NASA Astrophysics Data System (ADS)
Zadpoor, Amir Abbas; Sinke, Jos
2011-01-01
Friction stir welding is a solid state joining process with relatively low welding temperatures. Nevertheless, the mechanical properties of friction stir welded blanks are degraded after welding. Indeed, both strength and ductility of the welds are decreased after welding. Often, the resulting friction stir welded blanks need to be formed to their final structural shape. Therefore, the formability of friction stir welded blanks is of primary importance in the manufacturing of structural parts. This paper studies how the mechanical properties and particularly formability of friction stir welded blanks can be improved by applying a post weld heat treatment. Two aluminum alloys from 2000 and 7000 series, namely 2024-T3 and 7075-T6, are selected for the study. The sheet thickness of both materials is 2,0 mm. The selected alloys are welded in three configurations: 2024-T3 and 2024-T3, 7075-T6 and 7075-T6, and 2024-T3 and 7075-T6. The resulting welds are naturally aged for a few months. Three sets of standard dog bone shape tensile test specimens are then machined from the welds. The first set of the specimens is tested without any heat treatment. The second set of the specimens is solution heat treated and quenched before testing. The third set of the specimens is solution heat treated, quenched, and naturally aged for a week before testing. The mechanical properties of the three different sets of specimens are compared with each other. It is shown that careful selection of post weld heat-treatment can greatly improve the formability of friction stir welded blanks.
NASA Astrophysics Data System (ADS)
Yao, Lu; Ma, Shengli; Niemeijer, André R.; Shimamoto, Toshihiko; Platt, John D.
2016-07-01
To examine whether faults can be lubricated by preexisting and newly formed nanoparticles, we perform high-velocity friction experiments on periclase (MgO) nanoparticles and on bare surfaces of Carrara marble cylinders/slices, respectively. Variable temperature conditions were simulated by using host blocks of different thermal conductivities. When temperature rises are relatively low, we observe high friction in nano-MgO tests and unexpected slip strengthening following initial weakening in marble slice tests, suggesting that the dominant weakening mechanisms are of thermal origin. Solely the rolling of nanoparticles without significant temperature rise is insufficient to cause dynamic fault weakening. For nano-MgO experiments, comprehensive investigations suggest that flash heating is the most likely weakening mechanism. In marble experiments, flash heating controls the unique evolutions of friction, and the competition between bulk temperature rise and wear-induced changes of asperity contact numbers seems to strongly affect the efficiency of flash heating.
Orbital transfer rocket engine technology program: Soft wear ring seal technology
NASA Technical Reports Server (NTRS)
Lariviere, Brian W.
1992-01-01
Liquid oxygen (LOX) compatibility tests, including autogenous ignition, promoted ignition, LOX impact tests, and friction and wear tests on different PV products were conducted for several polymer materials as verification for the implementation of soft wear ring seals in advanced rocket engine turbopumps. Thermoplastics, polyimide based materials, and polyimide-imide base materials were compared for oxygen compatibility, specific wear coefficient, wear debris production, and heat dissipation mechanisms. A thermal model was generated that simulated the frictional heating input and calculated the surface temperature and temperature distribution within the seal. The predictions were compared against measured values. Heat loads in the model were varied to better match the test data and determine the difference between the measured and the calculated coefficients of friction.
The friction and wear of carbon-carbon composites for aircraft brakes
NASA Astrophysics Data System (ADS)
Hutton, Toby
Many carbon-carbon composite aircraft brakes encounter high wear rates during low energy braking operations. The work presented in this thesis addresses this issue, but it also elucidates the microstructural changes and wear mechanisms that take place in these materials during all braking conditions encountered by aircraft brakes. A variety of investigations were conducted using friction and wear testing, as well as examination of wear surfaces and wear debris using OM, SEM, X-RD, TGA and Density Gradient Separation (DOS). Friction and wear tests were conducted on a PAN fibre/CVI matrix carbon-carbon composite (Dunlop) and a pitch fibre/Resin-CVI matrix carbon-carbon composite (Bendix). Extensive testing was undertaken on the Dunlop composites to asses the effects of composite architecture, fibre orientation and heat treatment temperatures on friction and wear. Other friction and wear tests, conducted on the base Dunlop composite, were used to investigate the relative influences of temperature and sliding speed. It was found that the effect of temperature was dominant over composite architecture, fibre orientation and sliding speed in governing the friction and wear performance of the Dunlop composites. The development of bulk temperatures in excess of 110 C by frictional heating resulted in smooth friction and a low wear rate. Reducing heat treatment temperature also reduced the thermal conductivity producing high interface temperatures, low smooth friction coefficients and low wear rates under low energy braking conditions. However, this was at the expense of high oxidative wear rates under higher energy braking conditions. The Bendix composites had lower thermal conductivities than the fully heat treated Dunlop composite and exhibited similar friction and wear behaviour to Dunlop composites heat treated to lower temperatures. Examination of the wear surfaces using OM and SEM revealed particulate or Type I surface debris on wear surfaces tested under low energy conditions. Type I debris was stable on the wear surfaces to a temperature of 110C, after which it was gradually converted to film material or Type II surface debris by the action of heat and shear. Type I debris was associated with high erratic friction coefficients (ja.=0.55- 0.65) and high wear rates (~ 8 mg/min), whereas. Type II debris was associated low smooth friction (|LI=0.35-0.45) and low wear rates (~ 4 mg/min). Analysis of the wear debris produced from testing on large dynamometers under the simulated conditions of taxiing and landing indicated that the structure of the wear debris became highly disordered as a result of the wear process. However, evidence from XRD, TGA and DGS suggested that, under very high energy conditions, such as those encountered in a rejected take off (RTO), the wear debris was partially regraphitised at the wear face by the action of heat and shear. The results from analysis of the wear surfaces and the wear debris supported the theory that a regenerative process or friction film formation, delamination and repair operated on the wear surfaces of these brake materials.
Aluminum runway surface as possible aid to aircraft braking
NASA Technical Reports Server (NTRS)
Miller, C. D.; Pinkel, I. I.
1973-01-01
Several concepts are described for use singly or in combination to improve aircraft braking. All involve a thin layer of aluminum covering all or part of the runway. Advantage would derive from faster heat conduction from the tire-runway interface. Heating of tread surface with consequent softening and loss of friction coefficient should be reduced. Equations are developed indicating that at least 99 percent of friction heat should flow into the aluminum. Preliminary test results indicate a coefficient of sliding friction of 1.4, with predictably slight heating of tread. Elimination of conventional brakes is at least a remote possibility.
Condensation heat transfer and flow friction in silicon microchannels
NASA Astrophysics Data System (ADS)
Wu, Huiying; Wu, Xinyu; Qu, Jian; Yu, Mengmeng
2008-11-01
An experimental investigation was performed on heat transfer and flow friction characteristics during steam condensation flow in silicon microchannels. Three sets of trapezoidal silicon microchannels, with hydraulic diameters of 77.5 µm, 93.0 µm and 128.5 µm respectively, were tested under different flow and cooling conditions. It was found that both the condensation heat transfer Nusselt number (Nu) and the condensation two-phase frictional multiplier (phi2Lo) were dependent on the steam Reynolds number (Rev), condensation number (Co) and dimensionless hydraulic diameter (Dh/L). With the increase in the steam Reynolds number, condensation number and dimensionless hydraulic diameter, the condensation Nusselt number increased. However, different variations were observed for the condensation two-phase frictional multiplier. With the increase in the steam Reynolds number and dimensionless hydraulic diameter, the condensation two-phase frictional multiplier decreased, while with the increase in the condensation number, the condensation two-phase frictional multiplier increased. Based on the experimental results, dimensionless correlations for condensation heat transfer and flow friction in silicon microchannels were proposed for the first time. These correlations can be used to determine the condensation heat transfer coefficient and pressure drop in silicon microchannels if the steam mass flow rate, cooling rate and geometric parameters are fixed. It was also found that the condensation heat transfer and flow friction have relations to the injection flow (a transition flow pattern from the annular flow to the slug/bubbly flow), and with injection flow moving toward the outlet, both the condensation heat transfer coefficient and the condensation two-phase frictional multiplier increased.
Effect of Heat Exposure on the Fatigue Properties of AA7050 Friction Stir Welds
NASA Astrophysics Data System (ADS)
White, B. C.; Rodriguez, R. I.; Cisko, A.; Jordon, J. B.; Allison, P. G.; Rushing, T.; Garcia, L.
2018-05-01
This work examines the effect of heat exposure on the subsequent monotonic and fatigue properties of friction stir-welded AA7050. Mechanical characterization tests were conducted on friction stir-welded specimens as-welded (AW) and specimens heated to 315 °C in air for 20 min. Monotonic testing revealed high joint efficiencies of 98% (UTS) in the AW specimens and 60% in the heat-damaged (HD) specimens. Experimental results of strain-controlled fatigue testing revealed shorter fatigue lives for the HD coupons by nearly a factor of four, except for the highest strain amplitude tested. Postmortem fractography analysis found similar crack initiation or propagation behavior between the AW and HD specimens; however, the failure locations for the AW were predominantly in the heat-affected zone, while the HD specimens also failed in the stir zone. Microhardness measurements revealed a relatively uniform strength profile in the HD group, accounting for the variety of failure locations observed. The differences in both monotonic and cyclic properties observed between the AW and HD specimens support the conclusion that the heat damage (315 °C at 20 min) acts as an over-aging and a quasi-annealing treatment.
USDA-ARS?s Scientific Manuscript database
The frictional behaviors of soybean oil and heat modified soybean oils with different Gardner scale viscosities as additives in hexadecane have been examined in a boundary lubrication test regime (steel contacts) using Langmuir adsorption model. The free energy of adsorption (delta-Gads) of various...
NASA Technical Reports Server (NTRS)
Taylor, Maynard F.; Kirchgessner, Thomas A.
1959-01-01
Measurements of average heat transfer and friction coefficients and local heat transfer coefficients were made with helium flowing through electrically heated smooth tubes with length-diameter ratios of 60 and 92 for the following range of conditions: Average surface temperature from 1457 to 4533 R, Reynolds numbe r from 3230 to 60,000, heat flux up to 583,200 Btu per hr per ft2 of heat transfer area, and exit Mach numbe r up to 1.0. The results indicate that, in the turbulent range of Reynolds number, good correlation of the local heat transfer coefficients is obtained when the physical properties and density of helium are evaluated at the surface temperature. The average heat transfer coefficients are best correlated on the basis that the coefficient varies with [1 + (L/D))(sup -0,7)] and that the physical properties and density are evaluated at the surface temperature. The average friction coefficients for the tests with no heat addition are in complete agreement with the Karman-Nikuradse line. The average friction coefficients for heat addition are in poor agreement with the accepted line.
Ferrimagnetic resonance signal produced by frictional heating: A new indicator of paleoseismicity
NASA Astrophysics Data System (ADS)
Fukuchi, Tatsuro; Mizoguchi, Kazuo; Shimamoto, Toshihiko
2005-12-01
High-speed fault slips during earthquakes may generate sufficient frictional heat to produce fused fault rocks such as pseudotachylyte. We have carried out high-speed slip tests using natural fault gouge to judge whether or not frictional heating universally occurs during seismic fault slips. In our shearing tests, natural fault gouge is put between two cylindrical silica glasses and sheared under a fixed axial stress of 0.61 MPa. Despite such a low stress near the Earth's surface, a darkened cohesive material resembling pseudotachylyte is made from the fault gouge along the edge of a circular shear plane when shearing at a high speed of 1500 rpm (the maximum slip rate reaches ˜1.96 m/s at the edge). Electron spin resonance measurements reveal that the darkened cohesive material has a strong ferrimagnetic resonance (FMR) signal, which is derived from bulky trivalent iron ions in ferrimagnetic iron oxides (γ-Fe2O3). The FMR signal is produced by the thermal dehydration of antiferromagnetic iron oxides (γ-FeOOH) in the fault gouge. This may be applicable to the detection of past heating during seismic fault slip. We thus attempt to reconstruct the temperature of frictional heat generated on the Nojima fault plane in the 1995 Kobe earthquake (M = 7.3) by inversion using the FMR signal. The computer simulation indicates that the frictional heat generated on the Nojima fault plane at ˜390 m depth may have attained ˜390°C during the 1995 Kobe earthquake. The temperature in the fault plane may have returned to its initial state after ˜1 year. This result suggests that a heat flow anomaly generated by faulting may be difficult to detect.
NASA Astrophysics Data System (ADS)
Bae, Kyung Jin; Cha, Dong An; Kwon, Oh Kyung
2016-11-01
The objectives of this paper are to develop correlations between heat transfer and pressure drop for oval finned-tube heat exchanger with large diameters (larger than 20 mm) used in a textile machine dryer. Numerical tests using ANSYS CFX are performed for four different parameters; tube size, fin pitch, transverse tube pitch and longitudinal tube pitch. The numerical results showed that the Nusselt number and the friction factor are in a range of -16.2 ~ +3.1 to -7.7 ~ +3.9 %, respectively, compared with experimental results. It was found that the Nusselt number linearly increased with increasing Reynolds number, but the friction factor slightly decreased with increasing Reynolds number. It was also found that the variation of longitudinal tube pitch has little effect on the Nusselt number and friction factor than other parameters (below 2.0 and 2.5 %, respectively). This study proposed a new Nusselt number and friction factor correlation of the oval finned-tube heat exchanger with large diameters for textile machine dryer.
Modeling of the WSTF frictional heating apparatus in high pressure systems
NASA Technical Reports Server (NTRS)
Skowlund, Christopher T.
1992-01-01
In order to develop a computer program able to model the frictional heating of metals in high pressure oxygen or nitrogen a number of additions have been made to the frictional heating model originally developed for tests in low pressure helium. These additions include: (1) a physical property package for the gases to account for departures from the ideal gas state; (2) two methods for spatial discretization (finite differences with quadratic interpolation or orthogonal collocation on finite elements) which substantially reduce the computer time required to solve the transient heat balance; (3) more efficient programs for the integration of the ordinary differential equations resulting from the discretization of the partial differential equations; and (4) two methods for determining the best-fit parameters via minimization of the mean square error (either a direct search multivariable simplex method or a modified Levenburg-Marquardt algorithm). The resulting computer program has been shown to be accurate, efficient and robust for determining the heat flux or friction coefficient vs. time at the interface of the stationary and rotating samples.
Damage Tolerance Assessment of Friction Pull Plug Welds in an Aluminum Alloy
NASA Technical Reports Server (NTRS)
McGill, Preston; Burkholder, Jonathan
2012-01-01
Friction stir welding is a solid state welding process used in the fabrication of cryogenic propellant tanks. Self-reacting friction stir welding is one variation of the friction stir weld process being developed for manufacturing tanks. Friction pull plug welding is used to seal the exit hole that remains in a circumferential self-reacting friction stir weld. A friction plug weld placed in a self-reacting friction stir weld results in a non-homogenous weld joint where the initial weld, plug weld, their respective heat affected zones and the base metal all interact. The welded joint is a composite plastically deformed material system with a complex residual stress field. In order to address damage tolerance concerns associated with friction plug welds in safety critical structures, such as propellant tanks, nondestructive inspection and proof testing may be required to screen hardware for mission critical defects. The efficacy of the nondestructive evaluation or the proof test is based on an assessment of the critical flaw size. Test data relating residual strength capability to flaw size in an aluminum alloy friction plug weld will be presented.
Frictional strength and heat flow of southern San Andreas Fault
NASA Astrophysics Data System (ADS)
Zhu, P. P.
2016-01-01
Frictional strength and heat flow of faults are two related subjects in geophysics and seismology. To date, the investigation on regional frictional strength and heat flow still stays at the stage of qualitative estimation. This paper is concentrated on the regional frictional strength and heat flow of the southern San Andreas Fault (SAF). Based on the in situ borehole measured stress data, using the method of 3D dynamic faulting analysis, we quantitatively determine the regional normal stress, shear stress, and friction coefficient at various seismogenic depths. These new data indicate that the southern SAF is a weak fault within the depth of 15 km. As depth increases, all the regional normal and shear stresses and friction coefficient increase. The former two increase faster than the latter. Regional shear stress increment per kilometer equals 5.75 ± 0.05 MPa/km for depth ≤15 km; regional normal stress increment per kilometer is equal to 25.3 ± 0.1 MPa/km for depth ≤15 km. As depth increases, regional friction coefficient increment per kilometer decreases rapidly from 0.08 to 0.01/km at depths less than ~3 km. As depth increases from ~3 to ~5 km, it is 0.01/km and then from ~5 to 15 km, and it is 0.002/km. Previously, frictional strength could be qualitatively determined by heat flow measurements. It is difficult to obtain the quantitative heat flow data for the SAF because the measured heat flow data exhibit large scatter. However, our quantitative results of frictional strength can be employed to investigate the heat flow in the southern SAF. We use a physical quantity P f to describe heat flow. It represents the dissipative friction heat power per unit area generated by the relative motion of two tectonic plates accommodated by off-fault deformation. P f is called "fault friction heat." On the basis of our determined frictional strength data, utilizing the method of 3D dynamic faulting analysis, we quantitatively determine the regional long-term fault friction heat at various seismogenic depths in the southern SAF. The new data show that as depth increases, regional friction stress increases within the depth of 15 km; its increment per kilometer equals 5.75 ± 0.05 MPa/km. As depth increases, regional long-term fault friction heat increases; its increment per kilometer is equal to 3.68 ± 0.03 mW/m2/km. The values of regional long-term fault friction heat provided by this study are always lower than those from heat flow measurements. The difference between them and the scatter existing in the measured heat flow data are mainly caused by the following processes: (i) heat convection, (ii) heat advection, (iii) stress accumulation, (iv) seismic bursts between short-term lull periods in a long-term period, and (v) influence of seismicity in short-term periods upon long-term slip rate and heat flow. Fault friction heat is a fundamental parameter in research on heat flow.
The Influence of The Temperature on Dry Friction of AISI 3315 Steel Sliding Against AISI 3150 Steel
NASA Astrophysics Data System (ADS)
Odabas, D.
2018-01-01
In this paper, the effects the influence of frictional heating on the wear of AISI 3315 Steel were investigated experimentally using a pin-on-ring geometry. All the tests were carried out in air without any lubricant. In order to understand the variation in frictional coefficient and temperature with load and speed, the friction tests were carried out at a speed of 1 m/s and loads in the range 115-250 N, and at a speed range 1-4 m/s, a load of 115 N. The sliding distance was 1500 m. The bulk temperature of the specimen was measured from the interface surface at a distance of 1 mm from the contact surface by using type K thermocouples (Ni-Cr-Ni). The coefficient of friction was determined as a function of test load and speed. The steady state coefficient of friction of the test material decreases with increasing load and speed due to the oxide formation. But the unsteady state coefficient of friction increases with an increase in load and speed.
Effect of T6 treatment on the coefficient of friction of Al25Mg2Si2Cu4Fe alloy
NASA Astrophysics Data System (ADS)
Sondur, D. G.; Mallapur, D. G.; Udupa, K. Rajendra
2018-04-01
Effect of T6 treatment on the coefficient of friction of Al25Mg2Si2Cu4Fe alloy was evaluated by conducting wear test on pin on disc wear testing machine. Wear test parameters such as the load and the speed were varied by keeping one constant and varying the other respectively. It was observed that the coefficient of friction is high for as cast condition due to the brittle microstructure. After T6 heat treatment the precipitates formed such as the Chinese scripts and the Mg2Si blocks got modified that lead to improvement in the hardness and the wear resistance. This reduces the coefficient of friction.
General theory of frictional heating with application to rubber friction
NASA Astrophysics Data System (ADS)
Fortunato, G.; Ciaravola, V.; Furno, A.; Lorenz, B.; Persson, B. N. J.
2015-05-01
The energy dissipation in the contact regions between solids in sliding contact can result in high local temperatures which may strongly effect friction and wear. This is the case for rubber sliding on road surfaces at speeds above 1 mm s-1. We derive equations which describe the frictional heating for solids with arbitrary thermal properties. The theory is applied to rubber friction on road surfaces and we take into account that the frictional energy is partly produced inside the rubber due to the internal friction of rubber and in a thin (nanometer) interfacial layer at the rubber-road contact region. The heat transfer between the rubber and the road surface is described by a heat transfer coefficient which depends on the sliding speed. Numerical results are presented and compared to experimental data. We find that frictional heating results in a kinetic friction force which depends on the orientation of the sliding block, thus violating one of the two basic Leonardo da Vinci ‘laws’ of friction.
General theory of frictional heating with application to rubber friction.
Fortunato, G; Ciaravola, V; Furno, A; Lorenz, B; Persson, B N J
2015-05-08
The energy dissipation in the contact regions between solids in sliding contact can result in high local temperatures which may strongly effect friction and wear. This is the case for rubber sliding on road surfaces at speeds above 1 mm s(-1). We derive equations which describe the frictional heating for solids with arbitrary thermal properties. The theory is applied to rubber friction on road surfaces and we take into account that the frictional energy is partly produced inside the rubber due to the internal friction of rubber and in a thin (nanometer) interfacial layer at the rubber-road contact region. The heat transfer between the rubber and the road surface is described by a heat transfer coefficient which depends on the sliding speed. Numerical results are presented and compared to experimental data. We find that frictional heating results in a kinetic friction force which depends on the orientation of the sliding block, thus violating one of the two basic Leonardo da Vinci 'laws' of friction.
Mitigating Abnormal Grain Growth for Friction Stir Welded Al-Li 2195 Spun Formed Domes
NASA Technical Reports Server (NTRS)
Chen, Po-Shou; Russell, Carolyn
2012-01-01
Formability and abnormal grain growth (AGG) are the two major issues that have been encountered for Al alloy spun formed dome development using friction stir welded blanks. Material properties that have significant influence on the formability include forming range and strain hardening exponent. In this study, tensile tests were performed for two 2195 friction stir weld parameter sets at 400 F to study the effects of post weld anneal on the forming range and strain hardening exponent. It was found that the formability can be enhanced by applying a newly developed post weld anneal to heat treat the friction stir welded panels. This new post weld anneal leads to a higher forming range and much improved strain hardening exponent. AGG in the weld nugget is known to cause a significant reduction of ductility and fracture toughness. This study also investigated how AGG may be influenced by the heating rate to the solution heat treatment temperature. After post-weld annealing, friction stir welds were strained to 15% and 39% by compression at 400 F before they were subjected to SHT at 950 F for 1 hour. Salt bath SHT is very effective in reducing the grain size as it helps arrest the onset of AGG and promote normal recrystallization and grain growth. However, heat treating a 18 ft dome using a salt bath is not practical. Efforts are continuing at Marshall Space Flight Center to identify the welding parameters and heat treating parameters that can help mitigate the AGG in the friction stir welds.
Surface friction of rock in terrestrial and simulated lunar environments
NASA Technical Reports Server (NTRS)
Roepke, W. W.; Peng, S. S.
1975-01-01
The conventional probe-on-the rotating-disk concept was used to determine the surface friction in mineral probe/specimen interfaces. Nine rocks or minerals and two stainless steels were tested in both new (NT) and same track (ST) tests under three different pressure environments-atmospheric, UHV, and dry nitrogen. Each environment was further subdivided into two testing conditions, that is, ambient and elevated (135 C) temperatures. In NT tests, friction was the lowest in an atmospheric pressure condition for all rock types and increased to the largest in UHV ambient condition except for pyroxene and stainless steel. Friction values measured in dry nitrogen ambient condition lie between the two extremes. Heating tends to increase friction in atmospheric and dry nitrogen environment but decreases in UHV environment with the exception of stainless steel, basalt, and pyroxene. In ST tests, friction was the lowest in the first run and increased in subsequent runs except for stainless steel where the reverse was true. The increases leveled off after a few runs ranging from the second to the seventh depending on rock types.
Damage Tolerance Assessment of Friction Pull Plug Welds
NASA Technical Reports Server (NTRS)
McGill, Preston; Burkholder, Jonathan
2012-01-01
Friction stir welding is a solid state welding process developed and patented by The Welding Institute in Cambridge, England. Friction stir welding has been implemented in the aerospace industry in the fabrication of longitudinal welds in pressurized cryogenic propellant tanks. As the industry looks to implement friction stir welding in circumferential welds in pressurized cryogenic propellant tanks, techniques to close out the termination hole associated with retracting the pin tool are being evaluated. Friction pull plug welding is under development as a one means of closing out the termination hole. A friction pull plug weld placed in a friction stir weld results in a non-homogenous weld joint where the initial weld, plug weld, their respective heat affected zones and the base metal all interact. The welded joint is a composite, plastically deformed material system with a complex residual stress field. In order to address damage tolerance concerns associated with friction plug welds in safety critical structures, such as propellant tanks, nondestructive inspection and proof testing may be required to screen hardware for mission critical defects. The efficacy of the nondestructive evaluation or the proof test is based on an assessment of the critical flaw size in the test or service environments. Test data relating residual strength capability to flaw size in two aluminum alloy friction plug weld configurations is presented.
Skin-friction measurements in high-enthalpy hypersonic boundary layers
NASA Astrophysics Data System (ADS)
Goyne, C. P.; Stalker, R. J.; Paull, A.
2003-06-01
Skin-friction measurements are reported for high-enthalpy and high-Mach-number laminar, transitional and turbulent boundary layers. The measurements were performed in a free-piston shock tunnel with air-flow Mach number, stagnation enthalpy and Reynolds numbers in the ranges of 4.4 6.7, 3 13 MJ kg(-1) and 0.16× 10(6) 21× 10(6) , respectively. Wall temperatures were near 300 K and this resulted in ratios of wall enthalpy to flow-stagnation enthalpy in the range of 0.1 0.02. The experiments were performed using rectangular ducts. The measurements were accomplished using a new skin-friction gauge that was developed for impulse facility testing. The gauge was an acceleration compensated piezoelectric transducer and had a lowest natural frequency near 40 kHz. Turbulent skin-friction levels were measured to within a typical uncertainty of ± 7%. The systematic uncertainty in measured skin-friction coefficient was high for the tested laminar conditions; however, to within experimental uncertainty, the skin-friction and heat-transfer measurements were in agreement with the laminar theory of van Driest (1952). For predicting turbulent skin-friction coefficient, it was established that, for the range of Mach numbers and Reynolds numbers of the experiments, with cold walls and boundary layers approaching the turbulent equilibrium state, the Spalding & Chi (1964) method was the most suitable of the theories tested. It was also established that if the heat transfer rate to the wall is to be predicted, then the Spalding & Chi (1964) method should be used in conjunction with a Reynolds analogy factor near unity. If more accurate results are required, then an experimentally observed relationship between the Reynolds analogy factor and the skin-friction coefficient may be applied.
Effects of free convection and friction on heat-pulse flowmeter measurement
NASA Astrophysics Data System (ADS)
Lee, Tsai-Ping; Chia, Yeeping; Chen, Jiun-Szu; Chen, Hongey; Liu, Chen-Wuing
2012-03-01
SummaryHeat-pulse flowmeter can be used to measure low flow velocities in a borehole; however, bias in the results due to measurement error is often encountered. A carefully designed water circulation system was established in the laboratory to evaluate the accuracy and precision of flow velocity measured by heat-pulse flowmeter in various conditions. Test results indicated that the coefficient of variation for repeated measurements, ranging from 0.4% to 5.8%, tends to increase with flow velocity. The measurement error increases from 4.6% to 94.4% as the average flow velocity decreases from 1.37 cm/s to 0.18 cm/s. We found that the error resulted primarily from free convection and frictional loss. Free convection plays an important role in heat transport at low flow velocities. Frictional effect varies with the position of measurement and geometric shape of the inlet and flow-through cell of the flowmeter. Based on the laboratory test data, a calibration equation for the measured flow velocity was derived by the least-squares regression analysis. When the flowmeter is used with a diverter, the range of measured flow velocity can be extended, but the measurement error and the coefficient of variation due to friction increase significantly. At higher velocities under turbulent flow conditions, the measurement error is greater than 100%. Our laboratory experimental results suggested that, to avoid a large error, the heat-pulse flowmeter measurement is better conducted in laminar flow and the effect of free convection should be eliminated at any flow velocities. Field measurement of the vertical flow velocity using the heat-pulse flowmeter was tested in a monitoring well. The calibration of measured velocities not only improved the contrast in hydraulic conductivity between permeable and less permeable layers, but also corrected the inconsistency between the pumping rate and the measured flow rate. We identified two highly permeable sections where the horizontal hydraulic conductivity is 3.7-6.4 times of the equivalent hydraulic conductivity obtained from the pumping test. The field test results indicated that, with a proper calibration, the flowmeter measurement is capable of characterizing the vertical distribution of preferential flow or hydraulic conductivity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Z.L., E-mail: zhilihuhit@163.com; State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001; State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology
Friction stir welding is an efficient manufacturing method for joining aluminum alloy and can dramatically reduce grain size conferring excellent plastic deformation properties. Consequently, friction stir welding is used to manufacture tailor welded blanks to optimize weight or performance in the final component. In the study, the microstructural evolution and mechanical properties of friction stir welding joint during plastic forming and subsequent heat treatment were investigated. The microstructural characteristics of the friction stir welding joints were studied by Electron Backscattered Diffraction and Transmission Electron Microscopy. The mechanical properties were evaluated by tensile and microhardness tests. It is found that themore » tensile and yield strengths of friction stir welding joints are significantly improved after severe plastic deformation due to the grain refinement. Following heat treatment, the strength of the friction stir welding joints significantly decrease due to the obvious abnormal grain growth. Careful attention must be given to the processing route of any friction stir welding joint intended for plastic forming, especially the annealing between forming passes. Severe plastic deforming of the friction stir welding joint leads to a high level of stored energy/dislocation density, which causes the abnormal grain growth during subsequent heat treatment, and consequently reduce the mechanical properties of the friction stir welding joint. - Highlights: • Great changes are observed in the microstructure of FSW joint after postprocessing. • Postprocessing shows great effect on the microstructure stability of FSW joint. • The weld shows more significant decrease in strength than the BM due to the AGG. • Attention must be given to the processing route of FSW joint for plastic forming.« less
Özel, Cihan; Gürgenç, Turan
2018-01-01
In this study, AISI 1020 steel surface was coated in different heat inputs with (wt.-%) 50FeCrC-20FeW-30FeB powder mixture by using plasma transferred arc (PTA) welding method. The microstructure of the coated samples were investigated by using optical microscope (OM), scanning electron microscope (SEM), X-ray diffraction (XRD) and energy dispersive X-ray (EDS). The hardness was measured with micro hardness test device. The dry sliding wear and friction coefficient properties were determined using a block-on-disk type wear test device. Wear tests were performed at 19.62 N, 39.24 N, 58.86 N load and the sliding distance of 900 m. The results were shown that different microstructures formed due to the heat input change. The highest average micro hardness value was measured at 1217 HV on sample coated with low heat input. It was determined that the wear resistance decreased with increasing heat input.
Gürgenç, Turan
2018-01-01
In this study, AISI 1020 steel surface was coated in different heat inputs with (wt.-%) 50FeCrC-20FeW-30FeB powder mixture by using plasma transferred arc (PTA) welding method. The microstructure of the coated samples were investigated by using optical microscope (OM), scanning electron microscope (SEM), X-ray diffraction (XRD) and energy dispersive X-ray (EDS). The hardness was measured with micro hardness test device. The dry sliding wear and friction coefficient properties were determined using a block-on-disk type wear test device. Wear tests were performed at 19.62 N, 39.24 N, 58.86 N load and the sliding distance of 900 m. The results were shown that different microstructures formed due to the heat input change. The highest average micro hardness value was measured at 1217 HV on sample coated with low heat input. It was determined that the wear resistance decreased with increasing heat input. PMID:29324875
Consideration of Materials for Aircraft Brakes
NASA Technical Reports Server (NTRS)
Peterson, M. B.; Ho, T.
1972-01-01
An exploratory investigation was conducted concerning materials and their properties for use in aircraft brakes. Primary consideration was given to the heat dissipation and the frictional behavior of materials. Used brake pads and rotors were analyzed as part of the investigation. A simple analysis was conducted in order to determine the most significant factors which affect surface temperatures. It was found that where size and weight restrictions are necessary, the specific heat of the material, and maintaining uniform contact area are the most important factors. A criterion was suggested for optimum sizing of the brake disks. Bench friction tests were run with brake materials. It was found that there is considerable friction variation due to the formation and removal of surface oxide films. Other causes of friction variations are surface softening and melting. The friction behavior at high temperature was found to be more characteristic of the steel surface rather than the copper brake material. It is concluded that improved brake materials are feasible.
NASA Astrophysics Data System (ADS)
Karthik, G. M.; Janaki Ram, G. D.; Kottada, Ravi Sankar
2017-12-01
In this work, a cast magnesium alloy AZ91D was friction stir processed. Detailed microstructural studies and Gleeble hot ductility tests were conducted on the as-cast and the FSPed samples to comparatively assess their heat-affected zone liquation cracking behavior. The results show that the use of FSP as a pretreatment to fusion welding can strikingly improve the heat-affected zone liquation cracking resistance of alloy AZ91D by reducing the amount and size of the low-melting eutectic β (Mg17Al12) as well as by refining the matrix grain size.
Surface effects on friction-induced fluid heating in nanochannel flows.
Li, Zhigang
2009-02-01
We investigate the mechanism of friction-induced fluid heating under the influence of surfaces. The temperature distributions of liquid argon and helium in nanoscale Poiseuille flows are studied through molecular dynamics simulations. It is found that the fluid heating is mainly caused by the viscous friction in the fluid when the external force is small and there is no slip at the fluid-solid interface. When the external force is larger than the fluid-surface binding force, the friction at the fluid-solid interface dominates over the internal friction of the fluid and is the major contribution to fluid heating. An asymmetric temperature gradient in the fluid is developed in the case of nonidentical walls and the general temperature gradient may change sign as the dominant heating factor changes from internal to interfacial friction with increasing external force. The effect of temperature on the fluid heating is also discussed.
NASA Astrophysics Data System (ADS)
Verma, Aditya; Kumar, Manoj; Patil, Anil Kumar
2018-04-01
The application of compact heat exchangers in any thermal system improves overall performance with a considerable reduction in size and weight. Inserts of different geometrical features have been used as turbulence promoting devices to increase the heat transfer rates. The present study deals with the experimental investigation of heat transfer and fluid flow characteristics of a tubular heat exchanger fitted with modified helical coiled inserts. Experiments have been carried out for a smooth tube without insert, tube fitted with helical coiled inserts, and modified helical coiled inserts. The helical coiled inserts are tested by varying the pitch ratio and wire diameter ratio from 0.5-1.5, and 0.063-0.125, respectively for the Reynolds number range of 1400 to 11,000. Experimental data have also been collected for the modified helical coiled inserts with gradually increasing pitch (GIP) and gradually decreasing pitch (GDP) configurations. The Nusselt number and friction factor values for helical coiled inserts are enhanced in the range of 1.42-2.62, 3.4-27.4, relative to smooth tube, respectively. The modified helical coiled insert showed enhancements in Nusselt number and friction factor values in the range of 1.49-3.14, 11.2-19.9, relative to smooth tube, respectively. The helical coiled and modified helical coiled inserts have thermo-hydraulic performance factor in the range of 0.59-1.29, 0.6-1.39, respectively. The empirical correlations of Nusselt number and friction factor for helical coiled inserts are proposed.
Experimental study on ignition mechanisms of wet granulation sulfur caused by friction.
Dai, Haoyuan; Fan, Jianchun; Wu, Shengnan; Yu, Yanqiu; Liu, Di; Hu, Zhibin
2018-02-15
It is common to see fire accidents caused by friction during the storage and transportation of wet granulation sulfur. To study the sulfur ignition mechanism under friction conditions, a new rotating test apparatus is developed to reproduce friction scenes at lab scale. A series of experiments are performed under different normal loads. The SEM-EDS and the XRD were utilized to examine the morphologies and compositions of the tested specimens and the friction products. Experimental results show that these two methods are mostly in agreement with each other. The iron-sulfide compounds are produced and the proportion of iron-sulfide compounds is reduced with normal loads increasing, compared to the total number of the friction products. The facts implied by the integration analysis of friction products with the temperature changes of the near friction surface unveil an underlying mechanism that may explain sulfur ignition by friction in real scenarios. The sulfur ignition may be mainly caused by the spontaneous combustion of iron sulfide compounds produced by friction under low normal load with 200N. With the increase of normal loads, the resulting iron-sulfide compounds are decreasing and the high temperature from friction heat begins to play a major role in causing fire. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eiamsa-ard, Smith; Seemawute, Panida; Wongcharee, Khwanchit
Effects of peripherally-cut twisted tape insert on heat transfer, friction loss and thermal performance factor characteristics in a round tube were investigated. Nine different peripherally-cut twisted tapes with constant twist ratio (y/W = 3.0) and different three tape depth ratios (DR = d/W = 0.11, 0.22 and 0.33), each with three different tape width ratios (WR = w/W = 0.11, 0.22 and 0.33) were tested. Besides, one typical twisted tape was also tested for comparison. The measurement of heat transfer rate was conducted under uniform heat flux condition while that of friction factor was performed under isothermal condition. Tests weremore » performed with Reynolds number in a range from 1000 to 20,000, using water as a working fluid. The experimental results revealed that both heat transfer rate and friction factor in the tube equipped with the peripherally-cut twisted tapes were significantly higher than those in the tube fitted with the typical twisted tape and plain tube, especially in the laminar flow regime. The higher turbulence intensity of fluid in the vicinity of the tube wall generated by the peripherally-cut twisted tape compared to that induced by the typical twisted tape is referred as the main reason for achieved results. The obtained results also demonstrated that as the depth ratio increased and width ratio decreased, the heat transfer enhancement increased. Over the range investigated, the peripherally-cut twisted tape enhanced heat transfer rates in term of Nusselt numbers up to 2.6 times (turbulent regime) and 12.8 times (laminar regime) of that in the plain tube. These corresponded to the maximum performance factors of 1.29 (turbulent regime) and 4.88 (laminar regime). (author)« less
Bizarro, João P S; Rodrigues, Paulo
2012-11-01
For work-producing heat engines, or work-consuming refrigerators and heat pumps, the percentage decrease caused by friction in their efficiencies, or coefficients of performance (COP's), is approximately given by the ratio W(fric)/W between the work spent against friction forces and the work performed by, or delivered to, the working fluid. This universal scaling, which applies in the limit of small friction (W(fric)/W ~ 20%) and when the engine's figures of merit (FOM's, either efficiencies or COP's) do not come too close to unity (no higher than, say, 0.5 in the case of heat-engine efficiencies), allows a simple and quick estimate of the impact that friction losses can have on the FOM's of thermal engines and plants, or of the level of those losses from the observed and predicted FOM's. In the case of refrigerators and heat pumps, if W(fric)/W ~ 20% is not ensured (actually a condition that can be largely relaxed for heat engines), the COP percentage decrease due to friction approaches asymptotically (W(fric)/W)/(1+W(fric)/W) instead of W(fric)/W. Estimates for the level of frictional losses using the Carnot (or, for heat engines and power plants only, the Curzon-Ahlborn) predictions and observed FOM's of real power plants, heat engines, refrigerators, and heat pumps show that they usually operate in domains where these behaviors are valid.
Generalized contact and improved frictional heating in the material point method
NASA Astrophysics Data System (ADS)
Nairn, J. A.; Bardenhagen, S. G.; Smith, G. D.
2017-09-01
The material point method (MPM) has proved to be an effective particle method for computational mechanics modeling of problems involving contact, but all prior applications have been limited to Coulomb friction. This paper generalizes the MPM approach for contact to handle any friction law with examples given for friction with adhesion or with a velocity-dependent coefficient of friction. Accounting for adhesion requires an extra calculation to evaluate contact area. Implementation of velocity-dependent laws usually needs numerical methods to find contacting forces. The friction process involves work which can be converted into heat. This paper provides a new method for calculating frictional heating that accounts for interfacial acceleration during the time step. The acceleration terms is small for many problems, but temporal convergence of heating effects for problems involving vibrations and high contact forces is improved by the new method. Fortunately, the new method needs few extra calculations and therefore is recommended for all simulations.
Generalized contact and improved frictional heating in the material point method
NASA Astrophysics Data System (ADS)
Nairn, J. A.; Bardenhagen, S. G.; Smith, G. D.
2018-07-01
The material point method (MPM) has proved to be an effective particle method for computational mechanics modeling of problems involving contact, but all prior applications have been limited to Coulomb friction. This paper generalizes the MPM approach for contact to handle any friction law with examples given for friction with adhesion or with a velocity-dependent coefficient of friction. Accounting for adhesion requires an extra calculation to evaluate contact area. Implementation of velocity-dependent laws usually needs numerical methods to find contacting forces. The friction process involves work which can be converted into heat. This paper provides a new method for calculating frictional heating that accounts for interfacial acceleration during the time step. The acceleration terms is small for many problems, but temporal convergence of heating effects for problems involving vibrations and high contact forces is improved by the new method. Fortunately, the new method needs few extra calculations and therefore is recommended for all simulations.
Exploratory study of friction welds in Udimet 700 and TD-Nickel bar
NASA Technical Reports Server (NTRS)
Moore, T. J.
1971-01-01
Friction welded butt joints were made in both Udimet 700 and TD-Nickel bar. Also, dissimilar metal friction welds were made between these materials. Friction welding of Udimet 700 shows great promise because the welds were found to be as strong as the parent metal in stress rupture and tensile tests at 760 and 980 C. The weld line was not detectable metallographically in the heat treated condition. Friction welding for TD-Nickel, however, holds little if any promise. TD-Nickel friction weldments could support only 9 percent as much stress as the base metal for a 10-hour stress-rupture life at 1090 C. Dissimilar Udimet 700/TD-Nickel friction welds could sustain only 15 percent as much stress as the TD-Nickel parent metal for a 10-hour rupture life at 930 C.
Effects of slip, slip rate, and shear heating on the friction of granite
Blanpied, M.L.; Tullis, T.E.; Weeks, J.D.
1998-01-01
The stability of fault slip is sensitive to the way in which frictional strength responds to changes in slip rate and in particular to the effective velocity dependence of steady state friction ????ss/?? ln V. This quantity can vary substantially with displacement, temperature and slip rate. To investigate the physical basis for this behavior and the possible influence of shear heating, we slid initially bare granite surfaces in unconfined rotary shear to displacements of hundreds of millimeters at normal stresses, ??n, of 10 and 25 MPa and at room temperature. We imposed step changes in slip rate within the range 10-2 to 103.5 ??m/s and also monitored frictional heating with thermistors embedded in the granite. The transient response of ?? to slip rate steps was fit to a rate- and state-dependent friction law using two state variables to estimate the values of several parameters in the constitutive law. The first 20 mm of slip shows rising friction and falling ????ss/?? ln V; further slip shows roughly constant friction, ????ss/?? ln V and parameter values, suggesting that a steady state condition is reached on the fault surface. At V ??? 10 ??m/s, ????ss/?? ln V = -0.004 ?? 0.001. At higher rates the response is sensitive to normal stress: At ??n = 25 MPa granite shows a transition to effective velocity strengthening (????ss/?? ln V = 0.008 ?? 0.004) at the highest slip rates tested. At 10 MPa granite shows a less dramatic change to ????ss/?? ln V ??? 0 at the highest rates. The maximum temperature measured in the granite is ???60??C at 25 MPa and 103.5 ??m/s. Temperatures are in general agreement with a numerical model of heat conduction which assumes spatially homogeneous frictional heating over the sliding surface. The simplest interpretation of our measurements of ????ss/?? ln V is that the granite is inherently veocity weakening (?????ss/??? In V 0 mimics velocity strengthening. These results have implications for the frictional behavior of faults during earthquakes. High slip rates may cause a switch to effective velocity strengthening which could limit peak coseismic slip rate and stress drop. For fluid-saturated faults, strengthening by this mechanism may be partly or fully offset by weakening due to thermal pressurization of a poorly drained pore fluid.
Wang, Gui-Lian; Yang, Da-Wei; Wang, Yan; Niu, Di; Zhao, Xiao-Lin; Ding, Gui-Fu
2015-04-22
This paper experimentally and numerically investigated the heat transfer and friction characteristics of microfluidic heat sinks with variously-shaped micro-ribs, i.e., rectangular, triangular and semicircular ribs. The micro-ribs were fabricated on the sidewalls of microfluidic channels by a surface-micromachining micro-electro-mechanical system (MEMS) process and used as turbulators to improve the heat transfer rate of the microfluidic heat sink. The results indicate that the utilizing of micro-ribs provides a better heat transfer rate, but also increases the pressure drop penalty for microchannels. Furthermore, the heat transfer and friction characteristics of the microchannels are strongly affected by the rib shape. In comparison, the triangular ribbed microchannel possesses the highest Nusselt number and friction factor among the three rib types.
NASA Technical Reports Server (NTRS)
Marble, Elizabeth
1996-01-01
Hypersonic spacecraft reentering the earth's atmosphere encounter extreme heat due to atmospheric friction. Thermal Protection System (TPS) materials shield the craft from this searing heat, which can reach temperatures of 2900 F. Various thermophysical and optical properties of TPS materials are tested at the Johnson Space Center Atmospheric Reentry Materials and Structures Evaluation Facility, which has the capability to simulate critical environmental conditions associated with entry into the earth's atmosphere. Emissivity is an optical property that determines how well a material will reradiate incident heat back into the atmosphere upon reentry, thus protecting the spacecraft from the intense frictional heat. This report describes a method of measuring TPS emissivities using the SR5000 Scanning Spectroradiometer, and includes system characteristics, sample data, and operational procedures developed for arc-jet applications.
Lim, Y. C.; Sanderson, S.; Mahoney, M.; ...
2016-04-06
Here, we fabricated a thick-sectioned multilayered steel structure by multipass friction stir welding on A516 Grade 70 steel. Tensile strength of the multilayered samples was comparable to that of the base metal. Failure was located in the base metal when a defect-free sample was tested. Charpy impact toughness was higher in the stir zone and heat affected zone than in the base metal. For higher microhardness values were found in the stir zone and heat affected zone than the base metal due to grain refinement and modification of the microstructures. As a result, improved mechanical properties compared to the basemore » metal were found in the weld zones of friction stir welded A516 Grade 70 steel.« less
NASA Astrophysics Data System (ADS)
Kinoshita, M.; Kawamura, K.; Lin, W.
2015-12-01
During the Nankai Trough Seismogenic Zone Experiments (NanTroSEIZE) of the Integrated Ocean Drilling Program (IODP), the advanced piston corer temperature (APC-T) tool was used to determine in situ formation temperatures while piston coring down to ~200 m below sea floor. When the corer is fired into the formation, temperature around the shoe abruptly increases due to the frictional heating. The temperature rise due to the frictional heat at the time of penetration is 10 K or larger. We found that the frictional temperature rise (=maximum temperature) increases with increasing depth, and that its intersection at the seafloor seems non-zero. Frictional heat energy is proportional to the maximum temperature rise, which is confirmed by a FEM numerical simulation of 2D cylindrical system. Here we use the result of numerical simulation to convert the observed temperature rise into the frictional heat energy. The frictional heat energy is represented as the product of the shooting length D and the shear stress (τ) between the pipe and the sediment. Assuming a coulomb slip regime, the shear stress is shows as: τ= τ0 + μ*(Sv-Pp), where τ0 is the cohesive stress, μ the dynamic frictional coefficient between the pipe and the sediment, Sv the normal stress at the pipe, and Pp the pore pressure. This can explain the non-zero intersection as well as depth-dependent increase for the frictional heating observed in the APC-T data. Assuming a hydrostatic state and by using the downhole bulk density data, we estimated the friction coefficient for each APC-T measurement. For comparison, we used the vane-shear strength measured on core samples to estimate the friction coefficients. The frictional coefficients μ were estimated as ranging 0.01 - 0.06, anomalously lower than expected for shallow marine sediments. They were lower than those estimated from vane-shear data, which range 0.05 to 0.2. Still, both estimates exhibit a significant increase in the friction coefficient at Site C0012, which dominates in the hemipelagic sediment in the Shikoku Basin. The anomalously low values suggest either fluid injection between the pipe and the sediment during the measurement, or some other uncertainties in converting the observed temperature rise to the frictional heat generation.
2013-05-31
fusion welding and virtually eliminates the material porosity inherent with liquid alloy processes. Also because less heat is input to the material...Fe intermetallic present. Mechanical load testing determined that the bimetallic FSP joint was stronger than similar AA6061-to-AA6061 fusion- welded and...5 b) Weld Coupon Fixture ........................................................................................ 5 2. Friction Stir Tools
NASA Technical Reports Server (NTRS)
DellaCorte, C.; Laskowski, J. A.
1996-01-01
This paper presents the tribological characteristics of Al203 sliding against PS300; a chrome oxide based self lubricating coating. Al203 pins were slid against PS300 coated superalloy disks in air, under a 4.9 N load at velocities of 1 to 8 m/s. At a sliding velocity of 1 m/s, friction ranged from 0.6 at 25 C to 0.2 at 650 C. Wear factors for the Al203 pins were in the 10(exp -7) mm(exp 3)/N-m range and for the PS300 coating was in the 10(exp -5) mm(exp 3)/N-m range. The test results suggest that increased surface temperature resulting from either frictional heating, generated by increased sliding velocity, or ambient heating caused a reduction in friction and wear of the sliding couple. Based upon these results, the tested material combination is a promising candidate for high temperature wear applications.
Testing metals and alloys for use in oxygen systems
NASA Technical Reports Server (NTRS)
Stoltzfus, Joel M.
1986-01-01
When oxygen is present in high concentrations or large quantities, as in oxygen-based life-support systems, the likelihood of combustion and the probable intensity of a conflagration increase, together with the severity of the damage caused. Even stainless steel will burn vigorously when ignited in a 1000-psi oxygen environment. The hazards involved in the use of oxygen increase with system operation at the elevated temperatures typical of propulsion systems. Fires in oxygen systems are generally catastrophic, causing a threat to life in manned vehicles. When mechanical components of a mechanism generate friction heat in the presence of oxygen, many commonly used metal alloys ignite and burn. Attention is presently given to frictional heating, particle impact, and flame propagation tests conducted in oxygen environments.
NASA Technical Reports Server (NTRS)
Moore, T. J.
1972-01-01
Results of an exploratory study of the structure and properties of friction welds in Udimet 700 (U-700) and TD-nickel (TD-Ni) bar materials, as well as dissimilar U-700/TD-Ni friction welds. Butt welds were prepared by friction welding 12.7-mm-diam U-700 bars and TD-Ni bars. Specimens for elevated temperature tensile and stress rupture testing were machined after a postweld heat treatment. Friction welding of U-700 shows great potential because the welds were found to be as strong as the parent metal in stress rupture and tensile tests at 760 and 980 C. In addition, the weld line was not detectable by metallographic examination after postheating. Friction welds in TD-Ni or between U-700 and TD-Ni were extremely weak at elevated temperatures. The TD-Ni friction welds could support only 9% as much stress as the base metal for 10-hour stress rupture life at 1090 C. The U-700/TD-Ni weld could sustain only 15% as much stress as the TD-Ni parent metal for a 10-hour stress rupture life at 930 C. Thus friction welding is not a suitable joining method for obtaining high-strength TD-Ni or U-700/TD-Ni weldments.
Anisotropic frictional heat dissipation in cyclotrimethylene trinitramine
NASA Astrophysics Data System (ADS)
Rajak, Pankaj; Kalia, Rajiv; Nakano, Aiichiro; Vashishta, Priya
Anisotropic frictional response and corresponding heat dissipation from different crystallographic planes of RDX crystal is studied using molecular dynamics simulations. The effect of frictional force on the nature of damage and system temperature is monitored along different directions on primary slip plane, (010), of RDX and on non-slip planes, (100) and (001). The correlation between the friction coefficient, deformation and the frictional heating in these system is determined. It is observed that friction coefficients on slip planes are smaller than those of non-slip planes. In response to friction on slip plane, RDX crystal deforms via dislocation formation and shows less heating. On non-slip planes due to the inability of the system to deform by dislocation formation, large temperature rise is observed in the system just below the contact area of two surfaces. Frictional sliding on non-slip planes also lead to the formation of damage zone just below the contact area of two surfaces due to the change in RDX ring conformation from chair to boat/half-boat. This research is supported by the AFOSR Grant: FA9550-16- 1-0042.
NASA Astrophysics Data System (ADS)
Mukoyoshi, H.; Hirono, T.
2016-12-01
Estimation of frictional heating of deep to shallow portion of ancient megasplay fault is important for understanding of weakening mechanism (e.g., thermal pressurization, melt lubrication) of present plate boundary fault and megasplay fault. Raman spectroscopy has recently been used to estimate the thermal metamorphic grade of organic matter in sedimentary rocks and applying the method in order to estimate the temperature of fast heating like frictional heating during earthquake. We performed microstructural observation and Raman spectroscopic analyses of carbonaceous materials (CM) in the fault rock of 2.5-5.5 km depth of an ancient megasplay fault (an out-of sequence thrust in the Shimant accretionary complex) and 1-4 km depth of a thrust in the Emi group, Hota accretionary complex, exposed on Japan. We also conducted heating experiment of CM in host rock of these fault with anaerobic condition (range: 100-1300ºC, intervals: 100ºC, rate of temperature increase: 20 K/min) in order to investigate the effects of fast heating rate like frictional heating during earthquake. Raman spectrum of CM of both fault is similar to spectrum of 400˜600 ºC heating experiment of CM. This result shows that both fault had heating history of 400˜600 ºC by frictional heating. To evaluate the levels of friction, Raman spectrum of the short time maturated experimented CM is useful as calibration tool.
NASA Astrophysics Data System (ADS)
Rizvanov, R. G.; Mulikov, D. Sh.; Karetnikov, D. V.; Fairushin, A. M.; Tokarev, A. S.
2018-03-01
This paper presents the results of the tests of joints of chrome-molybdenum steel, obtained by rotary friction welding. On their basis, conclusions were drawn about the weldability of this type of steel by friction welding, and also the applicability of this welding technology in the manufacture of heat exchange equipment.
NASA Astrophysics Data System (ADS)
Rajak, Pankaj; Mishra, Ankit; Sheng, Chunyang; Tiwari, Subodh; Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya
2018-05-01
Anisotropic frictional response and corresponding heating in cyclotrimethylene-trinitramine molecular crystals are studied using molecular dynamics simulations. The nature of damage and temperature rise due to frictional forces is monitored along different sliding directions on the primary slip plane, (010), and on non-slip planes, (100) and (001). Correlations between the friction coefficient, deformation, and frictional heating are established. We find that the friction coefficients on slip planes are smaller than those on non-slip planes. In response to sliding on a slip plane, the crystal deforms easily via dislocation generation and shows less heating. On non-slip planes, due to the inability of the crystal to deform via dislocation generation, a large damage zone is formed just below the contact area, accompanied by the change in the molecular ring conformation from chair to boat/half-boat. This in turn leads to a large temperature rise below the contact area.
NASA Astrophysics Data System (ADS)
Jafarimoghaddam, Amin; Aberoumand, Sadegh; Javaherdeh, Kourosh; Arani, Ali Akbar Abbasian; Jafarimoghaddam, Reza
2018-04-01
In this work, an experimental study on nanofluid preparation stability, thermo-physical properties, heat transfer performance and friction factor of Al/ Oil nanofluids has been carried out. Electrical Explosion Wire ( E.E.W) which is one of the most reliable one-step techniques for nanofluids preparation has been used. An annular tube has been considered as the test section in which the outer tube was subject to a uniform heat flux boundary condition of about 204 W. The utilized nanofluids were prepared in three different volume concentrations of 0.011%, 0.044% and 0.171%. A wide range of parameters such as Reynolds number Prandtl number, viscosity, thermal conductivity, density, specific heat, convective heat transfer coefficient, Nusselt number and the friction factor have been studied. The experiment was conducted in relatively low Reynolds numbers of less than 160 and within a hydrodynamically fully-developed regime. According to the results, thermal conductivity, density and viscosity increased depending on the volume concentrations and working temperatures while the specific heat declined. More importantly, it was observed that convective heat transfer coefficient and Nusselt number enhanced by 28.6% and 16.4%, respectively, for the highest volume concentration. Finally, the friction factor (which plays an important role in the pumping power) was found to be increased around 18% in the volume fraction of 0.171%.
NASA Astrophysics Data System (ADS)
Kubo, T.; Katayama, I.
2016-12-01
Along plate boundary subduction thrusts, the transformation of smectite to illite within fault gouge at temperatures around 100 - 200 °C is one of the key mineralogical changes thought to control the updip limit of seismicity (Hyndman et al., 1997). Since hydration state of clay minerals is possible to vary from moment to moment in nature, it is important to investigate the effect of dehydration and hydrate state on frictional properties with progression of a removal of water is rare. In this study, we focus on the effect of dehydration of water on the frictional properties of clay minerals by temperature-rising test. For the friction experiments, starting materials we used are Ca-montmorillonite, which were placed on the simulated fault surface and two side blocks were placed together to produce a double-direct shear configuration. The sample assembly was heated by an external furnace up to 400 °C that is monitored by thermocouples located in the central part of sample assembly. After steady-state friction at room temperature we started to elevate the temperature around the specimen at a constant heating rate of 1, 3, and 10 °C/min. Ca-montmorillonite gouge showed unique friction behavior development as elevated temperature, which is divided into three stages; (1) friction coefficient decreased at relative low temperature, (2) friction coefficient increased at middle temperature, and (3) stick-slip behavior occurred at high temperature. Stick-slip behavior as elevated temperature implies to have a potential of velocity weakening behavior. Observed stick-slip behavior occurs at a temperature of 320 °C, which is extremely higher from a temperature range of occurring dehydration for Ca-montmorillonite (100 - 200 °C). However, at low heating rate the temperature that stick-slip behavior occurs shifted to lower temperature. Our preliminary results suggest that the observed systematical shift suggest that these frictional behavior is likely to be controlled by dehydration reaction kinetics. Dehydration of clay minerals change friction behavior, and play a key role for the occurrence of earthquakes along subducting plate.
2014/2219 Tri-Point Crack Analysis
NASA Technical Reports Server (NTRS)
Horton, Karla Renee
2011-01-01
Friction stir welding (FSW) is a solid state welding process with potential advantages for aerospace and automotive industries dealing with light alloys. Self-reacting friction stir welding (SR-FSW) is one variation of the FSW process being developed at the National Aeronautics and Space Administration (NASA) for use in the fabrication of propellant tanks. Friction plug welding is used to seal the exit hole that remains in a circumferential SR-FSW. The objective of this study was to evaluate the deformation response at the tips of cracks located in the heat affected zone of friction plug welds and to study the fracture behavior of welds with defects in the form of fatigue cracks. The study used existing 2014-T6 to 2219-T87 self-reacting friction stir weld panels with 2219-T87 friction plug welds. Electro-discharge machined (EDM) notches were machined into the heat affected zone of the plug at the plug-to-base metal interface. Samples were then cycled to generate a fatigue crack emanating from the notch. After the fatigue crack reached a pre-defined length, a speckle pattern was applied and the ARAMIS system (a three dimensional imaging correlation system) was used to measure the deformations at the crack tip under a sequence of loads. Testing was conducted at ambient laboratory conditions. Fracture data from the testing was analyzed to evaluate residual strength capability of the panel as a function of flaw size. ARAMIS strain data was evaluated to examine strain and deformation patterns that develop around the crack tip and at the plug/weld interfaces. Four samples were used in this study, with three samples in a post-weld heat treated condition. Three samples contained large diameter plugs (M5) and one sample contained a small diameter plug (M3). Two samples were 4 inches in width and two samples were 8.5 inches in width. All samples failed through the precrack with residual strengths ranging from 37 ksi to 42 ksi.
Slip and frictional heating of extruded polyethylene melts
NASA Astrophysics Data System (ADS)
Pérez-González, José; Marín-Santibáñez, Benjamín M.; Zamora-López, Héctor S.; Rodríguez-González, Francisco
2017-05-01
Extrusion of polymer melts with slip at the die generates frictional heating. The relationship between slip flow and frictional heating during the continuous extrusion of a non-slipping linear low-density (LLDPE) and a slipping high-density polyethylene (HDPE), respectively, both pure as well as blended with a fluoropolymer processing aid (PA), was investigated in this work by Rheo-particle image velocimetry and thermal imaging. Significant rises in temperature were measured under slip and no slip conditions, being these much higher than the values predicted by the adiabatic flow assumption. Clear difference was made between viscous and frictional heating before the stick-slip regime for the LLDPE, even though they could not be distinguished from one another at higher stresses. Such a difference, however, could not be made for the slipping HDPE, since overall in the presence of slip, frictional and viscous heating act synergistically to increase the melt temperature.
Heat generated during seating of dental implant fixtures.
Flanagan, Dennis
2014-04-01
Frictional heat can be generated during seating of dental implants into a drill-prepared osteotomy. This in vitro study tested the heat generated by implant seating in dense bovine mandible ramus. A thermocouple was placed approximately 0.5 mm from the rim of the osteotomy during seating of each dental implant. Four diameters of implants were tested. The average temperature increases were 0.075°C for the 5.7-mm-diameter implant, 0.97°C for the 4.7-mm-diameter implant, 1.4°C for the 3.7-mm-diameter implant, and 8.6°C for the 2.5-mm-diameter implant. The results showed that heat was indeed generated and a small temperature rise occurred, apparently by the friction of the implant surface against the fresh-cut bone surface. Bone is a poor thermal conductor. The titanium of the implant and the steel of the handpiece are much better heat conductors. Titanium may be 70 times more heat conductive than bone. The larger diameter and displacement implant may act as a heat sink to draw away any heat produced from the friction of seating the implant at the bone-implant interface. The peak temperature duration was momentary, and not measured, but this was approximately less than 1 second. Except for the 2.5-mm-diameter implants, the temperature rises and durations were found to be below those previously deemed to be detrimental, so no clinically significant osseous damage would be expected during dental implant fixture seating of standard and large-diameter-sized implants. A 2.5-mm implant may generate detrimental heat during seating in nonvital bone, but this may be clinically insignificant in vital bone. The surface area and thermal conductivity are important factors in removing generated heat transfer at the bone-implant interface. The F value as determined by analysis of variance was 69.22, and the P value was less than .0001, demonstrating significant differences between the groups considered as a whole.
NASA Astrophysics Data System (ADS)
Abir, Ahmed Musafi
Spacer grids are used in Pressurized Water Reactors (PWRs) fuel assemblies which enhances heat transfer from fuel rods. However, there remain regions of low turbulence in between the spacer grids. To enhance turbulence in these regions surface roughness is applied on the fuel rod walls. Meyer [1] used empirical correlations to predict heat transfer and friction factor for artificially roughened fuel rod bundles at High Performance Light Water Reactors (LWRs). Their applicability was tested by Carrilho at University of South Carolina's (USC) Single Heated Element Loop Tester (SHELT). He attained a heat transfer and friction factor enhancement of 50% and 45% respectively, using Inconel nuclear fuel rods with square transverse ribbed surface. Following him Najeeb conducted a similar study due to three dimensional diamond shaped blocks in turbulent flow. He recorded a maximum heat transfer enhancement of 83%. At present, several types of materials are being used for fuel rod cladding including Zircaloy, Uranium oxide, etc. But researchers are actively searching for new material that can be a more practical alternative. Silicon Carbide (SiC) has been identified as a material of interest for application as fuel rod cladding [2]. The current study deals with the experimental investigation to find out the friction factor increase of a SiC fuel rod with 3D surface roughness. The SiC rod was tested at USC's SHELT loop. The experiment was conducted in turbulent flowing Deionized (DI) water at steady state conditions. Measurements of Flow rate and pressure drop were made. The experimental results were also validated by Computational Fluid Dynamics (CFD) analysis in ANSYS Fluent. To simplify the CFD analysis and to save computational resources the 3D roughness was approximated as a 2D one. The friction factor results of the CFD investigation was found to lie within +/-8% of the experimental results. A CFD model was also run with the energy equation turned on, and a heat generation of 8 kW applied to the rod. A maximum heat transfer enhancement of 18.4% was achieved at the highest flow rate investigated (i.e. Re=109204).
Consideration of Wear Rates at High Velocities
2010-03-01
Strain vs. Three-dimensional Model . . . . . . . . . . . . 57 3.11 Example Single Asperity Wear Rate Integral . . . . . . . . . . 58 4.1 Third Stage...Slipper Accumulated Frictional Heating . . . . . . 67 4.2 Surface Temperature Third Stage Slipper, ave=0.5 . . . . . . . 67 4.3 Melt Depth Example...64 A3S Coefficient for Frictional Heat Curve Fit, Third Stage Slipper 66 B3S Coefficient for Frictional Heat Curve Fit, Third
The friction and wear of TPS fibers
NASA Technical Reports Server (NTRS)
Bascom, W. D.; Wong, S.
1987-01-01
The sliding friction behavior of single filaments of SiO2, SiC, and an aluminoborosilicate has been determined. These fibers are used in thermal protection systems (TPS) and are subject to damage during weaving and aero-maneuvering. All fibers exhibited stick-slip friction indicating the successive formation and rupture of strong junctions between the contacting filaments. The static frictional resistance of the sized SiC filament was 4X greater than for the same filament after heat cleaning. This result suggests that the sizing is an organic polymer with a high shear yield strength. Heat cleaning exposes the SiC surface and/or leaves an inorganic residue so that the adhesional contact between filaments has a low fracture energy and frictional sliding occurs by brittle fracture. The frictional resistances of the sized and heat cleaned SiO2 and glass filaments were all comparable to that of the heat cleaned SiC. It would appear that the sizings as well as the heat cleaned surfaces of the silica and glass have low fracture energies so that the sliding resistance is determined by brittle fracture.
NASA Astrophysics Data System (ADS)
Mukhopadhyay, Arkadeb; Barman, Tapan Kumar; Sahoo, Prasanta
The present work investigates the effects of heat treatment on friction and wear behavior of electroless Ni-B coatings at elevated temperatures. Coating is deposited on AISI 1040 steel specimens and subjected to heat treatments at 350∘C, 400∘C and 450∘C. Coating characterization is done using scanning electron microscope, energy dispersive X-Ray analysis and X-Ray diffraction analysis. Improvement in microhardness is observed for the heat treated deposits. Further, the effect of heat treatment on the tribological behavior of the coatings at room temperature, 100∘C, 300∘C and 500∘C are analyzed on a pin-on-disc setup. Heat treatment at 350∘C causes a significant improvement in the tribological behavior at elevated temperatures. Higher heat treatment temperatures cause deterioration in the wear resistance and coefficient of friction. The wear mechanism at 100∘C is observed to be predominantly adhesive along with abrasion. While at 300∘C, abrasive wear is seen to be the governing wear phenomenon. Formation of mechanically mixed layers is noticed at both the test temperatures of 100∘C and 300∘C for the coatings heat treated at 400∘C and 450∘C test temperature. The predominant wear mechanisms at 500∘C are abrasive and fatigue for as-deposited and heat treated coatings, respectively.
Modeling of heat transfer in compacted machining chips during friction consolidation process
NASA Astrophysics Data System (ADS)
Abbas, Naseer; Deng, Xiaomin; Li, Xiao; Reynolds, Anthony
2018-04-01
The current study aims to provide an understanding of the heat transfer process in compacted aluminum alloy AA6061 machining chips during the friction consolidation process (FCP) through experimental investigations and mathematical modelling and numerical simulation. Compaction and friction consolidation of machining chips is the first stage of the Friction Extrusion Process (FEP), which is a novel method for recycling machining chips to produce useful products such as wires. In this study, compacted machining chips are modelled as a continuum whose material properties vary with density during friction consolidation. Based on density and temperature dependent thermal properties, the temperature field in the chip material and process chamber caused by frictional heating during the friction consolidation process is predicted. The predicted temperature field is found to compare well with temperature measurements at select points where such measurements can be made using thermocouples.
NASA Astrophysics Data System (ADS)
Iyahraja, S.; Rajadurai, J. Selwin; Rajesh, S.; Pandian, R. Seeni Thangaraj; Kumaran, M. Selva; Selvakumar, G.
2018-07-01
In the present study, performance of convective heat transfer and friction factor of silver-water nanofluids in a horizontal circular pipe under turbulent flow were investigated experimentally under uniform heat flux condition. The volume concentration of silver nanoparticles is varied as 0.01, 0.05 and 0.1%. Heat transfer coefficient and friction factor of nanofluids were measured experimentally by varying the Reynolds number from 3000 to 21,000. It is observed that the addition of even low volume fraction of silver nanoparticles increases both Nusselt number and heat transfer coefficient of the nanofluid significantly. Nusselt number of silver-water nanofluid increases up to 32.6% for 0.1% volume fraction at Reynolds number of 21,000. However, the addition of nanoparticles in the base fluid increases the friction factor slightly. New empirical correlations are also proposed for the estimation of Nusselt number and friction factor of silver-water nanofluid based on the data of present experimental investigation. The proposed correlations of Nusselt number and friction factor show good agreement with their experimental data.
NASA Astrophysics Data System (ADS)
Iyahraja, S.; Rajadurai, J. Selwin; Rajesh, S.; Pandian, R. Seeni Thangaraj; Kumaran, M. Selva; Selvakumar, G.
2018-02-01
In the present study, performance of convective heat transfer and friction factor of silver-water nanofluids in a horizontal circular pipe under turbulent flow were investigated experimentally under uniform heat flux condition. The volume concentration of silver nanoparticles is varied as 0.01, 0.05 and 0.1%. Heat transfer coefficient and friction factor of nanofluids were measured experimentally by varying the Reynolds number from 3000 to 21,000. It is observed that the addition of even low volume fraction of silver nanoparticles increases both Nusselt number and heat transfer coefficient of the nanofluid significantly. Nusselt number of silver-water nanofluid increases up to 32.6% for 0.1% volume fraction at Reynolds number of 21,000. However, the addition of nanoparticles in the base fluid increases the friction factor slightly. New empirical correlations are also proposed for the estimation of Nusselt number and friction factor of silver-water nanofluid based on the data of present experimental investigation. The proposed correlations of Nusselt number and friction factor show good agreement with their experimental data.
Tribological evaluation of an Al2O3-SiO2 ceramic fiber candidate for high temperature sliding seals
NASA Technical Reports Server (NTRS)
Dellacorte, Christopher; Steinetz, Bruce
1992-01-01
A test program to determine the relative sliding durability of an alumina-silica candidate ceramic fiber for high temperature sliding seal applications as described. This work represents the first reporting of the sliding durability of this material system. Pin-on-disk tests were used to evaluate the potential seal material by sliding a tow or bundle of the candidate ceramic fiber against a superalloy test disk. Friction was measured during the tests and fiber wear, indicated by the extent of fibers broken in the tow or bundle, was measured at the end of each test. Test variables studied included ambient temperatures from 25 C to 900 C, loads from 1.3 to 21.2 Newtons, and sliding velocities from 0.025 to 0.25 m/sec. In addition, the effects of fiber diameter, elastic modulus, and a pretest fiber heat treatment on friction and wear were measured. In most cases, wear increased with temperature. Friction ranged from about 0.36 at 500 C and low velocity (0.025 m/s) to over 1.1 at 900 C and high velocity (0.25 m/s). The pretest fiber heat treatment, which caused significant durability reductions for alumina-boria-silica ceramic fibers tested previously, had little effect on the alumina-silica fibers tested here. These results indicate that the alumina-silica (Al2O3-SiO2) fiber is a good candidate material system for high temperature sliding seal applications.
