Science.gov

Sample records for friction torque studies

  1. Molecular dynamics simulation study of friction force and torque on a rough spherical particle.

    PubMed

    Kohale, Swapnil C; Khare, Rajesh

    2010-06-21

    Recent developments in techniques of micro- and nanofluidics have led to an increased interest in nanoscale hydrodynamics in confined geometries. In our previous study [S. C. Kohale and R. Khare, J. Chem. Phys. 129, 164706 (2008)], we analyzed the friction force experienced by a smooth spherical particle that is translating in a fluid confined between parallel plates. The magnitude of three effects--velocity slip at particle surface, the presence of confining surfaces, and the cooperative hydrodynamic interactions between periodic images of the moving particle--that determine the friction force was quantified in that work using molecular dynamics simulations. In this work, we have studied the motion of a rough spherical particle in a confined geometry. Specifically, the friction force experienced by a translating particle and the torque experienced by a rotating particle are studied using molecular dynamics simulations. Our results demonstrate that the surface roughness of the particle significantly reduces the slip at the particle surface, thus leading to higher values of the friction force and hence a better agreement with the continuum predictions. The particle size dependence of the friction force and the torque values is shown to be consistent with the expectations from the continuum theory. As was observed for the smooth sphere, the cooperative hydrodynamic interactions between the images of the sphere have a significant effect on the value of the friction force experienced by the translating sphere. On the other hand, the torque experienced by a spherical particle that is rotating at the channel center is insensitive to this effect.

  2. Instantaneous engine frictional torque, its components and piston assembly friction

    SciTech Connect

    Nichols, F.A. ); Henein, N.A. . Center for Automotive Research)

    1992-05-01

    The overall goal of this report is to document the work done to determine the instantaneous frictional torque of internal combustion engine by using a new approach known as (P-[omega]) method developed at Wayne State University. The emphasis has been to improve the accuracy of the method, and apply it to both diesel and gasoline engines under different operating conditions. Also work included an investigation to determine the effect of using advanced materials and techniques to coat the piston rings on the instantaneous engine frictional torque and the piston assembly friction. The errors in measuring the angular velocity, [omega], have been determined and found to be caused by variations in the divisions within one encoder, encoder-to-encoder variations, misalignment within the encoder itself and misalignment between the encoder and crankshaft. The errors in measuring the cylinder gas pressure, P, have been determined and found to be caused by transducer-to-transducer variations, zero drift, thermal stresses and lack of linearity. The ability of the (P-[omega]) method in determining the frictional torque of many engine components has been demonstrated. These components include valve train, fuel injection pump with and without fuel injection, and piston with and without different ring combinations. The emphasis in this part of the research program has been on the piston-ring assembly friction. The effects of load and other operating variables on IFT have been determined. The motoring test, which is widely used in industry to measure engine friction has been found to be inaccurate. The errors have been determined at different loads.

  3. Effects of third-order torque on frictional force of self-ligating brackets.

    PubMed

    Muguruma, Takeshi; Iijima, Masahiro; Brantley, William A; Ahluwalia, Karamdeep S; Kohda, Naohisa; Mizoguchi, Itaru

    2014-11-01

    To investigate the effects of third-order torque on frictional properties of self-ligating brackets (SLBs). Three SLBs (two passive and one active) and three archwires (0.016 × 0.022-inch nickel-titanium, and 0.017 × 0.025-inch and 0.019 × 0.025-inch stainless steel) were used. Static friction was measured by drawing archwires though bracket slots with four torque levels (0°, 10°, 20°, 30°), using a mechanical testing machine (n  =  10). A conventional stainless-steel bracket was used for comparison. RESULTS were subjected to Kruskal-Wallis and Mann-Whitney U-tests. Contact between the bracket and wire was studied using a scanning electron microscope. In most bracket-wire combinations, increasing the torque produced a significant increase in static friction. Most SLB-wire combinations at all torques produced less friction than that from the conventional bracket. Active-type SLB-wire combinations showed higher friction than that from passive-type SLB-wire combinations in most conditions. When increasing the torque, more contact between the wall of a bracket slot and the edge of a wire was observed for all bracket types. Increasing torque when using SLBs causes an increase in friction, since contact between the bracket slot wall and the wire edge becomes greater; the design of brackets influences static friction.

  4. Heat Control via Torque Control in Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Venable, Richard; Colligan, Kevin; Knapp, Alan

    2004-01-01

    In a proposed advance in friction stir welding, the torque exerted on the workpiece by the friction stir pin would be measured and controlled in an effort to measure and control the total heat input to the workpiece. The total heat input to the workpiece is an important parameter of any welding process (fusion or friction stir welding). In fusion welding, measurement and control of heat input is a difficult problem. However, in friction stir welding, the basic principle of operation affords the potential of a straightforward solution: Neglecting thermal losses through the pin and the spindle that supports it, the rate of heat input to the workpiece is the product of the torque and the speed of rotation of the friction stir weld pin and, hence, of the spindle. Therefore, if one acquires and suitably processes data on torque and rotation and controls the torque, the rotation, or both, one should be able to control the heat input into the workpiece. In conventional practice in friction stir welding, one uses feedback control of the spindle motor to maintain a constant speed of rotation. According to the proposal, one would not maintain a constant speed of rotation: Instead, one would use feedback control to maintain a constant torque and would measure the speed of rotation while allowing it to vary. The torque exerted on the workpiece would be estimated as the product of (1) the torque-multiplication ratio of the spindle belt and/or gear drive, (2) the force measured by a load cell mechanically coupled to the spindle motor, and (3) the moment arm of the load cell. Hence, the output of the load cell would be used as a feedback signal for controlling the torque (see figure).

  5. Friction- and mountain-torque estimates from global atmospheric data

    NASA Technical Reports Server (NTRS)

    Wahr, J. M.; Oort, A. H.

    1984-01-01

    Seasonal, zonal surface torques between the atmosphere and the earth are estimated and compared, using data from a number of independent sources. The mountain torque is computed both from surface pressure data and from isobaric height data. The friction torque is estimated from the oceanic stress data of Hellerman and Rosenstein. Results for the total torque are inferred from atmospheric angular momentum data. Finally, the globally integrated total torque is compared with astronomical observations of the earth's rotation rate. These comparisons help us to assess the quality of the different results. Zonal torques are also computed using results from a GFDL general circulation model of the atmosphere. A comparison with the corresponding results inferred from real data is presented and interpreted in terms of model accuracy.

  6. Friction torque in thrust ball bearings grease lubricated

    NASA Astrophysics Data System (ADS)

    Ianuş, G.; Dumitraşcu, A. C.; Cârlescu, V.; Olaru, D. N.

    2016-08-01

    The authors investigated experimentally and theoretically the friction torque in a modified thrust ball bearing having only 3 balls operating at low axial load and lubricated with NGLI-00 and NGLI-2 greases. The experiments were made by using spin-down methodology and the results were compared with the theoretical values based on Biboulet&Houpert's rolling friction equations. Also, the results were compared with the theoretical values obtained with SKF friction model adapted for 3 balls. A very good correlation between experiments and Biboulet_&_Houpert's predicted results was obtained for the two greases. Also was observed that the theoretical values for the friction torque calculated with SKF model adapted for a thrust ball bearing having only 3 balls are smaller that the experimental values.

  7. Frictional Torque on a Rotating Disc

    ERIC Educational Resources Information Center

    Mungan, Carl E.

    2012-01-01

    Resistance to motion often includes a dry frictional term independent of the speed of an object and a fluid drag term varying linearly with speed in the viscous limit. (At higher speeds, quadratic drag can also occur.) Here, measurements are performed for an aluminium disc mounted on bearings that is given an initial twist and allowed to spin…

  8. Frictional Torque on a Rotating Disc

    ERIC Educational Resources Information Center

    Mungan, Carl E.

    2012-01-01

    Resistance to motion often includes a dry frictional term independent of the speed of an object and a fluid drag term varying linearly with speed in the viscous limit. (At higher speeds, quadratic drag can also occur.) Here, measurements are performed for an aluminium disc mounted on bearings that is given an initial twist and allowed to spin…

  9. Measuring Micro-Friction Torque in MEMS Gas Bearings.

    PubMed

    Fang, Xudong; Liu, Huan

    2016-05-18

    An in situ measurement of micro-friction torque in MEMS gas bearings, which has been a challenging research topic for years, is realized by a system designed in this paper. In the system, a high accuracy micro-force sensor and an electronically-driven table are designed, fabricated and utilized. With appropriate installation of the sensor and bearings on the table, the engine rotor can be driven to rotate with the sensor using a silicon lever beam. One end of the beam is fixed to the shaft of the gas bearing, while the other end is free and in contact with the sensor probe tip. When the sensor begins to rotate with the table, the beam is pushed by the sensor probe to rotate in the same direction. For the beam, the friction torque from the gas bearing is balanced by the torque induced by pushing force from the sensor probe. Thus, the friction torque can be calculated as a product of the pushing force measured by the sensor and the lever arm, which is defined as the distance from the sensor probe tip to the centerline of the bearing. Experimental results demonstrate the feasibility of this system, with a sensitivity of 1.285 mV/μN·m in a range of 0 to 11.76 μN·m when the lever arm is 20 mm long. The measuring range can be modified by varying the length of the lever arm. Thus, this system has wide potential applications in measuring the micro-friction torque of gas bearings in rotating MEMS machines.

  10. Measuring Micro-Friction Torque in MEMS Gas Bearings

    PubMed Central

    Fang, Xudong; Liu, Huan

    2016-01-01

    An in situ measurement of micro-friction torque in MEMS gas bearings, which has been a challenging research topic for years, is realized by a system designed in this paper. In the system, a high accuracy micro-force sensor and an electronically-driven table are designed, fabricated and utilized. With appropriate installation of the sensor and bearings on the table, the engine rotor can be driven to rotate with the sensor using a silicon lever beam. One end of the beam is fixed to the shaft of the gas bearing, while the other end is free and in contact with the sensor probe tip. When the sensor begins to rotate with the table, the beam is pushed by the sensor probe to rotate in the same direction. For the beam, the friction torque from the gas bearing is balanced by the torque induced by pushing force from the sensor probe. Thus, the friction torque can be calculated as a product of the pushing force measured by the sensor and the lever arm, which is defined as the distance from the sensor probe tip to the centerline of the bearing. Experimental results demonstrate the feasibility of this system, with a sensitivity of 1.285 mV/μN·m in a range of 0 to 11.76 μN·m when the lever arm is 20 mm long. The measuring range can be modified by varying the length of the lever arm. Thus, this system has wide potential applications in measuring the micro-friction torque of gas bearings in rotating MEMS machines. PMID:27213377

  11. Instantaneous engine frictional torque, its components and piston assembly friction. Final report

    SciTech Connect

    Nichols, F.A.; Henein, N.A.

    1992-05-01

    The overall goal of this report is to document the work done to determine the instantaneous frictional torque of internal combustion engine by using a new approach known as (P-{omega}) method developed at Wayne State University. The emphasis has been to improve the accuracy of the method, and apply it to both diesel and gasoline engines under different operating conditions. Also work included an investigation to determine the effect of using advanced materials and techniques to coat the piston rings on the instantaneous engine frictional torque and the piston assembly friction. The errors in measuring the angular velocity, {omega}, have been determined and found to be caused by variations in the divisions within one encoder, encoder-to-encoder variations, misalignment within the encoder itself and misalignment between the encoder and crankshaft. The errors in measuring the cylinder gas pressure, P, have been determined and found to be caused by transducer-to-transducer variations, zero drift, thermal stresses and lack of linearity. The ability of the (P-{omega}) method in determining the frictional torque of many engine components has been demonstrated. These components include valve train, fuel injection pump with and without fuel injection, and piston with and without different ring combinations. The emphasis in this part of the research program has been on the piston-ring assembly friction. The effects of load and other operating variables on IFT have been determined. The motoring test, which is widely used in industry to measure engine friction has been found to be inaccurate. The errors have been determined at different loads.

  12. The Effect of Aging on the Accuracy of New Friction-Style Mechanical Torque Limiting Devices for Dental Implants

    PubMed Central

    Saboury, Aboulfazl; Sadr, Seyed Jalil; Fayaz, Ali; Mahshid, Minoo

    2013-01-01

    Objective: High variability in delivering the target torque is reported for friction-style mechanical torque limiting devices (F-S MTLDs). The effect of aging (number of use) on the accuracy of these devices is not clear. The purpose of this study was to assess the effect of aging on the accuracy (±10% of the target torque) of F-S MTLDs. Materials and Methods: Fifteen new F-S MTLDs and their appropriate drivers from three different implant manufacturers (Astra Tech, Biohorizon and Dr Idhe), five for each type, were selected. The procedure of peak torque measurement was performed in ten sequences before and after aging. In each sequence, ten repetitions of peak torque values were registered for the aging procedure. To measure the output of each device, a Tohnichi torque gauge was used. Results: Before aging, peak torque measurements of all the devices tested in this study falled within 10% of their preset target values. After aging, a significant difference was seen between raw error values of three groups of MTLDs (P<0.05). More than 50% of all peak torque measurements demonstrated more than 10% difference from their torque values after aging. Conclusion: Within the limitation of this study, aging as an independent factor affects the accuracy of F-S MTLDs. Astra Tech MTLDs presented the most consistent torque output for 25 Ncm target torque. PMID:23724202

  13. High-velocity frictional strength across the Tohoku-Oki megathrust determined from surface drilling torque

    NASA Astrophysics Data System (ADS)

    Ujiie, K.; Inoue, T.; Ishiwata, J.

    2015-12-01

    Frictional strength at seismic slip rates is a key to evaluate fault weakening and rupture propagation during earthquakes. The Japan Trench First Drilling Project (JFAST) drilled through the shallow plate-boundary thrust, where huge displacements of ~50 m occurred during the 2011 Tohoku-Oki earthquake. To determine the downhole frictional strength at drilled site (Site C0019), we analyzed surface drilling data. The equivalent slip rate estimated from the rotation rate and inner and outer radiuses of the drill bit ranges from 0.8 to 1.3 m/s. The measured torque includes the frictional torque between the drilling string and borehole wall, the viscous torque between the drilling string and seawater/drilling fluid, and the drilling torque between the drill bit and sediments. We subtracted the former two from the measured torque using the torque data during bottom-up rotating operations at several depths. Then, the shear stress was calculated from the drilling torque taking the configuration of the drill bit into consideration. The normal stress was estimated from the weight on bit data and the projected area of the drill bit. Assuming negligible cohesion, the frictional strength was obtained by dividing shear stress by normal stress. The results show a clear contrast in high-velocity frictional strength across the plate-boundary thrust: the friction coefficient of frontal prism sediments (hemipelagic mudstones) in hanging wall is 0.1-0.2, while that in subducting sediments (hemipelagic to pelagic mudstones and chert) in footwall increases to 0.2-0.4. The friction coefficient of smectite-rich pelagic clay in the plate-boundary thrust is ~0.1, which is consistent with that obtained from high-velocity (1.3 m/s) friction experiments and temperature measurements. We conclude that surface drilling torque provides useful data to obtain a continuous downhole frictional strength.

  14. Wear, creep, and frictional heating of femoral implant articulating surfaces and the effect on long-term performance--Part II, Friction, heating, and torque.

    PubMed

    Davidson, J A; Schwartz, G; Lynch, G; Gir, S

    1988-04-01

    In Part I, (J.A. Davidson and G. Schwartz, "Wear, creep, and frictional heating of femoral implant articulating surfaces and the effect on long-term performance--Part I, A review," J. Biomed. Mater. Res., 21, 000-000 (1987) it was shown that lubrication of the artificial hip joint was complex and that long-term performance is governed by the combined wear, creep, and to a lesser extent, oxidation degradation of the articulating materials. Importantly, it was shown that a tendency for heating exists during articulation in the hip joint and that elevated temperatures can increase the wear, creep, and oxidation degradation rate of UHMWPE. The present study was performed to examine closely the propensity to generate heat during articulation in a hip joint simulator. The systems investigated were polished Co-Cr-Mo alloy articulating against UHMWPE, polished alumina ceramic against UHMWPE, and polished alumina against itself. Frictional torque was also evaluated for each system at various levels of applied loads. A walking load history was used in both the frictional heating and torque tests. The majority of tests were performed with 5 mL of water lubricant. However, the effect of various concentrations of hyaluronic acid was also evaluated. Results showed frictional heating to occur in all three systems, reaching an equilibrium after roughly 30 min articulation time. Ceramic systems showed reduced levels of heating compared to the cobalt alloy-UHMWPE system. The level of frictional torque for each system ranked similar to their respective tendencies to generate heat. Hyaluronic acid had little effect, while dry conditions and the presence of small quantities of bone cement powder in water lubricant significantly increased frictional torque.

  15. TIDAL FRICTION AND TIDAL LAGGING. APPLICABILITY LIMITATIONS OF A POPULAR FORMULA FOR THE TIDAL TORQUE

    SciTech Connect

    Efroimsky, Michael; Makarov, Valeri V. E-mail: vvm@usno.navy.mil

    2013-02-10

    Tidal torques play a key role in rotational dynamics of celestial bodies. They govern these bodies' tidal despinning and also participate in the subtle process of entrapment of these bodies into spin-orbit resonances. This makes tidal torques directly relevant to the studies of habitability of planets and their moons. Our work begins with an explanation of how friction and lagging should be built into the theory of bodily tides. Although much of this material can be found in various publications, a short but self-consistent summary on the topic has been lacking in the hitherto literature, and we are filling the gap. After these preparations, we address a popular concise formula for the tidal torque, which is often used in the literature, for planets or stars. We explain why the derivation of this expression, offered in the paper by Goldreich and in the books by Kaula (Equation (4.5.29)) and Murray and Dermott (Equation (4.159)), implicitly sets the time lag to be frequency independent. Accordingly, the ensuing expression for the torque can be applied only to bodies having a very special (and very hypothetical) rheology which makes the time lag frequency independent, i.e., the same for all Fourier modes in the spectrum of tide. This expression for the torque should not be used for bodies of other rheologies. Specifically, the expression cannot be combined with an extra assertion of the geometric lag being constant, because at finite eccentricities the said assumption is incompatible with the constant-time-lag condition.

  16. Influence of the cage on friction torque in low loaded thrust ball bearing operating in dry conditions

    NASA Astrophysics Data System (ADS)

    Olaru, D.; Balan, M. R.; Tufescu, A.

    2016-08-01

    The authors investigated analytically and experimentally the friction torque in a modified thrust ball bearing operating at very low axial load in dry conditions by using only three balls and a cage. The experiments were conducted by using spin-down methodology. The results evidenced the influence of the sliding friction between the cage and the balls on the total friction torque. It was concluded that at very low loads the friction between cage and balls in a thrust ball bearing has an important contribution on total friction torque.

  17. High-velocity frictional strength across the Tohoku-Oki megathrust determined from surface drilling torque

    NASA Astrophysics Data System (ADS)

    Ujiie, Kohtaro; Inoue, Tomoya; Ishiwata, Junya

    2016-03-01

    High-velocity frictional strength is one of the primary factors controlling earthquake faulting. The Japan Trench Fast Drilling Project drilled through the shallow plate boundary fault, where displacement was ~50 m during the 2011 Tohoku-Oki earthquake. To determine downhole frictional strength, we analyzed the surface drilling torque data acquired at rotation rates equivalent to seismic slip rates (0.8-1.3 m/s). The results show a clear contrast in high-velocity frictional strength across the plate boundary fault: the apparent friction coefficient of frontal prism sediments (hemipelagic mudstones) in the hanging wall is 0.1-0.3, while that of the underthrust sediments (mudstone, laminar pelagic claystone, and chert) in the footwall increases to 0.2-0.4. The apparent friction coefficient of the smectite-rich pelagic clay in the plate boundary fault is 0.08-0.19, which is consistent with that determined from high-velocity (1.1-1.3 m/s) friction experiments. This suggests that surface drilling torque is useful in obtaining downhole frictional strength.

  18. The effect of sterilization and number of use on the accuracy of friction-style mechanical torque limiting devices for dental implants

    PubMed Central

    Fayaz, Ali; Mahshid, Minoo; Saboury, Aboulfazl; Sadr, Seyed Jalil; Ansari, Ghassem

    2014-01-01

    Background: Mechanical torque limiting devices (MTLDs) are necessary tools to control a peak torque and achieving target values of screw component of dental implants. Due to probable effect of autoclaving and number of use on the accuracy of these devices, this study aimed to evaluate the effect of sterilization and number of use on the accuracy of friction-style mechanical torque limiting devices (F-S MTLDs) in achieving their target torque values. Materials and Methods: Peak torque measurements of 15 new F-S MTLDs from three different manufacturers (Astra Tech, BioHorizons, Dr. Idhe) were measured ten times before and after 100 steam sterilization using a digital torque gauge. To simulate the clinical situation of aging (number of use) target torque application process was repeated 10 times after each sterilization cycle and the peak torque values were registered. Comparison of the mean differences with target torque in each cycle was performed using one sample t test. Considering the type of MTLDs as inter subject comparison, One-way repeated measure ANOVA was used to evaluate the absolute values of differences between devices of each manufacturer in each group (α = 0.05). Results: The results of this study in Dr. Idhe group showed that, mean of difference values significantly differed from the target torque (P = 0.002) until 75 cycles. In Astra Tech group, also mean of difference values with under estimation trend, showed a significant difference with the target torque (P < 0.001). Mean of difference values significantly differed from the target torque with under estimation trend during all the 100 cycles in BioHorizons group (P < 0.05). Conclusion: The torque output of each individual device stayed in 10% difference from target torque values before 100 sterilization cycles, but more than 10% difference from the target torque was seen in varying degrees during these consequent cycles. PMID:24688564

  19. Effects of friction and high torque on fatigue crack propagation in Mode III

    NASA Astrophysics Data System (ADS)

    Nayeb-Hashemi, H.; McClintock, F. A.; Ritchie, R. O.

    1982-12-01

    Turbo-generator and automotive shafts are often subjected to complex histories of high torques. To provide a basis for fatigue life estimation in such components, a study of fatigue crack propagation in Mode III (anti-plane shear) for a mill-annealed AISI 4140 steel (RB88, 590 MN/m2 tensile strength) has been undertaken, using torsionally-loaded, circumferentially-notched cylindrical specimens. As demonstrated previously for higher strength AISI 4340 steel, Mode III cyclic crack growth rates (dc/dN) IIIcan be related to the alternating stress intensity factor ΔKIII for conditions of small-scale yielding. However, to describe crack propagation behavior over an extended range of crack growth rates (˜10-6 to 10-2 mm per cycle), where crack growth proceeds under elastic-plastic and full plastic conditions, no correlation between (dc/dN) III and ΔKIII is possible. Accordingly, a new parameter for torsional crack growth, termed the plastic strain intensity Γ III, is introduced and is shown to provide a unique description of Mode III crack growth behavior for a wide range of testing conditions, provided a mean load reduces friction, abrasion, and interlocking between mating fracture surfaces. The latter effect is found to be dependent upon the mode of applied loading (i.e., the presence of superimposed axial loads) and the crack length and torque level. Mechanistically, high-torque surfaces were transverse, macroscopically flat, and smeared. Lower torques showed additional axial cracks (longitudinal shear cracking) perpendicular to the main transverse surface. A micro-mechanical model for the main radi l Mode III growth, based on the premise that crack advance results from Mode II coalescence of microcracks initiated at inclusions ahead of the main crack front, is extended to high nominal stress levels, and predicts that Mode III fatigue crack propagation rates should be proportional to the range of plastic strain intensity (ΔΓIII if local Mode II growth rates are

  20. Tyre friction behaviour under abrupt wheel torque transients on slippery road surfaces: experimental analysis and modelling

    NASA Astrophysics Data System (ADS)

    Ivanović, Vladimir; Deur, Joško; Kostelac, Milan; Pentek, Tibor; Hrovat, Davor

    2011-10-01

    The paper shows that, during abrupt wheel torque transients for ice surface and low vehicle speeds, the tyre can develop significantly larger longitudinal force than the peak value of the tyre static curve. This so-called dynamic tyre friction potential (DTFP) effect has many influencing factors such as the rate of change of the wheel torque, the vehicle speed, and the tyre dwell time. The paper presents a detailed analysis of the DTFP behaviour based on the experimental data collected by using an in-wheel motor-based tyre test vehicle. The analysis results and an insight into the brush structure of a tyre model lead to the hypothesis that the different influencing factors may be predominantly explained by the bristle dwell time (BDT) effect. Following this hypothesis, the LuGre model of the tyre friction dynamics is extended with a physical BDT sub-model. The experimental validation results show that the proposed model can accurately capture the low-speed tyre-ice friction behaviour during abrupt wheel torque transients.

  1. Super-harmonics in a torsional system with dry friction path subject to harmonic excitation under a mean torque

    NASA Astrophysics Data System (ADS)

    Duan, Chengwu; Singh, Rajendra

    2005-08-01

    The nonlinear frequency response characteristics of a two-degree-of-freedom torsional system with a significant dry friction controlled path are studied, when excited by sinusoidal torque under a mean load. An analytical solution is first developed for a simplified system subjected to continuous slipping motions. The nature of super-harmonic peaks as generated by the dry friction nonlinearity is efficiently found. The effect of a non-zero mean load is also determined and qualitatively understood. Further, a refined multi-term harmonic balance method (MHBM) is proposed that includes up to 12 terms. It is used to study an automotive drive train system that experiences significant stick-slip motions. Associated computational issues including the selection of initial conditions are addressed. Studies show that the mean load could induce asymmetric stick-slip motions and accordingly it has significant effect on time and frequency domain responses. Reasons for the occurrence of super-harmonic resonant peaks and transitional peaks are investigated. Finally, our MHBM is applied to the conventional single-degree-of-freedom system where the spring path exists in parallel with a dry friction damper (Den Hartog's problem). Our predictions match well with Den Hartog's analytical solution. Den Hartog's system differs, in terms of the dynamic behavior, from our torsional system (with a sole dry friction path).

  2. Experimental study on guide friction contribution in global power loss of a tooth chain transmission

    NASA Astrophysics Data System (ADS)

    Velicu, R.; Papuc, R.; Gavrila, C. C.; Popa, S.

    2017-02-01

    The subject of the paper is the friction between a tooth chain and the guide. An experimental study is developed with the aim of determining the contribution of chain-guide friction on the global friction of a basic tooth chain transmission. The measurements have been made on a chain friction rig, testing a basic tooth chain transmission with transmission ratio equal to 1, with a controlled tensioning device. The following parameters can be adjusted and measured: rotational speed, tensioning force in the chain, position of the guide, temperature and pressure of the oil used for lubrication. Friction torque at the input shaft is a sum of friction torques coming from bearings, chain and guide. The paper presents the contribution of the guide in the power loss by friction, as percent of the power loss from friction in chain and guide together. Influences of speed, tensioning force and oil temperature are presented.

  3. Estimates of Atmospheric Angular Momentum, Friction, and Mountain Torques during 1987-1988.

    NASA Astrophysics Data System (ADS)

    Madden, R. A.; Speth, P.

    1995-11-01

    Atmospheric angular momentum (M), friction (TF), and mountain torques (TM) are estimated from a 13-month period of European Centre for Medium-Range Weather Forecasts (ECMWF) data. Cross-spectrum analysis between M and total torques results in high coherence and one-quarter cycle phase angles (TF + TM leading M) for timescales between 5 and 66 days, suggesting that variations of the total torque are reasonably well estimated for these slower variations. However, cross spectra between M and TF, and TM separately reveal that the relatively high coherence is present between M and TF only at periods longer than 20 days. Also comparison with other published values and the considerable lack of balance between TF + TM and M over a full year implies that our estimates of TF, based on the parameterization of surface wind stress in short-term forecasts of the ECMWF, are negatively biased. For the 13-month period, the average bias is about 15.2 Hadleys (1018 kg m2 s2).During the period there are a few near 50-day oscillations in the M. Similar variations have been reported before and related to tropical intraseasonal oscillations of the same timescale. Two oscillations in M that are coincident with eastward-propagating cloud complexes of tropical intraseasonal oscillations are examined more closely. It is found that TF and TM work together to alter the M on the 50-day timescale, but that TM's contribution is three times larger than that of TF. During the two oscillations TF, reaches maxima when cloud complexes of tropical intraseasonal oscillations are in the vicinity of 90°E. It then declines but maintains positive anomalies at least until the cloud complexes reach the Central Pacific. The M reaches its maxima shortly thereafter. TM has sharp minima shortly before the cloud complexes are strongly developed in the Indian Ocean. Contributors to these minima are strong cast to west pressure gradients primarily across the Rocky Mountains.

  4. Feasibility study for convertible engine torque converter

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The feasibility study has shown that a dump/fill type torque converter has excellent potential for the convertible fan/shaft engine. The torque converter space requirement permits internal housing within the normal flow path of a turbofan engine at acceptable engine weight. The unit permits operating the engine in the turboshaft mode by decoupling the fan. To convert to turbofan mode, the torque converter overdrive capability bring the fan speed up to the power turbine speed to permit engagement of a mechanical lockup device when the shaft speed are synchronized. The conversion to turbofan mode can be made without drop of power turbine speed in less than 10 sec. Total thrust delivered to the aircraft by the proprotor, fan, and engine during tansient can be controlled to prevent loss of air speed or altitude. Heat rejection to the oil is low, and additional oil cooling capacity is not required. The turbofan engine aerodynamic design is basically uncompromised by convertibility and allows proper fan design for quiet and efficient cruise operation. Although the results of the feasibility study are exceedingly encouraging, it must be noted that they are based on extrapolation of limited existing data on torque converters. A component test program with three trial torque converter designs and concurrent computer modeling for fluid flow, stress, and dynamics, updated with test results from each unit, is recommended.

  5. Anomalous Doppler-effect singularities in radiative heat generation, interaction forces, and frictional torque for two rotating nanoparticles

    NASA Astrophysics Data System (ADS)

    Volokitin, A. I.

    2017-07-01

    We calculate the quantum heat generation, the interaction force, and the frictional torque for two rotating spherical nanoparticles with a radius R . In contrast to the static case, when there is an upper limit in the radiative heat transfer between the particles, for two rotating nanoparticles the quantum heat generation rate diverges when the angular velocity becomes equal to the poles in the photon emission rate. These poles arise for the separation d frictional torque. The obtained results can be important for biomedical applications.

  6. Turbine blade friction damping study

    NASA Technical Reports Server (NTRS)

    Dominic, R. J.

    1985-01-01

    A lumped parameter method, implemented on a VAX 11/780 computer shows that the primary parameters affecting the performance of the friction damper of the first stage turbine of the SSME high pressure fuel pump are: the damper-blade coefficient of friction; the normal force applied to the friction interface; the amplitude of the periodic forcing function; the relative phase angle of the forcing functions for adjacent blades bridged by a damper (effectively, the engine order of the forcing function); and the amount of hysteretic damping that acts to limit the vibration amplitude of the blade in its resonance modes. The low order flexural resonance vibration modes of HPFTP blades without dampers, with production dampers, and with two types of lightweight experimental dampers were evaluated in high speed spin pit tests. Results agree with those of the analytical study in that blades fitted with production friction dampers experienced the airfoil-alone flexural resonance mode, while those without dampers or with lighter weight dampers did not. No blades fitted with dampers experienced the whole blade flexural resonance mode during high speed tests, while those without dampers did.

  7. Missile rolling tail brake torque system. [simulating bearing friction on canard controlled missiles

    NASA Technical Reports Server (NTRS)

    Davis, W. T. (Inventor)

    1984-01-01

    Apparatus for simulating varying levels of friction in the bearings of a free rolling tail afterbody on a canard-controlled missile to determine friction effects on aerodynamic control characteristics is described. A ring located between the missile body and the afterbody is utilized in a servo system to create varying levels of friction between the missile body and the afterbody to simulate bearing friction.

  8. Determination of time-varying contact length, friction force, torque and forces at the bearings in a helical gear system

    NASA Astrophysics Data System (ADS)

    Kar, Chinmaya; Mohanty, A. R.

    2008-01-01

    This paper deals with determining various time-varying parameters that are instrumental in introducing noise and vibration in a helical gear system. The most important parameter is the contact line variation, which subsequently induces friction force variation, frictional torque variation and variation in the forces at the bearings. The contact line variation will also give rise to gear mesh stiffness and damping variations. All these parameters are simulated for a defect-free and two defective cases of a helical gear system. The defective cases include one tooth missing and two teeth missing in the helical gear. The algorithm formulated in this paper is found to be simple and effective in determining the time-varying parameters.

  9. Measuring Gearbox Torque Loss

    NASA Technical Reports Server (NTRS)

    Schmidt, L. F.

    1986-01-01

    Accuracy increased by measuring small torque differences directly. Input and output torques are balanced by mechanical linkage in transmission-testing apparatus. Force applied to load cell proportional to frictional torque loss in transmission. Apparatus measures portion of input torque lost to friction in automotive transmissions or other gearbox. Apparatus more sensitive than previous measuring systems.

  10. Torque Simulator for Rotating Systems

    NASA Technical Reports Server (NTRS)

    Davis, W. T.

    1982-01-01

    New torque brake simulates varying levels of friction in bearings of rotating body. Rolling-tail torque brake uses magnetic force to produce friction between rotating part and stationary part. Simulator electronics produce positive or negative feedback signal, depending on direction of rotation. New system allows for first time in-depth study of effects of tail-fin spin rates on pitch-, yaw-, and roll-control characteristics.

  11. Effects of friction and high torque on fatigue crack propagation in mode III. [AISI 4140 and 4340

    SciTech Connect

    Nayeb-Hashemi, H.; McClintock, F.A.; Ritchie, R.O.

    1982-12-01

    Turbo-generator and automotive shafts are often subjected to complex histories of high torques. To provide a basis for fatigue life estimation in such components, a study of fatigue crack propagation in Mode III (anti-plane shear) for a mill-annealed AISI 4140 steel (R /SUB B/ 88, 590 MN/m/sup 2/ tensile strength) has been undertaken, using torsionally-loaded, circumferentially-notched cylindrical specimens. As demonstrated previously for higher strength AISI 4340 steel, Mode III cyclic crack growth rates (dc/dN) /SUB III/ can be related to the alternating stress intensity factor ..delta..K /SUB III/ for conditions of small-scale yielding. However, to describe crack propagation behavior over an extended range of crack growth rates (about 10/sup -6/ to 10/sup -2/ mm per cycle), where crack growth proceeds under elastic-plastic and full plastic conditions, no correlation between (dc/dN) /SUB III/ and ..delta..K /SUB III/ is possible. Accordingly, a new parameter for torsional crack growth, termed the plastic strain intensity GAMMA /SUB III/, is introduced and is shown to provide a unique description of Mode III crack growth behavior for a wide range of testing conditions, provided a mean load reduces friction, abrasion, and interlocking between mating fracture surfaces A micro-mechanical model for the main radial Mode III growth is extended to high nominal stress levels, and predicts that Mode III fatigue crack propagation rates should be proportional to the range of plastic strain intensity (..delta..GAMMA /SUB III/) if local Mode II growth rates are proportional to the displacements. Such predictions are shown to be in agreement with measured growth rates in AISI 4140 steel from 10/sup -6/ to 10/sup -2/ mm per cycle.

  12. Accuracy of dental torque wrenches.

    PubMed

    Wood, James S; Marlow, Nicole M; Cayouette, Monica J

    2015-01-01

    The aim of this in vitro study was to compare the actual torque of 2 manual wrench systems to their stated (target) torque. New spring- (Nobel Biocare USA, LLC) and friction-style (Zimmer Dental, Inc.) manual dental torque wrenches, as well as spring torque wrenches that had undergone sterilization and clinical use, were tested. A calibrated torque gauge was used to compare actual torque to target torque values of 15 and 35 N/cm. Data were statistically analyzed via mixed-effects regression model with Bonferroni correction. At a target torque of 15 N/cm, the mean torque of new spring wrenches (13.97 N/cm; SE, 0.07 N/cm) was significantly different from that of used spring wrenches (14.94 N/cm; SE, 0.06 N/cm; P < 0.0001). However, the mean torques of new spring and new friction wrenches (14.10 N/cm; SE, 0.07 N/cm; P = 0.21) were not significantly different. For torque measurements calibrated at 35 N/cm, the mean torque of new spring wrenches (35.29 N/cm; SE, 0.10 N/cm) was significantly different (P < 0.0001) from the means of new friction wrenches (36.20 N/cm; SE, 0.08 N/cm) and used spring wrenches (36.45 N/cm; SE, 0.08 N/cm). Discrepancies in torque could impact the clinical success of screw-retained dental implants. It is recommended that torque wrenches be checked regularly to ensure that they are performing to target values.

  13. Study of ball bearing torque under elastohydrodynamic lubrication

    NASA Technical Reports Server (NTRS)

    Townsend, D. P.; Zaretsky, E. V.; Allen, C. W.

    1973-01-01

    Spinning and rolling torques were measured in an angular-contact ball bearing with and without a cage under several lubrication regimes in a modified NASA spinning torque apparatus. Two lubricants were used - a di-2 ethylhexyl sebacate and a synthetic paraffinic oil, at shaft speeds of 1000, 2000, and 3000 rpm and bearing loads from 45 newtons (10 lb) to 403 newtons (90 lb). An analytical model was developed from previous spinning friction models to include rolling with spinning under lubrication regimes from thin film to flooded conditions. The bearing torque values have a wide variation, under any condition of speed and load, depending on the amount of lubricant present in the bearing. The analytical model compared favorably with experimental results under several lubrication regimes.

  14. Study of ball bearing torque under elastohydrodynamic lubrication

    NASA Technical Reports Server (NTRS)

    Townsend, D. P.; Allen, C. W.; Zaretsky, E. V.

    1973-01-01

    Spinning and rolling torques were measured in an angular-contact ball bearing with and without a cage under several lubrication regimes in a modified NASA spinning torque apparatus. Two lubricants were used, a di-2 ethylhexyl sebacate and a synthetic paraffinic oil, at shaft speeds of 1000, 2000, and 3000 rpm and bearing loads from 10 lbs to 90 lbs. An analytical model was developed from previous spinning friction models to include rolling with spinning under lubrication regimes from thin film to flooded conditions. The bearing torque values have a wide variation, under any condition of speed and load, depending on the amount of lubricant present in the bearing. The analytical model compared favorably with experimental results under several lubrication regimes.

  15. Modeling and Compensation of the Internal Friction Torque of a Travelling Wave Ultrasonic Motor.

    PubMed

    Giraud, F; Sandulescu, P; Amberg, M; Lemaire-Semail, B; Ionescu, F

    2011-01-01

    This paper deals with the control and experimentation of a one-degree-of-freedom haptic stick, actuated by a travelling wave ultrasonic motor. This type of actuator has many interesting properties such as low-speed operation capabilities and a high torque-to-weight ratio, making it appropriate for haptic applications. However, the motor used in this application displays nonlinear behavior due to the necessary contact between its rotor and stator. Moreover, due to its energy conversion process, the torque applied to the end-effector is not a straightforward function of the supply current or voltage. This is why a force-feedback control strategy is presented, which includes an online parameter estimator. Experimental runs are then presented to examine the fidelity of the interface.

  16. Friction microprobe studies of composite surfaces

    SciTech Connect

    Blau, P.J.

    1990-01-01

    A newly-constructed friction microprobe has been used to study the variations in friction force associated with unlubricated sliding of small 1.0 mm diameter. 440C stainless steel spheres over the surfaces of alumina, silicon nitride, silicon carbide, and silicon carbide whisker-reinforced composites with matrices of alumina and silicon nitride. The purpose of the work was to attempt to detect frictional transients associated with the sliding interaction of individual asperities and to relate these transients to the microstructures of the ceramics and their composites. Friction data could be obtained without detectable wear of either the spheres or the flat specimens. The presence of whiskers increased in the friction of alumina by about 28% and decreased the friction of silicon nitride by about 15%. Less than a 1% instantaneous variation in friction coefficient could be directly ascribed to contacts with whiskers. Future studies are planned to investigate whisker orientation effects on the variation of the sliding friction of composites. 11 refs., 8 figs., 3 tabs.

  17. Experimental study of friction in aluminium bolted joints

    NASA Astrophysics Data System (ADS)

    Croccolo, D.; de Agostinis, M.; Vincenzi, N.

    2010-06-01

    This study aims at developing an experimental tool useful to define accurately the friction coefficients in bolted joints and, therefore, at relating precisely the tightening torque to the bolt preloading force in some special components used in front motorbike suspensions. The components under investigation are some clamped joints made of aluminium alloy. The preloading force is achieved by applying a torque wrench to the bolt head. Some specific specimens have been appropriately designed and realized in order to study the tribological aspects of the tightening phase. Experimental tests have been performed by applying the Design of Experiment (DOE) method in order to obtain a mathematical model for the friction coefficients. Three replicas of a full factorial DOE at two levels for each variable have been carried out. The levels include cast versus forged aluminium alloy, anodized versus spray-painted surface, lubricated versus unlubricated screw, and first tightening (fresh unspoiled surfaces) versus sixth tightening (spoiled surfaces). The study considers M8x1.25 8.8 galvanized screws.

  18. Torque meter aids study of hysteresis motor rings

    NASA Technical Reports Server (NTRS)

    Cole, M.

    1967-01-01

    Torque meter, simulating hysteresis motor operation, allows rotor ring performance characteristics to be analyzed. The meter determines hysteresis motor torque and actual stresses of the ring due to its mechanical situation and rotation, aids in the study of asymmetries or defects in motor rings, and measures rotational hysteresis.

  19. Laboratory experiment for the study of friction forces using rotating apparatus

    NASA Astrophysics Data System (ADS)

    Kladivová, Mária; Kovaľaková, Mária; Gibová, Zuzana; Fričová, Oľga; Hutníková, Mária; Kecer, Ján

    2016-11-01

    The standard experimental set-up enabling observation of rotational motion of a bar around its centre of mass, which is set into motion due to the external torque generated by the small weight, was extended with an optical gate and position sensor and connected to a computer with software, which made it possible to display measured values of bar half-rotations during accelerated and decelerated motion as well as to process the data immediately. The detailed analysis of experimental data obtained for decelerated rotational motion due to frictional torque only (without small weight) showed that, besides the constant term due to dry friction at an axle, the expression for friction forces in the system has to include terms depending on the first and/or second power of angular speed, which is evidence that viscous forces influence the motion of a bar. The frictional torque due to viscous forces can be evaluated as the difference between the effective frictional torque acting on the system and the frictional torque due to dry friction at an axle. The data obtained in the experiment in which the bar performed damped oscillatory motion provided the values of effective frictional torque and the moment of inertia of rotating bodies. The frictional torque due to dry friction can be obtained as a minimum torque (calculated using minimum mass of weight) needed to start rotational motion. The last two proposed experiments can be included in undergraduate laboratory practicals.

  20. Experimental studies of the magnetized friction force

    SciTech Connect

    Fedotov, A. V.; Litvinenko, V. N.; Gaalnander, B.; Lofnes, T.; Ziemann, V.; Sidorin, A.; Smirnov, A.

    2006-06-15

    High-energy electron cooling, presently considered as an essential tool for several applications in high-energy and nuclear physics, requires an accurate description of the friction force which ions experience by passing through an electron beam. Present low-energy electron coolers can be used for a detailed study of the friction force. In addition, parameters of a low-energy cooler can be chosen in a manner to reproduce regimes expected in future high-energy operation. Here, we report a set of dedicated experiments in CELSIUS aimed at a detailed study of the magnetized friction force. Some results of the accurate comparison of experimental data with the friction force formulas are presented.

  1. Enhanced model of gear transmission dynamics for condition monitoring applications: Effects of torque, friction and bearing clearance

    NASA Astrophysics Data System (ADS)

    Fernandez-del-Rincon, A.; Garcia, P.; Diez-Ibarbia, A.; de-Juan, A.; Iglesias, M.; Viadero, F.

    2017-02-01

    Gear transmissions remain as one of the most complex mechanical systems from the point of view of noise and vibration behavior. Research on gear modeling leading to the obtaining of models capable of accurately reproduce the dynamic behavior of real gear transmissions has spread out the last decades. Most of these models, although useful for design stages, often include simplifications that impede their application for condition monitoring purposes. Trying to filling this gap, the model presented in this paper allows us to simulate gear transmission dynamics including most of these features usually neglected by the state of the art models. This work presents a model capable of considering simultaneously the internal excitations due to the variable meshing stiffness (including the coupling among successive tooth pairs in contact, the non-linearity linked with the contacts between surfaces and the dissipative effects), and those excitations consequence of the bearing variable compliance (including clearances or pre-loads). The model can also simulate gear dynamics in a realistic torque dependent scenario. The proposed model combines a hybrid formulation for calculation of meshing forces with a non-linear variable compliance approach for bearings. Meshing forces are obtained by means of a double approach which combines numerical and analytical aspects. The methodology used provides a detailed description of the meshing forces, allowing their calculation even when gear center distance is modified due to shaft and bearing flexibilities, which are unavoidable in real transmissions. On the other hand, forces at bearing level were obtained considering a variable number of supporting rolling elements, depending on the applied load and clearances. Both formulations have been developed and applied to the simulation of the vibration of a sample transmission, focusing the attention on the transmitted load, friction meshing forces and bearing preloads.

  2. [Brackets and friction in orthodontics: experimental study].

    PubMed

    Ben Rejeb Jdir, Saloua; Tobji, Samir; Turki, Wiem; Dallel, Ines; Khedher, Nedra; Ben Amor, Adel

    2015-09-01

    Many authors have been involved in developing brackets in order to improve the quality, stability, speed and efficiency of orthodontic treatment. In order to reduce friction between bracket and archwire, new therapeutic approaches have been devised based on novel technologies. Among these innovative techniques, self-ligating brackets are increasingly popular. SLBs can be classified into several categories according to their mode of action and their materials. We performed an experimental study to compare the friction forces generated during the sliding of orthodontic archwires made from various alloys through conventional and self-ligating brackets. Results show the favorable influence of SLBs, compared to conventional systems using elastomeric or metal ligatures, on the level of friction, particularly when shape-memory Ni-Ti archwires are used. © EDP Sciences, SFODF, 2015.

  3. Friction

    NASA Astrophysics Data System (ADS)

    Matsuo, Yoshihiro; Clarke, Daryl D.; Ozeki, Shinichi

    Friction materials such as disk pads, brake linings, and clutch facings are widely used for automotive applications. Friction materials function during braking due to frictional resistance that transforms kinetic energy into thermal energy. There has been a rudimentary evolution, from materials like leather or wood to asbestos fabric or asbestos fabric saturated with various resins such as asphalt or resin combined with pitch. These efforts were further developed by the use of woven asbestos material saturated by either rubber solution or liquid resin binder and functioned as an internal expanding brake, similar to brake lining system. The role of asbestos continued through the use of chopped asbestos saturated by rubber, but none was entirely successful due to the poor rubber heat resistance required for increased speeds and heavy gearing demands of the automobile industry. The use of phenolic resins as binder for asbestos friction materials provided the necessary thermal resistance and performance characteristics. Thus, the utility of asbestos as the main friction component, for over 100 years, has been significantly reduced in friction materials due to asbestos identity as a carcinogen. Steel and other fibrous components have displaced asbestos in disk pads. Currently, non-asbestos organics are the predominate friction material. Phenolic resins continue to be the preferred binder, and increased amounts are necessary to meet the requirements of highly functional asbestos-free disk pads for the automotive industry. With annual automobile production exceeding 70 million vehicles and additional automobile production occurring in developing countries worldwide and increasing yearly, the amount of phenolic resin for friction material is also increasing (Fig. 14.1). Fig. 14.1 Worldwide commercial vehicle production Charnley low-frictional torque arthroplasty in patients under the age of 51 years. Follow-up to 33 years.

    PubMed

    Wroblewski, B M; Siney, P D; Fleming, P A

    2002-05-01

    Between November 1962 and December 1990 a group of 1092 patients, 668 women and 424 men, under the age of 51 years at the time of surgery, underwent 1434 primary Charnley low-frictional torque arthroplasties and are being followed up indefinitely. Their mean age at operation was 41 years (12 to 51). At the latest review in June 2001 the mean follow-up had been for 15 years 1 month. Of the 1092 patients 54 (66 hips) could not be traced, 124 (169 hips) were known to have died and 220 (248 hips) had had a revision procedure. At a mean follow-up of 17 years and 5 months, 759 patients (951 hips) are still attending. In this group satisfaction with the outcome is 96.2%. The incidence of deep infection for the whole group was 1.67%. It was more common in patients who had had previous surgery (hemi- and total hip arthroplasties excluded), 2.2% compared with 1.5% in those who had not had previous surgery, but this difference was not statistically significant (p = 0.4). There were fewer cases of deep infection if gentamicin-containing cement was used, 0.9% compared with 1.9% in those with plain acrylic cement, but this was not also statistically significant (p = 0.4). There was a significantly higher rate of revision in patients who had had previous hip surgery, 24.8% compared with 14.1% in those who had not had previous surgery (p < 0.001). At the latest review, 1.95% are known to have had at least one dislocation and 0.4% have had a revision for dislocation. The indication for revision was aseptic loosening of the cup (11.7%), aseptic loosening of the stem (4.9%), a fractured stem (1.7%), deep infection (1.5%) and dislocation (0.4%). With revision for any indication as the endpoint the survivorship was 93.7% (92.3 to 95.0) at ten years, 84.7% (82.4 to 87.1) at 15 years, 74.3% (70.5 to 78.0) at 20 years and 55.3% (45.5 to 65.0) at 27 years, when 55 hips remained 'at risk'.

  4. A study regarding friction behaviour of lysine and isoleucine modified epoxy matrix

    NASA Astrophysics Data System (ADS)

    Bălan, I.; Bosoancă, R.; Căpăţină, A.; Graur, I.; Bria, V.; Ungureanu, C.

    2017-02-01

    The aim of this study is to point out the effect of L-lysine and L-isoleucine used as modifying agents for epoxy resins. The amino acids are largely used to turn the usual polymers in bio-compatible materials but they effect also other significant proprieties of formed materials. The general study developed in Polymer Composite Laboratory is focused on analysis of 14 amino acids used as modifying agents but the two above mentioned showed a special behaviour namely they re-crystalized during the polymerization of the matrix. The coefficient of friction was obtained through the calculation of friction torque measured with a loaded cell sensor. As far as we know, there is no report on the friction proprieties of amino acids modified epoxy resins.

  5. Comparative study regarding friction coefficient for three epoxy resins

    NASA Astrophysics Data System (ADS)

    Mihu, G.; Mihalache, I.; Graur, I.; Ungureanu, C.; Bria, V.

    2017-02-01

    Three commercial epoxy diglycidylether of bisphenol-A (DGEBA) were used in this study namely Epiphen RE4020-DE 4020 (Bostik), Epoxy Resin C (R&G Gmbh Waldenbuch), and Epoxy Resin HT-2 (R&G Gmbh Waldenbuch). Epoxy resins are often used for the friction purpose but their friction resistance is quite low and it is thus necessary to enhance their friction resistance. In this paper it is shown how load, sliding velocity, and distance affect friction coefficient of epoxy resins.

  6. Accuracy of mechanical torque-limiting devices for dental implants.

    PubMed

    L'Homme-Langlois, Emilie; Yilmaz, Burak; Chien, Hua-Hong; McGlumphy, Edwin

    2015-10-01

    A common complication in implant dentistry is unintentional implant screw loosening. The critical factor in the prevention of screw loosening is the delivery of the appropriate target torque value. Mechanical torque-limiting devices (MTLDs) are the most frequently recommended devices by the implant manufacturers to deliver the target torque value to the screw. Two types of MTLDs are available: friction-style and spring-style. Limited information is available regarding the influence of device type on the accuracy of MTLDs. The purpose of this study was to determine and compare the accuracy of spring-style and friction-style MTLDs. Five MTLDs from 6 different dental implant manufacturers (Astra Tech/Dentsply, Zimmer Dental, Biohorizons, Biomet 3i, Straumann [ITI], and Nobel Biocare) (n=5 per manufacturer) were selected to determine their accuracy in delivering target torque values preset by their manufacturers. All torque-limiting devices were new and there were 3 manufacturers for the friction-style and 3 manufacturers for the spring-style. The procedure of target torque measurement was performed 10 times for each device and a digital torque gauge (Chatillon Model DFS2-R-ND; Ametek) was used to record the measurements. Statistical analysis used nonparametric tests to determine the accuracy of the MTLDs in delivering target torque values and Bonferroni post hoc tests were used to assess pairwise comparisons. Median absolute difference between delivered torque values and target torque values of friction-style and spring-style MTLDs were not significantly different (P>.05). Accuracy of Astra Tech and Zimmer Dental friction-style torque-limiting devices were significantly different than Biohorizons torque-limiting devices (P<.05). There is no difference between the accuracy of new friction-style MTLDs and new spring-style MTLDs. All MTLDs fell within ±10% of the target torque value. Astra Tech and Zimmer Dental friction-style torque-limiting devices were significantly

  7. Studies on centrifugal clutch judder behavior and the design of frictional lining materials

    NASA Astrophysics Data System (ADS)

    Li, Tse-Chang; Huang, Yu-Wen; Lin, Jen-Fin

    2016-01-01

    This study examines the judder behavior of a centrifugal clutch from the start of hot spots in the conformal contact, then the repeated developments of thermoelastic instability, and finally the formation of cyclic undulations in the vibrations, friction coefficient and torque. This behavior is proved to be consistent with the testing results. Using the Taguchi method, 18 kinds of frictional lining specimens were prepared in order to investigate their performance in judder resistance and establish a relationship between judder behavior and the Ts/Td (Ts: static torque; Td: dynamic torque) and dμ/dVx (μ: friction coefficient; Vx: relative sliding velocity of frictional lining and clutch drum) parameters. These specimens are also provided to examine the effects and profitability with regard to the centrifugal clutch, and find the relative importance of the various control factors. Theoretical models for the friction coefficient (μ), the critical sliding velocity (Vc) with clutch judder, and the contact pressure ratio p* /pbar (p*: pressure undulation w.r.t. pbar; pbar: mean contact pressure) and temperature corresponding to judder behavior are developed. The parameters of the contact pressure ratio and temperature are shown to be helpful to explain the occurrence of judder. The frictional torque and the rotational speeds of the driveline, clutch, and clutch drum as functions of engagement time for 100 clutch cycles are obtained experimentally to evaluate dμ/dVx and Ts/Td. A sharp rise in the maximum p* /pbar occurred when the relative sliding velocity reached the critical velocity, Vc. An increase in the maximum p* /pbar generally led to an increase of the (initially negative) dμ/dVx value, and thus the severity of judder. The fluctuation intensity of dμ/dVx becomes a governing factor of the growth of dμ/dVx itself in the engagement process. The mean values of dμ/dVx and Ts/Td for the clutching tests with 100 cycles can be roughly divided into three groups

  8. Study of a Satellite Attitude Control System Using Integrating Gyros as Torque Sources

    NASA Technical Reports Server (NTRS)

    White, John S.; Hansen, Q. Marion

    1961-01-01

    This report considers the use of single-degree-of-freedom integrating gyros as torque sources for precise control of satellite attitude. Some general design criteria are derived and applied to the specific example of the Orbiting Astronomical Observatory. The results of the analytical design are compared with the results of an analog computer study and also with experimental results from a low-friction platform. The steady-state and transient behavior of the system, as determined by the analysis, by the analog study, and by the experimental platform agreed quite well. The results of this study show that systems using integrating gyros for precise satellite attitude control can be designed to have a reasonably rapid and well-damped transient response, as well as very small steady-state errors. Furthermore, it is shown that the gyros act as rate sensors, as well as torque sources, so that no rate stabilization networks are required, and when no error sensor is available, the vehicle is still rate stabilized. Hence, it is shown that a major advantage of a gyro control system is that when the target is occulted, an alternate reference is not required.

  9. Initial Study of Friction Pull Plug Welding

    NASA Technical Reports Server (NTRS)

    Rich, Brian S.

    1999-01-01

    Pull plug friction welding is a new process being developed to conveniently eliminate defects from welded plate tank structures. The general idea is to drill a hole of precise, optimized dimensions and weld a plug into it, filling the hole perfectly. A conically-shaped plug is rotated at high angular velocity as it is brought into contact with the plate material in the hole. As the plug is pulled into the hole, friction rapidly raises the temperature to the point at which the plate material flows plastically. After a brief heating phase, the plug rotation is terminated. The plug is then pulled upon with a forging force, solidly welding the plug into the hole in the plate. Three aspects of this process were addressed in this study. The transient temperature distribution was analyzed based on slightly idealized boundary conditions for different plug geometries. Variations in hole geometry and ram speed were considered, and a program was created to calculate volumes of displaced material and empty space, as well as many other relevant dimensions. The relation between the axially applied forging force and the actual forging pressure between the plate and plug surfaces was determined for various configurations.

  10. Studying the Frictional Force Directions via Bristles

    ERIC Educational Resources Information Center

    Prasitpong, S.; Chitaree, R.; Rakkapao, S.

    2010-01-01

    We present simple apparatus designed to help Thai high school students visualize the directions of frictional forces. Bristles of toothbrushes, paintbrushes and scrubbing brushes are used to demonstrate the frictional forces acting in a variety of situations. These demonstrations, when followed by discussion of free-body diagrams, were found to be…

  11. Studying the Frictional Force Directions via Bristles

    ERIC Educational Resources Information Center

    Prasitpong, S.; Chitaree, R.; Rakkapao, S.

    2010-01-01

    We present simple apparatus designed to help Thai high school students visualize the directions of frictional forces. Bristles of toothbrushes, paintbrushes and scrubbing brushes are used to demonstrate the frictional forces acting in a variety of situations. These demonstrations, when followed by discussion of free-body diagrams, were found to be…

  12. Comparative study on friction force pattern anisotropy of graphite

    NASA Astrophysics Data System (ADS)

    Liu, Zhihua; Wang, Wenxue; Liu, Lianqing

    2015-03-01

    In this paper, the experimental and theoretical studies on the atomic-scale two-dimensional friction force pattern are presented. Atomic-scale friction experiments were conducted on graphite surfaces with the atomic force microscopy (AFM) under ambient conditions. Owing to the dimensionality reduction effect of optical method detecting the probe cantilever deflection, the friction force patterns were revealed in these experiments. The friction phenomenon was analyzed theoretically in the framework of Prandtl-Tomlinson model in two dimensions. The dimensionality reduction effect was formulated and involved in the model. The comparison shows the good quantitative agreement between experimental and simulation results, suggesting that the friction force pattern can be interpreted reliably using the model. Meanwhile atomic arrangement was obtained in friction force pattern, the origin and variation of which were also analyzed. The condition for appearance of atomic arrangement was determined qualitatively. By means of band-pass filtering, hexagonal rings or crystal lattices images of graphite were obtained.

  13. DETAILED STUDIES OF ELECTRON COOLING FRICTION FORCE.

    SciTech Connect

    FEDOTOV, A.V.; BRUHWILER, D.L.; ABELL, D.T.; SIDORIN, A.O.

    2005-09-18

    High-energy electron cooling for RHIC presents many unique features and challenges. An accurate estimate of the cooling times requires detailed simulation of the electron cooling process. The first step towards such calculations is to have an accurate description of the cooling force. Numerical simulations are being used to explore various features of the friction force which appear due to several effects, including the anisotropy of the electron distribution in velocity space and the effect of a strong solenoidal magnetic field. These aspects are being studied in detail using the VORFAL code, which explicitly resolves close binary collisions. Results are compared with available asymptotic and empirical formulas and also, using the BETACOOL code, with direct numerical integration of less approximate expressions over the specified electron distribution function.

  14. Detailed Studies of Electron Cooling Friction Force

    SciTech Connect

    Fedotov, A. V.; Bruhwiler, D. L.; Abell, D. T.; Sidorin, A. O.

    2006-03-20

    High-energy electron cooling for RHIC presents many unique features and challenges. An accurate estimate of the cooling times requires detailed simulation of the electron cooling process. The first step towards such calculations is to have an accurate description of the cooling force. Numerical simulations are being used to explore various features of the friction force which appear due to several effects, including the anisotropy of the electron distribution in velocity space and the effect of a strong solenoidal magnetic field. These aspects are being studied in detail using the VORPAL code, which explicitly resolves close binary collisions. Results are compared with available asymptotic and empirical formulas and also, using the BETACOOL code, with direct numerical integration of less approximate expressions over the specified electron distribution function.

  15. Fundamental Study of Material Flow in Friction Stir Welds

    NASA Technical Reports Server (NTRS)

    Reynolds, Anthony P.

    1999-01-01

    The presented research project consists of two major parts. First, the material flow in solid-state, friction stir, butt-welds as been investigated using a marker insert technique. Changes in material flow due to welding parameter as well as tool geometry variations have been examined for different materials. The method provides a semi-quantitative, three-dimensional view of the material transport in the welded zone. Second, a FSW process model has been developed. The fully coupled model is based on fluid mechanics; the solid-state material transport during welding is treated as a laminar, viscous flow of a non-Newtonian fluid past a rotating circular cylinder. The heat necessary for the material softening is generated by deformation of the material. As a first step, a two-dimensional model, which contains only the pin of the FSW tool, has been created to test the suitability of the modeling approach and to perform parametric studies of the boundary conditions. The material flow visualization experiments agree very well with the predicted flow field. Accordingly, material within the pin diameter is transported only in the rotation direction around the pin. Due to the simplifying assumptions inherent in the 2-D model, other experimental data such as forces on the pin, torque, and weld energy cannot be directly used for validation. However, the 2-D model predicts the same trends as shown in the experiments. The model also predicts a deviation from the "normal" material flow at certain combinations of welding parameters, suggesting a possible mechanism for the occurrence of some typical FSW defects. The next step has been the development of a three-dimensional process model. The simplified FSW tool has been designed as a flat shoulder rotating on the top of the workpiece and a rotating, cylindrical pin, which extends throughout the total height of the flow domain. The thermal boundary conditions at the tool and at the contact area to the backing plate have been varied

  16. Adiabatic molecular-dynamics-simulation-method studies of kinetic friction

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Sokoloff, J. B.

    2005-06-01

    An adiabatic molecular-dynamics method is developed and used to study the Muser-Robbins model for dry friction (i.e., nonzero kinetic friction in the slow sliding speed limit). In this model, dry friction between two crystalline surfaces rotated with respect to each other is due to mobile molecules (i.e., dirt particles) adsorbed at the interface. Our adiabatic method allows us to quickly locate interface potential-well minima, which become unstable during sliding of the surfaces. Since dissipation due to friction in the slow sliding speed limit results from mobile molecules dropping out of such unstable wells, our method provides a way to calculate dry friction, which agrees extremely well with results found by conventional molecular dynamics for the same system, but our method is more than a factor of 10 faster.

  17. Predicting Rotation via Studies of Intrinsic Torque and Momentum Transport in DIII-D

    NASA Astrophysics Data System (ADS)

    Chrystal, C.

    2016-10-01

    Experiments at DIII-D using dimensionless parameter scans to study momentum transport and intrinsic (self-generated) torque have yielded a predicted average toroidal rotation in ITER of 10 krad/s and shown that intrinsic torque is relevant for large tokamaks. Intrinsic torque can generate toroidal rotation via various mechanisms (residual stress, orbit loss, field ripple, etc.), and rotation is important for determining turbulence suppression, MHD stability, and high-Z impurity transport. The 10 krad/s prediction is 2x higher than when only neutral beam torque is accounted for, an increase that is predicted to benefit ITER's performance. This work employs scans of normalized gyroradius (ρ*), normalized collision frequency (ν*), Te /Ti , and q. Intrinsic torque normalized by Ti has been found to scale as ρ*- 1.5 , yielding significant intrinsic torque in ITER. The measurements disagree with theoretical predictions and suggest that residual stress is not the primary source of intrinsic torque. These results are consistent with a companion scan in JET. The ν* scaling of normalized intrinsic torque is smaller (ν*0.3). Momentum confinement time was measured to have gyro-Bohm like scaling (ρ*- 0.7 , similar to ITB98(y,2) energy confinement time scaling), and weaker ν* scaling (ν*0.4). Intrinsic torque and momentum confinement time results are found by analyzing the time history of the angular momentum. The time variation of main-ion and impurity rotation were found to be the same, verifying a key assumption in the analysis. The same intrinsic torque was measured when canceling the intrinsic torque with neutral beam torque, suggesting that the Mach number is not an important parameter. The beneficial level of rotation in ITER implied by these results is encouraging. Work supported by US DOE under DE-FC02-04ER54698.

  18. Auger spectroscopy analysis in adhesion, friction and wear studies

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1977-01-01

    The paper reviews the current use of Auger electron spectroscopy in adhesion, friction, wear and lubrication studies. Conventional Auger spectroscopy is adopted to complement LEED studies of the adhesion of metal single crystals. In addition, Auger cylindrical mirror analysis is applied to the study of changes in surface chemistry during dynamic friction and wear experiments on polycrystalline metals and alloys. Important conclusions are that (1) segregation of alloying elements to the surface of metals can alter adhesion behavior; (2) hydrocarbons are adsorbed readily to clean iron surfaces at 23 C; (3) transfer from one surface to another for dissimilar materials in contact can be followed in sliding or rubbing friction studies; and (4) the friction process can enhance surface activity for metals with hydrocarbons.

  19. Auger spectroscopy analysis in adhesion, friction and wear studies

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1977-01-01

    The paper reviews the current use of Auger electron spectroscopy in adhesion, friction, wear and lubrication studies. Conventional Auger spectroscopy is adopted to complement LEED studies of the adhesion of metal single crystals. In addition, Auger cylindrical mirror analysis is applied to the study of changes in surface chemistry during dynamic friction and wear experiments on polycrystalline metals and alloys. Important conclusions are that (1) segregation of alloying elements to the surface of metals can alter adhesion behavior; (2) hydrocarbons are adsorbed readily to clean iron surfaces at 23 C; (3) transfer from one surface to another for dissimilar materials in contact can be followed in sliding or rubbing friction studies; and (4) the friction process can enhance surface activity for metals with hydrocarbons.

  1. Scale effects in sliding friction: An experimental study

    SciTech Connect

    Blau, P.J.

    1991-07-24

    Solid friction is considered by some to be a fundamental property of two contacting materials, while others consider it to be a property of the larger tribosystem in which the materials are contained. A set of sliding friction experiments were designed to investigate the hypothesis that the unlubricated sliding friction between two materials is indeed a tribosystems-related property and that the relative influence of the materials properties or those of the machine on friction varies from one situation to another. Three tribometers were used: a friction microprobe (FMP), a typical laboratory-scale reciprocating pin-on-flat device, and a heavy-duty commercial wear tester. The slider material was stainless steel (AISI 440C) and the flat specimen material was an ordered alloy of Ni{sub 3}Al (IC-50). Sphere-on-flat geometry was used at ambient conditions and at normal forces ranging from 0.01 N to 100 N and average sliding velocities of 0.01 to 100.0 mm/s. The nominal, steady-state sliding friction coefficient tended to decrease with increases in normal force for each of the three tribometers, and the steady state value of sliding friction tended to increase as the mass of the machine increased. The variation of the friction force during sliding was also a characteristic of the test system. These studies provide further support to the idea that the friction of both laboratory-scale and engineering tribosystems should be treated as a parameter which may take on a range of characteristic values and not conceived as having a single, unique value for each material pair.

  2. A study on the frictional response of reptilian shed skin

    NASA Astrophysics Data System (ADS)

    Abdel-Aal, H. A.; Vargiolu, R.; Zahouani, H.; El Mansori, M.

    2011-08-01

    Deterministic surfaces are constructs of which profile, topography and textures are integral to the function of the system they enclose. They are designed to yield a predetermined tribological response. Developing such entities relies on controlling the structure of the rubbing interface so that, not only the surface is of optimized topography, but also is able to self-adjust its tribological behaviour according to the evolution of sliding conditions. In seeking inspirations for such designs, many engineers are turning toward the biological world to study the construction and behaviour of bio-analogues, and to probe the role surface topography assumes in conditioning of frictional response. That is how a bio-analogue can self-adjust its tribological response to adapt to habitat constraints. From a tribological point of view, Squamate Reptiles, offer diverse examples where surface texturing, submicron and nano-scale features, achieves frictional regulation. In this paper, we study the frictional response of shed skin obtained from a snake (Python regius). The study employed a specially designed tribo-acoustic probe capable of measuring the coefficient of friction and detecting the acoustical behavior of the skin in vivo. The results confirm the anisotropy of the frictional response of snakes. The coefficient of friction depends on the direction of sliding: the value in forward motion is lower than that in the backward direction. Diagonal and side winding motion induces a different value of the friction coefficient. We discuss the origin of such a phenomenon in relation to surface texturing and study the energy constraints, implied by anisotropic friction, on the motion of the reptile.

