochemical corrosion was performed in artificial saliva with 1.23% acidulated phosphate fluoride (APF) as the electrolytes. Static and kinetic friction were measured by an EZ-test machine (Shimadazu, Tokyo, Japan) with a crosshead speed of 10 mm per minute over a 5-mm stretch of stainless steel archwire. The data were analyzed by using unpaired t test and analysis of variance (ANOVA). Both the control and TiN-coated groups' corrosion potential was higher with 1.23% APF solution than with artificial solution (P <0.05). In brackets without corrosion, both the static and kinetic friction force between the control and TiN-coated brackets groups showed a statistically significant difference (P <0.05). In brackets with corrosion, the control group showed no statistical difference on kinetic or static friction. The TiN-coated brackets showed a statistical difference (P <0.05) on kinetic and static friction in different solutions. TiN-coated metal brackets, with corrosion or without corrosion, cannot reduce the frictional force. Copyright © 2011 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.
Boulder-based wave hindcasting underestimates storm size
NASA Astrophysics Data System (ADS)
Kennedy, David; Woods, Joesphine; Rosser, Nick; Hansom, James; Naylor, Larissa
2017-04-01
Large boulder-size clasts represent an important archive of erosion and wave activity on the coast. From tropical coral reefs to eroding cliffs in the high-latitudes, boulders have been used to hindcast the frequency and magnitude of cyclones and tsunami. Such reconstructions are based on the balance between the hydrodynamic forces acting on individual clasts and the counteracting resistive forces of friction and gravity. Here we test the three principle hindcasting relationships on nearly 1000 intertidal boulders in North Yorkshire, U.K using a combination of field and airborne terrestrial LiDAR data. We quantify the predicted versus actual rates of movement and the degree to which local geomorphology can retard or accelerate transport. Actual clast movement is significantly less than predicted values, regardless of boulder volume, shape or location. In situ cementation of clasts to the substrate by marine organisms and clustering of clasts increases friction thereby preventing transport. The implication is that boulders do not always provide a reliable estimation of wave height on the coast and reliance solely on hindcasting relationships leads to an under prediction of the frequency and magnitude of past storm wave activity. The crucial need for process field studies to refine boulder transport models is thus demonstrated.
Simulation of friction stir drilling process
NASA Astrophysics Data System (ADS)
Vijayabaskar, P.; Hynes, N. Rajesh Jesudoss
2018-05-01
The project is the study of the thermal drilling process. The process is a hole forming process in the sheet metals using the heat generated by means of friction. The main advantage of the process over the conventional drilling process is that the holes formed using this process does not need any backing arrangements such as weld nuts, rivet nuts etc. Because the extruded bush itself acts as a supporting structure for the fasteners. This eliminates the need for the access to the backside of the work material for fastening operations. The major factors contributing the thermal drilling operation are the spindle speed and the thrust force required for forming a hole. The process of finding out the suitable thrust force and the speed for drilling a particular material with particular thickness is a tedious process. The process can be simplified by forming a mathematical model by combining the empirical formulae from the literature. These formulae were derived in the literature from the experimental trials by following certain assumptions. In this paper a suitable mathematical model is formed by replicating the experiments and tried to be validated by the results from numerical analysis. The numerical analysis of the model is done using the ANSYS software.
Determination of the frictional coefficient of the implant-antler interface: experimental approach.
Hasan, Istabrak; Keilig, Ludger; Staat, Manfred; Wahl, Gerhard; Bourauel, Christoph
2012-10-01
The similar bone structure of reindeer antler to human bone permits studying the osseointegration of dental implants in the jawbone. As the friction is one of the major factors that have a significant influence on the initial stability of immediately loaded dental implants, it is essential to define the frictional coefficient of the implant-antler interface. In this study, the kinetic frictional forces at the implant-antler interface were measured experimentally using an optomechanical setup and a stepping motor controller under different axial loads and sliding velocities. The corresponding mean values of the static and kinetic frictional coefficients were within the range of 0.5-0.7 and 0.3-0.5, respectively. An increase in the frictional forces with increasing applied axial loads was registered. The measurements showed an evidence of a decrease in the magnitude of the frictional coefficient with increasing sliding velocity. The results of this study provide a considerable assessment to clarify the suitable frictional coefficient to be used in the finite element contact analysis of antler specimens.
Dynamics of translational friction in needle-tissue interaction during needle insertion.
Asadian, Ali; Patel, Rajni V; Kermani, Mehrdad R
2014-01-01
In this study, a distributed approach to account for dynamic friction during needle insertion in soft tissue is presented. As is well known, friction is a complex nonlinear phenomenon. It appears that classical or static models are unable to capture some of the observations made in systems subjected to significant frictional effects. In needle insertion, translational friction would be a matter of importance when the needle is very flexible, or a stop-and-rotate motion profile at low insertion velocities is implemented, and thus, the system is repeatedly transitioned from a pre-sliding to a sliding mode and vice versa. In order to characterize friction components, a distributed version of the LuGre model in the state-space representation is adopted. This method also facilitates estimating cutting force in an intra-operative manner. To evaluate the performance of the proposed family of friction models, experiments were conducted on homogeneous artificial phantoms and animal tissue. The results illustrate that our approach enables us to represent the main features of friction which is a major force component in needle-tissue interaction during needle-based interventions.
Dikin-type algorithms for dextrous grasping force optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buss, M.; Faybusovich, L.; Moore, J.B.
1998-08-01
One of the central issues in dextrous robotic hand grasping is to balance external forces acting on the object and at the same time achieve grasp stability and minimum grasping effort. A companion paper shows that the nonlinear friction-force limit constraints on grasping forces are equivalent to the positive definiteness of a certain matrix subject to linear constraints. Further, compensation of the external object force is also a linear constraint on this matrix. Consequently, the task of grasping force optimization can be formulated as a problem with semidefinite constraints. In this paper, two versions of strictly convex cost functions, onemore » of them self-concordant, are considered. These are twice-continuously differentiable functions that tend to infinity at the boundary of possible definiteness. For the general class of such cost functions, Dikin-type algorithms are presented. It is shown that the proposed algorithms guarantee convergence to the unique solution of the semidefinite programming problem associated with dextrous grasping force optimization. Numerical examples demonstrate the simplicity of implementation, the good numerical properties, and the optimality of the approach.« less
Effect of velocity-dependent friction on multiple-vehicle collisions in traffic flow
NASA Astrophysics Data System (ADS)
Nagatani, Takashi
2017-01-01
We present the dynamic model for the multiple-vehicle collisions to take into account the velocity-dependent friction force. We study the effect of the velocity-dependent friction on the chain-reaction crash on a road. In the traffic situation, drivers brake according to taillights of the forward vehicle and the friction force depends highly on the vehicular speed. The first crash may induce more collisions. We investigate whether or not the first collision induces the multiple-vehicle collisions, numerically and analytically. The dynamic transitions occur from no collisions, through a single collision and double collisions, to multiple collisions with decreasing the headway. We explore the effect of the velocity-dependent friction on the dynamic transitions and the region maps in the multiple-vehicle collisions.
Determination of the static friction coefficient from circular motion
NASA Astrophysics Data System (ADS)
Molina-Bolívar, J. A.; Cabrerizo-Vílchez, M. A.
2014-07-01
This paper describes a physics laboratory exercise for determining the coefficient of static friction between two surfaces. The circular motion of a coin placed on the surface of a rotating turntable has been studied. For this purpose, the motion is recorded with a high-speed digital video camera recording at 240 frames s-1, and the videos are analyzed using Tracker video-analysis software, allowing the students to dynamically model the motion of the coin. The students have to obtain the static friction coefficient by comparing the centripetal and maximum static friction forces. The experiment only requires simple and inexpensive materials. The dynamics of circular motion and static friction forces are difficult for many students to understand. The proposed laboratory exercise addresses these topics, which are relevant to the physics curriculum.
Friction-Controlled Traction Force in Cell Adhesion
Pompe, Tilo; Kaufmann, Martin; Kasimir, Maria; Johne, Stephanie; Glorius, Stefan; Renner, Lars; Bobeth, Manfred; Pompe, Wolfgang; Werner, Carsten
2011-01-01
The force balance between the extracellular microenvironment and the intracellular cytoskeleton controls the cell fate. We report a new (to our knowledge) mechanism of receptor force control in cell adhesion originating from friction between cell adhesion ligands and the supporting substrate. Adherent human endothelial cells have been studied experimentally on polymer substrates noncovalently coated with fluorescent-labeled fibronectin (FN). The cellular traction force correlated with the mobility of FN during cell-driven FN fibrillogenesis. The experimental findings have been explained within a mechanistic two-dimensional model of the load transfer at focal adhesion sites. Myosin motor activity in conjunction with sliding of FN ligands noncovalently coupled to the surface of the polymer substrates is shown to result in a controlled traction force of adherent cells. We conclude that the friction of adhesion ligands on the supporting substrate is important for mechanotransduction and cell development of adherent cells in vitro and in vivo. PMID:22004739
Effects of high power ultrasonic vibration on the cold compaction of titanium.
Fartashvand, Vahid; Abdullah, Amir; Ali Sadough Vanini, Seyed
2017-05-01
Titanium has widely been used in chemical and aerospace industries. In order to overcome the drawbacks of cold compaction of titanium, the process was assisted by an ultrasonic vibration system. For this purpose, a uniaxial ultrasonic assisted cold powder compaction system was designed and fabricated. The process variables were powder size, compaction pressure and initial powder compact thickness. Density, friction force, ejection force and spring back of the fabricated samples were measured and studied. The density was observed to improve under the action of ultrasonic vibration. Fine size powders showed better results of consolidation while using ultrasonic vibration. Under the ultrasonic action, it is thought that the friction forces between the die walls and the particles and those friction forces among the powder particles are reduced. Spring back and ejection force didn't considerably change when using ultrasonic vibration. Copyright © 2016 Elsevier B.V. All rights reserved.
Locomotive and reptation motion induced by internal force and friction.
Sakaguchi, Hidetsugu; Ishihara, Taisuke
2011-06-01
We propose a simple mechanical model of locomotion induced by internal force and friction. We first construct a system of two elements as an analog of the bipedal motion. The internal force does not induce a directional motion by itself because of the action-reaction law, but a directional motion becomes possible by the control of the frictional force. The efficiency of these model systems is studied using an analogy to the heat engine. As a modified version of the two-element model, we construct a model that exhibits a bipedal motion similar to kinesin's motion of molecular motor. Next, we propose a linear chain model and a ladder model as an extension of the original two-element model. We find a transition from a straight to a snake-like motion in a ladder model by changing the strength of the internal force.
Frictional lubricity enhanced by quantum mechanics.
Zanca, Tommaso; Pellegrini, Franco; Santoro, Giuseppe E; Tosatti, Erio
2018-04-03
The quantum motion of nuclei, generally ignored in the physics of sliding friction, can affect in an important manner the frictional dissipation of a light particle forced to slide in an optical lattice. The density matrix-calculated evolution of the quantum version of the basic Prandtl-Tomlinson model, describing the dragging by an external force of a point particle in a periodic potential, shows that purely classical friction predictions can be very wrong. The strongest quantum effect occurs not for weak but for strong periodic potentials, where barriers are high but energy levels in each well are discrete, and resonant Rabi or Landau-Zener tunneling to states in the nearest well can preempt classical stick-slip with nonnegligible efficiency, depending on the forcing speed. The resulting permeation of otherwise unsurmountable barriers is predicted to cause quantum lubricity, a phenomenon which we expect should be observable in the recently implemented sliding cold ion experiments.
Ultrasound - Aided ejection in micro injection molding
NASA Astrophysics Data System (ADS)
Masato, D.; Sorgato, M.; Lucchetta, G.
2018-05-01
In this work, an ultrasound-aided ejection system was designed and tested for different polymers (PS, COC and POM) and mold topographies. The proposed solution aims at reducing the ejection friction by decreasing the adhesion component of the frictional force, which is controlled by the contact area developed during the filling stage of the injection molding process. The experimental results indicate a positive effect of ultrasound vibration on the friction force values, with a maximum reduction of 16. Moreover, it is demonstrated that the ultrasound effect is strictly related to both polymer selection and mold roughness. The combined effect on the ejection force of mold surface roughness, melt viscosity during filling and polymer elastic modulus at ejection was modeled to the experimental data, in order to demonstrate that the effect of ultrasound vibration on the ejection friction reduction is due to the heating of the contact interface and the consequent reduction of the polymer elastic modulus.
Micro- and macroscale coefficients of friction of cementitious materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lomboy, Gilson; Sundararajan, Sriram, E-mail: srirams@iastate.edu; Wang, Kejin
2013-12-15
Millions of metric tons of cementitious materials are produced, transported and used in construction each year. The ease or difficulty of handling cementitious materials is greatly influenced by the material friction properties. In the present study, the coefficients of friction of cementitious materials were measured at the microscale and macroscale. The materials tested were commercially-available Portland cement, Class C fly ash, and ground granulated blast furnace slag. At the microscale, the coefficient of friction was determined from the interaction forces between cementitious particles using an Atomic Force Microscope. At the macroscale, the coefficient of friction was determined from stresses onmore » bulk cementitious materials under direct shear. The study indicated that the microscale coefficient of friction ranged from 0.020 to 0.059, and the macroscale coefficient of friction ranged from 0.56 to 0.75. The fly ash studied had the highest microscale coefficient of friction and the lowest macroscale coefficient of friction. -- Highlights: •Microscale (interparticle) coefficient of friction (COF) was determined with AFM. •Macroscale (bulk) COF was measured under direct shear. •Fly ash had the highest microscale COF and the lowest macroscale COF. •Portland cement against GGBFS had the lowest microscale COF. •Portland cement against Portland cement had the highest macroscale COF.« less
High Temperature Tribometer. Phase 1
1989-06-01
13 Figure 2.3.2 Setpoint and Gain Windows in FW.EXE ......... . Figure 2.4.1 Data-Flow Diagram for Data-Acquisition Module ..... .. 23 I Figure...mounted in a friction force measuring device. Optimally , material testing results should not be test machine sensitiye; but due to equipment variables...fixed. The friction force due to sliding should be continuously measured. This is optimally done in conjunction with the normal force measurement via
PREFACE: The International Conference on Science of Friction
NASA Astrophysics Data System (ADS)
Miura, Kouji; Matsukawa, Hiroshi
2007-07-01
The first international conference on the science of friction in Japan was held at Irago, Aichi on 9-13 September 2007. The conference focused on the elementary process of friction phenomena from the atomic and molecular scale view. Topics covered in the conference are shown below.:
Debris and friction of self-ligating and conventional orthodontic brackets after clinical use.
Araújo, Raíssa Costa; Bichara, Lívia Monteiro; Araujo, Adriana Monteiro de; Normando, David
2015-07-01
To compare the degree of debris and friction of conventional and self-ligating orthodontic brackets before and after clinical use. Two sets of three conventional and self-ligating brackets were bonded from the first molar to the first premolar in eight individuals, for a total of 16 sets per type of brackets. A passive segment of 0.019 × 0.025-inch stainless steel archwire was inserted into each group of brackets. Frictional force and debris level were evaluated as received and after 8 weeks of intraoral exposure. Two-way analysis of variance and Wilcoxon signed-rank test were applied at P < .05. After the intraoral exposure, there was a significant increase of debris accumulation in both systems of brackets (P < .05). However, the self-ligating brackets showed a higher amount of debris compared with the conventional brackets. The frictional force in conventional brackets was significantly higher when compared with self-ligating brackets before clinical use (P < .001). Clinical exposure for 8 weeks provided a significant increase of friction (P < .001) on both systems. In the self-ligating system, the mean of friction increase was 0.21 N (191%), while 0.52 N (47.2%) was observed for the conventional system. Self-ligating and conventional brackets, when exposed to the intraoral environment, showed a significant increase in frictional force during the sliding mechanics. Debris accumulation was higher for the self-ligating system.
Sekhar, Ashok; Vallurupalli, Pramodh; Kay, Lewis E
2012-11-20
Friction plays a critical role in protein folding. Frictional forces originating from random solvent and protein fluctuations both retard motion along the folding pathway and activate protein molecules to cross free energy barriers. Studies of friction thus may provide insights into the driving forces underlying protein conformational dynamics. However, the molecular origin of friction in protein folding remains poorly understood because, with the exception of the native conformer, there generally is little detailed structural information on the other states participating in the folding process. Here, we study the folding of the four-helix bundle FF domain that proceeds via a transiently formed, sparsely populated compact on-pathway folding intermediate whose structure was elucidated previously. Because the intermediate is stabilized by both native and nonnative interactions, friction in the folding transition between intermediate and folded states is expected to arise from intrachain reorganization in the protein. However, the viscosity dependencies of rates of folding from or unfolding to the intermediate, as established by relaxation dispersion NMR spectroscopy, clearly indicate that contributions from internal friction are small relative to those from solvent, so solvent frictional forces drive the folding process. Our results emphasize the importance of solvent dynamics in mediating the interconversion between protein configurations, even those that are highly compact, and in equilibrium folding/unfolding fluctuations in general.
Simulations of Dynamical Friction Including Spatially-Varying Magnetic Fields
NASA Astrophysics Data System (ADS)
Bell, G. I.; Bruhwiler, D. L.; Litvinenko, V. N.; Busby, R.; Abell, D. T.; Messmer, P.; Veitzer, S.; Cary, J. R.
2006-03-01
A proposed luminosity upgrade to the Relativistic Heavy Ion Collider (RHIC) includes a novel electron cooling section, which would use ˜55 MeV electrons to cool fully-ionized 100 GeV/nucleon gold ions. We consider the dynamical friction force exerted on individual ions due to a relevant electron distribution. The electrons may be focussed by a strong solenoid field, with sensitive dependence on errors, or by a wiggler field. In the rest frame of the relativistic co-propagating electron and ion beams, where the friction force can be simulated for nonrelativistic motion and electrostatic fields, the Lorentz transform of these spatially-varying magnetic fields includes strong, rapidly-varying electric fields. Previous friction force simulations for unmagnetized electrons or error-free solenoids used a 4th-order Hermite algorithm, which is not well-suited for the inclusion of strong, rapidly-varying external fields. We present here a new algorithm for friction force simulations, using an exact two-body collision model to accurately resolve close interactions between electron/ion pairs. This field-free binary-collision model is combined with a modified Boris push, using an operator-splitting approach, to include the effects of external fields. The algorithm has been implemented in the VORPAL code and successfully benchmarked.
NASA Astrophysics Data System (ADS)
Frohn, Peter; Engel, Bernd; Groth, Sebastian
2018-05-01
Kinematic forming processes shape geometries by the process parameters to achieve a more universal process utilizations regarding geometric configurations. The kinematic forming process Incremental Swivel Bending (ISB) bends sheet metal strips or profiles in plane. The sequence for bending an arc increment is composed of the steps clamping, bending, force release and feed. The bending moment is frictionally engaged by two clamping units in a laterally adjustable bending pivot. A minimum clamping force hindering the material from slipping through the clamping units is a crucial criterion to achieve a well-defined incremental arc. Therefore, an analytic description of a singular bent increment is developed in this paper. The bending moment is calculated by the uniaxial stress distribution over the profiles' width depending on the bending pivot's position. By a Coulomb' based friction model, necessary clamping force is described in dependence of friction, offset, dimensions of the clamping tools and strip thickness as well as material parameters. Boundaries for the uniaxial stress calculation are given in dependence of friction, tools' dimensions and strip thickness. The results indicate that changing the bending pivot to an eccentric position significantly affects the process' bending moment and, hence, clamping force, which is given in dependence of yield stress and hardening exponent. FE simulations validate the model with satisfactory accordance.
Karim Soltani, Mohammad; Golfeshan, Farzaneh; Alizadeh, Yoones; Mehrzad, Jabraiel
2015-03-01
Frictional forces are considered as important counterforce to orthodontic tooth movement. It is claimed that self-ligating brackets reduce the frictional forces. The aim of this study was to compare the resistance to sliding in metallic and clear Damon brackets with the conventional brackets in a wet condition. The samples included 4 types of brackets; metallic and clear Damon brackets and metallic and clear conventional brackets (10 brackets in each group). In this study, stainless steel wires sized 0.019×0.025 were employed and the operator's saliva was used to simulate the conditions of oral cavity. The tidy-modified design was used for simulation of sliding movement. The resistance to sliding and static frictional forces was measured by employing Testometric machine and load cell. The mean (±SD) of resistance to sliding was 194.88 (±26.65) and 226.62 (±39.9) g in the esthetic and metallic Damon brackets, while these values were 187.81(±27.84) and 191.17(±66.68) g for the clear and metallic conventional brackets, respectively. Static frictional forces were 206.4(±42.45) and 210.38(±15.89) g in the esthetic and metallic Damon brackets and 220.63(±49.29) and 215.13(±62.38) g in the clear and metallic conventional brackets. According to two-way ANOVA, no significant difference was observed between the two bracket materials (clear and metal) and the two types of bracket (self-ligating versus conventional) regarding resistance to sliding (p= 0.17 and p= 0.23, respectively) and static frictional forces (p= 0.55 and p= 0.96, respectively). Neither the type of bracket materials nor their type of ligation made difference in resistance to sliding and static friction.
Dynamics of static friction between steel and silicon
Yang, Zhiping; Zhang, H. P.; Marder, M.
2008-01-01
We conducted experiments in which steel and silicon or quartz are clamped together. Even with the smallest tangential forces we could apply, we always found reproducible sliding motions on the nanometer scale. The velocities we study are thousands of times smaller than in previous investigations. The samples first slide and then lock up even when external forces hold steady. One might call the result “slip-stick” friction. We account for the results with a phenomenological theory that results from considering the rate and state theory of dynamic friction at low velocities. Our measurements lead us to set the instantaneous coefficient of static friction that normally enters rate and state theories to zero. PMID:18768792
Large Electric Field–Enhanced–Hardness Effect in a SiO2 Film
Revilla, Reynier I.; Li, Xiao-Jun; Yang, Yan-Lian; Wang, Chen
2014-01-01
Silicon dioxide films are extensively used in nano and micro–electromechanical systems. Here we studied the influence of an external electric field on the mechanical properties of a SiO2 film by using nanoindentation technique of atomic force microscopy (AFM) and friction force microscopy (FFM). A giant augmentation of the relative elastic modulus was observed by increasing the localized electric field. A slight decrease in friction coefficients was also clearly observed by using FFM with the increase of applied tip voltage. The reduction of the friction coefficients is consistent with the great enhancement of sample hardness by considering the indentation–induced deformation during the friction measurements. PMID:24681517
Hyperstaticity and loops in frictional granular packings
NASA Astrophysics Data System (ADS)
Tordesillas, Antoinette; Lam, Edward; Metzger, Philip T.
2009-06-01
The hyperstatic nature of granular packings of perfectly rigid disks is analyzed algebraically and through numerical simulation. The elementary loops of grains emerge as a fundamental element in addressing hyperstaticity. Loops consisting of an odd number of grains behave differently than those with an even number. For odd loops, the latent stresses are exterior and are characterized by the sum of frictional forces around each loop. For even loops, the latent stresses are interior and are characterized by the alternating sum of frictional forces around each loop. The statistics of these two types of loop sums are found to be Gibbsian with a "temperature" that is linear with the friction coefficient μ when μ<1.
Frictional and mechanical properties of diamond-like carbon-coated orthodontic brackets.
Muguruma, Takeshi; Iijima, Masahiro; Brantley, William A; Nakagaki, Susumu; Endo, Kazuhiko; Mizoguchi, Itaru
2013-04-01
This study investigated the effects of a diamond-like carbon (DLC) coating on frictional and mechanical properties of orthodontic brackets. DLC films were deposited on stainless steel brackets using the plasma-based ion implantation/deposition (PBIID) method under two different atmospheric conditions. As-received metal brackets served as the control. Two sizes of stainless steel archwires, 0.018 inch diameter and 0.017 × 0.025 inch cross-section dimensions, were used for measuring static and kinetic friction by drawing the archwires through the bracket slots, using a mechanical testing machine (n = 10). The DLC-coated brackets were observed with a scanning electron microscope (SEM). Values of hardness and elastic modulus were obtained by nanoindentation testing (n = 10). Friction forces were compared by one-way analysis of variance and the Scheffé test. The hardness and elastic modulus of the brackets were compared using Kruskal-Wallis and Mann-Whitney U-tests. SEM photomicrographs showed DLC layers on the bracket surfaces with thickness of approximately 5-7 μm. DLC-coated brackets deposited under condition 2 showed significantly less static frictional force for the stainless steel wire with 0.017 × 0.025 inch cross-section dimensions than as-received brackets and DLC-coated brackets deposited under condition 1, although both DLC-coated brackets showed significantly less kinetic frictional force than as-received brackets. The hardness of the DLC layers was much higher than that of the as-received bracket surfaces. In conclusion, the surfaces of metal brackets can be successfully modified by the PBIID method to create a DLC layer, and the DLC-coating process significantly reduces frictional forces.
Washizu, Hitoshi; Kajita, Seiji; Tohyama, Mamoru; Ohmori, Toshihide; Nishino, Noriaki; Teranishi, Hiroshi; Suzuki, Atsushi
2012-01-01
Coarse-grained Metropolis Monte Carlo Brownian Dynamics simulations are used to clarify the ultralow friction mechanism of a transfer film of multilayered graphene sheets. Each circular graphene sheet consists of 400 to 1,000,000 atoms confined between the upper and lower sliders and are allowed to move in 3 translational and 1 rotational directions due to thermal motion at 300 K. The sheet-sheet interaction energy is calculated by the sum of the pair potential of the sp2 carbons. The sliding simulations are done by moving the upper slider at a constant velocity. In the monolayer case, the friction force shows a stick-slip like curve and the average of the force is high. In the multilayer case, the friction force does not show any oscillation and the average of the force is very low. This is because the entire transfer film has an internal degree of freedom in the multilayer case and the lowest sheet of the layer is able to follow the equipotential surface of the lower slider.
Particle motion in atmospheric boundary layers of Mars and Earth
NASA Technical Reports Server (NTRS)
White, B. R.; Iversen, J. D.; Greeley, R.; Pollack, J. B.
1975-01-01
To study the eolian mechanics of saltating particles, both an experimental investigation of the flow field around a model crater in an atmospheric boundary layer wind tunnel and numerical solutions of the two- and three-dimensional equations of motion of a single particle under the influence of a turbulent boundary layer were conducted. Two-dimensional particle motion was calculated for flow near the surfaces of both Earth and Mars. For the case of Earth both a turbulent boundary layer with a viscous sublayer and one without were calculated. For the case of Mars it was only necessary to calculate turbulent boundary layer flow with a laminar sublayer because of the low values of friction Reynolds number; however, it was necessary to include the effects of slip flow on a particle caused by the rarefied Martian atmosphere. In the equations of motion the lift force functions were developed to act on a single particle only in the laminar sublayer or a corresponding small region of high shear near the surface for a fully turbulent boundary layer. The lift force functions were developed from the analytical work by Saffman concerning the lift force acting on a particle in simple shear flow.
Effects of friction on forced two-dimensional Navier-Stokes turbulence.
Blackbourn, Luke A K; Tran, Chuong V
2011-10-01
Large-scale dissipation mechanisms have been routinely employed in numerical simulations of two-dimensional turbulence to absorb energy at large scales, presumably mimicking the quasisteady picture of Kraichnan in an unbounded fluid. Here, "side effects" of such a mechanism--mechanical friction--on the small-scale dynamics of forced two-dimensional Navier-Stokes turbulence are elaborated by both theoretical and numerical analysis. Given a positive friction coefficient α, viscous dissipation of enstrophy has been known to vanish in the inviscid limit ν→0. This effectively renders the scale-neutral friction the only mechanism responsible for enstrophy dissipation in that limit. The resulting dynamical picture is that the classical enstrophy inertial range becomes a dissipation range in which the dissipation of enstrophy by friction mainly occurs. For each α>0, there exists a critical viscosity ν(c), which depends on physical parameters, separating the regimes of predominant viscous and frictional dissipation of enstrophy. It is found that ν(c)=[η'(1/3)/(Ck(f)(2))]exp[-η'(1/3)/(Cα)], where η' is half the enstrophy injection rate, k(f) is the forcing wave number, and C is a nondimensional constant (the Kraichnan-Batchelor constant). The present results have important theoretical and practical implications. Apparently, mechanical friction is a poor choice in numerical attempts to address fundamental issues concerning the direct enstrophy transfer in two-dimensional Navier-Stokes turbulence. Furthermore, as relatively strong friction naturally occurs on the surfaces and at lateral boundaries of experimental fluids as well as at the interfaces of shallow layers in geophysical fluid models, the frictional effects discussed in this study are crucial in understanding the dynamics of these systems.
The effect of surface treatment and clinical use on friction in NiTi orthodontic wires.
Wichelhaus, Andrea; Geserick, Marc; Hibst, Raimund; Sander, Franz G
2005-10-01
Since the low friction of NiTi wires allows a rapid and efficient orthodontic tooth movement, the aim of this research was to investigate the friction and surface roughness of different commercially available superelastic NiTi wires before and after clinical use. The surface of all of the wires had been pre-treated by the manufacturer. Forty superelastic wires (Titanol Low Force, Titanol Low Force River Finish Gold, Neo Sentalloy, Neo Sentalloy Ionguard) of diameter 0.016 x 0.022 in. were tested. The friction for each type of NiTi archwire ligated into a commercial stainless steel bracket was determined with a universal testing machine. Having ligated the wire into the bracket, it could then be moved forward and backwards along a fixed archwire whilst a torquing moment was applied. The surface roughness was investigated using a profilometric measuring device on defined areas of the wire. Statistical data analysis was conducted by means of the Wilcoxon test. The results showed that initially, the surface treated wires demonstrated significantly (p < 0.01) less friction than the non-treated wires. The surface roughness showed no significant difference between the treated and the non-treated surfaces of the wires. All 40 wires however showed a significant increase in friction and surface roughness during clinical use. Whilst the Titanol Low Force River Finish Gold (Forestadent, Pforzheim, Germany) wires showed the least friction of all the samples and consequently should be more conservative on anchorage, the increase in friction of all the surface treated wires during orthodontic treatment almost cancels out this initial effect on friction. It is therefore recommended that surface treated NiTi orthodontic archwires should only be used once.
Transient rolling friction model for discrete element simulations of sphere assemblies
NASA Astrophysics Data System (ADS)
Kuhn, Matthew R.
2014-03-01
The rolling resistance between a pair of contacting particles can be modeled with two mechanisms. The first mechanism, already widely addressed in the DEM literature, involves a contact moment between the particles. The second mechanism involves a reduction of the tangential contact force, but without a contact moment. This type of rotational resistance, termed creep-friction, is the subject of the paper. Within the creep-friction literature, the term “creep” does not mean a viscous mechanism, but rather connotes a slight slip that accompanies rolling. Two extremes of particle motions bound the range of creep-friction behaviors: a pure tangential translation is modeled as a Cattaneo-Mindlin interaction, whereas prolonged steady-state rolling corresponds to the traditional wheel-rail problem described by Carter, Poritsky, and others. DEM simulations, however, are dominated by the transient creep-friction rolling conditions that lie between these two extremes. A simplified model is proposed for the three-dimensional transient creep-friction rolling of two spheres. The model is an extension of the work of Dahlberg and Alfredsson, who studied the two-dimensional interactions of disks. The proposed model is applied to two different systems: a pair of spheres and a large dense assembly of spheres. Although creep-friction can reduce the tangential contact force that would otherwise be predicted with Cattaneo-Mindlin theory, a significant force reduction occurs only when the rate of rolling is much greater than the rate of translational sliding and only after a sustained period of rolling. When applied to the deviatoric loading of an assembly of spheres, the proposed creep-friction model has minimal effect on macroscopic strength or stiffness. At the micro-scale of individual contacts, creep-friction does have a modest influence on the incremental contact behavior, although the aggregate effect on the assembly's behavior is minimal.