Sliding temperatures of ice skates
NASA Astrophysics Data System (ADS)
Colbeck, S. C.; Najarian, L.; Smith, H. B.
1997-06-01
The two theories developed to explain the low friction of ice, pressure melting and frictional heating, require opposite temperature shifts at the ice-skate interface. The arguments against pressure melting are strong, but only theoretical. A set of direct temperature measurements shows that frictional heating is the dominant mechanism because temperature behaves in the manner predicted by the theory of frictional heating. Like snow skis, ice skates are warmed by sliding and then cool when the sliding stops. The temperature increases with speed and with thermal insulation. The sliding leaves a warm track on the ice surface behind the skate and the skate sprays warm ejecta.
NASA Astrophysics Data System (ADS)
Karthik, G. M.; Janaki Ram, G. D.; Kottada, Ravi Sankar
2017-04-01
In the current work, the effect of friction stir processing on heat-affected zone (HAZ) liquation cracking resistance of aluminum-copper alloy AA 2219 was evaluated. In Gleeble hot-ductility tests and longitudinal Varestraint tests, the FSPed material, despite its very fine dynamically recrystallized equiaxed grain structure, showed considerably higher susceptibility to HAZ liquation cracking when compared to the base material. Detailed microstructural studies showed that the increased cracking susceptibility of the FSPed material is due to (i) increase in the amount of liquating θ phase (equilibrium Al2Cu) and (ii) increase in the population of grain boundary θ particles. An important learning from the current work is that, in certain materials like alloy 2219, the use of FSP as a pretreatment to fusion welding can be counterproductive.
Effect of Heat Index on Microstructure and Mechanical Behavior of Friction Stir Processed AZ31
NASA Astrophysics Data System (ADS)
Yuan, Wei; Mishra, Rajiv S.
Friction stir processing modifies the micro structure and properties of metals through intense plastic deformation. The frictional heat input affects the microstructure evolution and resulting mechanical properties. 2 mm thick commercial AZ31B-H24 Mg alloy was friction stir processed under various process parameter combinations to investigate the effect of heat index on micro structure and properties. Recrystallized grain structure in the nugget region was observed for all processing conditions with decrease in hardness. Results indicate a reduced tensile yield strength and ultimate tensile strength compared to the as-received material in H-temper, but with an improved hardening capacity. The strain hardening behavior of friction stir processed material is discussed.
Effect of Weld Tool Geometry on Friction Stir Welded AA2219-T87 Properties
NASA Technical Reports Server (NTRS)
Querin, Joseph A.; Schneider, Judy A.
2008-01-01
In this study, flat panels of AA2219-T87 were friction stir welded (FSWed) using weld tools with tapered pins The three pin geometries of the weld tools included: 0 (straight cylinder), 30 , and 60 angles on the frustum. For each weld tool geometry, the FSW process parameters were optimized to eliminate defects. A constant heat input was maintained while varying the process parameters of spindle rpm and travel speed. This provided a constant heat input for each FSW weld panel while altering the hot working conditions imparted to the workpiece. The resulting mechanical properties were evaluated from tensile test results of the FSW joint.
The thermodynamic efficiency of heat engines with friction
NASA Astrophysics Data System (ADS)
Bizarro, João P. S.
2012-04-01
The presence of the work done against friction is incorporated into the analysis of the efficiency of heat engines based on the first and second laws of thermodynamics. We obtain the efficiencies of Stirling and Brayton engines with friction and recover results known from finite-time thermodynamics. We show that ηfric/η ≈ (1 - Wfric/W), where ηfric/η is the ratio of the efficiencies with and without friction and Wfric/W is the fraction of the work W performed by the working fluid which is spent against friction forces.
Study on the CO2 electric driven fixed swash plate type compressor for eco-friendly vehicles
NASA Astrophysics Data System (ADS)
Nam, Donglim; Kim, Kitae; Lee, Jehie; Kwon, Yunki; Lee, Geonho
2017-08-01
The purpose of this study is to experiment and to performance analysis about the electric-driven fixed swash plate compressor using alternate refrigerant(R744). Comprehensive simulation model for an electric driven compressor using CO2 for eco-friendly vehicle is presented. This model consists of compression model and dynamic model. The compression model included valve dynamics, leakage, and heat transfer models. And the dynamic model included frictional loss between piston ring and cylinder wall, frictional loss between shoe and swash plate, frictional loss of bearings, and electric efficiency. Especially, because the efficiency of an electric parts(motor and inverter) in the compressor affects the loss of the compressor, the dynamo test was performed. We made the designed compressor, and tested the performance of the compressor about the variety pressure conditions. Also we compared the performance analysis result and performance test result.
Tribology behavior on scratch tests: Effects of yield strength
Feng, Biao
2017-03-07
In this paper, a three-dimensional (3D) scratch model is proposed to investigate the effects of yield strength of both coatings and substrates. With the help of combined Coulomb and plastic friction, the obtained results comprehensively interpret the experimental phenomena in most metals that with the growth of hardness after heat treatment the scratch friction coefficient (SFC) increases. This interpretation could not be done before. Scratch tests on the surface with or without the coating are discussed. Without the coating the SFC increases due to the decrease of the area with plastic slippage and/or the increase of friction stress during themore » increase of the yield strength in the material. With a softer substrate the friction stress decreases but the SFC increases, which is caused by the growth of the entire contact area and surface deformation. Conversely, with a stronger substrate the SFC decreases due to an intensified plastic slippage In conclusion, the obtained results pave a new way to understanding the effects of yield strength on scratch tests, interpret experimental phenomena, and should be helpful for an optimum design in experiments.« less
Tribology behavior on scratch tests: Effects of yield strength
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Biao
In this paper, a three-dimensional (3D) scratch model is proposed to investigate the effects of yield strength of both coatings and substrates. With the help of combined Coulomb and plastic friction, the obtained results comprehensively interpret the experimental phenomena in most metals that with the growth of hardness after heat treatment the scratch friction coefficient (SFC) increases. This interpretation could not be done before. Scratch tests on the surface with or without the coating are discussed. Without the coating the SFC increases due to the decrease of the area with plastic slippage and/or the increase of friction stress during themore » increase of the yield strength in the material. With a softer substrate the friction stress decreases but the SFC increases, which is caused by the growth of the entire contact area and surface deformation. Conversely, with a stronger substrate the SFC decreases due to an intensified plastic slippage In conclusion, the obtained results pave a new way to understanding the effects of yield strength on scratch tests, interpret experimental phenomena, and should be helpful for an optimum design in experiments.« less
The coefficient of friction, particularly of ice
NASA Astrophysics Data System (ADS)
Mills, Allan
2008-07-01
The static and dynamic coefficients of friction are defined, and values from 0.3 to 0.6 are quoted for common materials. These drop to about 0.15 when oil is added as a lubricant. Water ice at temperatures not far below 0 °C is remarkable for low coefficients of around 0.05 for static friction and 0.04-0.02 for dynamic friction, but these figures increase as the temperature diminishes. Reasons for the slipperiness of ice are summarized, but they are still not entirely clear. One hypothesis suggests that it is related to the transient formation of a lubricating film of liquid water produced by frictional heating. If this is the case, some composition melting a little above ambient temperatures might provide a skating rink that did not require expensive refrigeration. Various compositions have been tested, but an entirely satisfactory material has yet to be found.
NASA Technical Reports Server (NTRS)
Stoltzfus, Joel M.; Benz, Frank J.
1986-01-01
Results from frictional heating tests to determine the effects of oxygen pressure on the Pv production required for igntion are presented. Materials tested include: Monel K-500 and 1015 carbon steels at pressures varied from 100 to 3000 PSIG).
Laminar Heating Validation of the OVERFLOW Code
NASA Technical Reports Server (NTRS)
Lillard, Randolph P.; Dries, Kevin M.
2005-01-01
OVERFLOW, a structured finite difference code, was applied to the solution of hypersonic laminar flow over several configurations assuming perfect gas chemistry. By testing OVERFLOW's capabilities over several configurations encompassing a variety of flow physics a validated laminar heating was produced. Configurations tested were a flat plate at 0 degrees incidence, a sphere, a compression ramp, and the X-38 re-entry vehicle. This variety of test cases shows the ability of the code to predict boundary layer flow, stagnation heating, laminar separation with re-attachment heating, and complex flow over a three-dimensional body. In addition, grid resolutions studies were done to give recommendations for the correct number of off-body points to be applied to generic problems and for wall-spacing values to capture heat transfer and skin friction. Numerical results show good comparison to the test data for all the configurations.
NASA Technical Reports Server (NTRS)
Wang, Q.; Ewing, M. E.; Mathias, E. C.; Heman, J.; Smith, C.; McCool, Alex (Technical Monitor)
2001-01-01
Methodologies have been developed for modeling both gas dynamics and heat transfer inside the carbon fiber rope (CFR) for applications in the space shuttle reusable solid rocket motor joints. Specifically, the CFR is modeled using an equivalent rectangular duct with a cross-section area, friction factor and heat transfer coefficient such that this duct has the same amount of mass flow rate, pressure drop, and heat transfer rate as the CFR. An equation for the friction factor is derived based on the Darcy-Forschheimer law and the heat transfer coefficient is obtained from pipe flow correlations. The pressure, temperature and velocity of the gas inside the CFR are calculated using the one-dimensional Navier-Stokes equations. Various subscale tests, both cold flow and hot flow, have been carried out to validate and refine this CFR model. In particular, the following three types of testing were used: (1) cold flow in a RSRM nozzle-to-case joint geometry, (2) cold flow in a RSRM nozzle joint No. 2 geometry, and (3) hot flow in a RSRM nozzle joint environment simulator. The predicted pressure and temperature history are compared with experimental measurements. The effects of various input parameters for the model are discussed in detail.
Brush seal shaft wear resistant coatings
NASA Astrophysics Data System (ADS)
Howe, Harold
1995-03-01
Brush seals suffer from high wear, which reduces their effectiveness. This work sought to reduce brush seal wear by identifying and testing several industry standard coatings. One of the coatings was developed for this work. It was a co-sprayed PSZ with boron-nitride added for a high temperature dry lubricant. Other coatings tested were a PSZ, chrome carbide and a bare rotor. Testing of these coatings included thermal shocking, tensile testing and wear/coefficient of friction testing. Wear testing consisted of applying a coating to a rotor and then running a sample tuft of SiC ceramic fiber against the coating. Surface speeds at point of contact were slightly over 1000 ft/sec. Rotor wear was noted, as well as coefficient of friction data. Results from the testing indicates that the oxide ceramic coatings cannot withstand the given set of conditions. Carbide coatings will not work because of the need for a metallic binder, which oxidizes in the high heat produced by friction. All work indicated a need for a coating that has a lubricant contained within itself and the coating must be resistant to an oxidizing environment.
Tribological evaluation of an Al2O3-SiO2 ceramic fiber candidate for high-temperature sliding seals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dellacorte, C.; Steinetz, B.
A test program to determine the relative sliding durability of an alumina-silica candidate ceramic fiber for high temperature sliding seal applications as described. This work represents the first reporting of the sliding durability of this material system. Pin-on-disk tests were used to evaluate the potential seal material by sliding a tow or bundle of the candidate ceramic fiber against a superalloy test disk. Friction was measured during the tests and fiber wear, indicated by the extent of fibers broken in the tow or bundle, was measured at the end of each test. Test variables studied included ambient temperatures from 25more » C to 900 C, loads from 1.3 to 21.2 Newtons, and sliding velocities from 0.025 to 0.25 m/sec. In addition, the effects of fiber diameter, elastic modulus, and a pretest fiber heat treatment on friction and wear were measured. In most cases, wear increased with temperature. Friction ranged from about 0.36 at 500 C and low velocity (0.025 m/s) to over 1.1 at 900 C and high velocity (0.25 m/s). The pretest fiber heat treatment, which caused significant durability reductions for alumina-boria-silica ceramic fibers tested previously, had little effect on the alumina-silica fibers tested here. These results indicate that the alumina-silica (Al2O3-SiO2) fiber is a good candidate material system for high temperature sliding seal applications.« less
NASA Technical Reports Server (NTRS)
Stoltzfus, Joel M.; Benz, Frank J.
1986-01-01
Data from the particle impact tests are presented. Results are provided for the frictional heating tests of pairs of like materials. The materials tested include: Hastelloy X, Inconel 600, Invar 36, Monel K-500, Monel 400, nickel 200, silicon carbide, stainless steel 316, and zironium copper.
Development and testing of aluminum micro channel heat sink
NASA Astrophysics Data System (ADS)
Kumaraguruparan, G.; Sornakumar, T.
2010-06-01
Microchannel heat sinks constitute an innovative cooling technology for the removal of a large amount of heat from a small area and are suitable for electronics cooling. In the present work, Tool Steel D2 grade milling slitting saw type plain milling cutter is fabricated The microchannels are machined in aluminum work pieces to form the microchannel heat sink using the fabricated milling cutter in an horizontal milling machine. A new experimental set-up is fabricated to conduct the tests on the microchannel heat sink. The heat carried by the water increases with mass flow rate and heat input. The heat transfer coefficient and Nusselt number increases with mass flow rate and increased heat input. The pressure drop increases with Reynolds number and decreases with input heat. The friction factor decreases with Reynolds number and decreases with input heat. The thermal resistance decreases with pumping power and decreases with input heat.
NASA Astrophysics Data System (ADS)
Kimura, Masaaki; Inoue, Haruo; Kusaka, Masahiro; Kaizu, Koichi; Fuji, Akiyoshi
This paper describes an analysis method of the friction torque and weld interface temperature during the friction process for steel friction welding. The joining mechanism model of the friction welding for the wear and seizure stages was constructed from the actual joining phenomena that were obtained by the experiment. The non-steady two-dimensional heat transfer analysis for the friction process was carried out by calculation with FEM code ANSYS. The contact pressure, heat generation quantity, and friction torque during the wear stage were calculated using the coefficient of friction, which was considered as the constant value. The thermal stress was included in the contact pressure. On the other hand, those values during the seizure stage were calculated by introducing the coefficient of seizure, which depended on the seizure temperature. The relationship between the seizure temperature and the relative speed at the weld interface in the seizure stage was determined using the experimental results. In addition, the contact pressure and heat generation quantity, which depended on the relative speed of the weld interface, were solved by taking the friction pressure, the relative speed and the yield strength of the base material into the computational conditions. The calculated friction torque and weld interface temperatures of a low carbon steel joint were equal to the experimental results when friction pressures were 30 and 90 MPa, friction speed was 27.5 s-1, and weld interface diameter was 12 mm. The calculation results of the initial peak torque and the elapsed time for initial peak torque were also equal to the experimental results under the same conditions. Furthermore, the calculation results of the initial peak torque and the elapsed time for initial peak torque at various friction pressures were equal to the experimental results.
Study on turbulent flow and heat transfer performance of tubes with internal fins in EGR cooler
NASA Astrophysics Data System (ADS)
Liu, Lin; Ling, Xiang; Peng, Hao
2015-07-01
In this paper, flow and heat transfer performances of the tubes with internal longitudinal fins in Exhaust Gas Recirculation (EGR ) cooler were investigated by three-dimension computation and experiment . Each test tube was a single-pipe structure, without inner tube. Three-dimension computation was performed to determine the thermal characteristics difference between the two kinds of tubes, that is, the tube with an inner solid staff as a blocked structure and the tube without the blocked structure. The effects of fin width and fin height on heat transfer and flow are examined. For proving the validity of numerical method, the calculated results were compared with corresponding experimental data. The tube-side friction factor and heat transfer coefficient were examined. As a result, the maximum deviations between the numerical results and the experimental data are approximately 5.4 % for friction factor and 8.6 % for heat transfer coefficient, respectively. It is found that two types of internally finned tubes enhance significantly heat transfer. The heat transfer of the tube with blocked structure is better, while the pressure drop of the tube without blocked structure is lower. The comprehensive performance of the unblocked tube is better to applied in EGR cooler.
Dynamic weakening is limited by granular dynamics
NASA Astrophysics Data System (ADS)
Kuwano, O.; Hatano, T.
2011-12-01
Earthquakes are the result of the frictional instability of faults containing fine rock powders called gouge derived from attrition in past fault motions. Understanding the frictional instability of granular matter in terms of constitutive laws is thus important. Because of the importance of granular matter for industries and engineering, the friction of granular matter has been studied in the field of solid earth science and other fields, such as statistical physics. In solid earth science, the rate- and state-dependent friction law was established by laboratory experiments at a very low sliding velocity (μm/s to mm/s). Recent experiments conducted at sub-seismic to seismic sliding velocities (mm/s to m/s), however, show that frictional properties are much richer than those predicted by the rate- and state-dependent friction law. One of the most important findings in such experiments is the remarkable weakening due to mechano-chemical effects by frictional heating [Tullis, 2007]. In statistical physics, another empirical law holds for much faster deformation than the former, showing positive shear-rate dependence. Until Recently, friction of granular matter has been investigated independently in the fields of solid earth science and statistical physics, and thus the relation between these distinct constitutive laws is not clear. Recently, some experimental studies have been reported to connect the achievements in these two fields. For example, a laboratory experiment on dry glass beads under very low normal stress (0.02 to 0.05 MPa) in which the frictional heat is negligible reveals the transition from velocity-weakening friction at low sliding velocities to velocity-strengthening friction at high sliding velocities [Kuwano et al., 2011]. Importantly, the velocity-strengthening nature at high sliding velocities is quantitatively the same as those observed in simulations. The inelastic deformation of the grains therefore plays a vital role at high sliding velocities. In this study, we report a friction experiment under higher pressure (0.1 to 0.9 MPa), in which the frictional heat is significant. To clarify the effect of frictional heat in high-speed friction systematically, we investigated both the pressure and the velocity dependence of the friction coefficient over a wide range of sliding velocities ranging from aseismic to seismic slip velocities. We observed considerable weakening, described well by a flash-heating theory, above the sliding velocity of 1 cm/s regardless of pressure. At higher velocities, the velocity strengthening behavior replaced the velocity weakening behavior. This strengthening at higher velocities agrees with data from numerical simulations on sheared granular matter and is therefore described in terms of energy dissipation due to the inelastic deformation of grains. We propose a unified steady-state friction law that well describes the velocity and pressure dependence of the steady-state friction coefficient.
Rubber friction: role of the flash temperature
NASA Astrophysics Data System (ADS)
Persson, B. N. J.
2006-08-01
When a rubber block is sliding on a hard rough substrate, the substrate asperities will exert time-dependent deformations of the rubber surface resulting in viscoelastic energy dissipation in the rubber, which gives a contribution to the sliding friction. Most surfaces of solids have roughness on many different length scales, and when calculating the friction force it is necessary to include the viscoelastic deformations on all length scales. The energy dissipation will result in local heating of the rubber. Since the viscoelastic properties of rubber-like materials are extremely strongly temperature dependent, it is necessary to include the local temperature increase in the analysis. At very low sliding velocity the temperature increase is negligible because of heat diffusion, but already for velocities of order 10-2 m s-1 the local heating may be very important. Here I study the influence of the local heating on the rubber friction, and I show that in a typical case the temperature increase results in a decrease in rubber friction with increasing sliding velocity for v>0.01 m s-1. This may result in stick-slip instabilities, and is of crucial importance in many practical applications, e.g. for tyre-road friction and in particular for ABS braking systems.
NASA Technical Reports Server (NTRS)
Sams, E. W.
1952-01-01
An investigation of forced-convection heat transfer and associated pressure drops was conducted with air flowing through electrically heated Inconel tubes having various degrees of square-thread-type roughness, an inside diameter of 1/2 inch, and a length of 24 inches. were obtained for tubes having conventional roughness ratios (height of thread/radius of tube) of 0 (smooth tube), 0.016, 0.025, and 0.037 over ranges of bulk Reynolds numbers up to 350,000, average inside-tube-wall temperatures up to 1950deg R, and heat-flux densities up to 115,000 Btu per hour per square foot. Data The experimental data showed that both heat transfer and friction increased with increase in surface roughness, becoming more pronounced with increase in Reynolds number; for a given roughness, both heat transfer and friction were also influenced by the tube wall-to-bulk temperature ratio. Good correlation of the heat-transfer data for all the tubes investigated was obtained by use of a modification of the conventional Nusselt correlation parameters wherein the mass velocity in the Reynolds number was replaced by the product of air density evaluated at the average film temperature and the so-called friction velocity; in addition, the physical properties of air were evaluated at the average film temperature. The isothermal friction data for the rough tubes, when plotted in the conventional manner, resulted in curves similar to those obtained by other investigators; that is, the curve for a given roughness breaks away from the Blasius line (representing turbulent flow in smooth tubes) at some value of Reynolds number, which decreases with increase in surface roughness, and then becomes a horizontal line (friction coefficient independent of Reynolds number). A comparison of the friction data for the rough tubes used herein indicated that the conventional roughness ratio is not an adequate measure of relative roughness for tubes having a square-thread-type element. The present data, as well as those of other investigators, were used to isolate the influence of ratios of thread height to width, thread spacing to width, and the conventional roughness ratio on the friction coefficient. A fair correlation of the friction data was obtained for each tube with heat addition when the friction coefficient and Reynolds number were defined on the basis of film properties; however, the data for each tube retained the curve characteristic of that particular roughness. The friction data for all the rough tubes could be represented by a single line for the complete turbulence region by incorporating a roughness parameter in the film correlation. No correlation was obtained for the region of incomplete turbulence.
Heat Control via Torque Control in Friction Stir Welding
NASA Technical Reports Server (NTRS)
Venable, Richard; Colligan, Kevin; Knapp, Alan
2004-01-01
In a proposed advance in friction stir welding, the torque exerted on the workpiece by the friction stir pin would be measured and controlled in an effort to measure and control the total heat input to the workpiece. The total heat input to the workpiece is an important parameter of any welding process (fusion or friction stir welding). In fusion welding, measurement and control of heat input is a difficult problem. However, in friction stir welding, the basic principle of operation affords the potential of a straightforward solution: Neglecting thermal losses through the pin and the spindle that supports it, the rate of heat input to the workpiece is the product of the torque and the speed of rotation of the friction stir weld pin and, hence, of the spindle. Therefore, if one acquires and suitably processes data on torque and rotation and controls the torque, the rotation, or both, one should be able to control the heat input into the workpiece. In conventional practice in friction stir welding, one uses feedback control of the spindle motor to maintain a constant speed of rotation. According to the proposal, one would not maintain a constant speed of rotation: Instead, one would use feedback control to maintain a constant torque and would measure the speed of rotation while allowing it to vary. The torque exerted on the workpiece would be estimated as the product of (1) the torque-multiplication ratio of the spindle belt and/or gear drive, (2) the force measured by a load cell mechanically coupled to the spindle motor, and (3) the moment arm of the load cell. Hence, the output of the load cell would be used as a feedback signal for controlling the torque (see figure).
Gear Mesh Loss-of-Lubrication Experiments and Analytical Simulation
NASA Technical Reports Server (NTRS)
Handschuh, Robert F.; Polly, Joseph; Morales, Wilfredo
2011-01-01
An experimental program to determine the loss-of-lubrication (LOL) characteristics of spur gears in an aerospace simulation test facility has been completed. Tests were conducted using two different emergency lubricant types: (1) an oil mist system (two different misted lubricants) and (2) a grease injection system (two different grease types). Tests were conducted using a NASA Glenn test facility normally used for conducting contact fatigue. Tests were run at rotational speeds up to 10000 rpm using two different gear designs and two different gear materials. For the tests conducted using an air-oil misting system, a minimum lubricant injection rate was determined to permit the gear mesh to operate without failure for at least 1 hr. The tests allowed an elevated steady state temperature to be established. A basic 2-D heat transfer simulation has been developed to investigate temperatures of a simulated gear as a function of frictional behavior. The friction (heat generation source) between the meshing surfaces is related to the position in the meshing cycle, the load applied, and the amount of lubricant in the contact. Experimental conditions will be compared to those from the 2-D simulation.
NASA Technical Reports Server (NTRS)
Bandyopadhyay, Alak; Majumdar, Alok
2007-01-01
The present paper describes the verification and validation of a quasi one-dimensional pressure based finite volume algorithm, implemented in Generalized Fluid System Simulation Program (GFSSP), for predicting compressible flow with friction, heat transfer and area change. The numerical predictions were compared with two classical solutions of compressible flow, i.e. Fanno and Rayleigh flow. Fanno flow provides an analytical solution of compressible flow in a long slender pipe where incoming subsonic flow can be choked due to friction. On the other hand, Raleigh flow provides analytical solution of frictionless compressible flow with heat transfer where incoming subsonic flow can be choked at the outlet boundary with heat addition to the control volume. Nonuniform grid distribution improves the accuracy of numerical prediction. A benchmark numerical solution of compressible flow in a converging-diverging nozzle with friction and heat transfer has been developed to verify GFSSP's numerical predictions. The numerical predictions compare favorably in all cases.
Dynamic weakening of serpentinite gouges and bare surfaces at seismic slip rates
Proctor, B P; Mitchell, T M; Hirth, G; Goldsby, D; Zorzi, F; Platt, J D; Di Toro, G
2014-01-01
To investigate differences in the frictional behavior between initially bare rock surfaces of serpentinite and powdered serpentinite (“gouge”) at subseismic to seismic slip rates, we conducted single-velocity step and multiple-velocity step friction experiments on an antigorite-rich and lizardite-rich serpentinite at slip rates (V) from 0.003 m/s to 6.5 m/s, sliding displacements up to 1.6 m, and normal stresses (σn) up to 22 MPa for gouge and 97 MPa for bare surfaces. Nominal steady state friction values (μnss) in gouge at V = 1 m/s are larger than in bare surfaces for all σn tested and demonstrate a strong σn dependence; μnss decreased from 0.51 at 4.0 MPa to 0.39 at 22.4 MPa. Conversely, μnss values for bare surfaces remained ∼0.1 with increasing σn and V. Additionally, the velocity at the onset of frictional weakening and the amount of slip prior to weakening were orders of magnitude larger in gouge than in bare surfaces. Extrapolation of the normal stress dependence for μnss suggests that the behavior of antigorite gouge approaches that of bare surfaces at σn ≥ 60 MPa. X-ray diffraction revealed dehydration reaction products in samples that frictionally weakened. Microstructural analysis revealed highly localized slip zones with melt-like textures in some cases gouge experiments and in all bare surfaces experiments for V ≥ 1 m/s. One-dimensional thermal modeling indicates that flash heating causes frictional weakening in both bare surfaces and gouge. Friction values for gouge decrease at higher velocities and after longer displacements than bare surfaces because strain is more distributed. Key Points Gouge friction approaches that of bare surfaces at high normal stress Dehydration reactions and bulk melting in serpentinite in < 1 m of slip Flash heating causes dynamic frictional weakening in gouge and bare surfaces PMID:26167425
Tensile Strength and Hardness Correlations with Microscopy in Friction welded Aluminium to Copper
NASA Astrophysics Data System (ADS)
Satish, Rengarajan; Seshagiri Rao, Vaddi; Ananthapadmanaban, Dattaguru; Ravi, Balappa
2016-01-01
Aluminium and copper are good conductors of heat and electricity, copper being the better conductor, is a costly metal indeed. On the other hand, aluminium is cheap, easily available and also has a lower density than copper. Hence, worldwide efforts are being made to partially replace copper wire. Solid state welding should be used to join aluminium to copper. This is because the use of fusion welding results in brittle phases formed in the weld interface. One of the solid state welding techniques used for joining aluminium to copper is friction welding. In this paper, an attempt has been made to join aluminium to copper by friction welding by varying the friction welding parameters, namely friction pressure, upset pressure, burn-off length and speed of rotation of the workpiece. Nine different friction welding parameter combinations were used during welding in accordance with ASTM standards and results have been reported. Tensile strength and hardness tests were carried out for each parameter combination. Optimum friction welding parameter combination was identified with respect to tensile strength. Scanning Electron Microscopy and Electron dispersive spectroanalysis were obtained to identify modes of fracture and presence of intermetallic phases for each friction welding combination with the aim to narrow down friction welding parameters that give good properties on the whole.
NASA Technical Reports Server (NTRS)
Wang, Qunzhen; Mathias, Edward C.; Heman, Joe R.; Smith, Cory W.
2000-01-01
A new, thermal-flow simulation code, called SFLOW. has been developed to model the gas dynamics, heat transfer, as well as O-ring and flow path erosion inside the space shuttle solid rocket motor joints by combining SINDA/Glo, a commercial thermal analyzer. and SHARPO, a general-purpose CFD code developed at Thiokol Propulsion. SHARP was modified so that friction, heat transfer, mass addition, as well as minor losses in one-dimensional flow can be taken into account. The pressure, temperature and velocity of the combustion gas in the leak paths are calculated in SHARP by solving the time-dependent Navier-Stokes equations while the heat conduction in the solid is modeled by SINDA/G. The two codes are coupled by the heat flux at the solid-gas interface. A few test cases are presented and the results from SFLOW agree very well with the exact solutions or experimental data. These cases include Fanno flow where friction is important, Rayleigh flow where heat transfer between gas and solid is important, flow with mass addition due to the erosion of the solid wall, a transient volume venting process, as well as some transient one-dimensional flows with analytical solutions. In addition, SFLOW is applied to model the RSRM nozzle joint 4 subscale hot-flow tests and the predicted pressures, temperatures (both gas and solid), and O-ring erosions agree well with the experimental data. It was also found that the heat transfer between gas and solid has a major effect on the pressures and temperatures of the fill bottles in the RSRM nozzle joint 4 configuration No. 8 test.
Development of friction material by using precast prefired (pcp f) blocks
NASA Astrophysics Data System (ADS)
Dineshkumar, R.; Ramanamurthy, E. V. V.; Krishnapavanteja, Ch
2017-05-01
The braking system used to control and stop automobile system. The braking system converts the kinematic energy into heat energy by friction. The performance of the brake pad depends on composition of friction materials. The asbestos brake pads are carcinogenic nature and it makes so many health problems. The present research work is going to replacement of asbestos by new materials. The new material is made by fused ceramic materials from industrial wastage. In this study the industrial waste are recycled and conducted the suitable test to compare the performance of the new material with existing brake pad material. The wear test was conducted by pin on disc experiment. The non asbestos, nonfused, fused samples are represented by x1, x2 and x3. The new brake pad material is formed by non fused and fused ceramic materials. The brake pads are manufactured by powder compacting process.
Test methods for determining the suitability of metal alloys for use in oxygen-enriched environments
NASA Technical Reports Server (NTRS)
Stoltzfus, Joel M.; Gunaji, Mohan V.
1991-01-01
Materials are more flammable in oxygen rich environments than in air. When the structural elements of a system containing oxygen ignite and burn, the results are often catastrophic, causing loss of equipment and perhaps even human lives. Therefore, selection of the proper metallic and non-metallic materials for use in oxygen systems is extremely important. While test methods for the selection of non-metallic materials have been available for years, test methods for the selection of alloys have not been available until recently. Presented here are several test methods that were developed recently at NASA's White Sands Test Facility (WSTF) to study the ignition and combustion of alloys, including the supersonic and subsonic speed particle impact tests, the frictional heating and coefficient of friction tests, and the promoted combustion test. These test methods are available for commercial use.
Rubber friction: role of the flash temperature.
Persson, B N J
2006-08-16
When a rubber block is sliding on a hard rough substrate, the substrate asperities will exert time-dependent deformations of the rubber surface resulting in viscoelastic energy dissipation in the rubber, which gives a contribution to the sliding friction. Most surfaces of solids have roughness on many different length scales, and when calculating the friction force it is necessary to include the viscoelastic deformations on all length scales. The energy dissipation will result in local heating of the rubber. Since the viscoelastic properties of rubber-like materials are extremely strongly temperature dependent, it is necessary to include the local temperature increase in the analysis. At very low sliding velocity the temperature increase is negligible because of heat diffusion, but already for velocities of order 10(-2) m s(-1) the local heating may be very important. Here I study the influence of the local heating on the rubber friction, and I show that in a typical case the temperature increase results in a decrease in rubber friction with increasing sliding velocity for v>0.01 m s(-1). This may result in stick-slip instabilities, and is of crucial importance in many practical applications, e.g. for tyre-road friction and in particular for ABS braking systems.
Friction pull plug welding: top hat plug design
NASA Technical Reports Server (NTRS)
Coletta, Edmond R. (Inventor); Cantrell, Mark A. (Inventor)
2001-01-01
Friction Pull Plug Welding is a solid state repair process for defects up to one inch in length, only requiring single sided tooling, or outside skin line (OSL), for preferred usage on flight hardware. The most prevalent defect associated with Friction Pull Plug Welding (FPPW) was a top side or inside skin line (ISL) lack of bonding. Bonding was not achieved at this location due to the reduction in both frictional heat and welding pressure between the plug and plate at the end of the weld. Thus, in order to eliminate the weld defects and increase the plug strength at the plug `top` a small `hat` section is added to the pull plug for added frictional heating and pressure.
Friction pull plug welding: top hat plug design
NASA Technical Reports Server (NTRS)
Coletta, Edmond R. (Inventor); Cantrell, Mark A. (Inventor)
2002-01-01
Friction Pull Plug Welding is a solid state repair process for defects up to one inch in length, only requiring single sided tooling, or outside skin line (OSL), for preferred usage on flight hardware. The most prevalent defect associated with Friction Pull Plug Welding (FPPW) was a top side or inside skin line (ISL) lack of bonding. Bonding was not achieved at this location due to the reduction in both frictional heat and welding pressure between the plug and plate at the end of the weld. Thus, in order to eliminate the weld defects and increase the plug strength at the plug `top` a small `hat` section is added to the pull plug for added frictional heating and pressure.
Friction and Wear Characteristics of Candidate Foil Bearing Materials from 25 C to 800 C
NASA Technical Reports Server (NTRS)
DellaCorte, C.; Laskowski, J. A.
1996-01-01
The friction and wear behavior of unlubricated metal/metal sliding couples was investigated to screen potential candidates for high temperature foil bearings. The tribo-tests were run in an induction-heated high temperature pin-on-disk tribometer in an air atmosphere at a load of 4.9 N and at a sliding velocity of 1 m/s. The friction and wear properties of several nickel based alloys (Rene'41, Inconel X-750, Inconel 713C), iron based alloys (MA956 and Inconel 909) and a ceramic (Al2O3) were tested at 25, 500, and 800 C. In general, at elevated temperatures the alloys oxidized and formed a tenacious and lubricous oxide surface film or layer. At 800 C, Inconel X-750 versus Rene'41 had the lowest friction coefficient (0.27) and at 500 C, Inconel X-750 versus Inconel 909 the lowest pin wear (2.84 x 10(exp -6)cu mm/N-m). Gouging and severe wear of the softer material occurred whenever a significant difference in hardness existed between the pin and disk specimens.
What is the earthquake fracture energy?
NASA Astrophysics Data System (ADS)
Di Toro, G.; Nielsen, S. B.; Passelegue, F. X.; Spagnuolo, E.; Bistacchi, A.; Fondriest, M.; Murphy, S.; Aretusini, S.; Demurtas, M.
2016-12-01
The energy budget of an earthquake is one of the main open questions in earthquake physics. During seismic rupture propagation, the elastic strain energy stored in the rock volume that bounds the fault is converted into (1) gravitational work (relative movement of the wall rocks bounding the fault), (2) in- and off-fault damage of the fault zone rocks (due to rupture propagation and frictional sliding), (3) frictional heating and, of course, (4) seismic radiated energy. The difficulty in the budget determination arises from the measurement of some parameters (e.g., the temperature increase in the slipping zone which constraints the frictional heat), from the not well constrained size of the energy sinks (e.g., how large is the rock volume involved in off-fault damage?) and from the continuous exchange of energy from different sinks (for instance, fragmentation and grain size reduction may result from both the passage of the rupture front and frictional heating). Field geology studies, microstructural investigations, experiments and modelling may yield some hints. Here we discuss (1) the discrepancies arising from the comparison of the fracture energy measured in experiments reproducing seismic slip with the one estimated from seismic inversion for natural earthquakes and (2) the off-fault damage induced by the diffusion of frictional heat during simulated seismic slip in the laboratory. Our analysis suggests, for instance, that the so called earthquake fracture energy (1) is mainly frictional heat for small slips and (2), with increasing slip, is controlled by the geometrical complexity and other plastic processes occurring in the damage zone. As a consequence, because faults are rapidly and efficiently lubricated upon fast slip initiation, the dominant dissipation mechanism in large earthquakes may not be friction but be the off-fault damage due to fault segmentation and stress concentrations in a growing region around the fracture tip.
Heat Treatment of Friction-Stir-Welded 7050 Aluminum Plates
NASA Technical Reports Server (NTRS)
Petter, George E.; Figert, John D.; Rybicki, Daniel J.; Burns, Timothy
2006-01-01
A method of heat treatment has been developed to reverse some of the deleterious effects of friction stir welding of plates of aluminum alloy 7050. This alloy is considered unweldable by arc and high-energy-density beam fusion welding processes. The alloy can be friction stir welded, but as-welded workpieces exhibit low ductility, low tensile and yield strengths, and low resistance to stress corrosion cracking. Heat treatment according to the present method increases tensile and yield strengths, and minimizes or eliminates stress corrosion cracking. It also increases ductility. This method of heat treatment is a superior alternative to a specification-required heat treatment that caused the formation of large columnar grains, which are undesired. Workpieces subjected to the prior heat treatment exhibited elongations <2 percent, and standard three-point bend specimens shattered. The development of the present heat treatment method was guided partly by the principles that (1) by minimizing grain sizes and relieving deformation stresses, one can minimize or eliminate stress corrosion cracking and (2) the key to maximizing strength and eliminating residual stresses is to perform post-weld solution heating for as long a time as possible while incurring little or no development of large columnar grains in friction stir weld nuggets. It is necessary to perform some of the solution heat treatment (to soften the alloy and improve machine welding parameters) before welding. The following is an example of thickness- dependent pre- and post-weld heat treatments according to the present method: For plates 0.270 in. (approx.6.86 mm) thick milled from plates 4.5 in. (114.3 mm) thick, perform pre-weld solution heating at 890 F (477 C) for 1 hour, then cool in air. After friction stir welding, perform solution heating for 10 minutes, quench, hold at room temperature for 96 hours, then age at 250 F (121 C) for 5 hours followed by 325 F (163 C) for 27 hours.
Orbit transfer rocket engine technology program: Oxygen materials compatibility testing
NASA Technical Reports Server (NTRS)
Schoenman, Leonard
1989-01-01
Particle impact and frictional heating tests of metals in high pressure oxygen, are conducted in support of the design of an advanced rocket engine oxygen turbopump. Materials having a wide range of thermodynamic properties including heat of combustion and thermal diffusivity were compared in their resistance to ignition and sustained burning. Copper, nickel and their alloys were found superior to iron based and stainless steel alloys. Some materials became more difficult to ignite as oxygen pressure was increased from 7 to 21 MPa (1000 to 3000 psia).
Ultrasound - Aided ejection in micro injection molding
NASA Astrophysics Data System (ADS)
Masato, D.; Sorgato, M.; Lucchetta, G.
2018-05-01
In this work, an ultrasound-aided ejection system was designed and tested for different polymers (PS, COC and POM) and mold topographies. The proposed solution aims at reducing the ejection friction by decreasing the adhesion component of the frictional force, which is controlled by the contact area developed during the filling stage of the injection molding process. The experimental results indicate a positive effect of ultrasound vibration on the friction force values, with a maximum reduction of 16. Moreover, it is demonstrated that the ultrasound effect is strictly related to both polymer selection and mold roughness. The combined effect on the ejection force of mold surface roughness, melt viscosity during filling and polymer elastic modulus at ejection was modeled to the experimental data, in order to demonstrate that the effect of ultrasound vibration on the ejection friction reduction is due to the heating of the contact interface and the consequent reduction of the polymer elastic modulus.
Investigation of Friction and Wear Properties of Electroless Ni-P-Cu Coating Under Dry Condition
NASA Astrophysics Data System (ADS)
Duari, Santanu; Mukhopadhyay, Arkadeb; Barman, Tapan Kr.; Sahoo, Prasanta
This study presents the deposition and tribological characterization of electroless Ni-P-Cu coatings deposited on AISI 1040 steel specimens. After deposition, coatings are heat treated at 500∘C for 1h. Surface morphology study of the coatings reveals its typical cauliflower like appearance. Composition study of the coatings using energy dispersive X-ray analysis indicates that the deposit lies in the high phosphorus range. The coatings undergo crystallization on heat treatment. A significant improvement in microhardness of the coatings is also observed on heat treatment due to the precipitation of hard crystalline phases. The heat-treated coatings are subjected to sliding wear tests on a pin-on-disc type tribo-tester under dry condition by varying the applied normal load, sliding speed and sliding duration. The coefficient of friction (COF) increases with an increase in the applied normal load while it decreases with an increase in the sliding speed. The wear depth on the other hand increases with an increase in applied normal load as well as sliding speed. The worn surface morphology mainly indicates fracture of the nodules.
The effect of twisted-tape width on heat transfer and pressure drop for fully developed laminar flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakroun, W.M.; Al-Fahed, S.F.
1996-07-01
A series of experiments was conducted to study the effect of twisted-tape width on the heat transfer and pressure drop with laminar flow in tubes. Data for three twisted-tape wavelengths, each with five different widths, have been collected with constant wall temperature boundary condition. Correlations for the friction factor and Nusselt number are also available. The correlations predict the experimental data to within 10 to 15 percent for the heat transfer and friction factor, respectively. The presence of the twisted tape has caused the friction factor to increase by a factor of 3 to 7 depending on Reynolds number andmore » the twisted-tape geometry. Heat transfer results have shown an increase of 1.5 to 3 times that of plain tubes depending on the flow conditions and the twisted-tape geometry. The width shows no effect on friction factor and heat transfer in the low range of Reynolds number but has a more pronounced effect on heat transfer at the higher range of Reynolds number. It is recommended to use loose-fit tapes for low Reynolds number flows instead of tight-fit in the design of heat exchangers because they are easier to install and remove for cleaning purposes.« less
NASA Astrophysics Data System (ADS)
Kalyanamanohar, V.; Appalachari, D. Gireesh Chandra
2018-04-01
Friction stir processing (FSP) is emerging as a promising technique for making surface composites. FSP can improve surface properties such as hardness, strength, ductility, corrosion resistance, fatigue life and formability without affecting the bulk properties of the material. The literatures reported that FSP can produces very fine equiaxed and homogeneous grain structure for different Al alloys. Al 6060 is heat treatable alloy which has high thermal and electrical properties than remaining Al alloys. Al 6060 is being used where high rate of heat exchange is needed i.e. engine cylinders, heat exchangers etc. As derived from the carbon materials, like graphene and CNTs dissipates heat rapidly that improves the life of the engine cylinders and heat exchangers. In this work, nanographene is reinforced in the Al 6060 using friction stir processing at different rotational speeds, traverse speeds, and at constant load and tool tilt angle. After processed, the effect of process parameters on microstructure of the surface composite was investigated. The SEM studies shows that the FSP produces very fine and homogenous grain structure and it is observed that smaller grain size structure is obtained at lower traverse speed and higher rotational speeds. Significant improvement in ultimate tensile strength(22.9%) and hardness (22.44%) when compared friction stir processed plate at 1400 rotational speed and 20mm/min traverse speed with base Al 6060 plate. Coefficient of thermal expansion test of nanographene reinforced Al 6060 shows 7.33% decrease in its coefficient of thermal expansion as graphene has tendency to reduce the anisotropic nature.
Alavi, Shiva; Sinaee, Neda
2012-01-01
Background: Sterilization techniques could affect the characteristics of orthodontic wires. The aim of the present study was to evaluate the effect of steam and dry heat sterilization techniques on load-deflection behavior of five types of β-titanium alloy wires. Materials and Methods: The samples consisted of 30 straight lengths of five types of β-titanium alloy wires: Titanium Molybdenum Alloy (TMA) Low Friction (TMAL), TMA Low Friction Colored (HONE), Resolve (RES), BetaForce (BETA), and BETA CNA (CNA). Thirty wire segments were divided into three groups of 10. Group 1 was the control group and the group 2 samples were sterilized by dry heat in an oven (60 minutes at 160°C) and group 3 by steam in an autoclave (15 minutes at 121°C). Then all the wire samples underwent a three-point bending test in a testing machine to evaluate load-deflection properties. Data was analyzed by repeated measures ANOVA and Scheffé's test (α = 0.05). Results: The results showed that dry heat sterilization significantly increased force levels during both loading and unloading of CNA, BETA and RES and during loading of HONE (P < 0.05). Steam sterilization significantly increased force levels during both loading and unloading of BETA and during unloading of HONE (P < 0.05), with no effects on the load-deflection characteristics of TMAL, CNA and RES (P > 0.05). Conclusion: It appears dry heat sterilization increases stiffness of RES, BETA, CNA and HONE but autoclave sterilization did not have any effect on load-deflection characteristics of most of the β-titanium wires tested, indicating that clinicians who want to provide maximum safety for their patients can autoclave TMAL, RES and CNA before applying them. PMID:23559917
NASA Astrophysics Data System (ADS)
Yao, Lu; Ma, Shengli; Shimamoto, Toshihiko; Togo, Tetsuhiro; Chen, Jianye; Kitajima, Hiroko; Wang, Yu; He, Honglin
2017-04-01
High-velocity friction studies on water-saturated gouges in recent years have demonstrated that the wet gouges subjected to high-velocity shear tend to have smaller peak and steady-state friction, much shorter slip-weakening distance and lower fracture energy, as compared to the air-dry gouges. Thermal pressurization, compaction-induced pressurization, and flash heating were previously recognized to be the important weakening mechanisms in causing these behaviors. However, in spite of theoretical expectation, there is few evidence to support the occurrence of flash heating in wet gouges, mainly due to the superimposition of multiple weakening mechanisms especially for thermal pressurization. We devised friction experiments to study the role of flash heating in dynamic weakening of water-saturated gouges. In each experiment, we used a pressure vessel to impose a pore pressure of 2.0 MPa on the gouge layer sandwiched between porous ceramics blocks, and applied a long preslide of 1.0 m in displacement before starting the experiment at the target slip rate. By doing so we could (1) suppress rapid thermal pressurization in the bulk gouge layer by means of the designed drained condition and elevated temperature of phase transition of pore water; (2) suppress or even eliminate the pressurization effects due to compaction especially at the very beginning of the experiment. The experiments were performed on a granular gouge (mainly quartz, plagioclase, calcite and illite) and a clay-rich gouge (illite and chlorite ˜58 wt%), which were both collected from the Qingchuan fault of the Longmenshan fault system. For the granular gouge, the steady-state friction coefficients (μss) are 0.39-0.42 at slip rates (V ) of 100 μm/s-10 mm/s; however, at V ≥40 mm/s, the friction coefficients (μ) decrease suddenly at the onset of the slip. For instance, μ reduces by 0.29 within displacement of 0.05-0.08m at V =100 mm/s. For the clay-rich gouge, μss increases from 0.24 to 0.34 as V increasing from 10 μm/s to 100 mm/s. At V =0.4 and 1.0 m/s, the evolutions of friction are characterized by sharp weakening, quick strengthening and slight weakening as slip proceeds. It is noteworthy that the sharp initial weakening is always accompanied by a contemporaneous axial dilatancy of 10-20 μm for both gouges, and the latter friction evolutions are accompanied by axial shortening for the granular gouge and by further dilatancy for the clay-rich gouge. Moreover, microstructure observations reveal that only 40% of the gouge layer was involved in shear deformation for the granular gouge at V =10-100 mm/s, as compared to distributed shear over the entire clay-rich gouge layer at all the tested velocities. The observed data, microstructures and modeling results suggest that flash heating probably triggers thermal pressurization at asperity-contacts or within extremely localized slip zones, causing the sudden initial weakening and contemporaneous dilatancy. The difference in the efficiency of flash heating could explain the different frictional behaviors of the two gouges. Given the extremely fast weakening caused by flash heating and the resulting local thermal pressurization, seismic faults could be weakened more rapidly at much lower slip rates below characteristic weakening velocities previously recognized.
Heat transfer and flow friction correlations for perforated plate matrix heat exchangers
NASA Astrophysics Data System (ADS)
Ratna Raju, L.; Kumar, S. Sunil; Chowdhury, K.; Nandi, T. K.
2017-02-01
Perforated plate matrix heat exchangers (MHE) are constructed of high conductivity perforated plates stacked alternately with low conductivity spacers. They are being increasingly used in many cryogenic applications including Claude cycle or Reversed Brayton cycle cryo-refrigerators and liquefiers. Design of high NTU (number of (heat) transfer unit) cryogenic MHEs requires accurate heat transfer coefficient and flow friction factor. Thermo-hydraulic behaviour of perforated plates strongly depends on the geometrical parameters. Existing correlations, however, are mostly expressed as functions of Reynolds number only. This causes, for a given configuration, significant variations in coefficients from one correlation to the other. In this paper we present heat transfer and flow friction correlations as functions of all geometrical and other controlling variables. A FluentTM based numerical model has been developed for heat transfer and pressure drop studies over a stack of alternately arranged perforated plates and spacers. The model is validated with the data from literature. Generalized correlations are obtained through regression analysis over a large number of computed data.
Heat flow and energetics of the San Andreas fault zone.
Lachenbruch, A.H.; Sass, J.H.
1980-01-01
Approximately 100 heat flow measurements in the San Andreas fault zone indicate 1) there is no evidence for local frictional heating of the main fault trace at any latitude over a 1000-km length from Cape Mendocino to San Bernardino, 2) average heat flow is high (ca.2 HFU, ca.80 mW m-2) throughout the 550-km segment of the Coast Ranges that encloses the San Andreas fault zone in central California; this broad anomaly falls off rapidly toward the Great Valley to the east, and over a 200-km distance toward the Mendocino Triple Junction to the northwest. As others have pointed out, a local conductive heat flow anomaly would be detectable unless the frictional resistance allocated to heat production on the main trace were less than 100 bars. Frictional work allocated to surface energy of new fractures is probably unimportant, and hydrologic convection is not likely to invalidate the conduction assumption, since the heat discharge by thermal springs near the fault is negligible. -Authors
Analytical skin friction and heat transfer formula for compressible internal flows
NASA Technical Reports Server (NTRS)
Dechant, Lawrence J.; Tattar, Marc J.
1994-01-01
An analytic, closed-form friction formula for turbulent, internal, compressible, fully developed flow was derived by extending the incompressible law-of-the-wall relation to compressible cases. The model is capable of analyzing heat transfer as a function of constant surface temperatures and surface roughness as well as analyzing adiabatic conditions. The formula reduces to Prandtl's law of friction for adiabatic, smooth, axisymmetric flow. In addition, the formula reduces to the Colebrook equation for incompressible, adiabatic, axisymmetric flow with various roughnesses. Comparisons with available experiments show that the model averages roughly 12.5 percent error for adiabatic flow and 18.5 percent error for flow involving heat transfer.
Oscillating flow loss test results in Stirling engine heat exchangers
NASA Technical Reports Server (NTRS)
Koester, G.; Howell, S.; Wood, G.; Miller, E.; Gedeon, D.
1990-01-01
The results are presented for a test program designed to generate a database of oscillating flow loss information that is applicable to Stirling engine heat exchangers. The tests were performed on heater/cooler tubes of various lengths and entrance/exit configurations, on stacked and sintered screen regenerators of various wire diameters and on Brunswick and Metex random fiber regenerators. The test results were performed over a range of oscillating flow parameters consistent with Stirling engine heat exchanger experience. The tests were performed on the Sunpower oscillating flow loss rig which is based on a variable stroke and variable frequency linear drive motor. In general, the results are presented by comparing the measured oscillating flow losses to the calculated flow losses. The calculated losses are based on the cycle integration of steady flow friction factors and entrance/exit loss coefficients.
Scaling study of the combustion performance of gas—gas rocket injectors
NASA Astrophysics Data System (ADS)
Wang, Xiao-Wei; Cai, Guo-Biao; Jin, Ping
2011-10-01
To obtain the key subelements that may influence the scaling of gas—gas injector combustor performance, the combustion performance subelements in a liquid propellant rocket engine combustor are initially analysed based on the results of a previous study on the scaling of a gas—gas combustion flowfield. Analysis indicates that inner wall friction loss and heat-flux loss are two key issues in gaining the scaling criterion of the combustion performance. The similarity conditions of the inner wall friction loss and heat-flux loss in a gas—gas combustion chamber are obtained by theoretical analyses. Then the theoretical scaling criterion was obtained for the combustion performance, but it proved to be impractical. The criterion conditions, the wall friction and the heat flux are further analysed in detail to obtain the specific engineering scaling criterion of the combustion performance. The results indicate that when the inner flowfields in the combustors are similar, the combustor wall shear stress will have similar distributions qualitatively and will be directly proportional to pc0.8dt-0.2 quantitatively. In addition, the combustion peformance will remain unchanged. Furthermore, multi-element injector chambers with different geometric sizes and at different pressures are numerically simulated and the wall shear stress and combustion efficiencies are solved and compared with each other. A multielement injector chamber is designed and hot-fire tested at several chamber pressures and the combustion performances are measured in a total of nine hot-fire tests. The numerical and experimental results verified the similarities among combustor wall shear stress and combustion performances at different chamber pressures and geometries, with the criterion applied.
Preliminary measurements on heat balance in pneumatic tires
NASA Technical Reports Server (NTRS)
Nybakken, G. H.; Collart, D. Y.; Staples, R. J.; Lackey, J. I.; Clark, S. K.; Dodge, R. N.
1973-01-01
A variety of tests was undertaken to determine the nature of heat generation associated with a pneumatic tire operating under various conditions. Tests were conducted to determine the magnitude and distribution of internally generated heat caused by hysteresis in the rubber and ply fabric in an automobile tire operating under conditions of load, pressure, and velocity representative of normal operating conditions. These included tests at various yaw angles and tests with braking applied. In other tests, temperature sensors were mounted on a road to measure the effect of a tire rolling over and an attempt was made to deduce the magnitude and nature of interfacial friction from the resulting information. In addition, tests were performed using the scratch plate technique to determine the nature of the motion between the tire and road. Finally, a model tire was tested on a roadwheel, the surface covering which could be changed, and an optical pyrometer was used to measure rubber surface temperatures.
Fluid thermodynamics control thermal weakening during earthquake rupture.
NASA Astrophysics Data System (ADS)
Acosta, M.; Passelegue, F. X.; Schubnel, A.; Violay, M.
2017-12-01
Although fluids are pervasive among tectonic faults, thermo-hydro-mechanical couplings during earthquake slip remain unclear. We report full dynamic records of stick-slip events, performed on saw cut Westerly Granite samples loaded under triaxial conditions at stresses representative of the upper continental crust (σ3' 70 MPa) Three fluid pressure conditions were tested, dry, low , and high pressure (i.e. Pf=0, 1, and 25 MPa). Friction (μ) evolution recorded at 10 MHz sampling frequency showed that, for a single event, μ initially increased from its static pre-stress level, μ0 to a peak value μ p it then abruptly dropped to a minimum dynamic value μd before recovering to its residual value μr, where the fault reloaded elastically. Under dry and low fluid pressure conditions, dynamic friction (μd) was extremely low ( 0.2) and co-seismic slip (δ) was large ( 250 and 200 μm respectively) due to flash heating (FH) and melting of asperities as supported by microstructures. Conversely, at pf=25 MPa, μd was higher ( 0.45), δ was smaller ( 80 μm), and frictional melting was not found. We calculated flash temperatures at asperity contacts including heat buffering by on-fault fluid. Considering the isobaric evolution of water's thermodynamic properties with rising temperature showed that pressurized water controlled fault heating and weakening, through sharp variations of specific heat (cpw) and density (ρw) at water's phase transitions. Injecting the computed flash temperatures into slip-on-a-plane model for thermal pressurization (TP) showed that: (i) if pf was low enough so that frictional heating induced liquid/vapour phase transition, FH operated, allowing very low μd during earthquakes. (ii) Conversely, if pf was high enough that shear heating induced a sharp phase transition directly from liquid to supercritical state, an extraordinary rise in water's specific heat acted as a major energy sink inhibiting FH and limiting TP, allowing higher dynamic fault strengths. Further extrapolation of this simplified model to mid- and low- crustal depths shows that, large cpw rise during phase transitions makes TP the dominant weakening mechanism up to 5 km depth. Increasing depth allows somewhat larger shear stress and reduced cpw rise, and so substantial shear heating at low slip rates, favouring FH for fault weakening.
Fekete, Szabolcs; Guillarme, Davy
2015-05-08
The goal of this work was to evaluate the changes in retention induced by frictional heating, pressure and temperature under ultra high pressure liquid chromatography (UHPLC) conditions, for four model proteins (i.e. lysozyme, myoglobin, fligrastim and interferon alpha-2A) possessing molecular weights between 14 and 20kDa. First of all, because the decrease of the molar volume upon adsorption onto a hydrophobic surface was more pronounced for large molecules such as proteins, the impact of pressure appears to overcome the frictional heating effects. Nevertheless, we have also demonstrated that the retention decrease due to frictional heating was not negligible with such large biomolecules in the variable inlet pressure mode. Secondly, it is clearly shown that the modification of retention under various pressure and temperature conditions cannot be explained solely by the frictional heating and pressure effects. Indeed, some very uncommon van't Hoff plots (concave plots with a maximum) were recorded for our model/therapeutic proteins. These maximum retention factors values on the van't Hoff plots indicate a probable change of secondary structure/conformation with pressure and temperature. Based on these observations, it seems that the combination of pressure and temperature causes the protein denaturation and this folding-unfolding procedure is clearly protein dependent. Copyright © 2015 Elsevier B.V. All rights reserved.
Differential Evolution algorithm applied to FSW model calibration
NASA Astrophysics Data System (ADS)
Idagawa, H. S.; Santos, T. F. A.; Ramirez, A. J.
2014-03-01
Friction Stir Welding (FSW) is a solid state welding process that can be modelled using a Computational Fluid Dynamics (CFD) approach. These models use adjustable parameters to control the heat transfer and the heat input to the weld. These parameters are used to calibrate the model and they are generally determined using the conventional trial and error approach. Since this method is not very efficient, we used the Differential Evolution (DE) algorithm to successfully determine these parameters. In order to improve the success rate and to reduce the computational cost of the method, this work studied different characteristics of the DE algorithm, such as the evolution strategy, the objective function, the mutation scaling factor and the crossover rate. The DE algorithm was tested using a friction stir weld performed on a UNS S32205 Duplex Stainless Steel.
Internal (Annular) and Compressible External (Flat Plate) Turbulent Flow Heat Transfer Correlations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dechant, Lawrence; Smith, Justin
Here we provide a discussion regarding the applicability of a family of traditional heat transfer correlation based models for several (unit level) heat transfer problems associated with flight heat transfer estimates and internal flow heat transfer associated with an experimental simulation design (Dobranich 2014). Variability between semi-empirical free-flight models suggests relative differences for heat transfer coefficients on the order of 10%, while the internal annular flow behavior is larger with differences on the order of 20%. We emphasize that these expressions are strictly valid only for the geometries they have been derived for e.g. the fully developed annular flow ormore » simple external flow problems. Though, the application of flat plate skin friction estimate to cylindrical bodies is a traditional procedure to estimate skin friction and heat transfer, an over-prediction bias is often observed using these approximations for missile type bodies. As a correction for this over-estimate trend, we discuss a simple scaling reduction factor for flat plate turbulent skin friction and heat transfer solutions (correlations) applied to blunt bodies of revolution at zero angle of attack. The method estimates the ratio between axisymmetric and 2-d stagnation point heat transfer skin friction and Stanton number solution expressions for sub-turbulent Reynolds numbers %3C1x10 4 . This factor is assumed to also directly influence the flat plate results applied to the cylindrical portion of the flow and the flat plate correlations are modified by« less
Friction-Stir Welding and Mathematical Modeling
NASA Technical Reports Server (NTRS)
Rostant, Victor D.
1999-01-01
The friction-stir welding process is a remarkable way for making butt and lap joints in aluminum alloys. This process operates by passing a rotating tool between two closely butted plates. Through this process it generates a lot of heat and heated material is stirred from both sides of the plates in which the outcome will one high quality weld. My research has been done to study the FSW through mathematical modeling, and using modeling to better understand what take place during the friction-stir weld.
NASA Technical Reports Server (NTRS)
Chang, C. H.
1999-01-01
The relationship between Joule heating, diffusion fluxes, and friction forces has been studied for both total and electron thermal energy equations, using general expressions for multicomponent diffusion in two-temperature plasmas with the velocity dependent Lorentz force acting on charged species in a magnetic field. It is shown that the derivation of Joule heating terms requires both diffusion fluxes and friction between species which represents the resistance experienced by the species moving at different relative velocities. It is also shown that the familiar Joule heating term in the electron thermal energy equation includes artificial effects produced by switching the convective velocity from the species velocity to the mass-weighted velocity, and thus should not be ignored even when there is no net energy dissipation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiechec, Maxwell; Baker, Brad; McNelley, Terry
In this research, several conditions of high power diode laser heated HY-80 steel were characterized to determine the viability of using such lasers as a preheating source before friction stir welding in order to reduce frictional forces thereby reducing tool wear and increasing welding speeds. Differences in microstructures within heat affected zones were identified at specific laser powers and traverse speeds. Vickers hardness values were recorded and analyzed to validate the formation of additional martensite in diode laser heated regions of HY-80 steel. Conditions that produced little to no additional martensite were identified and relationships among high power diode lasermore » power, traverse speed, and martensite formation were determined. The development of heat affected zones, change in grain structure, and creation of additional martensite in HY-80 can be prevented through the optimization of laser amperage and transverse speed.« less
Plasma Heating: An Advanced Technology
NASA Technical Reports Server (NTRS)
1994-01-01
The Mercury and Apollo spacecraft shields were designed to protect astronauts from high friction temperatures (well over 2,000 degrees Fahrenheit) when re-entering the Earth's atmosphere. It was necessary to test and verify the heat shield materials on Earth before space flight. After exhaustive research and testing, NASA decided to use plasma heating as a heat source. This technique involves passing a strong electric current through a rarefied gas to create a plasma (ionized gas) that produces an intensely hot flame. Although NASA did not invent the concept, its work expanded the market for commercial plasma heating systems. One company, Plasma Technology Corporation (PTC), was founded by a member of the team that developed the Re-entry Heating Simulator at Ames Research Center (ARC). Dr. Camacho, President of PTC, believes the technology has significant environmental applications. These include toxic waste disposal, hydrocarbon, decomposition, medical waste disposal, asbestos waste destruction, and chemical and radioactive waste disposal.
NASA Astrophysics Data System (ADS)
Shuja, S. Z.; Yilbas, B. S.
2013-02-01
Jet emerging from a conical nozzle and impinging onto a tapered hole in relation to laser drilling is investigated and the influence taper location on the heat transfer and skin friction at the hole wall surface is examined. The study is extended to include four different gases as working fluid. The Reynolds stress model is incorporated to account for the turbulence effect in the flow field. The hole wall surface temperature is kept at 1500 K to resemble the laser drilled hole. It is found that the location of tapering in the hole influences the heat transfer rates and skin friction at the hole wall surface. The maximum skin friction coefficient increases for taper location of 0.25 H, where H is the thickness of the workpiece, while Nusselt number is higher in the hole for taper location of 0.75 H.
On the dependence of the domain of values of functionals of hypersonic aerodynamics on controls
NASA Astrophysics Data System (ADS)
Bilchenko, Grigory; Bilchenko, Nataly
2018-05-01
The properties of mathematical model of control of heat and mass transfer in laminar boundary layer on permeable cylindrical and spherical surfaces of the hypersonic aircraft are considered. Dependences of hypersonic aerodynamics functionals (the total heat flow and the total Newton friction force) on controls (the blowing into boundary layer, the temperature factor, the magnetic field) are investigated. The domains of allowed values of functionals of hypersonic aerodynamics are obtained. The results of the computational experiments are presented: the dependences of total heat flow on controls; the dependences of total Newton friction force on controls; the mutual dependences of functionals (as the domains of allowed values "Heat and Friction"); the dependences of blowing system power on controls. The influences of magnetic field and dissociation on the domain of "Heat and Friction" allowed values are studied. It is proved that for any fixed constant value of magnetic field the blowing system power is a symmetric function of constant dimensionless controls (the blowing into boundary layer and the temperature factor). It is shown that the obtained domain of allowed values of functionals of hypersonic aerodynamics depending on permissible range of controls may be used in engineering.
An extended supersonic combustion model for the dynamic analysis of hypersonic vehicles
NASA Technical Reports Server (NTRS)
Bossard, J. A.; Peck, R. E.; Schmidt, D. K.
1993-01-01
The development of an advanced dynamic model for aeroelastic hypersonic vehicles powered by air breathing engines requires an adequate engine model. This report provides a discussion of some of the more important features of supersonic combustion and their relevance to the analysis and design of supersonic ramjet engines. Of particular interest are those aspects of combustion that impact the control of the process. Furthermore, the report summarizes efforts to enhance the aeropropulsive/aeroelastic dynamic model developed at the Aerospace Research Center of Arizona State University by focusing on combustion and improved modeling of this flow. The expanded supersonic combustor model described here has the capability to model the effects of friction, area change, and mass addition, in addition to the heat addition process. A comparison is made of the results from four cases: (1) heat addition only; (2) heat addition plus friction; (3) heat addition, friction, and area reduction, and (4) heat addition, friction, area reduction, and mass addition. The relative impact of these effects on the Mach number, static temperature, and static pressure distributions within the combustor are then shown. Finally, the effects of frozen versus equilibrium flow conditions within the exhaust plume is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Wei; Chen, Gaoqiang; Chen, Jian
Reduced-activation ferritic/martensitic (RAFM) steels are an important class of structural materials for fusion reactor internals developed in recent years because of their improved irradiation resistance. However, they can suffer from welding induced property degradations. In this paper, a solid phase joining technology friction stir welding (FSW) was adopted to join a RAFM steel Eurofer 97 and different FSW parameters/heat input were chosen to produce welds. FSW response parameters, joint microstructures and microhardness were investigated to reveal relationships among welding heat input, weld structure characterization and mechanical properties. In general, FSW heat input results in high hardness inside the stir zonemore » mostly due to a martensitic transformation. It is possible to produce friction stir welds similar to but not with exactly the same base metal hardness when using low power input because of other hardening mechanisms. Further, post weld heat treatment (PWHT) is a very effective way to reduce FSW stir zone hardness values.« less
Frictional heating processes during laboratory earthquakes
NASA Astrophysics Data System (ADS)
Aubry, J.; Passelegue, F. X.; Deldicque, D.; Lahfid, A.; Girault, F.; Pinquier, Y.; Escartin, J.; Schubnel, A.
2017-12-01
Frictional heating during seismic slip plays a crucial role in the dynamic of earthquakes because it controls fault weakening. This study proposes (i) to image frictional heating combining an in-situ carbon thermometer and Raman microspectrometric mapping, (ii) to combine these observations with fault surface roughness and heat production, (iii) to estimate the mechanical energy dissipated during laboratory earthquakes. Laboratory earthquakes were performed in a triaxial oil loading press, at 45, 90 and 180 MPa of confining pressure by using saw-cut samples of Westerly granite. Initial topography of the fault surface was +/- 30 microns. We use a carbon layer as a local temperature tracer on the fault plane and a type K thermocouple to measure temperature approximately 6mm away from the fault surface. The thermocouple measures the bulk temperature of the fault plane while the in-situ carbon thermometer images the temperature production heterogeneity at the micro-scale. Raman microspectrometry on amorphous carbon patch allowed mapping the temperature heterogeneities on the fault surface after sliding overlaid over a few micrometers to the final fault roughness. The maximum temperature achieved during laboratory earthquakes remains high for all experiments but generally increases with the confining pressure. In addition, the melted surface of fault during seismic slip increases drastically with confining pressure. While melting is systematically observed, the strength drop increases with confining pressure. These results suggest that the dynamic friction coefficient is a function of the area of the fault melted during stick-slip. Using the thermocouple, we inverted the heat dissipated during each event. We show that for rough faults under low confining pressure, less than 20% of the total mechanical work is dissipated into heat. The ratio of frictional heating vs. total mechanical work decreases with cumulated slip (i.e. number of events), and decreases with increasing confining pressure and normal stress. Our results suggest that earthquakes are less dispersive under large normal stress. We linked this observation with fault roughness heterogeneity, which also decreases with applied normal stress. Keywords: Frictional heating, stick-slip, carbon, dynamic rupture, fault weakening.
Characterization of holding brake friction pad surface after pin-on-plate wear test
NASA Astrophysics Data System (ADS)
Drago, N.; Gonzalez Madruga, D.; De Chiffre, L.
2018-03-01
This article concerns the metrological characterization of the surface on a holding brake friction material pin after a pin-on-plate (POP) wear test. The POP test induces the formation of surface plateaus that affect brake performances such as wear, friction, noise and heat. Three different materials’ surfaces have been characterized after wear from data obtained with a focus variation 3D microscope. A new surface characterization approach with plateau identification is proposed, using the number of plateau on the surface, equivalent diameter, length and breadth as measurands. The identification method is based on determining and imposing ISO 27158-2 lower plateau limit (LPL) in material probability curves; and on applying a combined criterion of height segmentation threshold and equivalent diameter threshold. The method determines the criterion thresholds for each material since LPL appears typical by material. The proposed method has allowed quantifying the surface topography at two different levels of wear. An expanded measurement uncertainty of 3.5 µm for plateau dimensions in the range 50–2000 µm and one of 0.15 µm for plateau heights up to 10 µm have been documented.
Experimental Evaluation of Hot Films on Ceramic Substrates for Skin-Friction Measurement
NASA Technical Reports Server (NTRS)
Noffz, Gregory K.; Lavine, Adrienne S.; Hamory, Philip J.
2003-01-01
An investigation has been performed on the use of low-thermal conductivity, ceramic substrates for hot films intended to measure skin friction. Hot films were deposited on two types of ceramic substrates. Four hot films used composite-ceramic substrates with subsurface thermocouples (TCs), and two hot films were deposited on thin Macor(R) substrates. All six sensors were tested side by side in the wall of the NASA Glenn Research Center 8-ft by 6-ft Supersonic Wind Tunnel (SWT). Data were obtained from zero flow to Mach 1.98 in air. Control measurements were made with three Preston tubes and two boundary-layer rakes. The tests were repeated at two different hot film power levels. All hot films and subsurface TCs functioned throughout the three days of testing. At zero flow, the films on the high-thermal conductivity Macor(R) substrates required approximately twice the power as those on the composite-ceramic substrates. Skin-friction results were consistent with the control measurements. Estimates of the conduction heat losses were made using the embedded TCs but were hampered by variability in coating thicknesses and TC locations.