  3. Nanoindentation study of buckling and friction of silicon nanolines

    NASA Astrophysics Data System (ADS)

    Luo, Zhiquan

    Silicon-based nanostructures are essential building blocks for nanoelectronic devices and nano-electromechanical systems (NEMS). As the silicon device size continues to scale down, the surface to volume ratio becomes larger, rendering the properties of surfaces and interfaces more important for improving the properties of the nano-devices and systems. One of those properties is the friction, which is important in controlling the functionality and reliability of the nano-device and systems. The goal of this dissertation is to investigate the deformation and friction behaviors of single crystalline silicon nanolines (SiNLs) using nanoindentation techniques. Following an introduction and a summary of the theoretical background of contact friction in Chapters 1 and 2, the results of this thesis are presented in three chapters. In Chapter 3, the fabrication of the silicon nanolines is described. The fabrication method yielded high-quality single-crystals with line width ranging from 30nm to 90nm and height to width aspect ratio ranging from 10 to 25. These SiNL structures have properties and dimensions well suited for the study of the mechanical and friction behaviors at the nanoscale. In Chapter 4, we describe the study of the mechanical properties of SiNLs using the nanoindentation method. The loading-displacement curves show that the critical load to induce the buckling of the SiNLs can be correlated to the contact friction and geometry of SiNLs. A map was built as a guideline to describe the selection of buckling modes. The map was divided into three regions where different regions correlate to different buckling modes including Mode I, Mode II and sliding-bending of SiNLs. In Chapter 5, we describe the study of the contact friction of the SiNL structures. The friction coefficient at the contact was extracted from the load-displacement curves. Subsequently, the frictional shear stress was evaluated. In addition, the effect of the interface between the indenter and

  4. 11th Grade Students' Conceptual Understanding about Torque Concept: A Longitudinal Study

    ERIC Educational Resources Information Center

    Bostan Sarioglan, Ayberk; Küçüközer, Hüseyin

    2014-01-01

    In this study, it is aimed to reveal the effect of instruction on students' ideas about torque before instruction, after instruction and fifteen weeks after instruction. The working group consists of twenty five high school eleventh grade students. To reveal these students' ideas about the concept of torque a concept test consisting of seven…

  5. Torque Loss After Miniscrew Placement: An In-Vitro Study Followed by a Clinical Trial

    PubMed Central

    Migliorati, Marco; Drago, Sara; Barberis, Fabrizio; Schiavetti, Irene; Dalessandri, Domenico; Benedicenti, Stefano; Biavati, Armando Silvestrini

    2016-01-01

    To evaluate torque loss a week after insertion, both in an in vivo and an in vitro experimental setup were designed. In the in vivo setup a total of 29 miniscrews were placed in 20 patients who underwent orthodontic treatment. Maximum insertion torque (MIT) was evaluated at insertion time (T1). A week later, insertion torque was measured again by applying a quarter turn (T2); no load was applied on the screw during the first week. In the in vitro setup a total of 20 miniscrews were placed in pig rib bone samples. MIT was evaluated at insertion time (T1). Bone samples were kept in saline solution and controlled environment for a week during which the solution was refreshed every day. Afterwards, torque was measured again by applying a quarter turn (T2). The comparison of MIT over time was done calculating the percentage difference of the torque values between pre- and post-treatment and using the parametric two independent samples t-test or the non-parametric Mann–Whitney test. After a week unloaded miniscrews showed a mean loss of rotational torque of 36.3% and 40.9% in in vitro and in in vivo conditions, respectively. No statistical differences were found between the two different setups. Torque loss was observed after the first week in both study models; in vitro experimental setup provided a reliable study model for studying torque variation during the first week after insertion. PMID:27386011

  6. Split torque transmission load sharing

    NASA Technical Reports Server (NTRS)

    Krantz, T. L.; Rashidi, M.; Kish, J. G.

    1992-01-01

    Split torque transmissions are attractive alternatives to conventional planetary designs for helicopter transmissions. The split torque designs can offer lighter weight and fewer parts but have not been used extensively for lack of experience, especially with obtaining proper load sharing. Two split torque designs that use different load sharing methods have been studied. Precise indexing and alignment of the geartrain to produce acceptable load sharing has been demonstrated. An elastomeric torque splitter that has large torsional compliance and damping produces even better load sharing while reducing dynamic transmission error and noise. However, the elastomeric torque splitter as now configured is not capable over the full range of operating conditions of a fielded system. A thrust balancing load sharing device was evaluated. Friction forces that oppose the motion of the balance mechanism are significant. A static analysis suggests increasing the helix angle of the input pinion of the thrust balancing design. Also, dynamic analysis of this design predicts good load sharing and significant torsional response to accumulative pitch errors of the gears.

  7. Steady-state wear and friction in boundary lubrication studies

    NASA Technical Reports Server (NTRS)

    Loomis, W. R.; Jones, W. R., Jr.

    1980-01-01

    A friction and wear study was made at 20 C to obtain improved reproducibility and reliability in boundary lubrication testing. Ester-base and C-ether-base fluids were used to lubricate a pure iron rider in sliding contact with a rotating M-50 steel disk in a friction and wear apparatus. Conditions included loads of 1/2 and 1 kg and sliding velocities of 3.6 to 18.2 m/min in a dry air atmosphere and stepwise time intervals from 1 to 250 min for wear measurements. The wear rate results were compared with those from previous studies where a single 25 min test period was used. Satisfactory test conditions for studying friction and wear in boundary lubrication for this apparatus were found to be 1 kg load; sliding velocities of 7.1 to 9.1 m/min (50 rpm disk speed); and use of a time stepwise test procedure. Highly reproducible steady-state wear rates and steady-state friction coefficients were determined under boundary conditions. Wear rates and coefficients of friction were constant following initially high values during run-in periods.

  8. Experimental Study of Sliding Friction for PET Track Membranes

    NASA Astrophysics Data System (ADS)

    Filippova, E. O.; Filippov, A. V.; Shulepov, I. A.

    2016-04-01

    The article is presented results of a study of the process for a dry friction metal-polymer couple on scheme disc-finger. Track membrane from polyethylene terephthalate was a research material. Membrane had pores with 0.4 and 0.8 μm diameters. The effect of the sliding velocity for membranes with pores of 0.8 microns was determined. Research was shown that increasing pore’s diameter caused a reduction of the friction coefficient and downturn its magnitude vibrations. The study showed that track membrane have adequate resistance to wear and can be successfully used in surgical procedures in the layers of the cornea.

  9. A comparative study of Cr-X-N (X=Zr, Si) coatings for the improvement of the low-speed torque efficiency of a hydraulic piston pump

    NASA Astrophysics Data System (ADS)

    Hong, Yeh-Sun; Lee, Sang-Yul

    2008-02-01

    The internal parts of hydraulic pumps operating at variable speed should be protected from insufficient lubrication. The axial piston type pumps employ a steel-base cylinder barrel rotating on a soft bronze valves plate with a slide contact, where the insufficient lubrication of these components can cause rapid wear of the valve plate and increase the friction loss. In this study, the cylinder barrel surface was deposited with CrZrN coatings, which were expected to improve the tribological contact with a valve plate under low-speed mixed lubrication conditions. Its effect on the improvement of the low-speed torque efficiency of a hydraulic piston pump was investigated and compared with that from the CrSiN coating. The coated cylinder barrels showed much lower friction coefficients and wear rates of the valve plates than the uncoated plasma-nitride one. In particular, the CrZrN coatings revealed better performance than the CrSiN coatings. By representing the improvement in the torque efficiency of the whole pump based upon the degree of the friction coefficient reduction, the CrZrN coatings exhibited approximately a 0.35% higher improvement at 300 bar and 100 rpm than CrSiN coatings. The possible failure modes of the coatings coated on the barrel were sugested and the microstructures of the coatings seemed to have a strong effect on the film failure mode.

  10. A study of the torque equilibrium of an autogiro rotor

    NASA Technical Reports Server (NTRS)

    Bailey, F J , Jr

    1938-01-01

    Two improvements have been made in the method developed in NACA Reports nos. 487 and 591 for the estimation of the inflow velocity required to overcome a given decelerating torque in an autogiro rotor. At low tip-speed ratios, where the assumptions necessary for the analytical integrations of the earlier papers are valid, the expressions therein derived are greatly simplified by combining and eliminating terms with a view of minimizing the numerical computations required. At high tip-speed ratios, by means of charts based on graphical integrations, errors inherent in the assumptions associated with the analytical method are largely eliminated. The suggested method of estimating the inflow velocity presupposes a knowledge of the decelerating torque acting on the rotor; all available full-scale experimental information on this subject is included.

  11. Temperature Dependent Anisotropy of Oxypnictide Superconductors Studied by Torque Magnetometry

    NASA Astrophysics Data System (ADS)

    Weyeneth, Stephen; Puzniak, Roman; Zhigadlo, Nikolai D.; Katrych, Sergiy; Bukowski, Zbigniew; Karpinski, Janusz; Mosele, Urs; Kohout, Stefan; Roos, Josef; Keller, Hugo

    2009-03-01

    Single crystals of different oxypnictide superconductors of the family ReFeAsO1-xFy (Re = Sm, Nd, Pr) with various carrier dopings and with masses m˜100 ng have been investigated by means of torque magnetometry. We present most recent data, obtained by using highly sensitive piezoresistive torque sensors from which the superconducting anisotropy parameter γ and the in-plane magnetic penetration depth λab were extracted. As an important result γ was found to increase strongly as the temperature is decreased from Tc down to low temperatures. This unconventional temperature dependence of γ is similar to that observed in the two-band superconductor MgB2 and cannot be explained within the classical Ginzburg-Landau model. This scenario strongly suggests a new multi-band mechanism in the novel class of oxypnictide high-temperature superconductors.

  12. Study on friction behaviour of brake shoe materials for mining hoist

    NASA Astrophysics Data System (ADS)

    Ungureanu, M.; Ungureanu, N. S.; Crăciun, I.

    2017-02-01

    The friction coefficient in the brake linkages has an important influence on the braking efficiency and safety of machines. The paper presents a method for the study of the friction coefficient of the friction couple brake shoe-drum for mining hoist. In this context, it is interesting to define the friction coefficient, not just according to the materials in contact, but according to the entire ensemble of tribological factors of the friction couple.

  13. Does sensorimotor cortex activity change with quadriceps femoris torque output? A human electroencephalography study.

    PubMed

    Fry, A; Vogt, T; Folland, J P

    2014-09-05

    Encoding muscular force output during voluntary contractions is widely perceived to result, at least in part, from modulations in neuronal activity within the sensorimotor cortex. However the underlying electrophysiological phenomena associated with increased force output remains unclear. This study directly assessed sensorimotor cortex activity using electroencephalography (EEG) in humans performing isometric knee-extensions at a range of discrete torque levels. Fifteen healthy males (age 24 (s=5) years) completed one familiarization and one experimental trial. Participants performed a cyclic series of 60 isometric knee-extension contractions with the right leg, including 15 contractions of a 5-s duration at each of four discrete torque levels: 15%, 30%, 45% and 60% of maximal voluntary torque (MVT). Isometric knee-extension torque, quadriceps electromyography and EEG were recorded at rest and throughout all the contractions. EEG (0.5-50 Hz) was collected using a 32-channel active-electrode cap. A voxel-based low-resolution brain electromagnetic tomography (LORETA) analysis calculated cortical activation within the sensorimotor cortex (one of 27 MNI coordinates) for the entire 0.5-50-Hz range (cortical current density (CCD)), as well as for each constituent frequency band in this range (delta, theta, alpha, beta and gamma). Gamma band (30-50 Hz) cortical activity increased with contraction torque (analysis of variance [ANOVA], P=0.03). Conversely, activity within the other frequency bands was not modulated by torque (P≥0.09), nor was overall CCD (P=0.11). Peripheral neuromuscular activation (quadriceps electromyography (EMG) amplitude) demonstrated distinct increases between each torque level (P<0.01). In conclusion, sensorimotor cortical activity within the gamma band demonstrated an overall increase with contraction torque, whereas both CCD and each of the other constituent frequency bands were not modulated by increments in torque magnitude during isometric

  14. Studies on the frictional behavior of magnetic recording tapes

    NASA Technical Reports Server (NTRS)

    Kalfayan, S. H.; Silver, R. H.; Hoffman, J. K.

    1972-01-01

    Methods were developed for measuring frictional forces acting on a magnetic tape in motion or at rest, as well as the extent of stick slip. The effects of factors such as temperature, humidity, kind of gaseous atmosphere, and tape speed on the frictional interaction between various tapes and heads were investigated. Results were instrumental in the selection of a tape for the Mariner Mars 1971 spacecraft. Studies are reported on the stick slip behavior of tapes and the performance of a metallic tape, compared with the usual plastic tapes.

  15. A frictional study of total hip joint replacements

    NASA Astrophysics Data System (ADS)

    Scholes, S. C.; Unsworth, A.; Goldsmith, A. A. J.

    2000-12-01

    Polymeric wear debris produced by articulation of the femoral head against the ultra-high-molecular-weight polyethylene socket of a total hip replacement has been implicated as the main cause of osteolysis and subsequent failure of these implants. Potential solutions to this problem are to employ hard bearing surface combinations such as metal-on-metal or ceramic-on-ceramic prostheses. The aim of this study was to investigate the difference in lubrication modes and friction of a range of material combinations using synthetic and biological fluids as the lubricants. The experimental results were compared with theoretical predictions of film thicknesses and lubrication modes. A strong correlation was observed between experiment and theory when employing carboxy methyl cellulose (CMC) fluids as the lubricant. Under these conditions the ceramic-on-ceramic joints showed full fluid film lubrication while the metal-on-metal, metal-on-plastic, diamond-like carbon-coated stainless steel (DLC)-on-plastic and ceramic-on-plastic prostheses operated under a mixed lubrication regime. With bovine serum as the lubricant in the all ceramic joints, however, the full fluid film lubrication was inhibited due to adsorbed proteins. In the metal-on-metal joints this adsorbed protein layer acted to reduce the friction while in the ceramic coupling the friction was increased. The use of bovine serum as the lubricant also significantly increased the friction in both the metal-on-plastic and ceramic-on-plastic joints. The friction produced by the DLC-on-plastic joints depended on the quality of the coating. Those joints with a less consistent coating and therefore a higher surface roughness gave significantly higher friction than the smoother, more consistently coated heads.

  16. Understanding mechanisms and factors related to implant fixation; a model study of removal torque.

    PubMed

    Stenlund, Patrik; Murase, Kohei; Stålhandske, Christina; Lausmaa, Jukka; Palmquist, Anders

    2014-06-01

    Osseointegration is a prerequisite for achieving a stable long-term fixation and load-bearing capacity of bone anchored implants. Removal torque measurements are often used experimentally to evaluate the fixation of osseointegrated screw-shaped implants. However, a detailed understanding of the way different factors influence the result of removal torque measurements is lacking. The present study aims to identify the main factors contributing to anchorage. Individual factors important for implant fixation were identified using a model system with an experimental design in which cylindrical or screw-shaped samples were embedded in thermosetting polymers, in order to eliminate biological variation. Within the limits of the present study, it is concluded that surface topography and the mechanical properties of the medium surrounding the implant affect the maximum removal torque. In addition to displaying effects individually, these factors demonstrate interplay between them. The rotational speed was found not to influence the removal torque measurements within the investigated range.

  17. Vacuum Friction in Rotating Particles

    SciTech Connect

    Manjavacas, A.; Garcia de Abajo, F. J.

    2010-09-10

    We study the frictional torque acting on particles rotating in empty space. At zero temperature, vacuum friction transforms mechanical energy into light emission and produces particle heating. However, particle cooling relative to the environment occurs at finite temperatures and low rotation velocities. Radiation emission is boosted and its spectrum significantly departed from a hot-body emission profile as the velocity increases. Stopping times ranging from hours to billions of years are predicted for materials, particle sizes, and temperatures accessible to experiment. Implications for the behavior of cosmic dust are discussed.

  18. Study on Transmission Torque Characteristics of a Surface-Permanent-Magnet-Type Magnetic Gear

    NASA Astrophysics Data System (ADS)

    Niguchi, Noboru; Hirata, Katsuhiro; Hayakawa, Yuichi

    Magnetic gears have some advantages such as low mechanical loss and maintenance-free operation that are not observed in conventional mechanical gears. In addition, magnetic gears have inherent overload protection. Therefore, magnetic gears are expected to be used in special applications; for example, they can be used in a joint of a humanoid robot. Recently, various types of new magnetic gears have been proposed. Among these new gears, a surface-permanent-magnet-type (SPM-type) magnetic gear employing harmonic magnetic flux has gained attention because of its high transmission torque density, though it has a complex structure with multipole magnets. Some studies on an SPM-type magnetic gear have been carried out, but there are few papers on cogging torque. This paper describes the transmission torque characteristics of an SPM-type magnetic gear. The operating principle and the transmission torque under synchronous operation are formulated in accordance with the gear ratio. High orders of the cogging torque are computed by employing the 3-D finite element method, and the validity of the analysis is verified by carrying out measurements on a prototype. Furthermore, a method for reducing the cogging torque is discussed.

  19. Characterizing the effects of friction liner materials on the performance of piezoelectric motors using finite element analysis

    SciTech Connect

    Gute, G.D.; Halter, S.L.

    1995-10-01

    A finite element model of a Panasonic USM-40D piezoelectric motor`s rotor was coupled with a finite element model of the motor`s friction liner/rotor so that the frictional interface could be further studied. Results from the model were used to study the affects of various friction liner material properties on motor stall torque. Statistical methods were used to determine the significant friction liner material properties and their interactions. An equation for predicting the stall torque as a function of the significant variables and their interactions was established.

  20. Preliminary Study of a Pull Plug Friction Weld

    NASA Technical Reports Server (NTRS)

    Buchanan, George R.

    1999-01-01

    A pull plug friction weld, simply defined, comprises inserting a rotating cone-shaped cylinder into a somewhat cone-shaped hole in a plate. The rotating plug makes contact with the edge of the plate and the resulting friction generates heat. The temperature of the plate material eventually reaches a magnitude that will cause the plate material at the edge of the hole to flow. This can be termed a temperature dependent plastic flow. The rotation of the plug is terminated, additional pressure is applied and the metal at the interface of the two materials cools and welding occurs. This preliminary study addresses only three aspects of a complete analysis that is multi-faceted. The transient temperature distribution for different pull plug configurations has been studied in some detail even though the initial conditions and boundary conditions may still be deemed tentative. The stress distribution within the pull plug caused by the heating pressure was studied along with a preliminary analysis of the thermoelastic stress distribution caused by friction heating. There are no definitive results for the stress analysis. Additional study will be required.

  1. Preliminary Study of a Pull Plug Friction Weld

    NASA Technical Reports Server (NTRS)

    Buchanan, George R.

    1999-01-01

    A pull plug friction weld, simply defined, comprises inserting a rotating cone-shaped cylinder into a somewhat cone-shaped hole in a plate. The rotating plug makes contact with the edge of the plate and the resulting friction generates heat. The temperature of the plate material eventually reaches a magnitude that will cause the plate material at the edge of the hole to flow. This can be termed a temperature dependent plastic flow. The rotation of the plug is terminated, additional pressure is applied and the metal at the interface of the two materials cools and welding occurs. This preliminary study addresses only three aspects of a complete analysis that is multi-faceted. The transient temperature distribution for different pull plug configurations has been studied in some detail even though the initial conditions and boundary conditions may still be deemed tentative. The stress distribution within the pull plug caused by the heating pressure was studied along with a preliminary analysis of the thermoelastic stress distribution caused by friction heating. There are no definitive results for the stress analysis. Additional study will be required.

  2. Immediate Effect of Grade IV Inferior Hip Joint Mobilization on Hip Abductor Torque: A Pilot Study

    PubMed Central

    Makofsky, Howard; Panicker, Siji; Abbruzzese, Jeanine; Aridas, Cynthia; Camp, Michael; Drakes, Jonelle; Franco, Caroline; Sileo, Ray

    2007-01-01

    Joint mobilization and manipulation stimulate mechanoreceptors, which may influence the joint and surrounding muscles. The purpose of this pilot study was to determine the effect of grade IV inferior hip joint mobilization on hip abductor torque. Thirty healthy subjects were randomly assigned to a control group (grade I inferior hip joint mobilization) or an experimental group (grade IV inferior hip joint mobilization). Subjects performed a pre- and post-intervention test of five isometric repetitions on the Cybex Normö dynamometer; the average torque was determined for both pre- and post-intervention measurements. These data were analyzed using the independent samples t-test with the significance level set at P<0.05. The results showed a statistically significant difference between the two groups for an increase in hip abductor torque in the experimental group (P=0.03). The experimental group demonstrated a 17.35% increase in average torque whereas the control group demonstrated a 3.68% decrease in average torque. These findings are consistent with other studies demonstrating that the use of grade IV non-thrust mobilization improves strength immediately post-intervention in healthy individuals. The results of this pilot study provide physical therapists with further support for the utilization of manual therapy in conjunction with therapeutic exercise to enhance muscle strength. PMID:19066650

  3. A study of frictional property of the human fingertip using three-dimensional finite element analysis.

    PubMed

    Yoshida, Hiroaki; Tada, Mitsunori; Mochimaru, Masaaki

    2011-03-01

    Since the tactile perception detects skin deformation due to the contact of an object, it is important to understand contact mechanics, especially, frictional behavior of the human fingertip. The coefficient of friction is recently modeled as a function of the applied normal load in which case the traditional Coulomb's law does not provide a description for the skin surface. When a surface is a rubber-like material, the frictional behavior follows the frictional law of the rubber-like material. Therefore, we developed a three-dimensional Finite Element model of the fingertip and analyzed frictional behavior based on the frictional law of rubber-like material. We proposed a combined technique using both experimental and Finite Element analyses in order to investigate the frictional property of the fingertip. A three-dimensional Finite Element model of the fingertip was developed using MRI images. We hypothesized a frictional equation of the critical shear stress. Squared differences between equivalent coefficient of friction of the FE analysis and the coefficient of kinetic friction of the experiment while sliding was decreased and the Finite Element analysis iterated until the error was minimized, and thus the frictional equation was determined. We obtained the equation of the critical shear stress and simulated kinetic friction of the fingertip while sliding under arbitrary normal loading condition by using the Finite Element analysis. We think this study is an appropriate method for understanding the frictional property of the human fingertip using the Finite Element analysis.

  4. Friction in a hybrid system. An in vitro study

    PubMed Central

    ROZZI, M.; MUCEDERO, M.; FRANCHI, L.; COZZA, P.

    2011-01-01

    SUMMARY Aim The aim of this study was to compare the frictional force generated by self-ligating and conventional brackets coupled with stainless steel wires when conventional elastomeric or stainless steel ligatures were applied. Method Four types of brackets were selected for the study: one passive self-ligating bracket, two active self-ligating brackets, and one conventional bracket. For each type of bracket one molar tube and two upper premolars were used in combination with three different wires (0.016x0.022, 0.017x0.025 and 0.019x0.025 inch). Testing was performed with an Instron machine. Each bracket/wire combination was tested with conventional elastomeric and stainless steel ligatures. Tests performed with self-ligating brackets were carried out also without conventional ligatures. ANOVA with Tukey’s post hoc tests were used to compare the results for the different bracket/wire/ligature assemblies. Results Active self-ligating bracket/0.017x0.025 inch or 0.019x0.025 inch/stainless steel ligature assemblies showed significantly higher values of frictional forces than conventional bracket for the same combinations. Passive self-ligating brackets showed significantly lower values of friction than conventional brackets for each wire/ligature assembly. Conclusions The use of stainless steel ligatures applied on active self-ligating brackets produced significantly higher level of frictional force than in combination with conventional brackets for 0.017x0.025 inch and 0.019x0.025 inch wires. PMID:23285390

  5. Study on the friction of κ-carrageenan hydrogels in air and aqueous environments.

    PubMed

    Kozbial, Andrew; Li, Lei

    2014-03-01

    Understanding the friction mechanism of polysaccharide hydrogels, which is the key component of human cartilage that has very low friction coefficient, is critical to develop next generation artificial joint replacement materials. In this study, the friction of the polysaccharide κ-carrageenan hydrogel was investigated to elucidate the effect of external load, cross-linking density, velocity, and environment on friction. Our experimental results show that (1) coefficient of friction (COF) decreases with normal load in air and remains constant in water, (2) increasing cross-linking density concurrently increases friction and is proportional to Young's modulus, (3) COF increases with testing velocity in both air and water, and (4) friction is reduced in aqueous environment due to the lubricating effect of water. The underlying frictional mechanism is discussed on the basis of water transport from bulk to surface and a previously proposed "repulsion-adsorption" model. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. A study of the friction stir welding process by experimental investigation and numerical simulation

    NASA Astrophysics Data System (ADS)

    Long, Tianzhong

    2005-12-01

    In this study, 2-D and 3-D models based on a commercial computational fluid dynamics (CFD) code (FLUENT) and suitable user defined viscosity law are used to capture many of the trends observed in FSW. The fully thermo-mechanically coupled 2 D CFD model can run in a few hours on a PC based system. The low computational cost for 2-D model enables rapid assessment of the effects of various material properties and the criticality of inclusion or exclusion of some property details. The effects of varying material properties and process parameters, on the trends in x-axis forces and potential weld defect formation (via material flow pattern) are studied and compared with the experimental observations. It was found that the minimum x-force that occurs in the median RPM range is strongly influenced by the cutoff temperature in the viscosity law. The bifurcation of material flow in the weld path also occurs when the maximum temperature ahead of the pin surpasses the cutoff temperature. Aluminum alloys AA2219, AA5083, AA6061, and AA7050 were welded using constant welding speed and linearly increased RPM. The grain sizes in the welds were measured and the applied torque and x-force during friction stir welding process were recorded. The correlations of the grain size, the applied torque and x-force were studied using simulation and the experimental methods. The 2D and 3D CFD model simulation results compare well with experimental measurements. Based on the 2D model results, the material's simulated thermo-mechanical history was also studied. The model predicts that the material in the weld region experiences a high temperature after the deformation is complete. This thermo-mechanical history indicates that metallurgical transformations may continue after the end of deformation and that the grain size in the weld cannot be adequately described using a Zener-Holloman parameter approach or by invoking the continuous dynamic recrystallization process.

  7. Molecular simulation studies of nanoscale friction between phosphorylcholine self-assembled monolayer surfaces: Correlation between surface hydration and friction

    NASA Astrophysics Data System (ADS)

    He, Yi; Chen, Shengfu; Hower, Jason C.; Bernards, Matthew T.; Jiang, Shaoyi

    2007-08-01

    We performed all-atom molecular dynamics simulations to study the friction between surfaces covered with two phosphorylcholine self-assembled monolayers (PC-SAM) under shear. PC-SAM surfaces with a √7×√7R19° lattice structure and a parallel arrangement of the head groups were used as model zwitterionic surfaces. They provide a full representation of the zwitterionic nature of phospholipid surfaces, which are believed to play an important role in the lubrication of biological joints such as knees and hips. The surfaces were immersed in aqueous solutions and kept in contact with two regions of bulk water. Sodium chloride and potassium chloride solutions at various concentrations were employed to study the effects of the presence of ions on friction. The results show a strong relationship between surface hydration and friction. Higher ionic concentrations or ions with shorter Debye lengths cause a larger disruption to the hydration around the zwitterionic surfaces, leading to larger friction forces. In addition, the results show that under nanoscale confinement, the friction coefficients of PC-SAM surfaces in pure water are directly proportional to both shear velocity and surface separation distance. These results are comparable to previously published experimental studies.

  8. Friction and wear of TPS fibers: A study of the adhesion and friction of high modulus fibers

    NASA Technical Reports Server (NTRS)

    Bascom, Willard D.; Lee, Ilzoo

    1990-01-01

    The adhesional and frictional forces between filaments in a woven fabric or felt, strongly influenced the processability of the fiber and the mechanical durability of the final product. Even though the contact loads between fibers are low, the area of contact is extremely small giving rise to very high stresses; principally shear stresses. One consequence of these strong adhesional and frictional forces is the resistance of fibers to slide past each other during weaving or when processed into nonwoven mats or felts. Furthermore, the interfiber frictional forces may cause surface damage and thereby reduce the fiber strength. Once formed into fabrics, flexural handling and manipulation of the material again causes individual filaments to rub against each other resulting in modulus, brittle fibers such as those used in thermal protection systems (TPS). The adhesion and friction of organic fibers, notably polyethylene terephthalate (PET) fibers, have been extensively studied, but there has been very little work reported on high modulus inorganic fibers. An extensive study was made of the adhesion and friction of flame drawn silica fibers in order to develop experimental techniques and a scientific basis for data interpretation. Subsequently, these methods were applied to fibers of interest in TPS materials.

  9. A numerical study of the rolling friction between a microsphere and a substrate considering the adhesive effect

    NASA Astrophysics Data System (ADS)

    Zhang, Yuyan; Wang, Xiaoli; Li, Hanqing; Yang, Weixu

    2016-01-01

    A numerical model of the rolling friction between a microsphere and a substrate is established by introducing the adhesion hysteresis between the front and rear sides of the contact region into Zhang’s adhesive contact model. Effects of the size ratio which is defined as the sphere radius divided by the equilibrium separation, relative amount of adhesion hysteresis and Tabor parameter on the dimensionless maximum rolling friction torque in the case of zero normal force are inspected, and the quantitative relationship between the maximum rolling friction torque and the normal force is achieved. Results indicate that due to adhesion hysteresis at microscale, the dimensionless maximum rolling friction torque at zero normal force is not zero, which not only increases with decreasing size ratio, showing clear size effects, but also increases with increasing relative amount of adhesion hysteresis and Tabor parameter. In addition, the maximum rolling friction torque at microscale presents a sublinear relationship with the normal force, and the exponent of the normal force is influenced by the size ratio, relative amount of adhesion hysteresis and Tabor parameter, which are remarkably different from the superlinear relationship at macroscale.

  10. Propeller study. Part 3: Experimental determination of thrust and torque on the YO-3A aircraft

    NASA Technical Reports Server (NTRS)

    Ormsbee, A. I.; Siddiqi, S. A.; Sivier, K. R.

    1977-01-01

    Instrumentation and procedures for obtaining in-flight measurements of the torque and thrust of a propeller mounted on a YO-3A aircraft are described. Problems encountered in the study are discussed and methods for eliminating these difficulties are suggested.

  11. Correlation between Initial BIC and the Insertion Torque/Depth Integral Recorded with an Instantaneous Torque-Measuring Implant Motor: An in vivo Study.

    PubMed

    Capparé, Paolo; Vinci, Raffaele; Di Stefano, Danilo Alessio; Traini, Tonino; Pantaleo, Giuseppe; Gherlone, Enrico Felice; Gastaldi, Giorgio

    2015-10-01

    Quantitative intraoperative evaluation of bone quality at implant placement site and postinsertion implant primary stability assessment are two key parameters to perform implant-supported rehabilitation properly. A novel micromotor has been recently introduced allowing to measure bone density at implant placement site and to record implant insertion-related parameters, such as the instantaneous, average and peak insertion torque values, and the insertion torque/depth integral. The aim of this study was to investigate in vivo if any correlation existed between initial bone-to-implant contact (BIC) and bone density and integral values recorded with the instrument. Twenty-five patients seeking for implant-supported rehabilitation of edentulous areas were consecutively treated. Before implant placement, bone density at the insertion site was measured. For each patient, an undersized 3.3 × 8-mm implant was placed, recording the insertion torque/depth integral values. After 15 minutes, the undersized implant was retrieved with a 0.5 mm-thick layer of bone surrounding it. Standard implants were consequently placed. Retrieved implants were analyzed for initial BIC quantification after fixation, dehydration, acrylic resin embedment, sections cutting and grinding, and toluidine-blue and acid fuchsine staining. Correlation between initial BIC values, bone density at the insertion site, and the torque/depth integral values was investigated by linear regression analysis. A significant linear correlation was found to exist between initial BIC and (a) bone density at the insertion site (R = 0.96, explained variance R(2)  = 0.92) and (b) torque/depth integral at placement (R = 0.81, explained variance R(2)  = 0.66). The system provided quantitative, reliable data correlating significantly with immediate postinsertion initial BIC, and could therefore represent a valuable tool both for clinical research and for the oral implantologist in his/her daily clinical

  12. Torque magnetometry study of Fe and Ni doped SmB6

    NASA Astrophysics Data System (ADS)

    Tinsman, Colin; Li, Gang; Lawson, Benjamin; Yu, Fan; Asaba, Tomoya; Wang, Xiangfeng; Paglione, Johnpierre; Li, Lu

    2015-03-01

    There has been renewed interest in the past few years regarding Samarium Hexaboride, a promising candidate to be a topological Kondo insulator. Work on this material represents an extension of the categorization of materials by the topology of their electronic band structure into systems with strong correlation effects. It is known that by introducing magnetic impurities, such as Iron, Nickel, and Europium, the magnetic ground state of SmB6 could be greatly altered. In this study we will present our torque magnetometry data of Fe and Ni doped SmB6, down to 20 mK, and up to 45 Tesla. It is found that the overall symmetry of the angular dependence of torque with respect to magnetic field changed for both Fe-doped SmB6 and Ni-doped SmB6. For pure SmB6, the angular dependence is proportional to sin (2 θ) , as expected for a paramagnetic material. By contrast, for Fe-doped SmB6 and Ni-doped SmB6, the torque vs. tilt angle profile becomes sin (4 θ) . Furthermore, for FexSmB6 the field dependence of torque shows a sharp bend feature around 9 Tesla, which softens with elevating temperature, and could be related to magnetic moment re-alignment.

  13. An Electromyographic-driven Musculoskeletal Torque Model using Neuro-Fuzzy System Identification: A Case Study.

    PubMed

    Jafari, Zohreh; Edrisi, Mehdi; Marateb, Hamid Reza

    2014-10-01

    The purpose of this study was to estimate the torque from high-density surface electromyography signals of biceps brachii, brachioradialis, and the medial and lateral heads of triceps brachii muscles during moderate-to-high isometric elbow flexion-extension. The elbow torque was estimated in two following steps: First, surface electromyography (EMG) amplitudes were estimated using principal component analysis, and then a fuzzy model was proposed to illustrate the relationship between the EMG amplitudes and the measured torque signal. A neuro-fuzzy method, with which the optimum number of rules could be estimated, was used to identify the model with suitable complexity. Utilizing the proposed neuro-fuzzy model, the clinical interpretability was introduced; contrary to the previous linear and nonlinear black-box system identification models. It also reduced the estimation error compared with that of the most recent and accurate nonlinear dynamic model introduced in the literature. The optimum number of the rules for all trials was 4 ± 1, that might be related to motor control strategies and the % variance accounted for criterion was 96.40 ± 3.38 which in fact showed considerable improvement compared with the previous methods. The proposed method is thus a promising new tool for EMG-Torque modeling in clinical applications.

  14. Torque and Twist against Superlubricity

    NASA Astrophysics Data System (ADS)

    Filippov, Alexander E.; Dienwiebel, Martin; Frenken, Joost W. M.; Klafter, Joseph; Urbakh, Michael

    2008-02-01

    Superlubricity between incommensurate surfaces provides a desired low-friction state essential for the function of small-scale machines. Here we demonstrate experimentally and theoretically that superlubricity in contacts lubricated by lamellar solids might be eliminated due to torque-induced reorientation coupled to lateral motion. We find that the possibility of reorientation always leads to stabilization of a high frictional state which corresponds to a commensurate configuration.

  15. Torque and twist against superlubricity.

    PubMed

    Filippov, Alexander E; Dienwiebel, Martin; Frenken, Joost W M; Klafter, Joseph; Urbakh, Michael

    2008-02-01

    Superlubricity between incommensurate surfaces provides a desired low-friction state essential for the function of small-scale machines. Here we demonstrate experimentally and theoretically that superlubricity in contacts lubricated by lamellar solids might be eliminated due to torque-induced reorientation coupled to lateral motion. We find that the possibility of reorientation always leads to stabilization of a high frictional state which corresponds to a commensurate configuration.

  16. Friction Reduction Using Self-Assembled Hydrogels

    NASA Astrophysics Data System (ADS)

    Mackel, Michael J.; Kornfield, Julia A.

    2007-03-01

    Friction of agarose-based hydrogels against bare glass is examined as a function of added linear polyelectrolyte using a stress rheometer to measure the angular velocity of a clean glass plate against the hydrogel surface as a function of applied torque and normal force. Incorporating linear dextran sulfate into 2 weight percent agarose hydrogel reduces friction on the hydrogel surface. The reduction of friction is a nonmonotonic function of dextran sulfate concentration: a 2 percent doping of dextran sulfate shows the minimum friction. Lubricity enhancement on the agarose doped with 2 percent dextran sulfate occurs at all normal forces examined (0.5, 1, 1.5, and 2 N) and is more pronounced at larger angular velocities. Rheological studies of agarose hydrogels doped with dextran sulfate suggest that the dextran sulfate does not interfere with the porous structure of the hydrogel when present in concentrations of 2 weight percent or less.

  17. Initial torque stability of a new bone condensing dental implant. A cohort study of 140 consecutively placed implants.

    PubMed

    Irinakis, Tassos; Wiebe, Colin

    2009-01-01

    The aim of this paper was to determine the torque resistance of this new implant during placement in different types of bone, immediate placement into sockets, and in grafted bone. The torque at time of placement serves as an indication of initial stability, which is accepted as an important factor for implant osseointegration and immediate loading. Within a 13-month period, 140 NobelActive implants in 84 consecutive patients were placed into types I-IV bone in fresh sockets, and into grafted bone (both in maxillary sinuses and on the facial alveolar surfaces where bone had been lost). The final torque was measured with a manual torque control wrench as manufactured by Nobel Biocare for clinical use with this type of implant. One hundred forty implants with 3.5 to 5 mm diameters and 10 to 15 mm lengths were placed in different types of bone, either as delayed or immediate implants into fresh extraction sockets. These implants demonstrated a mean torque stability value of 50.8 Ncm. The average insertion torque for delayed implants was 49.7 Ncm. For immediate implants the average torque was 52.6 Ncm. Placement into soft bone was also favorable at an average of 47.9 Ncm. Typical straight walled and tapered implants generally exhibit 10 to 35 Ncm insertion torques. The NobelActive implant consistently reaches higher torque levels. This may indicate they are more favorably suited to early provisionalization and loading. Soft bone (type IV) did not seem to decrease significantly the torque of insertion of these implants. Further longer term studies are needed to investigate whether this indeed makes these implants more suited for early provisionalization and loading than traditional root form. Long term studies are also needed to investigate maintenance of bone levels surrounding these implants.

  18. Integrated Data Collection and Analysis Project: Friction Correlation Study

    DTIC Science & Technology

    2015-08-01

    3 3. ABL Sliding Friction Apparatus .....................................................................5 4. Anvil and non- rotating ...compressive force being applied through the non- rotating wheel. This test apparatus mimics the friction environment of steel pinch points which is...seen extensively during the course of energetic material formulation and processing.11 6 Distribution A Figure 4. Anvil and non- rotating wheel

  19. Dynamics of a split torque helicopter transmission

    NASA Astrophysics Data System (ADS)

    Krantz, Timothy L.

    1994-06-01

    Split torque designs, proposed as alternatives to traditional planetary designs for helicopter main rotor transmissions, can save weight and be more reliable than traditional designs. This report presents the results of an analytical study of the system dynamics and performance of a split torque gearbox that uses a balance beam mechanism for load sharing. The Lagrange method was applied to develop a system of equations of motion. The mathematical model includes time-varying gear mesh stiffness, friction, and manufacturing errors. Cornell's method for calculating the stiffness of spur gear teeth was extended and applied to helical gears. The phenomenon of sidebands spaced at shaft frequencies about gear mesh fundamental frequencies was simulated by modeling total composite gear errors as sinusoid functions. Although the gearbox has symmetric geometry, the loads and motions of the two power paths differ. Friction must be considered to properly evaluate the balance beam mechanism. For the design studied, the balance beam is not an effective device for load sharing unless the coefficient of friction is less than 0.003. The complete system stiffness as represented by the stiffness matrix used in this analysis must be considered to precisely determine the optimal tooth indexing position.

  20. Modifying atomic-scale friction between two graphene sheets: A molecular-force-field study

    NASA Astrophysics Data System (ADS)

    Guo, Yufeng; Guo, Wanlin; Chen, Changfeng

    2007-10-01

    Recently discovered ultralow friction (superlubricity) between incommensurate graphitic layers has raised great interest in understanding the interlayer interaction between graphene sheets under various physical conditions. In this work, we have studied the effects of interlayer distance change and in-sheet defects in modifying the interlayer friction in graphene sheets by extensive molecular-force-field statics calculations. The interlayer friction between graphene sheets with commensurate or incommensurate interlayer stacking increases with decreasing interlayer distance, but in the case of incommensurate stacking, ultralow friction can exist in a significantly expanded range of interlayer distance. The ultralow interlayer friction in the incommensurate stacking sheets is insensitive to the in-sheet defect of vacancy at a certain orientation. These results provide knowledge for possibly controlling friction between graphene sheets and offer insight into their applications.

  1. A computational study of brush seal contact loads with friction

    NASA Astrophysics Data System (ADS)

    Aksit, Mahmut Faruk

    The brush seal is emerging as a new technology to effectively control cooling and leakage flows in gas turbine engines. With their superior leakage performance, they show the potential to replace current labyrinth seals in gas turbine engines. Because the bristles slide against the rotor surface, wear at the contact becomes a major concern as it determines the life and efficiency of the seal. To optimize seal life and efficiency, an in-depth study of the factors causing the seal stiffness is needed, and a good choice of materials must be made. Although considerable research has been done on material selection and tribopairs, a brief survey reveals the lack of reliable analyses to evaluate contact loads, and to address heat transfer issues. As material pairs have been optimized for most cases, understanding and management of contact loads hold the key for further improvements in seal life. The complicated nature of bristle behavior under various combinations of pressure load and rotor interference requires computer analysis to study details that may not be available through analytical formulations. In an attempt to meet this need, this study presents a 3-D finite element model of a brush seal. The model consists of a representative bristle bundle with a backing plate and a rotor surface. Every bristle is defined by a number of 3-D quadratic beam elements. Bristles are fixed at the top nodes, while they are free to move in any direction at the tip touching the rotor surface. The model consists of 10 to 13 circumferential rows of bristles. The number of rows are based on the actual packing thickness of the seal modeled. Unlike previous analytical studies on brush seal contact loads, this work includes nonlinear frictional effects between the bristles. Frictional effects are known to drastically change the seal behavior, and are crucial in determining the contact forces. The model applies the available published experimental data to define the boundary conditions and

  2. Friction Drilling of Stainless Steels Pipes

    SciTech Connect

    Fernandez, A.; Lopez de Lacalle, L. N.; Lamikiz, A.

    2011-01-17

    This work describes the experimental study of the friction drilling process in stainless steel by means of an optimization of the machining conditions. For such purpose austenitic stainless steel with different thicknesses were analyzed through controlled tests at different rotation speeds and feed rates. On one hand, the torque and the thrust force were computed and monitorized. On the other hand, the dimensional tolerances of the holes were evaluated, mainly the accuracy of the hole diameter and the burr thickness at different depths. Another topic of interest inherent to this special technique is the temperature level reached during the friction process which is crucial when it comes to development of microstructural transformations.

  3. Practicability study on the suitability of artificial, neural networks for the approximation of unknown steering torques

    NASA Astrophysics Data System (ADS)

    Van Ende, K. T. R.; Schaare, D.; Kaste, J.; Küçükay, F.; Henze, R.; Kallmeyer, F. K.

    2016-10-01

    For steer-by-wire systems, the steering feedback must be generated artificially due to the system characteristics. Classical control concepts require operating-point driven optimisations as well as increased calibration efforts in order to adequately simulate the steering torque in all driving states. Artificial neural networks (ANNs) are an innovative control concept; they are capable of learning arbitrary non-linear correlations without complex knowledge of physical dependencies. The present study investigates the suitability of neural networks for approximating unknown steering torques. To ensure robust processing of arbitrary data, network training with a sufficient volume of training data is required, that represents the relation between the input and target values in a wide range. The data were recorded in the course of various test drives. In this research, a variety of network topologies were trained, analysed and evaluated. Though the fundamental suitability of ANNs for the present control task was demonstrated.

  4. Significance of the Pars Interarticularis in the Cortical Bone Trajectory Screw Technique: An In Vivo Insertional Torque Study

    PubMed Central

    Iwatsuki, Koichi; Ohnishi, Yu-Ichiro; Ohkawa, Toshika; Yoshimine, Toshiki

    2016-01-01

    Study Design Retrospective study. Purpose Cortical bone trajectory (CBT), a more medial-to-lateral and shorter path than the traditional one for spinal fusion, is thought to be effective for severely degenerated vertebrae because screws are primarily stabilized at the posterior elements. We evaluated the efficacy of this approach through in vivo insertional torque measurement. Overview of Literature There has been only one prior in vivo study on CBT insertional torque. Methods Between January 2013 and April 2014, a total of 22 patients underwent posterior lumbar fusion using the CBT technique. The maximum insertional torque, which covers the radial strength needed for insertion, was measured for 113 screws, 8 of which were inserted for L5 spondylolysis. The insertional torque for cases with (n=8) and without (n=31) spondylolysis of L5 were compared using one-way analysis of variance (ANOVA). To evaluate vertebral degeneration, we classified 53 vertebrae without spondylolysis by lumbar radiography using semiquantitative methods; the insertional torque for the 105 screws used was compared on the basis of this classification. Additionally, differences in insertional torque among cases grouped by age, sex, and lumbar level were evaluated for these 105 screws using ANOVA and the Tukey test. Results The mean insertional torque was significantly lower for patients with spondylolysis than for those without spondylolysis (4.25 vs. 8.24 in-lb). There were no statistical differences in insertional torque according to vertebral grading or level. The only significant difference in insertional torque between age and sex groups was in men <75 years and women ≥75 years (10 vs. 5.5 in-lb). Conclusions Although CBT should be used with great caution in patient with lysis who are ≥75 years, it is well suited for dealing with severely degenerated vertebrae because the pars interarticularis plays a very important role in the implementation of this technique. PMID:27790318

  5. A general review of concepts for reducing skin friction, including recommendations for future studies

    NASA Technical Reports Server (NTRS)

    Fischer, M. C.; Ash, R. L.

    1974-01-01

    Four main concepts which have significantly reduced skin friction in experimental studies are discussed; suction, gaseous injection, particle additives, and compliant wall. It is considered possible that each of these concepts could be developed and applied in viable skin friction reduction systems for aircraft application. Problem areas with each concept are discussed, and recommendations for future studies are made.

  6. Torque differences due to the material variation of the orthodontic appliance: a finite element study.

    PubMed

    Papageorgiou, Spyridon N; Keilig, Ludger; Vandevska-Radunovic, Vaska; Eliades, Theodore; Bourauel, Christoph

    2017-12-01

    Torque of the maxillary incisors is crucial to occlusal relationship and esthetics and can be influenced by many factors. The aim of this study was to assess the relative influence of the material of the orthodontic appliance (adhesive, bracket, ligature, and wire) on tooth displacements and developed stresses/strains after torque application. A three-dimensional upper right central incisor with its periodontal ligament (PDL) and alveolus was modeled. A 0.018-in. slot discovery® (Dentaurum, Ispringen, Germany) bracket with a rectangular 0.018 x 0.025-in. wire was generated. The orthodontic appliance varied in the material of its components: adhesive (composite resin or resin-modified glass ionomer cement), bracket (titanium, steel, or ceramic), wire (beta-titanium or steel), and ligature (elastomeric or steel). A total of 24 models were generated, and a palatal root torque of 5° was applied. Afterwards, crown and apex displacement, strains in the PDL, and stresses in the bracket were calculated and analyzed. The labial crown displacement and the palatal root displacement of the tooth were mainly influenced by the material of the wire (up to 150% variation), followed by the material of the bracket (up to 19% variation). The magnitude of strains developed in the PDL was primarily influenced by the material of the wire (up to 127% variation), followed by the material of the bracket (up to 30% variation) and the ligature (up to 13% variation). Finally, stresses developed at the bracket were mainly influenced by the material of the wire (up to 118% variation) and the bracket (up to 59% variation). The material properties of the orthodontic appliance and all its components should be considered during torque application. However, these in silico results need to be validated in vivo before they can be clinically extrapolated.

  7. Experimental and Numerical Analysis of the Friction Drilling Process

    SciTech Connect

    Miller, Scott F; Li, Rui; Wang, Hsin; McSpadden Jr, Samuel Boyce; Shih, Albert J.

    2006-01-01

    Friction drilling is a nontraditional hole-making process. A rotating conical tool is applied to penetrate a hole and create a bushing in a single step without generating chips. Friction drilling relies on the heat generated from the frictional force between the tool and sheet metal workpiece to soften, penetrate, and deform the work-material into a bushing shape. The mechanical and thermal aspects of friction drilling are studied in this research. Under the constant tool feed rate, the experimentally measured thrust force and torque were analyzed. An infrared camera is applied to measure the temperature of the tool and workpiece. Two models are developed for friction drilling. One is the thermal finite element model to predict the distance of tool travel before the workpiece reaches the 250 C threshold temperature that is detectable by an infrared camera. Another is a force model to predict the thrust force and torque in friction drilling based on the measured temperature, material properties, and estimated area of contact. The results of this study are used to identify research needs and build the foundation for future friction drilling process optimization.

  8. Loss of Accuracy of Torque Wrenches Due to Clinical Use and Cleaning Procedure: Short Communication.

    PubMed

    Stroosnijder, Egbert; Gresnigt, Marco Mm; Meisberger, Eric W; Cune, Marco S

    2016-01-01

    The aim of this study was to investigate the way intensive use and multiple cleanings of torque wrenches may interfere with accurary over time. Three different brands (one spring-style and two friction-style types) were tested at baseline and after enduring mechanical testing (1,000 cycles) and cleaning in a thermal disinfector (150 cycles). Torque wrenches were tested at a predetermined value of 30 Ncm at given intervals, and true values were registered by means of a digital torque gauge. All measured values varied between 28.3 Ncm and 31.1 Ncm. Only the spring-style torque wrench revealed values that differed significantly from baseline after both mechanical testing (P < .001) and cleaning (P < .05). The spring-style torque wrench produced values that changed significantly after multiple mechanical and multiple cleaning cycles. However, the differences were small and the measured values from all tested specimens were close to the predetermined value of 30 Ncm.

  9. Argonne Engine Friction Study Phase 1 Final Report

    SciTech Connect

    Fox, Issac; Torbeck, Troy; Brogdon, Bill

    2002-01-01

    Argonne National Laboratory (ANL) has developed a process for making near frictionless carbon (NFC) coatings and depositing them on metal substrates. Friction reductions approaching an order of magnitude have been measured in laboratory tests. While there are many potential applications for such coatings, friction reduction in internal combustion engines is of particular interest due to the apparent fuel savings potential. Ricardo has performed a program of work to estimate potential fuel economy improvements due to the application of such a coating at key interfaces within a diesel engine typical of those found in large trucks. Piston, ring pack, and valvetrain simulations have been performed, using existing models of representative engines, with various degrees of friction reduction applied at important interfaces. The simulations were run at 8 specific operating points to allow approximation of engine performance over the FTP test cycle. Reduction in fuel consumption over the cycle was calculated for each reduced friction case. Results show that application of a friction-reducing surface treatment, like the NFC coatings, at the piston rings and skirt, and at key interfaces within the valvetrain, is expected to result in a reduction in fuel consumption of 0.43% to 0.81% over the FTP heavy duty test cycle. The piston skirt and piston rings are the interfaces where the coating can make the most difference, assuming no changes are made to the engine lubricant. Hydrodynamic friction represents a very large fraction of friction losses within the interfaces considered, at all operating conditions, indicating that changes to the engine lubricant, such as reduced viscosity, can result in further improvement. Reduced oil viscosity may result in increased metal-to-metal contact and wear, unless a durable, low friction coating can be applied at key interfaces. Ricardo recommends an analytical evaluation of the potential benefits of reduced oil viscosity, which considers

  10. Flexure Bearing Reduces Startup Friction

    NASA Technical Reports Server (NTRS)

    Clingman, W. Dean

    1991-01-01

    Design concept for ball bearing incorporates small pieces of shim stock, wire spokes like those in bicycle wheels, or other flexing elements to reduce both stiction and friction slope. In flexure bearing, flexing elements placed between outer race of ball bearing and outer ring. Elements flex when ball bearings encounter small frictional-torque "bumps" or even larger ones when bearing balls encounter buildups of grease on inner or outer race. Flexure of elements reduce high friction slopes of "bumps", helping to keep torque between outer ring and inner race low and more nearly constant. Concept intended for bearings in gimbals on laser and/or antenna mirrors.

  11. van der Waals torque

    NASA Astrophysics Data System (ADS)

    Esquivel-Sirvent, Raul; Schatz, George

    2014-03-01

    The theory of generalized van der Waals forces by Lifshtz when applied to optically anisotropic media predicts the existence of a torque. In this work we present a theoretical calculation of the van der Waals torque for two systems. First we consider two isotropic parallel plates where the anisotropy is induced using an external magnetic field. The anisotropy will in turn induce a torque. As a case study we consider III-IV semiconductors such as InSb that can support magneto plasmons. The calculations of the torque are done in the Voigt configuration, that occurs when the magnetic field is parallel to the surface of the slabs. The change in the dielectric function as the magnetic field increases has the effect of decreasing the van der Waals force and increasing the torque. Thus, the external magnetic field is used to tune both the force and torque. The second example we present is the use of the torque in the non retarded regime to align arrays of nano particle slabs. The torque is calculated within Barash and Ginzburg formalism in the nonretarded limit, and is quantified by the introduction of a Hamaker torque constant. Calculations are conducted between anisotropic slabs of materials including BaTiO3 and arrays of Ag nano particles. Depending on the shape and arrangement of the Ag nano particles the effective dielectric function of the array can be tuned as to make it more or less anisotropic. We show how this torque can be used in self assembly of arrays of nano particles. ref. R. Esquivel-Sirvent, G. C. Schatz, Phys. Chem C, 117, 5492 (2013). partial support from DGAPA-UNAM.

  12. Automatic analysis of cerebral asymmetry: an exploratory study of the relationship between brain torque and planum temporale asymmetry.

    PubMed

    Barrick, Thomas R; Mackay, Clare E; Prima, Sylvain; Maes, Frederik; Vandermeulen, Dirk; Crow, Timothy J; Roberts, Neil

    2005-02-01

    Leftward occipital and rightward frontal lobe asymmetry (brain torque) and leftward planum temporale asymmetry have been consistently reported in postmortem and in vivo neuroimaging studies of the human brain. Here automatic image analysis techniques are applied to quantify global and local asymmetries, and investigate the relationship between brain torque and planum temporale asymmetries on T1-weighted magnetic resonance (MR) images of 30 right-handed young healthy subjects (15 male, 15 female). Previously described automatic cerebral hemisphere extraction and 3D interhemispheric reflection-based methods for studying brain asymmetry are applied with a new technique, LowD (Low Dimension), which enables automatic quantification of brain torque. LowD integrates extracted left and right cerebral hemispheres in columns orthogonal to the midsagittal plane (2D column maps), and subsequently integrates slices along the brain's anterior-posterior axis (1D slice profiles). A torque index defined as the magnitude of occipital and frontal lobe asymmetry is computed allowing exploratory investigation of relationships between this global asymmetry and local asymmetries found in the planum temporale. LowD detected significant torque in the 30 subjects with occipital and frontal components found to be highly correlated (P<0.02). Significant leftward planum temporale asymmetry was detected (P<0.05), and the torque index correlated with planum temporale asymmetry (P<0.001). However, torque and total brain volume were not correlated. Therefore, although components of cerebral asymmetry may be related, their magnitude is not influenced by total hemisphere volume. LowD provides increased sensitivity for detection and quantification of brain torque on an individual subject basis, and future studies will apply these techniques to investigate the relationship between cerebral asymmetry and functional laterality.

  13. A laboratory study of friction-velocity estimates from scatterometry - Low and high regimes

    NASA Technical Reports Server (NTRS)

    Bliven, L. F.; Giovanangeli, J.-P.; Wanninkhof, R. H.; Chapron, B.

    1993-01-01

    Measurements from scatterometers pointing at wind-waves in three large wave tanks are examined to study fetch effects and the correlation with wind friction velocity. Time-series measurements were made at 13, 35, and 95 m with a Ka-band scatterometer aimed upwind at 30 deg incidence angle and vertical polarization. Average normalized radar cross-section (sigma-0) values from all fetches follow a common trend for sigma-0 as a function of wind friction velocity, so the fetch dependence is negligible. An empirical power-law model yields a high correlation between sigma-0 and wind friction velocity, but, because systematic anomalies arise, we reexamine a turbulence approach that delineates low and high regimes with a transition at a wind friction velocity of approximately 25 cm/s. Using this criteria, the data are well represented by a two-section power-law relationship between sigma-0 and wind friction velocity.

  14. Dynamic-scanning-electron-microscope study of friction and wear

    NASA Technical Reports Server (NTRS)

    Brainard, W. A.; Buckley, D. H.

    1974-01-01

    A friction and wear apparatus was built into a real time scanning electron microscope (SEM). The apparatus and SEM comprise a system which provides the capability of performing dynamic friction and wear experiments in situ. When the system is used in conjunction with dispersive X-ray analysis, a wide range of information on the wearing process can be obtained. The type of wear and variation with speed, load, and time can be investigated. The source, size, and distribution of wear particles can be determined and metallic transferal observed. Some typical results obtained with aluminum, copper, and iron specimens are given.

  15. Normal torque of the buccal surface of mandibular teeth and its relationship with bracket positioning: a study in normal occlusion.

    PubMed

    Mestriner, Marcelo Antonio; Enoki, Carla; Mucha, José Nelson

    2006-01-01

    This study evaluated the degree of buccolingual inclination of mandibular tooth crowns relative to torque. For such purpose, mandibular and maxillary stone casts from 31 Caucasian Brazilian adults with normal occlusion, pleasant facial aspect and no history of previous orthodontic treatment were examined. A custom device was developed for measuring the degree of inclination (torque) of bracket slots of orthodontic appliances relative to the occlusion plane, at three bonding height: standard (center of clinical crown), occlusal (0.5 mm occlusally from standard) and cervical (0.5 mm cervically from standard). Except for the mandibular incisors, which presented a small difference in torque from one another (lingual root torque for central incisors and buccal root torque for lateral incisors), the remaining average values are close to those found in the literature. Due to the convexity of the buccal surface, the 1-mm vertical shift of the brackets from occlusal to cervical affected the values corresponding to the normal torque, in approximately 2 degrees in central and lateral incisors, 3 degrees in canines and 8 degrees in premolars and molars.

  16. Efficacy of kinesio taping on isokinetic quadriceps torque in knee osteoarthritis: a double blinded randomized controlled study.

    PubMed

    Anandkumar, Sudarshan; Sudarshan, Shobhalakshmi; Nagpal, Pratima

    2014-08-01

    Double blind pre-test post-test control group design. To compare the isokinetic quadriceps torque, standardized stair-climbing task (SSCT) and pain during SSCT between subjects diagnosed with knee osteoarthritis pre and post kinesio tape (KT) application with and without tension. Strength of the quadriceps and torque producing capability is frequently found to be compromised in knee osteoarthritis. The efficacy of KT in improving isokinetic quadriceps torque in knee osteoarthritis is unknown, forming the basis for this study. Forty subjects were randomly allocated to either the experimental (therapeutic KT with tension) or control group (sham KT without tension) with the allocation being concealed. Pre and post test measurements of isokinetic quadriceps torque, SSCT and pain during SSCT were carried out by a blinded assessor. A large effect size with significant improvements in the peak quadriceps torque (concentric and eccentric at angular velocities of 90° per second and 120° per second), SSCT and pain were obtained in the experimental group when compared to the control group. Application of therapeutic KT is effective in improving isokinetic quadriceps torque, SSCT and reducing pain in knee osteoarthritis.

  17. Tool Wear in Friction Drilling

    SciTech Connect

    Miller, Scott F; Blau, Peter Julian; Shih, Albert J.

    2007-01-01

    This study investigated the wear of carbide tools used in friction drilling, a nontraditional hole-making process. In friction drilling, a rotating conical tool uses the heat generated by friction to soften and penetrate a thin workpiece and create a bushing without generating chips. The wear of a hard tungsten carbide tool used for friction drilling a low carbon steel workpiece has been investigated. Tool wear characteristics were studied by measuring its weight change, detecting changes in its shape with a coordinate measuring machine, and making observations of wear damage using scanning electron microscopy. Energy dispersive spectroscopy was applied to analyze the change in chemical composition of the tool surface due to drilling. In addition, the thrust force and torque during drilling and the hole size were measured periodically to monitor the effects of tool wear. Results indicate that the carbide tool is durable, showing minimal tool wear after drilling 11000 holes, but observations also indicate progressively severe abrasive grooving on the tool tip.

  18. Quartz Crystal Microbalance Studies of Magnetic Mechanisms of Atomic-scale Friction

    NASA Astrophysics Data System (ADS)

    Fredricks, Zachary

    The molecular origins of friction, an important physical phenomenon in light of both its everyday familiarity and its enormous economic impact, have been discussed and debated for hundreds of years. The topic has re-emerged and accelerated in recent decades, spurred by the discovery of wear-free friction mechanisms that arise from both phononic and electronic phenomena. Magnetic friction, the topic of the present study, has been explored to a far lesser extent. Recent studies have concluded however that spin dissipation mechanisms potentially are significant for systems involving magnetic materials. To date, the experimental studies of magnetic friction have been limited to scanning tip geometries and passive observations. There have been no experimental demonstrations of magnetic friction in planar geometries, and no demonstrations of altering friction at the atomic scale by means of applying an external field. In this work, I have used a Quartz Crystal Microbalance (QCM) to study nanoscale friction of magnetic thin films sliding on metals. At temperatures from 30K to 60K, thick and thin solid and liquid oxygen films were grown on Ni substrates, and their sliding friction measured in the presence and absence of an applied magnetic field. Sliding of O2 as well as N2 films on gold electrodes was used as a control. Friction levels for the oxygen monolayers in the presence of the field were observed to be reduced significantly compared to those observed in the absence of a field. For thick films, the reduction was proportionately less, indicating an interfacial effect as the source of the magnetic sensitivity. The field had no observed effect on the friction levels for the films of N 2 on Au. The results were analyzed in terms of a magnetically-induced adlayer structural reorientation (magnetostriction) framework as well as the other generally occurring mechanisms of magnetorheology and spin friction. The observed reduction in friction in the presence of the magnetic

  19. Direct shaft torque measurements in a transient turbine facility

    NASA Astrophysics Data System (ADS)

    Beard, Paul F.; Povey, Thomas

    2011-03-01

    This paper describes the development and implementation of a shaft torque measurement system for the Oxford Turbine Research Facility (formerly the Turbine Test Facility (TTF) at QinetiQ, Farnborough), or OTRF. As part of the recent EU TATEF II programme, the facility was upgraded to allow turbine efficiency measurements to be performed. A shaft torque measurement system was developed as part of this upgrade. The system is unique in that, to the authors' knowledge, it provided the first direct measurement of shaft torque in a transient turbine facility although the system has wider applicability to rotating test facilities in which power measurement is a requirement. The adopted approach removes the requirement to quantify bearing friction, which can be difficult to accurately calibrate under representative operating conditions. The OTRF is a short duration (approximately 0.4 s run time) isentropic light-piston facility capable of matching all of the non-dimensional parameters important for aerodynamic and heat studies, namely Mach number, Reynolds number, non-dimensional speed, stage pressure ratio and gas-to-wall temperature ratio. The single-stage MT1 turbine used for this study is a highly loaded unshrouded design, and as such is relevant to modern military, or future civil aero-engine design. Shaft torque was measured directly using a custom-built strain gauge-based torque measurement system in the rotating frame of reference. This paper describes the development of this measurement system. The system was calibrated, including the effects of temperature, to a traceable primary standard using a purpose-built facility. The bias and precision uncertainties of the measured torque were ±0.117% and ±0.183%, respectively. To accurately determine the shaft torque developed by a turbine in the OTRF, small corrections due to inertial torque (associated with changes in the rotational speed) and aerodynamic drag (windage) are required. The methods for performing these

  20. Ground Simulator Studies of the Effects of Valve Friction, Stick Friction, Flexibility, and Backwash on Power Control System Quality

    NASA Technical Reports Server (NTRS)

    Brown, B Porter

    1958-01-01

    Report presents results of tests made on a power control system by means of a ground simulator to determine the effects of various combinations of valve friction and stick friction on the ability of the pilot to control the system. Various friction conditions were simulated with a rigid control system, a flexible system, and a rigid system having some backlash. For the tests, the period and damping of the simulated airplane were held constant.

  1. Study Friction Distribution during the Cold Rolling of Material by Matroll Software

    SciTech Connect

    Abdollahi, H.; Dehghani, K.

    2007-04-07

    Rolling process is one of the most important ways of metal forming. Since the results of this process are almost finished product, therefore controlling the parameters affecting this process is very important in order to have cold rolling products with high quality. Among the parameters knowing the coefficient of friction within the roll gap is known as the most significant one. That is because other rolling parameters such as rolling force, pressure in the roll gap, forward slip, surface quality of sheet, and the life of work rolls are directly influenced by friction. On the other hand, in rolling calculation due to lake of a true amount for coefficient of friction a supposed value is considered for it. In this study, a new software (Matroll), is introduced which can determine the coefficient of friction (COF) and plot the friction hills for an industrial mill. Besides, based on rolling equations, it offers about 30 rolling parameters as outputs. Having the rolling characteristics as inputs, the software is able to calculate the coefficient of friction. Many rolling passes were performed on real industrial aluminum mill. The coefficient of friction was obtained for all passes. The results are in good agreement with the findings of the other researchers.

  2. Experimental Study of Reciprocating Friction between Rape Stalk and Bionic Nonsmooth Surface Units.

    PubMed

    Ma, Zheng; Li, Yaoming; Xu, Lizhang

    2015-01-01

    Background. China is the largest producer of rape oilseed in the world; however, the mechanization level of rape harvest is relatively low, because rape materials easily adhere to the cleaning screens of combine harvesters, resulting in significant cleaning losses. Previous studies have shown that bionic nonsmooth surface cleaning screens restrain the adhesion of rape materials, but the underlying mechanisms remain unclear. Objective. The reciprocating friction between rape stalk and bionic nonsmooth metal surface was examined. Methods. The short-time Fourier transform method was used to discriminate the stable phase of friction signals and the stick-lag distance was defined to analyze the stable reciprocating friction in a phase diagram. Results. The reciprocating friction between rape stalk and metal surface is a typical stick-slip friction, and the bionic nonsmooth metal surfaces with concave or convex units reduced friction force with increasing reciprocating frequency. The results also showed that the stick-lag distance of convex surface increased with reciprocating frequency, which indicated that convex surface reduces friction force more efficiently. Conclusions. We suggest that bionic nonsmooth surface cleaning screens, especially with convex units, restrain the adhesion of rape materials more efficiently compared to the smooth surface cleaning screens.