NASA Astrophysics Data System (ADS)
Berkovich, Ronen; Klafter, Joseph; Urbakh, Michael
Free energy is one of the most fundamental thermodynamic functions, determining relative phase stability and serving as a generating function for other thermodynamic quantities. The calculation of free energies is a challenging enterprise. In equilibrium statistical mechanics, the free energy is related to the canonical partition function. The partition function itself involves integrations over all degrees of freedom in the system and, in most cases, cannot be easily calculated directly. In 1997, Jarzynski proved a remarkable equality that allows computing the equilibrium free-energy difference between two states from the probability distribution of the nonequilibrium work done on the system to switch between the two states. The Jarzynski equality provides a powerful free-energy difference estimator from a set of irreversible experiments. This method is closely related to free-energy perturbation approach, which is also a computational technique for estimating free-energy differences. The ability to map potential profiles and topologies is of major significance to areas as diverse as biological recognition and nanoscale friction. This capability has been demonstrated for frictional studies where a force between the tip of the scanning force microscope and the surface is probed. The surface free-energy corrugation produces a detectable friction forces. Thus, friction force microscopy (FFM) should be able to discriminate between energetically different areas on the probed surface. Here, we apply the Jarzynski equality for the analysis of FFM measurements and thus obtain a variation of the free energy along a surface.
A Micro-Force Sensor with Slotted-Quad-Beam Structure for Measuring the Friction in MEMS Bearings
Liu, Huan; Yang, Shuming; Zhao, Yulong; Jiang, Zhuangde; Liu, Yan; Tian, Bian
2013-01-01
Presented here is a slotted-quad-beam structure sensor for the measurement of friction in micro bearings. Stress concentration slots are incorporated into a conventional quad-beam structure to improve the sensitivity of force measurements. The performance comparison between the quad-beam structure sensor and the slotted-quad-beam structure sensor are performed by theoretical modeling and finite element (FE) analysis. A hollow stainless steel probe is attached to the mesa of the sensor chip by a tailor-made organic glass fixture. Concerning the overload protection of the fragile beams, a glass wafer is bonded onto the bottom of sensor chip to limit the displacement of the mesa. The calibration of the packaged device is experimentally performed by a tri-dimensional positioning stage, a precision piezoelectric ceramic and an electronic analytical balance, which indicates its favorable sensitivity and overload protection. To verify the potential of the proposed sensor being applied in micro friction measurement, a measurement platform is established. The output of the sensor reflects the friction of bearing resulting from dry friction and solid lubrication. The results accord with the theoretical modeling and demonstrate that the sensor has the potential application in measuring the micro friction force under stable stage in MEMS machines. PMID:24084112
The evolving quality of frictional contact with graphene.
Li, Suzhi; Li, Qunyang; Carpick, Robert W; Gumbsch, Peter; Liu, Xin Z; Ding, Xiangdong; Sun, Jun; Li, Ju
2016-11-24
Graphite and other lamellar materials are used as dry lubricants for macroscale metallic sliding components and high-pressure contacts. It has been shown experimentally that monolayer graphene exhibits higher friction than multilayer graphene and graphite, and that this friction increases with continued sliding, but the mechanism behind this remains subject to debate. It has long been conjectured that the true contact area between two rough bodies controls interfacial friction. The true contact area, defined for example by the number of atoms within the range of interatomic forces, is difficult to visualize directly but characterizes the quantity of contact. However, there is emerging evidence that, for a given pair of materials, the quality of the contact can change, and that this can also strongly affect interfacial friction. Recently, it has been found that the frictional behaviour of two-dimensional materials exhibits traits unlike those of conventional bulk materials. This includes the abovementioned finding that for few-layer two-dimensional materials the static friction force gradually strengthens for a few initial atomic periods before reaching a constant value. Such transient behaviour, and the associated enhancement of steady-state friction, diminishes as the number of two-dimensional layers increases, and was observed only when the two-dimensional material was loosely adhering to a substrate. This layer-dependent transient phenomenon has not been captured by any simulations. Here, using atomistic simulations, we reproduce the experimental observations of layer-dependent friction and transient frictional strengthening on graphene. Atomic force analysis reveals that the evolution of static friction is a manifestation of the natural tendency for thinner and less-constrained graphene to re-adjust its configuration as a direct consequence of its greater flexibility. That is, the tip atoms become more strongly pinned, and show greater synchrony in their stick-slip behaviour. While the quantity of atomic-scale contacts (true contact area) evolves, the quality (in this case, the local pinning state of individual atoms and the overall commensurability) also evolves in frictional sliding on graphene. Moreover, the effects can be tuned by pre-wrinkling. The evolving contact quality is critical for explaining the time-dependent friction of configurationally flexible interfaces.
Internal structure of inertial granular flows.
Azéma, Emilien; Radjaï, Farhang
2014-02-21
We analyze inertial granular flows and show that, for all values of the inertial number I, the effective friction coefficient μ arises from three different parameters pertaining to the contact network and force transmission: (1) contact anisotropy, (2) force chain anisotropy, and (3) friction mobilization. Our extensive 3D numerical simulations reveal that μ increases with I mainly due to an increasing contact anisotropy and partially by friction mobilization whereas the anisotropy of force chains declines as a result of the destabilizing effect of particle inertia. The contact network undergoes topological transitions, and beyond I≃0.1 the force chains break into clusters immersed in a background "soup" of floating particles. We show that this transition coincides with the divergence of the size of fluidized zones characterized from the local environments of floating particles and a slower increase of μ with I.
Internal Structure of Inertial Granular Flows
NASA Astrophysics Data System (ADS)
Azéma, Emilien; Radjaï, Farhang
2014-02-01
We analyze inertial granular flows and show that, for all values of the inertial number I, the effective friction coefficient μ arises from three different parameters pertaining to the contact network and force transmission: (1) contact anisotropy, (2) force chain anisotropy, and (3) friction mobilization. Our extensive 3D numerical simulations reveal that μ increases with I mainly due to an increasing contact anisotropy and partially by friction mobilization whereas the anisotropy of force chains declines as a result of the destabilizing effect of particle inertia. The contact network undergoes topological transitions, and beyond I≃0.1 the force chains break into clusters immersed in a background "soup" of floating particles. We show that this transition coincides with the divergence of the size of fluidized zones characterized from the local environments of floating particles and a slower increase of μ with I.
Preira, Pascal; Valignat, Marie-Pierre; Bico, José; Théodoly, Olivier
2013-01-01
We report how cell rheology measurements can be performed by monitoring the deformation of a cell in a microfluidic constriction, provided that friction and fluid leaks effects between the cell and the walls of the microchannels are correctly taken into account. Indeed, the mismatch between the rounded shapes of cells and the angular cross-section of standard microfluidic channels hampers efficient obstruction of the channel by an incoming cell. Moreover, friction forces between a cell and channels walls have never been characterized. Both effects impede a quantitative determination of forces experienced by cells in a constriction. Our study is based on a new microfluidic device composed of two successive constrictions, combined with optical interference microscopy measurements to characterize the contact zone between the cell and the walls of the channel. A cell squeezed in a first constriction obstructs most of the channel cross-section, which strongly limits leaks around cells. The rheological properties of the cell are subsequently probed during its entry in a second narrower constriction. The pressure force is determined from the pressure drop across the device, the cell velocity, and the width of the gutters formed between the cell and the corners of the channel. The additional friction force, which has never been analyzed for moving and constrained cells before, is found to involve both hydrodynamic lubrication and surface forces. This friction results in the existence of a threshold for moving the cells and leads to a non-linear behavior at low velocity. The friction force can nevertheless be assessed in the linear regime. Finally, an apparent viscosity of single cells can be estimated from a numerical prediction of the viscous dissipation induced by a small step in the channel. A preliminary application of our method yields an apparent loss modulus on the order of 100 Pa s for leukocytes THP-1 cells, in agreement with the literature data. PMID:24404016
Arash, Valiollah; Rabiee, Mahmoud; Rakhshan, Vahid; Khorasani, Sara; Sobouti, Farhad
2015-01-01
Purpose: The aim of this study was to compare frictional forces between monocrystalline alumina (MA), polycrystalline alumina (PA), and stainless steel (SS) brackets with two SS wires: Rectangular and round. Materials and Methods: In this in vitro study, 60 0.022 brackets [20 PA (0° torque, Forestadent, Germany) and 20 MA (0° torque, Ormco, California, USA)] brackets plus 20 SS brackets (0° torque, Foretadent, Germany) and 60 SS archwires (30 rectangular 0.019 ×0.025 archwires and 30 round 0.018 archwires, Ortho Technology, USA) were used in subgroups of 10 from the combination of all brackets and all archwires. A universal testing machine (Instron, Model STM 250, Germany) was used to investigate the static frictional resistance. The angulation between the bracket and wire was 0°, and the wires were pulled through the slots at a crosshead speed of 10 mm/min. Two-way and one-way analyses of variance (ANOVA) and Tukey tests were used to analyze the data. Results: Mean (SD) static frictional force for each group was as follows: MA + round: 3.47 (0.38); MA + rectangular: 4.05 (0.47); PA + round: 4.14 (0.37); PA + rectangular: 4.45 (0.65); SS + round: 3.28 (0.22); and SS + rectangular: 4.22 (0.61). Significant effects of bracket types (P = 0.001) and archwire types (P = 0.000) on the friction force were detected using ANOVA. Tukey test indicated significant differences between PA brackets with both SS and MA brackets (P < 0.05), but not between SS and MA brackets. The two archwires as well had significantly different effects (Tukey P = 0.000). Conclusions: Based on the present in-vitro study, the PA brackets might create higher frictional forces compared to both SS and MA brackets. The rectangular 0.019 ×0.025 archwire might create greater forces than round 0.018 archwire. PMID:26020037
Arash, Valiollah; Rabiee, Mahmoud; Rakhshan, Vahid; Khorasani, Sara; Sobouti, Farhad
2015-01-01
The aim of this study was to compare frictional forces between monocrystalline alumina (MA), polycrystalline alumina (PA), and stainless steel (SS) brackets with two SS wires: Rectangular and round. In this in vitro study, 60 0.022 brackets [20 PA (0° torque, Forestadent, Germany) and 20 MA (0° torque, Ormco, California, USA)] brackets plus 20 SS brackets (0° torque, Foretadent, Germany) and 60 SS archwires (30 rectangular 0.019 ×0.025 archwires and 30 round 0.018 archwires, Ortho Technology, USA) were used in subgroups of 10 from the combination of all brackets and all archwires. A universal testing machine (Instron, Model STM 250, Germany) was used to investigate the static frictional resistance. The angulation between the bracket and wire was 0°, and the wires were pulled through the slots at a crosshead speed of 10 mm/min. Two-way and one-way analyses of variance (ANOVA) and Tukey tests were used to analyze the data. Mean (SD) static frictional force for each group was as follows: MA + round: 3.47 (0.38); MA + rectangular: 4.05 (0.47); PA + round: 4.14 (0.37); PA + rectangular: 4.45 (0.65); SS + round: 3.28 (0.22); and SS + rectangular: 4.22 (0.61). Significant effects of bracket types (P = 0.001) and archwire types (P = 0.000) on the friction force were detected using ANOVA. Tukey test indicated significant differences between PA brackets with both SS and MA brackets (P < 0.05), but not between SS and MA brackets. The two archwires as well had significantly different effects (Tukey P = 0.000). Based on the present in-vitro study, the PA brackets might create higher frictional forces compared to both SS and MA brackets. The rectangular 0.019 ×0.025 archwire might create greater forces than round 0.018 archwire.
Experimental Study of Reciprocating Friction between Rape Stalk and Bionic Nonsmooth Surface Units
Ma, Zheng; Li, Yaoming; Xu, Lizhang
2015-01-01
Background. China is the largest producer of rape oilseed in the world; however, the mechanization level of rape harvest is relatively low, because rape materials easily adhere to the cleaning screens of combine harvesters, resulting in significant cleaning losses. Previous studies have shown that bionic nonsmooth surface cleaning screens restrain the adhesion of rape materials, but the underlying mechanisms remain unclear. Objective. The reciprocating friction between rape stalk and bionic nonsmooth metal surface was examined. Methods. The short-time Fourier transform method was used to discriminate the stable phase of friction signals and the stick-lag distance was defined to analyze the stable reciprocating friction in a phase diagram. Results. The reciprocating friction between rape stalk and metal surface is a typical stick-slip friction, and the bionic nonsmooth metal surfaces with concave or convex units reduced friction force with increasing reciprocating frequency. The results also showed that the stick-lag distance of convex surface increased with reciprocating frequency, which indicated that convex surface reduces friction force more efficiently. Conclusions. We suggest that bionic nonsmooth surface cleaning screens, especially with convex units, restrain the adhesion of rape materials more efficiently compared to the smooth surface cleaning screens. PMID:27034611
Frictional families in 2D experimental disks under periodic gravitational compaction
NASA Astrophysics Data System (ADS)
Hubard, Aline; Shattuck, Mark; O'Hern, Corey
2014-03-01
We studied a bidisperse system with diameter ratio 1.2 consisting of four 1.26cm and three 1.57cm stainless steel cylinders confined between two glass plates separated 1.05 times their thickness with the cylinder axis perpendicular to gravity. The particles initially resting on a movable piston are thrown upward and allowed to come to rest. In general this frictional state is stabilized by both normal and tangential (frictional) forces. We then apply short (10ms) small amplitude bursts of 440Hz vibration, temporarily breaking tangential forces and then allow the system to re-stabilize. After N of these compaction steps the number of contacts will increase to an isostatic friction-less state and additional steps do not change the system. Many frictional states reach the same final friction-less state. We find that this evolution is determined by the projection of the gravity vector on the null space of the dynamical matrix of a normal spring network formed from the contacts of the frictional state. Thus each frictional contact network follow a one-dimensional path (or family) through phase space under gravitational compaction. PREM-DMR0934206.
Optical tweezers reveal force plateau and internal friction in PEG-induced DNA condensation.
Ojala, Heikki; Ziedaite, Gabija; Wallin, Anders E; Bamford, Dennis H; Hæggström, Edward
2014-03-01
The simplified artificial environments in which highly complex biological systems are studied do not represent the crowded, dense, salty, and dynamic environment inside the living cell. Consequently, it is important to investigate the effect of crowding agents on DNA. We used a dual-trap optical tweezers instrument to perform force spectroscopy experiments at pull speeds ranging from 0.3 to 270 μm/s on single dsDNA molecules in the presence of poly(ethylene glycol) (PEG) and monovalent salt. PEG of sizes 1,500 and 4,000 Da condensed DNA, and force-extension data contained a force plateau at approximately 1 pN. The level of the force plateau increased with increasing pull speed. During slow pulling the dissipated work increased linearly with pull speed. The calculated friction coefficient did not depend on amount of DNA incorporated in the condensate, indicating internal friction is independent of the condensate size. PEG300 had no effect on the dsDNA force-extension curve. The force plateau implies that condensation induced by crowding agents resembles condensation induced by multivalent cations.
A novel free floating accelerometer force balance system for shock tunnel applications
NASA Astrophysics Data System (ADS)
Joarder, R.; Mahaptra, D. R.; Jagadeesh, G.
In order to overcome the interference of the model mounting system with the external aerodynamics of the body during shock tunnel testing, a new free floating internally mountable balance system that ensures unrestrained model motion during testing has been designed, fabricated and tested. Minimal friction ball bearings are used for ensuring the free floating condition of the model during tunnel testing. The drag force acting on a blunt leading edge flat plate at hypersonic Mach number has been measured using the new balance system. Finite element model (FEM) and CFD are exhaustively used in the design as well as for calibrating the new balance system. The experimentally measured drag force on the blunt leading edge flat plate at stagnation enthalpy of 0.7 and 1.2 MJ/kg and nominal Mach number of 5.75 matches well with FEM results. The concept can also be extended for measuring all the three fundamental aerodynamic forces in short duration test facilities like free piston driven shock tunnels.
A Tactile Sensor Using Piezoresistive Beams for Detection of the Coefficient of Static Friction
Okatani, Taiyu; Takahashi, Hidetoshi; Noda, Kentaro; Takahata, Tomoyuki; Matsumoto, Kiyoshi; Shimoyama, Isao
2016-01-01
This paper reports on a tactile sensor using piezoresistive beams for detection of the coefficient of static friction merely by pressing the sensor against an object. The sensor chip is composed of three pairs of piezoresistive beams arranged in parallel and embedded in an elastomer; this sensor is able to measure the vertical and lateral strains of the elastomer. The coefficient of static friction is estimated from the ratio of the fractional resistance changes corresponding to the sensing elements of vertical and lateral strains when the sensor is in contact with an object surface. We applied a normal force on the sensor surface through objects with coefficients of static friction ranging from 0.2 to 1.1. The fractional resistance changes corresponding to vertical and lateral strains were proportional to the applied force. Furthermore, the relationship between these responses changed according to the coefficients of static friction. The experimental result indicated the proposed sensor could determine the coefficient of static friction before a global slip occurs. PMID:27213374
Berradja, Abdenacer; Willems, Guy; Celis, Jean-Pierre
2006-05-01
To evaluate the frictional behaviour of orthodontic archwires in dry and wet conditions in-vitro. Two types of archwire materials were investigated: stainless steel and NiTi. A fretting wear tribometer fitted with an alumina ball was operated at 23 degrees C in three different environments: ambient air with 50 per cent relative humidity, 0.9 wt. per cent sodium chloride solution, and deionised water. NiTi archwires sliding against alumina exhibited high coefficients of friction (about 0.6) in the three environments. Stainless steel archwires sliding against alumina had relatively low coefficients of friction (0.3) in the solutions, but high coefficients (0.8) in air. The low frictional forces of the stainless steel wires sliding against alumina in the solutions were due to a lubricating effect of the solutions and corrosion-wear debris. The high frictional forces between the NiTi wires and alumina are attributed to an abrasive interfacial transfer film between the wires and alumina.
A study on high-speed rolling contact between a wheel and a contaminated rail
NASA Astrophysics Data System (ADS)
Zhao, Xin; Wen, Zefeng; Zhu, Minhao; Jin, Xuesong
2014-10-01
A 3-D explicit finite element model is developed to investigate the transient wheel-rail rolling contact in the presence of rail contamination or short low adhesion zones (LAZs). A transient analysis is required because the wheel passes by a short LAZ very quickly, especially at high speeds. A surface-to-surface contact algorithm (by the penalty method) is employed to solve the frictional rolling contact between the wheel and the rail meshed by solid elements. The LAZ is simulated by a varying coefficient of friction along the rail. Different traction efforts and action of the traction control system triggered by the LAZ are simulated by applying a time-dependent driving torque to the wheel axle. Structural flexibilities of the vehicle-track system are considered properly. Analysis focuses on the contact forces, creepage, contact stresses and the derived frictional work and plastic deformation. It is found that the longitudinal contact force and the maximum surface shear stress in the contact patch become obviously lower in the LAZ and much higher as the wheel re-enters the dry rail section. Consequently, a higher wear rate and larger plastic flow are expected at the location where the dry contact starts to be rebuilt. In other words, contact surface damages such as wheel flats and rail burns may come into being because of the LAZ. Length of the LAZ, the traction level, etc. are varied. The results also show that local contact surface damages may still occur as the traction control system acts.
NASA Astrophysics Data System (ADS)
Zapoměl, J.; Ferfecki, P.
2016-09-01
A frequently used technological solution for minimization of undesirable effects caused by vibration of rotating machines consists in placing damping devices in the rotor supports. The application of magnetorheological squeeze film dampers enables their optimum performance to be achieved in a wide range of rotating speeds by adapting their damping effect to the current operating conditions. The damping force, which is produced by squeezing the layer of magnetorheological oil, can be controlled by changing magnetic flux passing through the lubricant. The force acting between the rotor and its frame is transmitted through the rolling element bearing, the lubricating layer and the squirrel spring. The loading of the bearing produces a time variable friction moment, energy losses, uneven rotor running, and has an influence on the rotor service life and the current fluctuation in electric circuits. The carried out research consisted in the development of a mathematical model of a magnetorheological squeeze film damper, its implementation into the computational models of rotor systems, and in performing the study on the dependence of the energy losses and variation of the friction moment on the damping force and its control. The new and computationally stable mathematical model of a magnetorheological squeeze film damper, its implementation in the computational models of rigid rotors and learning more on the energy losses generated in the rotor supports in dependence on the damping effect are the principal contributions of this paper. The results of the computational simulations prove that a suitable control of the damping force enables the energy losses to be reduced in a wide velocity range.
Some aspects of frictional measurements in hip joint simulators.
Unsworth, Anthony
2016-05-01
The measurement of friction in artificial hip joints can lead to the knowledge of the lubrication mechanisms occurring in the joints. However, the measurement of friction, particularly in spherical contacts, is not always straightforward. The important loading and kinematic features must be appropriate and the friction must be measured in the correct plane. Even defining a coefficient of friction is difficult with spherical contacts as friction acts at different moment arms throughout the contact area. Thus, the generated frictional torques depend on the pressure distribution of the contact and the moment arms at which this pressure acts. The pressure distribution depends on the material properties, the surface entraining velocities, the joint diameters, and the clearance between the two surfaces of the ball and socket joint. Equally measuring friction is very taxing for machines which are applying very high loads. Slight misalignments of the application of these loads can produce torques which are very much greater than the frictional torques that we are trying to measure. This article attempts to share the thoughts behind over 40 years of measuring friction in artificial joints using the Durham Friction Simulators. This has led to accrued consistency of measurement and a robust scientific design rationale to understand the nature of friction in these spherical contacts. It also impacts on how to obtain accurate measurements as well as on the understanding of where the difficult issues lie and how to overcome them. © IMechE 2016.
Work-Energy Theorem and Friction Forces: Two Experiments
ERIC Educational Resources Information Center
Bonanno, A.; Bozzo, G.; Grandinetti, M.; Sapia, P.
2016-01-01
Several studies have showed the subsistence, even in students enrolled in scientific degree courses, of spontaneous ideas regarding the motion of bodies that conflict with Newton's laws. One of the causes is related to the intuitive preconceptions that students have about the role of friction as a force. In fact, in real world novices do not…
Revisiting the Least Force Required to Keep a Block from Sliding
ERIC Educational Resources Information Center
De, Subhranil
2013-01-01
This article pertains to a problem on static friction that concerns a block of mass "M" resting on a rough inclined plane. The coefficient of static friction is microsecond and the inclination angle theta is greater than tan[superscript -1] microsecond. This means that some force "F" must be applied (see Fig. 1) to keep the…
A Simple Measurement of the Sliding Friction Coefficient
ERIC Educational Resources Information Center
Gratton, Luigi M.; Defrancesco, Silvia
2006-01-01
We present a simple computer-aided experiment for investigating Coulomb's law of sliding friction in a classroom. It provides a way of testing the possible dependence of the friction coefficient on various parameters, such as types of materials, normal force, apparent area of contact and sliding velocity.
NASA Astrophysics Data System (ADS)
Lyashenko, Ya. A.; Popov, V. L.
2018-01-01
A dynamic model of the nanostructuring burnishing of a surface of metallic details taking into consideration plastic deformations has been suggested. To describe the plasticity, the ideology of dimension reduction method supplemented with the plasticity criterion is used. The model considers the action of the normal burnishing force and the tangential friction force. The effect of the coefficient of friction and the periodical oscillation of the burnishing force on the burnishing kinetics are investigated.
Theory of nanoscale friction on chemically modified graphene
NASA Astrophysics Data System (ADS)
Ko, Jae-Hyeon; Kim, Yong-Hyun
2013-03-01
Recently, it is known from FFM experiments that friction force on graphene is significantly increased by chemical modification such as hydrogenation, oxidization, and fluorination, whereas adhesion properties are altered marginally. A novel nanotribological theory on two-dimensional materials is proposed on the basis of experimental results and first-principles density-functional theory (DFT) calculations. The proposed theory indicates that the total lateral stiffness that is the proportional constant of friction force is mostly associated with the out-of-plane bending stiffness of two-dimensional materials. This contrasts to the case of three-dimensional materials, in which the shear strength of materials determines nanoscale friction. We will discuss details of DFT calculations and how to generalize the current theory to three dimensional materials.
Spinner, Marlene; Westhoff, Guido; Gorb, Stanislav N
2014-06-27
Hairy adhesive systems of microscopic setae with triangular flattened tips have evolved convergently in spiders, insects and arboreal lizards. The ventral sides of the feet and tails in chameleons are also covered with setae. However, chameleon setae feature strongly elongated narrow spatulae or fibrous tips. The friction enhancing function of these microstructures has so far only been demonstrated in contact with glass spheres. In the present study, the frictional properties of subdigital setae of Chamaeleo calyptratus were measured under normal forces in the physical range on plane substrates having different roughness. We showed that chameleon setae maximize friction on a wide range of substrate roughness. The highest friction was measured on asperities of 1 μm. However, our observations of the climbing ability of Ch. calyptratus on rods of different diameters revealed that also claws and grasping feet are additionally responsible for the force generation on various substrates during locomotion.
An analytical model of dynamic sliding friction during impact
NASA Astrophysics Data System (ADS)
Arakawa, Kazuo
2017-01-01
Dynamic sliding friction was studied based on the angular velocity of a golf ball during an oblique impact. This study used the analytical model proposed for the dynamic sliding friction on lubricated and non-lubricated inclines. The contact area A and sliding velocity u of the ball during impact were used to describe the dynamic friction force Fd = λAu, where λ is a parameter related to the wear of the contact area. A comparison with experimental results revealed that the model agreed well with the observed changes in the angular velocity during impact, and λAu is qualitatively equivalent to the empirical relationship, μN + μη‧dA/dt, given by the product between the frictional coefficient μ and the contact force N, and the additional term related to factor η‧ for the surface condition and the time derivative of A.
van Spengen, W Merlijn; Turq, Viviane; Frenken, Joost W M
2010-01-01
We have replaced the periodic Prandtl-Tomlinson model with an atomic-scale friction model with a random roughness term describing the surface roughness of micro-electromechanical systems (MEMS) devices with sliding surfaces. This new model is shown to exhibit the same features as previously reported experimental MEMS friction loop data. The correlation function of the surface roughness is shown to play a critical role in the modelling. It is experimentally obtained by probing the sidewall surfaces of a MEMS device flipped upright in on-chip hinges with an AFM (atomic force microscope). The addition of a modulation term to the model allows us to also simulate the effect of vibration-induced friction reduction (normal-force modulation), as a function of both vibration amplitude and frequency. The results obtained agree very well with measurement data reported previously.
Ab Initio Investigation of Frictional Properties of Graphene on SiC Surfaces
NASA Astrophysics Data System (ADS)
Sayin, Ceren; Gülseren, Oğuz
The exact origin and nature of various nanotribological observations on graphene such as dependence of friction on layer thickness, direction and surface morphology are yet to be fully understood. In this talk, we report on the frictional properties of graphene on 4H-SiC{0001} surfaces obtained from first principles calculations. We investigate sliding of graphene layers of various thickness along different directions on both the Si- and C-terminated faces including van-der Waals interactions. We observe that upon sliding under certain conditions, the interaction between the surface and graphene layers alternates between van-der Waals and covalent forces which dramatically affects friction. We examine the relation of frictional force to applied normal load, small out-of-plane geometric deformations of graphene and electronic structure of the systems. This work is supported by TUBITAK Project No:114F162.
NASA Astrophysics Data System (ADS)
Spinner, Marlene; Westhoff, Guido; Gorb, Stanislav N.
2014-06-01
Hairy adhesive systems of microscopic setae with triangular flattened tips have evolved convergently in spiders, insects and arboreal lizards. The ventral sides of the feet and tails in chameleons are also covered with setae. However, chameleon setae feature strongly elongated narrow spatulae or fibrous tips. The friction enhancing function of these microstructures has so far only been demonstrated in contact with glass spheres. In the present study, the frictional properties of subdigital setae of Chamaeleo calyptratus were measured under normal forces in the physical range on plane substrates having different roughness. We showed that chameleon setae maximize friction on a wide range of substrate roughness. The highest friction was measured on asperities of 1 μm. However, our observations of the climbing ability of Ch. calyptratus on rods of different diameters revealed that also claws and grasping feet are additionally responsible for the force generation on various substrates during locomotion.
Effect of pendent chains on the interfacial properties of thin polydimethylsiloxane (PDMS) networks.
Landherr, Lucas J T; Cohen, Claude; Archer, Lynden A
2011-05-17
The interfacial properties of end-linked polydimethylsiloxane (PDMS) films on silicon are examined. Thin cross-linked PDMS films (∼10 μm thick) were synthesized over a self-assembled monolayer supported on a silicon wafer. By systematically varying the concentration of monofunctional PDMS in a mixture with telechelic precursor molecules, structures ranging from near-ideal elastic networks to poorly cross-linked networks composed of a preponderance of dangling/pendent chains were synthesized. Lateral force microscopy (LFM) employing bead probes was used to quantify the effect of network structure on the interfacial friction coefficient and residual force. Indentation measurements employing an AFM in force mode were used to characterize the elastic modulus and the pull-off force for the films as a function of pendent chain content. These measurements were complemented with conventional mechanical rheometry measurements on similar thick network films to determine their bulk rheological properties. All networks studied manifested interfacial friction coefficients substantially lower than that of bare silicon. PDMS networks with the lowest pendent chain content displayed friction coefficients close to 1 order of magnitude lower than that of bare silicon, whereas networks with the highest pendent chain content manifested friction coefficients about 3 times lower than that of bare silicon. At intermediate sliding velocities, a crossover in the interfacial friction coefficient was observed, wherein cross-linked PDMS films with the least amount of pendent chains exhibit the highest friction coefficient. These observations are discussed in terms of the structure of the films and relaxation dynamics of elastic strands and dangling chains in tethered network films.
Work-energy theorem and friction forces: two experiments
NASA Astrophysics Data System (ADS)
Bonanno, A.; Bozzo, G.; Grandinetti, M.; Sapia, P.
2016-11-01
Several studies have showed the subsistence, even in students enrolled in scientific degree courses, of spontaneous ideas regarding the motion of bodies that conflict with Newton’s laws. One of the causes is related to the intuitive preconceptions that students have about the role of friction as a force. In fact, in real world novices do not recognise friction as a force, and for this reason they may believe that a motion with a constant speed needs as a necessary condition the presence of a constant force in the same direction of the motion. In order to face these ‘intuitive ways of reasoning’, in this paper we propose two sequential experiments that can allow undergraduate students to clarify the role of friction forces through the use of the work-energy theorem. This is a necessary first step on the way to a deeper understanding of Newton’s second law. We have planned our experiments in order to strongly reduce quantitative difficult calculations and to facilitate qualitative comprehension of observed phenomena. Moreover, the proposed activities represent two examples of the recurring methodology used in experimental practices, since they offer the possibility to measure very small physical quantities in an indirect way with a higher accuracy than the direct measurements of the same quantities.