NASA Astrophysics Data System (ADS)
Hofmeister, A. M.; Criss, R. E.
2016-12-01
Early Earth conditions were largely erased, but the powerful Virial Theorem (VT) constrains Earth's post-accretion state, which largely dictates subsequent thermal and dynamical evolution. Proposals of huge initial inventories of primordial heat are based on Kelvin's disproven theory of starlight. Rather, the VT requires that gravitational potential of the Solar nebula was converted to rotational energy in a conservative, bound accretionary system, which is confirmed by planetary orbit characteristics. In addition, the VT relates axial spin to gravitational self-potential (Ug,self) of each body [2016 Can. J. Phys. p. 380]. From the VT, ½Ug,self binds the body and is unavailable, but spin energy (SE), also equal to ½Ug,self, degrades while gradually evolving heat via friction. The VT likewise restricts primordial heat of core formation, and is consistent with entropy reduction due to ordering and volume restriction [2015 J. Earth Sci., p. 124]. High initial Virial spin is confirmed by (1) data on young stars, (2) independent projections of Earth's initial spin as 2-17 hrs (from fossils and the current rate of spin loss: Lathe 2006), and (3) current SE for all planets defining a power-law trend with Ug,self, which further requires a universal cause for spin loss [2012 Planet. Space Sci. p. 111]. Spin loss is caused by tidal friction and differential rotation of layers. Dissipation is concentrated in the upper layers and especially in the brittle zone, which are much weaker than the highly compressed, essentially hydrostatic interior. With friction, neither mechanical energy nor angular momentum are conserved. Earth's frictional dissipation is immense. Uniform release over time would provide 300-700 TW. This source dominated heat generation for 2 Ga, whereas radiogenic heat dominates today. Exponential spin down suggests 100x more heat production during the Hadean than now, which obliterated early rocks while promoting outgassing and differentiation. Reduction to 10x present levels in the Archean permitted formation of a thin lithosphere and stabilized an ocean and atmosphere. Frictional heat from spin loss helps explain why oceanic heat flux today resembles that of continents which store all the chondritic U and Th. Topside frictional and radiogenic heat production prohibits lower mantle convection.
NASA Astrophysics Data System (ADS)
McCarthy, C.; Savage, H. M.; Cooper, R. F.; Kaczynski, T.; Nielson, M.; Domingos, A.
2017-12-01
Measuring the response of ice to dynamic, time-varying stress at appropriate planetary conditions is important to improving estimates of long-term heat flux and satellite evolution. The viscoelastic and frictional responses of ice may play important roles in tidal heating and convection, but at different time and lengthscales. We will share results from two different types of laboratory experiments on polycrystalline ice samples that reproduce tidally modulated behavior: (1) forced oscillation compression experiments that measure attenuation; and (2) periodic velocity biaxial experiments that measure friction. The former inform us about the influences of frequency, temperature, grain size, and strain history on mechanical dissipation of tidal energy in the deep interiors of icy crusts. In particular, we examine the combination of low amplitude tidal forcing with a relentless (steady-state) background stress, such as that from convection. The beauty of attenuation is that it can potentially be used as mechanical spectroscopy to identify structure and mechanisms that are otherwise shrouded by steady-state behavior. Friction experiments were conducted in a biaxial apparatus in which a central ice piece is forced between two stationary pieces at constant velocity with a sinusoidal oscillation super-imposed. The rig is fitted with a new, low-temperature cryostat ( 100 - 200 K) that also employs a vacuum. These experiments explore the dependence of frictional stability on the amplitude and frequency of the oscillating load. Additionally, small quantities of impurities that are thought to be important in icy satellites: sulfuric acid and ammonia (systems with deep eutectics with ice) are added to polycrystalline ice samples and tested at subsolidus conditions to discern when/if frictional heating can cause melting at icy satellite surface temperatures. The combination of the two types of experiments will provide valuable parameters for modeling of tidal response of planetary objects. Tidal response can potentially be measured during future missions, in which case characterization of its amplitude and phase could provide direct constraints on the internal and thermal structures of these bodies.
NASA Technical Reports Server (NTRS)
Stoltzfus, Joel M.; Benz, Frank J.
1986-01-01
Data is presented from frictional heating tests on pairs of different materials. Materials tested include: Hastelloy X, Inconel 600, Invar 36, Monel K-500, Monel 400, nickel 200, silicon carbide, stainless steels 316, and zirconium copper. In tests where pairs of different materials were rubbed together, the material rated less resistant to ignition in previous tests appeared to control the resistance to ignition of the pair.
Convective heat transfer in a high aspect ratio minichannel heated on one side
Forrest, Eric C.; Hu, Lin -Wen; Buongiorno, Jacopo; ...
2015-10-21
Experimental results are presented for single-phase heat transfer in a narrow rectangular minichannel heated on one side. The aspect ratio and gap thickness of the test channel were 29:1 and 1.96 mm, respectively. Friction pressure drop and Nusselt numbers are reported for the transition and fully turbulent flow regimes, with Prandtl numbers ranging from 2.2 to 5.4. Turbulent friction pressure drop for the high aspect ratio channel is well-correlated by the Blasius solution when a modified Reynolds number, based upon a laminar equivalent diameter, is utilized. The critical Reynolds number for the channel falls between 3500 and 4000, with Nusseltmore » numbers in the transition regime being reasonably predicted by Gnielinski's correlation. The dependence of the heat transfer coefficient on the Prandtl number is larger than that predicted by circular tube correlations, and is likely a result of the asymmetric heating. The problem of asymmetric heating condition is approached theoretically using a boundary layer analysis with a two-region wall layer model, similar to that originally proposed by Prandtl. The analysis clarifies the influence of asymmetric heating on the Nusselt number and correctly predicts the experimentally observed trend with Prandtl number. Furthermore, a semi-analytic correlation is derived from the analysis that accounts for the effect of aspect ratio and asymmetric heating, and is shown to predict the experimental results of this study with a mean absolute error (MAE) of less than 5% for 4000 < Re < 70,000.« less
Lateral hopping of CO on Cu(111) induced by femtosecond laser pulses
NASA Astrophysics Data System (ADS)
Ueba, H.; Ootsuka, Y.; Paulsson, M.; Persson, B. N. J.
2010-09-01
We present a theoretical study of the lateral hopping of a single CO molecule on Cu(111) induced by femtosecond laser pulses by Mehlhorn [Phys. Rev. Lett. 104, 076101 (2010)]10.1103/PhysRevLett.104.076101. Our model assumes an intermode coupling between the CO frustrated translation (FT) and frustrated rotation (FR) modes with a weak and strong electronic friction coupling to hot electrons, respectively, and heat transfer between the FT mode and the substrate phonons. In this model the effective electronic friction coupling of the FT mode depends on the absorbed laser fluence F through the temperature of the FR mode. The calculated hopping yield as a function of F nicely reproduces the nonlinear increase observed above F=4.0J/m2 . It is found that the electronic heating via friction coupling nor the phonon coupling alone cannot explain the experimental result. Both heatings are cooperatively responsible for CO hopping on Cu(111). The electronic heat transfer dominates over the phononic one at high F , where the effective electronic friction coupling becomes larger than the phononic coupling.
Hot Films on Ceramic Substrates for Measuring Skin Friction
NASA Technical Reports Server (NTRS)
Noffz, Greg; Leiser, Daniel; Bartlett, Jim; Lavine, Adrienne
2003-01-01
Hot-film sensors, consisting of a metallic film on an electrically nonconductive substrate, have been used to measure skin friction as far back as 1931. A hot film is maintained at an elevated temperature relative to the local flow by passing an electrical current through it. The power required to maintain the specified temperature depends on the rate at which heat is transferred to the flow. The heat transfer rate correlates to the velocity gradient at the surface, and hence, with skin friction. The hot-film skin friction measurement method is most thoroughly developed for steady-state conditions, but additional issues arise under transient conditions. Fabricating hot-film substrates using low-thermal-conductivity ceramics can offer advantages over traditional quartz or polyester-film substrates. First, a low conductivity substrate increases the fraction of heat convected away by the fluid, thus increasing sensitivity to changes in flow conditions. Furthermore, the two-part, composite nature of the substrate allows the installation of thermocouple junctions just below the hot film, which can provide an estimate of the conduction heat loss.
NASA Astrophysics Data System (ADS)
Waghole, D. R.
2018-06-01
Investigation on heat transfer by generating turbulence in the fluid stream inside the circular tube is an innovative area of research for researchers. Hence, many techniques are been investigated and adopted for enhancement of heat transfer rate to reduce the size and the cost of the heat exchanger/circular tube. In the present study the effect of differential solid ring inserts /turbulators on heat transfer, friction factor of heat exchanger/circular tube was evaluated through experimentally and numerically. The experiments were conducted in range of 3000 ≤Re≤ 6500 and annular blockages 0 ≤ɸ≤50 %. The heat transfer rate was higher for differential combination of inserts as compared to tube fitted with uniform inserts. The maximum heat transfer was obtained by the use of differential metal circular ring inserts/blockages. From this study, Nusselt number, friction factor and enhancement factor are found as 2.5-3.5 times, 12% - 50.5% and 155% - 195%, respectively with water. Finally new possible correlations for predicting heat transfer and friction factor in the flow of water through the circular tube with differential blockages/inserts are proposed.
Investigation of multi-scale flash-weakening of rock surfaces during high speed slip
NASA Astrophysics Data System (ADS)
Barbery, M. R.; Saber, O.; Chester, F. M.; Chester, J. S.
2017-12-01
A significant reduction in the coefficient of friction of rock can occur if sliding velocity approaches seismic rates as a consequence of weakening of microscopic sliding contacts by flash heating. Using a high-acceleration and -speed biaxial apparatus equipped with a high-speed Infra-Red (IR) camera to capture thermographs of the sliding surface, we have documented the heterogeneous distribution of temperature on flash-heated decimetric surfaces characterized by linear arrays of high-temperature, mm-size spots, and streaks. Numerical models that are informed by the character of flash heated surfaces and that consider the coupling of changes in temperature and changes in the friction of contacts, supports the hypothesis that independent mechanisms of flash weakening operate at different contact scales. Here, we report on new experiments that provide additional constraints on the life-times and rest-times of populations of millimeter-scale contacts. Rock friction experiments conducted on Westerly granite samples in a double-direct shear configuration achieve velocity steps from 1 mm/s to 900 mm/s at 100g accelerations over 2 mm of displacement with normal stresses of 22-36 MPa and 30 mm of displacement during sustained high-speed sliding. Sliding surfaces are machined to roughness similar to natural fault surfaces and that allow us to control the characteristics of millimeter-scale contact populations. Thermographs of the sliding surface show temperatures up to 200 C on millimeter-scale contacts, in agreement with 1-D heat conduction model estimates of 180 C. Preliminary comparison of thermal modeling results and experiment observations demonstrate that we can distinguish the different life-times and rest-times of contacts in thermographs and the corresponding frictional weakening behaviors. Continued work on machined surfaces that lead to different contact population characteristics will be used to test the multi-scale and multi-mechanism hypothesis for flash weakening during seismic slip on rough fault surfaces.
NASA Astrophysics Data System (ADS)
Mukhopadhyay, Arkadeb; Duari, Santanu; Barman, Tapan Kumar; Sahoo, Prasanta
2017-10-01
The present study aims to evaluate the friction and wear behaviour of electroless Ni-P coatings sliding against hardened chromium coated steel under lubrication. Tribological tests are carried out on a block-on-roller configuration multi tribotester. The effect of variation of applied normal load, rotation speed of the counterface roller and test duration on the coefficient of friction and wear depth is analyzed using Taguchi's robust design philosophy and design of experiments. Optimal setting of the tribo-testing parameters is evaluated using a hybrid grey fuzzy reasoning analysis in a quest to achieve optimal tribological performance of the coatings under lubrication. Analysis of variance reveals the highest contribution by applied normal load in controlling the tribological behaviour under lubrication. Whereas the interaction effect of load and time is also seen to cast a significant effect. Surface morphology studies reveal a typical nodular structure of the deposits. The coatings are seen to be amorphous in its as-deposited condition which becomes crystalline on heat treatment. Further, the synergistic effects of test parameters, microstructure of the coatings, lubrication, etc. on the tribological behaviour are assessed.
Dynamics of hydrated mucopolysaccharides in cartilaginous tissues treated by laser radiation
NASA Astrophysics Data System (ADS)
Omelchenko, Alexander I.; Sobol, Emil N.; Ignatieva, Natalia Y.; Lunin, Valerii V.; Jumel, Kornelia; Harding, Stephen E.; Jones, Nicholas
2001-05-01
Dynamic mechanical properties of hydrated mucopolysaccharides have been studied in heated solutions by means of molecular hydrodynamic and acoustic techniques. These experiments model the thermal condition used for laser reshaping of cartilage. It has been shown that elastic modulus and internal friction depends on concentration of chondroitine sulphate in the solution and temperature. Maximum of internal friction was revealed at about 40 degree(s)C that corresponds to temperature of breakdown of hydrophobic bonds. Temperature dependence of internal friction manifests structural changes in polysaccharides molecules under laser heating.
NASA Astrophysics Data System (ADS)
Tanaka, Y.; Endo, M.; Moriyama, S.
2017-05-01
Delamination failure is one of the most important engineering problems. This failure can frequently be detrimental to rolling contact machine elements such as bearings, gear wheels, etc. This phenomenon, called rolling contact fatigue, has a close relationship not only with opening-mode but also with shear-mode fatigue crack growth. The crack face interference is known to significantly affect the shear-mode fatigue crack propagation and its threshold behavior. Quantitative investigation on friction and wear at fatigue crack faces in the material is essentially impossible. Previously, thus, a novel ring-on-ring test by making use of fatigue testing machine was proposed to simulate a cyclic reciprocating sliding contact of crack surfaces. However, this test procedure had some problems. For instance, in order to achieve the uniform contact at the start of test, the rubbing of specimens must be conducted in advance. By this treatment, the specimen surfaces were already damaged before the test. In this study, an improvement of experimental method was made to perform the test using the damage-free specimens. The friction and wear properties for heat-treated high carbon-chromium bearing steel were investigated with this new method and the results were compared to the results obtained by using the initially damaged specimens.
Tribological properties of Ag/Ti films on Al2O3 ceramic substrates
NASA Technical Reports Server (NTRS)
Dellacorte, Christopher; Pepper, Stephen V.; Honecy, Frank S.
1991-01-01
Ag solid lubricant films, with a thin Ti interlayer for enhanced adhesion, were sputter deposited on Al2O3 substrate disks to reduce friction and wear. The dual Ag/Ti films were tested at room temperature in a pin-on-disk tribometer sliding against bare, uncoated Al2O3 pins under a 4.9 N load at a sliding velocity of 1 m/s. The Ag/Ti films reduced the friction coefficient by 50 percent to about 0.41 compared to unlubricated baseline specimens. Pin wear was reduced by a factor of 140 and disk wear was reduced by a factor of 2.5 compared to the baseline. These films retain their good tribological properties including adhesion after heat treatments at 850 C and thus may be able to lubricate over a wide temperature range. This lubrication technique is applicable to space lubrication, advanced heat engines, and advanced transportation systems.
De Filippis, Luigi Alberto Ciro; Serio, Livia Maria; Palumbo, Davide; De Finis, Rosa; Galietti, Umberto
2017-10-11
Friction Stir Welding (FSW) is a solid-state welding process, based on frictional and stirring phenomena, that offers many advantages with respect to the traditional welding methods. However, several parameters can affect the quality of the produced joints. In this work, an experimental approach has been used for studying and optimizing the FSW process, applied on 5754-H111 aluminum plates. In particular, the thermal behavior of the material during the process has been investigated and two thermal indexes, the maximum temperature and the heating rate of the material, correlated to the frictional power input, were investigated for different process parameters (the travel and rotation tool speeds) configurations. Moreover, other techniques (micrographs, macrographs and destructive tensile tests) were carried out for supporting in a quantitative way the analysis of the quality of welded joints. The potential of thermographic technique has been demonstrated both for monitoring the FSW process and for predicting the quality of joints in terms of tensile strength.
NASA Astrophysics Data System (ADS)
Chabi, A. R.; Zarrinabadi, S.; Peyghambarzadeh, S. M.; Hashemabadi, S. H.; Salimi, M.
2017-02-01
Forced convective heat transfer in a microchannel heat sink (MCHS) using CuO/water nanofluids with 0.1 and 0.2 vol% as coolant was investigated. The experiments were focused on the heat transfer enhancement in the channel entrance region at Re < 1800. Hydraulic performance of the MCHS was also estimated by measuring friction factor and pressure drop. Results showed that higher convective heat transfer coefficient was obtained at the microchannel entrance. Maximum enhancement of the average heat transfer coefficient compared with deionized water was about 40 % for 0.2 vol% nanofluid at Re = 1150. Enhancement of the convective heat transfer coefficient of nanofluid decreased with further increasing of Reynolds number.
Effect of shoulder to pin ratio on magnesium alloy Friction Stir Welding
NASA Astrophysics Data System (ADS)
Othman, N. H.; Ishak, M.; Shah, L. H.
2017-09-01
This study focuses on the effect of shoulder to pin diameter ratio on friction stir welding of magnesium alloy AZ31. Two pieces of AZ31 alloy with thickness of 2 mm were friction stir welded by using conventional milling machine. The shoulder to pin diameter ratio used in this experiment are 2.25, 2.5, 2.75, 3, 3.33, 3.66, 4.5, 5 and 5.5. The rotational speed and welding speed used in this study are 1000 rpm and 100 mm/min, respectively. Microstructure observation of welded area was studied by using optical microscope. Equiaxed grains were observed at the TMAZ and stir zone indicating fully plastic deformation. The grain size of stir zone increased with decreasing shoulder to pin ratio from ratio 3.33 to 5.5 due to higher heat input. It is observed that, surface galling and faying surface defect is produced when excessive heat input is applied. To evaluate the mechanical properties of this specimen, tensile test was used in this study. Shoulder to pin ratio 5.5 shows lowest tensile strength while shoulder to pin diameter ratio 3.33 shows highest tensile strength with weld efficiency 91 % from based metal.
NASA Astrophysics Data System (ADS)
Wanare, S. P.; Kalyankar, V. D.
2018-04-01
Friction stir welding is emerging as a promising technique for joining of lighter metal alloys due to its several advantages over conventional fusion welding processes such as low thermal distortion, good mechanical properties, fine weld joint microstructure, etc. This review article mainly focuses on analysis of microstructure and mechanical properties of friction stir welded joints. Various microstructure characterization techniques used by previous researchers such as optical microscopes, x-ray diffraction, electron probe microscope, transmission electron microscope, scanning electron microscopes with electron back scattered diffraction, electron dispersive microscopy, etc. are thoroughly overviewed and their results are discussed. The effects of friction stir welding process parameters such as tool rotational speed, welding speed, tool plunge depth, axial force, tool shoulder diameter to tool pin diameter ratio, tool geometry etc. on microstructure and mechanical properties of welded joints are studied and critical observations are noted down. The microstructure examination carried out by previous researchers on various zones of welded joints such as weld zone, heat affected zone and base metal are studied and critical remarks have been presented. Mechanical performances of friction stir welded joints based on tensile test, micro-hardness test, etc. are discussed. This article includes exhaustive literature review of standard research articles which may become ready information for subsequent researchers to establish their line of action.
Heat transfer, friction, and rheological characteristics of antimisting kerosene
NASA Technical Reports Server (NTRS)
Matthys, E.; Sarohia, V.
1985-01-01
Experiments were performed to determine the skin friction and heat transfer behavior of antimisting kerosene (AMK) in pipe flows. The additive used was FM-9. Based on the results of the experiments, which identify high viscosity and viscoelasticity for AMK, it is recommended that AMK be degraded. Sufficient degradation produces behavior similar to that of jet A.
Investigating the Effects of Pin Tool Design on Friction Stir Welded Ti-6Al-4V
NASA Technical Reports Server (NTRS)
Rubisoff, H. A.; Querin, J. A.; Schneider, Judy A.; Magee, D.
2009-01-01
Friction stir welding (FSWing), a solid state joining technique, uses a non-consumable rotating pin tool to thermomechanically join materials. Heating of the weldment caused by friction and deformation is a function of the interaction between the pin tool and the work piece. Therefore, the geometry of the pin tool is in part responsible for the resulting microstructure and mechanical properties. In this study microwave sintered tungsten carbide (WC) pin tools with tapers and flats were used to FSW Ti-6Al-4V. Transverse sections of welds were mechanically tested, and the microstructure was characterized using optical microscopy (OM) and scanning election microscopy (SEM). X-ray diffraction (XRD) and electron back-scatter diffraction (EBSD) were used to characterize the texture within the welds produced from the different pin tool designs.
Micromechanics of sea ice frictional slip from test basin scale experiments
NASA Astrophysics Data System (ADS)
Sammonds, Peter R.; Hatton, Daniel C.; Feltham, Daniel L.
2017-02-01
We have conducted a series of high-resolution friction experiments on large floating saline ice floes in an environmental test basin. In these experiments, a central ice floe was pushed between two other floes, sliding along two interfacial faults. The frictional motion was predominantly stick-slip. Shear stresses, normal stresses, local strains and slip displacement were measured along the sliding faults, and acoustic emissions were monitored. High-resolution measurements during a single stick-slip cycle at several positions along the fault allowed us to identify two phases of frictional slip: a nucleation phase, where a nucleation zone begins to slip before the rest of the fault, and a propagation phase when the entire fault is slipping. This is slip-weakening behaviour. We have therefore characterized what we consider to be a key deformation mechanism in Arctic Ocean dynamics. In order to understand the micromechanics of sea ice friction, we have employed a theoretical constitutive relation (i.e. an equation for shear stress in terms of temperature, normal load, acceleration, velocity and slip displacement) derived from the physics of asperity-asperity contact and sliding (Hatton et al. 2009 Phil. Mag. 89, 2771-2799 (doi:10.1080/14786430903113769)). We find that our experimental data conform reasonably with this frictional law once slip weakening is introduced. We find that the constitutive relation follows Archard's law rather than Amontons' law, with ? (where τ is the shear stress and σn is the normal stress) and n = 26/27, with a fractal asperity distribution, where the frictional shear stress, τ = ffractal Tmlws, where ffractal is the fractal asperity height distribution, Tml is the shear strength for frictional melting and lubrication and ws is the slip weakening. We can therefore deduce that the interfacial faults failed in shear for these experimental conditions through processes of brittle failure of asperities in shear, and, at higher velocities, through frictional heating, localized surface melting and hydrodynamic lubrication. This article is part of the themed issue 'Microdynamics of ice'.
Thermal analysis of disc brakes using finite element method
NASA Astrophysics Data System (ADS)
Jaenudin, Jamari, J.; Tauviqirrahman, M.
2017-01-01
Disc brakes are components of a vehicle that serve to slow or stop the rotation of the wheel. This paper discusses the phenomenon of heat distribution on the brake disc during braking. Heat distribution on the brake disc is caused by kinetic energy changing into mechanical energy. Energy changes occur during the braking process due to friction between the surface of the disc and a disc pad. The temperature resulting from this friction rises high. This thermal analysis on brake discs is aimed to evaluate the performance of an electric car in the braking process. The aim of this study is to analyze the thermal behavior of the brake discs using the Finite Element Method (FEM) through examining the heat distribution on the brake disc using 3-D modeling. Results obtained from the FEM reflect the effects of high heat due to the friction between the disc pad with the disc rotor. Results of the simulation study are used to identify the effect of the heat distribution that occurred during the braking process.
NASA Astrophysics Data System (ADS)
Switzner, Nathan
Friction welding, a solid-state joining method, is presented as a novel alternative process step for lining mild steel pipe and forged components internally with a corrosion resistant (CR) metal alloy for petrochemical applications. Currently, fusion welding is commonly used for stainless steel overlay cladding, but this method is costly, time-consuming, and can lead to disbonding in service due to a hard martensite layer that forms at the interface due to partial mixing at the interface between the stainless steel CR metal and the mild steel base. Firstly, the process parameter space was explored for inertia friction butt welding using AISI type 304L stainless steel and AISI 1018 steel to determine the microstructure and mechanical properties effects. A conceptual model for heat flux density versus radial location at the faying surface was developed with consideration for non-uniform pressure distribution due to frictional forces. An existing 1 D analytical model for longitudinal transient temperature distribution was modified for the dissimilar metals case and to account for material lost to the flash. Microstructural results from the experimental dissimilar friction welds of 304L stainless steel to 1018 steel were used to discuss model validity. Secondly, the microstructure and mechanical property implications were considered for replacing the current fusion weld cladding processes with friction welding. The nominal friction weld exhibited a smaller heat softened zone in the 1018 steel than the fusion cladding. As determined by longitudinal tensile tests across the bond line, the nominal friction weld had higher strength, but lower apparent ductility, than the fusion welds due to the geometric requirements for neck formation adjacent to a rigid interface. Martensite was identified at the dissimilar friction weld interface, but the thickness was smaller than that of the fusion welds, and the morphology was discontinuous due to formation by a mechanism of solid-state mixing. Thirdly, the corrosion resistance of multiple austenitic stainless steels (types 304, 316, and 309) processed in varying ways was compared for acid chloride environments using advanced electrochemical techniques. Physical simulation of fusion claddings and friction weld claddings (wrought stainless steels) was used for sample preparation to determine compositional and microstructural effects. Pitting resistance correlated firstly with Cr content, with N and Mo additions providing additional benefits. The high ferrite fraction of as-welded samples reduced their corrosion resistance. Wrought type 309L outperformed as-welded type 309L in dissolved mass loss and reverse corrosion rate from the potentiodynamic scan in 1.0 N HCl/3.5% NaCl solution. Electrochemical impedance results indicated that wrought 309L and 316L developed a corrosion resistant passive film more rapidly than other alloys in 0.1 N HCl/3.5% NaCl, and also performed well in long term (160-day) corrosion testing in the same environment. Fourthly, to prove the concept of internal CR lining by friction welding, a conical work piece of 304L stainless steel was friction welded internally to 1018 steel.
NASA Astrophysics Data System (ADS)
Roberts, Z. A.; Casey, A. D.; Gunduz, I. E.; Rhoads, J. F.; Son, S. F.
2017-12-01
Composite energetic materials have been shown to generate heat under certain ultrasonic excitations, enough to drive rapid reactions in some cases. In an attempt to isolate the proposed heat generation mechanisms of frictional and viscoelastic heating at crystal-crystal and crystal-binder interfaces, a systematic study was conducted with cyclotetramethylene-tetranitramine crystals arranged as discrete inclusions within Sylgard 184 binder. Groups of three embedded crystals, or "triads," were arranged in two geometries with the crystals either in contact or slightly separated. Additionally, samples with good crystal-binder adhesion as well as ones mechanically debonded using compression were considered. The samples were excited ultrasonically with a contact piezoelectric transducer, and the top surface of each sample was monitored via infrared thermography. The contacting triads showed evidence of an intense localized heat source conducting to the polymer surface above the crystal locations in contrast to the separated triads. The debonded samples of both types reached higher maximum surface temperatures, on average. The results of both two-way and nested analysis of variance indicate a statistically significant difference for both adhesion and separation distance on temperature rise. We conclude that friction between crystal contact points and a debonded, moving binder at the crystal interface (also a mode of friction) play a significant role in localized heat generation, while viscoelastic/viscoplastic heating appears comparatively minor for these specific excitation conditions. The significance of frictional heat generation over viscoelastic heating in these systems may influence future design considerations related to the selection of binder materials for composite energetic materials.
Wear and friction characteristics of electroless Ni-B-W coatings at different operating temperatures
NASA Astrophysics Data System (ADS)
Mukhopadhyay, Arkadeb; Barman, Tapan Kumar; Sahoo, Prasanta
2018-02-01
Sodium borohydride reduced electroless nickel alloy coatings have high wear resistance and low coefficient of friction. The present work investigates the deposition and tribological behavior of a ternary variant of the borohydride reduced coating i.e. Ni-B-W. Electroless Ni-B-W coatings were deposited on AISI 1040 steel substrates. In order to improve the mechanical properties of the deposits, they were heat treated at 350 °C for 1 h. The coatings in their as-deposited and heat treated conditions were characterized by scanning electron microscope, energy dispersive x-ray analysis and x-ray diffraction techniques. Ni-B-W coatings are amorphous in their as-deposited state while they become crystalline on heat treatment. In fact a high microhardness of Ni-B-W coatings is also observed in as-deposited condition. The microhardness further improves on heat treatment. Tribological behavior of the heat treated coatings with varying load (10-50 N), sliding speed (0.25-0.42 m s-1) and operating temperature (25 °C-500 °C) were evaluated on a pin-on-disc type test setup while the wear mechanisms were also studied. Tribological behavior of Ni-B-W coatings is enhanced at 500 °C operating temperature in comparison with 100 or 300 °C due to formation of protective oxide scales and microstructural changes due to in-situ heat treatment effect.
NASA Astrophysics Data System (ADS)
Ghasemi, Nahid; Aghayari, Reza; Maddah, Heydar
2018-07-01
The present study aims at optimizing the heat transmission parameters such as Nusselt number and friction factor in a small double pipe heat exchanger equipped with rotating spiral tapes cut as triangles and filled with aluminum oxide nanofluid. The effects of Reynolds number, twist ratio (y/w), rotating twisted tape and concentration (w%) on the Nusselt number and friction factor are also investigated. The central composite design and the response surface methodology are used for evaluating the responses necessary for optimization. According to the optimal curves, the most optimized value obtained for Nusselt number and friction factor was 146.6675 and 0.06020, respectively. Finally, an appropriate correlation is also provided to achieve the optimal model of the minimum cost. Optimization results showed that the cost has decreased in the best case.
NASA Astrophysics Data System (ADS)
Ghasemi, Nahid; Aghayari, Reza; Maddah, Heydar
2018-02-01
The present study aims at optimizing the heat transmission parameters such as Nusselt number and friction factor in a small double pipe heat exchanger equipped with rotating spiral tapes cut as triangles and filled with aluminum oxide nanofluid. The effects of Reynolds number, twist ratio (y/w), rotating twisted tape and concentration (w%) on the Nusselt number and friction factor are also investigated. The central composite design and the response surface methodology are used for evaluating the responses necessary for optimization. According to the optimal curves, the most optimized value obtained for Nusselt number and friction factor was 146.6675 and 0.06020, respectively. Finally, an appropriate correlation is also provided to achieve the optimal model of the minimum cost. Optimization results showed that the cost has decreased in the best case.
NASA Technical Reports Server (NTRS)
Deissler, R. G.; Loeffler, A. L., Jr.
1959-01-01
A previous analysis of turbulent heat transfer and flow with variable fluid properties in smooth passages is extended to flow over a flat plate at high Mach numbers, and the results are compared with experimental data. Velocity and temperature distributions are calculated for a boundary layer with appreciative effects of frictional heating and external heat transfer. Viscosity and thermal conductivity are assumed to vary as a power or the temperature, while Prandtl number and specific heat are taken as constant. Skin-friction and heat-transfer coefficients are calculated and compared with the incompressible values. The rate of boundary-layer growth is obtained for various Mach numbers.
NASA Astrophysics Data System (ADS)
Çebi, A.; Akdoğan, E.; Celen, A.; Dalkilic, A. S.
2017-02-01
An artificial neural network (ANN) model of friction factor in smooth and microfin tubes under heating, cooling and isothermal conditions was developed in this study. Data used in ANN was taken from a vertically positioned heat exchanger experimental setup. Multi-layered feed-forward neural network with backpropagation algorithm, radial basis function networks and hybrid PSO-neural network algorithm were applied to the database. Inputs were the ratio of cross sectional flow area to hydraulic diameter, experimental condition number depending on isothermal, heating, or cooling conditions and mass flow rate while the friction factor was the output of the constructed system. It was observed that such neural network based system could effectively predict the friction factor values of the flows regardless of their tube types. A dependency analysis to determine the strongest parameter that affected the network and database was also performed and tube geometry was found to be the strongest parameter of all as a result of analysis.
Study of Critical Heat Flux and Two-Phase Pressure Drop Under Reduced Gravity
NASA Technical Reports Server (NTRS)
Abdollahian, Davood; Quintal, Joseph; Barez, Fred; Zahm, Jennifer; Lohr, Victor
1996-01-01
The design of the two-phase flow systems which are anticipated to be utilized in future spacecraft thermal management systems requires a knowledge of two-phase flow and heat transfer phenomena in reduced gravities. This program was funded by NASA headquarters in response to NRA-91-OSSA-17 and was managed by Lewis Research Center. The main objective of this program was to design and construct a two-phase test loop, and perform a series of normal gravity and aircraft trajectory experiments to study the effect of gravity on the Critical Heat Flux (CHF) and onset of instability. The test loop was packaged on two aircraft racks and was also instrumented to generate data for two-phase pressure drop. The normal gravity tests were performed with vertical up and downflow configurations to bound the effect of gravity on the test parameters. One set of aircraft trajectory tests was performed aboard the NASA DC-9 aircraft. These tests were mainly intended to evaluate the test loop and its operational performance under actual reduced gravity conditions, and to produce preliminary data for the test parameters. The test results were used to demonstrate the applicability of the normal gravity models for prediction of the two-phase friction pressure drop. It was shown that the two-phase friction multipliers for vertical upflow and reduced gravity conditions can be successfully predicted by the appropriate normal gravity models. Limited critical heat flux data showed that the measured CHF under reduced gravities are of the same order of magnitude as the test results with vertical upflow configuration. A simplified correlation was only successful in predicting the measured CHF for low flow rates. Instability tests with vertical upflow showed that flow becomes unstable and critical heat flux occurs at smaller powers when a parallel flow path exists. However, downflow tests and a single reduced gravity instability experiment indicated that the system actually became more stable with a parallel single-phase flow path. Several design modifications have been identified which will improve the system performance for generating reduced gravity data. The modified test loop can provide two-phase flow data for a range of operating conditions and can serve as a test bed for component evaluation.
NASA Astrophysics Data System (ADS)
Karwande, Amit H.; Rao, Seeram Srinivasa
2018-04-01
Friction stir welding (FSW) a welding process in which metals are joint by melting them at their solid state. In different engineering areas such as civil, mechanical, naval and aeronautical engineering beams are widely used of the magnesium alloys for different applications and that are joined by conventional inert gas welding process. Magnesium metal has less density and low melting point for that reason large heat generation in the common welding process so its necessity to adapt new welding process. FSW process increases the weld quality which observed under various mechanical testing by using different tool size.
NASA Astrophysics Data System (ADS)
Syafiq, W. M.; Afendi, M.; Daud, R.; Mazlee, M. N.; Majid, M. S. Abdul; Lee, Y. S.
2017-10-01
This paper described the mechanical properties from hardness testing and tensile testing of Friction Stir Welded (FSW) materials. In this project, two materials of aluminium and steel are welded using conventional milling machine and tool designed with different profile and shoulder size. During welding the temperature along the weld line is collected using thermocouples. Threaded pins was found to produce stronger joints than cylindrical pins. 20 mm diameter shoulder tool welded a slightly stronger joint than 18 mm diameter one, as well as softer nugget zone due to higher heat input. Threaded pins also contributed to higher weld temperature than cylindrical pins due to increase in pin contact surface. Generally, higher temperatures were recorded in aluminium side due to pin offset away from steel.
NASA Astrophysics Data System (ADS)
Furuichi, Hiroyuki; Ujiie, Kohtaro; Kouketsu, Yui; Saito, Tsubasa; Tsutsumi, Akito; Wallis, Simon
2015-08-01
Vitrinite reflectance (Ro) and Raman spectra of carbonaceous material (RSCM) are both widely used as indicators of the maximum attained temperatures in sedimentary and metamorphic rocks. However, the potential of these methods to estimate temperature increases associated with fault slip has not been closely studied. To examine this issue, friction experiments were conducted on a mixture of powdered clay-rich fault material and carbonaceous material (CM) at slip rates of 0.15 mm/s and 1.3 m/s in nitrogen (N2) gas with or without distilled water. After the experiments, we measured Ro and RSCM and compared to those in starting material. The results indicate that when fault material suffers rapid heating at >500 °C in ∼9 s at 1.3 m/s, Ro and the intensity ratio of D1 and D2 Raman bands of CM (ID2/ID1) markedly increase. Comminution with very small temperature rise in ∼32 min at 0.15 mm/s is responsible for very limited changes in Ro and ID2/ID1. Our results demonstrate that Ro and RSCM could be useful for the detection of frictional heating on faults when the power density is ≥0.52 MW/m2. However, the conventionally used Ro and RSCM geothermometers are inadequate for the estimation of peak temperature during seismic fault slip. The reaction kinetics incorporating the effects of rapid heating at high slip rates and studies of the original microtexture and composition of CM are required to establish a reliable thermometer for frictional heating on faults.
Characterization of Aluminum Magnesium Alloy Reverse Sensitized via Heat Treatment
2016-09-01
been on ships that had seen an unknown cycle of painting - stripping -repainting, so some variation was expected. 16 The exact age and range of...Figure 44. Effect of Temperature on Al-Mg Alloys. Adapted from [9]. d. Other heat treatment techniques – high power diode laser (HPDL) arrays Because...25] B. Baker et. al, "Use of High-Power diode Laser Arrays for Pre- and Post- Weld Heating During Friction Stir Welding of Steels," in Friction
Ferrous friction stir weld physical simulation
NASA Astrophysics Data System (ADS)
Norton, Seth Jason
2006-04-01
Traditional fusion welding processes have several drawbacks associated with the melting and solidification of metal. Weld defects associated with the solidification of molten metal may act as initiation sites for cracks. Segregation of alloying elements during solidification may cause local changes in resistance to corrosion. The high amount of heat required to produce the molten metal in the weld can produce distortion from the intended position on cooling. The heat from the electric arc commonly used to melt metal in fusion welds may also produce metal fumes which are a potential health hazard. Friction stir welding is one application which has the potential to make full thickness welds in a single pass, while eliminating fume, reducing distortion, and eliminating solidification defects. Currently the friction stir welding process is used in the aerospace industry on aluminum alloys. Interest in the process by industries which rely on iron and its alloys for structural material is increasing. While friction stir welding has been shown to be feasible with iron alloys, the understanding of friction stir welding process effects on these materials is in its infancy. This project was aimed to better that understanding by developing a procedure for physical simulation of friction stir welding. Friction stir weld material tracer experiments utilizing stainless steel markers were conducted with plates of ingot iron and HSLA-65. Markers of 0.0625" diameter 308 stainless steel worked well for tracing the end position of material moved by the friction stir welding tool. The markers did not produce measurable increases in the loading of the tool in the direction of travel. Markers composed of 0.25" diameter 304 stainless steel did not perform as well as the smaller markers and produced increased loads on the friction stir welding tool. The smaller markers showed that material is moved in a curved path around the tool and deposited behind the tool. Material near the surface is moved a greater distance as it is acted upon by the tool shoulder. A friction stir weld was made on a plate of HSLA-65 which had 0.0625" Inconel sheathed thermocouples embedded in the tool path at seven positions. Thermocouples on the top of the plate acquired data at the desired position until encountering the shoulder, at which point they were sheared by the shoulder and stirred behind the tool. Thermocouples on the bottom of the plate were deformed a relatively small amount and acquired data throughout the welding process. Heating rates calculated from the slope of the acquired temperature data show that the peak heating rate (˜1100°C on top and ˜500°C on the bottom) occurs on both the top and bottom of the weld at temperatures between 350°C and 500°C. An increase in the heating rate occurring at elevated temperature was associated with the transformation from ferrite to austenite. Comparison of phase transformation data acquired in rapid heating in the GleebleRTM suggests that austenite transforms back to ferrite at higher temperatures in the presence of strain than in its absence. Peak temperatures on the top of the plate exceeded 1200°C and peak temperatures acquired on the bottom exceeded 1000°C. The heating rate method of data analysis was sensitive enough to pick up variations in the heating rate which occurred at the same frequency as the rotation rate of the tool. (Abstract shortened by UMI.)
NASA Technical Reports Server (NTRS)
Quinn, R. D.; Gong, L.
1978-01-01
Skin temperatures, shearing forces, surface static pressures, and boundary layer pitot pressures and total temperatures were measured on a hollow cylinder 3.04 meters long and 0.437 meter in diameter mounted beneath the fuselage of the YF-12A airplane. The data were obtained at a nominal free stream Mach number of 3.0 and at wall-to-recovery temperature ratios of 0.66 to 0.91. The free stream Reynolds number had a minimal value of 4.2 million per meter. Heat transfer coefficients and skin friction coefficients were derived from skin temperature time histories and shear force measurements, respectively. Boundary layer velocity profiles were derived from pitot pressure measurements, and a Reynolds analogy factor of 1.11 was obtained from the measured heat transfer and skin friction data. The skin friction coefficients predicted by the theory of van Driest were in excellent agreement with the measurements. Theoretical heat transfer coefficients, in the form of Stanton numbers calculated by using a modified Reynolds analogy between skin friction and heat transfer, were compared with measured values. The measured velocity profiles were compared to Coles' incompressible law-of-the-wall profile.
Materials Design for Joinable, High Performance Aluminum Alloys
NASA Astrophysics Data System (ADS)
Glamm, Ryan James
An aluminum alloy compatible with friction stir welding is designed for automotive and aerospace structural applications. Current weldable automotive aluminum alloys do not possess the necessary strength to meet safety standards and therefore are not able to replace steel in the automotive body. Significant weight savings could be achieved if steel components are replaced with aluminum. Current aerospace alloys are not weldable, requiring machining of large pieces that are then riveted together. If an aerospace alloy could be friction stir welded, smaller pieces could be welded, reducing material waste. Using a systems approach for materials design, property goals are set from performance objectives. From previous research and computational predictions, a structure is designed for a prototype alloy containing dynamic precipitates to readily dissolve and re-precipitate and high stability precipitates to resist dissolution and coarsening in the weld region. It is found that a Ag modified Al-3.9Mg-0.04Cu (at. %) alloy enhanced the rate and magnitude of hardening during ageing, both beneficial effects for dynamic precipitation. In the same alloy, ageing at 350°C results in hardening from Al 3(Sc,Zr) precipitates. Efforts to effectively precipitate both populations simultaneously are unsuccessful. The Al3(Sc,Zr) precipitation hardened prototype is friction stir processed and no weak zones are found in the weld hardness profile. An aerospace alloy design is proposed, utilizing the dual precipitate structure shown in the prototype. The automotive alloy is designed using a basic strength model with parameters determined from the initial prototype alloy analysis. After ageing to different conditions, the alloy is put through a simulated heat affected zone thermal cycle with a computer controlled induction heater. The aged samples lose hardness from the weld cycle but recover hardness from a post weld heat treatment. Atom probe tomography and transmission electron microscopy are used to characterize the composition, size, and phase fraction evolution for the automotive alloy strengthening precipitates. It is determined that the dominant precipitate at peak hardness is a metastable T' phase. The automotive alloy is friction stir processed and found to lose hardness in the heat affected zones surrounding the nugget. A post weld heat treatment nearly recovers the heat affected zones to base hardness. The post weld heat treatment is compatible with the current automotive paint bake step, showing design for processability. Tensile tests confirm the base alloy strength meets the automotive strength goal.
Fatigue Properties of Butt Welded Aluminum Alloy and Carbon Steel Joints by Friction Stirring
NASA Astrophysics Data System (ADS)
Okane, M.; Shitaka, T.; Ishida, M.; Chaki, T.; Yasui, T.; Fukumoto, M.
2017-05-01
The butt dissimilar joints of Al-Mg-Si alloy JIS A6063 and carbon steel JIS S45C by means of friction stir welding were prepared for investigating fatigue properties of the joints. The joining tool used has cemented carbide thread probe and a shoulder made of alloy tool steel. All the fatigue tests were carried out under a load-controlled condition with a load ratio R=0.1 in air at room temperature. From the experimental results, it was found that hardness near the interface in A6063 was lower than that of base material. Three types of fatigue fracture occurred even in case of same welding condition. The first one was fracture at boundary between the lower hardness region and base material in A6063, the second type was initiated in the stir zone by FSW process and the last one was fracture at interface. Fatigue strength in case of the second one was lower than others. Furthermore, to investigate the effect of heat treatment on fatigue properties of the dissimilar joints, fatigue tests were also carried out with using the specimens which were heat treated under the same condition to aging process in T6 treatment. Fatigue fracture was initiated at interface between A6063 and S45C in case of the heat treated specimen, but fatigue strength was improved approximately 25% as compared with that of the non-heat treated specimen.
Irreversible Brownian Heat Engine
NASA Astrophysics Data System (ADS)
Taye, Mesfin Asfaw
2017-10-01
We model a Brownian heat engine as a Brownian particle that hops in a periodic ratchet potential where the ratchet potential is coupled with a linearly decreasing background temperature. We show that the efficiency of such Brownian heat engine approaches the efficiency of endoreversible engine η =1-√{{Tc/Th}} [23]. On the other hand, the maximum power efficiency of the engine approaches η ^{MAX}=1-({Tc/Th})^{1\\over 4}. It is shown that the optimized efficiency always lies between the efficiency at quasistatic limit and the efficiency at maximum power while the efficiency at maximum power is always less than the optimized efficiency since the fast motion of the particle comes at the expense of the energy cost. If the heat exchange at the boundary of the heat baths is included, we show that such a Brownian heat engine has a higher performance when acting as a refrigerator than when operating as a device subjected to a piecewise constant temperature. The role of time on the performance of the motor is also explored via numerical simulations. Our numerical results depict that the time t and the external load dictate the direction of the particle velocity. Moreover, the performance of the heat engine improves with time. At large t (steady state), the velocity, the efficiency and the coefficient of performance of the refrigerator attain their maximum value. Furthermore, we study the effect of temperature by considering a viscous friction that decreases exponentially as the background temperature increases. Our result depicts that the Brownian particle exhibits a fast unidirectional motion when the viscous friction is temperature dependent than that of constant viscous friction. Moreover, the efficiency of this motor is considerably enhanced when the viscous friction is temperature dependent. On the hand, the motor exhibits a higher performance of the refrigerator when the viscous friction is taken to be constant.
Dynamical friction on hot bodies in opaque, gaseous media
NASA Astrophysics Data System (ADS)
Masset, Frédéric S.; Velasco Romero, David A.
2017-03-01
We consider the gravitational force exerted on a point-like perturber of mass M travelling within a uniform gaseous, opaque medium at constant velocity V. The perturber irradiates the surrounding gas with luminosity L. The diffusion of the heat released is modelled with a uniform thermal diffusivity χ. Using linear perturbation theory, we show that the force exerted by the perturbed gas on the perturber differs from the force without radiation (or standard dynamical friction). Hot, underdense gas trails the mass, which gives rise to a new force component, the heating force, with direction +V, thus opposed to the standard dynamical friction. In the limit of low Mach numbers, the heating force has expression F_heat=γ (γ -1)GML/(2χ c_s^2), cs being the sound speed and γ the ratio of specific heats. In the limit of large Mach numbers, Fheat = (γ - 1)GML/(χV2)f(rminV/4χ), where f is a function that diverges logarithmically as rmin tends to zero. Remarkably, the force in the low Mach number limit does not depend on the velocity. The equilibrium speed, when it exists, is set by the cancellation of the standard dynamical friction and heating force. In the low Mach number limit, it scales with the luminosity-to-mass ratio of the perturber. Using the above results suggests that Mars- to Earth-sized planetary embryos heated by accretion in a gaseous protoplanetary disc should have eccentricities and inclinations that amount to a sizeable fraction of the disc's aspect ratio, for conditions thought to prevail at a few astronomical units.
NASA Astrophysics Data System (ADS)
Kumar, K. Ravi; Cheepu, Muralimohan; Srinivas, B.; Venkateswarlu, D.; Pramod Kumar, G.; Shiva, Apireddi
2018-03-01
In solar air heater, artificial roughness on absorber plate become prominent technique to improving heat transfer rate of air flowing passage as a result of laminar sublayer. The selection of rib geometries plays important role on friction characteristics and heat transfer rate. Many researchers studying the roughness shapes over the years to investigate the effect of geometries on the performance of friction factor and heat transfer of the solar air heater. The present study made an attempt to develop the different rib shapes utilised for creating artificial rib roughness and its comparison to investigate higher performance of the geometries. The use of computational fluid dynamics software resulted in correlation of friction factor and heat transfer rate. The simulations studies were performed on 2D computational fluid dynamics model and analysed to identify the most effective parameters of relative roughness of the height, width and pitch on major considerations of friction factor and heat transfer. The Reynolds number is varied in a range from 3000 to 20000, in the current study and modelling has conducted on heat transfer and turbulence phenomena by using Reynolds number. The modelling results showed the formation of strong vortex in the main stream flow due to the right angle triangle roughness over the square, rectangle, improved rectangle and equilateral triangle geometries enhanced the heat transfer extension in the solar air heater. The simulation of the turbulence kinetic energy of the geometry suggests the local turbulence kinetic energy has been influenced strongly by the alignments of the right angle triangle.
Tribological Behavior of Electroless Ni-P Coatings in Various Corrosive Environments
NASA Astrophysics Data System (ADS)
Panja, Bikash; Das, Suman Kalyan; Sahoo, Prasanta
2016-04-01
The present paper deals with the study of tribological characteristics, viz. friction and wear, of electroless Ni-P coating in corrosive environments (brine, acidic and alkaline) by varying different coating process parameters as well as varying the tribological testing parameters, viz. applied load and speed. The optimized results of coating process parameters for minimum friction and wear performance of the coating are presented. Moreover, a detailed study of the tribological behavior of the coating is undertaken individually for the three corrosive environments. The results obtained are compared among each other and also with the dry condition test of the coating. It is found that the friction coefficient of Ni-P coating decreases with increase in load for all environments. In case of wear, the wear rate of Ni-P coating gradually increases with increase in load for all mediums but the same decreases after 40N in brine and alkaline mediums. However, for acidic solution, the wear rate shows a continuous increasing trend. It is observed that alkaline and brine environments are favorable from friction and wear point of view of the coating, respectively. Microstructure study of the coatings is also performed and the coating is found to be of cauliflower-like morphology. The coating also exhibits amorphous structure in as-deposited condition, which gradually turns crystalline with heat treatment.
Reconsideration of data and correlations for plate finned-tube heat exchangers
NASA Astrophysics Data System (ADS)
Otović, Milena; Mihailović, Miloš; Genić, Srbislav; Jaćimović, Branislav; Milovančević, Uroš; Marković, Saša
2018-04-01
This paper deals with heat exchangers having plain finned tubes in staggered (triangular) pattern. The objective of this paper is to provide the heat transfer and friction factor correlation which can be used in engineering practice. For this purpose, the experimental data of several (most cited) authors who deal with this type of heat exchangers are used. The new correlations are established to predict the air-side heat transfer coefficient and friction factor as a function of the Reynolds number and geometric variables of the heat exchanger - tube diameter, tube pitch, fin spacing, tube rows, etc. In those correlations the characteristic dimension in Reynolds number is calculated by using the new parameter - volumetric porosity. Also, there are given the errors of those correlations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Dong; Pan, Jie; Zhu, Xiaojing
2011-02-15
Water wall design is a key issue for supercritical Circulating Fluidized Bed (CFB) boiler. On account of the good heat transfer performance, rifled tube is applied in the water wall design of a 600 MW supercritical CFB boiler in China. In order to investigate the heat transfer and frictional characteristics of the rifled tube with vertical upward flow, an in-depth experiment was conducted in the range of pressure from 12 to 30 MPa, mass flux from 230 to 1200 kg/(m{sup 2} s), and inner wall heat flux from 130 to 720 kW/m{sup 2}. The wall temperature distribution and pressure dropmore » in the rifled tube were obtained in the experiment. The normal, enhanced and deteriorated heat transfer characteristics were also captured. In this paper, the effects of pressure, inner wall heat flux and mass flux on heat transfer characteristics are analyzed, the heat transfer mechanism and the frictional resistance performance are discussed, and the corresponding empirical correlations are presented. The experimental results show that the rifled tube can effectively prevent the occurrence of departure from nucleate boiling (DNB) and keep the tube wall temperature in a permissible range under the operating condition of supercritical CFB boiler. (author)« less
NASA Astrophysics Data System (ADS)
Moorthy, P.; Oumer, A. N.; Ishak, M.
2018-03-01
The aim of this paper is to investigate the effect of fin shapes on the performance of compact finned flat tube heat exchangers. Three types of fin shapes namely plain, wavy, and rectangular grooved fins attached to three by three arrays of flat tube banks were considered. Moreover, the tubes were deployed in in-line and staggered arrangements. In addition to the fin shapes, the air velocity and the tube inclination angles were varied and the thermal-hydraulic performance was analysed. On the other hand, the temperatures at the tube surfaces were kept constant to produce constant heat flux throughout the study. The results showed that as flowrate increases, the heat transfer increases, however, the friction factor decreases. Staggered arrangement produces higher heat transfer and friction factor than inline fin. Moreover, the rectangular fin is the best in terms of high heat transfer however the drawback of high friction factor leads the fin to have the least efficiency of all. On the other hand, plain fin had the least heat transfer performance however the highest efficiency was achieved. Therefore, plain fin should be used when efficiency is prioritized and rectangular fin when high heat transfer is desired.
NASA Astrophysics Data System (ADS)
Morita, K.; Hashimoto, Y.; Hirose, T.; Hamada, Y.; Kitamura, M.
2014-12-01
Generation of friction heat associated with fault slip is controlled by friction, slip distance and fault thickness. Nature of fault slip can be estimated from the record of frictional heating along a fault (e.g., Fulton et al., 2012). Purpose of this study is to detect the record of frictional heating along a microfault observed in on-land accretionary complex, Shimanto Belt, SW Japan using vitrinite reflectance (Ro) and to examine the characteristics of fault slip in deeper subduction zone. The study area is located in Nonokawa formation, the Cretaceous Shimanto Belt, in Kochi Prefecture, Southwest Japan. We found a carbonaceous material concentrated layer (CMCL) in the formation. Some micro-faults cut the layer. The thickness of CMCL is about 3-4m. Ro of host rock is about 0.98-1.1% and of fault rock is over 1.2%. Kitamura et al. (2012) pointed out that fracturing energy may control the high Ro within fault zone. To avoid the effect of fracturing on Ro, we tired to detect a diffusion pattern of frictional heating in host rocks. Distribution of Ro is mapped in thin sections to make the Ro-distance pattern perpendicular to the fault plane. Within the fracture zone, abnormally high Ro (about 2.0% or above) was observed. Ro was 1.25% at the wall of fracture zone and decreases to 1.1% at about 5cm from the wall. We interpreted that the Ro-distance pattern was resulted from the thermal diffusion. Using this diffusion pattern, the characteristic fault parameters, such as friction, slip rate and rise time (Tr) was examined. We set parameters Q (= friction times slip rate). We have simulated frictional heating and Ro maturation on the basis of the method by Sweeny and Burnham (1990). Grid search was conducted to find the best fitted combination of Q and Tr at the smallest residual between simulated Ro and observed Ro. In the result, we estimated about 1500 (Pa m/s) of Q and about 130000(s) of Tr. Because the base temperature is about 185˚C based on the 1.1% of Ro, the depth of fault activity can be corresponded to about 6 km. The effective pressure is estimated about 94MPa. If we put friction coefficient as 0.4-0.6, the friction is about 37.6-56.5MPa. Therefore, slip rate is calculated to be about 27-40μm/s. This very slow slip rate is consistent with that for very low frequency earthquake (VLFe) reported by Sugioka et al. (2012).
The transference of heat from a hot plate to an air stream
NASA Technical Reports Server (NTRS)
Elias, Franz
1931-01-01
The object of the present study was to define experimentally the field of temperature and velocity in a heated flat plate when exposed to an air stream whose direction is parallel to it, then calculate therefrom the heat transference and the friction past the flat plate, and lastly, compare the test data with the mathematical theory. To ensure comparable results, we were to actually obtain or else approximate: a) two-dimensional flow; b) constant plate temperature in the direction of the stream. To approximate the flow in two dimensions, we chose a relatively wide plate and measured the velocity and temperature in the median plane.
NASA Astrophysics Data System (ADS)
Najeeb, Umair
This thesis experimentally investigates the enhancement of single-phase heat transfer, frictional loss and pressure drop characteristics in a Single Heater Element Loop Tester (SHELT). The heater element simulates a single fuel rod for Pressurized Nuclear reactor. In this experimental investigation, the effect of the outer surface roughness of a simulated nuclear rod bundle was studied. The outer surface of a simulated fuel rod was created with a three-dimensional (Diamond-shaped blocks) surface roughness. The angle of corrugation for each diamond was 45 degrees. The length of each side of a diamond block is 1 mm. The depth of each diamond block was 0.3 mm. The pitch of the pattern was 1.614 mm. The simulated fuel rod had an outside diameter of 9.5 mm and wall thickness of 1.5 mm and was placed in a test-section made of 38.1 mm inner diameter, wall thickness 6.35 mm aluminum pipe. The Simulated fuel rod was made of Nickel 200 and Inconel 625 materials. The fuel rod was connected to 10 KW DC power supply. The Inconel 625 material of the rod with an electrical resistance of 32.3 kO was used to generate heat inside the test-section. The heat energy dissipated from the Inconel tube due to the flow of electrical current flows into the working fluid across the rod at constant heat flux conditions. The DI water was employed as working fluid for this experimental investigation. The temperature and pressure readings for both smooth and rough regions of the fuel rod were recorded and compared later to find enhancement in heat transfer coefficient and increment in the pressure drops. Tests were conducted for Reynold's Numbers ranging from 10e4 to 10e5. Enhancement in heat transfer coefficient at all Re was recorded. The maximum heat transfer co-efficient enhancement recorded was 86% at Re = 4.18e5. It was also observed that the pressure drop and friction factor increased by 14.7% due to the increased surface roughness.
NASA Astrophysics Data System (ADS)
Huang, Houxue; Wu, Huiying; Zhang, Chi
2018-05-01
Sinusoidal wavy microchannels have been known as a more heat transfer efficient heat sink for the cooling of electronics than normal straight microchannels. However, the existing experimental study on wavy silicon microchannels with different phase differences are few. As a result of this, in this paper an experimental study has been conducted to investigate the single phase flow friction and heat transfer of de-ionized water in eight different sinusoidal wavy silicon microchannels (SWSMCs) and one straight silicon microchannel (SMC). The SWSMCs feature different phase differences (α = 0 to π) and different relative wavy amplitudes (β = A/l = 0.05 to 0.4), but the same average hydraulic diameters (D h = 160 µm). It is found that both flow friction constant fRe and the Nusselt number depend on the phase difference and relative wavy amplitude. For sinusoidal wavy microchannels with a relative wavy amplitude (β = 0.05), the Nusselt number increased noticeably with the phase difference for Re > 250, but the effect was insignificant for Re < 250 however, both pressure drop and apparent flow friction constant fRe increased with the increase in phase difference. For sinusoidal wavy microchannels with 0 phase difference, the increase in relative wavy amplitude obtained by reducing the wavy wave length induced higher pressure drop and apparent friction constant fRe, while the Nusselt number increased with relative wavy amplitude for Re > 300. The results indicate that the thermal resistances of sinusoidal wavy silicon microchannels were generally lower than that of straight silicon microchannels, and the thermal resistance decreased with the increase in relative wavy amplitude. The enhancement of thermal performance is attributed to the flow re-circulation occurring in the corrugation troughs and the secondary flows or Dean vortices introduced by curved channels. It is concluded that silicon sinusoidal wavy microchannels provide higher heat transfer rate albeit with a higher flow friction, making it a better choice for the cooling of high heat flux electronics.
Experimental assessment of advanced Stirling component concepts
NASA Technical Reports Server (NTRS)
Ziph, B.
1985-01-01
The results of an experimental assessment of some advanced Stirling engine component concepts are presented. High performance piston rings, reciprocating oil scrapers and heat pipes with getters and with mechanical couplings were tested. The tests yielded the following results: (1) Bonded, split, pumping piston rings, in preliminary testing, proved a promising concept, exhibiting low leakage and friction losses. Solid piston rings proved impractical in view of their sensitivity to the operating temperature; (2) A babbit oil scraper in a compliant housing performed well in atmospheric endurance testing. In pressurized tests the scraper did not perform well as a containment seal. The latter tests suggest modifications which may adapt Ti successfully to that application; and (3) Heat pipe endurance tests indicated the adequacy of simple, inexpensive fabrication and filling procedures. Getters were provided to increase the tolerance of the heat pipes to the presence of air and commercially available couplings were demonstrated to be suitable for heat pipe application. In addition to the above tests, the program also included a design effort for a split shaft applicable to a swashplate driven engine with a pressurized crank-case. The design is aimed, and does accomplish, an increase in component life to more than 10,000 hours.
Surface, interphase and tensile properties of unsized, sized and heat treated basalt fibres
NASA Astrophysics Data System (ADS)
Förster, T.; Sommer, G. S.; Mäder, E.; Scheffler, C.
2016-07-01
Recycling of fibre reinforced polymers is in the focus of several investigations. Chemical and thermal treatments of composites are the common ways to separate the reinforcing fibres from the polymer matrices. However, most sizings on glass and basalt fibre are not designed to resist high temperatures. Hence, a heat treatment might also lead to a sizing removal, a decrease of mechanical performance and deterioration in fibre-matrix adhesion. Different basalt fibres were investigated using surface analysis methods as well as single fibre tensile tests and single fibre pull-out tests in order to reveal the possible causes of these issues. Heat treatment in air reduced the fibre tensile strength in the same level like heat treatment in nitrogen atmosphere, but it influenced the wetting capability. Re-sizing by a coupling agent slightly increased the adhesion strength and reflected a decreased post-debonding friction.
NASA Astrophysics Data System (ADS)
Ramana Reddy, J. V.; Sugunamma, V.; Sandeep, N.
2017-01-01
The pivotal objective of this paper is to look into the flow of ferrofluids past a variable thickness surface with velocity slip. Magnetite (Fe3O4 nanoparticles are embedded to the regular fluid. The occurrence of frictional heating in the flow is also taken into account. So the flow equations will be coupled and nonlinear. These are remodelled into dimensionless form with the support of suitable transmutations. The solution of the transformed equations is determined with the support of an effective Runge-Kutta (RK)-based shooting technique. Ultimately, the effects of a few flow modulating quantities on fluid motion and heat transport were explored through plots which are procured using the MATLAB tool box. Owing to the engineering applications, we also calculated the friction factor and the heat transfer coefficient for the influencing parameters. The results are presented comparatively for both regular fluid (water) and water-based ferrofluid. This study enables us to deduce that inflation in the aligned angle or surface thickness reduces the fluid velocity. The radiation and dissipation parameters are capable of providing heat energy to the flow.
Frictional Heating of Ions In The F2-region of The Ionosphere
NASA Astrophysics Data System (ADS)
Zhizhko, G. O.; Vlasov, V. G.
Auroral electron beams unstable on the Cherenkov resonance are stabilized by large- scale inhomogeneity of the plasma density during all their way from the acceleration region to the E-region of the ionosphere. The generation of plasma waves by beam is possible only in the region of small plasma density gradients, that always is the area of the F2-region maximum. Thus, collective dissipation of the electron beam energy occurs in the local region with the length about several tens of kilometers. This leads to the intensive heating of the electrons(up to temperatures about 10000 K) and will give origin to the ion upflows with velocity about 1 km/s and density about 109 cm-2 s-1. These flows can result in the ion frictional heating. At the same time ion temperatures reach the values about 5000 K. A numerical simulation of the ion frictional heating in the presence of collective elec- tron heating in the high-latitude F2-region of the ionosphere was performed. The sim- ulation has shown that the most critical parameter for the occurence of the ion fric- tional heating was the the steepness of the plasma density profile above the F2-region maximum.
A novel investigation of heat transfer characteristics in rifled tubes
NASA Astrophysics Data System (ADS)
Jegan, C. Dhayananth; Azhagesan, N.
2018-05-01
The experimental investigation of heat transfer of water flowing in a rifled tube was explored at different pressures and at various operating conditions in a rifled tube heat exchanger. The specifications for the inner and outer diameters of the inner tube are 25.8 and 50.6 mm, respectively. The working fluids used in shell side and tube side are cold and hot water. The rifled tube was made of the stainless steel with 4 ribs, 50.6 mm outer diameter, 0.775 mm rib height, 58o helix angle and the length 1500 mm. The effect of pressure, wall heat flux and friction factor were discussed. The results confirm that even at low pressures the rifled tubes has an obvious enhancement in heat transfer compared with smooth tube. Results depicts that the Nusselt number increases with Reynolds number and the friction factor decreases with increase in Reynolds number and the heat transfer rate is higher for the rifled tube when compared to smooth tube, because of strong swirl flow due to centrifugal action. It also confirms that, the friction factor obtained from the rifled tube is significantly higher than that of smooth tube.
Numerical simulation of turbulent flow and heat transfer though sinusoidal ducts
NASA Astrophysics Data System (ADS)
Abroshan, Hamid
2018-02-01
Turbulent forced convection heat transfer in corrugated plate surfaces was studied by means of CFD. Flow through corrugated plates, which are sets of sinusoidal ducts, was analyzed for different inlet flow angles (0° to 50°), aspect ratios (0.1 to 10), Reynolds numbers (2000 to 40,000) and Prantdel numbers (0.7 to 5). Heat transfer is affected significantly by variation of aspect ratio. A maximum heat transfer coefficient is observed at a particular aspect ratio although the aspect ratio has a minor effect on friction factor. Enlarging inlet flow angle also leads to a higher heat transfer coefficient and pressure loss in aspect ratios close to unity. Dependency of Nusselt and friction factor on the angle and aspect ratio was interpreted by means of appearance of secondary motions and coexistence of laminar and turbulent flow in a cross section. Comparing the results with experimental data shows a maximum 12.8% difference. By evaluating the results, some correlations were proposed to calculate Nusselt number and friction factor for entrance and fully developed regions. A corrugated plate with an aspect ratio equal to 1.125 and an inlet flow angle equal to 50° gives the best heat transfer and pressure drop characteristics.
Friction pull plug welding: dual chamfered plate hole
NASA Technical Reports Server (NTRS)
Coletta, Edmond R. (Inventor); Cantrell, Mark A. (Inventor)
2001-01-01
Friction Pull Plug Welding (FPPW) is a solid state repair process for defects up to one inch in length, only requiring single sided tooling (OSL) for usage on flight hardware. Early attempts with FPPW followed the matching plug/plate geometry precedence of the successful Friction Push Plug Welding program, however no defect free welds were achieved due to substantial plug necking and plug rotational stalling. The dual chamfered hole has eliminated plug rotational stalling, both upon initial plug/plate contact and during welding. Also, the necking of the heated plug metal under a tensile heating/forging load has been eliminated through the usage of the dual chamfered plate hole.
Preliminary investigation of inertia friction welding B2 aluminides
NASA Technical Reports Server (NTRS)
Whittenberger, J. Daniel; Moore, Thomas J.; Kuruzar, Daniel L.
1987-01-01
An attempt is made to achieve inertia friction-welding in FeAl and NiAl samples, taking into account their intermetallics' compositions, extrusion parameters, and microstructural data. The energy required for the weld is stored in a rotating flywheel mass attached to one of the two pieces to be joined; when enough energy is introduced, the flywheel is disconnected and an axial load is applied which forces the spinning piece against the stationary one, converting the energy into heat by means of friction. Due to the inherent brittleness of the aluminides, a step-load program was used in which an initial, low-pressure heat buildup increased the work pieces' ductility.
Solid lubrication design methodology, phase 2
NASA Technical Reports Server (NTRS)
Pallini, R. A.; Wedeven, L. D.; Ragen, M. A.; Aggarwal, B. B.
1986-01-01
The high temperature performance of solid lubricated rolling elements was conducted with a specially designed traction (friction) test apparatus. Graphite lubricants containing three additives (silver, phosphate glass, and zinc orthophosphate) were evaluated from room temperature to 540 C. Two hard coats were also evaluated. The evaluation of these lubricants, using a burnishing method of application, shows a reasonable transfer of lubricant and wear protection for short duration testing except in the 200 C temperature range. The graphite lubricants containing silver and zinc orthophosphate additives were more effective than the phosphate glass material over the test conditions examined. Traction coefficients ranged from a low of 0.07 to a high of 0.6. By curve fitting the traction data, empirical equations for slope and maximum traction coefficient as a function of contact pressure (P), rolling speed (U), and temperature (T) can be developed for each lubricant. A solid lubricant traction model was incorporated into an advanced bearing analysis code (SHABERTH). For comparison purposes, preliminary heat generation calculations were made for both oil and solid lubricated bearing operation. A preliminary analysis indicated a significantly higher heat generation for a solid lubricated ball bearing in a deep groove configuration. An analysis of a cylindrical roller bearing configuration showed a potential for a low friction solid lubricated bearing.
Campanelli, Sabina Luisa; Casalino, Giuseppe; Casavola, Caterina; Moramarco, Vincenzo
2013-01-01
Friction Stir Welding (FSW) is a solid-state joining process; i.e., no melting occurs. The welding process is promoted by the rotation and translation of an axis-symmetric non-consumable tool along the weld centerline. Thus, the FSW process is performed at much lower temperatures than conventional fusion welding, nevertheless it has some disadvantages. Laser Assisted Friction Stir Welding (LAFSW) is a combination in which the FSW is the dominant welding process and the laser pre-heats the weld. In this work FSW and LAFSW tests were conducted on 6 mm thick 5754H111 aluminum alloy plates in butt joint configuration. LAFSW is studied firstly to demonstrate the weldability of aluminum alloy using that technique. Secondly, process parameters, such as laser power and temperature gradient are investigated in order to evaluate changes in microstructure, micro-hardness, residual stress, and tensile properties. Once the possibility to achieve sound weld using LAFSW is demonstrated, it will be possible to explore the benefits for tool wear, higher welding speeds, and lower clamping force. PMID:28788430
De Filippis, Luigi Alberto Ciro; Serio, Livia Maria; Galietti, Umberto
2017-01-01
Friction Stir Welding (FSW) is a solid-state welding process, based on frictional and stirring phenomena, that offers many advantages with respect to the traditional welding methods. However, several parameters can affect the quality of the produced joints. In this work, an experimental approach has been used for studying and optimizing the FSW process, applied on 5754-H111 aluminum plates. In particular, the thermal behavior of the material during the process has been investigated and two thermal indexes, the maximum temperature and the heating rate of the material, correlated to the frictional power input, were investigated for different process parameters (the travel and rotation tool speeds) configurations. Moreover, other techniques (micrographs, macrographs and destructive tensile tests) were carried out for supporting in a quantitative way the analysis of the quality of welded joints. The potential of thermographic technique has been demonstrated both for monitoring the FSW process and for predicting the quality of joints in terms of tensile strength. PMID:29019948
Campanelli, Sabina Luisa; Casalino, Giuseppe; Casavola, Caterina; Moramarco, Vincenzo
2013-12-18
Friction Stir Welding (FSW) is a solid-state joining process; i.e. , no melting occurs. The welding process is promoted by the rotation and translation of an axis-symmetric non-consumable tool along the weld centerline. Thus, the FSW process is performed at much lower temperatures than conventional fusion welding, nevertheless it has some disadvantages. Laser Assisted Friction Stir Welding (LAFSW) is a combination in which the FSW is the dominant welding process and the laser pre-heats the weld. In this work FSW and LAFSW tests were conducted on 6 mm thick 5754H111 aluminum alloy plates in butt joint configuration. LAFSW is studied firstly to demonstrate the weldability of aluminum alloy using that technique. Secondly, process parameters, such as laser power and temperature gradient are investigated in order to evaluate changes in microstructure, micro-hardness, residual stress, and tensile properties. Once the possibility to achieve sound weld using LAFSW is demonstrated, it will be possible to explore the benefits for tool wear, higher welding speeds, and lower clamping force.