  3. Experimental Study of Reciprocating Friction between Rape Stalk and Bionic Nonsmooth Surface Units

    PubMed Central

    Ma, Zheng; Li, Yaoming; Xu, Lizhang

    2015-01-01

    Background. China is the largest producer of rape oilseed in the world; however, the mechanization level of rape harvest is relatively low, because rape materials easily adhere to the cleaning screens of combine harvesters, resulting in significant cleaning losses. Previous studies have shown that bionic nonsmooth surface cleaning screens restrain the adhesion of rape materials, but the underlying mechanisms remain unclear. Objective. The reciprocating friction between rape stalk and bionic nonsmooth metal surface was examined. Methods. The short-time Fourier transform method was used to discriminate the stable phase of friction signals and the stick-lag distance was defined to analyze the stable reciprocating friction in a phase diagram. Results. The reciprocating friction between rape stalk and metal surface is a typical stick-slip friction, and the bionic nonsmooth metal surfaces with concave or convex units reduced friction force with increasing reciprocating frequency. The results also showed that the stick-lag distance of convex surface increased with reciprocating frequency, which indicated that convex surface reduces friction force more efficiently. Conclusions. We suggest that bionic nonsmooth surface cleaning screens, especially with convex units, restrain the adhesion of rape materials more efficiently compared to the smooth surface cleaning screens. PMID:27034611

  4. Argonne Engine Friction Study Phase 2 Final Report

    SciTech Connect

    Fox, Issac; Torbeck, Troy; Brogdon, Bill

    2002-01-01

    Argonne National Laboratory (ANL) has developed a process for making near frictionless carbon (NFC) coatings and depositing them on metal substrates. Friction reductions approaching an order of magnitude have been measured in laboratory tests. While there are many potential applications for such coatings, friction reduction in internal combustion engines is of particular interest due to the apparent fuel savings potential. Ricardo has performed a program of work to estimate potential fuel economy improvements due to the application of such a coating at key interfaces within a diesel engine typical of those found in large trucks. In the first phase of this work, fuel economy improvements due to the application of coatings without changes to the lubricant were calculated. In the second phase of this work, the combined effects of changes in lubricant viscosity and application of a low-friction coating were calculated. Piston, ring pack, journal bearing, and valvetrain simulations have been performed, using existing models of representative engines, with various degrees of friction reduction applied at important interfaces, for several lubricant viscosity grades. The simulations were run at 8 specific operating points to allow approximation of engine performance over the FTP test cycle. Changes in fuel consumption and predicted metal-to-metal contact severity were calculated for each case. Results from the first phase of the work showed that application of a friction-reducing surface treatment, like the NFC coatings, at the piston rings and skirt, and at key interfaces within the valvetrain, is expected to result in a reduction in fuel consumption of 0.43% to 0.81% over the FTP heavy duty test cycle, with no changes to the engine lubricant. Results from the second phase of the work showed that the combination of reduced lubricant viscosity and reduced asperity friction coefficient can result in fuel economy improvements of nearly 5% over the FTP HD cycle. Metal

  5. Surface melting of nanometre-sized Pb particles embedded in an Al matrix studied by internal friction technique

    NASA Astrophysics Data System (ADS)

    Chen, X. M.; Fei, G. T.; Cui, P.; Li, Y.; Zhang, L. D.

    2006-08-01

    Nanometre-sized (hereafter n-) Pb particles embedded in an Al matrix were prepared by ball milling, and the surface melting behaviour was studied by the internal friction technique using a dynamic mechanical analyser. There is an internal friction peak appearing around Pb melting point and the height of the internal friction peak decreases with the increase of Pb particle size. Surface melting of n-Pb particles accounts for the internal friction peak. The study may throw light on the nature of surface melting in condensed matter physics. In addition, the present work makes a beneficial attempt at exploring internal friction as an experimental method for studying surface melting.

  6. Torsional Tribological Behavior and Torsional Friction Model of Polytetrafluoroethylene against 1045 Steel

    PubMed Central

    Wang, Shibo; Niu, Chengchao

    2016-01-01

    In this work, the plane-on-plane torsional fretting tribological behavior of polytetrafluoroethylene (PTFE) was studied. A model of a rigid, flat-ended punch acting on an elastic half-space was built according to the experimental conditions. The results indicate that the shape of T–θ curves was influenced by both the torsional angle and the normal load. The torsion friction torque and wear rate of PTFE exponentially decreased when the torsion angle rose. The torsional torque increased from 0.025 N·m under a normal load of 43 N to 0.082 N·m under a normal load of 123 N. With sequentially increasing normal load, the value of torque was maintained. With rising normal load, the wear mass loss of PTFE disks was increased and the wear rate was decreased. Good agreement was found with the calculated torque according to the model and the experimental torque except for that under a normal load of 163 N. The difference under a normal load of 163 N was caused by the coefficient of friction. Usually the coefficient of friction of a polymer decreases with increasing normal load, whereas a constant coefficient of friction was applied in the model. PMID:26799324

  7. Torsional Tribological Behavior and Torsional Friction Model of Polytetrafluoroethylene against 1045 Steel.

    PubMed

    Wang, Shibo; Niu, Chengchao

    2016-01-01

    In this work, the plane-on-plane torsional fretting tribological behavior of polytetrafluoroethylene (PTFE) was studied. A model of a rigid, flat-ended punch acting on an elastic half-space was built according to the experimental conditions. The results indicate that the shape of T-θ curves was influenced by both the torsional angle and the normal load. The torsion friction torque and wear rate of PTFE exponentially decreased when the torsion angle rose. The torsional torque increased from 0.025 N·m under a normal load of 43 N to 0.082 N·m under a normal load of 123 N. With sequentially increasing normal load, the value of torque was maintained. With rising normal load, the wear mass loss of PTFE disks was increased and the wear rate was decreased. Good agreement was found with the calculated torque according to the model and the experimental torque except for that under a normal load of 163 N. The difference under a normal load of 163 N was caused by the coefficient of friction. Usually the coefficient of friction of a polymer decreases with increasing normal load, whereas a constant coefficient of friction was applied in the model.

  8. Further experimental studies in wet-brake friction

    SciTech Connect

    Staph, H.E.; Marbach, H.W. Jr.

    1986-01-01

    This paper describes further experimental efforts to determine friction characteristics that define the chatter potential in wet-brake systems as used in tractors and other off-road applications. Changes and improvements to a bench facility described at the 1985 Off-Highway Conference are described. Of particular interest is the decision to examine the very low sliding velocity regime, particularly below 0.34 m/s sliding velocity. Interesting and informative data have been obtained by feeding the input of an accelerometer attached in effect to the caliper brake pads to a frequency analyzer. A spectrum of the energy developed by the vibrating pads over the frequency range of 0 to 250 Hz while the sliding velocity is increased from 0 to 0.85 m/s is obtained. Specifically, the area under the composite frequency curve from 70 to 125 Hz shows good correlation to the chatter propensity of the oil. The results of tests on several oils are described. The ultimate purpose of the research is to provide a relatively rapid screening test for evaluating brake oils for the John Deere-type qualification tests. The overall results emphasize the importance of a low ratio between the breakaway friction and the friction at moderate sliding velocities for low or no chatter.

  9. An Analytical Calculation of Frictional and Bending Moments at the Head-Neck Interface of Hip Joint Implants during Different Physiological Activities.

    PubMed

    Farhoudi, Hamidreza; Oskouei, Reza H; Pasha Zanoosi, Ali A; Jones, Claire F; Taylor, Mark

    2016-12-05

    This study predicts the frictional moments at the head-cup interface and frictional torques and bending moments acting on the head-neck interface of a modular total hip replacement across a range of activities of daily living. The predicted moment and torque profiles are based on the kinematics of four patients and the implant characteristics of a metal-on-metal implant. Depending on the body weight and type of activity, the moments and torques had significant variations in both magnitude and direction over the activity cycles. For the nine investigated activities, the maximum magnitude of the frictional moment ranged from 2.6 to 7.1 Nm. The maximum magnitude of the torque acting on the head-neck interface ranged from 2.3 to 5.7 Nm. The bending moment acting on the head-neck interface varied from 7 to 21.6 Nm. One-leg-standing had the widest range of frictional torque on the head-neck interface (11 Nm) while normal walking had the smallest range (6.1 Nm). The widest range, together with the maximum magnitude of torque, bending moment, and frictional moment, occurred during one-leg-standing of the lightest patient. Most of the simulated activities resulted in frictional torques that were near the previously reported oxide layer depassivation threshold torque. The predicted bending moments were also found at a level believed to contribute to the oxide layer depassivation. The calculated magnitudes and directions of the moments, applied directly to the head-neck taper junction, provide realistic mechanical loading data for in vitro and computational studies on the mechanical behaviour and multi-axial fretting at the head-neck interface.

  10. Evaluation of Friction in Orthodontics Using Various Brackets and Archwire Combinations-An in Vitro Study

    PubMed Central

    Kumar, Sujeet; Hamsa P.R, Rani; Ahmed, Sameer; Prasanthma; Bhatnagar, Apoorva; Sidhu, Manreet; Shetty, Pramod

    2014-01-01

    AIM: The aim of this study was to compare frictional resistance which was produced between conventional brackets (0.022 slot Otho-Organiser) and self ligating brackets (active Forestadent and passive Damon III) by using various arch wire combinations (0.016 Niti, 0.018 Niti, 0.017 x 0.025 SS and 0.019 x 0.025 SS). Methods: An experimental model which consisted of 5 aligned stainless steel 0.022-in brackets was used to assess frictional forces which were produced by SLBs (self ligating brackets) and CELs (conventional elastomeric ligatures) with use of 0.016 nickel titanium, 0.018 nickel titanium, 0.017 X 0.025”stainless steel and 0.019 X 0.025”stainless steel wires. Statistical analysis: One way ANOVA test was used to study the effect of the bracket type, wire alloy and section on frictional resistance test . Results: Conventional brackets produced highest levels of friction for all bracket/archwire combinations. Both Damon III and Forestadent brackets were found to produce significantly lower levels of friction when they were compared with elastomerically tied conventional brackets. Conclusion: SLBs are valid alternatives for low friction during sliding mechanics. PMID:24995241

  11. Is internal friction friction?

    USGS Publications Warehouse

    Savage, J.C.; Byerlee, J.D.; Lockner, D.A.

    1996-01-01

    Mogi [1974] proposed a simple model of the incipient rupture surface to explain the Coulomb failure criterion. We show here that this model can plausibly be extended to explain the Mohr failure criterion. In Mogi's model the incipient rupture surface immediately before fracture consists of areas across which material integrity is maintained (intact areas) and areas across which it is not (cracks). The strength of the incipient rupture surface is made up of the inherent strength of the intact areas plus the frictional resistance to sliding offered by the cracked areas. Although the coefficient of internal friction (slope of the strength versus normal stress curve) depends upon both the frictional and inherent strengths, the phenomenon of internal friction can be identified with the frictional part. The curvature of the Mohr failure envelope is interpreted as a consequence of differences in damage (cracking) accumulated in prefailure loading at different confining pressures.

  12. Experimental study on seismic responses of piping systems with friction. Part 2: Simplified analysis method on the effect of friction

    SciTech Connect

    Kobayashi, H.; Yokoi, R.; Chiba, T.; Suzuki, K.; Shimizu, N.; Minowa, C.

    1995-08-01

    Friction between pipe and support structure is generally known to reduce seismic response of the piping systems. Vibration tests using large-scale piping model with friction support were carried out to evaluate the reduction effect. The piping response was mainly governed by the first modal deformation. The simplified analysis method based on linear response spectrum analysis was developed and confirmed to be applicable. In this method, the reduction effect by friction is treated as equivalent viscous damping ratio. This paper deals with the analysis method, and the comparison between the experimental results and analytical ones.

  13. Friction and wear in threaded surfaces of rotary drill collars

    SciTech Connect

    Thornton, H.R. ); Bailey, E.I. ); Williamson, J.S. )

    1993-03-01

    Two surfaces, under high normal stress, in sliding contact provide the basis for friction and wear studies within rotary drill collars. Flat and ring specimens, considering three different contact areas, were rotated to determine the effect of surface finish, coatings, lubricants and normal stress on friction and wear. The 4145 steel specimens were heat-treated to a yield strength of 124,000 lb/in[sup 2] (855 MPa) and a R[sub c] hardness of 28. The torque required to rotate the ring specimen was measured as a function of the rotation angle. The friction coefficient was calculated. Seizure and galling were common for metal-to-metal contact. Rust and phosphate coatings break down under the high normal stress. Metal-filled lubricants produce static coefficients of friction between 0.03 and 0.25 and dynamic coefficients between 0.04 and 0.26. Seizure and galling were not observed.

  14. Estimation of Road Friction Coefficient in Different Road Conditions Based on Vehicle Braking Dynamics

    NASA Astrophysics Data System (ADS)

    Zhao, You-Qun; Li, Hai-Qing; Lin, Fen; Wang, Jian; Ji, Xue-Wu

    2017-07-01

    The accurate estimation of road friction coefficient in the active safety control system has become increasingly prominent. Most previous studies on road friction estimation have only used vehicle longitudinal or lateral dynamics and often ignored the load transfer, which tends to cause inaccurate of the actual road friction coefficient. A novel method considering load transfer of front and rear axles is proposed to estimate road friction coefficient based on braking dynamic model of two-wheeled vehicle. Sliding mode control technique is used to build the ideal braking torque controller, which control target is to control the actual wheel slip ratio of front and rear wheels tracking the ideal wheel slip ratio. In order to eliminate the chattering problem of the sliding mode controller, integral switching surface is used to design the sliding mode surface. A second order linear extended state observer is designed to observe road friction coefficient based on wheel speed and braking torque of front and rear wheels. The proposed road friction coefficient estimation schemes are evaluated by simulation in ADAMS/Car. The results show that the estimated values can well agree with the actual values in different road conditions. The observer can estimate road friction coefficient exactly in real-time and resist external disturbance. The proposed research provides a novel method to estimate road friction coefficient with strong robustness and more accurate.

  15. Nanowire spin torque oscillator driven by spin orbit torques.

    PubMed

    Duan, Zheng; Smith, Andrew; Yang, Liu; Youngblood, Brian; Lindner, Jürgen; Demidov, Vladislav E; Demokritov, Sergej O; Krivorotov, Ilya N

    2014-12-05

    Spin torque from spin current applied to a nanoscale region of a ferromagnet can act as negative magnetic damping and thereby excite self-oscillations of its magnetization. In contrast, spin torque uniformly applied to the magnetization of an extended ferromagnetic film does not generate self-oscillatory magnetic dynamics but leads to reduction of the saturation magnetization. Here we report studies of the effect of spin torque on a system of intermediate dimensionality--a ferromagnetic nanowire. We observe coherent self-oscillations of magnetization in a ferromagnetic nanowire serving as the active region of a spin torque oscillator driven by spin orbit torques. Our work demonstrates that magnetization self-oscillations can be excited in a one-dimensional magnetic system and that dimensions of the active region of spin torque oscillators can be extended beyond the nanometre length scale.

  16. Comparative Evaluation of Friction Resistance of Titanium, Stainless Steel, Ceramic and Ceramic with Metal Insert Brackets with Varying Dimensions of Stainless Steel Wire: An In vitro Multi-center Study

    PubMed Central

    Kumar, B Sunil; Miryala, Suresh; Kumar, K Kiran; Shameem, K; Regalla, Ravindra Reddy

    2014-01-01

    Background: The orthodontist seeks an archwire–bracket combination that has both good biocompatibility and low friction. Hence, the aim of this multicenter in vitro study was to evaluate and compare the frictional resistance generated between titanium (Ti), stainless steel (SS), ceramic and ceramic with metal insert (CMI) brackets with SS wires of varying dimensions in a specially designed apparatus. Materials and Methods: The material used in this study were Ti, SS, Ceramic and CMI with 0.018″ slot manufactured with zero degree tip and −7° torque premolar brackets (3M, Unitek) and SS wires of varying dimensions (0.016″ round, 0.016 × 0.016″ square, 0.016 × 0.022″ rectangular and 0.017 × 0.025″ rectangular) used. The frictional resistance was measured using Instron Universal testing machine (Model no. 4301). The specimen population in each center composed each of 160 brackets and wires. Differences among the all bracket/wire combinations were tested using (one-way) ANOVA, followed by the student Newman Keuls multiple comparisons of means ranking (at P < 0.05) for the determination of differences among the groups. Results: Ti bracket in combination with 0.017 × 0.025″ SS rectangular wire produced significant force levels for an optimum orthodontic movement with least frictional resistance. Conclusion: Ti brackets have least resistance and rectangular wires produced significant force. These can be used to avoid hazards of Nickel. SS brackets revealed higher static frictional force values as the wire dimension increased and showed lower static friction than Ti brackets for all wires except the thicker wire. Our study recommends the preclusion of brackets with rough surface texture (Ti brackets) with SS ligature wire for ligating bracket and archwire are better to reduce friction. PMID:25395796

  17. Comparative Evaluation of Friction Resistance of Titanium, Stainless Steel, Ceramic and Ceramic with Metal Insert Brackets with Varying Dimensions of Stainless Steel Wire: An In vitro Multi-center Study.

    PubMed

    Kumar, B Sunil; Miryala, Suresh; Kumar, K Kiran; Shameem, K; Regalla, Ravindra Reddy

    2014-09-01

    The orthodontist seeks an archwire-bracket combination that has both good biocompatibility and low friction. Hence, the aim of this multicenter in vitro study was to evaluate and compare the frictional resistance generated between titanium (Ti), stainless steel (SS), ceramic and ceramic with metal insert (CMI) brackets with SS wires of varying dimensions in a specially designed apparatus. The material used in this study were Ti, SS, Ceramic and CMI with 0.018″ slot manufactured with zero degree tip and -7° torque premolar brackets (3M, Unitek) and SS wires of varying dimensions (0.016″ round, 0.016 × 0.016″ square, 0.016 × 0.022″ rectangular and 0.017 × 0.025″ rectangular) used. The frictional resistance was measured using Instron Universal testing machine (Model no. 4301). The specimen population in each center composed each of 160 brackets and wires. Differences among the all bracket/wire combinations were tested using (one-way) ANOVA, followed by the student Newman Keuls multiple comparisons of means ranking (at P < 0.05) for the determination of differences among the groups. Ti bracket in combination with 0.017 × 0.025″ SS rectangular wire produced significant force levels for an optimum orthodontic movement with least frictional resistance. Ti brackets have least resistance and rectangular wires produced significant force. These can be used to avoid hazards of Nickel. SS brackets revealed higher static frictional force values as the wire dimension increased and showed lower static friction than Ti brackets for all wires except the thicker wire. Our study recommends the preclusion of brackets with rough surface texture (Ti brackets) with SS ligature wire for ligating bracket and archwire are better to reduce friction.

  18. Computational study of the electromagnetic forces and torques on different ITER first wall designs.

    SciTech Connect

    Kotulski, Joseph Daniel; Garde, Joseph Maurico; Coats, Rebecca Sue; Pasik, Michael Francis; Ulrickson, Michael Andrew

    2009-06-01

    An electromagnetic analysis is performed on different first wall designs for the ITER device. The electromagnetic forces and torques present due to a plasma disruption event are calculated and compared for the different designs.

  19. Effect of the coefficient of friction and tightening speed on the preload induced at the dental implant complex with the finite element method.

    PubMed

    Bulaqi, Haddad Arabi; Mousavi Mashhadi, Mahmoud; Geramipanah, Farideh; Safari, Hamed; Paknejad, Mojgan

    2015-05-01

    To prevent screw loosening, a clear understanding of the factors influencing secure preload is necessary. The purpose of this study was to investigate the effect of coefficient of friction and tightening speed on screw tightening based on energy distribution method with exact geometric modeling and finite element analysis. To simulate the proper boundary conditions of the screw tightening process, the supporting bone of an implant was considered. The exact geometry of the implant complex, including the Straumann dental implant, direct crown attachment, and abutment screw were modeled with Solidworks software. Abutment screw/implant and implant/bone interfaces were designed as spiral thread helixes. The screw-tightening process was simulated with Abaqus software, and to achieve the target torque, an angular displacement was applied to the abutment screw head at different coefficients of friction and tightening speeds. The values of torque, preload, energy distribution, elastic energy, and efficiency were obtained at the target torque of 35 Ncm. Additionally, the torque distribution ratio and preload simulated values were compared to theoretically predicted values. Upon reducing the coefficient of friction and enhancing the tightening speed, the angle of turn increased at the target torque. As the angle of turn increased, the elastic energy and preload also increased. Additionally, by increasing the coefficient of friction, the frictional dissipation energy increased but the efficiency decreased, whereas the increase in tightening speed insignificantly affected efficiency. The results of this study indicate that the coefficient of friction is the most influential factor on efficiency. Increasing the tightening speed lowered the response rate to the frictional resistance, thus diminishing the coefficient of friction and slightly increasing the preload. Increasing the tightening speed has the same result as reducing the coefficient of friction. Copyright © 2015

  20. Prolegomena to the Study of Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Nunes, Arthur C., Jr.

    2010-01-01

    The literature contains many approaches toward modeling of the friction stir welding (FSW) process with varying treatments of the weld metal properties. It is worthwhile to consider certain fundamental features of the process before attempting to interpret FSW phenomena: Because of the unique character of metal deformation (as opposed to, say, viscous deformation) a velocity "discontinuity" or shear surface occurs in FSW and determines much of the character of the welding mechanism. A shear surface may not always produce a sound bond. Balancing mechanical power input against conduction and convection heat losses yields a relation, a "temperature index", between spindle speed and travel speed to maintain constant weld temperature. But many process features are only weakly dependent upon temperature. Thus, unlike modeling of metal forming processes, it may be that modeling the FSW process independently of the material conditions has some merit.

  1. Rolling-Friction Robotic Gripper

    NASA Technical Reports Server (NTRS)

    Vranish, John M.

    1992-01-01

    Robotic gripper using rolling-friction fingers closes in on object with interface designed to mate with rollers somewhat misaligned initially, aligns object with respect to itself, then holds object securely in uniquely determined position and orientation. Operation of gripper causes minimal wear and burring of gripper and object. Exerts minimal friction forces on object when grasping and releasing. Releases object easily and reliably even when side forces and torques are between itself and object.

  2. Dynamics of Braking Vehicles: From Coulomb Friction to Anti-Lock Braking Systems

    ERIC Educational Resources Information Center

    Tavares, J. M.

    2009-01-01

    The dynamics of braking of wheeled vehicles is studied using the Coulomb approximation for the friction between road and wheels. The dependence of the stopping distance on the mass of the vehicle, on the number of its wheels and on the intensity of the braking torque is established. It is shown that there are two regimes of braking, with and…

  3. Dynamics of Braking Vehicles: From Coulomb Friction to Anti-Lock Braking Systems

    ERIC Educational Resources Information Center

    Tavares, J. M.

    2009-01-01

    The dynamics of braking of wheeled vehicles is studied using the Coulomb approximation for the friction between road and wheels. The dependence of the stopping distance on the mass of the vehicle, on the number of its wheels and on the intensity of the braking torque is established. It is shown that there are two regimes of braking, with and…

  4. Muscular activity and torque of the foot dorsiflexor muscles during decremental isometric test: A cross-sectional study.

    PubMed

    Ruiz-Muñoz, Maria; González-Sánchez, Manuel; Martín-Martín, Jaime; Cuesta-Vargas, Antonio I

    2017-06-01

    To analyse the torque variation level that could be explained by the muscle activation (EMG) amplitude of the three major foot dorsiflexor muscles (tibialis anterior (TA), extensor digitorum longus (EDL), extensor hallucis longus (EHL)) during isometric foot dorsiflexion at different intensities. In a cross-sectional study, forty-one subjects performed foot dorsiflexion at 100%, 75%, 50% and 25% of maximal voluntary contractions (MVC) with the hip and knee flexed 90° and the ankle in neutral position (90° between leg and foot). Three foot dorsiflexions were performed for each intensity. Outcome variables were: maximum (100% MVC) and relative torque (75%, 50%, 25% MVC), maximum and relative EMG amplitude. A linear regression analysis was calculated for each intensity of the isometric foot dorsiflexion. The degree of torque variation (dependent variable) from the independent variables explain (EMG amplitude of the three major foot dorsiflexor muscles) the increases when the foot dorsiflexion intensity is increased, with values of R(2) that range from 0.194 (during 25% MVC) to 0.753 (during 100% MVC). The reliability of the outcome variables was excellent. The EMG amplitude of the three main foot dorsiflexors exhibited more variance in the dependent variable (torque) when foot dorsiflexion intensity increases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Studies of friction and wear characteristics of various wires for wire-brush skids

    NASA Technical Reports Server (NTRS)

    Dreher, R. C.

    1977-01-01

    The friction and wear characteristics of 22 types and sizes of wires for potential use in wire-brush skids were studied. These characteristics were determined by placing brushes made from candidate wires on a belt sander whose moving belt simulated landing roll-out distance. At the same time, the drag force and wear behavior were monitored. Data were obtained over distances up to 3048 m (10,000 ft) at preselected bearing pressures of 172 to 1034 kPa (25 to 150 psi). In general, the friction coefficient developed by the candidate wires was found to be independent of bearing pressure and ranged between 0.4 and 0.6 under the test conditions of this investigation. The friction coefficient was not degraded when the surface was wetted and appears to be independent of wire diameter except perhaps when wire size is relatively large compared with the surface asperities. Generally, the high friction demonstrated by the soft materials was accompanied by high wear rates; conversely, the hard materials provided greater wear resistance but offered lower friction. For all test wires, the wear was shown to increase with increasing bearing pressure, in general, for the same bearing pressure, wear increased with increasing wire diameter and decreased when the surface was wetted.

  6. A Feasiblity Study on Spot Friction Welding of Magnesium Alloy AZ31

    SciTech Connect

    Santella, Michael L; Pan, Dr. Tsung-Yu; Frederick, David Alan; Schwartz, William

    2007-01-01

    Spot friction welding (SFW) is a novel variant of the linear friction stir welding process with the potential to create strong joints between similar, as well as dissimilar sheet metals. It is particularly suitable for soft, low melting point metals such as aluminum, magnesium, and their alloys where resistance spot welding can cause defects such as voids, trapped gas and micro-cracks due to the intense heat requirement for joint formation. Up to now, spot friction welding has focused primarily on aluminum alloys. This paper presents a feasibility study on spot friction welding of AZ31, a wrought magnesium alloy available in sheet form. Lap joints of 1.58-mm-thick magnesium alloy AZ31B-O sheet were produced by spot friction welding. The spot welds were made in 2 sec with 15-mm-diameter pin tool rotating at 500-2,000 rpm. The tool was inserted into 2-sheet stack-ups to depths of either 2.4 or 2.8 mm relative to the top sheet surface. Tensile-shear testing showed that joint strengths up to 4.75 kN were obtained. The removal of surface oxides from the sheets prior to welding increased lap shear strengths about 50% at the 2.4-mm insertion depth and it promoted failure by nugget pull-out rather than by interface separation.

  7. Rolling Friction on a Wheeled Laboratory Cart

    ERIC Educational Resources Information Center

    Mungan, Carl E.

    2012-01-01

    A simple model is developed that predicts the coefficient of rolling friction for an undriven laboratory cart on a track that is approximately independent of the mass loaded onto the cart and of the angle of inclination of the track. The model includes both deformation of the wheels/track and frictional torque at the axles/bearings. The concept of…

  8. Rolling Friction on a Wheeled Laboratory Cart

    ERIC Educational Resources Information Center

    Mungan, Carl E.

    2012-01-01

    A simple model is developed that predicts the coefficient of rolling friction for an undriven laboratory cart on a track that is approximately independent of the mass loaded onto the cart and of the angle of inclination of the track. The model includes both deformation of the wheels/track and frictional torque at the axles/bearings. The concept of…

  9. Can lubricant enhance the torque of ultrasonic motors? An experimental investigation

    NASA Astrophysics Data System (ADS)

    Qiu, Wei; Mizuno, Yosuke; Tabaru, Marie; Nakamura, Kentaro

    2014-12-01

    Lubrication has been proven to be an effective approach to drastically improve the efficiency of ultrasonic motors without losing the output torque. This phenomenon is attributed to the effective modulation of the friction force by lubricant, according to the theory described in the Stribeck curve. Previous findings even show a potential to increase the motor output torque with lubrication. Here, the torque enhancement of ultrasonic motors using lubricant is extensively studied in hybrid transducer-type ultrasonic motors (HTUSMs) with a size of 25 mm in diameter. The lubricated HTUSMs could withstand static preload as high as 267 N and maximum torque as large as 1.01 N m was obtained with lubrication, which were 3.5 times and 2.6 times higher than those in dry condition, respectively. This result clearly reveals that lubrication can enable ultrasonic motors to be operated under much higher static preload and hence significantly improve the motor output torque, instead of only reducing the friction force.

  10. Experimental study of error sources in skin-friction balance measurements

    NASA Technical Reports Server (NTRS)

    Allen, J. M.

    1977-01-01

    An experimental study has been performed to determine potential error sources in skin-friction balance measurements. A floating-element balance, large enough to contain the instrumentation needed to systematically investigate these error sources has been constructed and tested in the thick turbulent boundary layer on the sidewall of a large supersonic wind tunnel. Test variables include element-to-case misalignment, gap size, and Reynolds number. The effects of these variables on the friction, lip, and normal forces have been analyzed. It was found that larger gap sizes were preferable to smaller ones; that small element recession below the surrounding test surface produced errors comparable to the same amount of protrusion above the test surface; and that normal forces on the element were, in some cases, large compared to the friction force.

  11. Friction damping studies in multiple turbine blade systems by lumped mass method

    NASA Technical Reports Server (NTRS)

    Raju, B. B.; Dominic, R. J.; Held, T. W.

    1983-01-01

    Analytical studies were conducted on multiple turbine blade systems using the lumped mass method. Each blade was idealized by a two mass-two spring model whose modal values were determined from the known frequencies corresponding to the first two bending modes and the frequency corresponding to the platform lockup condition. Two friction damping models were considered namely, the blade-to-blade and the blade-damper-blade. The equations of motion derived on the basis of these models were solved by a method of harmonic balance, assuming, in effect, that under cyclic excitation the blades will exhibit cyclic response at the same frequency. The solutions for 8 blade, 16 blade, and 4 blade systems were obtained using the computer program BLADE. The levels of damping produced by the two friction damping models were compared and evaluated. The optimal values of the friction force, for which the tip amplitude of the blades had a minimum value, were determined.

  12. Study on Friction and Wear Properties of Silver Matrix Brush Material with Different Additives

    NASA Astrophysics Data System (ADS)

    Chen, Xiaoli; Wang, Wenfang; Hong, Yu; Wu, Yucheng

    2013-07-01

    Friction and wear processes of AgCuX (G, CF and AlN) composites-CuAgV alloy friction pair and effects of different additive content in silver based composite on friction and wear behavior are studied in this paper. The microstructure of the brush wear surface is observed by SEM. The results show that when graphite content is up to 9 wt.%, Ag-Cu-CF-G composite exhibits the best wear properties; when the content of aluminum nitride is up to 0.5 wt.%, Ag-Cu-AlN-G composites has the most comprehensive performance. The wear loss of both composites arises with the increase of both pressure and speed, but when speed reaches a critical value, the increased amplitude of wear loss tends to be steady.

  13. Numerical and experimental study of the nonlinear interaction between a shear wave and a frictional interface.

    PubMed

    Blanloeuil, Philippe; Croxford, Anthony J; Meziane, Anissa

    2014-04-01

    The nonlinear interaction of shear waves with a frictional interface are presented and modeled using simple Coulomb friction. Analytical and finite difference implementations are proposed with both in agreement and showing a unique trend in terms of the generated nonlinearity. A dimensionless parameter ξ is proposed to uniquely quantify the nonlinearity produced. The trends produced in the numerical study are then validated with good agreement experimentally. This is carried out loading an interface between two steel blocks and exciting this interface with different amplitude normal incidence shear waves. The experimental results are in good agreement with the numerical results, suggesting the simple friction model does a reasonable job of capturing the fundamental physics. The resulting approach offers a potential way to characterize a contacting interface; however, the difficulty in activating that interface may ultimately limit its applicability.

  14. Adhesive friction based on finite element study and n-point asperity model

    NASA Astrophysics Data System (ADS)

    Sahoo, Prasanta; Waghmare, Ajay K.

    2016-08-01

    The present work considers analysis of adhesive friction of rough surfaces using n- point asperity concept for statistical definition of surface roughness features, and accurate finite element analysis of elastic-plastic deformation of single asperity contact. Well defined adhesion index and plasticity index are used to study the prospective contact situations arising out of variation in material properties and surface roughness features. From the present results it is possible to locate the combinations of adhesion index and plasticity index that may yield very low coefficient of friction. Thus suitable choice of surface and material parameters for the contact of two rough surfaces can be made in order to minimize friction typically at low load and micro scale roughness situations.

  15. Dynamics of a 3dof torsional system with a dry friction controlled path

    NASA Astrophysics Data System (ADS)

    Duan, Chengwu; Singh, Rajendra

    2006-02-01

    A three-degrees of freedom semi-definite torsional system representing an automotive driveline is studied in presence of a torque converter clutch that manifests itself as a dry friction path. An analytical procedure based on the linear system theory is proposed first to establish the stick-to-slip boundaries. Smoothened and discontinuous Coulomb friction formulations are then applied to the nonlinear system, and the differential governing equations are numerically solved given harmonic torque excitation and a mean load. Time domain histories illustrating dry friction-induced stick-slip motions are predicted for different saturation torques and system parameters. Approximate analytical solutions based on distinct states are also developed and successfully compared with numerical studies. Analysis shows that the conditioning factor associated with the smoothened friction model (hyperbolic tangent) must be carefully selected. Then nonlinear frequency responses are constructed from cyclic time histories and the stick-slip boundaries predictions (as yielded by the linear system theory) are confirmed. In particular, the effect of secondary inertia is analytically and numerically investigated. Results show that the secondary inertia has a significant influence on the dynamic response. A quasi-discontinuous oscillation is found with the conventional bi-linear friction model in which the secondary inertia is ignored. Finally, our methods are successfully compared with two benchmark analytical and experimental studies, as available in the literature on two-degrees of freedom translational systems.

  16. Offset of rotation centers creates a bias in isokinetics: a virtual model including stiffness or friction.

    PubMed

    Deslandes, Samuel; Mariot, Jean-Pierre; Serveto, Sébastien

    2008-07-19

    The present paper deals with a virtual model devoted to isokinetics and isometrics assessment of a human muscular group in the common joints, knee, ankle, hip, shoulder, cervical spine, etc. This virtual model with an analytical analysis followed by a numerical simulation is able to predict measurement errors of the joint torque due to offset of rotation centers between the body segment and the ergometer arm. As soon as offset is present, errors increase due to the influence of inertial effects, gravity effects, stiffness due to the limb strapping on the ergometer arm or Coulomb friction between limb and ergometer. The analytical model is written in terms of Lagrange formalism and the numerical model uses ADAMS software adapted to multi-body dynamics simulations. Results of models show a maximal relative error of 11%, for a 10% relative offset between the rotation centers. Inertial contributions are found to be negligible but gravity effects must be discussed in regard to the measured torque. Stiffness or friction effects may also increase the torque error; in particular when offset occurs, it is shown that errors due to friction have to be considered for all torque level while only stiffness effects have to be considered for torque less than 25Nm. This study also emphasizes the influence of the angular range of motion at a given angular position.

  17. Study of stirred layers on 316L steel created by friction stir processing

    NASA Astrophysics Data System (ADS)

    Langlade, C.; Roman, A.; Schlegel, D.; Gete, E.; Folea, M.

    2014-08-01

    Nanostructured materials are known to exhibit attractive properties, especially in the mechanical field where high hardness is of great interest. The friction stir process (FSP) is a recent surface engineering technique derived from the friction stir welding method (FSW). In this study, the FSP of an 316L austenitic stainless steel has been evaluated. The treated layers have been characterized in terms of hardness and microstructure and these results have been related to the FSP operational parameters. The process has been analysed using a Response Surface Method (RSM) to enable the stirred layer thickness prediction.

  18. A comparison of two methods of measuring static coefficient of friction at low normal forces: a pilot study.

    PubMed

    Seo, Na Jin; Armstrong, Thomas J; Drinkaus, Philip

    2009-01-01

    This study compares two methods for estimating static friction coefficients for skin. In the first method, referred to as the 'tilt method', a hand supporting a flat object is tilted until the object slides. The friction coefficient is estimated as the tangent of the angle of the object at the slip. The second method estimates the friction coefficient as the pull force required to begin moving a flat object over the surface of the hand, divided by object weight. Both methods were used to estimate friction coefficients for 12 subjects and three materials (cardboard, aluminium, rubber) against a flat hand and against fingertips. No differences in static friction coefficients were found between the two methods, except for that of rubber, where friction coefficient was 11% greater for the tilt method. As with previous studies, the friction coefficients varied with contact force and contact area. Static friction coefficient data are needed for analysis and design of objects that are grasped or manipulated with the hand. The tilt method described in this study can easily be used by ergonomic practitioners to estimate static friction coefficients in the field in a timely manner.

  19. Lubrication and friction prediction in metal-on-metal hip implants.

    PubMed

    Wang, F C; Brockett, C; Williams, S; Udofia, I; Fisher, J; Jin, Z M

    2008-03-07

    A general methodology of mixed lubrication analysis and friction prediction for a conforming spherical bearing in hip implants was developed, with particular reference to a typical metal-on-metal hip replacement. Experimental measurement of frictional torque for a similar implant was carried out to validate the theoretical prediction. A ball-in-socket configuration was adopted to represent the articulation between the femoral head and the acetabular cup under cyclic operating conditions of representative load and motion. The mixed lubrication model presented in this study was first applied to identify the contact characteristics on the bearing surfaces, consisting of both fluid-film and boundary lubricated regions. The boundary lubricated contact was assumed to occur when the predicted fluid film thickness was less than a typical boundary protein layer absorbed on the bearing surfaces. Subsequently, the friction was predicted from the fluid-film lubricated region with viscous shearing due to both Couette and Poiseuille flows and the boundary protein layer contact region with a constant coefficient of friction. The predicted frictional torque of the typical metal-on-metal hip joint implant was compared with the experimental measurement conducted in a functional hip simulator and a reasonably good agreement was found. The mixed lubrication regime was found to be dominant for the conditions considered. Although the percentage of the boundary lubricated region was quite small, the corresponding contribution to friction was quite large and the resultant friction factor was quite high.

  20. Nanotribology and Nanoscale Friction

    SciTech Connect

    Guo, Yi; Qu, Zhihua; Braiman, Yehuda; Zhang, Zhenyu; Barhen, Jacob

    2008-01-01

    Tribology is the science and technology of contacting solid surfaces in relative motion, including the study of lubricants, lubrication, friction, wear, and bearings. It is estimated that friction and wear cost the U.S. economy 6% of the gross national product (Persson, 2000). For example, 5% of the total energy generated in an automobile engine is lost to frictional resistance. The study of nanoscale friction has a technological impact in reducing energy loss in machines, in microelectromechanical systems (MEMS), and in the development of durable, low-friction surfaces and ultra-thin lubrication films.

  1. Study on Optimization of Electromagnetic Relay's Reaction Torque Characteristics Based on Adjusted Parameters

    NASA Astrophysics Data System (ADS)

    Zhai, Guofu; Wang, Qiya; Ren, Wanbin

    The cooperative characteristics of electromagnetic relay's attraction torque and reaction torque are the key property to ensure its reliability, and it is important to attain better cooperative characteristics by analyzing and optimizing relay's electromagnetic system and mechanical system. From the standpoint of changing reaction torque of mechanical system, in this paper, adjusted parameters (armature's maximum angular displacement αarm_max, initial return spring's force Finiti_return_spring, normally closed (NC) contacts' force FNC_contacts, contacts' gap δgap, and normally opened (NO) contacts' over travel δNO_contacts) were adopted as design variables, and objective function was provided for with the purpose of increasing breaking velocities of both NC contacts and NO contacts. Finally, genetic algorithm (GA) was used to attain optimization of the objective function. Accuracy of calculation for the relay's dynamic characteristics was verified by experiment.

  2. Perpendicular Magnetic Anisotropy of Tb/Fe and Gd/Fe Multilayers Studied with Torque Magnetometer

    NASA Astrophysics Data System (ADS)

    Chowdhury, Ataur

    Perpendicular magnetic anisotropy (PMA) of multilayers critically depend on the magnetic and structural ordering of the interface. To study the effect of interface on PMA, Tb/Fe and Gd/Fe multilayers with varying Fe (0.8-9.0 nm) and Gd (0.5-2.8 nm) or Tb (0.3-6.3 nm) layer thicknesses were fabricated by planar magnetron sputtering. The magnetometer results of spin orientation clearly reveals that samples with Gd or Tb layer thickness of more than 1.2 nm display no PMA, regardless of the Fe layer thickness. Tb/Fe and Gd/Fe multilayers with thin (<1.2 nm) Tb or Gd layers display large PMA, but no PMA is observed when the Fe layer thickness is increased to 4.0 nm and higher. The bulk magnetization and anisotropy energy constant of the samples are found to increase with increasing Fe layer thickness. Torque measurement also reveals that there are two distinctly different axes of spin alignment at different energy. Tb/Fe and Gd/Fe multilayers with similar composition reveal similar magnetic and structural characteristics, and it may imply that single-ion-anisotropy of rare-earth element, which is quite large for Tb ions and very small for Gd ions, may not be the dominating cause of PMA in Td/Fe and Gd/Fe multilayers. A detailed explanation of the results will be provided based on exchange interaction at the interface.

  3. Study on Torque Calculation for Hybrid Magnetic Coupling and Influencing Factor Analysis

    NASA Astrophysics Data System (ADS)

    Wang, Shuang; Guo, Yong-cun; Wang, Peng-yu; Li, De-yong

    2017-03-01

    Specific to a problem that the present transmission of magnetic coupling torque was subjected to restrictions of its own structure, a hybrid magnetic coupling was proposed. Then, finite element method was adopted to carry out numerical calculations for its three-dimensional magnetic field to obtain three-dimensional magnetic field distribution of radial and axial configurations. Major influencing factors of its torque, such as lengths of axial and radial air gaps, thicknesses of axial and radial permanent magnets, the number of slots in axial copper rotor, thickness of axial and radial copper rotor, etc., were analyzed. The relevant results indicated that in certain conditions of shapes, ten magnetic poles of the axial permanent magnet rotor, nine of the radial permanent magnet rotor and nine slots from the axial copper rotor were used. Correspondingly, the axial copper rotor had a thickness of 20 mm and it was 5 mm for the radial copper rotor. Moreover, the maximum torque could reach 190 N.m approximately. If lengths of axial and radial air gaps increased, the torque may go down otherwise. Within a certain scope, the torque rose in the first place and then fell with increases in the permanent magnet thickness of axial permanent magnetic rotor, the number of axial and radial magnetic poles, the number of slots in axial copper rotor, and the thickness of axial copper rotor. Additionally, the number of slots in the axial copper rotor could not be equivalent to that of magnetic poles in axial permanent magnetic rotor. However, as the permanent magnet thickness of radial permanent magnetic rotor rose, the torque went up as well.

  4. FMR and torque studies of highly stressed magnetostrictive polycrystalline CoPd alloy films

    SciTech Connect

    Dubowik, J.; Szymanski, B.

    1994-03-01

    Ferromagnetic resonance (FMR) and torque curves have been measured in electrodeposited CoPd alloy films with composition ranged from Co{sub 13}Pd{sub 83} to Co{sub 45}Pd{sub 55}. The authors show that the origin of the multimode structure of FMR spectra in these strongly magnetostrictive polycrystalline films can be satisfactory explained on the basis of the independent-grain-approach for a textured microstructure. The fourfold periodicity of the torque curves for the compositional range of 30--35 at% is assumed to be oriented by inhomogeneous distribution of the magnetization direction.

  5. Casimir friction: relative motion more generally.

    PubMed

    Høye, Johan S; Brevik, Iver

    2015-06-03

    This paper extends our recent study on Casimir friction forces for dielectric plates moving parallel to each other (Høye and Brevik 2014 Eur. Phys. J. D 68 61), to a case where the plates are no longer restricted to rectilinear motion. Part of the mathematical formalism thereby becomes more cumbersome, but reduces in the end to the form that we expected to be the natural one in advance. As an example, we calculate the Casimir torque on a planar disc rotating with constant angular velocity around its vertical symmetry axis next to another plate.

  6. A study of friction mechanisms between a surrogate skin (Lorica soft) and nonwoven fabrics.

    PubMed

    Cottenden, David J; Cottenden, Alan M

    2013-12-01

    Hygiene products such as incontinence pads bring nonwoven fabrics into contact with users' skin, which can cause damage in various ways, including the nonwoven abrading the skin by friction. The aim of the work described here was to develop and use methods for understanding the origin of friction between nonwoven fabrics and skin by relating measured normal and friction forces to the nature and area of the contact (fibre footprint) between them. The method development work reported here used a skin surrogate (Lorica Soft) in place of skin for reproducibility. The work was primarily experimental in nature, and involved two separate approaches. In the first, a microscope with a shallow depth of field was used to determine the length of nonwoven fibre in contact with a facing surface as a function of pressure, from which the contact area could be inferred; and, in the second, friction between chosen nonwoven fabrics and Lorica Soft was measured at a variety of anatomically relevant pressures (0.25-32.1kPa) and speeds (0.05-5mms(-1)). Both techniques were extensively validated, and showed reproducibility of about 5% in length and force, respectively. Straightforward inspection of the data for Lorica Soft against the nonwovens showed that Amontons' law (with respect to load) was obeyed to high precision (R(2)>0.999 in all cases), though there was the suggestion of sub-linearity at low loads. More detailed consideration of the friction traces suggested that two different friction mechanisms are important, and comparison with the contact data suggests tentatively that they may correspond to adhesion between two different populations of contacts, one "rough" and one "smooth". This additional insight is a good illustration of how these techniques may prove valuable in studying other, similar interfaces. In particular, they could be used to investigate interfaces between nonwovens and skin, which was the primary motivation for developing them. Copyright © 2013 Elsevier Ltd

  7. Thermal and vacuum friction acting on rotating particles

    SciTech Connect

    Manjavacas, A.; Garcia de Abajo, F. J.

    2010-12-15

    We study the stopping of spinning particles in vacuum. A torque is produced by fluctuations of the vacuum electromagnetic field and the particle polarization. Expressions for the frictional torque and the power radiated by the particle are obtained as a function of rotation velocity and the temperatures of the particle and the surrounding vacuum. We solve this problem following two different approaches: (i) a semiclassical calculation based upon the fluctuation-dissipation theorem (FDT), and (ii) a fully quantum-mechanical theory within the framework of quantum electrodynamics, assuming that the response of the particle is governed by bosonic excitations such as phonons and plasmons. Both calculations lead to identical final expressions, thus confirming the suitability of the FDT to deal with problems that are apparently out of equilibrium, and also providing comprehensive insight into the physical processes underlying thermal and vacuum friction. We adapt the quantum-mechanical theory to describe particles whose electromagnetic response is produced by fermionic excitations. Furthermore, we extend our FDT formalism to fully account for magnetic polarization, which dominates friction when the particle is a good conductor. Finally, we present numerically calculated torques and stopping times for the relevant cases of graphite and gold nanoparticles.

  8. Momentum Confinement at Low Torque

    SciTech Connect

    Solomon, W M; Burrell, K H; deGrassie, J S; Budny, R; Groebner, R J; Heidbrink, W W; Kinsey, J E; Kramer, G J; Makowski, M A; Mikkelsen, D; Nazikian, R; Petty, C C; Politzer, P A; Scott, S D; Van Zeeland, M A; Zarnstorff, M C

    2007-06-26

    Momentum confinement was investigated on DIII-D as a function of applied neutral beam torque at constant normalized {beta}{sub N}, by varying the mix of co (parallel to the plasma current) and counter neutral beams. Under balanced neutral beam injection (i.e. zero total torque to the plasma), the plasma maintains a significant rotation in the co-direction. This 'intrinsic' rotation can be modeled as being due to an offset in the applied torque (i.e. an 'anomalous torque'). This anomalous torque appears to have a magnitude comparable to one co-neutral beam source. The presence of such an anomalous torque source must be taken into account to obtain meaningful quantities describing momentum transport, such as the global momentum confinement time and local diffusivities. Studies of the mechanical angular momentum in ELMing H-mode plasmas with elevated q{sub min} show that the momentum confinement time improves as the torque is reduced. In hybrid plasmas, the opposite effect is observed, namely that momentum confinement improves at high torque/rotation. The relative importance of E x B shearing between the two is modeled using GLF23 and may suggest a possible explanation.

  9. DSPC/DLPC mixed films supported on silica: a QCM-D and friction force study.

    PubMed

    Oguchi, Takakuni; Sakai, Kenichi; Sakai, Hideki; Abe, Masahiko

    2011-01-01

    The membrane properties of phospholipid mixtures supported on silica were studied by means of a quartz crystal microbalance with dissipation monitoring (QCM-D) technique, in situ soft-contact atomic force microscopy (AFM), and friction force microscopy (FFM). The phospholipids used in this study were di-stearoylphosphatidylcholine (DSPC) and dilauroylphosphatidylcholine (DLPC). The phospholipid films were prepared by a vesicle-fusion method, in which DSPC/DLPC mixed liposomes dispersed in an aqueous medium are adsorbed on silica and their structure is transformed into a bilayer on the substrate. The changes in QCM-D (frequency and dissipation) and friction responses of DSPC single systems (gel state at 25°C) are relatively large compared with those of DLPC single systems (liquid-crystalline state at 25°C) and those of mixed DSPC/DLPC systems. This suggests that (i) the gel-state DSPC liposomes are somewhat flattened on the silica, by keeping their solid-like molecular rigidity, whereas (ii) both the liquid-crystalline DLPC and mixed liposomes experience instantaneous structural transformation at the silica/water interface and form a normally flattened bilayer on the substrate. The friction force response is dependent on the phase state of the phospholipids, and the liquid-crystalline DLPC has a more significant impact on the overall membrane properties (i.e., the degree of swelling and the friction response on the surface) than does the gel-state DSPC.

  10. Study of nonlinear behaviors and modal reductions for friction destabilized systems. Application to an elastic layer

    NASA Astrophysics Data System (ADS)

    Loyer, A.; Sinou, J.-J.; Chiello, O.; Lorang, X.

    2012-02-01

    As noise reduction tends to be part of environmental directives, predicting squeal noise generated by disc brakes is an important industrial issue. It involves both the transient and stationary nonlinear dynamics of self-excited systems with frictional contact. Time simulation of the phenomenon is an attractive option for reducing experiment costs. However, since such computations using full finite element models of industrial disc brake systems is time-consuming, model reduction has to be performed. In this paper, both the transient and stationary nonlinear behaviors of the friction destabilized system and the effect of dynamical reduction on the nonlinear response of a simple friction destabilized system are carried out. The first part provides a description of the general modeling retained for friction destabilized systems. Then, discretization and solving processes for the stability analysis and the temporal evolution are presented. The third part presents an analysis of a sliding elastic layer for different operating conditions, in order to better understand the nonlinear behavior of such systems. Finally, spatial model reduction is performed with different kinds of reduction bases in order to analyze the different effects of modal reductions. This clearly shows the necessity of including static modes in the reduction basis and that nonlinear interactions between unstable modes are very difficult to represent with reduced bases. Finally, the proposed model and the associated studies are intended to be the benchmark cases for future comparison.

  11. Study of friction and wear of thermoplastic vulcanizates: the correlation with abraded surfaces topology

    NASA Astrophysics Data System (ADS)

    Harea, E.; Stoček, R.; Machovský, M.

    2017-05-01

    The work was focused on the study of friction and wear properties of thermoplastic vulcanizates (TPV) based on polypropylene (PP), natural rubber (NR) and styrene butadiene rubber (SBR) compounds containing all common additives and curatives using ball-on-flat method. Pure materials and binary TPV blends of PP/NR, as well those of PP/SBR with the compositions 95/5, 75/25 and 50/50 (in weight %) were compounded and analysed. It is very well known that the coefficient of friction (COF), as well as wear values of pure thermoplastic matrix are significantly lower than those for pure rubber. Thus, it was found that the friction coefficient and wear of TPVs significantly increased in accordance with increased content of rubber material. Surprisingly, NR compared with SBR of similar concentrations in PP matrix, considerably affected wear of samples and the friction coefficient remained almost unaffected. Finally the topology of abraded surfaces were examined by using scanning electron microscopy (SEM) in order to understand the relationship between the COF, wear process and the composition of TPVs.

  12. Internal rotor friction instability

    NASA Technical Reports Server (NTRS)

    Walton, J.; Artiles, A.; Lund, J.; Dill, J.; Zorzi, E.

    1990-01-01

    The analytical developments and experimental investigations performed in assessing the effect of internal friction on rotor systems dynamic performance are documented. Analytical component models for axial splines, Curvic splines, and interference fit joints commonly found in modern high speed turbomachinery were developed. Rotor systems operating above a bending critical speed were shown to exhibit unstable subsynchronous vibrations at the first natural frequency. The effect of speed, bearing stiffness, joint stiffness, external damping, torque, and coefficient of friction, was evaluated. Testing included material coefficient of friction evaluations, component joint quantity and form of damping determinations, and rotordynamic stability assessments. Under conditions similar to those in the SSME turbopumps, material interfaces experienced a coefficient of friction of approx. 0.2 for lubricated and 0.8 for unlubricated conditions. The damping observed in the component joints displayed nearly linear behavior with increasing amplitude. Thus, the measured damping, as a function of amplitude, is not represented by either linear or Coulomb friction damper models. Rotordynamic testing of an axial spline joint under 5000 in.-lb of static torque, demonstrated the presence of an extremely severe instability when the rotor was operated above its first flexible natural frequency. The presence of this instability was predicted by nonlinear rotordynamic time-transient analysis using the nonlinear component model developed under this program. Corresponding rotordynamic testing of a shaft with an interference fit joint demonstrated the presence of subsynchronous vibrations at the first natural frequency. While subsynchronous vibrations were observed, they were bounded and significantly lower in amplitude than the synchronous vibrations.

  13. Electro-orientation of a metal nanowire counterbalanced by thermal torques.

    PubMed

    Arcenegui, Juan J; García-Sánchez, Pablo; Morgan, Hywel; Ramos, Antonio

    2014-06-01

    The rotational diffusion of electrically polarized metal nanowires suspended in an electrolyte is studied. The alignment of a Brownian nanowire in an ac field with a given direction is not complete due to thermal (fluctuating) torques. The orientation distribution allows us to examine the electrokinetic torques acting on the nanowire for smaller voltages than in previous deterministic experiments. In addition, the torques are obtained without recurring to the rotational friction coefficient as in dynamic deterministic experiments. The present results are in accordance with previous deterministic results of electro-orientation of metal nanowires. Nanowire rotation is originated by both the electrical torque on the induced dipole and by induced-charge electro-osmotic flow around the particle. At low frequencies of the applied ac field, induced-charge electro-osmotic orientation dominates while induced dipole torque orientation dominates at high frequencies. The angular standard deviation and the rotational rate are calculated from the measured fluctuating angle as a function of time, and good agreement with theoretical predictions is found. The experiments at high frequency indicate that the electrical torque on a nanowire near an insulating wall is reduced with respect to the bulk.

  14. Torque and dynamics of linking number relaxation in stretched supercoiled DNA.

    PubMed

    Marko, John F

    2007-08-01

    In micromechanical studies of DNA, plectonemically supercoiled domains are often used as sources of constant torque. These torques are not easily measured and are instead usually estimated. Here, coexisting extended and supercoiled DNA domains are analyzed, and closed-form expressions for the dependence of extension and torque on force and linking number are presented. When there are coexisting domains of plectonemic and extended DNA, the torque depends only on force, with no dependence on linking number. However, torque depends on force in a manner more complex than a simple power law, involving the free energy of the extended and plectonemic DNA. A simple strategy is described for measurement of the free energies of both extended and plectonemic DNA without reference to specific microscopic polymer models. Applications of the theory to analysis of relaxation of supercoiling by enzymes which permit friction-controlled rotational relaxation of linking number is also presented. Such enzymes must display a breaking of symmetry between relaxations driven by equal magnitude but opposite direction torques.

  15. Experimental study of an electromagnetic flow meter for liquid metals based on torque measurement during pumping process

    NASA Astrophysics Data System (ADS)

    Dubovikova, N.; Kolesnikov, Y.; Karcher, Ch

    2015-11-01

    This paper presents a detailed experimental study on an electromagnetic flow measurement technique to measure the flow rate of liquid metals. The experimental setup consists of a contactless electromagnetic pump with a torque sensor mounted on the pump shaft. The electromagnetic pump is composed of two rotating steel discs having embedded permanent magnets with alternating poles. The rotation of the discs creates a travelling sinusoidal magnetic field and eddy currents within the liquid metal. The metal is contained inside the duct located between the discs of the pump. The interaction of the magnetic field and the induced eddy currents generates an electromagnetic Lorentz force providing the pumping effect. The flow rate is proportional to this force. The torque sensor measures the moment of the discs due to the Lorentz force, which is converted to a flow rate value. We name the method Lorentz torque velocimetry (LTV). The full calibration procedure and experimental investigation of the LTV are described. The method can be used as a non-contact flow rate control technique for liquid metals.

  16. Reversal Mechanism of an Individual Ni Nanotube Simultaneously Studied by Torque and SQUID Magnetometry

    NASA Astrophysics Data System (ADS)

    Buchter, A.; Nagel, J.; Rüffer, D.; Xue, F.; Weber, D. P.; Kieler, O. F.; Weimann, T.; Kohlmann, J.; Zorin, A. B.; Russo-Averchi, E.; Huber, R.; Berberich, P.; Fontcuberta i Morral, A.; Kemmler, M.; Kleiner, R.; Koelle, D.; Grundler, D.; Poggio, M.

    2013-08-01

    Using an optimally coupled nanometer-scale SQUID, we measure the magnetic flux originating from an individual ferromagnetic Ni nanotube attached to a Si cantilever. At the same time, we detect the nanotube’s volume magnetization using torque magnetometry. We observe both the predicted reversible and irreversible reversal processes. A detailed comparison with micromagnetic simulations suggests that vortexlike states are formed in different segments of the individual nanotube. Such stray-field free states are interesting for memory applications and noninvasive sensing.

  17. Implant stability related to insertion torque force and bone density: An in vitro study.

    PubMed

    Tricio, J; van Steenberghe, D; Rosenberg, D; Duchateau, L

    1995-12-01

    Seventy-five implants were installed in 12 fresh ethanol-treated bovine ribs by use of a torque gauge manometer to measure the force needed to screw the implants fully into the bone. Digital radiographs were taken and a density histogram of the bone at the implant/bone interface was obtained. The damping characteristics of the implant/bone interface were assessed by tapping the abutment with the Periotest (PT) device. Abutments of several lengths screwed at 20 N/cm were used to conduct PT measurements and the PT values (PTVs) were related to the insertion torque force, the bone density, and implant and abutment length. The results indicated that high correlations exist between PTVs and insertion torque force (R value -0.74579), and PTVs and bone density (R value -0.83031). There was also a significant difference (p 0.001) among the PTVs of the different abutment lengths used. Implant length did not demonstrate influence on PTVs (p 0.3847).

  18. Predicting rotation for ITER via studies of intrinsic torque and momentum transport in DIII-D

    DOE PAGES

    Chrystal, C.; Grierson, B. A.; Staebler, G. M.; ...

    2017-03-30

    Here, experiments at the DIII-D tokamak have used dimensionless parameter scans to investigate the dependencies of intrinsic torque and momentum transport in order to inform a prediction of the rotation profile in ITER. Measurements of intrinsic torque profiles and momentum confinement time in dimensionless parameter scans of normalized gyroradius and collisionality are used to predict the amount of intrinsic rotation in the pedestal of ITER. Additional scans of Te/Ti and safety factor are used to determine the accuracy of momentum flux predictions of the quasi-linear gyrokinetic code TGLF. In these scans, applications of modulated torque are used to measure themore » incremental momentum diffusivity, and results are consistent with the E x B shear suppression of turbulent transport. These incremental transport measurements are also compared with the TGLF results. In order to form a prediction of the rotation profile for ITER, the pedestal prediction is used as a boundary condition to a simulation that uses TGLF to determine the transport in the core of the plasma. The predicted rotation is ≈20 krad/s in the core, lower than in many current tokamak operating scenarios. TGLF predictions show that this rotation is still significant enough to have a strong effect on confinement via E x B shear.« less

  19. Uses of Auger and x ray photoelectron spectroscopy in the study of adhesion and friction

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    1990-01-01

    Three studies are described characterizing the possible contributions of surface science to tribology. These include surface contamination formed by the interaction of a surface with the environment, contaminants obtained with diffusion of compounds, and surface chemical changes resulting from selective thermal evaporation. Surface analytical tools such as Auger electron spectroscopy (AES) and x ray photoelectron spectroscopy (XPS) incorporated directly into adhesion and friction systems are primarily used to define the nature of tribological surfaces before and after tribological experimentation and to characterize the mechanism of solid-to-solid interaction. Emphasis is on fundamental studies involving the role of surfaces in controlling the adhesion and friction properties of materials emerging as a result of the surface analyses. The materials which were studied include metals and ceramics such as elemental metals, amorphous alloys (metallic glasses), and silicon-based ceramics.

  20. Effect of head contact on the rim of the cup on the offset loading and torque in hip joint replacement.

    PubMed

    Liu, Feng; Williams, Sophie; Jin, Zhongmin; Fisher, John

    2013-11-01

    Head contact on the rim of the cup causes stress concentration and consequently increased wear. The head contact on the rim of the cup may in addition cause an offset load and torque on the cup. The head-rim contact resulting from microseparation or subluxation has been investigated. An analytical model has been developed to calculate the offset loading and resultant torque on the cup as a function of the translational displacement of the head under simplified loading condition of the hip joint at heel strike during a walking cycle. The magnitude of the torque on the cup was found to increase with the increasing translational displacement, larger diameter heads, eccentric cups, and the coefficient of friction of the contact. The effects of cup inclination, cup rim radius, and cup coverage angle on the magnitude of the torque were found to be relatively small with a maximum variation in the torque magnitude being lower than 20%. This study has shown an increased torque due to the head loading on the rim of the cup, and this may contribute to the incidence of cup loosening. Particularly, metal-on-metal hip joints with larger head diameters may produce the highest offset loading torque.

  1. Experimental studies of skyrmion textures and spin torque effects in chiral magnets

    NASA Astrophysics Data System (ADS)

    Ritz, Robert

    2012-02-01

    Small angle neutron scattering and measurements of a topological Hall signal identify the formation of skyrmion lattices in the non-centrosymmetric B20 compounds MnSi [1], Mn1-xFexSi, Mn1-xCoxSi and the strongly doped semiconductor Fe1-xCoxSi [2]. This observation has been confirmed by Lorentz force microscopy in thin samples of Fe1-xCoxSi, FeGe and, most recently, MnSi, where even individual skyrmions have been spotted [3]. Because the skyrmion lattices are exceptionally weakly pinned to the crystal lattice, extreme care has to be exercised when studying the precise intrinsic morphology of related spin textures in bulk samples. As a particularly striking property each skyrmion supports precisely one quantum of emergent magnetic flux. This permits a highly efficient coupling between skyrmions and conduction electrons which results in spin torque effects at ultra-low current densities as seen in small angle neutron scattering [4] and the emergent electric field when the skyrmions move [5].[4pt] Work in collaboration with: T. Adams, A. Bauer, B. Binz, P. B"oni, G. Brandl, R. A. Duine, K. Everschor, C. Franz, M. Garst, R. Georgii, S. Gottlieb-Sch"onmeyer, W. Heusler, M. Janoschek, F. Jonietz, T. Keller, K. Mitterm"uller, S. M"uhlbauer, W. M"unzer, A. Neubauer, P.G. Niklowitz, C. Pfleiderer, A. Rosch, T. Schulz, A. Tischendorf, M. Wagner.[4pt] [1] S. M"uhlbauer et al., Science 323, 915 (2009); A. Neubauer et al., Phys. Rev. Lett. 102, 186602 (2010); C. Pfleiderer et al., J. Phys. Cond. Matter 22, 164207 (2010); T. Adams et al., Phys. Rev. Lett., in press, arXiv/1107.0993. [0pt] [2] W. M"unzer et al., Phys. Rev. B 81, 041203(R) (2010). [0pt] [3] X. Z. Yu et al., Nature 465, 901 (2010); X. Z. Yu et al., Nature Materials 10, 106 (2010). [0pt] [4] F. Jonietz et al., Science, 330, 1648 (2010). [0pt] [5] Emergent electrodynamics of skyrmions in a chiral magnet, T. Schulz, R. Ritz, A. Bauer, M. Halder, M. Wagner, C. Franz, and C. Pfleiderer, K. Everschor, M. Garst, and A

  2. A fundamental study on the structural integrity of magnesium alloys joined by friction stir welding

    NASA Astrophysics Data System (ADS)

    Rao, Harish Mangebettu

    The goal of this research is to study the factors that influence the physical and mechanical properties of lap-shear joints produced using friction stir welding. This study focuses on understanding the effect of tool geometry and weld process parameters including the tool rotation rate, tool plunge depth and dwell time on the mechanical performance of similar magnesium alloy and dissimilar magnesium to aluminum alloy weld joints. A variety of experimental activities were conducted including tensile and fatigue testing, fracture surface and failure analysis, microstructure characterization, hardness measurements and chemical composition analysis. An investigation on the effect of weld process conditions in friction stir spot welding of magnesium to magnesium produced in a manner that had a large effective sheet thickness and smaller interfacial hook height exhibited superior weld strength. Furthermore, in fatigue testing of friction stir spot welded of magnesium to magnesium alloy, lap-shear welds produced using a triangular tool pin profile exhibited better fatigue life properties compared to lap-shear welds produced using a cylindrical tool pin profile. In friction stir spot welding of dissimilar magnesium to aluminum, formation of intermetallic compounds in the stir zone of the weld had a dominant effect on the weld strength. Lap-shear dissimilar welds with good material mixture and discontinues intermetallic compounds in the stir zone exhibited superior weld strength compared to lap-shear dissimilar welds with continuous formation of intermetallic compounds in the stir zone. The weld structural geometry like the interfacial hook, hook orientation and bond width also played a major role in influencing the weld strength of the dissimilar lap-shear friction stir spot welds. A wide scatter in fatigue test results was observed in friction stir linear welds of aluminum to magnesium alloys. Different modes of failure were observed under fatigue loading including crack

  3. A Study of Friction Stir Welded 2195 Al-Li Alloy by the Scanning Reference Electrode Technique

    NASA Technical Reports Server (NTRS)

    Donford, M. D.; Ding, R. J.

    1998-01-01

    A study of the corrosion of friction stir welded 2195 Al-Li alloy has been carried out using the scanning reference electrode technique (SRET). The results are compared to those obtained from a study of heterogeneously welded samples.

  4. Nanoscale adhesion, friction and wear studies of biomolecules on silicon based surfaces.

    PubMed

    Bhushan, Bharat; Tokachichu, Dharma R; Keener, Matthew T; Lee, Stephen C

    2006-01-01

    Protein layers are deployed over the surfaces of microdevices such as biological microelectromechanical systems (bioMEMS) and bioimplants as functional layers that confer specific molecular recognition or binding properties or to facilitate biocompatibility with biological tissue. When a microdevice comes in contact with any exterior environment, like tissues and/or fluids with a variable pH, the biomolecules on its surface may get abraded. Silicon based bioMEMS are an important class of devices. Adhesion, friction and wear properties of biomolecules (e.g., proteins) on silicon based surfaces are therefore important. Adhesion was studied between streptavidin and a thermally grown silica substrate in a phosphate buffered saline (PBS) solution with various pH values as a function of the concentration of biomolecules in the solution. Friction and wear properties of streptavidin (protein) biomolecules coated on silica by direct physical adsorption and a chemical linker method were studied in PBS using the tapping mode atomic force microscopy at a range of free amplitude voltages. Fluorescence microscopy was used to study the detailed wear mechanism of the biomolecules. Based on this study, adhesion, friction and wear mechanisms of biomolecules on silicon based surfaces are discussed.

  5. A theoretical study of the influence of technological friction stir welding parameters on weld structures

    NASA Astrophysics Data System (ADS)

    Astafurov, Sergey; Shilko, Evgeny; Kolubaev, Evgeny; Psakhie, Sergey

    2015-10-01

    Computer simulation by the movable cellular automaton method was performed to study the dynamics of friction stir welding of duralumin plates. It was shown that the ratio of the rotation rate to the translational velocity of the rotating tool has a great influence on the quality of the welded joint. A suitably chosen ratio of these parameters combined with an additional ultrasonic impact reduces considerably the porosity and the amount of microcracks in the weld.

  6. A study on friction stir welding of 12mm thick aluminum alloy plates

    NASA Astrophysics Data System (ADS)

    Kumar, Deepati Anil; Biswas, Pankaj; Tikader, Sujoy; Mahapatra, M. M.; Mandal, N. R.

    2013-12-01

    Most of the investigations regarding friction stir welding (FSW) of aluminum alloy plates have been limited to about 5 to 6 mm thick plates. In prior work conducted the various aspects concerning the process parameters and the FSW tool geometry were studied utilizing friction stir welding of 12 mm thick commercial grade aluminum alloy. Two different simple-to-manufacture tool geometries were used. The effect of varying welding parameters and dwell time of FSW tool on mechanical properties and weld quality was examined. It was observed that in order to achieve a defect free welding on such thick aluminum alloy plates, tool having trapezoidal pin geometry was suitable. Adequate tensile strength and ductility can be achieved utilizing a combination of high tool rotational speed of about 2000 r/min and low speed of welding around 28 mm/min. At very low and high dwell time the ductility of welded joints are reduced significantly.

  7. Systematic study of error sources in supersonic skin-friction balance measurements

    NASA Technical Reports Server (NTRS)

    Allen, J. M.