Dry friction avalanches: experiment and theory.
Buldyrev, Sergey V; Ferrante, John; Zypman, Fredy R
2006-12-01
Experimental evidence and theoretical models are presented supporting the conjecture that dry friction stick-slip is described by self-organized criticality. We use the data, obtained with a pin-on-disk tribometer set to measure lateral force, to examine the variation of the friction force as a function of time. We study nominally flat surfaces of matching aluminum and steel. The probability distribution of force drops follows a negative power law with exponents mu in the range 3.2-3.5. The frequency power spectrum follows a 1/f alpha pattern with alpha in the range 1-1.8. We first compare these experimental results with the well-known Robin Hood model of self-organized criticality. We find good agreement between theory and experiment for the force-drop distribution but not for the power spectrum. We explain this on a physical basis and propose a model which takes explicitly into account the stiffness and inertia of the tribometer. Specifically, we numerically solve the equation of motion of a block on a friction surface pulled by a spring and show that for certain spring constants the motion is characterized by the same power law spectrum as in experiments. We propose a physical picture relating the fluctuations of the force drops to the microscopic geometry of the surface.
Micromechanics of Ultrafine Particle Adhesion—Contact Models
NASA Astrophysics Data System (ADS)
Tomas, Jürgen
2009-06-01
Ultrafine, dry, cohesive and compressible powders (particle diameter d<10 μm) show a wide variety of flow problems that cause insufficient apparatus and system reliability of processing plants. Thus, the understanding of the micromechanics of particle adhesion is essential to assess the product quality and to improve the process performance in particle technology. Comprehensive models are shown that describe the elastic-plastic force-displacement and frictional moment-angle behavior of adhesive contacts of isotropic smooth spheres. By the model stiff particles with soft contacts, a sphere-sphere interaction of van der Waals forces without any contact deformation describes the stiff attractive term. But, the soft micro-contact response generates a flattened contact, i.e. plate-plate interaction, and increasing adhesion. These increasing adhesion forces between particles directly depend on this frozen irreversible deformation. Thus, the adhesion force is found to be load dependent. It contributes to the tangential forces in an elastic-plastic frictional contact with partially sticking and micro-slip within the contact plane. The load dependent rolling resistance and torque of mobilized frictional contact rotation (spin around its principal axis) are also shown. This reasonable combination of particle contact micromechanics and powder continuum mechanics is used to model analytically the macroscopic friction limits of incipient powder consolidation, yield and cohesive steady-state shear flow on physical basis.
Neutral Atom Diffusion in a Partially Ionized Prominence Plasma
NASA Technical Reports Server (NTRS)
Gilbert, Holly
2010-01-01
The support of solar prominences is normally described in terms of a magnetic force on the prominence plasma that balances the solar gravitational force. Because the prominence plasma is only partially ionized. it is necessary to consider in addition the support of the neutral component of the prominence plasma. This support is accomplished through a frictional interaction between the neutral and ionized components of the plasma, and its efficacy depends strongly on the degree of ionization of the plasma. More specifically, the frictional force is proportional to the relative flow of neutral and ion species, and for a sufficiently weakly ionized plasma, this flow must be relatively large to produce a frictional force that balances gravity. A large relative flow, of course, implies significant draining of neutral particles from the prominence. We evaluate the importance of this draining effect for a hydrogen-helium plasma, and consider the observational evidence for cross-field diffusion of neutral prominence material,
Systematic study of error sources in supersonic skin-friction balance measurements
NASA Technical Reports Server (NTRS)
Allen, J. M.
1976-01-01
An experimental study was performed to investigate potential error sources in data obtained with a self-nulling, moment-measuring, skin-friction balance. The balance was installed in the sidewall of a supersonic wind tunnel, and independent measurements of the three forces contributing to the balance output (skin friction, lip force, and off-center normal force) were made for a range of gap size and element protrusion. The relatively good agreement between the balance data and the sum of these three independently measured forces validated the three-term model used. No advantage to a small gap size was found; in fact, the larger gaps were preferable. Perfect element alignment with the surrounding test surface resulted in very small balance errors. However, if small protrusion errors are unavoidable, no advantage was found in having the element slightly below the surrounding test surface rather than above it.
Impact of inertia, friction, and backlash upon force control in telemanipulation
NASA Technical Reports Server (NTRS)
Duffie, Neil A.; Zik, John J.; Wiker, Steven F.; Gale, Karen L.
1991-01-01
The mechanical behavior of master controllers of telemanipulators has been a concern of both designers and implementors of telerobotic systems. In general, the literature recommends that telemanipulator systems be constructed that minimize inertia, friction, and backlash in an effort to improve telemanipulative performance. For the most part, these recommendations are founded upon theoretical analysis or simply intuition. Although these recommendations are not challenged on their merit, the material results are measured of building and fielding telemanipulators that possess less than ideal mechanical behaviors. Experiments are described in which forces in a mechanical system with human input are evaluated as a function of mechanical characteristics such as inertia, friction, and backlash. Results indicate that the ability of the human to maintain gripping forces was relatively unaffected by dynamic characteristics in the range studied, suggesting that telemanipulator design in this range should be based on task level force control requirements rather than human factors.
MoS2 solid-lubricating film fabricated by atomic layer deposition on Si substrate
NASA Astrophysics Data System (ADS)
Huang, Yazhou; Liu, Lei; Lv, Jun; Yang, Junjie; Sha, Jingjie; Chen, Yunfei
2018-04-01
How to reduce friction for improving efficiency in the usage of energy is a constant challenge. Layered material like MoS2 has long been recognized as an effective surface lubricant. Due to low interfacial shear strengths, MoS2 is endowed with nominal frictional coefficient. In this work, MoS2 solid-lubricating film was directly grown by atomic layer deposition (ALD) on Si substrate using MoCl5 and H2S. Various methods were used to observe the grown MoS2 film. Moreover, nanotribological properties of the film were observed by an atomic force microscope (AFM). Results show that MoS2 film can effectively reduce the friction force by about 30-45% under different loads, indicating the huge application value of the film as a solid lubricant. Besides the interlayer-interfaces-sliding, the smaller capillary is another reason why the grown MoS2 film has smaller friction force than that of Si.
Graphene nanoribbons on gold: understanding superlubricity and edge effects
NASA Astrophysics Data System (ADS)
Gigli, L.; Manini, N.; Benassi, A.; Tosatti, E.; Vanossi, A.; Guerra, R.
2017-12-01
We address the atomistic nature of the longitudinal static friction against sliding of graphene nanoribbons (GNRs) deposited on gold, a system whose structural and mechanical properties have been recently the subject of intense experimental investigation. By means of numerical simulations and modeling we show that the GNR interior is structurally lubric (‘superlubric’) so that the static friction is dominated by the front/tail regions of the GNR, where the residual uncompensated lateral forces arising from the interaction with the underneath gold surface opposes the free sliding. As a result of this edge pinning the static friction does not grow with the GNR length, but oscillates around a fairly constant mean value. These friction oscillations are explained in terms of the GNR-Au(111) lattice mismatch: at certain GNR lengths close to an integer number of the beat (or moiré) length there is good force compensation and superlubric sliding; whereas close to half odd-integer periods there is significant pinning of the edge with larger friction. These results make qualitative contact with recent state-of-the-art atomic force microscopy experiment, as well as with the sliding of other different incommensurate systems.
Force measurement-based discontinuity detection during friction stir welding
Shrivastava, Amber; Zinn, Michael; Duffie, Neil A.; ...
2017-02-23
Here, the objective of this work is to develop a method for detecting the creation of discontinuities ( i.e., voids, volume defects) during friction stir welding. Friction stir welding is inherently cost effective, however, the need for significant weld inspection can make the process cost prohibitive. A new approach to weld inspection is required in which an in situ characterization of weld quality can be obtained, reducing the need for postprocess inspection. To this end, friction stir welds with subsurface voids and without voids were created. The subsurface voids were generated by reducing the friction stir tool rotation frequency andmore » increasing the tool traverse speed in order to create “colder” welds. Process forces were measured during welding, and the void sizes were measured postprocess by computerized tomography ( i.e., 3D X-ray imaging). Two parameters, based on frequency domain content and time-domain average of the force signals, were found to be correlated with void size. Criteria for subsurface void detection and size prediction were developed and shown to be in good agreement with experimental observations. Furthermore, with the proper choice of data acquisition system and frequency analyzer the occurrence of subsurface voids can be detected in real time.« less
Force measurement-based discontinuity detection during friction stir welding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shrivastava, Amber; Zinn, Michael; Duffie, Neil A.
Here, the objective of this work is to develop a method for detecting the creation of discontinuities ( i.e., voids, volume defects) during friction stir welding. Friction stir welding is inherently cost effective, however, the need for significant weld inspection can make the process cost prohibitive. A new approach to weld inspection is required in which an in situ characterization of weld quality can be obtained, reducing the need for postprocess inspection. To this end, friction stir welds with subsurface voids and without voids were created. The subsurface voids were generated by reducing the friction stir tool rotation frequency andmore » increasing the tool traverse speed in order to create “colder” welds. Process forces were measured during welding, and the void sizes were measured postprocess by computerized tomography ( i.e., 3D X-ray imaging). Two parameters, based on frequency domain content and time-domain average of the force signals, were found to be correlated with void size. Criteria for subsurface void detection and size prediction were developed and shown to be in good agreement with experimental observations. Furthermore, with the proper choice of data acquisition system and frequency analyzer the occurrence of subsurface voids can be detected in real time.« less
Enhancing Variable Friction Tactile Display Using an Ultrasonic Travelling Wave.
Ghenna, Sofiane; Vezzoli, Eric; Giraud-Audine, Christophe; Giraud, Frederic; Amberg, Michel; Lemaire-Semail, Betty
2017-01-01
In Variable Friction Tactile Displays, an ultrasonic standing wave can be used to reduce the friction coefficient between a user's finger sliding and a vibrating surface. However, by principle, the effect is limited by a saturation due to the contact mechanics, and very low friction levels require very high vibration amplitudes. Besides, to be effective, the user's finger has to move. We present a device which uses a travelling wave rather than a standing wave. We present a control that allows to realize such a travelling wave in a robust way, and thus can be implemented on various plane surfaces. We show experimentally that the force produced by the travelling wave has two superimposed contributions. The first one is equal to the friction reduction produced by a standing of the same vibration amplitude. The second produces a driving force in the opposite direction of the travelling wave. As a result, the modulation range of the tangential force on the finger can be extended to zero and even negative values. Moreover, the effect is dependant on the relative direction of exploration with regards to the travelling wave, which is perceivable and confirmed by a psycho-physical study.
16 CFR 1202.4 - Matchbook general requirements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... following general requirements: (a) The friction shall be located on the outside back cover near the bottom of the matchbook. (b) The cover shall remain closed without external force. (c) No friction material... cover and combs shall be within or touching the friction area. (h) A staple used as an assembly device...
16 CFR 1202.4 - Matchbook general requirements.
Code of Federal Regulations, 2014 CFR
2014-01-01
... following general requirements: (a) The friction shall be located on the outside back cover near the bottom of the matchbook. (b) The cover shall remain closed without external force. (c) No friction material... cover and combs shall be within or touching the friction area. (h) A staple used as an assembly device...
16 CFR 1202.4 - Matchbook general requirements.
Code of Federal Regulations, 2011 CFR
2011-01-01
... following general requirements: (a) The friction shall be located on the outside back cover near the bottom of the matchbook. (b) The cover shall remain closed without external force. (c) No friction material... cover and combs shall be within or touching the friction area. (h) A staple used as an assembly device...
16 CFR 1202.4 - Matchbook general requirements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... following general requirements: (a) The friction shall be located on the outside back cover near the bottom of the matchbook. (b) The cover shall remain closed without external force. (c) No friction material... cover and combs shall be within or touching the friction area. (h) A staple used as an assembly device...
Dynamical friction on hot bodies in opaque, gaseous media
NASA Astrophysics Data System (ADS)
Masset, Frédéric S.; Velasco Romero, David A.
2017-03-01
We consider the gravitational force exerted on a point-like perturber of mass M travelling within a uniform gaseous, opaque medium at constant velocity V. The perturber irradiates the surrounding gas with luminosity L. The diffusion of the heat released is modelled with a uniform thermal diffusivity χ. Using linear perturbation theory, we show that the force exerted by the perturbed gas on the perturber differs from the force without radiation (or standard dynamical friction). Hot, underdense gas trails the mass, which gives rise to a new force component, the heating force, with direction +V, thus opposed to the standard dynamical friction. In the limit of low Mach numbers, the heating force has expression F_heat=γ (γ -1)GML/(2χ c_s^2), cs being the sound speed and γ the ratio of specific heats. In the limit of large Mach numbers, Fheat = (γ - 1)GML/(χV2)f(rminV/4χ), where f is a function that diverges logarithmically as rmin tends to zero. Remarkably, the force in the low Mach number limit does not depend on the velocity. The equilibrium speed, when it exists, is set by the cancellation of the standard dynamical friction and heating force. In the low Mach number limit, it scales with the luminosity-to-mass ratio of the perturber. Using the above results suggests that Mars- to Earth-sized planetary embryos heated by accretion in a gaseous protoplanetary disc should have eccentricities and inclinations that amount to a sizeable fraction of the disc's aspect ratio, for conditions thought to prevail at a few astronomical units.
Rubber friction directional asymmetry
NASA Astrophysics Data System (ADS)
Tiwari, A.; Dorogin, L.; Steenwyk, B.; Warhadpande, A.; Motamedi, M.; Fortunato, G.; Ciaravola, V.; Persson, B. N. J.
2016-12-01
In rubber friction studies it is usually assumed that the friction force does not depend on the sliding direction, unless the substrate has anisotropic properties, like a steel surface grinded in one direction. Here we will present experimental results for rubber friction, where we observe a strong asymmetry between forward and backward sliding, where forward and backward refer to the run-in direction of the rubber block. The observed effect could be very important in tire applications, where directional properties of the rubber friction could be induced during braking.
Pushability and frictional characteristics of medical instruments.
Wünsche, P; Werner, C; Bloss, P
2002-01-01
A tensile testing equipment is combined with a torque module and a 3D force tranducer to characterize the pushability of catheter systems inside modular vessel phantoms. The modular construction of the phantom allows using two dimensional vessel shapes with different contours. Inside the phantom we put a tube or a guide catheter in which the instruments are pushed or redrawn in the presence of a liquid (water, blood, etc.) at body temperature. During pushing or redrawing we measure axial and rotational values. Additionally, friction forces and coefficients are separately determined by using a special designed friction module. First results are presented and discussed.
NASA Astrophysics Data System (ADS)
Sakaguchi, Hidetsugu; Kadowaki, Shuntaro
2017-07-01
We study slowly pulling block-spring models in random media. Second-order phase transitions exist in a model pulled by a constant force in the case of velocity-strengthening friction. If external forces are slowly increased, nearly critical states are self-organized. Slips of various sizes occur, and the probability distributions of slip size roughly obey power laws. The exponent is close to that in the quenched Edwards-Wilkinson model. Furthermore, the slip-size distributions are investigated in cases of Coulomb friction, velocity-weakening friction, and two-dimensional block-spring models.
Vortex dynamics in type-II superconductors under strong pinning conditions
NASA Astrophysics Data System (ADS)
Thomann, A. U.; Geshkenbein, V. B.; Blatter, G.
2017-10-01
We study effects of pinning on the dynamics of a vortex lattice in a type-II superconductor in the strong-pinning situation and determine the force-velocity (or current-voltage) characteristic combining analytical and numerical methods. Our analysis deals with a small density np of defects that act with a large force fp on the vortices, thereby inducing bistable configurations that are a characteristic feature of strong pinning theory. We determine the velocity-dependent average pinning-force density 〈Fp(v ) 〉 and find that it changes on the velocity scale vp˜fp/η a03 , where η is the viscosity of vortex motion and a0 the distance between vortices. In the small pin-density limit, this velocity is much larger than the typical flow velocity vc˜Fc/η of the free vortex system at drives near the critical force density Fc=〈Fp(v =0 ) 〉 ∝npfp . As a result, we find a generic excess-force characteristic, a nearly linear force-velocity characteristic shifted by the critical force density Fc; the linear flux-flow regime is approached only at large drives. Our analysis provides a derivation of Coulomb's law of dry friction for the case of strong vortex pinning.
Determining friction and effective loading for sled sprinting.
Cross, Matt R; Tinwala, Farhan; Lenetsky, Seth; Samozino, Pierre; Brughelli, Matt; Morin, Jean-Benoit
2017-11-01
Understanding the impact of friction in sled sprinting allows the quantification of kinetic outputs and the effective loading experienced by the athlete. This study assessed changes in the coefficient of friction (µ k ) of a sled sprint-training device with changing mass and speed to provide a means of quantifying effective loading for athletes. A common sled equipped with a load cell was towed across an athletics track using a motorised winch under variable sled mass (33.1-99.6 kg) with constant speeds (0.1 and 0.3 m · s -1 ), and with constant sled mass (55.6 kg) and varying speeds (0.1-6.0 m · s -1 ). Mean force data were analysed, with five trials performed for each condition to assess the reliability of measures. Variables were determined as reliable (ICC > 0.99, CV < 4.3%), with normal-force/friction-force and speed/coefficient of friction relationships well fitted with linear (R 2 = 0.994-0.995) and quadratic regressions (R 2 = 0.999), respectively (P < 0.001). The linearity of composite friction values determined at two speeds, and the range in values from the quadratic fit (µ k = 0.35-0.47) suggested µ k and effective loading were dependent on instantaneous speed on athletics track surfaces. This research provides a proof-of-concept for the assessment of friction characteristics during sled towing, with a practical example of its application in determining effective loading and sled-sprinting kinetics. The results clarify effects of friction during sled sprinting and improve the accuracy of loading applications in practice and transparency of reporting in research.
Neuronal activity in somatosensory cortex related to tactile exploration
Fortier-Poisson, Pascal
2015-01-01
The very light contact forces (∼0.60 N) applied by the fingertips during tactile exploration reveal a clearly optimized sensorimotor strategy. To investigate the cortical mechanisms involved with this behavior, we recorded 230 neurons in the somatosensory cortex (S1), as two monkeys scanned different surfaces with the fingertips in search of a tactile target without visual feedback. During the exploration, the monkeys, like humans, carefully controlled the finger forces. High-friction surfaces offering greater tangential shear force resistance to the skin were associated with decreased normal contact forces. The activity of one group of neurons was modulated with either the normal or tangential force, with little or no influence from the orthogonal force component. A second group responded to kinetic friction or the ratio of tangential to normal forces rather than responding to a specific parameter, such as force magnitude or direction. A third group of S1 neurons appeared to respond to particular vectors of normal and tangential force on the skin. Although 45 neurons correlated with scanning speed, 32 were also modulated by finger forces, suggesting that forces on the finger should be considered as the primary parameter encoding the skin compliance and that finger speed is a secondary parameter that co-varies with finger forces. Neurons (102) were also tested with different textures, and the activity of 62 of these increased or decreased in relation to the surface friction. PMID:26467519
NASA Technical Reports Server (NTRS)
Tanner, J. A.; Stubbs, S. M.
1977-01-01
An experimental investigation was conducted at the Langley aircraft landing loads and traction facility to study the braking and cornering response of a slip ratio controlled aircraft antiskid braking system with ground speed reference derived from an unbraked nose wheel. The investigation, conducted on dry and wet runway surfaces, utilized one main gear wheel, brake, and tire assembly of a DC-9 series 10 airplane. During maximum braking, the average ratio of the drag force friction coefficient developed by the antiskid system to the maximum drag force friction coefficient available was higher on the dry surface than on damp and flooded surfaces, and was reduced with lighter vertical loads, higher yaw angles, and when new tire treads were replaced by worn treads. Similarly, the average ratio of side force friction coefficient developed by the tire under antiskid control to the maximum side force friction coefficient available to a freely rolling yawed tire decreased with increasing yaw angle, generally increased with ground speed, and decreased when tires with new treads were replaced by those with worn treads.
Study of urological devices coated with fullerene-like nanoparticles.
Goldbart, Ohad; Elianov, Olga; Shumalinsky, Dmitry; Lobik, Leonid; Cytron, Shmuel; Rosentsveig, Rita; Wagner, H Daniel; Tenne, Reshef
2013-09-21
Insertion of endoscopes and other medical devices into the human body are ubiquitous, especially among aged males. The applied force for the insertion/extraction of the device from the urethra must overcome endoscope-surface-human-tissue interactions. In daily practice a gel is applied on the endoscope surface, in order to facilitate its entry into the urethra, providing also for local anesthesia. In the present work, a new solid-state lubricant has been added to the gel, in order to reduce the metal-urethra interaction and alleviate the potential damage to the epithelial tissue. For that purpose, a urethra model was designed and fabricated, which allowed a quantitative assessment of the applied force for extraction of the endoscope from a soft polymer-based ring. It is shown that the addition of MoS2 nanoparticles with fullerene-like structure (IF-MoS2) and in particular rhenium-doped nanoparticles (Re:IF-MoS2) to Esracain gel applied on the metal-lead reduced the friction substantially. The Re:IF-MoS2 showed better results than the undoped fullerene-like nanoparticles and both performed better than the gel alone. The mechanism of friction reduction is attributed to fullerenes' ability to roll and act as a separator between the active parts of the model.
Study of urological devices coated with fullerene-like nanoparticles
NASA Astrophysics Data System (ADS)
Goldbart, Ohad; Elianov, Olga; Shumalinsky, Dmitry; Lobik, Leonid; Cytron, Shmuel; Rosentsveig, Rita; Wagner, H. Daniel; Tenne, Reshef
2013-08-01
Insertion of endoscopes and other medical devices into the human body are ubiquitous, especially among aged males. The applied force for the insertion/extraction of the device from the urethra must overcome endoscope-surface-human-tissue interactions. In daily practice a gel is applied on the endoscope surface, in order to facilitate its entry into the urethra, providing also for local anesthesia. In the present work, a new solid-state lubricant has been added to the gel, in order to reduce the metal-urethra interaction and alleviate the potential damage to the epithelial tissue. For that purpose, a urethra model was designed and fabricated, which allowed a quantitative assessment of the applied force for extraction of the endoscope from a soft polymer-based ring. It is shown that the addition of MoS2 nanoparticles with fullerene-like structure (IF-MoS2) and in particular rhenium-doped nanoparticles (Re:IF-MoS2) to Esracain gel applied on the metal-lead reduced the friction substantially. The Re:IF-MoS2 showed better results than the undoped fullerene-like nanoparticles and both performed better than the gel alone. The mechanism of friction reduction is attributed to fullerenes' ability to roll and act as a separator between the active parts of the model.
NASA Technical Reports Server (NTRS)
Marshall, J.; Weislogel, M.; Jacobson, T.
1999-01-01
The bulk behavior of dispersed, fluidized, or undispersed stationary granular systems cannot be fully understood in terms of adhesive/cohesive properties without understanding the role of electrostatic forces acting at the level of the grains themselves. When grains adhere to a surface, or come in contact with one another in a stationary bulk mass, it is difficult to measure the forces acting on the grains, and the forces themselves that induced the cohesion and adhesion are changed. Even if a single grain were to be scrutinized in the laboratory, it might be difficult, perhaps impossible, to define the distribution and character of surface charging and the three-dimensional relationship that charges (electrons, holes) have to one another. The hypothesis that we propose to test in microgravity (for dielectric materials) is that adhesion and cohesion of granular matter are mediated primarily by dipole forces that do not require the presence of a net charge; in fact, nominally electrically neutral materials should express adhesive and cohesive behavior when the neutrality results from a balance of positive and negative charge carriers. Moreover, the use of net charge alone as a measure of the electrical nature of grain-to-grain relationships within a granular mass may be misleading. We believe that the dipole forces arise from the presence of randomly-distributed positive and negative fixed charge carriers on grains that give rise to a resultant dipole moment. These dipole forces have long-range attraction. Random charges are created whenever there is triboelectrical activity of a granular mass, that is, whenever the grains experience contact/separation sequences or friction.
2016-02-01
color images. The Air Force Civil Engineering Center (AFCEC) has been measuring military runway pavement friction and texture conditions around the...world for many years. In recent years, the friction measurements have been collected using seven GripTester (GT) trailers, and pavement texture...with several conclusions and recommendations are given as well as a list of appropriate references. pavement friction, calibration, pavement surface U U
A Simple Challenge to Assist in the Understanding of Friction. Science Notes
ERIC Educational Resources Information Center
Jheeta, Sohan
2013-01-01
What is friction? Like gravity, friction is a type of force. In simple terms, friction is, by and large, resistance to movement when two or more objects slide past one another. In this task young people are challenged to build a "buffer" to stop a moving ball using only a piece of ordinary A4 paper or a strip cut from it; that is,…
Internal friction of single polypeptide chains at high stretch.
Khatri, Bhavin S; Byrne, Katherine; Kawakami, Masaru; Brockwell, David J; Smith, D Alastair; Radford, Sheena E; McLeish, Tom C B
2008-01-01
Experiments that measure the viscoelasticity of single molecules from the Brownian fluctuations of an atomic force microscope (AFM) have provided a new window onto their internal dynamics in an underlying conformational landscape. Here we develop and apply these methods to examine the internal friction of unfolded polypeptide chains at high stretch. The results reveal a power law dependence of internal friction with tension (exponent 1.3 +/- 0.5) and a relaxation time approximately independent of force. To explain these results we develop a frictional worm-like chain (FWLC) model based on the Rayleigh dissipation function of a stiff chain with dynamical resistance to local bending. We analyse the dissipation rate integrated over the chain length by its Fourier components to calculate an effective tension-dependent friction constant for the end-to-end vector of the chain. The result is an internal friction that increases as a power law with tension with an exponent 3/2, consistent with experiment. Extracting the intrinsic bending friction constant of the chain it is found to be approximately 7 orders of magnitude greater than expected from solvent friction alone; a possible explanation we offer is that the underlying energy landscape for bending amino acids and/or peptide bond is rough, consistent with recent results on both proteins and polysaccharides.
Effect of friction on shear jamming
NASA Astrophysics Data System (ADS)
Wang, Dong; Ren, Jie; Dijksman, Joshua; Behringer, Robert
2014-11-01
Shear Jamming of granular materials was first found for systems of frictional disks, with a static friction coefficients μs ~= 0 . 6 . Jamming by shear is obtained by starting from a zero-stress state with a packing fraction ϕS <= ϕ <=ϕJ between ϕJ (isotropic jamming) and a lowest ϕS for shear jamming. This phenomenon is associated with strong anisotropy in stress and the contact network in the form of ``force chains,'' which are stabilized and/or enhanced by the presence of friction. The issue that we address experimentally is how reducing friction affects shear jamming. We use photoelastic disks that have been wrapped with Teflon, lowering the friction coefficient substantially from previous experiments. The Teflon-wrapped disks were placed in a well-studied 2D shear apparatus (Ren et al., PRL, 110, 018302 (2013)), which provides uniform simple shear without generating shear bands. Shear jamming is still observed, but the difference ϕJ -ϕS is smaller than for higher friction particles. With Teflon-wrapped disks, we observe larger anisotropies compared to the previous experiment with higher friction particles at the same packing fraction, which indicates force chains tending to be straight in the low friction system. We acknowledge support from NSF Grant No. DMR12-06351, ARO Grant No. W911NF-1-11-0110, and NASA Grant No. NNX10AU01G.
Experimental and theoretical study of friction torque from radial ball bearings
NASA Astrophysics Data System (ADS)
Geonea, Ionut; Dumitru, Nicolae; Dumitru, Ilie
2017-10-01
In this paper it is presented a numerical simulation and an experimental study of total friction torque from radial ball bearings. For this purpose it is conceived a virtual CAD model of the experimental test bench for bearing friction torque measurement. The virtual model it is used for numerical simulation in Adams software, that allows dynamic study of multi-body systems and in particularly with facility Adams Machinery of dynamic behavior of machine parts. It is manufactured an experimental prototype of the test bench for radial ball bearings friction torque measurement. In order to measure the friction torque of the tested bearings it is used an equal resistance elastic beam element, with strain gauge transducer to measure bending deformations. The actuation electric motor of the bench has the shaft mounted on two bearings and the motor housing is fixed to the free side of the elastic beam, which is bended by a force proportional with the total friction torque. The beam elastic element with strain gauge transducer is calibrated in order to measure the force occurred. Experimental determination of the friction torque is made for several progressive radial loads. It is established the correlation from the friction torque and bearing radial load. The bench allows testing of several types and dimensions of radial bearings, in order to establish the bearing durability and of total friction torque.
Modelling clustering of vertically aligned carbon nanotube arrays.
Schaber, Clemens F; Filippov, Alexander E; Heinlein, Thorsten; Schneider, Jörg J; Gorb, Stanislav N
2015-08-06
Previous research demonstrated that arrays of vertically aligned carbon nanotubes (VACNTs) exhibit strong frictional properties. Experiments indicated a strong decrease of the friction coefficient from the first to the second sliding cycle in repetitive measurements on the same VACNT spot, but stable values in consecutive cycles. VACNTs form clusters under shear applied during friction tests, and self-organization stabilizes the mechanical properties of the arrays. With increasing load in the range between 300 µN and 4 mN applied normally to the array surface during friction tests the size of the clusters increases, while the coefficient of friction decreases. To better understand the experimentally obtained results, we formulated and numerically studied a minimalistic model, which reproduces the main features of the system with a minimum of adjustable parameters. We calculate the van der Waals forces between the spherical friction probe and bunches of the arrays using the well-known Morse potential function to predict the number of clusters, their size, instantaneous and mean friction forces and the behaviour of the VACNTs during consecutive sliding cycles and at different normal loads. The data obtained by the model calculations coincide very well with the experimental data and can help in adapting VACNT arrays for biomimetic applications.