NASA Astrophysics Data System (ADS)
Kaneki, Shunya; Hirono, Tetsuro
2018-06-01
Because the maximum temperature reached in the slip zone is significant information for understanding slip behaviors during an earthquake, the maturity of carbonaceous material (CM) is widely used as a proxy for detecting frictional heat recorded by fault rocks. The degree of maturation of CM is controlled not only by maximum temperature but also by the heating rate. Nevertheless, maximum slip zone temperature has been estimated previously by comparing the maturity of CM in natural fault rocks with that of synthetic products heated at rates of about 1 °C s-1, even though this rate is much lower than the actual heating rate during an earthquake. In this study, we investigated the kinetic effect of the heating rate on the CM maturation process by performing organochemical analyses of CM heated at slow (1 °C s-1) and fast (100 °C s-1) rates. The results clearly showed that a higher heating rate can inhibit the maturation reactions of CM; for example, extinction of aliphatic hydrocarbon chains occurred at 600 °C at a heating rate of 1 °C s-1 and at 900 °C at a heating rate of 100 °C s-1. However, shear-enhanced mechanochemical effects can also promote CM maturation reactions and may offset the effect of a high heating rate. We should thus consider simultaneously the effects of both heating rate and mechanochemistry on CM maturation to establish CM as a more rigorous proxy for frictional heat recorded by fault rocks and for estimating slip behaviors during earthquake.
NASA Tech Briefs, November 2006
NASA Technical Reports Server (NTRS)
2006-01-01
Topics include: Simulator for Testing Spacecraft Separation Devices; Apparatus for Hot Impact Testing of Material Specimens; Instrument for Aircraft-Icing and Cloud-Physics Measurements; Advances in Measurement of Skin Friction in Airflow; Improved Apparatus for Testing Monoball Bearings; High-Speed Laser Scanner Maps a Surface in Three Dimensions; Electro-Optical Imaging Fourier-Transform Spectrometer; Infrared Instrument for Detecting Hydrogen Fires; Modified Coaxial Probe Feeds for Layered Antennas; Detecting Negative Obstacles by Use of Radar; Cryogenic Pound Circuits for Cryogenic Sapphire Oscillators; PixelLearn; New Software for Predicting Charging of Spacecraft; Conversion Between Osculating and Mean Orbital Elements; Generating a 2D Representation of a Complex Data Structure; Making Activated Carbon by Wet Pressurized Pyrolysis; Composite Solid Electrolyte Containing Li+- Conducting Fibers; Electrically Conductive Anodized Aluminum Surfaces; Rapid-Chill Cryogenic Coaxial Direct-Acting Solenoid Valve; Variable-Tension-Cord Suspension/Vibration- Isolation System; Techniques for Connecting Superconducting Thin Films; Versatile Friction Stir Welding/Friction Plug Welding System; Thermal Spore Exposure Vessels; Enumerating Spore-Forming Bacteria Airborne with Particles; Miniature Oxidizer Ionizer for a Fuel Cell; Miniature Ion-Array Spectrometer; Promoted-Combustion Chamber with Induction Heating Coil; Miniature Ion-Mobility Spectrometer; Mixed-Salt/Ester Electrolytes for Low-Temperature Li+ Cells; Miniature Free-Space Electrostatic Ion Thrusters; Miniature Bipolar Electrostatic Ion Thruster; Holographic Plossl Retroreflectors; Miniature Electrostatic Ion Thruster With Magnet; Using Apex To Construct CPM-GOMS Models; Sequence Detection for PPM Optical Communication With ISI; Algorithm for Rapid Searching Among Star-Catalog Entries; Expectation-Based Control of Noise and Chaos; Radio Heating of Lunar Soil to Release Gases; Using Electrostriction to Manipulate Ullage in Microgravity; Equations for Scoring Rules When Data Are Missing; Insulating Material for Next-Generation Spacecraft; and Pseudorandom Switching for Adding Radar to the AFF Sensor.
NASA Astrophysics Data System (ADS)
Lu, Xiao-Long; Liu, Xiu-Bo; Yu, Peng-Cheng; Zhai, Yong-Jie; Qiao, Shi-Jie; Wang, Ming-Di; Wang, Yong-Guang; Chen, Yao
2015-11-01
Laser clad Ni60/h-BN self-lubricating anti-wear composite coating on 304 stainless steel were heat treated at 600 °C (stress relief annealing) for 1 h and 2 h, respectively. Effects of the phase compositions, microstructure, microhardness, nano-indentation and tribological properties of the composite coatings with and without heat treatment had been investigated systemically. Results indicated that three coatings mainly consist of the matrix γ-(Ni, Fe) solid solution, the CrB ceramic phases and the h-BN lubricating phases. The maximum microhardness of the coatings was first increased from 667.7 HV0.5 to 765.0 HV0.5 after heat treatment for 1 h, and then decreased to 698.3 HV0.5 after heat treatment for 2 h. The hardness of γ-(Ni, Fe) solid solution without heat treatment and after heat treatment 1 h and 2 h were 5.09 GPa, 7.20 GPa and 3.77 GPa, respectively. Compared with the coating without heat treatment, the friction coefficients of the coating after heat treatment were decreased obviously. Effects of the heat treatment time on friction coefficient were negligible, but were significant on wear volume loss. Comparatively speaking, the laser clad self-lubricating anti-wear composite coating after heat treatment for 1 h presented the best anti-wear and friction reduction properties.
Heat transfer in a compact tubular heat exchanger with helium gas at 3.5 MPa
NASA Technical Reports Server (NTRS)
Olson, Douglas A.; Glover, Michael P.
1990-01-01
A compact heat exchanger was constructed consisting of circular tubes in parallel brazed to a grooved base plate. This tube specimen heat exchanger was tested in an apparatus which radiatively heated the specimen on one side at a heat flux of up to 54 W/sq cm, and cooled the specimen with helium gas at 3.5 MPa and Reynolds numbers of 3000 to 35,000. The measured friction factor of the tube specimen was lower than that of a circular tube with fully developed turbulent flow, although the uncertainty was high due to entrance and exit losses. The measured Nusselt number, when modified to account for differences in fluid properties between the wall and the cooling fluid, agreed with past correlations for fully developed turbulent flow in circular tubes.
Genetics Home Reference: acral peeling skin syndrome
... heat, humidity and other forms of moisture, and friction. The underlying skin may be temporarily red and ... tend to be heavily exposed to moisture and friction. Learn more about the gene associated with acral ...
NASA Astrophysics Data System (ADS)
Avila, Julian A.; Lucon, Enrico; Sowards, Jeffrey; Mei, Paulo Roberto; Ramirez, Antonio J.
2016-06-01
Friction-stir welding (FSW) is an alternative welding process for pipelines. This technology offers sound welds, good repeatability, and excellent mechanical properties. However, it is of paramount importance to determine the toughness of the welds at low temperatures in order to establish the limits of this technology. Ductile-to-brittle transition curves were generated in the present study by using a small-scale instrumented Charpy machine and miniaturized V-notch specimens (Kleinstprobe, KLST); notches were located in base metal, heat-affected, stirred, and hard zones within a FSW joint of API-5L X80 Pipeline Steel. Specimens were tested at temperatures between 77 K (-196 °C) and 298 K (25 °C). Based on the results obtained, the transition temperatures for the base material and heat-affected zone were below 173 K (-100 °C); conversely, for the stirred and hard zones, it was located around 213 K (-60 °C). Fracture surfaces were characterized and showed a ductile fracture mechanism at high impact energies and a mixture of ductile and brittle mechanisms at low impact energies.
Oscillating-flow regenerator test rig: Woven screen and metal felt results
NASA Technical Reports Server (NTRS)
Gedeon, D.; Wood, J. G.
1992-01-01
We present correlating expressions, in terms of Reynolds or Peclet numbers, for friction factors, Nusselt numbers, enhanced axial conduction ratios, and overall heat flux ratios in four porous regenerator samples representative of stirling cycle regenerators: two woven screen samples and two random wire samples. Error estimates and comparison of data with others suggest our correlations are reliable, but we need to test more samples over a range of porosities before our results will become generally useful.
Detection of Frictional Heating on Faults Using Raman Spectra of Carbonaceous Material
NASA Astrophysics Data System (ADS)
Ito, K.; Ujiie, K.; Kagi, H.
2017-12-01
Raman spectra of carbonaceous material (RSCM) have been used as geothermometer in sedimentary and metamorphic rocks. However, it remains poorly understood whether RSCM are useful for detecting past frictional heating on faults. To detect increased heating during seismic slip, we examine the thrust fault in the Jurassic accretionary complex, central Japan. The thrust fault zone includes 10 cm-thick cataclasite and a few mm-thick dark layer. The cataclasite is characterized by fragments of black and gray chert in the black carbonaceous mudstone matrix. The dark layer is marked by intensely cracked gray chert fragments in the dark matrix of carbonaceous mudstone composition, which bounds the fractured gray chert above from the cataclasite below. The RSCM are analyzed for carbonaceous material in the cataclasite, dark layer, and host rock <10 mm from cataclasite and dark layer boundaries. The result indicates that there is no increased carbonization in the cataclasite. In contrast, the dark layer and part of host rocks <2 mm from the dark layer boundaries show prominent increase in carbonization. The absent of increased carbonization in the cataclasite could be attributed to insufficient frictional heating associated with distributed shear and/or faulting at low slip rates. The dark layer exhibits the appearance of fault and injection veins, and the dark layer boundaries are irregularly embayed or intensely cracked; these features have been characteristically observed in pseudotachylytes. Therefore, the increased carbonization in the dark layer is likely resulted from increased heating during earthquake faulting. The intensely cracked fragments in the dark layer and cracked wall rocks may reflect thermal fracturing in chert, which is caused by heat conduction from the molten zone. We suggest that RSCM are useful for the detection of increased heating on faults, particularly when the temperature is high enough for frictional melting and thermal fracturing.
78 FR 61164 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-03
... have been found in inner cylinder pivot bores due to friction-generated heat damage. More frequent lubrication reduces friction in the joint. Also, the Boeing 767-200/-300/-300F maintenance planning document...
Micromechanics of sea ice frictional slip from test basin scale experiments
Hatton, Daniel C.; Feltham, Daniel L.
2017-01-01
We have conducted a series of high-resolution friction experiments on large floating saline ice floes in an environmental test basin. In these experiments, a central ice floe was pushed between two other floes, sliding along two interfacial faults. The frictional motion was predominantly stick–slip. Shear stresses, normal stresses, local strains and slip displacement were measured along the sliding faults, and acoustic emissions were monitored. High-resolution measurements during a single stick–slip cycle at several positions along the fault allowed us to identify two phases of frictional slip: a nucleation phase, where a nucleation zone begins to slip before the rest of the fault, and a propagation phase when the entire fault is slipping. This is slip-weakening behaviour. We have therefore characterized what we consider to be a key deformation mechanism in Arctic Ocean dynamics. In order to understand the micromechanics of sea ice friction, we have employed a theoretical constitutive relation (i.e. an equation for shear stress in terms of temperature, normal load, acceleration, velocity and slip displacement) derived from the physics of asperity–asperity contact and sliding (Hatton et al. 2009 Phil. Mag. 89, 2771–2799 (doi:10.1080/14786430903113769)). We find that our experimental data conform reasonably with this frictional law once slip weakening is introduced. We find that the constitutive relation follows Archard's law rather than Amontons' law, with (where τ is the shear stress and σn is the normal stress) and n = 26/27, with a fractal asperity distribution, where the frictional shear stress, τ = ffractal Tmlws, where ffractal is the fractal asperity height distribution, Tml is the shear strength for frictional melting and lubrication and ws is the slip weakening. We can therefore deduce that the interfacial faults failed in shear for these experimental conditions through processes of brittle failure of asperities in shear, and, at higher velocities, through frictional heating, localized surface melting and hydrodynamic lubrication. This article is part of the themed issue ‘Microdynamics of ice’. PMID:28025302
Micromechanics of sea ice frictional slip from test basin scale experiments.
Sammonds, Peter R; Hatton, Daniel C; Feltham, Daniel L
2017-02-13
We have conducted a series of high-resolution friction experiments on large floating saline ice floes in an environmental test basin. In these experiments, a central ice floe was pushed between two other floes, sliding along two interfacial faults. The frictional motion was predominantly stick-slip. Shear stresses, normal stresses, local strains and slip displacement were measured along the sliding faults, and acoustic emissions were monitored. High-resolution measurements during a single stick-slip cycle at several positions along the fault allowed us to identify two phases of frictional slip: a nucleation phase, where a nucleation zone begins to slip before the rest of the fault, and a propagation phase when the entire fault is slipping. This is slip-weakening behaviour. We have therefore characterized what we consider to be a key deformation mechanism in Arctic Ocean dynamics. In order to understand the micromechanics of sea ice friction, we have employed a theoretical constitutive relation (i.e. an equation for shear stress in terms of temperature, normal load, acceleration, velocity and slip displacement) derived from the physics of asperity-asperity contact and sliding (Hatton et al. 2009 Phil. Mag. 89, 2771-2799 (doi:10.1080/14786430903113769)). We find that our experimental data conform reasonably with this frictional law once slip weakening is introduced. We find that the constitutive relation follows Archard's law rather than Amontons' law, with [Formula: see text] (where τ is the shear stress and σ n is the normal stress) and n = 26/27, with a fractal asperity distribution, where the frictional shear stress, τ = f fractal T ml w s , where f fractal is the fractal asperity height distribution, T ml is the shear strength for frictional melting and lubrication and w s is the slip weakening. We can therefore deduce that the interfacial faults failed in shear for these experimental conditions through processes of brittle failure of asperities in shear, and, at higher velocities, through frictional heating, localized surface melting and hydrodynamic lubrication.This article is part of the themed issue 'Microdynamics of ice'. © 2016 The Author(s).
NASA Astrophysics Data System (ADS)
Leinonen, Olli; Ilmola, Joonas; Seppälä, Oskari; Pohjonen, Aarne; Paavola, Jussi; Koskenniska, Sami; Larkiola, Jari
2018-05-01
In modeling of hot rolling pass schedules the heat transfer phenomena have to be known. Radiation to ambient, between rolls and a steel slab as well as heat transfer in contacts must be considered to achieve accurate temperature distribution and thereby accurate material behavior in simulations. Additional heat is generated by friction between the slab and the work roll and by plastic deformation. These phenomena must be taken into account when the effective heat transfer coefficient is determined from experimental data. In this paper we determine the effective heat transfer coefficient at the contact interface and emissivity factor of slab surface for 1100MPa strength carbon steel for hot rolling simulations. Experimental pilot rolling test were carried out and slab temperatures gathered right below the interface and at the mid thickness of the slab. Emissivity factor tests were carried out in the same manner but without rolling. Experimental data is utilized to derive contact heat transfer coefficient at the interface and emissivity factor of slab surface. Pilot rolling test is reproduced in FE-analysis to further refine the heat transfer coefficient and emissivity factor. Material mechanical properties at rolling temperatures were determined by Gleeble™ thermo-mechanical simulator and IDS thermodynamic-kinetic-empirical software.
ATMOSPHERIC CIRCULATION OF HOT JUPITERS: DAYSIDE–NIGHTSIDE TEMPERATURE DIFFERENCES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Komacek, Thaddeus D.; Showman, Adam P., E-mail: tkomacek@lpl.arizona.edu
The full-phase infrared light curves of low-eccentricity hot Jupiters show a trend of increasing dayside-to-nightside brightness temperature difference with increasing equilibrium temperature. Here, we present a three-dimensional model that explains this relationship, in order to provide insight into the processes that control heat redistribution in tidally locked planetary atmospheres. This three-dimensional model combines predictive analytic theory for the atmospheric circulation and dayside–nightside temperature differences over a range of equilibrium temperatures, atmospheric compositions, and potential frictional drag strengths with numerical solutions of the circulation that verify this analytic theory. The theory shows that the longitudinal propagation of waves mediates dayside–nightside temperaturemore » differences in hot Jupiter atmospheres, analogous to the wave adjustment mechanism that regulates the thermal structure in Earth’s tropics. These waves can be damped in hot Jupiter atmospheres by either radiative cooling or potential frictional drag. This frictional drag would likely be caused by Lorentz forces in a partially ionized atmosphere threaded by a background magnetic field, and would increase in strength with increasing temperature. Additionally, the amplitude of radiative heating and cooling increases with increasing temperature, and hence both radiative heating/cooling and frictional drag damp waves more efficiently with increasing equilibrium temperature. Radiative heating and cooling play the largest role in controlling dayside–nightside temperature differences in both our analytic theory and numerical simulations, with frictional drag only being important if it is stronger than the Coriolis force. As a result, dayside–nightside temperature differences in hot Jupiter atmospheres increase with increasing stellar irradiation and decrease with increasing pressure.« less
Heating, weakening and shear localization in earthquake rupture
NASA Astrophysics Data System (ADS)
Rice, James R.
2017-08-01
Field and borehole observations of active earthquake fault zones show that shear is often localized to principal deforming zones of order 0.1-10 mm width. This paper addresses how frictional heating in rapid slip weakens faults dramatically, relative to their static frictional strength, and promotes such intense localization. Pronounced weakening occurs even on dry rock-on-rock surfaces, due to flash heating effects, at slip rates above approximately 0.1 m s-1 (earthquake slip rates are typically of the order of 1 m s-1). But weakening in rapid shear is also predicted theoretically in thick fault gouge in the presence of fluids (whether native ground fluids or volatiles such as H2O or CO2 released by thermal decomposition reactions), and the predicted localizations are compatible with such narrow shear zones as have been observed. The underlying concepts show how fault zone materials with high static friction coefficients, approximately 0.6-0.8, can undergo strongly localized shear at effective dynamic friction coefficients of the order of 0.1, thus fitting observational constraints, e.g. of earthquakes producing negligible surface heat outflow and, for shallow events, only rarely creating extensive melt. The results to be summarized include those of collaborative research published with Nicolas Brantut (University College London), Eric Dunham (Stanford University), Nadia Lapusta (Caltech), Hiroyuki Noda (JAMSTEC, Japan), John D. Platt (Carnegie Institution for Science, now at *gramLabs), Alan Rempel (Oregon State University) and John W. Rudnicki (Northwestern University). This article is part of the themed issue 'Faulting, friction and weakening: from slow to fast motion'.
Neutral Beam Driven Neoclassical Transport in NSTX
NASA Astrophysics Data System (ADS)
Houlberg, W. A.; Shaing, K. C.; Callen, J. D.
2002-11-01
We re-examine the particle and heat flows driven by neutral beam injection in tokamak plasmas. These appear as inward pinches for co-injection and outward for counter injection. We derive the parallel friction and heat friction forces exerted on the thermal species by the energetic beam ions by extending the early analysis of Callen, et al. [1], which are then used as external forces in the moments formulation of neoclassical transport in NCLASS [2]. NCLASS is based on the multiple species treatment of Hirshman and Sigmar [3]. Of particular interest is the ion energy flux driven by the heat friction term. It scales as the beam energy, while the particle and electron heat terms scale as the thermal plasma temperature. In NSTX the high beam energy to plasma temperature ratio may lead to a net negative ion heat flux with strong co-injection. Limtations to the theory, such as the large fast ion orbit size relative to the radius of the flux surface, are discussed. Comparisons are made with earlier works by Hinton and Kim [4] and Stacey [5], who evaluated only the beam-thermal friction. [1] J.D. Callen, et al, 5th IAEA, Tokyo (1974), Vol 1, 645 [2] W.A. Houlberg, K.C. Shaing, S.P. Hirshman, M.C. Zarnstorff, Phys. Plasmas 4 (1997) 3230 [3] S.P. Hirshman, D.J. Sigmar, Nucl. Fusion 21 (1981) 1079 [4] F.L. Hinton, Y.-B. Kim, Phys. Fluids B 5 (1993) 3012 [5] W.M. Stacey, Phys. Fluids B 5 (1993) 4505
Transmission of heat from a flat plate to a fluid flowing at a high velocity
NASA Technical Reports Server (NTRS)
Crocco, Luigi
1932-01-01
The writer, starting with the consideration of the hydrodynamic and thermodynamic equations for the turbulent boundary layer of a flat plate when it is necessary to take into account the heat produced by friction, arrives at the conclusion that the transmission of the heat follows the same law that is valid when the frictional heat is negligible, provided the temperature of the fluid is considered to be that which the fluid would reach if arrested adiabatically. It is then shown how the same law holds good for faired bodies, and some applications of the law are made to the problems of flight at very high speeds.
Design Study for a Free-piston Vuilleumier Cycle Heat Pump
NASA Astrophysics Data System (ADS)
Matsue, Junji; Hoshino, Norimasa; Ikumi, Yonezou; Shirai, Hiroyuki
Conceptual design for a free-piston Vuilleumier cycle heat pump machine was proposed. The machine was designed based upon the numerical results of a dynamic analysis method. The method included the effect of self excitation vibration with dissipation caused by the flow friction of an oscillating working gas flow and solid friction of seals. It was found that the design values of reciprocating masses and spring constants proposed in published papers related to this study were suitable for practical use. The fundamental effects of heat exchanger elements on dynamic behaviors of the machine were clarified. It has been pointed out that some improvements were required for thermodynamic analysis of heat exchangers and working spaces.
Effect of Water Cooling on the Performances of Friction Stir Welding Heat-Affected Zone
NASA Astrophysics Data System (ADS)
Zhang, H. J.; Liu, H. J.; Yu, L.
2012-07-01
The heat-affected zone (HAZ) is generally the intrinsic weakest location of the normal friction stir welded precipitate hardened aluminum alloys. In order to improve the mechanical properties of the HAZ by controlling the temperature level, underwater friction stir welding (FSW) of an Al-Cu aluminum alloy was conducted in the present study. The results indicate that the hardness of the HAZ can be improved through underwater FSW. Microstructural analysis reveals that the hardness improvement is attributed to the lowering of precipitate coarsening level and the narrowing of precipitate free zone, which are essentially induced by the variations of welding thermal cycles under the cooling effect of water.
Temperature sensitivity of ligand-gated ion channels: ryanodine receptor case
NASA Astrophysics Data System (ADS)
Iaparov, B. I.; Moskvin, A. S.; Solovyova, O. E.
2017-11-01
Temperature influences all biochemical processes, in particular, excitation-contraction coupling(ECC) in cardiac cells. In this work we propose a theoretical explanation of temperature effects on an isolated ryanodine receptor calcium release channel (RyR channel) within the electron-conformational (EC) model. We show that the EC model with an Arrhenius-like temperature dependence of the “internal” and “external” frictions and a specific thermosensitivity of the tunnelling “open ↔ closed” transitions can provide both qualitative and quantitative description of the temperature effects for isolated RyR channels. Interestingly that a small change of the activation energy for the “internal” friction can make an ion channel either heat-inhibited or heat-activated while the “external” friction doesn’t play a key role in temperature sensitivity: neglect of “external” friction doesn’t change the channel’s temperature sensitivity qualitatively.
NASA Astrophysics Data System (ADS)
Matsuo, Yoshihiro; Clarke, Daryl D.; Ozeki, Shinichi
Friction materials such as disk pads, brake linings, and clutch facings are widely used for automotive applications. Friction materials function during braking due to frictional resistance that transforms kinetic energy into thermal energy. There has been a rudimentary evolution, from materials like leather or wood to asbestos fabric or asbestos fabric saturated with various resins such as asphalt or resin combined with pitch. These efforts were further developed by the use of woven asbestos material saturated by either rubber solution or liquid resin binder and functioned as an internal expanding brake, similar to brake lining system. The role of asbestos continued through the use of chopped asbestos saturated by rubber, but none was entirely successful due to the poor rubber heat resistance required for increased speeds and heavy gearing demands of the automobile industry. The use of phenolic resins as binder for asbestos friction materials provided the necessary thermal resistance and performance characteristics. Thus, the utility of asbestos as the main friction component, for over 100 years, has been significantly reduced in friction materials due to asbestos identity as a carcinogen. Steel and other fibrous components have displaced asbestos in disk pads. Currently, non-asbestos organics are the predominate friction material. Phenolic resins continue to be the preferred binder, and increased amounts are necessary to meet the requirements of highly functional asbestos-free disk pads for the automotive industry. With annual automobile production exceeding 70 million vehicles and additional automobile production occurring in developing countries worldwide and increasing yearly, the amount of phenolic resin for friction material is also increasing (Fig. 14.1).
NASA Astrophysics Data System (ADS)
Harrison, Edward; Alamir, Mohammed; Alzahrani, Naif; Asmatulu, Ramazan
2017-04-01
High temperature applications of materials have been increasing for various industrial applications, such as automobile brakes, clutches and thrust pads. The big portion of these materials are made out of the polymeric materials with various reinforcements. In the present study, high temperature polymeric materials were incorporated with SiC whiskers and chopped carbon fibers at 0, 5, 10 and 20wt.% and molded into desired size and shape prior to the curing process. These inclusions were selected because of their high mechanical strengths and thermal conductivity values to easily dissipate the frictional heat energy and sustain more external loads. The method of testing involves a metal ramp with an adjustable incline to find the coefficients of static and kinetic frictions by recording time and the angle of movement at various temperatures (e.g., -10°C and 50°C). The test results indicated that increasing the inclusions made drastic improvements on the coefficients of static and kinetic frictions. The undergraduate students were involved in the project and observed all the details of the process during the laboratory studies, as well as data collection, analysis and presentation. This study will be useful for the future trainings of the undergraduate engineering students on the composite, automobile and other manufacturing industries.
Topographically driven groundwater flow and the San Andreas heat flow paradox revisited
Saffer, D.M.; Bekins, B.A.; Hickman, S.
2003-01-01
Evidence for a weak San Andreas Fault includes (1) borehole heat flow measurements that show no evidence for a frictionally generated heat flow anomaly and (2) the inferred orientation of ??1 nearly perpendicular to the fault trace. Interpretations of the stress orientation data remain controversial, at least in close proximity to the fault, leading some researchers to hypothesize that the San Andreas Fault is, in fact, strong and that its thermal signature may be removed or redistributed by topographically driven groundwater flow in areas of rugged topography, such as typify the San Andreas Fault system. To evaluate this scenario, we use a steady state, two-dimensional model of coupled heat and fluid flow within cross sections oriented perpendicular to the fault and to the primary regional topography. Our results show that existing heat flow data near Parkfield, California, do not readily discriminate between the expected thermal signature of a strong fault and that of a weak fault. In contrast, for a wide range of groundwater flow scenarios in the Mojave Desert, models that include frictional heat generation along a strong fault are inconsistent with existing heat flow data, suggesting that the San Andreas Fault at this location is indeed weak. In both areas, comparison of modeling results and heat flow data suggest that advective redistribution of heat is minimal. The robust results for the Mojave region demonstrate that topographically driven groundwater flow, at least in two dimensions, is inadequate to obscure the frictionally generated heat flow anomaly from a strong fault. However, our results do not preclude the possibility of transient advective heat transport associated with earthquakes.
Thermal measurement of brake pad lining surfaces during the braking process
NASA Astrophysics Data System (ADS)
Piątkowski, Tadeusz; Polakowski, Henryk; Kastek, Mariusz; Baranowski, Pawel; Damaziak, Krzysztof; Małachowski, Jerzy; Mazurkiewicz, Łukasz
2012-06-01
This paper presents the test campaign concept and definition and the analysis of the recorded measurements. One of the most important systems in cars and trucks are brakes. The braking temperature on a lining surface can rise above 500°C. This shows how linings requirements are so strict and, what is more, continuously rising. Besides experimental tests, very supportive method for investigating processes which occur on the brake pad linings are numerical analyses. Experimental tests were conducted on the test machine called IL-68. The main component of IL-68 is so called frictional unit, which consists of: rotational head, which convey a shaft torque and where counter samples are placed and translational head, where samples of coatings are placed and pressed against counter samples. Due to the high rotational speeds and thus the rapid changes in temperature field, the infrared camera was used for testing. The paper presents results of analysis registered thermograms during the tests with different conditions. Furthermore, based on this testing machine, the numerical model was developed. In order to avoid resource demanding analyses only the frictional unit (described above) was taken into consideration. Firstly the geometrical model was performed thanks to CAD techniques, which in the next stage was a base for developing the finite element model. Material properties and boundary conditions exactly correspond to experimental tests. Computations were performed using a dynamic LS-Dyna code where heat generation was estimated assuming full (100%) conversion of mechanical work done by friction forces. Paper presents the results of dynamic thermomechanical analysis too and these results were compared with laboratory tests.
Wang, Zhenguo; Huang, Weijiu; Ma, Yanlong
2014-09-01
The micro-scale abrasion behaviors of surgical implant materials have often been reported in the literature. However, little work has been reported on the micro-scale abrasive wear behavior of Ti-25Nb-3Mo-3Zr-2Sn (TLM) titanium alloy in simulated body fluids, especially with respect to friction pairs. Therefore, a TE66 Micro-Scale Abrasion Tester was used to study the micro-scale abrasive wear behavior of the TLM alloy. This study covers the friction coefficient and wear loss of the TLM alloy induced by various friction pairs. Different friction pairs comprised of ZrO2, Si3N4 and Al2O3 ceramic balls with 25.4mm diameters were employed. The micro-scale abrasive wear mechanisms and synergistic effect between corrosion and micro-abrasion of the TLM alloy were investigated under various wear-corrosion conditions employing an abrasive, comprised of SiC (3.5 ± 0.5 μm), in two test solutions, Hanks' solution and distilled water. Before the test, the specimens were heat treated at 760°C/1.0/AC+550°C/6.0/AC. It was discovered that the friction coefficient values of the TLM alloy are larger than those in distilled water regardless of friction pairs used, because of the corrosive Hanks' solution. It was also found that the value of the friction coefficient was volatile at the beginning of wear testing, and it became more stable with further experiments. Because the ceramic balls have different properties, especially with respect to the Vickers hardness (Hv), the wear loss of the TLM alloy increased as the ball hardness increased. In addition, the wear loss of the TLM alloy in Hanks' solution was greater than that in distilled water, and this was due to the synergistic effect of micro-abrasion and corrosion, and this micro-abrasion played a leading role in the wear process. The micro-scale abrasive wear mechanism of the TLM alloy gradually changed from two-body to mixed abrasion and then to three-body abrasion as the Vickers hardness of the balls increased. Copyright © 2014 Elsevier B.V. All rights reserved.
Klapötke, Thomas M; Stierstorfer, Jörg
2008-08-07
The highly energetic compound 1,3,5-triaminoguanidinium dinitramide (1) was prepared in high yield (82%) according to a new synthesis by the reaction of potassium dinitramide and triaminoguanidinium perchlorate. The heat of formation was calculated in an extensive computational study (CBS-4M). With this the detonation parameters of compound were computed using the EXPLO5 software: D = 8796 m s(-1), p = 299 kbar. In addition, a full characterization of the chemical properties (single X-ray diffraction, IR and Raman spectroscopy, multinuclear NMR spectroscopy, mass spectrometry and elemental analysis) as well as of the energetic characteristics (differential scanning calorimetry, thermal safety calorimetry, impact, friction and electrostatic tests) is given in this work. Due to the high impact (2 J) and friction sensitivity (24 N) several attempts to reduce these sensitivities were performed by the addition of wax. The performance of was tested applying a "Koenen" steel sleeve test resulting in a critical diameter of > or =10 mm.
The Conveyor Belt Problem and Newton's Third Law.
ERIC Educational Resources Information Center
Stewart, Maurice Bruce
1989-01-01
Shows how the thermal power developed by friction is exactly half the supplied power in the general case of a variable force of friction. Investigates the mechanism whereby one-half the input energy is dissipated as heat using mathematical expressions. (YP)
NASA Astrophysics Data System (ADS)
Han, Raehee; Hirose, Takehiro; Jeong, Gi Young; Ando, Jun-ichi; Mukoyoshi, Hideki
2014-08-01
Clayey gouges are common in fault slip zones at shallow depths. Thus, the fault zone processes and frictional behaviors of the gouges are critical to understanding seismic slip at these depths. We conducted rotary shear tests on clayey gouge (~41 wt % clay minerals) at a seismic slip rate of 1.3 m/s. Here we report that the gouge was melted at 5 MPa of normal stress and room humidity conditions. The initial local melting was followed by melt layer formation. Clay minerals (e.g., smectite and illite) and plagioclase were melted and quenched to glass with numerous vesicles. Both flash heating and bulk temperature increases appear to be responsible for the melting. This observation of clayey gouge melting is comparable to that of natural faults (e.g., Chelungpu fault, Taiwan). Due to heterogeneous fault zone properties (e.g., permeability), frictional melting may be one of the important processes in clayey slip zones at shallow depths.
Cadena, Natalia L; Cue-Sampedro, Rodrigo; Siller, Héctor R; Arizmendi-Morquecho, Ana M; Rivera-Solorio, Carlos I; Di-Nardo, Santiago
2013-05-24
The manufacture of medical and aerospace components made of titanium alloys and other difficult-to-cut materials requires the parallel development of high performance cutting tools coated with materials capable of enhanced tribological and resistance properties. In this matter, a thin nanocomposite film made out of AlCrN (aluminum-chromium-nitride) was studied in this research, showing experimental work in the deposition process and its characterization. A heat-treated monolayer coating, competitive with other coatings in the machining of titanium alloys, was analyzed. Different analysis and characterizations were performed on the manufactured coating by scanning electron microscopy and energy-dispersive X-ray spectroscopy (SEM-EDXS), and X-ray diffraction (XRD). Furthermore, the mechanical behavior of the coating was evaluated through hardness test and tribology with pin-on-disk to quantify friction coefficient and wear rate. Finally, machinability tests using coated tungsten carbide cutting tools were executed in order to determine its performance through wear resistance, which is a key issue of cutting tools in high-end cutting at elevated temperatures. It was demonstrated that the specimen (with lower friction coefficient than previous research) is more efficient in machinability tests in Ti6Al4V alloys. Furthermore, the heat-treated monolayer coating presented better performance in comparison with a conventional monolayer of AlCrN coating.
Cadena, Natalia L.; Cue-Sampedro, Rodrigo; Siller, Héctor R.; Arizmendi-Morquecho, Ana M.; Rivera-Solorio, Carlos I.; Di-Nardo, Santiago
2013-01-01
The manufacture of medical and aerospace components made of titanium alloys and other difficult-to-cut materials requires the parallel development of high performance cutting tools coated with materials capable of enhanced tribological and resistance properties. In this matter, a thin nanocomposite film made out of AlCrN (aluminum–chromium–nitride) was studied in this research, showing experimental work in the deposition process and its characterization. A heat-treated monolayer coating, competitive with other coatings in the machining of titanium alloys, was analyzed. Different analysis and characterizations were performed on the manufactured coating by scanning electron microscopy and energy-dispersive X-ray spectroscopy (SEM-EDXS), and X-ray diffraction (XRD). Furthermore, the mechanical behavior of the coating was evaluated through hardness test and tribology with pin-on-disk to quantify friction coefficient and wear rate. Finally, machinability tests using coated tungsten carbide cutting tools were executed in order to determine its performance through wear resistance, which is a key issue of cutting tools in high-end cutting at elevated temperatures. It was demonstrated that the specimen (with lower friction coefficient than previous research) is more efficient in machinability tests in Ti6Al4V alloys. Furthermore, the heat-treated monolayer coating presented better performance in comparison with a conventional monolayer of AlCrN coating. PMID:28809266
Thermal analysis of friction riveting of dissimilar materials
NASA Astrophysics Data System (ADS)
Vignesh, N. J.; Hynes, N. Rajesh Jesudoss
2018-05-01
Friction riveting is a new technique which finds its applications in a variety of domains, where there is a need to join dissimilar materials for the sake of achieving weight reduction of the components produced especially in the fields of aerospace and automobile. In this present work, a numerical simulation on the heat transfer analysis has been done to predict the variation of temperature on the surface of the components being joined. Owing to the applications, Aluminum rivet is chosen for friction riveting on Poly Methyl Metha Acrylate base material. Abaqus explicit version 6.14 has been used to simulate the results of the process. Heat flux at the joint interface has been computed and thermal distribution at the work material is predicted.
Characterization of Multilayered Multipass Friction Stir Weld on ASTM A572 G50 Steel
Lim, Yong Chae; Sanderson, Samuel; Mahoney, Murray; ...
2014-01-01
A multilayered multipass friction stir weld (MM-FSW) on ASTM A572 Grade 50 steel was characterized to understand its potential application for thick-section structures. The 15-mm-thick section was fabricated by stacking up three steel plates and then friction stir welding the plates together in a total of 5 passes. The unique butt/lap joint configuration encountered in the multilayer weld was examined to understand the effect of tool rotation direction on the joint quality especially the formation of hooking defect. Charpy V-notch impact toughness tests showed generally higher impact toughness energy for the stir zone than the base metal with a ductilemore » fracture mode. The microhardness value was measured from 195 to 220 HV in the stir zone, while the base metal showed an average value of 170 HV. The microstructure in the stir zone and the adjacent heat affected zone was quantified using Optical and Scanning Electron Microscopy (SEM) including Electron Backscatter Diffraction (EBSD). The increased toughness and hardness were correlated with the refined microstructure in stir zone, resulting from severe plastic deformation and subsequent dynamic recrystallization during friction stir welding.« less
Analysis of the transient behavior of rubbing components
NASA Technical Reports Server (NTRS)
Quezdou, M. B.; Mullen, R. L.
1986-01-01
Finite element equations are developed for studying deformations and temperatures resulting from frictional heating in sliding system. The formulation is done for linear steady state motion in two dimensions. The equations include the effect of the velocity on the moving components. This gives spurious oscillations in their solutions by Galerkin finite element methods. A method called streamline upwind scheme is used to try to deal with this deficiency. The finite element program is then used to investigate the friction of heating in gas path seal.
NASA Astrophysics Data System (ADS)
Li, Zhaorui; Livescu, Daniel
2017-11-01
The two-fluid plasma equations with full transport terms, including temperature and magnetic field dependent ion and electron viscous stresses and heat fluxes, frictional drag force, and ohmic heating term have been solved by using the sixth-order non-dissipative compact scheme for plasma flows in several different regimes. In order to be able to fully resolve all the dynamically relevant time and length scales while maintaining computational feasibility, the assumptions of infinite speed of light and negligible electron inertia have been made. The accuracy and robustness of this two-fluid plasma solver in handling plasma flows have been tested against a series of canonical problems, such as Alfven-Whistler dispersion relation, electromagnetic plasma shock, magnetic reconnection, etc. For all test cases, grid convergence tests have been conducted to achieve fully resolved results. The roles of heat flux, viscosity, resistivity, Hall and Biermann battery effects, are investigated for the canonical flows studied.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Gaoqiang; Feng, Zhili; Zhu, Yucan
For better application of numerical simulation in optimization and design of friction stir welding (FSW), this paper presents a new frictional boundary condition at the tool/workpiece interface for computational fluid dynamics (CFD) modeling of FSW. The proposed boundary condition is based on an implementation of the Coulomb friction model. Using the new boundary condition, the CFD simulation yields non-uniform distribution of contact state over the tool/workpiece interface, as validated by the experimental weld macrostructure. It is found that interfacial sticking state is present over large area at the tool-workpiece interface, while significant interfacial sliding occurs at the shoulder periphery, themore » lower part of pin side, and the periphery of pin bottom. Due to the interfacial sticking, a rotating flow zone is found under the shoulder, in which fast circular motion occurs. The diameter of the rotating flow zone is smaller than the shoulder diameter, which is attributed to the presence of the interfacial sliding at the shoulder periphery. For the simulated welding condition, the heat generation due to friction and plastic deformation makes up 54.4 and 45.6% of the total heat generation rate, respectively. In conclusion, the simulated temperature field is validated by the good agreement to the experimental measurements.« less
Chen, Gaoqiang; Feng, Zhili; Zhu, Yucan; ...
2016-07-11
For better application of numerical simulation in optimization and design of friction stir welding (FSW), this paper presents a new frictional boundary condition at the tool/workpiece interface for computational fluid dynamics (CFD) modeling of FSW. The proposed boundary condition is based on an implementation of the Coulomb friction model. Using the new boundary condition, the CFD simulation yields non-uniform distribution of contact state over the tool/workpiece interface, as validated by the experimental weld macrostructure. It is found that interfacial sticking state is present over large area at the tool-workpiece interface, while significant interfacial sliding occurs at the shoulder periphery, themore » lower part of pin side, and the periphery of pin bottom. Due to the interfacial sticking, a rotating flow zone is found under the shoulder, in which fast circular motion occurs. The diameter of the rotating flow zone is smaller than the shoulder diameter, which is attributed to the presence of the interfacial sliding at the shoulder periphery. For the simulated welding condition, the heat generation due to friction and plastic deformation makes up 54.4 and 45.6% of the total heat generation rate, respectively. In conclusion, the simulated temperature field is validated by the good agreement to the experimental measurements.« less
Mechanical Properties of Friction Stir Welds in A12195-T8
NASA Technical Reports Server (NTRS)
Kinchen, David G.; Li, Zhixian; Adams, Glynn P.
1999-01-01
An extensive study of the mechanical properties of friction stir welded Al-Li 2195 has been conducted by Lockheed Martin Michoud Space Systems under contract to NASA. The study was part of a development program in which weld parameters were defined for using FSW to assemble large-scale aluminum cryogenic tanks. In excess of 300 feet of 0.320 in. gage plate material was welded and tested. The tests include room temperature and cryogenic temperature tensile tests and surface crack tension (SCT) tests, nondestructive evaluation, metallurgical studies, and photostress analysis. The results of the testing demonstrated improved mechanical properties with FSW as compared to typical fusion welding processes. Increases in ultimate tensile strength, cryogenic enhancement and elongation were observed with the tensile test results. Increased fracture toughness was observed with the SCT results. Nondestructive evaluations were conducted on all welded Joints. No volumetric defects were indicated. Surface indications on the root side of the welds did not significantly affect weld strength. The results of the nondestructive evaluations were confirmed via metallurgical studies. Photostress analysis revealed strain concentrations in multi-pass and heat-repaired FSW's. Details of the tests and results are presented.
Confined Impinging Jets in Porous Media
NASA Astrophysics Data System (ADS)
Buonomo, B.; Cirillo, L.; Manca, O.; Mansi, N.; Nardini, S.
2016-09-01
Impinging jets are adopted in drying of textiles, paper, cooling of gas turbine components, freezing of tissue in cryosurgery and manufacturing, electronic cooling. In this paper an experimental investigation is carried out on impinging jets in porous media with the wall heated from below with a uniform heat flux. The fluid is air. The experimental apparatus is made up of a fun systems, a test section, a tube, to reduce the section in a circular section. The tube is long 1.0 m and diameter of 0.012 m. The test section has a diameter of 0.10 m and it has the thickness of 10, 20 and 40 mm. In the test section the lower plate is in aluminum and is heated by an electrical resistance whereas the upper plate is in Plexiglas. The experiments are carried out employing a aluminum foam 40 PPI at three thickness as the test section. Results are obtained in a Reynolds number range from 5100 to 15300 and wall heat flux range from 510 W/m2 to 1400 W/m2. Results are given in terms of wall temperature profiles, local and average Nusselt numbers, pressure drops, friction factor and Richardson number.
Fault rheology beyond frictional melting.
Lavallée, Yan; Hirose, Takehiro; Kendrick, Jackie E; Hess, Kai-Uwe; Dingwell, Donald B
2015-07-28
During earthquakes, comminution and frictional heating both contribute to the dissipation of stored energy. With sufficient dissipative heating, melting processes can ensue, yielding the production of frictional melts or "pseudotachylytes." It is commonly assumed that the Newtonian viscosities of such melts control subsequent fault slip resistance. Rock melts, however, are viscoelastic bodies, and, at high strain rates, they exhibit evidence of a glass transition. Here, we present the results of high-velocity friction experiments on a well-characterized melt that demonstrate how slip in melt-bearing faults can be governed by brittle fragmentation phenomena encountered at the glass transition. Slip analysis using models that incorporate viscoelastic responses indicates that even in the presence of melt, slip persists in the solid state until sufficient heat is generated to reduce the viscosity and allow remobilization in the liquid state. Where a rock is present next to the melt, we note that wear of the crystalline wall rock by liquid fragmentation and agglutination also contributes to the brittle component of these experimentally generated pseudotachylytes. We conclude that in the case of pseudotachylyte generation during an earthquake, slip even beyond the onset of frictional melting is not controlled merely by viscosity but rather by an interplay of viscoelastic forces around the glass transition, which involves a response in the brittle/solid regime of these rock melts. We warn of the inadequacy of simple Newtonian viscous analyses and call for the application of more realistic rheological interpretation of pseudotachylyte-bearing fault systems in the evaluation and prediction of their slip dynamics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Shyy Woei; Yang, Tsun Lirng; Liou, Jin Shuen
An experimental study measuring the axial heat transfer distributions and the pressure drop coefficients of the tube fitted with a broken twisted tape of twist ratio 1, 1.5, 2, 2.5 or {infinity} is performed in the Re range of 1000-40,000. This type of broken twisted tape is newly invented without previous investigations available. Local Nusselt numbers and mean Fanning friction factors in the tube fitted with the broken twisted tape increase as the twist ratio decreases. Heat transfer coefficients, mean Fanning friction factors and thermal performance factors in the tube fitted with the broken twisted tape are, respectively, augmented tomore » 1.28-2.4, 2-4.7 and 0.99-1.8 times of those in the tube fitted with the smooth twisted tape. Empirical heat transfer and pressure drop correlations which evaluate the local Nusselt number and the mean Fanning friction factor for the tube with the broken twisted tape insert are generated to assist the industrial applications. (author)« less
Salman, Sami D; Kadhum, Abdul Amir H; Takriff, Mohd S; Mohamad, Abu Bakar
2013-01-01
Numerical investigation of the heat transfer and friction factor characteristics of a circular fitted with V-cut twisted tape (VCT) insert with twist ratio (y = 2.93) and different cut depths (w = 0.5, 1, and 1.5 cm) were studied for laminar flow using CFD package (FLUENT-6.3.26). The data obtained from plain tube were verified with the literature correlation to ensure the validation of simulation results. Classical twisted tape (CTT) with different twist ratios (y = 2.93, 3.91, 4.89) were also studied for comparison. The results show that the enhancement of heat transfer rate induced by the classical and V-cut twisted tape inserts increases with the Reynolds number and decreases with twist ratio. The results also revealed that the V-cut twisted tape with twist ratio y = 2.93 and cut depth w = 0.5 cm offered higher heat transfer rate with significant increases in friction factor than other tapes. In addition the results of V-cut twist tape compared with experimental and simulated data of right-left helical tape inserts (RLT), it is found that the V-cut twist tape offered better thermal contact between the surface and the fluid which ultimately leads to a high heat transfer coefficient. Consequently, 107% of maximum heat transfer was obtained by using this configuration.
Salman, Sami D.; Kadhum, Abdul Amir H.; Takriff, Mohd S.; Mohamad, Abu Bakar
2013-01-01
Numerical investigation of the heat transfer and friction factor characteristics of a circular fitted with V-cut twisted tape (VCT) insert with twist ratio (y = 2.93) and different cut depths (w = 0.5, 1, and 1.5 cm) were studied for laminar flow using CFD package (FLUENT-6.3.26). The data obtained from plain tube were verified with the literature correlation to ensure the validation of simulation results. Classical twisted tape (CTT) with different twist ratios (y = 2.93, 3.91, 4.89) were also studied for comparison. The results show that the enhancement of heat transfer rate induced by the classical and V-cut twisted tape inserts increases with the Reynolds number and decreases with twist ratio. The results also revealed that the V-cut twisted tape with twist ratio y = 2.93 and cut depth w = 0.5 cm offered higher heat transfer rate with significant increases in friction factor than other tapes. In addition the results of V-cut twist tape compared with experimental and simulated data of right-left helical tape inserts (RLT), it is found that the V-cut twist tape offered better thermal contact between the surface and the fluid which ultimately leads to a high heat transfer coefficient. Consequently, 107% of maximum heat transfer was obtained by using this configuration. PMID:24078795
Analysing the Friction Stir Welded Joints of AA2219 Al-Cu Alloy in Different Heat-Treated-State
NASA Astrophysics Data System (ADS)
Venkateswarlu, D.; Cheepu, Muralimohan; Kranthi kumar, B.; Mahapatra, M. M.
2018-03-01
Aluminium alloy AA2219 is widely used in light weight structural applications where the good corrosion resistance and specific weight required. The fabrication of this alloy using friction stir welding process is gaining interest towards finding the characteristics of the weld metal properties, since this process involved in the welded materials does not melt and recast. In the present investigation, friction stir welding process was used for different heat treated conditions of 2219-T87 and 2219-T62 aluminium alloys to find the influence of base metal on characteristics of the joints. The experimental output results exhibited that, mechanical properties, weld metal characteristics and joint failure locations are significantly affected by the different heat treatment conditions of the substrate. The joints tensile and yield strength of the 2219-T87 welds was higher than the 2219-T62 welds. Hardness distribution in the stir zone was significantly varied between two different heat treaded material conditions. The microstructural features of the 2219-T62 welds reveal the coarse grains formation in the thermo-mechanically affected zone and heat affected zone. The joint efficiency of the 2219- T82 welds is 59.87%, while that of 2219-T62 welds is 39.10%. In addition, the elongation of the joint also varied and the joints failure location characteristics are different for two different types heat treated condition joints.
Thermal characterization of phacoemulsification probes operated in axial and torsional modes.
Zacharias, Jaime
2015-01-01
To analyze temperature increases and identify potential sources of heat generated when sleeved and sleeveless phacoemulsification probes were operated in axial and torsional modes using the Infiniti Vision System with the Ozil torsional handpiece. Phacodynamics Laboratory, Pasteur Ophthalmic Clinic, Santiago, Chile. Experimental study. Two computer-controlled thermal transfer systems were developed to evaluate the contribution of internal metal stress and tip-to-sleeve friction on heat generation during phacoemulsification using axial and torsional ultrasound modalities. Both systems incorporated infrared thermal imaging and used a black-body film to accurately capture temperature measurements. Axial mode was consistently associated with greater temperature increases than torsional mode whether tips were operated with or without sleeves. In tests involving bare tips, axial mode and torsional mode peaked at 51.7°C and 34.2°C, respectively. In an example using sleeved tips in which a 30.0 g load was applied for 1 second, temperatures for axial mode reached 45°C and for torsional mode, 38°C. Friction between the sleeved probe and the incisional wall contributed more significantly to the temperature increase than internal metal stress regardless of the mode used. In all experiments, the temperature increase observed with axial mode was greater than that observed with torsional mode, even when conditions such as power or amplitude and flow rate were varied. Tip-to-sleeve friction was a more dominant source of phaco probe heating than internal metal stress. The temperature increase due to internal metal stress was greater with axial mode than with torsional mode. Dr. Zacharias received research funding from Alcon Laboratories, Inc., to conduct this study. He has no financial or proprietary interest in any material or method mentioned. Copyright © 2015 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
Analysis of heat conduction in a drum brake system of the wheeled armored personnel carriers
NASA Astrophysics Data System (ADS)
Puncioiu, A. M.; Truta, M.; Vedinas, I.; Marinescu, M.; Vinturis, V.
2015-11-01
This paper is an integrated study performed over the Braking System of the Wheeled Armored Personnel Carriers. It mainly aims to analyze the heat transfer process which is present in almost any industrial and natural process. The vehicle drum brake systems can generate extremely high temperatures under high but short duration braking loads or under relatively light but continuous braking. For the proper conduct of the special vehicles mission in rough terrain, we are talking about, on one hand, the importance of the possibility of immobilization and retaining position and, on the other hand, during the braking process, the importance movement stability and reversibility or reversibility, to an encounter with an obstacle. Heat transfer processes influence the performance of the braking system. In the braking phase, kinetic energy transforms into thermal energy resulting in intense heating and high temperature states of analyzed vehicle wheels. In the present work a finite element model for the temperature distribution in a brake drum is developed, by employing commercial finite element software, ANSYS. These structural and thermal FEA models will simulate entire braking event. The heat generated during braking causes distortion which modifies thermoelastic contact pressure distribution drum-shoe interface. In order to capture the effect of heat, a transient thermal analysis is performed in order to predict the temperature distribution transitional brake components. Drum brakes are checked both mechanical and thermal. These tests aim to establish their sustainability in terms of wear and the variation coefficient of friction between the friction surfaces with increasing temperature. Modeling using simulation programs led eventually to the establishment of actual thermal load of the mechanism of brake components. It was drawn the efficiency characteristic by plotting the coefficient of effectiveness relative to the coefficient of friction shoe-drum. Thus induced thermal loads determine thermo mechanical behavior of the structure of wheels. Study the transfer of heat generated during braking is useful because results can improve and validate existing theory or may lead to the development of a mathematical model to simulate the behavior of the brake system for various tactical and operational situations. Conclusions of this paper are relevant because theoretical data analysis results are validated by experimental research.
Heat transfer and pressure drop of condensation of hydrocarbons in tubes
NASA Astrophysics Data System (ADS)
Fries, Simon; Skusa, Severin; Luke, Andrea
2018-03-01
The heat transfer coefficient and pressure drop are investigated for propane. Two different mild steel plain tubes and saturation pressures are considered for varying mass flux and vapour quality. The pressure drop is compared to the Friedel-Correlation with two different approaches to determine the friction factor. The first is calculation as proposed by Friedel and the second is through single phase pressure drop investigations. For lower vapour qualities the experimental results are in better agreement with the approach of the calculated friction factor. For higher vapour qualities the experimental friction factor is more precise. The pressure drop increases for a decreasing tube diameter and saturation pressure. The circumferential temperature profile and heat transfer coefficients are shown for a constant vapour quality at varying mass fluxes. The subcooling is highest for the bottom of the tube and lowest for the top. The average subcooling as well as the circumferential deviation decreases for rising mass fluxes. The averaged heat transfer coefficients are compared to the model proposed by Thome and Cavallini. The experimental results are in good agreement with both correlations, however the trend is better described with the correlation from Thome. The experimental heat transfer coefficients are under predicted by Thome and over predicted by Cavallini.
Salman, Sami D.; Kadhum, Abdul Amir H.; Takriff, Mohd S.; Mohamad, Abu Bakar
2014-01-01
Numerical investigation has been carried out on heat transfer and friction factor characteristics of copper-water nanofluid flow in a constant heat-fluxed tube with the existence of new configuration of vortex generator using Computational Fluid Dynamics (CFD) simulation. Two types of swirl flow generator: Classical twisted tape (CTT) and Parabolic-cut twisted tape (PCT) with a different twist ratio (y = 2.93, 3.91 and 4.89) and different cut depth (w = 0.5, 1.0 and 1.5 cm) with 2% and 4% volume concentration of CuO nanofluid were used for simulation. The effect of different parameters such as flow Reynolds number, twist ratio, cut depth and nanofluid were considered. The results show that the enhancement of heat transfer rate and the friction factor induced by the Classical (CTT) and Parabolic-cut (PCT) inserts increases with twist ratio and cut depth decreases. The results also revealed that the heat transfer enhancement increases with an increase in the volume fraction of the CuO nanoparticle. Furthermore, the twisted tape with twist ratio (y = 2.93) and cut depth w = 0.5 cm offered 10% enhancement of the average Nusselt number with significant increases in friction factor than those of Classical twisted tape. PMID:24605055
NASA Astrophysics Data System (ADS)
Bijanrostami, Kh.; Barenji, R. Vatankhah; Hashemipour, M.
2017-02-01
The tensile behavior of the underwater dissimilar friction stir welded AA6061 and AA7075 aluminum alloy joints was investigated for the first time. For this aim, the joints were welded at different conditions and tensile test was conducted for measuring the strength and elongation of them. In addition, the microstructure of the joints was characterized by means of optical and transmission electron microscopes. Scanning electron microscope was used for fractography of the joints. Furthermore, the process parameters and tensile properties of the joints were correlated and optimized. The results revealed that the maximum tensile strength of 237.3 MPa and elongation of 41.2% could be obtained at a rotational speed 1853 rpm and a traverse speed of 50 mm/min. In comparison with the optimum condition, higher heat inputs caused grain growth and reduction in dislocation density and hence led to lower strength. The higher elongations for the joints welded at higher heat inputs were due to lower dislocation density inside the grains, which was consistent with a more ductile fracture of them.
NASA Astrophysics Data System (ADS)
Abdullah, Oday I.; Schlattmann, Josef; Senatore, Adolfo; Al-Shabibi, Abdullah M.
2018-05-01
The designers of friction clutch systems in vehicular applications should always take into account a number of essential criteria. The friction clutch should be able to transfer the torque from the driving shaft to the driven one within a short time and minimum amount of shocks and vibrations to make the engagement (disengagement) as gentle as possible. Furthermore, it is well known that high surface temperatures were noticed during the beginning of engagement period due to slipping between the contacting elements of the friction clutch system with ensuing heat generation. The transient thermoelastic problem of multi-disc systems has been deeply investigated by many scientists and researchers using numerical techniques such as finite element method. In this analysis, the influence of the sliding speed on the thermoelastic behavior when the initial heat generated is constant was studied. For this purpose an axisymmetric finite element models were developed and used in the simulation shown in the paper.
NASA Astrophysics Data System (ADS)
Nabil, M. F.; Azmi, W. H.; Hamid, K. A.; Mamat, R.
2017-10-01
The need for high performance of heat transfer has been evaluated by finding different ways to enhance heat transfer rate in fluid. One of the methods is the combination of two or more nanoparticles and it is known as hybrid/composite nanofluids which can give better performance of heat transfer. Thus, the present study focused on combination of Titanium oxide (TiO2) and Silicon oxide (SiO2) nanoparticles dispersed in 60:40 volume ratio of water and ethylene glycol mixture as the base fluid. The TiO2-SiO2 hybrid nanofluids are prepared using two-step method for different concentration of 2.0%, 2.5% and 3.0%. The experimental determination of heat transfer coefficients are conducted in the Reynolds numbers range from 2000 to 10000 at a bulk temperature of 30°C. The experiments are undertaken for constant heat flux in a circular tube. The Nusselt number of composite TiO2- SiO2 nanofluids is observed to be higher than the base fluid. The finding on heat transfer coefficient shows that 3.0% volume concentration is the highest enhancement with 45.9% compared with base fluid. While at concentration 2.0% and 2.5%, the enhancement recorded were 29.4% and 33.2%, respectively. The friction factor of nanofluids shows a decreased with the increasing of Reynolds numbers. However, the friction factor slightly increased with the increased of concentration.
Hydrodynamic studies of CNT nanofluids in helical coil heat exchanger
NASA Astrophysics Data System (ADS)
Babita; Sharma, S. K.; Mital Gupta, Shipra; Kumar, Arinjay
2017-12-01
Helical coils are extensively used in several industrial processes such as refrigeration systems, chemical reactors, recovery processes etc to accommodate a large heat transfer area within a smaller space. Nanofluids are getting great attention due to their enhanced heat transfer capability. In heat transfer equipments, pressure drop is one of the major factors of consideration for pumping power calculations. So, the present work is aimed to study hydrodynamics of CNT nanofluids in helical coils. In this study, pressure drop characteristics of CNT nanofluid flowing inside horizontal helical coils are investigated experimentally. The helical coil to tube diameter was varied from 11.71 to 27.34 keeping pitch of the helical coil constant. Double distilled water was used as basefluid. SDBS and GA surfactants were added to stablilize CNT nanofluids. The volumetric fraction of CNT nanofluid was varied from 0.003 vol% to 0.051 vol%. From the experimental data, it was analyzed that the friction factor in helical coils is greater than that of straight tubes. Concentration of CNT in nanofluids also has a significant influence on the pressure drop/friction factor of helical coils. At a constant concentration of CNT, decreasing helical coil to tube diameter from 27.24 to 11.71, fanning friction factor of helical coil; f c increases for a constant value of p/d t. This increase in the value of fanning friction factor can be attributed to the secondary flow of CNT nanofluid in helical coils.
Understanding dynamic friction through spontaneously evolving laboratory earthquakes
Rubino, V.; Rosakis, A. J.; Lapusta, N.
2017-01-01
Friction plays a key role in how ruptures unzip faults in the Earth’s crust and release waves that cause destructive shaking. Yet dynamic friction evolution is one of the biggest uncertainties in earthquake science. Here we report on novel measurements of evolving local friction during spontaneously developing mini-earthquakes in the laboratory, enabled by our ultrahigh speed full-field imaging technique. The technique captures the evolution of displacements, velocities and stresses of dynamic ruptures, whose rupture speed range from sub-Rayleigh to supershear. The observed friction has complex evolution, featuring initial velocity strengthening followed by substantial velocity weakening. Our measurements are consistent with rate-and-state friction formulations supplemented with flash heating but not with widely used slip-weakening friction laws. This study develops a new approach for measuring local evolution of dynamic friction and has important implications for understanding earthquake hazard since laws governing frictional resistance of faults are vital ingredients in physically-based predictive models of the earthquake source. PMID:28660876
Hemolysis and heat generation in six different types of centrifugal blood pumps.
Araki, K; Taenaka, Y; Masuzawa, T; Tatsumi, E; Wakisaka, Y; Watari, M; Nakatani, T; Akagi, H; Baba, Y; Anai, H
1995-09-01
What the most causative factor affecting hemolysis is still controversial. To resolve this problem, we investigated the relationship between hemolysis and heat generation in six types of centrifugal blood pumps (Bio-Pump, Delphin, Capiox, Nikkiso, Isoflow, and Toyobo). The analyzed parameters were index of hemolysis in fresh goat blood, pumping performance, and heat generation in a thermally isolated mock circuit. These parameters were analyzed at a flow rate of 5 L/min by changing the pressure head (100 mm Hg and 500 mm Hg). At 500 mm Hg of pressure head, the Bio-Pump needed the highest rotation number and showed the highest hemolytic rate and heat generation. The index of hemolysis is well correlated to heat generation (r2 = 0.721). Heat may originate from the motor by conduction, hydraulic energy loss, and mechanical friction between the shaft and seal. We strongly suspect that hemolysis was caused by a factor such as mechanical friction which generates heat locally.
Effects of Friction and Plastic Deformation in Shock-Comminuted Damaged Rocks on Impact Heating
NASA Astrophysics Data System (ADS)
Kurosawa, Kosuke; Genda, Hidenori
2018-01-01
Hypervelocity impacts cause significant heating of planetary bodies. Such events are recorded by a reset of 40Ar-36Ar ages and/or impact melts. Here we investigate the influence of friction and plastic deformation in shock-generated comminuted rocks on the degree of impact heating using the iSALE shock-physics code. We demonstrate that conversion from kinetic to internal energy in the targets with strength occurs during pressure release, and additional heating becomes significant for low-velocity impacts (<10 km s-1). This additional heat reduces the impact-velocity thresholds required to heat the targets with the 0.1 projectile mass to temperatures for the onset of Ar loss and melting from 8 and 10 km s-1, respectively, for strengthless rocks to 2 and 6 km s-1 for typical rocks. Our results suggest that the impact conditions required to produce the unique features caused by impact heating span a much wider range than previously thought.
Friction pull plug welding: chamfered heat sink pull plug design
NASA Technical Reports Server (NTRS)
Coletta, Edmond R. (Inventor); Cantrell, Mark A. (Inventor)
2002-01-01
Friction Pull Plug Welding (FPPW) is a solid state repair process for defects up to one inch in length, only requiring single sided tooling (OSL) for usage on flight hardware. Experimental data has shown that the mass of plug heat sink remaining above the top of the plate surface after a weld is completed (the plug heat sink) affects the bonding at the plug top. A minimized heat sink ensures complete bonding of the plug to the plate at the plug top. However, with a minimal heat sink three major problems can arise, the entire plug could be pulled through the plate hole, the central portion of the plug could be separated along grain boundaries, or the plug top hat can be separated from the body. The Chamfered Heat Sink Pull Plug Design allows for complete bonding along the ISL interface through an outside diameter minimal mass heat sink, while maintaining enough central mass in the plug to prevent plug pull through, central separation, and plug top hat separation.
NASA Astrophysics Data System (ADS)
Kumar, Khushmeet; Prajapati, D. R.; Samir, Sushant
2018-02-01
Solar air heater uses the energy coming from the sun to heat the air. The conversion rate of solar energy to heat depends upon the efficiency of the solar air heater and this efficiency can be increased by the use of artificial roughness on the surface of absorber plate. Various studies were carried out to analyse the effect of different roughness geometries on heat transfer and friction factor characteristics. The thermo-hydraulic performance of solar air heater can be evaluated in terms of effective efficiency, thermo-hydraulic performance parameter and exergetic efficiency. In this study various geometries used for artificial roughness and to improve the performance of solar air heaters were studied. Also correlations developed by various researchers are presented in this paper.
NASA Technical Reports Server (NTRS)
Brendley, K.; Chato, J. C.
1982-01-01
The parameters of the efflux from a helium dewar in space were numerically calculated. The flow was modeled as a one dimensional compressible ideal gas with variable properties. The primary boundary conditions are flow with friction and flow with heat transfer and friction. Two PASCAL programs were developed to calculate the efflux parameters: EFFLUZD and EFFLUXM. EFFLUXD calculates the minimum mass flow for the given shield temperatures and shield heat inputs. It then calculates the pipe lengths, diameter, and fluid parameters which satisfy all boundary conditions. Since the diameter returned by EFFLUXD is only rarely of nominal size, EFFLUXM calculates the mass flow and shield heat exchange for given pipe lengths, diameter, and shield temperatures.
An exact closed form solution for constant area compressible flow with friction and heat transfer
NASA Technical Reports Server (NTRS)
Sturas, J. I.
1971-01-01
The well-known differential equation for the one-dimensional flow of a compressible fluid with heat transfer and wall friction has no known solution in closed form for the general case. This report presents a closed form solution for the special case of constant heat flux per unit length and constant specific heat. The solution was obtained by choosing the square of a dimensionless flow parameter as one of the independent variables to describe the flow. From this exact solution, an approximate simplified form is derived that is applicable for predicting subsonic flow performance characteristics for many types of constant area passages in internal flow. The data included in this report are considered sufficiently accurate for use as a guide in analyzing and designing internal gas flow systems.
Heat transfer in thin, compact heat exchangers with circular, rectangular, or pin-fin flow passages
NASA Technical Reports Server (NTRS)
Olson, D. A.
1992-01-01
Heat transfer and pressure drop have been measured of three thin, compact heat exchangers in helium gas at 3.5 MPa and higher, with Reynolds numbers of 450 to 36,000. The flow geometries for the three heat exchanger specimens were: circular tube, rectangular channel, and staggered pin fin with tapered pins. The specimens were heated radiatively at heat fluxes up to 77 W/sq cm. Correlations were developed for the isothermal friction factor as a function of Reynolds number, and for the Nusselt number as a function of Reynolds number and the ratio of wall temperature to fluid temperature. The specimen with the pin fin internal geometry had significantly better heat transfer than the other specimens, but it also had higher pressure drop. For certain conditions of helium flow and heating, the temperature more than doubled from the inlet to the outlet of the specimens, producing large changes in gas velocity, density, viscosity, and thermal conductivity. These changes in properties did not affect the correlations for friction factor and Nusselt number in turbulent flow.
Micromachine friction test apparatus
deBoer, Maarten P.; Redmond, James M.; Michalske, Terry A.
2002-01-01
A microelectromechanical (MEM) friction test apparatus is disclosed for determining static or dynamic friction in MEM devices. The friction test apparatus, formed by surface micromachining, is based on a friction pad supported at one end of a cantilevered beam, with the friction pad overlying a contact pad formed on the substrate. A first electrostatic actuator can be used to bring a lower surface of the friction pad into contact with an upper surface of the contact pad with a controlled and adjustable force of contact. A second electrostatic actuator can then be used to bend the cantilevered beam, thereby shortening its length and generating a relative motion between the two contacting surfaces. The displacement of the cantilevered beam can be measured optically and used to determine the static or dynamic friction, including frictional losses and the coefficient of friction between the surfaces. The test apparatus can also be used to assess the reliability of rubbing surfaces in MEM devices by producing and measuring wear of those surfaces. Finally, the friction test apparatus, which is small in size, can be used as an in situ process quality tool for improving the fabrication of MEM devices.
Finite element based simulation on friction stud welding of metal matrix composites to steel
NASA Astrophysics Data System (ADS)
Hynes, N. Rajesh Jesudoss; Tharmaraj, R.; Velu, P. Shenbaga; Kumar, R.
2016-05-01
Friction welding is a solid state joining technique used for joining similar and dissimilar materials with high integrity. This new technique is being successfully applied to the aerospace, automobile, and ship building industries, and is attracting more and more research interest. The quality of Friction Stud Welded joints depends on the frictional heat generated at the interface. Hence, thermal analysis on friction stud welding of stainless steel (AISI 304) and aluminium silicon carbide (AlSiC) combination is carried out in the present work. In this study, numerical simulation is carried out using ANSYS software and the temperature profiles are predicted at various increments of time. The developed numerical model is found to be adequate to predict temperature distribution of friction stud weld aluminium silicon carbide/stainless steel joints.
NASA Astrophysics Data System (ADS)
Constantin, M. A.; Boșneag, A.; Nitu, E.; Iordache, M.
2017-10-01
Welding copper and its alloys is usually difficult to join by conventional fusion welding processes because of high thermal diffusivity of the copper, alloying elements, necessity of using a shielding gas and a clean surface. To overcome this inconvenience, Friction Stir Welding (FSW), a solid state joining process that relies on frictional heating and plastic deformation, is used as a feasible welding process. In order to achieve an increased welding speed and a reduction in tool wear, this process is assisted by another one (WIG) which generates and adds heat to the process. The aim of this paper is to identify the influence of the additional heat on the process parameters and on the welding joint properties (distribution of the temperature, hardness and roughness). The research includes two experiments for the FSW process and one experiment for tungsten inert gas assisted FSW process. The outcomes of the investigation are compared and analysed for both welding variants. Adding a supplementary heat source, the plates are preheated and are obtain some advantages such as reduced forces used in process and FSW tool wear, faster and better plasticization of the material, increased welding speed and a proper weld quality.
Heat Transfer Through Turbulent Friction Layers
NASA Technical Reports Server (NTRS)
Reichardt, H.