    1976-01-01

    An experimental study was performed to investigate potential error sources in data obtained with a self-nulling, moment-measuring, skin-friction balance. The balance was installed in the sidewall of a supersonic wind tunnel, and independent measurements of the three forces contributing to the balance output (skin friction, lip force, and off-center normal force) were made for a range of gap size and element protrusion. The relatively good agreement between the balance data and the sum of these three independently measured forces validated the three-term model used. No advantage to a small gap size was found; in fact, the larger gaps were preferable. Perfect element alignment with the surrounding test surface resulted in very small balance errors. However, if small protrusion errors are unavoidable, no advantage was found in having the element slightly below the surrounding test surface rather than above it.

  8. A Micro-Electrochemical Study of Friction Stir Welded Aluminum 6061-T6

    NASA Technical Reports Server (NTRS)

    Hintze, Paul E.; Calle, Luz M.

    2005-01-01

    The corrosion behavior of friction stir welded Aluminum alloy 606 1-T6 was studied using a micro-electrochemical cell. The micro-electrochemical cell has a measurement area of about 0.25 square mm which allows for measurement of corrosion properties at a very small scale. The corrosion and breakdown potentials were measured at many points inside and outside the weld along lines perpendicular to the weld. The breakdown potential is approximately equal inside and outside the weld; however, it is lower in the narrow border between the weld and base material. The results of electrochemical measurements were correlated to micro-structural analysis. The corrosion behavior of the friction stir welded samples was compared to tungsten inert gas (TIG) welded samples of the same material.

  9. Dynamic SEM wear studies of tungsten carbide cermets. [friction and wear experiments

    NASA Technical Reports Server (NTRS)

    Brainard, W. A.; Buckley, D. H.

    1975-01-01

    Dynamic friction and wear experiments were conducted in a scanning electron microscope. The wear behavior of pure tungsten carbide and composite with 6 and 15 weight percent cobalt binder was examined, and etching of the binder was done to selectively determine the role of the binder in the wear process. Dynamic experiments were conducted as the tungsten carbide (WC) and bonded WC cermet surfaces were transversed by a 50 micron radiused diamond stylus. These studies show that the predominant wear process in WC is fracture initiated by plastic deformation, and the wear of the etched cermets is similar to pure WC. The presence of the cobalt binder reduces both friction and wear. The cementing action of the cobalt reduces granular separation, and promotes a dense polished layer because of its low shear strength film-forming properties. The wear debris generated from unetched surface is approximately the same composition as the bulk.

  10. Modelling dental implant extraction by pullout and torque procedures.

    PubMed

    Rittel, D; Dorogoy, A; Shemtov-Yona, K

    2017-07-01

    Dental implants extraction, achieved either by applying torque or pullout force, is used to estimate the bone-implant interfacial strength. A detailed description of the mechanical and physical aspects of the extraction process in the literature is still missing. This paper presents 3D nonlinear dynamic finite element simulations of a commercial implant extraction process from the mandible bone. Emphasis is put on the typical load-displacement and torque-angle relationships for various types of cortical and trabecular bone strengths. The simulations also study of the influence of the osseointegration level on those relationships. This is done by simulating implant extraction right after insertion when interfacial frictional contact exists between the implant and bone, and long after insertion, assuming that the implant is fully bonded to the bone. The model does not include a separate representation and model of the interfacial layer for which available data is limited. The obtained relationships show that the higher the strength of the trabecular bone the higher the peak extraction force, while for application of torque, it is the cortical bone which might dictate the peak torque value. Information on the relative strength contrast of the cortical and trabecular components, as well as the progressive nature of the damage evolution, can be revealed from the obtained relations. It is shown that full osseointegration might multiply the peak and average load values by a factor 3-12 although the calculated work of extraction varies only by a factor of 1.5. From a quantitative point of view, it is suggested that, as an alternative to reporting peak load or torque values, an average value derived from the extraction work be used to better characterize the bone-implant interfacial strength. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Rubber friction and tire dynamics.

    PubMed

    Persson, B N J

    2011-01-12

    We propose a simple rubber friction law, which can be used, for example, in models of tire (and vehicle) dynamics. The friction law is tested by comparing numerical results to the full rubber friction theory (Persson 2006 J. Phys.: Condens. Matter 18 7789). Good agreement is found between the two theories. We describe a two-dimensional (2D) tire model which combines the rubber friction model with a simple mass-spring description of the tire body. The tire model is very flexible and can be used to accurately calculate μ-slip curves (and the self-aligning torque) for braking and cornering or combined motion (e.g. braking during cornering). We present numerical results which illustrate the theory. Simulations of anti-blocking system (ABS) braking are performed using two simple control algorithms.

  12. Flux jump avalanches in torque studies of single crystal YBa 2Cu 3O 7- δ

    NASA Astrophysics Data System (ADS)

    Hope, A. P.; Naughton, M. J.; Gajewski, D. A.; Maple, M. B.

    1999-07-01

    A series of avalanche-like jumps are observed in the mixed state of single crystal YBa 2Cu 3O 7- δ (YBCO) superconductors. Emerging as a saw-tooth pattern in torque vs. sample orientation in magnetic field, these jumps are discontinuous on our most resolute angular scale. While reminiscent of the classical flux jump instability, the present jumps are instead proposed to be associated with the layered nature of the material and twin boundary (TB) pinning, the combination of which promotes a crossover from a tilted to a kinked vortex structure.

  13. Torque studies of large-area Co arrays fabricated by etched nanosphere lithography

    SciTech Connect

    Weekes, S. M.; Ogrin, F.Y.

    2005-05-15

    Large-area arrays of size-tunable Co nanomagnets have been fabricated using a methodology based on nanosphere lithography. The technique employs a monolayer of latex spheres as an inverse mask for the formation of Co elements by electrodeposition. By tuning the size of the spheres with reactive ion etching, magnetic elements of 310 and 240 nm diameter have been obtained. Analysis of the arrays using high-field torque magnetometry and three-dimensional micromagnetic modeling clearly demonstrates a change in anisotropy as the diameter of the elements is reduced. More detailed investigation of the field dependence indicates the presence of magnetic vortices at low fields.

  14. The role of interaction torque and muscle torque in the control of downward squatting.

    PubMed

    Fujisawa, Hiroyuki; Suzuki, Hiroto; Murakami, Kenichi; Kawakami, Shingo; Suzuki, Makoto

    2016-01-01

    [Purpose] The purposes of this study were first to analyze the multijoint dynamics of downward squatting, and to examine the contribution of interaction torque and muscle torque to net torque, and second, to examine mechanisms of movement control. [Subjects] The subjects were 31 healthy men with a mean age of 21.0 ± 1.2 years (range, 19-24 years). [Methods] Squatting tasks with the trunk in two positions, an erect and anterior tilt position, were performed by the subjects. Net, interaction, muscle, and gravity torque were calculated according to the Lagrange equation using 3D tracking data. [Results] The contribution ratio of interaction torque to net torque was approximately 90%, irrespective of the joint and task. In contrast, muscle torque showed complicated behavior to compensate for gravity torque. A combined muscle and gravity torque profile showed flexion or dorsiflexion immediately after the initiation of the movement, and it later changed to extension or plantar flexion. [Conclusion] The torque that contributes almost exclusively to the net torque was interaction torque. The combination of muscle and gravity torque at the knee joint and the hip joint is important for movement control, independent of the starting position.

  15. Study of the demolding process—implications for thermal stress, adhesion and friction control

    NASA Astrophysics Data System (ADS)

    Guo, Yuhua; Liu, Gang; Xiong, Yin; Tian, Yangchao

    2007-01-01

    With the improvements of large-scale parallel replication and automation for hot embossing machines, hot embossing has become not only popular in laboratories but also possible and attractive in industry. Most difficulties in polymer micro-molding are caused by the demolding of molds rather than the filling of them. Due to the lack of accurate analysis tools and simulation tools for demolding, it is difficult to improve the process or give design rules for the molds, which could harm the further applications of hot embossing. This paper gives our studies of the demolding process using LIGA mold inserts. The demolding forces mainly consist of thermal shrinkage stress and adhesive forces. First, a finite elements method (FEM) is applied to analyze thermal stress caused by the shrinkage differences between the mold and polymer using ABAQUS/Standard, and a thermal stress barrier is proposed as an auxiliary structure to protect against the converging stress at the bottom corner of microstructures. Then, regarding the adhesion and friction forces, the nanotribology of PMMA is studied by AFM with nickel and PTFE-coated Si3N4 tips. And based on the measurements, the adhesion and friction forces in a demolding cycle are also simulated by FEM using ABAQUS/Standard. At last Ni-PTFE is recommended as the mold material for achieving a lower surface energy and lower friction force. This work proposes several methods that can optimize the demolding process and introduces some good suggestions for mold tool design.

  16. Quick torque coupling

    DOEpatents

    Luft, Peter A [El Cerrito, CA

    2009-05-12

    A coupling for mechanically connecting modular tubular struts of a positioning apparatus or space frame, comprising a pair of toothed rings (10, 12) attached to separate strut members (16), the teeth (18, 20) of the primary rings (10, 12) mechanically interlocking in both an axial and circumferential manner, and a third part comprising a sliding, toothed collar (14) the teeth (22) of which interlock the teeth (18, 20) of the primary rings (10, 12), preventing them from disengaging, and completely locking the assembly together. A secondary mechanism provides a nesting force for the collar, and/or retains it. The coupling is self-contained and requires no external tools for installation, and can be assembled with gloved hands in demanding environments. No gauging or measured torque is required for assembly. The assembly can easily be visually inspected to determine a "go" or "no-go" status. The coupling is compact and relatively light-weight. Because of it's triply interlocking teeth, the connection is rigid. The connection does not primarily rely on clamps, springs or friction based fasteners, and is therefore reliable in fail-safe applications.

  17. Rubber friction directional asymmetry

    NASA Astrophysics Data System (ADS)

    Tiwari, A.; Dorogin, L.; Steenwyk, B.; Warhadpande, A.; Motamedi, M.; Fortunato, G.; Ciaravola, V.; Persson, B. N. J.

    2016-12-01

    In rubber friction studies it is usually assumed that the friction force does not depend on the sliding direction, unless the substrate has anisotropic properties, like a steel surface grinded in one direction. Here we will present experimental results for rubber friction, where we observe a strong asymmetry between forward and backward sliding, where forward and backward refer to the run-in direction of the rubber block. The observed effect could be very important in tire applications, where directional properties of the rubber friction could be induced during braking.

  18. Comparative Evaluation of Frictional Properties, Load Deflection Rate and Surface Characteristics of Different Coloured TMA Archwires - An Invitro Study.

    PubMed

    Aloysius, Arul Pradeep; Vijayalakshmi, Devaki; Deepika; Soundararajan, Nagachandran Kandasamy; Manohar, Vijaykumar Neelam; Khan, Nayeemullah

    2015-12-01

    During tooth movement the success of sliding mechanics is dependent upon various factors which include frictional resistance at bracket-archwire interface, surface roughness of archwire materials and elastic properties of archwires. Ion implantation techniques reduce the frictional force and allow better tooth movement clinically. The main objective of this study was to evaluate and compare the frictional properties, load deflection rate and surface characteristics of Honey dew and Purple coloured (Ion implanted) TMA wires with uncoated TMA wires. Fifteen archwire samples were divided into three groups comprising of five samples in each group namely, Group I - Uncoated TMA wires (Control), Group II - Purple coloured TMA wires and Group III- Honey dew TMA wires. Friction and load deflection rate testing were performed with the Instron Universal testing machine and the surface characteristics of the wires were evaluated before and after sliding using Scanning Electron Microscope. The mean frictional characteristics and surface roughness for Honey dew TMA wires was lesser than Purple coloured TMA wires which was statistically significant. Both the coloured TMA wires showed low frictional characteristics and less surface roughness than uncoated TMA wires (the control). The mean load deflection rate was low for both coloured ion implanted TMA wires when compared to uncoated TMA wires which was statistically significant. Coloured ion implanted TMA wires, especially Honey dew TMA wires have low friction, low load deflection rate and improved surface finish. Hence they can be used in frictionless as well as sliding mechanics, where uncoated TMA wires are inefficient.

  19. Experimental study on the friction effect of plastic stents for biliary stone fragmentation (with video).

    PubMed

    Kwon, Chang-Il; Kim, Gwangil; Jeong, Seok; Choi, Sung Hoon; Ko, Kwang Hyun; Lee, Don Haeng; Cho, Joo Young; Hong, Sung Pyo

    2017-06-16

    In patients with irretrievable or intractable bile duct stone, temporary insertion of a plastic stent (PS) followed by further endoscopic retrograde cholangiopancreatography (ERCP) or surgery has been recommended as a 'bridge' therapy. However, the exact mechanism of stone fragmentation has not been discovered. The aim of the present study was to evaluate whether PS shape can facilitate stone fragmentation. Using a new in vitro bile flow phantom model, we compared the friction effect among three different PS groups (straight PS group, double pigtail-shaped PS group, and screw-shaped PS group) and a control group. Each group had 10 silicon tube blocks that separately contained one stone and two PS. The control group had 10 blocks each with only a stone and no PS. We carried out analysis of the friction effect by stone weight and volume changes among the groups, excluding fragmented stones. After 8 weeks, complete fragmentation was noted in one out of 34 cholesterol stones (2.9%) and in four out of six pigmented stones (66.7%). Fragmentation tended to be more prominent in the screw-shaped PS group than in the straight PS group, double pigtail-shaped group, and control group (volume change: -11.33%, 7.94%, 4.43%, and 2.05%, respectively, P = 0.1390; weight change: -9.30%, 0.71%, -0.10%, and -1.23%, respectively, P = 0.3553). Stone fragmentation may be induced by PS friction effect. Also, screw-shaped plastic stents may improve friction effect. These results may help guide future PS development and clinical decisions. © 2017 Japan Gastroenterological Endoscopy Society.

  20. Cardiorespiratory Fitness and Peak Torque Differences between Vegetarian and Omnivore Endurance Athletes: A Cross-Sectional Study.

    PubMed

    Lynch, Heidi M; Wharton, Christopher M; Johnston, Carol S

    2016-11-15

    In spite of well-documented health benefits of vegetarian diets, less is known regarding the effects of these diets on athletic performance. In this cross-sectional study, we compared elite vegetarian and omnivore adult endurance athletes for maximal oxygen uptake (VO2 max) and strength. Twenty-seven vegetarian (VEG) and 43 omnivore (OMN) athletes were evaluated using VO2 max testing on the treadmill, and strength assessment using a dynamometer to determine peak torque for leg extensions. Dietary data were assessed using detailed seven-day food logs. Although total protein intake was lower among vegetarians in comparison to omnivores, protein intake as a function of body mass did not differ by group (1.2 ± 0.3 and 1.4 ± 0.5 g/kg body mass for VEG and OMN respectively, p = 0.220). VO2 max differed for females by diet group (53.0 ± 6.9 and 47.1 ± 8.6 mL/kg/min for VEG and OMN respectively, p < 0.05) but not for males (62.6 ± 15.4 and 55.7 ± 8.4 mL/kg/min respectively). Peak torque did not differ significantly between diet groups. Results from this study indicate that vegetarian endurance athletes' cardiorespiratory fitness was greater than that for their omnivorous counterparts, but that peak torque did not differ between diet groups. These data suggest that vegetarian diets do not compromise performance outcomes and may facilitate aerobic capacity in athletes.

  1. Torque depression following active shortening is associated with a modulation of cortical and spinal excitation: a history-dependent study.

    PubMed

    Grant, Jordan; McNeil, Chris J; Bent, Leah R; Power, Geoffrey A

    2017-08-01

    The reduction in steady-state isometric torque following a shortening muscle action when compared to a purely isometric contraction at the same muscle length and level of activation is termed torque depression (TD). The purpose of this study was to investigate spinal and supraspinal neural responses during the TD state of a maximal voluntary activation of the ankle dorsiflexors. Thirteen subjects (10 male) were recruited for the study. To explore alterations in corticospinal excitability during voluntary muscle activation in the TD state, motor evoked potentials (MEPs), cervicomedullary motor evoked potentials (CMEPs), and maximal compound muscle action potentials (Mmax) were elicited during the isometric steady-state following active shortening (i.e., TD) and the purely isometric condition. A 15% reduction in steady-state isometric torque (P < 0.05) was observed following isokinetic shortening at 40°/sec. Although mean evoked responses (MEP and CMEP) were not different in the TD state as compared with purely isometric state, the changes in evoked responses were inversely related to one another depending on the level of TD These findings indicate that supraspinal and spinal responses are interrelated in the TD state. Furthermore, antagonist muscle coactivation during the isometric reference contraction was positively related to TD These findings suggest the possibility of a relationship between the central nervous system and TD in humans. Further work should be performed to definitively link TD to specific spinal interneurons. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  2. Cardiorespiratory Fitness and Peak Torque Differences between Vegetarian and Omnivore Endurance Athletes: A Cross-Sectional Study

    PubMed Central

    Lynch, Heidi M.; Wharton, Christopher M.; Johnston, Carol S.

    2016-01-01

    In spite of well-documented health benefits of vegetarian diets, less is known regarding the effects of these diets on athletic performance. In this cross-sectional study, we compared elite vegetarian and omnivore adult endurance athletes for maximal oxygen uptake (VO2 max) and strength. Twenty-seven vegetarian (VEG) and 43 omnivore (OMN) athletes were evaluated using VO2 max testing on the treadmill, and strength assessment using a dynamometer to determine peak torque for leg extensions. Dietary data were assessed using detailed seven-day food logs. Although total protein intake was lower among vegetarians in comparison to omnivores, protein intake as a function of body mass did not differ by group (1.2 ± 0.3 and 1.4 ± 0.5 g/kg body mass for VEG and OMN respectively, p = 0.220). VO2 max differed for females by diet group (53.0 ± 6.9 and 47.1 ± 8.6 mL/kg/min for VEG and OMN respectively, p < 0.05) but not for males (62.6 ± 15.4 and 55.7 ± 8.4 mL/kg/min respectively). Peak torque did not differ significantly between diet groups. Results from this study indicate that vegetarian endurance athletes’ cardiorespiratory fitness was greater than that for their omnivorous counterparts, but that peak torque did not differ between diet groups. These data suggest that vegetarian diets do not compromise performance outcomes and may facilitate aerobic capacity in athletes. PMID:27854281

  3. Design of a new torque standard machine based on a torque generation method using electromagnetic force

    NASA Astrophysics Data System (ADS)

    Nishino, Atsuhiro; Ueda, Kazunaga; Fujii, Kenichi

    2017-02-01

    To allow the application of torque standards in various industries, we have been developing torque standard machines based on a lever deadweight system, i.e. a torque generation method using gravity. However, this method is not suitable for expanding the low end of the torque range, because of the limitations to the sizes of the weights and moment arms. In this study, the working principle of the torque generation method using an electromagnetic force was investigated by referring to watt balance experiments used for the redefinition of the kilogram. Applying this principle to a rotating coordinate system, an electromagnetic force type torque standard machine was designed and prototyped. It was experimentally demonstrated that SI-traceable torque could be generated by converting electrical power to mechanical power. Thus, for the first time, SI-traceable torque was successfully realized using a method other than that based on the force of gravity.

  4. History-dependent friction and slow slip from time-dependent microscopic junction laws studied in a statistical framework.

    PubMed

    Thøgersen, Kjetil; Trømborg, Jørgen Kjoshagen; Sveinsson, Henrik Andersen; Malthe-Sørenssen, Anders; Scheibert, Julien

    2014-05-01

    To study how macroscopic friction phenomena originate from microscopic junction laws, we introduce a general statistical framework describing the collective behavior of a large number of individual microjunctions forming a macroscopic frictional interface. Each microjunction can switch in time between two states: a pinned state characterized by a displacement-dependent force and a slipping state characterized by a time-dependent force. Instead of tracking each microjunction individually, the state of the interface is described by two coupled distributions for (i) the stretching of pinned junctions and (ii) the time spent in the slipping state. This framework allows for a whole family of microjunction behavior laws, and we show how it represents an overarching structure for many existing models found in the friction literature. We then use this framework to pinpoint the effects of the time scale that controls the duration of the slipping state. First, we show that the model reproduces a series of friction phenomena already observed experimentally. The macroscopic steady-state friction force is velocity dependent, either monotonic (strengthening or weakening) or nonmonotonic (weakening-strengthening), depending on the microscopic behavior of individual junctions. In addition, slow slip, which has been reported in a wide variety of systems, spontaneously occurs in the model if the friction contribution from junctions in the slipping state is time weakening. Next, we show that the model predicts a nontrivial history dependence of the macroscopic static friction force. In particular, the static friction coefficient at the onset of sliding is shown to increase with increasing deceleration during the final phases of the preceding sliding event. We suggest that this form of history dependence of static friction should be investigated in experiments, and we provide the acceleration range in which this effect is expected to be experimentally observable.

  5. On the torque and wear behavior of selected thin film MOS2 lubricated gimbal bearings

    NASA Technical Reports Server (NTRS)

    Bohner, John J.; Conley, Peter L.

    1988-01-01

    During the thermal vacuum test phase of the GOES 7 spacecraft, the primary scan mirror system exhibited unacceptably high drive friction. The observed friction was found to correlate with small misalignments in the mirror structure and unavoidable loads induced by the vehicle spin. An intensive effort to understand and document the performance of the scan mirror bearing system under these loads is described. This effort involved calculation of the bearing loads and expected friction torque, comparison of the computed values to test data, and verification of the lubrication system performance and limitations under external loads. The study culminated in a successful system launch in February of 1987. The system has operated as predicted since that time.

  6. Scanning-electron-microscope used in real-time study of friction and wear

    NASA Technical Reports Server (NTRS)

    Brainard, W. A.; Buckley, D. H.

    1975-01-01

    Small friction and wear apparatus built directly into scanning-electron-microscope provides both dynamic observation and microscopic view of wear process. Friction and wear tests conducted using this system have indicated that considerable information can readily be gained.

  7. Ultralow Friction in a Superconducting Magnetic Bearing

    NASA Technical Reports Server (NTRS)

    Bornemann, Hans J.; Siegel, Michael; Zaitsev, Oleg; Bareiss, Martin; Laschuetza, Helmut

    1996-01-01

    Passive levitation by superconducting magnetic bearings can be utilized in flywheels for energy storage. Basic design criteria of such a bearing are high levitation force, sufficient vertical and horizontal stability and low friction. A test facility was built for the measurement and evaluation of friction in a superconducting magnetic bearing as a function of operating temperature and pressure in the vacuum vessel. The bearing consists of a commercial disk shaped magnet levitated above single grain, melt-textured YBCO high-temperature superconductor material. The superconductor was conduction cooled by an integrated AEG tactical cryocooler. The temperature could be varied from 50 K to 80 K. The pressure in the vacuum chamber was varied from 1 bar to 10(exp -5) mbar. At the lowest pressure setting, the drag torque shows a linear frequency dependence over the entire range investigated (0 less than f less than 40 Hz). Magnetic friction, the frequency independent contribution, is very low. The frequency dependent drag torque is generated by molecular friction from molecule-surface collisions and by eddy currents. Given the specific geometry of the set-up and gas pressure, the molecular drag torque can be estimated. At a speed of 40 Hz, the coefficient of friction (drag-to-lift ratio) was measured to be mu = 1.6 x 10(exp -7) at 10(exp -5) mbar and T = 60 K. This is equivalent to a drag torque of 7.6 x 10(exp -10) Nm. Magnetic friction causes approx. 1% of the total losses. Molecular friction accounts for about 13% of the frequency dependent drag torque, the remaining 87% being due to eddy currents and losses from rotor unbalance. The specific energy loss is only 0.3% per hour.

  8. The effect of transport velocity upon spin torque

    NASA Astrophysics Data System (ADS)

    Alaci, S.; Ciornei, F. C.; Amarandei, D.; Irimescu, L.; Romanu, I. C.; Rotar, M. A.

    2017-02-01

    The paper analysis the effect produced by superposition of a rotation motion from contact area on a transport translational motion, having the same value for all contact points. A theoretical model is proposed for the calculus of the total friction torque. The deduced expression shows that the friction torque has a maximum value when the translational velocity is zero and rapidly decreases with increasing the translational velocity. The diminishing is not uniform, but is more evident at the beginning, when the ratio between the transport velocity and angular velocity is comparable to the radius of contact area and, afterwards, the decline of the friction torque is slower. The last part of the paper proposes a solution for an experimental validation of the theoretical results.

  9. [Study and calculation of friction losses in microturbines and burs for dentistry].

    PubMed

    Sabitov, V Kh; Repin, V A; Kanaev, V F; Kil'kinov, A A

    1984-01-01

    The method to compute friction loss in medical microturbines and tips at the stage of their development is proposed. It is verified when designing friction loss of the following devices: a turbine tip HTC-300-02, a pneumatic micromotor MMP-20, and micromotor tips (NVP-30M) and (NP-30M). The method may be useful in estimated designs of friction loss.

  10. Effects of torque spring, CCL and latch mechanism on dynamic response of planar solar arrays with multiple clearance joints

    NASA Astrophysics Data System (ADS)

    Li, Yuanyuan; Wang, Zilu; Wang, Cong; Huang, Wenhu

    2017-03-01

    This paper numerically investigates the effects of torque spring, close cable loop (CCL) configuration and latch mechanism on the overall dynamic characteristics of a deployable solar arrays system considering joint clearance; and presents significant guidance for the key parameters design of these three mechanisms. A typical mechanism composed of a main-body with a yoke and two panels is used as a demonstration case to study the dynamic response of the deployable solar array system in the deployment process and post-latch phase. The normal contact force model and tangential friction model in clearance joint are established using nonlinear contact force model and modified Coulomb friction model, respectively. The numerical simulation results reveal that the joint clearances influence the dynamic characteristics of the deployable space solar arrays in different operation phases. Besides, parametric studies indicate some rules to design preload and stiffness coefficient of torque spring, equivalent stiffness coefficient of CCL mechanism and stiffness and damping coefficient of latch mechanism.

  11. Friction induced rail vibrations

    NASA Astrophysics Data System (ADS)

    Kralov, Ivan; Sinapov, Petko; Nedelchev, Krasimir; Ignatov, Ignat

    2012-11-01

    A model of rail, considered as multiple supported beam, subjected on friction induced vibration is studied in this work using FEM. The model is presented as continuous system and the mass and elastic properties of a real object are taken into account. The friction forces are nonlinear functions of the relative velocity during slipping. The problem is solved using Matlab Simulink.

  12. Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Nunes, Arthur C., Jr.

    2008-01-01

    Friction stir welding (FSW) is a solid state welding process invented in 1991 at The Welding Institute in the United Kingdom. A weld is made in the FSW process by translating a rotating pin along a weld seam so as to stir the sides of the seam together. FSW avoids deleterious effects inherent in melting and promises to be an important welding process for any industries where welds of optimal quality are demanded. This article provides an introduction to the FSW process. The chief concern is the physical effect of the tool on the weld metal: how weld seam bonding takes place, what kind of weld structure is generated, potential problems, possible defects for example, and implications for process parameters and tool design. Weld properties are determined by structure, and the structure of friction stir welds is determined by the weld metal flow field in the vicinity of the weld tool. Metal flow in the vicinity of the weld tool is explained through a simple kinematic flow model that decomposes the flow field into three basic component flows: a uniform translation, a rotating solid cylinder, and a ring vortex encircling the tool. The flow components, superposed to construct the flow model, can be related to particular aspects of weld process parameters and tool design; they provide a bridge to an understanding of a complex-at-first-glance weld structure. Torques and forces are also discussed. Some simple mathematical models of structural aspects, torques, and forces are included.

  13. A study on the effect of flat plate friction resistance on speed performance prediction of full scale

    NASA Astrophysics Data System (ADS)

    Park, Dong-Woo

    2015-01-01

    Flat plate friction lines hare been used in the process to estimate speed performance of full-scale ships in model tests. The results of the previous studies showed considerable differences in determining form factors depending on changes in plate friction lines and Reynolds numbers. These differences had a great influence on estimation of speed performance of full-scale ships. This study- was conducted in two parts. In the first part, the scale effect of the form factor depending on change in the Reynolds number was studied based on CFD, in connection with three kinds of friction resistance curves: the ITTC-1957, the curve proposed by Grigson (1993; 1996), and the curve developed by Katsui et al (2005). In the second part, change in the form factor by three kinds of friction resistance curves was investigated based on model tests, and then the brake power and the revolution that were finally determined by expansion processes of full-scale ships. When three kinds of friction resistance curves were applied to each kind of ships, these were investigated: differences between resistance and self-propulsion components induced in the expansion processes of full-scale ships, correlation of effects between these components, and tendency of each kind of ships. Finally, what friction resistance curve was well consistent with results of test operation was examined per each kind of ships.

  14. A normative study to evaluate inclination and angulation of teeth in North Indian population and comparision of expression of torque in preadjusted appliances

    PubMed Central

    Verma, Sanjeev; Singh, SP; Utreja, Ashok

    2014-01-01

    Aim: The aim of this study was to evaluate angulation and inclination of teeth from the study models of individuals with normal occlusion and evaluation of actual expression of torque expressed by three different bracket systems. Materials and Methods: In this study, the inclination and angulation were measured on 30 study models of North Indian individuals. A self-developed instrument (torque angle gauge) was used for the measurement. Fifteen study models were duplicated for the evaluation of torque expression in the bracket of three different manufacturers with different shape and size of bases. Results: The results give the mean, minimum and maximum, standard deviation of the normative data individually for each tooth. A significant correlation was noted in the angulation of maxillary canine and first premolar, and between premolars; and between mandibular central incisor with lateral incisor and canine, and between premolars. Conclusions: There was a highly significant correlation of teeth angulation and inclination in the maxillary and mandibular arch. Though the error in expression of torque was not significant, but it showed a large range, indicating the need to vary the position of brackets in different bracket systems for achieving optimum torque. PMID:25143932

  15. Rotational friction of dipolar colloids measured by driven torsional oscillations

    PubMed Central

    Steinbach, Gabi; Gemming, Sibylle; Erbe, Artur

    2016-01-01

    Despite its prominent role in the dynamics of soft materials, rotational friction remains a quantity that is difficult to determine for many micron-sized objects. Here, we demonstrate how the Stokes coefficient of rotational friction can be obtained from the driven torsional oscillations of single particles in a highly viscous environment. The idea is that the oscillation amplitude of a dipolar particle under combined static and oscillating fields provides a measure for the Stokes friction. From numerical studies we derive a semi-empirical analytic expression for the amplitude of the oscillation, which cannot be calculated analytically from the equation of motion. We additionally demonstrate that this expression can be used to experimentally determine the rotational friction coefficient of single particles. Here, we record the amplitudes of a field-driven dipolar Janus microsphere with optical microscopy. The presented method distinguishes itself in its experimental and conceptual simplicity. The magnetic torque leaves the local environment unchanged, which contrasts with other approaches where, for example, additional mechanical (frictional) or thermal contributions have to be regarded. PMID:27680399

  16. Gravitomagnetic dynamical friction

    NASA Astrophysics Data System (ADS)

    Cashen, Benjamin; Aker, Adam; Kesden, Michael

    2017-03-01

    A supermassive black hole moving through a field of stars will gravitationally scatter the stars, inducing a backreaction force on the black hole known as dynamical friction. In Newtonian gravity, the axisymmetry of the system about the black hole's velocity v implies that the dynamical friction must be antiparallel to v . However, in general relativity the black hole's spin S need not be parallel to v , breaking the axisymmetry of the system and generating a new component of dynamical friction similar to the Lorentz force F =q v ×B experienced by a particle with charge q moving in a magnetic field B . We call this new force gravitomagnetic dynamical friction and calculate its magnitude for a spinning black hole moving through a field of stars with Maxwellian velocity dispersion σ , assuming that both v and σ are much less than the speed of light c . We use post-Newtonian equations of motion accurate to O (v3/c3) needed to capture the effect of spin-orbit coupling and also include direct stellar capture by the black hole's event horizon. Gravitomagnetic dynamical friction will cause a black hole with uniform speed to spiral about the direction of its spin, similar to a charged particle spiraling about a magnetic field line, and will exert a torque on a supermassive black hole orbiting a galactic center, causing the angular momentum of this orbit to slowly precess about the black hole spin. As this effect is suppressed by a factor (σ /c )2 in nonrelativistic systems, we expect it to be negligible in most astrophysical contexts but provide this calculation for its theoretical interest and potential application to relativistic systems.

  17. Study of adhesion and friction properties on a nanoparticle gradient surface: transition from JKR to DMT contact mechanics.

    PubMed

    Ramakrishna, Shivaprakash N; Nalam, Prathima C; Clasohm, Lucy Y; Spencer, Nicholas D

    2013-01-08

    We have previously investigated the dependence of adhesion on nanometer-scale surface roughness by employing a roughness gradient. In this study, we correlate the obtained adhesion forces on nanometer-scale rough surfaces to their frictional properties. A roughness gradient with varying silica particle (diameter ≈ 12 nm) density was prepared, and adhesion and frictional forces were measured across the gradient surface in perfluorodecalin by means of atomic force microscopy with a polyethylene colloidal probe. Similarly to the pull-off measurements, the frictional forces initially showed a reduction with decreasing particle density and later an abrupt increase as the colloidal sphere began to touch the flat substrate beneath, at very low particle densities. The friction-load relation is found to depend on the real contact area (A(real)) between the colloid probe and the underlying particles. At high particle density, the colloidal sphere undergoes large deformations over several nanoparticles, and the contact adhesion (JKR type) dominates the frictional response. However, at low particle density (before the colloidal probe is in contact with the underlying surface), the colloidal sphere is suspended by a few particles only, resulting in local deformations of the colloid sphere, with the frictional response to the applied load being dominated by long-range, noncontact (DMT-type) interactions with the substrate beneath.

  18. A study of friction wear behaviour of nano-ferite modified epoxy resins

    NASA Astrophysics Data System (ADS)

    Munteniţă, C.; Eni, C.; Graur, I.; Ungureanu, C.; Bodor, M.

    2017-02-01

    Ferrites are generally used to obtain soft magnets for domestic or industrial applications but their use in this direction had generated an increasing interest in modifying the polymer properties by dispersing in their volume certain amounts of these ceramic compounds. The current study focused friction wear behaviour induced by the presence of nano-sized strontium ferrite and barium ferrite in an epoxy matrix. The wear behaviour of nanoferite modified epoxy resins tests were conducted on a pin-on-disc geometry. Three types of epoxy resins had been used with 5% weight ratio of each type of ferrite and 10% weight ratio when both ferrites were used.

  19. Atomistics of friction

    NASA Astrophysics Data System (ADS)

    Hirano, M.

    2006-03-01

    When two solid bodies contact and slide against each other, a frictional phenomenon occurs. There have been two models for the origin of the friction forces: the surface roughness model and Tomlinson's model. The surface roughness model explains the origin of the static friction force; contacting solid surfaces are so rough that surface asperities are mechanically locked against the gravitational force. From an atomistic point of view, Tomlinson explained a mechanism of the energy dissipation for the origin of the dynamic friction force. The atomistic mechanisms are described for the origin of the static and the dynamic friction forces, based on the theoretical conclusion that Tomlinson's mechanism is unlikely to occur in realistic frictional systems. The mechanism for the origin of the static friction force resembles the mechanical locking mechanism in a surface roughness model. The origin of the dynamic friction force is formulated as a problem of how the given translational kinetic energy dissipates into the internal relative motions of constituent atoms of bodies during sliding. From studying the available phase space volume of the translational motion becomes negligibly small for a large system size, compared with that of the internal motions, it is concluded that the energy dissipation occurs irreversibly from the translational motion to the internal motions. The comparison of the atomistic mechanisms with the surface roughness model and Tomlinson's model is discussed. A phenomenon of superlubricity, where two solid bodies move relatively with no resistance, is discussed.

  20. Effects of Different Ligature Materials on Friction in Sliding Mechanics

    PubMed Central

    Khamatkar, Aparna; Sonawane, Sushma; Narkhade, Sameer; Gadhiya, Nitin; Bagade, Abhijit; Soni, Vivek; Betigiri, Asha

    2015-01-01

    Background: During orthodontic tooth movement friction occurs at the bracket wire interface. Out of the total force applied to the tooth movement, some of it is dissipated as friction, and the remainder is transferred to the supporting structures of the tooth to mediate tooth movement. However many factors affect friction, and method of arch wire ligation being an important contributing factor. Hence, this study was carried out to evaluate the effects of different ligature materials on friction in sliding mechanics and to compare the effect of environment (dry and wet) on friction produced in sliding mechanics. Materials and Methods: The evaluation of friction between the bracket and the archwire consisted of a simulated half arch fixed appliance with archwire ligated in a vertical position. Four 0.022” maxillary stainless steel premolar brackets having a - 0° torque and 0° angulation were aligned with a 0.019” × 0.025” stainless steel arch wire onto a rigid Plexiglass sheet. The movable test bracket was fitted with a 10 mm long, 0.045” thick stainless steel power arm on the bonding surface. Testing was performed on a Hounsfield material testing machine. A total of 100 g weight was suspended from the power arm and the load needed to move the bracket over the distance of not <4 mm across the central span was recorded separately. Fifteen representative readings were taken with one reading per test sample. Results: The results showed that the mean frictional force of different groups in dry and wet state was statistically significantly different. The mean frictional force in a dry state was statistically significantly higher than wet state in elastomeric group. Conclusion: The type of ligation material and environment significantly affected the degree of friction generated during sliding mechanics. Teflon coated stainless steel ligatures produced the least friction among the materials tested in both dry and wet conditions and there was no significant effect

  1. [Torque load and types of fractures of threaded holes in cortical bone by lag screw. Mechanic and histological studies (author's transl)].

    PubMed

    Claes, L; Hutzschenreuter, P

    1975-04-01

    For the better understanding of fracture fixation by means of screws the torque load and types of fractures from threaded screw holes in cortical bone were studied. The experiments were performed on sheep tibia and femora in vitro and in vivo. We applied the 4.5 mm cortical bone screw (AISF) as lag screw. The screw was threaded in until total destruction of the thread occurred. The process of torque load was registered as a torque-angle of twist curve with 4 typical parts. Histologically in most cases shear fractures with different geometry occurred. In some cases we found conical geometric, and in others cylindrical geometric fragments in the threaded screw holes. The value of the torque at which destruction of a threaded hole occurs is a linear function of the thickness of the cortical bone. The gradient of this linear function is 6.6 kpcm/mm. In practical case, the insertional torque may be estimated by multiplying the cortical bone thickness in mm (if known) by a factor 4.

  2. The non-separability of ``dielectric'' and ``mechanical'' friction in molecular systems: A simulation study

    NASA Astrophysics Data System (ADS)

    Kumar, P. V.; Maroncelli, M.

    2000-03-01

    Simulations of the time-dependent friction controlling rotational, translational, and vibrational motions of dipolar diatomic solutes in acetonitrile and methanol have been used to examine the nature of "dielectric" friction. The way in which electrical interactions increase the friction beyond that present in nonpolar systems is found to be rather different than what is anticipated by most theories of dielectric friction. Long-range electrostatic forces do not simply add an independent contribution to the friction due to short-ranged or "mechanical" sources (modeled here in terms of Lennard-Jones forces). Rather, the electrical and Lennard-Jones contributions are found to be strongly anticorrelated and not separable in any useful way. For some purposes, the mechanism by which electrical interactions increase friction is better viewed as a static electrostriction effect: electrical forces cause a subtle increase in atomic density in the solute's first solvation shell, which increases the amplitude of the force fluctuations derived from the Lennard-Jones interactions, i.e., the mechanical friction. However, electrical interactions also modify the dynamics of the friction, typically adding a long-time tail, which significantly increases the integral friction. Both of these effects must be included in a correct description of friction in the presence of polar interactions.

  3. Elastomeric friction

    NASA Astrophysics Data System (ADS)

    Vorvolakos, Katherine

    This dissertation examines the tribology of PDMS (polydimethylsiloxane) elastomers from a practical and a fundamental perspective. We examine the adhesive, energetic, and tribological properties of several commercial biofouling release coatings, and show that adhesive (and bioadhesive) release from an elastomer depends on the friction of its surface. Having shown that friction is an obstacle to release, we lubricate a model PDMS network by incorporating linear unreactive PDMS oils varying in molecular weight (0.8--423 kg/mol). Surface segregation upon curing depends on molecular weight and mass percentage. Atomic Force Microscopy (AFM) is used to detect the thickness of the lubricant layer. Surprisingly, high-viscosity oils lubricate better than low-viscosity oils, indicating a non-hydrodynamic lubrication. Applying this technology to a commercial elastomer, we see an improvement in bioadhesive release capabilities, as evidenced by a reduced tenacity of mussel adhesive protein. In comparing entangled polymer melts to crosslinked elastomers, we encountered an opportunity to study the tribology of the latter. We studied the effects of molecular weight, velocity, and temperature on the friction of crosslinked PDMS elastomers sliding against two model surfaces: a self-assembled monolayer (SAM) of n-hexadecylsilane, and a thin (˜100mum) film of polystyrene (PS). The change from smooth to stick-slip (unstable) interfacial sliding occurs at a distinct velocity on each surface, implying that it's not necessarily attributable to a bulk glass transition of the PDMS, as popularly believed. The peak shear stress attained immediately before stick-slip sliding is found to be linear with the shear modulus raised to an exponent n of ¾, in contrast with the predictions of Chernyak and Leonov ( n = 1). Low-velocity behavior differs greatly between the SAM and the PS, implying a mechanistic difference. Whereas on the SAM, sliding likely proceeds purely by stochastic adsorption and

  4. Experimental Study of Characteristics of Micro-Hole Porous Skins for Turbulent Skin Friction Reduction

    NASA Technical Reports Server (NTRS)

    Hwang, Danny P.

    2002-01-01

    Characteristics of micro-hole porous skins for the turbulent skin friction reduction technology called the micro-blowing technique (MBT) were assessed experimentally at Mach 0.4 and blowing fractions from zero to 0.005. The objective of this study was to provide guidelines for the selection of porous plates for MBT. The hole angle, pattern, diameter, aspect ratio, and porosity were the parameters considered for this study. The additional effort to angle and stagger the holes was experimentally determined to be unwarranted in terms of skin friction benefit; therefore, these parameters were systematically eliminated from the parametric study. The impact of the remaining three parameters was evaluated by fixing two parameters at the reference values while varying the third parameter. The best hole-diameter Reynolds number was found to be around 400, with an optimum aspect ratio of about 6. The optimum porosity was not conclusively discerned because the range of porosities in the test plates considered was not great enough. However, the porosity was estimated to be about 15 percent or less.

  5. Studies of the mechanics and friction of nanometer-scale materials

    NASA Astrophysics Data System (ADS)

    Falvo, Michael R.

    An atomic force microscope (AFM) was provided with an interface designed for advanced manipulation studies. This instrument, called the Nanomanipulator, provides the operator the ability to "manually" manipulate nanometer-scale objects on surfaces. In addition, the topographical AFM data is presented in both a highly sophisticated graphical form as well as through force feedback, creating a very intuitive way of interacting with the sample. Carbon nanotubes (CNT) and tobacco mosaic virus (TMV) were the systems studied in this work. Mechanical properties of both the TMV and CNT were performed by means of manipulation experiments. These elongated particles were either pushed across the surface or bent in place by the AFM tip. The bending and buckling responses to the manipulation were analyzed. Among other results, I found the mechanical response of the TMV to be consistent with it having a Young's modulus of ˜1 GPa, and the CNT to be capable of 16% strain with little damage. Studies of friction were also performed on the CNT through manipulation experiments. Stick-slip behavior was observed, the relation between tube diameter and frictional force was explored, and rolling behavior was observed and analyzed. These direct observations of nanometer scale objects rolling on a substrate, are unprecedented to the best of my knowledge.

  6. Frictional interactions in forming processes: New studies with transparent sapphire strip-drawing dies

    NASA Astrophysics Data System (ADS)

    Rao, R. S.; Lu, C. Y.; Wright, P. K.; Devenpeck, M. L.; Richmond, O.; Appleby, E. J.

    1982-05-01

    This research is concerned with the frictional interactions at the toolwork interfaces in the machining and strip-drawing processes. A novel feature is that transparent sapphire (single crystal Al2O3) is being used as the tool and die material. This allows the tribological features of the interface to be directly observed and recorded on movie-film. These qualitative studies provide information on the role of lubricants. In addition, techniques are being developed to quantify the velocity gradient along the interface. For example, in the drawing work it has been found that tracer markings (e.g. dye-spots), applied to the undrawn strip, remain intact during drawing and can be tracked along the sapphire/strip interface. Such data will be used as input to a finite-element, elasto-plastic-workhardening model of the deformation process. The latter can compute strip deformation characteristics, drawing forces and local coefficients of friction at the interface. Introductory results will be presented in this paper, obtained from drawing tin-plated mild steel with sapphire and cemented carbide dies. Drawing loads and die-separating forces will be presented and movie-films of the action of tracer markings at the interface shown. In order to demonstrate how this data can be used in an analysis of a large strain deformation process with friction, initial results from running the FIPDEF elasto-plastic code will be discussed. From a commercial viewpoint research on strip-drawing is of special interest to the can-making industry. From a physical viewpoint stripdrawing is of particular interest because it is a symmetrical, plane strain deformation and, in comparison with other metal processing operations, it is more readily modeled. However, until now the elasto-plastic codes that have been developed to predictively model drawing have had limitations: the most notable being that of quantifying the friction conditions at the die-work interface. Hence the specification of the

  7. Bevel gear driver and method having torque limit selection

    NASA Astrophysics Data System (ADS)

    Cook, Joseph S., Jr.

    1994-08-01

    This invention comprises a torque drive mechanism utilizing axially translatable, mutually engageable transmission members having mating crown gears, driven and driving members with a three-element drive train being biased together by resilient means or by a fluid actuator system, the apparatus being operable to transmit a precisely controlled degree of torque to a driven member. The apparatus is applicable for use in hand tools and as a replacement for impact torque drivers, torque wrenches, motorized screw drivers, or the like, wherein the applied torque must be precisely controlled or limited. The bevel torque drive includes a drive gear which is axially displaceable and rotatable within cylindrical driver housing, a rotatable intermediate gear, and an output gear. Key rotationally secures displaceable gear with respect to input shaft but permits axial movement therebetween. A thrust bearing is preferably connected to the lower end of shaft for support to reduce play and friction between shaft and a transmission joint disc during rotation of the gear train. Coaxially mounted coiled spring is footed against displaceable gear for biasing the displaceable gear toward and into engagement with the intermediate gear for driving intermediate gear and output gear. Torque control is achieved by the use of straight or spiral beveled gears which are of configurations adapted to withdraw from mutual engagement upon the torque exceeding a predetermined limit. The novel, advantageous features of the invention include the configuration of the mating, crown gear sets and the axially translatable, slidable drive gear. The mechanism is capable of transmitting a high degree of torque within a narrow, compact transmission housing. The compact size and narrow, elongated configuration of the housing is particularly applicable for use in hand tools and in multiple torque driver mechanisms in which it is necessary to drive multiple fasteners which are located in close proximity. Prior

  8. Bevel gear driver and method having torque limit selection

    NASA Technical Reports Server (NTRS)

    Cook, Joseph S., Jr. (Inventor)

    1994-01-01

    This invention comprises a torque drive mechanism utilizing axially translatable, mutually engageable transmission members having mating crown gears, driven and driving members with a three-element drive train being biased together by resilient means or by a fluid actuator system, the apparatus being operable to transmit a precisely controlled degree of torque to a driven member. The apparatus is applicable for use in hand tools and as a replacement for impact torque drivers, torque wrenches, motorized screw drivers, or the like, wherein the applied torque must be precisely controlled or limited. The bevel torque drive includes a drive gear which is axially displaceable and rotatable within cylindrical driver housing, a rotatable intermediate gear, and an output gear. Key rotationally secures displaceable gear with respect to input shaft but permits axial movement therebetween. A thrust bearing is preferably connected to the lower end of shaft for support to reduce play and friction between shaft and a transmission joint disc during rotation of the gear train. Coaxially mounted coiled spring is footed against displaceable gear for biasing the displaceable gear toward and into engagement with the intermediate gear for driving intermediate gear and output gear. Torque control is achieved by the use of straight or spiral beveled gears which are of configurations adapted to withdraw from mutual engagement upon the torque exceeding a predetermined limit. The novel, advantageous features of the invention include the configuration of the mating, crown gear sets and the axially translatable, slidable drive gear. The mechanism is capable of transmitting a high degree of torque within a narrow, compact transmission housing. The compact size and narrow, elongated configuration of the housing is particularly applicable for use in hand tools and in multiple torque driver mechanisms in which it is necessary to drive multiple fasteners which are located in close proximity. Prior

  9. Smart friction driven systems

    NASA Astrophysics Data System (ADS)

    Nitsche, Rainer; Gaul, Lothar

    2005-02-01

    Vibration properties of most assembled mechanical systems depend on frictional damping in joints. The nonlinear transfer behavior of the frictional interfaces often provides the dominant damping mechanism in a built-up structure and plays an important role in the vibratory response of the structure (Gaul and Nitsche 2001 Appl. Mech. Rev. 54 93-105). For improving the performance of systems, many studies have been carried out to predict, measure and/or enhance the energy dissipation of friction. To enhance the friction damping in joint connections a semi-active joint is investigated. A rotational joint connection is designed and manufactured such that the normal force in the friction interface can be influenced with a piezoelectric stack disc. With the piezoelectric device the normal force and thus the friction damping in the joint connection can be controlled. A control design method, namely semi-active control, is investigated. The recently developed LuGre friction model is used to describe the nonlinear transfer behavior of joints. This model is based on a bristle model and turns out to be highly suitable for systems assembled by such smart joints. Those systems can also be regarded as friction driven systems, since the energy flow is controlled by smart joints. The semi-active method is well suited for large space structures since the friction damping in joints turned out to be a major source of damping. To show the applicability of the proposed concept to large space structures a two-beam system representing a part of a large space structure is considered. Two flexible beams are connected with a semi-active joint connection. It can be shown that the damping of the system can be improved significantly by controlling the normal force in the semi-active joint connection. Experimental results validate the damping improvement due to the semi-active friction damping.

  10. Room temperature synthesis and high temperature frictional study of silver vanadate nanorods.

    PubMed

    Singh, D P; Polychronopoulou, K; Rebholz, C; Aouadi, S M

    2010-08-13

    We report the room temperature (RT) synthesis of silver vanadate nanorods (consisting of mainly beta-AgV O(3)) by a simple wet chemical route and their frictional study at high temperatures (HT). The sudden mixing of ammonium vanadate with silver nitrate solution under constant magnetic stirring resulted in a pale yellow coloured precipitate. Structural/microstructural characterization of the precipitate through x-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed the high yield and homogeneous formation of silver vanadate nanorods. The length of the nanorods was 20-40 microm and the thickness 100-600 nm. The pH variation with respect to time was thoroughly studied to understand the formation mechanism of the silver vanadate nanorods. This synthesis process neither demands HT, surfactants nor long reaction time. The silver vanadate nanomaterial showed good lubrication behaviour at HT (700 degrees C) and the friction coefficient was between 0.2 and 0.3. HT-XRD revealed that AgV O(3) completely transformed into silver vanadium oxide (Ag(2)V(4)O(11)) and silver with an increase in temperature from RT to 700 degrees C.

  11. Experimental and numerical study on hysteretic performance of SMA spring-friction bearings

    NASA Astrophysics Data System (ADS)

    Zhuang, Peng; Xue, Suduo; Nie, Pan; Wang, Wenting

    2016-12-01

    This paper presents an experimental and numerical study to investigate the hysteretic performance of a new type of isolator consisting of shape memory alloy springs and friction bearing called an SMA spring-friction bearing (SFB). The SFB is a sliding-type isolator with SMA devices used for the seismic protection of engineering structures. The principle of operation of the isolation bearing is introduced. In order to explore the possibility of applying SMA elements in passive seismic control devices, large diameter superelastic tension/compression NiTi SMA helical springs used in the SFB isolator were developed. Mechanical experiments of the SMA helical spring were carried out to understand its superelastic characteristics. After that, a series of quasi-static tests on a single SFB isolator prototype were conducted to measure its force-displacement relationships for different loading conditions and study the corresponding variation law of its mechanical performance. The experimental results demonstrate that the SFB exhibits full hysteretic curves, excellent energy dissipation capacity, and moderate recentering ability. Finally, a theoretical model capable of emulating the hysteretic behavior of the SMA-based isolator was then established and implemented in MATLAB software. The comparison of the numerical results with the experimental results shows the efficacy of the proposed model for simulating the response of the SFB.

  12. Design and calibration of a scanning force microscope for friction, adhesion, and contact potential studies

    NASA Astrophysics Data System (ADS)

    Koleske, D. D.; Lee, G. U.; Gans, B. I.; Lee, K. P.; DiLella, D. P.; Wahl, K. J.; Barger, W. R.; Whitman, L. J.; Colton, R. J.

    1995-09-01

    We present the design and calibration of a scanning force microscope which can be used to study friction, adhesion, and contact potential differences between the cantilever tip and surface. The microscope uses a modular design where the laser, cantilever/sample holder, reflecting mirror, and detector are mounted directly on an optical table. The laser, reflecting mirror, and detector are mounted on translation and rotation stages. With this design the components can be rearranged to calibrate the Z piezo motion as a function of applied voltage. Using the detector micrometers, the detector response (voltage-to-distance relationship) can be determined after each series of measurements. The cantilever/sample holder is constructed such that the components are material matched and thermally compensated from a common reference point. This design feature minimizes thermal drift of the instrument. The instrument can be used in a contact scanning mode where both normal and lateral deflections of the cantilever are measured. In addition, the instrument can be used in frictional force studies, force curve mapping of the surface, and contact potential measurements. We present examples of each, including a detailed account of the instrument design and calibration.

  13. Comparative study on semi-active control algorithms for piezoelectric friction dampers

    NASA Astrophysics Data System (ADS)

    Chen, Chaoqiang; Chen, Genda

    2004-07-01

    A semi-active Tri-D algorithm combining Coulomb, Reid and viscous damping mechanisms has recently been developed by the authors to drive piezoelectric friction dampers. The objective of this study is to analytically compare its performance with those of bang-bang control, clipped-optimal control, modulated homogeneous control, and a modified clipped-optimal control. Two far-field and two near-field historical earthquake records with various intensities and dominant frequencies were used in this study. All algorithms were evaluated with a ¼ scale 3-story frame structure in terms of reductions in peak inter-story drift ratio and peak floor acceleration. A piezoelectric friction damper was considered to be installed between a bracing support and the first floor of the frame structure. Both advantages and disadvantages of each control algorithm were discussed with numerical simulations. At near resonance, both bang-bang and clipped-optimal algorithms are more effective in drift reduction, and the modified clipped-optimal algorithm is more effective in acceleration reduction than both Tri-D and modulated homogeneous algorithms. But the latter requires less control force on the average. For a non-resonant case, the Tri-D and modulated homogeneous algorithms are more effective in acceleration reduction than others even with less control force required. Overall, the Tri-D and modulated homogeneous controls are effective in response reduction, adaptive, and robust to earthquake characteristics.

  14. A low-temperature internal friction study of Y124 superconductors

    NASA Astrophysics Data System (ADS)

    Ying, X. N.; Huang, Y. N.; Wang, Y. N.

    2004-03-01

    A ceramic sample of Y Ba2Cu4O8 (Y124) was synthesized at atmospheric pressure with the addition of NaNO3 as an enhancer. The internal friction was measured from liquid nitrogen temperature to room temperature at kilohertz frequency using the vibrating reed method. Instead of a broad internal friction peak around 220 K observed in Y Ba2Cu3O7-dgr (Y123) a small step in the internal friction spectrum was observed around 200 K with increase of temperature in Y124. This internal friction behaviour is similar to that of Sr-substituted Y Ba0.8Sr1.2Cu3O7-dgr. We expect that the internal friction step in Y124 originates from charge carrier crossover. The small size of the change in internal friction around 200 K in Y124 is due to suppression of the lattice response compared with that in undoped Y123.

  15. Experimental evaluation of tappet/bore and cam/tappet friction for a direct acting bucket tappet valvetrain

    SciTech Connect

    Pieprzak, J.M.; Willermet, P.A.; Dailey, D.P.

    1990-01-01

    This paper reports on tappet/bore friction and torque at the camshaft that were measured for a direct acting bucket tappet using a cam/tappet friction torque and friction coefficient as a function of cam angle were derived from those measurements. The results showed that, for the particular geometry tested, tappet/bore friction torque accounted for about 13% of the total cam/tappet/bore friction torque at 250 cam rpm. This fraction decreased with increasing speed. Tappet bore friction was greatest at about {plus minus}40 degrees of cam angle, where side loads on the tappet bore were highest. In contrast, earlier results for a center pivot rocker arm design showed tappet bore friction to be negligible.

  16. Torque characteristics of a 122-centimeter butterfly valve with a hydro/pneumatic actuator

    NASA Technical Reports Server (NTRS)

    Lin, F. N.; Moore, W. I.; Lundy, F. E.

    1981-01-01

    Actuating torque data from field testing of a 122-centimeter (48 in.) butterfly valve with a hydro/pneumatic actuator is presented. The hydraulic cylinder functions as either a forward or a reverse brake. Its resistance torque increases when the valve speeds up and decreases when the valve slows down. A reduction of flow resistance in the hydraulic flow path from one end of the hydraulic cylinder to the other will effectively reduce the hydraulic resistance torque and hence increase the actuating torque. The sum of hydrodynamic and friction torques (combined resistance torque) of a butterfly valve is a function of valve opening time. An increase in the pneumatic actuating pressure will result in a decrease in both the combined resistance torque and the actuator opening torque; however, it does shorten the valve opening time. As the pneumatic pressure increases, the valve opening time for a given configuration approaches an asymptotical value.

  17. Transformation and Deformation Texture Study in Friction Stir Processed API X80 Pipeline Steel

    NASA Astrophysics Data System (ADS)

    Abbasi, Majid; Nelson, Tracy W.; Sorensen, Carl D.

    2012-12-01

    The nature of deformation in friction stir welding/processing (FSW/P) is complex which is further complicated when allotropic phase transformations are present. Electron backscattered diffraction (EBSD) is used as a means to reconstruct prior austenite texture and grain structure to study deformation and recrystallization in austenite and ferrite in FSW/P of high strength low alloy (HSLA) steels. Analyses show evidence of shear deformation textures such as A1* (111)[-1-12], B (1-12)[110], and -B (-11-2)[-1-10], as well as rotated-cube recrystallization texture in the reconstructed prior austenite. Existence of rotated-cube texture as well as polygonal grain structure of the prior austenite implies that recrystallization is partially occurring in elevated temperatures. Room temperature ferrite exhibits well-defined shear deformation texture components. The observed shear deformation texture in the room temperature microstructure implies that FSW/P imposes deformation during the phase transformation. The evolution of both elevated and room temperature textures in friction stir processed API X80 steel are presented.

  18. Studying friction while playing the violin: exploring the stick-slip phenomenon.

    PubMed

    Casado, Santiago

    2017-01-01

    Controlling the stick-slip friction phenomenon is of major importance for many familiar situations. This effect originates from the periodic rupture of junctions created between two rubbing surfaces due to the increasing shear stress at the interface. It is ultimately responsible for the behavior of many braking systems, earthquakes, and unpleasant squeaky sounds caused by the scratching of two surfaces. In the case of a musical bow-stringed instrument, stick-slip is controlled in order to provide well-tuned notes at different intensities. A trained ear is able to distinguish slight sound variations caused by small friction differences. Hence, a violin can be regarded as a perfect benchmark to explore the stick-slip effect at the mesoscale. Two violin bow hairs were studied, a natural horse tail used in a professional philharmonic orchestra, and a synthetic one used with a violin for beginners. Atomic force microscopy characterization revealed clear differences when comparing the surfaces of both bow hairs, suggesting that a structure having peaks and a roughness similar to that of the string to which both bow hairs rubbed permits a better control of the stick-slip phenomenon.

  19. Studying friction while playing the violin: exploring the stick–slip phenomenon

    PubMed Central

    2017-01-01

    Controlling the stick–slip friction phenomenon is of major importance for many familiar situations. This effect originates from the periodic rupture of junctions created between two rubbing surfaces due to the increasing shear stress at the interface. It is ultimately responsible for the behavior of many braking systems, earthquakes, and unpleasant squeaky sounds caused by the scratching of two surfaces. In the case of a musical bow-stringed instrument, stick–slip is controlled in order to provide well-tuned notes at different intensities. A trained ear is able to distinguish slight sound variations caused by small friction differences. Hence, a violin can be regarded as a perfect benchmark to explore the stick–slip effect at the mesoscale. Two violin bow hairs were studied, a natural horse tail used in a professional philharmonic orchestra, and a synthetic one used with a violin for beginners. Atomic force microscopy characterization revealed clear differences when comparing the surfaces of both bow hairs, suggesting that a structure having peaks and a roughness similar to that of the string to which both bow hairs rubbed permits a better control of the stick–slip phenomenon. PMID:28243552

  20. Earthquake friction

    NASA Astrophysics Data System (ADS)

    Mulargia, Francesco; Bizzarri, Andrea

    2016-12-01

    Laboratory friction slip experiments on rocks provide firm evidence that the static friction coefficient μ has values ∼0.7. This would imply large amounts of heat produced by seismically active faults, but no heat flow anomaly is observed, and mineralogic evidence of frictional heating is virtually absent. This stands for lower μ values ∼0.2, as also required by the observed orientation of faults with respect to the maximum compressive stress. We show that accounting for the thermal and mechanical energy balance of the system removes this inconsistence, implying a multi-stage strain release process. The first stage consists of a small and slow aseismic slip at high friction on pre-existent stress concentrators within the fault volume but angled with the main fault as Riedel cracks. This introduces a second stage dominated by frictional temperature increase inducing local pressurization of pore fluids around the slip patches, which is in turn followed by a third stage in which thermal diffusion extends the frictionally heated zones making them coalesce into a connected pressurized region oriented as the fault plane. Then, the system enters a state of equivalent low static friction in which it can undergo the fast elastic radiation slip prescribed by dislocation earthquake models.

  1. The laser interferometer skin-friction meter - A numerical and experimental study

    NASA Technical Reports Server (NTRS)

    Murphy, J. D.; Westphal, R. V.

    1986-01-01

    Limits to the applicability of thin-film lubrication theory are established. The following two problems are considered: (1) the response of the oil film to a time-varying skin friction such as is encountered in turbulent boundary layers, and (2) a 'surface-wave instability' encountered at high skin-friction levels. Results corresponding to the first problem reveal that the laser interferometer skin-friction meter may, in principle, be applied to the measurement of instantaneous skin friction. In addressing the second problem, it is shown that the observed surface waves are not the result of a hydrodynamic instability.

  2. Femtosecond transient dichroism/birefringence studies of solute- solvent friction and solvent dynamics

    SciTech Connect

    Chang, Y.J.; Castner, E.W. Jr.; Konitsky, W.; Waldeck, D.H.

    1994-02-01

    Ultrafast, heterodyne, polarization spectroscopies are used to measure solute-solvent frictional coupling and characterize the neat solvent`s relaxation dynamics on femtosecond and picosecond timescales.

  3. Iliotibial band friction syndrome

    PubMed Central

    2010-01-01

    Published articles on iliotibial band friction syndrome have been reviewed. These articles cover the epidemiology, etiology, anatomy, pathology, prevention, and treatment of the condition. This article describes (1) the various etiological models that have been proposed to explain iliotibial band friction syndrome; (2) some of the imaging methods, research studies, and clinical experiences that support or call into question these various models; (3) commonly proposed treatment methods for iliotibial band friction syndrome; and (4) the rationale behind these methods and the clinical outcome studies that support their efficacy. PMID:21063495

  4. Iliotibial band friction syndrome.

    PubMed

    Lavine, Ronald

    2010-07-20

    Published articles on iliotibial band friction syndrome have been reviewed. These articles cover the epidemiology, etiology, anatomy, pathology, prevention, and treatment of the condition. This article describes (1) the various etiological models that have been proposed to explain iliotibial band friction syndrome; (2) some of the imaging methods, research studies, and clinical experiences that support or call into question these various models; (3) commonly proposed treatment methods for iliotibial band friction syndrome; and (4) the rationale behind these methods and the clinical outcome studies that support their efficacy.

  5. Comparative Evaluation of Frictional Properties, Load Deflection Rate and Surface Characteristics of Different Coloured TMA Archwires - An Invitro Study

    PubMed Central

    Aloysius, Arul Pradeep; Deepika; Soundararajan, Nagachandran Kandasamy; Manohar, Vijaykumar Neelam; Khan, Nayeemullah

    2015-01-01

    Introduction During tooth movement the success of sliding mechanics is dependent upon various factors which include frictional resistance at bracket-archwire interface, surface roughness of archwire materials and elastic properties of archwires. Ion implantation techniques reduce the frictional force and allow better tooth movement clinically. Aim The main objective of this study was to evaluate and compare the frictional properties, load deflection rate and surface characteristics of Honey dew and Purple coloured (Ion implanted) TMA wires with uncoated TMA wires. Materials and Methods Fifteen archwire samples were divided into three groups comprising of five samples in each group namely, Group I – Uncoated TMA wires (Control), Group II – Purple coloured TMA wires and Group III- Honey dew TMA wires. Friction and load deflection rate testing were performed with the Instron Universal testing machine and the surface characteristics of the wires were evaluated before and after sliding using Scanning Electron Microscope. Results The mean frictional characteristics and surface roughness for Honey dew TMA wires was lesser than Purple coloured TMA wires which was statistically significant. Both the coloured TMA wires showed low frictional characteristics and less surface roughness than uncoated TMA wires (the control). The mean load deflection rate was low for both coloured ion implanted TMA wires when compared to uncoated TMA wires which was statistically significant. Conclusion Coloured ion implanted TMA wires, especially Honey dew TMA wires have low friction, low load deflection rate and improved surface finish. Hence they can be used in frictionless as well as sliding mechanics, where uncoated TMA wires are inefficient. PMID:26816988

  6. Dynamics of a split torque helicopter transmission. M.S. Thesis - Cleveland State Univ.

    NASA Technical Reports Server (NTRS)

    Krantz, Timothy L.

    1994-01-01

    Split torque designs, proposed as alternatives to traditional planetary designs for helicopter main rotor transmissions, can save weight and be more reliable than traditional designs. This report presents the results of an analytical study of the system dynamics and performance of a split torque gearbox that uses a balance beam mechanism for load sharing. The Lagrange method was applied to develop a system of equations of motion. The mathematical model includes time-varying gear mesh stiffness, friction, and manufacturing errors. Cornell's method for calculating the stiffness of spur gear teeth was extended and applied to helical gears. The phenomenon of sidebands spaced at shaft frequencies about gear mesh fundamental frequencies was simulated by modeling total composite gear errors as sinusoid functions. Although the gearbox has symmetric geometry, the loads and motions of the two power paths differ. Friction must be considered to properly evaluate the balance beam mechanism. For the design studied, the balance beam is not an effective device for load sharing unless the coefficient of friction is less than 0.003. The complete system stiffness as represented by the stiffness matrix used in this analysis must be considered to precisely determine the optimal tooth indexing position.

  7. Determining Spacecraft Reaction Wheel Friction Parameters

    NASA Technical Reports Server (NTRS)

    Sarani, Siamak

    2009-01-01

    Software was developed to characterize the drag in each of the Cassini spacecraft's Reaction Wheel Assemblies (RWAs) to determine the RWA friction parameters. This tool measures the drag torque of RWAs for not only the high spin rates (greater than 250 RPM), but also the low spin rates (less than 250 RPM) where there is a lack of an elastohydrodynamic boundary layer in the bearings. RWA rate and drag torque profiles as functions of time are collected via telemetry once every 4 seconds and once every 8 seconds, respectively. Intermediate processing steps single-out the coast-down regions. A nonlinear model for the drag torque as a function of RWA spin rate is incorporated in order to characterize the low spin rate regime. The tool then uses a nonlinear parameter optimization algorithm based on the Nelder-Mead simplex method to determine the viscous coefficient, the Dahl friction, and the two parameters that account for the low spin-rate behavior.