Dynamics of Atmospheric Boundary Layers: Large-Eddy Simulations and Reduced Analytical Models
NASA Astrophysics Data System (ADS)
Momen, Mostafa
Real-world atmospheric and oceanic boundary layers (ABL) involve many inherent complexities, the understanding and modeling of which manifestly exceeds our current capabilities. Previous studies largely focused on the "textbook ABL", which is (quasi) steady and barotropic. However, it is evident that the "real-world ABL", even over flat terrain, rarely meets such simplifying assumptions. The present thesis aims to illustrate and model four complicating features of ABLs that have been overlooked thus far despite their ubiquity: 1) unsteady pressure gradients in neutral ABLs (Chapters 2 and 3), 2) interacting effects of unsteady pressure gradients and static stability in diabatic ABLs (Chapter 4), 3) time-variable buoyancy fluxes (Chapter 5) , and 4) impacts of baroclinicity in neutral and diabatic ABLs (Chapter 6). State-of-the-art large-eddy simulations will be used as a tool to explain the underlying physics and to validate analytical models we develop for these features. Chapter 2 focuses on the turbulence equilibrium: when the forcing time scale is comparable to the turbulence time scale, the turbulence is shown to be out of equilibrium, and the velocity profiles depart from the log-law; However, for longer, and surprisingly for shorter forcing times, quasi-equilibrium is maintained. In Chapter 3, a reduced analytical model, based on the Navier-Stokes equations, will be introduced and shown to be analogous to a damped oscillator where inertial, Coriolis, and friction forces mirror the mass, spring, and damper, respectively. When a steady buoyancy (stable or unstable) is superposed on the unsteady pressure gradient, the same model structure can be maintained, but the damping term, corresponding to friction forces and vertical coupling, needs to account for stability. However, for the reverse case with variable buoyancy flux and stability, the model needs to be extended to allow time-variable damper coefficient. These extensions of the analytical model are presented respectively in Chapters 4 and 5. Chapter 6 investigates the interacting effects of baroclinicity (direction and strength) and stability on ABLs. Cold advection and positive shear increased the friction velocity, the low-level jet elevation and strength while warm advection and negative shear acted opposite. Finally, Chapter 7 provides a synthesis and a future outlook.
Tactile texture and friction of soft sponge surfaces.
Takahashi, Akira; Suzuki, Makoto; Imai, Yumi; Nonomura, Yoshimune
2015-06-01
We evaluated the tactile texture and frictional properties of five soft sponges with various cell sizes. The frictional forces were measured by a friction meter containing a contact probe with human-finger-like geometry and mechanical properties. When the subjects touched these sponges with their fingers, hard-textured sponges were deemed unpleasant. This tactile feeling changed with friction factors including friction coefficients, their temporal patterns, as well as mechanical and shape factors. These findings provide useful information on how to control the tactile textures of various sponges. Copyright © 2015 Elsevier B.V. All rights reserved.
Pressure and Friction Injuries in Primary Care.
Phillips, Shawn; Seiverling, Elizabeth; Silvis, Matthew
2015-12-01
Pressure and friction injuries are common throughout the lifespan. A detailed history of the onset and progression of friction and pressure injuries is key to aiding clinicians in determining the underlying mechanism behind the development of the injury. Modifying or removing the forces that are creating pressure or friction is the key to both prevention and healing of these injuries. Proper care of pressure and friction injuries to the skin is important to prevent the development of infection. Patient education on positioning and ergonomics can help to prevent recurrence of pressure and friction injuries. Copyright © 2015 Elsevier Inc. All rights reserved.
2012-12-01
a case hardened steel bushing with interference of 0.127 mm (0.005 in), 2,600 N (590 lbs) of static holding force in the axial direction is...radial force, along with the materials’ coefficient of friction, produces the axial and torsional holding strength. The pressure between the two parts...2 4 dT pL (1.7) nF = Normal force (relative to the press-fit surface) nF p dL (1.8) F= Frictional axial “holding” force of the
NASA Technical Reports Server (NTRS)
Tripp, John S.; Patek, Stephen D.
1988-01-01
Measurement of planar skin friction forces in aerodynamic testing currently requires installation of two perpendicularly mounted, single-axis balances; consequently, force components must be sensed at two distinct locations. A two-axis instrument developed at the Langley Research Center to overcome this disadvantage allows measurement of a two-dimensional force at one location. This paper describes a feedback-controlled nulling circuit developed for the NASA two-axis balance which, without external compensation, is inherently unstable because of its low friction mechanical design. Linear multivariable control theory is applied to an experimentally validated mathematical model of the balance to synthesize a state-variable feedback control law. Pole placement techniques and computer simulation studies are employed to select eigenvalues which provide ideal transient response with decoupled sensing dynamics.
Mutual friction in a cold color-flavor-locked superfluid and r-mode instabilities in compact stars.
Mannarelli, Massimo; Manuel, Cristina; Sa'd, Basil A
2008-12-12
Dissipative processes acting in rotating neutron stars are essential in preventing the growth of the r-mode instability. We estimate the damping time of r modes of a hypothetical compact quark star made up by color-flavor-locked quark matter at a temperature T < or approximately 0.01 MeV. The dissipation that we consider is due to the mutual friction force between the normal and the superfluid component arising from the elastic scattering of phonons with quantized vortices. This process is the dominant one for temperatures T < or approximately 0.01 MeV, where the mean free path of phonons due to their self-interactions is larger than the radius of the star. We find that r-mode oscillations are efficiently damped by this mechanism for pulsars rotating at frequencies of the order of 1 Hz at most. Our analysis rules out the possibility that cold pulsars rotating at higher frequencies are entirely made up by color-flavor-locked quark matter.
Direct Measurements of Skin Friction
NASA Technical Reports Server (NTRS)
Dhawan, Satish
1953-01-01
A device has been developed to measure local skin friction on a flat plate by measuring the force exerted upon a very small movable part of the surface of the flat plate. These forces, which range from about 1 milligram to about 100 milligrams, are measured by means of a reactance device. The apparatus was first applied to measurements in the low-speed range, both for laminar and turbulent boundary layers. The measured skin-friction coefficients show excellent agreement with Blasius' and Von Karman's results. The device was then applied to high-speed subsonic flow and the turbulent-skin-friction coefficients were determined up to a Mach number of about 0.8. A few measurements in supersonic flow were also made. This paper describes the design and construction of the device and the results of the measurements.
Tool Forces Developed During Friction Stir Welding
NASA Technical Reports Server (NTRS)
Melendez, M.; Tang, W.; Schmidt, C.; McClure, J. C.; Nunes, A. C.; Murr, L. E.
2003-01-01
This paper will describe a technique for measuring the various forces and the torque that exist on the Friction Stir Welding pin tool. Results for various plunge depths, weld speeds, rotational speed, and tool configurations will be presented. Welds made on 6061 aluminum with typical welding conditions require a downward force of 2800 lbs. (12.5 kN) a longitudinal force in the direction of motion of 300 lbs (1.33 kN), a transverse force in the omega x v direction of 30 lbs (135 N). Aluminum 2195 under typical weld conditions requires a downward force of 3100 lbs. (1.38 kN), a longitudinal force of 920 lbs. (4.1 kN), and a transverse force of 45 lbs. (200 N) in the omega x v direction.
16 CFR § 1202.4 - Matchbook general requirements.
Code of Federal Regulations, 2013 CFR
2013-01-01
... following general requirements: (a) The friction shall be located on the outside back cover near the bottom of the matchbook. (b) The cover shall remain closed without external force. (c) No friction material... cover and combs shall be within or touching the friction area. (h) A staple used as an assembly device...
Friction Coefficient Determination by Electrical Resistance Measurements
ERIC Educational Resources Information Center
Tunyagi, A.; Kandrai, K.; Fülöp, Z.; Kapusi, Z.; Simon, A.
2018-01-01
A simple and low-cost, DIY-type, Arduino-driven experiment is presented for the study of friction and measurement of the friction coefficient, using a conductive rubber cord as a force sensor. It is proposed for high-school or college/university-level students. We strongly believe that it is worthwhile planning, designing and performing Arduino…
Effect of roughness on stiction
NASA Astrophysics Data System (ADS)
Fuadi, Zahrul; Zahouani, Hassan; Takagi, Toshiyuki; Miki, Hiroyuki
2018-05-01
In this paper, the viscoelastic material was used to investigate the effect of roughness on stiction. The material is chosen because it is highly deformable so that contact during friction can be fully elastic. The soft surfaces were prepared by casting the silicon material on metal surfaces having smooth and unidirectional grooved texture. Two tests were conducted, indentation and friction, to find out the effect of roughness on parameters of normal contact stiffness, friction force and the difference between static and kinetic friction coefficient, μs-μk. As the results, it is found that all parameters are related to the surface roughness. Smoother surface tends to have a higher value of normal contact stiffness and higher value of friction force thus resulting in a larger difference between the static and kinetic coefficient of friction. Since the value of μs-μk is commonly related to the stick-slip motion, the smoother surface tends to have a larger propensity of stiction. It is shown by the result that the texture can reduce the stiction because it reduces the value of normal contact stiffness, resulting in a lower value of μs-μk.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Se-Jong; Kim, Daeyong, E-mail: daeyong@kims.re.kr; Lee, Keunho
2015-11-15
A magnesium alloy sheet was subjected to in-plane compression along with a vertical load to avoid buckling during compression. Pre-compressed specimens machined from the sheet were annealed at different temperatures and the changes in microstructure and texture were observed using electron back scattered diffraction (EBSD). Twinned grains preferentially grew during annealing at 300 °C, so that a strong texture with the < 0001 > direction parallel to the transverse direction developed. EBSD analysis confirmed that the friction caused by the vertical load induced inhomogeneous distribution of residual stress, which acted as an additional driving force for preferential grain growth ofmore » twinned grain during annealing. The annealed specimen showed excellent formability. - Highlights: • A magnesium alloy sheet subjected to in-plane compression under a vertical load • The vertical load induced inhomogeneous distribution of the residual stress. • The residual stress acted as an additional driving force for grain growth. • The annealed specimen with strong non-basal texture showed excellent formability.« less
Karim Soltani, Mohammad; Golfeshan, Farzaneh; Alizadeh, Yoones; Mehrzad, Jabraiel
2015-01-01
Statement of the Problem Frictional forces are considered as important counterforce to orthodontic tooth movement. It is claimed that self-ligating brackets reduce the frictional forces. Purpose The aim of this study was to compare the resistance to sliding in metallic and clear Damon brackets with the conventional brackets in a wet condition. Materials and Method The samples included 4 types of brackets; metallic and clear Damon brackets and metallic and clear conventional brackets (10 brackets in each group). In this study, stainless steel wires sized 0.019×0.025 were employed and the operator’s saliva was used to simulate the conditions of oral cavity. The tidy-modified design was used for simulation of sliding movement. The resistance to sliding and static frictional forces was measured by employing Testometric machine and load cell. Results The mean (±SD) of resistance to sliding was 194.88 (±26.65) and 226.62 (±39.9) g in the esthetic and metallic Damon brackets, while these values were 187.81(±27.84) and 191.17(±66.68) g for the clear and metallic conventional brackets, respectively. Static frictional forces were 206.4(±42.45) and 210.38(±15.89) g in the esthetic and metallic Damon brackets and 220.63(±49.29) and 215.13(±62.38) g in the clear and metallic conventional brackets. According to two-way ANOVA, no significant difference was observed between the two bracket materials (clear and metal) and the two types of bracket (self-ligating versus conventional) regarding resistance to sliding (p= 0.17 and p= 0.23, respectively) and static frictional forces (p= 0.55 and p= 0.96, respectively). Conclusion Neither the type of bracket materials nor their type of ligation made difference in resistance to sliding and static friction. PMID:26106630
NASA Astrophysics Data System (ADS)
Stone, T. W.; Horstemeyer, M. F.
2012-09-01
The objective of this study is to illustrate and quantify the length scale effects related to interparticle friction under compaction. Previous studies have shown as the length scale of a specimen decreases, the strength of a single crystal metal or ceramic increases. The question underlying this research effort continues the thought—If there is a length scale parameter related to the strength of a material, is there a length scale parameter related to friction? To explore the length scale effects of friction, molecular dynamics (MD) simulations using an embedded atom method potential were performed to analyze the compression of two spherical FCC nickel nanoparticles at different contact angles. In the MD model study, we applied a macroscopic plastic contact formulation to determine the normal plastic contact force at the particle interfaces and used the average shear stress from the MD simulations to determine the tangential contact forces. Combining this information with the Coulomb friction law, we quantified the MD interparticle coefficient of friction and showed good agreement with experimental studies and a Discrete Element Method prediction as a function of contact angle. Lastly, we compared our MD simulation friction values to the tribological predictions of Bhushan and Nosonovsky (BN), who developed a friction scaling model based on strain gradient plasticity and dislocation-assisted sliding that included a length scale parameter. The comparison revealed that the BN elastic friction scaling model did a much better job than the BN plastic scaling model of predicting the coefficient of friction values obtained from the MD simulations.
Tactile friction of topical formulations.
Skedung, L; Buraczewska-Norin, I; Dawood, N; Rutland, M W; Ringstad, L
2016-02-01
The tactile perception is essential for all types of topical formulations (cosmetic, pharmaceutical, medical device) and the possibility to predict the sensorial response by using instrumental methods instead of sensory testing would save time and cost at an early stage product development. Here, we report on an instrumental evaluation method using tactile friction measurements to estimate perceptual attributes of topical formulations. Friction was measured between an index finger and an artificial skin substrate after application of formulations using a force sensor. Both model formulations of liquid crystalline phase structures with significantly different tactile properties, as well as commercial pharmaceutical moisturizing creams being more tactile-similar, were investigated. Friction coefficients were calculated as the ratio of the friction force to the applied load. The structures of the model formulations and phase transitions as a result of water evaporation were identified using optical microscopy. The friction device could distinguish friction coefficients between the phase structures, as well as the commercial creams after spreading and absorption into the substrate. In addition, phase transitions resulting in alterations in the feel of the formulations could be detected. A correlation was established between skin hydration and friction coefficient, where hydrated skin gave rise to higher friction. Also a link between skin smoothening and finger friction was established for the commercial moisturizing creams, although further investigations are needed to analyse this and correlations with other sensorial attributes in more detail. The present investigation shows that tactile friction measurements have potential as an alternative or complement in the evaluation of perception of topical formulations. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Development of devices for self-injection: using tribological analysis to optimize injection force
Lange, Jakob; Urbanek, Leos; Burren, Stefan
2016-01-01
This article describes the use of analytical models and physical measurements to characterize and optimize the tribological behavior of pen injectors for self-administration of biopharmaceuticals. One of the main performance attributes of this kind of device is its efficiency in transmitting the external force applied by the user on to the cartridge inside the pen in order to effectuate an injection. This injection force characteristic is heavily influenced by the frictional properties of the polymeric materials employed in the mechanism. Standard friction tests are available for characterizing candidate materials, but they use geometries and conditions far removed from the actual situation inside a pen injector and thus do not always generate relevant data. A new test procedure, allowing the direct measurement of the coefficient of friction between two key parts of a pen injector mechanism using real parts under simulated use conditions, is presented. In addition to the absolute level of friction, the test method provides information on expected evolution of friction over lifetime as well as on expected consistency between individual devices. Paired with an analytical model of the pen mechanism, the frictional data allow the expected overall injection system force efficiency to be estimated. The test method and analytical model are applied to a range of polymer combinations with different kinds of lubrication. It is found that material combinations used without lubrication generally have unsatisfactory performance, that the use of silicone-based internal lubricating additives improves performance, and that the best results can be achieved with external silicone-based lubricants. Polytetrafluoroethylene-based internal lubrication and external lubrication are also evaluated but found to provide only limited benefits unless used in combination with silicone. PMID:27274319
Labonte, David; Federle, Walter
2013-01-01
Stick insects (Carausius morosus) have two distinct types of attachment pad per leg, tarsal “heel” pads (euplantulae) and a pre-tarsal “toe” pad (arolium). Here we show that these two pad types are specialised for fundamentally different functions. When standing upright, stick insects rested on their proximal euplantulae, while arolia were the only pads in surface contact when hanging upside down. Single-pad force measurements showed that the adhesion of euplantulae was extremely small, but friction forces strongly increased with normal load and coefficients of friction were 1. The pre-tarsal arolium, in contrast, generated adhesion that strongly increased with pulling forces, allowing adhesion to be activated and deactivated by shear forces, which can be produced actively, or passively as a result of the insects' sprawled posture. The shear-sensitivity of the arolium was present even when corrected for contact area, and was independent of normal preloads covering nearly an order of magnitude. Attachment of both heel and toe pads is thus activated partly by the forces that arise passively in the situations in which they are used by the insects, ensuring safe attachment. Our results suggest that stick insect euplantulae are specialised “friction pads” that produce traction when pressed against the substrate, while arolia are “true” adhesive pads that stick to the substrate when activated by pulling forces. PMID:24349156
Measurement of rolling friction by a damped oscillator
NASA Technical Reports Server (NTRS)
Dayan, M.; Buckley, D. H.
1983-01-01
An experimental method for measuring rolling friction is proposed. The method is mechanically simple. It is based on an oscillator in a uniform magnetic field and does not involve any mechanical forces except for the measured friction. The measured pickup voltage is Fourier analyzed and yields the friction spectral response. The proposed experiment is not tailored for a particular case. Instead, various modes of operation, suitable to different experimental conditions, are discussed.
A technique for measuring dynamic friction coefficient under impact loading
NASA Astrophysics Data System (ADS)
Lin, Y. L.; Qin, J. G.; Chen, R.; Zhao, P. D.; Lu, F. Y.
2014-09-01
We develop a novel setup based on the split Hopkinson pressure bar technique to test the dynamic friction coefficient under impact loading. In the setup, the major improvement is that the end of the incident bar near the specimen is wedge-shaped, which results in a combined compressive and shear loading applied to the specimen. In fact, the shear loading is caused by the interfacial friction between specimen and bars. Therefore, when the two loading force histories are measured, the friction coefficient histories can be calculated without any assumptions and theoretical derivations. The geometry of the friction pairs is simple, and can be either cuboid or cylindrical. Regarding the measurements, two quartz transducers are used to directly record the force histories, and an optical apparatus is designed to test the interfacial slip movement. By using the setup, the dynamic friction coefficient of PTFE/aluminum 7075 friction pairs was tested. The time resolved dynamic friction coefficient and slip movement histories were achieved. The results show that the friction coefficient changes during the loading process, the average data of the relatively stable flat plateau section of the friction coefficient curves is 0.137, the maximum normal pressure is 52 MPa, the maximum relative slip velocity is 1.5 m/s, and the acceleration is 8400 m2/s. Furthermore, the friction test was simulated using an explicit FEM code LS-DYNA. The simulation results showed that the constant pressure and slip velocity can both be obtained with a wide flat plateau incident pulse. For some special friction pairs, normal pressure up to a few hundred MPa, interfacial slip velocities up to 10 m/s, and slip movement up to centimeter-level can be expected.
A technique for measuring dynamic friction coefficient under impact loading.
Lin, Y L; Qin, J G; Chen, R; Zhao, P D; Lu, F Y
2014-09-01
We develop a novel setup based on the split Hopkinson pressure bar technique to test the dynamic friction coefficient under impact loading. In the setup, the major improvement is that the end of the incident bar near the specimen is wedge-shaped, which results in a combined compressive and shear loading applied to the specimen. In fact, the shear loading is caused by the interfacial friction between specimen and bars. Therefore, when the two loading force histories are measured, the friction coefficient histories can be calculated without any assumptions and theoretical derivations. The geometry of the friction pairs is simple, and can be either cuboid or cylindrical. Regarding the measurements, two quartz transducers are used to directly record the force histories, and an optical apparatus is designed to test the interfacial slip movement. By using the setup, the dynamic friction coefficient of PTFE/aluminum 7075 friction pairs was tested. The time resolved dynamic friction coefficient and slip movement histories were achieved. The results show that the friction coefficient changes during the loading process, the average data of the relatively stable flat plateau section of the friction coefficient curves is 0.137, the maximum normal pressure is 52 MPa, the maximum relative slip velocity is 1.5 m/s, and the acceleration is 8400 m(2)/s. Furthermore, the friction test was simulated using an explicit FEM code LS-DYNA. The simulation results showed that the constant pressure and slip velocity can both be obtained with a wide flat plateau incident pulse. For some special friction pairs, normal pressure up to a few hundred MPa, interfacial slip velocities up to 10 m/s, and slip movement up to centimeter-level can be expected.
The thermodynamic efficiency of heat engines with friction
NASA Astrophysics Data System (ADS)
Bizarro, João P. S.
2012-04-01
The presence of the work done against friction is incorporated into the analysis of the efficiency of heat engines based on the first and second laws of thermodynamics. We obtain the efficiencies of Stirling and Brayton engines with friction and recover results known from finite-time thermodynamics. We show that ηfric/η ≈ (1 - Wfric/W), where ηfric/η is the ratio of the efficiencies with and without friction and Wfric/W is the fraction of the work W performed by the working fluid which is spent against friction forces.
Measurement of Gear Tooth Dynamic Friction
NASA Technical Reports Server (NTRS)
Rebbechi, Brian; Oswald, Fred B.; Townsend, Dennis P.
1996-01-01
Measurements of dynamic friction forces at the gear tooth contact were undertaken using strain gages at the root fillets of two successive teeth. Results are presented from two gear sets over a range of speeds and loads. The results demonstrate that the friction coefficient does not appear to be significantly influenced by the sliding reversal at the pitch point, and that the friction coefficient values found are in accord with those in general use. The friction coefficient was found to increase at low sliding speeds. This agrees with the results of disc machine testing.
Gurari, Netta; Baud-Bovy, Gabriel
2014-09-30
The emergence of commercial haptic devices offers new research opportunities to enhance our understanding of the human sensory-motor system. Yet, commercial device capabilities have limitations which need to be addressed. This paper describes the customization of a commercial force feedback device for displaying forces with a precision that exceeds the human force perception threshold. The device was outfitted with a multi-axis force sensor and closed-loop controlled to improve its transparency. Additionally, two force sensing resistors were attached to the device to measure grip force. Force errors were modeled in the frequency- and time-domain to identify contributions from the mass, viscous friction, and Coulomb friction during open- and closed-loop control. The effect of user interaction on system stability was assessed in the context of a user study which aimed to measure force perceptual thresholds. Findings based on 15 participants demonstrate that the system maintains stability when rendering forces ranging from 0-0.20 N, with an average maximum absolute force error of 0.041 ± 0.013 N. Modeling the force errors revealed that Coulomb friction and inertia were the main contributors to force distortions during respectively slow and fast motions. Existing commercial force feedback devices cannot render forces with the required precision for certain testing scenarios. Building on existing robotics work, this paper shows how a device can be customized to make it reliable for studying the perception of weak forces. The customized and closed-loop controlled device is suitable for measuring force perceptual thresholds. Copyright © 2014 Elsevier B.V. All rights reserved.
Swimming in a granular frictional fluid
NASA Astrophysics Data System (ADS)
Goldman, Daniel
2012-02-01
X-ray imaging reveals that the sandfish lizard swims within granular media (sand) using axial body undulations to propel itself without the use of limbs. To model the locomotion of the sandfish, we previously developed an empirical resistive force theory (RFT), a numerical sandfish model coupled to an experimentally validated Discrete Element Method (DEM) model of the granular medium, and a physical robot model. The models reveal that only grains close to the swimmer are fluidized, and that the thrust and drag forces are dominated by frictional interactions among grains and the intruder. In this talk I will use these models to discuss principles of swimming within these granular ``frictional fluids". The empirical drag force laws are measured as the steady-state forces on a small cylinder oriented at different angles relative to the displacement direction. Unlike in Newtonian fluids, resistive forces are independent of speed. Drag forces resemble those in viscous fluids while the ratio of thrust to drag forces is always larger in the granular media than in viscous fluids. Using the force laws as inputs, the RFT overestimates swimming speed by approximately 20%. The simulation reveals that this is related to the non-instantaneous increase in force during reversals of body segments. Despite the inaccuracy of the steady-state assumption, we use the force laws and a recently developed geometric mechanics theory to predict optimal gaits for a model system that has been well-studied in Newtonian fluids, the three-link swimmer. The combination of the geometric theory and the force laws allows us to generate a kinematic relationship between the swimmer's shape and position velocities and to construct connection vector field and constraint curvature function visualizations of the system dynamics. From these we predict optimal gaits for forward, lateral and rotational motion. Experiment and simulation are in accord with the theoretical prediction, and demonstrate that swimming in sand can be viewed as movement in a localized frictional fluid.
NASA Technical Reports Server (NTRS)
Wesselski, Clarence J. (Inventor)
1993-01-01
An energy absorbing system for controlling the force where a moving object engages a stationary stop and where the system utilized telescopic tubular members, energy absorbing diaphragm elements, force regulating disc springs, and a return spring to return the telescoping member to its start position after stroking is presented. The energy absorbing system has frusto-conical diaphragm elements frictionally engaging the shaft and are opposed by a force regulating set of disc springs. In principle, this force feedback mechanism serves to keep the stroking load at a reasonable level even if the friction coefficient increases greatly. This force feedback device also serves to desensitize the singular and combined effects of manufacturing tolerances, sliding surface wear, temperature changes, dynamic effects, and lubricity.
An ABS control logic based on wheel force measurement
NASA Astrophysics Data System (ADS)
Capra, D.; Galvagno, E.; Ondrak, V.; van Leeuwen, B.; Vigliani, A.
2012-12-01
The paper presents an anti-lock braking system (ABS) control logic based on the measurement of the longitudinal forces at the hub bearings. The availability of force information allows to design a logic that does not rely on the estimation of the tyre-road friction coefficient, since it continuously tries to exploit the maximum longitudinal tyre force. The logic is designed by means of computer simulation and then tested on a specific hardware in the loop test bench: the experimental results confirm that measured wheel force can lead to a significant improvement of the ABS performances in terms of stopping distance also in the presence of road with variable friction coefficient.
NASA Astrophysics Data System (ADS)
Zeng, Baoping; Wang, Chao; Zhang, Yu; Gong, Yajun; Hu, Sanbao
2017-12-01
Joint clearances and friction characteristics significantly influence the mechanism vibration characteristics; for example: as for joint clearances, the shaft and bearing of its clearance joint collide to bring about the dynamic normal contact force and tangential coulomb friction force while the mechanism works; thus, the whole system may vibrate; moreover, the mechanism is under contact-impact with impact force constraint from free movement under action of the above dynamic forces; in addition, the mechanism topology structure also changes. The constraint relationship between joints may be established by a repeated complex nonlinear dynamic process (idle stroke - contact-impact - elastic compression - rebound - impact relief - idle stroke movement - contact-impact). Analysis of vibration characteristics of joint parts is still a challenging open task by far. The dynamic equations for any mechanism with clearance is often a set of strong coupling, high-dimensional and complex time-varying nonlinear differential equations which are solved very difficultly. Moreover, complicated chaotic motions very sensitive to initial values in impact and vibration due to clearance let high-precision simulation and prediction of their dynamic behaviors be more difficult; on the other hand, their subsequent wearing necessarily leads to some certain fluctuation of structure clearance parameters, which acts as one primary factor for vibration of the mechanical system. A dynamic model was established to the device for opening the deepwater robot cabin door with joint clearance by utilizing the finite element method and analysis was carried out to its vibration characteristics in this study. Moreover, its response model was carried out by utilizing the DOE method and then the robust optimization design was performed to sizes of the joint clearance and the friction coefficient change range so that the optimization design results may be regarded as reference data for selecting bearings and controlling manufacturing process parameters for the opening mechanism. Several optimization objectives such as x/y/z accelerations for various measuring points and dynamic reaction forces of mounting brackets, and a few constraints including manufacturing process were taken into account in the optimization models, which were solved by utilizing the multi-objective genetic algorithm (NSGA-II). The vibration characteristics of the optimized opening mechanism are superior to those of the original design. In addition, the numerical forecast results are in good agreement with the test results of the prototype.
Localized Flow of Frictional Or Creeping Materials In A Lower Flat Thrust To Ramp Transition
NASA Astrophysics Data System (ADS)
Maillot, B.; Leroy, Y.
The passage of rock through zones of localized shear deformation in the form of back- thrusts or kink planes is common in fold and thrust belts. The stationary flow through these two types of hinges is examined for the particular case of a lower flat to ramp transition of a fault-bend fold. The simple shear transformation resulting in strain lo- calization is studied both analytically and numerically. The overall equilibrium of the hanging wall, accounting for friction over the ramp, constrains the shear and normal forces acting on the hinge boundaries. For frictional materials, the localization oc- curs in the form of a velocity discontinuity, defining the backthrust, with a dip which is shown not to bissect ramp angle nor to conserve the thrust nappe thickness, if a criteria based on a minimization of the total dissipation is considered. For creeping materials, the strain localization as a kink plane is shown to require a destabilizing deformation mechanism, selected here to be flexural slip. The rotation of the stress tensor due to the gradient in pressure, the thicknening and thinning of the creeping material, the rate and amount of flexural slip through the hinge are analyzed to define potential tectonic markers.
Sealing properties of mechanical seals for an axial flow blood pump.
Tomioka, J; Mori, T; Yamazaki, K; Koyanagi, H
1999-08-01
A miniature intraventricular axial flow blood pump for left ventricular support is under development. One of the key technologies required for such pumps is sealing of the motor shaft. In this study, to prevent blood backflow into the motor side, mechanical seals were developed and their sealing properties investigated. In the experimental apparatus, the mechanical seal separated the bovine blood on the chamber side from the cooling water on the motor side. A leakage of the blood was measured by inductively coupled plasma (ICP) light emission analysis. The rate of hemolysis was measured by the cyanmethemoglobin method. Frictional torque acting on the shaft was measured by a torque transducer. In the experiments, the rotational speed of the shaft was changed from 1,000 to 10,000 rpm, and the contact force of the seal faces was changed from 1.96 to 4.31 N. To estimate lubrication regimes, the Stribeck curve, a diagram of the coefficient of friction against the bearing characteristic G number, was drawn. The results of the experiments showed that both the leakage of blood and the rate of hemolysis were very small. The friction loss was also very small. The mechanical seal was operated in various lubrication regimes, from a fluid lubrication regime to a mixed lubrication regime.
A new confined high pressure rotary shear apparatus: preliminary results
NASA Astrophysics Data System (ADS)
Faulkner, D.; Coughlan, G.; Bedford, J. D.
2017-12-01
The frictional properties of fault zone materials, and their evolution during slip, are of paramount importance for determining the earthquake mechanics of large tectonic faults. Friction is a parameter that is difficult to determine from seismological methods so much of our understanding comes from experiment. Rotary shear apparatuses have been widely used in experimental studies to elucidate the frictional properties of faults under realistic earthquake slip velocities (0.1-10 m/s) and displacements (>20 m). However one technical limitation of rotary shear experiments at seismic slip rates has been the lack of confinement. This has led to a limit on the normal stress (due to the strength of the forcing blocks) and also a lack of control of measurements of the pore fluid pressure. Here we present the first preliminary results from a rotary shear apparatus that has been developed to attempt to address this issue. The new fully confined ring shear apparatus has a fast-acting servo-hydraulic confining pressure system of up to 200 MPa and a servo-controlled upstream and downstream pore pressure system of up to 200 MPa. Displacement rates of 0.01μ/s to 2 m/s can be achieved. Fault gouge samples can therefore be sheared at earthquake speed whilst being subject to pressures typically associated with the depth of earthquake nucleation.
14 CFR 29.395 - Control system.
Code of Federal Regulations, 2013 CFR
2013-01-01
... consideration of fatigue, jamming, ground gusts, control inertia, and friction loads. In the absence of a... inertia, or friction, the system must withstand the limit pilot forces specified in § 29.397, without...