1943-01-01
The "general Prandtl number" Pr(exp 1) - A(sub q)/A Pr, aside from the Reynolds number determines the ratio of turbulent to molecular heat transfer, and the temperature distribution in turbulent friction layers. A(sub q) = exchange coefficient for heat; A = exchange coefficient for momentum transfer. A formula is derived from the equation defining the general Prandtl number which describes the temperature as a function of the velocity. For fully developed thermal boundary layers all questions relating to heat transfer to and from incompressible fluids can be treated in a simple manner if the ratio of the turbulent shear stress to the total stress T(sub t)/T in the layers near the wall is known, and if the A(sub q)/A can be regarded as independent of the distance from the wall. The velocity distribution across a flat smooth channel and deep into the laminar sublayer was measured for isothermal flow to establish the shear stress ratio T(sub t)/T and to extend the universal wall friction law. The values of T(sub t)/T which resulted from these measurements can be approximately represented by a linear function of the velocity in the laminar-turbulent transition zone. The effect of the temperature relationship of the material values on the flow near the wall is briefly analyzed. It was found that the velocity at the laminar boundary (in contrast to the thickness of the laminar layer) is approximately independent of the temperature distribution. The temperature gradient at the wall and the distribution of temperature and heat flow in the turbulent friction layers were calculated on the basis of the data under two equations. The derived formulas and the figures reveal the effects of the Prandtl number, the Reynolds number, the exchange quantities and the temperature relationship of the material values.
Lorenzo-Martin, Cinta; Ajayi, Oyelayo O.
2015-06-06
Tribological performance of steel materials can be substantially enhanced by various thermal surface hardening processes. For relatively low-carbon steel alloys, case carburization is often used to improve surface performance and durability. If the carbon content of steel is high enough (>0.4%), thermal treatments such as induction, flame, laser, etc. can produce adequate surface hardening without the need for surface compositional change. This paper presents an experimental study of the use of friction stir processing (FSP) as a means to hardened surface layer in AISI 4140 steel. The impacts of this surface hardening process on the friction and wear performance weremore » evaluated under both dry and lubricated contact conditions in reciprocating sliding. FSP produced the same level of hardening and superior tribological performance when compared to conventional thermal treatment, using only 10% of the energy and without the need for quenching treatments. With FSP surface hardness of about 7.8 GPa (62 Rc) was achieved while water quenching conventional heat treatment produced about 7.5 GPa (61 Rc) hardness. Microstructural analysis showed that both FSP and conventional heat treatment produced martensite. Although the friction behavior for FSP treated surfaces and the conventional heat treatment were about the same, the wear in FSP processed surfaces was reduced by almost 2× that of conventional heat treated surfaces. Furthermore, the superior performance is attributed to the observed grain refinement accompanying the FSP treatment in addition to the formation of martensite. As it relates to tribological performance, this study shows FSP to be an effective, highly energy efficient, and environmental friendly (green) alternative to conventional heat treatment for steel.« less
Dynamic weakening of serpentinite gouges and bare surfaces at seismic slip rates
NASA Astrophysics Data System (ADS)
Proctor, B. P.; Mitchell, T. M.; Hirth, G.; Goldsby, D.; Zorzi, F.; Platt, J. D.; Di Toro, G.
2014-11-01
To investigate differences in the frictional behavior between initially bare rock surfaces of serpentinite and powdered serpentinite ("gouge") at subseismic to seismic slip rates, we conducted single-velocity step and multiple-velocity step friction experiments on an antigorite-rich and lizardite-rich serpentinite at slip rates (V) from 0.003 m/s to 6.5 m/s, sliding displacements up to 1.6 m, and normal stresses (σn) up to 22 MPa for gouge and 97 MPa for bare surfaces. Nominal steady state friction values (μnss) in gouge at V = 1 m/s are larger than in bare surfaces for all σn tested and demonstrate a strong σn dependence; μnss decreased from 0.51 at 4.0 MPa to 0.39 at 22.4 MPa. Conversely, μnss values for bare surfaces remained ~0.1 with increasing σn and V. Additionally, the velocity at the onset of frictional weakening and the amount of slip prior to weakening were orders of magnitude larger in gouge than in bare surfaces. Extrapolation of the normal stress dependence for μnss suggests that the behavior of antigorite gouge approaches that of bare surfaces at σn ≥ 60 MPa. X-ray diffraction revealed dehydration reaction products in samples that frictionally weakened. Microstructural analysis revealed highly localized slip zones with melt-like textures in some cases gouge experiments and in all bare surfaces experiments for V ≥ 1 m/s. One-dimensional thermal modeling indicates that flash heating causes frictional weakening in both bare surfaces and gouge. Friction values for gouge decrease at higher velocities and after longer displacements than bare surfaces because strain is more distributed.
Submammary Granular Parakeratosis Treated With Mastopexy.
Nelson, Garrett; Lien, Mary H; Messina, Jane L; Ranjit, Sonali; Fenske, Neil Alan
2017-08-01
Granular parakeratosis, originally named axillary granular parakeratosis, is an uncommon disease with an unclear etiology. It is thought to result from defective processing of profillagrin to fillagrin, causing retention of keratohyaline granules in the epidermis. A myriad of causative factors has been proposed, including friction, moisture, heat, and contact irritants such as deodorants. We present a case in the inframammary area that resolved with mastopexy, further supporting the role of friction, moisture, and heat. Furthermore, we present electron microscopic evidence demonstrating non-degraded keratohyaline granules upon epidermal maturation. This entity, we believe, is reactive and represents a protective response of the body to moisture and heat.
J Drugs Dermatol. 2017;16(8):810-812.
.Thermal-hydraulic behavior of a mixed chevron single-pass plate-and-frame heat exchanger
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manglik, R.M.; Muley, A.
1995-12-31
Effective heat exchange is very critical for improving the process efficiency and operating economy of chemical and process plants. Here, experimental friction factor and heat transfer data for single-phase water flows in a plate-and-frame heat exchanger are presented. A mixed chevron plate arrangement with {beta} = 30{degree}/60{degree} in a single-pass U-type, counterflow configuration is employed. The friction factor and heat transfer data are for isothermal flow and cooling conditions, respectively, and the flow rates correspond to transition and turbulent flow regimes (300 < Re < 6,000 and 2.4 < Pr < 4.5). Based on these data, Nusselt number and frictionmore » factor correlations for fully developed turbulent flows (Re {ge} 1,000) are presented. The results highlight the effects of {beta} on the thermal-hydraulic performance, transition to turbulent flows, and the relative impact of using symmetric or mixed chevron plate arrangements.« less
NASA Astrophysics Data System (ADS)
Raju, C. S. K.; Sanjeevi, P.; Raju, M. C.; Ibrahim, S. M.; Lorenzini, G.; Lorenzini, E.
2017-11-01
A theoretical analysis is performed for studying the flow and heat and mass transfer characteristics of Maxwell fluid over a cylinder with Cattaneo-Christov and non-uniform heat source/sink. The Brownian motion and thermophoresis parameters also considered into account. Numerical solutions are carried out by using Runge-Kutta-based shooting technique. The effects of various governing parameters on the flow and temperature profiles are demonstrated graphically. We also computed the friction factor coefficient, local Nusselt and Sherwood numbers for the permeable and impermeable flow over a cylinder cases. It is found that the rising values of Biot number, non-uniform heat source/sink and thermophoresis parameters reduce the rate of heat transfer. It is also found that the friction factor coefficient is high in impermeable flow over a cylinder case when compared with the permeable flow over a cylinder case.
Friction behavior of glass and metals in contact with glass in various environments
NASA Technical Reports Server (NTRS)
Buckley, D. H.
1973-01-01
Sliding friction experiments have been conducted for heat-resistant glass and metals in contact with glass. These experiments were conducted in various environments including vacuum, moist air, dry air, octane, and stearic acid in hexadecane. Glass exhibited a higher friction force in moist air than it did in vacuum when in sliding contact with itself. The metals, aluminum, iron, and gold, all exhibited the same friction coefficient when sliding on glass in vacuum as glass sliding on glass. Gold-to-glass contacts were extremely sensitive to the environment despite the relative chemical inertness of gold.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sai K. Mylavarapu; Xiaodong Sun; Richard E. Glosup
In high-temperature gas-cooled reactors, such as a very high temperature reactor (VHTR), an intermediate heat exchanger (IHX) is required to efficiently transfer the core thermal output to a secondary fluid for electricity generation with an indirect power cycle and/or process heat applications. Currently, there is no proven high-temperature (750–800 °C or higher) compact heat exchanger technology for high-temperature reactor design concepts. In this study, printed circuit heat exchanger (PCHE), a potential IHX concept for high-temperature applications, has been investigated for their heat transfer and pressure drop characteristics under high operating temperatures and pressures. Two PCHEs, each having 10 hot andmore » 10 cold plates with 12 channels (semicircular cross-section) in each plate are fabricated using Alloy 617 plates and tested for their performance in a high-temperature helium test facility (HTHF). The PCHE inlet temperature and pressure were varied from 85 to 390 °C/1.0–2.7 MPa for the cold side and 208–790 °C/1.0–2.7 MPa for the hot side, respectively, while the mass flow rate of helium was varied from 15 to 49 kg/h. This range of mass flow rates corresponds to PCHE channel Reynolds numbers of 950 to 4100 for the cold side and 900 to 3900 for the hot side (corresponding to the laminar and laminar-to-turbulent transition flow regimes). The obtained experimental data have been analyzed for the pressure drop and heat transfer characteristics of the heat transfer surface of the PCHEs and compared with the available models and correlations in the literature. In addition, a numerical treatment of hydrodynamically developing and hydrodynamically fully-developed laminar flow through a semicircular duct is presented. Relations developed for determining the hydrodynamic entrance length in a semicircular duct and the friction factor (or pressure drop) in the hydrodynamic entry length region for laminar flow through a semicircular duct are given. Various hydrodynamic entrance region parameters, such as incremental pressure drop number, apparent Fanning friction factor, and hydrodynamic entrance length in a semicircular duct have been numerically estimated.« less
Wear behavior of carbide tool coated with Yttria-stabilized zirconia nano particles.
NASA Astrophysics Data System (ADS)
Jadhav, Pavandatta M.; Reddy, Narala Suresh Kumar
2018-04-01
Wear mechanism takes predominant role in reducing the tool life during machining of Titanium alloy. Challenges of wear mechanisms such as variation in chip, high pressure loads and spring back are responsible for tool wear. In addition, many tool materials are inapt for machining due to low thermal conductivity and volume specific heat of these materials results in high cutting temperature during machining. To confront this issue Electrostatic Spray Coating (ESC) coating technique is utilized to enhance the tool life to an acceptable level. The Yttria Stabilized Zirconia (YSZ) acts as a thermal barrier coating having high thermal expansion coefficient and thermal shock resistance. This investigation focuses on the influence of YSZ nanocoating on the tungsten carbide tool material and improve the machinability of Ti-6Al-4V alloy. YSZ nano powder was coated on the tungsten carbide pin by using ESC technique. The coatings have been tested for wear and friction behavior by using a pin-on-disc tribological tester. The dry sliding wear test was performed on Titanium alloy (Ti-6Al-4V) disc and YSZ coated tungsten carbide (pin) at ambient atmosphere. The performance parameters like wear rate and temperature rise were considered upon performing the dry sliding test on Ti-6Al-4V alloy disc. The performance parameters were calculated by using coefficient of friction and frictional force values which were obtained from the pin on disc test. Substantial resistance to wear was achieved by the coating.
NASA Astrophysics Data System (ADS)
Venkitaraj, K. P.; Suresh, S.; Alwin Mathew, T.; Bibin, B. S.; Abraham, Jisa
2018-03-01
Nanofluids are advanced heat transfer fluids that exhibit thermal properties superior than that of the conventional fluids such as water, oil etc. This paper reports the experimental study on convective heat transfer characteristics of water based titanium dioxide nanofluids in fully developed flow through a uniformly heated pipe heat exchanger fitted with modified butterfly inserts. Nanofluids are prepared by dispersing TiO2 nanoparticles of average particle size 29 nm in deionized water. The heat transfer experiments are performed in laminar regime using nanofluids prepared with 0.1% and 0.3% volume fractions of TiO2 nanoparticles. The thermal performance characteristics of conventional butterfly inserts and modified butterfly inserts are also compared using TiO2 nanofluid. The inserts with different pitches 6 cm, 9 cm and 12 cm are tested to determine the effect of pitch distance of inserts in the heat transfer and friction. The experimental results showed that the modification made in the butterfly inserts were able to produce higher heat transfer than conventional butterfly inserts.
NASA Astrophysics Data System (ADS)
Lijesh K., P.; Kumar, Deepak; Muzakkir S., M.; Hirani, Harish
2018-05-01
A Fluid Film Bearings (FFBs) operating in hydrodynamic boundary regime can provide moderate load carrying capacity, negligible wear and friction. However in extreme operating conditions i.e. at high load and low speed, asperities of journal and bearing surfaces come in contact with each other resulting in high wear and friction. During the contact of the asperities, the temperature of the lubricant increases due to frictional heating, resulting in reduction of the viscosity of lubricant. Variation of lubricant viscosity results in low load carrying capacity of the FFB and therefore resulting in detoriation of FFB performance. In the present work it is hypothesized that, by adding multi-functional Multi Wall Carbon Nano-Tubes (MWCNT) (having high thermal conductivity and anti-friction properties) as nano-additive in the base mineral oil, the aforementioned problems can be overcome. To validate the proposed hypothesis, five different samples of lubricant is considered: Sample 1: Base oil, Sample 2: Base oil +0.05% MWCNT, Sample 3: Base oil +0.05% MWCNT +0.5%surfactant, Sample 4: Base oil +0.1% MWCNT +0.5% surfactant, and Sample 5: Base oil +0.15% MWCNT +0.5%surfactant. To evaluate the performance of the developed lubricants, experiments were performed on the reduced scale conformal block on disc test setup. The experimental condition and dimension of the block and disc were decide for the Sommerfeld number equal to 0.0025, which indicates mixed lubrication regime. The performance of lubricant is evaluated by measuring the frictional force and temperature rise of the lubricant during the experiment.
Nanoscale lubrication of ionic surfaces controlled via a strong electric field
Strelcov, Evgheni; Bocharova, Vera; Sumpter, Bobby G.; ...
2015-01-27
Frictional forces arise whenever objects around us are set in motion. Controlling them in a rational manner means gaining leverage over mechanical energy losses and wear. This paper presents a way of manipulating nanoscale friction by means of in situ lubrication and interfacial electrochemistry. Water lubricant is directionally condensed from the vapor phase at a moving metal-ionic crystal interface by a strong confined electric field, thereby allowing friction to be tuned up or down via an applied bias. The electric potential polarity and ionic solid solubility are shown to strongly influence friction between the atomic force microscope (AFM) tip andmore » salt surface. An increase in friction is associated with the AFM tip digging into the surface, whereas reducing friction does not influence its topography. No current flows during friction variation, which excludes Joule heating and associated electrical energy losses. Lastly, the demonstrated novel effect can be of significant technological importance for controlling friction in nano- and micro-electromechanical systems.« less
NASA Technical Reports Server (NTRS)
Yager, Thomas J.; Vogler, William A.; Baldasare, Paul
1990-01-01
Tests with specially instrumented NASA Boeing 737 and 727 aircraft together with several different ground friction measuring devices were conducted for a variety of runway surface types and conditions. These tests are part of joint FAA/NASA Aircraft/Ground Vehicle Runway Friction Program aimed at obtaining a better understanding of aircraft ground handling performance under adverse weather conditions and defining relationships between aircraft and ground vehicle tire friction measurements. Aircraft braking performance on dry, wet, snow and ice-covered runway conditions is discussed as well as ground vehicle friction data obtained under similar runway conditions. For a given contaminated runway surface condition, the correlation between ground vehicles and aircraft friction data is identified. The influence of major test parameters on friction measurements such as speed, test tire characteristics, type and amount of surface contaminant, and ambient temperature are discussed. The effect of surface type on wet friction levels is also evaluated from comparative data collected on grooved and ungrooved concrete and asphalt surfaces.
Adsorbate hopping via vibrational-mode coupling induced by femtosecond laser pulses
NASA Astrophysics Data System (ADS)
Ueba, H.; Hayashi, M.; Paulsson, M.; Persson, B. N. J.
2008-09-01
We study the heat transfer from femtosecond laser-heated hot electrons in a metal to adsorbates in the presence of vibrational-mode coupling. The theory is successfully applied to the experimental result of atomic oxygen hopping on a vicinal Pt(111) surface. The effective friction coupling between hot electrons and the vibrational mode relevant to the hopping motion depends on the transient temperature of the partner mode excited by hot electrons. The calculated two-pulse correlation and fluence dependence of the hopping probability reproduce the experimental results, which were previously analyzed using the hot-electron temperature (Te) -dependent friction ηa(Te) in a conventional heat transfer equation. A possible elementary process behind such a hypothetic modeling using ηa(Te) is discussed in terms of an indirect heating of the vibrational mode for hopping at the surface.
NASA Astrophysics Data System (ADS)
Hayat, Tasawar; Qayyum, Sumaira; Alsaedi, Ahmed; Ahmad, Bashir
2018-03-01
Flow of second grade fluid by a rotating disk with heat and mass transfer is discussed. Additional effects of heat generation/absorption are also analyzed. Flow is also subjected to homogeneous-heterogeneous reactions. The convergence of computed solution is assured through appropriate choices of initial guesses and auxiliary parameters. Investigation is made for the effects of involved parameters on velocities (radial, axial, tangential), temperature and concentration. Skin friction and Nusselt number are also analyzed. Graphical results depict that an increase in viscoelastic parameter enhances the axial, radial and tangential velocities. Opposite behavior of temperature is observed for larger values of viscoelastic and heat generation/absorption parameters. Concentration profile is increasing function of Schmidt number, viscoelastic parameter and heterogeneous reaction parameter. Magnitude of skin friction and Nusselt number are enhanced for larger viscoelastic parameter.
Transient Characteristics of Free Piston Vuilleurnier Cycle Heat Pumps
NASA Astrophysics Data System (ADS)
Matsue, Junji; Fujimoto, Norioki; Shirai, Hiroyuki
A dynamic analysis of a free piston Vuilleumier cycle heat pump was performed using a time-stepping integration method to investigate transient characteristics under power controlling. The nonlinear relationship between displacement and force for pistons was taken into account for the motion of reciprocating components. The force for pistons is mainly caused by the pressure change of working gas varying with piston displacements; moreover nonlinear viscous dissipative force due to the oscillating flow of working gas in heat exchangers and discontinuous damping force caused by solid friction at piston seals and rod seals are included. The displacements of pistons and pressure changes in the Vuilleumier cycle heat pump were integrated by an ideal isothermal thermodynamic relationship. It was assumed that the flow friction was proportional to the kinematic pressure of working gas, and that the solid friction at the seals was due to the functions of the working gas pressure and the tension of seal springs. In order to investigate the transient characteristics of a proposed free piston Vuilleumier cycle heat pump machine when hot-side working gas temperatures and alternate force were changed, some calculations were performed and discussed. These calculation results make clear transient characteristics at starting and power controlling. It was further found that only a small amount of starter power is required in particular conditions. During controlling, the machine becomes unstable when there is ar elatively large reduction in cooling or heating power. Therefore, an auxiliary device is additionally needed to obtain stable operation, such as al inear motor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keyes, B.L.P.
1992-06-01
The piston ring-cylinder liner area of the internal combustion engine must withstand very-high-temperature gradients, highly-corrosive environments, and constant friction. Improving the efficiency in the engine requires ring and cylinder liner materials that can survive this abusive environment and lubricants that resist decomposition at elevated temperatures. Wear and friction tests have been done on many material combinations in environments similar to actual use to find the right materials for the situation. This report covers tribology information produced from 1986 through July 1991 by Battelle columbus Laboratories, Caterpillar Inc., and Cummins Engine Company, Inc. for the Ceramic Technology Project (CTP). All datamore » in this report were taken from the project's semiannual and bimonthly progress reports and cover base materials, coatings, and lubricants. The data, including test rig descriptions and material characterizations, are stored in the CTP database and are available to all project participants on request. Objective of this report is to make available the test results from these studies, but not to draw conclusions from these data.« less
Influence of perforated triple wing vortex generator on a turbulent flow through a circular tube
NASA Astrophysics Data System (ADS)
Gautam, Abhishek; Pandey, Lokesh; Singh, Satyendra
2018-02-01
Numerous studies has been observed in terms of enhancement of heat transfer by using passive techniques. In present work, a very unique perforated triple wing vortex generator has been used as an insert geometry, with different geometrical parameters of twist ratio (l/D = 2, 3 & 4) and Porosity (P A /T A = 0%, 10%, 20% & 30%). The experimentation has been performed for the wide range of Re (Re), varying between 3200 to 20,600, in order to investigate effect on heat transfer (Nu), friction factor (f) & thermal performance factor (η) in circular tube HEs with respect to different geometrical and flow parameters. Experimentation has been performed in 1.5 m length of test section with 68 mm diameter. Heat flux of 1000 W/m2 has been provided on the test section with the help of variable voltage transformer connected with Nicrome wire coiled heater located on the test section. There is a significant enhancement has been observed in terms of heat enhancement and pressure drop over the smooth tube. The experimental result shows 4.8 times improvement in heat transfer and 1.63 times improvement in thermal performance as compared to smooth tube HE. The statistical correlations have also been presented for Nu, f and η.
NASA Astrophysics Data System (ADS)
Zhang, Z.; Wan, Z. Y.; Lindgren, L.-E.; Tan, Z. J.; Zhou, X.
2017-12-01
A finite element model of friction stir welding capable of re-meshing is used to simulate the temperature variations. Re-meshing of the finite element model is used to maintain a fine mesh resolving the gradients of the solution. The Kampmann-Wagner numerical model for precipitation is then used to study the relation between friction stir welds with post-weld heat treatment (PWHT) and the changes in mechanical properties. Results indicate that the PWHT holding time and PWHT holding temperature need to be optimally designed to obtain FSW with better mechanical properties. Higher precipitate number with lower precipitate sizes gives higher strength in the stirring zone after PWHT. The coarsening of precipitates in HAZ are the main reason to hinder the improvement of mechanical property when PWHT is used.
NASA Astrophysics Data System (ADS)
Hashimoto, Y.; Morita, K.; Okubo, M.; Hamada, Y.; Lin, W.; Hirose, T.; Kitamura, M.
2015-12-01
Fault motion has been estimated by diffusion pattern of frictional heating recorded in geology (e.g., Fulton et al., 2012). The same record in deeper subduction plate interface can be observed from micro-faults in an exhumed accretionary complex. In this study, we focused on a micro-fault within the Cretaceous Shimanto Belt, SW Japan to estimate fault motion from the frictional heating diffusion pattern. A carbonaceous material concentrated layer (CMCL) with ~2m of thickness is observed in study area. Some micro-faults cut the CMCL. Thickness of a fault is about 3.7mm. Injection veins and dilatant fractures were observed in thin sections, suggesting that the high fluid pressure was existed. Samples with 10cm long were collected to measure distribution of vitrinite reflectance (Ro) as a function of distance from the center of micro-fault. Ro of host rock was ~1.0%. Diffusion pattern was detected decreasing in Ro from ~1.2%-~1.1%. Characteristic diffusion distance is ~4-~9cm. We conducted grid search to find the optimal frictional heat generation per unit area (Q, the product of friction coefficient, normal stress and slip velocity) and slip duration (t) to fit the diffusion pattern. Thermal diffusivity (0.98*10-8m2/s) and thermal conductivity (2.0 W/mK) were measured. In the result, 2000-2500J/m2 of Q and 63000-126000s of t were estimated. Moment magnitudes (M0) of slow earthquakes (slow EQs) follow a scaling law with slip duration and its dimension is different from that for normal earthquakes (normal EQ) (Ide et al., 2007). The slip duration estimated in this study (~104-~105s) consistent with 4-5 of M0, never fit to the scaling law for normal EQ. Heat generation can be inverted from 4-5 of M0, corresponding with ~108-~1011J, which is consistent with rupture area of 105-108m2 in this study. The comparisons in heat generation and slip duration between geological measurements and geophysical remote observations give us the estimation of rupture area, M0, and earthquake style, for non-active geological records.
NASA Astrophysics Data System (ADS)
Hiscocks, Jessica
The magnesium-based aluminum-zinc alloys have excellent stiffness to weight ratios, and may be combined by friction stir welding to expand the possible applications. The high aluminum alloy AZ80 in particular has the advantage of being relatively stiff but still extrudable. However limited friction stir welding research is available for this alloy and extrapolation from the extensive work in aluminum alloys is impractical due differences in precipitation behaviour, and magnesium's high plastic anisotropy and tendency to form strong textures during friction stir welding. This work investigates the correlations between local friction stir welded microstructures, textures, residual strains, and the local deformation behaviour based on strain mapping during tensile tests. Covering bead-on-plate and butt configurations, joining of similar and dissimilar materials, and a range of processing conditions, many findings of interest for deformation modelling and industrial applications are presented. Synchrotron x-ray diffraction study of an entire friction stir weld was used to determine texture, residual strain and dislocation density data from a single experiment. A number of unique findings were made, mainly related to the asymmetric distribution of properties both between sides of the weld and through the depth. Particularly in the case of strain measurements, features not detectable at coarser measurement spacing or by line scan are presented and compared for multiple processing conditions. Investigation of the longitudinal material flow during welding showed that even when periodicity in grain size, precipitate distribution, or texture was not observed, periodic changes in texture intensity resulting from compaction of material behind the tool were present, providing evidence that movement of nugget material remained periodic. Strain localisation and fracture behaviour were found to be completely different between good quality similar and dissimilar friction stir welds. For similar magnesium friction stir welds, higher heat input was shown to improve mechanical performance by reducing the residual strain, while for dissimilar friction stir welds, deformation behaviour was found to be more sensitive to the final material distribution in the friction stir weld nugget. For dissimilar welds, even minor changes to the material flow were shown to have a major impact on the tensile performance.
Investigation of Mechanical Properties and Interfacial Mechanics of Crystalline Nanomaterials
NASA Astrophysics Data System (ADS)
Qin, Qingquan
Nanowires (NWs) and nanotubes (NTs) are critical building blocks of nanotechnologies. The operation and reliability of these nanomaterials based devices depend on their mechanical properties of the nanomaterials, which is therefore important to accurately measure the mechanical properties. Besides, the NW--substrate interfaces also play a critical role in both mechanical reliability and electrical performance of these nanodevices, especially when the size of the NW is small. In this thesis, we focus on the mechanical properties and interface mechanics of three important one dimensional (1D) nanomaterials: ZnO NWs, Ag NWs and Si NWs. For the size effect study, this thesis presents a systematic experimental investigation on the elastic and failure properties of ZnO NWs under different loading modes: tension and buckling. Both tensile modulus (from tension) and bending modulus (from buckling) were found to increase as the NW diameter decreased from 80 to 20 nm. The elastic modulus also shows loading mode dependent; the bending modulus increases more rapidly than the tensile modulus. The tension experiments showed that fracture strain and strength of ZnO NWs increase as the NW diameter decrease. A resonance testing setup was developed to measure elastic modulus of ZnO NWs to confirm the loading mode dependent effect. A systematic study was conducted on the effect of clamping on resonance frequency and thus measured Young's modulus of NWs via a combined experiment and simulation approach. A simple scaling law was provided as guidelines for future designs to accurate measure elastic modulus of a cantilevered NW using the resonance method. This thesis reports the first quantitative measurement of a full spectrum of mechanical properties of five-fold twinned Ag NWs including Young's modulus, yield strength and ultimate tensile strength. In situ tensile testing of Ag NWs with diameters between 34 and 130 nm was carried out inside a SEM. Young's modulus, yield strength and ultimate tensile strength were found to all increased as the NW diameter decreased. For the temperature effect study, a brief review on brittle-to-ductile transition (BDT) of silicon (Si) is presented. BDT temperature shows decreasing trend as size of the sample decrease. However, controversial results have been reported in terms of brittle or ductile behaviors for Si NWs at room temperature. A microelectromechanical systems (MEMS) thermal actuator (ETA) was designed to test NW without involving external heating. To circumvent undesired heating of the end effector, heat sink beams that can be co-fabricated with the thermal actuator were introduced. A combined modeling and experimental study was conducted to access the effect of such heat sink beams. Temperature distribution was measured and simulated using Raman scattering and multiphysics finite element method, respectively. Our results demonstrated that heat sink beams are effective in reducing the temperature of the thermal actuator. To get elevated temperature in a controllable fashion, a comb drive actuator was designed with separating actuation and heating mechanisms. Multiphysics finite element analysis (coupled electrical-thermal-mechanical) was used to optimize structure design and minimize undesired thermal loading/unloading. A Si NW with diameter of 50 nm was tested on the device under different temperatures. Stress strain curves at different temperatures revealed that plastic deformation occurs at temperature of 55 °C. For interfacial mechanics, we report an experimental study on the friction between Ag and ZnO NW tips (ends) and a gold substrate. An innovative experimental method based on column buckling theory was developed for the friction measurements. Direct measurements of the static friction force and interfacial shear strength between Si NWs and poly(dimethylsiloxane) (PDMS) is reported. The static friction and shear strength were found to increase rapidly and then decrease with the increasing ultraviolet/ozone (UVO) treatment of PDMS.
Frictional processes of bimaterial interfaces at seismic slip rates.
NASA Astrophysics Data System (ADS)
Passelegue, F. X.; Fabbri, O.; Leclère, H.; Spagnuolo, E.; Di Toro, G.
2017-12-01
Large subduction earthquakes ruptures propagate from crustal rock toward the sea floor along frictional interfaces of different lythologies. Up to now, frictional processes of rocks were mainly investigated along single material experimental faults. Here, we present the results of high velocity friction experiments coupled with high frequency acoustic monitoring system on biomaterial interfaces including gabbro, pyroxenite and serpentinized peridotite (>95%), following a recent field investigation highlighting bimaterial contacts in the Corsica ophiolitic nappe. We first studied the frictional processes of single materials which result in a mechanical behaviour comparable to previous studies. Both gabbro and pyroxenite exhibit two weakening stages. The first one corresponds to flash heating and the second stage occurs concomitantly with complete melting of the interface. In the case of serpentinite, only one weakening stage is observed, after a weakening slip distance of only few centimeters. We then conducted bimaterial experiments. The two couples tested were gabbro/pyroxenite and gabbro/serpentinite, as observed along natural fault zones (Corsica, France). In the case of gabbro/serpentinite, we observe that frictional processes are controlled by serpentinite. Mechanical curves replicate the behaviour of single serpentinite friction experiments. We observe that few melting occurs, and that the product of experiments consists in fine grained cataclasite, as observed in the field. The case of gabbro/pyroxenite is more complicated. The first weakening is controlled by the lithology of the sample installed on the static part of the rotary apparatus. However, the second weakening is controlled by the gabbro and mechanical curves are identical than those obtained in the case of single gabbro experiments. Supported by microstructural analysis and acoustic activity, our results suggest that frictional processes of bimaterial interfaces are controlled by the material presenting the lower weakening temperature. Finally, we show that bimaterial interfaces are expected to affect locally the rate of the stress transfer during large earthquakes, and induce accelerations or decelerations of the rupture front, explaining local emissions of high frequencies recorded during large ruptures.
Flow and Heat Transfer in a Newtonian Nanoliquid due to a Curved Stretching Sheet
NASA Astrophysics Data System (ADS)
Siddheshwar, Pradeep Ganapathi; Nerolu, Meenakshi; Pažanin, Igor
2017-08-01
Flow of a Newtonian nanoliquid due to a curved stretching sheet and heat transfer in it is studied. The governing nonlinear partial differential equations are reduced to nonlinear ordinary differential equations with variable coefficients by using a similarity transformation. The flow characteristics are studied using plots of flow velocity components and the skin-friction coefficient as a function of suction-injection parameter, curvature, and volume fraction. Prescribed surface temperature and prescribed surface heat flux are considered for studying the temperature distribution in the flow. The thermophysical properties of 20 nanoliquids are considered in the investigation by modeling them through the use of phenomenological laws and mixture theory. The results of the corresponding problem involving a plane stretching sheet is obtained as a particular case of those obtained in the present paper. Skin friction coefficient and Nusselt number are evaluated and it is observed that skin friction coefficient decreases with concentration of nanoparticles in the absence as well as presence of suction where as Nusselt number increases with increase in concentration of nanoparticles in a dilute range.
Heat transfer to the transpired turbulent boundary layer.
NASA Technical Reports Server (NTRS)
Kays, W. M.
1972-01-01
This paper contains a summarization of five years work on an investigation on heat transfer to the transpired turbulent boundary layer. Experimental results are presented for friction coefficient and Stanton number over a wide range of blowing and suction for the case of constant free-stream velocity, holding certain blowing parameters constant. The problem of the accelerated turbulent boundary layer with transpiration is considered, experimental data are presented and discussed, and theoretical models for solution of the momentum equation under these conditions are presented. Data on turbulent Prandtl number are presented so that solutions to the energy equation may be obtained. Some examples of boundary layer heat transfer and friction coefficient predictions are presented using one of the models discussed, employing a finite difference solution method.
Axisymmetric flow of Casson fluid by a swirling cylinder
NASA Astrophysics Data System (ADS)
Javed, Muhammad Faisal; Khan, Muhammad Imran; Khan, Niaz Bahadur; Muhammad, Riaz; Rehman, Muftooh Ur; Khan, Sajjad Wali; Khan, Tufail A.
2018-06-01
The present communication aims to investigate the influence of heat generation/absorption on axisymmetric Casson liquid flow over a stretched cylinder. Flow is caused due to torsional motion of cylinder. The governing physical problem is modelled and transferred into set of coupled nonlinear ordinary differential equations. These equations are solved numerically using built-in-Shooting method. Influence of sundry variables on the swirling velocity, temperature, coefficient of skin friction and heat transfer rate are computed and analyzed in a physical manner. Magnitude of axial skin friction is enhances for larger Reynold number and magnetic parameter while local Nusselt number decays with the enhancement of Casson parameter, heat generation/absorption and magnetic parameter. Comparison with already existing results is also given in the limiting case.
SRM propellant, friction/ESD testing
NASA Technical Reports Server (NTRS)
Campbell, L. A.
1989-01-01
Following the Pershing 2 incident in 1985 and the Peacekeeper ignition during core removal in 1987, it was found that propellant can be much more sensitive to Electrostatic Discharges (ESD) than ever before realized. As a result of the Peacekeeper motor near miss incident, a friction machine was designed and fabricated, and used to determine friction hazards during core removal. Friction testing with and electrical charge being applied across the friction plates resulted in propellant ignitions at low friction pressures and extremely low ESD levels. The objective of this test series was to determine the sensitivity of solid rocket propellant to combined friction pressure and electrostatic stimuli and to compare the sensitivity of the SRM propellant to Peacekeeper propellant. The tests are fully discussed, summarized and conclusions drawn.
NASA Astrophysics Data System (ADS)
Berezhkovskii, Alexander M.; Frishman, Anatoli M.; Pollak, Eli
1994-09-01
Variational transition state theory (VTST) is applied to the study of the activated escape of a particle trapped in a multidimensional potential well and coupled to a heat bath. Special attention is given to the dependence of the rate constant on the friction coefficients in the case of anisotropic friction. It is demonstrated explicitly that both the traditional as well as the nontraditional scenarios for the particle escape are recovered uniformly within the framework of VTST. Effects such as saddle point avoidance and friction dependence of the activation energy are derived from VTST using optimized planar dividing surfaces.
Friction Force: From Mechanics to Thermodynamics
ERIC Educational Resources Information Center
Ferrari, Christian; Gruber, Christian
2010-01-01
We study some mechanical problems in which a friction force is acting on a system. Using the fundamental concepts of state, time evolution and energy conservation, we explain how to extend Newtonian mechanics to thermodynamics. We arrive at the two laws of thermodynamics and then apply them to investigate the time evolution and heat transfer of…
Entropy generation of nanofluid flow in a microchannel heat sink
NASA Astrophysics Data System (ADS)
Manay, Eyuphan; Akyürek, Eda Feyza; Sahin, Bayram
2018-06-01
Present study aims to investigate the effects of the presence of nano sized TiO2 particles in the base fluid on entropy generation rate in a microchannel heat sink. Pure water was chosen as base fluid, and TiO2 particles were suspended into the pure water in five different particle volume fractions of 0.25%, 0.5%, 1.0%, 1.5% and 2.0%. Under laminar, steady state flow and constant heat flux boundary conditions, thermal, frictional, total entropy generation rates and entropy generation number ratios of nanofluids were experimentally analyzed in microchannel flow for different channel heights of 200 μm, 300 μm, 400 μm and 500 μm. It was observed that frictional and total entropy generation rates increased as thermal entropy generation rate were decreasing with an increase in particle volume fraction. In microchannel flows, thermal entropy generation could be neglected due to its too low rate smaller than 1.10e-07 in total entropy generation. Higher channel heights caused higher thermal entropy generation rates, and increasing channel height yielded an increase from 30% to 52% in thermal entropy generation. When channel height decreased, an increase of 66%-98% in frictional entropy generation was obtained. Adding TiO2 nanoparticles into the base fluid caused thermal entropy generation to decrease about 1.8%-32.4%, frictional entropy generation to increase about 3.3%-21.6%.
On Optimizing an Archibald Rubber-Band Heat Engine.
ERIC Educational Resources Information Center
Mullen, J. G.; And Others
1978-01-01
Discusses the criteria and procedure for optimizing the performance of Archibald rubber-band heat engines by using the appropriate choice of dimensions, minimizing frictional torque, maximizing torque and balancing the rubber band system. (GA)
NASA Astrophysics Data System (ADS)
Langeroudi, H. G.; Javaherdeh, K.
2018-07-01
In present paper the effects of using typical twisted tape (TT) and V-cut twisted tape (VTT) on Nusselt number (Nu), friction factor (f) and thermal performance factor (η) inside corrugated tube in the turbulent flow are experimentally investigated despite the fact that the wall is under uniform heat flux. The experiments are conducted by twisted tapes with different twist ratio (y = 4.5, 6.07), depth and width ratios ranging (0.285-0.5) and Reynolds number varied from 5300 to 25,700 and water was as a working fluid. The obtained results show that the Nusselt number for corrugated tube that equipped with twisted tapes increases with increasing Reynolds number and is remarkable at high Reynolds Number while the friction factor is low. Moreover, the thermal performance factor for fluid increases with increasing Reynolds number and also the thermal performance factor for all states of VTT are higher than of TT. The new empirical correlations for Nusselt number, friction factor and thermal performance factor are predicted and compared with experimental data.
NASA Technical Reports Server (NTRS)
Frankl, F.; Voishel, V.
1943-01-01
In the present report an investigation is made on a flat plate in a two-dimensional compressible flow of the effect of compressibility and heating on the turbulent frictional drag coefficient in the boundary layer of an airfoil or wing radiator. The analysis is based on the Prandtl-Karman theory of the turbulent boundary later and the Stodola-Crocco, theorem on the linear relation between the total energy of the flow and its velocity. Formulas are obtained for the velocity distribution and the frictional drag law in a turbulent boundary later with the compressibility effect and heat transfer taken into account. It is found that with increase of compressibility and temperature at full retardation of the flow (the temperature when the velocity of the flow at a given point is reduced to zero in case of an adiabatic process in the gas) at a constant R (sub x), the frictional drag coefficient C (sub f) decreased, both of these factors acting in the same sense.
NASA Astrophysics Data System (ADS)
Tikader, Sujoy; Biswas, Pankaj; Puri, Asit Baran
2018-04-01
Friction stir welding (FSW) has been the most attracting solid state welding process as it serves numerous advantages like good mechanical, metallurgical properties etc. Non weldable aluminium alloys like 5XXX, 7XXX series can be simply joined by this process. In this present study a mathematical model has been developed and experiments were successfully performed to evaluate mechanical properties of FSW on similar aluminium alloys i.e. AA1100 for different process parameters and mainly two kind of tool geometry (straight cylindrical and conical or cylindrical tapered shaped pin with flat shoulder). Tensile strength and micro hardness for different process parameters are reported of the welded plate sample. It was noticed that in FSW of similar alloy with tool made of SS-310 tool steel, friction is the major contributor for the heat generation. It was seen that tool geometry, tool rotational speed, plunging force by the tool and traverse speed have significant effect on tensile strength and hardness of friction stir welded joints.
NASA Astrophysics Data System (ADS)
Lin, Jianzhong; Xia, Yi; Ku, Xiaoke
2014-10-01
Numerical simulations of polyalphaolefins-Al2O3 nanofluids containing cylindrical nanoparticles in a laminar pipe flow are performed by solving the Navier-Stokes equation with term of cylindrical nanoparticles, the general dynamic equation for cylindrical nanoparticles, and equation for nanoparticle orientation. The distributions of particle number and volume concentration, the friction factor, and heat transfer are obtained and analyzed. The results show that distributions of nanoparticle number and volume concentration are non-uniform across the section, with larger and smaller values in the region near the pipe center and near the wall, respectively. The non-uniformity becomes significant with the increase in the axial distance from the inlet. The friction factor decreases with increasing Reynolds number. The relationships between the friction factor and the nanoparticle volume concentration as well as particle aspect ratio are dependent on the Reynolds number. The Nusselt number of nanofluids, directly proportional to the Reynolds number, particle volume concentration, and particle aspect ratio, is higher near the pipe entrance than at the downstream locations. The rate of increase in Nusselt number at lower particle volume concentration is more than that at higher concentration. Finally, the expressions of friction factor and Nusselt number as a function of particle volume concentration, particle aspect ratio, and Reynolds number are derived based on the numerical data.
Friction spinning - Twist phenomena and the capability of influencing them
NASA Astrophysics Data System (ADS)
Lossen, Benjamin; Homberg, Werner
2016-10-01
The friction spinning process can be allocated to the incremental forming techniques. The process consists of process elements from both metal spinning and friction welding. The selective combination of process elements from these two processes results in the integration of friction sub-processes in a spinning process. This implies self-induced heat generation with the possibility of manufacturing functionally graded parts from tube and sheets. Compared with conventional spinning processes, this in-process heat treatment permits the extension of existing forming limits and also the production of more complex geometries. Furthermore, the defined adjustment of part properties like strength, grain size/orientation and surface conditions can be achieved through the appropriate process parameter settings and consequently by setting a specific temperature profile in combination with the degree of deformation. The results presented from tube forming start with an investigation into the resulting twist phenomena in flange processing. In this way, the influence of the main parameters, such as rotation speed, feed rate, forming paths and tool friction surface, and their effects on temperature, forces and finally the twist behavior are analyzed. Following this, the significant correlations with the parameters and a new process strategy are set out in order to visualize the possibility of achieving a defined grain texture orientation.
A Crack Closure Model and Its Application to Vibrothermography Nondestructive Evaluation
NASA Astrophysics Data System (ADS)
Schiefelbein, Bryan Edward
Vibrothermography nondestructive evaluation (NDE) is in the early stages of research and development, and there exists uncertainty in the fundamental mechanisms and processes by which heat generation occurs. Holland et al. have developed a set of tools which simulate and predict the outcome of a vibrothermography inspection by breaking the inspection into three distinct processes: vibrational excitation, heat generation, and thermal imaging. The stage of vibrothermography which is not well understood is the process by which vibrations are converted to heat at the crack surface. It has been shown that crack closure and closure state impact the resulting heat generation. Despite this, research into the link between partial crack closure and vibrothermography is limited. This work seeks to rectify this gap in knowledge by modeling the behavior of a partially closed crack in response to static external loading and a dynamic vibration. The residual strains left by the plastic wake during fatigue crack growth manifest themselves as contact stresses acting at the crack surface interface. In response to an applied load below the crack opening stress, the crack closure state will evolve, but the crack will remain partially closed. The crack closure model developed in this work is based in linear elastic fracture mechanics (LEFM) and describes the behavior of a partially closed crack in response to a tensile external load and non-uniform closure stress distribution. The model builds on work by Fleck to describe the effective length, crack opening displacement, and crack tip stress field for a partially closed crack. These quantities are solved for by first establishing an equilibrium condition which governs the effective or apparent length of the partially closed crack. The equilibrium condition states that, under any external or crack surface loading, the effective crack tip will be located where the effective stress intensity factor is zero. In LEFM, this is equivalent to saying that the effective crack tip is located where the stress singularity vanishes. If the closure stresses are unknown, the model provides an algorithm with which to solve for the distribution, given measurements of the effective crack length as a function of external load. Within literature, a number of heating mechanisms have been proposed as being dominant in vibrothermography. These include strain hysteresis, adhesion hysteresis, plastic flow, thermoelasticity, and sliding friction. Based on experimental observation and theory, this work eliminates strain hysteresis, thermoelasticity, and plastic flow as plausible heating mechanisms. This leaves friction and adhesion hysteresis as the only plausible mechanisms. Frictional heating is based on the classical Coulomb friction model, while adhesion hysteresis heating comes from irreversibility in surface adhesion. Adhesion hysteresis only satisfies the experimental observation that heating vanishes for high compressive loading if surface roughness and the instability of surface adhesion is considered. By understanding the fundamental behavior of a partially closed crack in response to non-uniform loading, and the link between crack surface motion and heat generation, we are one step closer to a fully predictive vibrothermography heat generation model. Future work is needed to extend the crack closure model to a two-dimensional semi-elliptical surface crack and better understand the distinction between frictional and adhesion heating.
NASA Technical Reports Server (NTRS)
Miyoshi, K.; Buckley, D. H.
1982-01-01
X-ray photoelectron spectroscopy analysis, transmission electron microscopy, diffraction studies, and sliding friction experiments were conducted with ferrous-base metallic glasses in sliding contact with aluminum oxide at temperatures from room to 750 C in a vacuum of 30 nPa. The results indicate that there is a significant temperature influence on the friction properties, surface chemistry, and microstructure of metallic glasses. The relative concentrations of the various constituents at the surface of the sputtered specimens were very different from the normal bulk compositions. Contaminants can come from the bulk of the material to the surface upon heating and impart boric oxide and silicon oxide at 350 C and boron nitride above 500 C. The coefficient of friction increased with increasing temperature to 350 C. Above 500 C the coefficient of friction decreased rapidly. The segregation of contaminants may be responsible for the friction behavior.
Fault Lubrication and Earthquake Propagation in Thermally Unstable Rocks
NASA Astrophysics Data System (ADS)
de Paola, Nicola; Hirose, Takehiro; Mitchell, Tom; di Toro, Giulio; Viti, Cecilia; Shimamoto, Toshiko
2010-05-01
During earthquake propagation in thermally unstable rocks, the frictional heat generated can induce thermal reactions which lead to chemical and physical changes in the slip zone. We performed laboratory friction experiments on thermally unstable minerals (gypsum, dolomite and calcite) at about 1 m/s slip velocities, more than 1 m displacements and calculated temperature rise above 500 C degrees. These conditions are typical during the propagation of large earthquakes. The main findings of our experimental work are: 1) Dramatic fault weakening is characterized by a dynamic frictional strength drop up to 90% of the initial static value in the Byerlee's range. 2) Seismic source parameters, calculated from our experimental results, match those obtained by modelling of seismological data from the 1997 Cofliorito earthquake nucleated in carbonate rocks in Italy (i.e. same rocks used in the friction experiments). Fault lubrication observed during the experiments is controlled by the superposition of multiple, thermally-activated, slip weakening mechanisms (e.g., flash heating, thermal pressurization and nanoparticle lubrication). The integration of mechanical and CO2 emission data, temperature rise calculations and XRPD analyses suggests that flash heating is not the main dynamic slip weakening process. This process was likely inhibited very soon (t < 1s) for displacements d < 0.20 m, when intense grain size reduction by both cataclastic and chemical/thermal processes took place. Conversely, most of the dynamic weakening observed was controlled by thermal pressurization and nanoparticle lubrication processes. The dynamic shear strength of experimental faults was reduced when fluids (CO2, H2O) were trapped and pressurized within the slip zone, in accord with the effective normal stress principle. The fluids were not initially present in the slip zone, but were released by decarbonation (dolomite and Mg-rich calcite) and dehydration (gypsum) reactions, both activated by frictional heating during seismic slip. The dynamic weakening effects of nanoparticles (e.g. powder lubrication) are still unclear due to the poorly understood mechanical properties of nanoparticles at high velocities and temperatures, typical of seismic slip. The experimental results improve our understanding of the controls exerted on the dynamic frictional strength of faults by the coseismic operation of chemical (mineral decomposition) and physical (grain size reduction, fluids release and pressurization) processes. The estimation of this parameter is out of the range of seismological studies, although it controls the magnitude of the stress drop, the seismic fault heat flow and the relative partitioning of the earthquake energy budget, which are all controversial and still debated issues in the scientific community.
Fault Lubrication and Earthquake Propagation in Thermally Unstable Rocks
NASA Astrophysics Data System (ADS)
de Paola, N.; Hirose, T.; Mitchell, T. M.; di Toro, G.; Viti, C.; Shimamoto, T.
2009-12-01
During earthquake propagation in thermally unstable rocks, the frictional heat generated can induce thermal reactions which lead to chemical and physical changes in the slip zone. We performed laboratory friction experiments on thermally unstable minerals (gypsum, dolomite and calcite) at about 1 m/s slip velocities, more than 1 m displacements and calculated temperature rise above 500 C degrees. These conditions are typical during the propagation of large earthquakes. The main findings of our experimental work are: 1) Dramatic fault weakening is characterized by a dynamic frictional strength drop up to 90% of the initial static value in the Byerlee’s range. 2) Seismic source parameters, calculated from our experimental results, match those obtained by modelling of seismological data from the 1997 Cofliorito earthquake nucleated in carbonate rocks in Italy (i.e. same rocks used in the friction experiments). Fault lubrication observed during the experiments is controlled by the superposition of multiple, thermally-activated, slip weakening mechanisms (e.g., flash heating, thermal pressurization and nanoparticle lubrication). The integration of mechanical and CO2 emission data, temperature rise calculations and XRPD analyses suggests that flash heating is not the main dynamic slip weakening process. This process was likely inhibited very soon (t < 1s) for displacements d < 0.20 m, when intense grain size reduction by both cataclastic and chemical/thermal processes took place. Conversely, most of the dynamic weakening observed was controlled by thermal pressurization and nanoparticle lubrication processes. The dynamic shear strength of experimental faults was reduced when fluids (CO2, H2O) were trapped and pressurized within the slip zone, in accord with the effective normal stress principle. The fluids were not initially present in the slip zone, but were released by decarbonation (dolomite and Mg-rich calcite) and dehydration (gypsum) reactions, both activated by frictional heating during seismic slip. The dynamic weakening effects of nanoparticles (e.g. powder lubrication) are still unclear due to the poorly understood mechanical properties of nanoparticles at high velocities and temperatures, typical of seismic slip. The experimental results improve our understanding of the controls exerted on the dynamic frictional strength of faults by the coseismic operation of chemical (mineral decomposition) and physical (grain size reduction, fluids release and pressurization) processes. The estimation of this parameter is out of the range of seismological studies, although it controls the magnitude of the stress drop, the seismic fault heat flow and the relative partitioning of the earthquake energy budget, which are all controversial and still debated issues in the scientific community.
NASA Technical Reports Server (NTRS)
Yager, Thomas J.; Vogler, William A.; Baldasare, Paul
1988-01-01
Aircraft and ground vehicle friction data collected during the Joint FAA/NASA Runway Friction Program under winter runway conditions are discussed and test results are summarized. The relationship between the different ground vehicle friction measurements obtained on compacted snow- and ice-covered conditions is defined together with the correlation to aircraft tire friction performance under similar runway conditions.
Friction in Forming of UD Composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sachs, U.; Haanappel, S. P.; Akkerman, R.
2011-05-04
Inter-ply and tool/ply friction play a dominant role in hot stamp forming of UD fiber-reinforced thermoplastic laminates. This research treats friction measurements of a PEEK-AS4 composite system. To this end, an in-house developed friction tester is utilized to pull a laminate through two heat controlled clamping platens. The friction coefficient is determined by relating the clamp force to the pull force. The geometry of the gap between the clamping platens is monitored with micrometer accuracy. A first approach to describe the relation between the geometry and frictional behavior is undertaken by applying a standard thin-film theory for hydrodynamic lubrication. Experimentalmore » measurements showed that the thin-film theory does not entirely cover the underlying physics. Thus a second model is utilized, which employs a Leonov-model to describe the shear deformation of the matrix material, while its viscosity is described with a multi-mode Maxwell model. The combination of both models shows the potential to capture the complete frictional behavior.« less
NASA Astrophysics Data System (ADS)
Ahmed, Hossain
The joining of thermoplastics through welding, a specific form of fusion bonding, offers numerous advantages over mechanical joining. It eliminates the use of costly fasteners and has only a limited effect on the strength of the parts being joined since it does not require the introduction of holes and loading pins, and it does not create significant stress concentrations. A specific form of welding, Friction Stir Welding, was investigated for the creation of butt joints of unreinforced polyphenylene sulfide (PPS) and short carbon fiber reinforced polyetheretherketone (PEEK) plates. Friction stir welding requires a rotating pin, a shoulder arrangement, relative movement between the tool and the weld piece and a clamping mechanism to hold the weld piece in place. Analytical models and experimental results show that the heat generated by the FSW tool is insufficient to produce the heat required to weld thermoplastic materials which makes FSW of polymers different from FSW of metals. A second heat source is required for preheating the thermoplastic parts prior to welding. A resistance type surface heater was placed at the bottom of two identical weld pieces for the experiments. Two types of shoulder design i.e. a rotating shoulder and a stationary shoulder were developed. Taguchi's Design of Experiment method was utilized to investigate the welding process, where duration of heating, process temperature, tool rotational speed and tool traverse speed were used as the welding parameters. The quality of the welding process was assumed to be indicated by the weld strength. DoE revealed that one of the process parameters, tool traverse speed, had significant influence on the tensile strength of PPS samples. While PPS sample showed relatively lower tensile strength with higher traverse speed, short carbon fiber reinforced PEEK samples had higher tensile strength with higher traverse speeds. In addition to tensile tests on dog bone shaped specimen, fracture toughness tests were performed for both PPS and PEEK samples to identify the fracture toughness of these materials. Presence of un-welded section in the welded specimen due to the setup of the experiments yielded notched tensile strengths during the tensile test process. With the help of fracture toughness values of these materials, notched tensile strengths of the welded samples were compared with the notched tensile strengths or residual tensile strengths of the base materials. In this study, residual joint efficiency of PEEK samples was found higher than that of PPS samples. Additionally, notched tensile strengths of the welded samples were compared with un-notched tensile strengths of the materials. The notched tensile strengths of PPS and PEEK were found about 80% and 75% of the respective base materials. Micrographs of PEEK samples showed the presence of more voids and cracks in the weld line compared to the un-welded samples. In this study, continuous friction stir welding process has been developed for butt joining of unreinforced PPS and short carbon fiber reinforced PEEK. The process parameters and the experimental setup can be utilized to investigate the weldability of different types of thermoplastic composites and various types of joint configurations.
NASA Technical Reports Server (NTRS)
Kussoy, M. I.; Horstman, K. C.; Kim, K.-S.
1991-01-01
Experimental data for a series of three-dimensional shock-wave/turbulent-boundary-layer interaction flows at Mach 8.2 are presented. The test bodies, composed of sharp fins fastened to a flat-plate test surface, were designed to generate flows with varying degrees of pressure gradient, boundary-layer separation, and turning angle. The data include surface-pressure, heat-transfer, and skin-friction distributions, as well as limited mean flowfield surveys both in the undisturbed and interaction regimes. The data were obtained for the purpose of validating computational models of these hypersonic interactions.
Performance of discrete heat engines and heat pumps in finite time
Feldmann; Kosloff
2000-05-01
The performance in finite time of a discrete heat engine with internal friction is analyzed. The working fluid of the engine is composed of an ensemble of noninteracting two level systems. External work is applied by changing the external field and thus the internal energy levels. The friction induces a minimal cycle time. The power output of the engine is optimized with respect to time allocation between the contact time with the hot and cold baths as well as the adiabats. The engine's performance is also optimized with respect to the external fields. By reversing the cycle of operation a heat pump is constructed. The performance of the engine as a heat pump is also optimized. By varying the time allocation between the adiabats and the contact time with the reservoir a universal behavior can be identified. The optimal performance of the engine when the cold bath is approaching absolute zero is studied. It is found that the optimal cooling rate converges linearly to zero when the temperature approaches absolute zero.
Friction Durability of Extremely Thin Diamond-Like Carbon Films at High Temperature
Miyake, Shojiro; Suzuki, Shota; Miyake, Masatoshi
2017-01-01
To clarify the friction durability, both during and after the high-temperature heating of nanometer-thick diamond-like carbon (DLC) films, deposited using filtered cathodic vacuum arc (FCVA) and plasma chemical vapor deposition (P-CVD) methods, the dependence of the friction coefficient on the load and sliding cycles of the DLC films, were evaluated. Cluster-I consisted of a low friction area in which the DLC film was effective, while cluster-II consisted of a high friction area in which the lubricating effect of the DLC film was lost. The friction durability of the films was evaluated by statistical cluster analysis. Extremely thin FCVA-DLC films exhibited an excellent wear resistance at room temperature, but their friction durability was decreased at high temperatures. In contrast, the durability of the P-CVD-DLC films was increased at high temperatures when compared with that observed at room temperature. This inverse dependence on temperature corresponded to the nano-friction results obtained by atomic force microscopy. The decrease in the friction durability of the FCVA-DLC films at high temperatures, was caused by a complex effect of temperature and friction. The tribochemical reaction produced by the P-CVD-DLC films reduced their friction coefficient, increasing their durability at high temperatures. PMID:28772520
Friction Durability of Extremely Thin Diamond-Like Carbon Films at High Temperature.
Miyake, Shojiro; Suzuki, Shota; Miyake, Masatoshi
2017-02-10
To clarify the friction durability, both during and after the high-temperature heating of nanometer-thick diamond-like carbon (DLC) films, deposited using filtered cathodic vacuum arc (FCVA) and plasma chemical vapor deposition (P-CVD) methods, the dependence of the friction coefficient on the load and sliding cycles of the DLC films, were evaluated. Cluster-I consisted of a low friction area in which the DLC film was effective, while cluster-II consisted of a high friction area in which the lubricating effect of the DLC film was lost. The friction durability of the films was evaluated by statistical cluster analysis. Extremely thin FCVA-DLC films exhibited an excellent wear resistance at room temperature, but their friction durability was decreased at high temperatures. In contrast, the durability of the P-CVD-DLC films was increased at high temperatures when compared with that observed at room temperature. This inverse dependence on temperature corresponded to the nano-friction results obtained by atomic force microscopy. The decrease in the friction durability of the FCVA-DLC films at high temperatures, was caused by a complex effect of temperature and friction. The tribochemical reaction produced by the P-CVD-DLC films reduced their friction coefficient, increasing their durability at high temperatures.
Suwa, N; Watari, F; Yamagata, S; Iida, J; Kobayashi, M
2003-11-15
A new testing apparatus for the measurement of frictional properties was designed and the frictional coefficients were obtained and compared with each other in various combinations of brackets and orthodontic wires, including esthetic fiber-reinforced plastic (FRP) wire that was especially designed and manufactured. Three kinds of wires (stainless steel, nickel-titanium, and FRP) and four brackets (single-crystal alumina, polycrystalline alumina, polycarbonate, and stainless steel) were used. The testing was done under dry and wet conditions. The friction testing equipment was designed to attach the bracket to a C-shaped bar suspended with a variable mass, and sliding along a fixed wire. The transition between static and dynamic friction was measured as a breakaway force, with the use of a universal test machine. In addition to material properties, this testing fixture eliminates geometrical factors, such as the rotational moment at the edge of the bracket slot, deflection of the orthodontic wire, and tension of the ligature wire. Nearly ideal frictional properties between materials are obtained. The frictional properties of FRP wire were similar to those of metal wires on all brackets, except the polycrystalline alumina bracket. The frictional coefficient between the polycrystalline ceramic bracket and FRP wire was larger than that of other combinations. There was little difference in frictional coefficients between dry and wet conditions. Copyright 2003 Wiley Periodicals, Inc.
2013-01-01
Background The purpose of this study was to assess the surface characterization and frictional resistance between stainless steel brackets and two types of orthodontic wires made of stainless steel and nickel-titanium alloys after immersion in a chlorhexidine-containing prophylactic agent. Methods Stainless steel orthodontic brackets with either stainless steel (SS) or heat-activated nickel-titanium (Ni-Ti) wires were immersed in a 0.2% chlorhexidine and an artificial saliva environment for 1.5 h. The frictional force was measured on a universal testing machine with a crosshead speed of 10 mm/min over a 5-mm of archwire. The surface morphology of bracket slots and surface roughness of archwires after immersion in chlorhexidine were also characterized using a scanning electron microscope (SEM) and an atomic force microscope (AFM), respectively. Results There was no significant difference in the frictional resistance values between SS and Ni-Ti wires immersed in either chlorhexidine or artificial saliva. The frictional resistance values for the SS and Ni-Ti wires immersed in 0.2% chlorhexidine solution were not significantly different from that inartificial saliva. No significant difference in the average surface roughness for both wires before (as-received) and after immersion in either chlorhexidine or artificial saliva was observed. Conclusions One-and-half-hour immersion in 0.2% chlorhexidine mouthrinse did not have significant influence on the archwires surface roughness or the frictional resistance between stainless steel orthodontic brackets and archwires made of SS and Ni-Ti. Based on these results, chlorhexidine-containing mouthrinses may be prescribed as non-destructive prophylactic agents on materials evaluated in the present study for orthodontic patients. PMID:24325758
Nano-inspired smart interfaces: fluidic interactivity and its impact on heat transfer
NASA Astrophysics Data System (ADS)
Kim, Beom Seok; Lee, Byoung In; Lee, Namkyu; Choi, Geehong; Gemming, Thomas; Cho, Hyung Hee
2017-03-01
Interface-inspired convection is a key heat transfer scheme for hot spot cooling and thermal energy transfer. An unavoidable trade-off of the convective heat transfer is pressure loss caused by fluidic resistance on an interface. To overcome this limitation, we uncover that nano-inspired interfaces can trigger a peculiar fluidic interactivity, which can pursue all the two sides of the coin: heat transfer and fluidic friction. We demonstrate the validity of a quasi-fin effect of Si-based nanostructures based on conductive capability of heat dissipation valid under the interactivity with fluidic viscous sublayer. The exclusive fluid-interface friction is achieved when the height of the nanostructures is much less than the thickness of the viscous sublayers in the turbulent regime. The strategic nanostructures show an enhancement of heat transfer coefficients in the wall jet region by more than 21% without any significant macroscale pressure loss under single-phase impinging jet. Nanostructures guaranteeing fluid access via an equivalent vacancy larger than the diffusive path length of viscid flow lead to local heat transfer enhancement of more than 13% at a stagnation point. Functional nanostructures will give shape to possible breakthroughs in heat transfer and its optimization can be pursued for engineered systems.
Thermal vesiculation during volcanic eruptions.
Lavallée, Yan; Dingwell, Donald B; Johnson, Jeffrey B; Cimarelli, Corrado; Hornby, Adrian J; Kendrick, Jackie E; von Aulock, Felix W; Kennedy, Ben M; Andrews, Benjamin J; Wadsworth, Fabian B; Rhodes, Emma; Chigna, Gustavo
2015-12-24
Terrestrial volcanic eruptions are the consequence of magmas ascending to the surface of the Earth. This ascent is driven by buoyancy forces, which are enhanced by bubble nucleation and growth (vesiculation) that reduce the density of magma. The development of vesicularity also greatly reduces the 'strength' of magma, a material parameter controlling fragmentation and thus the explosive potential of the liquid rock. The development of vesicularity in magmas has until now been viewed (both thermodynamically and kinetically) in terms of the pressure dependence of the solubility of water in the magma, and its role in driving gas saturation, exsolution and expansion during decompression. In contrast, the possible effects of the well documented negative temperature dependence of solubility of water in magma has largely been ignored. Recently, petrological constraints have demonstrated that considerable heating of magma may indeed be a common result of the latent heat of crystallization as well as viscous and frictional heating in areas of strain localization. Here we present field and experimental observations of magma vesiculation and fragmentation resulting from heating (rather than decompression). Textural analysis of volcanic ash from Santiaguito volcano in Guatemala reveals the presence of chemically heterogeneous filaments hosting micrometre-scale vesicles. The textures mirror those developed by disequilibrium melting induced via rapid heating during fault friction experiments, demonstrating that friction can generate sufficient heat to induce melting and vesiculation of hydrated silicic magma. Consideration of the experimentally determined temperature and pressure dependence of water solubility in magma reveals that, for many ascent paths, exsolution may be more efficiently achieved by heating than by decompression. We conclude that the thermal path experienced by magma during ascent strongly controls degassing, vesiculation, magma strength and the effusive-explosive transition in volcanic eruptions.
Whitney, G. A.; Mansour, J. M.; Dennis, J. E.
2015-01-01
The mechanical loading environment encountered by articular cartilage in situ makes frictional-shear testing an invaluable technique for assessing engineered cartilage. Despite the important information that is gained from this testing, it remains under-utilized, especially for determining damage behavior. Currently, extensive visual inspection is required to assess damage; this is cumbersome and subjective. Tools to simplify, automate, and remove subjectivity from the analysis may increase the accessibility and usefulness of frictional-shear testing as an evaluation method. The objective of this study was to determine if the friction signal could be used to detect damage that occurred during the testing. This study proceeded in two phases: first, a simplified model of biphasic lubrication that does not require knowledge of interstitial fluid pressure was developed. In the second phase, frictional-shear tests were performed on 74 cartilage samples, and the simplified model was used to extract characteristic features from the friction signals. Using support vector machine classifiers, the extracted features were able to detect damage with a median accuracy of approximately 90%. The accuracy remained high even in samples with minimal damage. In conclusion, the friction signal acquired during frictional-shear testing can be used to detect resultant damage to a high level of accuracy. PMID:25691395
Role of lubricants on friction between self-ligating brackets and archwires.
Leal, Renata C; Amaral, Flávia L B; França, Fabiana M G; Basting, Roberta T; Turssi, Cecilia P
2014-11-01
To evaluate the effect of different lubricants on friction between orthodontic brackets and archwires. Active (Quick, Forestadent) and passive (Damon 3MX, Ormco) self-ligating brackets underwent friction tests in the presence of mucin- and carboxymethylcellulose (CMC)-based artificial saliva, distilled water, and whole human saliva (positive control). Dry friction (no lubricant) was used as the negative control. Bracket/wire samples (0.014 × 0.025 inch, CuNiTi, SDS Ormco) underwent friction tests eight times in a universal testing machine. Two-way analysis of variance showed no significant interaction between bracket type and lubricant (P = .324). Friction force obtained with passive self-ligating brackets was lower than that for active brackets (P < .001). Friction observed in the presence of artificial saliva did not differ from that generated under lubrication with natural human saliva, as shown by Tukey test. Higher friction forces were found with the use of distilled water or when the test was performed under dry condition (ie, with no lubricant). Lubrication plays a role in friction forces between self-ligating brackets and CuNiTi wires, with mucin- and CMC-based artificial saliva providing a reliable alternative to human natural saliva.
TiO2/water Nanofluid Heat Transfer in Heat Exchanger Equipped with Double Twisted-Tape Inserts
NASA Astrophysics Data System (ADS)
Eiamsa-ard, S.; Ketrain, R.; Chuwattanakul, V.
2018-05-01
Nowadays, heat transfer enhancement plays an important role in improving efficiency of heat transfer and thermal systems for numerous areas such as heat recovery processes, chemical reactors, air-conditioning/refrigeration system, food engineering, solar air/water heater, cooling of high power electronics etc. The present work presents the experimental results of the heat transfer enhancement of TiO2/water nanofluid in a heat exchanger tube fitted with double twisted tapes. The study covered twist ratios of twisted tapes (y/w) of 1.5, 2.0, and 2.5) while the concentration of the nanofluid was kept constant at 0.05% by volume. Observations show that heat transfer, friction loss and thermal performance increase as twist ratio (y/w) decreases. The use of the nanofluid in the tube equipped with the double twisted-tapes with the smallest twist ratio (y/w = 1.5) results in the increases of heat transfer rates and friction factor up to 224.8% and 8.98 times, respectively as compared to those of water. In addition, the experimental results performed that double twisted tapes induced dual swirling-flows which played an important role in improving fluid mixing and heat transfer enhancement. It is also observed that the TiO2/water nanofluid was responsible for low pressure loss behaviors.
Laser-Assisted Stir Welding of 25-mm-Thick HSLA-65 Plate
NASA Astrophysics Data System (ADS)
Williamson, Keith M.
2002-12-01
Laser-assisted stir welding is a hybrid process that combines energy from a laser with functional heating and mechanical energy to join materials in the solid state. The technology is an adaptation of friction stir welding which is particularly suited for joining thick plates. Aluminum plates up to 75 mm thick have been successfully joined using friction stir welding. Since joining occurs in the solid state, stir technology offers the capability for fabricating full penetration joints in thick plates with better mechanical properties and less weld distortion than is possible by fusion processes. Currently friction stir welding is being used in several industries to improve productivity, reduce weight, and increase the strength of welded structures. Examples include: (a) the aircraft/aerospace industry where stir technology is currently being used to fabricate the space shuttle's external tank as well as components of the Delta family of rockets; (b) the shipping industry where container manufacturers are using stir technology to produce lighter containers with more payload capacity; and (c) the oil industry where offshore platform manufactures are using automated stir welding plants to fabricate large panels and structures up to 16 meters long with widths as required. In all these cases, stir technology has been restricted to aluminum alloys; however, stainless and HSLA 65 steels have been recently stir welded with friction as the primary heat source. One of the difficulties in adapting stir welding to steel is tool wear aggravated by the high tool rubbing velocities needed to provide frictional heat input into the material. Early work showed that the tool shoulder reached temperatures above 1000 C and the weld seam behind the tool stayed within this temperature range for up to 25 mm behind the tool. Cross sections of stir welded samples showed that the heat-affected zone is relatively wide and follows the profile of the tool shoulder. Besides minimizing the tool wear by increasing the energy into the material, another benefit of the proposed Laser Assisted Stir Welding (LASW is to reduce the width of the heat affected zone which typically has the lowest hardness in the weld region. Additionally, thermal modeling of the friction stir process shows that the heat input is asymmetric and suggests that the degree of asymmetry could improve the efficiency of the process. These asymmetries occur because the leading edge of the tool supplies heat to cold material while the trailing edge provides heat to material already preheated by the leading edge. As a result, flow stresses on the advancing side of the joint are lower than corresponding values on the retreating side. The proposed LASW process enhances these asymmetries by providing directional heating to increase the differential in flow stress across the joint and improve the stir tool efficiency. Theoretically the LASW process can provide the energy input to allow the flow stresses on the advancing side to approach zero and the stir efficiency to approach 100 percent. Reducing the flow stresses on the advancing side of the weld creates the greatest pressure differential across the stir weld and eliminates the possibility of voids on the advancing side of the joint. Small pressure differentials result in poor stir welds because voids on the advancing side are not filled by the plastic flow of material from the retreating side.