  8. Frictional force released during sliding mechanics in nonconventional elastomerics and self-ligation: An in vitro comparative study

    PubMed Central

    Kumar, Davender; Dua, Vinay; Mangla, Rajat; Solanki, Ravinder; Solanki, Monika; Sharma, Rekha

    2016-01-01

    Aim and Objectives: The aim of this study is to evaluate the frictional forces generated by five different orthodontic brackets when used in combination with stainless steel (SS), titanium molybdenum alloy (TMA), and nickel-titanium (NiTi) archwires in dry conditions at physiological temperature. Materials and Methods: Five different types of maxillary upper right side self-ligating brackets (SLBs) (Damon 3MX, Smart Clip and Carriere LX) and conventional SS brackets (Mini 2000, Optimum Series and Victory Series) with a slot size 0.022 inch were coupled with 0.016” NiTi and 0.019 × 0.025” SS/titanium molybdenum alloy (TMA) archwires. Tests were carried out for each group of the bracket-wire combination at physiological temperature and in the dry state. Frictional forces were measured by Instron universal testing machine. Results: SLB showed lower fictional values in comparison with elastic ligatures. Frictional force increased proportionally to the wire size; TMA and NiTi archwires presented higher frictional resistance than SS archwires. Conclusion: SS brackets tied with conventional ligatures produced high and low friction when ligated with SLBs with passive clip. PMID:27433047

  9. Atmospheric Gravitational Torque Variations Based on Various Gravity Fields

    NASA Technical Reports Server (NTRS)

    Sanchez, Braulio V.; Rowlands, David; Smith, David E. (Technical Monitor)

    2001-01-01

    Advancements in the study of the Earth's variable rate of rotation and the motion of its rotation axis have given impetus to the analysis of the torques between the atmosphere, oceans and solid Earth. The output from global general circulation models of the atmosphere (pressure, surface stress) is being used as input to the torque computations. Gravitational torque between the atmosphere, oceans and solid Earth is an important component of the torque budget. Computation of the gravitational torque involves the adoption of a gravitational model from a wide variety available. The purpose of this investigation is to ascertain to what extent this choice might influence the results of gravitational torque computations.

  10. Study of friction properties of lunar surface material and its analogs

    NASA Technical Reports Server (NTRS)

    Dukhovskoy, Y. A.; Motovilov, E. A.; Silin, A. A.; Smorodinov, M. I.; Shvarev, V. V.

    1974-01-01

    A description is given of instruments for determining the friction properties of the surficial layer of lunar surface material returned by the Luna 16 automatic lunar station, as well as the friction properties of its analogs: andesite-basaltic sand and basalts. The experimental method and results are presented.

  11. Frictions Between Formal Education Policy and Actual School Choice: Case Studies in an International Comparative Perspective

    NASA Astrophysics Data System (ADS)

    Teelken, Christine; Driessen, Geert; Smit, Frederik

    2005-01-01

    This contribution is based on comparative case studies of secondary schools in England, the Netherlands and Scotland. The authors conclude that although opportunities for school choice are offered in a formal sense in each of the locations studied, in certain cases choice is not particularly encouraged. In order to explain this disparity between formal education policy and actual school choice, they identified seven areas of friction which determine school choice. This approach allowed a more detailed and accurate view of the operation of school choice on a local, day-to-day basis. Active or passive discouragement of choice became apparent in factors such as availability of transport and information; bureaucratic procedures; strictly enforced admission criteria; and lack of educational diversity.

  12. Experimental study of Frictional property of siliceous shale from the viewpoint of clay mineral fabric

    NASA Astrophysics Data System (ADS)

    Wada, E.; Takemura, T.

    2015-12-01

    There exist slate cleavages in siliceous shale distributed in Tamba-belt located southwest Japan, belonging to Jurassic accretionary complexes, which is formed by a unique geological process. Tamba belt is classified into the complexes of the Type I and II Suites. It is well known that the siliceous shale mined from Type I Suite of Tamba belt is of high-quality as natural whetstone. In this study, we analyzed the relationship between the accretionary prism geology and topography of the study area in order to characterize the distribution of the siliceous shale. We measured illite crystallinity (IC) in order to consider the deformation process, metamorphic conditions, and clay mineral fabric. The value of IC and clay mineral fabric are deemed to be related to frictional properties.

  13. Computational Studies of Hard Disks: Contact Percolation, Fragility, Frictional Families and Basin Volumes

    NASA Astrophysics Data System (ADS)

    Shen, Tianqi

    This thesis presents four computational and theoretical studies of the structural, mechanical, and vibrational properties of purely repulsive disks, dimer-, and ellipse-shaped particles with and without friction. The first study investigated the formation of interparticle contact networks below jamming onset at packing fraction φJ, where the pressure of the system becomes nonzero. We generated ensembles of static packings of frictionless disks over a range of packing fraction. We find that the network of interparticle contacts forms a system spanning cluster at a critical packing fraction φP < φJ. The contact percolation transition also signals the onset of cooperative non-affine particle motion and non-trivial response to applied stress. For the second project, we performed molecular dynamics simulations of dense liquids composed of bidisperse dimer- and ellipse-shaped particles over a wide range of temperature and packing fraction. We measured structural relaxation times for the translational and rotational degrees of freedom. We find that the slow dynamics for dense liquids composed of dimer- and ellipse-shaped particles are qualitatively the same, despite the fact that zero-temperature static packings of dimers are isostatic, while static packings of ellipses are hypostatic. We also show that the fragility of the structural relaxation time decreases with increasing aspect ratio for both dimer- and ellipse-shaped particles. For the third project, we developed a novel method to calculate and predict the average contact number as a function of the static friction coefficient for disk packings. We employed a novel numerical method that allowed us to enumerate sets of packings with m = N0c -- Nc missing contacts relative to the isostatic value N0c We show that the probability Pm(micro) to obtain a static packing with m missing contacts at micro can be expressed as a power series in micro. Using Pm(micro), we find that the average contact number versus micro

  14. Feasibility study of consolidation by direct compaction and friction stir processing of commercially pure titanium powder

    NASA Astrophysics Data System (ADS)

    Nichols, Leannah M.

    Commercially pure titanium can take up to six months to successfully manufacture a six-inch in diameter ingot in which can be shipped to be melted and shaped into other useful components. The applications to the corrosion-resistant, light weight, strong metal are endless, yet so is the manufacturing processing time. At a cost of around $80 per pound of certain grades of titanium powder, the everyday consumer cannot afford to use titanium in the many ways it is beneficial simply because the number of processing steps it takes to manufacture consumes too much time, energy, and labor. In this research, the steps it takes from the raw powder form to the final part are proposed to be reduced from 4-8 steps to only 2 steps utilizing a new technology that may even improve upon the titanium properties at the same time as it is reducing the number of steps of manufacture. The two-step procedure involves selecting a cylindrical or rectangular die and punch to compress a small amount of commercially pure titanium to a strong-enough compact for transportation to the friction stir welder to be consolidated. Friction stir welding invented in 1991 in the United Kingdom uses a tool, similar to a drill bit, to approach a sample and gradually plunge into the material at a certain rotation rate of between 100 to 2,100 RPM. In the second step, the friction stir welder is used to process the titanium powder held in a tight holder to consolidate into a harder titanium form. The resulting samples are cut to expose the cross section and then grinded, polished, and cleaned to be observed and tested using scanning electron microscopy (SEM), electron dispersive spectroscopy (EDS), and a Vickers microhardness tester. The results were that the thicker the sample, the harder the resulting consolidated sample peaking at 2 to 3 times harder than that of the original commercially pure titanium in solid form at a peak value of 435.9 hardness and overall average of 251.13 hardness. The combined

  15. A Study of a Handrim-Activated Power-Assist Wheelchair Based on a Non-Contact Torque Sensor

    PubMed Central

    Nam, Ki-Tae; Jang, Dae-Jin; Kim, Yong Chol; Heo, Yoon; Hong, Eung-Pyo

    2016-01-01

    Demand for wheelchairs is increasing with growing numbers of aged and disabled persons. Manual wheelchairs are the most commonly used assistive device for mobility because they are convenient to transport. Manual wheelchairs have several advantages but are not easy to use for the elderly or those who lack muscular strength. Therefore, handrim-activated power-assist wheelchairs (HAPAW) that can aid driving power with a motor by detecting user driving intentions through the handrim are being researched. This research will be on HAPAW that judge user driving intentions by using non-contact torque sensors. To deliver the desired motion, which is sensed from handrim rotation relative to a fixed controller, a new driving wheel mechanism is designed by applying a non-contact torque sensor, and corresponding torques are simulated. Torques are measured by a driving wheel prototype and compared with simulation results. The HAPAW prototype was developed using the wheels and a driving control algorithm that uses left and right input torques and time differences are used to check if the non-contact torque sensor can distinguish users’ driving intentions. Through this procedure, it was confirmed that the proposed sensor can be used effectively in HAPAW. PMID:27509508

  16. Fuzzy logic inference-based Pavement Friction Management and real-time slippery warning systems: A proof of concept study.

    PubMed

    Najafi, Shahriar; Flintsch, Gerardo W; Khaleghian, Seyedmeysam

    2016-05-01

    Minimizing roadway crashes and fatalities is one of the primary objectives of highway engineers, and can be achieved in part through appropriate maintenance practices. Maintaining an appropriate level of friction is a crucial maintenance practice, due to the effect it has on roadway safety. This paper presents a fuzzy logic inference system that predicts the rate of vehicle crashes based on traffic level, speed limit, and surface friction. Mamdani and Sugeno fuzzy controllers were used to develop the model. The application of the proposed fuzzy control system in a real-time slippery road warning system is demonstrated as a proof of concept. The results of this study provide a decision support model for highway agencies to monitor their network's friction and make appropriate judgments to correct deficiencies based on crash risk. Furthermore, this model can be implemented in the connected vehicle environment to warn drivers of potentially slippery locations. Published by Elsevier Ltd.

  17. Study on the Friction and Wear Behavior of a TA15 Alloy and Its Ni-SiC Composite Coating

    NASA Astrophysics Data System (ADS)

    Guo, Bao-hui; Wang, Zhen-ya; Li, Hai-long

    2016-05-01

    Ni-SiC composite coatings were prepared on TA15 alloy by composite electroplating technology. The friction and wear behavior of TA15 alloy, and the coating were comparatively studied at both room temperature and 600 °C using GCr15 as the counterparts. The results show that the obtained coating is relatively dense and compact, and possesses higher micro-hardness than TA15 alloy. The coating has significant friction reduction effect sliding at 600 °C, but has no obvious friction reduction effect sliding at room temperature. The coating possesses superior wear resistance than TA15 alloy, evidenced by its much lower mass losses than those of TA15 alloy sliding at both room temperature and 600 °C. The TA15 alloy and the coating showed different wear mechanisms under the given sliding conditions.

  18. Study of confinement and sliding friction of fluids using sum frequency generation spectroscopy

    NASA Astrophysics Data System (ADS)

    Nanjundiah, Kumar

    2007-12-01

    Friction and wear are important technologically. Tires on wet roads, windshield wipers and human joints are examples where nanometer-thick liquids are confined between flexible-rigid contact interfaces. Fundamental understanding of the structure of these liquids can assist in the design of products such as artificial joints and lubricants for Micro-electromechanical systems [MEMS]. Prior force measurements have suggested an increase in apparent viscosity of confined liquid and sometimes solid-like responses. But, these have not given the state of molecules under confinement. In the present study, we have used a surface sensitive, non-linear optical technique (infrared-visible sum frequency generation spectroscopy [SFG]) to investigate molecular structure at hidden interfaces. SFG can identify chemical groups, concentration and orientation of molecules at an interface. A friction cell was developed to study sliding of a smooth elastomeric lens against a sapphire surface. Experiments were done with dry sliding as well as lubricated sliding in the presence of linear alkane liquids. SFG spectra at the alkane/sapphire interface revealed ordering of the confined alkane molecules. These were more ordered than alkane liquid, but less ordered than alkane crystal. Cooling of the confined alkane below its melting temperature [TM] led to molecular orientation that was different from that of bulk crystal next to a sapphire surface. Molecules were oriented with their symmetry axis parallel to the surface normal. In addition, the melting temperature [Tconf] under confinement for a series of linear alkanes (n =15--27) showed a surprising trend. Intermediate molecular weights showed melting point depression. The T conf values suggested that melting started at the alkane/sapphire interface. In another investigation, confinement of water between an elastomeric PDMS lens and sapphire was studied. SFG spectra at the sapphire/water/PDMS interface revealed a heterogeneous morphology. The

  19. Plantar-flexor Static Stretch Training Effect on Eccentric and Concentric Peak Torque – A comparative Study of Trained versus Untrained Subjects

    PubMed Central

    Abdel-aziem, Amr Almaz; Mohammad, Walaa Sayed

    2012-01-01

    The aim of this study was to examine the long-term effects of static stretching of the plantar-flexor muscles on eccentric and concentric torque and ankle dorsiflexion range of motion in healthy subjects. Seventy five healthy male volunteers, with no previous history of trauma to the calf that required surgery, absence of knee flexion contracture and no history of neurologic dysfunction or disease, systemic disease affecting the lower extremities were selected for this study. The participants were divided into three equal groups. The control group did not stretch the plantar-flexor muscles. Two Experimental groups (trained and untrained) were instructed to perform static stretching exercise of 30 second duration and 5 repetitions twice daily. The stretching sessions were carried out 5 days a week for 6 weeks. The dorsiflexion range of motion was measured in all subjects. Also measured was the eccentric and concentric torque of plantar-flexors at angular velocities of 30 and 120°/s pre and post stretching. Analysis of variance showed a significant increase in plantar-flexor eccentric and concentric torque (p < 0.05) of trained and untrained groups, and an increase in dorsiflexion range of motion (p < 0.05) at both angular velocities for the untrained group only. The static stretching program of plantar-flexors was effective in increasing the concentric and eccentric plantarflexion torque at angular velocities of 30 and 120°/s. Increases in plantar-flexors flexibility were observed in untrained subjects. PMID:23486840

  20. Plantar-flexor Static Stretch Training Effect on Eccentric and Concentric Peak Torque - A comparative Study of Trained versus Untrained Subjects.

    PubMed

    Abdel-Aziem, Amr Almaz; Mohammad, Walaa Sayed

    2012-10-01

    The aim of this study was to examine the long-term effects of static stretching of the plantar-flexor muscles on eccentric and concentric torque and ankle dorsiflexion range of motion in healthy subjects. Seventy five healthy male volunteers, with no previous history of trauma to the calf that required surgery, absence of knee flexion contracture and no history of neurologic dysfunction or disease, systemic disease affecting the lower extremities were selected for this study. The participants were divided into three equal groups. The control group did not stretch the plantar-flexor muscles. Two Experimental groups (trained and untrained) were instructed to perform static stretching exercise of 30 second duration and 5 repetitions twice daily. The stretching sessions were carried out 5 days a week for 6 weeks. The dorsiflexion range of motion was measured in all subjects. Also measured was the eccentric and concentric torque of plantar-flexors at angular velocities of 30 and 120°/s pre and post stretching. Analysis of variance showed a significant increase in plantar-flexor eccentric and concentric torque (p < 0.05) of trained and untrained groups, and an increase in dorsiflexion range of motion (p < 0.05) at both angular velocities for the untrained group only. The static stretching program of plantar-flexors was effective in increasing the concentric and eccentric plantarflexion torque at angular velocities of 30 and 120°/s. Increases in plantar-flexors flexibility were observed in untrained subjects.

  1. Spin transfer torque in non-collinear magnetic tunnel junctions exhibiting quasiparticle bands: a non-equilibrium Green's function study

    NASA Astrophysics Data System (ADS)

    Jaya, Selvaraj Mathi

    2017-06-01

    A non-equilibrium Green's function formulation to study the spin transfer torque (STT) in non-collinear magnetic tunnel junctions (MTJs) exhibiting quasiparticle bands is developed. The formulation can be used to study the magnetoresistance and spin current too. The formulation is used to study the STT in model tunnel junctions exhibiting multiple layers and quasiparticle bands. The many body interaction that gives rise to quasiparticle bands is assumed to be a s - f exchange interaction at the electrode regions of the MTJ. The quasiparticle bands are obtained using a many body procedure and the single particle band structure is obtained using the tight binding model. The bias dependence of the STT as well as the influence of band occupancy and s - f exchange coupling strength on the STT are studied. We find from our studies that the band occupancy plays a significant role in deciding the STT and the s - f interaction strength too influences the STT significantly. Anomalous behavior in both the parallel and perpendicular components of the STT is obtained from our studies. Our results obtained for certain values of the band occupation are found to show the trend observed from the experimental measurements of STT.

  2. Effects of friction at the digit-object interface on the digit forces in multi-finger prehension.

    PubMed

    Aoki, Tomoko; Niu, Xun; Latash, Mark L; Zatsiorsky, Vladimir M

    2006-07-01

    The effects of surface friction at the digit-object interface on digit forces were studied when subjects (n=8) statically held an object in a five-digit grasp. The friction conditions were SS (all surfaces are sandpaper), RR (all are rayon), SR (S for the thumb and R for the four fingers), and RS (the reverse of SR). The interaction effects of surface friction and external torque were also examined using five torques (-0.5, -0.25, 0, +0.25, +0.5 Nm). Forces and moments exerted by the digits on a handle were recorded. At zero torque conditions, in the SS and RR (symmetric) tasks the normal forces of the thumb and virtual finger (VF, an imagined finger with the mechanical effect equal to that of the four fingers) were larger for the RR than the SS conditions. In the SR and RS (asymmetric) tasks, the normal forces were between the RR and SS conditions. Tangential forces were smaller at the more slippery side than at the less slippery side. According to the mathematical optimization analysis decreasing the tangential forces at the more slippery sides decreases the cost function values. The difference between the thumb and VF tangential forces, DeltaF (t), generated a moment of the tangential forces (friction-induced moment). At non-zero torque conditions the friction-induced moment and the moment counterbalancing the external torque (equilibrium-necessitated moment) could be in same or in opposite directions. When the two moments were in the same direction, the contribution of the moment of tangential forces to the total moment was large, and the normal forces were relatively low. In contrast, when the two moments were in opposite directions, the contribution of the moment of tangential forces to the total moment markedly decreased, which was compensated by an increase in the moment of normal forces. The apparently complicated results were explained as the result of summation of the friction-related (elemental) and torque-related (synergy) components of the central

  3. Friction in metal-on-metal total disc arthroplasty: effect of ball radius.

    PubMed

    Moghadas, Parshia; Mahomed, Aziza; Hukins, David W L; Shepherd, Duncan E T

    2012-02-02

    Total disc arthroplasty (TDA) can be used to replace a degenerated intervertebral disc in the spine. There are different designs of prosthetic discs, but one of the most common is a ball-and-socket combination. Contact between the bearing surfaces can result in high frictional torque, which can then result in wear and implant loosening. This study was designed to determine the effects of ball radius on friction. Generic models of metal-on-metal TDA were manufactured with ball radii of 10, 12, 14 and 16 mm, with a radial clearance of 0.015 mm. A simulator was used to test each sample in flexion-extension, lateral bending and axial rotation at frequencies of 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75 and 2 Hz under loads of 50, 600, 1200 and 2000 N, in new born calf serum. Frictional torque was measured and Stribeck curves were plotted to illustrate the lubrication regime in each case. It was observed that implants with a smaller ball radius showed lower friction and showed boundary and mixed lubrication regimes, whereas implants with larger ball radius showed boundary lubrication only. This study suggests designing metal-on-metal TDAs with ball radius of 10 or 12 mm, in order to reduce wear and implant loosening. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Angular Acceleration without Torque?

    ERIC Educational Resources Information Center

    Kaufman, Richard D.

    2012-01-01

    Hardly. Just as Robert Johns qualitatively describes angular acceleration by an internal force in his article "Acceleration Without Force?" here we will extend the discussion to consider angular acceleration by an internal torque. As we will see, this internal torque is due to an internal force acting at a distance from an instantaneous center.

  5. Angular Acceleration without Torque?

    ERIC Educational Resources Information Center

    Kaufman, Richard D.

    2012-01-01

    Hardly. Just as Robert Johns qualitatively describes angular acceleration by an internal force in his article "Acceleration Without Force?" here we will extend the discussion to consider angular acceleration by an internal torque. As we will see, this internal torque is due to an internal force acting at a distance from an instantaneous center.

  6. Comparative study of friction between metallic and conventional interactive self-ligating brackets in different alignment conditions

    PubMed Central

    Jakob, Sérgio Ricardo; Matheus, Davison; Jimenez-Pellegrin, Maria Cristina; Turssi, Cecília Pedroso; do Amaral, Flávia Lucisano Botelho

    2014-01-01

    Objective The aim of this study was to compare the friction between three bracket models: conventional stainless steel (Ovation, Dentsply GAC), self-ligating ceramic (In-Ovation, Denstply GAC) and self-ligating stainless steel brackets (In-Ovation R, Dentsply GAC). Methods Five brackets were used for each model. They were bonded to an aluminum prototype that allowed the simulation of four misalignment situations (n = 10). Three of these situations occurred at the initial phase (in which a 0.016-in nickel-titanium wire was used): 1. horizontal; 2. vertical; and 3. simultaneous horizontal/vertical. One of the situations occurred at the final treatment phase: 4. no misalignment (in which a 0.019 x 0.025-inch stainless steel rectangular wire was used). The wires slipped through the brackets and friction was measured by a Universal Testing Machine. Results Analysis of variance followed by Tukey's Test for multiple comparisons (α = 0.05) were applied to assess the results. Significant interaction (p < 0.01) among groups was found. For the tests that simulated initial alignment, Ovation® bracket produced the highest friction. The two self-ligating models resulted in lower and similar values, except for the horizontal situation, in which In-Ovation C® showed lower friction, which was similar to the In-Ovation R® metallic model. For the no misalignment situation, the same results were observed. Conclusion The self-ligating system was superior to the conventional one due to producing less friction. With regard to the material used for manufacturing the brackets, the In-Ovation C® ceramic model showed less friction than the metallic ones. PMID:25162570

  7. Comparative study of friction between metallic and conventional interactive self-ligating brackets in different alignment conditions.

    PubMed

    Jakob, Sérgio Ricardo; Matheus, Davison; Jimenez-Pellegrin, Maria Cristina; Turssi, Cecília Pedroso; Amaral, Flávia Lucisano Botelho

    2014-01-01

    The aim of this study was to compare the friction between three bracket models: conventional stainless steel (Ovation, Dentsply GAC), self-ligating ceramic (In-Ovation, Denstply GAC) and self-ligating stainless steel brackets (In-Ovation R, Dentsply GAC). Five brackets were used for each model. They were bonded to an aluminum prototype that allowed the simulation of four misalignment situations (n = 10). Three of these situations occured at the initial phase (in which a 0.016-in nickel-titanium wire was used): 1. horizontal; 2. vertical; and 3. simultaneous horizontal/vertical. One of the situations occurred at the final treatment phase: 4. no misalignment (in which a 0.019 x 0.025-inch stainless steel rectangular wire was used). The wires slipped through the brackets and friction was measured by a Universal Testing Machine. Analysis of variance followed by Tukey's Test for multiple comparisons (α = 0.05) were applied to assess the results. Significant interaction (p < 0.01) among groups was found. For the tests that simulated initial alignment, Ovation® bracket produced the highest friction. The two self-ligating models resulted in lower and similar values, except for the horizontal situation, in which In-Ovation C® showed lower friction, which was similar to the In-Ovation R® metallic model. For the no misalignment situation, the same results were observed. The self-ligating system was superior to the conventional one due to producing less friction. With regard to the material used for manufacturing the brackets, the In-Ovation C® ceramic model showed less friction than the metallic ones.

  8. Friction forces during sliding of various brackets for malaligned teeth: an in vitro study.

    PubMed

    Crincoli, Vito; Perillo, Letizia; Di Bisceglie, Maria Beatrice; Balsamo, Antonio; Serpico, Vitaliano; Chiatante, Francesco; Pappalettere, Carmine; Boccaccio, Antonio

    2013-01-01

    To measure the friction force generated during sliding mechanics with conventional, self-ligating (Damon 3 mx, Smart Clip, and Time 3) and low-friction (Synergy) brackets using different archwire diameters and ligating systems in the presence of apical and buccal malalignments of the canine. An experimental setup reproducing the right buccal segment of the maxillary arch was designed to measure the friction force generated at the bracket/wire and wire/ligature interfaces of different brackets. A complete factorial plan was drawn up and a three-way analysis of variance (ANOVA) was carried out to investigate whether the following factors affect the values of friction force: (i) degree of malalignment, (ii) diameter of the orthodontic wire, and (iii) bracket/ligature combination. Tukey post hoc test was also conducted to evaluate any statistically significant differences between the bracket/ligature combinations analyzed. ANOVA showed that all the above factors affect the friction force values. The friction force released during sliding mechanics with conventional brackets is about 5-6times higher than that released with the other investigated brackets. A quasilinear increase of the frictional forces was observed for increasing amounts of apical and buccal malalignments. The Synergy bracket with silicone ligature placed around the inner tie-wings appears to yield the best performance.

  9. Friction Forces during Sliding of Various Brackets for Malaligned Teeth: An In Vitro Study

    PubMed Central

    Crincoli, Vito; Di Bisceglie, Maria Beatrice; Balsamo, Antonio; Serpico, Vitaliano; Chiatante, Francesco; Pappalettere, Carmine; Boccaccio, Antonio

    2013-01-01

    Aims. To measure the friction force generated during sliding mechanics with conventional, self-ligating (Damon 3 mx, Smart Clip, and Time 3) and low-friction (Synergy) brackets using different archwire diameters and ligating systems in the presence of apical and buccal malalignments of the canine. Methods. An experimental setup reproducing the right buccal segment of the maxillary arch was designed to measure the friction force generated at the bracket/wire and wire/ligature interfaces of different brackets. A complete factorial plan was drawn up and a three-way analysis of variance (ANOVA) was carried out to investigate whether the following factors affect the values of friction force: (i) degree of malalignment, (ii) diameter of the orthodontic wire, and (iii) bracket/ligature combination. Tukey post hoc test was also conducted to evaluate any statistically significant differences between the bracket/ligature combinations analyzed. Results. ANOVA showed that all the above factors affect the friction force values. The friction force released during sliding mechanics with conventional brackets is about 5-6times higher than that released with the other investigated brackets. A quasilinear increase of the frictional forces was observed for increasing amounts of apical and buccal malalignments. Conclusion. The Synergy bracket with silicone ligature placed around the inner tie-wings appears to yield the best performance. PMID:23533364

  10. A Mean Field Theoretic Study of Friction between Polyelectrolyte Polymer Brushes

    NASA Astrophysics Data System (ADS)

    Sokoloff, Jeffrey

    2007-03-01

    It is proposed that the fluctuations from the mean field theoretic parabolic monomer density profile for polymer brushes will result in a type of static friction between two polymer brush coated solid surfaces, which results from polymers that fluctuate out of the parabolic density profile belonging to one brush and get entangled with polymers belonging to the second brush. This occurs when the brushes are pushed together with a sufficiently large normal force so that the monomer density in the interface region separating the two polymer brushes is in the semidilute regime. The friction is not the usual static friction, in that when a force below this ``maximum force of static friction'' is applied, there is a ``creep velocity'' which is as large as a few millimeters per hour. At sufficiently light load so that the monomer density is in the dilute regime, the ``static friction'' goes away and there only exists a viscous kinetic friction (i.e., kinetic friction proportional to the sliding velocity) between the brushes. When the polymers are electrically charged, the counter ions produce additional osmotic pressure to support the load. Calculations of this additional load carrying mechanism using a Debye-Huckel theory treatment due to Miklavic and Marcelja, predict that the counterions do not provide a significant additional contribution to load carrying ability of polymer brushes.

  11. Torque Measurement at the Single Molecule Level

    PubMed Central

    Forth, Scott; Sheinin, Maxim Y.; Inman, James; Wang, Michelle D.

    2017-01-01

    Methods for exerting and measuring forces on single molecules have revolutionized the study of the physics of biology. However, it is often the case that biological processes involve rotation or torque generation, and these parameters have been more difficult to access experimentally. Recent advances in the single molecule field have led to the development of techniques which add the capability of torque measurement. By combining force, displacement, torque, and rotational data, a more comprehensive description of the mechanics of a biomolecule can be achieved. In this review, we highlight a number of biological processes for which torque plays a key mechanical role. We describe the various techniques that have been developed to directly probe the torque experienced by a single molecule, and detail a variety of measurements made to date using these new technologies. We conclude by discussing a number of open questions and propose systems of study which would be well suited for analysis with torsional measurement techniques. PMID:23541162

  12. Observation of a Dislocation-Related Interfacial Friction Mechanism in Mobile Solid 4He

    NASA Astrophysics Data System (ADS)

    Eyal, Anna; Livne, Ethan; Polturak, Emil

    2016-04-01

    We report a study of the temperature and stress dependence of the friction associated with a relative motion of crystallites of solid 4He in contact with each other. A situation where such motion exists emerges spontaneously during a disordering of a single crystal contained inside an annular sample space of a torsional oscillator (TO). Under the torque applied by the oscillating walls of the TO these crystallites move relative to each other, generating measurable dissipation at their interface. We studied this friction between 0.5 and 1.8 K in solid samples grown from commercially pure 4He and from a 100 ppm 3He-4He mixture. The data were analyzed by modeling the TO as a driven harmonic oscillator. In this model, an analysis of the resonant frequency and amplitude of the TO yields the temperature dependence of the friction coefficient. By fitting the data to specific forms, we found that over our temperature range, the dominant friction mechanism associated with the interfacial motion of the crystallites results from climb of individual dislocations. The characteristic energy scale associated with this friction can be 3 or 6 K, depending on the sample. The motion of the solid in the presence of such friction can perhaps be described as the low limit of "slip-stick" motion.

  13. Development of a semi-active friction device to reduce vibration by energy dissipation

    NASA Astrophysics Data System (ADS)

    Buaka, Paulin; Masson, Patrice; Micheau, Philippe

    2003-08-01

    Aerospace structures such as antennas and solar panels often consist of truss elements which are connected by bolted joints. Friction damping in these bolted joint connections structures has been identified as a major source of damping. It has been proposed that an improvement in vibration reduction could be obtained by controlling the normal contact force using integrated piezoelectric elements in order to maximize the energy dissipated at the interface between the connected parts. This paper presents analytical and experimental results in order to demonstrate the interest of implementing semi-active vibration reduction by dissipating energy through dry friction contact surfaces. This work fits within the scope of a research project aiming at the development of a semi-active compact piezoelectric friction device which can be bonded to any light structure. In this device, a moving component will rub on two friction surfaces and the normal force on friction surfaces will be controlled so that the distance between moving component and friction surfaces is neither too small (to avoid shock and stiction that cancel the slip between two surfaces and then friction effect) or too large (lose of contact surface). This device will then be positioned on the structure in order to allow the maximum energy dissipation by friction to reduce the vibrations of the structure. Such semi-active device will ensure stability of the control approach and will avoid the spillover effect found with the active approach in addition to reduce energy consumption cost. In this paper, an analytical and experimental study is carried out on two beams assembled by a joint bolted to show the influence of the normal gripping force (tightening torque in this case), directly related to the friction force, on the damping of the modes.

  14. Torque transducer based on fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Li, Tao; Jiang, Shu; Li, Jiang; Lin, Jiejun; Qi, Hongli

    2016-11-01

    In order to obtain the accurate torque measurements in harsh condition, such as marine environment, a torque transducer based on fiber Bragg grating is proposed in this paper. According to its optimized elastomer design and fiber Bragg grati ng patching tactics, the new proposed torque transducer realizes automatic compensations of temperature and bending moment which avoids influences from environment. The accuracy and stability of the torquetransducer, as well as its under water performance are tested by loading tests both in air and in underwater environment, which indicate the designed tor que transducer is not only able to realize highaccurate and robust measurements, but also can be applied in torque sensing in harsh environment. We believe the proposed design detailed illustrated in this paper provides important reference for studies and applications on torque measurements in marine environment.

  15. The biomechanical effects of the inclusion of a torque absorber on trans-femoral amputee gait, a pilot study.

    PubMed

    Van der Linden, M L; Twiste, N; Rithalia, S V S

    2002-04-01

    This paper reports on a pilot study investigating the effects on the gait of two transfemoral amputees of to the inclusion of a torque absorber (TA) and its location relative to the knee unit. Both subjects carried out gait tests with a prosthesis with no TA with, a TA proximal to the knee unit and with a TA distal to the knee unit. Three-dimensional gait analysis was carried out to establish the kinematic and kinetic gait parameters of both the prosthetic and sound side. It was found that the TA did not significantly affect the sagittal kinetic and kinematic parameters of the sound or the prosthetic side. However, for one subject the axial rotation of the socket relative to the foot was significantly greater with the TA. It was concluded that by using the methodology of this pilot study, it is possible to investigate the rotations in the transverse plane within the prosthetic limb and pelvis. Further, including a TA may reduce the relative motion between the stump and the socket and therefore may decrease skin breakdown due to diminished shear forces.

  16. Valuation of coefficient of rolling friction by the inclined plane method

    NASA Astrophysics Data System (ADS)

    Ciornei, F. C.; Alaci, S.; Ciogole, V. I.; Ciornei, M. C.

    2017-05-01

    A major objective of tribological researches is characterisation of rolling friction, due to various cases encountered in classical engineering applications, like gear transmissions and cam mechanisms or more recent examples met in bioengineering and biomedical devices. A characteristic of these examples consists in reduced dimensions of the contact zones, theoretically zero, the relative motion occurring between the contact points being either sliding or rolling. A characteristic parameter for the rolling motion is the coefficient of rolling friction. The paper proposes a method for estimation of coefficient of rolling friction by studying the motion of a body of revolution on an inclined plane. Assuming the hypothesis that moment of rolling friction is proportional to the normal reaction force, the law of motion for the body on the inclined plane is found under the premise of pure rolling. It is reached the conclusion that there is an uniformly accelerated motion, and thus for a known plane slope, it is sufficient to find the time during which the body runs a certain distance, starting from motionless situation. To obtain accurate results assumes finding precisely the time of motion. The coefficient of rolling friction was estimated for several slopes of the inclined plane and it is concluded that with increased slope, the values of coefficient of rolling friction increase, fact that suggest that the proportionality between the rolling torque and normal load is valid only for domains of limited variations of normal load.

  17. Optical torque on microscopic objects.

    PubMed

    Parkin, Simon; Knöner, Gregor; Singer, Wolfgang; Nieminen, Timo A; Heckenberg, Norman R; Rubinsztein-Dunlop, Halina

    2007-01-01

    We outline in general the role and potential areas of application for the use of optical torque in optical tweezers. Optically induced torque is always a result of transfer of angular momentum from light to a particle with conservation of momentum as an underlying principle. Consequently, rotation can be induced by a beam of light that carries angular momentum (AM) or by a beam that carries no AM but where AM is induced in the beam by the particle. First, we analyze some techniques to exert torque with optical tweezers such as dual beam traps. We also discuss the alignment and rotation which is achieved using laser beams carrying intrinsic AM-either spin or orbital AM, or both. We then discuss the types of particles that can be trapped and rotated in such beams such as absorbing or birefringent particles. We present a systematic study of the alignment of particles with respect to the beam axis and the beam's polarization as a way of inducing optical torque by studying crystals of the protein lysozyme. We present the theory behind quantitative measurements of both spin and orbital momentum transfer. Finally, we discuss the applications of rotation in optically driven micromachines, microrheology, flow field measurements, and microfluidics.

  18. Numerical Studies of Friction Between Metallic Surfaces and of its Dependence on Electric Currents

    NASA Astrophysics Data System (ADS)

    Meintanis, Evangelos; Marder, Michael

    2009-03-01

    We will present molecular dynamics simulations that explore the frictional mechanisms between clean metallic surfaces. We employ the HOLA molecular dynamics code to run slider-on-block experiments. Both objects are allowed to evolve freely. We recover realistic coefficients of friction and verify the importance of cold-welding and plastic deformations in dry sliding friction. We also find that plastic deformations can significantly affect both objects, despite a difference in hardness. Metallic contacts have significant technological applications in the transmission of electric currents. To explore the effects of the latter to sliding, we had to integrate an electrodynamics solver into the molecular dynamics code. The disparate time scales involved posed a challenge, but we have developed an efficient scheme for such an integration. A limited electrodynamic solver has been implemented and we are currently exploring the effects of currents in the friction and wear of metallic contacts.

  19. An Experimental Study of Turbulent Skin Friction Reduction in Supersonic Flow Using a Microblowing Technique

    NASA Technical Reports Server (NTRS)

    Hwang, Danny P.

    1999-01-01

    A new turbulent skin friction reduction technology, called the microblowing technique has been tested in supersonic flow (Mach number of 1.9) on specially designed porous plates with microholes. The skin friction was measured directly by a force balance and the boundary layer development was measured by a total pressure rake at the tailing edge of a test plate. The free stream Reynolds number was 1.0(10 exp 6) per meter. The turbulent skin friction coefficient ratios (C(sub f)/C(sub f0)) of seven porous plates are given in this report. Test results showed that the microblowing technique could reduce the turbulent skin friction in supersonic flow (up to 90 percent below a solid flat plate value, which was even greater than in subsonic flow).

  20. Friction, wear, and thermal stability studies of some organotin and organosilicon compounds

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.

    1973-01-01

    Thermal decomposition temperatures were determined for a number of organotin and organosilicon compounds. A ball-on-disk sliding friction apparatus was used to determine the friction and wear characteristics of two representative compounds, (1) 3-tri-n-butylstannyl (diphenyl) and (2) 3-tri-n-butylsilyl (diphenyl). Friction and wear test conditions included a 1-kg load, 25 to 225 C disk temperatures, and a dry air atmosphere. The tin and silicon compounds yielded friction and wear results either lower than or similar to those obtained with a polyphenyl ether and a C-ether. The maximum thermal decomposition temperatures obtained in the silicon and tin series were 358 and 297 C, respectively. Increasing the steric hindrance around the silicon or tin atoms increased the thermal stability. Future work with these compounds will emphasize their use as antiwear additives rather than base fluids.

  1. Cyriax's deep friction massage application parameters: Evidence from a cross-sectional study with physiotherapists.

    PubMed

    Chaves, Paula; Simões, Daniela; Paço, Maria; Pinho, Francisco; Duarte, José Alberto; Ribeiro, Fernando

    2017-09-14

    Deep friction massage is one of several physiotherapy interventions suggested for the management of tendinopathy. To determine the prevalence of deep friction massage use in clinical practice, to characterize the application parameters used by physiotherapists, and to identify empirical model-based patterns of deep friction massage application in degenerative tendinopathy. observational, analytical, cross-sectional and national web-based survey. 478 physiotherapists were selected through snow-ball sampling method. The participants completed an online questionnaire about personal and professional characteristics as well as specific questions regarding the use of deep friction massage. Characterization of deep friction massage parameters used by physiotherapists were presented as counts and proportions. Latent class analysis was used to identify the empirical model-based patterns. Crude and adjusted odds ratios and 95% confidence intervals were computed. The use of deep friction massage was reported by 88.1% of the participants; tendinopathy was the clinical condition where it was most frequently used (84.9%) and, from these, 55.9% reported its use in degenerative tendinopathy. The "duration of application" parameters in chronic phase and "frequency of application" in acute and chronic phases are those that diverge most from those recommended by the author of deep friction massage. We found a high prevalence of deep friction massage use, namely in degenerative tendinopathy. Our results have shown that the application parameters are heterogeneous and diverse. This is reflected by the identification of two application patterns, although none is in complete agreement with Cyriax's description. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Optical torque wrench: angular trapping, rotation, and torque detection of quartz microparticles.

    PubMed

    La Porta, Arthur; Wang, Michelle D

    2004-05-14

    We describe an apparatus that can measure the instantaneous angular displacement and torque applied to a quartz particle which is angularly trapped. Torque is measured by detecting the change in angular momentum of the transmitted trap beam. The rotational Brownian motion of the trapped particle and its power spectral density are used to determine the angular trap stiffness. The apparatus features a feedback control that clamps torque or other rotational quantities. The torque sensitivity demonstrated is ideal for the study of known biological molecular motors.

  3. Resonance frequency analysis, insertion torque, and bone to implant contact of 4 implant surfaces: comparison and correlation study in sheep.

    PubMed

    Dagher, Maroun; Mokbel, Nadim; Jabbour, Gabriel; Naaman, Nada

    2014-12-01

    Primary stability is evaluated using resonance frequency analysis (RFA) and insertion torque (IT). Although there is a strong correlation between RFA and IT, studies failed to find a correlation between RFA and bone to implant contact (BIC) or IT and BIC. To compare RFA, IT, and BIC of SLA, SLActive, Euroteknika, and TiUnite implant surfaces and evaluate the correlation between them. Thirty-two implants were placed in 8 sheep. RFA and IT were recorded. Animals were killed at 1 and 2 months. A significant difference was found in RFA between the 4 surfaces. No significant difference was found for IT. Mean BIC was different between all 4 surfaces. A significant positive correlation was found between RFA and IT with SLA. No significant correlation was found between RFA and BIC and between IT and BIC at 1 and 2 months. Implants with 4 different surfaces have similar IT values but different RFA and BIC. Additionally irrespective of the implant surface, there is no correlation between IT and BIC and between RFA and BIC.

  4. Bioinspired orientation-dependent friction.

    PubMed

    Xue, Longjian; Iturri, Jagoba; Kappl, Michael; Butt, Hans-Jürgen; del Campo, Aránzazu

    2014-09-23

    Spatular terminals on the toe pads of a gecko play an important role in directional adhesion and friction required for reversible attachment. Inspired by the toe pad design of a gecko, we study friction of polydimethylsiloxane (PDMS) micropillars terminated with asymmetric (spatular-shaped) overhangs. Friction forces in the direction of and against the spatular end were evaluated and compared to friction forces on symmetric T-shaped pillars and pillars without overhangs. The shape of friction curves and the values of friction forces on spatula-terminated pillars were orientation-dependent. Kinetic friction forces were enhanced when shearing against the spatular end, while static friction was stronger in the direction toward the spatular end. The overall friction force was higher in the direction against the spatula end. The maximum value was limited by the mechanical stability of the overhangs during shear. The aspect ratio of the pillar had a strong influence on the magnitude of the friction force, and its contribution surpassed and masked that of the spatular tip for aspect ratios of >2.

  5. Predicting shaft torque amplification

    SciTech Connect

    Achilles, R.A.

    1995-02-01

    Shaft Torque Amplification (STA) is the form of SSR characterized by the higher system-model complexity and computational requirements its simulation, normally in a time-domain environment, demands. A multi-modal approach drawing the turbogenerator torsional response to electrical torque impulses applied to the machine air-gap is introduced in this article as an alternative STA analysis frame. Peak torque results from the proposed algorithm are compared with similar ones obtained from EMTP runs. Loss-of-life calculations and a capacitor-reinsertion application as STA control means, are included.

  6. Dynamic Torque Calibration Unit

    NASA Technical Reports Server (NTRS)

    Agronin, Michael L.; Marchetto, Carl A.

    1989-01-01

    Proposed dynamic torque calibration unit (DTCU) measures torque in rotary actuator components such as motors, bearings, gear trains, and flex couplings. Unique because designed specifically for testing components under low rates. Measures torque in device under test during controlled steady rotation or oscillation. Rotor oriented vertically, supported by upper angular-contact bearing and lower radial-contact bearing that floats axially to prevent thermal expansion from loading bearings. High-load capacity air bearing available to replace ball bearings when higher load capacity or reduction in rate noise required.

  7. Dynamic Torque Calibration Unit

    NASA Technical Reports Server (NTRS)

    Agronin, Michael L.; Marchetto, Carl A.

    1989-01-01

    Proposed dynamic torque calibration unit (DTCU) measures torque in rotary actuator components such as motors, bearings, gear trains, and flex couplings. Unique because designed specifically for testing components under low rates. Measures torque in device under test during controlled steady rotation or oscillation. Rotor oriented vertically, supported by upper angular-contact bearing and lower radial-contact bearing that floats axially to prevent thermal expansion from loading bearings. High-load capacity air bearing available to replace ball bearings when higher load capacity or reduction in rate noise required.

  8. Torque-wrench extension

    NASA Technical Reports Server (NTRS)

    Peterson, D. H.

    1981-01-01

    Torque-wrench extension makes it easy to install and remove fasteners that are beyond reach of typical wrenches or are located in narrow spaces that prevent full travel of wrench handle. At same time, tool reads applied torque accurately. Wrench drive system, for torques up to 125 inch-pounds, uses 2 standard drive-socket extensions in aluminum frame. Extensions are connected to bevel gear that turns another bevel gear. Gears produce 1:1 turn ratio through 90 degree translation of axis of rotation. Output bevel has short extension that is used to attach 1/4-inch drive socket.

  9. Magnetic Torque Studies of π-d System κ-(BDH-TTP)2FeX4 (X = Br, Cl)

    NASA Astrophysics Data System (ADS)

    Sugii, Kaori; Takai, Kazuyuki; Tsuchiya, Satoshi; Uji, Shinya; Terashima, Taichi; Akutsu, Hiroki; Wada, Atsushi; Ichikawa, Shun; Yamada, Jun-ichi; Enoki, Toshiaki

    2014-02-01

    Systematic measurements of the magnetic torque of organic π-d conductors κ-(BDH-TTP)2FeX4 (X = Br, Cl) have been performed to investigate the magnetic properties. The Fe 3d spins of both salts show antiferromagnetic (AF) orders at low temperatures. A simple two-sublattice model is found to well reproduce the essential features of the torque data in the AF states. The exchange interaction and anisotropic parameter of the ligand field obtained by the simulations are consistent with previous experimental results.

  10. Potentiation increases peak twitch torque by enhancing rates of torque development and relaxation.

    PubMed

    Froyd, Christian; Beltrami, Fernando Gabe; Jensen, Jørgen; Noakes, Timothy David

    2013-01-01

    The aim of this study was to measure the extent to which potentiation changes in response to an isometric maximal voluntary contraction. Eleven physically active subjects participated in two separate studies. Single stimulus of electrical stimulation of the femoral nerve was used to measure torque at rest in unpotentiated quadriceps muscles (study 1 and 2), and potentiated quadriceps muscles torque in a 10 min period after a 5 s isometric maximal voluntary contraction of the quadriceps muscles (study 1). Additionally, potentiated quadriceps muscles torque was measured every min after a further 10 maximal voluntary contractions repeated every min (study 2). Electrical stimulation repeated several times without previous maximal voluntary contraction showed similar peak twitch torque. Peak twitch torque 4 s after a 5 s maximal voluntary contraction increased by 45±13% (study 1) and by 56±10% (study 2), the rate of torque development by 53±13% and 82±29%, and the rate of relaxation by 50±17% and 59±22%, respectively, but potentiation was lost already two min after a 5 s maximal voluntary contraction. There was a tendency for peak twitch torque to increase for the first five repeated maximal voluntary contractions, suggesting increased potentiation with additional maximal voluntary contractions. Correlations for peak twitch torque vs the rate of torque development and for the rate of relaxation were r(2)= 0.94 and r(2)=0.97. The correlation between peak twitch torque, the rate of torque development and the rate of relaxation suggests that potentiation is due to instantaneous changes in skeletal muscle contractility and relaxation.

  11. Use of neural networks for the prediction of frictional drag and transmission of axial load in horizontal wellbores

    NASA Astrophysics Data System (ADS)

    Sadiq, Tanvir; Gharbi, Ridha B.; Juvkam-Wold, Hans C.

    2003-02-01

    The use of mud motors and other tools to accomplish forward motion of the bit in extended reach and horizontal wells allows avoiding large amounts of torque caused by rotation of the whole drill string. The forward motion of the drill string, however, is resisted by excessive amount of friction. In the presence of large compressive axial loads, the drill pipe or coiled tubing tends to buckle into a helix in horizontal boreholes. This causes additional frictional drag resisting the transmission of axial load (resulting from surface slack-off force) to the bit. As the magnitude of the frictional drag increases, a buckled pipe may become locked-up making it almost impossible to drill further. In case of packers, the frictional drag may inhibit the transmission of set-up load to the packer. A prior knowledge of the magnitude of frictional drag for a given axial load and radial clearance can help avoid lock-up conditions and costly failure of the tubular.In this study a neural network model, for the prediction of frictional drag and axial load transmission in horizontal wellbores, is presented. Several neural network architectures were designed and tested to obtain the most accurate prediction. After cross-validation of the Back Propagation Neural Network (BPNN) algorithm, a two-hidden layer model was chosen for simultaneous prediction of frictional drag and axial load transmission. A comparison of results obtained from BPNN and General Regression Neural Network (GRNN) algorithms is also presented.

  12. A comparative study of frictional force in self-ligating brackets according to the bracket-archwire angulation, bracket material, and wire type.

    PubMed

    Lee, Souk Min; Hwang, Chung-Ju

    2015-01-01

    This study aimed to compare the frictional force (FR) in self-ligating brackets among different bracket-archwire angles, bracket materials, and archwire types. Passive and active metal self-ligating brackets and active ceramic self-ligating brackets were included as experimental groups, while conventional twin metal brackets served as a control group. All brackets were maxillary premolar brackets with 0.022 inch [in] slots and a -7° torque. The orthodontic wires used included 0.018 round and 0.019 × 0.025 in rectangular stainless steel wires. The FR was measured at 0°, 5°, and 10° angulations as the wire was drawn through the bracket slots after attaching brackets from each group to the universal testing machine. Static and kinetic FRs were also measured. The passive self-ligating brackets generated a lower FR than all the other brackets. Static and kinetic FRs generally increased with an increase in the bracket-archwire angulation, and the rectangular wire caused significantly higher static and kinetic FRs than the round wire (p < 0.001). The metal passive self-ligating brackets exhibited the lowest static FR at the 0° angulation and a lower increase in static and kinetic FRs with an increase in bracket-archwire angulation than the other brackets, while the conventional twin brackets showed a greater increase than all three experimental brackets. The passive self-ligating brackets showed the lowest FR in this study. Self-ligating brackets can generate varying FRs in vitro according to the wire size, surface characteristics, and bracket-archwire angulation.

  13. A Comparative Study of Material Flow Behavior in Friction Stir Welding Using Laminar and Turbulent Models

    NASA Astrophysics Data System (ADS)

    Kadian, Arun Kumar; Biswas, Pankaj

    2015-10-01

    Friction stir welding has been quite successful in joining aluminum alloy which has gained importance in almost all industrial sectors over the past two decades. It is a newer technique and therefore needs more attention in many sectors, flow of material being one among them. The material flow pattern actually helps in deciding the parameters required for particular tool geometry. The knowledge of material flow is very significant in removing defects from the weldment. In the work presented in this paper, the flow behavior of AA6061 under a threaded tool has been studied. The convective heat loss has been considered from all the surfaces, and a comparative study has been made with and without the use of temperature-dependent properties and their significance in the finite volume method model. The two types of models that have been implemented are turbulent and laminar models. Their thermal histories have been studied for all the cases. The material flow velocity has been analyzed to predict the flow of material. A swirl inside the weld material has been observed in all the simulations.

  14. Special cases of friction and applications

    NASA Technical Reports Server (NTRS)

    Litvin, F. L.; Coy, J. J.

    1983-01-01

    Two techniques for reducing friction forces are presented. The techniques are applied to the generalized problem of reducing the friction between kinematic pairs which connect a moveable link to a frame. The basic principles are: (1) Let the moveable link be supported by two bearings where the relative velocities of the link with respect to each bearing are of opposite directions. Thus the resultant force (torque) of friction acting on the link due to the bearings is approximately zero. Then, additional perturbation of motion parallel to the main motion of the moveable link will require only a very small force; (2) Let the perturbation in motion be perpendicular to the main motion. Equations are developed which explain these two methods. The results are discussed in relation to friction in geared couplings, gyroscope gimbal bearings and a rotary conveyor system. Design examples are presented.

  15. Magnetic resonance imaging in patellar lateral femoral friction syndrome (PLFFS): prospective case-control study.

    PubMed

    Barbier-Brion, B; Lerais, J-M; Aubry, S; Lepage, D; Vidal, C; Delabrousse, E; Runge, M; Kastler, B

    2012-03-01

    To describe morphologic abnormalities and signs of patellar lateral femoral friction syndrome (PLFFS) detected by magnetic resonance imaging (MRI). Prospective study of 56 knees (21 patients and 30 controls) studied by 3Tesla MRI. Comparative analysis of clinical data, quantitative and qualitative imaging criteria in a population of patients with anterior knee pain associated with an abnormal MRI signal along the lateral alar folds of the infrapatellar fat pad, a characteristic sign of PLFFS, and a control population with no anterior knee pain or abnormal signal from the infrapatellar fat pad. Patients with PLFFS have anterior and/or lateral knee pain. Their knee has anatomical predispositions for instability, primarily with patella alta (P<0.0001), patellar tilt more than 13.5° (P<0.0001), a patellar nose length less than 9 mm (P=0.0037), a patellar nose ratio less than 0.25 (P<0.0001), a TT-TG distance more than 10 mm (P<0.0001), and a trochlear prominence more than 4 mm (P=0.0056). In 35% of patients, patellar chondropathy is visible, and 48% of patients have patellar or trochlear subchondral abnormalities. Anterior, lateral, and medial knee pain may be related to PLFFS. Anatomical predispositions contributing to instability are found in these patients. There may be associated chondropathies and osteochondropathies. Copyright © 2012. Published by Elsevier Masson SAS.

  16. Modeling Attitude Dynamics in Simulink: A Study of the Rotational and Translational Motion of a Spacecraft Given Torques and Impulses Generated by RMS Hand Controllers

    NASA Technical Reports Server (NTRS)

    Mauldin, Rebecca H.

    2010-01-01

    In order to study and control the attitude of a spacecraft, it is necessary to understand the natural motion of a body in orbit. Assuming a spacecraft to be a rigid body, dynamics describes the complete motion of the vehicle by the translational and rotational motion of the body. The Simulink Attitude Analysis Model applies the equations of rigid body motion to the study of a spacecraft?s attitude in orbit. Using a TCP/IP connection, Matlab reads the values of the Remote Manipulator System (RMS) hand controllers and passes them to Simulink as specified torque and impulse profiles. Simulink then uses the governing kinematic and dynamic equations of a rigid body in low earth orbit (LE0) to plot the attitude response of a spacecraft for five seconds given known applied torques and impulses, and constant principal moments of inertia.

  17. Establishing a relationship between maximum torque production of isolated joints to simulate EVA ratchet push-pull maneuver: A case study

    NASA Technical Reports Server (NTRS)

    Pandya, Abhilash; Maida, James; Hasson, Scott; Greenisen, Michael; Woolford, Barbara

    1993-01-01

    As manned exploration of space continues, analytical evaluation of human strength characteristics is critical. These extraterrestrial environments will spawn issues of human performance which will impact the designs of tools, work spaces, and space vehicles. Computer modeling is an effective method of correlating human biomechanical and anthropometric data with models of space structures and human work spaces. The aim of this study is to provide biomechanical data from isolated joints to be utilized in a computer modeling system for calculating torque resulting from any upper extremity motions: in this study, the ratchet wrench push-pull operation (a typical extravehicular activity task). Established here are mathematical relationships used to calculate maximum torque production of isolated upper extremity joints. These relationships are a function of joint angle and joint velocity.

  18. Fabricated torque shaft

    DOEpatents

    Mashey, Thomas Charles

    2002-01-01

    A fabricated torque shaft is provided that features a bolt-together design to allow vane schedule revisions with minimal hardware cost. The bolt-together design further facilitates on-site vane schedule revisions with parts that are comparatively small. The fabricated torque shaft also accommodates stage schedules that are different one from another in non-linear inter-relationships as well as non-linear schedules for a particular stage of vanes.

  19. Probing the surface profile and friction behavior of heterogeneous polymers: a molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Dai, L.; Sorkin, V.; Zhang, Y. W.

    2017-04-01

    We perform molecular dynamics simulations to investigate molecular structure alternation and friction behavior of heterogeneous polymer (perfluoropolyether) surfaces using a nanoscale probing tip (tetrahedral amorphous carbon). It is found that depending on the magnitude of the applied normal force, three regimes exist: the shallow depth-sensing (SDS), deep depth-sensing (DDS), and transitional depth-sensing (TDS) regimes; TDS is between SDS and DDS. In SDS, the tip is floating on the polymer surface and there is insignificant permanent alternation in the polymer structure due to largely recoverable atomic deformations, and the surface roughness profile can be accurately measured. In DDS, the tip is plowing through the polymer surface and there is significant permanent alternation in the molecular structure. In this regime, the lateral friction force rises sharply and fluctuates violently when overcoming surface pile-ups. In SDS, the friction can be described by a modified Amonton’s law including the adhesion effect; meanwhile, in DDS, the adhesion effect is negligible but the friction coefficient is significantly higher. The underlying reason for the difference in these regimes rests upon different contributions by the repulsion and attraction forces between the tip and polymer surfaces to the friction force. Our findings here reveal important insights into lateral depth-sensing on heterogeneous polymer surfaces and may help improve the precision of depth-sensing devices.

  20. Displaceable Gear Torque Controlled Driver

    NASA Technical Reports Server (NTRS)

    Cook, Joseph S., Jr. (Inventor)

    1997-01-01

    Methods and apparatus are provided for a torque driver including a displaceable gear to limit torque transfer to a fastener at a precisely controlled torque limit. A biasing assembly biases a first gear into engagement with a second gear for torque transfer between the first and second gear. The biasing assembly includes a pressurized cylinder controlled at a constant pressure that corresponds to a torque limit. A calibrated gage and valve is used to set the desired torque limit. One or more coiled output linkages connect the first gear with the fastener adaptor which may be a socket for a nut. A gear tooth profile provides a separation force that overcomes the bias to limit torque at the desired torque limit. Multiple fasteners may be rotated simultaneously to a desired torque limit if additional output spur gears are provided. The torque limit is adjustable and may be different for fasteners within the same fastener configuration.

  1. A Computational Study of the Mechanics of Gravity-induced Torque on Cells

    NASA Astrophysics Data System (ADS)

    Haranas, Ioannis; Gkigkitis, Ioannis; Zouganelis, George D.

    2013-10-01

    In this paper, we study the effects of the acceleration gravity on the sedimentation deposition probability, as well as the aerosol deposition rate on the surface of the Earth and Mars, but also aboard a spacecraft in orbit around Earth and Mars as well. For particles with density ?p = 1300 kg/m3, diameters dp = 1, 10, 30 μm and residence times t = 0.0272, 0.2 s respectively, we find that, on the surface of Earth and Mars the deposition probabilities are higher at the poles when compared to the ones at the equator. Similarly, when in orbit around Earth we find that the deposition probabilities exhibit 0.0001 % higher percentage difference in equatorial circular and elliptical orbits when compared to polar ones. For both residence times particles with the diameters considered above in circular and elliptical orbits around Mars, the deposition probabilities appear to be the same for all orbital inclinations. Sedimentation probability increases drastically with particle diameter and orbital eccentricity of the orbiting spacecraft. Finally, as an alternative framework for the study of interaction and the effect of gravity in biology, and in particular gravity and the respiratory system we introduce is the term information in a way Shannon has introduced it, considering the sedimentation probability as a random variable. This can be thought as a way in which gravity enters the cognitive processes of the system (processing of information) in the cybernetic sense.

  2. Study on the friction in steel/polyamide ball on disk type contacts

    NASA Astrophysics Data System (ADS)

    Lates, M. T.; Gavrila, C. C.; Papuc, R.

    2016-08-01

    The paper presents the experimental study of the friction in the case of steel/polyamide ball on disk type contacts by considering as testing parameters the temperature, the load and the rotational speed. The tests are performed, for two types of polyamides, on a tribometer which allows rotational motions at small and high speeds, with controlled normal loads and temperatures. The tests begin with a one hour running-in at 500 rpm, at ambient temperature. After the running-in process there are made tests, for two types of polyamides at 90°C and 120°C, at loads of 3 N, 5 N, 7 N and at rotational speeds of 5 rpm, 1500 rpm and 3000 rpm. The results are indicating the polyamides behaviour at high temperatures with different loadings, at small and high rotational speeds. The conclusions of the paper offer recommendations regarding the applications of the tested polyamide materials according to temperature, loading and rotational speeds, in the case of ball on disk type contacts.

  3. Temperature distribution study during the friction stir welding process of Al2024-T3 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Yau, Y. H.; Hussain, A.; Lalwani, R. K.; Chan, H. K.; Hakimi, N.

    2013-08-01

    Heat flux characteristics are critical to good quality welding obtained in the important engineering alloy Al2024-T3 by the friction stir welding (FSW) process. In the present study, thermocouples in three different configurations were affixed on the welding samples to measure the temperatures: in the first configuration, four thermocouples were placed at equivalent positions along one side of the welding direction; the second configuration involved two equivalent thermocouple locations on either side of the welding path; while the third configuration had all the thermocouples on one side of the layout but with unequal gaps from the welding line. A three-dimensional, non-linear ANSYS computational model, based on an approach applied to Al2024-T3 for the first time, was used to simulate the welding temperature profiles obtained experimentally. The experimental thermal profiles on the whole were found to be in agreement with those calculated by the ANSYS model. The broad agreement between the two kinds of profiles validates the basis for derivation of the simulation model and provides an approach for the FSW simulation in Al2024-T3 and is potentially more useful than models derived previously.

  4. A Preliminary Study of Deformation Behavior of Friction Stir Welded Ti-6Al-4V

    NASA Astrophysics Data System (ADS)

    Wang, Jiye; Su, Jianqing; Mishra, Rajiv S.; Xu, Ray; Baumann, John A.

    2014-08-01

    A preliminary study of deformation behavior of friction stir welded (FSW) Ti-6Al-4V was performed using two different tools with cylindrical and stepped spiral pin design for the welding process. The nugget regions experienced temperature above β transus and the matrix transformed to fine acicular α during cooling of the nugget. By using stepped spiral pin design, a local region with much refined grain structure and significant tool debris particles were observed. Room temperature tensile test showed increased strength and decreased ductility in the material from this region. Fractographic analysis revealed that tool debris particles served as void nucleation sites. Tensile tests of FSW material were carried out at 625 °C in the strain rates of 3 × 10-4 and 1 × 10-3 s-1. The strength was higher as compared to the as-received material. Microstructural evolution during tensile test was also investigated. Results showed that dynamic globularization occurred during the high temperature tensile test.

  5. NUMERICAL STUDIES OF THE FRICTION FORCE FOR THE RHIC ELECTRON COOLER.

    SciTech Connect

    FEDOTOV,A.V.; BEN-ZVI,I.; LITVINENKO, V.

    2005-05-16

    Accurate calculation of electron cooling times requires an accurate description of the dynamical friction force. The proposed RHIC cooler will require {approx}55 MeV electrons, which must be obtained from an RF linac, leading to very high transverse electron temperatures. A strong solenoid will be used to magnetize the electrons and suppress the transverse temperature, but the achievable magnetized cooling logarithm will not be large. In this paper, we explore the magnetized friction force for parameters of the RHIC cooler, using the VORPAL code [l]. VORPAL can simulate dynamical friction and diffusion coefficients directly from first principles [2]. Various aspects of the fiction force are addressed for the problem of high-energy electron cooling in the RHIC regime.

  6. Rolling-element bearings. [contact sliding friction study of solid bodies

    NASA Technical Reports Server (NTRS)

    Anderson, W. J.

    1980-01-01

    In contrast to hydrodynamic bearings, which depend for low-friction characteristics on a fluid film between the journal and the bearing surfaces, roller-element bearings employ a number of balls or rollers that roll in an annular space. The paper briefly outlines the advantages and disadvantages of roller-element bearings as compared to hydrodynamic bearings. The discussion covers bearing types, rolling friction, friction losses in rolling bearings, contact stresses, deformations, kinematics (normal and high speeds), bearing dynamics including elastohydrodynamics, load distribution, lubrication (grease, solid oil, oil-air mist), specific dynamic capacity and life, specific static capacity, and fatigue or wearout (elastohydrodynamics, wear). Rolling bearing wear factor as a function of operating environment is plotted and discussed.

  7. Rolling-element bearings. [contact sliding friction study of solid bodies

    NASA Technical Reports Server (NTRS)

    Anderson, W. J.

    1980-01-01

    In contrast to hydrodynamic bearings, which depend for low-friction characteristics on a fluid film between the journal and the bearing surfaces, roller-element bearings employ a number of balls or rollers that roll in an annular space. The paper briefly outlines the advantages and disadvantages of roller-element bearings as compared to hydrodynamic bearings. The discussion covers bearing types, rolling friction, friction losses in rolling bearings, contact stresses, deformations, kinematics (normal and high speeds), bearing dynamics including elastohydrodynamics, load distribution, lubrication (grease, solid oil, oil-air mist), specific dynamic capacity and life, specific static capacity, and fatigue or wearout (elastohydrodynamics, wear). Rolling bearing wear factor as a function of operating environment is plotted and discussed.

  8. Reducing friction and miscibility studies of FEP dispersion/ PDMS fluid blends

    NASA Astrophysics Data System (ADS)

    Buapool, S.; Thavarungkul, N.; Srisukhumbowornchai, N.

    2017-04-01

    To develop new polymer blends having reduced friction force of fluorinated ethylene propylene (FEP) dispersion and improved adhesion of polydimethylsiloxane (PDMS) fluid, FEP dispersion was blended with PDMS fluids at different viscosities of 20 cSt and 100 cSt by using solution mixing method. The FEP/PDMS blends were coated on short hollow tubes and examined by penetrating the tubes into the rubber stoppers. It was found that the tubes coated with the blends showed reduced penetration and friction forces and improved adhesion. The tubes coated with the 100 cSt-PDMS blend in the ratio of 5:1.5 demonstrated the penetration and average friction forces as low as 3828 mN and 1524 mN, respectively. The formation of physical blends was characterized and confirmed by FTIR and DSC analyses.

  9. Research on new dynamic torque calibration system

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Wang, Zhong Yu; Yin, Xiao

    2016-06-01

    Dynamic torque calibration method based on rotating table and interferometric system is studied in this paper. A load mass with certain moment of inertia are screwed on the top of torque transducer, the dynamic torque is realized by load object are traceable to angular acceleration and moment of inertia of the object by M (t)=I θ ¨(t) , where I is the total moment of inertia acting on the sensing element of the torque transducer and θ ¨ is the time and spatial-dependent angular acceleration of the load object which is directly measured by a laser interferometer. This paper will introduce a dynamic torque calibration system developed at Changcheng Institute of Metrology and Measurement (CIMM). It uses servomotor to generate dynamic torque in the range from 0.1Nm to 200Nm, and heterodyne laser interferometers cooperated with column grating are used for angular acceleration measurement. An airbearing system is developed to increase the performance of the dynamic turque calibration system. This paper introduce the setup of the dynamic torque calibration system.

  10. Use of high-temperature, high-torque rheometry to study the viscoelastic properties of coal during carbonization

    SciTech Connect

    Diaz, M.C.; Duffy, J.J.; Snape, C.E.; Steel, K.M.

    2007-09-15

    When coal is heated in the absence of oxygen it softens at approximately 400 degrees C, becomes viscoelastic, and volatiles are driven off. With further heating, the viscous mass reaches a minimum viscosity in the range of 10{sup 3}-10{sup 5} Pa s and then begins to resolidify. A high-torque, high-temperature, controlled-strain rheometer with parallel plates has been used to study the theology during this process. Under shear, the viscosity of the softening mass decreases with increasing shear rate. During resolidification, the viscosity increases as C-C bond formation and physical interactions gives rise to an aromatic network, but, under shear, the network breaks apart and flows. This is viewed as a yielding of the structure. The higher the shear rate, the earlier the yielding occurs, such that if the shear rate is low enough, the structure is able to build. Also, further into resolidification lower shear rates are able to break the structure. It is proposed that resolidification occurs through the formation of aromatic clusters that grow and become crosslinked by non-covalent interactions. As the clusters grow, the amount of liquid surrounding them decreases and it is thought that the non-covalent interactions between clusters and liquid could decrease and the ability of growing clusters to move past each other increases, which would explain the weakening of the structure under shear. This work is part of a program of work aimed at attaining a greater understanding of microstructural changes taking place during carbonization for different coals, in order to understand the mechanisms that give rise to good quality cokes and coke oven problems such as excessive wall pressure.

  11. ACES II Seat Roller Study: Findings of Detrimental Friction under High Windblast or Adverse Flight Conditions

    DTIC Science & Technology

    2015-08-12

    High Windblast or Adverse Flight Conditions Analytical findings of an intrinsic, restraining, high-friction response from the ACES-II Ejection...Detrimental Friction under High Windblast or Adverse Flight Conditions 5a. CONTRACT NUMBER N/A 5b. GRANT NUMBER N/A 5c. PROGRAM ELEMENT NUMBER...N/A 6. AUTHOR(S) Stapf, Sean P. 5d. PROJECT NUMBER N/A 5e. TASK NUMBER N/A 5f. WORK UNIT NUMBER N/A 7. PERFORMING ORGANIZATION NAME(S) AND

  12. Study on friction coefficient of soft soil based on particle flow code

    NASA Astrophysics Data System (ADS)

    Lei, Xiaohong; Zhang, Zhongwei

    2017-04-01

    There has no uniform method for determining the micro parameters in particle flow code, and the corresponding formulas obtained by each scholar can only be applied to similar situations. In this paper, the relationship between the micro parameters friction coefficient and macro parameters friction angle is established by using the two axis servo compression as the calibration experiment, and the corresponding formula is fitted to solve the difficulties of determining the PFC micro parameters which provide a reference for determination of the micro parameters of soft soil.