NASA Astrophysics Data System (ADS)
tongqing, Wu; liang, Li; xinjian, Liu; Xu, nianchun; Tian, Mao
2018-03-01
Self-balanced method is carried out on the large diameter rock-socketed filling piles of high-pile wharf at Inland River, to explore the distribution laws of load-displacement curve, pile internal force, pile tip friction resistance and pile side friction resistance under load force. The results showed that: the tip resistance of S1 and S2 test piles accounted for 53.4% and 53.6% of the pile bearing capacity, respectively, while the total side friction resistance accounted for 46.6% and 46.4% of the pile bearing capacity, respectively; both the pile tip friction resistance and pile side friction resistance can be fully played, and reach to the design requirements. The reasonability of large diameter rock-socketed filling design is verified through test analysis, which can provide basis for the optimization of high-pile wharf structural type, thus reducing the wharf project cost, and also providing reference for the similar large diameter rock-socketed filling piles of high-pile wharf at Inland River.
Slipping and friction at the interface between two-dimensional materials
NASA Astrophysics Data System (ADS)
Sreenivas, Vijayashree Parsi; Nicholl, Ryan; Bolotin, Kirill
Friction at the macroscopic scale is primarily due to the surface roughness while at the atomic scale it is governed by commensurability and environmental conditions. Here, we investigate slipping and friction at the interface between two dissimilar two-dimensional materials, such as graphene and monolayer molybdenum disulfide. Such a system provides a powerful platform to study frictional forces at the atomic scale as chemical nature of the interface and commensurability between the layers can be varied with ease. To carry out such a study, a monolayer of e.g. graphene is exfoliated onto a flexible substrate material - polypropylene - and clamped down by evaporating titanium to avoid slippage. A monolayer of e.g. MoS2 is then transferred on top of graphene and the entire stack is strained using a four point bending apparatus. By measuring strain vs. bending via Raman spectroscopy, we detect slippage at graphene/MoS2 interface and characterize frictional forces as a function of interface parameters.
Spinner, Marlene; Westhoff, Guido; Gorb, Stanislav N.
2014-01-01
Hairy adhesive systems of microscopic setae with triangular flattened tips have evolved convergently in spiders, insects and arboreal lizards. The ventral sides of the feet and tails in chameleons are also covered with setae. However, chameleon setae feature strongly elongated narrow spatulae or fibrous tips. The friction enhancing function of these microstructures has so far only been demonstrated in contact with glass spheres. In the present study, the frictional properties of subdigital setae of Chamaeleo calyptratus were measured under normal forces in the physical range on plane substrates having different roughness. We showed that chameleon setae maximize friction on a wide range of substrate roughness. The highest friction was measured on asperities of 1 μm. However, our observations of the climbing ability of Ch. calyptratus on rods of different diameters revealed that also claws and grasping feet are additionally responsible for the force generation on various substrates during locomotion. PMID:24970387
Learning to perceive haptic distance-to-break in the presence of friction.
Altenhoff, Bliss M; Pagano, Christopher C; Kil, Irfan; Burg, Timothy C
2017-02-01
Two experiments employed attunement and calibration training to investigate whether observers are able to identify material break points in compliant materials through haptic force application. The task required participants to attune to a recently identified haptic invariant, distance-to-break (DTB), rather than haptic stimulation not related to the invariant, including friction. In the first experiment participants probed simulated force-displacement relationships (materials) under 3 levels of friction with the aim of pushing as far as possible into the materials without breaking them. In a second experiment a different set of participants pulled on the materials. Results revealed that participants are sensitive to DTB for both pushing and pulling, even in the presence of varying levels of friction, and this sensitivity can be improved through training. The results suggest that the simultaneous presence of friction may assist participants in perceiving DTB. Potential applications include the development of haptic training programs for minimally invasive (laparoscopic) surgery to reduce accidental tissue damage. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Mechanical properties of orthodontic wires covered with a polyether ether ketone tube.
Shirakawa, Nobukazu; Iwata, Toshio; Miyake, Shinjiro; Otuka, Takero; Koizumi, So; Kawata, Toshitugu
2018-03-21
To evaluate the esthetics and frictional force of an orthodontic wire passed through a newly designed tube made of a polyether ether ketone (PEEK) resin. Two types of standard PEEK tubes were prepared at 0.5 × 0.6ф and 0.8 × 0.9ф, and different archwires were passed through the tubes. Color values were determined according to brightness and hues. Friction was assessed with different bracket-wire combinations, and surface roughness was determined by stereomicroscopy before and after the application of friction. The PEEK tube showed a color difference that was almost identical to that of coated wires conventionally used in clinical practice, indicating a sufficient esthetic property. The result of the friction test showed that the frictional force was greatly reduced by passing the archwire through the PEEK tube in almost all of the archwires tested. Use of the new PEEK tube demonstrated a good combination of esthetic and functional properties for use in orthodontic appliances.
Lateral position detection and control for friction stir systems
Fleming, Paul; Lammlein, David; Cook, George E.; Wilkes, Don Mitchell; Strauss, Alvin M.; Delapp, David; Hartman, Daniel A.
2010-12-14
A friction stir system for processing at least a first workpiece includes a spindle actuator coupled to a rotary tool comprising a rotating member for contacting and processing the first workpiece. A detection system is provided for obtaining information related to a lateral alignment of the rotating member. The detection system comprises at least one sensor for measuring a force experienced by the rotary tool or a parameter related to the force experienced by the rotary tool during processing, wherein the sensor provides sensor signals. A signal processing system is coupled to receive and analyze the sensor signals and determine a lateral alignment of the rotating member relative to a selected lateral position, a selected path, or a direction to decrease a lateral distance relative to the selected lateral position or selected path. In one embodiment, the friction stir system can be embodied as a closed loop tracking system, such as a robot-based tracked friction stir welding (FSW) or friction stir processing (FSP) system.
Effect of dental arch convexity and type of archwire on frictional forces.
Fourie, Zacharias; Ozcan, Mutlu; Sandham, Andrew
2009-07-01
Friction measurements in orthodontics are often derived from models by using brackets placed on flat models with various straight wires. Dental arches are convex in some areas. The objectives of this study were to compare the frictional forces generated in conventional flat and convex dental arch setups, and to evaluate the effect of different archwires on friction in both dental arch models. Two stainless steel models were designed and manufactured simulating flat and convex maxillary right buccal dental arches. Five stainless steel brackets from the maxillary incisor to the second premolar (slot size, 0.22 in, Victory, 3M Unitek, Monrovia, Calif) and a first molar tube were aligned and clamped on the metal model at equal distances of 6 mm. Four kinds of orthodontic wires were tested: (1) A. J. Wilcock Australian wire (0.016 in, G&H Wire, Hannover, Germany); and (2) 0.016 x 0.022 in, (3) 0.018 x 0.022 in, and (4) 0.019 x 0.025 in (3M Unitek GmbH, Seefeld, Germany). Gray elastomeric modules (Power O 110, Ormco, Glendora, Calif) were used for ligation. Friction tests were performed in the wet state with artificial saliva lubrication and by pulling 5 mm of the whole length of the archwire. Six measurements were made from each bracket-wire combination, and each test was performed with new combinations of materials for both arch setups (n = 48, 6 per group) in a universal testing machine (crosshead speed: 20 mm/min). Significant effects of arch model (P = 0.0000) and wire types (P = 0.0000) were found. The interaction term between the tested factors was not significant (P = 0.1581) (2-way ANOVA and Tukey test). Convex models resulted in significantly higher frictional forces (1015-1653 g) than flat models (680-1270 g) (P <0.05). In the flat model, significantly lower frictional forces were obtained with wire types 1 (679 g) and 3 (1010 g) than with types 2 (1146 g) and 4 (1270 g) (P <0.05). In the convex model, the lowest friction was obtained with wire types 1 (1015 g) and 3 (1142 g) (P >0.05). Type 1 wire tended to create the least overall friction in both flat and convex dental arch simulation models.
ANALYTICAL MODELS OF EXOPLANETARY ATMOSPHERES. I. ATMOSPHERIC DYNAMICS VIA THE SHALLOW WATER SYSTEM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heng, Kevin; Workman, Jared, E-mail: kevin.heng@csh.unibe.ch, E-mail: jworkman@coloradomesa.edu
2014-08-01
Within the context of exoplanetary atmospheres, we present a comprehensive linear analysis of forced, damped, magnetized shallow water systems, exploring the effects of dimensionality, geometry (Cartesian, pseudo-spherical, and spherical), rotation, magnetic tension, and hydrodynamic and magnetic sources of friction. Across a broad range of conditions, we find that the key governing equation for atmospheres and quantum harmonic oscillators are identical, even when forcing (stellar irradiation), sources of friction (molecular viscosity, Rayleigh drag, and magnetic drag), and magnetic tension are included. The global atmospheric structure is largely controlled by a single key parameter that involves the Rossby and Prandtl numbers. Thismore » near-universality breaks down when either molecular viscosity or magnetic drag acts non-uniformly across latitude or a poloidal magnetic field is present, suggesting that these effects will introduce qualitative changes to the familiar chevron-shaped feature witnessed in simulations of atmospheric circulation. We also find that hydrodynamic and magnetic sources of friction have dissimilar phase signatures and affect the flow in fundamentally different ways, implying that using Rayleigh drag to mimic magnetic drag is inaccurate. We exhaustively lay down the theoretical formalism (dispersion relations, governing equations, and time-dependent wave solutions) for a broad suite of models. In all situations, we derive the steady state of an atmosphere, which is relevant to interpreting infrared phase and eclipse maps of exoplanetary atmospheres. We elucidate a pinching effect that confines the atmospheric structure to be near the equator. Our suite of analytical models may be used to develop decisively physical intuition and as a reference point for three-dimensional magnetohydrodynamic simulations of atmospheric circulation.« less
On a high-potential variable flexural stiffness device
NASA Astrophysics Data System (ADS)
Henke, Markus; Gerlach, Gerald
2013-05-01
There are great efforts in developing effective composite structures for lightweight constructions for nearly every field of engineering. This concerns for example aeronautics and spacecrafts, but also automotive industry and energy harvesting applications. Modern concepts of lightweight components try to make use of structures with properties which can be adjusted in a controllable was. However, classic composite materials can only slightly adapt to varying environmental conditions because most materials, like carbon or glass-fiber composites show properties which are time-constant and not changeable. This contribution describes the development, the potential and the limitations of novel smart, self-controlling structures which can change their mechanical properties - e.g. their flexural stiffness - by more then one order of magnitude. These structures use a multi-layer approach with a 10-layer stack of 0.75 mm thick polycarbonate. The set-up is analytically described and its mechanical behavior is predicted by finite element analysis done with ABAQUS. The layers are braided together by an array of shape memory alloy (SMA) wires, which can be activated independently. Depending on the temperature applied by the electrical current flowing through the wires and the corresponding contraction the wires can tightly clamp the layers so that they cannot slide against each other due to friction forces. In this case the multilayer acts as rigid beam with high stiffness. If the friction-induced shear stress is smaller than a certain threshold, then the layers can slide over each other and the multilayer becomes compliant under bending load. The friction forces between the layers and, hence, the stiffness of the beam is controlled by the electrical current through the wires. The more separate parts of SMA wires the structure has the larger is the number of steps of stiffness changes of the flexural beam.
USDA-ARS?s Scientific Manuscript database
There is considerable interest to determine the threshold for aeolian dust emission on Earth and Mars. Existing schemes for threshold friction velocity are all deterministic in nature, but observations show that in the dust particle size range the threshold friction velocity scatters strongly due t...
Adhesion, friction and micromechanical properties of ceramics
NASA Technical Reports Server (NTRS)
Miyoshi, Kazuhisa
1988-01-01
The adhesion, friction, and micromechanical properties of ceramics, both in monolithic and coating form, are reviewed. Ceramics are examined in contact with themselves, other harder materials, and metals. For the simplicity of discussion, the tribological properties of concern in the processes are separated into two parts. The first part discusses the pull-off force (adhesion) and the shear force required to break the interfacial junctions between contacting surfaces. The role of chemical bonding in adhesion and friction, and the effects of surface contaminant films and temperature on tribological response with respect to adhesion and friction are discussed. The second part deals with abrasion of ceramics. Elastic, plastic, and fracture behavior of ceramics in solid state contact is discussed. The scratch technique of determining the critical load needed to fracture interfacial adhesive bonds of ceramic deposited on substrates is also addressed.
Universal aspects of sonolubrication in amorphous and crystalline materials
NASA Astrophysics Data System (ADS)
Pfahl, V.; Ma, C.; Arnold, W.; Samwer, K.
2018-01-01
We studied sonolubricity, a phenomenon reducing the friction between two sliding surfaces by ultrasound. Friction force measurements were performed using an atomic force microscope (AFM) when the tip-surface contact was excited to out-of-plane oscillations by a transducer attached to the rear of the sample or by oscillating the AFM cantilever by the built-in piezoelectric element in the cantilever holder. Experiments were carried out near or at the first cantilever contact-resonance. We studied friction on crystalline and amorphous Pd77.5Cu6Si16.5 ribbons, on a silicon wafer at room temperature, and on a La0.6Sr0.4MnO3 (LSMO) thin film at different temperatures. Measurements were carried out varying the cantilever amplitude, the ultrasonic frequency, and the normal static load. The effect of sonolubrication is explained by the non-linear force-distance curve between the sample and the tip due to the local interaction potential. The reduction of friction in LSMO as a function temperature is due to the direct coupling of the tip's stress-field to the electrons.
Tribological Properties of CrN Coating Under Lubrication Conditions
NASA Astrophysics Data System (ADS)
Lubas, Janusz
2012-08-01
The paper presents research results of the influence of CrN coating on the friction parameters in friction pairs under lubricated friction conditions. The formed CrN homogeneous coating and CrN-steel 46Cr2 "ring" structure coating was matched under test conditions with a counterpart made from SAE-48 and SAE-783 bearing alloys. Tested sliding pairs were lubricated with 5W/40 Lotos synthetic engine oil. The tribological test was conducted on block-on-ring tester. The applied modification technologies of the surface layer of steel allowed for obtaining construction materials with pre-determined tribological characteristics required for the elements of friction pairs in lubricated contact. The results of the tests proved the possibility of implementing CrN coating in friction pairs, which work under mixed friction conditions. The results showed differences in the wear of bearing alloy, as the effect of the interaction between the co-operating surface layers and of the physiochemical changes of their surfaces, induced by external forces. The smallest wear of the bearing alloy occurs during the cooperation with the nitrided layer, whereas the largest wear occurs during the cooperation with the homogenous CrN coating. The CrN coating-46Cr2 steel "ring structure" decreases friction resistance during the start-up of the sliding pair, as well as lowers the level of the friction force and temperature in the friction area during co-operation with SAE-783 bearing alloys.
Debris-bed friction of hard-bedded glaciers
Cohen, D.; Iverson, N.R.; Hooyer, T.S.; Fischer, U.H.; Jackson, M.; Moore, P.L.
2005-01-01
[1] Field measurements of debris-bed friction on a smooth rock tablet at the bed of Engabreen, a hard-bedded, temperate glacier in northern Norway, indicated that basal ice containing 10% debris by volume exerted local shear traction of up to 500 kPa. The corresponding bulk friction coefficient between the dirty basal ice and the tablet was between 0.05 and 0.08. A model of friction in which nonrotating spherical rock particles are held in frictional contact with the bed by bed-normal ice flow can account for these measurements if the power law exponent for ice flowing past large clasts is 1. A small exponent (n < 2) is likely because stresses in ice are small and flow is transient. Numerical calculations of the bed-normal drag force on a sphere in contact with a flat bed using n = 1 show that this force can reach values several hundred times that on a sphere isolated from the bed, thus drastically increasing frictional resistance. Various estimates of basal friction are obtained from this model. For example, the shear traction at the bed of a glacier sliding at 20 m a-1 with a geothermally induced melt rate of 0.006 m a-1 and an effective pressure of 300 kPa can exceed 100 kPa. Debris-bed friction can therefore be a major component of sliding resistance, contradicting the common assumption that debris-bed friction is negligible. Copyright 2005 by the American Geophysical Union.
La Torre, Carmen; Bhushan, Bharat
2006-01-01
The atomic/friction force microscope (AFM/FFM) has recently become an important tool for studying the micro/nanoscale structure and tribological properties of human hair. Of particular interest to hair and beauty care science is how common hair-care materials, such as conditioner, deposit onto and change hair's tribological properties, since these properties are closely tied to product performance. Since a conditioner is a complex network of many different ingredients (including silicones for lubrication and cationic surfactants for static control and gel network formulation), studying the effects of these individual components can give insight into the significance each has on hair properties. In this study, AFM/FFM is used to conduct nanotribological studies of surface roughness, friction force, and adhesive forces as a function of silicone type, silicone deposition level, and cationic surfactant type. Changes in the coefficient of friction as a result of soaking hair in de-ionized water are also discussed.
NASA Astrophysics Data System (ADS)
Liu, Xiaogang; Meehan, Paul A.
2016-06-01
Field application of friction modifiers on the top of rail has been shown to effectively curb squeal and reduce lateral forces, but performance can be variable, according to other relevant research. Up to now, most investigations of friction modifiers were conducted in the field, where it is difficult to control or measure important parameters such as angle of attack, rolling speed, adhesion ratio etc. In the present investigation, the effect of different friction modifiers on the occurrence of squeal was investigated on a rolling contact two disk test rig. In particular, friction-creep curves and squeal sound pressure levels were measured under different rolling speeds and friction modifiers. The results show friction modifiers can eliminate or reduce the negative slope of friction-creep curves, but squeal noise still exists. Theoretical modelling of instantaneous creep behaviours reveals a possible reason why wheel squeal still exists after the application of friction modifiers.
Chemical origins of frictional aging.
Liu, Yun; Szlufarska, Izabela
2012-11-02
Although the basic laws of friction are simple enough to be taught in elementary physics classes and although friction has been widely studied for centuries, in the current state of knowledge it is still not possible to predict a friction force from fundamental principles. One of the highly debated topics in this field is the origin of static friction. For most macroscopic contacts between two solids, static friction will increase logarithmically with time, a phenomenon that is referred to as aging of the interface. One known reason for the logarithmic growth of static friction is the deformation creep in plastic contacts. However, this mechanism cannot explain frictional aging observed in the absence of roughness and plasticity. Here, we discover molecular mechanisms that can lead to a logarithmic increase of friction based purely on interfacial chemistry. Predictions of our model are consistent with published experimental data on the friction of silica.
BRIEF COMMUNICATION: A note on the Coulomb collision operator in curvilinear coordinates
NASA Astrophysics Data System (ADS)
Goncharov, P. R.
2010-10-01
The dynamic friction force, diffusion tensor, flux density in velocity space and Coulomb collision term are expressed in curvilinear coordinates via Trubnikov potential functions corresponding to each species of a background plasma. For comparison, explicit formulae are given for the dynamic friction force, diffusion tensor and collisional flux density in velocity space in curvilinear coordinates via Rosenbluth potential functions summed over all species of the background plasma.
Brief: Field measurements of casing tension forces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quigley, M.S.; Lewis, D.B.; Boswell, R.S.
1995-02-01
Tension forces acting on individual casing joints were accurately measured during installation of 10,158 ft of 9 5/8-in. {times} 47-lbm/ft casing and 11,960 ft of 11 7/8-in. {times} 71.8-lbm/ft casing. A unique casing load table (CLT) weighed the casing string after the addition of each casing joint. Strain gauges attached inside the pin ends of instrumented casing joints (ICJ`s) directly measured tension force on those joints. A high-speed computer data-acquisition system (DAS) automatically recorded data from all the sensors. Several casing joints were intentionally subjected to extreme deceleration to determine upper limits for dynamic tension forces. Data from these testsmore » clearly show effects of wellbore friction and casing handling conditions. In every case, tension forces in the casing during maximum deceleration were considerably less than expected. In some cases, the highest tension forces occurred when the casing lifted out of the slips. Peak tension forces caused by setting the casing slips were typically no more than 5% greater than tension forces in the casing at rest. This dynamic amplification was far less than the 60% value used in the previous casing design method. Reducing the safety factor for installation loads has permitted use of lighter, less-expensive casing than dictated by older design criteria.« less
Method for lateral force calibration in atomic force microscope using MEMS microforce sensor.
Dziekoński, Cezary; Dera, Wojciech; Jarząbek, Dariusz M
2017-11-01
In this paper we present a simple and direct method for the lateral force calibration constant determination. Our procedure does not require any knowledge about material or geometrical parameters of an investigated cantilever. We apply a commercially available microforce sensor with advanced electronics for direct measurement of the friction force applied by the cantilever's tip to a flat surface of the microforce sensor measuring beam. Due to the third law of dynamics, the friction force of the equal value tilts the AFM cantilever. Therefore, torsional (lateral force) signal is compared with the signal from the microforce sensor and the lateral force calibration constant is determined. The method is easy to perform and could be widely used for the lateral force calibration constant determination in many types of atomic force microscopes. Copyright © 2017 Elsevier B.V. All rights reserved.
Lift and drag forces on an inclined plow moving over a granular surface.
Percier, Baptiste; Manneville, Sebastien; McElwaine, Jim N; Morris, Stephen W; Taberlet, Nicolas
2011-11-01
We studied the drag and lift forces acting on an inclined plate while it is dragged on the surface of a granular media, both in experiment and in numerical simulation. In particular, we investigated the influence of the horizontal velocity of the plate and its angle of attack. We show that a steady wedge of grains is moved in front of the plow and that the lift and drag forces are proportional to the weight of this wedge. These constants of proportionality vary with the angle of attack but not (or only weakly) on the velocity. We found a universal effective friction law that accounts for the dependence on all the above-mentioned parameters. The stress and velocity fields are calculated from the numerical simulations and show the existence of a shear band under the wedge and that the pressure is nonhydrostatic. The strongest gradients in stress and shear occur at the base of the plow where the dissipation rate is therefore highest.
Is the boundary layer of an ionic liquid equally lubricating at higher temperature?
Hjalmarsson, Nicklas; Atkin, Rob; Rutland, Mark W
2016-04-07
Atomic force microscopy has been used to study the effect of temperature on normal forces and friction for the room temperature ionic liquid (IL) ethylammonium nitrate (EAN), confined between mica and a silica colloid probe at 25 °C, 50 °C, and 80 °C. Force curves revealed a strong fluid dynamic influence at room temperature, which was greatly reduced at elevated temperatures due to the reduced liquid viscosity. A fluid dynamic analysis reveals that bulk viscosity is manifested at large separation but that EAN displays a nonzero slip, indicating a region of different viscosity near the surface. At high temperatures, the reduction in fluid dynamic force reveals step-like force curves, similar to those found at room temperature using much lower scan rates. The ionic liquid boundary layer remains adsorbed to the solid surface even at high temperature, which provides a mechanism for lubrication when fluid dynamic lubrication is strongly reduced. The friction data reveals a decrease in absolute friction force with increasing temperature, which is associated with increased thermal motion and reduced viscosity of the near surface layers but, consistent with the normal force data, boundary layer lubrication was unaffected. The implications for ILs as lubricants are discussed in terms of the behaviour of this well characterised system.
Decoupling Principle Analysis and Development of a Parallel Three-Dimensional Force Sensor
Zhao, Yanzhi; Jiao, Leihao; Weng, Dacheng; Zhang, Dan; Zheng, Rencheng
2016-01-01
In the development of the multi-dimensional force sensor, dimension coupling is the ubiquitous factor restricting the improvement of the measurement accuracy. To effectively reduce the influence of dimension coupling on the parallel multi-dimensional force sensor, a novel parallel three-dimensional force sensor is proposed using a mechanical decoupling principle, and the influence of the friction on dimension coupling is effectively reduced by making the friction rolling instead of sliding friction. In this paper, the mathematical model is established by combining with the structure model of the parallel three-dimensional force sensor, and the modeling and analysis of mechanical decoupling are carried out. The coupling degree (ε) of the designed sensor is defined and calculated, and the calculation results show that the mechanical decoupling parallel structure of the sensor possesses good decoupling performance. A prototype of the parallel three-dimensional force sensor was developed, and FEM analysis was carried out. The load calibration and data acquisition experiment system are built, and then calibration experiments were done. According to the calibration experiments, the measurement accuracy is less than 2.86% and the coupling accuracy is less than 3.02%. The experimental results show that the sensor system possesses high measuring accuracy, which provides a basis for the applied research of the parallel multi-dimensional force sensor. PMID:27649194
On Heels and Toes: How Ants Climb with Adhesive Pads and Tarsal Friction Hair Arrays
Endlein, Thomas; Federle, Walter
2015-01-01
Ants are able to climb effortlessly on vertical and inverted smooth surfaces. When climbing, their feet touch the substrate not only with their pretarsal adhesive pads but also with dense arrays of fine hairs on the ventral side of the 3rd and 4th tarsal segments. To understand what role these different attachment structures play during locomotion, we analysed leg kinematics and recorded single-leg ground reaction forces in Weaver ants (Oecophylla smaragdina) climbing vertically on a smooth glass substrate. We found that the ants engaged different attachment structures depending on whether their feet were above or below their Centre of Mass (CoM). Legs above the CoM pulled and engaged the arolia (‘toes’), whereas legs below the CoM pushed with the 3rd and 4th tarsomeres (‘heels’) in surface contact. Legs above the CoM carried a significantly larger proportion of the body weight than legs below the CoM. Force measurements on individual ant tarsi showed that friction increased with normal load as a result of the bending and increasing side contact of the tarsal hairs. On a rough sandpaper substrate, the tarsal hairs generated higher friction forces in the pushing than in the pulling direction, whereas the reverse effect was found on the smooth substrate. When the tarsal hairs were pushed, buckling was observed for forces exceeding the shear forces found in climbing ants. Adhesion forces were small but not negligible, and higher on the smooth substrate. Our results indicate that the dense tarsal hair arrays produce friction forces when pressed against the substrate, and help the ants to push outwards during horizontal and vertical walking. PMID:26559941
On Heels and Toes: How Ants Climb with Adhesive Pads and Tarsal Friction Hair Arrays.
Endlein, Thomas; Federle, Walter
2015-01-01
Ants are able to climb effortlessly on vertical and inverted smooth surfaces. When climbing, their feet touch the substrate not only with their pretarsal adhesive pads but also with dense arrays of fine hairs on the ventral side of the 3rd and 4th tarsal segments. To understand what role these different attachment structures play during locomotion, we analysed leg kinematics and recorded single-leg ground reaction forces in Weaver ants (Oecophylla smaragdina) climbing vertically on a smooth glass substrate. We found that the ants engaged different attachment structures depending on whether their feet were above or below their Centre of Mass (CoM). Legs above the CoM pulled and engaged the arolia ('toes'), whereas legs below the CoM pushed with the 3rd and 4th tarsomeres ('heels') in surface contact. Legs above the CoM carried a significantly larger proportion of the body weight than legs below the CoM. Force measurements on individual ant tarsi showed that friction increased with normal load as a result of the bending and increasing side contact of the tarsal hairs. On a rough sandpaper substrate, the tarsal hairs generated higher friction forces in the pushing than in the pulling direction, whereas the reverse effect was found on the smooth substrate. When the tarsal hairs were pushed, buckling was observed for forces exceeding the shear forces found in climbing ants. Adhesion forces were small but not negligible, and higher on the smooth substrate. Our results indicate that the dense tarsal hair arrays produce friction forces when pressed against the substrate, and help the ants to push outwards during horizontal and vertical walking.
Nanoscale mechanochemical wear of phosphate laser glass against a CeO2 particle in humid air
NASA Astrophysics Data System (ADS)
Yu, Jiaxin; He, Hongtu; Zhang, Yafeng; Hu, Hailong
2017-01-01
Using an atomic force microscope, the friction and wear of phosphate laser glass against a CeO2 particle were quantitatively studied both in humid air and in vacuum, to reveal the water molecules induced mechanochemical wear mechanism of phosphate laser glass. The friction coefficient of the glass/CeO2 pair in air was found to be 5-7 times higher than that in vacuum due to the formation of a capillary water bridge at the friction interface, with a contribution of the capillary-related friction to the total friction coefficient as high as 65-79%. The capillary water bridge further induced a serious material removal of glass and CeO2 particle surfaces, while supplying both a local liquid water environment to corrode the glass surface and a high shearing force to assist the stretching of the Cesbnd Osbnd P bond, accelerating the reaction between water and the glass/CeO2 pair. In vacuum, however, no discernable wear phenomena were observed, but the phase images captured by AFM tapping mode suggested the occurrence of potential strain hardening in the friction area of the glass surface.
Tuning the nanotribological behaviors of single silver nanowire through various manipulations
NASA Astrophysics Data System (ADS)
Zeng, Xingzhong; Peng, Yitian; Lang, Haojie; Cao, Xing'an
2018-05-01
Nanotribological characteristics of silver nanowires (Ag NWs) are of great importance for the reliability of their applications where involving mechanical interactions. The frictional behaviors of the Ag NWs with different lengths on SiO2/Si substrate have been investigated directly by atomic force microscopy (AFM) nanomanipulation. The relatively short and long Ag NWs behave like the rigid rods and flexible beams, respectively, and the critical aspect ratio of NWs for the two cases is found to be about 20. The relatively short NWs demonstrates three forms of motion with different frictional behaviors. The friction of the relatively long NWs increases with the bend of the NWs. The long Ag NWs display extraordinary flexibility that can be folded to different shapes, and the folded NWs show a similar frictional behavior with the rigid rods. Different simplified mechanical models are established to match the frictional behaviors of the corresponding Ag NWs. The adhesion between the Ag NWs and substrate is calculated by an indirect method based on the van der Waals force equation to assess their adhesive attraction. These findings may provide insight into the frictional characteristics of Ag NWs and contribute to the quantitative interface design and control for their applications.
Bioinspired Surface for Surgical Graspers Based on the Strong Wet Friction of Tree Frog Toe Pads.
Chen, Huawei; Zhang, Liwen; Zhang, Deyuan; Zhang, Pengfei; Han, Zhiwu
2015-07-01
Soft tissue damage is often at risk during the use of a surgical grasper, because of the strong holding force required to prevent slipping of the soft tissue in wet surgical environments. Improvement of wet friction properties at the interface between the surgical grasper and soft tissue can greatly reduce the holding force required and, thus, the soft tissue damage. To design and fabricate a biomimetic microscale surface with strong wet friction, the wet attachment mechanism of tree frog toe pads was investigated by observing their epithelial cell structure and the directionally dependent friction on their toe pads. Using these observations as inspiration, novel surface micropatterns were proposed for the surface of surgical graspers. The wet friction of biomimetic surfaces with various types of polygon pillar patterns involving quadrangular pillars, triangular pillars, rhomboid pillars, and varied hexagonal pillars were tested. The hexagonal pillar pattern exhibited improved wet frictional performance over the modern surgical grasper jaw pattern, which has conventional macroscale teeth. Moreover, the deformation of soft tissue in the bioinspired surgical grasper with a hexagonal pillar pattern is decreased, compared with the conventional surgical grasper.