49 CFR 571.103 - Standard No. 103; Windshield defrosting and defogging systems.
Code of Federal Regulations, 2014 CFR
2014-10-01
... concrete pavement (or other surface with equivalent coefficient of surface friction) at a specified speed... defogging system which operates either by applying heat to the windshield or by dehumidifying the air inside... equipped with a heating system other than a heat exchanger type that uses the engine's coolant as a means...
49 CFR 571.103 - Standard No. 103; Windshield defrosting and defogging systems.
Code of Federal Regulations, 2013 CFR
2013-10-01
... concrete pavement (or other surface with equivalent coefficient of surface friction) at a specified speed... defogging system which operates either by applying heat to the windshield or by dehumidifying the air inside... equipped with a heating system other than a heat exchanger type that uses the engine's coolant as a means...
49 CFR 571.103 - Standard No. 103; Windshield defrosting and defogging systems.
Code of Federal Regulations, 2012 CFR
2012-10-01
... concrete pavement (or other surface with equivalent coefficient of surface friction) at a specified speed... defogging system which operates either by applying heat to the windshield or by dehumidifying the air inside... equipped with a heating system other than a heat exchanger type that uses the engine's coolant as a means...
NASA Astrophysics Data System (ADS)
Coffey, G. L.; Savage, H. M.; Polissar, P. J.; Rowe, C. D.
2017-12-01
Faults are generally heterogeneous along-strike, with changes in thickness and structural complexity that should influence coseismic slip. However, observational limitations (e.g. limited outcrop or borehole samples) can obscure this complexity. Here we investigate the heterogeneity of frictional heating determined from biomarker thermal maturity and microstructural observations along a well-exposed fault to understand whether coseismic stress and frictional heating are related to structural complexity. We focus on the Muddy Mountain thrust, Nevada, a Sevier-age structure that has continuous exposure of its fault core and considerable structural variability for up to 50 m, to explore the distribution of earthquake slip and temperature rise along strike. We present new biomarker thermal maturity results that capture the heating history of fault rocks. Biomarkers are organic molecules produced by living organisms and preserved in the rock record. During heating, their structure is altered systematically with increasing time and temperature. Preliminary results show significant variability in thermal maturity along-strike at the Muddy Mountain thrust, suggesting differences in coseismic temperature rise on the meter- scale. Temperatures upwards of 500°C were generated in the principal slip zone at some locations, while in others, no significant temperature rise occurred. These results demonstrate that stress or slip heterogeneity occurred along the Muddy Mountain thrust at the meter-scale and considerable along-strike complexity existed, highlighting the importance of careful interpretation of whole-fault behavior from observations at a single point on a fault.
Extraterrestrial Regolith Derived Atmospheric Entry Heat Shields
NASA Technical Reports Server (NTRS)
Hogue, Michael D.; Mueller, Robert P.; Sibille, Laurent; Hintze, Paul E.; Rasky, Daniel J.
2016-01-01
High-mass planetary surface access is one of NASAs technical challenges involving entry, descent and landing (EDL). During the entry and descent phase, frictional interaction with the planetary atmosphere causes a heat build-up to occur on the spacecraft, which will rapidly destroy it if a heat shield is not used. However, the heat shield incurs a mass penalty because it must be launched from Earth with the spacecraft, thus consuming a lot of precious propellant. This NASA Innovative Advanced Concept (NIAC) project investigated an approach to provide heat shield protection to spacecraft after launch and prior to each EDL thus potentially realizing significant launch mass savings. Heat shields fabricated in situ can provide a thermal-protection system for spacecraft that routinely enter a planetary atmosphere. By fabricating the heat shield with space resources from materials available on moons and asteroids, it is possible to avoid launching the heat-shield mass from Earth. Regolith has extremely good insulating properties and the silicates it contains can be used in the fabrication and molding of thermal-protection materials. In this paper, we will describe three types of in situ fabrication methods for heat shields and the testing performed to determine feasibility of this approach.
49 CFR 173.57 - Acceptance criteria for new explosives.
Code of Federal Regulations, 2010 CFR
2010-10-01
... must be subjected to the Drop Weight Impact Sensitivity Test (Test Method 3(a)(i)), the Friction... substance has a friction sensitiveness equal to or greater than that of dry pentaerythrite tetranitrate (PETN) when tested in the Friction Sensitivity Test; (4) The substance fails to pass the test criteria...
Measurements of Friction Coefficients in a Pipe for Subsonic and Supersonic Flow of Air
1943-07-01
inoh inside diameter for superwaio data and of 0.375-inoh inside diameter for oubaon~o datu. The preaaure meaaurments, from whioh the friotion...pressuro difforonoes oould bo road to 0.01 oontinmtor. For the supcrsoulo data , initial preacuroa wero mcasl.wodwith a calibrated Bourdon gage. The tem~rat...specifio heata$ l.mo cl? speoific heat at oonstant prt)ssuro~ C.24!I Dtu ‘::n, Subsonic Flow The results for the subsonic tests are presented in tables I to
NASA Technical Reports Server (NTRS)
Sapyta, Joe; Reid, Hank; Walton, Lew
1993-01-01
The topics are presented in viewgraph form and include the following: particle bed reactor (PBR) core cross section; PBR bleed cycle; fuel and moderator flow paths; PBR modeling requirements; characteristics of PBR and nuclear thermal propulsion (NTP) modeling; challenges for PBR and NTP modeling; thermal hydraulic computer codes; capabilities for PBR/reactor application; thermal/hydralic codes; limitations; physical correlations; comparison of predicted friction factor and experimental data; frit pressure drop testing; cold frit mask factor; decay heat flow rate; startup transient simulation; and philosophy of systems modeling.
Demonstration of a Large-Scale Tank Assembly Via Circumferential Friction Stir Welds
NASA Technical Reports Server (NTRS)
Jones, Chip; Adams, Glynn; Colligan, Kevin; McCool, A. (Technical Monitor)
2000-01-01
Five (5) each 14-foot diameter circumferential FSWelds were conducted on the modified CWT, two (2) each pathfinder and three (3) each assembly welds Tapered circumferential welds were successfully demonstrated The use of a closeout anvil was successfully demonstrated during one of the pathfinder welds Considerable difficulty maintaining joint f it-up during the weld process Anvil deflections Hardware dimensional tolerances Inadequate clamping Variations in the heat sink characteristics of the circumferential anvil as compared to the test panel anvil
Aircraft and ground vehicle friction measurements obtained under winter runway conditions
NASA Technical Reports Server (NTRS)
Yager, Thomas J.
1989-01-01
Tests with specially instrumented NASA B-737 and B-727 aircraft together with several different ground friction measuring devices have been conducted for a variety of runway surface types and wetness conditions. This effort is part of the Joint FAA/NASA Aircraft/Ground Vehicle Runway Friction Program aimed at obtaining a better understanding of aircraft ground handling performance under adverse weather conditions, and defining relationships between aircraft and ground vehicle tire friction measurements. Aircraft braking performance on dry, wet, snow-, and ice-covered runway conditions is discussed together with ground vehicle friction data obtained under similar runway conditions. For the wet, compacted snow- and ice-covered runway conditions, the relationship between ground vehicles and aircraft friction data is identified. The influence of major test parameters on friction measurements such as speed, test tire characteristics, and surface contaminant-type are discussed. The test results indicate that use of properly maintained and calibrated ground vehicles for monitoring runway friction conditions should be encouraged particularly under adverse weather conditions.
NASA Astrophysics Data System (ADS)
Xu, Y. C.; Jing, H. Y.; Han, Y. D.; Xu, L. Y.
2017-08-01
This paper exhibits a novel in situ remediation technique named friction tapered stud overlap welding (FTSOW) to repair a through crack in structures and components in extremely harsh environments. Furthermore, this paper presents variations in process data, including rotational speed, stud displacement, welding force, and torque for a typical FTSOW weld. In the present study, the effects of welding parameters on the microstructures and mechanical properties of the welding joints were investigated. Inapposite welding parameters consisted of low rotational speeds and welding forces, and when utilized, they increased the occurrence of a lack of bonding and unfilled defects within the weld. The microstructures with a welding zone and heat-affected zone mainly consisted of upper bainite. The hardness value was highest in the welding zone and lowest in the base material. During the pull-out tests, all the welds failed in the stud. Moreover, the defect-free welds broke at the interface of the lap plate and substrate during the cruciform uniaxial tensile test. The best tensile test results at different depths and shear tests were 721.6 MPa and 581.9 MPa, respectively. The favorable Charpy impact-absorbed energy was 68.64 J at 0 °C. The Charpy impact tests revealed a brittle fracture characteristic with a large area of cleavage.
Superfluid Friction and Late-Time Thermal Evolution of Neutron Stars
NASA Astrophysics Data System (ADS)
Larson, Michelle B.; Link, Bennett
1999-08-01
The recent temperature measurements of the two older isolated neutron stars PSR 1929+10 and PSR 0950+08 (ages of 3×106 and 2×107 yr, respectively) indicate that these objects are heated. A promising candidate heat source is friction between the neutron star crust and the superfluid it is thought to contain. We study the effects of superfluid friction on the long-term thermal and rotational evolution of a neutron star. Differential rotation velocities between the superfluid and the crust (averaged over the inner crust moment of inertia) of ω¯~0.6 rad s-1 for PSR 1929+10 and ~0.02 rad s-1 for PSR 0950+08 would account for their observed temperatures. These differential velocities could be sustained by the pinning of superfluid vortices to the inner crust lattice with strengths of ~1 MeV per nucleus. Pinned vortices can creep outward through thermal fluctuations or quantum tunneling. For thermally activated creep, the coupling between the superfluid and crust is highly sensitive to temperature. If pinning maintains large differential rotation (~30 rad s-1), a feedback instability could occur in stars younger than ~105 yr causing oscillations of the temperature and spin-down rate over a period of ~0.3tage. For stars older than ~106 yr, however, vortex creep occurs through quantum tunneling and the creep velocity is too insensitive to temperature for a thermal-rotational instability to occur. These older stars could be heated through a steady process of superfluid friction.
NASA Astrophysics Data System (ADS)
Ye, Yuwei; Wang, Chunting; Zheng, Wenru; Xiong, Wei; Wang, Yongxin; Li, Xiaogang
2017-09-01
NiCrBSi coating was deposited successfully on the surface of 316 stainless steel substrate by means of plasma spraying. The microstructures and mechanical property were analyzed by scanning electron microscopy, x-ray diffraction, and a Vickers hardness tester. The wear performances of the coatings sliding against the GCr15 ball under ambient air and water conditions were investigated, and two feasible approaches (tungsten carbide (WC)-doping and heat treatment) were used to improve the tribological performance. Results showed that the hardness of the NiCrBSi coating increased by 12.5% and 28.5% and the porosity decreased by 26.1% and 47.8%, respectively, after WC-doping and heat treatment. During dry friction, the friction coefficient and wear rate of the NiCrBSi coating were about 0.47 and 1.4 × 10-5 mm3 N-1 m-1, respectively. These values were higher than those obtained on other coatings. In water conditions, all coatings showed a lower friction and wear rate than that in ambient air, which was as a result of the lubrication effect of water. Significantly, with WC-doping and heat treatment, the friction coefficients of both coatings were about 18.5% and 36.7%, respectively, lower than that of the NiCrBSi coating. Furthermore, the wear rates of both coatings were about 20% and 70%, respectively, lower than that of the NiCrBSi coating.
Welding abilities of UFG metals
NASA Astrophysics Data System (ADS)
Morawiński, Łukasz; Chmielewski, Tomasz; Olejnik, Lech; Buffa, Gianluca; Campanella, Davide; Fratini, Livan
2018-05-01
Ultrafine Grained (UFG) metals are characterized by an average grain size of <1 µm and mostly high angle grain boundaries. These materials exhibit exceptional improvements in strength, superplastic behaviour and in some cases enhanced biocompatibility. UFG metals barstock can be fabricated effectively by means of Severe Plastic Deformation (SPD) methods. However, the obtained welded joints with similar properties to the base of UFG material are crucial for the production of finished engineering components. Conventional welding methods based on local melting of the joined edges cannot be used due to the UFG microstructure degradation caused by the heat occurrence in the heat affected zone. Therefore, the possibility of obtaining UFG materials joints with different shearing plane (SP) positions by means of friction welded processes, which do not exceed the melting temperature during the process, should be investigated. The article focuses on the Linear Friction Welding (LFW) method, which belongs to innovative welding processes based on mixing of the friction-heated material in the solid state. LFW is a welding process used to joint bulk components. In the process, the friction forces work due to the high frequency oscillation and the pressure between the specimens is converted in thermal energy. Character and range of recrystallization can be controlled by changing LFW parameters. Experimental study on the welded UFG 1070 aluminum alloy by means of FLW method, indicates the possibility of reducing the UFG structure degradation in the obtained joint. A laboratory designed LFW machine has been used to weld the specimens with different contact pressure and oscillation frequency.
DOT National Transportation Integrated Search
1998-06-01
The principles of heat transfer are applied to analyze the so-called "rail chill" effect, which refers to hear loss by conduction from a hot rail vehicle wheel through the contact area into a cold rail, the wheel having been heated by friction brakin...
Statewide pavement friction testing 2012.
DOT National Transportation Integrated Search
2012-11-01
In 2012, Dynatest conducted friction testing for the Wisconsin Department of Transportation (WisDOT) on a representative subset of its State Trunk Highway Network. Friction testing was performed at 3,394 sites in accordance with ASTM E274 using a Dyn...
Tensile Properties of Friction Stir Welded Joints of AA 2024-T6 Alloy at Different Welding Speeds
NASA Astrophysics Data System (ADS)
Avula, Dhananjayulu; Devuri, Venkateswarlu; Cheepu, Muralimohan; Dwivedi, Dheerendra Kumar
2018-03-01
The influence of welding speed on the friction stir welded joint properties of hardness, tensile properties, defects and microstructure characterization are studied in the present study. The friction stir welding was conducted on AA2014-T6 heat treated alloy with 5 mm thickness plate in butt joint configuration. The welding speed was varied from 8 mm/min to 120 mm/min at the fixed travel speed and load conditions. It is observed that the welding speeds at higher rate with wide range can be possible to weld this alloy at higher rates of tool revolution suggesting that the inherent capability of friction stir welding technique for aluminum 2014 alloys. The strength of the joints gradually increases with enhancing of welding speed. The micro structural observations exhibited the formation of equiaxed grains in the stir zone and slightly in the thermo-mechanically affected zone. In addition, the size of the grains decreases with increase in welding speed owing to the presence of low heat input. Hence the hardness of the joints slightly increased in the stir zones over the other zones of the weld nugget. The joint strength initially increases with the welding speed and starts to decreases after reaching to the maximum value. The relationship between the welding conditions and friction stir welded joint properties has been discussed.
Analysis of Heat Partitioning During Sliding Contact at High Speed and Pressure
2014-03-27
surfaces separated by a layer of gas or liquid 3. Fluid friction : the friction between layers within a fluid that are moving relative to each other 4...explicit heat transfer scheme is given by 1 2 n n n s u u u t κ + − = ∇ ∆ and its equivalent form is 22 1 2, 2, , , yn n n nx y x y x y x y xs t...320 330 340 350 Rail’s Length (grid pts) S ur fa ce T em pe ra tu re (K ) Rai’s Surface Temperature Without Using Strang Splitting Method @ t
Engineering prediction of turbulent skin friction and heat transfer in high-speed flow
NASA Technical Reports Server (NTRS)
Cary, A. M., Jr.; Bertram, M. H.
1974-01-01
A large collection of experimental turbulent-skin-friction and heat-transfer data for flat plates and cones was used to determine the most accurate of six of the most popular engineering-prediction methods; the data represent a Mach number range from 4 to 13 and ratio of wall to total temperature ranging from 0.1 to 0.7. The Spalding and Chi method incorporating virtual-origin concepts was found to be the best prediction method for Mach numbers less than 10; the limited experimental data for Mach numbers greater than 10 were not well predicted by any of the engineering methods except the Coles method.
2012-11-26
alloy and High Hardness steel armor (MIL- STD-46100) were successfully joined by the friction stir welding (FSW) process using a tungsten- rhenium ...tungsten- rhenium stir tool. Process parameter variation experiments, which included inductive pre-heating, tool design geometry, plunge and traverse
Pseudotachylyte increases the post-slip strength of faults
Proctor, Brooks; Lockner, David A.
2016-01-01
Solidified frictional melts, or pseudotachylytes, are observed in exhumed faults from across the seismogenic zone. These unique fault rocks, and many experimental studies, suggest that frictional melting can be an important process during earthquakes. However, it remains unknown how melting affects the post-slip strength of the fault and why many exhumed faults do not contain pseudotachylyte. Analyses of triaxial stick-slip events on Westerly Granite (Rhode Island, USA) sawcuts at confining pressures from 50 to 400 MPa show evidence for frictional heating, including some events energetic enough to generate surface melt. Total and partial stress drops were observed with slip as high as 6.5 mm. We find that in dry samples following melt-producing stick slip, the shear failure strength increased as much as 50 MPa, while wet samples had <10 MPa strengthening. Microstructural analysis indicates that the strengthening is caused by welding of the slip surface during melt quenching, suggesting that natural pseudotachylytes may also strengthen faults after earthquakes. These results predict that natural pseudotachylyte will inhibit slip reactivation and possibly generate stress heterogeneities along faults. Wet samples do not exhibit melt welding, possibly because of thermal pressurization of water reducing frictional heating during slip.
Friction riveting as an alternative mechanical fastening to join engineering plastics
NASA Astrophysics Data System (ADS)
Gagliardi, Francesco; Conte, Romina; Bentrovato, Renato; Simeoli, Giorgio; Russo, Pietro; Ambrogio, Giuseppina
2018-05-01
Friction Rivecting is a quite new joining process to connect multi-material structures. In brief, a metallic rivet is dipped rotating inside matrixes, usually made of plastics, increasing its original diameter. The use of high-performance plastics is more suitable being their higher mechanical and thermal properties important to avoid material degradation and to allow strong part connections. High-speed friction welding system has been usually used to perform the process. In the work here proposed, the joints have been achieved by means of a traditional milling machine and the attention has been focused on a widely used engineering plastic, i.e. polyamide 6 (PA6) with and without glass fiber reinforcement. A specific speed multiplier has been attached into the mandrel of the used machine to increase the reachable rotational speed. Moreover, rivets made of Titanium Grade 2 and of an Aluminum Alloy, the AA-6060, are utilized. The influence that the heating and the forging length can have on the quality of the obtained junctions, considering a fixed joining depth, has been tested and investigated. The performed connections have been judged by tensile tests, which were set to quantify the maximum strength of the joints for a transverse speed of 1,0 mm/min. Barreling effect can be observed close to the tip, which loses the initial shape of a cylinder characterized by straight vertical walls. Finally, the possible degradation of the polymer, due to temperature increment, has been also evaluated close to the working zone. According to that, it has to be highlighted that the process needs a heating balance, which is necessary to get sound joints. The compromise has, on one side, to allow the rivet penetration and deformation, and on the other side, to avoid the degradation of the polymer, which would affect its properties and a proper rivet deformation.
Analysing the strength of friction stir welded dissimilar aluminium alloys using Sugeno Fuzzy model
NASA Astrophysics Data System (ADS)
Barath, V. R.; Vaira Vignesh, R.; Padmanaban, R.
2018-02-01
Friction stir welding (FSW) is a promising solid state joining technique for aluminium alloys. In this study, FSW trials were conducted on two dissimilar plates of aluminium alloy AA2024 and AA7075 by varying the tool rotation speed (TRS) and welding speed (WS). Tensile strength (TS) of the joints were measured and a Sugeno - Fuzzy model was developed to interconnect the FSW process parameters with the tensile strength. From the developed model, it was observed that the optimum heat generation at WS of 15 mm.min-1 and TRS of 1050 rpm resulted in dynamic recovery and dynamic recrystallization of the material. This refined the grains in the FSW zone and resulted in peak tensile strength among the tested specimens. Crest parabolic trend was observed in tensile strength with variation of TRS from 900 rpm to 1200 rpm and TTS from 10 mm.min-1 to 20 mm.min-1.
NASA Astrophysics Data System (ADS)
Karamış, M. B.; Yıldızlı, K.; Çakırer, H.
2004-05-01
Surface properties of the Al-Mo-Ni coating plasma sprayed on the piston ring material and the frictional forces obtained by testing carried out under different loads, temperatures and frictional conditions were evaluated. Al-Mo-Ni composite material was deposited on the AISI 440C test steel using plasma spraying method. The coated and uncoated samples were tested by being exposed to frictional testing under dry and lubricated conditions. Test temperatures of 25, 100, 200, and 300 °C and loads of 83, 100, 200, and 300 N were applied during the tests in order to obtain the frictional response of the coating under conditions similar to real piston ring/cylinder friction conditions. Gray cast iron was used as a counterface material. All the tests were carried out with a constant sliding speed of 1 m/s. The properties of the coating were determined by using EDX and SEM analyses. Hardness distribution on the cross-section of the coating was also determined. In addition, the variations of the surface roughness after testing with test temperatures and loads under dry and lubricated conditions were recorded versus sliding distance. It was determined that the surface roughness increased with increasing loads. It increased with temperature up to 200 °C and then decreased at 300 °C under dry test conditions. Under lubricated conditions, the roughness decreased under the loads of 100 N and then increased. The roughness decreased at 200 °C but below and above this point it increased with the test temperature. Frictional forces observed under dry and lubricated test conditions increased with load at running-in period of the sliding. The steady-state period was then established with the sliding distance as a normal situation. However, the frictional forces were generally lower at a higher test temperature than those at a lower test temperature. Surprisingly, the test temperature of 200 °C was a critical point for frictional forces and surface roughness.
Summary and Evaluation of NRC-Sponsored Stellite 6 Aging and Friction Tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. C. Watkins; K. G. DeWall; D. Bramwell
1999-04-01
This report describes four sets of tests sponsored by the U.S. Nuclear Regulatory Commission and conducted by the Idaho National Engineering and Environmental Laboratory. The tests support research addressing the need to provide assurance that motor-operated valves are able to perform their intended safety function, usually to open or close against specified (design basis) flow and pressure loads. One of the parameters that affects a gate valve's operability is the friction between the disc seats and the valve body seats. In most gate valves, these surfaces are hardfaced with Stellite 6, a cobalt-based alloy. The tests described in this reportmore » investigate the changes that occur in the friction as the Stellite 6 surfaces develop an oxide film as they age. Stellite 6 specimens were aged in a corrosion autoclave, the oxide films were examined and characterized, and the specimens were subjected to friction testing in a friction autoclave. A very thin oxide film formed after only a fe w days of natural aging. Even a very thin oxide film caused an increase in friction. The surface structure of the oxide film was dominated by a hard crystalline structure, such that the friction response was analogous to rubbing two pieces of sandpaper together. In the limited data provided by naturally aged specimens (78 days maximum exposure, very thin oxide films), the friction increased with greater aging time, approaching an as-yet-undetermined plateau. Although the thickness of the oxide film increased with greater aging time, the mechanical properties of the oxide film (larger granules with greater aging time) appeared to play a greater role in the friction response. Friction testing of specimens subjected to simulated in-service testing strokes at intervals during the aging process showed only a slight decrease in friction, compared to other specimens. Results from specimens subjected to accelerated aging were inconclusive, because of differences in the structure and comp osition of the oxide films, compared to naturally aged specimens. For the naturally aged specimens, the highest friction occurred on the first stroke. The first stroke smeared the oxide film and dislodged some of the granules, so that subsequent strokes saw lower friction values and less variation in the friction. This result underscores the importance of planning in-plant tests so that data are collected from the first stroke following a period of inactivity.« less
49 CFR 571.103 - Standard No. 103; Windshield defrosting and defogging systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
... concrete pavement (or other surface with equivalent coefficient of surface friction) at a specified speed... defogging system which operates either by applying heat to the windshield or by dehumidifying the air inside... system other than a heat exchanger type that uses the engine's coolant as a means to supply the heat to...
49 CFR 571.103 - Standard No. 103; Windshield defrosting and defogging systems.
Code of Federal Regulations, 2011 CFR
2011-10-01
... concrete pavement (or other surface with equivalent coefficient of surface friction) at a specified speed... defogging system which operates either by applying heat to the windshield or by dehumidifying the air inside... system other than a heat exchanger type that uses the engine's coolant as a means to supply the heat to...
NASA Technical Reports Server (NTRS)
Gedeon, D.; Wood, J. G.
1996-01-01
A number of wire mesh and metal felt test samples, with a range of porosities, yield generic correlations for friction factor, Nusselt number, enhanced axial conduction ratio, and overall heat flux ratio. This information is directed primarily toward stirling cycle regenerator modelers, but will be of use to anyone seeking to better model fluid flow through these porous materials. Behind these results lies an oscillating-flow test rig, which measures pumping dissipation and thermal energy transport in sample matrices, and several stages of data-reduction software, which correlate instantaneous values for the above dimensionless groups. Within the software, theoretical model reduces instantaneous quantifies from cycle-averaged measurables using standard parameter estimation techniques.
John M. Buffington; William E. Dietrich; James W. Kirchner
1992-01-01
We report the first measurements of friction angles for a naturally formed gravel streambed. For a given test grain size placed on a bed surface, friction angles varied from 10º to over 100º; friction angle distributions can be expressed as a function of test grain size, median bed grain size, and bed sorting parameter. Friction angles decrease with increasing grain...
Seismic energy partitioning during the 2008 Mw 7.9 Wenchuan earthquake from WFSD-1 core sample
NASA Astrophysics Data System (ADS)
Wang, H.; Li, H.; Janssen, C.; He, X.
2016-12-01
The seismic energy, defined as the total energy released from an earthquake, including frictional heating energy, radiated energy and fracture energy, is one of the fundamental parameters for understanding the overall features of the dynamic rupture on the fault. Here we present a natural sample from the Wenchuan earthquake fault scientific drilling project at WFSD-1, at 732.4-732.8 m-depth for frictional heating and fracture energy caculation. Slickenlines are clear on the fresh mirrore-like surface at 732.6 m. Detailed microstructural analyses via optical microscope, SEM and TEM, reveal that a 2 mm-thick amorphous material with quartz grains sitting in are present in fault gouge. Circles with different densities in the amorphous material indicate a melt-origin. Numerous open microcracks in the melt suggest that they are newly formed. Combined with anomaly mercury concentration and logging data at this location, we believe that the melt was generated during the Wenchuan earthquake. In addition, a melt with similar feature is also found at 1084 m-depth in WFSD-4S as the principal slip zone of the Wenchuan earthquake, hence we speculate that the melt may be present all along the Yingxiu-Beichuan rupture zone. TEM-EDX analyses show that the melt is mainly made of feldspar, i.e. feldspar is melted but quartz is not, indicating that the frictional melting temperature was 1230°C < T < 1720°C assuming a dry condition. Therefore, we can calculate the frictional heating using the melt caused by the earthquake. Besides, 120 µm-thick nano-scale quartz-rich layer is visible at the very edge of the melt layer, which compose the mirror-like structure surface with slicklines, produced by the Wenchuan earthquake. Therefore, it can be used to calculate the fracture energy based on the particule size distribution. As previous research show, during an earthquake, most of the energy was released by frictional heating (Scholz, 2002), only a small amount was consumed by seismic wave radiation (< 6%, Mc Garr, 1999) and mechanical wear (< 0.1%, Scholz, 1990). This sample yields a unique material to accurately calculate the seismic energy associated with the Wenchuan earthquake.
Friction factor data for flat plate tests of smooth and honeycomb surfaces. M.S. Thesis
NASA Technical Reports Server (NTRS)
Ha, Tae Woong
1989-01-01
Friction factors for honeycomb surfaces were measured with a flat plate tester. The flat plate test apparatus was described and a method was discussed for determining the friction factor experimentally. The friction factor model was developed for the flat plate test based on the Fanno Line Flow. The comparisons of the friction factor were plotted for smooth surfaces and six-honeycomb surfaces with three-clearances, 6.9 bar to 17.9 bar range of inlet pressures, and 5,000 to 100,000 range of the Reynolds number. The optimum geometries for the maximum friction factor were found as a function of cell width to cell depth and cell width to clearance ratios.
Constitutive equation of friction based on the subloading-surface concept
Ueno, Masami; Kuwayama, Takuya; Suzuki, Noriyuki; Yonemura, Shigeru; Yoshikawa, Nobuo
2016-01-01
The subloading-friction model is capable of describing static friction, the smooth transition from static to kinetic friction and the recovery to static friction after sliding stops or sliding velocity decreases. This causes a negative rate sensitivity (i.e. a decrease in friction resistance with increasing sliding velocity). A generalized subloading-friction model is formulated in this article by incorporating the concept of overstress for viscoplastic sliding velocity into the subloading-friction model to describe not only negative rate sensitivity but also positive rate sensitivity (i.e. an increase in friction resistance with increasing sliding velocity) at a general sliding velocity ranging from quasi-static to impact sliding. The validity of the model is verified by numerical experiments and comparisons with test data obtained from friction tests using a lubricated steel specimen. PMID:27493570
NASA Astrophysics Data System (ADS)
Wang, Min; Zhang, Huijie; Zhang, Jingbao; Zhang, Xiao; Yang, Lei
2014-05-01
Friction stir lap welding of 7B04 aluminum alloy was conducted in the present paper, and the effect of pin length on hook size and joint properties was investigated in detail. It is found that for each given set of process parameters, the size of hook defect on the advancing side shows an "M" type evolution trend as the pin length is increased. The affecting characteristics of pin length on joint properties are dependent on the heat input levels. When the heat input is low, the fracture strength is firstly increased to a peak value and then shows a decrease. When the heat input is relatively high, the evolution trend of fracture strength tends to exhibit a "W" type with increasing the pin length.
Laser Peening Effects on Friction Stir Welding
NASA Technical Reports Server (NTRS)
Hatamleh, Omar
2011-01-01
Friction Stir Welding (FSW) is a welding technique that uses frictional heating combined with forging pressure to produce high strength bonds. It is attractive for aerospace applications. Although residual stresses in FSW are generally lower when compared to conventional fusion welds, recent work has shown that significant tensile residual stresses can be present in the weld after fabrication. Therefore, laser shock peening was investigated as a means of moderating the tensile residual stresses produced during welding. This slide presentation reviews the effect of Laser Peening on the weld, in tensile strength, strain, surface roughness, microhardness, surface wear/friction, and fatigue crack growth rates. The study concluded that the laser peening process can result in considerable improvement to crack initiaion, propagation and mechanical properties in FSW.
Tribological properties of alumina-boria-silicate fabric from 25 to 850 C
NASA Technical Reports Server (NTRS)
Dellacorte, Christopher
1988-01-01
Demanding tribological properties are required of the materials used for the sliding seal between the sidewalls and the lower wall of the variable area hypersonic engine. Temperatures range from room temperature and below to operating temperatures of 1000 C in an environment of air, hydrogen, and water vapor. Candidate sealing materials for this application are an alumina-boria-silicate, ceramic, fabric rope sliding against the engine walls which may be made from copper- or nickel-based alloys. Using a pin-on-disk tribometer, the friction and wear properties of some of these potential materials and possible lubrication methods are evaluated. The ceramic fabric rope displayed unacceptably high friction coefficients (0.6 to 1.3) and, thus, requires lubrication. Sputtered thin films of gold, silver, and CaF2 reduced the friction by a factor of two. Sprayed coatings of boride nitride did not effectively lubricate the fabric. Static heat treatment tests at 950 C indicate that the fabric is chemically attacked by large quantities of silver, CaF2, and boron nitride. Sputtered films or powder impregnation of the fabric with gold may provide adequate lubrication up to 1000 C without showing any chemical attack.
NASA Technical Reports Server (NTRS)
Sawyer, J. W.
1977-01-01
Drag and heating rates on wavy surfaces typical of current corrugated plate designs for thermal protection systems were determined experimentally. Pressure-distribution, heating-rate, and oil-flow tests were conducted in the Langley Unitary Plan wind tunnel at Mach numbers of 2.4 and 4.5 with the corrugated surface exposed to both thick and thin turbulent boundary layers. Tests were conducted with the corrugations at cross-flow angles from 0 deg to 90 deg to the flow. Results show that for cross-flow angles of 30 deg or less, the pressure drag coefficients are less than the local flat-plate skin-friction coefficients and are not significantly affected by Mach number, Reynolds number, or boundary-layer thickness over the ranges investigated. For cross-flow angles greater than 30 deg, the drag coefficients increase significantly with cross-flow angle and moderately with Reynolds number. Increasing the Mach number causes a significant reduction in the pressure drag. The average and peak heating penalties due to the corrugated surface are small for cross-flow angles of 10 deg or less but are significantly higher for the larger cross-flow angles.
NASA Astrophysics Data System (ADS)
Li, G. J.; Li, J.; Luo, X.
2015-01-01
The composite coatings were produced on the Ti6Al4V alloy substrate by laser cladding. Subsequently, the coatings were heated at 500 °C for 1 h and 2 h and then cooled in air. Effects of post-heat treatment on microstructure, microhardness and fracture toughness of the coatings were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), optical microscopy (OM). Wear resistance of the coatings was evaluated under the dry sliding reciprocating friction condition at room temperature. The results indicated that the coatings mainly consist of a certain amount of coarse white equiaxed WC particles surrounded by the white-bright W2C, a great deal of fine dark spherical TiC particles and the matrix composed of the α(Ti), Ti2Ni and TiNi phases. Effects of the post-heat treatment on phase constituents and microstructure of the coatings were almost negligible due to the low temperature. However, the post-heat treatment could decrease the residual stress and increase fracture toughness of the coatings, and fracture toughness of the coatings was improved from 2.77 MPa m1/2 to 3.80 MPa m1/2 and 4.43 MPa m1/2 with the heat treatment for 1 h and 2 h, respectively. The mutual role would contribute to the reduction in cracking susceptibility. Accompanied with the increase in fracture toughness, microhardness of the coatings was reduced slightly. The dominant wear mechanism for all the coatings was abrasive wear, characterized by micro-cutting or micro-plowing. The heat treatment could significantly decrease the average friction coefficient and reduce the fluctuation of the friction coefficient with the change in sliding time. The appropriate heat treatment time (approximately 1 h) had a minimal effect on wear mass loss and volume loss. Moreover, the improvement in fracture toughness will also be beneficial to wear resistance of the coatings under the long service.
Coefficient of friction: tribological studies in man - an overview.
Sivamani, Raja K; Goodman, Jack; Gitis, Norm V; Maibach, Howard I
2003-08-01
Compared to other studies of skin, relatively few studies have focused on the friction of skin. This work reviews existing skin friction, emphasizing test apparatuses and parameters that have added to information regarding the friction coefficient. This review also outlines what factors are important to consider in future friction studies. Past studies have utilized numerous designs for a test apparatus, including probe geometry and material, as well as various probe motions (rotational vs. linear). Most tests were performed in vivo; a few were performed in vitro and on porcine skin. Differences in probe material, geometry and smoothness affect friction coefficient measurements. An increase in skin hydration, either through water or through moisturizer application, increases its friction coefficient; a decrease in skin hydration, either through clinical dermatitis or through alcohol addition, decreases the coefficient. Differences are present between anatomical sites. Conflicting results are found regarding age and no differences are apparent as a result of gender or race. Skin friction appears to be dependent on several factors - such as age, anatomical site and skin hydration. The choice of the probe and the test apparatus also influence the measurement.
Nano-inspired smart interfaces: fluidic interactivity and its impact on heat transfer
Kim, Beom Seok; Lee, Byoung In; Lee, Namkyu; Choi, Geehong; Gemming, Thomas; Cho, Hyung Hee
2017-01-01
Interface-inspired convection is a key heat transfer scheme for hot spot cooling and thermal energy transfer. An unavoidable trade-off of the convective heat transfer is pressure loss caused by fluidic resistance on an interface. To overcome this limitation, we uncover that nano-inspired interfaces can trigger a peculiar fluidic interactivity, which can pursue all the two sides of the coin: heat transfer and fluidic friction. We demonstrate the validity of a quasi-fin effect of Si-based nanostructures based on conductive capability of heat dissipation valid under the interactivity with fluidic viscous sublayer. The exclusive fluid-interface friction is achieved when the height of the nanostructures is much less than the thickness of the viscous sublayers in the turbulent regime. The strategic nanostructures show an enhancement of heat transfer coefficients in the wall jet region by more than 21% without any significant macroscale pressure loss under single-phase impinging jet. Nanostructures guaranteeing fluid access via an equivalent vacancy larger than the diffusive path length of viscid flow lead to local heat transfer enhancement of more than 13% at a stagnation point. Functional nanostructures will give shape to possible breakthroughs in heat transfer and its optimization can be pursued for engineered systems. PMID:28345613
Evaluation of friction heating in cavitating high pressure Diesel injector nozzles
NASA Astrophysics Data System (ADS)
Salemi, R.; Koukouvinis, P.; Strotos, G.; McDavid, R.; Wang, Lifeng; Li, Jason; Marengo, M.; Gavaises, M.
2015-12-01
Variation of fuel properties occurring during extreme fuel pressurisation in Diesel fuel injectors relative to those under atmospheric pressure and room temperature conditions may affect significantly fuel delivery, fuel injection temperature, injector durability and thus engine performance. Indicative results of flow simulations during the full injection event of a Diesel injector are presented. In addition to the Navier-Stokes equations, the enthalpy conservation equation is considered for predicting the fuel temperature. Cavitation is simulated using an Eulerian-Lagrangian cavitation model fully coupled with the flow equations. Compressible bubble dynamics based on the R-P equation also consider thermal effects. Variable fuel properties function of the local pressure and temperature are taken from literature and correspond to a reference so-called summer Diesel fuel. Fuel pressurisation up to 3000bar pressure is considered while various wall temperature boundary conditions are tested in order to compare their effect relative to those of the fuel heating caused during the depressurisation of the fuel as it passes through the injection orifices. The results indicate formation of strong temperature gradients inside the fuel injector while heating resulting from the extreme friction may result to local temperatures above the fuel's boiling point. Predictions indicate bulk fuel temperature increase of more than 100°C during the opening phase of the needle valve. Overall, it is concluded that such effects are significant for the injector performance and should be considered in relevant simulation tools.
Thermo-mechanical pressurization of experimental faults in cohesive rocks during seismic slip
NASA Astrophysics Data System (ADS)
Violay, M.; Di Toro, G.; Nielsen, S.; Spagnuolo, E.; Burg, J. P.
2015-11-01
Earthquakes occur because fault friction weakens with increasing slip and slip rates. Since the slipping zones of faults are often fluid-saturated, thermo-mechanical pressurization of pore fluids has been invoked as a mechanism responsible for frictional dynamic weakening, but experimental evidence is lacking. We performed friction experiments (normal stress 25 MPa, maximal slip-rate ∼3 ms-1) on cohesive basalt and marble under (1) room-humidity and (2) immersed in liquid water (drained and undrained) conditions. In both rock types and independently of the presence of fluids, up to 80% of frictional weakening was measured in the first 5 cm of slip. Modest pressurization-related weakening appears only at later stages of slip. Thermo-mechanical pressurization weakening of cohesive rocks can be negligible during earthquakes due to the triggering of more efficient fault lubrication mechanisms (flash heating, frictional melting, etc.).
NASA Astrophysics Data System (ADS)
Parsa, M. H.; Davari, H.; Hadian, A. M.; Ahmadabadi, M. Nili
2007-05-01
Hybrid Rotary Friction Welding is a modified type of common rotary friction welding processes. In this welding method parameters such as pressure, angular velocity and time of welding control temperature, stress, strain and their variations. These dependent factors play an important rule in defining optimum process parameters combinations in order to improve the design and manufacturing of welding machines and quality of welded parts. Thermo-mechanical simulation of friction welding has been carried out and it has been shown that, simulation is an important tool for prediction of generated heat and strain at the weld interface and can be used for prediction of microstructure and evaluation of quality of welds. For simulation of Hybrid Rotary Friction Welding, a commercial finite element program has been used and the effects of pressure and rotary velocity of rotary part on temperature and strain variations have been investigated.
Mechanical Testing of Carbon Based Woven Thermal Protection Materials
NASA Technical Reports Server (NTRS)
Pham, John; Agrawal, Parul; Arnold, James O.; Peterson, Keith; Venkatapathy, Ethiraj
2013-01-01
Three Dimensional Woven thermal protection system (TPS) materials are one of the enabling technologies for mechanically deployable hypersonic decelerator systems. These materials have been shown capable of serving a dual purpose as TPS and as structural load bearing members during entry and descent operations. In order to ensure successful structural performance, it is important to characterize the mechanical properties of these materials prior to and post exposure to entry-like heating conditions. This research focuses on the changes in load bearing capacity of woven TPS materials after being subjected to arcjet simulations of entry heating. Preliminary testing of arcjet tested materials [1] has shown a mechanical degradation. However, their residual strength is significantly more than the requirements for a mission to Venus [2]. A systematic investigation at the macro and microstructural scales is reported here to explore the potential causes of this degradation. The effects of heating on the sizing (an epoxy resin coating used to reduce friction and wear during fiber handling) are discussed as one of the possible causes for the decrease in mechanical properties. This investigation also provides valuable guidelines for margin policies for future mechanically deployable entry systems.
On the possibility of control restoration in some inverse problems of heat and mass transfer
NASA Astrophysics Data System (ADS)
Bilchenko, G. G.; Bilchenko, N. G.
2016-11-01
The hypersonic aircraft permeable surfaces effective heat protection problems are considered. The physic-chemical processes (the dissociation and the ionization) in laminar boundary layer of compressible gas are appreciated in mathematical model. The statements of direct problems of heat and mass transfer are given: according to preset given controls it is necessary to compute the boundary layer mathematical model parameters and determinate the local and total heat flows and friction forces and the power of blowing system. The A.A.Dorodnicyn's generalized integral relations method has been used as calculation basis. The optimal control - the blowing into boundary layer (for continuous functions) was constructed as the solution of direct problem in extreme statement with the use of this approach. The statement of inverse problems are given: the control laws ensuring the preset given local heat flow and local tangent friction are restored. The differences between the interpolation and the approximation statements are discussed. The possibility of unique control restoration is established and proved (in the stagnation point). The computational experiments results are presented.
Hyperthermia with rotating magnetic nanowires inducing heat into tumor by fluid friction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Egolf, Peter W.; Pawlowski, Anne-Gabrielle; Tsague, Paulin
2016-08-14
A magnetic hyperthermia cancer treatment strategy that does not operate by means of conventional heating mechanisms is presented. The proposed approach consists of injecting a gel with homogeneously distributed magnetic nanowires into a tumor. Upon the application of a low-frequency rotating or circularly polarized magnetic field, nanowires spin around their center of viscous drag due to torque generated by shape anisotropy. As a result of external rotational forcing and fluid friction in the nanoparticle's boundary layer, heating occurs. The nanowire dynamics is theoretically and experimentally investigated, and different feasibility proofs of the principle by physical modeling, which adhere to medicalmore » guidelines, are presented. The magnetic nanorotors exhibit rotations and oscillations with quite a steady center of gravity, which proves an immobile behavior and guarantees a time-independent homogeneity of the spatial particle distribution in the tumor. Furthermore, a fluid dynamic and thermodynamic heating model is briefly introduced. This model is a generalization of Penne's model that for this method reveals theoretic heating rates that are sufficiently high, and fits well into medical limits defined by present standards.« less
R245fa Flow Boiling inside a 4.2 mm ID Microfin Tube
NASA Astrophysics Data System (ADS)
Longo, G. A.; Mancin, S.; Righetti, G.; Zilio, C.
2017-11-01
This paper presents the R245fa flow boiling heat transfer and pressure drop measurements inside a mini microfin tube with internal diameter at the fin tip of 4.2 mm, having 40 fins, 0.15 mm high with a helix angle of 18°. The tube was brazed inside a copper plate and electrically heated from the bottom. Sixteen T-type thermocouples are located in the copper plate to monitor the wall temperature. The experimental measurements were carried out at constant mean saturation temperature of 30 °C, by varying the refrigerant mass velocity between 100 kg m-2 s-1 and 300 kg m-2 s-1, the vapour quality from 0.15 to 0.95, at two different heat fluxes: 30 and 60 kW m-2. The experimental results are presented in terms of two-phase heat transfer coefficient, onset dryout vapour quality, and frictional pressure drop. Moreover, the experimental measurements are compared against the most updated models for boiling heat transfer coefficient and frictional pressure drop estimations available in the open literature for microfin tubes.
Mesospheric heating due to intense tropospheric convection
NASA Technical Reports Server (NTRS)
Taylor, L. L.
1979-01-01
A series of rocket measurements made twice daily at Wallops Island, Va., revealed a rapid heating of the mesosphere on the order of 10 K on days when thunderstorms or squall lines were in the area. This heating is explained as the result of frictional dissipation of vertically propagating internal gravity waves generated by intense tropospheric convection. Ray-tracing theory is used to determine the spectrum of gravity wave groups that actually reach mesospheric heights. This knowledge is used in an equation describing the spectral energy density of a penetrative convective element to calculate the fraction of the total energy initially available to excite those waves that do reach the level of heating. This value, converted into a vertical velocity, is used as the lower boundary condition for a multilayer model used to determine the detailed structure of the vertically propagating waves. The amount of frictional dissipation produced by the waves is calculated from the solutions of the frictionless model by use of a vertically varying eddy viscosity coefficient. The heating produced by the dissipation is then calculated from the thermodynamic equation.
NASA Technical Reports Server (NTRS)
Stoltzfus, Joel M.; Benz, Frank J.
1986-01-01
Advances in the design of the liquid oxygen, liquid hydrogen engines for the Space Transportation System call for the use of warm, high-pressure oxygen as the driving gas in the liquid oxygen turbopump. The NASA Lewis Research Center requested the NASA White Sands Test Facility (WSTF) to design a test program to determine the relative resistance to ignition of nine selected turbopump materials: Hastelloy X, Inconel 600, Invar 36, Monel K-500, nickel 200, silicon carbide, stainless steel 316, and zirconium copper. The materials were subjected to particle impact and to frictional heating in high-pressure oxygen.
NASA Technical Reports Server (NTRS)
Tischbein, Hans W
1945-01-01
The coefficient of friction between piston ring and cylinder liner was measured in relation to gliding acceleration, pressure, temperature, quantity of oil and quality of oil. Comparing former lubrication-technical tests, conclusions were drawn as to the state of friction. The coefficients of friction as figured out according to the hydrodynamic theory were compared with those measured by tests. Special tests were made on "oiliness." The highest permissible pressure was measured and the ratio of pressure discussed.
NASA Astrophysics Data System (ADS)
Oluwasegun, K. M.; Olawale, J. O.; Ige, O. O.; Shittu, M. D.; Adeleke, A. A.; Malomo, B. O.
2014-08-01
The behaviour of γ' phase to thermal and mechanical effects during rapid heating of Astroloy, a powder metallurgy nickel-based superalloy has been investigated. The thermo-mechanical-affected zone (TMAZ) and heat-affected zone (HAZ) microstructures of an inertia friction welded (IFW) Astroloy were simulated using a Gleeble thermo-mechanical simulation system. Detailed microstructural examination of the simulated TMAZ and HAZ and those present in actual IFW specimens showed that γ' particles persisted during rapid heating up to a temperature where the formation of liquid is thermodynamically favored and subsequently re-solidified eutectically. The result obtained showed that forging during the thermo-mechanical simulation significantly enhanced resistance to weld liquation cracking of the alloy. This is attributable to strain-induced rapid isothermal dissolution of the constitutional liquation products within 150 μm from the center of the forged sample. This was not observed in purely thermally simulated samples. The microstructure within the TMAZ of the as-welded alloy is similar to the microstructure in the forged Gleeble specimens.
Microstructural Evolution of HSLA ISO 3183 X80M (API 5L X80) Friction Stir Welded Joints
NASA Astrophysics Data System (ADS)
Hermenegildo, Tahiana F. C.; Santos, Tiago F. A.; Torres, Edwar A.; Afonso, Conrado R. M.; Ramirez, Antonio J.
2018-03-01
Evaluation was made of friction stir welded joints, identifying conditions that resulted in satisfactory welded joints free from defects and with microstructural characteristics that provided good mechanical properties. Microstructural characterization and cooling curve analysis of the joints with lower and higher heat inputs evidenced deformation below and above the non-recrystallization temperature (Tnr) and dynamic recrystallization during microstructural evolution. Microscopy analyses showed acicular ferrite, bainitic ferrite, and coalesced bainite microstructures in the stir zone of the cold weld (lower heat input), while the stir zone of the hot weld (higher heat input) contained bainitic ferrite, acicular ferrite, coalesced bainite, martensite, and dispersed carbides. Granular bainite and dispersed carbides were observed in all the heat affected zones. Analysis of the microstructural transformations, together with the thermal history of the joints, showed that the variable that had the greatest influence on the morphology of the bainite (granular bainite/bainitic ferrite) was the deformation temperature.
NASA Astrophysics Data System (ADS)
Pan, Yi; Lados, Diana A.
2017-02-01
Friction stir welding (FSW) is a technique that can be used for materials joining and local microstructural refinement. Owing to the solid-state character of the process, FSW has significant advantages over traditional fusion welding, including reduced part distortion and overheating. In this study, a novel heat transfer model was developed to predict weld temperature distributions and quantify peak temperatures under various combinations of processing parameters for different wrought and cast Al alloys. Specifically, an analytical analysis was first developed to characterize and predict heat generation rate within the weld nugget, and then a two-dimensional (2D) numerical simulation was performed to evaluate the temperature distribution in the weld cross-section and top-view planes. A further three-dimensional (3D) simulation was developed based on the heat generation analysis. The model was validated by measuring actual temperatures near the weld nugget using thermocouples, and good agreement was obtained for all studied materials and conditions.
NASA Astrophysics Data System (ADS)
Zhang, Jingyi; Upadhyay, Piyush; Hovanski, Yuri; Field, David P.
2018-01-01
Friction stir welding (FSW) is a cost-effective and high-quality joining process for aluminum alloys (especially heat-treatable alloys) that is historically operated at lower joining speeds (up to hundreds of millimeters per minute). In this study, we present a microstructural analysis of friction stir welded AA7075-T6 blanks with high welding speeds up to 3 M/min. Textures, microstructures, mechanical properties, and weld quality are analyzed using TEM, EBSD, metallographic imaging, and Vickers hardness. The higher welding speed results in narrower, stronger heat-affected zones (HAZs) and also higher hardness in the nugget zones. The material flow direction in the nugget zone is found to be leaning towards the welding direction as the welding speed increases. Results are coupled with welding parameters and thermal history to aid in the understanding of the complex material flow and texture gradients within the welds in an effort to optimize welding parameters for high-speed processing.
Friction Hydro-Pillar Processing of a High Carbon Steel: Joint Structure and Properties
NASA Astrophysics Data System (ADS)
Kanan, Luis Fernando; Vicharapu, Buchibabu; Bueno, Antonio Fernando Burkert; Clarke, Thomas; De, Amitava
2018-04-01
A coupled experimental and theoretical study is reported here on friction hydro-pillar processing of AISI 4140 steel, which is a novel solid-state joining technique to repair and fill crack holes in thick-walled components by an external stud. The stud is rotated and forced to fill a crack hole by plastic flow. During the process, frictional heating occurs along the interface of the stud and the wall of crack hole leading to thermal softening of the stud that eases its plastic deformation. The effect of the stud force, its rotational speed and the total processing time on the rate of heat generation and resulting transient temperature field is therefore examined to correlate the processing variables with the joint structure and properties in a systematic and quantitative manner, which is currently scarce in the published literature. The results show that a gentler stud force rate and greater processing time can promote proper filling of the crack hole and facilitate a defect-free joint between the stud and original component.
Historical overview of friction testing in Connecticut.
DOT National Transportation Integrated Search
2010-03-01
A historical overview of pavement friction testing in Connecticut is presented. : Photographs of early pavement friction testers are provided, including vintage photos : of a skid trailer from a Federal Highway Administration (formally Bureau of Publ...
Methods to Measure, Predict and Relate Friction, Wear and Fuel Economy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gravante, Steve; Fenske, George; Demas, Nicholas
High-fidelity measurements of the coefficient of friction and the parasitic friction power of the power cylinder components have been made for the Isuzu 5.2L 4H on-highway engine. In particular, measurements of the asperity friction coefficient were made with test coupons using Argonne National Lab’s (ANL) reciprocating test rig for the ring-on-liner and skirt-on-liner component pairs. These measurements correlated well with independent measurements made by Electro-Mechanical Associates (EMA). In addition, surface roughness measurements of the Isuzu components were made using white light interferometer (WLI). The asperity friction and surface characterization are key inputs to advanced CAE simulation tools such as RINGPAKmore » and PISDYN which are used to predict the friction power and wear rates of power cylinder components. Finally, motored friction tests were successfully performed to quantify the friction mean effective pressure (FMEP) of the power cylinder components for various oils (High viscosity 15W40, low viscosity 5W20 with friction modifier (FM) and specially blended oil containing consisting of PAO/ZDDP/MoDTC) at 25, 50, and 110°C.« less
The roles of time and displacement in velocity-dependent volumetric strain of fault zones
Beeler, N.M.; Tullis, T.E.
1997-01-01
The relationship between measured friction??A and volumetric strain during frictional sliding was determined using a rate and state variable dependent friction constitutive equation, a common work balance relating friction and volume change, and two types of experimental faults: initially bare surfaces of Westerly granite and rock surfaces separated by a 1 mm layer of < 90 ??m Westerly granite gouge. The constitutive equation is the sum of a constant term representing the nominal resistance to sliding and two smaller terms: a rate dependent term representing the shear viscosity of the fault surface (direct effect), and a term which represents variations in the area of contact (evolution effect). The work balance relationship requires that ??A differs from the frictional resistance that leads to shear heating by the derivative of fault normal displacement with respect shear displacement, d??n ld??s. An implication of this relationship is that the rate dependence of d??n ld??s contributes to the rate dependence of ??A. Experiments show changes in sliding velocity lead to changes in both fault strength and volume. Analysis of data with the rate and state equations combined with the work balance relationship preclude the conventional interpretation of the direct effect in the rate and state variable constitutive equations. Consideration of a model bare surface fault consisting of an undeformable indentor sliding on a deformable surface reveals a serious flaw in the work balance relationship if volume change is time-dependent. For the model, at zero slip rate indentation creep under the normal load leads to time-dependent strengthening of the fault surface but, according to the work balance relationship, no work is done because compaction or dilatancy can only be induced by shearing. Additional tests on initially bare surfaces and gouges show that fault normal strain in experiments is time-dependent, consistent with the model. This time-dependent fault normal strain, which is not accounted for in the work balance relationship, explains the inconsistency between the constitutive equations and the work balance. For initially bare surface faults, all rate dependence of volume change is due to time dependence. Similar results are found for gouge. We conclude that ??A reflects the frictional resistance that results in shear heating, and no correction needs to be made for the volume changes. The result that time-dependent volume changes do not contribute to ??A is a general result and extends beyond these experiments, the simple indentor model and particular constitutive equations used to illustrate the principle.
Kim, Kyungmok; Lee, Jaewook
2016-01-01
This paper describes a sliding friction model for an electro-deposited coating. Reciprocating sliding tests using ball-on-flat plate test apparatus are performed to determine an evolution of the kinetic friction coefficient. The evolution of the friction coefficient is classified into the initial running-in period, steady-state sliding, and transition to higher friction. The friction coefficient during the initial running-in period and steady-state sliding is expressed as a simple linear function. The friction coefficient in the transition to higher friction is described with a mathematical model derived from Kachanov-type damage law. The model parameters are then estimated using the Markov Chain Monte Carlo (MCMC) approach. It is identified that estimated friction coefficients obtained by MCMC approach are in good agreement with measured ones. PMID:28773359
NASA Astrophysics Data System (ADS)
Chang, Ho; Lan, Chou-Wei; Guo, Jia-Bin
2011-12-01
This paper studies the influence of addition of 100 nm diameter nickel nano-particles on the friction properties of synthetic grease (Li base, VG100) in pneumatic cylinder. The friction force test of pneumatic cylinder equipment measures the frictional force between seal and cylinder bore in pneumatic cylinders. The lubricants with addition of nickel nano-particles were used for lubricating the contact interface between seal and cylinder bore. The friction force test equipment employ a load cell force sensor to measure the friction force between seals and cylinder bores. Results obtained from experimental tests are compared to determine the friction force between seals and cylinder bore in pneumatic cylinders. The study leads to the conclusion that the addition of nickel nano-particles to synthetic grease results in a decrease in friction force between seals and cylinder bores in pneumatic cylinder. This tribological behavior is closely related to the deposition of nano-particles on the rubbing surfaces
Space Shuttle Main Engine (SSME) LOX turbopump pump-end bearing analysis
NASA Technical Reports Server (NTRS)
1986-01-01
A simulation of the shaft/bearing system of the Space Shuttle Main Engine Liquid Oxygen turbopump was developed. The simulation model allows the thermal and mechanical characteristics to interact as a realistic simulation of the bearing operating characteristics. The model accounts for single and two phase coolant conditions, and includes the heat generation from bearing friction and fluid stirring. Using the simulation model, parametric analyses were performed on the 45 mm pump-end bearings to investigate the sensitivity of bearing characteristics to contact friction, axial preload, coolant flow rate, coolant inlet temperature and quality, heat transfer coefficients, outer race clearance and misalignment, and the effects of thermally isolating the outer race from the isolator.
SOME EXPERIMENTS ON THE TURBULENCE AND MUTUAL FRICTION IN LIQUID HELIUM (in French)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kramers, H.C.
1962-05-01
Recent experiments on the hydrodynamic properties of liquid helium II, performed in the Kamerlingh Onnes Laboratorium (Leiden), are discussed on the basis of the twofluid model. Staas and Taconis measured temperature and pressure gradients occurring in a narrow circular capillary in the presence of a heat current. They discovered a turbulent phenomenon, very analogous to ordinary classical turbulence. The attenuation of second sound was studied by Wiarda and the present author in its dependence on a simultaneous continuous heat current. The method employed proves to be very suitable for a study of the so-called mutual friction and of phenomena occurringmore » in the critical velocity region. (auth)« less
NASA Technical Reports Server (NTRS)
Damkohler, Gerhard
1950-01-01
The analytical results of Part I are also applied to sound dispersion by friction and heat conduction, An irreversible change of momentum, energy, and type of particle corresponding to friction, heat conduction, and diffusion effects can appear both in the direction of the sound field and traverse to it. Longitudinal damping, the coupling of longitudinal damping and that due to chemical and physical changes, and coupling of diffusion and compositional changes are treated for a plane sound wave of infinite extent. The same principles are also applied to sound effects in cylindrical tubes. The limitations of the method are discussed in some detail.
Abnormal Grain Growth Suppression in Aluminum Alloys
NASA Technical Reports Server (NTRS)
Hales, Stephen J. (Inventor); Claytor, Harold Dale (Inventor); Alexa, Joel A. (Inventor)
2015-01-01
The present invention provides a process for suppressing abnormal grain growth in friction stir welded aluminum alloys by inserting an intermediate annealing treatment ("IAT") after the welding step on the article. The IAT may be followed by a solution heat treatment (SHT) on the article under effectively high solution heat treatment conditions. In at least some embodiments, a deformation step is conducted on the article under effective spin-forming deformation conditions or under effective superplastic deformation conditions. The invention further provides a welded article having suppressed abnormal grain growth, prepared by the process above. Preferably the article is characterized with greater than about 90% reduction in area fraction abnormal grain growth in any friction-stir-welded nugget.
Gawande, Vipin B; Dhoble, A S; Zodpe, D B
2014-01-01
CFD analysis of 2-dimensional artificially roughened solar air heater duct with additional circular vortex generator, inserted in inlet section is carried out. Circular transverse ribs on the absorber plate are placed as usual. The analysis is done to investigate the effect of inserting additional vortex generator on the heat transfer and flow friction characteristics inside the solar air heater duct. This investigation covers relative roughness pitch in the range of 10 ≤ P/e ≤ 25 and relevant Reynolds numbers in the range of 3800 ≤ Re ≤ 18000. Relative roughness height (e/D) is kept constant as 0.03 for analysis. The turbulence created due to additional circular vortex generator increases the heat transfer rate and at the same time there is also increase in friction factor values. For combined arrangement of ribs and vortex generator, maximum Nusselt number is found to be 2.05 times that of the smooth duct. The enhancement in Nusselt number with ribs and additional vortex generator is found to be 1.06 times that of duct using ribs alone. The maximum increase in friction factor with ribs and circular vortex generator is found to be 2.91 times that of the smooth duct. Friction factor in a combined arrangement is 1.114 times that in a duct with ribs alone on the absorber plate. The augmentation in Thermal Enhancement Factor (TEF) with vortex generator in inlet section is found to be 1.06 times more than with circular ribs alone on the absorber plate.
Gawande, Vipin B.; Dhoble, A. S.; Zodpe, D. B.
2014-01-01
CFD analysis of 2-dimensional artificially roughened solar air heater duct with additional circular vortex generator, inserted in inlet section is carried out. Circular transverse ribs on the absorber plate are placed as usual. The analysis is done to investigate the effect of inserting additional vortex generator on the heat transfer and flow friction characteristics inside the solar air heater duct. This investigation covers relative roughness pitch in the range of 10 ≤ P/e ≤ 25 and relevant Reynolds numbers in the range of 3800 ≤ Re ≤ 18000. Relative roughness height (e/D) is kept constant as 0.03 for analysis. The turbulence created due to additional circular vortex generator increases the heat transfer rate and at the same time there is also increase in friction factor values. For combined arrangement of ribs and vortex generator, maximum Nusselt number is found to be 2.05 times that of the smooth duct. The enhancement in Nusselt number with ribs and additional vortex generator is found to be 1.06 times that of duct using ribs alone. The maximum increase in friction factor with ribs and circular vortex generator is found to be 2.91 times that of the smooth duct. Friction factor in a combined arrangement is 1.114 times that in a duct with ribs alone on the absorber plate. The augmentation in Thermal Enhancement Factor (TEF) with vortex generator in inlet section is found to be 1.06 times more than with circular ribs alone on the absorber plate. PMID:25254251
ERIC Educational Resources Information Center
School Science Review, 1983
1983-01-01
Describes a soap bubble motor, house insulation models, using hot-water bottles as heat sources, solar mobile, surface tension boat, evaporative cooling experiments, six activities on heat, and a magic trick based on friction. Also discusses using the Cambion Electronics Kit to introduce junior high students to the subject. (JM)
Laser-heated rotating specimen autoignition test
NASA Technical Reports Server (NTRS)
Au, A. C.
1988-01-01
Specimens of 440 C steel were rotated in a chamber pressurized with oxygen gas and heated with a 5-kW CO2 laser to determine the temperature required for autoignition to occur. Tests included exposures of static and rotating (25,000 rpm) specimens in oxygen pressurized to 5.51 MPa, and with focused laser fluences of more than 3.5 billion W/sq m. Specimen surface temperatures were monitored with a scanning infrared camera. Temperature measurement difficulties were experienced due to a problem with internal reflection inside the test chamber; however, posttest specimen examinations confirmed that surface melt (1371 C) was achieved in several tests. No sustained combustion was initiated in any rotating specimen. One static specimen was ignited. Results indicated that conditions necessary for autoignition of 440 C steel are more dependent on specimen geometry and available heat removal mechanisms. Sustained combustion occurred in the ignited static specimen with an estimated 130 C/sec cooling rate due to conduction. The rotating specimens could not sustain combustion due to a greater conductive/convective cooling rate of about 4000 C/sec and ejection of molten material. These results were applied to the Space Shuttle Main Engine (SSME) oxygen turbopump bearings to conclude that the LOX-cooled 440 C steel bearings cannot sustain combustion initiated by skidding friction.
NASA Astrophysics Data System (ADS)
Li, N.; Li, W. Y.; Yang, X. W.; Feng, Y.; Vairis, A.
2018-05-01
Using cold spraying (CS), a surface layer with a modified microstructure and enhanced mechanical properties was formed on a 3.2 mm thick friction stir welded (FSWed) AA2024-T3 joint. The combined effect of "shot peening effect (SPE)" and "heat flow effect (HFE)" during CS were used to enhance joint mechanical properties. The microstructure evolution of the FSWed AA2024-T3 joints in the surface layer following CS coatings and their effect on mechanical properties were systematically characterized with electron back-scattered diffraction, transmission electron microscopy, differential scanning calorimetry and mechanical tests. Based on these experiments, a grain refinement, finer and more S phases, and improved amount of Guinier-Preston-Bagaryatsky (GPB) zones produced by CS treatments are proposed. The deposition of aluminum coating on the joint, lead to hardness recovery in the stir zone and the development of two low hardness zones as the density of GPB increased. The tensile properties of FSWed AA2024-T3 joints improved with the application of the aluminum coatings. Experiments and analysis of the enhanced mechanical properties mechanism indicate that SPE with a high plastic deformation and HFE with an intensive heat flow are necessary for the production of refined grains and increased numbers of GPB zones.
NASA Astrophysics Data System (ADS)
Pan, Yi; Lados, Diana A.
2017-04-01
Friction stir welding (FSW) is a solid-state process widely used for joining similar and dissimilar materials for critical applications in the transportation sector. Understanding the effects of the process on microstructure and mechanical properties is critical in design for structural integrity. In this study, four aluminum alloy systems (wrought 6061-T651 and cast A356, 319, and A390) were processed in both as-fabricated and pre-weld heat-treated (T6) conditions using various processing parameters. The effects of processing and heat treatment on the resulting microstructures, macro-/micro-hardness, and tensile properties were systematically investigated and mechanistically correlated to changes in grain size, characteristic phases, and strengthening precipitates. Tensile tests were performed at room temperature both along and across the welding zones. A new method able to evaluate weld quality (using a weld quality index) was developed based on the stress concentration calculated under tensile loading. Optimum processing parameter domains that provide both defect-free welds and good mechanical properties were determined for each alloy and associated with the thermal history of the process. These results were further related to characteristic microstructural features, which can be used for component design and materials/process optimization.
NASA Astrophysics Data System (ADS)
Sinha, Nitish; Singh, Arun K.; Singh, Trilok N.
2018-05-01
In this article, we study numerically the dynamic stability of the rate, state, temperature, and pore pressure friction (RSTPF) model at a rock interface using standard spring-mass sliding system. This particular friction model is a basically modified form of the previously studied friction model namely the rate, state, and temperature friction (RSTF). The RSTPF takes into account the role of thermal pressurization including dilatancy and permeability of the pore fluid due to shear heating at the slip interface. The linear stability analysis shows that the critical stiffness, at which the sliding becomes stable to unstable or vice versa, increases with the coefficient of thermal pressurization. Critical stiffness, on the other hand, remains constant for small values of either dilatancy factor or hydraulic diffusivity, but the same decreases as their values are increased further from dilatancy factor (˜ 10^{ - 4} ) and hydraulic diffusivity (˜ 10^{ - 9} {m}2 {s}^{ - 1} ) . Moreover, steady-state friction is independent of the coefficient of thermal pressurization, hydraulic diffusivity, and dilatancy factor. The proposed model is also used for predicting time of failure of a creeping interface of a rock slope under the constant gravitational force. It is observed that time of failure decreases with increase in coefficient of thermal pressurization and hydraulic diffusivity, but the dilatancy factor delays the failure of the rock fault under the condition of heat accumulation at the creeping interface. Moreover, stiffness of the rock-mass also stabilizes the failure process of the interface as the strain energy due to the gravitational force accumulates in the rock-mass before it transfers to the sliding interface. Practical implications of the present study are also discussed.
Heat generation and hemolysis at the shaft seal in centrifugal blood pumps.
Araki, K; Taenaka, Y; Wakisaka, Y; Masuzawa, T; Tatsumi, E; Nakatani, T; Baba, Y; Yagura, A; Eya, K; Toda, K
1995-01-01
The heat and hemolysis around a shaft seal were investigated. Materials were original pumps (Nikkiso HMS-15:N-original, and 3M Delphin:D-original), vane-removed pumps (Nvane(-), Dvane(-)), and a small chamber with a shaft coiled by nichrome wire (mock pump). The original pumps were driven at 500 mmHg and 5 L/min, and vane-removed pumps were driven at the same rotation number. An electrical powers of 0, 0.5, 2, and 10 W was supplied to the mock pumps. In vitro hemolytic testing showed that hemolytic indices were 0.027 g/100 L in N-original, 0.013 in Nvane(-), 0.061 in D-original, and 0.012 in Dvane(-). Measurement of heat with a thermally insulated water chamber showed total heat within the pump of 8.62 and 10.85 W, and heat at the shaft seal of 0.87 and 0.62 W in the Nikkiso and Delphin pumps, respectively. Hemolysis and heat generation of mock pumps remained low. The results indicate that the heat generated around the shaft seal was minimal. Hemolysis at the shaft-seal was considerable but not major. Local heat did not affect hemolysis. It was concluded that the shaft-seal affected hemolysis, not by local heat but friction itself.
NASA Technical Reports Server (NTRS)
Brown, B Porter
1958-01-01
Report presents results of tests made on a power control system by means of a ground simulator to determine the effects of various combinations of valve friction and stick friction on the ability of the pilot to control the system. Various friction conditions were simulated with a rigid control system, a flexible system, and a rigid system having some backlash. For the tests, the period and damping of the simulated airplane were held constant.
NASA Astrophysics Data System (ADS)
Xingxing, Chen; Zhihui, Wang; Yongliang, Yu
2016-11-01
Hypersonic chemical non-equilibrium gas flows around blunt nosed bodies are studied in the present paper to investigate the Reynolds analogy relation on curved surfaces. With a momentum and energy transfer model being applied through boundary layers, influences of molecular dissociations and recombinations on skin frictions and heat fluxes are separately modeled. Expressions on the ratio of Cf / Ch (skin friction coefficient to heat flux) are presented along the surface of circular cylinders under the ideal dissociation gas model. The analysis indicates that molecular dissociations increase the linear distribution of Cf / Ch, but the nonlinear Reynolds analogy relation could ultimately be obtained in flows with larger Reynolds numbers and Mach numbers, where the decrease of wall heat flux by molecular recombinations signifies. The present modeling and analyses are also verified by the DSMC calculations on nitrogen gas flows.
Thermal Stir Welding: A New Solid State Welding Process
NASA Technical Reports Server (NTRS)
Ding, R. Jeffrey
2003-01-01
Thermal stir welding is a new welding process developed at NASA's Marshall Space Flight Center in Huntsville, AL. Thermal stir welding is similar to friction stir welding in that it joins similar or dissimilar materials without melting the parent material. However, unlike friction stir welding, the heating, stirring and forging elements of the process are all independent of each other and are separately controlled. Furthermore, the heating element of the process can be either a solid-state process (such as a thermal blanket, induction type process, etc), or, a fusion process (YG laser, plasma torch, etc.) The separation of the heating, stirring, forging elements of the process allows more degrees of freedom for greater process control. This paper introduces the mechanics of the thermal stir welding process. In addition, weld mechanical property data is presented for selected alloys as well as metallurgical analysis.