  13. Accuracy of the TCM Endo III torque-control motor for nickel-titanium rotary instruments.

    PubMed

    Yared, Ghassan; Kulkarni, Gajanan K

    2004-09-01

    The purpose of this study was to determine the torque output and examine the accuracy of five TCM Endo III torque control motors. A handpiece was attached to the motor and gripped with a vise. A 0.07 taper Orifice Shaper, size 50, was inserted in the handpiece. The instrument tip was clamped in a chuck connected to a torque sensor. Four torque settings were evaluated at 350 rpm. Ten tests were performed at each torque setting. A new instrument was used for each test. The means of the torque values generated by the motors at the different torque levels were analyzed using analysis of variance and post-hoc pairwise comparisons with the Bonferroni test. The actual torque values were significantly higher than the torque preset on the motor (p < 0.0001) and did not differ significantly among the motors (p > 0.05). The actual torque deviated from the preset torque. The usefulness of these motors is questionable.

  14. Friction between Polymer Brushes

    NASA Astrophysics Data System (ADS)

    Sokoloff, Jeffrey

    2006-03-01

    A polymer brush consists of a surface with a fairly concentrated coating of polymer chains, each one of which has one of its ends tightly bound to the surface. They serve as extremely effective lubricant, producing friction coefficients as low as 0.001 or less! Polymer brushes are a promising way to reduce friction to extremely low values. They have the disadvantage, however, that they must be immersed in a liquid solvent in order to function as a lubricant. The presence of a solvent is believed to result in osmotic pressure which partially supports the load. The density profile of a polymer brush (i.e., the density of monomers as a function of distance from the surface to which the polymers are attached) is well established. What is not understood is how the interaction of polymer brush coated surfaces in contact with each other is able to account for the details of the observed low friction. For example, molecular dynamics studies generally do not predict static friction, whereas surface force apparatus measurements due to Tadmor, et. al., find that there is static friction. This is the topic of the present presentation.

  15. Torque magnetometry study of magnetically ordered state and spin reorientation in the quasi-one-dimensional S =1/2 Heisenberg antiferromagnet CuSb2O6

    NASA Astrophysics Data System (ADS)

    Herak, Mirta; Žilić, Dijana; Matković Čalogović, Dubravka; Berger, Helmuth

    2015-05-01

    The antiferromagnetically ordered state of the monoclinic quasi-one-dimensional S =1 /2 Heisenberg antiferromagnet CuSb2O6 was studied combining torque magnetometry with a phenomenological approach to magnetic anisotropy. This system is known to have a number of different twins in the monoclinic β phase, which differ in the orientation of the two CuO6 octahedra in the unit cell resulting in different orientation of magnetic axes with respect to crystal axes for each twin. We performed torque measurements in magnetic fields H ≤0.8 T on a sample where a certain type of twin was shown to be dominant by ESR spectroscopy. The measured data reveal that the easy axis is the crystallographic b axis for this sample. Phenomenological magnetocrystalline anisotropy energy invariant to crystal symmetry operations was used to model the spin axis direction in zero and finite magnetic fields. Our model reproduces the value of the spin-flop field HSF=1.25 T found in literature. A combination of this approach with our torque results shows that the spin axis will flop in the direction of the maximal value of measured g tensor when the magnetic field H >HSF is applied along the easy axis direction. Our analysis of magnetocrystalline anisotropy energy predicts two possibilities for the easy axis direction in this system, b or a , connected to different crystallographic twins that can be realized in CuSb2O6 . These results offer a possibility to reconcile the different reports of easy axis direction found in literature for this system and also nicely demonstrate how a combination of torque magnetometry and a phenomenological approach to magnetic anisotropy can be used to determine the value of the spin-flop field and the direction of spin axis in antiferromagnets in both H HSF by performing measurements in fields significantly smaller than HSF.

  16. Self-oscillation in spin torque oscillator stabilized by field-like torque

    SciTech Connect

    Taniguchi, Tomohiro; Tsunegi, Sumito; Kubota, Hitoshi; Imamura, Hiroshi

    2014-04-14

    The effect of the field-like torque on the self-oscillation of the magnetization in spin torque oscillator with a perpendicularly magnetized free layer was studied theoretically. A stable self-oscillation at zero field is excited for negative β while the magnetization dynamics stops for β = 0 or β > 0, where β is the ratio between the spin torque and the field-like torque. The reason why only the negative β induces the self-oscillation was explained from the view point of the energy balance between the spin torque and the damping. The oscillation power and frequency for various β were also studied by numerical simulation.

  17. Examination of the rate-state friction equations under large perturbations from steady sliding: A theoretical and experimental study

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Pathikrit

    The laboratory derived rate-state friction (RSF) relationships are the most widely used constitutive equations for fault friction in numerical models of fault mechanics. But even after more than three decades of these being first proposed, we are far from certain about the identity of the 'proper' set of these equations which describe all laboratory friction data. In fact, the two most popular choices of the 'state' evolution component of RSF represent two end-member physical pictures of how frictional strength evolves - with time even without slip (Aging law) or only with slip (Slip law). Yet both these view points have traditionally been inferred to be independently supported by different classes of friction experiments which (sometimes) access similar portions of the RSF parameter space. We present a set of comprehensive studies which establish, both theoretically and with inversion of laboratory data, that in fact all the widely used experimental protocols provide evidence that friction dominantly evolves with slip even when the interface is sliding at the lowest slip rates accessed by these experiments. We examined these state evolution laws under a diverse range of sliding conditions - up to 3.5 orders of velocity steps on both initially bare rock and gouge, up to 3X10. 4 s long holds on initially bare rock performedusing machine stiffnesses differing by 1.5 orders of magnitude and 5% normal stress steps on initially bare rock carried out at an order of magnitude different sliding rates. For all of these experimental regimes, the widely used Aging law generally performed worse than the Slip law, even in those parts of the parameter space where conventional RSF wisdom would have predicted it to find strong support. Additionally, across all these experiments, more recent prescriptions of state evolution were generally found to fit the data only as well as the Slip law even with the freedom of extra parameters. We argue that these findings contradict the

  18. [Effect of laparoscopic trocar model on the quality of the movement: experimental study of friction].

    PubMed

    Picod, G; Jambon, A-C; Dubois, P; Vinatier, D

    2004-11-01

    To keep the pneumoperitoneum and the tightness of the abdominal and pelvic cavity during a laparoscopy, the sheaths of trocar are provided with a device (valvule, membranes etc.) inducing a friction during the handling of the instrument. The objective of this article is to analyse friction from different types of trocar's port. We present here the experimental results obtained during a testing bench of three different trocar sheaths. The mechanism of tightness of the first trocar sheath is made of a fine membrane associated to a valve, of a thick membrane for the second trocar sheath, whereas the third trocar sheath is made of two membranes, a fine and a thick, associated to a valve. After reporting the experimental device and the analytic model adopted to describe the relationship between the measured physical parameters, we lay out our results. The identification of parameters of this model makes it possible to objectively compare the three trocars. Our results revealed that, under experimental conditions, the amplitude of friction was significantly lower with trocar's port provided with a valve and a fine membrane than with both other ports (fivefold weaker). We evoke the importance of the possible disruption brought by these frictions while referring these values to those of other measurements concerning interactions between instrument and organs. These different behaviours of the material could have some consequences in choosing the tools for the performance of precise gestures.

  19. Spin Torque Study of the Spin Hall Conductivity and Spin Diffusion Length in Platinum Thin Films with Varying Resistivity

    NASA Astrophysics Data System (ADS)

    Nguyen, Minh-Hai; Ralph, D. C.; Buhrman, R. A.

    2016-03-01

    We report measurements of the spin torque efficiencies in perpendicularly magnetized Pt /Co bilayers where the Pt resistivity ρPt is strongly dependent on thickness tPt . The dampinglike spin Hall torque efficiency per unit current density ξDLj varies significantly with tPt , exhibiting a peak value ξDLj=0.12 at tPt=2.8 - 3.9 nm . In contrast, ξDLj/ρPt increases monotonically with tPt and saturates for tPt>5 nm , consistent with an intrinsic spin Hall effect mechanism, in which ξDLj is enhanced by an increase in ρPt . Assuming the Elliott-Yafet spin scattering mechanism dominates, we estimate that the spin diffusion length λs=(0.77 ±0.08 )×10-15 Ω .m2/ρPt .

  20. Torque, chemistry and efficiency in molecular motors: a study of the rotary-chemical coupling in F1-ATPase.

    PubMed

    Mukherjee, Shayantani; Bora, Ram Prasad; Warshel, Arieh

    2015-11-01

    Detailed understanding of the action of biological molecular machines must overcome the challenge of gaining a clear knowledge of the corresponding free-energy landscape. An example for this is the elucidation of the nature of converting chemical energy to torque and work in the rotary molecular motor of F1-ATPase. A major part of the challenge involves understanding the rotary-chemical coupling from a non-phenomenological structure/energy description. Here we focused on using a coarse-grained model of F1-ATPase to generate a structure-based free-energy landscape of the rotary-chemical process of the whole system. In particular, we concentrated on exploring the possible impact of the position of the catalytic dwell on the efficiency and torque generation of the molecular machine. It was found that the experimentally observed torque can be reproduced with landscapes that have different positions for the catalytic dwell on the rotary-chemical surface. Thus, although the catalysis is undeniably required for torque generation, the experimentally observed position of the catalytic dwell at 80° might not have a clear advantage for the force generation by F1-ATPase. This further implies that the rotary-chemical couplings in these biological motors are quite robust and their efficiencies do not depend explicitly on the position of the catalytic dwells. Rather, the specific positioning of the dwells with respect to the rotational angle is a characteristic arising due to the structural construct of the molecular machine and might not bear any clear connection to the thermodynamic efficiency for the system.

  1. Fundamental limits of optical force and torque

    NASA Astrophysics Data System (ADS)

    Rahimzadegan, A.; Alaee, R.; Fernandez-Corbaton, I.; Rockstuhl, C.

    2017-01-01

    Optical force and torque provide unprecedented control on the spatial motion of small particles. A valid scientific question, that has many practical implications, concerns the existence of fundamental upper bounds for the achievable force and torque exerted by a plane wave illumination with a given intensity. Here, while studying isotropic particles, we show that different light-matter interaction channels contribute to the exerted force and torque, and analytically derive upper bounds for each of the contributions. Specific examples for particles that achieve those upper bounds are provided. We study how and to which extent different contributions can add up to result in the maximum optical force and torque. Our insights are important for applications ranging from molecular sorting, particle manipulation, and nanorobotics up to ambitious projects such as laser-propelled spaceships.

  2. Features of the microstructure development under conditions, reproducing the process of friction stir welding. Molecular-dynamics study

    SciTech Connect

    Nikonov, Anton Yu. E-mail: dmitr@ispms.tsc.ru; Dmitriev, Andrey I. E-mail: dmitr@ispms.tsc.ru; Kolubaev, Evgeniy A. E-mail: rvy@ispms.tsc.ru; Rubtsov, Valeriy E. E-mail: rvy@ispms.tsc.ru

    2014-11-14

    Friction stir welding is a recently developed technology which is used in various branches of modern engineering. The basis of this technology is the friction of the rotating cylindrical or specially shaped tool between two metal plates brought together either to meet their ends of one above another with the overlap. When applying the FSW process in various economical sectors, the important task is to study the mechanisms and identify the physical laws and factors leading to formation of structural inhomogeneities and discontinuities in the weld seam. This paper analyzes the basic mechanisms behind the structural state generation in the material subjected to severe plastic deformation and heating. To investigate the atomic mechanisms of structural changes in FSW, the modeling at atomic scale has been carried out. Results of work can be a basis for new knowledge about the microstructure evolution in FSW.

  3. Experimental study on seismic responses of piping systems with friction. Part 1: Large-scale shaking table vibration test

    SciTech Connect

    Suzuki, K.; Watanabe, T.; Mitsumori, T.; Shimizu, N.; Kobayashi, H.; Ogawa, N.

    1995-08-01

    This report deals with the experimental study of seismic response behavior of piping systems in industrial facilities such as petrochemical, oil refinery, and nuclear plants. Special attention is focused on the nonlinear dynamic response of piping systems due to frictional vibration appearing in piping and supporting devices. A three-dimensional mock-up piping and supporting structure model wherein piping is of 30-m length and 200-mm diameter is excited by a large-scale (15 m x 15 m) shaking table belong to the National Research Institute for Earth Science and Disaster Prevention in Tsukuba, Ibaraki. Power spectra of the response vibration and the loading-response relationship in the form of a hysteresis loop under several loading conditions are obtained. The response reduction effect caused by frictional vibration is evaluated and demonstrated in terms of response reduction factor.

  4. Effects of intraoral aging of arch-wires on frictional forces: An ex vivo study.

    PubMed

    Kumar, Avinash; Khanam, Arifa; Ghafoor, Hajra

    2016-01-01

    Archwires act as gears to move teeth with light, continuous forces. However, the intraoral use of orthodontic archwires is liable to surface deposits which alter the mechanical properties of archwires, causing an increase in the friction coefficient. To evaluate the surface changes of the stainless steel archwires after 6 weeks of intraoral use and its influence on frictional resistance during sliding mechanics. As-received rectangular 0.019" × 0.025" stainless steel orthodontic archwires (control) were compared with the archwires retrieved after the final phase of leveling and alignment stage of orthodontic treatment collected after 6 weeks of intraoral exposure (test samples) from 10 patients undergoing treatment. The control and test samples were used to evaluate surface debris using Scanning Electron Microscopy, surface roughness was assessed using Atomic Force Microscope and frictional forces were measured using Instron Universal Testing Machine in the buccal inter-bracket region that slides through the molar tube for space closure. Unpaired t-test and Pearson correlation tests were used for statistical analysis (P < 0.05 level of significance). Significant increase was observed in the level of debris (P = 0.0001), surface roughness (P = 0.0001), and friction resistance (P = 0.001) of orthodontic archwires after their intraoral exposure. Significant positive correlations (P < 0.05) were also observed between these three variables. Stainless steel test archwires showed a significant increase in the degree of debris and surface roughness, increasing the frictional forces between the archwire-bracket interfaces which would considerably reduce the normal orthodontic forces. Thus, continuing the same archwire after levelling and alignment for space closure is not recommended.

  5. Effects of intraoral aging of arch-wires on frictional forces: An ex vivo study

    PubMed Central

    Kumar, Avinash; Khanam, Arifa; Ghafoor, Hajra

    2016-01-01

    Introduction: Archwires act as gears to move teeth with light, continuous forces. However, the intraoral use of orthodontic archwires is liable to surface deposits which alter the mechanical properties of archwires, causing an increase in the friction coefficient. Objectives: To evaluate the surface changes of the stainless steel archwires after 6 weeks of intraoral use and its influence on frictional resistance during sliding mechanics. Materials and Methods: As-received rectangular 0.019” × 0.025” stainless steel orthodontic archwires (control) were compared with the archwires retrieved after the final phase of leveling and alignment stage of orthodontic treatment collected after 6 weeks of intraoral exposure (test samples) from 10 patients undergoing treatment. The control and test samples were used to evaluate surface debris using Scanning Electron Microscopy, surface roughness was assessed using Atomic Force Microscope and frictional forces were measured using Instron Universal Testing Machine in the buccal inter-bracket region that slides through the molar tube for space closure. Unpaired t-test and Pearson correlation tests were used for statistical analysis (P < 0.05 level of significance). Results: Significant increase was observed in the level of debris (P = 0.0001), surface roughness (P = 0.0001), and friction resistance (P = 0.001) of orthodontic archwires after their intraoral exposure. Significant positive correlations (P < 0.05) were also observed between these three variables. Conclusion: Stainless steel test archwires showed a significant increase in the degree of debris and surface roughness, increasing the frictional forces between the archwire-bracket interfaces which would considerably reduce the normal orthodontic forces. Thus, continuing the same archwire after levelling and alignment for space closure is not recommended. PMID:27843884

  6. Studies of the frictional heating of polycrystalline diamond compact drag tools during rock cutting

    SciTech Connect

    Ortega, A.; Glowka, D.A.

    1982-06-01

    A numerical-analytical model is developed to analyze temperatures in polycrystalline diamond compact (PDC) drag tools subject to localized frictional heating at a worn flat area and convective cooling at exposed lateral surfaces. Experimental measurements of convective heat transfer coefficients of PDC cutters in a uniform crossflow are presented and used in the model to predict temperatures under typical drilling conditions with fluid flow. The analysis compares favorably with measurements of frictional temperatures in controlled cutting tests on Tennessee marble. It is found that average temperatures at the wearflat contact zone vary directly with frictional force per unit area and are proportional to the one-half power of the cutting speed at the velocities investigated. Temperatures are found to be much more sensitive to decreases in the dynamic friction by lubrication than to increases in convective cooling rates beyond currently achievable levels with water or drilling fluids. It is shown that use of weighted drilling fluids may actually decrease cooling rates compared to those achieved with pure water. It is doubtful that tool temperatures can be kept below critical levels (750/sup 0/C) if air is employed as the drilling fluid. The degree of tool wear is found to have a major influence on the thermal response of the friction contact zone, so that for equal heating per contact area, a worn tool will run much hotter than a sharp tool. It is concluded that tool temperatures may be kept below critical levels with conventional water or mud cooling as long as the fluid provides good cutter-rock lubrication.

  7. Nanotribology: The renaissance of friction

    NASA Astrophysics Data System (ADS)

    Urbakh, Michael; Meyer, Ernst

    2010-01-01

    500 years after the first studies on friction, the concepts of superlubricity, wearless sliding and friction control are being realized in laboratories and have become predictable by adequate modelling. The challenge now is to bridge the gap between what is known about these processes on the microscopic and macroscopic scales.

  8. The comparison of frictional resistance in titanium, self-ligating stainless steel, and stainless steel brackets using stainless steel and TMA archwires: An in vitro study

    PubMed Central

    Khalid, Syed Altaf; Kumar, Vadivel; Jayaram, Prithviraj

    2012-01-01

    Aim: The aim of the study was to compare the frictional resistance of titanium, self-ligating stainless steel, and conventional stainless steel brackets, using stainless steel and titanium molybdenum alloy (TMA) archwires. Materials and Methods: We compared the frictional resistance in 0.018 slot and 0.022 slot of the three brackets – titanium, self-ligating stainless steel, and conventional stainless steel – using stainless steel archwires and TMA archwires. An in vitro study of simulated canine retraction was undertaken to evaluate the difference in frictional resistance between titanium, self-ligating stainless steel, and stainless steel brackets, using stainless steel and TMA archwires. Results and Conclusion: We compared the frictional resistance of titanium, self-ligating stainless steel, and conventional stainless steel brackets, using stainless steel and TMA archwires, with the help of Instron Universal Testing Machine. One-way analysis of variance (ANOVA), Student's “t” test, and post hoc multiple range test at level of <0.05 showed statistically significant difference in the mean values of all groups. Results demonstrated that the titanium, self-ligating stainless steel, and stainless steel brackets of 0.018-inch and 0.022-inch slot had no significant variations in frictional résistance. The self-ligating bracket with TMA archwires showed relatively less frictional resistance compared with the other groups. The titanium bracket with TMA archwires showed relatively less frictional resistance compared with the stainless steel brackets. PMID:23066253

  9. The comparison of frictional resistance in titanium, self-ligating stainless steel, and stainless steel brackets using stainless steel and TMA archwires: An in vitro study.

    PubMed

    Khalid, Syed Altaf; Kumar, Vadivel; Jayaram, Prithviraj

    2012-08-01

    The aim of the study was to compare the frictional resistance of titanium, self-ligating stainless steel, and conventional stainless steel brackets, using stainless steel and titanium molybdenum alloy (TMA) archwires. We compared the frictional resistance in 0.018 slot and 0.022 slot of the three brackets - titanium, self-ligating stainless steel, and conventional stainless steel - using stainless steel archwires and TMA archwires. An in vitro study of simulated canine retraction was undertaken to evaluate the difference in frictional resistance between titanium, self-ligating stainless steel, and stainless steel brackets, using stainless steel and TMA archwires. We compared the frictional resistance of titanium, self-ligating stainless steel, and conventional stainless steel brackets, using stainless steel and TMA archwires, with the help of Instron Universal Testing Machine. One-way analysis of variance (ANOVA), Student's "t" test, and post hoc multiple range test at level of <0.05 showed statistically significant difference in the mean values of all groups. Results demonstrated that the titanium, self-ligating stainless steel, and stainless steel brackets of 0.018-inch and 0.022-inch slot had no significant variations in frictional résistance. The self-ligating bracket with TMA archwires showed relatively less frictional resistance compared with the other groups. The titanium bracket with TMA archwires showed relatively less frictional resistance compared with the stainless steel brackets.

  10. Experimental studies of compaction and dilatancy during frictional sliding on faults containing gouge

    USGS Publications Warehouse

    Morrow, C.A.; Byerlee, J.D.

    1989-01-01

    Transient strength changes are observed in fault gouge materials when the velocity of shearing is varied. A transient stress peak is produced when the strain rate in the gouge is suddenly increased, whereas a transient stress drop results from a sudden change to a slower strain rate. We have studied the mechanism responsible for these observations by performing frictional sliding experiments on sawcut granite samples filled with a layer of several different fault gouge types. Changes in pore volume and strength were monitored as the sliding velocity alternated between fast and slow rates. Pore volume increased at the faster strain rate, indicating a dilation of the gouge layer, whereas volume decreased at the slower rate indicating compaction. These results verify that gouge dilation is a function of strain rate. Pore volume changed until an equilibrium void ratio of the granular material was reached for a particular rate of strain. Using arguments from soil mechanics, we find that the dense gouge was initially overconsolidated relative to the equilibrium level, whereas the loose gouge was initially underconsolidated relative to this level. Therefore, the transient stress behavior must be due to the overconsolidated state of the gouge at the new rate when the velocity is increased and to the underconsolidated state when the velocity is lowered. Time-dependent compaction was also shown to cause a transient stress response similar to the velocity-dependent behavior. This may be important in natural fault gouges as they become consolidated and stronger with time. In addition, the strain hardening of the gouge during shearing was found to be a function of velocity, rendering it difficult to quantify the change in equilibrium shear stress when velocity is varied under certain conditions. ?? 1989.

  11. Tidal Torques. Critical Review of Some Techniques.

    NASA Astrophysics Data System (ADS)

    Efroimsky, Michael; Williams, J. G.

    2008-05-01

    We compare two derivations of a popular formula for the tidal despinning rate, and emphasise that both are strongly limited to the case of a vanishing inclination and a certain (sadly, unrealistic) law of frequency-dependence of the quality factor. One method is based on the MacDonald torque, the other on the Darwin torque. Fortunately, the second approach is general enough to accommodate both a finite inclination and the actual rheology. We also address the rheological models with the Q factor scaling as the tidal frequency to a positive fractional power, and disprove the popular belief that these models introduce discontinuities into the equations and thus are unrealistic at low frequencies. Though such models indeed make the conventional expressions for the torque diverge for vanishing frequencies, the emerging infinities reveal not the impossible nature of one or another rheology, but a subtle flaw in the underlying mathematical model of friction. Flawed is the common misassumption that damping merely provides phase lags to the terms of the Fourier series for the tidal potential. A careful hydrodynamical treatment by Sir George Darwin (1879), with viscosity explicitly included, had demonstrated that the magnitudes of the terms, too, get changed -- a fine detail later neglected as ``irrelevant". Reinstating of this detail tames the fake infinities and rehabilitates the ``impossible" scaling law (which happens to be the actual law the terrestrial planets obey at low frequencies).

  12. Negative optical torque.

    PubMed

    Chen, Jun; Ng, Jack; Ding, Kun; Fung, Kin Hung; Lin, Zhifang; Chan, C T

    2014-09-17

    Light carries angular momentum, and as such it can exert torques on material objects. Applications of these opto-mechanical effects were limited initially due to their smallness in magnitude, but later becomes powerful and versatile after the invention of laser. Novel and practical approaches for harvesting light for particle rotation have since been demonstrated, where the structure is always subjected to a positive optical torque along a certain axis if the incident angular momentum has a positive projection on the same axis. We report here an interesting phenomenon of "negative optical torque", meaning that incoming photons carrying angular momentum rotate an object in the opposite sense. Surprisingly this can be realized quite straightforwardly in simple planar structures. Field retardation is a necessary condition and discrete rotational symmetry of material object plays an important role. The optimal conditions are explored and explained.

  13. Ironless armature torque motor

    NASA Technical Reports Server (NTRS)

    Fisher, R. L.

    1972-01-01

    Four iron-less armature torque motors, four Hall device position sensor assemblies, and two test fixtures were fabricated. The design approach utilized samarium cobalt permanent magnets, a large airgap, and a three-phase winding in a stationary ironless armature. Hall devices were employed to sense rotor position. An ironless armature torque motor having an outer diameter of 4.25 inches was developed to produce a torque constant of 65 ounce-inches per ampere with a resistance of 20.5 ohms. The total weight, including structural elements, was 1.58 pounds. Test results indicated that all specifications were met except for generated voltage waveform. It is recommended that investigations be made concerning the generated voltage waveform to determine if it may be improved.

  14. Negative Optical Torque

    NASA Astrophysics Data System (ADS)

    Chen, Jun; Ng, Jack; Ding, Kun; Fung, Kin Hung; Lin, Zhifang; Chan, C. T.

    2014-09-01

    Light carries angular momentum, and as such it can exert torques on material objects. Applications of these opto-mechanical effects were limited initially due to their smallness in magnitude, but later becomes powerful and versatile after the invention of laser. Novel and practical approaches for harvesting light for particle rotation have since been demonstrated, where the structure is always subjected to a positive optical torque along a certain axis if the incident angular momentum has a positive projection on the same axis. We report here an interesting phenomenon of ``negative optical torque'', meaning that incoming photons carrying angular momentum rotate an object in the opposite sense. Surprisingly this can be realized quite straightforwardly in simple planar structures. Field retardation is a necessary condition and discrete rotational symmetry of material object plays an important role. The optimal conditions are explored and explained.

  15. Torque multiplier subsea tool

    SciTech Connect

    Leicht, F. M.; Baugh, B. F.; Palany, H. C.

    1985-10-22

    A torque multiplier subsea tool for setting a seal between a casing hanger and a subsea wellhead includes a mandrel having a sun gear with axial elongate teeth. An outer barrel is disposed around the mandrel forming an annulus therebetween. A planetary gear assembly is disposed in the annulus between the barrel and the sun gear to transmit to the barrel a torque which is higher in magnitude than that applied to the mandrel. A connector body disposed around the mandrel, below the planetary gear assembly, includes radially movable dogs for engaging the casing hanger. The barrel engages the sealing assembly and transmits the increased torque thereto to advance the sealing assembly downwards and to set the seal. The mandrel advances downwards with the sealing assembly and releases the dogs from the casing hanger. An emergency release mechanism is provided to advance the mandrel downwards to release the dogs in the event such downward movement is prevented during normal seal setting operation.

  16. Ultrahigh Casimir interaction torque in nanowire systems.

    PubMed

    Morgado, Tiago A; Maslovski, Stanislav I; Silveirinha, Mário G

    2013-06-17

    We study the Casimir torque arising from the quantum electromagnetic fluctuations due to the interaction of two interfaces in a system formed by a dense array of metallic nanorods embedded in dielectric fluids. It is demonstrated that as a consequence of the ultrahigh density of photonic states in the nanowire array it is possible to channel the quantum fluctuations, and thereby boost the Casimir torque by several orders of magnitude as compared to other known systems (e.g., birefringent parallel plates).

  17. EBSD Study on Grain Boundary and Microtexture Evolutions During Friction Stir Processing of A413 Cast Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Shamanian, Morteza; Mostaan, Hossein; Safari, Mehdi; Szpunar, Jerzy A.

    2016-07-01

    The as-cast Al alloys contain heterogeneous distributions of non-deforming particles due to non-equilibrium solidification effects. Therefore, these alloys have poor tribological and mechanical behaviors. It is well known that using friction stir processing (FSP), very fine microstructure is created in the as-cast Al alloys, while their wear resistance can be improved. In this research work, FSP is used to locally refine a surface layer of the coarse as-cast microstructure of cast A413 Al alloy. The main objective of this study is to investigate the effect of FSP on microstructure and microtexture evolutions in A413 cast Al alloy. The grain boundary character distribution, grain structure, and microtexture evolutions in as-cast and friction stir processed A413 Al alloy are analyzed by electron back scatter diffraction technique. It is found that with the FSP, the fraction of low ∑boundary such as ∑3, 7, and 9 are increased. The obtained results show that there are no deformation texture components in the structure of friction stir processed samples. However, some of the main recrystallization texture components such as BR and cubeND are formed during FSP which indicate the occurrence of dynamic recrystallization phenomenon due to the severe plastic deformation induced by the rotation of tool.

  18. A Study on Tooling and Its Effect on Heat Generation and Mechanical Properties of Welded Joints in Friction Stir Welding

    NASA Astrophysics Data System (ADS)

    Tikader, Sujoy; Biswas, Pankaj; Puri, Asit Baran

    2016-06-01

    Friction stir welding (FSW) has been the most attracting solid state welding process as it serves numerous advantages like good mechanical, metallurgical properties etc. Non weldable aluminium alloys like 5XXX, 7XXX series can be simply joined by this process. In this present study a mathematical model has been developed and experiments were successfully performed to evaluate mechanical properties of FSW on similar aluminium alloys i.e. AA1100 for different process parameters and mainly two kind of tool geometry (straight cylindrical and conical or cylindrical tapered shaped pin with flat shoulder). Tensile strength and micro hardness for different process parameters are reported of the welded plate sample. It was noticed that in FSW of similar alloy with tool made of SS-310 tool steel, friction is the major contributor for the heat generation. It was seen that tool geometry, tool rotational speed, plunging force by the tool and traverse speed have significant effect on tensile strength and hardness of friction stir welded joints.

  19. Centaur engine gimbal friction characteristics under simulated thrust load

    NASA Technical Reports Server (NTRS)

    Askew, J. W.

    1986-01-01

    An investigation was performed to determine the friction characteristics of the engine gimbal system of the Centaur upper stage rocket. Because the Centaur requires low-gain autopilots in order to meet all stability requirements for some configurations, control performance (response to transients and limit-cycle amplitudes) depends highly on these friction characteristics. Forces required to rotate the Centaur engine gimbal system were measured under a simulated thrust load of 66,723 N (15,000 lb) and in an altitude/thermal environment. A series of tests was performed at three test conditions; ambient temperature and pressure, ambient temperature and vacuum, and cryogenic temperature and vacuum. Gimbal rotation was controlled, and tests were performed in which rotation amplitude and frequency were varied by using triangular and sinusoidal waveforms. Test data revealed an elastic characteristic of the gimbal, independent of the input signal, which was evident prior to true gimbal sliding. The torque required to initiate gimbal sliding was found to decrease when both pressure and temperature decreased. Results from the low amplitude and low frequency data are currently being used in mathematically modeling the gimbal friction characteristics for Centaur autopilot performance studies.

  20. Friction Free Force-Reflecting Type Bilateral Control Based on Twin Drive System Considering 2nd Resonant Frequency and Unbalance Friction

    NASA Astrophysics Data System (ADS)

    Ohba, Yuzuru; Ohishi, Kiyoshi; Katsura, Seiichiro

    This paper proposes a new friction free bilateral system based on twin drive control system considering it's resonant frequency. The twin drive system consists of two motors that are coupled by the differential gear. The output torque becomes a differential torque of both motors. The nonlinear friction torque of the twin drive system is easily compensated. However, this system has the resonant frequencies and the anti-resonant frequencies which are caused by the torsional vibration. This paper proposes a new three-inertial-model of twin drive system, and identifies the resonant frequencies and it's friction torque. The proposed controller can suppress the torsional vibration without high order control design. Therefore, the operationality of bilateral teleoperation is improved by the proposed system.

  1. Friction of drill bits under Martian pressure

    NASA Astrophysics Data System (ADS)

    Zacny, K. A.; Cooper, G. A.

    2007-03-01

    Frictional behavior was investigated for two materials that are good candidates for Mars drill bits: Diamond Impregnated Segments and Polycrystalline Diamond Compacts (PDC). The bits were sliding against dry sandstone and basalt rocks under both Earth and Mars atmospheric pressures and also at temperatures ranging from subzero to over 400 °C. It was found that the friction coefficient dropped from approximately 0.16 to 0.1 as the pressure was lowered from the Earth's pressure to Mars' pressure, at room temperature. This is thought to be a result of the loss of weakly bound water on the sliding surfaces. Holding the pressure at 5 torr and increasing the temperature to approximately 200°C caused a sudden increase in the friction coefficient by approximately 50%. This is attributed to the loss of surface oxides. If no indication of the bit temperature is available, an increase in drilling torque could be misinterpreted as being caused by an increase in auger torque (due to accumulation of cuttings) rather than being the result of a loss of oxide layers due to elevated bit temperatures. An increase in rotational speed (to allow for clearing of cuttings) would then cause greater frictional heating and would increase the drilling torque further. Therefore it would be advisable to monitor the bit temperature or, if that is not possible, to include pauses in drilling to allow the heat to dissipate. Higher friction would also accelerate the wear of the drill bit and in turn reduce the depth of the hole.

  2. Peak torque and rate of torque development in elderly with and without fall history.

    PubMed

    Bento, Paulo Cesar Barauce; Pereira, Gleber; Ugrinowitsch, Carlos; Rodacki, André Luiz Felix

    2010-06-01

    Falls are one of the greatest concerns among the elderly. A number of studies have described peak torque as one of the best fall-related predictor. No studies have comprehensively focused on the rate of torque development of the lower limb muscles among elderly fallers. Then, the aim of this study was to determine the relationship between muscle peak torque and rate of torque development of the lower limb joints in elderly with and without fall history. It was also aimed to determine whether these parameters of muscle performance (i.e., peak torque and rate of torque development) are related to the number of falls. Thirty-one women volunteered to participate in the study and were assigned in one of the groups according to the number of falls over the 12 months that preceded the present. Then, participants with no fall history (GI; n=13; 67.6[7.5] years-old), one fall (GII; n=8; 66.0[4.9] years-old) and two or more falls (GIII; n=10; 67.8[8.8] years-old) performed a number of lower limb maximal isometric voluntary contractions from which peak torque and rate of torque development were quantified. Primary outcomes indicated no peak torque differences between experimental groups in any lower limb joint. The rate of torque development of the knee flexor muscles observed in the non-fallers (GI) was greater than that observed in the fallers (P<0.05) and had a significant relationship with the number of falls (P<0.05). The greater knee flexor muscles' rate of torque development found in the non-fallers in comparison to the fallers indicated that the ability of the elderly to rapidly reorganise the arrangement of the lower limb may play a significant role in allowing the elderly to recover balance after a trip. Thus, training stimulus aimed to improve the rate of torque development may be more beneficial to prevent falls among the elderly than other training stimulus, which are not specifically designed to improve the ability to rapidly produce large amounts of torque

  3. Study on nondestructive inspection using HTS-SQUID for friction stir welding between dissimilar metals

    NASA Astrophysics Data System (ADS)

    Hatsukade, Y.; Takahashi, T.; Yasui, T.; Tsubaki, M.; Fukumono, M.; Tanaka, S.

    2007-10-01

    We have developed an SQUID-NDI technique for evaluation of friction stir welding (FSW) between aluminum alloy A6063 and stainless steel SUS304 from the electric conductivities in board specimens bonded by FSW. A SQUID-NDI system employing an HTS-SQUID gradiometer was constructed to measure current distribution in the FSW specimens by applying voltage to the specimen. By measuring field gradients dBz/dy and dBz/dx above the FSW specimens made with various FSW conditions and then converting them to current vector Jx and Jy, conductivities of FSW areas were estimated. Due to the difference in the FSW conditions, the conductivity distributions varied dramatically. From these results, it was suggested that the conductivities in FSW areas should be varied due to the temperature heated by the friction between the milling tool and the materials.

  4. Parameter study of global and cluster synchronization in arrays of dry friction oscillators

    NASA Astrophysics Data System (ADS)

    Marszal, Michał; Stefański, Andrzej

    2017-04-01

    We investigate synchronization thresholds in arrays of identical classic stick-slip dry friction oscillators connected in a nearest neighbor fashion in closed and open ring network. Friction force is modeled by smoothened Stribeck model. Arrays of different length are checked in two parameter space (i.e., coupling coefficient vs. excitation frequency) for complete synchronization as well as cluster synchronization. Synchronization thresholds obtained by brute force numerical integration are compared with possible synchronization regions using the concept called master stability function in the form of two-oscillator reference probe. The results show existence of both complete synchronization and cluster synchronization regions in the investigated systems and confirm that two-oscillator probe can be applied for prediction of synchronization thresholds in systems with stick-slip phenomenon.

  5. Internal friction and Moessbauer study of C{endash}Cr associates in MANET steel

    SciTech Connect

    Gondi, P.; Gupta, R.; Montanari, R.; Principi, G.; Tata, M.E.

    1997-02-01

    Internal friction and Moessbauer techniques have been used to investigate the structure of C{endash}Cr associates and the arrangement of Fe atoms near them in the Cr martensitic steel MANET subjected to different thermal treatments. After slow rate cooling from the austenitic field, the Moessbauer spectra exhibit, besides the complex magnetic pattern of martensite, a low intensity single attributed to the presence of a Cr-rich b.c.c. phase. In correspondence, the internal friction curves show, among others, a Snoek-type peak due to an elastic processes involving C{endash}Cr associates with 6 Cr atoms. To explain the experimental results a simple structure model is suggested. {copyright} {ital 1997 Materials Research Society.}

  6. Frictional and hydraulic behaviour of carbonate fault gouge during fault reactivation - An experimental study

    NASA Astrophysics Data System (ADS)

    Delle Piane, Claudio; Giwelli, Ausama; Clennell, M. Ben; Esteban, Lionel; Nogueira Kiewiet, Melissa Cristina D.; Kiewiet, Leigh; Kager, Shane; Raimon, John

    2016-10-01

    We present a novel experimental approach devised to test the hydro-mechanical behaviour of different structural elements of carbonate fault rocks during experimental re-activation. Experimentally faulted core plugs were subject to triaxial tests under water saturated conditions simulating depletion processes in reservoirs. Different fault zone structural elements were created by shearing initially intact travertine blocks (nominal size: 240 × 110 × 150 mm) to a maximum displacement of 20 and 120 mm under different normal stresses. Meso-and microstructural features of these sample and the thickness to displacement ratio characteristics of their deformation zones allowed to classify them as experimentally created damage zones (displacement of 20 mm) and fault cores (displacement of 120 mm). Following direct shear testing, cylindrical plugs with diameter of 38 mm were drilled across the slip surface to be re-activated in a conventional triaxial configuration monitoring the permeability and frictional behaviour of the samples as a function of applied stress. All re-activation experiments on faulted plugs showed consistent frictional response consisting of an initial fast hardening followed by apparent yield up to a friction coefficient of approximately 0.6 attained at around 2 mm of displacement. Permeability in the re-activation experiments shows exponential decay with increasing mean effective stress. The rate of permeability decline with mean effective stress is higher in the fault core plugs than in the simulated damage zone ones. It can be concluded that the presence of gouge in un-cemented carbonate faults results in their sealing character and that leakage cannot be achieved by renewed movement on the fault plane alone, at least not within the range of slip measureable with our apparatus (i.e. approximately 7 mm of cumulative displacement). Additionally, it is shown that under sub seismic slip rates re-activated carbonate faults remain strong and no frictional

  7. Fundamental Studies of Friction, Lubrication, and Wear by Atomic Force Microscopy

    DTIC Science & Technology

    1993-04-14

    34 If fiber interferometer is used RESULTS "*Present address: Department of Chemical Physics, Weirmann Institute The t-p- surface force normal to the...small as 30 nm. The normal force between these tips and diamond (100) and (Il 1) surfaces agrees with calculated dispersion forces . The frictional... force variation on the (100) surface are tentatively associated with a reconstructed geometry convoluted over an asymmetric tip shape, while the (11

  8. Constraint counting for frictional jamming

    NASA Astrophysics Data System (ADS)

    Quint, D. A.; Henkes, S.; Schwarz, J. M.

    2012-02-01

    While the frictionless jamming transition has been intensely studied in recent years, more realistic frictional packings are less well understood. In frictionless sphere packings, the transition is predicted by a simple mean-field constraint counting argument, the isostaticity argument. For frictional packings, a modified constraint counting argument, which includes slipping contacts at the Coulomb threshold, has had limited success in accounting for the transition. We propose that the frictional jamming transition is not mean field and is triggered by the nucleation of unstable regions, which are themselves dynamical objects due to the Coulomb criterion. We create frictional packings using MD simulations and test for the presence and shape of rigid clusters with the pebble game to identify the partition of the packing into stable and unstable regions. To understand the dynamics of these unstable regions we follow perturbations at contacts crucial to the stability of the ``frictional house of cards.''

  9. Nanoscale friction and wear maps.

    PubMed

    Tambe, Nikhil S; Bhushan, Bharat

    2008-04-28

    Friction and wear are part and parcel of all walks of life, and for interfaces that are in close or near contact, tribology and mechanics are supremely important. They can critically influence the efficient functioning of devices and components. Nanoscale friction force follows a complex nonlinear dependence on multiple, often interdependent, interfacial and material properties. Various studies indicate that nanoscale devices may behave in ways that cannot be predicted from their larger counterparts. Nanoscale friction and wear mapping can help identify some 'sweet spots' that would give ultralow friction and near-zero wear. Mapping nanoscale friction and wear as a function of operating conditions and interface properties is a valuable tool and has the potential to impact the very way in which we design and select materials for nanotechnology applications.

  10. Anisotropic frictional properties in snakes

    NASA Astrophysics Data System (ADS)

    Benz, Martina J.; Kovalev, Alexander E.; Gorb, Stanislav N.

    2012-04-01

    Since the ventral body side of snakes is in almost continuous contact with the substrate during locomotion, their skin is presumably adapted to generate propulsion (high friction) and simultaneously slide along the substrate at rather low friction. In this study, the microstructure of ventral scales is shown and its influence on frictional properties was investigated by the use of scanning electron microscopy and microtribometry. To analyze the role of the system stiffness on the frictional anisotropy, two different types of sample cushioning (hard and soft) were tested while sliding in four different directions. Frictional anisotropy for both types of sample cushioning was demonstrated, however, the anisotropy was much stronger expressed in the soft cushioned sample. This effect is explained by the stronger ability of the soft-cushioned microstructure to slip along (or resist) the micro- and nanoscale features of the substrate, if compared with the hard-cushioned one.

  11. Friction surfacing for enhanced surface protection of marine engineering components: erosion-corrosion study

    NASA Astrophysics Data System (ADS)

    Rajakumar, S.; Balasubramanian, V.; Balakrishnan, M.

    2016-08-01

    Good mechanical properties combined with outstanding corrosion-resistance properties of cast nickel-aluminum bronze (NAB) alloy lead to be a specific material for many marine applications, including ship propellers. However, the erosion-corrosion resistance of cast-NAB alloy is not as good as wrought NAB alloy. Hence, in this investigation, an attempt has been made to improve the erosion-corrosion resistance of cast NAB alloy by depositing wrought (extruded) NAB alloy applying the friction surfacing (FS) technique. Erosion-corrosion tests were carried out in slurries composed of sand particles of 3.5% NaCl solution. Silica sand having a nominal size range of 250-355 μm is used as an erodent. Specimens were tested at 30° and 90° impingement angles. It is observed that the erosion and erosion-corrosion resistance of friction surfaced NAB alloy exhibited an improvement as compared to cast NAB alloy. Scanning electron microscope (SEM) analysis showed that the erosion tracks developed on the cast NAB alloy were wider and deeper than those formed on the friction surfaced extruded NAB alloy.

  12. Laser-induced torques in metallic ferromagnets

    NASA Astrophysics Data System (ADS)

    Freimuth, Frank; Blügel, Stefan; Mokrousov, Yuriy

    2016-10-01

    We study laser-induced torques in bcc Fe, hcp Co, and L 10 FePt based on first-principles electronic structure calculations and the Keldysh nonequilibrium formalism. We find that the torques have two contributions, one from the inverse Faraday effect (IFE) and one from the optical spin-transfer torque (OSTT). Depending on the ferromagnet at hand and on the quasiparticle broadening the two contributions may be of similar magnitude, or one contribution may dominate over the other. Additionally, we determine the nonequilibrium spin polarization in order to investigate its relation to the torque. We find the torques and the perpendicular component of the nonequilibrium spin polarization to be odd in the helicity of the laser light, while the spin polarization that is induced parallel to the magnetization is helicity independent. The parallel component of the nonequilibrium spin polarization is orders of magnitude larger than the perpendicular component. In the case of hcp Co we find good agreement between the calculated laser-induced torque and a recent experiment.

  13. Knudsen torque on heated micro beams

    SciTech Connect

    Li, Qi; Liang, Tengfei; Ye, Wenjing

    2014-12-09

    Thermally induced mechanical loading has been shown to have significant effects on micro/nano objects immersed in a gas with a non-uniform temperature field. While the majority of existing studies and related applications focus on forces, we investigate the torque, and thus the rotational motion, produced by such a mechanism. Using the asymptotic analysis in the near continuum regime, the Knudsen torque acting on an asymmetrically located uniformly heated microbeam in a cold enclosure is investigated. The existence of a non-zero net torque is demonstrated. In addition, it has been found that by manipulating the system configuration, the rotational direction of the torque can be changed. Two types of rotational motion of the microbeam have been identified: the pendulum motion of a rectangular beam, and the unidirectional rotation of a cylindrical beam. A rotational frequency of 4 rpm can be achieved for the cylindrical beam with a diameter of 3μm at Kn = 0.005. Illustrated by the simulations using the direct simulation of Monte Carlo, the Knudsen torque can be much increased in the transition regime, demonstrating the potential of Knudsen torque serving as a rotation engine for micro/nano objects.

  14. Eliminating friction with friction: 2D Janssen effect in a friction-driven system.

    PubMed

    Karim, M Yasinul; Corwin, Eric I

    2014-05-09

    The Janssen effect is a unique property of confined granular materials experiencing gravitational compaction in which the pressure at the bottom saturates with an increasing filling height due to frictional interactions with side walls. In this Letter, we replace gravitational compaction with frictional compaction. We study friction-compacted 2D granular materials confined within fixed boundaries on a horizontal conveyor belt. We find that even with high-friction side walls the Janssen effect completely vanishes. Our results demonstrate that gravity-compacted granular systems are inherently different from friction-compacted systems in at least one important way: vibrations induced by sliding friction with the driving surface relax away tangential forces on the walls. Remarkably, we find that the Janssen effect can be recovered by replacing the straight side walls with a sawtooth pattern. The mechanical force introduced by varying the sawtooth angle θ can be viewed as equivalent to a tunable friction force. By construction, this mechanical friction force cannot be relaxed away by vibrations in the system.

  15. Torque magnetometry in unconventional superconductors

    NASA Astrophysics Data System (ADS)

    Li, Lu

    This thesis describes torque magnetometry studies on unconventional superconductors. Torque magnetometry measures the anisotropic magnetization of samples by recording their torque signals in a tilted magnetic field. Applied to superconductors, this method provides a reliable way to measure the field dependence of magnetization with high resolution under extreme conditions: DC magnetic fields from zero to 45.2 T, and temperature from 300 mK to 300K. The results can be used to determine many important parameters, such as the upper critical field H c2, the superconducting condensation energy, the onset temperature of diamagnetic signals, and so on. We carried out the torque magnetometry measurements on unconventional superconductors---high Tc superconductors and the p-wave superconductor Sr2RuO4---and uncovered new features that do not exist in conventional BCS superconductors. In high Tc superconductors, our torque magnetometry studies focus on the properties of the vortex liquid state. First, by comparing the observed magnetization curves with the Nernst effect results in Bi 2Sr2CaCu2O8+delta, we confirm that the unusually large Nernst effect signals originate from the surviving vortex liquid state above Tc. Second, the M-H curves near the critical temperature Tc suggest that the nature of the transition is the Kosterlitz-Thouless transition. Near Tc, the magnetization response at low field is strongly nonlinear, and the T dependence of the magnetic susceptibility in the low-field limit approaches the predicted curve from the Kosterlitz-Thouless transition. Third, the measurements in intense magnetic field up to 45 T reveal the unusual, weak T-dependence of Hc2. These observations strongly support the existence of the vortex liquid state above Tc. The superconducting state is destroyed by the phase fluctuation of the pair condensate, while the pair condensate keeps its amplitude above T c. Further studies in single-layered high Tc superconductors reveal more

  16. Torque-Splitting Gear Drive

    NASA Technical Reports Server (NTRS)

    Kish, J.

    1991-01-01

    Geared drive train transmits torque from input shaft in equal parts along two paths in parallel, then combines torques in single output shaft. Scheme reduces load on teeth of meshing gears while furnishing redundancy to protect against failures. Such splitting and recombination of torques common in design of turbine engines.

  17. Floating-Pinion Torque Splitter

    NASA Technical Reports Server (NTRS)

    Melles, Harold W.

    1994-01-01

    Designed-in looseness at right locations helps to distribute torques more evenly. Gear-drive mechanism helps to apportion torques nearly equally along two parallel drive paths from input bevel gear to output bull gear. Mechanism of this type used as part of redundant drive train between engine and rotor of helicopter. Weighs less than comparably rated prior torque-splitting mechanisms.

  18. Torque, Cognitive Ability, and Schooling.

    ERIC Educational Resources Information Center

    Csapo, Marg

    1985-01-01

    West African Hausan Children (N=110) aged 5-6 were administered a torque test and relationshps between the torque task and visual spatial tasks were analyzed. Findings supported the assumption that educational experience related to circling accounts for decrease in torque, or that the educational experiences have potential influence on cortical…

  19. Floating-Pinion Torque Splitter

    NASA Technical Reports Server (NTRS)

    Melles, Harold W.

    1994-01-01

    Designed-in looseness at right locations helps to distribute torques more evenly. Gear-drive mechanism helps to apportion torques nearly equally along two parallel drive paths from input bevel gear to output bull gear. Mechanism of this type used as part of redundant drive train between engine and rotor of helicopter. Weighs less than comparably rated prior torque-splitting mechanisms.

  20. Correlation of torque and elbow injury in professional baseball pitchers.

    PubMed

    Anz, Adam W; Bushnell, Brandon D; Griffin, Leah Passmore; Noonan, Thomas J; Torry, Michael R; Hawkins, Richard J

    2010-07-01

    During the pitching motion, velocity is generated by the upper extremity kinetic chain on internal rotation of the shoulder and trunk translational/rotational motion. This generation of power places significant forces and torques on the elbow and shoulder. Elbow valgus torque and shoulder rotational torque are theoretically linked to elbow injury. Pitchers experiencing higher levels of elbow valgus torque and shoulder external rotation torque throughout the pitching motion are more likely to suffer elbow injury than pitchers with lower levels of torque. Cohort study; Level of evidence, 3. With an established biomechanical analysis model, 23 professional baseball pitchers were videotaped during spring training games and followed prospectively for the next 3 seasons for elbow injury. A mixed statistical model using differences of least squares means and analysis of variance was used to analyze the association between elbow injury and torque levels throughout the pitching motion as well as at each major event within the pitching motion. There were overall statistical trends relating elbow injury with both higher elbow valgus torque (P = .0547) and higher shoulder external rotation torque (P = .0548) throughout the entire pitching motion. More importantly, there was an individual significant correlation of elbow injury with both higher elbow valgus torque (P = .0130) and higher shoulder external rotation torque (P = .0018) at the late cocking phase (pitching event of maximum external rotation of the shoulder). This study provides information that supports existing theories about how and why certain injuries occur during the throwing motion in baseball. The late cocking phase appears to be the critical point in the pitching motion, where higher levels of torque at the shoulder and elbow can result in increased risk of injury. Manipulation of pitching mechanics to alter these torque levels or using these measures to identify pitchers at risk may help decrease injury

  1. CAM/LIFTER forces and friction

    SciTech Connect

    Gabbey, D.J.; Lee, J.; Patterson, D.J.

    1992-02-01

    This report details the procedures used to measure the cam/lifter forces and friction. The present effort employed a Cummins LTA-10, and focuses on measurements and dynamic modeling of the injector train. The program was sponsored by the US Department of Energy in support of advanced diesel engine technology. The injector train was instrumented to record the instantaneous roller speed, roller pin friction torque, pushrod force, injector link force and cam speed. These measurements, together with lift profiles for pushrod and injector link displacement, enabled the friction work loss in the injector train to be determined. Other significant design criteria such as camshaft roller follower slippage and maximum loads on components were also determined. Future efforts will concentrate on the dynamic model, with tests run as required for correlation.

  2. CAM/LIFTER forces and friction

    NASA Astrophysics Data System (ADS)

    Gabbey, D. J.; Lee, J.; Patterson, D. J.

    1992-02-01

    This report details the procedures used to measure the cam/lifter forces and friction. The present effort employed a Cummins LTA-10, and focuses on measurements and dynamic modeling of the injector train. The program was sponsored by the US Department of Energy in support of advanced diesel engine technology. The injector train was instrumented to record the instantaneous roller speed, roller pin friction torque, pushrod force, injector link force, and cam speed. These measurements, together with lift profiles for pushrod and injector link displacement, enabled the friction work loss in the injector train to be determined. Other significant design criteria such as camshaft roller follower slippage and maximum loads on components were also determined. Future efforts will concentrate on the dynamic model, with tests run as required for correlation.

  3. Study of the accretion torque during the 2014 outburst of the X-ray pulsar GRO J1744-28

    NASA Astrophysics Data System (ADS)

    Sanna, A.; Riggio, A.; Burderi, L.; Pintore, F.; Di Salvo, T.; D'Aì, A.; Bozzo, E.; Esposito, P.; Segreto, A.; Scarano, F.; Iaria, R.; Gambino, A. F.

    2017-07-01

    We present the spectral and timing analysis of the X-ray pulsar GRO J1744-28 during its 2014 outburst using data collected with the X-ray satellites Swift, INTEGRAL, Chandra, and XMM-Newton. We derived, by phase-connected timing analysis of the observed pulses, an updated set of the source ephemeris. We were also able to investigate the spin-up of the X-ray pulsar as a consequence of the accretion torque during the outburst. Relating the spin-up rate and the mass accretion rate as \\dot{ν }∝ \\dot{M}^{β }, we fitted the pulse phase delays obtaining a value of β = 0.96(3). Combining the results from the source spin-up frequency derivative and the flux estimation, we constrained the source distance to be between 3.4 and 4.1 kpc, assuming a disc viscous parameter α to be in the range of 0.1-1. Finally, we investigated the presence of a possible spin-down torque by adding a quadratic component to the pulse phase delay model. The marginal statistical improvement of the updated model does not allow us to firmly confirm the presence of this component.

  4. Intelligent Flow Friction Estimation.

    PubMed

    Brkić, Dejan; Ćojbašić, Žarko

    2016-01-01

    Nowadays, the Colebrook equation is used as a mostly accepted relation for the calculation of fluid flow friction factor. However, the Colebrook equation is implicit with respect to the friction factor (λ). In the present study, a noniterative approach using Artificial Neural Network (ANN) was developed to calculate the friction factor. To configure the ANN model, the input parameters of the Reynolds Number (Re) and the relative roughness of pipe (ε/D) were transformed to logarithmic scales. The 90,000 sets of data were fed to the ANN model involving three layers: input, hidden, and output layers with, 2, 50, and 1 neurons, respectively. This configuration was capable of predicting the values of friction factor in the Colebrook equation for any given values of the Reynolds number (Re) and the relative roughness (ε/D) ranging between 5000 and 10(8) and between 10(-7) and 0.1, respectively. The proposed ANN demonstrates the relative error up to 0.07% which had the high accuracy compared with the vast majority of the precise explicit approximations of the Colebrook equation.

  5. Intelligent Flow Friction Estimation

    PubMed Central

    Brkić, Dejan; Ćojbašić, Žarko

    2016-01-01

    Nowadays, the Colebrook equation is used as a mostly accepted relation for the calculation of fluid flow friction factor. However, the Colebrook equation is implicit with respect to the friction factor (λ). In the present study, a noniterative approach using Artificial Neural Network (ANN) was developed to calculate the friction factor. To configure the ANN model, the input parameters of the Reynolds Number (Re) and the relative roughness of pipe (ε/D) were transformed to logarithmic scales. The 90,000 sets of data were fed to the ANN model involving three layers: input, hidden, and output layers with, 2, 50, and 1 neurons, respectively. This configuration was capable of predicting the values of friction factor in the Colebrook equation for any given values of the Reynolds number (Re) and the relative roughness (ε/D) ranging between 5000 and 108 and between 10−7 and 0.1, respectively. The proposed ANN demonstrates the relative error up to 0.07% which had the high accuracy compared with the vast majority of the precise explicit approximations of the Colebrook equation. PMID:27127498

  6. Fieldlike and Dampinglike Spin-Transfer Torque in Magnetic Multilayers

    NASA Astrophysics Data System (ADS)

    Abert, Claas; Sepehri-Amin, Hossein; Bruckner, Florian; Vogler, Christoph; Hayashi, Masamitsu; Suess, Dieter

    2017-05-01

    We investigate the spin-transfer torque in a magnetic multilayer structure by means of a spin-diffusion model. The torque in the considered system, consisting of two magnetic layers separated by a conducting layer, is caused by a perpendicular-to-plane current. We compute the strength of the fieldlike and the dampinglike torque for different material parameters and geometries. Our studies suggest that the fieldlike torque highly depends on the exchange-coupling strength of the itinerant electrons with the magnetization both in the pinned and the free layer. While a low coupling leads to very high fieldlike torques, a high coupling leads to low or even negative fieldlike torques. Furthermore, we demonstrate the significant impact of the fieldlike torque on the critical switching current of a magnetic multilayer. Thus, the dependence of the fieldlike torque on material parameters is considered very important for the development of applications such as spin-transfer-torque magnetic random-access memories and spin-torque oscillators.

  7. Dynamical corotation torques on low-mass planets

    NASA Astrophysics Data System (ADS)

    Paardekooper, S.-J.

    2014-11-01

    We study torques on migrating low-mass planets in locally isothermal discs. Previous work on low-mass planets generally kept the planet on a fixed orbit, after which the torque on the planet was measured. In addition to these static torques, when the planet is allowed to migrate it experiences dynamical torques, which are proportional to the migration rate and whose sign depends on the background vortensity gradient. We show that in discs a few times more massive than the minimum-mass solar nebula, these dynamical torques can have a profound impact on planet migration. Inward migration can be slowed down significantly, and if static torques lead to outward migration, dynamical torques can take over, taking the planet beyond zero-torque lines set by saturation of the corotation torque in a runaway fashion. This means that the region in non-isothermal discs, where outward migration is possible, can be larger than what would be concluded from static torques alone.

  8. Development of infant leg coordination: Exploiting passive torques.

    PubMed

    Sargent, Barbara; Scholz, John; Reimann, Hendrik; Kubo, Masayoshi; Fetters, Linda

    2015-08-01

    Leg joint coordination systematically changes over the first months of life, yet there is minimal data on the underlying change in muscle torques that might account for this change in coordination. The purpose of this study is to investigate the contribution of torque changes to early changes in leg joint coordination. Kicking actions were analyzed of 10 full-term infants between 6 and 15-weeks of age using three-dimensional kinematics and kinetics. We found 11 of 15 joint angle pairs demonstrated a change from more in-phase intralimb coordination at 6-weeks to less in-phase coordination at 15-weeks. Although the magnitude of joint torques normalized to the mass of the leg remained relatively consistent, we noted more complex patterns of torque component contribution across ages. By focusing on the change in torques associated with hip-knee joint coordination, we found that less in-phase hip-knee joint coordination at 15-weeks was associated with decreased influence of knee muscle torque and increased influence of knee gravitational and motion-dependent torques, supporting that infants coordinate hip muscle torque with passive knee gravitational and motion-dependent torques to generate kicks with reduced active knee muscle torque. We propose that between 6 and 15-weeks of age less in-phase hip-knee coordination emerges as infants exploit passive dynamics in the coordination of hip and knee motions. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Adaptive controller for regenerative and friction braking system

    DOEpatents

    Davis, R.I.

    1990-10-16

    A regenerative and friction braking system for a vehicle having one or more road wheels driven by an electric traction motor includes a driver responsive device for producing a brake demand signal having a magnitude corresponding to the level of braking force selected by the driver and friction and regenerative brakes operatively connected with the road wheels of the vehicle. A system according to this invention further includes control means for operating the friction and regenerative braking subsystems so that maximum brake torques sustainable by the road wheels of the vehicle without skidding or slipping will not be exceeded. 8 figs.

  10. Adaptive controller for regenerative and friction braking system

    SciTech Connect

    Davis, Roy I.

    1990-01-01

    A regenerative and friction braking system for a vehicle having one or more roadwheels driven by an electric traction motor includes a driver responsive device for producing a brake demand signal having a magnitude corresponding to the level of braking force selected by the driver and friction and regenerative brakes operatively connected with the roadwheels of the vehicle. A system according to this invention further includes control means for operating the friction and regenerative braking subsystems so that maximum brake torques sustainable by the roadwheels of the vehicle without skidding or slipping will not be exceeded.

  11. Comparison of Contamination of Low-Frictional Elastomeric Rings with That of Conventional Elastomeric Rings by Streptococcus mutans - An In-vivo Study

    PubMed Central

    Mogra, Subraya; Shetty, V. Surendra; Shetty, Siddarth; Jose, Nidhin Philip

    2015-01-01

    Introduction: The presence of brackets and ligatures has been shown to be related to an increase in gingival inflammation and increased risk of decalcification. The various measures were taken to reduce the plaque accumulation and also lot of efforts were made by manufacturers that reduced the binding friction between the ligature rings and arch wire that facilitated easy sliding of the tooth through the wire. The low frictional ligatures rings manufactured by different manufacturers presumed to attract fewer bacteria due to greater reduction in surface roughness. Our study aimed to evaluate whether the low frictional elastomeric rings accumulate fewer bacteria than conventional ligature rings. Materials and Methods: Thirty patients (15 males and 15 females) who underwent fixed appliance therapy were selected. The study was done using split-mouth design. In each volunteer, synergy low frictional elastomeric rings were tied to brackets bonded to the maxillary premolar on the right side and mandibular premolar on the left side. Conventional elastomeric rings that served as control group were tied to the contralateral teeth, with the same design. Samples were collected after four weeks (28 days) and cultured for bacteria Streptococcus mutans. Results: There was no statistical difference between Streptococcus mutans count in low frictional elastomeric rings with that of conventional rings. Conclusion: We concluded that adherence of Streptococcus mutans is similar in both synergy low frictional elastomeric rings and conventional clear elastomeric rings and thus the manufacturer’s claim of minimal bacterial adherence was discarded. PMID:26023638

  12. The molecular basis of frictional loads in the in vitro motility assay with applications to the study of the loaded mechanochemistry of molecular motors.

    PubMed

    Greenberg, Michael J; Moore, Jeffrey R

    2010-05-01

    Molecular motors convert chemical energy into mechanical movement, generating forces necessary to accomplish an array of cellular functions. Since molecular motors generate force, they typically work under loaded conditions where the motor mechanochemistry is altered by the presence of a load. Several biophysical techniques have been developed to study the loaded behavior and force generating capabilities of molecular motors yet most of these techniques require specialized equipment. The frictional loading assay is a modification to the in vitro motility assay that can be performed on a standard epifluorescence microscope, permitting the high-throughput measurement of the loaded mechanochemistry of molecular motors. Here, we describe a model for the molecular basis of the frictional loading assay by modeling the load as a series of either elastic or viscoelastic elements. The model, which calculates the frictional loads imposed by different binding proteins, permits the measurement of isotonic kinetics, force-velocity relationships, and power curves in the motility assay. We show computationally and experimentally that the frictional load imposed by alpha-actinin, the most widely employed actin binding protein in frictional loading experiments, behaves as a viscoelastic rather than purely elastic load. As a test of the model, we examined the frictional loading behavior of rabbit skeletal muscle myosin under normal and fatigue-like conditions using alpha-actinin as a load. We found that, consistent with fiber studies, fatigue-like conditions cause reductions in myosin isometric force, unloaded sliding velocity, maximal power output, and shift the load at which peak power output occurs.

  13. Laboratory studies of frictional sliding and the implications of precursory seismicity

    NASA Astrophysics Data System (ADS)

    Selvadurai, Paul A.

    The dynamic transition from slow to rapid sliding along a frictional interface is of interest to geophysicists, engineers and scientists alike. In our direct shear experiment, we simulated a pre-existing frictional fault similar to those occurring naturally in the Earth. The laboratory study reported here has incorporated appropriate sensors that can detect foreshock events on the fringe of a nucleation zone prior to a gross fault rupture (main shock). During loading we observed foreshocks sequences as slip transitioned from slow to rapid sliding. These laboratory-induced foreshocks showed similar acoustic characteristics and spatio-temporal evolution as those detected in nature. Through direct observation (video camera), foreshocks were found to be the rapid, localized (millimeter length scale) failure of highly stresses asperities formed along the interface. The interface was created by the meshing of two rough polymethyl methacrylate (PMMA) bodies in a direct shear configuration. A carefully calibrated pressure sensitive film was used to map the contact junctions (asperities) throughout the interface at a range of applied normal loads Fn. Foreshocks were found to coalesce in a region of the fault that exhibited a more dense distribution of asperities (referred to as the seismogenic region). Microscopy of the interface in the seismogenic region displayed a variety of surface roughness at various length scales. This may have been introduced from the surface preparation techniques use to create a mature interface. The mature interface consisted of 'flat-topped' asperity regions with separating sharp valleys. The 'flat-topped' sections spanned millimetric length scales and were considerably flatter (nanometric roughness) that the roughness exhibited at longer length scales (tens of millimeters). We believe that the smoother, 'flat-topped' sections were responsible for the individual asperity formation (determining their size and strength), whereas the longer length

  14. [Comparative study of friction and wear behavior of different human enamel in vitro].

    PubMed

    Qiu, Yi-nong; Liu, Wei-min; Li, Tong-sheng; Liu, Lan-zhong

    2003-05-01

    To investigate the friction and wear behavior of different human enamels. 24 enamel samples selected from aged, young permanent and faded deciduous teeth were classified into 3 groups and slid against artificial porcelain teeth in the presence of artificial saliva on an oscillating friction and wear test rig. The wear volume loss, microhardness and toughness of each group of the enamel specimens were measured, the wear scars were observed with a scanning electron microscope, and the elemental compositions of Ca, P, and Si of the wear scar and wear debris were determined with an energy dispersion spectrometer. The wear volume losses of aged, young permanent and deciduous tooth enamels are (2.40 +/- 1.10) x 10(-12) m(3), (3.50 +/- 1.83) x 10(-12) m(3) and (4.86 +/- 2.49) x 10(-12) m(3). The data of aged tooth enamels are statistically greater than that of deciduous tooth enamels (P < 0.05). There is no significant difference between the wear volume loss of aged and young permanent tooth enamels or between the young permanent and deciduous tooth enamels (P > 0.05). However, the friction and wear behavior of each group of enamel specimens is different from each other. In the present testing condition, the wear scars of each kind of enamel specimens is characterized by ploughing and cracking. The different wear resistance of the three kinds of enamels is attributed to the different microstructure of the enamel, while the hardness and toughness of the enamels are not correlated with the wear resistance.