Particle interaction and rheological behavior of cement-based materials at micro- and macro-scales
NASA Astrophysics Data System (ADS)
Lomboy, Gilson Rescober
Rheology of cement based materials is controlled by the interactions at the particle level. The present study investigates the particle interactions and rheological properties of cement-based materials in the micro- and macro-scales. The cementitious materials studied are Portland cement (PC), fly ash (FA), ground granulated blast furnace slag (GGBFS) and densified silica fume (SF). At the micro-scale, aside from the forces on particles due to collisions, interactions of particles in a flowing system include the adhesion and friction. Adhesion is due to the attraction between materials and friction depends on the properties of the sliding surfaces. Atomic Force Microscopy (AFM) is used to measure the adhesion force and coefficient of friction. The adhesion force is measured by pull-off force measurements and is used to calculate Hamaker constants. The coefficient of friction is measured by increasing the deflection set-points on AFM probes with sliding particles, thereby increasing normal loads and friction force. AFM probes were commercial Si3N4 tips and cementitious particles attached to the tips of probe cantilevers. SF was not included in the micro-scale tests due to its limiting size when attaching it to the AFM probes. Other materials included in the tests were silica, calcite and mica, which were used for verification of the developed test method for the adhesion study. The AFM experiments were conducted in dry air and fluid environments at pH levels of 7, 8, 9, 11 and 13. The results in dry air indicate that the Hamaker constant of Class F FA can be similar to PC, but Class C FA can have a high Hamaker constant, also when in contact with other cementitious materials. The results in fluid environments showed low Hamaker constants for Class F fly ashes compared to PC and also showed high Hamaker constants for PC and Class C fly ash. The results for the friction test in dry air indicated that the coefficient of friction of PC is lower than fly ashes, which is attributed to the asperities present on the particle surface. At the macro-scale, flow of cementitious materials may be in its dry or wet state, during transport and handling or when it is used in concrete mixtures, respectively. Hence, the behavior of bulk cementitious materials in their dry state and wet form are studied. In the dry state, the compression, recompression and swell indices, and stiffness modulus of plain and blended cementitious materials are determined by confined uniaxial compression. The coefficients of friction of the bulk materials studied are determined by a direct shear test. The results indicate that shape of particles has a great influence on the compression and shear parameters. The indices for PC blends with FA do not change with FA replacement, while it increases with GGBFS replacement. Replacement with GGBFS slightly decreases coefficient of friction, while replacement with FA significantly decreases coefficient of friction. At low SF replacement, coefficient of friction decreases. In wet state, unary, binary, ternary and quaternary mixes with w/b of 0.35, 0.45 and 0.55 were tested for yield stress, viscosity and thixotropy. It is found that fly ash replacement lowers the rheological properties and replacement with GGBFS and SF increases rheological properties. The distinct element method (DEM) was employed to model particle interaction and bulk behavior. The AFM force curve measurement is simulated to validate the adhesion model in the DEM. The contact due to asperities was incorporated by considering the asperities as a percentage of the radius of the contacting particles. The results of the simulation matches the force-curve obtained from actual AFM experiments. The confined uniaxial compression test is simulated to verify the use of DEM to relate micro-scale properties to macros-scale behavior. The bulk stiffness from the physical experiments is matched in the DEM simulation. The particle stiffness and coefficient of friction are found to have a direct relation to bulk stiffness.
Kumar, B Sunil; Miryala, Suresh; Kumar, K Kiran; Shameem, K; Regalla, Ravindra Reddy
2014-09-01
The orthodontist seeks an archwire-bracket combination that has both good biocompatibility and low friction. Hence, the aim of this multicenter in vitro study was to evaluate and compare the frictional resistance generated between titanium (Ti), stainless steel (SS), ceramic and ceramic with metal insert (CMI) brackets with SS wires of varying dimensions in a specially designed apparatus. The material used in this study were Ti, SS, Ceramic and CMI with 0.018″ slot manufactured with zero degree tip and -7° torque premolar brackets (3M, Unitek) and SS wires of varying dimensions (0.016″ round, 0.016 × 0.016″ square, 0.016 × 0.022″ rectangular and 0.017 × 0.025″ rectangular) used. The frictional resistance was measured using Instron Universal testing machine (Model no. 4301). The specimen population in each center composed each of 160 brackets and wires. Differences among the all bracket/wire combinations were tested using (one-way) ANOVA, followed by the student Newman Keuls multiple comparisons of means ranking (at P < 0.05) for the determination of differences among the groups. Ti bracket in combination with 0.017 × 0.025″ SS rectangular wire produced significant force levels for an optimum orthodontic movement with least frictional resistance. Ti brackets have least resistance and rectangular wires produced significant force. These can be used to avoid hazards of Nickel. SS brackets revealed higher static frictional force values as the wire dimension increased and showed lower static friction than Ti brackets for all wires except the thicker wire. Our study recommends the preclusion of brackets with rough surface texture (Ti brackets) with SS ligature wire for ligating bracket and archwire are better to reduce friction.
NASA Astrophysics Data System (ADS)
Amjadian, Mohsen; Agrawal, Anil K.
2018-01-01
Friction is considered as one of the most reliable mechanisms of energy dissipation that has been utilized extensively in passive damping devices to mitigate vibration of civil engineering structures subjected to extreme natural hazards such as earthquakes and windstorms. However, passive friction dampers are well-known for having a highly nonlinear hysteretic behavior caused by stick-slip motion at low velocities, a phenomenon that is inherent in friction and increases the acceleration response of the structure under control unfavorably. The authors have recently proposed the theoretical concept of a new type of damping device termed as "Passive Electromagnetic Eddy Current Friction Damper" (PEMECFD) in which an eddy current damping mechanism was utilized not only to decrease the undesirable effects of stick-slip motion, but also to increase the energy dissipation capacity of the damping device as a whole. That study was focused on demonstration of the theoretical performance of the proposed damping device through numerical simulations. This paper further investigates the influence of eddy current damping on energy dissipation due to friction through modeling, design, and testing of a proof-of-concept prototype damper. The design of this damper has been improved over the design in the previous study. The normal force in this damper is produced by the repulsive magnetic force between two cuboidal permanent magnets (PMs) magnetized in the direction normal to the direction of the motion. The eddy current damping force is generated because of the motion of the two PMs and two additional PMs relative to a copper plate in their vicinity. The dynamic models for the force-displacement relationship of the prototype damper are based on LuGre friction model, electromagnetic theory, and inertial effects of the prototype damper. The parameters of the dynamic models have been identified through a series of characterization tests on the prototype damper under harmonic excitations of different frequencies in the laboratory. Finally, the identified dynamic models have been validated by subjecting the prototype damper to two different random excitations. The results indicate that the proposed dynamic models are capable of representing force-displacement behavior of the new type of passive damping device for a wide range of operating conditions.
Force microscopy of layering and friction in an ionic liquid
NASA Astrophysics Data System (ADS)
Hoth, Judith; Hausen, Florian; Müser, Martin H.; Bennewitz, Roland
2014-07-01
The mechanical properties of the ionic liquid 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl) trifluorophosphate ([Py1,4][FAP]) in confinement between a SiOx and a Au(1 1 1) surface are investigated by means of atomic force microscopy (AFM) under electrochemical control. Up to 12 layers of ion pairs can be detected through force measurements while approaching the tip of the AFM to the surface. The particular shape of the force versus distance curve is explained by a model for the interaction between tip, gold surface and ionic liquid, which assumes an exponentially decaying oscillatory force originating from bulk liquid density correlations. Jumps in the tip-sample distance upon approach correspond to jumps of the compliant force sensor between branches of the oscillatory force curve. Frictional force between the laterally moving tip and the surface is detected only after partial penetration of the last double layer between tip and surface.
The effect of friction in coulombian damper
NASA Astrophysics Data System (ADS)
Wahad, H. S.; Tudor, A.; Vlase, M.; Cerbu, N.; Subhi, K. A.
2017-02-01
The study aimed to analyze the damping phenomenon in a system with variable friction, Stribeck type. Shock absorbers with limit and dry friction, is called coulombian shock-absorbers. The physical damping vibration phenomenon, in equipment, is based on friction between the cushioning gasket and the output regulator of the shock-absorber. Friction between them can be dry, limit, mixture or fluid. The friction is depending on the contact pressure and lubricant presence. It is defined dimensionless form for the Striebeck curve (µ friction coefficient - sliding speed v). The friction may damp a vibratory movement or can maintain it (self-vibration), depending on the µ with v (it can increase / decrease or it can be relative constant). The solutions of differential equation of movement are obtained for some work condition of one damper for automatic washing machine. The friction force can transfer partial or total energy or generates excitation energy in damper. The damping efficiency is defined and is determined analytical for the constant friction coefficient and for the parabolic friction coefficient.
Farhoudi, Hamidreza; Oskouei, Reza H; Pasha Zanoosi, Ali A; Jones, Claire F; Taylor, Mark
2016-12-05
This study predicts the frictional moments at the head-cup interface and frictional torques and bending moments acting on the head-neck interface of a modular total hip replacement across a range of activities of daily living. The predicted moment and torque profiles are based on the kinematics of four patients and the implant characteristics of a metal-on-metal implant. Depending on the body weight and type of activity, the moments and torques had significant variations in both magnitude and direction over the activity cycles. For the nine investigated activities, the maximum magnitude of the frictional moment ranged from 2.6 to 7.1 Nm. The maximum magnitude of the torque acting on the head-neck interface ranged from 2.3 to 5.7 Nm. The bending moment acting on the head-neck interface varied from 7 to 21.6 Nm. One-leg-standing had the widest range of frictional torque on the head-neck interface (11 Nm) while normal walking had the smallest range (6.1 Nm). The widest range, together with the maximum magnitude of torque, bending moment, and frictional moment, occurred during one-leg-standing of the lightest patient. Most of the simulated activities resulted in frictional torques that were near the previously reported oxide layer depassivation threshold torque. The predicted bending moments were also found at a level believed to contribute to the oxide layer depassivation. The calculated magnitudes and directions of the moments, applied directly to the head-neck taper junction, provide realistic mechanical loading data for in vitro and computational studies on the mechanical behaviour and multi-axial fretting at the head-neck interface.
Farhoudi, Hamidreza; Oskouei, Reza H.; Pasha Zanoosi, Ali A.; Jones, Claire F.; Taylor, Mark
2016-01-01
This study predicts the frictional moments at the head-cup interface and frictional torques and bending moments acting on the head-neck interface of a modular total hip replacement across a range of activities of daily living. The predicted moment and torque profiles are based on the kinematics of four patients and the implant characteristics of a metal-on-metal implant. Depending on the body weight and type of activity, the moments and torques had significant variations in both magnitude and direction over the activity cycles. For the nine investigated activities, the maximum magnitude of the frictional moment ranged from 2.6 to 7.1 Nm. The maximum magnitude of the torque acting on the head-neck interface ranged from 2.3 to 5.7 Nm. The bending moment acting on the head-neck interface varied from 7 to 21.6 Nm. One-leg-standing had the widest range of frictional torque on the head-neck interface (11 Nm) while normal walking had the smallest range (6.1 Nm). The widest range, together with the maximum magnitude of torque, bending moment, and frictional moment, occurred during one-leg-standing of the lightest patient. Most of the simulated activities resulted in frictional torques that were near the previously reported oxide layer depassivation threshold torque. The predicted bending moments were also found at a level believed to contribute to the oxide layer depassivation. The calculated magnitudes and directions of the moments, applied directly to the head-neck taper junction, provide realistic mechanical loading data for in vitro and computational studies on the mechanical behaviour and multi-axial fretting at the head-neck interface. PMID:28774104
On kinetics of a dynamically unbalanced rotator with sliding friction in supports
NASA Astrophysics Data System (ADS)
Chistyakov, Viktor V.
2018-05-01
The dynamics is analytically and numerically modelled for both free and forced rotations of a rigid body around the central but non-principal vertical axis Oz under action of dry friction forces in plain bearings and heel supports in combination with other dissipative and conservative axial torques. The inertia forces due to D'Alembert principle cause the supports' reactions and hence the decelerating friction torque depending on not only angular speed but acceleration too. This dependence makes the dynamical equations not resolved with regard to the senior derivative and ambiguous, and being thus resolved they have an irrational or singular right hand side. This irrationality/singularity results in their featured solutions or paradoxical absence of those in frames of absolutely rigid body approach. The kinetics obtained is analyzed and compared with the standard ones of rotation under action of conservative elastic and drag torques.
Molecular-scale shear response of the organic semiconductor β -DBDCS (100) surface
NASA Astrophysics Data System (ADS)
Álvarez-Asencio, Rubén; Moreno-Ramírez, Jorge S.; Pimentel, Carlos; Casado, Santiago; Matta, Micaela; Gierschner, Johannes; Muccioli, Luca; Yoon, Seong-Jun; Varghese, Shinto; Park, Soo Young; Gnecco, Enrico; Pina, Carlos M.
2017-09-01
In this work we present friction-force microscopy (FFM) lattice-resolved images acquired on the (100) facet of the semiconductor organic oligomer (2 Z ,2'Z )-3 , 3' -(1,4-phenylene)bis(2-(4-butoxyphenyl)acrylonitrile) (β -DBDCS) crystal in water at room temperature. Stick-slip contrast, lateral contact stiffness, and friction forces are found to depend strongly on the sliding direction due to the anisotropic packing of the molecular chains forming the crystal surface along the [010] and [001] directions. The anisotropy also causes the maximum value of the normal force applicable before wearing to increase by a factor of 3 when the scan is performed along the [001] direction on the (100) face. Altogether, our results contribute to achieving a better understanding of the molecular origin of friction anisotropy on soft crystalline surfaces, which has been often hypothesized but rarely investigated in the literature.
NASA Astrophysics Data System (ADS)
Xie, Hongtao; Mead, James L.; Wang, Shiliang; Fatikow, Sergej; Huang, Han
2018-06-01
The adhesion and friction between two Al2O3 nanowires (NWs) was characterized by the use of optical microscopy based nanomanipulation, with which peeling, shearing and sliding was performed. The elastically deformed shape of the NWs during peeling and shearing was used to calculate the adhesion and frictional forces; force sensing was not required. The obtained adhesion stress between two Al2O3 NWs varied from 0.14 to 0.25 MPa, lower than that observed for carbon nanotube junctions, and was attributed to van der Waals attraction. Stick-slip was observed during the shearing and sliding of two NWs, and was the consequence of discrete contact between surface asperities. The obtained static and kinetic frictional stresses varied from 0.7 to 1.3 MPa and 0.4 to 0.8 MPa, respectively; significantly greater than the obtained adhesion stress.
Xie, Hongtao; Mead, James L; Wang, Shiliang; Fatikow, Sergej; Huang, Han
2018-06-01
The adhesion and friction between two Al 2 O 3 nanowires (NWs) was characterized by the use of optical microscopy based nanomanipulation, with which peeling, shearing and sliding was performed. The elastically deformed shape of the NWs during peeling and shearing was used to calculate the adhesion and frictional forces; force sensing was not required. The obtained adhesion stress between two Al 2 O 3 NWs varied from 0.14 to 0.25 MPa, lower than that observed for carbon nanotube junctions, and was attributed to van der Waals attraction. Stick-slip was observed during the shearing and sliding of two NWs, and was the consequence of discrete contact between surface asperities. The obtained static and kinetic frictional stresses varied from 0.7 to 1.3 MPa and 0.4 to 0.8 MPa, respectively; significantly greater than the obtained adhesion stress.
Frontal Impact of Rolling Spheres.
ERIC Educational Resources Information Center
Domenech, A.; Casasus, E.
1991-01-01
A model of the inelastic collision between two spheres rolling along a horizontal track is presented, taking into account the effects of frictional forces at impact. This experiment makes possible direct estimates of the coefficients of restitution and friction. (Author)
The evolving energy budget of accretionary wedges
NASA Astrophysics Data System (ADS)
McBeck, Jessica; Cooke, Michele; Maillot, Bertrand; Souloumiac, Pauline
2017-04-01
The energy budget of evolving accretionary systems reveals how deformational processes partition energy as faults slip, topography uplifts, and layer-parallel shortening produces distributed off-fault deformation. The energy budget provides a quantitative framework for evaluating the energetic contribution or consumption of diverse deformation mechanisms. We investigate energy partitioning in evolving accretionary prisms by synthesizing data from physical sand accretion experiments and numerical accretion simulations. We incorporate incremental strain fields and cumulative force measurements from two suites of experiments to design numerical simulations that represent accretionary wedges with stronger and weaker detachment faults. One suite of the physical experiments includes a basal glass bead layer and the other does not. Two physical experiments within each suite implement different boundary conditions (stable base versus moving base configuration). Synthesizing observations from the differing base configurations reduces the influence of sidewall friction because the force vector produced by sidewall friction points in opposite directions depending on whether the base is fixed or moving. With the numerical simulations, we calculate the energy budget at two stages of accretion: at the maximum force preceding the development of the first thrust pair, and at the minimum force following the development of the pair. To identify the appropriate combination of material and fault properties to apply in the simulations, we systematically vary the Young's modulus and the fault static and dynamic friction coefficients in numerical accretion simulations, and identify the set of parameters that minimizes the misfit between the normal force measured on the physical backwall and the numerically simulated force. Following this derivation of the appropriate material and fault properties, we calculate the components of the work budget in the numerical simulations and in the simulated increments of the physical experiments. The work budget components of the physical experiments are determined from backwall force measurements and incremental velocity fields calculated via digital image correlation. Comparison of the energy budget preceding and following the development of the first thrust pair quantifies the tradeoff of work done in distributed deformation and work expended in frictional slip due to the development of the first backthrust and forethrust. In both the numerical and physical experiments, after the pair develops internal work decreases at the expense of frictional work, which increases. Despite the increase in frictional work, the total external work of the system decreases, revealing that accretion faulting leads to gains in efficiency. Comparison of the energy budget of the accretion experiments and simulations with the strong and weak detachments indicate that when the detachment is strong, the total energy consumed in frictional sliding and internal deformation is larger than when the detachment is relatively weak.
Time- & Load-Dependence of Triboelectric Effect.
Pan, Shuaihang; Yin, Nian; Zhang, Zhinan
2018-02-06
Time- and load-dependent friction behavior is considered as important for a long time, due to its time-evolution and force-driving characteristics. However, its electronic behavior, mainly considered in triboelectric effect, has almost never been given the full attention and analyses from the above point of view. In this paper, by experimenting with fcc-latticed aluminum and copper friction pairs, the mechanical and electronic behaviors of friction contacts are correlated by time and load analyses, and the behind physical understanding is provided. Most importantly, the difference of "response lag" in force and electricity is discussed, the extreme points of coefficient of friction with the increasing normal loads are observed and explained with the surface properties and dynamical behaviors (i.e. wear), and the micro and macro theories linking tribo-electricity to normal load and wear (i.e. the physical explanation between coupled electrical and mechanical phenomena) are successfully developed and tested.
Friction enhancement in concertina locomotion of snakes
Marvi, Hamidreza; Hu, David L.
2012-01-01
Narrow crevices are challenging terrain for most organisms and biomimetic robots. Snakes move through crevices using sequential folding and unfolding of their bodies in the manner of an accordion or concertina. In this combined experimental and theoretical investigation, we elucidate this effective means of moving through channels. We measure the frictional properties of corn snakes, their body kinematics and the transverse forces they apply to channels of varying width and inclination. To climb channels inclined at 60°, we find snakes use a combination of ingenious friction-enhancing techniques, including digging their ventral scales to double their frictional coefficient and pushing channel walls transversely with up to nine times body weight. Theoretical modelling of a one-dimensional n-linked crawler is used to calculate the transverse force factor of safety: we find snakes push up to four times more than required to prevent sliding backwards, presumably trading metabolic energy for an assurance of wall stability. PMID:22728386
Friction enhancement in concertina locomotion of snakes.
Marvi, Hamidreza; Hu, David L
2012-11-07
Narrow crevices are challenging terrain for most organisms and biomimetic robots. Snakes move through crevices using sequential folding and unfolding of their bodies in the manner of an accordion or concertina. In this combined experimental and theoretical investigation, we elucidate this effective means of moving through channels. We measure the frictional properties of corn snakes, their body kinematics and the transverse forces they apply to channels of varying width and inclination. To climb channels inclined at 60°, we find snakes use a combination of ingenious friction-enhancing techniques, including digging their ventral scales to double their frictional coefficient and pushing channel walls transversely with up to nine times body weight. Theoretical modelling of a one-dimensional n-linked crawler is used to calculate the transverse force factor of safety: we find snakes push up to four times more than required to prevent sliding backwards, presumably trading metabolic energy for an assurance of wall stability.
Understanding cell passage through constricted microfluidic channels
NASA Astrophysics Data System (ADS)
Cartas-Ayala, Marco A.; Karnik, Rohit
2012-11-01
Recently, several microfluidic platforms have been proposed to characterize cells based on their behaviour during cell passage through constricted channels. Variables like transit time have been analyzed in disease states like sickle cell anemia, malaria and sepsis. Nevertheless, it is hard to make direct comparisons between different platforms and cell types. We present experimental results of the relationship between solid deformable particle properties, i.e. stiffness and relative particle size, and flow properties, i.e. particle's velocity. We measured the hydrodynamic variables during the flow of HL-60 cells, a white myeloid cell type, in narrow microfluidic square channels using a microfluidic differential manometer. We measured the flow force required to move cells of different sizes through microchannels and quantified friction forces opposing cell passage. We determined the non-dimensional parameters that influence the flow of cells and we used them to obtain a non dimensional expression that can be used to predict the forces needed to drive cells through microchannels. We found that the friction force needed to flow HL-60 through a microfluidic channel is the sum of two parts. The first part is a static friction force that is proportional to the force needed to keep the force compressed. The second part is a factor that is proportional to the cell velocity, hence a dynamic term, and slightly sensitive to the compressive force. We thank CONACYT (Mexican Science and Technology Council) for supporting this project, grant 205899.
Murphy, Ryan J.; Liu, Hao; Iordachita, Iulian I.; Armand, Mehran
2017-01-01
Dexterous continuum manipulators (DCMs) have been widely adopted for minimally- and less-invasive surgery. During the operation, these DCMs interact with surrounding anatomy actively or passively. The interaction force will inevitably affect the tip position and shape of DCMs, leading to potentially inaccurate control near critical anatomy. In this paper, we demonstrated a 2D mechanical model for a tendon actuated, notched DCM with compliant joints. The model predicted deformation of the DCM accurately in the presence of tendon force, friction force, and external force. A partition approach was proposed to describe the DCM as a series of interconnected rigid and flexible links. Beam mechanics, taking into consideration tendon interaction and external force on the tip and the body, was applied to obtain the deformation of each flexible link of the DCM. The model results were compared with experiments for free bending as well as bending in the presence of external forces acting at either the tip or body of the DCM. The overall mean error of tip position between model predictions and all of the experimental results was 0.62±0.41mm. The results suggest that the proposed model can effectively predict the shape of the DCM. PMID:28989273
NASA Technical Reports Server (NTRS)
Marshall, J.; Weislogel, M.; Jacobson, T.
1999-01-01
The bulk behavior of dispersed, fluidized, or undispersed stationary granular systems cannot be fully understood in terms of adhesive/cohesive properties without understanding the role of electrostatic forces acting at the level of the grains themselves. When grains adhere to a surface, or come in contact with one another in a stationary bulk mass, it is difficult to measure the forces acting on the grains, and the forces themselves that induced the cohesion and adhesion are changed. Even if a single gain were to be scrutinized in the laboratory, it might be difficult, perhaps impossible, to define the distribution and character of surface charging and the three- dimensional relationship that charges (electrons, holes) have to one another. The hypothesis that we propose to test in microgravity (for dielectric materials) is that adhesion and cohesion of granular matter are mediated primarily by dipole forces that do not require the presence of a net charge; in fact, nominally electrically neutral materials should express adhesive and cohesive behavior when the neutrality results from a balance of positive and negative charge carriers. Moreover, the use of net charge alone as a measure of the electrical nature of grain-to-grain relationships within a granular mass may be misleading. We believe that the dipole forces arise from the presence of randomly-distributed positive and negative fixed charge carriers on grains that give rise to a resultant dipole moment. These dipole forces have long-range attraction. Random charges are created whenever there is triboelectrical activity of a granular mass, that is, whenever the grains experience contact/separation sequences or friction. Electrostatic forces are generally under-estimated for their role in causing agglomeration of dispersed grains in particulate clouds, or their role in affecting the internal frictional relationships in packed granular masses. We believe that electrostatic, in particular dipole-mediated processes, are pervasive and probably affect, at some level, everything from astrophysical-scale granular systems such as interstellar nebulae, protoplanetary dust and debris disks, planetary-scale systems such as debris palls from meteorite impact, volcanic eruptions, and aeolian dust storms, all the way to industrial-scale systems in mining, powder and grain processing, pharmaceuticals, and smoke-stack technologies. NASA must concern itself with the electrostatic behavior of dust and sand on Mars because of its potentially critical importance to human exploration. The motion and adhesion of martian surface materials will affect the design and performance of spacesuits, habitats, processing plants, solar panels, and any externally exposed equipment such as surface rovers or communication and weather stations. Additionally, the adhesion of dust and sand could greatly enhance contact with the potentially toxic components of the martian soil.
Stability and tribological performances of fluid phospholipid bilayers: effect of buffer and ions.
Dekkiche, F; Corneci, M C; Trunfio-Sfarghiu, A-M; Munteanu, B; Berthier, Y; Kaabar, W; Rieu, J-P
2010-10-15
We have investigated the mechanical and tribological properties of supported Dioleoyl phosphatidylcholine (DOPC) bilayers in different solutions: ultrapure water (pH 5.5), saline solution (150 mM NaCl, pH 5.8), Tris buffer (pH 7.2) and Tris saline buffer (150 mM NaCl, pH 7.2). Friction forces are measured using a homemade biotribometer. Lipid bilayer degradation is controlled in situ during friction tests using fluorescence microscopy. Mechanical resistance to indentation is measured by force spectroscopy with an atomic force microscope. This study confirms that mechanical stability under shear or normal load is essential to obtain low and constant friction coefficients. In ultrapure water, bilayers are not resistant and have poor lubricant properties. On the other hand, in Tris saline buffer, they fully resist to indentation and exhibit low (micro=0.035) and stable friction coefficient with no visible wear during the 50 min of the friction test. The unbuffered saline solution improves the mechanical resistance to indentation but not the lubrication. These results suggest that the adsorption of ions to the zwiterrionic bilayers has different effects on the mechanical and tribological properties of bilayers: higher resistance to normal indentation due to an increase in bilayer cohesion, higher lubrication due to an increase in bilayer-bilayer repulsion. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Multiscaling behavior of atomic-scale friction
NASA Astrophysics Data System (ADS)
Jannesar, M.; Jamali, T.; Sadeghi, A.; Movahed, S. M. S.; Fesler, G.; Meyer, E.; Khoshnevisan, B.; Jafari, G. R.
2017-06-01
The scaling behavior of friction between rough surfaces is a well-known phenomenon. It might be asked whether such a scaling feature also exists for friction at an atomic scale despite the absence of roughness on atomically flat surfaces. Indeed, other types of fluctuations, e.g., thermal and instrumental fluctuations, become appreciable at this length scale and can lead to scaling behavior of the measured atomic-scale friction. We investigate this using the lateral force exerted on the tip of an atomic force microscope (AFM) when the tip is dragged over the clean NaCl (001) surface in ultra-high vacuum at room temperature. Here the focus is on the fluctuations of the lateral force profile rather than its saw-tooth trend; we first eliminate the trend using the singular value decomposition technique and then explore the scaling behavior of the detrended data, which contains only fluctuations, using the multifractal detrended fluctuation analysis. The results demonstrate a scaling behavior for the friction data ranging from 0.2 to 2 nm with the Hurst exponent H =0.61 ±0.02 at a 1 σ confidence interval. Moreover, the dependence of the generalized Hurst exponent, h (q ) , on the index variable q confirms the multifractal or multiscaling behavior of the nanofriction data. These results prove that fluctuation of nanofriction empirical data has a multifractal behavior which deviates from white noise.
Boundary layer friction of solvate ionic liquids as a function of potential.
Li, Hua; Rutland, Mark W; Watanabe, Masayoshi; Atkin, Rob
2017-07-01
Atomic force microscopy (AFM) has been used to investigate the potential dependent boundary layer friction at solvate ionic liquid (SIL)-highly ordered pyrolytic graphite (HOPG) and SIL-Au(111) interfaces. Friction trace and retrace loops of lithium tetraglyme bis(trifluoromethylsulfonyl)amide (Li(G4) TFSI) at HOPG present clearer stick-slip events at negative potentials than at positive potentials, indicating that a Li + cation layer adsorbed to the HOPG lattice at negative potentials which enhances stick-slip events. The boundary layer friction data for Li(G4) TFSI shows that at HOPG, friction forces at all potentials are low. The TFSI - anion rich boundary layer at positive potentials is more lubricating than the Li + cation rich boundary layer at negative potentials. These results suggest that boundary layers at all potentials are smooth and energy is predominantly dissipated via stick-slip events. In contrast, friction at Au(111) for Li(G4) TFSI is significantly higher at positive potentials than at negative potentials, which is comparable to that at HOPG at the same potential. The similarity of boundary layer friction at negatively charged HOPG and Au(111) surfaces indicates that the boundary layer compositions are similar and rich in Li + cations for both surfaces at negative potentials. However, at Au(111), the TFSI - rich boundary layer is less lubricating than the Li + rich boundary layer, which implies that anion reorientations rather than stick-slip events are the predominant energy dissipation pathways. This is confirmed by the boundary friction of Li(G4) NO 3 at Au(111), which shows similar friction to Li(G4) TFSI at negative potentials due to the same cation rich boundary layer composition, but even higher friction at positive potentials, due to higher energy dissipation in the NO 3 - rich boundary layer.
Frenzel, Melina; Steiner, Michael; Vogt, Martin; Kleemeier, Malte; Hartwig, Andreas; Sampalla, Benjamin; Rupp, Frank; Boley, Moritz; Schmitt, Christian
2017-01-01
ABSTRACT Two different measurement techniques were applied to study the attachment of the smooth foot pads of the Madagascar hissing cockroach Gromphadorhina portentosa. The attachment of the non-manipulated adhesive organs was compared with that of manipulated ones (depletion or substitution by artificial secretions). From measurements of the friction on a centrifuge, it can be concluded that on nanorough surfaces, the insect appears to benefit from employing emulsions instead of pure oils to avoid excessive friction. Measurements performed with a nanotribometer on single attachment organs showed that, in the non-manipulated euplantulae, friction was clearly increased in the push direction, whereas the arolium of the fore tarsus showed higher friction in the pull direction. The surface of the euplantulae shows an imbricate appearance, whereupon the ledges face distally, which might contribute to the observed frictional anisotropy in the push direction. Upon depletion of the tarsal adhesion-mediating secretion or its replacement by oily fluids, in several cases, the anisotropic effect of the euplantula disappeared due to the decrease of friction forces in push-direction. In the euplantulae, adhesion was one to two orders of magnitude lower than friction. Whereas the tenacity was slightly decreased with depleted secretion, it was considerably increased after artificial application of oily liquids. In terms of adhesion, it is concluded that the semi-solid consistence of the natural adhesion-mediating secretion facilitates the detachment of the tarsus during locomotion. In terms of friction, on smooth to nanorough surfaces, the insects appear to benefit from employing emulsions instead of pure oils to avoid excessive friction forces, whereas on rougher surfaces the tarsal fluid rather functions in improving surface contact by keeping the cuticle compliable and compensating surface asperities of the substratum. PMID:28507055
Modeling and calculation of impact friction caused by corner contact in gear transmission
NASA Astrophysics Data System (ADS)
Zhou, Changjiang; Chen, Siyu
2014-09-01
Corner contact in gear pair causes vibration and noise, which has attracted many attentions. However, teeth errors and deformation make it difficulty to determine the point situated at corner contact and study the mechanism of teeth impact friction in the current researches. Based on the mechanism of corner contact, the process of corner contact is divided into two stages of impact and scratch, and the calculation model including gear equivalent error—combined deformation is established along the line of action. According to the distributive law, gear equivalent error is synthesized by base pitch error, normal backlash and tooth profile modification on the line of action. The combined tooth compliance of the first point lying in corner contact before the normal path is inversed along the line of action, on basis of the theory of engagement and the curve of tooth synthetic compliance & load-history. Combined secondarily the equivalent error with the combined deflection, the position standard of the point situated at corner contact is probed. Then the impact positions and forces, from the beginning to the end during corner contact before the normal path, are calculated accurately. Due to the above results, the lash model during corner contact is founded, and the impact force and frictional coefficient are quantified. A numerical example is performed and the averaged impact friction coefficient based on the presented calculation method is validated. This research obtains the results which could be referenced to understand the complex mechanism of teeth impact friction and quantitative calculation of the friction force and coefficient, and to gear exact design for tribology.