Thermal Stir Welding: A New Solid State Welding Process
NASA Technical Reports Server (NTRS)
Ding, R. Jeffrey; Munafo, Paul M. (Technical Monitor)
2002-01-01
Thermal stir welding is a new welding process developed at NASA's Marshall Space Flight Center in Huntsville, AL. Thermal stir welding is similar to friction stir welding in that it joins similar or dissimilar materials without melting the parent material. However, unlike friction stir welding, the heating, stirring and forging elements of the process are all independent of each other and are separately controlled. Furthermore, the heating element of the process can be either a solid-state process (such as a thermal blanket, induction type process, etc), or, a fusion process (YG laser, plasma torch, etc.) The separation of the heating, stirring, forging elements of the process allows more degrees of freedom for greater process control. This paper introduces the mechanics of the thermal stir welding process. In addition, weld mechanical property data is presented for selected alloys as well as metallurgical analysis.
Hardening Potential of an Al-Cu-Li Friction Stir Weld
NASA Astrophysics Data System (ADS)
Ivanov, Rosen; Boselli, Julien; Denzer, Diana; Larouche, Daniel; Gauvin, Raynald; Brochu, Mathieu
The evolution of the microstructure during friction stir welding of a third generation AA2199 Al-Li alloy has been described and related to the mechanical properties of welds. The coupling of electron microscopy and micro-hardness have helped generate an understanding of the relationship between grain structure, precipitate density and morphology behind the observed changes in mechanical properties during post weld artificial ageing. The ability of welds to recover hardness and strength during post weld heat treatment was linked to the limited formation of large scale precipitates which act as sinks for alloying elements. Welds obtained with high tool rotation speed (within parameters studied) showed ultimate tensile strength levels of about 93% of the base metal, an elongation of 6% at fracture, and hardness values ranging between 120-140 HV in the stir zone, thermo-mechanically affected zone, and heat affected zone upon post weld heat treatment.
Lockner, David A.; Tembe, Cheryl; Wong, Teng-fong
2009-01-01
Analysis of field data has led different investigators to conclude that the San Andreas Fault (SAF) has either anomalously low frictional sliding strength (m < 0.2) or strength consistent with standard laboratory tests (m > 0.6). Arguments for the apparent weakness of the SAF generally hinge on conceptual models involving intrinsically weak gouge or elevated pore pressure within the fault zone. Some models assert that weak gouge and/or high pore pressure exist under static conditions while others consider strength loss or fluid pressure increase due to rapid coseismic fault slip. The present paper is composed of three parts. First, we develop generalized equations, based on and consistent with the Rice (1992) fault zone model to relate stress orientation and magnitude to depth-dependent coefficient of friction and pore pressure. Second, we present temperature- and pressure-dependent friction measurements from wet illite-rich fault gouge extracted from San Andreas Fault Observatory at Depth (SAFOD) phase 1 core samples and from weak minerals associated with the San Andreas Fault. Third, we reevaluate the state of stress on the San Andreas Fault in light of new constraints imposed by SAFOD borehole data. Pure talc (m0.1) had the lowest strength considered and was sufficiently weak to satisfy weak fault heat flow and stress orientation constraints with hydrostatic pore pressure. Other fault gouges showed a systematic increase in strength with increasing temperature and pressure. In this case, heat flow and stress orientation constraints would require elevated pore pressure and, in some cases, fault zone pore pressure in excess of vertical stress.
The temperature dependences of electromechanical properties of PLZT ceramics
NASA Astrophysics Data System (ADS)
Czerwiec, M.; Zachariasz, R.; Ilczuk, J.
2008-02-01
The mechanical and electrical properties in lanthanum modified lead zirconate-titanate ceramics of 5/50/50 and 10/50/50 were studied by mechanical loss Q - 1, Young's modulus E, electric permittivity ɛ and tangent of dielectric loss of angle tgδ measurements. The internal friction Q - 1 and Young modulus E measured from 290 K to 600 K shows that Curie temperature TC is located at 574 K and 435 K (1st cycle of heating) respectively for ceramic samples 5/50/50 and 10/50/50. The movement of TC in second cycle of heating to lower temperature (561 K for 5/50/50 and 420 K for 10/50/50) has been observed. Together with Q - 1 and E measurements, temperature dependences of ɛ=f(T) and tgδ=f(T) were determinated in temperature range from 300 K to 730 K. The values of TC obtained during ɛ and tgδ measurements were respectively: 560 K for 5/50/50 and 419 K for 10/50/50. These temperatures are almost as high as the temperatures obtained by internal friction Q - 1 measurements in second cycle of heating. In ceramic sample 10/50/50 the additional maximum on internal friction Q - 1 curve at the temperature 316 K was observed.
NASA Astrophysics Data System (ADS)
Hirono, Tetsuro; Yeh, En-Chao; Lin, Weiren; Sone, Hiroki; Mishima, Toshiaki; Soh, Wonn; Hashimoto, Yoshitaka; Matsubayashi, Osamu; Aoike, Kan; Ito, Hisao; Kinoshita, Masataka; Murayama, Masafumi; Song, Sheng-Rong; Ma, Kuo-Fong; Hung, Jih-Hao; Wang, Chien-Ying; Tsai, Yi-Ben; Kondo, Tomomi; Nishimura, Masahiro; Moriya, Soichi; Tanaka, Tomoyuki; Fujiki, Toru; Maeda, Lena; Muraki, Hiroaki; Kuramoto, Toshikatsu; Sugiyama, Kazuhiro; Sugawara, Toshikatsu
2007-07-01
The Taiwan Chelungpu-Fault Drilling Project was undertaken in 2002 to investigate the faulting mechanism of the 1999 Mw 7.6 Taiwan Chi-Chi earthquake. Hole B penetrated the Chelungpu fault, and core samples were recovered from between 948.42- and 1352.60-m depth. Three major zones, designated FZB1136 (fault zone at 1136-m depth in hole B), FZB1194, and FZB1243, were recognized in the core samples as active fault zones within the Chelungpu fault. Nondestructive continuous physical property measurements, conducted on all core samples, revealed that the three major fault zones were characterized by low gamma ray attenuation (GRA) densities and high magnetic susceptibilities. Extensive fracturing and cracks within the fault zones and/or loss of atoms with high atomic number, but not a measurement artifact, might have caused the low GRA densities, whereas the high magnetic susceptibility values might have resulted from the formation of magnetic minerals from paramagnetic minerals by frictional heating. Minor fault zones were characterized by low GRA densities and no change in magnetic susceptibility, and the latter may indicate that these minor zones experienced relatively low frictional heating. Magnetic susceptibility in a fault zone may be key to the determination that frictional heating occurred during an earthquake on the fault.
NASA Astrophysics Data System (ADS)
Oohashi, K.; Akasegawa, K.; Hasebe, N.; Miura, K.; Minomo, Y.
2017-12-01
Luminescence dating methods such as OSL and TL are mainly used to characterize an age of sediments based on trapping of electron by natural radiation exposure. Recent research suggests its potential applicability for direct age measurement of faulting. The idea behind to the luminescence dating for a determination of paleo-earthquake event is the accumulated natural radiation damage in intra-fault materials becomes to zero by the frictional heating and/or grinding. However, a relationship between fault motion and annihilation of luminescence signals, and its mechanism has not been understood. In this study, we conduct low- to high-velocity friction experiments using quartz gouge under various displacements and moisture conditions to establish an empirical relationship of OSL signal change upon shearing. In the friction experiments, we used quartz grains of <150 μm separated from the Cretaceous granite, taken from the east wall of the Nojima fault Ogura trench site, western Japan, as an analogue gouge. Our results of the OSL measurements are (1) <75 μm fraction of sheared gouge have high fast component ratio than the pre-sheared grains, (2) the fast component ratio of <75 μm fraction increases with increasing slip rate from 200 μm/s to 0.13 m, (3) OSL signal becomes to zero in the experiment sheared under 0.65 m/s. The increase of the fast component ratio found in relatively low slip-rate experiments may be caused by addition of ionized electrons, that emitted from newly formed fracture surface during comminution, in electron center. The signal zeroing observed in the high-velocity friction experiment is attributable to rapid frictional heating up to 700 °C estimated by temperature measurement and calculation. Based on the calculation of frictional energy we added to the experiment sheared under 0.65 m/s, we estimated the zeroing depth in natural conditions of earthquake (1.6 m in displacement) to 192 m.
Thermal Microstructural Stability of AZ31 Magnesium after Severe Plastic Deformation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, John P.; Askari, Hesam A.; Hovanski, Yuri
2015-03-01
Both equal channel angular pressing and friction stir processing have the ability to refine the grain size of twin roll cast AZ31 magnesium and potentially improve its superplastic properties. This work used isochronal and isothermal heat treatments to investigate the microstructural stability of twin roll cast, equal channel angular pressed and friction stir processed AZ31 magnesium. For both heat treatment conditions, it was found that the twin roll casted and equal channel angular pressed materials were more stable than the friction stir processed material. Calculations of the grain growth kinetics showed that severe plastic deformation processing decreased the activation energymore » for grain boundary motion with the equal channel angular pressed material having the greatest Q value of the severely plastically deformed materials and that increasing the tool travel speed of the friction stir processed material improved microstructural stability. The Hollomon-Jaffe parameter was found to be an accurate means of identifying the annealing conditions that will result in substantial grain growth and loss of potential superplastic properties in the severely plastically deformed materials. In addition, Humphreys’s model of cellular microstructural stability accurately predicted the relative microstructural stability of the severely plastically deformed materials and with some modification, closely predicted the maximum grain size ratio achieved by the severely plastically deformed materials.« less
A technique for measuring dynamic friction coefficient under impact loading
NASA Astrophysics Data System (ADS)
Lin, Y. L.; Qin, J. G.; Chen, R.; Zhao, P. D.; Lu, F. Y.
2014-09-01
We develop a novel setup based on the split Hopkinson pressure bar technique to test the dynamic friction coefficient under impact loading. In the setup, the major improvement is that the end of the incident bar near the specimen is wedge-shaped, which results in a combined compressive and shear loading applied to the specimen. In fact, the shear loading is caused by the interfacial friction between specimen and bars. Therefore, when the two loading force histories are measured, the friction coefficient histories can be calculated without any assumptions and theoretical derivations. The geometry of the friction pairs is simple, and can be either cuboid or cylindrical. Regarding the measurements, two quartz transducers are used to directly record the force histories, and an optical apparatus is designed to test the interfacial slip movement. By using the setup, the dynamic friction coefficient of PTFE/aluminum 7075 friction pairs was tested. The time resolved dynamic friction coefficient and slip movement histories were achieved. The results show that the friction coefficient changes during the loading process, the average data of the relatively stable flat plateau section of the friction coefficient curves is 0.137, the maximum normal pressure is 52 MPa, the maximum relative slip velocity is 1.5 m/s, and the acceleration is 8400 m2/s. Furthermore, the friction test was simulated using an explicit FEM code LS-DYNA. The simulation results showed that the constant pressure and slip velocity can both be obtained with a wide flat plateau incident pulse. For some special friction pairs, normal pressure up to a few hundred MPa, interfacial slip velocities up to 10 m/s, and slip movement up to centimeter-level can be expected.
A technique for measuring dynamic friction coefficient under impact loading.
Lin, Y L; Qin, J G; Chen, R; Zhao, P D; Lu, F Y
2014-09-01
We develop a novel setup based on the split Hopkinson pressure bar technique to test the dynamic friction coefficient under impact loading. In the setup, the major improvement is that the end of the incident bar near the specimen is wedge-shaped, which results in a combined compressive and shear loading applied to the specimen. In fact, the shear loading is caused by the interfacial friction between specimen and bars. Therefore, when the two loading force histories are measured, the friction coefficient histories can be calculated without any assumptions and theoretical derivations. The geometry of the friction pairs is simple, and can be either cuboid or cylindrical. Regarding the measurements, two quartz transducers are used to directly record the force histories, and an optical apparatus is designed to test the interfacial slip movement. By using the setup, the dynamic friction coefficient of PTFE/aluminum 7075 friction pairs was tested. The time resolved dynamic friction coefficient and slip movement histories were achieved. The results show that the friction coefficient changes during the loading process, the average data of the relatively stable flat plateau section of the friction coefficient curves is 0.137, the maximum normal pressure is 52 MPa, the maximum relative slip velocity is 1.5 m/s, and the acceleration is 8400 m(2)/s. Furthermore, the friction test was simulated using an explicit FEM code LS-DYNA. The simulation results showed that the constant pressure and slip velocity can both be obtained with a wide flat plateau incident pulse. For some special friction pairs, normal pressure up to a few hundred MPa, interfacial slip velocities up to 10 m/s, and slip movement up to centimeter-level can be expected.
Lee, Hyoungwook; Kim, Cheolhee; Song, Jung Han
2015-01-01
The effect of the microstructure heterogeneity on the tensile plastic deformation characteristic of friction-stir-welded (FSW) dual-phase (DP) steel was investigated for the potential applications on the lightweight design of vehicles. Friction-stir-welded specimens with a butt joint configuration were prepared, and quasi-static tensile tests were conducted, to evaluate the tensile properties of DP980 dual-phase steels. The friction-stir welding led to the formation of martensite and a significant hardness rise in the stir zone (SZ), but the presence of a soft zone in the heat-affected zone (HAZ) was caused by tempering of the pre-existing martensite. Owing to the appearance of severe soft zone, DP980 FSW joint showed almost 93% joint efficiency with the view-point of ultimate tensile strength and relatively low ductility than the base metal (BM). The local tensile deformation characteristic of the FSW joints was also examined using the digital image correlation (DIC) methodology by mapping the global and local strain distribution, and was subsequently analyzed by mechanics calculation. It is found that the tensile deformation of the FSW joints is highly heterogeneous, leading to a significant decrease in global ductility. The HAZ of the joints is the weakest region where the strain localizes early, and this localization extends until fracture with a strain near 30%, while the strain in the SZ and BM is only 1% and 4%, respectively. Local constitutive properties in different heterogeneous regions through the friction-stir-welded joint was also briefly evaluated by assuming iso-stress conditions. The local stress-strain curves of individual weld zones provide a clear indication of the heterogeneity of the local mechanical properties. PMID:28793720
Lee, Hyoungwook; Kim, Cheolhee; Song, Jung Han
2015-12-04
The effect of the microstructure heterogeneity on the tensile plastic deformation characteristic of friction-stir-welded (FSW) dual-phase (DP) steel was investigated for the potential applications on the lightweight design of vehicles. Friction-stir-welded specimens with a butt joint configuration were prepared, and quasi-static tensile tests were conducted, to evaluate the tensile properties of DP980 dual-phase steels. The friction-stir welding led to the formation of martensite and a significant hardness rise in the stir zone (SZ), but the presence of a soft zone in the heat-affected zone (HAZ) was caused by tempering of the pre-existing martensite. Owing to the appearance of severe soft zone, DP980 FSW joint showed almost 93% joint efficiency with the view-point of ultimate tensile strength and relatively low ductility than the base metal (BM). The local tensile deformation characteristic of the FSW joints was also examined using the digital image correlation (DIC) methodology by mapping the global and local strain distribution, and was subsequently analyzed by mechanics calculation. It is found that the tensile deformation of the FSW joints is highly heterogeneous, leading to a significant decrease in global ductility. The HAZ of the joints is the weakest region where the strain localizes early, and this localization extends until fracture with a strain near 30%, while the strain in the SZ and BM is only 1% and 4%, respectively. Local constitutive properties in different heterogeneous regions through the friction-stir-welded joint was also briefly evaluated by assuming iso-stress conditions. The local stress-strain curves of individual weld zones provide a clear indication of the heterogeneity of the local mechanical properties.
Articulated Multimedia Physics, Lesson 13, Internal Energy, Heat, and Temperature.
ERIC Educational Resources Information Center
New York Inst. of Tech., Old Westbury.
As the thirteenth lesson of the Articulated Multimedia Physics Course, instructional materials are presented in this study guide with relation to internal energy, heat, and temperature. The topics are concerned with collisions, thermometers, friction forces, degrees Centigrade and Fahrenheit, calories, Brownian motion, and state changes. The…
NASA Technical Reports Server (NTRS)
Yager, Thomas J.; Stubbs, Sandy M.; Howell, W. Edward; Webb, Granville L.
1993-01-01
Recent findings from NASA Langley tests to define effects of aircraft Type 2 chemical deicer depositions on aircraft tire friction performance are summarized. The Aircraft Landing Dynamics Facility (ALDF) is described together with the scope of the tire cornering and braking friction tests conducted up to 160 knots ground speed. Some lower speed 32 - 96 km/hr (20 - 60 mph) test run data obtained using an Instrumented Tire Test Vehicle (ITTV) to determine effects of tire bearing pressure and transverse grooving on cornering friction performance are also discussed. Recommendations are made concerning which parameters should be evaluated in future testing.
Friction and wear of some ferrous-base metallic glasses
NASA Technical Reports Server (NTRS)
Miyoshi, K.; Buckley, D. H.
1983-01-01
Sliding friction experiments, X-ray photoelectron spectroscopy (XPS) analysis, and electron microscopy and diffraction studies were conducted with ferrous base metallic glasses (amorphous alloys) in contact with aluminum oxide at temperatures to 750 C in a vacuum. Sliding friction experiments were also conducted in argon and air atmospheres. The results of the investigation indicate that the coefficient of friction increases with increasing temperature to 350 C in vacuum. The increase in friction is due to an increase in adhesion resulting from surface segregation of boric oxide and/or silicon oxide to the surface of the foil. Above 500 C the coefficient of friction decreased rapidly. The decrease correlates with the segregation of boron nitride to the surface. Contaminants can come from the bulk of the material to the surface upon heating and impart boric oxide and/or silicon oxide at 350 C and boron nitride above 500 C. The segregation of contaminants is responsible for the friction behavior. The amorphous alloys have superior wear resistance to crystalline 304 stainless steel. The relative concentrations of the various constituents at the surfaces of the amorphous alloys are very different from the nominal bulk compositions.
Friction and wear of some ferrous-base metallic glasses
NASA Technical Reports Server (NTRS)
Miyoshi, K.; Buckley, D. H.
1984-01-01
Sliding friction experiments, X-ray photoelectron spectroscopy (XPS) analysis, and electron microscopy and diffraction studies were conducted with ferrous base metallic glasses (amorphous alloys) in contact with aluminium oxide at temperatures to 750 C in a vacuum. Sliding friction experiments were also conducted in argon and air atmospheres. The results of the investigation indicate that the coefficient of friction increases with increasing temperature to 350 C in vacuum. The increase in friction is due to an increase in adhesion resulting from surface segregation of boric oxide and/or silicon oxide to the surface of the foil. Above 500 C the coefficient of friction decreased rapidly. The decrease correlates with the segregation of boron nitride to the surface. Contaminants can come from the bulk of the material to the surface upon heating and impart boric oxide and/or silicon oxide at 350 C and boron nitride above 500 C. The segregation of contaminants is responsible for the friction behavior. The amorphous alloys have superior wear resistance to crystalline 304 stainless steel. The relative concentrations of the various constituents at the surfaces of the amorphous alloys are very different from the nominal bulk compositions.
On the role of surface friction in tropical cyclone intensification
NASA Astrophysics Data System (ADS)
Wang, Yuqing
2017-04-01
Recent studies have debated on whether surface friction is positive or negative to tropical cyclone intensification in the view on angular momentum budget. That means whether the frictionally induced inward angular momentum transport can overcome the loss of angular momentum to the surface due to surface friction itself. Although this issue is still under debate, this study investigates another implicit dynamical effect, which modifies the radial location and strength of eyewall convection. We found that moderate surface friction is necessary for rapid intensity of tropical cyclones. This is demonstrated first by a simple coupled dynamical system that couples a multi-level boundary layer model and a shallow water equation model above with mass source parameterized by mass flux from the boundary layer model below, and then by a full physics model. The results show that surface friction leads to the inward penetration of inflow under the eyewall, shift the boundary layer mass convergence slightly inside the radius of maximum wind, and enhance the upward mass flux, and thus diabatic heating in the eyewall and intensification rate of a TC. This intensification process is different from the direct angular momentum budget previously used to explain the role of surface friction in tropical cyclone intensification.
Brake blending strategy for a hybrid vehicle
Boberg, Evan S.
2000-12-05
A hybrid electric powertrain system is provided including a transmission for driving a pair of wheels of a vehicle and a heat engine and an electric motor/generator coupled to the transmission. A friction brake system is provided for applying a braking torque to said vehicle. A controller unit generates control signals to the electric motor/generator and the friction brake system for controllably braking the vehicle in response to a drivers brake command. The controller unit determines and amount of regenerative torque available and compares this value to a determined amount of brake torque requested for determining the control signals to the electric motor/generator and the friction brake system.
Tribological behavior of 440C martensitic stainless steel from -184 C to 750 C
NASA Technical Reports Server (NTRS)
Slifka, A. J.; Compos, R.; Morgan, T. J.; Siegwarth, J. D.; Chaudhuri, Dilip K.
1992-01-01
Characterization of the coefficient of friction and wear rate of 440C stainless steel is needed to understand the effects of frictional heating in the bearings of the High Pressure Oxygen Turbopump of the Space Shuttle Main Engine. The coefficient of friction and wear rate have been measured over a range of temperature varying from liquid oxygen temperature (-184 C) to 750 C. The normal load has also been varied resulting in a variation of Hertzian stress from 0.915 to 3.660 GPa while the surface velocity has been varied from 0.5 to 2.0 m/s.
Damage Tolerance Behavior of Friction Stir Welds in Aluminum Alloys
NASA Technical Reports Server (NTRS)
McGill, Preston; Burkholder, Jonathan
2012-01-01
Friction stir welding is a solid state welding process used in the fabrication of various aerospace structures. Self-reacting and conventional friction stir welding are variations of the friction stir weld process employed in the fabrication of cryogenic propellant tanks which are classified as pressurized structure in many spaceflight vehicle architectures. In order to address damage tolerance behavior associated with friction stir welds in these safety critical structures, nondestructive inspection and proof testing may be required to screen hardware for mission critical defects. The efficacy of the nondestructive evaluation or the proof test is based on an assessment of the critical flaw size. Test data describing fracture behavior, residual strength capability, and cyclic mission life capability of friction stir welds at ambient and cryogenic temperatures have been generated and will be presented in this paper. Fracture behavior will include fracture toughness and tearing (R-curve) response of the friction stir welds. Residual strength behavior will include an evaluation of the effects of lack of penetration on conventional friction stir welds, the effects of internal defects (wormholes) on self-reacting friction stir welds, and an evaluation of the effects of fatigue cycled surface cracks on both conventional and selfreacting welds. Cyclic mission life capability will demonstrate the effects of surface crack defects on service load cycle capability. The fracture data will be used to evaluate nondestructive inspection and proof test requirements for the welds.
Experimental and theoretical study of friction torque from radial ball bearings
NASA Astrophysics Data System (ADS)
Geonea, Ionut; Dumitru, Nicolae; Dumitru, Ilie
2017-10-01
In this paper it is presented a numerical simulation and an experimental study of total friction torque from radial ball bearings. For this purpose it is conceived a virtual CAD model of the experimental test bench for bearing friction torque measurement. The virtual model it is used for numerical simulation in Adams software, that allows dynamic study of multi-body systems and in particularly with facility Adams Machinery of dynamic behavior of machine parts. It is manufactured an experimental prototype of the test bench for radial ball bearings friction torque measurement. In order to measure the friction torque of the tested bearings it is used an equal resistance elastic beam element, with strain gauge transducer to measure bending deformations. The actuation electric motor of the bench has the shaft mounted on two bearings and the motor housing is fixed to the free side of the elastic beam, which is bended by a force proportional with the total friction torque. The beam elastic element with strain gauge transducer is calibrated in order to measure the force occurred. Experimental determination of the friction torque is made for several progressive radial loads. It is established the correlation from the friction torque and bearing radial load. The bench allows testing of several types and dimensions of radial bearings, in order to establish the bearing durability and of total friction torque.
Effects of potassium titanate fiber on the wear of automotive brake linings
NASA Technical Reports Server (NTRS)
Halberstadt, M. L.; Mansfield, J. A.; Rhee, S. K.
1977-01-01
Asbestos reinforcing fiber in an automotive friction material was replaced by an experimental ingredient having better thermal stability, and the effects on wear and friction were studied. A friction materials test machine (SAE J661a) was used to determine friction and wear, under constant energy output conditions, as a function of temperature between 121 and 343 C (250 and 650 F). When potassium titanate fiber replaced one half of the asbestos in a standard commercial lining, with a 40 percent upward adjustment of phenolic resin content, wear above 204 C (400 F) was improved by 40% and friction by 30%. Tests on a full-scale inertial dynamometer supported the findings of the sample dynamometer tests. It was demonstrated that the potassium titanate fiber contributes directly to the improvement in wear and friction.
Internal Friction And Instabilities Of Rotors
NASA Technical Reports Server (NTRS)
Walton, J.; Artiles, A.; Lund, J.; Dill, J.; Zorzi, E.
1992-01-01
Report describes study of effects of internal friction on dynamics of rotors prompted by concern over instabilities in rotors of turbomachines. Theoretical and experimental studies described. Theoretical involved development of nonlinear mathematical models of internal friction in three joints found in turbomachinery - axial splines, Curvic(TM) splines, and interference fits between smooth cylindrical surfaces. Experimental included traction tests to determine the coefficients of friction of rotor alloys at various temperatures, bending-mode-vibration tests of shafts equipped with various joints and rotordynamic tests of shafts with axial-spline and interference-fit joints.
Melting Heat in Radiative Flow of Carbon Nanotubes with Homogeneous-Heterogeneous Reactions
NASA Astrophysics Data System (ADS)
Hayat, Tasawar; Muhammad, Khursheed; Muhammad, Taseer; Alsaedi, Ahmed
2018-04-01
The present article provides mathematical modeling for melting heat and thermal radiation in stagnation-point flow of carbon nanotubes towards a nonlinear stretchable surface of variable thickness. The process of homogeneous-heterogeneous reactions is considered. Diffusion coefficients are considered equal for both reactant and autocatalyst. Water and gasoline oil are taken as base fluids. The conversion of partial differential system to ordinary differential system is done by suitable transformations. Optimal homotopy technique is employed for the solutions development of velocity, temperature, concentration, skin friction and local Nusselt number. Graphical results for various values of pertinent parameters are displayed and discussed. Our results indicate that the skin friction coefficient and local Nusselt number are enhanced for larger values of nanoparticles volume fraction.
A hot-wire surface gage for skin friction and separation detection measurements
NASA Technical Reports Server (NTRS)
Rubesin, M. W.; Okuno, A. F.; Mateer, G. G.; Brosh, A.
1975-01-01
A heated-element, skin-friction gage employing a very low thermal conductivity support is described. It is shown that the effective dimension of the gage in the stream direction in only 0.06 mm, including the effects of heat conduction in the supporting material. Because of its small size, the calibration of the gage is independent of the kind of boundary-layer flow (whether laminar or turbulent) and is insensitive to pressure gradients. Construction tolerances can be maintained so that a single universal calibration can be applied. Multiple gages, sufficiently closely spaced so as to interfere with each other, are shown to provide accurate determinations of the locations of the points of boundary-layer separation and reattachment.
NASA Technical Reports Server (NTRS)
Rossow, Vernon J
1958-01-01
The use of a magnetic field to control the motion of electrically conducting fluids is studied. The incompressible boundary-layer solutions are found for flow over a flat plate when the magnetic field is fixed relative to the plate or to the fluid. The equations are integrated numerically for the effect of the transverse magnetic field on the velocity and temperature profiles, and hence, the skin friction and rate of heat transfer. It is concluded that the skin friction and the heat-transfer rate are reduced when the transverse magnetic field is fixed relative to the plate and increased when fixed relative to the fluid. The total drag is increased in all of the areas.
The use of surface layer with boron in friction pairs lubricated by engine oils
NASA Astrophysics Data System (ADS)
Szczypiński-Sala, W.; Lubas, J.
2016-09-01
The aim of the present work is to determine the influence of surface layers with boron and engine oil on the processes of friction and wear in friction pairs. The ring samples with borided surface layer cooperated under test conditions with counterparts made with CuPb30 and AlSn20 bearing alloys. During the tests, the friction pairs were lubricated with 15W/40 Lotos mineral oil and 5W/40 Lotos synthetic oil. The lubrication of friction area with Lotos mineral oil causes the reduction of the friction force, the temperature in the friction area and the wear of the bearing alloys under study, whereas the lubrication with Lotos synthetic oil reduces the changes in the geometrical structure of the cooperating friction pair elements. Lubrication of the friction area in the start-up phase of the friction pair by mineral oil causes faster stabilization of the friction conditions in the contact area than in the cause of lubrication of the friction pair by synthetic oil. The intensity of wear of the AlSn20 bearing alloy cooperating with the borided surface layer is three times smaller than the intensity of use of the CuPb30 alloy bearing.
Prediction and validation of the energy dissipation of a friction damper
NASA Astrophysics Data System (ADS)
Lopez, I.; Nijmeijer, H.
2009-12-01
Friction dampers can be a cheap and efficient way to reduce the vibration levels of a wide range of mechanical systems. In the present work it is shown that the maximum energy dissipation and corresponding optimum friction force of friction dampers with stiff localized contacts and large relative displacements within the contact, can be determined with sufficient accuracy using a dry (Coulomb) friction model. Both the numerical calculations with more complex friction models and the experimental results in a laboratory test set-up show that these two quantities are relatively robust properties of a system with friction. The numerical calculations are performed with several friction models currently used in the literature. For the stick phase smooth approximations like viscous damping or the arctan function are considered but also the non-smooth switch friction model is used. For the slip phase several models of the Stribeck effect are used. The test set-up for the laboratory experiments consists of a mass sliding on parallel ball-bearings, where additional friction is created by a sledge attached to the mass, which is pre-stressed against a friction plate. The measured energy dissipation is in good agreement with the theoretical results for Coulomb friction.
NASA Technical Reports Server (NTRS)
Voronov, Oleg A (Inventor); Street, Kenneth (Inventor); Kear, Bernard H (Inventor)
2017-01-01
Systems, methods, and articles of manufacture related to composite materials are discussed herein. These materials can be based on a mixture of diamond particles with a matrix and fibers or fabrics. The matrix can be formed into the composite material through optional pressurization and via heat treatment. These materials display exceptionally low friction coefficient and superior wear resistance in extreme environments.
NASA Technical Reports Server (NTRS)
Pomey, Jacques
1952-01-01
From the practical point of view, this analysis shows that each problem of friction or wear requires its particular solution. There is no universal solution; one or other of the factors predominates and defines the choice of the solution. In certain cases, copper alloys of great thermal conductivity are preferred; in others, plastics abundantly supplied with water. Sometimes, soft antifriction metals are desirable to distribute the load; at other times, hard metals with high resistance to abrasion or heat.
NASA Astrophysics Data System (ADS)
Kuo, Ching Yi; Pan, Chin
2010-09-01
This study experimentally investigates steam condensation in rectangular microchannels with uniform and converging cross-sections and a mean hydraulic diameter of 135 µm. The steam flow in the microchannels was cooled by water cross-flowing along its bottom surface, which is different from other methods reported in the literature. The flow patterns, two-phase flow pressure drop and condensation heat transfer coefficient are determined. The microchannels with the uniform cross-section design have a higher heat transfer coefficient than those with the converging cross-section under condensation in the mist/annular flow regimes, although the latter work best for draining two-phase fluids composed of uncondensed steam and liquid water, which is consistent with the result of our previous study. From the experimental results, dimensionless correlations of condensation heat transfer for the mist and annular flow regions and a two-phase frictional multiplier are developed for the microchannels with both types of cross-section designs. The experimental data agree well with the obtained correlations, with the maximum mean absolute errors of 6.4% for the two-phase frictional multiplier and 6.0% for the condensation heat transfer.
NASA Astrophysics Data System (ADS)
Hua, Junye; Duan, Yuanyuan; Li, Gui; Xu, Qiong; Li, Dong; Wu, Wei; Zhao, Xiaobao; Qiu, Delai
2018-02-01
The experimental studies on heat transfer and flow resistance characteristics of ellipse-shape micro pin fin have been conducted which is drafted with hydrophobic material, holding the various contact angles fulfilled by adjusting the amount of Nano particle. The results show that with the increases of contact angle(83°,99.5°, 119.5°and 151.5°), the bottom wall temperature rises under the same flow rate. Under a certain heating condition with heating power as 100 W, the average convective heat transfer coefficient decreases with the increase of contact angle with the same Re. The value of Nu for ellipse-shape micro pin fin increases with a higher Re, with the maximum value under experimental condition of Nu as 25. Besides, the friction coefficient of micro pin fin experimental section drafted hydrophobicity treatment significantly decreases, compared with the smooth micro pin fin experimental section (θ = 83°). While the higher contact angle has obvious positive influences on friction coefficient under the same Re. Generally, the flow resistance performance of ellipse-shape micro pin fin drafted with hydrophobic material is better than that without any treatment.
NASA Astrophysics Data System (ADS)
Sulochana, C.; Ashwinkumar, G. P.; Sandeep, N.
2017-09-01
In the current study, we investigated the impact of thermophoresis and Brownian moment on the boundary layer 2D forced convection flow of a magnetohydrodynamic nanofluid along a persistently moving horizontal needle with frictional heating effect. The various pertinent parameters are taken into account in the present analysis, namely, the thermophoresis and Brownian moment, uneven heat source/sink, Joule heating and frictional heating effects. To check the variation in the boundary layer behavior, we considered two distinct nanoparticles namely Al50Cu50 (alloy with 50% alumina and 50% copper) and Cu with water as base liquid. Numerical solutions are derived for the reduced system of governing PDEs by employing the shooting process. Computational results of the flow, energy and mass transport are interpreted with the support of tables and graphical illustrations. The obtained results indicate that the increase in the needle size significantly reduces the flow and thermal fields. In particular, the velocity field of the Cu-water nanofluid is highly affected when compared with the Al50Cu50 -water nanofluid. Also, we showed that the thermophoresis and Brownian moment parameters are capable of enhancing the thermal conductivity to a great extent.
Development and testing of airfoils for high-altitude aircraft
NASA Technical Reports Server (NTRS)
Drela, Mark (Principal Investigator)
1996-01-01
Specific tasks included airfoil design; study of airfoil constraints on pullout maneuver; selection of tail airfoils; examination of wing twist; test section instrumentation and layout; and integrated airfoil/heat-exchanger tests. In the course of designing the airfoil, specifically for the APEX test vehicle, extensive studies were made over the Mach and Reynolds number ranges of interest. It is intended to be representative of airfoils required for lightweight aircraft operating at extreme altitudes, which is the primary research objective of the APEX program. Also considered were thickness, pitching moment, and off-design behavior. The maximum ceiling parameter M(exp 2)C(sub L) value achievable by the Apex-16 airfoil was found to be a strong constraint on the pullout maneuver. The NACA 1410 and 2410 airfoils (inverted) were identified as good candidates for the tail, with predictable behavior at low Reynolds numbers and good tolerance to flap deflections. With regards to wing twist, it was decided that a simple flat wing was a reasonable compromise. The test section instrumentation consisted of surface pressure taps, wake rakes, surface-mounted microphones, and skin-friction gauges. Also, a modest wind tunnel test was performed for an integrated airfoil/heat-exchanger configuration, which is currently on Aurora's 'Theseus' aircraft. Although not directly related to the APEX tests, the aerodynamics or heat exchangers has been identified as a crucial aspect of designing high-altitude aircraft and hence is relevant to the ERAST program.
Friction Freeform Fabrication of Superalloy Inconel 718: Prospects and Problems
NASA Astrophysics Data System (ADS)
Dilip, J. J. S.; Janaki Ram, G. D.
2014-01-01
Friction Freeform Fabrication is a new solid-state additive manufacturing process. The present investigation reports a detailed study on the prospects of this process for additive part fabrication in superalloy Inconel 718. Using a rotary friction welding machine and employing alloy 718 consumable rods in solution treated condition, cylindrical-shaped multi-layer friction deposits (10 mm diameter) were successfully produced. In the as-deposited condition, the deposits showed very fine grain size with no grain boundary δ phase. The deposits responded well to direct aging and showed satisfactory room-temperature tensile properties. However, their stress rupture performance was unsatisfactory because of their layered microstructure with very fine grain size and no grain boundary δ phase. The problem was overcome by heat treating the deposits first at 1353 K (1080 °C) (for increasing the grain size) and then at 1223 K (950 °C) (for precipitating the δ phase). Overall, the current study shows that Friction Freeform Fabrication is a very useful process for additive part fabrication in alloy 718.
NASA Technical Reports Server (NTRS)
Miyoshi, K.; Buckley, D. H.
1983-01-01
An investigation was conducted to examine the microstructure and surface chemistry of amorphous alloys, and their effects on tribological behavior. The results indicate that the surface oxide layers present on amorphous alloys are effective in providing low friction and a protective film against wear in air. Clustering and crystallization in amorphous alloys can be enhanced as a result of plastic flow during the sliding process at a low sliding velocity, at room temperature. Clusters or crystallines with sizes to 150 nm and a diffused honeycomb-shaped structure are produced on the wear surface. Temperature effects lead to drastic changes in surface chemistry and friction behavior of the alloys at temperatures to 750 C. Contaminants can come from the bulk of the alloys to the surface upon heating and impart to the surface oxides at 350 C and boron nitride above 500 C. The oxides increase friction while the boron nitride reduces friction drastically in vacuum.
NASA Astrophysics Data System (ADS)
Das, A.; Bang, H. S.; Bang, H. S.
2018-05-01
Multi-material combinations of aluminium alloy and carbon-fiber-reinforced-plastics (CFRP) have gained attention in automotive and aerospace industries to enhance fuel efficiency and strength-to-weight ratio of components. Various limitations of laser beam welding, adhesive bonding and mechanical fasteners make these processes inefficient to join metal and CFRP sheets. Friction lap joining is an alternative choice for the same. Comprehensive studies in friction lap joining of aluminium to CFRP sheets are essential and scare in the literature. The present work reports a combined theoretical and experimental study in joining of AA5052 and CFRP sheets using friction lap joining process. A three-dimensional finite element based heat transfer model is developed to compute the temperature fields and thermal cycles. The computed results are validated extensively with the corresponding experimentally measured results.
Sridharan, K; Sandbhor, Shailesh; Rajasekaran, U B; Sam, George; Ramees, M Mohamed; Abraham, Esther A
2017-08-01
The purpose of this research is to compare the frictional attributes of stainless steel conventional brackets and self-ligating stainless steel brackets with different dimensions of archwires. The test was carried with two sets of maxillary brackets: (1) Conventional stainless steel (Victory Series), (2) stainless steel self-ligating (SmartClip) without first premolar brackets. Stainless steel, nickel-titanium (NiTi), and beta-Ti which are the types of orthodontic wire alloys were tested in this study. To monitor the frictional force, a universal testing machine (Instron 33R 4467) that comprises 10 kg tension load cell was assigned on a range of 1 kg and determined from 0 to 2 kg, which allows moving of an archwire along the brackets. One-way analysis of variance was used to test the difference between groups. To analyze the statistical difference between the two groups, Student's t-test was used. For Victory Series in static friction, p-value was 0.946 and for kinetic friction it was 0.944; at the same time for SmartClip, the p value for static and kinetic frictional resistance was 0.497 and 0.518 respectively. Hence, there was no statistically significant difference between the NiTi and stainless steel archwires. It is concluded that when compared with conventional brackets with stainless steel ligatures, self-ligating brackets can produce significantly less friction during sliding. Beta-Ti archwires expressed high amount of frictional resistance and the stainless steel archwires comprise low frictional resistance among all the archwire materials. In orthodontics, frictional resistance has always had a major role. Its ability to impair tooth movement leads to the need for higher forces to move the teeth and it extends the treatment time which results in loss of posterior anchorage. Friction in orthodontics is related with sliding mechanics when a wire is moving through one or a series of bracket slots.
NASA Astrophysics Data System (ADS)
Abdelmalak, M. M.; Bulois, C.; Mourgues, R.; Galland, O.; Legland, J.-B.; Gruber, C.
2016-08-01
Cohesion and friction coefficient are fundamental parameters for scaling brittle deformation in laboratory models of geological processes. However, they are commonly not experimental variable, whereas (1) rocks range from cohesion-less to strongly cohesive and from low friction to high friction and (2) strata exhibit substantial cohesion and friction contrasts. This brittle paradox implies that the effects of brittle properties on processes involving brittle deformation cannot be tested in laboratory models. Solving this paradox requires the use of dry granular materials of tunable and controllable brittle properties. In this paper, we describe dry mixtures of fine-grained cohesive, high friction silica powder (SP) and low-cohesion, low friction glass microspheres (GM) that fulfill this requirement. We systematically estimated the cohesions and friction coefficients of mixtures of variable proportions using two independent methods: (1) a classic Hubbert-type shear box to determine the extrapolated cohesion (C) and friction coefficient (μ), and (2) direct measurements of the tensile strength (T0) and the height (H) of open fractures to calculate the true cohesion (C0). The measured values of cohesion increase from 100 Pa for pure GM to 600 Pa for pure SP, with a sub-linear trend of the cohesion with the mixture GM content. The two independent cohesion measurement methods, from shear tests and tension/extensional tests, yield very similar results of extrapolated cohesion (C) and show that both are robust and can be used independently. The measured values of friction coefficients increase from 0.5 for pure GM to 1.05 for pure SP. The use of these granular material mixtures now allows testing (1) the effects of cohesion and friction coefficient in homogeneous laboratory models and (2) testing the effect of brittle layering on brittle deformation, as demonstrated by preliminary experiments. Therefore, the brittle properties become, at last, experimental variables.
Volcanic rock properties control sector collapse events
NASA Astrophysics Data System (ADS)
Hughes, Amy; Kendrick, Jackie; Lavallée, Yan; Hornby, Adrian; Di Toro, Giulio
2017-04-01
Volcanoes constructed by superimposed layers of varying volcanic materials are inherently unstable structures. The heterogeneity of weak and strong layers consisting of ash, tephra and lavas, each with varying coherencies, porosities, crystallinities, glass content and ultimately, strength, can promote volcanic flank and sector collapses. These volcanoes often exist in areas with complex regional tectonics adding to instability caused by heterogeneity, flank overburden, magma movement and emplacement in addition to hydrothermal alteration and anomalous geothermal gradients. Recent studies conducted on the faulting properties of volcanic rocks at variable slip rates show the rate-weakening dependence of the friction coefficients (up to 90% reduction)[1], caused by a wide range of factors such as the generation of gouge and frictional melt lubrication [2]. Experimental data from experiments conducted on volcanic products suggests that frictional melt occurs at slip rates similar to those of plug flow in volcanic conduits [1] and the bases of mass material movements such as debris avalanches from volcanic flanks [3]. In volcanic rock, the generation of frictional heat may prompt the remobilisation of interstitial glass below melting temperatures due to passing of the glass transition temperature at ˜650-750 ˚C [4]. In addition, the crushing of pores in high porosity samples can lead to increased comminution and strain localisation along slip surfaces. Here we present the results of friction tests on both high density, glass rich samples from Santaguito (Guatemala) and synthetic glass samples with varying porosities (0-25%) to better understand frictional properties underlying volcanic collapse events. 1. Kendrick, J.E., et al., Extreme frictional processes in the volcanic conduit of Mount St. Helens (USA) during the 2004-2008 eruption. J. Structural Geology, 2012. 2. Di Toro, G., et al., Fault lubrication during earthquakes. Nature, 2011. 471(7339): p. 494-498. 3. Legros, F., et al., Pseudotachylyte at the Base of the Arequipa Volcanic Landslide Deposit (Peru): Implications for Emplacement Mechanisms. J. of Geology, 2000. 4. Lavallée, Y., et al. (2012). "Experimental generation of volcanic pseudotachylytes: Constraining rheology." Journal of Structural Geology 38(0): 222-233.
One-Dimensional Modelling of Internal Ballistics
NASA Astrophysics Data System (ADS)
Monreal-González, G.; Otón-Martínez, R. A.; Velasco, F. J. S.; García-Cascáles, J. R.; Ramírez-Fernández, F. J.
2017-10-01
A one-dimensional model is introduced in this paper for problems of internal ballistics involving solid propellant combustion. First, the work presents the physical approach and equations adopted. Closure relationships accounting for the physical phenomena taking place during combustion (interfacial friction, interfacial heat transfer, combustion) are deeply discussed. Secondly, the numerical method proposed is presented. Finally, numerical results provided by this code (UXGun) are compared with results of experimental tests and with the outcome from a well-known zero-dimensional code. The model provides successful results in firing tests of artillery guns, predicting with good accuracy the maximum pressure in the chamber and muzzle velocity what highlights its capabilities as prediction/design tool for internal ballistics.
NASA Technical Reports Server (NTRS)
Lauer, J. L.; Davis, L. C.
1993-01-01
Sliding tests with a pin-on-disc tribometer and both sliding and rolling tests with a modified four-ball tester at bulk temperatures of about 500 C and contact pressures of about 2.2 GPa have demonstrated up to 80% reductions of friction and wear with silicon nitride surfaces when a stream of ethylene is directed into the conjunction region. The effects are even more pronounced when the ethylene is prenucleated by a flow over a coil of nichrome wire electrically heated to about 800 C and located about 30 cm upstream of the exit nozzle. Steel and Ni-plated steel are lubricated by this method even more efficiently at lower temperatures.
Investigation of Machine Design for Friction Stir Welding
NASA Technical Reports Server (NTRS)
Romine, Peter L.
1996-01-01
The process of joining two pieces of metal together has not significantly changed over the last few decades. The basic idea used is to bring the pieces together and apply enough heat to melt the metal at the interface. The molten metal mixes and after cooling forms a strong joint. This process is called the fusion process. The most significant difference between the many fusion processes is how the heat is generated and applied. The Welding Institute (TWI), in Great Britain, has recently patented an innovative application of mechanical friction. TWI designed a tool and process called Friction Stir Welding (FSW) that uses friction to heat the metal to within a few hundred degrees Fahrenheit of melting, just to the point of being plastic-like. The tool then stirs the plasticized metal together forming a joint that has been shown to be as good or better than an equivalent fusion joint. The FSW process is well suited for the joining of the aluminum alloys used in the aerospace industry. The relatively low melting point of aluminum eliminates the requirements for exotic materials for pin tool design. The FSW process has been successfully used to join alloys such as 7075 which were before considered "unweldable", and aluminum-lithium 2195 which exhibits many problems when fusion welded. The objective this summer was to investigate the design of a FSW system that could take this process from the laboratory to the manufacturing floor. In particular, it was the goal of my NASA colleague to develop a concept for applying the FSW process to the manufacturing of aluminum cryogenic oxygen and hydrogen tanks, of the sort used to make the Shuttle External Tank.
Tribological performances of new steel grades for hot stamping tools
NASA Astrophysics Data System (ADS)
Medea, F.; Venturato, G.; Ghiotti, A.; Bruschi, S.
2017-09-01
In the last years, the use of High Strength Steels (HSS) as structural parts in car body-in-white manufacturing has rapidly increased thanks to their favourable strength-to-weight ratio and stiffness, which allow a reduction of the fuel consumption to accommodate the new restricted regulations for CO2 emissions control. The survey of the technical and scientific literature shows a large interest in the development of different coatings for the blanks from the traditional Al-Si up to new Zn-based coatings and on the analysis of hard PVD, CVD coatings and plasma nitriding applied on the tools. By contrast, fewer investigations have been focused on the development and test of new tools steels grades capable to improve the wear resistance and the thermal properties that are required for the in-die quenching during forming. On this base, the paper deals with the analysis and comparison the tribological performances in terms of wear, friction and heat transfer of new tool steel grades for high-temperature applications, characterized by a higher thermal conductivity than the commonly used tools. Testing equipment, procedures as well as measurements analyses to evaluate the friction coefficient, the wear and heat transfer phenomena are presented. Emphasis is given on the physical simulation techniques that were specifically developed to reproduce the thermal and mechanical cycles on the metal sheets and dies as in the industrial practice. The reference industrial process is the direct hot stamping of the 22MnB5 HSS coated with the common Al-Si coating for automotive applications.
NASA Astrophysics Data System (ADS)
Suwandi, Agri; Soemardi, Tresna P.; Kiswanto, Gandjar; Kusumaningsih, Widjajalaksmi; I. Gusti Agung I. G., W.
2018-02-01
Prostheses products must undergo simulation and physical testing, before clinical testing. Finite element method is a preliminary simulation for in vivo test. The method visualizes the magnitude of the compressive force and the critical location of the Total Knee Replacement (TKR) prostheses design. In vitro testing is classified as physical testing for prostheses product. The test is conducted to evaluate the potential failure of the product and the characteristics of the prostheses TKR material. Friction and wear testing are part of the in vivo test. Motion of knee joints, which results in the phenomena of extension and deflection in the femoral and tibia insert, is represented by friction and wear testing. Friction and wear tests aim to obtain an approximate lifetime in normal and extreme load patterns as characterized by the shape of the friction surface area. The lifetime estimation requires friction and wear full-scale testing equipments for TKR prostheses products. These are necessary in obtaining initial data on potential product failures and characterizing of the material based on the ASTM F2724-08 standards. Based on the testing result and statistical analysis data, the average wear rate value per year is 2.19 × 10-3 mg/MC, with a 10 % safety limit of volume and 14,400 cycles times, for 15 hours moving nonstop then the prediction of wear life of the component tibia insert is ± 10 years.
Change and anisotropy of elastic modulus in sheet metals due to plastic deformation
NASA Astrophysics Data System (ADS)
Ishitsuka, Yuki; Arikawa, Shuichi; Yoneyama, Satoru
2015-03-01
In this study, the effect of the plastic deformation on the microscopic structure and the anisotropy of the elastic modulus in the cold-rolled steel sheet (SPCC) is investigated. Various uniaxial plastic strains (0%, 2.5%, 5%, 7.5%, and 10%) are applied to the annealed SPCC plates, then, the specimens for the tensile tests are cut out from them. The elastic moduli in the longitudinal direction and the transverse direction to the direction that are pre-strained are measured by the tensile tests. Cyclic tests are performed to investigate the effects of the internal friction caused by the movable dislocations in the elastic deformation. Also, the movable dislocations are quantified by the boundary tracking for TEM micrographs. In addition, the behaviors of the change of the elastic modulus in the solutionized and thermal aged aluminum alloy (A5052) are measured to investigate the effect on the movable dislocations with the amount of the depositions. As a result in SPCC, the elastic moduli of the 0° and 90° directions decrease more than 10% as 10% prestrain applied. On the other hand, the elastic modulus shows the recovery behavior after the strain aging and the annealing. The movable dislocation and the internal friction show a tendency to increase as the plastic strain increases. The marked anisotropy is not observed in the elastic modulus and the internal friction. The elastic modulus in A5052 with many and few depositions decreases similarly by the plastic deformation. From the above, the movable dislocations affect the elastic modulus strongly without depending on the deposition amount. Moreover, the elastic modulus recovers after the plastic deformation by reducing the effects of them with the strain aging and the heat treatment.
NASA Astrophysics Data System (ADS)
Guo, Yonghong; Du, Xiaoze; Yang, Lijun
2018-02-01
Air-cooled condenser is the main equipment of the direct dry cooling system in a power plant, which rejects heat of the exhaust steam with the finned tube bundles. Therefore, the thermo-flow performances of the finned tubes have an important effect on the optimal operation of the direct dry cooling system. In this paper, the flow and heat transfer characteristics of the single row finned tubes with the conventional flat fins and novel jagged fins are investigated by numerical method. The flow and temperature fields of cooling air for the finned tubes are obtained. Moreover, the variations of the flow resistance and average convection heat transfer coefficient under different frontal velocity of air and jag number are presented. Finally, the correlating equations of the friction factor and Nusselt number versus the Reynolds number are fitted. The results show that with increasing the frontal velocity of air, the heat transfer performances of the finned tubes are enhanced but the pressure drop will increase accordingly, resulting in the average convection heat transfer coefficient and friction factor increasing. Meanwhile, with increasing the number of fin jag, the heat transfer performance is intensified. The present studies provide a reference in optimal designing for the air-cooled condenser of direct air cooling system.
Computer tools for face seal analyses developed at John Crane
NASA Technical Reports Server (NTRS)
Wu, Shifeng
1994-01-01
The purposes of the computer tools for face seal analysis are new product optimization, existing seals on new applications, existing seals on off-duty conditions, and trouble-shooting. Discussed in this viewgraph presentation are interface forces, friction/heat generation, heat transfer/temperature distribution, axisymmetric pressure/thermal distortion, leakage, and an example case.
NASA Astrophysics Data System (ADS)
Khan, Mair; Shahid, Amna; Malik, M. Y.; Salahuddin, T.
2018-03-01
Current analysis has been made to scrutinize the consequences of chemical response against magneto-hydrodynamic Carreau-Yasuda nanofluid flow induced by a non-linear stretching surface considering zero normal flux, slip and convective boundary conditions. Joule heating effect is also considered. Appropriate similarity approach is used to convert leading system of PDE's for Carreau-Yasuda nanofluid into nonlinear ODE's. Well known mathematical scheme namely shooting method is utilized to solve the system numerically. Physical parameters, namely Weissenberg number We , thermal slip parameter δ , thermophoresis number NT, non-linear stretching parameter n, magnetic field parameter M, velocity slip parameter k , Lewis number Le, Brownian motion parameter NB, Prandtl number Pr, Eckert number Ec and chemical reaction parameter γ upon temperature, velocity and concentration profiles are visualized through graphs and tables. Numerical influence of mass and heat transfer rates and friction factor are also represented in tabular as well as graphical form respectively. Skin friction coefficient reduces when Weissenberg number We is incremented. Rate of heat transfer enhances for large values of Brownian motion constraint NB. By increasing Lewis quantity Le rate of mass transfer declines.
Modelling Ocean Dissipation in Icy Satellites: A Comparison of Linear and Quadratic Friction
NASA Astrophysics Data System (ADS)
Hay, H.; Matsuyama, I.
2015-12-01
Although subsurface oceans are confirmed in Europa, Ganymede, Callisto, and strongly suspected in Enceladus and Titan, the exact mechanism required to heat and maintain these liquid reservoirs over Solar System history remains a mystery. Radiogenic heating can supply enough energy for large satellites whereas tidal dissipation provides the best explanation for the presence of oceans in small icy satellites. The amount of thermal energy actually contributed to the interiors of these icy satellites through oceanic tidal dissipation is largely unquantified. Presented here is a numerical model that builds upon previous work for quantifying tidally dissipated energy in the subsurface oceans of the icy satellites. Recent semi-analytical models (Tyler, 2008 and Matsuyama, 2014) have solved the Laplace Tidal Equations to estimate the time averaged energy flux over an orbital period in icy satellite oceans, neglecting the presence of a solid icy shell. These models are only able to consider linear Rayleigh friction. The numerical model presented here is compared to one of these semi-analytical models, finding excellent agreement between velocity and displacement solutions for all three terms to the tidal potential. Time averaged energy flux is within 2-6% of the analytical values. Quadratic (bottom) friction is then incorporated into the model, replacing linear friction. This approach is commonly applied to terrestrial ocean dissipation studies where dissipation scales nonlinearly with velocity. A suite of simulations are also run for the quadratic friction case which are then compared to and analysed against recent scaling laws developed by Chen and Nimmo (2013).
Fraser, Kirk A.; St-Georges, Lyne; Kiss, Laszlo I.
2014-01-01
Recognition of the friction stir welding process is growing in the aeronautical and aero-space industries. To make the process more available to the structural fabrication industry (buildings and bridges), being able to model the process to determine the highest speed of advance possible that will not cause unwanted welding defects is desirable. A numerical solution to the transient two-dimensional heat diffusion equation for the friction stir welding process is presented. A non-linear heat generation term based on an arbitrary piecewise linear model of friction as a function of temperature is used. The solution is used to solve for the temperature distribution in the Al 6061-T6 work pieces. The finite difference solution of the non-linear problem is used to perform a Monte-Carlo simulation (MCS). A polynomial response surface (maximum welding temperature as a function of advancing and rotational speed) is constructed from the MCS results. The response surface is used to determine the optimum tool speed of advance and rotational speed. The exterior penalty method is used to find the highest speed of advance and the associated rotational speed of the tool for the FSW process considered. We show that good agreement with experimental optimization work is possible with this simplified model. Using our approach an optimal weld pitch of 0.52 mm/rev is obtained for 3.18 mm thick AA6061-T6 plate. Our method provides an estimate of the optimal welding parameters in less than 30 min of calculation time. PMID:28788627
Fraser, Kirk A; St-Georges, Lyne; Kiss, Laszlo I
2014-04-30
Recognition of the friction stir welding process is growing in the aeronautical and aero-space industries. To make the process more available to the structural fabrication industry (buildings and bridges), being able to model the process to determine the highest speed of advance possible that will not cause unwanted welding defects is desirable. A numerical solution to the transient two-dimensional heat diffusion equation for the friction stir welding process is presented. A non-linear heat generation term based on an arbitrary piecewise linear model of friction as a function of temperature is used. The solution is used to solve for the temperature distribution in the Al 6061-T6 work pieces. The finite difference solution of the non-linear problem is used to perform a Monte-Carlo simulation (MCS). A polynomial response surface (maximum welding temperature as a function of advancing and rotational speed) is constructed from the MCS results. The response surface is used to determine the optimum tool speed of advance and rotational speed. The exterior penalty method is used to find the highest speed of advance and the associated rotational speed of the tool for the FSW process considered. We show that good agreement with experimental optimization work is possible with this simplified model. Using our approach an optimal weld pitch of 0.52 mm/rev is obtained for 3.18 mm thick AA6061-T6 plate. Our method provides an estimate of the optimal welding parameters in less than 30 min of calculation time.
Simultaneous measurement of friction and wear in hip simulators.
Haider, Hani; Weisenburger, Joel N; Garvin, Kevin L
2016-05-01
We propose and have evaluated a method to measure hip friction during wear testing on a popular multi-station hip simulator. A 6-degree-of-freedom load cell underneath the specimen sensed forces and torques during implant wear testing of simulated walking. This included internal-external and adduction-abduction rotations which are often neglected during friction testing on pendulum-type machines. Robust mathematical analysis and data processing provided friction estimates in three simultaneous orthogonal rotations, over extended multi-million cycle wear tests. We tested various bearing couples including metal-on-plastic, ceramic-on-plastic, and metal-on-metal material couples. In one test series, new and intentionally scratched CoCrMo 40-mm-diameter femoral heads were tested against conventional ultrahigh-molecular-weight polyethylene, highly cross-linked, and highly cross-linked with vitamin E versions. The scratching significantly increased friction and doubled the wear of all groups. Before scratching, friction levels for the aforementioned plastic groups were 0.056 ± 0.0060, 0.062 ± 0.0080, and 0.070 ± 0.0045, respectively, but after scratching increased to 0.088 ± 0.018, 0.076 ± 0.0066, and 0.082 ± 0.0049, respectively, all statistically significant increases (p = 0.00059, 0.00005, 0.0115, respectively). In another test series of 44-mm femoral head diameter hips, metal-on-plastic hips with conventional ultrahigh-molecular-weight polyethylene showed the lowest friction at 0.045 ± 0.0085, followed by highly cross-linked with 0.046 ± 0.0035 (not significantly different). In a ceramic-on-plastic design with conventional ultrahigh-molecular-weight polyethylene, higher friction 0.079 ± 0.0070 was measured likely due to that ceramic surface being rougher than usual. Metal-on-metal hips were compared without and with a TiN coating, resulting in 0.049 ± 0.014 and 0.097 ± 0.020 friction factors, respectively (statistically significant, p < 0.001), and the coating wore away on all coated hips eventually. Higher friction mostly correlated with higher wear or damage to femoral heads or implant coatings, except for the highly cross-linked wear resistant ultrahigh-molecular-weight polyethylene which had slightly higher friction, confirming the same finding in other independent studies. This type of friction measurements can help screen for clamping and elevated wear of metal-on-metal and resurfacing total hip replacements, surgical malpositioning, and abraded and otherwise damaged surfaces. © IMechE 2016.
Airfoil Vibration Dampers program
NASA Technical Reports Server (NTRS)
Cook, Robert M.
1991-01-01
The Airfoil Vibration Damper program has consisted of an analysis phase and a testing phase. During the analysis phase, a state-of-the-art computer code was developed, which can be used to guide designers in the placement and sizing of friction dampers. The use of this computer code was demonstrated by performing representative analyses on turbine blades from the High Pressure Oxidizer Turbopump (HPOTP) and High Pressure Fuel Turbopump (HPFTP) of the Space Shuttle Main Engine (SSME). The testing phase of the program consisted of performing friction damping tests on two different cantilever beams. Data from these tests provided an empirical check on the accuracy of the computer code developed in the analysis phase. Results of the analysis and testing showed that the computer code can accurately predict the performance of friction dampers. In addition, a valuable set of friction damping data was generated, which can be used to aid in the design of friction dampers, as well as provide benchmark test cases for future code developers.
Skin friction related behaviour of artificial turf systems.
Tay, Sock Peng; Fleming, Paul; Hu, Xiao; Forrester, Steph
2017-08-01
The occurrence of skin friction related injuries is an issue for artificial turf sports pitches and remains a barrier to their acceptance. The purpose of this study was to evaluate the current industry standard Securisport® Sports Surface Tester that measures skin surface related frictional behaviour of artificial turf. Little research has been published about the device and its efficacy, despite its widespread use as a standard FIFA test instrument. To achieve a range of frictional behaviours, several "third generation" (3G) carpet and infill combinations were investigated; friction time profiles throughout the Securisport rotations were assessed in combination with independent measurements of skin roughness before and after friction testing via 3D surface scanning. The results indicated that carpets without infill had greatest friction (coefficients of friction 0.97-1.20) while those completely filled with sand or rubber had similar and lower values independent of carpet type (coefficient of friction (COF) ≈0.57). Surface roughness of a silicone skin (s-skin) decreased after friction testing, with the largest change on sand infilled surfaces, indicating an "abrasive" polishing effect. The combined data show that the s-skin is damaged in a surface-specific manner, thus the Securisport COF values appear to be a poor measure of the potential for skin abrasion. It is proposed that the change in s-skin roughness improves assessment of the potential for skin damage when players slide on artificial turf.
Effect of friction stir welding and post-weld heat treatment on a nanostructured ferritic alloy
Mazumder, Baishakhi; Yu, Xinghua; Edmondson, Philip D.; ...
2015-12-08
Nanostructured ferritic alloys (NFAs) are new generation materials for use in high temperature energy systems, such as nuclear fission or fusion reactors. However, joining these materials is a concern, as their unique microstructure is destroyed by traditional liquid-state welding methods. The microstructural evolution of a friction stir welded 14YWT NFA was investigated by atom probe tomography, before and after a post-weld heat treatment (PWHT) at 1123K. The particle size, number density, elemental composition, and morphology of the titanium-yttrium-oxygenenriched nanoclusters (NCs) in the stir and thermally-affected zones were studied and compared with the base metal. No statistical difference in the sizemore » of the NCs was observed in any of these conditions. After the PWHT, increases in the number density and the oxygen enrichment in the NCs were observed. Therefore, these new results provide additional supporting evidence that friction stir welding appears to be a viable joining technique for NFAs, as the microstructural parameters of the NCs are not strongly affected, in contrast to traditional welding techniques.« less
Effect of friction stir welding and post-weld heat treatment on a nanostructured ferritic alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mazumder, Baishakhi; Yu, Xinghua; Edmondson, Philip D.
Nanostructured ferritic alloys (NFAs) are new generation materials for use in high temperature energy systems, such as nuclear fission or fusion reactors. However, joining these materials is a concern, as their unique microstructure is destroyed by traditional liquid-state welding methods. The microstructural evolution of a friction stir welded 14YWT NFA was investigated by atom probe tomography, before and after a post-weld heat treatment (PWHT) at 1123K. The particle size, number density, elemental composition, and morphology of the titanium-yttrium-oxygenenriched nanoclusters (NCs) in the stir and thermally-affected zones were studied and compared with the base metal. No statistical difference in the sizemore » of the NCs was observed in any of these conditions. After the PWHT, increases in the number density and the oxygen enrichment in the NCs were observed. Therefore, these new results provide additional supporting evidence that friction stir welding appears to be a viable joining technique for NFAs, as the microstructural parameters of the NCs are not strongly affected, in contrast to traditional welding techniques.« less
Genesis of Microstructures in Friction Stir Welding of Ti-6Al-4V
NASA Astrophysics Data System (ADS)
Tchein, Gnofam Jacques; Jacquin, Dimitri; Coupard, Dominique; Lacoste, Eric; Girot Mata, Franck
2018-06-01
This paper is focused on the genesis of microstructures in friction stir welding (FSW) of the Ti-6Al-4V alloy. Several titanium joints, initially prepared with four different preheat treatments, were processed by FSW. Detailed microstructural analyses were performed in order to investigate change in the microstructure during the process. In this work, the FSW processing allows a controlled and stable microstructure to be produced in the stirring zone, regardless of the initial heat treatment or the welding conditions. The welded material undergoes a severe thermomechanical treatment which can be divided into two steps. First, the friction in the shoulder and the plastic strain give rise to the necessary conditions to allow a continuous dynamic recrystallization of the β phase. This operation produces a fine and equiaxed β grain structure. Second, once the pin has moved away, the temperature decreases, and the material undergoes a heat treatment equivalent to air quenching. The material thus exhibits a β → β + α transformation with germination of a fine intergranular Widmanstätten phase within the ex-fully-recrystallized- β grains.
Investigation of low-frequency-oscillating water flow in metal foam with 10 pores per inch
NASA Astrophysics Data System (ADS)
Bağcı, Ö.; Arbak, A.; De Paepe, M.; Dukhan, N.
2018-01-01
In this study, oscillating water flow in metal foam with open cells is investigated experimentally. The metal foam sample has a porosity of 88% and 10 pores. The water was oscillated in the test section with three frequencies between 0.116 Hz and 0.348 Hz, which are considered low for water oscillation, and three flow displacements ranging between 74.35 mm and 111.53 mm. The combinations of frequencies of displacements were studied for their impacts of dimensional and non-dimensional pressure loss quantities. To this purpose, friction factor was correlated as a function of kinetic Reynolds number. The same metal foam sample was studied by exposing it to steady-state water flow to investigate its permeability and drag coefficient in low-velocity flow regimes. The friction factor distribution for oscillating flow was found to be over that found for steady state. The outcomes of the study are important for studying heat transfer under the same flow conditions.
NASA Astrophysics Data System (ADS)
Ghosh, M.; Gupta, R. K.; Husain, M. M.
2014-02-01
Joining of dissimilar materials is always a global challenge. Sometimes it is unavoidable to execute multifarious activities by a single component. In the present investigation, 6061 aluminum alloy and 304 stainless steel were joined by friction stir welding (FSW) at different tool rotational rates. Welded joints were characterized in optical and scanning electron microscopes. Reaction products in the stirring zone (SZ) were confirmed through X-ray diffraction. Joint strength was evaluated by tensile testing. It was found that the increment in average heat input and temperature at the weld nugget (WN) facilitated iron enrichment near the interface. Enhancement in the concentration of iron shifted the nature of intermetallics from the Fe2Al5 to Fe-rich end of the Fe-Al binary phase diagram. The peak microhardness and ultimate tensile strength were found to be maxima at the intermediate tool rotational rate, where Fe3Al and FeAl2 appeared along with Fe2Al5.
NASA Astrophysics Data System (ADS)
Liu, Yunhai; Yu, Bingjun; Cao, Zhongyue; Shi, Pengfei; Zhou, Ningning; Zhang, Bin; Zhang, Junyan; Qian, Linmao
2018-05-01
In this study, the superlubricity stability of hydrogenated diamond-like carbon (H-DLC) film in vacuum was investigated by varying the sliding velocity (30-700 mm/s). The relatively stable superlubricity state can be maintained for a long distance at low sliding velocity, whereas the superlubricity state quickly disappears and never recovers at high sliding velocity. Under superlubricity state, the transfer layer of H-DLC film was observed on the Al2O3 ball, which played a key role in obtaining ultra-low friction coefficient. Although the transfer layer can be generated at the beginning of the test, high-velocity sliding tends to accelerate the superlubricity failure and leads to the severe wear of H-DLC film. Analysis indicated that the main reason for superlubricity failure at high sliding velocity is not attributed to friction heat or the break of hydrogen passivation but to the absence of transfer layer on Al2O3 ball. The present study can enrich the understanding of superlubricity mechanism of H-DLC film.
Tribological Properties of CrN Coating Under Lubrication Conditions
NASA Astrophysics Data System (ADS)
Lubas, Janusz
2012-08-01
The paper presents research results of the influence of CrN coating on the friction parameters in friction pairs under lubricated friction conditions. The formed CrN homogeneous coating and CrN-steel 46Cr2 "ring" structure coating was matched under test conditions with a counterpart made from SAE-48 and SAE-783 bearing alloys. Tested sliding pairs were lubricated with 5W/40 Lotos synthetic engine oil. The tribological test was conducted on block-on-ring tester. The applied modification technologies of the surface layer of steel allowed for obtaining construction materials with pre-determined tribological characteristics required for the elements of friction pairs in lubricated contact. The results of the tests proved the possibility of implementing CrN coating in friction pairs, which work under mixed friction conditions. The results showed differences in the wear of bearing alloy, as the effect of the interaction between the co-operating surface layers and of the physiochemical changes of their surfaces, induced by external forces. The smallest wear of the bearing alloy occurs during the cooperation with the nitrided layer, whereas the largest wear occurs during the cooperation with the homogenous CrN coating. The CrN coating-46Cr2 steel "ring structure" decreases friction resistance during the start-up of the sliding pair, as well as lowers the level of the friction force and temperature in the friction area during co-operation with SAE-783 bearing alloys.
Effects of shear load on frictional healing
NASA Astrophysics Data System (ADS)
Ryan, K. L.; Marone, C.
2014-12-01
During the seismic cycle of repeated earthquake failure, faults regain strength in a process known as frictional healing. Laboratory studies have played a central role in illuminating the processes of frictional healing and fault re-strengthening. These studies have also provided the foundation for laboratory-derived friction constitutive laws, which have been used extensively to model earthquake dynamics. We conducted laboratory experiments to assess the affect of shear load on frictional healing. Frictional healing is quantified during slide-hold-slide (SHS) tests, which serve as a simple laboratory analog for the seismic cycle in which earthquakes (slide) are followed by interseismic quiescence (hold). We studied bare surfaces of Westerly granite and layers of Westerly granite gouge (thickness of 3 mm) at normal stresses from 4-25 MPa, relative humidity of 40-60%, and loading and unloading velocities of 10-300 μm/s. During the hold period of SHS tests, shear stress on the sample was partially removed to investigate the effects of shear load on frictional healing and to isolate time- and slip-dependent effects on fault healing. Preliminary results are consistent with existing works and indicate that frictional healing increases with the logarithm of hold time and decreases with normalized shear stress τ/τf during the hold. During SHS tests with hold periods of 100 seconds, healing values ranged from (0.013-0.014) for τ/τf = 1 to (0.059-0.063) for τ/τf = 0, where τ is the shear stress during the hold period and τf is the shear stress during steady frictional sliding. Experiments on bare rock surfaces and with natural and synthetic fault gouge materials are in progress. Conventional SHS tests (i.e. τ/τf = 1) are adequately described by the rate and state friction laws. However, previous experiments in granular quartz suggest that zero-stress SHS tests are not well characterized by either the Dieterich or Ruina state evolution laws. We are investigating the processes that produce shear stress dependent frictional healing, alternate forms of the state evolution law, and comparing results for friction of bare rock surfaces and granular fault gouge.