  15. Study of force loss due to friction comparing two ceramic brackets during sliding tooth movement.

    PubMed

    AlSubaie, Mai; Talic, Nabeel; Khawatmi, Said; Alobeid, Ahmad; Bourauel, Christoph; El-Bialy, Tarek

    2016-09-01

    To compare the percentage of force loss generated during canine sliding movements in newly introduced ceramic brackets with metal brackets. Two types of ceramic brackets, namely polycrystalline alumina (PCA) ceramic brackets (Clarity Advanced) and monocrystalline alumina (MCA) ceramic brackets (Inspire Ice) were compared with stainless steel (SS) brackets (Victory Series). All bracket groups (n = 5 each) were for the maxillary canines and had a 0.018-inch slot size. The brackets were mounted on an Orthodontic Measurement and Simulation System (OMSS) to simulate the canine retraction movement into the first premolar extraction space. Using elastic ligatures, 0.016 × 0.022″ (0.40 × 0.56 mm) stainless steel archwires were ligated onto the brackets. Retraction force was applied via a nickel-titanium coil spring with a nearly constant force of approximately 1 N. The OMSS measured the percentage of force loss over the retraction path by referring to the difference between the applied retraction force and actual force acting on each bracket. Between group comparisons were done with one-way analysis of variance. The metal brackets revealed the lowest percentage of force loss due to friction, followed by the PCA and MCA ceramic bracket groups (67 ± 4, 68 ± 7, and 76 ± 3 %, respectively). There was no significant difference between SS and PCA brackets (p = 0.97), but we did observe significant differences between metal and MCA brackets (p = 0.03) and between PCA and MCA ceramic brackets (p = 0.04). PCA ceramic brackets, whose slot surface is covered with an yttria-stabilized zirconia-based coating exhibited frictional properties similar to those of metal brackets. Frictional resistance resulted in an over 60 % loss of the applied force due to the use of elastic ligatures.

  16. In vitro comparative study on the friction of stainless steel wires with and without Orthospeed® (JAL 90458) on an inclined plane.

    PubMed

    Alió-Sanz, Juan J; Claros-Stucchi, Miguel; Albaladejo, Alberto; Iglesias-Conde, Carmen; Alvarado-Lorenzo, Alfonso

    2016-04-01

    During the treatment of orthodontics, in the mechanics of slide, there takes place friction, which they reduce the slide of the arch across bracket. Therefore, clinical there takes place an increase of the time of treatment. There are different the technologies that try to reduce this friction, as the self-ligating braces. The purpose of this study was to research the in vitro behavior of JAL 90458 as a buffering agent which reduces friction between brackets and stainless steel arch wires of different cross sections and sizes. Three types of stainless steel wires with different cross sections and three types of ligatures were used with and without JAL 90458 to measure the friction according to the time and distance traveled by the brackets on an inclined plane with two angulations. The Kruskal-Wallis one-way analysis of variance by ranks was applied to determine the degree of friction between the group using and the group not using the product (P ≤ .05). Separate analysis of the arch wires, ligatures and angulation with and without the compound revealed statistically significant differences between the groups, showing that friction was reduced significantly when JAL 90458 was used (P ≤ .01). The 0.021x0.025" arch wires and the arch wires attached using elastic ligatures produce the least resistance to sliding among all of those analyzed when the product was not used (P ≤ .05). The results show that JAL 90458 reduces friction independently of arch wire cross section, type of ligature and angulation of the measuring instrument. Friction, JAL 90458, arch wires, ligatures, in vitro.

  17. In vitro comparative study on the friction of stainless steel wires with and without Orthospeed® (JAL 90458) on an inclined plane

    PubMed Central

    Claros-Stucchi, Miguel; Albaladejo, Alberto; Iglesias-Conde, Carmen; Alvarado-Lorenzo, Alfonso

    2016-01-01

    Background During the treatment of orthodontics, in the mechanics of slide, there takes place friction, which they reduce the slide of the arch across bracket. Therefore, clinical there takes place an increase of the time of treatment. There are different the technologies that try to reduce this friction, as the self-ligating braces. The purpose of this study was to research the in vitro behavior of JAL 90458 as a buffering agent which reduces friction between brackets and stainless steel arch wires of different cross sections and sizes. Material and Methods Three types of stainless steel wires with different cross sections and three types of ligatures were used with and without JAL 90458 to measure the friction according to the time and distance traveled by the brackets on an inclined plane with two angulations. The Kruskal-Wallis one-way analysis of variance by ranks was applied to determine the degree of friction between the group using and the group not using the product (P ≤ .05). Results Separate analysis of the arch wires, ligatures and angulation with and without the compound revealed statistically significant differences between the groups, showing that friction was reduced significantly when JAL 90458 was used (P ≤ .01). The 0.021x0.025” arch wires and the arch wires attached using elastic ligatures produce the least resistance to sliding among all of those analyzed when the product was not used (P ≤ .05). Conclusions The results show that JAL 90458 reduces friction independently of arch wire cross section, type of ligature and angulation of the measuring instrument. Key words:Friction, JAL 90458, arch wires, ligatures, in vitro. PMID:27034753

  18. Study of Plastic Deformation in Binary Aluminum Alloys by Internal-Friction Methods

    NASA Technical Reports Server (NTRS)

    Olson, E. C.; Maringer, R. E.; Marsh, L. L.; Manning, G. K.

    1959-01-01

    The damping capacity of several aluminum-copper alloys has been investigated during tensile elongation. This damping is shown to depend on strain rate, strain, temperature, alloy content, and heat treatment. A tentative hypothesis, based on the acceleration of solute atom diffusion by deformation-produced vacancies, is proposed to account for the observed behavior. Internal-friction maxima are observed in deformed aluminum and aluminum-copper alloys at -70 deg and -50 deg C. The peaks appear to be relatively insensitive to frequency and alloy content, but they disappear after annealing at temperatures nearing the recrystallization temperature.

  19. Slipping and Tipping: Measuring Static Friction with a Straightedge

    ERIC Educational Resources Information Center

    Dietz, Eric; Aguilar, Isaac

    2012-01-01

    Following a discussion of forces, torques, and the conditions for static equilibrium, I tell my introductory mechanics class that I will show them how to measure the coefficient of static friction, us, between the surfaces of a block and the front bench using "nothing but a straightedge". After a few seconds of hushed anticipation, I nudge the…

  20. Slipping and Tipping: Measuring Static Friction with a Straightedge

    ERIC Educational Resources Information Center

    Dietz, Eric; Aguilar, Isaac

    2012-01-01

    Following a discussion of forces, torques, and the conditions for static equilibrium, I tell my introductory mechanics class that I will show them how to measure the coefficient of static friction, us, between the surfaces of a block and the front bench using "nothing but a straightedge". After a few seconds of hushed anticipation, I nudge the…

  1. Simultaneous measurement of friction and wear in hip simulators.

    PubMed

    Haider, Hani; Weisenburger, Joel N; Garvin, Kevin L

    2016-05-01

    We propose and have evaluated a method to measure hip friction during wear testing on a popular multi-station hip simulator. A 6-degree-of-freedom load cell underneath the specimen sensed forces and torques during implant wear testing of simulated walking. This included internal-external and adduction-abduction rotations which are often neglected during friction testing on pendulum-type machines. Robust mathematical analysis and data processing provided friction estimates in three simultaneous orthogonal rotations, over extended multi-million cycle wear tests. We tested various bearing couples including metal-on-plastic, ceramic-on-plastic, and metal-on-metal material couples. In one test series, new and intentionally scratched CoCrMo 40-mm-diameter femoral heads were tested against conventional ultrahigh-molecular-weight polyethylene, highly cross-linked, and highly cross-linked with vitamin E versions. The scratching significantly increased friction and doubled the wear of all groups. Before scratching, friction levels for the aforementioned plastic groups were 0.056 ± 0.0060, 0.062 ± 0.0080, and 0.070 ± 0.0045, respectively, but after scratching increased to 0.088 ± 0.018, 0.076 ± 0.0066, and 0.082 ± 0.0049, respectively, all statistically significant increases (p = 0.00059, 0.00005, 0.0115, respectively). In another test series of 44-mm femoral head diameter hips, metal-on-plastic hips with conventional ultrahigh-molecular-weight polyethylene showed the lowest friction at 0.045 ± 0.0085, followed by highly cross-linked with 0.046 ± 0.0035 (not significantly different). In a ceramic-on-plastic design with conventional ultrahigh-molecular-weight polyethylene, higher friction 0.079 ± 0.0070 was measured likely due to that ceramic surface being rougher than usual. Metal-on-metal hips were compared without and with a TiN coating, resulting in 0.049 ± 0.014 and 0.097 ± 0.020 friction factors, respectively

  2. A Study of the Frictional Layer of TiAl-12Ag-5TiB2 Composite During Dry Sliding Wear

    NASA Astrophysics Data System (ADS)

    Xu, Zengshi; Yao, Jie; Shi, Xiaoliang; Zhai, Wenzheng; Ibrahim, Ahmed Mohamed Mahmoud; Xiao, Yecheng; Chen, Long; Zhu, Qingshuai; Zhang, Ao

    2015-08-01

    Many studies have shown that the excellent tribological properties of materials are primarily attributed to the formation of expected frictional layer on the worn surface. This article is dedicated to explore the possible formation and acting mechanism of frictional layer of TiAl-12Ag-5TiB2 composite. At normal load of 12 N, a frictional layer that consists of wear-induced layer and plastic deformation layer is observed. The soft wear-induced layer supported by the harder plastic deformation layer leads to the low friction coefficient and high wear resistance. The harder plastic deformation layer is induced by repetitive tribo-contact and considerable plastic deformation. Its high hardness improves the wear resistance of composite, and fine-grained structure promotes the diffusion of lubricating phase during dry friction process. The soft wear-induced layer can be divided into tribofilm and mechanically mixed layer. The mechanically mixed layer that consists of Ag and Ti-Al Oxides can continuously be provided to the worn surface to form a tribofilm with low shearing stress junctions, lowering the friction coefficient.

  3. Friction losses in a lubricated thrust-loaded cageless angular-contract bearing

    NASA Technical Reports Server (NTRS)

    Townsend, D. P.; Allen, C. W.; Zaretsky, E. V.

    1973-01-01

    The NASA spinning torque apparatus was modified to measure the spinning torque on a cageless ball thrust bearing. Friction torque was measured for thrust loads varying from 44.5 to 403 newtons (10 to 90 lb) at speeds of 1000, 2000, and 3000 rpm. Tests were conducted with di-2-ethylhexyl sebacate and a synthetic paraffinic oil. These tests were run with either oil jet lubrication or with a thin surface film of lubricant only. An analytical model which included rolling resistance was developed and extended from previous models for spinning torque and lubricant rheology. The model was extended by the inclusion of rolling resistance. The computed values were in fair agreement with the experimental results and confirmed previous hypotheses that a thin lubricant film gives minimum bearing torque and an oil jet flow of a viscous lubricant will result in considerable rolling torque in addition to the torque due to ball spin.

  4. Fundamental Study of Nano-Scale Adhesion and Friction Properties of Graphene in Ambient Air and Liquid Environments

    NASA Astrophysics Data System (ADS)

    Ramayanam, Sai Suvineeth

    The aim of this study is to understand the fundamental tribological interactions of model contacts developed between a 'single' asperity silicon tip and a few layer graphene surface in ambient air, ionic liquid, and lubricating oil environments. The motivation to investigate such fundamental interactions stems from the need to gain an understanding of the tribological properties, morphology and defects of few layer graphene with respect to different synthesis methods including both bottom-up and top-down approaches. In particular, the surface properties of atomically thin sheets of graphene synthesized by three methods; (i) liquid phase exfoliation of graphene, (ii) chemical reduction of exfoliated graphene oxide, on a silicon oxide substrate, and (iii) graphene synthesis by halogen based plasma etching on a silicon carbide substrate are studied using atomic force microscopy, lateral force microscopy and x-ray photoelectron spectroscopy. Friction of Si 'single' asperities sliding against a few layer graphene surface in ambient air, ionic liquid, and lubricating oil environments is reported. It is found that oxygen based defects play a major role in controlling the friction and adhesion properties of few layer graphene surfaces. The role of substrate and its bonding with the few layer graphene is also an important parameter. In liquids, we report a newly observed Stribeck like behavior in the nanoscale. This work can lead to important device applications with reduced friction such as contact-based microelectromechanical systems. It also sheds light on liquid-graphene interfacial characteristics which can be proved vital in applications spanning from electrochemical energy devices to nanolubricants.

  5. Hex ball torque test

    NASA Technical Reports Server (NTRS)

    Robinson, B. A.; Foster, C. L.

    1986-01-01

    A series of torque tests were performed on four flight-type hex ball universal joints in order to characterize and determine the actual load-carrying capability of this device. The universal joint is a part of manual actuation rods for scientific instruments within the Hubble Space Telescope. It was found that the hex ball will bind slightly during the initial load application. This binding did not affect the function of the universal joint, and the units would wear-in after a few additional loading cycles. The torsional yield load was approximately 50 ft-lb, and was consistent among the four test specimens. Also, the torque required to cause complete failure exceeded 80 ft-lb. It is concluded that the hex ball universal joint is suitable for its intended applications.

  6. Negative Optical Torque

    PubMed Central

    Chen, Jun; Ng, Jack; Ding, Kun; Fung, Kin Hung; Lin, Zhifang; Chan, C. T.

    2014-01-01

    Light carries angular momentum, and as such it can exert torques on material objects. Applications of these opto-mechanical effects were limited initially due to their smallness in magnitude, but later becomes powerful and versatile after the invention of laser. Novel and practical approaches for harvesting light for particle rotation have since been demonstrated, where the structure is always subjected to a positive optical torque along a certain axis if the incident angular momentum has a positive projection on the same axis. We report here an interesting phenomenon of “negative optical torque”, meaning that incoming photons carrying angular momentum rotate an object in the opposite sense. Surprisingly this can be realized quite straightforwardly in simple planar structures. Field retardation is a necessary condition and discrete rotational symmetry of material object plays an important role. The optimal conditions are explored and explained. PMID:25226863

  7. A comparative study to evaluate the effects of ligation methods on friction in sliding mechanics using 0.022" slot brackets in dry state: An In-vitro study.

    PubMed

    Vinay, K; Venkatesh, M J; Nayak, Rabindra S; Pasha, Azam; Rajesh, M; Kumar, Pradeep

    2014-04-01

    Friction between archwires and brackets is assuming greater importance for finishing with increased use of sliding mechanics in orthodontics as friction impedes the desired tooth movement. The following study is conducted to compare and evaluate the effect of ligation on friction in sliding mechanics using 0.022" slot bracket in dry condition. In the study 48 combinations of brackets, archwires and different ligation techniques were tested in order to provide best combination that offers less friction during sliding mechanics. Instron- 4467 machine was used to evaluate static and kinetic friction force values and the results were subjected to Statistical Analysis and Anova test. The results of the study showed that 0.022" metal brackets, Stainless steel wires and Slick modules provided the optimum frictional resistance to sliding mechanics. It is observed that frictional forces of 0.019" x 0.025" were higher when compared with 0.016" x 0.022" Stainless steel archwire due to the increase in dimension. Self-ligating brackets offered least friction followed by mini twin, variable force, regular stainless steel, ceramic with metal insert bracket and ceramic brackets. The stainless steel ligature offered less resistance than slick and grey modules, and TMA wires recorded maximum friction. The stainless steel archwire of 0.019" x 0.025" dimension are preferred during sliding mechanics, these archwires with variable force brackets ligated with Slick Modules offer decreased friction and is cost effective combination which can be utilized during sliding mechanics. How to cite the article: Vinay K, Venkatesh MJ, Nayak RS, Pasha A, Rajesh M, Kumar P. A comparative study to evaluate the effects of ligation methods on friction in sliding mechanics using 0.022" slot brackets in dry state: An In-vitro study. J Int Oral Health 2014;6(2):76-83.

  8. Preparation Torque Limit for Composites Joined with Mechanical Fasteners

    NASA Technical Reports Server (NTRS)

    Thomas, Frank P.; Yi, Zhao

    2005-01-01

    Current design guidelines for determining torque ranges for composites are based on tests and analysis from isotropic materials. Properties of composites are not taken into account. No design criteria based upon a systematic analytical and test analyses is available. This paper is to study the maximum torque load a composite component could carry prior to any failure. Specifically, the torque-tension tests are conducted. NDT techniques including acoustic emission, thermography and photomicroscopy are also utilized to characterize the damage modes.

  9. Experimental Study Of Thermal Sliding Contact With Friction : Application To High Speed Machining Of Metallic Materials

    SciTech Connect

    Guillot, E.; Bourouga, B.; Garnier, B.; Dubar, L.

    2007-04-07

    In High Speed Machining (HSM), thermomechanical events at the tool-workpiece interface are strongly coupled. They are characterized by extreme conditions of stress and strain as well as heating and heat gradients that it is advisable to control well for a good resolution of the thermomechanical problem.We present a first experimental approach based on friction tests. The conditions are similar to the ones occurring in the orthogonal cutting in terms of pressure at the nose and of the chip sliding velocity. The workpiece pressed on the tool is suddenly moved according to a selected speed and pressure.Experiments are carried out with XC38 metallic sample at the temperature of 900 K and a sliding velocity of 0,2 m/s. The thermal conditions at the workpiece-tool interface are estimated by means of temperature recordings and an inverse heat conduction method. Finally, the estimated heat flux is compared to the one obtained by mechanical way which considers the measured friction coefficient. This comparison is satisfactory.

  10. Friction force microscopy study of annealed diamond-like carbon film

    SciTech Connect

    Choi, Won Seok; Joung, Yeun-Ho; Heo, Jinhee; Hong, Byungyou

    2012-10-15

    In this paper we introduce mechanical and structural characteristics of diamond-like carbon (DLC) films which were prepared on silicon substrates by radio frequency (RF) plasma enhanced chemical vapor deposition (PECVD) method using methane (CH{sub 4}) and hydrogen (H{sub 2}) gas. The films were annealed at various temperatures ranging from 300 to 900 °C in steps of 200 °C using rapid thermal processor (RTP) in nitrogen ambient. Tribological properties of the DLC films were investigated by atomic force microscopy (AFM) in friction force microscopy (FFM) mode. The structural properties of the films were obtained by high resolution transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The wettability of the films was obtained using contact angle measurement. XPS analysis showed that the sp{sup 3} content is decreased from 75.2% to 24.1% while the sp{sup 2} content is increased from 24.8% to 75.9% when the temperature is changed from 300 to 900 °C. The contact angles of DLC films were higher than 70°. The FFM measurement results show that the highest friction coefficient value was achieved at 900 °C annealing temperature.

  11. Magnetic Torque Studies in Two-Dimensional Organic Conductor λ-(BETS)2FeCl4

    NASA Astrophysics Data System (ADS)

    Sugiura, Shiori; Shimada, Kazuo; Tajima, Naoya; Nishio, Yutaka; Terashima, Taichi; Isono, Takayuki; Kato, Reizo; Uji, Shinya

    2017-01-01

    Systematic measurements of the magnetic torque τ of the organic conductor λ-(BETS)2FeCl4 have been performed to investigate the magnetic properties. In the magnetic field dependence of τ, a very sharp structure is observed at ˜1.2 T, resulting from the spin-flop transition. A step-like behavior associated with small hysteresis appears at ˜10 T, which is caused by the antiferromagnetic insulator-paramagnetic metal (AFI-PM) transition. In the angular dependence of τ for magnetic fields in the b*-c plane, it is found that the zero-crossing angles significantly change with field and temperature. The changes provide reasonable evidence of the antiferromagnetic order of the π spins (not the Fe 3d spins) in the AFI phase. The AFI-PM transition field has a minimum when the magnetization of the 3d spins has a maximum as a function of field angle.

  12. Robust spin transfer torque in antiferromagnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Saidaoui, Hamed Ben Mohamed; Waintal, Xavier; Manchon, Aurélien

    2017-04-01

    We theoretically study the current-induced spin torque in antiferromagnetic tunnel junctions, composed of two semi-infinite antiferromagnetic layers separated by a tunnel barrier, in both clean and disordered regimes. We find that the torque enabling electrical manipulation of the Néel antiferromagnetic order parameter is out of plane, ˜n ×p , while the torque competing with the antiferromagnetic exchange is in plane, ˜n ×(p ×n ) . Here, p and n are the Néel order parameter direction of the reference and free layers, respectively. Their bias dependence shows behavior similar to that in ferromagnetic tunnel junctions, the in-plane torque being mostly linear in bias, while the out-of-plane torque is quadratic. Most importantly, we find that the spin transfer torque in antiferromagnetic tunnel junctions is much more robust against disorder than that in antiferromagnetic metallic spin valves due to the tunneling nature of spin transport.

  13. Vacuum Friction on a Rotating Pair of Atoms

    NASA Astrophysics Data System (ADS)

    Bercegol, Hervé; Lehoucq, Roland

    2015-08-01

    Zero-point quantum fluctuations of the electromagnetic vacuum create the widely known London-van der Waals attractive force between two atoms. Recently, there has been a revived interest in the interaction of rotating matter with the quantum vacuum. Here, we consider a rotating pair of atoms maintained by London-van der Waals forces and calculate the frictional torque they experience due to zero-point radiation. Using a semiclassical framework derived from the fluctuation dissipation theorem, we take into account the full electrostatic coupling between induced dipoles. Considering the case of zero temperature only, we find a braking torque proportional to the angular velocity and to the third power of the fine structure constant. Although very small compared to London-van der Waals attraction, the torque is strong enough to induce the formation of dimers in binary collisions. This new friction phenomenon at the atomic level should induce a paradigm change in the explanation of irreversibility.

  14. Remote control canard missile with a free-rolling tail brake torque system

    NASA Technical Reports Server (NTRS)

    Blair, A. B., Jr.

    1981-01-01

    An experimental wind-tunnel investigation has been conducted at supersonic Mach numbers to determine the static aerodynamic characteristics of a cruciform canard-controlled missile with fixed and free-rolling tail-fin afterbodies. Mechanical coupling effects of the free-rolling tail afterbody were investigated using an electronic/electromagnetic brake system that provides arbitrary tail-fin brake torques with continuous measurements of tail-to-mainframe torque and tail-roll rate. Results are summarized to show the effects of fixed and free-rolling tail-fin afterbodies that include simulated measured bearing friction torques on the longitudinal and lateral-directional aerodynamic characteristics.

  15. Remote control canard missile with a free-rolling tail brake torque system

    NASA Technical Reports Server (NTRS)

    Blair, A. B., Jr.

    1981-01-01

    An experimental wind-tunnel investigation has been conducted at supersonic Mach numbers to determine the static aerodynamic characteristics of a cruciform canard-controlled missile with fixed and free-rolling tail-fin afterbodies. Mechanical coupling effects of the free-rolling tail afterbody were investigated using an electronic/electromagnetic brake system that provides arbitrary tail-fin brake torques with continuous measurements of tail-to-mainframe torque and tail-roll rate. Results are summarized to show the effects of fixed and free-rolling tail-fin afterbodies that include simulated measured bearing friction torques on the longitudinal and lateral-directional aerodynamic characteristics.

  16. [Study on friction and wear properties of dental zirconia ceramics processed by microwave and conventional sintering methods].

    PubMed

    Guoxin, Hu; Ying, Yang; Yuemei, Jiang; Wenjing, Xia

    2017-04-01

    This study evaluated the wear of an antagonist and friction and wear properties of dental zirconia ceramic that was subjected to microwave and conventional sintering methods. Ten specimens were fabricated from Lava brand zirconia and randomly assigned to microwave and conventional sintering groups. A profile tester for surface roughness was used to measure roughness of the specimens. Wear test was performed, and steatite ceramic was used as antagonist. Friction coefficient curves were recorded, and wear volume were calculated. Finally, optical microscope was used to observe the surface morphology of zirconia and steatite ceramics. Field emission scanning electron microscopy was used to observe the microstructure of zirconia. Wear volumes of microwave and conventionally sintered zirconia were (6.940±1.382)×10⁻², (7.952±1.815) ×10⁻² mm³, respectively. Moreover, wear volumes of antagonist after sintering by the considered methods were (14.189±4.745)×10⁻², (15.813±3.481)×10⁻² mm³, correspondingly. Statistically significant difference was not observed in the wear resistance of zirconia and wear volume of steatite ceramic upon exposure to two kinds of sintering methods. Optical microscopy showed that ploughed surfaces were apparent in zirconia. The wear surface of steatite ceramic against had craze, accompanied by plough. Scanning electron microscopy showed that zirconia was sintered compactly when subjected to both conventional sintering and microwave methods, whereas grains of zirconia sintered by microwave alone were smaller and more uniform. Two kinds of sintering methods are successfully used to produce dental zirconia ceramics with similar friction and wear properties.
.

  17. The Role of Fluid Pressure in Earthquake Triggering: Insights from an Experimental Study of Frictional Stability of Carbonates

    NASA Astrophysics Data System (ADS)

    Collettini, C.; Scuderi, M.

    2015-12-01

    Fluid overpressure has been often proposed as one of the primary mechanisms that facilitate earthquake slip along faults. However, elastic dislocation theory combined with rate- and state- friction laws suggests that fluid overpressure may inhibit the dynamic instabilities that result in earthquakes, by reducing the critical rheological fault stiffness, kc. This controversy poses a serious problem in our understanding of earthquake physics, with severe implications for seismic hazard and human-induced seismicity. Nevertheless, currently, there are only a few systematic studies on the role of fluid pressure under controlled, laboratory conditions for which the evolution of friction parameters and slip stability can be measured. We have used a biaxial rock deformation apparatus within a pressure vessel, in order to allow a true triaxial stress field, in a double direct shear configuration. We tested carbonate fault gouge, Carrara marble, sieved to a grain size of 125 microns. Normal stresses and confining pressure were held constant throughout the experiment at values of 5 to 40 MPa, and the pore fluid pressure was varied from hydrostatic up to near lithostatic values. Shear stress was induced by a constant displacement rate and sliding velocities varied from 0.1-100 microns/s, in order to evaluate slip stability via rate- and state- dependent frictional parameters, such as (a-b), Dc. With increasing fluid pressure we observe an evolution of (a-b) from slightly velocity strengthening to velocity neutral and a reduction in Dc from about 100 to 20 microns. Our analysis on carbonate fault gouges indicates that the increase in fluid pressure not only favour fault reactivation but it also makes the fault more prone to generate earthquake instabilities.

  18. The effect of angular velocity and cycle on the dissipative properties of the knee during passive cyclic stretching: a matter of viscosity or solid friction.

    PubMed

    Nordez, A; McNair, P J; Casari, P; Cornu, C

    2009-01-01

    The mechanisms behind changes in mechanical parameters following stretching are not understood clearly. This study assessed the effects of joint angular velocity on the immediate changes in passive musculo-articular properties induced by cyclic stretching allowing an appreciation of viscosity and friction, and their contribution to changes in torque that occur. Ten healthy subjects performed five passive knee extension/flexion cycles on a Biodex dynamometer at five preset angular velocities (5-120 deg/s). The passive torque and knee angle were measured, and the potential elastic energy stored during the loading and the dissipation coefficient were calculated. As the stretching velocity increased, so did stored elastic energy and the dissipation coefficient. The slope of the linear relationship between the dissipation coefficient and the angular velocity was unchanged across repetitions indicating that viscosity was unlikely to be affected. A difference in the y-intercept across repetitions 1 and 5 was indicative of a change in processes associated with solid friction. Electromyographical responses to stretching were low across all joint angular velocities. Torque changes during cyclic motion may primarily involve solid friction which is more indicative of rearrangement/slipping of collagen fibers rather than the redistribution of fluid and its constituents within the muscle. The findings also suggest that it is better to stretch slowly initially to reduce the amount of energy absorption required by tissues, but thereafter higher stretching speeds can be undertaken.

  19. Mechanism for Self-Reacted Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Venable, Richard; Bucher, Joseph

    2004-01-01

    A mechanism has been designed to apply the loads (the stirring and the resection forces and torques) in self-reacted friction stir welding. This mechanism differs somewhat from mechanisms used in conventional friction stir welding, as described below. The tooling needed to apply the large reaction loads in conventional friction stir welding can be complex. Self-reacted friction stir welding has become popular in the solid-state welding community as a means of reducing the complexity of tooling and to reduce costs. The main problems inherent in self-reacted friction stir welding originate in the high stresses encountered by the pin-and-shoulder assembly that produces the weld. The design of the present mechanism solves the problems. The mechanism includes a redesigned pin-and-shoulder assembly. The welding torque is transmitted into the welding pin by a square pin that fits into a square bushing with set-screws. The opposite or back shoulder is held in place by a Woodruff key and high-strength nut on a threaded shaft. The Woodruff key reacts the torque, while the nut reacts the tensile load on the shaft.

  20. Tire/runway friction interface

    NASA Technical Reports Server (NTRS)

    Yager, Thomas J.

    1990-01-01

    An overview is given of NASA Langley's tire/runway pavement interface studies. The National Tire Modeling Program, evaluation of new tire and landing gear designs, tire wear and friction tests, and tire hydroplaning studies are examined. The Aircraft Landing Dynamics Facility is described along with some ground friction measuring vehicles. The major goals and scope of several joint FAA/NASA programs are identified together with current status and plans.

  1. MRAS state estimator for speed sensorless ISFOC induction motor drives with Luenberger load torque estimation.

    PubMed

    Zorgani, Youssef Agrebi; Koubaa, Yassine; Boussak, Mohamed

    2016-03-01

    This paper presents a novel method for estimating the load torque of a sensorless indirect stator flux oriented controlled (ISFOC) induction motor drive based on the model reference adaptive system (MRAS) scheme. As a matter of fact, this method is meant to inter-connect a speed estimator with the load torque observer. For this purpose, a MRAS has been applied to estimate the rotor speed with tuned load torque in order to obtain a high performance ISFOC induction motor drive. The reference and adjustable models, developed in the stationary stator reference frame, are used in the MRAS scheme in an attempt to estimate the speed of the measured terminal voltages and currents. The load torque is estimated by means of a Luenberger observer defined throughout the mechanical equation. Every observer state matrix depends on the mechanical characteristics of the machine taking into account the vicious friction coefficient and inertia moment. Accordingly, some simulation results are presented to validate the proposed method and to highlight the influence of the variation of the inertia moment and the friction coefficient on the speed and the estimated load torque. The experimental results, concerning to the sensorless speed with a load torque estimation, are elaborated in order to validate the effectiveness of the proposed method. The complete sensorless ISFOC with load torque estimation is successfully implemented in real time using a digital signal processor board DSpace DS1104 for a laboratory 3 kW induction motor.

  2. Type-1 and Type-2 Fuzzy Logic and Sliding-Mode Based Speed Control of Direct Torque and Flux Control Induction Motor Drives - A Comparative Study

    NASA Astrophysics Data System (ADS)

    Ramesh, Tejavathu; Panda, A. K.; Kumar, S. Shiva

    2013-08-01

    In this research study, the performance of direct torque and flux control induction motor drive (IMD) is presented using five different speed control techniques. The performance of IMD mainly depends on the design of speed controller. The PI speed controller requires precise mathematical model, continuous and appropriate gain values. Therefore, adaptive control based speed controller is desirable to achieve high-performance drive. The sliding-mode speed controller (SMSC) is developed to achieve continuous control of motor speed and torque. Furthermore, the type-1 fuzzy logic speed controller (T1FLSC), type-1 fuzzy SMSC and a new type-2 fuzzy logic speed controller are designed to obtain high performance, dynamic tracking behaviour, speed accuracy and also robustness to parameter variations. The performance of each control technique has been tested for its robustness to parameter uncertainties and load disturbances. The detailed comparison of different control schemes are carried out in a MATALB/Simulink environment at different speed operating conditions, such as, forward and reversal motoring under no-load, load and sudden change in speed.

  3. Forces and Torques on Rotating Spirochete Flagella

    NASA Astrophysics Data System (ADS)

    Yang, Jing; Huber, Greg; Wolgemuth, Charles W.

    2011-12-01

    Spirochetes are a unique group of motile bacteria that are distinguished by their helical or flat-wave shapes and the location of their flagella, which reside within the tiny space between the bacterial cell wall and the outer membrane (the periplasm). In Borrelia burgdorferi, rotation of the flagella produces cellular undulations that drive swimming. How these shape changes arise due to the forces and torques that act between the flagella and the cell body is unknown. It is possible that resistive forces come from friction or from fluid drag, depending on whether or not the flagella are in contact with the cell wall. Here, we consider both of these cases. By analyzing the motion of an elastic flagellum rotating in the periplasmic space, we show that the flagella are most likely separated from the bacterial cell wall by a lubricating layer of fluid. This analysis then provides drag coefficients for rotation and sliding of a flagellum within the periplasm.

  4. Forces and torques on rotating spirochete flagella.

    PubMed

    Yang, Jing; Huber, Greg; Wolgemuth, Charles W

    2011-12-23

    Spirochetes are a unique group of motile bacteria that are distinguished by their helical or flat-wave shapes and the location of their flagella, which reside within the tiny space between the bacterial cell wall and the outer membrane (the periplasm). In Borrelia burgdorferi, rotation of the flagella produces cellular undulations that drive swimming. How these shape changes arise due to the forces and torques that act between the flagella and the cell body is unknown. It is possible that resistive forces come from friction or from fluid drag, depending on whether or not the flagella are in contact with the cell wall. Here, we consider both of these cases. By analyzing the motion of an elastic flagellum rotating in the periplasmic space, we show that the flagella are most likely separated from the bacterial cell wall by a lubricating layer of fluid. This analysis then provides drag coefficients for rotation and sliding of a flagellum within the periplasm.

  5. Functional characterization of normal and degraded bovine meniscus: rate-dependent indentation and friction studies.

    PubMed

    Baro, Vincent J; Bonnevie, Edward D; Lai, Xiaohan; Price, Christopher; Burris, David L; Wang, Liyun

    2012-08-01

    The menisci are known to play important roles in normal joint function and the development of diseases such as osteoarthritis. However, our understanding of meniscus' load bearing and lubrication properties at the tissue level remains limited. The objective of this investigation was to characterize the site- and rate-dependency of the compressive and frictional responses of the meniscus under a spherical contact load. Using a custom testing device, indentation tests with rates of 1, 10, 25, 50, and 100μm/s were performed on bovine medial meniscus explants, which were harvested from five locations including the femoral apposing surface at the anterior, central, and posterior locations and the central portion at the deep layer and at the tibial apposing surface (n=5 per location). Sliding tests with rates of 0.05, 0.25, 1, and 5mm/s were performed on the central femoral aspect and central tibial aspect superficial samples (n=6 per location). A separate set of superficial samples were subjected to papain digestion and tested prior to and post treatment. Our findings are: i) the Hertz contact model can be used to fit the force responses of meniscus under the conditions tested; ii) the anterior region is significantly stiffer than the posterior region and tissue modulus does not vary with tissue depth at the central region; iii) the friction coefficient of the meniscus is on the order of 0.02 under migratory contacts and the femoral apposing surface tends to show lower friction than the tibial apposing surface; iv) the meniscus exhibits increased modulus and lubrication with increased indentation and sliding rates; v) matrix degradation impedes the functional load support and lubrication properties of the tissue. The site- and rate-dependent properties of the meniscus may be attributed to spatial variations of the tissue's biphasic structure. These properties substantiate the role of the meniscus as one of the important bearing surfaces of the knee. These data

  6. Sliding friction study of the oscillating translational motion for steel on PA66 and PA46 type materials

    NASA Astrophysics Data System (ADS)

    Lates, M. T.; Velicu, R. G.; Papuc, R.

    2016-08-01

    The paper presents the study of the friction, by using tests, in the sliding translational oscillating motion of the steel on PA46 relative to the steel on PA66 type materials by considering as variables the testing parameters as: the load, the velocity and the operating temperature. The paper starts with a study of the literature and, according to that, presents the main conclusions regarding the sliding friction of the steel on PA66 and PA46 type materials and identifies the lacks of the results. The tests are performed on an oscillating motion type tribometer module. First, it is made a running-in program, for each of the materials, at 25 and 90°C, a load of 5 N and a frequency of 1 Hz for one hour; after that, there are performed tests at 90°C and 120°C, at loads of 3 N, 5 N, 7 N and at frequencies at 0.25 Hz, 5 Hz and 1 Hz. The results are presented for the PA46 type material relative to the PA66 material. The conclusions indicate in which conditions and with which advantages are used the PA66 and PA46 polyamides in the case of oscillating translational motions.

  7. Muscle torque preservation and physical activity in individuals with stroke

    PubMed Central

    Eng, Janice J.; Lomaglio, Melanie J.; MacIntyre, Donna L.

    2011-01-01

    Background A greater percent loss of concentric versus eccentric muscle torque (i.e., relative eccentric muscle torque preservation) has been reported in the paretic limb of individuals with stroke and has been attributed to hypertonia and/or co-contractions. Stroke provides a unique condition for examining mechanisms underlying eccentric muscle preservation because both limbs experience similar amounts of general physical activity, but the paretic side is impaired directly by the brain lesion. Purpose The purpose of this study was to determine 1) whether eccentric preservation also exists in the nonparetic limb and 2) the relationship of eccentric or concentric torque preservation with physical activity in stroke. We hypothesized that the nonparetic muscles would demonstrate eccentric muscle preservation, which would suggest that non-neural mechanisms may also contribute to its relative preservation. Methods Eighteen stroke and 18 healthy control subjects (age and sex matched) completed a physical activity questionnaire. Maximum voluntary concentric and eccentric joint torques of the ankle, knee and hip flexors and extensors were measured using an isokinetic dynamometer at 30°/s for the paretic and nonparetic muscles. Relative concentric and eccentric peak torque preservation were expressed as a percentage of control subject torque. Results Relative eccentric torque was higher (more preserved) than relative concentric torque for paretic, as well as nonparetic muscles. Physical activity correlated with paretic (r=0.640, p=0.001) and nonparetic concentric torque preservation (r=0.508, p=0.009), but not with eccentric torque preservation for either leg. Conclusions The relative preservation of eccentric torque in the nonparetic muscles suggest a role of non-neural mechanisms and could also explain the preservation observed in other chronic health conditions. Loss of concentric, but not eccentric muscle torque was related to physical inactivity in stroke. PMID

  8. Theoretical and numerical studies of constitutive relations for frictional granular flow

    SciTech Connect

    Gray, D.; Stiles, J.M.; Celik, I.

    1991-01-01

    The purpose of this report is to propose a suitable constitutive relationship for the three dimensional frictional flow of a cohesionless granular material and to incorporate at least a qualitatively similar constitutive relationship in the computer program TEACH. TEACH is a hydrodynamic code developed by Dr. A.D. Gosman at Imperial College, London, for the simulation of incompressible two dimensional steady duct flows. Simulations performed for this report assumed that the material was flowing under two dimensional plane strain conditions. The numerical algorithm implemented by TEACH is based upon the control volume finite difference principles developed by Spalding and Patankar (Patankar, 1980). TEACH's program structure facilitates the implementation of a non-Newtonian constitutive relationship of the type proposed below. 32 refs., 38 figs., 2 tabs.

  9. Internal friction study of YSr 2Cu 3- xFe xO 7- δ

    NASA Astrophysics Data System (ADS)

    Ying, X. N.; Wang, Y. N.

    2002-09-01

    The internal friction of YSr 2Cu 3- xFe xO 7- δ ( x=0.35, 0.5 and 1) ceramics was measured by the vibrating-reed method from liquid nitrogen temperature to room temperature at kilohertz frequencies. Two mechanical energy dissipation peaks appeared around 200 and 250 K (labeled as P4 and P3, respectively) for x=0.35 sample. With increasing Fe content, P4 shifts toward higher temperature and P3 is depressed. These results provide more information on their origin of them in YBa 2Cu 3O 7- δ (Y123) and show a crucial relationship between P4 peak and the CuO x chain layers.

  10. Vibrational lifetimes of hydrogen on lead films: An ab initio molecular dynamics with electronic friction (AIMDEF) study

    SciTech Connect

    Saalfrank, Peter; Juaristi, J. I.

    2014-12-21

    Using density functional theory and Ab Initio Molecular Dynamics with Electronic Friction (AIMDEF), we study the adsorption and dissipative vibrational dynamics of hydrogen atoms chemisorbed on free-standing lead films of increasing thickness. Lead films are known for their oscillatory behaviour of certain properties with increasing thickness, e.g., energy and electron spillout change in discontinuous manner, due to quantum size effects [G. Materzanini, P. Saalfrank, and P. J. D. Lindan, Phys. Rev. B 63, 235405 (2001)]. Here, we demonstrate that oscillatory features arise also for hydrogen when chemisorbed on lead films. Besides stationary properties of the adsorbate, we concentrate on finite vibrational lifetimes of H-surface vibrations. As shown by AIMDEF, the damping via vibration-electron hole pair coupling dominates clearly over the vibration-phonon channel, in particular for high-frequency modes. Vibrational relaxation times are a characteristic function of layer thickness due to the oscillating behaviour of the embedding surface electronic density. Implications derived from AIMDEF for frictional many-atom dynamics, and physisorbed species will also be given.

  11. Stochastic distribution of the required coefficient of friction for level walking--an in-depth study.

    PubMed

    Chang, Wen-Ruey; Matz, Simon; Chang, Chien-Chi

    2012-01-01

    This study investigated the stochastic distribution of the required coefficient of friction (RCOF) which is a critical element for estimating slip probability. Fifty participants walked under four walking conditions. The results of the Kolmogorov-Smirnov two-sample test indicate that 76% of the RCOF data showed a difference in distribution between both feet for the same participant under each walking condition; the data from both feet were kept separate. The results of the Kolmogorov-Smirnov goodness-of-fit test indicate that most of the distribution of the RCOF appears to have a good match with the normal (85.5%), log-normal (84.5%) and Weibull distributions (81.5%). However, approximately 7.75% of the cases did not have a match with any of these distributions. It is reasonable to use the normal distribution for representation of the RCOF distribution due to its simplicity and familiarity, but each foot had a different distribution from the other foot in 76% of cases. The stochastic distribution of the required coefficient of friction (RCOF) was investigated for use in a statistical model to improve the estimate of slip probability in risk assessment. The results indicate that 85.5% of the distribution of the RCOF appears to have a good match with the normal distribution.

  12. The Plunge Phase of Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Nunes, Arthur; McClure, John; Avila, Ricardo

    2005-01-01

    Torque and plunge force during the initial plunge phase in Friction Stir Welding were measured for a 0.5 inch diameter pin entering a 2219 aluminum alloy plate. Weld structures were preserved for metallographic observation by making emergency stops at various plunge depths. The plunging pin tool is seen to be surrounded by a very fine grained layer of recrystallized metal extending substantially below the bottom of the pin, implying a shear interface in the metal below and not at the tool-metal interface. Torque and plunge force during the initial plunge phase in Friction Stir Welding are calculated from a straight forward model based on a concept to plastic flow in the vicinity of the plunging tool compatible with structural observations. The concept: a disk of weld metal seized to and rotating with the bottom of the pin is squeezed out laterally by the plunge force and extruded upwards in a hollow cylinder around the tool. As the shear surface separating rotating disk from stationary weld metal engulfs fresh metal, the fresh metal is subjected to severe shear deformation, which results in its recrystallization. Encouraging agreement between computations and measured torque and plunge force is obtained.

  13. The Plunge Phase of Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Nunes, Arthur; McClure, John; Avila, Ricardo

    2005-01-01

    Torque and plunge force during the initial plunge phase in Friction Stir Welding were measured for a 0.5 inch diameter pin entering a 2219 aluminum alloy plate. Weld structures were preserved for metallographic observation by making emergency stops at various plunge depths. The plunging pin tool is seen to be surrounded by a very fine grained layer of recrystallized metal extending substantially below the bottom of the pin, implying a shear interface in the metal below and not at the tool-metal interface. Torque and plunge force during the initial plunge phase in Friction Stir Welding are calculated from a straight forward model based on a concept to plastic flow in the vicinity of the plunging tool compatible with structural observations. The concept: a disk of weld metal seized to and rotating with the bottom of the pin is squeezed out laterally by the plunge force and extruded upwards in a hollow cylinder around the tool. As the shear surface separating rotating disk from stationary weld metal engulfs fresh metal, the fresh metal is subjected to severe shear deformation, which results in its recrystallization. Encouraging agreement between computations and measured torque and plunge force is obtained.

  14. Friction at small displacement.

    NASA Technical Reports Server (NTRS)

    Campbell, W. E.; Aronstein, J.

    1972-01-01

    Low contact resistance between metal surfaces is often observed in spite of interposed lubricant and/or oxide films. To study this effect an apparatus is used with which normal force and tangential microdisplacement are applied between a small lead rider and a gold flat with various surface film conditions. Under nonoxidized and nonlubricated conditions, and with either oxide or stearic acid lubricant film alone, friction is high and contact resistance is low. With oxide and lubricant together, friction is much lower and slide is smooth, but contact resistance remains low and Ohm's law is obeyed. The results are consistent with Greenwood's theory of contact resistance for a cluster of minute metallic contact spots within the load-supporting area. The contact resistance of such a cluster is indistinguishable, for practical purposes, from that given by complete metallic contact.

  15. Quantum tunneling with friction

    NASA Astrophysics Data System (ADS)

    Tokieda, M.; Hagino, K.

    2017-05-01

    Using the phenomenological quantum friction models introduced by P. Caldirola [Nuovo Cimento 18, 393 (1941), 10.1007/BF02960144] and E. Kanai [Prog. Theor. Phys. 3, 440 (1948), 10.1143/ptp/3.4.440], M. D. Kostin [J. Chem. Phys. 57, 3589 (1972), 10.1063/1.1678812], and K. Albrecht [Phys. Lett. B 56, 127 (1975), 10.1016/0370-2693(75)90283-X], we study quantum tunneling of a one-dimensional potential in the presence of energy dissipation. To this end, we calculate the tunneling probability using a time-dependent wave-packet method. The friction reduces the tunneling probability. We show that the three models provide similar penetrabilities to each other, among which the Caldirola-Kanai model requires the least numerical effort. We also discuss the effect of energy dissipation on quantum tunneling in terms of barrier distributions.

  16. Internal friction in solids

    NASA Astrophysics Data System (ADS)

    Wert, C. A.

    1986-09-01

    Study of the damping of vibrations in solids has developed into an acoustical spectroscopy which can elucidate many geometrical, thermodynamic, and kinetic characteristics of solids. In a relatively brief 15 years, between 1935 and 1950, Clarence Zener contributed physical insight, analytical procedures, and suggestions for important topics which persist even today. This review traces development of ideas and techniques from that period to the present. It uses chiefly as examples the flow of heat across vibrating reeds (and the corollary Gorsky effect), the Snoek effect in interstitial alloys, and the Zener effect in substitutional alloys. Internal friction of molecular reorientation in polymeric solids is described. Finally, the joint use of internal friction and dielectric loss is demonstrated to provide additional insight into molecular configurations in solids which are both mechanical and electric dipoles.

  17. High torque CMG rotary actuator

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A high torque rotary actuator was designed, fabricated and tested. Exacting requirements were placed on performance and physical characteristics of the actuator, particularly in the area of stiffness, backlash, torque ripple, power and size and weight. A brushless dc motor was designed utilizing rare earth magnets to meet power and weight requirements. A 26-to-1 planetary roller gear transmission was selected to best meet overall requirements. The transmission utilizes parallel gear and roller paths to minimize backlash and breakaway torque.

  18. Influence of joint angle on EMG-torque model during constant-posture, quasi-constant-torque contractions.

    PubMed

    Liu, Pu; Liu, Lukai; Martel, Francois; Rancourt, Denis; Clancy, Edward A

    2013-10-01

    Electromyogram (EMG)-torque modeling is of value to many different application areas, including ergonomics, clinical biomechanics and prosthesis control. One important aspect of EMG-torque modeling is the ability to account for the joint angle influence. This manuscript describes an experimental study which relates the biceps/triceps surface EMG of 12 subjects to elbow torque at seven joint angles (spanning 45-135°) during constant-posture, quasi-constant-torque contractions. Advanced EMG amplitude (EMGσ) estimation processors (i.e., whitened, multiple-channel) were investigated and three non-linear EMGσ-torque models were evaluated. When EMG-torque models were formed separately for each of the seven distinct joint angles, a minimum "gold standard" error of 4.23±2.2% MVCF90 resulted (i.e., error relative to maximum voluntary contraction at 90° flexion). This model structure, however, did not directly facilitate interpolation across angles. The best model which did so (i.e., parameterized the angle dependence), achieved an error of 4.17±1.7% MVCF90. Results demonstrated that advanced EMGσ processors lead to improved joint torque estimation. We also contrasted models that did vs. did not account for antagonist muscle co-contraction. Models that accounted for co-contraction estimated individual flexion muscle torques that were ∼29% higher and individual extension muscle torques that were ∼68% higher.

  19. Low cost friction seismic base-isolation of residential new masonry buildings in developing countries: A small masonry house case study

    NASA Astrophysics Data System (ADS)

    Habieb, A. B.; Milani, G.; Tavio, T.; Milani, F.

    2017-07-01

    A Finite element model was established to examine performance of a low-cost friction base-isolation system in reducing seismic vulnerability of rural buildings. This study adopts an experimental investigation of the isolation system which was conducted in India. Four friction isolation interfaces, namely, marble-marble, marble-high-density polyethylene, marble-rubber sheet, and marble-geosynthetic were involved. Those interfaces differ in static and dynamic friction coefficient obtained through previous research. The FE model was performed based on a macroscopic approach and the masonry wall is assumed as an isotropic element. In order to observe structural response of the masonry house, elastic and plastic parameters of the brick wall were studied. Concrete damage plasticity (CDP) model was adopted to determine non-linear behavior of the brick wall. The results of FE model shows that involving these friction isolation systems could much decrease response acceleration at roof level. It was found that systems with marble-marble and marble-geosynthetic interfaces reduce the roof acceleration up to 50% comparing to the system without isolation. Another interesting result is there was no damage appearing in systems with friction isolation during the test. Meanwhile a severe failure was clearly visible for a system without isolation.

  20. Friction microprobe investigation of particle layer effects on sliding friction

    SciTech Connect

    Blau, P.J.

    1993-01-01

    Interfacial particles (third-bodies), resulting from wear or external contamination, can alter and even dominate the frictional behavior of solid-solid sliding in the absence of effective particle removal processes (e.g., lubricant flow). A unique friction microprobe, developed at Oak Ridge National Laboratory, was used to conduct fine- scale friction studies using 1.0 mm diameter stainless steel spheres sliding on several sizes of loose layers of fine aluminum oxide powders on both aluminum and alumina surfaces. Conventional, pin-on-disk experiments were conducted to compare behavior with the friction microprobe results. The behavior of the relatively thick particle layers was found to be independent of the nature of underlying substrate, substantiating previous work by other investigators. The time-dependent behavior of friction, for a spherical macrocontact starting from rest, could generally be represented by a series of five rather distinct phases involving static compression, slider breakaway, transition to steady state, and dynamic layer instability. A friction model for the steady state condition, which incorporates lamellar powder layer behavior, is described.

  1. Performances improvements and torque ripple minimization for VSI fed induction machine with direct control torque.

    PubMed

    Abdelli, R; Rekioua, D; Rekioua, T

    2011-04-01

    This paper describes a torque ripple reduction technique with constant switching frequency for direct torque control (DTC) of an induction motor (IM). This method enables a minimum torque ripple control. In order to obtain a constant switching frequency and hence a torque ripple reduction, we propose a control technique for IM. It consists of controlling directly the electromagnetic torque by using a modulated hysteresis controller. The design methodology is based on space vector modulation (SVM) of electrical machines with digital vector control. MATLAB simulations supported with experimental study are used. The simulation and experimental results of this proposed algorithm show an adequate dynamic to IM; however, the research can be extended to include synchronous motors as well. The implementation of the proposed algorithm is described. It doesn't require any PI controller in the torque control loop. The hardware inverter is controlled digitally using a Texas Instruments TMS320F240 digital signal processor (DSP) with composed C codes for generating the required references. The results obtained from simulation and experiments confirmed the feasibility of the proposed strategy compared to the conventional one.

  2. Single-interface Casimir torque

    NASA Astrophysics Data System (ADS)

    Morgado, Tiago A.; Silveirinha, Mário G.

    2016-10-01

    A different type of Casimir-type interaction is theoretically predicted: a single-interface torque at a junction of an anisotropic material and a vacuum or another material system. The torque acts to reorient the polarizable microscopic units of the involved materials near the interface, and thus to change the internal structure of the materials. The single-interface torque depends on the zero-point energy of the interface localized and extended modes. Our theory demonstrates that the single-interface torque is essential to understand the Casimir physics of material systems with anisotropic elements and may influence the orientation of the director of nematic liquid crystals.

  3. Variable Torque Prescription: State of Art.

    PubMed Central

    Lacarbonara, Mariano; Accivile, Ettore; Abed, Maria R.; Dinoi, Maria Teresa; Monaco, Annalisa; Marzo, Giuseppe; Capogreco, Mario

    2015-01-01

    The variable prescription is widely described under the clinical aspect: the clinics is the result of the evolution of the state-of-the-art, aspect that is less considered in the daily literature. The state-of-the-art is the key to understand not only how we reach where we are but also to learn how to manage propely the torque, focusing on the technical and biomechanical purpos-es that led to the change of the torque values over time. The aim of this study is to update the clinicians on the aspects that affect the torque under the biomechanical sight, helping them to understand how to managing it, following the “timeline changes” in the different techniques so that the Variable Prescription Orthodontic (VPO) would be a suitable tool in every clinical case. PMID:25674173

  4. Reduced elbow extension torque during vibrations.

    PubMed

    Friesenbichler, Bernd; Coza, Aurel; Nigg, Benno M

    2012-08-31

    Impact sports and vibration platforms trigger vibrations within soft tissues and the skeleton. Although the long-term effects of vibrations on the body have been studied extensively, the acute effects of vibrations are little understood. This study determined the influence of acute vibrations at different frequencies and elbow angles on maximal isometric elbow extension torque and muscle activity. Vibrations were generated by a pneumatic vibrator attached to the lever of a dynamometer, and were applied on the forearm of 15 healthy female subjects. The subjects were instructed to push maximally against the lever at three different elbow angles, while extension torque and muscle activity were quantified and compared between vibration and non-vibration (control) conditions. A change in vibration frequency had no significant effects on torque and muscle activity although vibrations in general decreased the maximal extension torque relative to the control by 1.8% (±5.7%, p>0.05), 7.4% (±7.9%, p<0.01), and 5.0% (±8.2%, p<0.01) at elbow angles of 60°, 90°, and 120°, respectively. Electromyographic activity increased significantly between ∼30% and 40% in both triceps and biceps with vibrations. It is speculated that a similar increase in muscle activity between agonist and antagonist, in combination with an unequal increase in muscle moment arms about the elbow joint, limit the maximal extension torque during exposure to vibrations. This study showed that maximal extension torque decreased during vibration exposure while muscle activity increased and suggests that vibrations may be counterproductive during activities requiring maximal strength but potentially beneficial for strength training.

  5. Friction and wear characteristics of polymer-matrix friction materials reinforced by brass fibers

    NASA Astrophysics Data System (ADS)

    Xian, Jia; Xiaomei, Ling

    2004-10-01

    This study is an investigation of friction materials reinforced by brass fibers, and the influence of the organic adhesion agent, cast-iron debris, brass fiber, and graphite powder on the friction-wear characteristics. Friction and wear testing was performed on a block-on-ring tribometer (MM200). The friction pair consisted of the friction materials and gray cast iron (HT200). The worn surface layers formed by sliding dry friction were examined using scanning electron microscopy (SEM), x-ray energy-dispersive analysis (EDX), and differential thermal analysis-thermogravimetric analysis (DTA-TAG). The experimental results showed that the friction coefficient and the wear loss of the friction materials increased with the increase of cast-iron debris, but decreased with the increase of graphite powder content. The friction coefficient and wear loss also increased slightly when the mass fraction of brass fibers was over 19%. When the mass fraction of organic adhesion agent was about 10 11%, the friction materials had excellent friction-wear performance. Surface heating from friction pyrolyzes the organic ingredient in the worn surface layer of the friction materials, with the pyrolysis depth being about 0.5 mm. The surface layers were rich in iron but poor in copper, and they were formed on the worn surface of the friction material. When the mass fraction of brass fibers was about 16 20%, the friction materials possessed better wear resistance and a copper transfer film formed on the friction surface of counterpart. Fatigue cracks were also found in the worn surface of the gray cast-iron counterpart, with fatigue wear being the prevailing wear mechanism.

  6. Experimental study and modeling of atomic-scale friction in zigzag and armchair lattice orientations of MoS2

    PubMed Central

    Li, Meng; Shi, Jialin; Liu, Lianqing; Yu, Peng; Xi, Ning; Wang, Yuechao

    2016-01-01

    Abstract Physical properties of two-dimensional materials, such as graphene, black phosphorus, molybdenum disulfide (MoS2) and tungsten disulfide, exhibit significant dependence on their lattice orientations, especially for zigzag and armchair lattice orientations. Understanding of the atomic probe motion on surfaces with different orientations helps in the study of anisotropic materials. Unfortunately, there is no comprehensive model that can describe the probe motion mechanism. In this paper, we report a tribological study of MoS2 in zigzag and armchair orientations. We observed a characteristic power spectrum and friction force values. To explain our results, we developed a modified, two-dimensional, stick-slip Tomlinson model that allows simulation of the probe motion on MoS2 surfaces by combining the motion in the Mo layer and S layer. Our model fits well with the experimental data and provides a theoretical basis for tribological studies of two-dimensional materials. PMID:27877869

  7. Interdisciplinary study of the Mw8.3 Illapel earthquake (Chile): Rheology and frictional property of the central Chile megathrust

    NASA Astrophysics Data System (ADS)

    Poli, Piero; Frank, William; Maksymowicz, Andrei; Ruiz, Sergio; Perfettini, Hugo

    2017-04-01

    We present an interdisciplinary study for the magnitude 8.3 Illapel earthquake, which stroke the central Chile in September 2015. Our work includes historical seismicity, geological, geodetic and seismological information, and aim at deriving a quantitative seismotectonic model for the study area. We first analyze the historical seismicity, magnetic data, the bathymetry and geodetic coupling, to recognize creeping areas, located all around the M8.3 asperity. The comparison of the recognized creeping zones with earthquake swarm activity and repeating earthquakes occurring before and after the main shock, suggests that several slow slip episodes took place in the 20 years before the main shock. The same areas are recognized as barrier for the propagation of the Illapel earthquake, and accommodated the large afterslip. By combination of geological and seismological data, we recognize these creeping areas as being fluid saturated fracture zones, thus posing constrains on the rheology of the plate interface. We then perform a detailed study of aftershocks activity, to study the postseismic slip. We first build a high-resolution aftershock catalog, by using template-matching technique. We then make use of the rate and state formalism to fit the spatiotemporal evolution of aftershocks, and thus deriving quantitative information about the frictional properties of the plate interface. This novel approach is validated with GPS data, and reveals strong variation of frictional properties along the plate interface, in agreement with the presence of fluid saturated regions. These regions modulated the stress evolution before and after the main shock, and controlled the dynamic propagation the Illapel earthquake. Our study reveals the importance of interdisciplinary study of subduction zones, in providing detailed information about small-scale coupling, which can offer fundamental insights about the earthquake cycle and hazard.

  8. Gimballed Shoulders for Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Carter, Robert; Lawless, Kirby

    2008-01-01

    In a proposed improvement of tooling for friction stir welding, gimballed shoulders would supplant shoulders that, heretofore, have been fixedly aligned with pins. The proposal is especially relevant to self-reacting friction stir welding. Some definitions of terms, recapitulated from related prior NASA Tech Briefs articles, are prerequisite to a meaningful description of the proposed improvement. In friction stir welding, one uses a tool that includes (1) a rotating shoulder on top (or front) of the workpiece and (2) a pin that rotates with the shoulder and protrudes from the shoulder into the depth of the workpiece. In conventional friction stir welding, the main axial force exerted by the tool on the workpiece is reacted through a ridged backing anvil under (behind) the workpiece. When conventional friction stir welding is augmented with an auto-adjustable pin-tool (APT) capability, the depth of penetration of the pin into the workpiece is varied in real time by a position- or forcecontrol system that extends or retracts the pin as needed to obtain the desired effect. In self-reacting (also known as self-reacted) friction stir welding as practiced heretofore, there are two shoulders: one on top (or front) and one on the bottom (or back) of the workpiece. In this case, a threaded shaft protrudes from the tip of the pin to beyond the back surface of the workpiece. The back shoulder is held axially in place against tension by a nut on the threaded shaft. Both shoulders rotate with the pin and remain aligned coaxially with the pin. The main axial force exerted on the workpiece by the tool and front shoulder is reacted through the back shoulder and the threaded shaft into the friction-stir-welding machine head, so that a backing anvil is no longer needed. A key transmits torque between the bottom shoulder and the threaded shaft, so that the bottom shoulder rotates with the shaft. This concludes the prerequisite definitions of terms.

  9. Torque feedback transmission

    SciTech Connect

    Whalen, B.L.

    1987-01-20

    This patent describes an infinitely variable transmission of inline configuration for interconnecting a primer mover with a load for clutch free operation in a range of speed including hydraulic neutral comprising: a. planetary gear train means having a ring gear, planetary gears supported by a planetary gear carrier, and a sun gear, the sun gear being connected mechanically to the load, output shaft means for joining the sun gear to the load; b. variable torque feedback means comprising (i) a variable displacement hydraulic motor whose rotor shaft is in line with the output shaft means and drivingly connected to the prime mover and the planetary gear carrier during the full range of operation of the transmission, and (ii) a fixed displacement hydraulic pump connected hydraulically to the motor, the rotor shaft of the pump being connected mechanically to the ring gear and being axially displaced from the output shaft means; c. means for adjusting the displacement volume within the hydraulic motor for controlling the torque feedback in the transmission to provide infinitely variable coupling between the prime mover and the load over the full range of the transmission including hydraulic neutral; d. a speed reducer between the primer mover and the motor rotor shaft and a speed multiplier between the sun gear and the load; and e. mechanical transmission assembly means between the speed multiplier and the load in line with the motor rotor shaft and the output shaft means for providing selection of drive, reverse, park, and neutral.

  10. High Speed Ice Friction

    NASA Astrophysics Data System (ADS)

    Seymour-Pierce, Alexandra; Sammonds, Peter; Lishman, Ben

    2014-05-01

    Many different tribological experiments have been run to determine the frictional behaviour of ice at high speeds, ostensibly with the intention of applying results to everyday fields such as winter tyres and sports. However, experiments have only been conducted up to linear speeds of several metres a second, with few additional subject specific studies reaching speeds comparable to these applications. Experiments were conducted in the cold rooms of the Rock and Ice Physics Laboratory, UCL, on a custom built rotational tribometer based on previous literature designs. Preliminary results from experiments run at 2m/s for ice temperatures of 271 and 263K indicate that colder ice has a higher coefficient of friction, in accordance with the literature. These results will be presented, along with data from further experiments conducted at temperatures between 259-273K (in order to cover a wide range of the temperature dependent behaviour of ice) and speeds of 2-15m/s to produce a temperature-velocity-friction map for ice. The effect of temperature, speed and slider geometry on the deformation of ice will also be investigated. These speeds are approaching those exhibited by sports such as the luge (where athletes slide downhill on an icy track), placing the tribological work in context.

  11. Tidal torques: a critical review of some techniques

    NASA Astrophysics Data System (ADS)

    Efroimsky, Michael; Williams, James G.

    2009-07-01

    We review some techniques employed in the studies of torques due to bodily tides, and explain why the MacDonald formula for the tidal torque is valid only in the zeroth order of the eccentricity divided by the quality factor, while its time-average is valid in the first order. As a result, the formula cannot be used for analysis in higher orders of e/ Q. This necessitates some corrections in the current theory of tidal despinning and libration damping (though the qualitative conclusions of that theory may largely remain correct). We demonstrate that in the case when the inclinations are small and the phase lags of the tidal harmonics are proportional to the frequency, the Darwin-Kaula expansion is equivalent to a corrected version of the MacDonald method. The latter method rests on the assumption of existence of one total double bulge. The necessary correction to MacDonald’s approach would be to assert (following Singer, Geophys. J. R. Astron. Soc., 15: 205-226, 1968) that the phase lag of this integral bulge is not constant, but is proportional to the instantaneous synodal frequency (which is twice the difference between the evolution rates of the true anomaly and the sidereal angle). This equivalence of two descriptions becomes violated by a nonlinear dependence of the phase lag upon the tidal frequency. It remains unclear whether it is violated at higher inclinations. Another goal of our paper is to compare two derivations of a popular formula for the tidal despinning rate, and emphasise that both are strongly limited to the case of a vanishing inclination and a certain (sadly, unrealistic) law of frequency-dependence of the quality factor Q—the law that follows from the phase lag being proportional to frequency. One of the said derivations is based on the MacDonald torque, the other on the Darwin torque. Fortunately, the second approach is general enough to accommodate both a finite inclination and the actual rheology. We also address the rheological models

  12. Nano-friction behavior of phosphorene

    NASA Astrophysics Data System (ADS)

    Bai, Lichun; Liu, Bo; Srikanth, Narasimalu; Tian, Yu; Zhou, Kun

    2017-09-01

    Nano-friction of phosphorene plays a significant role in affecting the controllability and efficiency of applying strain engineering to tune its properties. So far, the friction behavior of phosphorene has not been studied. This work studies the friction of single-layer and bilayer phosphorene on an amorphous silicon substrate by sliding a rigid tip. For the single-layer phosphorene, it is found that its friction is highly anisotropic, i.e. the friction is larger along the armchair direction than that along the zigzag direction. Moreover, pre-strain of the phosphorene also exhibits anisotropic effects. The friction increases with the pre-strain along the zigzag direction, but decreases with that along the armchair direction. Furthermore, the strong adhesion between the phosphorene and its substrate increases the friction between the phosphorene and the tip. For bilayer phosphorene, its friction highly depends on its stacking mode, which determines the contact interface with a commensurate or incommensurate pattern. This friction behavior is quite unique and greatly differs from that of graphene and molybdenum disulfide. Detailed analysis reveals that this behavior results from the combination effect of the friction contact area, the potential-energy profile of phosphorene, and its unique elongation.

  13. Nano-friction behavior of phosphorene.

    PubMed

    Bai, Lichun; Liu, Bo; Srikanth, Narasimalu; Tian, Yu; Zhou, Kun

    2017-09-01

    Nano-friction of phosphorene plays a significant role in affecting the controllability and efficiency of applying strain engineering to tune its properties. So far, the friction behavior of phosphorene has not been studied. This work studies the friction of single-layer and bilayer phosphorene on an amorphous silicon substrate by sliding a rigid tip. For the single-layer phosphorene, it is found that its friction is highly anisotropic, i.e. the friction is larger along the armchair direction than that along the zigzag direction. Moreover, pre-strain of the phosphorene also exhibits anisotropic effects. The friction increases with the pre-strain along the zigzag direction, but decreases with that along the armchair direction. Furthermore, the strong adhesion between the phosphorene and its substrate increases the friction between the phosphorene and the tip. For bilayer phosphorene, its friction highly depends on its stacking mode, which determines the contact interface with a commensurate or incommensurate pattern. This friction behavior is quite unique and greatly differs from that of graphene and molybdenum disulfide. Detailed analysis reveals that this behavior results from the combination effect of the friction contact area, the potential-energy profile of phosphorene, and its unique elongation.

  14. Sensitivity study of forecasted aftershock seismicity based on Coulomb stress calculation and rate- and state-dependent frictional response (Invited)

    NASA Astrophysics Data System (ADS)

    Cocco, M.; Hainzl, S.; Woessner, J.; Enescu, B.; Catalli, F.; Lombardi, A.

    2009-12-01

    It is nowadays well established that both Coulomb stress perturbations and the rate- and state-dependent frictional response of fault populations are needed to model the spatial and temporal evolution of seismicity. This represents the most popular physics-based approach to forecast the rate of earthquake production and its performances have to be verified with respect to alternative statistical methods. Despite the numerous applications of Coulomb stress interactions, a rigorous validation of the forecasting capabilities is still missing. In this work, we use the Dieterich (1994) physics-based approach to simulate the spatio-temporal evolution of seismicity caused by stress changes applied to an infinite population of nucleating patches modelled through a rate- and state-dependent friction law. According to this model, seismicity rate changes depend on the amplitude of stress perturbation, the physical constitutive properties of faults (represented by the parameter Aσ), the stressing rate and the background seismicity rate of the study area. In order to apply this model in a predictive manner, we need to understand the variability of input physical model parameters and their correlations. We first discuss the impact of uncertainties in model parameters and, in particular, in computed coseismic stress perturbations on the seismicity rate changes forecasted through the frictional model. We aim to understand how the variability of Coulomb stress changes affects the correlation between predicted and observed changes in the rate of earthquake production. We use the aftershock activity following the 1992 M 7.3 Landers (California) earthquake as one of our case studies. We analyze the variability of stress changes resulting from the use of different published slip distributions. We find that the standard deviation of the uncertainty is of the same size as the absolute stress change and that their ratio, the coefficient of variation (CV), is approximately constant in

  15. Experimental Study of Stationary Shoulder Friction Stir Welded 7N01-T4 Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Ji, S. D.; Meng, X. C.; Li, Z. W.; Ma, L.; Gao, S. S.