Dispersion Forces and the Molecular Origin of Internal Friction in Protein.
Sashi, Pulikallu; Ramakrishna, Dasari; Bhuyan, Abani K
2016-08-23
Internal friction in macromolecules is one of the curious phenomena that control conformational changes and reaction rates. It is held here that dispersion interactions and London-van der Waals forces between nonbonded atoms are major contributors to internal friction. To demonstrate this, the flipping motion of aromatic rings of F10 and Y97 amino acid residues of cytochrome c has been studied in glycerol/water mixtures by cross relaxation-suppressed exchange nuclear magnetic resonance spectroscopy. The ring-flip rate is highly overdamped by glycerol, but this is not due to the effect of protein-solvent interactions on the Brownian dynamics of the protein, because glycerol cannot penetrate into the protein to slow the internal collective motions. Sound velocity in the protein under matching solvent conditions shows that glycerol exerts its effect by rather smothering the protein interior to produce reduced molecular compressibility and root-mean-square volume fluctuation (δVRMS), implying an increased number of dispersion interactions of nonbonded atoms. Hence, δVRMS can be used as a proxy for internal friction. By using the ansatz that internal friction is related to nonbonded interactions by the equation f(n) = f0 + f1n + f2n(2) + ..., where the variable n is the extent of nonbonded interactions with fi coefficients, the barrier to aromatic ring rotation is found to be flat. Also interesting is the appearance of a turnover region in the δVRMS dependence of the ring-flip rate, suggesting anomalous internal diffusion. We conclude that cohesive forces among nonbonded atoms are major contributors to the molecular origin of internal friction.
Friction coefficient and effective interference at the implant-bone interface.
Damm, Niklas B; Morlock, Michael M; Bishop, Nicholas E
2015-09-18
Although the contact pressure increases during implantation of a wedge-shaped implant, friction coefficients tend to be measured under constant contact pressure, as endorsed in standard procedures. Abrasion and plastic deformation of the bone during implantation are rarely reported, although they define the effective interference, by reducing the nominal interference between implant and bone cavity. In this study radial forces were analysed during simulated implantation and explantation of angled porous and polished implant surfaces against trabecular bone specimens, to determine the corresponding friction coefficients. Permanent deformation was also analysed to determine the effective interference after implantation. For the most porous surface tested, the friction coefficient initially increased with increasing normal contact stress during implantation and then decreased at higher contact stresses. For a less porous surface, the friction coefficient increased continually with normal contact stress during implantation but did not reach the peak magnitude measured for the rougher surface. Friction coefficients for the polished surface were independent of normal contact stress and much lower than for the porous surfaces. Friction coefficients were slightly lower for pull-out than for push-in for the porous surfaces but not for the polished surface. The effective interference was as little as 30% of the nominal interference for the porous surfaces. The determined variation in friction coefficient with radial contact force, as well as the loss of interference during implantation will enable a more accurate representation of implant press-fitting for simulations. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kim, J S; Sung, I H; Kim, Y T; Kim, D E; Jang, Y H
2007-11-01
For the purpose of optimizing the design of the locomotion mechanism as well as the body shape of a self-propelled capsule endoscope, an analytical model for the prediction of frictional resistance of the capsule moving inside the small intestine was first developed. The model was developed by considering the contact geometry and viscoelasticity of the intestine, based on the experimental investigations on the material properties of the intestine and the friction of the capsule inside the small intestine. In order to verify the model and to investigate the distributions of various stress components applied to the capsule, finite element (FE) analyses were carried out. The comparison of the frictional resistance between the predicted and the experimental values suggested that the proposed model could predict the frictional force of the capsule with reasonable accuracy. Also, the FE analysis results of various stress components revealed the stress relaxation of the intestine and explained that such stress relaxation characteristics of the intestine resulted in lower frictional force as the speed of the capsule decreased. These results suggested that the frontal shape of the capsule was critical to the design of the capsule with desired frictional performance. It was shown that the proposed model can provide quantitative estimation of the frictional resistance of the capsule under various moving conditions inside the intestine. The model is expected to be useful in the design optimization of the capsule locomotion inside the intestine.
Fragmentation dynamics of ionized neon clusters (Ne(n), n=3-14) embedded in helium nanodroplets.
Bonhommeau, David; Halberstadt, Nadine; Viel, Alexandra
2006-01-14
We report a theoretical study of the nonadiabatic fragmentation dynamics of ionized neon clusters embedded in helium nanodroplets for cluster sizes up to n=14 atoms. The dynamics of the neon atoms is modeled using the molecular dynamics with quantum transitions method of Tully [J. Chem. Phys. 93, 1061 (1990)] with the nuclei treated classically and transitions between electronic states quantum mechanically. The potential-energy surfaces are derived from a diatomics-in-molecules model to which induced dipole-induced dipole interactions are added. The effect of the spin-orbit interaction is also discussed. The helium environment is modeled by a friction force acting on charged atoms whose speed exceeds the critical Landau velocity. The dependence of the fragment size distribution on the friction strength and on the initial nanodroplet size is investigated. By comparing with the available experimental data obtained for Ne3+ and Ne4+, a reasonable value for the friction coefficient, the only parameter of the model, is deduced. This value is then used to predict the effect of the helium environment on the dissociation dynamics of larger neon clusters, n=5-14. The results show stabilization of larger fragments than in the gas phase, but fragmentation is not completely caged. In addition, two types of dynamics are characterized for Ne4+: fast and explosive, therefore leaving no time for friction to cool down the process when dynamics starts on one of the highest electronic states, and slower, therefore leading to some stabilization by helium when it starts on one of the lowest electronic states.
Constitutive and Stability Behavior of Soils in Microgravity Environment
NASA Technical Reports Server (NTRS)
Alshibli, Khalid A.; Sture, Stein; Costes, Nicholas
2000-01-01
All aspects of soil stability, bearing capacity, slope stability, the supporting capacity of deep foundations, and penetration resistance depend on soil strength. The stress-deformation and stress-deformation-time behavior of soils are of importance in any problem where ground movements are of interest. In most engineering materials, the strength is derived from internal chemical and physico-chemical forces of interaction, which bond the atoms, molecules, and particles together. In soils, the constitutive relations are mainly derived from interparticle friction between particles and particle groups and dilatancy, and to a lesser extent from particle bonding by weak electrostatic, physico-chemical, and coulomb forces. For engineering purposes, soils are classified as cohesive (clays and silts; typical particle sizes range from 10 nm to 10 micrometers) and cohesionless (sand and gravel; typical particle sizes range from 10 micrometers to 75 mm). The mechanical or constitutive properties of cohesionless soils or granular materials are highly fabric-dependent, highly non-linear, and non-conservative with engineering properties primarily depending on the effects of gravity through self-weight and on the tractions or forces applied to the soil mass. Under moderate-to-high stress levels, the influence of gravity on the behavior of laboratory test specimens may not be pronounced and, therefore, the test results in terrestrial (1-g) environment may be sufficiently conclusive. However at low interparticle stresses, which can result either from low applied (confining) stresses or from excess pore fluid pressures developed within the soil mass without corresponding changes in the applied stresses, the presence of gravitational body forces acting on solid particles and interstitial fluids exerts a pronounced influence on movement of individual particles or particle groups. Such motions, in turn, cause changes in soil fabric which results in significant changes in the interparticle friction forces contributing to the soil's strength and deformation characteristics.
NASA Astrophysics Data System (ADS)
Pahar, Gourabananda; Dhar, Anirban
2017-04-01
A coupled solenoidal Incompressible Smoothed Particle Hydrodynamics (ISPH) model is presented for simulation of sediment displacement in erodible bed. The coupled framework consists of two separate incompressible modules: (a) granular module, (b) fluid module. The granular module considers a friction based rheology model to calculate deviatoric stress components from pressure. The module is validated for Bagnold flow profile and two standardized test cases of sediment avalanching. The fluid module resolves fluid flow inside and outside porous domain. An interaction force pair containing fluid pressure, viscous term and drag force acts as a bridge between two different flow modules. The coupled model is validated against three dambreak flow cases with different initial conditions of movable bed. The simulated results are in good agreement with experimental data. A demonstrative case considering effect of granular column failure under full/partial submergence highlights the capability of the coupled model for application in generalized scenario.
Özyemişci-Cebeci, Nuran; Yavuzyilmaz, Hüsnü
2013-06-01
Methods to improve the retention of telescopic crowns, including the application of friction varnish and electroforming, are available. However, information about their efficiency is limited. The purpose of this study was to compare the influence of 2 different friction varnishes and an electroforming method on the retention of telescopic crowns. Thirty inner and outer crowns were fabricated from cobalt-chromium-molybdenum alloy having lengths and cervical diameters of 6 mm, 2-degree tapers, and shoulder margins of 1 mm. Fifty-μm thick layers were removed from the internal surfaces of the outer crowns with a vertical machining center to simulate wear. The retentive forces of these specimens were measured with a testing machine. FGP friction varnish (FGP Friction-Fit-System), SD friction varnish (Servo-dental), and an electroforming method (GES\\Gold Electroforming System) were applied to the specimens. After the application of the 3 methods, retention values were measured, and the results analyzed with 1-way ANOVA, paired sample t test (α=.05). The increase in the retentive forces of all specimens was statistically significant (P<.01). The mean retentive forces increased from 3.6 N to 9.8 N for group FGP, 3.6 N to 4.6 N for group SD, and 3.7 N to 6.0 N for group EF. Group FGP was significantly different from group SD and group EF (P<.05), and no significant difference was observed between group SD and group EF. Mean standard deviation values of retentive forces for group FGP before, FGP after, SD before, SD after, EF before and EF after is 0.5, 2.7, 0.6, 1.3, 0.8, 2.3, respectively. Group FGP showed the maximum retention values. Group EF showed higher retention values than group SD. Copyright © 2013 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.
Pasha, Azam; Vishwakarma, Swati; Narayan, Anjali; Vinay, K; Shetty, Smitha V; Roy, Partha Pratim
2015-09-01
Fixed orthodontic mechanotherapy is associated with friction between the bracket - wire - ligature interfaces during the sliding mechanics. A sound knowledge of the various factors affecting the magnitude of friction is of paramount importance. The present study was done to analyze and compare the frictional forces generated by a new ceramic (Clarity Advanced) bracket with the conventional, (metal and ceramic) brackets using unconventional and conventional ligation system, and the self-ligating (metal and ceramic) brackets in the dry condition. The various bracket wire ligation combinations were tested in dry condition. The brackets used were of 0.022″ × 0.028″ nominal slot dimension of MBT prescription: Stainless steel (SS) self-ligating bracket (SLB) of (SmartClip), SS Conventional bracket (CB) (Victory series), Ceramic SLB (Clarity SL), Conventional Ceramic bracket with metal slot (Clarity Bracket), Clarity Advanced Ceramic Brackets (Clarity(™) ADVANCED, 3M Unitek). These brackets were used with two types of elastomeric ligatures: Conventional Elastomeric Ligatures (CEL) (Clear medium mini modules) and Unconventional Elastomeric Ligatures (UEL) (Clear medium slide ligatures, Leone orthodontic products). The aligning and the retraction wires were used, i.e., 0.014″ nickel titanium (NiTi) wires and 0.019″ × 0.025″ SS wires, respectively. A universal strength testing machine was used to measure the friction produced between the different bracket, archwires, and ligation combination. This was done with the use of a custom-made jig being in position. Mean, standard deviation, and range were computed for the frictional values obtained. Results were subjected to statistical analysis through ANOVA. The frictional resistance observed in the new Clarity Advanced bracket with a conventional elastomeric ligature was almost similar with the Clarity metal slot bracket with a conventional elastomeric ligature. When using the UEL, the Clarity Advanced bracket produced lesser friction than the conventional metal bracket; but not less than the ceramic metal slot bracket. Ceramic SLB produced lesser friction when compared with the Clarity Advanced bracket with UEL, but the metal SLB produced the least friction among all the groups and subgroups. The present study concluded that the SS SLB produced least friction among all groups. Using the archwire and ligation method, frictional forces observed in the Clarity Advanced bracket and the conventional ceramic with metal slot bracket were almost similar; but the least resistance was determined in SS CB using both the ligation (CEL and UEL) system.
Chirality-dependent friction of bulk molecular solids.
Yang, Dian; Cohen, Adam E
2014-08-26
We show that the solid-solid friction between bulk chiral molecular solids can depend on the relative chirality of the two materials. In menthol and 1-phenyl-1-butanol, heterochiral friction is smaller than homochiral friction, while in ibuprofen, heterochiral friction is larger. Chiral asymmetries in the coefficient of sliding friction vary with temperature and can be as large as 30%. In the three compounds tested, the sign of the difference between heterochiral and homochiral friction correlated with the sign of the difference in melting point between racemate (compound or conglomerate) and pure enantiomer. Menthol and ibuprofen each form a stable racemic compound, while 1-phenyl-1-butanol forms a racemic conglomerate. Thus, a difference between heterochiral and homochiral friction does not require the formation of a stable interfacial racemic compound. Measurements of chirality-dependent friction provide a unique means to distinguish the role of short-range intermolecular forces from all other sources of dissipation in the friction of bulk molecular solids.
General theory of frictional heating with application to rubber friction
NASA Astrophysics Data System (ADS)
Fortunato, G.; Ciaravola, V.; Furno, A.; Lorenz, B.; Persson, B. N. J.
2015-05-01
The energy dissipation in the contact regions between solids in sliding contact can result in high local temperatures which may strongly effect friction and wear. This is the case for rubber sliding on road surfaces at speeds above 1 mm s-1. We derive equations which describe the frictional heating for solids with arbitrary thermal properties. The theory is applied to rubber friction on road surfaces and we take into account that the frictional energy is partly produced inside the rubber due to the internal friction of rubber and in a thin (nanometer) interfacial layer at the rubber-road contact region. The heat transfer between the rubber and the road surface is described by a heat transfer coefficient which depends on the sliding speed. Numerical results are presented and compared to experimental data. We find that frictional heating results in a kinetic friction force which depends on the orientation of the sliding block, thus violating one of the two basic Leonardo da Vinci ‘laws’ of friction.
General theory of frictional heating with application to rubber friction.
Fortunato, G; Ciaravola, V; Furno, A; Lorenz, B; Persson, B N J
2015-05-08
The energy dissipation in the contact regions between solids in sliding contact can result in high local temperatures which may strongly effect friction and wear. This is the case for rubber sliding on road surfaces at speeds above 1 mm s(-1). We derive equations which describe the frictional heating for solids with arbitrary thermal properties. The theory is applied to rubber friction on road surfaces and we take into account that the frictional energy is partly produced inside the rubber due to the internal friction of rubber and in a thin (nanometer) interfacial layer at the rubber-road contact region. The heat transfer between the rubber and the road surface is described by a heat transfer coefficient which depends on the sliding speed. Numerical results are presented and compared to experimental data. We find that frictional heating results in a kinetic friction force which depends on the orientation of the sliding block, thus violating one of the two basic Leonardo da Vinci 'laws' of friction.
A hierarchical estimator development for estimation of tire-road friction coefficient
Zhang, Xudong; Göhlich, Dietmar
2017-01-01
The effect of vehicle active safety systems is subject to the friction force arising from the contact of tires and the road surface. Therefore, an adequate knowledge of the tire-road friction coefficient is of great importance to achieve a good performance of these control systems. This paper presents a tire-road friction coefficient estimation method for an advanced vehicle configuration, four-motorized-wheel electric vehicles, in which the longitudinal tire force is easily obtained. A hierarchical structure is adopted for the proposed estimation design. An upper estimator is developed based on unscented Kalman filter to estimate vehicle state information, while a hybrid estimation method is applied as the lower estimator to identify the tire-road friction coefficient using general regression neural network (GRNN) and Bayes' theorem. GRNN aims at detecting road friction coefficient under small excitations, which are the most common situations in daily driving. GRNN is able to accurately create a mapping from input parameters to the friction coefficient, avoiding storing an entire complex tire model. As for large excitations, the estimation algorithm is based on Bayes' theorem and a simplified “magic formula” tire model. The integrated estimation method is established by the combination of the above-mentioned estimators. Finally, the simulations based on a high-fidelity CarSim vehicle model are carried out on different road surfaces and driving maneuvers to verify the effectiveness of the proposed estimation method. PMID:28178332
A hierarchical estimator development for estimation of tire-road friction coefficient.
Zhang, Xudong; Göhlich, Dietmar
2017-01-01
The effect of vehicle active safety systems is subject to the friction force arising from the contact of tires and the road surface. Therefore, an adequate knowledge of the tire-road friction coefficient is of great importance to achieve a good performance of these control systems. This paper presents a tire-road friction coefficient estimation method for an advanced vehicle configuration, four-motorized-wheel electric vehicles, in which the longitudinal tire force is easily obtained. A hierarchical structure is adopted for the proposed estimation design. An upper estimator is developed based on unscented Kalman filter to estimate vehicle state information, while a hybrid estimation method is applied as the lower estimator to identify the tire-road friction coefficient using general regression neural network (GRNN) and Bayes' theorem. GRNN aims at detecting road friction coefficient under small excitations, which are the most common situations in daily driving. GRNN is able to accurately create a mapping from input parameters to the friction coefficient, avoiding storing an entire complex tire model. As for large excitations, the estimation algorithm is based on Bayes' theorem and a simplified "magic formula" tire model. The integrated estimation method is established by the combination of the above-mentioned estimators. Finally, the simulations based on a high-fidelity CarSim vehicle model are carried out on different road surfaces and driving maneuvers to verify the effectiveness of the proposed estimation method.
Zhao, Tieshi; Zhao, Yanzhi; Hu, Qiangqiang; Ding, Shixing
2017-01-01
The measurement of large forces and the presence of errors due to dimensional coupling are significant challenges for multi-dimensional force sensors. To address these challenges, this paper proposes an over-constrained six-dimensional force sensor based on a parallel mechanism of steel ball structures as a measurement module. The steel ball structure can be subject to rolling friction instead of sliding friction, thus reducing the influence of friction. However, because the structure can only withstand unidirectional pressure, the application of steel balls in a six-dimensional force sensor is difficult. Accordingly, a new design of the sensor measurement structure was designed in this study. The static equilibrium and displacement compatibility equations of the sensor prototype’s over-constrained structure were established to obtain the transformation function, from which the forces in the measurement branches of the proposed sensor were then analytically derived. The sensor’s measurement characteristics were then analysed through numerical examples. Finally, these measurement characteristics were confirmed through calibration and application experiments. The measurement accuracy of the proposed sensor was determined to be 1.28%, with a maximum coupling error of 1.98%, indicating that the proposed sensor successfully overcomes the issues related to steel ball structures and provides sufficient accuracy. PMID:28867812
Advances and challenges in periodic forcing of the turbulent boundary layer on a body of revolution
NASA Astrophysics Data System (ADS)
Kornilov, V. I.; Boiko, A. V.
2018-04-01
The effectiveness of local forcing by periodic blowing/suction through a thin transverse slot to alter the properties of an incompressible turbulent boundary layer is considered. In the first part of the review the effectiveness of the forcing through a single slot is discussed. Analysis of approaches for experimental modeling of the forcing, including those on flat plate, is given. Some ambiguities in simulating such flows are reviewed. The main factors affecting the structure of the forced flow are analyzed. In the second part the effectiveness of the forcing on a body of revolution by periodic blowing/suction through a series of transverse annular slots is discussed. The focus is the structure, properties, and main regularities of the forced flows in a wide range of variable conditions and basic parameters such as the Reynolds number, the dimensionless amplitude of the forced signal, and the frequency of the forced signal. The effect of the forcing on skin-friction in the turbulent boundary layer is clearly revealed. A phase synchronism of blowing/suction using an independent control of the forcing through the slots provides an additional skin friction reduction at distances up to 5-6 boundary layer displacement thicknesses upstream of an annular slot. The local skin friction reduction under the effect of periodic blowing/suction is stipulated by a dominating influence of an unsteady coherent vortex formed in the boundary layer, the vortex propagating downstream promoting a shift of low-velocity fluid further from the wall, a formation of a retarded region at the wall, and hence, a thickening of the viscous sublayer.
A Split Forcing Technique to Reduce Log-layer Mismatch in Wall-modeled Turbulent Channel Flows
NASA Astrophysics Data System (ADS)
Deleon, Rey; Senocak, Inanc
2016-11-01
The conventional approach to sustain a flow field in a periodic channel flow seems to be the culprit behind the log-law mismatch problem that has been reported in many studies hybridizing Reynolds-averaged Navier-Stokes (RANS) and large-eddy simulation (LES) techniques, commonly referred to as hybrid RANS-LES. To address this issue, we propose a split-forcing approach that relies only on the conservation of mass principle. We adopt a basic hybrid RANS-LES technique on a coarse mesh with wall-stress boundary conditions to simulate turbulent channel flows at friction Reynolds numbers of 2000 and 5200 and demonstrate good agreement with benchmark data. We also report a duality in velocity scale that is a specific consequence of the split forcing framework applied to hybrid RANS-LES. The first scale is the friction velocity derived from the wall shear stress. The second scale arises in the core LES region, a value different than at the wall. Second-order turbulence statistics agree well with the benchmark data when normalized by the core friction velocity, whereas the friction velocity at the wall remains the appropriate scale for the mean velocity profile. Based on our findings, we suggest reevaluating more sophisticated hybrid RANS-LES approaches within the split-forcing framework. Work funded by National Science Foundation under Grant No. 1056110 and 1229709. First author acknowledges the University of Idaho President's Doctoral Scholars Award.
The kinetic friction of ZnO nanowires on amorphous SiO2 and SiN substrates
NASA Astrophysics Data System (ADS)
Roy, Aditi; Xie, Hongtao; Wang, Shiliang; Huang, Han
2016-12-01
ZnO nanowires were bent on amorphous SiO2 and SiN substrates in an ambient atmosphere using optical nanomanipulation. The kinetic friction between the nanowires and substrate was determined from the bent shape of the nanowires. The kinetic friction force per unit area, i.e. frictional shear stress, for the ZnO/SiO2 and ZnO/SiN nanowire/substrate systems being measured were 1.05 ± 0.28 and 2.08 ± 0.33 MPa, respectively. The surface roughness and the Hamaker constant of SiO2 and SiN substrates had significant effect on the frictional stresses.
Controlling Force and Depth in Friction Stir Welding
NASA Technical Reports Server (NTRS)
Adams, Glynn; Loftus, Zachary; McCormac, Nathan; Venable, Richard
2005-01-01
Feedback control of the penetration force applied to a pin tool in friction stir welding has been found to be a robust and reliable means for controlling the depth of penetration of the tool. This discovery has made it possible to simplify depth control and to weld with greater repeatability, even on workpieces with long weld joints. Prior to this discovery, depths of penetration in friction stir welding were controlled by hard-tooled roller assemblies or by depth actuators controlled by feedback from such external sensors as linear variable-differential transformers or laser-based devices. These means of control are limited: A hard-tooled roller assembly confines a pin tool to a preset depth that cannot be changed easily during the welding process. A measurement by an external sensor is only an indirect indicative of the depth of penetration, and computations to correlate such a measurement with a depth of penetration are vulnerable to error. The present force-feedback approach exploits the proportionality between the depth and the force of penetration Unlike a depth measurement taken by an external sensor, a force measurement can be direct because it can be taken by a sensor coupled directly to the pin tool. The reading can be processed through a modern electronic servo control system to control an actuator to keep the applied penetration force at the desired level. In comparison with the older depth-control methods described above, this method offers greater sensitivity to plasticizing of the workpiece metal and is less sensitive to process noise, resulting in a more consistent process. In an experiment, a tapered panel was friction stir welded while controlling the force of penetration according to this method. The figure is a plot of measurements taken during the experiment, showing that force was controlled with a variation of 200 lb (890 N), resulting in control of the depth of penetration with a variation of 0.004 in. (0.1 mm).
Farhoudi, Hamidreza; Fallahnezhad, Khosro; Oskouei, Reza H; Taylor, Mark
2017-11-01
This paper investigates the mechanical response of a modular head-neck interface of hip joint implants under realistic loads of level walking. The realistic loads of the walking activity consist of three dimensional gait forces and the associated frictional moments. These forces and moments were extracted for a 32mm metal-on-metal bearing couple. A previously reported geometry of a modular CoCr/CoCr head-neck interface with a proximal contact was used for this investigation. An explicit finite element analysis was performed to investigate the interface mechanical responses. To study the level of contribution and also the effect of superposition of the load components, three different scenarios of loading were studied: gait forces only, frictional moments only, and combined gait forces and frictional moments. Stress field, micro-motions, shear stresses and fretting work at the contacting nodes of the interface were analysed. Gait forces only were found to significantly influence the mechanical environment of the head-neck interface by temporarily extending the contacting area (8.43% of initially non-contacting surface nodes temporarily came into contact), and therefore changing the stress field and resultant micro-motions during the gait cycle. The frictional moments only did not cause considerable changes in the mechanical response of the interface (only 0.27% of the non-contacting surface nodes temporarily came into contact). However, when superposed with the gait forces, the mechanical response of the interface, particularly micro-motions and fretting work, changed compared to the forces only case. The normal contact stresses and micro-motions obtained from this realistic load-controlled study were typically in the range of 0-275MPa and 0-38µm, respectively. These ranges were found comparable to previous experimental displacement-controlled pin/cylinder-on-disk fretting corrosion studies. Copyright © 2017 Elsevier Ltd. All rights reserved.
Aqueous Lubrication, Structure and Rheological Properties of Whey Protein Microgel Particles.
Sarkar, Anwesha; Kanti, Farah; Gulotta, Alessandro; Murray, Brent S; Zhang, Shuying
2017-12-26
Aqueous lubrication has emerged as an active research area in recent years due to its prevalence in nature in biotribological contacts and its enormous technological soft-matter applications. In this study, we designed aqueous dispersions of biocompatible whey-protein microgel particles (WPM) (10-80 vol %) cross-linked via disulfide bonding and focused on understanding their rheological, structural and biotribological properties (smooth polydimethylsiloxane (PDMS) contacts, R a < 50 nm, ball-on-disk set up). The WPM particles (D h = 380 nm) displayed shear-thinning behavior and good lubricating performance in the plateau boundary as well as the mixed lubrication regimes. The WPM particles facilitated lubrication between bare hydrophobic PDMS surfaces (water contact angle 108°), leading to a 10-fold reduction in boundary friction force with increased volume fraction (ϕ ≥ 65%), largely attributed to the close packing-mediated layer of particles between the asperity contacts acting as "true surface-separators", hydrophobic moieties of WPM binding to the nonpolar surfaces, and particles employing a rolling mechanism analogous to "ball bearings", the latter supported by negligible change in size and microstructure of the WPM particles after tribology. An ultralow boundary friction coefficient, μ ≤ 0.03 was achieved using WPM between O 2 plasma-treated hydrophilic PDMS contacts coated with bovine submaxillary mucin (water contact angle 47°), and electron micrographs revealed that the WPM particles spread effectively as a layer of particles even at low ϕ∼ 10%, forming a lubricating load-bearing film that prevented the two surfaces from true adhesive contact. However, above an optimum volume fraction, μ increased in HL+BSM surfaces due to the interpenetration of particles that possibly impeded effective rolling, explaining the slight increase in friction. These effects are reflected in the highly shear thinning nature of the WPM dispersions themselves plus the tendency for the apparent viscosity to fall as dispersions are forced to very high volume fractions. The present work demonstrates a novel approach for providing ultralow friction in soft polymeric surfaces using proteinaceous microgel particles that satisfy both load bearing and kinematic requirements. These findings hold great potential for designing biocompatible particles for aqueous lubrication in numerous soft matter applications.
NASA Astrophysics Data System (ADS)
Cross, Rod
2018-03-01
Experimental and theoretical results are presented concerning the rise of a spinning egg. It was found that an egg rises quickly while it is sliding and then more slowly when it starts rolling. The angular momentum of the egg projected in the XZ plane changed in the same direction as the friction torque, as expected, by rotating away from the vertical Z axis. The latter result does not explain the rise. However, an even larger effect arises from the Y component of the angular momentum vector. As the egg rises, the egg rotates about the Y axis, an effect that is closely analogous to rotation of the egg about the Z axis. Both effects can be described in terms of precession about the respective axes. Steady precession about the Z axis arises from the normal reaction force in the Z direction, while precession about the Y axis arises from the friction force in the Y direction. Precession about the Z axis ceases if the normal reaction force decreases to zero, and precession about the Y axis ceases if the friction force decreases to zero.
Foam on troubled water: Capillary induced finite-time arrest of sloshing waves
NASA Astrophysics Data System (ADS)
Viola, Francesco; Brun, P.-T.; Dollet, Benjamin; Gallaire, François
2016-09-01
Interfacial forces exceed gravitational forces on a scale small relative to the capillary length—two millimeters in the case of an air-water interface—and therefore dominate the physics of sub-millimetric systems. They are of paramount importance for various biological taxa and engineering processes where the motion of a liquid meniscus induces a viscous frictional force that exhibits a sublinear dependence in the meniscus velocity, i.e., a power law with an exponent smaller than one. Interested in the fundamental implications of this dependence, we use a liquid-foam sloshing system as a prototype to exacerbate the effect of sublinear friction on the macroscopic mechanics of multi-phase flows. In contrast to classical theory, we uncover the existence of a finite-time singularity in our system yielding the arrest of the fluid's oscillations. We propose a minimal theoretical framework to capture this effect, thereby amending the paradigmatic damped harmonic oscillator model. Our results suggest that, although often not considered at the macroscale, sublinear capillary forces govern the friction at liquid-solid and liquid-liquid interfaces.
The influence of heel height on utilized coefficient of friction during walking.