Wind-Tunnel Modeling of Flow Diffusion over an Urban Complex.
URBAN AREAS, *ATMOSPHERIC MOTION, *AIR POLLUTION, ATMOSPHERIC MOTION, WIND TUNNEL MODELS, HEAT, DIFFUSION , TURBULENT BOUNDARY LAYER, WIND, SKIN FRICTION, MATHEMATICAL MODELS, URBAN PLANNING, INDIANA.
Evaluation of minimum quantity lubrication grinding with nano-particles and recent related patents.
Li, Changhe; Wang, Sheng; Zhang, Qiang; Jia, Dongzhou
2013-06-01
In recent years, a large number of patents have been devoted to developing minimum quantity lubrication (MQL) grinding techniques that can significantly improve both environmentally conscious and energy saving and costeffective sustainable grinding fluid alternatives. Among them, one patent is about a supply system for the grinding fluid in nano-particle jet MQL, which produced MQL lubricant by adding solid nano-particles in degradable grinding fluid. The MQL supply device turns the lubricant to the pulse drops with fixed pressure, unchanged pulse frequency and the same drop diameter. The drops will be produced and injected in the grinding zone in the form of jet flow under high pressure gas and air seal. As people become increasingly demanding on our environment, minimum quantity lubrication has been widely used in the grinding and processing. Yet, it presents the defect of insufficient cooling performance, which confines its development. To improve the heat transfer efficiency of MQL, nano-particles of a certain mass fraction can be added in the minimum quantity of lubricant oil, which concomitantly will improve the lubrication effects in the processing. In this study, the grinding experiment corroborated the effect of nano-particles in surface grinding. In addition, compared with other forms of lubrication, the results presented that the grinding force, the friction coefficient and specific grinding energy of MQL grinding have been significantly weakened, while G ratio greatly rose. These are attributed to the friction oil-film with excellent anti-friction and anti-wear performance, which is generated nano-particles at the wheel/workpiece interface. In this research, the cooling performance of nano-particle jet MQL was analyzed. Based on tests and experiments, the surface temperature was assayed from different methods, including flood lubricating oil, dry grinding, MQL grinding and nano-particle jet MQL grinding. Because of the outstanding heat transfer performance of nano-particles, the ratio of heat delivered by grinding media was increased, leading to lower temperature in the grinding zone. Results demonstrate that nano-particle jet MQL has satisfactory cooling performance as well as a promising future of extensive application.
Effects of geometrical parameters on thermal-hydraulic performance of wavy microtube
NASA Astrophysics Data System (ADS)
Khoshvaght-Aliabadi, Morteza; Chamanroy, Zohreh
2018-03-01
Laminar flow and heat transfer characteristics of water flow through wavy microtubes (WMTs) with different values of wave length ( l) and wave amplitude ( a) are investigated experimentally. The tested WMTs are fabricated from copper microtube with the internal diameter of 914 μm. Experiments encompass the Reynolds numbers from 640 to 1950. In order to validate the experimental setup and create a base line for comparison, initial tests are also carried out for a straight microtube. The results show that both the heat transfer coefficient and the pressure drop are strongly affected by the studied geometrical factors. For a given Reynolds number, these parameters increase as the wave length decreases and the wave amplitude increases. However, in the studied ranges, the effect of wave amplitude is more than that of wave length. A considerable thermal-hydraulic factor of 1.78 is obtained for a WMT with l = 14.3 mm and a = 6 mm. Finally, correlations are developed to predict the Colburn factor and friction factor of water flow in the WMTs.
Optimal design of the first stage of the plate-fin heat exchanger for the EAST cryogenic system
NASA Astrophysics Data System (ADS)
Qingfeng, JIANG; Zhigang, ZHU; Qiyong, ZHANG; Ming, ZHUANG; Xiaofei, LU
2018-03-01
The size of the heat exchanger is an important factor determining the dimensions of the cold box in helium cryogenic systems. In this paper, a counter-flow multi-stream plate-fin heat exchanger is optimized by means of a spatial interpolation method coupled with a hybrid genetic algorithm. Compared with empirical correlations, this spatial interpolation algorithm based on a kriging model can be adopted to more precisely predict the Colburn heat transfer factors and Fanning friction factors of offset-strip fins. Moreover, strict computational fluid dynamics simulations can be carried out to predict the heat transfer and friction performance in the absence of reliable experimental data. Within the constraints of heat exchange requirements, maximum allowable pressure drop, existing manufacturing techniques and structural strength, a mathematical model of an optimized design with discrete and continuous variables based on a hybrid genetic algorithm is established in order to minimize the volume. The results show that for the first-stage heat exchanger in the EAST refrigerator, the structural size could be decreased from the original 2.200 × 0.600 × 0.627 (m3) to the optimized 1.854 × 0.420 × 0.340 (m3), with a large reduction in volume. The current work demonstrates that the proposed method could be a useful tool to achieve optimization in an actual engineering project during the practical design process.
NASA Astrophysics Data System (ADS)
Gemme, Frederic
The aim of the present research project is to increase the amount of fundamental knowledge regarding the process by getting a better understanding of the physical phenomena involved in friction stir welding (FSW). Such knowledge is required to improve the process in the context of industrial applications. In order to do so, the first part of the project is dedicated to a theoretical study of the process, while the microstructure and the mechanical properties of welded joints obtained in different welding conditions are measured and analyzed in the second part. The combination of the tool rotating and translating movements induces plastic deformation and heat generation of the welded material. The material thermomechanical history is responsible for metallurgical phenomena occurring during FSW such as recrystallization and precipitate dissolution and coarsening. Process modelling is used to reproduce this thermomechanical history in order to predict the influence of welding on the material microstructure. It is helpful to study heat generation and heat conduction mechanisms and to understand how joint properties are related to them. In the current work, a finite element numerical model based on solid mechanics has been developed to compute the thermomechanical history of the welded material. The computation results were compared to reference experimental data in order to validate the model and to calibrate unknown physical parameters. The model was used to study the effect of the friction coefficient on the thermomechanical history. Results showed that contact conditions at the workpiece/tool interface have a strong effect on relative amounts of heat generated by friction and by plastic deformation. The comparison with the experimental torque applied by the tool for different rotational speeds has shown that the friction coefficient decreases when the rotational speed increases. Consequently, heat generation is far more important near the material/tool interface and the material deformation is shallower, increasing the lack of penetration probability. The variation of thermomechanical conditions with regards to the rotational speed is responsible for the variation of the nugget shape, as recrystallization conditions are not reached in the same volume of material. The second part of the research project was dedicated to a characterization of the welded joints microstructure and mechanical properties. Sound joints were obtained by using a manufacturing procedure involving process parameters optimization and quality control of the joint integrity. Five different combinations of rotational and advancing speeds were studied. Microstructure observations have shown that the rotational speed has an effect on recrystallization conditions because of the variation of the contact conditions at the material/tool interface. On the other hand, the advancing speed has a strong effect on the precipitation state in the heat affected zone (HAZ). The heat input increases when the advancing speed decreases. The material softening in the HAZ is then more pronounced. Mechanical testing of the welded joints showed that the fatigue resistance increases when the rotational speed increases and the advancing speed decreases. The fatigue resistance of FSW joints mainly depends on the ratio of the advancing speed on the rotational speed, called the welding pitch k. When the welding pitch is high (k ≥ 0,66 mm/rev), the fatigue resistance depends on crack initiation at the root of circular grooves left by the tool on the weld surface. The size of these grooves is directly related to the welding pitch. When the welding pitch is low (k ≤ 0,2 mm/rev), the heat input is high and the fatigue resistance is limited by the HAZ softening. The fatigue resistance is optimized when k stands in the 0,25-0,30 mm/rev range. Outside that range, the presence of small lateral lips is critical. The results of the characterization part of the project showed that the effects of the applied vertical force on the formation of lateral lips should be submitted to further investigations. The elimination of the lateral lip, which could be achieved with a more precise adjustment of the vertical force, could lead to an improved fatigue resistance. The elimination of lateral lips, but also the circular grooves left by the tool, may be obtained by developing an appropriate surfacing technique and could lead to an improved fatigue resistance without reducing the advancing speed. (Abstract shortened by UMI.)
Improving friction performance of cast iron by laser shock peening
NASA Astrophysics Data System (ADS)
Feng, Xu; Zhou, Jianzhong; Huang, Shu; Sheng, Jie; Mei, Yufen; Zhou, Hongda
2015-05-01
According to different purpose, some high or low friction coefficient of the material surface is required. In this study, micro-dent texture was fabricated on cast iron specimens by a set of laser shock peening (LSP) experiments under different laser energy, with different patterns of micro dimples in terms of the depth over diameter. The mechanism of LSP was discussed and surface morphology of the micro dimples were investigated by utilizing a Keyence KS-1100 3D optical surface profilometer. The tests under the conditions of dry and lubricating sliding friction were accomplished on the UMT-2 apparatus. The performance of treated samples during friction and wear tests were characterized and analyzed. Based on theoretical analysis and experimental study, friction performance of textured and untextured samples were studied and compared. Morphological characteristics were observed by scanning electron microscope (SEM) and compared after friction tests under dry condition. The results showed that friction coefficient of textured samples were obvious changed than smooth samples. It can be seen that LSP is an effective way to improve the friction performance of cast iron by fabricating high quality micro dimples on its surface, no matter what kind of engineering application mentioned in this paper.
Frictional Ignition Testing of Composite Materials
NASA Technical Reports Server (NTRS)
Peralta, Steve; Rosales, Keisa; Robinson, Michael J.; Stoltzfus, Joel
2006-01-01
The space flight community has been investigating lightweight composite materials for use in propellant tanks for both liquid and gaseous oxygen for space flight vehicles. The use of these materials presents some risks pertaining to ignition and burning hazards in the presence of oxygen. Through hazard analysis process, some ignition mechanisms have been identified as being potentially credible. One of the ignition mechanisms was reciprocal friction; however, test data do not exist that could be used to clear or fail these types of materials as "oxygen compatible" for the reciprocal friction ignition mechanism. Therefore, testing was performed at White Sands Test Facility (WSTF) to provide data to evaluate this ignition mechanism. This paper presents the test system, approach, data results, and findings of the reciprocal friction testing performed on composite sample materials being considered for propellant tanks.
NASA Technical Reports Server (NTRS)
Chaudhuri, Dilip K.; Slifka, Andrew J.; Siegwarth, James D.
1993-01-01
Unlubricated sliding friction and wear of 440C steels in an oxygen environment have been studied under a variety of load, speed, and temperature ranging from approximately -185 to 675 deg C. A specially designed test apparatus with a ball-on-flat geometry has been used for this purpose. The observed dependencies of the initial coefficient of friction, the average dynamic coefficient of friction, and the wear rate on load, speed, and test temperatures have been examined from the standpoint of existing theories of friction and wear. High contact temperatures are generated during the sliding friction, causing rapid oxidation and localized surface melting. A combination of fatigue, delamination, and loss of hardness due to tempering of the martensitic structure is responsible for the high wear rate observed and the coefficient of friction.
Pressure melting and ice skating
NASA Astrophysics Data System (ADS)
Colbeck, S. C.
1995-10-01
Pressure melting cannot be responsible for the low friction of ice. The pressure needed to reach the melting temperature is above the compressive failure stress and, if it did occur, high squeeze losses would result in very thin films. Pure liquid water cannot coexist with ice much below -20 °C at any pressure and friction does not increase suddenly in that range. If frictional heating and pressure melting contribute equally, the length of the wetted contact could not exceed 15 μm at a speed of 5 m/s, which seems much too short. If pressure melting is the dominant process, the water films are less than 0.08 μm thick because of the high pressures.
Bi-directional, buried-wire skin-friction gage
NASA Technical Reports Server (NTRS)
Higuchi, H.; Peake, D. J.
1978-01-01
A compact, nonobtrusive, bi-directional, skin-friction gage was developed to measure the mean shear stress beneath a three-dimensional boundary layer. The gage works by measuring the heat flux from two orthogonal wires embedded in the surface. Such a gage was constructed and its characteristics were determined for different angles of yaw in a calibration experiment in subsonic flow with a Preston tube used as a standard. Sample gages were then used in a fully three-dimensional turbulent boundary layer on a circular cone at high relative incidence, where there were regimes of favorable and adverse pressure gradients and three-dimensional separation. Both the direction and magnitude of skin friction were then obtained on the cone surface.
NASA Astrophysics Data System (ADS)
Zhang, T. H.; Wang, Y.; Fang, X. F.; Liang, P.; Zhao, Y.; Li, Y. H.; Liu, X. M.
2018-02-01
Due to the deformation caused by residual stress in the welding process, welded components need treatment to reduce welding distortion. In this paper, several different times of flame-heating and water-cooling treatment were subjected to the friction stir welding joints of 15mm thick 7N01P-T4 aluminum alloy sheets to study the microstructure variation of friction stir welding joints of 7N01P-T4 aluminum alloy, and to analyze the effect on micro-hardness, tensile and fracture mechanical properties. This investigation will be helpful to optimize treatment methods and provide instruction on industrial production.
NASA Astrophysics Data System (ADS)
Zhang, J. X.; Y Ren, Z.; Zheng, G.; Wang, H. F.; Jiang, L.; Fu, Y.; Yang, W. Q.; He, H. H.
2017-12-01
In this work, hydroxylated tung oil (HTO) modified high temperature resistant resin containing boron and benzoxazine was synthesized. HTO and ethylenediamine was used to toughen the boron phenolic resin with specific reaction. The structure of product was studied by Fourier-transform infrared spectroscopy(FTIR), and the heat resistance was tested by Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis(TGA). The results indicated that the conjugated triene structure of HTO was involved in the crosslinking of the heating curing progress, and in addition, the open-loop polymerization reaction of benzoxazine resin during heating can effectively reduce the curing temperature of the resin and reduce the release of small molecule volatiles, which is advantageous to follow-up processing. DSC data showed that the initial decomposition temperature of the resin is 350-400 °C, the carbon residue rate under 800 °C was 65%. It indicated that the resin has better heat resistance than normal boron phenolic resin. The resin can be used as an excellent ablative material and anti-friction material and has a huge application market in many fields.
Plasma Heating and Flow in an Auroral Arc
NASA Technical Reports Server (NTRS)
Moore, T. E.; Chandler, M. O.; Pollock, C. J.; Reasoner, D. L.; Arnoldy, R. L.; Austin, B.; Kintner, P. M.; Bonnell, J.
1996-01-01
We report direct observations of the three-dimensional velocity distribution of selected topside ionospheric ion species in an auroral context between 500 and 550 km altitude. We find heating transverse to the local magnetic field in the core plasma, with significant heating of 0(+), He(+), and H(+), as well as tail heating events that occur independently of the core heating. The 0(+) velocity distribution departs from bi-Maxwellian, at one point exhibiting an apparent ring-like shape. However, these observations are shown to be aliased within the auroral arc by temporal variations that arc not well-resolved by the core plasma instrument. The dc electric field measurements reveal superthermal plasma drifts that are consistent with passage of the payload through a series of vortex structures or a larger scale circularly polarized hydromagnetic wave structure within the auroral arc. The dc electric field also shows that impulsive solitary structures, with a frequency spectrum in the ion cyclotron frequency range, occur in close correlation with the tail heating events. The drift and core heating observations lend support to the idea that core ion heating is driven at low altitudes by rapid convective motions imposed by the magnetosphere. Plasma wave emissions at ion frequencies and parallel heating of the low-energy electron plasma are observed in conjunction with this auroral form; however, the conditions are much more complex than those typically invoked in previous theoretical treatments of superthermal frictional heating. The observed ion heating within the arc clearly exceeds that expected from frictional heating for the light ion species H(+) and He(+), and the core distributions also contain hot transverse tails, indicating an anomalous transverse heat source.
Seasonal variation and solar activity dependence of the quiet-time ionospheric trough
NASA Astrophysics Data System (ADS)
Ishida, T.; Ogawa, Y.; Kadokura, A.; Hiraki, Y.; Häggström, I.
2014-08-01
We have conducted a statistical analysis of the ionospheric F region trough, focusing on its seasonal variation and solar activity dependence under geomagnetically quiet and moderate conditions, using plasma parameter data obtained via Common Program 3 observations performed by the European Incoherent Scatter (EISCAT) radar between 1982 and 2011. We have confirmed that there is a major difference in frictional heating between the high- and low-latitude sides of the EISCAT field of view (FOV) at ~73°0'N-60°5'N (geomagnetic latitude) at an altitude of 325 km, which is associated with trough formation. Our statistical results show that the high-latitude and midlatitude troughs occur on the high- and low-latitude sides of the FOV, respectively. Seasonal variations indicate that dissociative recombination accompanied by frictional heating is a main cause of trough formation in sunlit regions. During summer, therefore, the occurrence rate is maintained at 80-90% in the postmidnight high-latitude region owing to frictional heating by eastward return flow. Solar activity dependence on trough formation indicates that field-aligned currents modulate the occurrence rate of the trough during the winter and equinox seasons. In addition, the trough becomes deeper via dissociative recombination caused by an increased ion temperature with F10.7, at least in the equinox and summer seasons but not in winter.
NASA Technical Reports Server (NTRS)
Miyoshi, K.; Buckley, D. H.
1980-01-01
Friction studies were conducted with a silicon carbide (0001) surface contacting polycrystalline iron. The surface of silicon carbide was pretreated: (1) by bombarding it with argon ions for 30 minutes at a pressure of 1.3 pascals; (2) by heating it at 800 C for 3 hours in vacuum at a pressure of 10 to the minus eighth power pascal; or (3) by heating it at 1500 C for 3 hours in a vacuum of 10 to the minus eighth power pascal. Auger emission spectroscopy was used to determine the presence of silicon and carbon and the form of the carbon. The surfaces of silicon carbide bombarded with argon ions or preheated to 800 C revealed the main Si peak and a carbide type of C peak in the Auger spectra. The surfaces preheated to 1500 C revealed only a graphite type of C peak in the Auger spectra, and the Si peak had diminished to a barely perceptible amount. The surfaces of silicon carbide preheated to 800 C gave a 1.5 to 3 times higher coefficient of friction than did the surfaces of silicon carbide preheated to 1500 C. The coefficient of friction was lower in the 11(-2)0 direction than in the 10(-1)0 direction; that is, it was lower in the preferred crystallographic slip direction.
Friction of Compression-ignition Engines
NASA Technical Reports Server (NTRS)
Moore, Charles S; Collins, John H , Jr
1936-01-01
The cost in mean effective pressure of generating air flow in the combustion chambers of single-cylinder compression-ignition engines was determined for the prechamber and the displaced-piston types of combustion chamber. For each type a wide range of air-flow quantities, speeds, and boost pressures was investigated. Supplementary tests were made to determine the effect of lubricating-oil temperature, cooling-water temperature, and compression ratio on the friction mean effective pressure of the single-cylinder test engine. Friction curves are included for two 9-cylinder, radial, compression-ignition aircraft engines. The results indicate that generating the optimum forced air flow increased the motoring losses approximately 5 pounds per square inch mean effective pressure regardless of chamber type or engine speed. With a given type of chamber, the rate of increase in friction mean effective pressure with engine speed is independent of the air-flow speed. The effect of boost pressure on the friction cannot be predicted because the friction was decreased, unchanged, or increased depending on the combustion-chamber type and design details. High compression ratio accounts for approximately 5 pounds per square inch mean effective pressure of the friction of these single-cylinder compression-ignition engines. The single-cylinder test engines used in this investigation had a much higher friction mean effective pressure than conventional aircraft engines or than the 9-cylinder, radial, compression-ignition engines tested so that performance should be compared on an indicated basis.
NASA Technical Reports Server (NTRS)
Stock, J.
1979-01-01
Heat resistant paint is effective surface coating for sliding seals that must operate at elevated temperatures. Economical paint is easy to apply, offers minimal friction, and improves reliability of seals.
NASA Astrophysics Data System (ADS)
Castelo, A.; Mendioroz, A.; Celorrio, R.; Salazar, A.; López de Uralde, P.; Gorosmendi, I.; Gorostegui-Colinas, E.
2017-05-01
Lock-in vibrothermography is used to characterize vertical kissing and open cracks in metals. In this technique the crack heats up during ultrasound excitation due mainly to friction between the defect's faces. We have solved the inverse problem, consisting in determining the heat source distribution produced at cracks under amplitude modulated ultrasound excitation, which is an ill-posed inverse problem. As a consequence the minimization of the residual is unstable. We have stabilized the algorithm introducing a penalty term based on Total Variation functional. In the inversion, we combine amplitude and phase surface temperature data obtained at several modulation frequencies. Inversions of synthetic data with added noise indicate that compact heat sources are characterized accurately and that the particular upper contours can be retrieved for shallow heat sources. The overall shape of open and homogeneous semicircular strip-shaped heat sources representing open half-penny cracks can also be retrieved but the reconstruction of the deeper end of the heat source loses contrast. Angle-, radius- and depth-dependent inhomogeneous heat flux distributions within these semicircular strips can also be qualitatively characterized. Reconstructions of experimental data taken on samples containing calibrated heat sources confirm the predictions from reconstructions of synthetic data. We also present inversions of experimental data obtained from a real welded Inconel 718 specimen. The results are in good qualitative agreement with the results of liquids penetrants testing.
Determination of the Basic Friction Angle of Rock Surfaces by Tilt Tests
NASA Astrophysics Data System (ADS)
Jang, Hyun-Sic; Zhang, Qing-Zhao; Kang, Seong-Seung; Jang, Bo-An
2018-04-01
Samples of Hwangdeung granite from Korea and Berea sandstone from USA, both containing sliding planes, were prepared by saw-cutting or polishing using either #100 or #600 grinding powders. Their basic friction angles were measured by direct shear testing, triaxial compression testing, and tilt testing. The direct shear tests and triaxial compression tests on the saw-cut, #100, and #600 surfaces indicated that the most reliable results were obtained from the #100 surface: basic friction angle of 29.4° for granite and 34.1° for sandstone. To examine the effect of surface conditions on the friction angle in tilt tests, the sliding angles were measured 50 times with two surface conditions (surfaces cleaned and not cleaned after each measurement). The initial sliding angles were high regardless of rock type and surface conditions and decreased exponentially as measurements continued. The characteristics of the sliding angles, differences between tilt tests, and dispersion between measurements in each test indicated that #100 surface produced the most reliable basic friction angle measurement. Without cleaning the surfaces, the average angles for granite (32 measurements) and sandstone (23 measurements) were similar to the basic friction angle. When 20-50 measurements without cleaning were averaged, the basic friction angle was within ± 2° for granite and ± 3° for sandstone. Sliding angles using five different tilting speeds were measured but the average was similar, indicating that tilting speed (between 0.2° and 1.6°/s) has little effect on the sliding angle. Sliding angles using four different sample sizes were measured with the best results obtained for samples larger than 8 × 8 cm.
DOT National Transportation Integrated Search
2012-11-01
Under INDOTs current friction testing program, the friction is measured annually on interstates but only once every three years on noninterstate : roadways. The states Pavement Management System, however, would require current data if friction ...
NASA Astrophysics Data System (ADS)
Zhang, Fan; Zhao, Jianjian; Hu, Dawei; Skoczylas, Frederic; Shao, Jianfu
2018-03-01
High-temperature treatment may cause changes in physical and mechanical properties of rocks. Temperature changing rate (heating, cooling and both of them) plays an important role in those changes. Thermal conductivity tests, ultrasonic pulse velocity tests, gas permeability tests and triaxial compression tests are performed on granite samples after a heating and rapid cooling treatment in order to characterize the changes in physical and mechanical properties. Seven levels of temperature (from 25 to 900 °C) are used. It is found that the physical and mechanical properties of granite are significantly deteriorated by the thermal treatment. The porosity shows a significant increase from 1.19% at the initial state to 6.13% for samples heated to 900 °C. The increase in porosity is mainly due to three factors: (1) a large number of microcracks caused by the rapid cooling rate; (2) the mineral transformation of granite through high-temperature heating and water-cooling process; (3) the rapid cooling process causes the mineral particles to weaken. As the temperature of treatment increases, the thermal conductivity and P-wave velocity decrease while the gas permeability increases. Below 200 °C, the elastic modulus and cohesion increase with temperature increasing. Between 200 and 500 °C, the elastic modulus and cohesion have no obvious change with temperature. Beyond 500 °C, as the temperature increases, the elastic modulus and cohesion obviously decrease and the decreasing rate becomes slower with the increase in confining pressure. Poisson's ratio and internal frictional coefficient have no obvious change as the temperature increases. Moreover, there is a transition from a brittle to ductile behavior when the temperature becomes high. At 900 °C, the granite shows an obvious elastic-plastic behavior.
NASA Astrophysics Data System (ADS)
Maldonado, Jaime J.
1994-04-01
Hypersonic vehicles are exposed to extreme thermal conditions compared to subsonic aircraft; therefore, some level of thermal management is required to protect the materials used. Normally, hypersonic vehicles experience the highest temperatures in the nozzle throat, and aircraft and propulsion system leading edges. Convective heat transfer augmentation techniques can be used in the thermal management system to increase heat transfer of the cooling channels in those areas. The techniques studied in this report are pin-fin, offset-fin, ribbed and straight roughened channel. A smooth straight channel is used as the baseline for comparing the techniques. SINDA '85, a lumped parameter finite difference thermal analyzer, is used to model the channels. Subroutines are added to model the fluid flow assuming steady one dimensional compressible flow with heat addition and friction. Correlations for convective heat transfer and friction are used in conjunction with the fluid flow analysis mentioned. As expected, the pin-fin arrangement has the highest heat transfer coefficient and the largest pressure drop. All the other devices fall in between the pin-fin and smooth straight channel. The selection of the best heat augmentation method depends on the design requirements. A good approach may be a channel using a combination of the techniques. For instance, several rows of pin-fins may be located at the region of highest heat flux, surrounded by some of the other techniques. Thus, the heat transfer coefficient is maximized at the region of highest heat flux while the pressure drop is not excessive.
NASA Technical Reports Server (NTRS)
Maldonado, Jaime J.
1994-01-01
Hypersonic vehicles are exposed to extreme thermal conditions compared to subsonic aircraft; therefore, some level of thermal management is required to protect the materials used. Normally, hypersonic vehicles experience the highest temperatures in the nozzle throat, and aircraft and propulsion system leading edges. Convective heat transfer augmentation techniques can be used in the thermal management system to increase heat transfer of the cooling channels in those areas. The techniques studied in this report are pin-fin, offset-fin, ribbed and straight roughened channel. A smooth straight channel is used as the baseline for comparing the techniques. SINDA '85, a lumped parameter finite difference thermal analyzer, is used to model the channels. Subroutines are added to model the fluid flow assuming steady one dimensional compressible flow with heat addition and friction. Correlations for convective heat transfer and friction are used in conjunction with the fluid flow analysis mentioned. As expected, the pin-fin arrangement has the highest heat transfer coefficient and the largest pressure drop. All the other devices fall in between the pin-fin and smooth straight channel. The selection of the best heat augmentation method depends on the design requirements. A good approach may be a channel using a combination of the techniques. For instance, several rows of pin-fins may be located at the region of highest heat flux, surrounded by some of the other techniques. Thus, the heat transfer coefficient is maximized at the region of highest heat flux while the pressure drop is not excessive.
Experimental and Computational Studies of Heat Transfer in Complex Internal Flows.
1981-01-01
project, extending from September 15, 1979 to December 15, 1980 . The details of five distinct pieces of research are set forth. These research problems... Hislop , C. I., and Morris, R., "Effect on the Local Heat Transfer Coefficient in a Pipe of an Abrupt Disturbance of the Fluid Flow: Abrupt...Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota, 1980 . 10. Petukhov, B. S., "Heat Transfer and Friction in Turbulent
NASA Technical Reports Server (NTRS)
Huerre, P.; Karamcheti, K.
1976-01-01
The theory of sound propagation is examined in a viscous, heat-conducting fluid, initially at rest and in a uniform state, and contained in a rigid, impermeable duct with isothermal walls. Topics covered include: (1) theoretical formulation of the small amplitude fluctuating motions of a viscous, heat-conducting and compressible fluid; (2) sound propagation in a two dimensional duct; and (3) perturbation study of the inplane modes.
Joule-Thomson effect and internal convection heat transfer in turbulent He II flow
NASA Technical Reports Server (NTRS)
Walstrom, P. L.
1988-01-01
The temperature rise in highly turbulent He II flowing in tubing was measured in the temperature range 1.6-2.1 K. The effect of internal convection heat transport on the predicted temperature profiles is calculated from the two-fluid model with mutual friction. The model predictions are in good agreement with the measurements, provided that the pressure gradient term is retained in the expression for internal convection heat flow.
Comparison of friction produced by two types of orthodontic bracket protectors
Mendonça, Steyner de Lima; Praxedes Neto, Otávio José; de Oliveira, Patricia Teixeira; dos Santos, Patricia Bittencourt Dutra; Pinheiro, Fábio Henrique de Sá Leitão
2014-01-01
Introduction Fixed orthodontic appliances have been regarded as a common causative factor of oral lesions. To manage soft tissue discomfort, most orthodontists recommend using a small amount of utility wax over the brackets in order to alleviate trauma. This in vitro study aimed at evaluating friction generated by two types of bracket protectors (customized acetate protector [CAP] and temporary resin protector [TRP]) during the initial stages of orthodontic treatment. Methods An experimental model (test unit) was used to assess friction. In order to measure the friction produced in each test, the model was attached to a mechanical testing machine which simulated maxillary canines alignment. Intergroup comparison was carried out by one-way ANOVA with level of significance set at 5%. Results The friction presented by the TRP group was statistically higher than that of the control group at 6 mm. It was also higher than in the control and CAP groups in terms of maximum friction. Conclusion The customized acetate protector (CAP) demonstrated not to interfere in friction between the wire and the orthodontic bracket slot. PMID:24713564
Comparison of friction produced by two types of orthodontic bracket protectors.
de Lima Mendonça, Steyner; Praxedes Neto, Otávio José; de Oliveira, Patricia Teixeira; dos Santos, Patricia Bittencourt Dutra; de Sá Leitão Pinheiro, Fábio Henrique
2014-01-01
Fixed orthodontic appliances have been regarded as a common causative factor of oral lesions. To manage soft tissue discomfort, most orthodontists recommend using a small amount of utility wax over the brackets in order to alleviate trauma. This in vitro study aimed at evaluating friction generated by two types of bracket protectors (customized acetate protector [CAP] and temporary resin protector [TRP]) during the initial stages of orthodontic treatment. An experimental model (test unit) was used to assess friction. In order to measure the friction produced in each test, the model was attached to a mechanical testing machine which simulated maxillary canines alignment. Intergroup comparison was carried out by one-way ANOVA with level of significance set at 5%. The friction presented by the TRP group was statistically higher than that of the control group at 6 mm. It was also higher than in the control and CAP groups in terms of maximum friction. The customized acetate protector (CAP) demonstrated not to interfere in friction between the wire and the orthodontic bracket slot.
Steady-state wear and friction in boundary lubrication studies
NASA Technical Reports Server (NTRS)
Loomis, W. R.; Jones, W. R., Jr.
1980-01-01
A friction and wear study was made at 20 C to obtain improved reproducibility and reliability in boundary lubrication testing. Ester-base and C-ether-base fluids were used to lubricate a pure iron rider in sliding contact with a rotating M-50 steel disk in a friction and wear apparatus. Conditions included loads of 1/2 and 1 kg and sliding velocities of 3.6 to 18.2 m/min in a dry air atmosphere and stepwise time intervals from 1 to 250 min for wear measurements. The wear rate results were compared with those from previous studies where a single 25 min test period was used. Satisfactory test conditions for studying friction and wear in boundary lubrication for this apparatus were found to be 1 kg load; sliding velocities of 7.1 to 9.1 m/min (50 rpm disk speed); and use of a time stepwise test procedure. Highly reproducible steady-state wear rates and steady-state friction coefficients were determined under boundary conditions. Wear rates and coefficients of friction were constant following initially high values during run-in periods.
NASA Technical Reports Server (NTRS)
Hwang, Danny P.
1999-01-01
A new turbulent skin friction reduction technology, called the microblowing technique has been tested in supersonic flow (Mach number of 1.9) on specially designed porous plates with microholes. The skin friction was measured directly by a force balance and the boundary layer development was measured by a total pressure rake at the tailing edge of a test plate. The free stream Reynolds number was 1.0(10 exp 6) per meter. The turbulent skin friction coefficient ratios (C(sub f)/C(sub f0)) of seven porous plates are given in this report. Test results showed that the microblowing technique could reduce the turbulent skin friction in supersonic flow (up to 90 percent below a solid flat plate value, which was even greater than in subsonic flow).
Tribological Behavior of IN718 Superalloy Coating Fabricated by Laser Additive Manufacturing
NASA Astrophysics Data System (ADS)
Zhang, Yaocheng; Pan, Qiyong; Yang, Li; Li, Ruifeng; Dai, Jun
2017-12-01
The tribological behavior of laser manufactured IN718 superalloy coating are investigated with different applied loads, sliding speeds and lubricating mediums. The wear resistance of laser manufactured IN718 coating is increased by heat treatment due to higher microhardness and homogeneous brittle phase distribution. The principal factors for the wear rate are applied load and lubricating medium. The worn surface of laser manufactured IN718 coating consists of the grooves, crack, wear debris and material delamination generated by the fatigue wear associated with adhesive wear and abrasive wear. The friction coefficients are influenced by the tribological noise decrescence by the tribo-oxidant and the liquid lubricant. The real contact temperature between coating sample and frictional counterpart is higher than the solid-solution temperature of IN718 superalloy, and the effect of surface contact temperature on the orientational microstructure and wear resistance for dry friction and wet friction process is indistinct.
NASA Astrophysics Data System (ADS)
Jesudoss Hynes, N. Rajesh; Shenbaga Velu, P.
2018-02-01
In the last two decades, major car manufacturing companies are exploring the possibilities of joining magnesium with aluminium, via friction welding technique for many crucial automotive applications. Our primary objective, is to carry out an experimental investigation in order to study the behaviour of dissimilar joints. The microscopic structure at the welded joint interface was analysed using an optical microscopy and scanning electron microscope. It was found that, by increasing the value of friction time, the value of the tensile strength increases and the result of tensile strength is found to be 120 MPa at a friction time of 10 s. Micro hardness was found to be higher at the interface of the weldment due to the development of a brittle intermetallic compound. Micro structural studies using SEM reveals, distinct zones such as an unaffected parent metal zone, the heat affected zone, a thermo-mechanically affected zone and a fully deformed plasticised zone.
NASA Astrophysics Data System (ADS)
Sawczuk, Wojciech
2017-06-01
Due to their wide range of friction characteristics resulting from the application of different friction materials and good heat dissipation conditions, railway disc brakes have long replaced block brakes in many rail vehicles. A block brake still remains in use, however, in low speed cargo trains. The paper presents the assessment of the braking process through the analysis of vibrations generated by the components of the brake system during braking. It presents a possibility of a wider application of vibroacoustic diagnostics (VA), which aside from the assessment of technical conditions (wear of brake pads) also enables the determination of the changes of the average friction coefficient as a function of the braking onset speed. Vibration signals of XYZ were measured and analyzed. The analysis of the results has shown that there is a relation between the values of the point measures and the wear of the brake pads.
Numerical simulation of linear fiction welding (LFW) processes
NASA Astrophysics Data System (ADS)
Fratini, L.; La Spisa, D.
2011-05-01
Solid state welding processes are becoming increasingly important due to a large number of advantages related to joining "unweldable" materials and in particular light weight alloys. Linear friction welding (LFW) has been used successfully to bond non-axisymmetric components of a range of materials including titanium alloys, steels, aluminum alloys, nickel, copper, and also dissimilar material combinations. The technique is useful in the research of quality of the joints and in reducing costs of components and parts of the aeronautic and automotive industries. LFW involves parts to be welded through the relative reciprocating motion of two components under an axial force. In such process the heat source is given by the frictional forces work decaying into heat determining a local softening of the material and proper bonding conditions due to both the temperature increase and the local pressure of the two edges to be welded. This paper is a comparative test between the numerical model in two dimensions, i.e. in plane strain conditions, and in three dimensions of a LFW process of AISI1045 steel specimens. It must be observed that the 3D model assures a faithful simulation of the actual threedimensional material flow, even if the two-dimensional simulation computational times are very short, a few hours instead of several ones as the 3D model. The obtained results were compared with experimental values found out in the scientific literature.
Friction coefficient of skin in real-time.
Sivamani, Raja K; Goodman, Jack; Gitis, Norm V; Maibach, Howard I
2003-08-01
Friction studies are useful in quantitatively investigating the skin surface. Previous studies utilized different apparatuses and materials for these investigations but there was no real-time test parameter control or monitoring. Our studies incorporated the commercially available UMT Series Micro-Tribometer, a tribology instrument that permits real-time monitoring and calculation of the important parameters in friction studies, increasing the accuracy over previous tribology and friction measurement devices used on skin. Our friction tests were performed on four healthy volunteers and on abdominal skin samples. A stainless steel ball was pressed on to the skin with at a pre-set load and then moved across the skin at a constant velocity of 5 mm/min. The UMT continuously monitored the friction force of the skin and the normal force of the ball to calculate the friction coefficient in real-time. Tests investigated the applicability of Amonton's law, the impact of increased and decreased hydration, and the effect of the application of moisturizers. The friction coefficient depends on the normal load applied, and Amonton's law does not provide an accurate description for the skin surface. Application of water to the skin increased the friction coefficient and application of isopropyl alcohol decreased it. Fast acting moisturizers immediately increased the friction coefficient, but did not have the prolonged effect of the slow, long lasting moisturizers. The UMT is capable of making real-time measurements on the skin and can be used as an effective tool to study friction properties. Results from the UMT measurements agree closely with theory regarding the skin surface.
The effect of zinc oxide nanoparticles deposition for friction reduction on orthodontic wires
Kachoei, Mojghan; Eskandarinejad, Faranak; Divband, Baharak; Khatamian, Masumeh
2013-01-01
Background: In the sliding technique, the reduced frictional forces are associated with rapid tooth movements and better control of the anchorage. Recently, wire coating with different nanoparticles has been proposed to decrease frictional forces. This in vitro study was carried out to coat stainless steel (SS) wires with zinc oxide (ZnO) nanoparticles in order to determine the effect of this coating on friction between wires and orthodontic brackets. Materials and Methods: Eighty 0.016 inch and 0.019 inch × 0.025 inch SS wires with and without ZnO nanoparticles were used in 80 orthodontic brackets (0.018 and 0.022 systems). The coated wires were analyzed by SEM and X-Ray diffraction (XRD) observations. Kinetic friction between the wires and orthodontic brackets were calculated using a universal testing machine. Frictional forces were statistically analyzed using three-way ANOVA, one-way ANOVA, Student's t-test and Tukey multiple comparison tests. Results: Coating with ZnO nanoparticles significantly influenced frictional force values (P < 0.0001). In 0.019 inch × 0.025 inch wires, the frictional forces were 1.6912 ± 0.18868 and 3.4485 ± 0.32389 N in the coated and uncoated wires respectively, (51% reductions). In the 0.016 inch wires, the friction values were estimated to be 1.5668 ± 0.10703 and 2.56 ± 0.34008 N in the coated and uncoated conditions, respectively, (39% reductions). Conclusion: Due to the positive effects of ZnO nanoparticle coating on decreasing frictional forces, these nanoparticles might offer a novel opportunity to significantly reduce friction during tooth movement. PMID:24130586
Low Friction Droplet Transportation on a Substrate with a Selective Leidenfrost Effect.
Dodd, Linzi E; Wood, David; Geraldi, Nicasio R; Wells, Gary G; McHale, Glen; Xu, Ben B; Stuart-Cole, Simone; Martin, James; Newton, Michael I
2016-08-31
An energy saving Leidenfrost levitation method is introduced to transport microdroplets with virtually frictionless contact between the liquid and solid substrate. Through microengineering of the heating units, selective areas of the whole substrate can be electrothermally activated. A droplet can be levitated as a result of the Leidenfrost effect and further transported when the substrate is tilted slightly. Selective electroheating produces a uniform temperature distribution on the heating units within 1 s in response to a triggering voltage. Alongside these experimental observations, finite element simulations were conducted to understand the role of substrate thermal conductivity on the temperature profile of the selectively heated substrate. We also generated phase diagrams to verify the Leidenfrost regime for different substrate materials. Finally, we demonstrated the possibility of controlling low friction high speed droplet transportation (∼65 mm/s) when the substrate is tilted (∼7°) by structurally designing the substrate. This work establishes the basis for an entirely new approach to droplet microfluidics.
The effects of maintaining temperature in annealing heat treatment for an FSWed 6061-T6 Al alloy.
Lee, Seung-Jun; Han, Min-Su; Kim, Seong-Jong
2013-08-01
The technological development of all kinds of lightweight transportation devices including vehicles, aircraft, ships, etc. has progressed markedly with the demand for energy saving and environmental protection. Aluminum alloy is in the spotlight as it is a suitable environmentally friendly material. However, deformation is a major problem during the welding process because aluminum alloy has a large thermal expansion coefficient. In addition, it is known that its corrosion resistance is excellent; nevertheless, in practice, considerable corrosion is generated and this is a major problem. To solve this problem, the friction stir welding (FSW) technology is applied extensively at various industrial fields as a new welding technique. This method involves a process in which materials are joined by frictional heat and physical force. Therefore, we evaluated improvements in mechanical properties and corrosion resistance through annealing heat treatment after FSW. The electrochemical experiment did not show a significant difference. However, the microstructure observation showed defectless, fine crystal particles, indicating excellent properties at 200-225°C.
Mathematical modeling of a four-stroke resonant engine for micro and mesoscale applications
NASA Astrophysics Data System (ADS)
Preetham, B. S.; Anderson, M.; Richards, C.
2014-12-01
In order to mitigate frictional and leakage losses in small scale engines, a compliant engine design is proposed in which the piston in cylinder arrangement is replaced by a flexible cavity. A physics-based nonlinear lumped-parameter model is derived to predict the performance of a prototype engine. The model showed that the engine performance depends on input parameters, such as heat input, heat loss, and load on the engine. A sample simulation for a reference engine with octane fuel/air ratio of 0.043 resulted in an indicated thermal efficiency of 41.2%. For a fixed fuel/air ratio, higher output power is obtained for smaller loads and vice-versa. The heat loss from the engine and the work done on the engine during the intake stroke are found to decrease the indicated thermal efficiency. The ratio of friction work to indicated work in the prototype engine is about 8%, which is smaller in comparison to the traditional reciprocating engines.
Predicting Turbulent Convective Heat Transfer in Three-Dimensional Duct Flows
NASA Technical Reports Server (NTRS)
Rokni, M.; Gatski, T. B.
1999-01-01
The performance of an explicit algebraic stress model is assessed in predicting the turbulent flow and forced heat transfer in straight ducts, with square, rectangular, trapezoidal and triangular cross-sections, under fully developed conditions over a range of Reynolds numbers. Iso-thermal conditions are imposed on the duct walls and the turbulent heat fluxes are modeled by gradient-diffusion type models. At high Reynolds numbers (>/= 10(exp 5)), wall functions are used for the velocity and temperature fields; while at low Reynolds numbers damping functions are introduced into the models. Hydraulic parameters such as friction factor and Nusselt number are well predicted even when damping functions are used, and the present formulation imposes minimal demand on the number of grid points without any convergence or stability problems. Comparison between the models is presented in terms of the hydraulic parameters, friction factor and Nusselt number, as well as in terms of the secondary flow patterns occurring within the ducts.
Heat and mass transfer rates during flow of dissociated hydrogen gas over graphite surface
NASA Technical Reports Server (NTRS)
Nema, V. K.; Sharma, O. P.
1986-01-01
To improve upon the performance of chemical rockets, the nuclear reactor has been applied to a rocket propulsion system using hydrogen gas as working fluid and a graphite-composite forming a part of the structure. Under the boundary layer approximation, theoretical predictions of skin friction coefficient, surface heat transfer rate and surface regression rate have been made for laminar/turbulent dissociated hydrogen gas flowing over a flat graphite surface. The external stream is assumed to be frozen. The analysis is restricted to Mach numbers low enough to deal with the situation of only surface-reaction between hydrogen and graphite. Empirical correlations of displacement thickness, local skin friction coefficient, local Nusselt number and local non-dimensional heat transfer rate have been obtained. The magnitude of the surface regression rate is found low enough to ensure the use of graphite as a linear or a component of the system over an extended period without loss of performance.
NASA Astrophysics Data System (ADS)
Raju, C. S. K.; Sekhar, K. R.; Ibrahim, S. M.; Lorenzini, G.; Viswanatha Reddy, G.; Lorenzini, E.
2017-05-01
In this study, we proposed a theoretical investigation on the temperature-dependent viscosity effect on magnetohydrodynamic dissipative nanofluid over a truncated cone with heat source/sink. The involving set of nonlinear partial differential equations is transforming to set of nonlinear ordinary differential equations by using self-similarity solutions. The transformed governing equations are solved numerically using Runge-Kutta-based Newton's technique. The effects of various dimensionless parameters on the skin friction coefficient and the local Nusselt number profiles are discussed and presented with the support of graphs. We also obtained the validation of the current solutions with existing solution under some special cases. The water-based titanium alloy has a lesser friction factor coefficient as compared with kerosene-based titanium alloy, whereas the rate of heat transfer is higher in water-based titanium alloy compared with kerosene-based titanium alloy. From this we can highlight that depending on the industrial needs cooling/heating chooses the water- or kerosene-based titanium alloys.
NASA Astrophysics Data System (ADS)
Mahanthesh, B.; Gireesha, B. J.; Athira, P. R.
Impact of induced magnetic field over a flat porous plate by utilizing incompressible water-copper nanoliquid is examined analytically. Flow is supposed to be laminar, steady and two-dimensional. The plate is subjected to a regular free stream velocity as well as suction velocity. Flow formulation is developed by considering Maxwell-Garnetts (MG) and Brinkman models of nanoliquid. Impacts of thermal radiation, viscous dissipation, temperature dependent heat source/sink and first order chemical reaction are also retained. The subjected non-linear problems are non-dimensionalized and analytic solutions are presented via series expansion method. The graphs are plotted to analyze the influence of pertinent parameters on flow, magnetism, heat and mass transfer fields as well as friction factor, current density, Nusselt and Sherwood numbers. It is found that friction factor at the plate is more for larger magnetic Prandtl number. Also the rate of heat transfer decayed with increasing nanoparticles volume fraction and the strength of magnetism.
Multi-fluid Approach to High-frequency Waves in Plasmas. III. Nonlinear Regime and Plasma Heating
NASA Astrophysics Data System (ADS)
Martínez-Gómez, David; Soler, Roberto; Terradas, Jaume
2018-03-01
The multi-fluid modeling of high-frequency waves in partially ionized plasmas has shown that the behavior of magnetohydrodynamic waves in the linear regime is heavily influenced by the collisional interaction between the different species that form the plasma. Here, we go beyond linear theory and study large-amplitude waves in partially ionized plasmas using a nonlinear multi-fluid code. It is known that in fully ionized plasmas, nonlinear Alfvén waves generate density and pressure perturbations. Those nonlinear effects are more pronounced for standing oscillations than for propagating waves. By means of numerical simulations and analytical approximations, we examine how the collisional interaction between ions and neutrals affects the nonlinear evolution. The friction due to collisions dissipates a fraction of the wave energy, which is transformed into heat and consequently raises the temperature of the plasma. As an application, we investigate frictional heating in a plasma with physical conditions akin to those in a quiescent solar prominence.
A Rotating Plug Model of Friction Stir Welding Heat Transfer
NASA Technical Reports Server (NTRS)
Raghulapadu J. K.; Peddieson, J.; Buchanan, G. R.; Nunes, A. C.
2006-01-01
A simplified rotating plug model is employed to study the heat transfer phenomena associated with the fiction stir welding process. An approximate analytical solution is obtained based on this idealized model and used both to demonstrate the qualitative influence of process parameters on predictions and to estimate temperatures produced in typical fiction stir welding situations.
Factors of airplane engine performance
NASA Technical Reports Server (NTRS)
Gage, Victor R
1921-01-01
This report is based upon an analysis of a large number of airplane-engine tests. It contains the results of a search for fundamental relations between many variables of engine operation. The data used came from over 100 groups of tests made upon several engines, primarily for military information. The types of engines were the Liberty 12 and three models of the Hispano-Suiza. The tests were made in the altitude chamber, where conditions simulated altitudes up to about 30,000 feet, with engine speeds ranging from 1,200 to 2,200 r.p.m. The compression ratios of the different engines ranged from under 5 to over 8 to 1. The data taken on the tests were exceptionally complete, including variations of pressure and temperature, besides the brake and friction torques, rates of fuel and air consumption, the jacket and exhaust heat losses.
NASA Technical Reports Server (NTRS)
Smith, Brandon; Jan, Darrell Leslie; Venkatapathy, Ethiraj
2015-01-01
Vehicles re-entering Earth's atmosphere require protection from the heat of atmospheric friction. The Orion Multi-Purpose Crew Vehicle (MPCV) has more demanding thermal protection system (TPS) requirements than the Low Earth Orbit (LEO) missions, especially in regions where the structural load passes through. The use of 2-dimensional laminate materials along with a metal insert, used in EFT1 flight test for the compression pad region, are deemed adequate but cannot be extended for Lunar return missions.
NASA Technical Reports Server (NTRS)
Melcher, Kevin J.
2006-01-01
The Compressible Flow Toolbox is primarily a MATLAB-language implementation of a set of algorithms that solve approximately 280 linear and nonlinear classical equations for compressible flow. The toolbox is useful for analysis of one-dimensional steady flow with either constant entropy, friction, heat transfer, or Mach number greater than 1. The toolbox also contains algorithms for comparing and validating the equation-solving algorithms against solutions previously published in open literature. The classical equations solved by the Compressible Flow Toolbox are as follows: The isentropic-flow equations, The Fanno flow equations (pertaining to flow of an ideal gas in a pipe with friction), The Rayleigh flow equations (pertaining to frictionless flow of an ideal gas, with heat transfer, in a pipe of constant cross section), The normal-shock equations, The oblique-shock equations, and The expansion equations.
NASA Astrophysics Data System (ADS)
Chen, Min; Cheng, Wushan; Zhao, Zuxin; Huang, Xiaobo
2013-01-01
The major solving ways for the material wear are surface modification and lubrication. Currently, the researches at home and abroad are all limited to the single study of either nano-lubricating oil additive or electroless deposited coating. The surface coating has high hardness and high wear resistance, however, the friction reduction performance of the coating with high hardness is not good, the thickness of the coating is limited, and the coating can not regenerate after wearing. The nano-lubricating additives have good tribological performance and self-repair function, but under heavy load, the self-repair rate to the worn surface with the nano-additives is smaller than the wearing rate of the friction pair. To solve the above problems, the Ni-W-P alloy coating and deposition process with excellent anti-wear, and suitable for industrial application were developed, the optimum bath composition and process can be obtained by studying the influence of the bath composition, temperature and PH value to the deposition rate and the plating solution stability. The tribological properties as well as anti-wear and friction reduction mechanism of wear self-repair nano-ceramic lubricating additives are also studied. The ring-block abrasion testing machine and energy dispersive spectrometer are used to explore the internal relation between the coating and the nano-lubricating oil additives, and the tribology mechanism, to seek the synergetic effect between the two. The test results show that the wear resistance of Ni-W-P alloy coating (with heat treatment and in oil with nano-ceramic additives) has increased hundreds times than 45 steel as the metal substrate in basic oil, the friction reduction performance is improved. This research breaks through the bottleneck of previous separate research of the above-mentioned two methods, and explores the combination use of the two methods in industrial field.
NASA Astrophysics Data System (ADS)
Ahmed, Rubel; Rana, B. M. Jewel; Ahmmed, S. F.
2017-06-01
The effects of magnetic, radiation and chemical reaction parameters on the unsteady heat and mass transfer boundary layer flow past an oscillating cylinder is considered. The dimensionless momentum, energy and concentration equations are solved numerically by using explicit finite difference method with the help of a computer programming language Compaq visual FORTRAN 6.6a. The obtained results of this study have been discussed for different values of well-known parameters with different time steps. The effect of these parameters on the velocity field, temperature field and concentration field, skin-friction, Nusselt number, streamlines and isotherms has been studied and results are presented by graphically represented by the tabular form quantitatively. The stability and convergence analysis of the solution parameters that have been used in the mathematical model have been tested.
Microstructure and Mechanical Property Change During FSW and GTAW of Al6061 Alloy
NASA Astrophysics Data System (ADS)
Fahimpour, V.; Sadrnezhaad, S. K.; Karimzadeh, F.
2013-05-01
The variation of morphology and mechanical properties of Al6061 automotive aluminum alloy due to friction stir welding (FSW) and gas tungsten arc welding (GTAW) was investigated by optical metallography, scanning electron microscopy, microhardness measurement, X-ray diffraction, tensile testing, and fractography. The center-line dendrite emergence and microhardness reduction in the heat-affected zone were observed in the GTAW process. Although similar microhardness reduction with respect to the base metal was observed in the FSW samples, higher HVs were obtained for the FSW rather than the GTAW process at almost all heat-affected locations. Ultimate tensile strengths of the FSW and the GTAW samples in the transverse direction were ~0.57 and ~0.35 of the base metal, respectively. Post-weld aging improved the strength, but reduced the ductility of the welding.
Samorodnitzky-Naveh, Gili R; Redlich, Meir; Rapoport, Lev; Feldman, Yishay; Tenne, Reshef
2009-12-01
To fabricate a friction-reducing coating onto different nickel-titanium (NiTi) substrates using inorganic fullerene-like tungsten disulfide (IF-WS(2)) nanoparticles and to estimate in vitro friction reducing extent of the coating. Different NiTi substrates were coated with cobalt and IF-WS(2) nanoparticles film by the electrodeposition procedure. Coating composition analyses was made by scanning-electron microscopy, energy dispersive x-ray spectroscopy, x-ray powder diffractometry and x-ray photoelectron spectroscopy. Friction evaluation was carried out using standard tribological tests and an Instron system. Stable and well-adhered cobalt + IF-WS(2) coating of the NiTi substrates was obtained. Friction tests presented up to 66% reduction of the friction coefficient. NiTi alloy is widely used for many medical appliances; hence, this unique friction-reducing coating could be implemented to provide better manipulation and lower piercing rates.
LLNL Small-Scale Friction sensitivity (BAM) Test
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simpson, L.R.; Foltz, M.F.
1996-06-01
Small-scale safety testing of explosives, propellants and other energetic materials, is done to determine their sensitivity to various stimuli including friction, static spark, and impact. Testing is done to discover potential handling problems for either newly synthesized materials of unknown behavior, or materials that have been stored for long periods of time. This report describes the existing {open_quotes}BAM{close_quotes} Small-Scale Friction Test, and the methods used to determine the friction sensitivity pertinent to handling energetic materials. The accumulated data for the materials tested is not listed here - that information is in a database. Included is, however, a short list ofmore » (1) materials that had an unusual response, and (2), a few {open_quotes}standard{close_quotes} materials representing the range of typical responses usually seen.« less
Food waste impact on municipal solid waste angle of internal friction.
Cho, Young Min; Ko, Jae Hac; Chi, Liqun; Townsend, Timothy G
2011-01-01
The impact of food waste content on the municipal solid waste (MSW) friction angle was studied. Using reconstituted fresh MSW specimens with different food waste content (0%, 40%, 58%, and 80%), 48 small-scale (100-mm-diameter) direct shear tests and 12 large-scale (430 mm × 430 mm) direct shear tests were performed. A stress-controlled large-scale direct shear test device allowing approximately 170-mm sample horizontal displacement was designed and used. At both testing scales, the mobilized internal friction angle of MSW decreased considerably as food waste content increased. As food waste content increased from 0% to 40% and from 40% to 80%, the mobilized internal friction angles (estimated using the mobilized peak (ultimate) shear strengths of the small-scale direct shear tests) decreased from 39° to 31° and from 31° to 7°, respectively, while those of large-scale tests decreased from 36° to 26° and from 26° to 15°, respectively. Most friction angle measurements produced in this study fell within the range of those previously reported for MSW. Copyright © 2010 Elsevier Ltd. All rights reserved.
Simulated Service and Stress Corrosion Cracking Testing for Friction Stir Welded Spun Formed Domes
NASA Technical Reports Server (NTRS)
Stewart, Thomas J.; Torres, Pablo D.; Caratus, Andrei A.; Curreri, Peter A.
2010-01-01
Simulated service testing (SST) development was required to help qualify a new 2195 aluminum lithium (Al-Li) alloy spin forming dome fabrication process for the National Aeronautics and Space Administration (NASA) Exploration Development Technology Program. The application for the technology is to produce high strength low weight tank components for NASA s next generation launch vehicles. Since plate material is not currently manufactured large enough to fabricate these domes, two plates are joined by means of friction stir welding. The plates are then pre-contour machined to near final thicknesses allowing for a thicker weld land and anticipating the level of stretch induced by the spin forming process. The welded plates are then placed in a spin forming tool and hot stretched using a trace method producing incremental contours. Finally the dome receives a room temperature contour stretch to final dimensions, heat treatment, quenching, and artificial aging to emulate a T-8 condition of temper. Stress corrosion cracking (SCC) tests were also performed by alternate immersion in a sodium chloride (NaCl) solution using the typical double beam assembly and with 4-point loaded specimens and use of bent-beam stress-corrosion test specimens under alternate immersion conditions. In addition, experiments were conducted to determine the threshold stress intensity factor for SCC (K(sub ISCC)) which to our knowledge has not been determined previously for Al-Li 2195 alloy. The successful simulated service and stress corrosion testing helped to provide confidence to continue to Ares 1 scale dome fabrication
Friction testing of a new ligature
NASA Astrophysics Data System (ADS)
Mantel, Alison R.
Objective. To determine if American Orthodontics' (AO) new, experimental ligature demonstrates less friction in vitro when compared to four other ligatures on the market. Methods. Four brackets were mounted on a custom metal fixture allowing an 0.018-in stainless steel wire attached to an opposite fixture with one bracket to be passively centered in the bracket slot. The wire was ligated to the bracket using one of five types of ligatures including the low friction test ligatures (AO), conventional ligatures (AO), Sili-Ties(TM) Silicone Infused Ties (GAC), SynergyRTM Low-Friction Ligatures (RMO), and SuperSlick ligatures (TP Orthodontics). Resistance to sliding was measured over a 7 mm sliding distance using a universal testing machine (Instron) with a 50 Newton load cell and a crosshead speed of 5 mm/min. The initial resistance to sliding (static) was determined by the peak force needed to initiate movement and the kinetic resistance to sliding was taken as the force at 5 mm of wire/bracket sliding. Fifteen unique tests were run for each ligature group in both dry and wet (saliva soaked for 24 hours with one drop prior to testing) conditions. Results. In the dry state, the SuperSlick ligature demonstrated more static friction than all of the other ligatures, while SuperSlick and Sili-Ties demonstrated more kinetic friction than the AO conventional, AO experimental and Synergy ligatures. In the wet condition, SuperSlick and the AO experimental ligature demonstrated the least static friction, followed by the AO conventional and Sili-Ties. The most static friction was observed with the Synergy ligatures. In the wet condition, the SuperSlick, AO experimental and AO conventional exhibited less kinetic friction than the Sili-Ties and Synergy ligatures. Conclusions. AO's experimental ligature exhibits less friction in the wet state than conventional ligatures, Sili-Ties and Synergy and is comparable to the SuperSlick ligature. These preliminary results suggest that the AO experimental ligature and the SuperSlick ligature create less friction, but direct conclusions regarding in vivo performance cannot be made and randomized controlled clinical trials are needed to determine if these ligatures have clinical significance in treatment efficiency.
Fossil rocks of slow earthquake detected by thermal diffusion length
NASA Astrophysics Data System (ADS)
Hashimoto, Yoshitaka; Morita, Kiyohiko; Okubo, Makoto; Hamada, Yohei; Lin, Weiren; Hirose, Takehiro; Kitamura, Manami
2016-04-01
Fault motion has been estimated by diffusion pattern of frictional heating recorded in geology (e.g., Fulton et al., 2012). The same record in deeper subduction plate interface can be observed from micro-faults in an exhumed accretionary complex. In this study, we focused on a micro-fault within the Cretaceous Shimanto Belt, SW Japan to estimate fault motion from the frictional heating diffusion pattern. A carbonaceous material concentrated layer (CMCL) with ~2m of thickness is observed in study area. Some micro-faults cut the CMCL. Thickness of a fault is about 3.7mm. Injection veins and dilatant fractures were observed in thin sections, suggesting that the high fluid pressure was existed. Samples with 10cm long were collected to measure distribution of vitrinite reflectance (Ro) as a function of distance from the center of micro-fault. Ro of host rock was ~1.0%. Diffusion pattern was detected decreasing in Ro from ~1.2%-~1.1%. Characteristic diffusion distance is ~4-~9cm. We conducted grid search to find the optimal frictional heat generation per unit area per second (Q (J/m^2/s), the product of friction coefficient, normal stress and slip velocity) and slip duration (t(s)) to fit the diffusion pattern. Thermal diffusivity (0.98*10^8m^2/s) and thermal conductivity (2.0 w/mK) were measured. In the result, 2000-2500J/m^2/s of Q and 63000-126000s of t were estimated. Moment magnitudes (M0) of slow earthquakes (slow EQs) follow a scaling law with slip duration and its dimension is different from that for normal earthquakes (normal EQ) (Ide et al., 2007). The slip duration estimated in this study (~10^4-~10^5s) consistent with 4-5 of M0, never fit to the scaling law for normal EQ. Heat generation can be inverted from 4-5 of M0, corresponding with ~10^8-~10^11J, which is consistent with rupture area of 10^5-10^8m2 in this study. The comparisons in heat generation and slip duration between geological measurements and geophysical remote observations give us the estimation of rupture area, M0, and earthquake style, for geological records.
Shear heating and metamorphism in subduction zones, 1. Thermal models
NASA Astrophysics Data System (ADS)
Kohn, M. J.; Castro, A. E.; Spear, F. S.
2017-12-01
Popular thermal-mechanical models of modern subduction systems are 100-500 °C colder at c. 50 km depth than pressure-temperature (P-T) conditions determined from exhumed metamorphic rocks. This discrepancy has been ascribed by some to profound bias in the rock record, i.e. metamorphic rocks reflect only anomalously warm subduction, not normal subduction. Accurately inferring subduction zone thermal structure, whether from models or rocks, is crucial for predicting depths of seismicity, fluid release, and sub-arc melting conditions. Here, we show that adding realistic shear stresses to thermal models implies P-T conditions quantitatively consistent with those recorded by exhumed metamorphic rocks, suggesting that metamorphic rock P-T conditions are not anomalously warm. Heat flow measurements from subduction zone fore-arcs typically indicate effective coefficients of friction (µ) ranging from 0.025 to 0.1. We included these coefficients of friction in analytical models of subduction zone interface temperatures. Using global averages of subducting plate age (50 Ma), subduction velocity (6 cm/yr), and subducting plate geometry (central Chile), temperatures at 50 km depth (1.5 GPa) increase by c. 200 °C for µ=0.025 to 700 °C for µ=0.1. However, at high temperatures, thermal softening will reduce frictional heating, and temperatures will not increase as much with depth. Including initial weakening of materials ranging from wet quartz (c. 300 °C) to diabase (c. 600 °C) in the analytical models produces concave-upward P-T distributions on P-T diagrams, with temperatures c. 100 to 500 °C higher than models with no shear heating. The absolute P-T conditions and concave-upward shape of the shear-heating + thermal softening models almost perfectly matches the distribution of P-T conditions derived from a compilation of exhumed metamorphic rocks. Numerical models of modern subduction zones that include shear heating also overlap metamorphic data. Thus, excepting the very hottest examples, exhumed metamorphic rocks represent the products of normal, not anomalous, subduction. Consequently numerous geochemical, petrologic, and geophysical interpretations that have been founded on models that lack shear heating must be re-evaluated.
Oxide Evolution in ODS Steel Resulting From Friction Stir Welding
2014-06-01
Master’s Thesis 4 . TITLE AND SUBTITLE OXIDE EVOLUTION IN ODS STEEL RESULTING FROM FRICTION STIR WELDING 5. FUNDING NUMBERS 6 . AUTHOR(S...temperatures, from [5]. ........... 6 Figure 4 . The phase diagram for aluminum and yttrium oxide, from [13]. ......................8 Figure 5...millimeters per minute. FSW Conditions RPM IPM MMPM Heat Index 400 7 175 2.3 300 4 100 3 200 2 50 4 400 4 100 4 300 2 50 6 400 2 50 8 500 1 25
Swept shock/boundary layer interaction experiments in support of CFD code validation
NASA Technical Reports Server (NTRS)
Settles, G. S.; Lee, Y.
1990-01-01
Research on the topic of shock wave/turbulent boundary layer interaction was carried out. Skin friction and surface pressure measurements in fin-induced, swept interactions were conducted, and heat transfer measurements in the same flows are planned. The skin friction data for a strong interaction case (Mach 4, fin-angles equal 16 and 20 degrees) were obtained, and their comparison with computational results was published. Surface pressure data for weak-to-strong fin interactions were also obtained.
Modeling of AA5083 Material-Microstructure Evolution During Butt Friction-Stir Welding
2010-07-01
a rigid material. Its density and thermal properties are set to that of AISI- H13 , the hot-worked tool steel which is often used as a FSW- tool ...joining process (Ref 1-3). Within FSW, a (typically) cylindrical tool - pin (threaded at the bottom and terminated with a circular-plate shape shoulder...applied to the shoulder and owing to frictional sliding and plastic deforma- tion, substantial amount of heat is generated at the tool /work- piece
Frictional melt generated by the 2008 Mw 7.9 Wenchuan earthquake and its faulting mechanisms
NASA Astrophysics Data System (ADS)
Wang, H.; Li, H.; Si, J.; Sun, Z.; Zhang, L.; He, X.
2017-12-01
Fault-related pseudotachylytes are considered as fossil earthquakes, conveying significant information that provide improved insight into fault behaviors and their mechanical properties. The WFSD project was carried out right after the 2008 Wenchuan earthquake, detailed research was conducted in the drilling cores. 2 mm rigid black layer with fresh slickenlines was observed at 732.6 m in WFSD-1 cores drilled at the southern Yingxiu-Beichuan fault (YBF). Evidence of optical microscopy, FESEM and FIB-TEM show it's frictional melt (pseudotachylyte). In the northern part of YBF, 4 mm fresh melt was found at 1084 m with similar structures in WFSD-4S cores. The melts contain numerous microcracks. Considering that (1) the highly unstable property of the frictional melt (easily be altered or devitrified) under geological conditions; (2) the unfilled microcracks; (3) fresh slickenlines and (4) recent large earthquake in this area, we believe that 2-4 mm melt was produced by the 2008 Wenchuan earthquake. This is the first report of fresh pseudotachylyte with slickenlines in natural fault that generated by modern earthquake. Geochemical analyses show that fault rocks at 732.6 m are enriched in CaO, Fe2O3, FeO, H2O+ and LOI, whereas depleted in SiO2. XRF results show that Ca and Fe are enriched obviously in the 2.5 cm fine-grained fault rocks and Ba enriched in the slip surface. The melt has a higher magnetic susceptibility value, which may due to neoformed magnetite and metallic iron formed in fault frictional melt. Frictional melt visible in both southern and northern part of YBF reveals that frictional melt lubrication played a major role in the Wenchuan earthquake. Instead of vesicles and microlites, numerous randomly oriented microcracks in the melt, exhibiting a quenching texture. The quenching texture suggests the frictional melt was generated under rapid heat-dissipation condition, implying vigorous fluid circulation during the earthquake. We surmise that during earthquakes vigorous fluid influx within fault zone, likely dissipating the frictional heat and resulting in rapid temperature drop, may facilitate the solidification of melt and hamper the aftermost fault slip. Meanwhlie, the high temperature fluid-rock interaction may play an important role in the chemical elements migrating in fault zones.
Earthquake Cycle Simulations with Rate-and-State Friction and Linear and Nonlinear Viscoelasticity
NASA Astrophysics Data System (ADS)
Allison, K. L.; Dunham, E. M.
2016-12-01
We have implemented a parallel code that simultaneously models both rate-and-state friction on a strike-slip fault and off-fault viscoelastic deformation throughout the earthquake cycle in 2D. Because we allow fault slip to evolve with a rate-and-state friction law and do not impose the depth of the brittle-to-ductile transition, we are able to address: the physical processes limiting the depth of large ruptures (with hazard implications); the degree of strain localization with depth; the relative partitioning of fault slip and viscous deformation in the brittle-to-ductile transition zone; and the relative contributions of afterslip and viscous flow to postseismic surface deformation. The method uses a discretization that accommodates variable off-fault material properties, depth-dependent frictional properties, and linear and nonlinear viscoelastic rheologies. All phases of the earthquake cycle are modeled, allowing the model to spontaneously generate earthquakes, and to capture afterslip and postseismic viscous flow. We compare the effects of a linear Maxwell rheology, often used in geodetic models, with those of a nonlinear power law rheology, which laboratory data indicates more accurately represents the lower crust and upper mantle. The viscosity of the Maxwell rheology is set by power law rheological parameters with an assumed a geotherm and strain rate, producing a viscosity that exponentially decays with depth and is constant in time. In contrast, the power law rheology will evolve an effective viscosity that is a function of the temperature profile and the stress state, and therefore varies both spatially and temporally. We will also integrate the energy equation for the thermomechanical problem, capturing frictional heat generation on the fault and off-fault viscous shear heating, and allowing these in turn to alter the effective viscosity.
Tribo-performance evaluation of ecofriendly brake friction composite materials
NASA Astrophysics Data System (ADS)
Kumar, Naresh; Singh, Tej; Grewal, G. S.
2018-05-01
This paper presents the potential of natural fibre in brake friction materials. Natural fibre filled ecofriendly brake friction materials were developed without Kevlar fibre evaluated for tribo-performance on a chase friction testing machine following SAE J 661a standard. Experimental results indicated that natural fibre enhances the fade performance, but depresses the friction and wear performance, whereas Kevlar fibre improves the friction, wear and recovery performance but depresses the fade performance. Also the results revealed that with the increase in natural fibre content, the friction and fade performances enhanced.