    2016-03-01

    Stationary shoulder friction stir welding (SSFSW) was successfully used to weld 7N01-T4 aluminum alloy with the thickness of 4 mm. Effects of welding speed on formations, microstructures, and mechanical properties of SSFSW joint were investigated in detail. Under a constant rotational velocity of 2000 rpm, defect-free joints with smooth surface and small flashes are attained using welding speeds of 20 and 30 mm/min. Macrostructure of nugget zone in cross section presents kettle shape. For 7N01-T4 aluminum alloy with low thermal conductivity, decreasing welding speed is beneficial to surface formation of joint. With the increase of welding speed, mechanical properties of joints firstly increase and then decrease. When the welding speed is 30 mm/min, the tensile strength and elongation of joint reach the maximum values of 379 MPa and 7.9%, equivalent to 84.2 and 52% of base material, respectively. Fracture surface morphology exhibits typical ductile fracture. In addition, the minimum hardness value of joint appears in the heat affected zone.

  16. An Experimental Study on Normal Stress and Shear Rate Dependency of Basic Friction Coefficient in Dry and Wet Limestone Joints

    NASA Astrophysics Data System (ADS)

    Mehrishal, Seyedahmad; Sharifzadeh, Mostafa; Shahriar, Korosh; Song, Jae-Jon

    2016-12-01

    Among all parameters that affect the friction of rocks, variable normal stress and slip rate are the most important second-order parameters. The shear-rate- and normal-stress-dependent friction behavior of rock discontinuities may significantly influence the dynamic responses of rock mass. In this research, two limestone rock types, which were travertine and onyx marble with slickenside and grinded #80 surfaces, were prepared and CNL direct shear tests were performed on the joints under various shear conditions. The shearing rate varied from 0.1 to 50 mm/min under different normal stresses (from 2 to 30 % of UCS) in both dry and wet conditions. Experiments showed that the friction coefficient of slickensided and ground #80 surfaces of limestone increased with the increasing shear velocity and decreased with the increasing normal stress. Micro-asperity interlocking between ground #80 surfaces showed higher wear and an increase in friction coefficient ( µ) compared to slickensided surfaces. Slickensided samples with moist surfaces showed an increase in the coefficient of friction compared to dry surfaces; however, on ground #80 surfaces, the moisture decreased the coefficient of friction to a smaller value. Slickenside of limestone typically slides stably in a dry condition and by stick-slip on moist surfaces. The observed shear-rate- and normal-stress-dependent friction behavior can be explained by a similar framework to that of the adhesion theory of friction and a friction mechanism that involves the competition between microscopic dilatant slip and surface asperity deformation. The results have important implications for understanding the behavior of basic and residual friction coefficients of limestone rock surfaces.

  17. Effect of Friction Welding Condition on Joining Phenomena and Tensile Strength of Friction Welded joint between Pure Copper and Low Carbon Steel

    NASA Astrophysics Data System (ADS)

    Kimura, Masaaki; Kusaka, Masahiro; Kaizu, Koichi; Fuji, Akiyoshi

    This paper describes the effect of the friction welding condition on the joining phenomena and tensile strength of friction welded joint between pure copper (OFC) and low carbon steel (LCS). When the joint was made at friction pressure of 30 MPa with friction speed of 27.5 s-1, OFC transferred to the half radius region of the weld interface on the LCS side, and then transferred toward the entire weld interface. The temperatures at the centerline, half radius and periphery portions on the weld interface of the LCS side were almost the same after the initial peak. When the joint was made at a friction time of 2.4 s, i.e. the friction torque was close to the initial peak, that had obtained approximately 40% joint efficiency and fractured from the weld interface with a little OFC adhering to the weld interface on the LCS side. The joint efficiency increased with increasing forge pressure, and it reached approximately 80% at a forge pressure of 180 MPa. This joint fractured at the softened OFC region adjacent to the weld interface. On the other hand, OFC transferred to the peripheral region of the weld interface on the LCS side when the joint was made at friction pressure of 90 MPa with friction speed of 27.5 s-1. However, OFC transfer was not obtained at the central region because the temperature at the periphery portion was higher than that of the other portions. The joint efficiency increased with increasing friction time, and it obtained approximately 74% at a friction time of 1.2 s. Moreover, all joints fractured between the OFC side and the weld interface, although the joints were made with higher forge pressure. To obtain higher joint efficiency and fracture in the OFC side, the joint should be made with low friction pressure and high forge pressure, and with the friction time at which the friction torque reaches the initial peak.

  18. The effect of friction in coulombian damper

    NASA Astrophysics Data System (ADS)

    Wahad, H. S.; Tudor, A.; Vlase, M.; Cerbu, N.; Subhi, K. A.

    2017-02-01

    The study aimed to analyze the damping phenomenon in a system with variable friction, Stribeck type. Shock absorbers with limit and dry friction, is called coulombian shock-absorbers. The physical damping vibration phenomenon, in equipment, is based on friction between the cushioning gasket and the output regulator of the shock-absorber. Friction between them can be dry, limit, mixture or fluid. The friction is depending on the contact pressure and lubricant presence. It is defined dimensionless form for the Striebeck curve (µ friction coefficient - sliding speed v). The friction may damp a vibratory movement or can maintain it (self-vibration), depending on the µ with v (it can increase / decrease or it can be relative constant). The solutions of differential equation of movement are obtained for some work condition of one damper for automatic washing machine. The friction force can transfer partial or total energy or generates excitation energy in damper. The damping efficiency is defined and is determined analytical for the constant friction coefficient and for the parabolic friction coefficient.

  19. Nanoscale friction: kinetic friction of magnetic flux quanta and charge density waves.

    PubMed

    Maeda, A; Inoue, Y; Kitano, H; Savel'ev, Sergey; Okayasu, S; Tsukada, I; Nori, Franco

    2005-02-25

    In analogy with the standard macroscopic friction, here we present a comparative study of the friction force felt by moving vortices in superconductors and charge density waves. Using experiments and a model for this data, our observations (1) provide a link between friction at the micro- and macroscopic scales, (2) explain the roundness of the static-kinetic friction transition in terms of thermal fluctuations, particle interactions, and system size (critical-phenomena view), and (3) explain the crossing of the kinetic friction F(k) versus velocity V for our pristine (high density of very weak defects) and our irradiated samples (with lower density of deeper pinning defects).

  20. Torque control for electric motors

    NASA Technical Reports Server (NTRS)

    Bernard, C. A.

    1980-01-01

    Method for adjusting electric-motor torque output to accomodate various loads utilizes phase-lock loop to control relay connected to starting circuit. As load is imposed, motor slows down, and phase lock is lost. Phase-lock signal triggers relay to power starting coil and generate additional torque. Once phase lock is recoverd, relay restores starting circuit to its normal operating mode.

  1. X-ray photoelectron spectroscopy study of radiofrequency sputtered chromium bromide, molybdenum disilicide, and molybdenum disulfide coatings and their friction properties

    NASA Technical Reports Server (NTRS)

    Wheeler, D. R.; Brainard, W. A.

    1977-01-01

    Radiofrequency sputtered coatings of CRB2, MOSI2, and MOS2 were examined by X-ray photoelectron spectroscopy. The effects of sputtering target history, deposition time, RF power level, and substrate bias on film composition were studied. Friction tests were run on RF sputtered surfaces of 440-C steel to correlate XPS data with lubricating properties. Significant deviations from stoichiometry and high oxide levels for all three compounds were related to target outgassing. The effect of biasing on these two factors depended on the compound. Improved stoichiometry correlated well with good friction and wear properties.

  2. Torque measurement at the single-molecule level.

    PubMed

    Forth, Scott; Sheinin, Maxim Y; Inman, James; Wang, Michelle D

    2013-01-01

    Methods for exerting and measuring forces on single molecules have revolutionized the study of the physics of biology. However, it is often the case that biological processes involve rotation or torque generation, and these parameters have been more difficult to access experimentally. Recent advances in the single-molecule field have led to the development of techniques that add the capability of torque measurement. By combining force, displacement, torque, and rotational data, a more comprehensive description of the mechanics of a biomolecule can be achieved. In this review, we highlight a number of biological processes for which torque plays a key mechanical role. We describe the various techniques that have been developed to directly probe the torque experienced by a single molecule, and detail a variety of measurements made to date using these new technologies. We conclude by discussing a number of open questions and propose systems of study that would be well suited for analysis with torsional measurement techniques.

  3. Modeling and Control of Needles with Torsional Friction

    PubMed Central

    Reed, Kyle B.; Okamura, Allison M.; Cowan, Noah J.

    2010-01-01

    A flexible needle can be accurately steered by robotically controlling the bevel tip orientation as the needle is inserted into tissue. Friction between the long, flexible needle shaft and the tissue can cause a significant discrepancy between the orientation of the needle tip and the orientation of the base where the needle angle is controlled. Our experiments show that several common phantom tissues used in needle steering experiments impart substantial friction forces to the needle shaft, resulting in a lag of over 45° for a 10 cm insertion depth in some phantoms; clinical studies report torques large enough to cause similar errors during needle insertions. Such angle discrepancies will result in poor performance or failure of path planners and image-guided controllers, since the needles used in percutaneous procedures are too small for state-of-the-art imaging to accurately measure the tip angle. To compensate for the angle discrepancy, we develop an estimator using a mechanics-based model of the rotational dynamics of a needle being inserted into tissue. Compared to controllers that assume a rigid needle in a frictionless environment, our estimator-based controller improves the tip angle convergence time by nearly 50% and reduces the path deviation of the needle by 70%. PMID:19695979

  4. Insertion torque, resonance frequency, and removal torque analysis of microimplants.

    PubMed

    Tseng, Yu-Chuan; Ting, Chun-Chan; Du, Je-Kang; Chen, Chun-Ming; Wu, Ju-Hui; Chen, Hong-Sen

    2016-09-01

    This study aimed to compare the insertion torque (IT), resonance frequency (RF), and removal torque (RT) among three microimplant brands. Thirty microimplants of the three brands were used as follows: Type A (titanium alloy, 1.5-mm × 8-mm), Type B (stainless steel, 1.5-mm × 8-mm), and Type C (titanium alloy, 1.5-mm × 9-mm). A synthetic bone with a 2-mm cortical bone and bone marrow was used. Each microimplant was inserted into the synthetic bone, without predrilling, to a 7 mm depth. The IT, RF, and RT were measured in both vertical and horizontal directions. One-way analysis of variance and Spearman's rank correlation coefficient tests were used for intergroup and intragroup comparisons, respectively. In the vertical test, the ITs of Type C (7.8 Ncm) and Type B (7.5 Ncm) were significantly higher than that of Type A (4.4 Ncm). The RFs of Type C (11.5 kHz) and Type A (10.2 kHz) were significantly higher than that of Type B (7.5 kHz). Type C (7.4 Ncm) and Type B (7.3 Ncm) had significantly higher RTs than did Type A (4.1 Ncm). In the horizontal test, both the ITs and RTs were significantly higher for Type C, compared with Type A. No significant differences were found among the groups, and the study hypothesis was accepted. Type A had the lowest inner/outer diameter ratio and widest apical facing angle, engendering the lowest IT and highest RF values. However, no significant correlations in the IT, RF, and RT were observed among the three groups.

  5. Torque Limits for Fasteners in Composites

    NASA Technical Reports Server (NTRS)

    Zhao, Yi

    2002-01-01

    The two major classes of laminate joints are bonded and bolted. Often the two classes are combined as bonded-bolted joints. Several characteristics of fiber reinforced composite materials render them more susceptible to joint problems than conventional metals. These characteristics include weakness in in-plane shear, transverse tension/compression, interlaminar shear, and bearing strength relative to the strength and stiffness in the fiber direction. Studies on bolted joints of composite materials have been focused on joining assembly subject to in-plane loads. Modes of failure under these loading conditions are net-tension failure, cleavage tension failure, shear-out failure, bearing failure, etc. Although the studies of torque load can be found in literature, they mainly discussed the effect of the torque load on in-plane strength. Existing methods for calculating torque limit for a mechanical fastener do not consider connecting members. The concern that a composite member could be crushed by a preload inspired the initiation of this study. The purpose is to develop a fundamental knowledge base on how to determine a torque limit when a composite member is taken into account. Two simplified analytical models were used: a stress failure analysis model based on maximum stress criterion, and a strain failure analysis model based on maximum strain criterion.

  6. Torque Limits for Fasteners in Composites

    NASA Technical Reports Server (NTRS)

    Zhao, Yi

    2002-01-01

    The two major classes of laminate joints are bonded and bolted. Often the two classes are combined as bonded-bolted joints. Several characteristics of fiber reinforced composite materials render them more susceptible to joint problems than conventional metals. These characteristics include weakness in in-plane shear, transverse tension/compression, interlaminar shear, and bearing strength relative to the strength and stiffness in the fiber direction. Studies on bolted joints of composite materials have been focused on joining assembly subject to in-plane loads. Modes of failure under these loading conditions are net-tension failure, cleavage tension failure, shear-out failure, bearing failure, etc. Although the studies of torque load can be found in literature, they mainly discussed the effect of the torque load on in-plane strength. Existing methods for calculating torque limit for a mechanical fastener do not consider connecting members. The concern that a composite member could be crushed by a preload inspired the initiation of this study. The purpose is to develop a fundamental knowledge base on how to determine a torque limit when a composite member is taken into account. Two simplified analytical models were used: a stress failure analysis model based on maximum stress criterion, and a strain failure analysis model based on maximum strain criterion.

  7. The Effect of Friction on Penetration in Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Rapp, Steve

    2002-01-01

    "Friction stir butt welding," as it was originally termed by Wayne Thomas and Christopher Dawes, in the early 1990s, but now commonly called "friction stir welding," has made great progress as a new welding technique. Marshall Space Flight Center has been investigating the use of FSW for assembly of the Shuttle's external fuel tank since the late 1990s and hopes to have the process in use by the summer of 2002. In FSW, a cylindrical pin tool of hardened steel, is rotated and plunged into the abutting edges of the parts to be joined. The tool is plunged into the weldment to within about .050 in of the bottom to assure full penetration. As the tool moves along the joint, the tool shoulder helps produce frictional heating, causing the material to plasticize. The metal of the two abutting plates flows from the front of the tool to the back where it cools and coalesces to form a weld in the solid phase. One quarter inch thick plates of aluminum alloy 2219 were used in this study. Two samples, each consisting of two 4 in x 12 in plates, were friction stir welded. The anvil for one sample was coated with molybdenum sulfide, while for the other sample a sheet of roughened stainless steel was placed between the anvil and the sample. The retractable pin tool was used so that the depth of the pin tool penetration could be varied. As welding proceeded, the length of the pin tool was gradually increased from the starting point. The purpose of this investigation is to find out at what point, in the down ramp, penetration occurs. Differences in root structure of the friction stir weld due to differences in anvil friction will be observed. These observations will be analyzed using friction stir weld theory.

  8. Effects of process parameters on friction self-piercing riveting of dissimilar materials

    SciTech Connect

    Liu, Xun; Lim, Yong Chae; Li, Yongbing; Tang, Wei; Ma, Yunwu; Feng, Zhili; Ni, Jun

    2016-05-24

    In the present work, a recently developed solid state joining technique, Friction self-piercing riveting (F-SPR), has been applied for joining high strength aluminum alloy AA7075-T6 to magnesium alloy AZ31B. The process was performed on a specially designed machine where the spindle can achieve the motion of sudden stop. Effects of rivet rotating rate and punch speed on axial plunge force, torque, joint microstructure and quality have been analyzed systematically. During F-SPR, higher rotating rate and slower punch speed can reduce axial force and torque, which correspondingly results in a slightly smaller interlock between rivet leg and joined materials. Improved local flowability of both aluminum and magnesium alloys under a higher rotating speed results in a thicker aluminum layer surrounding the rivet leg, where formation of Al-Mg intermetallics was observed. Equivalent joint strength obtained in this study are higher than the yield strength of the AZ31 Mg alloy. One of the tensile failure modes is the rivet fracture, which is due to local softening of rivet leg from frictional heat. Lastly, other two failure modes include rivet pullout and shear through of bottom sheet.

  9. Effects of process parameters on friction self-piercing riveting of dissimilar materials

    DOE PAGES

    Liu, Xun; Lim, Yong Chae; Li, Yongbing; ...

    2016-05-24

    In the present work, a recently developed solid state joining technique, Friction self-piercing riveting (F-SPR), has been applied for joining high strength aluminum alloy AA7075-T6 to magnesium alloy AZ31B. The process was performed on a specially designed machine where the spindle can achieve the motion of sudden stop. Effects of rivet rotating rate and punch speed on axial plunge force, torque, joint microstructure and quality have been analyzed systematically. During F-SPR, higher rotating rate and slower punch speed can reduce axial force and torque, which correspondingly results in a slightly smaller interlock between rivet leg and joined materials. Improved localmore » flowability of both aluminum and magnesium alloys under a higher rotating speed results in a thicker aluminum layer surrounding the rivet leg, where formation of Al-Mg intermetallics was observed. Equivalent joint strength obtained in this study are higher than the yield strength of the AZ31 Mg alloy. One of the tensile failure modes is the rivet fracture, which is due to local softening of rivet leg from frictional heat. Lastly, other two failure modes include rivet pullout and shear through of bottom sheet.« less

  10. Effects of process parameters on friction self-piercing riveting of dissimilar materials

    SciTech Connect

    Liu, Xun; Lim, Yong Chae; Li, Yongbing; Tang, Wei; Ma, Yunwu; Feng, Zhili; Ni, Jun

    2016-05-24

    In the present work, a recently developed solid state joining technique, Friction self-piercing riveting (F-SPR), has been applied for joining high strength aluminum alloy AA7075-T6 to magnesium alloy AZ31B. The process was performed on a specially designed machine where the spindle can achieve the motion of sudden stop. Effects of rivet rotating rate and punch speed on axial plunge force, torque, joint microstructure and quality have been analyzed systematically. During F-SPR, higher rotating rate and slower punch speed can reduce axial force and torque, which correspondingly results in a slightly smaller interlock between rivet leg and joined materials. Improved local flowability of both aluminum and magnesium alloys under a higher rotating speed results in a thicker aluminum layer surrounding the rivet leg, where formation of Al-Mg intermetallics was observed. Equivalent joint strength obtained in this study are higher than the yield strength of the AZ31 Mg alloy. One of the tensile failure modes is the rivet fracture, which is due to local softening of rivet leg from frictional heat. Lastly, other two failure modes include rivet pullout and shear through of bottom sheet.

  11. Friction at Interfaces of Metals and Alloys

    NASA Astrophysics Data System (ADS)

    Cheng, Shengfeng

    2014-03-01

    Pure metals such as gold that are frequently used in electrical contacts usually exhibit high adhesion and friction. However, nanocrystalline gold alloyed with minute amounts of Ni or Co can have low friction while still possessing low contact resistance. We used large-scale molecular dynamics simulations with validated EAM potentials to study the atomistic origin of friction reduction in metallic alloys. Three systems will be focused on in this talk: pure Ag, Ag-Cu alloy, and Ag-Au alloy. Our results reveal that different friction coefficients of metals and alloys are due to different sliding mechanisms. Dislocation-mediated plasticity dominates in pure metals or lattice-matched alloys and leads to high friction, while grain-boundary sliding mainly occurs in lattice-mismatched alloys that leads to low friction.

  12. Friction Anisotropy with Respect to Topographic Orientation

    PubMed Central

    Yu, Chengjiao; Wang, Q. Jane

    2012-01-01

    Friction characteristics with respect to surface topographic orientation were investigated using surfaces of different materials and fabricated with grooves of different scales. Scratching friction tests were conducted using a nano-indentation-scratching system with the tip motion parallel or perpendicular to the groove orientation. Similar friction anisotropy trends were observed for all the surfaces studied, which are (1) under a light load and for surfaces with narrow grooves, the tip motion parallel to the grooves offers higher friction coefficients than does that perpendicular to them, (2) otherwise, equal or lower friction coefficients are found under this motion. The influences of groove size relative to the diameter of the mating tip (as a representative asperity), surface contact stiffness, contact area, and the characteristic stiction length are discussed. The appearance of this friction anisotropy is independent of material; however, the boundary and the point of trend transition depend on material properties. PMID:23248751

  13. Friction anisotropy with respect to topographic orientation.

    PubMed

    Yu, Chengjiao; Wang, Q Jane

    2012-01-01

    Friction characteristics with respect to surface topographic orientation were investigated using surfaces of different materials and fabricated with grooves of different scales. Scratching friction tests were conducted using a nano-indentation-scratching system with the tip motion parallel or perpendicular to the groove orientation. Similar friction anisotropy trends were observed for all the surfaces studied, which are (1) under a light load and for surfaces with narrow grooves, the tip motion parallel to the grooves offers higher friction coefficients than does that perpendicular to them, (2) otherwise, equal or lower friction coefficients are found under this motion. The influences of groove size relative to the diameter of the mating tip (as a representative asperity), surface contact stiffness, contact area, and the characteristic stiction length are discussed. The appearance of this friction anisotropy is independent of material; however, the boundary and the point of trend transition depend on material properties.

  14. Spin-wave-induced spin torque in Rashba ferromagnets

    NASA Astrophysics Data System (ADS)

    Umetsu, Nobuyuki; Miura, Daisuke; Sakuma, Akimasa

    2015-05-01

    We study the effects of Rashba spin-orbit coupling on the spin torque induced by spin waves, which are the plane-wave dynamics of magnetization. The spin torque is derived from linear-response theory, and we calculate the dynamic spin torque by considering the impurity-ladder-sum vertex corrections. This dynamic spin torque is divided into three terms: a damping term, a distortion term, and a correction term for the equation of motion. The distorting torque describes a phenomenon unique to the Rashba spin-orbit coupling system, where the distorted motion of magnetization precession is subjected to the anisotropic force from the Rashba coupling. The oscillation mode of the precession exhibits an elliptical trajectory, and the ellipticity depends on the strength of the nesting effects, which could be reduced by decreasing the electron lifetime.

  15. Novel friction law for the static friction force based on local precursor slipping.

    PubMed

    Katano, Yu; Nakano, Ken; Otsuki, Michio; Matsukawa, Hiroshi

    2014-09-10

    The sliding of a solid object on a solid substrate requires a shear force that is larger than the maximum static friction force. It is commonly believed that the maximum static friction force is proportional to the loading force and does not depend on the apparent contact area. The ratio of the maximum static friction force to the loading force is called the static friction coefficient µM, which is considered to be a constant. Here, we conduct experiments demonstrating that the static friction force of a slider on a substrate follows a novel friction law under certain conditions. The magnitude of µM decreases as the loading force increases or as the apparent contact area decreases. This behavior is caused by the slip of local precursors before the onset of bulk sliding and is consistent with recent theory. The results of this study will develop novel methods for static friction control.

  16. Ultrasonic resonant piezoelectric actuator with intrinsic torque measurement.

    PubMed

    Pott, Peter P; Matich, Sebastian; Schlaak, Helmut F

    2012-11-01

    Piezoelectric ultrasonic actuators are widely used in small-scale actuation systems, in which a closed-loop position control is usually utilized. To save an additional torque sensor, the intrinsic measurement capabilities of the piezoelectric material can be employed. To prove feasibility, a motor setup with clearly separated actuation for the friction and driving forces is chosen. The motor concept is based on resonant ultrasonic vibrations. To assess the effects of the direct piezoelectric effect, a capacitance bridge-type circuit has been selected. Signal processing is done by a measurement card with an integrated field-programmable gate array. The motor is used to drive a winch, and different torques are applied by means of weights to be lifted. Assessing the bridge voltage, a good proportionality to the applied torque of 1.47 mV/mN·m is shown. A hysteresis of 1% has been determined. The chosen motor concept is useful for intrinsic torque measurement. However, it provides drawbacks in terms of limited mechanical performance, wear, and thermal losses because of the soft piezoelectric material. Future work will comprise the application of the method to commercially available piezoelectric actuators as well as the implementation of the measurement circuit in an embedded system.

  17. [Studies on the performance of the dental air turbine handpieces. (Part 3) Torque measurements of the air turbine handpieces (author's transl)].

    PubMed

    Miyairi, H; Nagai, M; Fukuda, H; Muramatsu, A

    1980-01-01

    Air turbine handpieces, electro-micro motors and electric engines are widely used as the dental cutting instruments for the clinical use. So, this paper examined the measurement of rotational torque of the high speed dental instruments used for cutting works. For the measurement of torque of the dental instrument, we have measured the pushing load of the test but as used for cutting tools. But, in this paper, we attempted the new trials which are the measuring the tangential force of test bur rotated with the high speed velocity. And then, the kinetic energy values of rotational bur are obtained with using the value of the test bur's rotational torque. Besides we examined the interrelations of the rotational torque and pushing as the results, and both measurement value show the good relations for air turbine handpieces.

  18. Molecular origin of friction

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Zhang, Tao; Hu, Yuanzhong

    2004-01-01

    The wearless friction originating from molecular interactions has been discussed in this paper. We find that the frictional properties are closely related to the structural match of two surfaces in relative motion. For the surfaces with incommensurate structure and week inter-surface interaction, zero static and kinetic friction can be achieved. In a sliding considered as in a quasi-static state, the energy dissipation initiates when interfacial particles move in a discontinuous fashion, which gives rise to a finite kinetic friction. The state of superlubricity is a result of computer simulations, but the prediction will encourage people to look for a technical approach to realizing the state of super low friction.

  19. Distinct applications of MWD, weight on bit, and torque

    SciTech Connect

    Belaskie, J.P.; Dunn, M.D.; Choo, D.K.

    1993-06-01

    Recent enhancements to measurement-while-drilling (MWD) tools have increased drilling efficiency in directional wells on the North Slope of Alaska. With information provided by downhole weight on bit (WOB) and torque sensors, more timely and accurate decisions have been made, resulting in lower costs per foot. Specific applications of this technology include bit optimization, directional feedback, and drillstring-friction analysis. This paper discusses actual cases where the use of data from these downhole sensor has improved drilling performance. This information will benefit those interested in optimizing polycrystalline-diamond-compact (PDC) and rollercone bit runs, improving directional-drilling assembly predictability and performance, minimizing surface torques, and planning high-departure wells.

  20. Functional torque ratios and torque curve analysis of shoulder rotations in overhead athletes with and without impingement symptoms.

    PubMed

    Zanca, Gisele G; Oliveira, Ana B; Saccol, Michele F; Ejnisman, Benno; Mattiello-Rosa, Stela M

    2011-12-01

    In this study, we evaluated the peak torque, functional torque ratios, and torque curve profile of the shoulder rotators in overhead athletes with impingement symptoms so as to examine possible alterations in response to sports training and shoulder pain. Twenty-one overhead athletes with impingement symptoms were compared with 25 overhead athletes and 21 non-athletes, none of whom were symptomatic for impingement. The participants performed five maximal isokinetic concentric and eccentric contractions of medial and lateral shoulder rotations at 1.57 rad · s(-1) and 3.14 rad · s(-1). Isokinetic peak torque was used to calculate the eccentric lateral rotation-to-concentric medial rotation and the eccentric medial rotation-to-concentric lateral rotation ratios. An analysis of the torque curve profiles was also carried out. The eccentric lateral rotation-to-concentric medial rotation torque ratio of asymptomatic athletes was lower than that of non-athletes at both test velocities. The concentric medial rotation isokinetic peak torque of the asymptomatic athletes, at 3.14 rad · s(-1), was greater than that of the non-athletes, and the peak appeared to occur earlier in the movement for athletes than non-athletes. These findings suggest that there may be adaptations to shoulder function in response to throwing practice. The eccentric medial rotation-to-concentric lateral rotation torque ratio was altered neither by the practice of university-level overhead sports nor impingement symptoms.

  1. Fuzzy Backstepping Torque Control Of Passive Torque Simulator With Algebraic Parameters Adaptation

    NASA Astrophysics Data System (ADS)

    Ullah, Nasim; Wang, Shaoping; Wang, Xingjian

    2015-07-01

    This work presents fuzzy backstepping control techniques applied to the load simulator for good tracking performance in presence of extra torque, and nonlinear friction effects. Assuming that the parameters of the system are uncertain and bounded, Algebraic parameters adaptation algorithm is used to adopt the unknown parameters. The effect of transient fuzzy estimation error on parameters adaptation algorithm is analyzed and the fuzzy estimation error is further compensated using saturation function based adaptive control law working in parallel with the actual system to improve the transient performance of closed loop system. The saturation function based adaptive control term is large in the transient time and settles to an optimal lower value in the steady state for which the closed loop system remains stable. The simulation results verify the validity of the proposed control method applied to the complex aerodynamics passive load simulator.

  2. Frictional Heterogeneities Along Carbonate Faults

    NASA Astrophysics Data System (ADS)

    Collettini, C.; Carpenter, B. M.; Scuderi, M.; Tesei, T.

    2014-12-01

    The understanding of fault-slip behaviour in carbonates has an important societal impact as a) a significant number of earthquakes nucleate within or propagate through these rocks, and b) half of the known petroleum reserves occur within carbonate reservoirs, which likely contain faults that experience fluid pressure fluctuations. Field studies on carbonate-bearing faults that are exhumed analogues of currently active structures of the seismogenic crust, show that fault rock types are systematically controlled by the lithology of the faulted protolith: localization associated with cataclasis, thermal decomposition and plastic deformation commonly affect fault rocks in massive limestone, whereas distributed deformation, pressure-solution and frictional sliding along phyllosilicates are observed in marly rocks. In addition, hydraulic fractures, indicating cyclic fluid pressure build-ups during the fault activity, are widespread. Standard double direct friction experiments on fault rocks from massive limestones show high friction, velocity neutral/weakening behaviour and significant re-strengthening during hold periods, on the contrary, phyllosilicate-rich shear zones are characterized by low friction, significant velocity strengthening behavior and no healing. We are currently running friction experiments on large rock samples (20x20 cm) in order to reproduce and characterize the interaction of fault rock frictional heterogeneities observed in the field. In addition we have been performing experiments at near lithostatic fluid pressure in the double direct shear configuration within a pressure vessel to test the Rate and State friction stability under these conditions. Our combination of structural observations and mechanical data have been revealing the processes and structures that are at the base of the broad spectrum of fault slip behaviors recently documented by high-resolution geodetic and seismological data.

  3. Are torque values of preadjusted brackets precise?

    PubMed Central

    STREVA, Alessandra Motta; COTRIM-FERREIRA, Flávio Augusto; GARIB, Daniela Gamba; CARVALHO, Paulo Eduardo Guedes

    2011-01-01

    Objective The aim of the present study was to verify the torque precision of metallic brackets with MBT prescription using the canine brackets as the representative sample of six commercial brands. Material and Methods Twenty maxillary and 20 mandibular canine brackets of one of the following commercial brands were selected: 3M Unitek, Abzil, American Orthodontics, TP Orthodontics, Morelli and Ortho Organizers. The torque angle, established by reference points and lines, was measured by an operator using an optical microscope coupled to a computer. The values were compared to those established by the MBT prescription. Results The results showed that for the maxillary canine brackets, only the Morelli torque (-3.33º) presented statistically significant difference from the proposed values (-7º). For the mandibular canines, American Orthodontics (-6.34º) and Ortho Organizers (-6.25º) presented statistically significant differences from the standards (-6º). Comparing the brands, Morelli presented statistically significant differences in comparison with all the other brands for maxillary canine brackets. For the mandibular canine brackets, there was no statistically significant difference between the brands. Conclusions There are significant variations in torque values of some of the brackets assessed, which would clinically compromise the buccolingual positioning of the tooth at the end of orthodontic treatment. PMID:21956587

  4. Planetary Torque in 3D Isentropic Disks

    NASA Astrophysics Data System (ADS)

    Fung, Jeffrey; Masset, Frédéric; Lega, Elena; Velasco, David

    2017-03-01

    Planetary migration is inherently a three-dimensional (3D) problem, because Earth-size planetary cores are deeply embedded in protoplanetary disks. Simulations of these 3D disks remain challenging due to the steep resolution requirements. Using two different hydrodynamics codes, FARGO3D and PEnGUIn, we simulate disk-planet interaction for a one to five Earth-mass planet embedded in an isentropic disk. We measure the torque on the planet and ensure that the measurements are converged both in resolution and between the two codes. We find that the torque is independent of the smoothing length of the planet’s potential (r s), and that it has a weak dependence on the adiabatic index of the gaseous disk (γ). The torque values correspond to an inward migration rate qualitatively similar to previous linear calculations. We perform additional simulations with explicit radiative transfer using FARGOCA, and again find agreement between 3D simulations and existing torque formulae. We also present the flow pattern around the planets that show active flow is present within the planet’s Hill sphere, and meridional vortices are shed downstream. The vertical flow speed near the planet is faster for a smaller r s or γ, up to supersonic speeds for the smallest r s and γ in our study.

  5. Influence of ligation method on friction resistance of lingual brackets with different second-order angulations: an in vitro study

    PubMed Central

    Pereira, Graziane Olímpio; Gimenez, Carla Maria Melleiro; Prieto, Lucas; Prieto, Marcos Gabriel do Lago; Basting, Roberta Tarkany

    2016-01-01

    ABSTRACT Objective: To evaluate stainless steel archwire static friction in active and passive self-ligating lingual and conventional brackets with second-order angulations. Methods: Two conventional lingual brackets for canines (STb light/Ormco; PSWb/Tecnident), and two self-ligating brackets, one active (In-Ovation L/GAC) and the other passive (3D/ Forestadent), were evaluated. A stainless steel archwire was used at 0°, 3° and 5° angulations. Metal ligatures, conventional elastic ligatures, and low friction elastic ligatures were also tested. A universal testing machine applied friction between brackets and wires, simulating sliding mechanics, to produce 2-mm sliding at 3 mm/minute speed. Results: Two-way analysis of variance demonstrated a significant effect of the interaction between brackets and angulations (p < 0.001). Tukey test indicated that the highest frictional resistance values were observed at 5° angulation for In-Ovation L, PSWb bracket with non conventional ligature, and STb bracket with metal ligature. As for 3D, PSWb with conventional or metal ligatures, and STb brackets with non conventional ligature, showed significantly lower static frictional resistance with 0° angulation. At 0° angulation, STb brackets with metal ties, In-Ovation L brackets and 3D brackets had the lowest frictional resistance. Conclusions: As the angulation increased from 0° to 3°, static friction resistance increased. When angulation increased from 3° to 5°, static friction resistance increased or remained the same. Self-ligating 3D and In-Ovation L brackets, as well as conventional STb brackets, seem to be the best option when sliding mechanics is used to perform lingual orthodontic treatment. PMID:27653262

  6. Evaluation of a high-torque backlash-free roller actuator

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.

    1988-01-01

    The results are presented of a test program that evaluated the stiffness, accuracy, torque ripple, frictional losses, and torque holding capability of a 16:1 ratio, 430 N-m (320 ft-lb) planetary roller drive for a potential space vehicle actuator application. The drive's planet roller supporting structure and bearings were found to be the largest contributors to overall drive compliance, accounting for more than half the total. In comparison, the traction roller contacts themselves contributed only 9 percent of the drive's compliance based on an experimentally verified stiffnesss model. Torque ripple tests showed the drive to be extremely smooth, actually providing some damping of input torsional oscillations. The drive also demonstrated the ability to hold static torque with drifts of 7 arc sec or less over a 24-hour period at 35 percent of full load.

  7. Comparison of different passive knee extension torque-angle assessments.

    PubMed

    Freitas, Sandro R; Vaz, João R; Bruno, Paula M; Valamatos, Maria J; Mil-Homens, Pedro

    2013-11-01

    Previous studies have used isokinetic dynamometry to assess joint torques and angles during passive extension of the knee, often without reporting upon methodological errors and reliability outcomes. In addition, the reliability of the techniques used to measure passive knee extension torque-angle and the extent to which reliability may be affected by the position of the subjects is also unclear. Therefore, we conducted an analysis of the intra- and inter-session reliability of two methods of assessing passive knee extension: (A) a 2D kinematic analysis coupled to a custom-made device that enabled the direct measurement of resistance to stretch and (B) an isokinetic dynamometer used in two testing positions (with the non-tested thigh either flexed at 45° or in the neutral position). The intra-class correlation coefficients (ICCs) of torque, the slope of the torque-angle curve, and the parameters of the mathematical model that were fit to the torque-angle data for the above conditions were measured in sixteen healthy male subjects (age: 21.4 ± 2.1 yr; BMI: 22.6 ± 3.3 kg m(-2); tibial length: 37.4 ± 3.4 cm). The results found were: (1) methods A and B led to distinctly different torque-angle responses; (2) passive torque-angle relationship and stretch tolerance were influenced by the position of the non-tested thigh; and (3) ICCs obtained for torque were higher than for the slope and for the mathematical parameters that were fit to the torque-angle curve. In conclusion, the measurement method that is used and the positioning of subjects can influence the passive knee extension torque-angle outcome.

  8. Experimental Study of the Rolling-Sliding Contact Conditions in a PA66/STEEL Gear Using Twin-Disc Test Rig: Friction and Wear Analysis

    NASA Astrophysics Data System (ADS)

    Mbarek, Meftah; Rhaiem, Sadok; Kharrat, Mohamed; Dammak, Maher

    2015-09-01

    This study investigates the effects of sliding ratio on the tribological response of the contact between the teeth of a metal/polymer gear in the regions close to the pitch point. For this purpose, a new twin-disc test rig was developed on the basis of two discs of different diameters rotating one above the other at the same angular speed. Two different materials were used: non-alloyed structural steel (C45) and polyamide (PA66). The effect of the slip ratio (4%, 12%, 20% and 28%) was studied at a constant pressure of 34 MPa and a constant angular speed of 300 rpm. In addition, the contact conditions were controlled with measurements of the two discs surface temperatures. The results indicate that the wear and the friction are closely related to the contact temperature generated by the sliding phenomenon. At low slip ratio (4% and 12%), the coefficient of friction and the temperature are characterized by a quasi-linear increase with time, and the wear increases slowly. At higher slip ratio (20% and 28%), the coefficient of friction and the temperature presents a steady state, and the wear increases dramatically. During the test, a film of transferred PA66 is formed on the steel surface causing the development of adhesive interactions between the contacting discs which increase the friction coefficient and the contact temperature. The high thermal conductivity of steel as compared to that of the polymer can reduce enormously the contact temperature generated by the sliding process.

  9. Seam-Tracking for Friction Stir Welded Lap Joints

    NASA Astrophysics Data System (ADS)

    Fleming, Paul A.; Hendricks, Christopher E.; Cook, George E.; Wilkes, D. M.; Strauss, Alvin M.; Lammlein, David H.

    2010-11-01

    This article presents a method for automatic seam-tracking in friction stir welding (FSW) of lap joints. In this method, tracking is accomplished by weaving the FSW tool back-and-forth perpendicular to the direction of travel during welding and monitoring force and torque signals. Research demonstrates the ability of this method to automatically track weld seam positions. Additionally, tensile and S-bend test result comparisons demonstrate that weaving most likely does not reduce weld quality. Finally, benefits of this weave-based method to FSW of lap joints are discussed and methods for incorporating it into existing friction stir welding control algorithms (such as axial load control) are examined.

  10. Dither Helps Compensate For Friction In Reaction Wheel

    NASA Technical Reports Server (NTRS)

    Stetson, John B., Jr.

    1994-01-01

    Dither control and generator unit incorporated into reaction-wheel attitude-control system to help compensate for error caused by friction in reaction-wheel bearings at and near zero speed of wheel. Reaction-wheel attitude-control system designed primarily to maintain desired orientation of spacecraft but also useful in maintaining desired orientation of terrestrial antenna, optical instrument, or other device on aircraft, ship, land vehicle, or other moving platform. Alternating torque sufficient to overcome static friction applied at low speed.

  11. Dither Helps Compensate For Friction In Reaction Wheel

    NASA Technical Reports Server (NTRS)

    Stetson, John B., Jr.

    1994-01-01

    Dither control and generator unit incorporated into reaction-wheel attitude-control system to help compensate for error caused by friction in reaction-wheel bearings at and near zero speed of wheel. Reaction-wheel attitude-control system designed primarily to maintain desired orientation of spacecraft but also useful in maintaining desired orientation of terrestrial antenna, optical instrument, or other device on aircraft, ship, land vehicle, or other moving platform. Alternating torque sufficient to overcome static friction applied at low speed.

  12. Are there reliable constitutive laws for dynamic friction?

    PubMed

    Woodhouse, Jim; Putelat, Thibaut; McKay, Andrew

    2015-09-28

    Structural vibration controlled by interfacial friction is widespread, ranging from friction dampers in gas turbines to the motion of violin strings. To predict, control or prevent such vibration, a constitutive description of frictional interactions is inevitably required. A variety of friction models are discussed to assess their scope and validity, in the light of constraints provided by different experimental observations. Three contrasting case studies are used to illustrate how predicted behaviour can be extremely sensitive to the choice of frictional constitutive model, and to explore possible experimental paths to discriminate between and calibrate dynamic friction models over the full parameter range needed for real applications. © 2015 The Author(s).

  13. Deformable micro torque swimmer

    NASA Astrophysics Data System (ADS)

    Ishikawa, Takuji; Tanaka, Tomoyuki; Omori, Toshihiro; Imai, Yohsuke

    2015-11-01

    We investigated the deformation of a ciliate swimming freely in a fluid otherwise at rest. The cell body was modeled as a capsule with a hyper elastic membrane enclosing Newtonian fluid. Thrust forces due to the ciliary beat were modeled as torques distributed above the cell body. Effects of the membrane elasticity, the aspect ratio of cell's reference shape and the density difference between the cell and the surrounding fluid were investigated. The results showed that the cell deformed like heart shape when Capillary number (Ca) was sufficiently large, and the swimming velocity decreased as Ca was increased. The gravity effect on the membrane tension suggested that the upwards and downwards swimming velocities of Paramecium might be reglated by the calcium ion channels distributed locally around the anterior end. Moreover, the gravity induced deformation made a cell directed vertically downwards, which resulted in a positive geotaxis like behavior with physical origin. These results are important to understand physiology of ciliate's biological responses to mechanical stimuli.

  14. Frictional ignition with coal mining

    SciTech Connect

    Courtney, W.G.

    1990-01-01

    This paper reviews recent U.S. Bureau of Mine studies of frictional ignition of a methane-air environment by coal mining bits cutting into sandstone and the effectiveness of remedial techniques to reduce the likelihood of frictional ignition. Frictional ignition with a minim bit always involves a worn bit having a wear flat on the tip of the bit. The worn bit forms hot spots on the surface of the sandstone because of frictional abrasion. The hot spots then can ignite the methane-air environment. A small wear flat forms a small hot spot, which does not give ignition, while a large wear flat forms a large hot spot, which gives ignition. The likelihood of frictional ignition can be somewhat reduced by using a mushroom-shaped tungsten-carbide bit tip on the mining bit and by increasing the bit clearance angle; it can be significantly reduced by using a water spray nozzle in back of each bit, which is carefully oriented to direct the water spray onto the sandstone surface directly behind the bit and thereby cool the hot spots formed by the worn bit. A bit replacement schedule must be used to avoid the formation of a dangerously worn bit.

  15. Mesh Size Control of Friction

    NASA Astrophysics Data System (ADS)

    Pitenis, Angela; Uruena, Juan Manuel; Schulze, Kyle D.; Cooper, Andrew C.; Angelini, Thomas E.; Sawyer, W. Gregory

    Soft, permeable sliding interfaces in aqueous environments are ubiquitous in nature but their ability to maintain high lubricity in a poor lubricant (water) has not been well understood. Hydrogels are excellent materials for fundamental soft matter and biotribology studies due to their high water content. While mesh size controls the material and transport properties of a hydrogel, its effects on friction were only recently explored. Polyacrylamide hydrogels slid in a Gemini (self-mated) interface produced low friction under low speeds, low pressures, macroscopic contact areas, and room temperature aqueous environments. The friction coefficients at these interfaces are lowest at low speeds and are speed-independent. This behavior is due to thermal fluctuations at the interface separating the surfaces, with water shearing in this region being the main source of dissipation. We found that mesh size had an inverse correlation with friction. We further investigated a transition from this behavior at higher speeds, and found that the transition speed correlated with the mesh size and relaxation time of the polymer network. Very soft and correspondingly large mesh size Gemini hydrogels show superlubricity under specific conditions with friction being less than 0.005.

  16. Experimental studies on heat transfer and friction factor characteristics of laminar flow through a circular tube fitted with regularly spaced helical screw-tape inserts

    SciTech Connect

    Sivashanmugam, P.; Suresh, S.

    2007-02-15

    Experimental investigation of heat transfer and friction factor characteristics of circular tube fitted with full-length helical screw element of different twist ratio, and helical screw inserts with spacer length 100, 200, 300 and 400mm have been studied with uniform heat flux under laminar flow condition. The experimental data obtained are verified with those obtained from plain tube published data. The effect of spacer length on heat transfer augmentation and friction factor, and the effect of twist ratio on heat transfer augmentation and friction factor have been presented separately. The decrease in Nusselt number for the helical twist with spacer length is within 10% for each subsequent 100mm increase in spacer length. The decrease in friction factor is nearly two times lower than the full length helical twist at low Reynolds number, and four times lower than the full length helical twist at high Reynolds number for all twist ratio. The regularly spaced helical screw inserts can safely be used for heat transfer augmentation without much increase in pressure drop than full length helical screw inserts. (author)

  17. Micromachine friction test apparatus

    DOEpatents

    deBoer, Maarten P.; Redmond, James M.; Michalske, Terry A.

    2002-01-01

    A microelectromechanical (MEM) friction test apparatus is disclosed for determining static or dynamic friction in MEM devices. The friction test apparatus, formed by surface micromachining, is based on a friction pad supported at one end of a cantilevered beam, with the friction pad overlying a contact pad formed on the substrate. A first electrostatic actuator can be used to bring a lower surface of the friction pad into contact with an upper surface of the contact pad with a controlled and adjustable force of contact. A second electrostatic actuator can then be used to bend the cantilevered beam, thereby shortening its length and generating a relative motion between the two contacting surfaces. The displacement of the cantilevered beam can be measured optically and used to determine the static or dynamic friction, including frictional losses and the coefficient of friction between the surfaces. The test apparatus can also be used to assess the reliability of rubbing surfaces in MEM devices by producing and measuring wear of those surfaces. Finally, the friction test apparatus, which is small in size, can be used as an in situ process quality tool for improving the fabrication of MEM devices.

  18. Experimental studies regarding wear processes through dry friction of the superficial layer for an unconventional treated steel

    NASA Astrophysics Data System (ADS)

    Papadatu, C. P.

    2017-02-01

    The aim of the studies on tribomodels regarding the dry friction wear and the processes of the wear in this case is to determine the wear intensity for a certain type of tribomodel and for a certain type of material. An Amsler stand was used. The experimental study uses two distinct values of task of loading (Q). The rolls with different diameters were used in order to obtain different sliding degrees (ξ). Studies have been made for the improvement of the mechanical properties of a Chromium - Molybdenum alloyed steel, unconventional treated in a magnetic field. The Thermo-magnetic treatment was applied before a thermo-chemical treatment. The mechanical properties of the material have been improved, particularly in the case of a great content of aluminum and chromium. The hardness values of the superficial layers which have been obtained after a complex thermo-magnetic and thermo - chemical treatments, the superficial layers content and the behavior of the steels at the wear tests were used as criterion. Diffractometric analysis and a statistical modeling completed this study.

  19. Computational study of low-friction quasicrystalline coatings via simulations of thin film growth of hydrocarbons and rare gases

    NASA Astrophysics Data System (ADS)

    Setyawan, Wahyu

    Quasicrystalline compounds (QC) have been shown to have lower friction compared to other structures of the same constituents. The abscence of structural interlocking when two QC surfaces slide against one another yields the low friction. To use QC as low-friction coatings in combustion engines where hydrocarbon-based oil lubricant is commonly used, knowledge of how a film of lubricant forms on the coating is required. Any adsorbed films having non-quasicrystalline structure will reduce the self-lubricity of the coatings. In this manuscript, we report the results of simulations on thin films growth of selected hydrocarbons and rare gases on a decagonal Al73Ni10Co17 quasicrystal (d-AlNiCo). Grand canonical Monte Carlo method is used to perform the simulations. We develop a set of classical interatomic many-body potentials which are based on the embedded-atom method to study the adsorption processes for hydrocarbons. Methane, propane, hexane, octane, and benzene are simulated and show complete wetting and layered films. Methane monolayer forms a pentagonal order commensurate with the d-AlNiCo. Propane forms disordered monolayer. Hexane and octane adsorb in a close-packed manner consistent with their bulk structure. The results of hexane and octane are expected to represent those of longer alkanes which constitute typical lubricants. Benzene monolayer has pentagonal order at low temperatures which transforms into triangular lattice at high temperatures. The effects of size mismatch and relative strength of the competing interactions (adsorbate-substrate and between adsorbates) on the film growth and structure are systematically studied using rare gases with Lennard-Jones pair potentials. It is found that the relative strength of the interactions determines the growth mode, while the structure of the film is affected mostly by the size mismatch between adsorbate and substrate's characteristic length. On d-AlNiCo, xenon monolayer undergoes a first-order structural

  20. Zero torque gear head wrench

    NASA Technical Reports Server (NTRS)

    Mcdougal, A. R.; Norman, R. M. (Inventor)

    1976-01-01

    A gear head wrench particularly suited for use in applying torque to bolts without transferring torsional stress to bolt-receiving structures is introduced. The wrench is characterized by a coupling including a socket, for connecting a bolt head with a torque multiplying gear train, provided within a housing having an annulus concentrically related to the socket and adapted to be coupled with a spacer interposed between the bolt head and the juxtaposed surface of the bolt-receiving structure for applying a balancing counter-torque to the spacer as torque is applied to the bolt head whereby the bolt-receiving structure is substantially isolated from torsional stress. As a result of the foregoing, the operator of the wrench is substantially isolated from any forces which may be imposed.

  1. Effect of chlorhexidine-containing prophylactic agent on the surface characterization and frictional resistance between orthodontic brackets and archwires: an in vitro study

    PubMed Central

    2013-01-01

    Background The purpose of this study was to assess the surface characterization and frictional resistance between stainless steel brackets and two types of orthodontic wires made of stainless steel and nickel-titanium alloys after immersion in a chlorhexidine-containing prophylactic agent. Methods Stainless steel orthodontic brackets with either stainless steel (SS) or heat-activated nickel-titanium (Ni-Ti) wires were immersed in a 0.2% chlorhexidine and an artificial saliva environment for 1.5 h. The frictional force was measured on a universal testing machine with a crosshead speed of 10 mm/min over a 5-mm of archwire. The surface morphology of bracket slots and surface roughness of archwires after immersion in chlorhexidine were also characterized using a scanning electron microscope (SEM) and an atomic force microscope (AFM), respectively. Results There was no significant difference in the frictional resistance values between SS and Ni-Ti wires immersed in either chlorhexidine or artificial saliva. The frictional resistance values for the SS and Ni-Ti wires immersed in 0.2% chlorhexidine solution were not significantly different from that inartificial saliva. No significant difference in the average surface roughness for both wires before (as-received) and after immersion in either chlorhexidine or artificial saliva was observed. Conclusions One-and-half-hour immersion in 0.2% chlorhexidine mouthrinse did not have significant influence on the archwires surface roughness or the frictional resistance between stainless steel orthodontic brackets and archwires made of SS and Ni-Ti. Based on these results, chlorhexidine-containing mouthrinses may be prescribed as non-destructive prophylactic agents on materials evaluated in the present study for orthodontic patients. PMID:24325758

  2. Study of effect of excipient source variation on rheological behavior of diltiazem HCl-HPMC wet masses using a mixer torque rheometer.

    PubMed

    Chatlapalli, Ramarao; Rohera, Bhagwan D

    2002-05-15

    In the wet massing of powders and powder blends, the rheological behavior of the wet powder masses not only plays a critical role in the unit process but also influences the attributes of the product. The physical properties of the powder excipients, such as particle size and size distribution, shape, surface area, bulk and tapped density and surface morphology, are a major source of variability in the rheological behavior of wet powder masses and the quality attributes of the final product. The objective of the present investigations was to study the rheological behavior of wet masses containing hydroxypropyl methylcellulose (HPMC) obtained from two sources (Methocel from Dow and Pharmacoat from Shin-Etsu) using a mixer torque rheometer. In order to simulate a real formulation, diltiazem HCl (DTZ) (40% loading) was used as part of the substrate powder mass. Hydroxypropyl cellulose (HPC) was used as the binder. Since HPMC is water-soluble, isopropyl alcohol (IPA) was used as the wet massing liquid. The rheological behavior of the wet powder masses was studied as a function of mixing time and amount of wet massing liquid (IPA). The rheological profiles obtained for DTZ-Methocel and DTZ-Pharmacoat exhibited same magnitude for mean torque, however, for DTZ-Pharmacoat the peak was more extended than that for DTZ-Methocel. The extended peak for DTZ-Pharmacoat indicated that the wet mass will stay suitable during the process for larger quantities of the wet massing liquid before turning into paste and becoming unsuitable for the process as compared with the DTZ-Methocel system. The mixing kinetics of the two powder systems appeared to be quite different. These differences in the rheological behavior of the wet masses may be attributed to the difference in the particulate and surface properties of the two HPMCs. Some of the properties of the two HPMCs, such as particle size and size distribution, surface area, surface morphology and DSC thermograms, explain the difference

  3. Torque-Summing Brushless Motor

    NASA Technical Reports Server (NTRS)

    Vaidya, J. G.

    1986-01-01

    Torque channels function cooperatively but electrically independent for reliability. Brushless, electronically-commutated dc motor sums electromagnetic torques on four channels and applies them to single shaft. Motor operates with any combination of channels and continues if one or more of channels fail electrically. Motor employs single stator and rotor and mechanically simple; however, each of channels electrically isolated from other so that failure of one does not adversely affect others.

  4. Torque-Wrench Adapter For Confined Spaces

    NASA Technical Reports Server (NTRS)

    Littlefield, Alan

    1993-01-01

    Adapter for torque wrench tightens nuts in confined spaces. Allows full rotation of nuts with minimum clearance of wrench. Adapter, spanner-type attachment that fits on end of standard torque wrench. Pair of dowel pins centers and locks wrench onto nut. Used to apply torque of 40 lb-in, also withstands torques up to 100 lb-ft.

  5. 14 CFR 27.361 - Engine torque.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Engine torque. 27.361 Section 27.361... STANDARDS: NORMAL CATEGORY ROTORCRAFT Strength Requirements Flight Loads § 27.361 Engine torque. (a) For turbine engines, the limit torque may not be less than the highest of— (1) The mean torque for...

  6. 14 CFR 27.361 - Engine torque.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Engine torque. 27.361 Section 27.361... STANDARDS: NORMAL CATEGORY ROTORCRAFT Strength Requirements Flight Loads § 27.361 Engine torque. (a) For turbine engines, the limit torque may not be less than the highest of— (1) The mean torque for...

  7. 14 CFR 27.361 - Engine torque.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Engine torque. 27.361 Section 27.361... STANDARDS: NORMAL CATEGORY ROTORCRAFT Strength Requirements Flight Loads § 27.361 Engine torque. (a) For turbine engines, the limit torque may not be less than the highest of— (1) The mean torque for...

  8. Torque blending and wheel slip control in EVs with in-wheel motors

    NASA Astrophysics Data System (ADS)

    de Castro, Ricardo; Araújo, Rui E.; Tanelli, Mara; Savaresi, Sergio M.; Freitas, Diamantino

    2012-01-01

    Among the many opportunities offered by electric vehicles (EVs), the design of power trains based on in-wheel electric motors represents, from the vehicle dynamics point of view, a very attractive prospect, mainly due to the torque-vectoring capabilities. However, this distributed propulsion also poses some practical challenges, owing to the constraints arising from motor installation in a confined space, to the increased unsprung mass weight and to the integration of the electric motor with the friction brakes. This last issue is the main theme of this work, which, in particular, focuses on the design of the anti-lock braking system (ABS). The proposed structure for the ABS is composed of a tyre slip controller, a wheel torque allocator and a braking supervisor. To address the slip regulation problem, an adaptive controller is devised, offering robustness to uncertainties in the tyre-road friction and featuring a gain-scheduling mechanism based on the vehicle velocity. Further, an optimisation framework is employed in the torque allocator to determine the optimal split between electric and friction brake torque based on energy performance metrics, actuator constraints and different actuators bandwidth. Finally, based on the EV working condition, the priorities of this allocation scheme are adapted by the braking supervisor unit. Simulation results obtained with the CarSim vehicle model, demonstrate the effectiveness of the overall approach.

  9. Magnetically controlled rotation and torque of uniaxial microactuators for lab-on-a-chip applications.

    PubMed

    Ranzoni, Andrea; Janssen, Xander J A; Ovsyanko, Mikhail; van IJzendoorn, Leo J; Prins, Menno W J

    2010-01-21

    We demonstrate the controlled rotation and torque generated by uniaxial magnetic microactuators formed by two bound superparamagnetic particles in a fluid. The torque and rotation are precisely controlled by rotating magnetic fields, generated by an external electromagnet or by on-chip current wires. We present the magnetic energy equations and the equations of motion for two-particle microactuators, with contributions from the permanent and induced magnetic moments of the particles. A comparison of theory and experiments allows an estimation of the different moments with accuracy better than 10% across a wide frequency range. At low frequencies and low magnitudes of the applied magnetic field, both the permanent and induced moments of the particles have contributions to the torque. At either high fields or high frequencies, the torque is dominated by the induced moment. The predictability of the torque is highest in the regime of low frequencies and high field, where the torque has a large magnitude and is determined by the magnetic shape anisotropy of the microactuator. A comparison of rotation in bulk fluid and on a chip surface shows an increase of friction by a factor 9 originating from the surface proximity. The detailed understanding of the torque and rotation of two-particle uniaxial magnetic microactuators opens a range of possibilities in lab-on-a-chip applications, such as the actuation of single molecules, fluid mixing in microfluidic chambers, and novel cluster-based assays.

  10. Variable magnetic circuit torque sensor

    NASA Astrophysics Data System (ADS)

    Lemarquand, G.; Lemarquand, V.

    1991-11-01

    This paper presents an original torque sensor structure using the properties of magnetic circuits, including permanent magnets. The torque is measured through the torsion of the transmitting shaft. The torsion is proportional to the torque. Considering two points of the shaft on the same line in absence of torque, the information is given by the twisting angle in the presence of a torque. A rotating magnetic circuit yields an angle representative signal. This circuit is deformed by the shaft torsion. The reluctance varies and so does the magnet operating point. The induction is measured in an airgap by a statoric galvanomagnetic device. The magnetic field source is an axial permanent magnet ring. Two iron-toothed rings, fixed to the driving and driven part of the shaft, respectively, and separated by an airgap make up the variable part of the magnetic circuit. The teeth get out of line whenever a torque is applied. The galvanomagnetic device measures an uniform induction and so delivers a modulation free signal, i.e., rotation independent. Because of the periodic toothed structure, the induction varies periodically with the twisting angle. The sense of the variation is the same over half a period or half a pitch. The variation form depends on the teeth design. Operating interval is to be chosen equal to or smaller than the half pitch.

  11. Quantum friction between graphene sheets

    NASA Astrophysics Data System (ADS)

    Farias, M. Belén; Fosco, César D.; Lombardo, Fernando C.; Mazzitelli, Francisco D.

    2017-03-01

    We study the Casimir friction phenomenon in a system consisting of two flat, infinite, and parallel graphene sheets, which are coupled to the vacuum electromagnetic (EM) field. Those couplings are implemented, in the description we use, by means of specific terms in the effective action for the EM field. They incorporate the distinctive properties of graphene, as well as the relative sliding motion of the sheets. Based on this description, we evaluate two observables due to the same physical effect: the probability of vacuum decay and the frictional force. The system exhibits a threshold for frictional effects; namely, they only exist if the speed of the sliding motion is larger than the Fermi velocity of the charge carriers in graphene.

  12. ABL and BAM Friction Analysis Comparison

    DOE PAGES

    Warner, Kirstin F.; Sandstrom, Mary M.; Brown, Geoffrey W.; ...

    2014-12-29

    Here, the Integrated Data Collection Analysis (IDCA) program has conducted a proficiency study for Small-Scale Safety and Thermal (SSST) testing of homemade explosives (HMEs). Described here is a comparison of the Alleghany Ballistic Laboratory (ABL) friction data and Bundesanstalt fur Materialforschung und -prufung (BAM) friction data for 19 HEM and military standard explosives.

  13. Friction, wear, and lubrication in vacuum

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1971-01-01

    A review of studies and observations on the friction, wear, and lubrication behavior of materials in a vacuum environment is presented. The factors that determine and influence friction and wear are discussed. They include topographical, physical, mechanical, and the chemical nature of the surface. The effects of bulk properties such as deformation characteristics, fracture behavior, and structure are included.

  14. Magnetic Viscous Drag for Friction Labs

    ERIC Educational Resources Information Center

    Gaffney, Chris; Catching, Adam

    2016-01-01

    The typical friction lab performed in introductory mechanics courses is usually not the favorite of either the student or the instructor. The measurements are not all that easy to make, and reproducibility is usually a troublesome issue. This paper describes the augmentation of such a friction lab with a study of the viscous drag on a magnet…

  15. ANALYSIS OF THE MAGNETIZED FRICTION FORCE.

    SciTech Connect

    FEDOTOV, A.V.; BRUHWILER, D.L.; SIDORIN, A.O.

    2006-05-29

    A comprehensive examination of theoretical models for the friction force, in use by the electron cooling community, was performed. Here, they present their insights about the models gained as a result of comparison between the friction force formulas and direct numerical simulations, as well as studies of the cooling process as a whole.

  16. Magnetic Viscous Drag for Friction Labs

    ERIC Educational Resources Information Center

    Gaffney, Chris; Catching, Adam

    2016-01-01

    The typical friction lab performed in introductory mechanics courses is usually not the favorite of either the student or the instructor. The measurements are not all that easy to make, and reproducibility is usually a troublesome issue. This paper describes the augmentation of such a friction lab with a study of the viscous drag on a magnet…

  17. Comparison of frictional resistance among conventional, active and passive selfligating brackets with different combinations of arch wires: a finite elements study.

    PubMed

    Gómez, Sandra L; Montoya, Yesid; Garcia, Nora L; Virgen, Ana L; Botero, Javier E

    2016-09-01

    The aim of this study was to compare frictional resistance among conventional, passive and active selfligating brackets using Finite Elements Analysis (FEA). Seventynine (79) slide tests were performed by combining an upper first bicuspid conventional bracket, 0.018" stainless steel wires and 0.010" ligature by means of an INSTRON 3345 load system to obtain average maximum static frictional resistance (MSFR). This value was compared to the FR (frictional resistance) obtained by simulation of a slide of the same combination by FEA following conventional bracket modeling by means of Computer Aided Design (CAD). Once the FEA was validated, bracket CADs were designed (upper right first bicuspid conventional, active and passive selfligating bracket) and bracket properties calculated. MSFR was compared among conventional, active and passive selfligating brackets with different alloys and archwire cross sections such as 0.018", 0.019" x 0.025"and 0.020" x 0.020". Passive selfligating brackets had the lowest MSFR, followed by conventional brackets and active selfligating brackets. In conventional brackets, a 0.018" archwire produced a linear pattern of stress with maximum concentration at the center. Conversely, stress in 0.020 x 0.020" and 0.019 x 0.025" archwires was distributed across the width of the slot. The highest normal forces were 1.53 N for the 0.018" archwire, 4.85 N for the 0.020 x 0.020" archwire and 8.18 N for the 0.019 x 0.025" archwire. Passive selfligating brackets presented less frictional resistance than conventional and active selfligating brackets. Regardless of bracket type, greater contact area between the slot and the archwire and the spring clip increased frictional resistance.

  18. Relationship Between Insertion Torque and Resonance Frequency Measurements, Performed by Resonance Frequency Analysis, in Micromobility of Dental Implants: An In Vitro Study.

    PubMed

    Brizuela-Velasco, Aritza; Álvarez-Arenal, Ángel; Gil-Mur, Francisco Javier; Herrero-Climent, Mariano; Chávarri-Prado, David; Chento-Valiente, Yelko; Dieguez-Pereira, Markel

    2015-10-01

    To evaluate the micromobility of dental implants under occlusal loading in relation to stability measurements of resonance frequency analysis and insertion torque. The sample comprised of 24 implants inserted in 12 fresh cow ribs. Insertion torque and Osstell implant stability quotient (ISQ) measurements were recorded. An "ad hoc" acrylic premolar was made on a temporary abutment and screwed to each implant, and a force of 100 N was subsequently applied at an angle of 6 degrees. Implant micromotion was measured using a Questar microscope with a resolution of 2 μm and an image analysis program. Data show a statistically significant inverse correlation between the ISQ values and implant micromotion under a load of 100 N (R = 0.86, P < 0.0001). The same relationship is found between insertion torque and implant micromotion, although the relationship is linear up to 34 N·cm and becomes exponential for higher values (R = 0.78, P < 0.0001). A direct correlation is established between insertion torque and ISQ values. There is an inverse relationship between both ISQ and insertion torque values and implant micromotion under a load of 100 N.

  19. Use of quantum self-friction potentials and forces in standard convention for study of harmonic oscillator

    NASA Astrophysics Data System (ADS)

    Guseinov, I. I.; Mamedov, B. A.

    2017-04-01

    In this paper, the physical nature of quantum usual and self-friction (SF) harmonic oscillators is presented. The procedure for studying these harmonic oscillators is identical; therefore, we can benefit from the theory of the usual harmonic oscillator. To study the SF harmonic oscillator, using analytical formulae for the L^{{(pl^{ * } )}}-SF Laguerre polynomials (L^{{(pl^{ * } )}}-SFLPs) and L^{{(α^{*} )}}-modified SFLPs (L^{{(α^{*} )}}-MSFLPs) in standard convention, the V^{{(pl^{ * } )}}-SF potentials (V^{{(pl^{ * } )}}-SFPs), V^{{(α^{*} )}}-modified SFPs (V^{{(α^{*} )}}-MSFPs), F^{{(pl^{ * } )}}-SF forces (F^{{(pl^{ * } )}}-SFFs) and F^{{(α^{*} )}}-modified SFFs (F^{{(α^{*} )}}-MSFFs) are investigated, where pl^{ * } = 2l + 2 - α^{*} and α^{*} is the integer (α^{*} = α, - ∞ < α ≤ 2) or non-integer (α^{*} ≠ α, - ∞ < α < 3) SF quantum number. We note that the potentials (V^{{(pl^{ * } )}}-SFPs and V^{{(α^{*} )}}-MSFPs), and forces (F^{{(pl^{ * } )}}-SFFs and F^{{(α^{*} )}}-MSFFs), respectively, are independent functions. It is shown that the numerical values of these independent functions are the same, i.e., V_{num}^{{(pl^{ * } )}} = V_{num}^{{(α^{*} )}} and F_{num}^{{(pl^{ * } )}} = F_{num}^{{(α^{*} )}}. The dependence of the SF harmonic oscillator as a function of the distance is analyzed. The presented relationships are valid for arbitrary values of parameters.

  20. Sensitivity study of forecasted aftershock seismicity based on Coulomb stress calculation and rate- and state-dependent frictional response

    NASA Astrophysics Data System (ADS)

    Cocco, M.; Hainzl, S.; Catalli, F.; Enescu, B.; Lombardi, A. M.; Woessner, J.

    2010-05-01

    We use the Dieterich (1994) physics-based approach to simulate the spatiotemporal evolution of seismicity caused by stress changes applied to an infinite population of nucleating patches modeled through a rate- and state-dependent friction law. According to this model, seismicity rate changes depend on the amplitude of stress perturbation, the physical constitutive properties of faults (represented by the parameter Aσ), the stressing rate, and the background seismicity rate of the study area. In order to apply this model in a predictive manner, we need to understand the impact of physical model parameters and the correlations between them. First, we discuss different definitions of the reference seismicity rate and show their impact on the computed rate of earthquake production for the 1992 Landers earthquake sequence as a case study. Furthermore, we demonstrate that all model parameters are strongly correlated for physical and statistical reasons. We discuss this correlation, emphasizing that the estimations of the background seismicity rate, stressing rate, and Aσ are strongly correlated to reproduce the observed aftershock productivity. Our analytically derived relation demonstrates the impact of these model parameters on the Omori-like aftershock decay: the c value and the productivity of the Omori law, implying a p value smaller than or equal to 1. Finally, we discuss an optimal strategy to constrain model parameters for near-real-time forecasts.