Blanchette, Mark G; Brault, John R; Powers, Christopher M
2011-05-01
Wearing high heel shoes has been associated with an increased potential for slips and falls. The association between wearing high heels and the increased potential for slipping suggests that the friction demand while wearing high heels may be greater when compared to wearing low heel shoes. The purpose of this study was to determine if heel height affects utilized friction (uCOF) during walking. A secondary purpose of this study was to compare kinematics at the ankle, knee, and hip that may explain uCOF differences among shoes with varied heel heights. Fifteen healthy women (mean age 24.5±2.5yrs) participated. Subjects walked at self-selected velocity under 3 different shoe conditions that varied in heel height (low: 1.27cm, medium: 6.35cm, and high: 9.53cm). Ground reaction forces (GRFs) were recorded using a force platform (1560Hz). Kinematic data were obtained using an 8 camera motion analysis system (120Hz). Utilized friction was calculated as the ratio of resultant shear force to vertical force. One-way repeated measures ANOVAs were performed to test for differences in peak uCOF, GRFs at peak uCOF and lower extremity joint angles at peak uCOF. On average, peak uCOF was found to increase with heel height. The increased uCOF observed in high heel shoes was related to an increase in the resultant shear force and decrease in the vertical force. Our results signify the need for proper public education and increased footwear industry awareness of how high heel shoes affect slip risk. Copyright © 2011 Elsevier B.V. All rights reserved.
The Conveyor Belt Problem and Newton's Third Law.
ERIC Educational Resources Information Center
Stewart, Maurice Bruce
1989-01-01
Shows how the thermal power developed by friction is exactly half the supplied power in the general case of a variable force of friction. Investigates the mechanism whereby one-half the input energy is dissipated as heat using mathematical expressions. (YP)
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-12
... that the friction welding of the pipe to the tool joint occurs in the UAE instead of the PRC. The... merchandise before the assembly performed by Almansoori/Hilong in the UAE, which consists of friction welding... Petitioners argue that for the purposes of section 781(b)(1)(C) of the Act, the process of friction welding...
Experimental research on anchoring force in intestine for the motion of capsule robot.
Chen, Wenwen; Ke, Quan; He, Shu; Luo, Weijie; Ji, Xing Chun; Yan, Guozheng
2013-07-01
Multiple research groups are currently attempting to develop less-invasive robotic capsule endoscopes (RCEs) with better outcomes for enteroscopic procedures. Understanding the biomechanical response of the bowel to RCE is crucial for optimizing the design of these devices. For this reason, this study aims to develop an analytical model to predict the anchoring force of the model when travelling through the intestine. Previous work has developed, characterized and tested the frictional characteristics of the intestine with microgroove structures that had different surface contours. This work tested basic anchoring force characteristics with custom-built testers and clamping mechanism dummies to analyse the robot clamping movement (which is vital to improving movement efficiency). Balloon-shaped and leg-based clamping mechanisms were developed, which were found to have variable anchoring forces from 0.01 N to 1.2 N. After analysing the experimental results it was found that: (a) robot weight does not play a major role in anchoring force; (b) an increase in anchoring force corresponded to an increase in diameter of the clamping mechanism; and (c) textured contact surfaces effectively increased friction. These results could be explained by the biomechanical response of the intestine, friction and mucoadhesion characteristics of the small intestine material. With these factors considered, a model was developed for determining anchoring force in the small intestine.
Hall, R M; Unsworth, A
1997-08-01
Although the reduction of frictional torques was the driving force behind the design of the Charnley prosthesis, later concerns about wear and subsequent loosening of this and other hip replacements have dominated debate within the bioengineering community. To stimulate discussion on the role of friction in loosening, a review of the frictional characteristics of different prostheses was undertaken. The use of simple laboratory screening-type machines in the frictional assessment of different material combinations is discussed together with experiments performed on single axis simulators using both conventional and experimental prostheses. In particular, recent developments in the use of soft layer components are highlighted. Further, the possible link between excessively high frictional torques and loosening is discussed in the light of current results obtained from explanted prostheses.
Friction behavior of ceramic injection-molded (CIM) brackets.
Reimann, Susanne; Bourauel, Christoph; Weber, Anna; Dirk, Cornelius; Lietz, Thomas
2016-07-01
Bracket material, bracket design, archwire material, and ligature type are critical modifiers of friction behavior during archwire-guided movement of teeth. We designed this in vitro study to compare the friction losses of ceramic injection-molded (CIM) versus pressed-ceramic (PC) and metal injection-molded (MIM) brackets-used with different ligatures and archwires-during archwire-guided retraction of a canine. Nine bracket systems were compared, including five CIM (Clarity™ and Clarity™ ADVANCED, both by 3M Unitek; discovery(®) pearl by Dentaurum; Glam by Forestadent; InVu by TP Orthodontics), two PC (Inspire Ice by Ormco; Mystique by DENTSPLY GAC), and two MIM (discovery(®) and discovery(®) smart, both by Dentaurum) systems. All of these were combined with archwires made of either stainless steel or fiberglass-reinforced resin (remanium(®) ideal arch or Translucent pearl ideal arch, both by Dentaurum) and with elastic ligatures or uncoated or coated stainless steel (all by Dentaurum). Archwire-guided retraction of a canine was simulated with a force of 0.5 N in the orthodontic measurement and simulation system (OMSS). Friction loss was determined by subtracting the effective orthodontic forces from the applied forces. Based on five repeated measurements performed on five brackets each, weighted means were calculated and evaluated by analysis of variance and a Bonferroni post hoc test with a significance level of 0.05. Friction losses were significantly (p < 0.05) higher (58-79 versus 20-30 %) for the combinations involving the steel versus the resin archwire in conjunction with the elastic ligature. The uncoated steel ligatures were associated with the lowest friction losses with Clarity™ (13 %) and discovery(®) pearl (16 %) on the resin archwire and the highest friction losses with Clarity™ ADVANCED (53 %) and Mystique (63 %) on the steel archwire. The coated steel ligatures were associated with friction losses similar to the uncoated steel ligatures on the steel archwire. Regardless of ligature types, mild signs of abrasion were noted on the resin archwire. The lowest friction losses were measured with rounded ceramic brackets used with a stainless-steel ligature and the resin archwire. No critical difference to friction behavior was apparent between the various manufacturing technologies behind the bracket systems.
Force sensing of multiple-DOF cable-driven instruments for minimally invasive robotic surgery.
He, Chao; Wang, Shuxin; Sang, Hongqiang; Li, Jinhua; Zhang, Linan
2014-09-01
Force sensing for robotic surgery is limited by the size of the instrument, friction and sterilization requirements. This paper presents a force-sensing instrument to avoid these restrictions. Operating forces were calculated according to cable tension. Mathematical models of the force-sensing system were established. A force-sensing instrument was designed and fabricated. A signal collection and processing system was constructed. The presented approach can avoid the constraints of space limits, sterilization requirements and friction introduced by the transmission parts behind the instrument wrist. Test results showed that the developed instrument has a 0.03 N signal noise, a 0.05 N drift, a 0.04 N resolution and a maximum error of 0.4 N. The validation experiment indicated that the operating and grasping forces can be effectively sensed. The developed force-sensing system can be used in minimally invasive robotic surgery to construct a force-feedback system. Copyright © 2013 John Wiley & Sons, Ltd.
Nanolubricant: magnetic nanoparticle based
NASA Astrophysics Data System (ADS)
Trivedi, Kinjal; Parekh, Kinnari; Upadhyay, Ramesh V.
2017-11-01
In the present study magnetic nanoparticles of Fe3O4 having average particle diameter, 11.7 nm were synthesized using chemical coprecipitation technique and dispersed in alpha olefin hydrocarbon synthetic lubricating oil. The solid weight fraction of magnetic nanoparticles in the lubricating oil was varied from 0 wt% to 10 wt%. The tribological properties were studied using four-ball tester. The results demonstrate that the coefficient of friction and wear scar diameter reduces by 45% and 30%, respectively at an optimal value, i.e. 4 wt% of magnetic nanoparticles concentration. The surface characterization of worn surface was carried out using a scanning electron microscope, and energy dispersive spectroscopy. These results implied that rolling mechanism is responsible to reduce coefficient of friction while magnetic nanoparticles act as the spacer between the asperities and reduces the wear scar diameter. The surface roughness of the worn surface studied using an atomic force microscope shows a reduction in surface roughness by a factor of four when magnetic nanoparticles are used as an additive. The positive response of magnetic nanoparticles in a lubricating oil, shows the potential replacement of conventional lubricating oil.
Design, development and applications of novel techniques for studying surface mechanical properties
NASA Technical Reports Server (NTRS)
Miyoshi, Kazuhisa
1989-01-01
Research is reviewed for the adhesion, friction, and micromechanical properties of materials and examples of the results presented. The ceramic and metallic materials studied include silicon carbide, aluminum oxide, and iron-base amorphous alloys. The design and operation of a torsion balance adapted for study of adhesion from the Cavendish balance are discussed first. The pull-off force (adhesion) and shear force (friction) required to break the interfacial junctions between contacting surfaces of the materials were examined at various temperatures in a vacuum. The surface chemistry of the materials was analyzed by X-ray photoelectron spectroscopy. Properties and environmental conditions of the surface regions which affect adhesion and friction-such as surface segregation, composition, crystal structure, surface chemistry, and temperature were also studied.
Quantum friction in two-dimensional topological materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farias, M. Belén; Kort-Kamp, Wilton J. M.; Dalvit, Diego A. R.
In this paper, we develop the theory of quantum friction in two-dimensional topological materials. The quantum drag force on a metallic nanoparticle moving above such systems is sensitive to the nontrivial topology of their electronic phases, shows a novel distance scaling law, and can be manipulated through doping or via the application of external fields. We use the developed framework to investigate quantum friction due to the quantum Hall effect in magnetic field biased graphene, and to topological phase transitions in the graphene family materials. Finally, it is shown that topologically nontrivial states in two-dimensional materials enable an increase ofmore » two orders of magnitude in the quantum drag force with respect to conventional neutral graphene systems.« less
Quantum friction in two-dimensional topological materials
Farias, M. Belén; Kort-Kamp, Wilton J. M.; Dalvit, Diego A. R.
2018-04-24
In this paper, we develop the theory of quantum friction in two-dimensional topological materials. The quantum drag force on a metallic nanoparticle moving above such systems is sensitive to the nontrivial topology of their electronic phases, shows a novel distance scaling law, and can be manipulated through doping or via the application of external fields. We use the developed framework to investigate quantum friction due to the quantum Hall effect in magnetic field biased graphene, and to topological phase transitions in the graphene family materials. Finally, it is shown that topologically nontrivial states in two-dimensional materials enable an increase ofmore » two orders of magnitude in the quantum drag force with respect to conventional neutral graphene systems.« less
The Azimuthally Averaged Boundary Layer Structure of a Numerically Simulated Major Hurricane
2015-08-14
layer in which the effects of sur- face friction are associated with significant departures from gradient wind balance. The boundary layer in the... effects of surface friction are associated with significant departures from gradient wind balance. More specifically, we follow Key Points: The...comprises a balance between three horizontal forces: Coriolis , pressure gradient, and friction. The boundary layer flow is characterized by a large Reynolds
Interfacial friction and adhesion of cross-linked polymer thin films swollen with linear chains.
Zhang, Qing; Archer, Lynden A
2007-07-03
The preparation and interfacial properties of a new type of tethered, thin-film lubricant coating are presented. These coatings are composed of three components: a dense self-assembled monolayer (SAM) underlayer that presents reactive vinyl groups at its surface; a cross-linked polydimethylsiloxane (PDMS) overlayer that is covalently tethered to the SAM; and free, mobile linear PDMS chains dispersed in the network. We investigate the influence of the molecular weight (Ms) and concentration of the free PDMS chains on the structure and equilibrium swelling properties of the cross-linked films. Using a bead-probe lateral force microscopy measurement technique, we also quantify the interfacial friction and adhesion characteristics of surfaces functionalized with these coatings. We find that both the volume fraction and the molecular weight of free PDMS molecules in the coatings influence their interfacial friction and adhesion properties. For example, the addition of short PDMS chains in dry, cross-linked PDMS thin films yields tethered surface coatings with ultralow friction coefficients (mu = 5.2 x 10(-3)). An analysis based on classical lubrication theory suggests that the reduction in friction force produced by free polymer is a consequence of the gradual separation of asperities on opposing surfaces and the consequent substitution of solid-solid friction by viscous drag of the free polymer chains in the network.
Adhesion-dependent negative friction coefficient on chemically modified graphite at the nanoscale
NASA Astrophysics Data System (ADS)
Deng, Zhao; Smolyanitsky, Alex; Li, Qunyang; Feng, Xi-Qiao; Cannara, Rachel J.
2012-12-01
From the early tribological studies of Leonardo da Vinci to Amontons’ law, friction has been shown to increase with increasing normal load. This trend continues to hold at the nanoscale, where friction can vary nonlinearly with normal load. Here we present nanoscale friction force microscopy (FFM) experiments for a nanoscale probe tip sliding on a chemically modified graphite surface in an atomic force microscope (AFM). Our results demonstrate that, when adhesion between the AFM tip and surface is enhanced relative to the exfoliation energy of graphite, friction can increase as the load decreases under tip retraction. This leads to the emergence of an effectively negative coefficient of friction in the low-load regime. We show that the magnitude of this coefficient depends on the ratio of tip-sample adhesion to the exfoliation energy of graphite. Through both atomistic- and continuum-based simulations, we attribute this unusual phenomenon to a reversible partial delamination of the topmost atomic layers, which then mimic few- to single-layer graphene. Lifting of these layers with the AFM tip leads to greater deformability of the surface with decreasing applied load. This discovery suggests that the lamellar nature of graphite yields nanoscale tribological properties outside the predictive capacity of existing continuum mechanical models.
Micromachine friction test apparatus
deBoer, Maarten P.; Redmond, James M.; Michalske, Terry A.
2002-01-01
A microelectromechanical (MEM) friction test apparatus is disclosed for determining static or dynamic friction in MEM devices. The friction test apparatus, formed by surface micromachining, is based on a friction pad supported at one end of a cantilevered beam, with the friction pad overlying a contact pad formed on the substrate. A first electrostatic actuator can be used to bring a lower surface of the friction pad into contact with an upper surface of the contact pad with a controlled and adjustable force of contact. A second electrostatic actuator can then be used to bend the cantilevered beam, thereby shortening its length and generating a relative motion between the two contacting surfaces. The displacement of the cantilevered beam can be measured optically and used to determine the static or dynamic friction, including frictional losses and the coefficient of friction between the surfaces. The test apparatus can also be used to assess the reliability of rubbing surfaces in MEM devices by producing and measuring wear of those surfaces. Finally, the friction test apparatus, which is small in size, can be used as an in situ process quality tool for improving the fabrication of MEM devices.
Sridharan, K; Sandbhor, Shailesh; Rajasekaran, U B; Sam, George; Ramees, M Mohamed; Abraham, Esther A
2017-08-01
The purpose of this research is to compare the frictional attributes of stainless steel conventional brackets and self-ligating stainless steel brackets with different dimensions of archwires. The test was carried with two sets of maxillary brackets: (1) Conventional stainless steel (Victory Series), (2) stainless steel self-ligating (SmartClip) without first premolar brackets. Stainless steel, nickel-titanium (NiTi), and beta-Ti which are the types of orthodontic wire alloys were tested in this study. To monitor the frictional force, a universal testing machine (Instron 33R 4467) that comprises 10 kg tension load cell was assigned on a range of 1 kg and determined from 0 to 2 kg, which allows moving of an archwire along the brackets. One-way analysis of variance was used to test the difference between groups. To analyze the statistical difference between the two groups, Student's t-test was used. For Victory Series in static friction, p-value was 0.946 and for kinetic friction it was 0.944; at the same time for SmartClip, the p value for static and kinetic frictional resistance was 0.497 and 0.518 respectively. Hence, there was no statistically significant difference between the NiTi and stainless steel archwires. It is concluded that when compared with conventional brackets with stainless steel ligatures, self-ligating brackets can produce significantly less friction during sliding. Beta-Ti archwires expressed high amount of frictional resistance and the stainless steel archwires comprise low frictional resistance among all the archwire materials. In orthodontics, frictional resistance has always had a major role. Its ability to impair tooth movement leads to the need for higher forces to move the teeth and it extends the treatment time which results in loss of posterior anchorage. Friction in orthodontics is related with sliding mechanics when a wire is moving through one or a series of bracket slots.
Badetti, Michel; Fall, Abdoulaye; Chevoir, François; Roux, Jean-Noël
2018-05-28
Rheometric measurements on assemblies of wet polystyrene beads, in steady uniform quasistatic shear flow, for varying liquid content within the small saturation (pendular) range of isolated liquid bridges, are supplemented with a systematic study by discrete numerical simulations. The numerical results agree quantitatively with the experimental ones provided that the intergranular friction coefficient is set to the value [Formula: see text], identified from the behaviour of the dry material. Shear resistance and solid fraction [Formula: see text] are recorded as functions of the reduced pressure [Formula: see text], which, defined as [Formula: see text], compares stress [Formula: see text], applied in the velocity gradient direction, to the tensile strength [Formula: see text] of the capillary bridges between grains of diameter a, and characterizes cohesion effects. The simplest Mohr-Coulomb relation with [Formula: see text]-independent cohesion c applies as a good approximation for large enough [Formula: see text] (typically [Formula: see text]. Numerical simulations extend to different values of μ and, compared to experiments, to a wider range of [Formula: see text]. The assumption that capillary stresses act similarly to externally applied ones onto the dry granular contact network (effective stresses) leads to very good (although not exact) predictions of the shear strength, throughout the numerically investigated range [Formula: see text] and [Formula: see text]. Thus, the internal friction coefficient [Formula: see text] of the dry material still relates the contact force contribution to stresses, [Formula: see text], while the capillary force contribution to stresses, [Formula: see text], defines a generalized Mohr-Coulomb cohesion c, depending on [Formula: see text] in general. c relates to [Formula: see text] , coordination numbers and capillary force network anisotropy. c increases with liquid content through the pendular regime interval, to a larger extent, the smaller the friction coefficient. The simple approximation ignoring capillary shear stress [Formula: see text] (referred to as the Rumpf formula) leads to correct approximations for the larger saturation range within the pendular regime, but fails to capture the decrease of cohesion for smaller liquid contents.
Hydrophilic guidewires: evaluation and comparison of their properties and safety.
Torricelli, Fabio Cesar Miranda; De, Shubha; Sarkissian, Carl; Monga, Manoj
2013-11-01
To compare physical and mechanical properties of 10 commercially available hydrophilic guidewires. In vitro testing was performed to evaluate 10 different straight hydrophilic guidewires (5 regular and 5 stiff wires): Glidewire, NiCore, EZ Glider, Hiwire, and Zipwire. The forces required for tip perforation, tip bending, shaft bending, and friction during movement were measured for all 10 wires. The tip contour was measured using high power light microscopy. The Glidewire required the greatest force to perforate our model (P = .01). The EZ Glider, Zipwire, and Glidewire had the lowest tip bending forces (P <.001). The Glidewire had the stiffest shaft (P <.001). The EZ Glider and Glidewire required the greatest forces in the friction test (P <.001). Regarding the stiff guidewires, the GlidewireS required the greatest force in the perforation test (P ≤.05). The GlidewireS and EZ GliderS required the lowest tip bending force (P ≤.004). The ZipwireS and NiCoreS had the stiffest shafts (P ≤.01). The GlidewireS required the greatest force in the friction test (P <.001). Measurement of the tip contour showed the Zipwire, HiwireS, and EZ GliderS had the roundest tips. Each wire has unique properties with advantages and disadvantages. The Glidewires (both stiff and regular) have the lowest potential for perforation, although they are less slippery. The Glidewire and EZ Glider required the least tip force to bend around a point of obstruction. Copyright © 2013 Elsevier Inc. All rights reserved.
The vacuum friction paradox and related puzzles
NASA Astrophysics Data System (ADS)
Barnett, Stephen M.; Sonnleitner, Matthias
2018-04-01
The frequency of light emitted by a moving source is shifted by a factor proportional to its velocity. We find that this Doppler shift requires the existence of a paradoxical effect: that a moving atom radiating in otherwise empty space feels a net or average force acing against its direction motion and proportional in magnitude to is speed. Yet there is no preferred rest frame, either in relativity or in Newtonian mechanics, so how can there be a vacuum friction force?
Will a Decaying Atom Feel a Friction Force?
Sonnleitner, Matthias; Trautmann, Nils; Barnett, Stephen M
2017-02-03
We show how a simple calculation leads to the surprising result that an excited two-level atom moving through a vacuum sees a tiny friction force of first order in v/c. At first sight this seems to be in obvious contradiction to other calculations showing that the interaction with the vacuum does not change the velocity of an atom. It is even more surprising that this change in the atom's momentum turns out to be a necessary result of energy and momentum conservation in special relativity.
Surface topography, hardness, and frictional properties of GFRP for esthetic orthodontic wires.
Inami, Toshihiro; Tanimoto, Yasuhiro; Yamaguchi, Masaru; Shibata, Yo; Nishiyama, Norihiro; Kasai, Kazutaka
2016-01-01
In our previous study, glass-fiber-reinforced plastics (GFRPs) made from polycarbonate and glass fiber for esthetic orthodontic wires were prepared by using pultrusion. The purpose of the present study was to investigate the surface topography, hardness, and frictional properties of GFRPs. To investigate how fiber diameter affects surface properties, GFRP round wires with a diameter of 0.45 mm (0.018 in.) were prepared incorporating either 13 μm (GFRP-13) or 7 μm (GFRP-7) glass fibers. As controls, stainless steel (SS), cobalt-chromium-nickel alloy, β-titanium (β-Ti) alloy, and nickel-titanium (Ni-Ti) alloy were also evaluated. Under scanning electron microscopy and scanning probe microscopy, the β-Ti samples exhibited greater surface roughness than the other metallic wires and the GFRP wires. The dynamic hardness and elastic modulus of GFRP wires obtained by the dynamic micro-indentation method were much lower than those of metallic wires (p < 0.05). Frictional forces against the polymeric composite brackets of GFRP-13 and GFRP-7 were 3.45 ± 0.49 and 3.60 ± 0.38 N, respectively; frictional forces against the ceramic brackets of GFRP-13 and GFRP-7 were 3.39 ± 0.58 and 3.87 ± 0.48 N, respectively. For both bracket types, frictional forces of GFRP wires and Ni-Ti wire were nearly half as low as those of SS, Co-Cr, and β-Ti wires. In conclusion, there was no significant difference in surface properties between GFRP-13 and GFRP-7; presumably because both share the same polycarbonate matrix. We expect that GFRP wires will deliver superior sliding mechanics with low frictional resistance between the wire and bracket during orthodontic treatment. © 2015 Wiley Periodicals, Inc.
3D printed cat tongue is a self-cleaning, tangle-teasing brush
NASA Astrophysics Data System (ADS)
Noel, Alexis; Hu, David
A cat's tongue is covered in an array of spines called papillae. These spines are thought to be used in grooming and rasping meat from bones of prey, although no mechanism has been given. We use high-speed video to film a cat grooming. We show that the spines on the tongue act as low pass filters for tangles in hair. The tongue itself is highly elastic, while the spines are rigid. We 3D print a cat tongue mimic and show that the nonlinear force applied by the spines helps to increase efficacy of grooming. The tongue also provides frictional anisotropy with backward-facing spines, allowing for self-cleaning properties post-groom.
The role of adsorbed water on the friction of a layer of submicron particles
Sammis, Charles G.; Lockner, David A.; Reches, Ze’ev
2011-01-01
Anomalously low values of friction observed in layers of submicron particles deformed in simple shear at high slip velocities are explained as the consequence of a one nanometer thick layer of water adsorbed on the particles. The observed transition from normal friction with an apparent coefficient near μ = 0.6 at low slip speeds to a coefficient near μ = 0.3 at higher slip speeds is attributed to competition between the time required to extrude the water layer from between neighboring particles in a force chain and the average lifetime of the chain. At low slip speeds the time required for extrusion is less than the average lifetime of a chain so the particles make contact and lock. As slip speed increases, the average lifetime of a chain decreases until it is less than the extrusion time and the particles in a force chain never come into direct contact. If the adsorbed water layer enables the otherwise rough particles to rotate, the coefficient of friction will drop to μ = 0.3, appropriate for rotating spheres. At the highest slip speeds particle temperatures rise above 100°C, the water layer vaporizes, the particles contact and lock, and the coefficient of friction rises to μ = 0.6. The observed onset of weakening at slip speeds near 0.001 m/s is consistent with the measured viscosity of a 1 nm thick layer of adsorbed water, with a minimum particle radius of approximately 20 nm, and with reasonable assumptions about the distribution of force chains guided by experimental observation. The reduction of friction and the range of velocities over which it occurs decrease with increasing normal stress, as predicted by the model. Moreover, the analysis predicts that this high-speed weakening mechanism should operate only for particles with radii smaller than approximately 1 μm. For larger particles the slip speed required for weakening is so large that frictional heating will evaporate the adsorbed water and weakening will not occur.
NASA Astrophysics Data System (ADS)
Pimenov, S. M.; Zavedeev, E. V.; Arutyunyan, N. R.; Zilova, O. S.; Shupegin, M. L.; Jaeggi, B.; Neuenschwander, B.
2017-10-01
Laser surface micropatterning (texturing) of hard materials and coatings is an effective technique to improve tribological systems. In the paper, we have investigated the laser-induced surface modifications and micropatterning of diamond-like nanocomposite (DLN) films (a-C:H,Si:O) using IR and visible femtosecond (fs) lasers, focusing on the improvement of frictional properties of laser-patterned films on the micro and macroscale. The IR and visible fs-lasers, operating at λ = 1030 nm and λ = 515 nm wavelengths (pulse duration 320 fs and pulse repetition rate 101 kHz), are used to fabricate different patterns for subsequent friction tests. The IR fs-laser is applied to produce hill-like micropatterns under conditions of surface graphitization and incipient ablation, and the visible fs-laser is used for making microgroove patterns in DLN films under ablation conditions. Regimes of irradiation with low-energy IR laser pulses are chosen to produce graphitized micropatterns. For these regimes, results of numerical calculations of the temperature and graphitized layer growth are presented to show good correlation with surface relief modifications, and the features of fs-laser graphitization are discussed based on Raman spectroscopy analysis. Using lateral force microscopy, the role of surface modifications (graphitization, nanostructuring) in the improved microfriction properties is investigated. New data of the influence of capillary forces on friction forces, which strongly changes the microscale friction behaviour, are presented for a wide range of loads (from nN to μN) applied to Si tips. In macroscopic ball-on-disk tests, a pair-dependent friction behaviour of laser-patterned films is observed. The first experimental data of the improved friction properties of laser-micropatterned DLN films under boundary lubricated sliding conditions are presented. The obtained results show the DLN films as an interesting coating material suitable for laser patterning applications in tribology.
Graphical representation of robot grasping quality measures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varma, V.; Tasch, U.
1993-11-01
When an object is held by a multi-fingered hand, the values of the contact forces can be multivalued. An objective function, when used in conjunction with the frictional and geometric constraints of the grasp, can however, give a unique set of finger force values. The selection of the objective function in determining the finger forces is dependent on the type of grasp required, the material properties of the object, and the limitations of the robot fingers. In this paper several optimization functions are studied and their merits highlighted. A graphical representation of the finger force values and the objective functionmore » is introduced that enable one in selecting and comparing various grasping configurations. The impending motion of the object at different torque and finger force values are determined by observing the normalized coefficient of friction plots.« less
Computer simulation of earthquakes
NASA Technical Reports Server (NTRS)
Cohen, S. C.
1976-01-01
Two computer simulation models of earthquakes were studied for the dependence of the pattern of events on the model assumptions and input parameters. Both models represent the seismically active region by mechanical blocks which are connected to one another and to a driving plate. The blocks slide on a friction surface. In the first model elastic forces were employed and time independent friction to simulate main shock events. The size, length, and time and place of event occurrence were influenced strongly by the magnitude and degree of homogeniety in the elastic and friction parameters of the fault region. Periodically reoccurring similar events were frequently observed in simulations with near homogeneous parameters along the fault, whereas, seismic gaps were a common feature of simulations employing large variations in the fault parameters. The second model incorporated viscoelastic forces and time-dependent friction to account for aftershock sequences. The periods between aftershock events increased with time and the aftershock region was confined to that which moved in the main event.
Molecular resolution friction microscopy of Cu phthalocyanine thin films on dolomite (104) in water
NASA Astrophysics Data System (ADS)
Nita, Paweł; Pimentel, Carlos; Luo, Feng; Milián-Medina, Begoña; Gierschner, Johannes; Pina, Carlos M.; Gnecco, Enrico
2014-06-01
The reliability of ultrathin organic layers as active components for molecular electronic devices depends ultimately on an accurate characterization of the layer morphology and ability to withstand mechanical stresses on the nanoscale. To this end, since the molecular layers need to be electrically decoupled using thick insulating substrates, the use of AFM becomes mandatory. Here, we show how friction force microscopy (FFM) in water allows us to identify the orientation of copper(ii)phthalocyanine (CuPc) molecules previously self-assembled on a dolomite (104) mineral surface in ultra-high vacuum. The molecular features observed in the friction images show that the CuPc molecules are stacked in parallel rows with no preferential orientation with respect to the dolomite lattice, while the stacking features resemble well the single CuPc crystal structure. This proves that the substrate induction is low and makes friction force microscopy in water a suitable alternative to more demanding dynamic AFM techniques in ultra-high vacuum.
Molecular resolution friction microscopy of Cu phthalocyanine thin films on dolomite (104) in water.
Nita, Paweł; Pimentel, Carlos; Luo, Feng; Milián-Medina, Begoña; Gierschner, Johannes; Pina, Carlos M; Gnecco, Enrico
2014-07-21
The reliability of ultrathin organic layers as active components for molecular electronic devices depends ultimately on an accurate characterization of the layer morphology and ability to withstand mechanical stresses on the nanoscale. To this end, since the molecular layers need to be electrically decoupled using thick insulating substrates, the use of AFM becomes mandatory. Here, we show how friction force microscopy (FFM) in water allows us to identify the orientation of copper(ii)phthalocyanine (CuPc) molecules previously self-assembled on a dolomite (104) mineral surface in ultra-high vacuum. The molecular features observed in the friction images show that the CuPc molecules are stacked in parallel rows with no preferential orientation with respect to the dolomite lattice, while the stacking features resemble well the single CuPc crystal structure. This proves that the substrate induction is low and makes friction force microscopy in water a suitable alternative to more demanding dynamic AFM techniques in ultra-high vacuum.
Meniscus formation in a capillary and the role of contact line friction.
Andrukh, Taras; Monaenkova, Daria; Rubin, Binyamin; Lee, Wah-Keat; Kornev, Konstantin G
2014-01-28
We studied spontaneous formation of an internal meniscus by dipping glass capillaries of 25 μm to 350 μm radii into low volatile hexadecane and tributyl phosphate. X-ray phase contrast and high speed optical microscopy imaging were employed. We showed that the meniscus completes its formation when the liquid column is still shorter than the capillary radius. After that, the meniscus travels about ten capillary radii at a constant velocity. We demonstrated that the experimental observations can be explained by introducing a friction force linearly proportional to the meniscus velocity with a friction coefficient depending on the air/liquid/solid triplet. It was demonstrated that the friction coefficient does not depend on the capillary radius. Numerical solution of the force balance equation revealed four different uptake regimes that can be specified in a phase portrait. This phase portrait was found to be in good agreement with the experimental results and can be used as a guide for the design of thin porous absorbers.